Text
stringlengths 54
21.3k
|
---|
Question:
Who is at risk for Lujo Hemorrhagic Fever (LUHF)? ?
Answer:
Lujo hemorrhagic fever (LUHF) occurs in southern Africa. The initial case was certainly infected in Zambia.
Field workers
Field workers are at greatest risk because of increased human contact with the reservoir rodent population. Sexual partners of field workers may be at greater risk as well. In addition to nosocomial infection in healthcare workers already described, laboratory infections have been frequently described with Arenaviruses and Lujo virus can certainly be transmitted to laboratory workers during manipulation of the virus, especially during experimental infections of rodents.
|
Question:
How to diagnose Lujo Hemorrhagic Fever (LUHF) ?
Answer:
During the acute febrile phase, Lujo virus was isolated from blood from days 2 to 13 after onset. Virus was also isolated from liver tissue obtained post-mortem. A subsequent complete genomic analysis of Lujo virus facilitated the development of specific molecular detection (RT-PCR) assays.
Serologic diagnosis of Lujo hemorrhagic fever can be made by indirect immunofluorescent assay and ELISA. However, individuals from endemic areas displaying fever, rash, pharyngitis, accompanied by laboratory findings of low platelet counts and elevated liver enzymes, should be suspected of having a hemorrhagic fever virus infection. Clinical specimens should be tested using specific assays.
|
Question:
What are the treatments for Lujo Hemorrhagic Fever (LUHF) ?
Answer:
Supportive therapy is important in Lujo hemorrhagic fever. This includes:
- maintenance of hydration
- management of shock
- sedation
- pain relief
- usual precautions for patients with bleeding disorders
- transfusions (when necessary)
Treatment of arenavirus hemorrhagic fevers with convalescent plasma therapy reduces mortality significantly and anectodal evidence from the only surviving Lujo patient shows that the antiviral drug ribavirin may hold promise in the treatment of LUHF. Ribavirin has been considered for preventing development of disease in people exposed to other arenaviruses.
Recovery
The precise mortality of LUHF is unknown, but 4 of 5 described cases were fatal.
Patients who have suffered from other arenaviruses may excrete virus in urine or semen for weeks after recovery. For this reason, these fluids should be monitored for infectivity, since convalescent patients have the potential to infect others (particularly sexual partners) via these fluids.
|
Question:
How to prevent Lujo Hemorrhagic Fever (LUHF) ?
Answer:
Although rodent control would be desirable, it will not be a successful strategy for preventing Lujo hemorrhagic fever cases caused by exposures outdoors.
As for other hemorrhagic fevers, full barrier nursing procedures should be implemented during management of suspected or confirmed LUHF cases (no infection occurred after their implementation in South Africa).
|
Question:
how is hps diagnosed and treated for Hantavirus ?
Answer:
Diagnosing HPS
Diagnosing HPS in an individual who has only been infected a few days is difficult, because early symptoms such as fever, muscle aches, and fatigue are easily confused with influenza. However, if the individual is experiencing fever and fatigue and has a history of potential rural rodent exposure, together with shortness of breath, would be strongly suggestive of HPS. If the individual is experiencing these symptoms they should see their physician immediately and mention their potential rodent exposure.
Treating HPS
There is no specific treatment, cure, or vaccine for hantavirus infection. However, we do know that if infected individuals are recognized early and receive medical care in an intensive care unit, they may do better. In intensive care, patients are intubated and given oxygen therapy to help them through the period of severe respiratory distress.
The earlier the patient is brought in to intensive care, the better. If a patient is experiencing full distress, it is less likely the treatment will be effective.
Therefore, if you have been around rodents and have symptoms of fever, deep muscle aches, and severe shortness of breath, see your doctor immediately. Be sure to tell your doctor that you have been around rodents—this will alert your physician to look closely for any rodent-carried disease, such as HPS.
|
Question:
what are the symptoms for Hantavirus ?
Answer:
Due to the small number of HPS cases, the "incubation time" is not positively known. However, on the basis of limited information, it appears that symptoms may develop between 1 and 5 weeks after exposure to fresh urine, droppings, or saliva of infected rodents.
Early Symptoms
Early symptoms include fatigue, fever and muscle aches, especially in the large muscle groups—thighs, hips, back, and sometimes shoulders. These symptoms are universal.
There may also be headaches, dizziness, chills, and abdominal problems, such as nausea, vomiting, diarrhea, and abdominal pain. About half of all HPS patients experience these symptoms.
Late Symptoms
Four to 10 days after the initial phase of illness, the late symptoms of HPS appear. These include coughing and shortness of breath, with the sensation of, as one survivor put it, a "...tight band around my chest and a pillow over my face" as the lungs fill with fluid.
Is the Disease Fatal?
Yes. HPS can be fatal. It has a mortality rate of 38%.
|
Question:
how can hps be prevented for Hantavirus ?
Answer:
Eliminate or minimize contact with rodents in your home, workplace, or campsite. If rodents don't find that where you are is a good place for them to be, then you're less likely to come into contact with them. Seal up holes and gaps in your home or garage. Place traps in and around your home to decrease rodent infestation. Clean up any easy-to-get food.
Recent research results show that many people who became ill with HPS developed the disease after having been in frequent contact with rodents and/or their droppings around a home or a workplace. On the other hand, many people who became ill reported that they had not seen rodents or rodent droppings at all. Therefore, if you live in an area where the carrier rodents are known to live, try to keep your home, vacation place, workplace, or campsite clean.
For more information on how you can prevent rodent infestations, the following information is available on the CDC Rodents site:
|
Question:
what is the history of hps for Hantavirus ?
Answer:
The "First"Outbreak
In May 1993, an outbreak of an unexplained pulmonary illness occurred in the southwestern United States, in an area shared by Arizona, New Mexico, Colorado and Utah known as "The Four Corners". A young, physically fit Navajo man suffering from shortness of breath was rushed to a hospital in New Mexico and died very rapidly.
While reviewing the results of the case, medical personnel discovered that the young man's fiancée had died a few days before after showing similar symptoms, a piece of information that proved key to discovering the disease. As Dr. James Cheek of the Indian Health Service (IHS) noted, "I think if it hadn't been for that initial pair of people that became sick within a week of each other, we never would have discovered the illness at all".
An investigation combing the entire Four Corners region was launched by the New Mexico Office of Medical Investigations (OMI) to find any other people who had a similar case history. Within a few hours, Dr. Bruce Tempest of IHS, working with OMI, had located five young, healthy people who had all died after acute respiratory failure.
A series of laboratory tests had failed to identify any of the deaths as caused by a known disease, such as bubonic plague. At this point, the CDC Special Pathogens Branch was notified. CDC, the state health departments of New Mexico, Colorado and Utah, the Indian Health Service, the Navajo Nation, and the University of New Mexico all joined together to confront the outbreak.
During the next few weeks, as additional cases of the disease were reported in the Four Corners area, physicians and other scientific experts worked intensively to narrow down the list of possible causes. The particular mixture of symptoms and clinical findings pointed researchers away from possible causes, such as exposure to a herbicide or a new type of influenza, and toward some type of virus. Samples of tissue from patients who had gotten the disease were sent to CDC for exhaustive analysis. Virologists at CDC used several tests, including new methods to pinpoint virus genes at the molecular level, and were able to link the pulmonary syndrome with a virus, in particular a previously unknown type of hantavirus.
Researchers Launch Investigations to Pin Down the Carrier of the New Virus
Researchers knew that all other known hantaviruses were transmitted to people by rodents, such as mice and rats. Therefore, an important part of their mission was to trap as many different species of rodents living in the Four Corners region as possible to find the particular type of rodent that carried the virus. From June through mid-August of 1993, all types of rodents were trapped inside and outside homes where people who had hantavirus pulmonary syndrome had lived, as well as in piñon groves and summer sheep camps where they had worked. Additional rodents were trapped for comparison in and around nearby households as well. Taking a calculated risk, researchers decided not to wear protective clothing or masks during the trapping process. "We didn't want to go in wearing respirators, scaring...everybody", John Sarisky, an Indian Health Service environmental disease specialist said. However, when the almost 1,700 rodents trapped were dissected to prepare samples for analysis at CDC, protective clothing and respirators were worn.
Among rodents trapped, the deer mouse (Peromyscus maniculatus) was found to be the main host to a previously unknown type of hantavirus. Since the deer mouse often lives near people in rural and semi-rural areas—in barns and outbuildings, woodpiles, and inside people's homes—researchers suspected that the deer mouse might be transmitting the virus to humans. About 30% of the deer mice tested showed evidence of infection with hantavirus. Tests also showed that several other types of rodents were infected, although in lesser numbers.
The next step was to pin down the connection between the infected deer mice and households where people who had gotten the disease lived. Therefore, investigators launched a case-control investigation. They compared "case" households, where people who had gotten the disease lived, with nearby "control" households. Control households were similar to those where the case-patients lived, except for one factor: no one in the control households had gotten the disease.
The results? First, investigators trapped more rodents in case households than in control households, so more rodents may have been living in close contact with people in case households. Second, people in case households were more likely than those in control households to do cleaning around the house or to plant in or hand-plow soil outdoors in fields or gardens. However, it was unclear if the risk for contracting HPS was due to performing these tasks, or with entering closed-up rooms or closets to get tools needed for these tasks.
In November 1993, the specific hantavirus that caused the Four Corners outbreak was isolated. The Special Pathogens Branch at CDC used tissue from a deer mouse that had been trapped near the New Mexico home of a person who had gotten the disease and grew the virus from it in the laboratory. Shortly afterwards and independently, the U.S. Army Medical Research Institute of Infectious Diseases (USAMRIID) also grew the virus, from a person in New Mexico who had gotten the disease as well as from a mouse trapped in California.
The new virus was called Muerto Canyon virus — later changed to Sin Nombre virus (SNV) — and the new disease caused by the virus was named hantavirus pulmonary syndrome, or HPS.
The isolation of the virus in a matter of months was remarkable. This success was based on close cooperation of all the agencies and individuals involved in investigating the outbreak, years of basic research on other hantaviruses that had been conducted at CDC and USAMRIID, and on the continuing development of modern molecular virologic tests. To put the rapid isolation of the Sin Nombre virus in perspective, it took several decades for the first hantavirus discovered, the Hantaan virus, to be isolated.
HPS Not Really a New Disease
As part of the effort to locate the source of the virus, researchers located and examined stored samples of lung tissue from people who had died of unexplained lung disease. Some of these samples showed evidence of previous infection with Sin Nombre virus—indicating that the disease had existed before the "first" known outbreak—it simply had not been recognized!
Other early cases of HPS have been discovered by examining samples of tissue belonging to people who had died of unexplained adult respiratory distress syndrome. By this method, the earliest known case of HPS that has been confirmed has been the case of a 38-year-old Utah man in 1959.
Interestingly, while HPS was not known to the epidemiologic and medical communities, there is evidence that it was recognized elsewhere. The Navajo Indians, a number of whom contracted HPS during the 1993 outbreak, recognize a similar disease in their medical traditions, and actually associate its occurrence with mice. As strikingly, Navajo medical beliefs concur with public health recommendations for preventing the disease.
Why Did the Outbreak Occur in the Four Corners Area?
But why this sudden cluster of cases? The key answer to this question is that, during this period, there were suddenly many more mice than usual. The Four Corners area had been in a drought for several years. Then, in early 1993, heavy snows and rainfall helped drought-stricken plants and animals to revive and grow in larger-than-usual numbers. The area's deer mice had plenty to eat, and as a result they reproduced so rapidly that there were ten times more mice in May 1993 than there had been in May of 1992. With so many mice, it was more likely that mice and humans would come into contact with one another, and thus more likely that the hantavirus carried by the mice would be transmitted to humans.
Person-to-Person Spread of HPS Decided Unlikely
"Although person-to-person spread [of HPS] has not been documented with any of the other known hantaviruses, we were concerned [during this outbreak] because we were dealing with a new agent", said Charles Vitek, a CDC medical investigator.
Researchers and clinicians investigating the ongoing outbreak were not the only groups concerned about the disease. Shortly after the first few HPS patients died and it became clear that a new disease was affecting people in the area, and that no one knew how it was transmitted, the news media began extensive reporting on the outbreak. Widespread concern among the public ensued.
Unfortunately, the first victims of the outbreak were Navajo. News reports focused on this fact, and the misperception grew that the unknown disease was somehow linked to Navajos. As a consequence, Navajos found themselves at the center of intense media attention and the objects of the some people's fears.
By later in the summer of 1993, the media frenzy had quieted somewhat, and the source of the disease was pinpointed. Researchers determined that, like other hantaviruses, the virus that causes HPS is not transmitted from person to person the way other infections, such as the common cold, may be. The exception to this is an outbreak of HPS in Argentina in 1996. Evidence from this outbreak suggests that strains of hantaviruses in South America may be transmissable from person to person.
To date, no cases of HPS have been reported in the United States in which the virus was transmitted from one person to another. In fact, in a study of health care workers who were exposed to either patients or specimens infected with related types of hantaviruses (which cause a different disease in humans), none of the workers showed evidence of infection or illness.
HPS Since the First Outbreak
After the initial outbreak, the medical community nationwide was asked to report any cases of illness with symptoms similar to those of HPS that could not be explained by any other cause. As a result, additional cases have been reported.
Since 1993, researchers have discovered that there is not just one hantavirus that causes HPS, but several. In June 1993, a Louisiana bridge inspector who had not traveled to the Four Corners area developed HPS. An investigation was begun. The patient's tissues were tested for the presence of antibodies to hantavirus. The results led to the discovery of another hantavirus, named Bayou virus, which was linked to a carrier, the rice rat (Oryzomys palustris). In late 1993, a 33-year-old Florida man came down with HPS symptoms; he later recovered. This person also had not traveled to the Four Corners area. A similar investigation revealed yet another hantavirus, named the Black Creek Canal virus, and its carrier, the cotton rat (Sigmodon hispidus). Another case occurred in New York. This time, the Sin Nombre-like virus was named New York-1, and the white-footed mouse (Peromyscus leucopus), was implicated as the carrier.
More recently, cases of HPS stemming from related hantaviruses have been documented in Argentina, Brazil, Canada, Chile, Paraguay, and Uruguay, making HPS a pan-hemispheric disease.
References
Information for this page was developed using the CDC video Preventing Hantavirus Disease and resource articles listed in the bibliography.
|
Question:
What is (are) Parasites - Lice - Body Lice ?
Answer:
Body lice are parasitic insects that live on clothing and bedding used by infested persons. Body lice frequently lay their eggs on or near the seams of clothing. Body lice must feed on blood and usually only move to the skin to feed. Body lice exist worldwide and infest people of all races. Body lice infestations can spread rapidly under crowded living conditions where hygiene is poor (the homeless, refugees, victims of war or natural disasters). In the United States, body lice infestations are found only in homeless transient populations who do not have access to bathing and regular changes of clean clothes. Infestation is unlikely to persist on anyone who bathes regularly and who has at least weekly access to freshly laundered clothing and bedding.
|
Question:
Who is at risk for Parasites - Lice - Body Lice? ?
Answer:
Body lice infestation is found worldwide but generally is limited to persons who live under conditions of crowding and poor hygiene who do not have access to regular bathing and changes of clean clothes, such as:
- the homeless,
- refugees,
- survivors of war or natural disasters.
