sahitiy51 commited on
Commit
7a7d216
·
verified ·
1 Parent(s): bcaa3c9

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +77 -9
README.md CHANGED
@@ -1,18 +1,86 @@
1
  ---
2
- pretty_name: "MaRVL: Mathematical Reasoning Over Visual Landscapes"
3
-
4
  configs:
5
- # --- Configuration 1: Transformation Recognition ---
6
  - config_name: transformation_recognition
7
  data_files:
8
  - split: test_mini
9
- path: "transformation_recognition/test_mini-*.parquet"
10
  - split: test
11
- path: "transformation_recognition/test-*.parquet"
12
-
13
- # --- Configuration 2: Topological Counting ---
14
  - config_name: topological_counting
15
  data_files:
16
  - split: test
17
- path: "topological_counting/test-*.parquet"
18
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ pretty_name: 'MaRVL: Mathematical Reasoning Over Visual Landscapes'
 
3
  configs:
 
4
  - config_name: transformation_recognition
5
  data_files:
6
  - split: test_mini
7
+ path: transformation_recognition/test_mini-*.parquet
8
  - split: test
9
+ path: transformation_recognition/test-*.parquet
 
 
10
  - config_name: topological_counting
11
  data_files:
12
  - split: test
13
+ path: topological_counting/test-*.parquet
14
+ task_categories:
15
+ - visual-question-answering
16
+ - zero-shot-classification
17
+ tags:
18
+ - reasoning
19
+ - mathematics
20
+ - computer-vision
21
+ - spatial-reasoning
22
+ - mathematical-reasoning
23
+ - multimodality
24
+ - synthetic-data
25
+ size_categories:
26
+ - 10K<n<100K
27
+ ---
28
+
29
+ # **MaRVL-QA Dataset**
30
+
31
+ **MaRVL-QA** is a benchmark for evaluating the mathematical and spatial reasoning capabilities of Multimodal Large Language Models (MLLMs). The dataset is designed to test these models' ability to reason directly from images of mathematical surface plots, isolating the reasoning task from the semantic noise often found in natural images.
32
+
33
+ ---
34
+
35
+ ## **Dataset Structure**
36
+
37
+ The dataset is divided into two subsets, each tailored to a specific reasoning task.
38
+
39
+ ### **Topological Counting**
40
+
41
+ This task challenges models to identify and enumerate topological features, such as local maxima, within a single plot.
42
+
43
+ #### **Data Fields:**
44
+ * **`image`**: An image of the mathematical function's plot.
45
+ * **`question_type`**: The type of question being asked about the plot (e.g., "maxima", "minima").
46
+ * **`answer`**: The correct numerical answer to the question.
47
+ * **`func_id`**: A structured identifier for the function, formatted as `tier.family_id.function_id`. This allows for tiered evaluation as described in the paper.
48
+ * **`family`**: The family of the function (e.g., "Wave Surface").
49
+ * **`equation_str`**: The mathematical equation of the function.
50
+ * **`plot_range_x`**: The range of the x-axis for the plot.
51
+ * **`plot_range_y`**: The range of the y-axis for the plot.
52
+ * **`plot_type`**: The type of plot used (e.g., "heatmap", "contour_heatmap").
53
+ * **`color_map`**: The color map used in the plot (e.g., "magma", "inferno").
54
+
55
+ ### **Transformation Recognition**
56
+
57
+ This task requires the model to recognize the geometric transformation applied to an original plot (Plot A) to produce a new one (Plot B). The input image for this task contains both Plot A (left) and Plot B (right).
58
+
59
+ #### **Data Fields:**
60
+ * **`image`**: The image containing both the original and transformed plots.
61
+ * **`answer`**: The correct option number corresponding to the applied transformation.
62
+ * **`func_id`**: A structured identifier for the base function, formatted as `tier.family_id.function_id`.
63
+ * **`family`**: The family of the base function.
64
+ * **`equation_str`**: The mathematical equation of the base function.
65
+ * **`plot_range_x`** and **`plot_range_y`**: The plot range for both the original and transformed plots. As a controlled variable, the plot range remains consistent across the transformation.
66
+ * **`plot_type`**: The type of plot used.
67
+ * **`color_map`**: The color map used in the plot.
68
+ * **`options`**: A list of possible transformation choices presented to the model.
69
+ * **`transformation_params`**: The parameters of the ground truth transformation that was applied.
70
+
71
+ ---
72
+
73
+ ## **Citation**
74
+
75
+ If you find this dataset useful in your research, please cite the following paper:
76
+
77
+ ```bibtex
78
+ @misc{pande2025marvlqabenchmarkmathematicalreasoning,
79
+ title={MaRVL-QA: A Benchmark for Mathematical Reasoning over Visual Landscapes},
80
+ author={Nilay Pande and Sahiti Yerramilli and Jayant Sravan Tamarapalli and Rynaa Grover},
81
+ year={2025},
82
+ eprint={2508.17180},
83
+ archivePrefix={arXiv},
84
+ primaryClass={cs.AI},
85
+ url={https://arxiv.org/abs/2508.17180},
86
+ }