Infestations can spread rapidly under such conditions. Body lice infestation can occur in people of all races.
Body lice are spread through direct contact with a person who has body lice or through contact with articles such as clothing, beds, bed linens, or towels that have been in contact with an infested person. However, in the United States, actual infestation with body lice tends to be occur only in homeless, transient persons who do not have access to regular bathing and changes of clean clothes.
Body lice can transmit disease. Epidemics of typhus and louse-borne relapsing fever have been caused by body lice (typically in areas where climate, poverty, and social customs or war and social upheaval prevent regular changes and laundering of clothing).
|
Question:
How to diagnose Parasites - Lice - Body Lice ?
Answer:
Body lice infestation is diagnosed by finding eggs and crawling lice in the seams of clothing. Sometimes a body louse can be seen crawling or feeding on the skin.
Although body lice and nits can be large enough to be seen with the naked eye, a magnifying lens may be necessary to find crawling lice or eggs.
|
Question:
What are the treatments for Parasites - Lice - Body Lice ?
Answer:
A body lice infestation is treated by improving the personal hygiene of the infested person, including assuring a regular (at least weekly) change of clean clothes. Clothing, bedding, and towels used by the infested person should be laundered using hot water (at least 130°F) and machine dried using the hot cycle.
Sometimes the infested person also is treated with a pediculicide, a medicine that can kill lice; however, a pediculicide generally is not necessary if hygiene is maintained and items are laundered appropriately at least once a week. A pediculicide should be applied exactly as directed on the bottle or by your physician.
If you choose to treat, guidelines for the choice of the pediculicide are the same as for head lice.
More on: Head Lice Treatment
|
Question:
How to prevent Parasites - Lice - Body Lice ?
Answer:
Body lice are spread most commonly by direct contact with an infested person or an infested person’s clothing or bedding. Body lice usually infest persons who do not launder and change their clothes regularly.
The following are steps that can be taken to help prevent and control the spread of body lice:
- Bathe regularly and change into properly laundered clothes at least once a week; launder infested clothing at least once a week.
- Machine wash and dry infested clothing and bedding using the hot water (at least 130°F) laundry cycle and the high heat drying cycle. Clothing and items that are not washable can be dry-cleaned OR sealed in a plastic bag and stored for 2 weeks.
- Do not share clothing, beds, bedding, and towels used by an infested person.
- Fumigation or dusting with chemical insecticides sometimes is necessary to control and prevent the spread of body lice for certain diseases (epidemic typhus).
|
Question:
What are the symptoms of Ehrlichiosis ?
Answer:
Symptoms
In the United States, the term “ehrlichiosis” may be broadly applied to several different infections. Ehrlichia chaffeensis and Ehrlichia ewingii are transmitted by the lonestar tick in the southeastern and southcentral United States. In addition, a third Ehrlichia species provisionally called Ehrlichia muris-like (EML) has been identified in a small number of patients residing in or traveling to Minnesota and Wisconsin; a tick vector for the EML organism has not yet been established. The symptoms caused by infection with these Ehrlichia species usually develop 1-2 weeks after being bitten by an infected tick. The tick bite is usually painless, and about half of the people who develop ehrlichiosis may not even remember being bitten by a tick.
The following is a list of symptoms commonly seen with this disease, however, it is important to note that the combination of symptoms varies greatly from person to person.
- Fever
- Headache
- Chills
- Malaise
- Muscle pain
- Nausea / Vomiting / Diarrhea
- Confusion
- Conjunctival injection (red eyes)
- Rash (in up to 60% of children, less than 30% of adults)
Ehrlichiosis is a serious illness that can be fatal if not treated correctly, even in previously healthy people. Severe clinical presentations may include difficulty breathing, or bleeding disorders. The estimated case fatality rate (i.e. the proportion of persons who die as a result of their infection) is 1.8%. Patients who are treated early may recover quickly on outpatient medication, while those who experience a more severe course may require intravenous antibiotics, prolonged hospitalization or intensive care.
Rash
Skin rash is not considered a common feature of ehrlichiosis, and should not be used to rule in or rule out an infection. Ehrlichia chaffeensis infection can cause a rash in up to 60% of children, but is reported in fewer than 30% of adults. Rash is not commonly reported in patients infected with Ehrlichia ewingii or the Ehrlichia muris-like organism. The rash associated with Ehrlichia chaffeensis infection may range from maculopapular to petechial in nature, and is usually not pruritic (itchy). The rash usually spares the face, but in some cases may spread to the palms and soles. A type of rash called erythroderma may develop in some patients. Erythroderma is a type of rash that resembles a sunburn and consists of widespread reddening of the skin that may peel after several days. Some patients may develop a rash that resembles the rash of Rocky Mountain spotted fever making these two diseases difficult to differentiate on the basis of clinical signs alone.
Immune-compromised Individuals
The severity of ehrlichiosis may depend in part on the immune status of the patient. Persons with compromised immunity caused by immunosuppressive therapies (e.g., corticosteroids , cancer chemotherapy, or longterm immunosuppressive therapy following organ transplant), HIV infection, or splenectomy appear to develop more severe disease, and may also have higher case-fatality rates (i.e. the proportion of patients that die from infection.)
Blood Transfusion and Organ Transplant Risks Associated with Ehrlichia species
Because Ehrlichia organisms infect the white blood cells and circulate in the blood stream, these pathogens may pose a risk to be transmitted through blood transfusions. Ehrlichia chaffeensis has been shown to survive for more than a week in refrigerated blood. Several instances of suspected E. chaffeensis transmission through solid organ transplant have been investigated, although to date no cases have been confirmed that can be attributed to this route of transmission. Patients who develop ehrlichiosis within a month of receiving a blood transfusion or solid organ transplant should be reported to state health officials for prompt investigation. Use of leukoreduced blood products may theoretically decrease the risk of transfusion-associated transmission of these pathogens. However, the filtration process does not remove all leukocytes or bacteria not associated with leukocytes from leukoreduced blood; therefore, this process may not eliminate the risk completely.
For more in-depth information about signs and symptoms of ehrlichiosis, please visit http://www.cdc.gov/mmwr/preview/mmwrhtml/rr5504a1.htm
Diagnosis
The diagnosis of ehrlichiosis must be made based on clinical signs and symptoms, and can later be confirmed using specialized confirmatory laboratory tests. Treatment should never be delayed pending the receipt of laboratory test results, or be withheld on the basis of an initial negative laboratory result.
Physician Diagnosis
There are several aspects of ehrlichiosis that make it challenging for healthcare providers to diagnose and treat. The symptoms vary from patient to patient and can be difficult to distinguish from other diseases. Treatment is more likely to be effective if started early in the course of disease. Diagnostic tests based on the detection of antibodies will frequently be negative in the first 7-10 days of illness.
For this reason, healthcare providers must use their judgment to treat patients based on clinical suspicion alone. Healthcare providers may find important information in the patient’s history and physical examination that may aid clinical suspicion. Information such as recent tick bites, exposure to areas where ticks are likely to be found, or history of recent travel to areas where ehrlichiosis is endemic can be helpful in making the diagnosis. The healthcare provider should also look at routine blood tests, such as a complete blood cell count or a chemistry panel. Clues such as a low platelet count (thrombocytopenia), low white blood cell count (leukopenia), or elevated liver enzyme levels are helpful predictors of ehrlichiosis, but may not be present in all patients depending on the course of the disease. After a suspect diagnosis is made on clinical suspicion and treatment has begun, specialized laboratory testing should be used to confirm the diagnosis of ehrlichiosis.
Laboratory Detection
During the acute phase of illness, a sample of whole blood can be tested by polymerase chain reaction (PCR) assay to determine if a patient has ehrlichiosis. This method is most sensitive in the first week of illness, and quickly decreases in sensitivity following the administration of appropriate antibiotics. Although a positive PCR result is helpful, a negative result does not completely rule out the diagnosis.
During the first week of illness a microscopic examination of blood smears (known as a peripheral blood smear) may reveal morulae (microcolonies of ehrlichiae) in the cytoplasm of white blood cells in up to 20% of patients.
The type of blood cell in which morulae are observed may provide insight into the infecting species: E. chaffeensis most commonly infects monocytes, whereas E. ewingii more commonly infect granulocytes. However, the observance of morulae in a particular cell type cannot conclusively identify the infecting species. Culture isolation of Ehrlichia is only available at specialized laboratories; routine hospital blood cultures cannot detect Ehrlichia.
When a person develops ehrlichiosis, their immune system produces antibodies to the Ehrlichia, with detectable antibody titers usually observed by 7-10 days after illness onset. It is important to note that antibodies are not detectable in the first week of illness in 85% of patients, and a negative test during this time does not rule out ehrlichiosis as a cause of illness.
The gold standard serologic test for diagnosis of ehrlichiosis is the indirect immunofluorescence assay (IFA) using E. chaffeensis antigen, performed on paired serum samples to demonstrate a significant (four-fold) rise in antibody titers. The first sample should be taken as early in the disease as possible, preferably in the first week of symptoms, and the second sample should be taken 2 to 4 weeks later. In most cases of ehrlichiosis, the first IgG IFA titer is typically low, or “negative,” and the second typically shows a significant (four-fold) increase in IgG antibody levels. IgM antibodies usually rise at the same time as IgG near the end of the first week of illness and remain elevated for months or longer. Also, IgM antibodies are less specific than IgG antibodies and more likely to result in a false positive. For these reasons, physicians requesting IgM serologic titers should also request a concurrent IgG titer.
Serologic tests based on enzyme immunoassay (EIA) technology are available from some commercial laboratories. However, EIA tests are qualitative rather than quantitative, meaning they only provide a positive/negative result, and are less useful to measure changes in antibody titers between paired specimens. Furthermore, some EIA assays rely on the evaluation of IgM antibody alone, which may have a higher frequency of false positive results.
Antibodies to E. chaffeensis may remain elevated for months or longer after the disease has resolved, or may be detected in persons who were previously exposed to antigenically related organisms. Up to 12% of currently healthy people in some areas may have elevated antibody titers due to past exposure to Ehrlichia species or similar organisms. Therefore, if only one sample is tested it can be difficult to interpret, while paired samples taken weeks apart demonstrating a significant (four-fold) rise in antibody titer provides the best evidence for a correct diagnosis of ehrlichiosis.
For more in-depth information about the diagnosis of ehrlichiosis, please visit http://www.cdc.gov/mmwr/preview/mmwrhtml/rr5504a1.htm
Treatment
Doxycycline is the first line treatment for adults and children of all ages and should be initiated immediately whenever ehrlichiosis is suspected.
Use of antibiotics other than doxycycline and other tetracyclines is associated with a higher risk of fatal outcome for some rickettsial infections. Doxycycline is most effective at preventing severe complications from developing if it is started early in the course of disease. Therefore, treatment must be based on clinical suspicion alone and should always begin before laboratory results return.
If the patient is treated within the first 5 days of the disease, fever generally subsides within 24-72 hours. In fact, failure to respond to doxycycline suggests that the patient’s condition might not be due to ehrlichiosis. Severely ill patients may require longer periods before their fever resolves. Resistance to doxcycline or relapses in symptoms after the completion of the recommended course have not been documented.
Recommended Dosage
Doxycycline is the first line treatment for adults and children of all ages:
- Adults: 100 mg every 12 hours
- Children under 45 kg (100 lbs): 2.2 mg/kg body weight given twice a day
Patients should be treated for at least 3 days after the fever subsides and until there is evidence of clinical improvement. Standard duration of treatment is 7 to 14 days. Some patients may continue to experience headache, weakness and malaise for weeks after adequate treatment.
Treating children
The use of doxycycline to treat suspected ehrlichiosis in children is standard practice recommended by both CDC and the AAP Committee on Infectious Diseases. Unlike older generations of tetracyclines, the recommended dose and duration of medication needed to treat ehrlichiosis has not been shown to cause staining of permanent teeth, even when five courses are given before the age of eight. Healthcare providers should use doxycycline as the first-line treatment for suspected ehrlichiosis in patients of all ages.
Other Treatments
In cases of life threatening allergies to doxycycline and in some pregnant patients for whom the clinical course of ehrlichiosis appears mild, physicians may need to consider alternate antibiotics. Although recommended as a second-line therapeutic alternative to treat Rocky Mountain spotted fever (RMSF), chloramphenicol is not recommended for the treatment of either ehrlichiosis or anaplasmosis, as studies have shown a lack of efficacy. Rifampin appears effective against Ehrlichia in laboratory settings. However, rifampin is not effective in treating RMSF, a disease that may be confused with ehrlichiosis. Healthcare providers should be cautious when exploring treatments other than doxycycline, which is highly effective in treating both. Other antibiotics, including broad spectrum antibiotics are not considered highly effective against ehrlichiosis, and the use of sulfa drugs during acute illness may worsen the severity of infection.
Prophylaxis (Preventive Treatment)
Antibiotic treatment following a tick bite is not recommended as a means to prevent ehrlichiosis. There is no evidence this practice is effective, and this may simply delay onset of disease. Instead, persons who experience a tick bite should be alert for symptoms suggestive of tickborne illness and consult a physician if fever, rash, or other symptoms of concern develop.
For more in-depth information about treatment, please visit http://www.cdc.gov/mmwr/preview/mmwrhtml/rr5504a1.htm
Other Considerations
The clinical presentation for ehrlichiosis can resemble other tickborne diseases, such as Rocky Mountain spotted fever and anaplasmosis. Similar to ehrlichiosis, these infections respond well to treatment with doxycycline. Healthcare providers should order diagnostic tests for additional agents if the clinical history and geographic association warrant. For more in-depth about other similar tickborne diseases, please visit http://www.cdc.gov/mmwr/preview/mmwrhtml/rr5504a1.htm
|
Question:
What is (are) Ehrlichiosis ?
Answer:
More detailed information on the diagnosis, management, and treatment of ehrlichiosis is available in Diagnosis and Management of Tickborne Rickettsial Diseases: Rocky Mountain Spotted Fever, Ehrlichioses, and Anaplasmosis – United States.
*Case definitions have been updated since publication
How to Contact the Rickettsial Zoonoses Branch at CDC
The general public and healthcare providers should first call 1-800-CDC-INFO (1-800-232-4636) for questions regarding ehrlichiosis. If a consultation with a CDC scientist specializing in ehrlichiosis is advised, your call will be appropriately forwarded.
Case Definitions
As of January 1, 2008, E. chaffeensis and E. ewingii infections are reported under distinct reporting categories.
2008 Case Definition
Case Report Forms
For confirmed and probable cases of ehrlichiosis that have been identified and reported through the National Notifiable Disease Surveillance System, states are also encouraged to submit additional information using the CDC Case Report Form (CRF). This form collects additional important information that routine electronic reporting does not, such as information on how the diagnosis was made, and whether the patient was hospitalized or died. If a different state-specific form is already used to collect this information, this information may be submitted to CDC in lieu of a CRF.
2010 CDC Case Report Form: Tickborne Rickettsial Diseases (2010 version) (PDF – 982kb; 3 pages)
How to Submit Specimens to CDC for Ehrlichiosis Testing
Private citizens may not directly submit specimens to CDC for testing. If you feel that diagnostic testing is necessary, consult your healthcare provider or state health department.
State Health Departments:
Specimens may be submitted to CDC for testing for ehrlichiosis. To coordinate specimen submission, please call 404-639-1075 during business hours (8:00 - 4:30 ET).
U.S. Healthcare Providers:
U.S. healthcare providers should not submit specimens for testing directly to CDC. CDC policy requires that specimens for testing be submitted through or with the approval of the state health department. Please contact your state health department, who will assist you with specimen submission and reporting of infection. For general questions about ehrlichiosis, please call 1-800-CDC-INFO (1-800-232-4636). If you have questions about a suspect ehrlichiosis case, please first consult your state health department. Healthcare providers requiring an epidemiologic or laboratory consultation on ehrlichiosis may also call 404-639-1075 during business hours (8:00 - 4:30 ET). Or 770-488-7100 after hours.
Non U.S. Healthcare Providers:
Non-U.S. healthcare providers should consult CDC prior to submitting specimens for testing. For general questions about ehrlichiosis, please call 1-800-CDC-INFO (1-800-232-4636). If you would like to discuss a suspect ehrlichiosis case with CDC, please call 404-639-1075 during business hours (8:00 - 4:30 ET), or 770-488-7100 after hours.
|
Question:
What is (are) Acanthamoeba - Granulomatous Amebic Encephalitis (GAE); Keratitis ?
Answer:
Acanthamoeba is a microscopic, free-living ameba (single-celled living organism) commonly found in the environment that can cause rare, but severe, illness. Acanthamoeba causes three main types of illness involving the eye (Acanthamoeba keratitis), the brain and spinal cord (Granulomatous Encephalitis), and infections that can spread throughout the entire body (disseminated infection).
|
Question:
Who is at risk for Acanthamoeba - Granulomatous Amebic Encephalitis (GAE); Keratitis? ?
Answer:
Acanthamoeba keratitis
Acanthamoeba keratitis is a rare disease that can affect anyone, but is most common in individuals who wear contact lenses. In the United States, an estimated 85% of cases occur in contact lens users. The incidence of the disease in developed countries is approximately one to 33 cases per million contact lens wearers.
For people who wear contact lenses, certain practices can increase the risk of getting Acanthamoeba keratitis:
- Storing and handling lenses improperly
- Disinfecting lenses improperly (such as using tap water or topping off solutions when cleaning the lenses or lens case)
- Swimming, using a hot tub, or showering while wearing lenses
- Coming into contact with contaminated water
- Having a history of trauma to the cornea
Contact lens wearers who practice proper lens care and non-contact lens wearers can still develop the infection. For additional information on contact lens care and prevention of Acanthamoeba keratitis visit CDC’s web page on Prevention and Control.
There have been no reports of Acanthamoeba keratitis being spread from one person to another.
Granulomatous Amebic Encephalitis (GAE)
Granulomatous Amebic Encephalitis (GAE) and disseminated infection are very rare forms of Acanthamoeba infection and primarily affect people with compromised immune systems. While unusual, disseminated infection can also affect healthy children and adults. Conditions that may increase a patient’s risk for GAE and disseminated infection include:
- AIDS
- Organ/Tissue transplant
- Steroids or excessive use of antibiotics
- Diabetes Mellitus
- Cancer
- Disorders in which white blood cells in the lymphatic tissue are over-produced or abnormal
- Disorders in which blood cells or blood clotting mechanisms do not function properly or are abnormal
- Liver cirrhosis
- Lupus
|
Question:
How to diagnose Acanthamoeba - Granulomatous Amebic Encephalitis (GAE); Keratitis ?
Answer:
Early diagnosis is essential for effective treatment of Acanthamoeba keratitis. The infection is usually diagnosed by an eye specialist based on symptoms, growth of the ameba from a scraping of the eye, and/or seeing the ameba by a process called confocal microscopy.
Granulomatous Amebic Encephalitis (GAE) and disseminated infection are more difficult to diagnose and are often at advanced stages when they are diagnosed. Tests useful in the diagnosis of GAE include brain scans, biopsies, or spinal taps. In disseminated disease, biopsy of the involved sites (e.g. , skin, sinuses) can be useful in diagnosis.
|
Question:
What are the treatments for Acanthamoeba - Granulomatous Amebic Encephalitis (GAE); Keratitis ?
Answer:
Early diagnosis is essential for effective treatment of Acanthamoeba keratitis. Several prescription eye medications are available for treatment. However, the infection can be difficult to treat. The best treatment regimen for each patient should be determined by an eye doctor. If you suspect your eye may be infected with Acanthamoeba, see an eye doctor immediately.
Skin infections that are caused by Acanthamoeba but have not spread to the central nervous system can be successfully treated. Because this is a serious infection and the people affected typically have weakened immune systems, early diagnosis offers the best chance at cure.
Most cases of brain and spinal cord infection with Acanthamoeba (Granulomatous Amebic Encephalitis) are fatal.
|
Question:
How to prevent Acanthamoeba - Granulomatous Amebic Encephalitis (GAE); Keratitis ?
Answer:
Topics
|
Question:
Who is at risk for Lymphocytic Choriomeningitis (LCM)? ?
Answer:
LCMV infections can occur after exposure to fresh urine, droppings, saliva, or nesting materials from infected rodents. Transmission may also occur when these materials are directly introduced into broken skin, the nose, the eyes, or the mouth, or presumably, via the bite of an infected rodent. Person-to-person transmission has not been reported, with the exception of vertical transmission from infected mother to fetus, and rarely, through organ transplantation.
|
Question:
What are the symptoms of Lymphocytic Choriomeningitis (LCM) ?
Answer:
LCMV is most commonly recognized as causing neurological disease, as its name implies, though infection without symptoms or mild febrile illnesses are more common clinical manifestations.
For infected persons who do become ill, onset of symptoms usually occurs 8-13 days after exposure to the virus as part of a biphasic febrile illness. This initial phase, which may last as long as a week, typically begins with any or all of the following symptoms: fever, malaise, lack of appetite, muscle aches, headache, nausea, and vomiting. Other symptoms appearing less frequently include sore throat, cough, joint pain, chest pain, testicular pain, and parotid (salivary gland) pain.
Following a few days of recovery, a second phase of illness may occur. Symptoms may consist of meningitis (fever, headache, stiff neck, etc.), encephalitis (drowsiness, confusion, sensory disturbances, and/or motor abnormalities, such as paralysis), or meningoencephalitis (inflammation of both the brain and meninges). LCMV has also been known to cause acute hydrocephalus (increased fluid on the brain), which often requires surgical shunting to relieve increased intracranial pressure. In rare instances, infection results in myelitis (inflammation of the spinal cord) and presents with symptoms such as muscle weakness, paralysis, or changes in body sensation. An association between LCMV infection and myocarditis (inflammation of the heart muscles) has been suggested.
Previous observations show that most patients who develop aseptic meningitis or encephalitis due to LCMV survive. No chronic infection has been described in humans, and after the acute phase of illness, the virus is cleared from the body. However, as in all infections of the central nervous system, particularly encephalitis, temporary or permanent neurological damage is possible. Nerve deafness and arthritis have been reported.
Women who become infected with LCMV during pregnancy may pass the infection on to the fetus. Infections occurring during the first trimester may result in fetal death and pregnancy termination, while in the second and third trimesters, birth defects can develop. Infants infected In utero can have many serious and permanent birth defects, including vision problems, mental retardation, and hydrocephaly (water on the brain). Pregnant women may recall a flu-like illness during pregnancy, or may not recall any illness.
LCM is usually not fatal. In general, mortality is less than 1%.
|
Question:
Who is at risk for Lymphocytic Choriomeningitis (LCM)? ?
Answer:
Individuals of all ages who come into contact with urine, feces, saliva, or blood of wild mice are potentially at risk for infection. Owners of pet mice or hamsters may be at risk for infection if these animals originate from colonies that were contaminated with LCMV, or if their animals are infected from other wild mice. Human fetuses are at risk of acquiring infection vertically from an infected mother.
Laboratory workers who work with the virus or handle infected animals are also at risk. However, this risk can be minimized by utilizing animals from sources that regularly test for the virus, wearing proper protective laboratory gear, and following appropriate safety precautions.
|
Question:
How to diagnose Lymphocytic Choriomeningitis (LCM) ?
Answer:
During the first phase of the disease, the most common laboratory abnormalities are a low white blood cell count (leukopenia) and a low platelet count (thrombocytopenia). Liver enzymes in the serum may also be mildly elevated. After the onset of neurological disease during the second phase, an increase in protein levels, an increase in the number of white blood cells or a decrease in the glucose levels in the cerebrospinal fluid (CSF) is usually found.
Laboratory diagnosis is usually made by detecting IgM and IgG antibodies in the CSF and serum. Virus can be detected by PCR or virus isolation in the CSF at during the acute stage of illness.
|
Question:
What are the treatments for Lymphocytic Choriomeningitis (LCM) ?
Answer:
Aseptic meningitis, encephalitis, or meningoencephalitis requires hospitalization and supportive treatment based on severity. Anti-inflammatory drugs, such as corticosteroids, may be considered under specific circumstances. Although studies have shown that ribavirin, a drug used to treat several other viral diseases, is effective against LCMV in vitro, there is no established evidence to support its routine use for treatment of LCM in humans.
|
Question:
How to prevent Lymphocytic Choriomeningitis (LCM) ?
Answer:
LCMV infection can be prevented by avoiding contact with wild mice and taking precautions when handling pet rodents (i.e. mice, hamsters, or guinea pigs).
Rarely, pet rodents may become infected with LCMV from wild rodents. Breeders, pet stores, and pet owners should take measures to prevent infestations of wild rodents. Pet rodents should not come into contact with wild rodents. If you have a pet rodent, wash your hands with soap and water (or waterless alcohol-based hand rubs when soap is not available and hands are not visibly soiled) after handling rodents or their cages and bedding.
If you have a rodent infestation in and around your home, take the following precautions to reduce the risk of LCMV infection:
- Seal up rodent entry holes or gaps with steel wool, lath metal, or caulk.
- Trap rats and mice by using an appropriate snap trap.
- Clean up rodent food sources and nesting sites and take precautions when cleaning rodent-infected areas:
- Use cross-ventilation when entering a previously unventilated enclosed room or dwelling prior to cleanup.
- Put on rubber, latex, vinyl or nitrile gloves.
- Do not stir up dust by vacuuming, sweeping, or any other means.
- Thoroughly wet contaminated areas with a bleach solution or household disinfectant.
- Hypochlorite (bleach) solution: Mix 1 and 1/2 cups of household bleach in 1 gallon of water.
- Once everything is wet, take up contaminated materials with damp towel and then mop or sponge the area with bleach solution or household disinfectant.
- Spray dead rodents with disinfectant and then double-bag along with all cleaning materials and throw bag out in an appropriate waste disposal system.
- Remove the gloves and thoroughly wash your hands with soap and water (or waterless alcohol-based hand rubs when soap is not available and hands are not visibly soiled).
The geographic distributions of the rodent hosts are widespread both domestically and abroad. However, infrequent recognition and diagnosis, and historic underreporting of LCM, have limited scientists' ability to estimate incidence rates and prevalence of disease among humans. Understanding the epidemiology of LCM and LCMV infections will help to further delineate risk factors for infection and develop effective preventive strategies. Increasing physician awareness will improve disease recognition and reporting, which may lead to better characterization of the natural history and the underlying immunopathological mechanisms of disease, and stimulate future therapeutic research and development.
|
Question:
what are marine toxins?
Answer:
Marine toxins are naturally occurring chemicals that can contaminate certain seafood. The seafood contaminated with these chemicals frequently looks, smells, and tastes normal. When humans eat such seafood, disease can result.
|
Question:
how can these diseases be diagnosed for Marine Toxins ?
Answer:
Diagnosis of marine toxin poisoning is generally based on symptoms and a history of recently eating a particular kind of seafood. Laboratory testing for the specific toxin in patient samples is generally not necessary because this requires special techniques and equipment available in only specialized laboratories. If suspect, leftover fish or shellfish are available, they can be tested for the presence of the toxin more easily. Identification of the specific toxin is not usually necessary for treating patients because there is no specific treatment.
|
Question:
how can these diseases be treated for Marine Toxins ?
Answer:
Other than supportive care there are few specific treatments for ciguatera poisoning, paralytic shellfish poisoning, neurotoxic shellfish poisoning, or amnesic shellfish poisoning. Antihistamines and epinephrine, however, may sometimes be useful in treating the symptoms of scombrotoxic fish poisoning. Intravenous mannitol has been suggested for the treatment of severe ciguatera poisoning.
|
Question:
how common are these diseases for Marine Toxins ?
Answer:
Every year, approximately 30 cases of poisoning by marine toxins are reported in the United States. Because healthcare providers are not required to report these illnesses and because many milder cases are not diagnosed or reported, the actual number of poisonings may be much greater. Toxic seafood poisonings are more common in the summer than winter because dinoflagelates grow well in warmer seasons. It is estimated from cases with available data that one person dies every 4 years from toxic seafood poisonings.
|
Question:
what can i do to prevent poisoning by marine toxins?
Answer:
General guidelines for safe seafood consumption:
|
Question:
what is the government doing about these diseases for Marine Toxins ?
Answer:
Some health departments test shellfish harvested within their jurisdiction to monitor the level of dinoflagellate toxins and asses the risk for contamination. Based on the results of such testing, recreational and commercial seafood harvesting may be prohibited locally during periods of risk. State and federal regulatory agencies monitor reported cases of marine toxin poisoning, and health departments investigate possible outbreaks and devise control measures. The Centers for Disease Control and Prevention (CDC) provides support to investigators as needed.
|
Question:
what else can be done to prevent these diseases for Marine Toxins ?
Answer:
It is important to notify public health departments about even one person with marine toxin poisoning. Public health departments can then investigate to determine if a restaurant, oyster bed, or fishing area has a problem. This prevents other illnesses. In any food poisoning occurrence, consumers should note foods eaten and freeze any uneaten portions in case they need to be tested. A commercial test has been developed in Hawaii to allow persons to test sport caught fish for ciguatoxins.
|
Question:
What is (are) Parasites - Leishmaniasis ?
Answer:
Leishmaniasis is a parasitic disease that is found in parts of the tropics, subtropics, and southern Europe. Leishmaniasis is caused by infection with Leishmania parasites, which are spread by the bite of infected sand flies. There are several different forms of leishmaniasis in people. The most common forms are cutaneous leishmaniasis, which causes skin sores, and visceral leishmaniasis, which affects several internal organs (usually spleen, liver, and bone marrow).
|
Question:
Who is at risk for Parasites - Leishmaniasis? ?
Answer:
Leishmaniasis is found in people in focal areas of more than 90 countries in the tropics, subtropics, and southern Europe. The ecologic settings range from rain forests to deserts. Leishmaniasis usually is more common in rural than in urban areas, but it is found in the outskirts of some cities. Climate and other environmental changes have the potential to expand the geographic range of the sand fly vectors and the areas in the world where leishmaniasis is found.
Leishmaniasis is found on every continent except Australia and Antarctica.
- In the Old World (the Eastern Hemisphere), leishmaniasis is found in some parts of Asia, the Middle East, Africa (particularly in the tropical region and North Africa, with some cases elsewhere), and southern Europe. It is not found in Australia or the Pacific islands.
- In the New World (the Western Hemisphere), it is found in some parts of Mexico, Central America, and South America. It is not found in Chile or Uruguay. Occasional cases of cutaneous leishmaniasis have been acquired in Texas and Oklahoma.
The number of new cases per year is not known with certainty. For cutaneous leishmaniasis, estimates of the number of cases range from approximately 0.7 million (700,000) to 1.2 million (1,200,000). For visceral leishmaniasis, estimates of the number of cases range from approximately 0.2 million (200,000) to 0.4 million (400,000). The cases of leishmaniasis evaluated in the United States reflect travel and immigration patterns. For example, many of the cases of cutaneous leishmaniasis in U.S. civilian travelers have been acquired in common tourist destinations in Latin America, such as in Costa Rica.
Overall, infection in people is caused by more than 20 species (types) of Leishmania parasites, which are spread by about 30 species of phlebotomine sand flies; particular species of the parasite are spread by particular sand flies. The sand fly vectors generally are the most active during twilight, evening, and night-time hours (from dusk to dawn).
In many geographic areas where leishmaniasis is found in people, infected people are not needed to maintain the transmission cycle of the parasite in nature; infected animals (such as rodents or dogs), along with sand flies, maintain the cycle. However, in some parts of the world, infected people are needed to maintain the cycle; this type of transmission (human—sand fly—human) is called anthroponotic. In areas with anthroponotic transmission, effective treatment of individual patients can help control the spread of the parasite.
|
Question:
How to diagnose Parasites - Leishmaniasis ?
Answer:
Various laboratory methods can be used to diagnose leishmaniasis—to detect the parasite as well as to identify the Leishmania species (type). Some of the methods are available only in reference laboratories. In the United States, CDC staff can assist with the testing for leishmaniasis.
Tissue specimens—such as from skin sores (for cutaneous leishmaniasis) or from bone marrow (for visceral leishmaniasis)—can be examined for the parasite under a microscope, in special cultures, and in other ways. Blood tests that detect antibody (an immune response) to the parasite can be helpful for cases of visceral leishmaniasis; tests to look for the parasite itself usually also are done.
More on: Resources for Health Professionals: Diagnosis
|
Question:
What are the treatments for Parasites - Leishmaniasis ?
Answer:
Before considering treatment, the first step is to make sure the diagnosis is correct.
Treatment decisions should be individualized. Health care providers may consult CDC staff about the relative merits of various approaches. Examples of factors to consider include the form of leishmaniasis, the Leishmania species that caused it, the potential severity of the case, and the patient's underlying health.
The skin sores of cutaneous leishmaniasis usually heal on their own, even without treatment. But this can take months or even years, and the sores can leave ugly scars. Another potential concern applies to some (not all) types of the parasite found in parts of Latin America: certain types might spread from the skin and cause sores in the mucous membranes of the nose (most common location), mouth, or throat (mucosal leishmaniasis). Mucosal leishmaniasis might not be noticed until years after the original sores healed. The best way to prevent mucosal leishmaniasis is to ensure adequate treatment of the cutaneous infection.
If not treated, severe (advanced) cases of visceral leishmaniasis typically are fatal.
More on: Resources for Health Professionals: Treatment
|
Question:
How to prevent Parasites - Leishmaniasis ?
Answer:
No vaccines or drugs to prevent infection are available. The best way for travelers to prevent infection is to protect themselves from sand fly bites. To decrease the risk of being bitten, follow these preventive measures:
Avoid outdoor activities, especially from dusk to dawn, when sand flies generally are the most active.
When outdoors (or in unprotected quarters):
- Minimize the amount of exposed (uncovered) skin. To the extent that is tolerable in the climate, wear long-sleeved shirts, long pants, and socks; and tuck your shirt into your pants. (See below about wearing insecticide-treated clothing.)
- Apply insect repellent to exposed skin and under the ends of sleeves and pant legs. Follow the instructions on the label of the repellent. The most effective repellents generally are those that contain the chemical DEET (N,N-diethylmetatoluamide).
When indoors:
- Stay in well-screened or air-conditioned areas.
- Keep in mind that sand flies are much smaller than mosquitoes and therefore can get through smaller holes.
- Spray living/sleeping areas with an insecticide to kill insects.
- If you are not sleeping in a well-screened or air-conditioned area, use a bed net and tuck it under your mattress. If possible, use a bed net that has been soaked in or sprayed with a pyrethroid-containing insecticide. The same treatment can be applied to screens, curtains, sheets, and clothing (clothing should be retreated after five washings).
More on: Insect Bite Prevention
|
Question:
What is (are) Chronic Fatigue Syndrome (CFS) ?
Answer:
Chronic fatigue syndrome, or CFS, is a devastating and complex disorder. People with CFS have overwhelming fatigue and a host of other symptoms that are not improved by bed rest and that can get worse after physical activity or mental exertion. They often function at a substantially lower level of activity than they were capable of before they became ill.
Besides severe fatigue, other symptoms include muscle pain, impaired memory or mental concentration, insomnia, and post-exertion malaise lasting more than 24 hours. In some cases, CFS can persist for years.
Researchers have not yet identified what causes CFS, and there are no tests to diagnose CFS. Moreover, because many illnesses have fatigue as a symptom, doctors need to take care to rule out other conditions, which may be treatable.
|
Question:
What causes Chronic Fatigue Syndrome (CFS) ?
Answer:
Despite a vigorous search, scientists have not yet identified what causes CFS. While a single cause for CFS may yet be identified, another possibility is that CFS has multiple causes. Conditions that have been studied to determine if they cause or trigger the development of CFS include infections, immune disorders, stress, trauma, and toxins.
Infection
Various types of infections have been studied to determine if they might cause or trigger CFS:
- Candida albicans, a fungus that causes yeast infections
- Mycoplasma, a cause of atypical pneumonia
- Ross River virus, which causes Ross River Fever, a mosquito-borne tropical disease
Could One Type of Infection Lead to CFS?
Researchers from around the world have studied if a single type of infection might be the cause of CFS, analyzed the data, and not yet found any association between CFS and infection. Researchers are still analyzing samples from CFS patients using the latest molecular methods to search for previously unknown infections (pathogen discovery). To date, these studies suggest that no one infection or pathogen causes CFS and that the illness may be triggered by a variety of illnesses or conditions. In fact, infection with Epstein-Barr virus, Ross River virus, and Coxiella burnetti will lead to a post-infective condition that meets the criteria for CFS in approximately 10-12% of cases. People who had severe symptoms when they became infected were more likely than those with mild symptoms to later develop CFS symptoms. The possibility remains that there may be a variety of different ways in which patients can develop CFS.
Immune System and Allergies
Studies have looked to see if changes in a person's immune system might lead to CFS. The findings have been mixed. Similarities in symptoms from immune responses to infection and CFS lead to hypotheses that CFS may be caused by stress or a viral infection, which may lead to the chronic production of cytokines and then to CFS.
Antibodies against normal parts of the body (auto-antibodies) and immune complexes have been seen in some CFS patients. However, no associated tissue damage typical of autoimmune disease has been described in CFS patients. The opportunistic infections or increased risk for cancer observed in persons with immunodeficiency diseases or in immunosuppressed individuals is also not observed in CFS.
T-cell activation markers have been reported to be different between groups of CFS patients and healthy persons, but not all investigators have consistently observed these differences.
Allergic diseases and secondary illnesses such as sinusitis could be one predisposing factor for CFS, but not all CFS patients have allergies. Many patients do, however, report intolerances for certain substances that may be found in foods or over-the-counter medications, such as alcohol.
Hypothalamic-Pituitary Adrenal (HPA) Axis
The central nervous system plays an important role in CFS. Physical or emotional stress, which is commonly reported as a pre-onset condition in CFS patients, alters the activity of the hypothalamic-pituitary-adrenal axis, or HPA axis, leading to altered release of corticotrophin-releasing hormone (CRH), cortisol, and other hormones. These hormones can influence the immune system and many other body systems.
Some CFS patients produce lower levels of cortisol than do healthy people. Similar hormonal abnormalities have also been observed among CFS patients and in persons with related disorders like fibromyalgia. Cortisol suppresses inflammation and cellular immune activation, and reduced levels might relax constraints on inflammatory processes and immune cell activation. Even though CFS patients had lower levels of cortisol than healthy individuals, their cortisol levels were still within the acceptable range of what is considered normal. Therefore, doctors cannot use cortisol levels as a way to diagnose CFS.
Abnormally Low Blood Pressure and Lightheadedness (Neurally Mediated Hypotension)
Disturbances in the autonomic regulation of blood pressure and pulse have been found in CFS patients. This problem with maintaining blood pressure can be diagnosed by using tilt table testing, which involves laying the patient horizontally on a table and then tilting the table upright to 70 degrees for 45 minutes while monitoring blood pressure and heart rate. Persons with neurally mediated hypotension (NMH) or postural orthostatic tachycardia (POTS) will develop lower blood pressure under these conditions, as well as other characteristic symptoms, such as lightheadedness, visual dimming, or a slow response to verbal stimuli. Others may develop an unusually rapid heart rate also associated with the symptoms of the syndrome. Many CFS patients experience lightheadedness or worsened fatigue when they stand for prolonged periods or when in warm places, such as in a hot shower -- all circumstances that are known to trigger NMH or POTS.
NMH and/or POTS share some of the symptoms of CFS. They should be considered in a CFS patients whose symptoms are worsened with changes in position, after eating, following unusual amounts of or inadequate fluid intake, or increases in activity. Not all patients with CFS will have these conditions, however.
Nutritional Deficiency
There is no published scientific evidence that CFS is caused by a nutritional deficiency. While evidence is currently lacking for nutritional defects in CFS patients, it should also be added that a balanced diet can be favorable to better health in general and would be expected to benefit a person with any chronic illness.
|
Question:
How to diagnose Chronic Fatigue Syndrome (CFS) ?
Answer:
Diagnostic Challenges
For doctors, diagnosing chronic fatigue syndrome (CFS) can be complicated by a number of factors:
- There's no lab test or biomarker for CFS.
- Fatigue and other symptoms of CFS are common to many illnesses.
- For some CFS patients, it may not be obvious to doctors that they are ill.
- The illness has a pattern of remission and relapse.
- Symptoms vary from person to person in type, number, and severity.
These factors have contributed to a low diagnosis rate. Of the one to four million Americans who have CFS, less than 20% have been diagnosed.
Exams and Screening Tests for CFS
Because there is no blood test, brain scan, or other lab test to diagnose CFS, the doctor should first rule out other possible causes.
If a patient has had 6 or more consecutive months of severe fatigue that is reported to be unrelieved by sufficient bed rest and that is accompanied by nonspecific symptoms, including flu-like symptoms, generalized pain, and memory problems, the doctor should consider the possibility that the patient may have CFS. Further exams and tests are needed before a diagnosis can be made:
- A detailed medical history will be needed and should include a review of medications that could be causing the fatigue and symptoms
- A thorough physical and mental status examination will also be needed
- A battery of laboratory screening tests will be needed to help identify or rule out other possible causes of the symptoms that could be treated
- The doctor may also order additional tests to follow up on results of the initial screening tests
A CFS diagnosis requires that the patient has been fatigued for 6 months or more and has 4 of the 8 symptoms for CFS for 6 months or more. If, however, the patient has been fatigued for 6 months or more but does not have four of the eight symptoms, the diagnosis may be idiopathic fatigue.
The complete process for diagnosing CFS can be found here.
Additional information for healthcare professionals on use of tests can be found here.
|
Question:
What are the symptoms of Chronic Fatigue Syndrome (CFS) ?
Answer:
Chronic fatigue syndrome can be misdiagnosed or overlooked because its symptoms are similar to so many other illnesses. Fatigue, for instance, can be a symptom for hundreds of illnesses. Looking closer at the nature of the symptoms though, can help a doctor distinguish CFS from other illnesses.
Primary Symptoms
As the name chronic fatigue syndrome suggests, fatigue is one part of this illness. With CFS, however, the fatigue is accompanied by other symptoms. In addition, the fatigue is not the kind you might feel after a particularly busy day or week, after a sleepless night, or after a single stressful event. It's a severe, incapacitating fatigue that isn't improved by bed rest and that is often worsened by physical activity or mental exertion. It's an all-encompassing fatigue that can dramatically reduce a person's activity level and stamina.
People with CFS function at a significantly lower level of activity than they were capable of before they became ill. The illness results in a substantial reduction in work-related, personal, social, and educational activities.
The fatigue of CFS is accompanied by characteristic illness symptoms lasting at least 6 months. These symptoms include:
- increased malaise (extreme exhaustion and sickness) following physical activity or mental exertion
- problems with sleep
- difficulties with memory and concentration
- persistent muscle pain
- joint pain (without redness or swelling)
- headache
- tender lymph nodes in the neck or armpit
- sore throat
Other Symptoms
The symptoms listed above are the symptoms used to diagnose CFS. However, many CFS patients and patients in general may experience other symptoms, including:
- brain fog (feeling like you're in a mental fog)
- difficulty maintaining an upright position, dizziness, balance problems or fainting
- allergies or sensitivities to foods, odors, chemicals, medications, or noise
- irritable bowel
- chills and night sweats
- visual disturbances (sensitivity to light, blurring, eye pain)
- depression or mood problems (irritability, mood swings, anxiety, panic attacks)
It's important to tell your health care professional if you're experiencing any of these symptoms. You might have CFS, or you might have another treatable disorder. Only a health care professional can diagnose CFS.
What's the Clinical Course of CFS?
The severity of CFS varies from patient to patient. Some people can maintain fairly active lives. For most patients, however, CFS significantly limits their work, school, and family activities for periods of time.
While symptoms vary from person to person in number, type, and severity, all CFS patients are limited in what they can do to some degree. CDC studies show that CFS can be as disabling as multiple sclerosis, lupus, rheumatoid arthritis, heart disease, end-stage renal disease, chronic obstructive pulmonary disease (COPD), and similar chronic conditions.
CFS often affects patients in cycles: Patients will have periods of illness followed by periods of relative well-being. For some patients, symptoms may diminish or even go into complete remission; however, they often recur at a later point in time. This pattern of remission and relapse makes CFS especially hard for patients to manage. Patients who are in remission may be tempted to overdo activities when they're feeling better, but this overexertion may actually contribute to a relapse.
The percentage of CFS patients who recover is unknown, but there is some evidence to indicate that patients benefit when accompanying conditions are identified and treated and when symptoms are managed. High-quality health care is important.
|
Question:
What are the treatments for Chronic Fatigue Syndrome (CFS) ?
Answer:
Introduction
Managing chronic fatigue syndrome can be as complex as the illness itself. There is no cure, no prescription drugs have been developed specifically for CFS, and symptoms can vary a lot over time. Thus, people with CFS should closely monitor their health and let their doctor know of any changes; and doctors should regularly monitor their patients' conditions and change treatment strategies as needed.
A team approach that involves doctors and patients is one key to successfully managing CFS. Patients and their doctors can work together to create an individualized treatment program that best meets the needs of the patient with CFS. This program should be based on a combination of therapies that address symptoms, coping techniques, and managing normal daily activities.
CFS affects patients in different ways, and the treatment plan should be tailored to address symptoms that are most disruptive or disabling for each patient. Helping the patient get relief from symptoms is the main goal of treatment. However, expecting a patient to return to usual activities should not be the immediate goal because the physical and mental exertion needed to try to reach that goal may aggravate the illness.
Because CFS is a complicated illness, its management may require input from a variety of medical professionals. Primary care providers can develop effective treatment plans based on their experience in treating other illnesses. Patients benefit when they can work in collaboration with a team of doctors and other health care professionals, who might also include rehabilitation specialists, mental health professionals, and physical or exercise therapists.
Difficulties of Living with CFS
Living with chronic fatigue syndrome can be difficult. Like other debilitating chronic illnesses, CFS can have a devastating impact on patients' daily lives and require them to make major lifestyle changes to adapt to many new limitations.
Common difficulties for CFS patients include problems coping with:
- the changing and unpredictable symptoms
- a decrease in stamina that interferes with activities of daily life
- memory and concentration problems that seriously hurt work or school performance
- loss of independence, livelihood, and economic security
- alterations in relationships with partners, family members, and friends
- worries about raising children
Feelings of anger, guilt, anxiety, isolation and abandonment are common in CFS patients. While it's OK to have such feelings, unresolved emotions and stress can make symptoms worse, interfere with prescription drug therapies, and make recovery harder.
|
Question:
What are the symptoms of Q Fever ?
Answer:
Q fever can cause acute or chronic illness in humans, who usually acquire infection after contact with infected animals or exposure to contaminated environments. The acute symptoms caused by infection with Coxiella burnetii usually develop within 2-3 weeks of exposure, although as many as half of humans infected withC. burnetii do not show symptoms.
The following is a list of symptoms commonly seen with acute Q fever. However, it is important to note that the combination of symptoms varies greatly from person to person.
- high fevers (up to 104-105°F)
- severe headache
- general malaise
- myalgia
- chills and/or sweats
- non-productive cough
- nausea
- vomiting
- diarrhea
- abdominal pain
- chest pain
Although most persons with acute Q fever infection recover, others may experience serious illness with complications that may include pneumonia, granulomatous hepatitis (inflammation of the liver), myocarditis (inflammation of the heart tissue) and central nervous system complications. Pregnant women who are infected may be at risk for pre-term delivery or miscarriage. The estimated case fatality rate (i.e. the proportion of persons who die as a result of their infection) is low, at < 2% of hospitalized patients. Treatment with the correct antibiotic may shorten the course of illness for acute Q fever.
Chronic Q fever is a severe disease occurring in <5% of acutely infected patients. It may present soon (within 6 weeks) after an acute infection, or may manifest years later. The three groups at highest risk for chronic Q fever are pregnant women, immunosuppressed persons and patients with a pre-existing heart valve defects. Endocarditis is the major form of chronic disease, comprising 60-70% of all reported cases. The estimated case fatality rate in untreated patients with endocarditis is 25-60%. Patients with endocarditis require early diagnosis and long-term antibiotic treatment (at least 18 months) for a successful outcome. Other forms of chronic Q fever include aortic aneurysms and infections of the bone, liver or reproductive organs, such as the testes in males.
Coxiella burnetii has the ability to persist for long periods of time in the host after infection. Although the majority of people with acute Q fever recover completely, a post-Q fever fatigue syndrome has been reported to occur in 10-25% of some acute patients. This syndrome is characterized by constant or recurring fatigue, night sweats, severe headaches, photophobia (eye sensitivity to light), pain in muscles and joints, mood changes, and difficulty sleeping.
Physician Diagnosis
There are several aspects of Q fever that make it challenging for healthcare providers to diagnose and treat. The symptoms vary from patient to patient and can be difficult to distinguish from other diseases. Treatment is more likely to be effective if started in the first three days of symptoms. Diagnostic tests based on the detection of antibodies will frequently appear negative in the first 7-10 days of illness. For this reason, healthcare providers must use their judgment to treat patients based on clinical suspicion alone. Healthcare providers may find important information in the patient’s history and physical examination that may aid clinical diagnosis. Information such as recent travel to rural or agricultural communities where infected livestock may be present, or employment in high risk occupations such as veterinarians or farmers can be helpful in making the diagnosis. Chronic Q fever is a risk for anyone with a history of acute Q fever illness, particularly those persons with valvular disease, blood vessel abnormalities, immunosuppressed persons, and women who were pregnant when they became infected.
The healthcare provider should also look at routine blood tests, such as a complete blood cell count or a chemistry panel. Clues such as a prolonged fever with low platelet count, normal leukocyte count, and elevated liver enzymes are suggestive of acute Q fever infection, but may not be present in all patients. After a suspect diagnosis is made based on clinical suspicion and treatment has begun, specialized laboratory testing should be used to confirm the diagnosis of Q fever.
Suspect diagnosis of Q fever is made based on signs and symptoms and a high index of clinical suspicion. Diagnosis can later be confirmed using specialized confirmatory laboratory tests. Treatment should never be delayed pending the receipt of laboratory test results, or be withheld on the basis of an initial negative laboratory result.
Laboratory Confirmation
During the acute phase of illness, a sample of whole blood can be tested by polymerase chain reaction (PCR) assay to determine if a patient has Q fever. This method is most sensitive in the first week of illness, and rapidly decreases in sensitivity following the administration of appropriate antibiotics. PCR or immunohistochemistry of biopsy specimens has also been used to diagnose Q fever. These tests may be appropriate for endocarditis patients undergoing valve replacement surgery or patients with hepatitis. Although a positive PCR result is helpful, a negative result does not rule out the diagnosis, and treatment should not be withheld due to a negative result. Culture isolation of C. burnetii is only available at specialized laboratories; routine hospital blood cultures cannot detect the organism.
When a person develops Q fever, their immune system produces antibodies to C. burnetii, with detectable antibody titers usually observed by 7-10 days after illness onset. It is important to note that a negative test during the first week of illness does not rule out Q fever as a cause of illness. There are two distinct antigenic phases to which humans develop antibody responses. In acute infection, an antibody response to C. burnetii Phase II antigen is predominant and is higher than Phase I antibody response; the reverse is true in chronic infection which is associated with a rising Phase I IgG titer (according to current U.S. case definitions >1:800) that is often much higher than Phase II IgG. The gold standard serologic test for diagnosis of acute Q fever is the indirect immunofluorescence assay (IFA) using C. burnetii antigen, performed on paired serum samples to demonstrate a significant (four-fold) rise in antibody titers. The first sample should be taken as early in the disease as possible, preferably in the first week of symptoms, and the second sample should be taken 2 to 4 weeks later. In most cases of Q fever, the first IgG IFA titer is typically low, or “negative,” and the second typically shows a significant (four-fold) increase in IgG antibody levels. IgM antibodies usually rise at the same time as IgG near the end of the first week of illness and remain elevated for months or longer. Also, IgM antibodies are less specific than IgG antibodies and more likely to result in a false positive. For these reasons, physicians should request both Phase I and Phase II IgG and IgM serologic titers for diagnostic confirmation of acute and chronic Q fever. Antibodies to C. burnetii may remain elevated for months or longer after the disease has resolved, or may be detected in persons who were previously exposed to antigenically related organisms. Approximately 3% of currently healthy people in the U.S. general population and up to 20% of people in high-risk professions (veterinarians, ranchers, etc.) have elevated antibody titers due to past exposure to C. burnetii. Therefore, if only one sample is tested it can be difficult to interpret the findings.
Paired samples taken 2-3 weeks apart demonstrating a significant (four-fold) rise in antibody titer provides the best evidence for a correct diagnosis of acute Q fever. Diagnosis of chronic Q fever is confirmed by elevated Phase I IgG antibody (according to current U.S. case definitions >1:800 and higher than Phase II IgG) and an identifiable persistent focus of infection (e.g. endocarditis). Elevated Phase I titers alone do not confirm a chronic Q fever diagnosis and would not warrant treatment in a clinically normal patient. Because chronic Q fever involves lengthy persistence of the organism in the body, the antibody levels are often quite high and you will not see a rising titer between paired serum specimens.
For more in-depth information about the diagnosis of Q fever, please visit http://www.bt.cdc.gov/agent/qfever/clinicians/diagnosis.asp
Treatment
Doxycycline is the first line treatment for all adults, and for children with severe illness. Treatment should be initiated immediately whenever Q fever is suspected.
Use of antibiotics other than doxycycline or other tetracyclines is associated with a higher risk of severe illness. Doxycycline is most effective at preventing severe complications from developing if it is started early in the course of disease. Therefore, treatment must be based on clinical suspicion alone and should always begin before laboratory results return.
If the patient is treated within the first 3 days of the disease, fever generally subsides within 72 hours. In fact, failure to respond to doxycycline suggests that the patient’s condition might not be due to Q fever. Severely ill patients may require longer periods before their fever resolves. Resistance to doxcycline has not been documented.
There is no role for prophylactic antimicrobial agents in preventing Q fever after a known exposure and prior to symptom onset; attempts at prophylaxis will likely extend the incubation period by several days but will not prevent infection from occurring.
Recommended Dosage for Acute Q fever
Doxycycline is the first line treatment for children with severe illness of all ages and adults:
- Adults: 100 mg every 12 hours
- Children under 45 kg (100 lbs): 2.2 mg/kg body weight given twice a day
Patients should be treated for at least 3 days after the fever subsides and until there is evidence of clinical improvement. Standard duration of treatment is 2-3 weeks.
Recommended Dosage for Chronic Q fever
- Adults: Doxycycline 100 mg every 12 hours and hydroxychloroquine 200 mg every 8 hours.
Standard duration of treatment is 18 months.
Treating children
The use of doxycycline is recommended to treat Q fever in children of all ages who are hospitalized or are severely ill. Unlike older generations of tetracyclines, doxycycline has not been shown to cause staining of permanent teeth, and most experts consider the benefit of doxycycline in treating Q fever in children younger than 8 years of age with severe illness or who are hospitalized greater than the potential risk of dental staining. Children with mild illness who are less than 8 years of age may be treated with co-trimoxazole, but therapy should be switched to doxycycline if their course of illness worsens.
Other Treatments
In cases of life threatening allergies to doxycycline and in pregnant patients, physicians may need to consider alternate antibiotics. Treatment of pregnant women diagnosed with acute Q fever with once daily co-trimoxazole throughout pregnancy has been shown to significantly decrease the risk of adverse consequences for the fetus.
|
Question:
What is (are) Q Fever ?
Answer:
More detailed information on the diagnosis, management, and treatment of Q fever is available in other sections of this web site and in the materials referenced in the section titled “Further Reading”.
How to Contact the Rickettsial Zoonoses Branch at CDC
The general public and healthcare providers should first call 1-800-CDC-INFO (1-800-232-4636) for questions regarding Q fever. If a consultation with a CDC scientist specializing in Q fever is advised, your call will be appropriately forwarded.
Case Definitions
As of January 1, 2009, Q fever infections are reported under distinct reporting categories described in the 2009 Q fever surveillance case definition.
2009 Q Fever Case Definition
Case Report Forms
For confirmed and probable cases of Q fever that have been identified and reported through the National Notifiable Disease Surveillance System, states are also encouraged to submit additional information using the CDC Case Report Form (CRF). This form collects additional important information that routine electronic reporting does not, such as information on how the diagnosis was made, and whether the patient was hospitalized or died. If a different state-specific form is already used to collect this information, this information may be submitted to CDC in lieu of a CRF.
How to Submit Specimens to CDC for Q FeverTesting
Private citizens may not directly submit specimens to CDC for testing. If you feel that diagnostic testing is necessary, consult your healthcare provider or state health department. Laboratory testing is available at many commercial laboratories.
State Health Departments
Specimens may be submitted to CDC for reference testing for Q fever. To coordinate specimen submission, please call 404-639-1075 during business hours (8:00 - 4:30 ET).
U.S. Healthcare Providers
Q fever laboratory testing is available at many commercial laboratories. U.S. healthcare providers should not submit specimens for testing directly to CDC. CDC policy requires that specimens for testing be submitted through or with the approval of the state health department. Please contact your state health department and request assistance with specimen submission and reporting of infection. For general questions about Q fever, please call 1-800-CDC-INFO (1-800-232-4636). If you have questions about a suspect Q fever case, please first consult your state health department. Healthcare providers requiring an epidemiologic or laboratory consultation on Q fever may also call 404-639-1075 during business hours (8:00 - 4:30 ET). Or 770-488-7100 after hours.
Non-U.S. Healthcare Providers
Non-U.S. healthcare providers should consult CDC prior to submitting specimens for testing. For general questions about Q fever, please call 1-800-CDC-INFO (1-800-232-4636). If you would like to discuss a suspect Q fever case with CDC, please call 404-639-1075 during business hours (8:00 - 4:30 ET), or 770-488-7100 after hours.
|
Question:
How to prevent Q Fever ?
Answer:
In the United States, Q fever outbreaks have resulted mainly from occupational exposure involving veterinarians, meat processing plant workers, sheep and dairy workers, livestock farmers, and researchers at facilities housing sheep. Prevention and control efforts should be directed primarily toward these groups and environments.
The following measures should be used in the prevention and control of Q fever:
- Educate the public on sources of infection.
- Appropriately dispose of placenta, birth products, fetal membranes, and aborted fetuses at facilities housing sheep and goats.
- Restrict access to barns and laboratories used in housing potentially infected animals.
- Use appropriate procedures for bagging, autoclaving, and washing of laboratory clothing.
- Vaccinate (where possible) individuals engaged in research with pregnant sheep or live C. burnetii.
- Quarantine imported animals.
- Ensure that holding facilities for sheep should be located away from populated areas. Animals should be routinely tested for antibodies to C. burnetii, and measures should be implemented to prevent airflow to other occupied areas.
- Counsel persons at highest risk for developing chronic Q fever, especially persons with pre-existing cardiac valvular disease or individuals with vascular grafts.
A vaccine for Q fever has been developed and has successfully protected humans in occupational settings in Australia. However, this vaccine is not commercially available in the United States. Persons wishing to be vaccinated should first have a skin test to determine a history of previous exposure. Individuals who have previously been exposed to C. burnetii should not receive the vaccine because severe reactions, localized to the area of the injected vaccine, may occur. A vaccine for use in animals has also been developed, but it is not available in the United States.
Significance for Bioterrorism
Coxiella burnetii is a highly infectious agent that is rather resistant to heat and drying. It can become airborne and inhaled by humans. A single C. burnetii organism may cause disease in a susceptible person. This agent has a past history of being developed for use in biological warfare and is considered a potential terrorist threat.
|
Question:
What are the symptoms of Anaplasmosis ?
Answer:
Anaplasmosis is a disease caused by the bacterium Anaplasma phagocytophilium. This pathogen is transmitted to humans by the bite of an infected tick. The black-legged tick (Ixodes scapularis) is the vector of A. phagocytophilum in the northeast and upper midwestern United States. The western black-legged tick (Ixodes pacificus) is the primary vector in Northern California. The first symptoms of anaplasmosis typically begin within 1-2 weeks after the bite of an infected tick. A tick bite is usually painless, and some patients who develop anaplasmosis do not remember being bitten. The following is a list of symptoms commonly seen with this disease. However, it is important to note that few people with the disease will develop all symptoms, and the number and combination of symptoms varies greatly from person to person.
- Fever
- Headache
- Muscle pain
- Malaise
- Chills
- Nausea / Abdominal pain
- Cough
- Confusion
- Rash (rare with anaplasmosis)
Anaplasmosis can be a serious illness that can be fatal if not treated correctly, even in previously healthy people. Severe clinical presentations may include difficulty breathing, hemorrhage, renal failure or neurological problems. The estimated case fatality rate (i.e., the proportion of persons who die as a result of their infection) is less than 1%. Patients who are treated early may recover quickly on outpatient medication, while those who experience a more severe course may require intravenous antibiotics, prolonged hospitalization or intensive care.
Rash
Rash is rarely reported in patients with anaplasmosis and the presence of a rash may signify that the patient has a coinfection with the pathogen that causes Lyme disease or another tickborne disease, such as Rocky Mountain Spotted Fever .
Immune-compromised Individuals
The severity of anaplasmosis may depend in part on the immune status of the patient. Persons with compromised immunity caused by immunosuppressive therapies (e.g., corticosteroids, cancer chemotherapy, or longterm immunosuppressive therapy following organ transplant), HIV infection, or splenectomy appear to develop more severe disease, and case-fatality rates for these individuals are characteristically higher than case-fatality rates reported for the general population.
Blood Transfusion and Organ Transplant Risks Associated with Anaplasma species
Because A. phagocytophilum infects the white blood cells and circulates in the blood stream, this pathogen may pose a risk to be transmitted through blood transfusions. Anaplasma phagocytophilum has been shown to survive for more than a week in refrigerated blood. Several cases of anaplasmosis have been reported associated with the transfusion of packed red blood cells donated from asymptomatic or acutely infected donors. Patients who develop anaplasmosis within a month of receiving a blood transfusion or solid organ transplant should be reported to state health officials for prompt investigation. Use of leukoreduced blood products may theoretically decrease the risk of transfusion-associated transmission of these pathogens. However, the filtration process does not remove all leukocytes or bacteria not associated with leukocytes from leukoreduced blood. Therefore, while this process may reduce the risk of transmission, it does not eliminate it completely.
Physician Diagnosis
There are several aspects of anaplasmosis that make it challenging for healthcare providers to diagnose and treat. The symptoms vary from patient to patient and can be difficult to distinguish from other diseases. Treatment is more likely to be effective if started early in the course of disease. Diagnostic tests based on the detection of antibodies will frequently appear negative in the first 7-10 days of illness.
For this reason, healthcare providers must use their judgment to treat patients based on clinical suspicion alone. Healthcare providers may find important information in the patient’s history and physical examination that may aid clinical diagnosis. Information such as recent tick bites, exposure to areas where ticks are likely to be found, or history of recent travel to areas where anaplasmosis is endemic can be helpful in making the diagnosis. The healthcare provider should also look at routine blood tests, such as a complete blood cell count or a chemistry panel. Clues such as a low platelet count (thrombocytopenia), low white blood cell count (leukopenia), or elevated liver enzyme levels are helpful predictors of anaplasmosis, but may not be present in all patients. After a suspect diagnosis is made on clinical suspicion and treatment has begun, specialized laboratory testing should be used to confirm the diagnosis of anaplasmosis.
Laboratory Detection
During the acute phase of illness, a sample of whole blood can be tested by polymerase chain reaction (PCR) assay to determine if a patient has anaplasmosis. This method is most sensitive in the first week of illness, and rapidly decreases in sensitivity following the administration of appropriate antibiotics. Although a positive PCR result is helpful, a negative result does not completely rule out the diagnosis, and treatment should not be with held due to a negative result.
During the first week of illness a microscopic examination of blood smears (known as a peripheral blood smear) may reveal morulae (microcolonies of anaplasma) in the cytoplasm of white blood cells in up to 20% of patients. During A. phagocytophilum infection, morulae are most frequently observed in granulocytes. However, the observance of morulae in a particular cell type cannot conclusively identify the infecting species. Culture isolation of A. phagocytophilum is only available at specialized laboratories; routine hospital blood cultures cannot detect the organism.
Figure 1: Morulae detected in a granulocyte on a peripheral blood smear, associated with A. phagocytophilum infection.
When a person develops anaplasmosis, their immune system produces antibodies to A. phagocytophilum, with detectable antibody titers usually observed by 7-10 days after illness onset. It is important to note that a negative test during the first week of illness does not rule out anaplasmosis as a cause of illness.
The gold standard serologic test for diagnosis of anaplasmosis is the indirect immunofluorescence assay (IFA) using A. phagocytophilum antigen, performed on paired serum samples to demonstrate a significant (four-fold) rise in antibody titers. The first sample should be taken as early in the disease as possible, preferably in the first week of symptoms, and the second sample should be taken 2 to 4 weeks later. In most cases of anaplasmosis, the first IgG IFA titer is typically low, or “negative,” and the second typically shows a significant (four-fold) increase in IgG antibody levels. IgM antibodies usually rise at the same time as IgG near the end of the first week of illness and remain elevated for months or longer. Also, IgM antibodies are less specific than IgG antibodies and more likely to result in a false positive. For these reasons, physicians requesting IgM serologic titers should also request a concurrent IgG titer.
Serologic tests based on enzyme immunoassay (EIA) technology are available from some commercial laboratories. However, EIA tests are qualitative rather than quantitative, meaning they only provide a positive/negative result, and are less useful to measure changes in antibody titers between paired specimens. Furthermore, some EIA assays rely on the evaluation of IgM antibody alone, which may have a higher frequency of false positive results.
Antibodies to A. phagocytophilum may remain elevated for months or longer after the disease has resolved, or may be detected in persons who were previously exposed to antigenically related organisms. Between 5-10% of currently healthy people in some areas may have elevated antibody titers due to past exposure to A. phagocytophilum or similar organisms. Therefore, if only one sample is tested it can be difficult to interpret, while paired samples taken weeks apart demonstrating a significant (four-fold) rise in antibody titer provides the best evidence for a correct diagnosis of anaplasmosis.
For more in-depth information about the diagnosis of anaplasmosis, please visit http://www.cdc.gov/mmwr/preview/mmwrhtml/rr5504a1.htm
Treatment
Doxycycline is the first line treatment for adults and children of all ages and should be initiated immediately whenever anaplasmosis is suspected.
Use of antibiotics other than doxycycline or other tetracyclines has been associated with a higher risk of fatal outcome for some rickettsial infections. Doxycycline is most effective at preventing severe complications from developing if it is started early in the course of disease. Therefore, treatment must be based on clinical suspicion alone and should always begin before laboratory results return.
If the patient is treated within the first 5 days of the disease, fever generally subsides within 24-72 hours. In fact, failure to respond to doxycycline suggests that the patient’s condition might not be due to anaplasmosis. Severely ill patients may require longer periods before their fever resolves. Resistance to doxcycline or relapses in symptoms after the completion of the recommended course have not been documented.
Recommended Dosage
Doxycycline is the first line treatment for adults and children of all ages:
- Adults: 100 mg every 12 hours
- Children under 45 kg (100 lbs): 2.2 mg/kg body weight given twice a day
Patients should be treated for at least 3 days after the fever subsides and until there is evidence of clinical improvement. Standard duration of treatment is 7 to 14 days. Some patients may continue to experience headache, weakness and malaise for weeks after adequate treatment.
Treating children
The use of doxycycline to treat suspected anaplasmosis in children is standard practice recommended by both CDC and the AAP Committee on Infectious Diseases. Unlike older generations of tetracyclines, the recommended dose and duration of medication needed to treat anaplasmosis has not been shown to cause staining of permanent teeth, even when five courses are given before the age of eight. Healthcare providers should use doxycycline as the first-line treatment for suspected anaplasmosis in patients of all ages.
Other Treatments
In cases of life threatening allergies to doxycycline and in some pregnant patients for whom the clinical course of anaplasmosis appears mild, physicians may need to consider alternate antibiotics. Although recommended as a second-line therapeutic alternative to treat Rocky Mountain Spotted Fever , chloramphenicol is not recommended for the treatment of anaplasmosis, as studies have shown a lack of efficacy. Rifampin has been used successfully in several pregnant women with anaplasmosis, and studies suggest that this drug appears effective against Anaplasma species. However, rifampin is not effective in treating RMSF, a disease that may be confused with anaplasmosis. Healthcare providers should be cautious when exploring treatments other than doxycycline, which is highly effective in treating both. Other antibiotics, including broad spectrum antibiotics are not considered highly effective against A. phagocytophilum, and the use of sulfa drugs during acute illness may worsen the severity of infection.
Prophylaxis (Preventive Treatment)
Antibiotic treatment following a tick bite is not recommended as a means to prevent anaplasmosis. There is no evidence this practice is effective, and this may simply delay onset of disease. Instead, persons who experience a tick bite should be alert for symptoms suggestive of tickborne illness and consult a physician if fever, rash, or other symptoms of concern develop.
For more in-depth information about treatment, please visit http://www.cdc.gov/mmwr/preview/mmwrhtml/rr5504a1.htm
Other Considerations
The clinical presentation for anaplasmosis can resemble other tickborne diseases, such as Rocky Mountain Spotted Fever and ehrlichiosis. Similar to anaplasmosis, these infections respond well to treatment with doxycycline. Healthcare providers should order diagnostic tests for additional agents if the clinical history and geographic association warrant. For more in-depth about other similar tickborne diseases, please visit http://www.cdc.gov/mmwr/preview/mmwrhtml/rr5504a1.htm .
|
Question:
What is (are) Anaplasmosis ?
Answer:
More detailed information on the diagnosis, management, and treatment of anaplasmosis is available in Diagnosis and Management of Tickborne Rickettsial Diseases: Rocky Mountain Spotted Fever, Ehrlichioses, and Anaplasmosis – United States.
*Case definitions have been updated since publication
How to Contact the Rickettsial Zoonoses Branch at CDC
The general public and healthcare providers should first call 1-800-CDC-INFO (1-800-232-4636) for questions regarding RMSF and other rickettsial diseases. If a consultation with a CDC scientist specializing in rickettsial diseases is advised, your call will be appropriately forwarded.
Case Definitions
2008 Case Definition
Case Report Forms
For confirmed and probable cases of anaplasmosis that have been identified and reported through the National Notifiable Disease Surveillance System, states are also encouraged to submit additional information using the CDC Case Report Form (CRF). This form collects additional important information that routine electronic reporting does not, such as information on how the diagnosis was made, and whether the patient was hospitalized or died. If a different state-specific form is already used to collect this information, this information may be submitted to CDC in lieu of a CRF.
2010 CDC Case Report Form: Tickborne Rickettsial Diseases (2010 version) [PDF – 3 pages]
How to Submit Specimens to CDC for RMSF Testing
Private citizens may not directly submit specimens to CDC for testing. If you feel that diagnostic testing is necessary, consult your healthcare provider or state health department.
State Health Departments
Specimens may be submitted to CDC for testing for anaplasmosis. To coordinate specimen submission, please call 404-639-1075 during business hours (8:00 - 4:30 ET).
U.S. Healthcare Providers:
U.S. healthcare providers should not submit specimens for testing directly to CDC. CDC policy requires that specimens for testing be submitted through or with the approval of the state health department. Please contact your state health department, who will assist you with specimen submission and reporting of infection. For general questions about anaplasmosis, please call 1-800-CDC-INFO (1-800-232-4636). If you have questions about a suspect ehrlichiosis case, please first consult your state health department. Healthcare providers requiring an epidemiologic or laboratory consultation on anaplasmosis may also call 404-639-1075 during business hours (8:00 - 4:30 ET). Or 770-488-7100 after hours.
Non U.S. Healthcare Providers:
Non-U.S. healthcare providers should consult CDC prior to submitting specimens for testing. For general questions about anaplasmosis, please call 1-800-CDC-INFO (1-800-232-4636). If you would like to discuss a suspect anaplasmosis case with CDC, please call 404-639-1075 during business hours (8:00 - 4:30 ET), or 770-488-7100 after hours.
|
Question:
Who is at risk for Marburg hemorrhagic fever (Marburg HF)? ?
Answer:
It is unknown how Marburg virus first transmits from its animal host to humans; however, for the 2 cases in tourists visiting Uganda in 2008, unprotected contact with infected bat feces or aerosols are the most likely routes of infection.
After this initial crossover of virus from host animal to humans, transmission occurs through person-to-person contact. This may happen in several ways: direct contact to droplets of body fluids from infected persons, or contact with equipment and other objects contaminated with infectious blood or tissues.
In previous outbreaks, persons who have handled infected non-human primates or have come in direct contact with their fluids or cell cultures have become infected. Spread of the virus between humans has occurred in close environments and direct contacts. A common example is through caregivers in the home or in a hospital (nosocomial transmission).
|
Question:
What are the symptoms of Marburg hemorrhagic fever (Marburg HF) ?
Answer:
After an incubation period of 5-10 days, symptom onset is sudden and marked by fever, chills, headache, and myalgia. Around the fifth day after the onset of symptoms, a maculopapular rash, most prominent on the trunk (chest, back, stomach), may occur. Nausea, vomiting, chest pain, a sore throat, abdominal pain, and diarrhea may then appear. Symptoms become increasingly severe and can include jaundice, inflammation of the pancreas, severe weight loss, delirium, shock, liver failure, massive hemorrhaging, and multi-organ dysfunction.
Because many of the signs and symptoms of Marburg hemorrhagic fever are similar to those of other infectious diseases such as malaria or typhoid fever, clinical diagnosis of the disease can be difficult, especially if only a single case is involved.
The case-fatality rate for Marburg hemorrhagic fever is between 23-90%. For a complete listing of the case fatality rates for previous outbreaks, please see the History of Outbreaks table
|
Question:
Who is at risk for Marburg hemorrhagic fever (Marburg HF)? ?
Answer:
People who have close contact with African fruit bats, humans patients, or non-human primates infected with Marburg virus are at risk.
Historically, the people at highest risk include family members and hospital staff who care for patients infected with Marburg virus and have not used proper barrier nursing techniques. Particular occupations, such as veterinarians and laboratory or quarantine facility workers who handle non-human primates from Africa, may also be at increased risk of exposure to Marburg virus.
Exposure risk can be higher for travelers visiting endemic regions in Africa, including Uganda and other parts of central Africa, and have contact with fruit bats, or enter caves or mines inhabited by fruit bats.
|
Question:
How to diagnose Marburg hemorrhagic fever (Marburg HF) ?
Answer:
Many of the signs and symptoms of Marburg hemorrhagic fever are similar to those of other more frequent infectious diseases, such as malaria or typhoid fever, making diagnosis of the disease difficult. This is especially true if only a single case is involved.
However, if a person has the early symptoms of Marburg HF and there is reason to believe that Marburg HF should be considered, the patient should be isolated and public health professionals notified. Samples from the patient can then be collected and tested to confirm infection.
Antigen-capture enzyme-linked immunosorbent assay (ELISA) testing, polymerase chain reaction (PCR), and IgM-capture ELISA can be used to confirm a case of Marburg HF within a few days of symptom onset. Virus isolation may also be performed but should only be done in a high containment laboratory with good laboratory practices. The IgG-capture ELISA is appropriate for testing persons later in the course of disease or after recovery. In deceased patients, immunohistochemistry, virus isolation, or PCR of blood or tissue specimens may be used to diagnose Marburg HF retrospectively.
|
Question:
What are the treatments for Marburg hemorrhagic fever (Marburg HF) ?
Answer:
There is no specific treatment for Marburg hemorrhagic fever. Supportive hospital therapy should be utilized, which includes balancing the patient's fluids and electrolytes, maintaining oxygen status and blood pressure, replacing lost blood and clotting factors, and treatment for any complicating infections.
Experimental treatments are validated in non-human primates models, but have never been tried in humans.
|
Question:
How to prevent Marburg hemorrhagic fever (Marburg HF) ?
Answer:
Preventive measures against Marburg virus infection are not well defined, as transmission from wildlife to humans remains an area of ongoing research. However, avoiding fruit bats, and sick non-human primates in central Africa, is one way to protect against infection.
Measures for prevention of secondary, or person-to-person, transmission are similar to those used for other hemorrhagic fevers. If a patient is either suspected or confirmed to have Marburg hemorrhagic fever, barrier nursing techniques should be used to prevent direct physical contact with the patient. These precautions include wearing of protective gowns, gloves, and masks; placing the infected individual in strict isolation; and sterilization or proper disposal of needles, equipment, and patient excretions.
In conjunction with the World Health Organization, CDC has developed practical, hospital-based guidelines, titled: Infection Control for Viral Haemorrhagic Fevers In the African Health Care Setting. The manual can help health-care facilities recognize cases and prevent further hospital-based disease transmission using locally available materials and few financial resources.
Marburg hemorrhagic fever is a very rare human disease. However, when it occurs, it has the potential to spread to other people, especially health care staff and family members who care for the patient. Therefore, increasing awareness in communities and among health-care providers of the clinical symptoms of patients with Marburg hemorrhagic fever is critical. Better awareness can lead to earlier and stronger precautions against the spread of Marburg virus in both family members and health-care providers. Improving the use of diagnostic tools is another priority. With modern means of transportation that give access even to remote areas, it is possible to obtain rapid testing of samples in disease control centers equipped with Biosafety Level 4 laboratories in order to confirm or rule out Marburg virus infection.
|
Question:
what is botulism?
Answer:
Botulism is a rare but serious paralytic illness caused by a nerve toxin that is produced by the bacterium Clostridium botulinum and sometimes by strains of Clostridium butyricum and Clostridium baratii. There are five main kinds of botulism. Foodborne botulism is caused by eating foods that contain the botulinum toxin. Wound botulism is caused by toxin produced from a wound infected with Clostridium botulinum. Infant botulism is caused by consuming the spores of the botulinum bacteria, which then grow in the intestines and release toxin. Adult intestinal toxemia (adult intestinal colonization) botulism is a very rare kind of botulism that occurs among adults by the same route as infant botulism. Lastly, iatrogenic botulism can occur from accidental overdose of botulinum toxin. All forms of botulism can be fatal and are considered medical emergencies. Foodborne botulism is a public health emergency because many people can be poisoned by eating a contaminated food.
|
Question:
how common is botulism?
Answer:
In the United States, an average of 145 cases are reported each year.Of these, approximately 15% are foodborne, 65% are infant botulism, and 20% are wound. Adult intestinal colonization and iatrogenic botulism also occur, but rarely. Outbreaks of foodborne botulism involving two or more persons occur most years and are usually caused by home-canned foods. Most wound botulism cases are associated with black-tar heroin injection, especially in California.
|
Question:
what are the symptoms of botulism?
Answer:
The classic symptoms of botulism include double vision, blurred vision, drooping eyelids, slurred speech, difficulty swallowing, dry mouth, and muscle weakness. Infants with botulism appear lethargic, feed poorly, are constipated, and have a weak cry and poor muscle tone. These are all symptoms of the muscle paralysis caused by the bacterial toxin. If untreated, these symptoms may progress to cause paralysis of the respiratory muscles, arms, legs, and trunk. In foodborne botulism, symptoms generally begin 18 to 36 hours after eating a contaminated food, but they can occur as early as 6 hours or as late as 10 days.
|
Question:
how is botulism diagnosed?
Answer:
Physicians may consider the diagnosis if the patient's history and physical examination suggest botulism. However, these clues are usually not enough to allow a diagnosis of botulism. Other diseases such as Guillain-Barré syndrome, stroke, and myasthenia gravis can appear similar to botulism, and special tests may be needed to exclude these other conditions. These tests may include a brain scan, spinal fluid examination, nerve conduction test (electromyography, or EMG), and a tensilon test for myasthenia gravis. Tests for botulinum toxin and for bacteria that cause botulism can be performed at some state health department laboratories and at CDC.
|
Question:
how can botulism be treated?
Answer:
The respiratory failure and paralysis that occur with severe botulism may require a patient to be on a breathing machine (ventilator) for weeks or months, plus intensive medical and nursing care. The paralysis slowly improves. Botulism can be treated with an antitoxin which blocks the action of toxin circulating in the blood. Antitoxin for infants is available from the California Department of Public Health, and antitoxin for older children and adults is available through CDC.If given before paralysis is complete, antitoxin can prevent worsening and shorten recovery time. Physicians may try to remove contaminated food still in the gut by inducing vomiting or by using enemas. Wounds should be treated, usually surgically, to remove the source of the toxin-producing bacteria followed by administration of appropriate antibiotics. Good supportive care in a hospital is the mainstay of therapy for all forms of botulism.
|
Question:
are there complications from botulism?
Answer:
Botulism can result in death due to respiratory failure. However, in the past 50 years the proportion of patients with botulism who die has fallen from about 50% to 3-5%. A patient with severe botulism may require a breathing machine as well as intensive medical and nursing care for several months, and some patients die from infections or other problems related to remaining paralyzed for weeks or months. Patients who survive an episode of botulism poisoning may have fatigue and shortness of breath for years and long-term therapy may be needed to aid recovery.
|
Question:
how can botulism be prevented?
Answer:
Many cases of botulism are preventable. Foodborne botulism has often been from home-canned foods with low acid content, such as asparagus, green beans, beets and corn and is caused by failure to follow proper canning methods. However, seemingly unlikely or unusual sources are found every decade, with the common problem of improper handling during manufacture, at retail, or by consumers; some examples are chopped garlic in oil, canned cheese sauce, chile peppers, tomatoes, carrot juice, and baked potatoes wrapped in foil. In Alaska, foodborne botulism is caused by fermented fish and other aquatic game foods. Persons who do home canning should follow strict hygienic procedures to reduce contamination of foods, and carefully follow instructions on safe home canning including the use of pressure canners/cookers as recommended through county extension services or from the US Department of Agriculture. Oils infused with garlic or herbs should be refrigerated. Potatoes which have been baked while wrapped in aluminum foil should be kept hot until served or refrigerated. Because the botulinum toxin is destroyed by high temperatures, persons who eat home-canned foods should consider boiling the food for 10 minutes before eating it to ensure safety. Wound botulism can be prevented by promptly seeking medical care for infected wounds and by not using injectable street drugs. Most infant botulism cases cannot be prevented because the bacteria that causes this disease is in soil and dust. The bacteria can be found inside homes on floors, carpet, and countertops even after cleaning. Honey can contain the bacteria that causes infant botulism so, children less than 12 months old should not be fed honey. Honey is safe for persons 1 year of age and older.
|
Question:
what are public health agencies doing to prevent or control botulism?
Answer:
Public education about botulism prevention is an ongoing activity. Information about safe canning is widely available for consumers. Persons in state health departments and at CDC are knowledgeable about botulism and available to consult with physicians 24 hours a day. If antitoxin is needed to treat a patient, it can be quickly delivered to a physician anywhere in the country. Suspected outbreaks of botulism are quickly investigated, and if they involve a commercial product, the appropriate control measures are coordinated among public health and regulatory agencies. Physicians should immediately report suspected cases of botulism to their state health department.
For information and quidelines on canning foods at home: USDA Home Canning Guide
|
Question:
What is (are) Parasites - Taeniasis ?
Answer:
Taeniasis in humans is a parasitic infection caused by the tapeworm species Taenia saginata (beef tapeworm), Taenia solium (pork tapeworm), and Taenia asiatica (Asian tapeworm). Humans can become infected with these tapeworms by eating raw or undercooked beef (T. saginata) or pork (T. solium and T. asiatica). People with taeniasis may not know they have a tapeworm infection because symptoms are usually mild or nonexistent.
T. solium tapeworm infections can lead to cysticercosis, which is a disease that can cause seizures, so it is important seek treatment.
|
Question:
Who is at risk for Parasites - Taeniasis? ?
Answer:
The tapeworms that cause taeniasis (Taenia saginata, T. solium, and T. asiatica) are found worldwide. Eating raw or undercooked beef or pork is the primary risk factor for acquiring taeniasis. Persons who don't eat raw or undercooked beef or pork are not likely to get taeniasis.
Infections with T. saginata occur wherever contaminated raw beef is eaten, particularly in Eastern Europe, Russia, eastern Africa and Latin America. Taeniasis due to T. saginata is rare in the United States, except in places where cattle and people are concentrated and sanitation is poor, such as around feed lots when cattle can be exposed to human feces. Tapeworm infections due to T. solium are more prevalent in under-developed communities with poor sanitation and where people eat raw or undercooked pork. Higher rates of illness have been seen in people in Latin America, Eastern Europe, sub-Saharan Africa, India, and Asia. Taenia solium taeniasis is seen in the United States, typically among Latin American immigrants. Taenia asiatica is limited to Asia and is seen mostly in the Republic of Korea, China, Taiwan, Indonesia, and Thailand.
A disease called cysticercosis can occur when T. solium tapeworm eggs are ingested. For example, people with poor hygiene who have taeniasis -- with or without symptoms -- will shed tapeworm eggs in their feces and might accidentally contaminate their environment. This can lead to transmission of cysticercosis to themselves or others.
More on: Cysticercosis
|
Question:
How to diagnose Parasites - Taeniasis ?
Answer:
Diagnosis of Taenia tapeworm infections is made by examination of stool samples; individuals should also be asked if they have passed tapeworm segments. Stool specimens should be collected on three different days and examined in the lab for Taenia eggs using a microscope. Tapeworm eggs can be detected in the stool 2 to 3 months after the tapeworm infection is established.
Tapeworm eggs of T. solium can also infect humans, causing cysticercosis. It is important to diagnose and treat all tapeworm infections.
More on: cysticercosis
|
Question:
What are the treatments for Parasites - Taeniasis ?
Answer:
Treatment is available after accurate diagnosis. Your doctor will provide prescription medication, either praziquantel or niclosamide, which is taken by mouth. The medication is also available in a children’s dosage. Work with your health care provider for proper treatment options for you and your family.
More on: Resources For Health Professionals: Treatment
|
Question:
How to prevent Parasites - Taeniasis ?
Answer:
One way to prevent taeniasis is to cook meat to safe temperatures. A food thermometer should be used to measure the internal temperature of cooked meat. Do not sample meat until it is cooked. USDA recommends the following for meat preparation.
- For Whole Cuts of Meat (excluding poultry)
- Cook to at least 145° F (63° C) as measured with a food thermometer placed in the thickest part of the meat, then allow the meat to rest* for three minutes before carving or consuming.
- For Ground Meat (excluding poultry)
- Cook to at least 160° F (71° C); ground meats do not require a rest* time.
*According to USDA, "A 'rest time' is the amount of time the product remains at the final temperature, after it has been removed from a grill, oven, or other heat source. During the three minutes after meat is removed from the heat source, its temperature remains constant or continues to rise, which destroys pathogens."
More on: Fight BAC: Safe Food Handling
|
Question:
Who is at risk for Kyasanur Forest Disease (KFD)? ?
Answer:
Transmission to humans may occur after a tick bite or contact with an infected animal, most importantly a sick or recently dead monkey. No person-to-person transmission has been described.
Large animals such as goats, cows, and sheep may become infected with KFD but play a limited role in the transmission of the disease. These animals provide the blood meals for ticks and it is possible for infected animals with viremia to infect other ticks, but transmission of KFDV to humans from these larger animals is extremely rare. Furthermore, there is no evidence of disease transmission via the unpasteurized milk of any of these animals.
|
Question:
What are the symptoms of Kyasanur Forest Disease (KFD) ?
Answer:
After an incubation period of 3-8 days, the symptoms of KFD begin suddenly with chills, fever, and headache. Severe muscle pain with vomiting, gastrointestinal symptoms and bleeding problems may occur 3-4 days after initial symptom onset. Patients may experience abnormally low blood pressure, and low platelet, red blood cell, and white blood cell counts.
After 1-2 weeks of symptoms, some patients recover without complication. However, the illness is biphasic for a subset of patients (10-20%) who experience a second wave of symptoms at the beginning of the third week. These symptoms include fever and signs of neurological manifestations, such as severe headache, mental disturbances, tremors, and vision deficits.
The estimated case-fatality rate is from 3 to 5% for KFD.
|
Question:
Who is at risk for Kyasanur Forest Disease (KFD)? ?
Answer:
KFD has historically been limited to the western and central districts of Karnataka State, India. However, in November 2012, samples from humans and monkeys tested positive for KFDV in the southernmost district of the State which neighbors Tamil Nadu State and Kerala State, indicating the possibility of wider distribution of KFDV. Additionally, a virus very similar to KFD virus (Alkhurma hemorrhagic fever virus) has been described in Saudi Arabia.
People with recreational or occupational exposure to rural or outdoor settings (e.g., hunters, herders, forest workers, farmers) within Karnataka State are potentially at risk for infection by contact with infected ticks. Seasonality is another important risk factor as more cases are reported during the dry season, from November through June.
|
Question:
How to diagnose Kyasanur Forest Disease (KFD) ?
Answer:
Diagnosis can be made in the early stage of illness by molecular detection by PCR or virus isolation from blood. Later, serologic testing using enzyme-linked immunosorbent serologic assay (ELISA) can be performed.
|
Question:
What are the treatments for Kyasanur Forest Disease (KFD) ?
Answer:
There is no specific treatment for KFD, but early hospitalization and supportive therapy is important. Supportive therapy includes the maintenance of hydration and the usual precautions for patients with bleeding disorders.
|
Question:
How to prevent Kyasanur Forest Disease (KFD) ?
Answer:
A vaccine does exist for KFD and is used in endemic areas of India. Additional preventative measures include insect repellents and wearing protective clothing in areas where ticks are endemic.
|
Question:
What are the symptoms of Typhoid Fever ?
Answer:
Persons with typhoid fever usually have a sustained fever as high as 103° to 104° F (39° to 40° C). They may also feel weak, or have stomach pains, headache, or loss of appetite. In some cases, patients have a rash of flat, rose-colored spots. The only way to know for sure if an illness is typhoid fever is to have samples of stool or blood tested for the presence of Salmonella Typhi.
Typhoid fever’s danger doesn’t end when symptoms disappear:
Even if your symptoms seem to go away, you may still be carrying Salmonella Typhi. If so, the illness could return, or you could pass the disease to other people. In fact, if you work at a job where you handle food or care for small children, you may be barred legally from going back to work until a doctor has determined that you no longer carry any typhoid bacteria.
If you are being treated for typhoid fever, it is important to do the following:
Keep taking the prescribed antibiotics for as long as the doctor has asked you to take them.
Wash your hands carefully with soap and water after using the bathroom, and do not prepare or serve food for other people. This will lower the chance that you will pass the infection on to someone else.
Have your doctor perform a series of stool cultures to ensure that no Salmonella Typhi bacteria remain in your body.
|
Question:
What is (are) Parasites - Toxoplasmosis (Toxoplasma infection) ?
Answer:
A single-celled parasite called Toxoplasma gondii causes a disease known as toxoplasmosis. While the parasite is found throughout the world, more than 60 million people in the United States may be infected with the Toxoplasma parasite. Of those who are infected, very few have symptoms because a healthy person’s immune system usually keeps the parasite from causing illness. However, pregnant women and individuals who have compromised immune systems should be cautious; for them, a Toxoplasma infection could cause serious health problems.
|
Question:
Who is at risk for Parasites - Toxoplasmosis (Toxoplasma infection)? ?
Answer:
Toxoplasmosis is caused by the protozoan parasite Toxoplasma gondii. In the United States it is estimated that 22.5% of the population 12 years and older have been infected with Toxoplasma. In various places throughout the world, it has been shown that up to 95% of some populations have been infected with Toxoplasma. Infection is often highest in areas of the world that have hot, humid climates and lower altitudes.
Toxoplasmosis is not passed from person-to-person, except in instances of mother-to-child (congenital) transmission and blood transfusion or organ transplantation. People typically become infected by three principal routes of transmission.
Foodborne transmission
The tissue form of the parasite (a microscopic cyst consisting of bradyzoites) can be transmitted to humans by food. People become infected by:
- Eating undercooked, contaminated meat (especially pork, lamb, and venison)
- Accidental ingestion of undercooked, contaminated meat after handling it and not washing hands thoroughly (Toxoplasma cannot be absorbed through intact skin)
- Eating food that was contaminated by knives, utensils, cutting boards, or other foods that had contact with raw, contaminated meat
Animal-to-human (zoonotic) transmission
Cats play an important role in the spread of toxoplasmosis. They become infected by eating infected rodents, birds, or other small animals. The parasite is then passed in the cat's feces in an oocyst form, which is microscopic.
Kittens and cats can shed millions of oocysts in their feces for as long as 3 weeks after infection. Mature cats are less likely to shed Toxoplasma if they have been previously infected. A Toxoplasma-infected cat that is shedding the parasite in its feces contaminates the litter box. If the cat is allowed outside, it can contaminate the soil or water in the environment as well.
People can accidentally swallow the oocyst form of the parasite. People can be infected by:
- Accidental ingestion of oocysts after cleaning a cat's litter box when the cat has shed Toxoplasma in its feces
- Accidental ingestion of oocysts after touching or ingesting anything that has come into contact with a cat's feces that contain Toxoplasma
- Accidental ingestion of oocysts in contaminated soil (e.g., not washing hands after gardening or eating unwashed fruits or vegetables from a garden)
- Drinking water contaminated with the Toxoplasma parasite
Mother-to-child (congenital) transmission
A woman who is newly infected with Toxoplasma during pregnancy can pass the infection to her unborn child (congenital infection). The woman may not have symptoms, but there can be severe consequences for the unborn child, such as diseases of the nervous system and eyes.
Rare instances of transmission
Organ transplant recipients can become infected by receiving an organ from a Toxoplasma-positive donor. Rarely, people can also become infected by receiving infected blood via transfusion. Laboratory workers who handle infected blood can also acquire infection through accidental inoculation.
|
Question:
How to diagnose Parasites - Toxoplasmosis (Toxoplasma infection) ?
Answer:
The diagnosis of toxoplasmosis is typically made by serologic testing. A test that measures immunoglobulin G (IgG) is used to determine if a person has been infected. If it is necessary to try to estimate the time of infection, which is of particular importance for pregnant women, a test which measures immunoglobulin M (IgM) is also used along with other tests such as an avidity test.
Diagnosis can be made by direct observation of the parasite in stained tissue sections, cerebrospinal fluid (CSF), or other biopsy material. These techniques are used less frequently because of the difficulty of obtaining these specimens.
Parasites can also be isolated from blood or other body fluids (for example, CSF) but this process can be difficult and requires considerable time.
Molecular techniques that can detect the parasite's DNA in the amniotic fluid can be useful in cases of possible mother-to-child (congenital) transmission.
Ocular disease is diagnosed based on the appearance of the lesions in the eye, symptoms, course of disease, and often serologic testing.
|
Question:
What are the treatments for Parasites - Toxoplasmosis (Toxoplasma infection) ?
Answer:
Healthy people (nonpregnant)
Most healthy people recover from toxoplasmosis without treatment. Persons who are ill can be treated with a combination of drugs such as pyrimethamine and sulfadiazine, plus folinic acid.
Pregnant women, newborns, and infants
Pregnant women, newborns, and infants can be treated, although the parasite is not eliminated completely. The parasites can remain within tissue cells in a less active phase; their location makes it difficult for the medication to completely eliminate them.
Persons with ocular disease
Persons with ocular toxoplasmosis are sometimes prescribed medicine to treat active disease by their ophthalmologist. Whether or not medication is recommended depends on the size of the eye lesion, the location, and the characteristics of the lesion (acute active, versus chronic not progressing).
Persons with compromised immune systems
Persons with compromised immune systems need to be treated until they have improvement in their condition. For AIDS patients, continuation of medication for the rest of their lives may be necessary, or for as long as they are immunosuppressed.
More on: Resources for Health Professionals: Treatment
|
Question:
How to prevent Parasites - Toxoplasmosis (Toxoplasma infection) ?
Answer:
People who are healthy should follow the guidelines below to reduce risk of toxoplasmosis. If you have a weakened immune system, please see guidelines for Immunocompromised Persons.
Reduce Risk from Food
To prevent risk of toxoplasmosis and other infections from food:
- Freeze meat for several days at sub-zero (0° F) temperatures before cooking to greatly reduce chance of infection.
- Peel or wash fruits and vegetables thoroughly before eating.
- Wash cutting boards, dishes, counters, utensils, and hands with hot soapy water after contact with raw meat, poultry, seafood, or unwashed fruits or vegetables.
More on: Handwashing
The U.S. Government and the meat industry continue their efforts to reduce T. gondii in meat.
Reduce Risk from the Environment
To prevent risk of toxoplasmosis from the environment:
- Avoid drinking untreated drinking water.
- Wear gloves when gardening and during any contact with soil or sand because it might be contaminated with cat feces that contain Toxoplasma. Wash hands with soap and warm water after gardening or contact with soil or sand.
- Teach children the importance of washing hands to prevent infection.
- Keep outdoor sandboxes covered.
- Feed cats only canned or dried commercial food or well-cooked table food, not raw or undercooked meats.
- Change the litter box daily if you own a cat. The Toxoplasma parasite does not become infectious until 1 to 5 days after it is shed in a cat's feces. If you are pregnant or immunocompromised:
- Avoid changing cat litter if possible. If no one else can perform the task, wear disposable gloves and wash your hands with soap and warm water afterwards.
- Keep cats indoors.
- Do not adopt or handle stray cats, especially kittens. Do not get a new cat while you are pregnant.
|
Question:
What is (are) Parasites - Lymphatic Filariasis ?
Answer:
Frequently Asked Questions (FAQs)
Vector Information
|
Question:
Who is at risk for Parasites - Lymphatic Filariasis? ?
Answer:
There are three different filarial species that can cause lymphatic filariasis in humans. Most of the infections worldwide are caused by Wuchereria bancrofti. In Asia, the disease can also be caused by Brugia malayi and Brugia timori.
The infection spreads from person to person by mosquito bites. The adult worm lives in the human lymph vessels, mates, and produces millions of microscopic worms, also known as microfilariae. Microfilariae circulate in the person's blood and infect the mosquito when it bites a person who is infected. Microfilariae grow and develop in the mosquito. When the mosquito bites another person, the larval worms pass from the mosquito into the human skin, and travel to the lymph vessels. They grow into adult worms, a process that takes 6 months or more. An adult worm lives for about 5–7 years. The adult worms mate and release millions of microfilariae into the blood. People with microfilariae in their blood can serve as a source of infection to others.
A wide range of mosquitoes can transmit the parasite, depending on the geographic area. In Africa, the most common vector is Anopheles and in the Americas, it is Culex quinquefasciatus. Aedes and Mansonia can transmit the infection in the Pacific and in Asia.
Many mosquito bites over several months to years are needed to get lymphatic filariasis. People living for a long time in tropical or sub-tropical areas where the disease is common are at the greatest risk for infection. Short-term tourists have a very low risk.
Programs to eliminate lymphatic filariasis are under way in more than 50 countries. These programs are reducing transmission of the filarial parasites and decreasing the risk of infection for people living in or visiting these communities.
Geographic distribution
Lymphatic filariasis affects over 120 million people in 73 countries throughout the tropics and sub-tropics of Asia, Africa, the Western Pacific, and parts of the Caribbean and South America.
In the Americas, only four countries are currently known to be endemic: Haiti, the Dominican Republic, Guyana and Brazil.
In the United States, Charleston, South Carolina, was the last known place with lymphatic filariasis. The infection disappeared early in the 20th century. Currently, you cannot get infected in the U.S.
|
Question:
How to diagnose Parasites - Lymphatic Filariasis ?
Answer:
The standard method for diagnosing active infection is the identification of microfilariae in a blood smear by microscopic examination. The microfilariae that cause lymphatic filariasis circulate in the blood at night (called nocturnal periodicity). Blood collection should be done at night to coincide with the appearance of the microfilariae, and a thick smear should be made and stained with Giemsa or hematoxylin and eosin. For increased sensitivity, concentration techniques can be used.
Serologic techniques provide an alternative to microscopic detection of microfilariae for the diagnosis of lymphatic filariasis. Patients with active filarial infection typically have elevated levels of antifilarial IgG4 in the blood and these can be detected using routine assays.
Because lymphedema may develop many years after infection, lab tests are most likely to be negative with these patients.
|
Question:
What are the treatments for Parasites - Lymphatic Filariasis ?
Answer:
Patients currently infected with the parasite
Diethylcarbamazine (DEC) is the drug of choice in the United States. The drug kills the microfilaria and some of the adult worms. DEC has been used world-wide for more than 50 years. Because this infection is rare in the U.S., the drug is no longer approved by the Food and Drug Administration (FDA) and cannot be sold in the U.S. Physicians can obtain the medication from CDC after confirmed positive lab results. CDC gives the physicians the choice between 1 or 12-day treatment of DEC (6 mg/kg/day). One day treatment is generally as effective as the 12-day regimen. DEC is generally well tolerated. Side effects are in general limited and depend on the number of microfilariae in the blood. The most common side effects are dizziness, nausea, fever, headache, or pain in muscles or joints.
DEC should not be administered to patients who may also have onchocerciasis as DEC can worsen onchocercal eye disease. In patients with loiasis, DEC can cause serious adverse reactions, including encephalopathy and death. The risk and severity of the adverse reactions are related to Loa loa microfilarial density.
The drug ivermectin kills only the microfilariae, but not the adult worm; the adult worm is responsible for the pathology of lymphedema and hydrocele.
Some studies have shown adult worm killing with treatment with doxycycline (200mg/day for 4–6 weeks).
Patients with clinical symptoms
Lymphedema and elephantiasis are not indications for DEC treatment because most people with lymphedema are not actively infected with the filarial parasite.
To prevent the lymphedema from getting worse, patients should ask their physician for a referral to a lymphedema therapist so they can be informed about some basic principles of care such as hygiene, exercise and treatment of wounds.
Patients with hydrocele may have evidence of active infection, but typically do not improve clinically following treatment with DEC. The treatment for hydrocele is surgery.
More on: Resources for Health Professionals: Treatment
|
Question:
How to prevent Parasites - Lymphatic Filariasis ?
Answer:
The best way to prevent lymphatic filariasis is to avoid mosquito bites. The mosquitoes that carry the microscopic worms usually bite between the hours of dusk and dawn. If you live in an area with lymphatic filariasis:
- at night
- sleep in an air-conditioned room or
- sleep under a mosquito net
- between dusk and dawn
- wear long sleeves and trousers and
- use mosquito repellent on exposed skin.
Another approach to prevention includes giving entire communities medicine that kills the microscopic worms -- and controlling mosquitoes. Annual mass treatment reduces the level of microfilariae in the blood and thus, diminishes transmission of infection. This is the basis of the global campaign to eliminate lymphatic filariasis.
Experts consider that lymphatic filariasis, a neglected tropical disease (NTD), can be eradicated and a global campaign to eliminate lymphatic filariasis as a public health problem is under way. The elimination strategy is based on annual treatment of whole communities with combinations of drugs that kill the microfilariae. As a result of the generous contributions of these drugs by the companies that make them, tens of millions of people are being treated each year. Since these drugs also reduce levels of infection with intestinal worms, benefits of treatment extend beyond lymphatic filariasis. Successful campaigns to eliminate lymphatic filariasis have taken place in China and other countries.
More on: Insect Bite Prevention
|
Question:
What is (are) Parasites - Fascioliasis (Fasciola Infection) ?
Answer:
Fascioliasis is an infectious disease caused by Fasciola parasites, which are flat worms referred to as liver flukes. The adult (mature) flukes are found in the bile ducts and liver of infected people and animals, such as sheep and cattle. In general, fascioliasis is more common in livestock and other animals than in people.
Two Fasciola species (types) infect people. The main species is Fasciola hepatica, which is also known as "the common liver fluke" and "the sheep liver fluke." A related species, Fasciola gigantica, also can infect people.
|
Question:
Who is at risk for Parasites - Fascioliasis (Fasciola Infection)? ?
Answer:
Fascioliasis occurs in many areas of the world and usually is caused by F. hepatica, which is a common liver fluke of sheep and cattle. In general, fascioliasis is more common and widespread in animals than in people. Even so, the number of infected people in the world is thought to exceed 2 million.
Fasciola hepatica is found in more than 50 countries, in all continents except Antarctica. It is found in parts of Latin America, the Caribbean, Europe, the Middle East, Africa, Asia, and Oceania. Fasciola gigantica is less widespread. Human cases have been reported in the tropics, in parts of Africa and Asia, and also in Hawaii.
In some areas where fascioliasis is found, human cases are uncommon (sporadic). In other areas, human fascioliasis is very common (hyperendemic). For example, the areas with the highest known rates of human infection are in the Andean highlands of Bolivia and Peru.
Special conditions are needed for fascioliasis to be present in an area, and its geographic distribution is very patchy (focal). The eggs passed in the stool of infected mammals have to develop (mature) in a suitable aquatic snail host to be able to infect another mammalian host. Requirements include sufficient moisture and favorable temperatures (above 50°F) that allow the development of miracidia, reproduction of snails, and larval development within the snails. These factors also contribute to both the prevalence and level (intensity) of infection. Prevalence is highest in areas where climatic conditions promote development of cercariae.
More on: Biology
Infective Fasciola larvae (metacercariae) are found in contaminated water, either stuck to (encysted on) water plants or floating in the water, often in marshy areas, ponds, or flooded pastures. People (and animals) typically become infected by eating raw watercress or other contaminated water plants. The plants may be eaten as a snack or in salads or sandwiches. People also can get infected by ingesting contaminated water, such as by drinking it or by eating vegetables that were washed or irrigated with contaminated water. Infection also can result from eating undercooked sheep or goat livers that contain immature forms of the parasite.
The possibility of becoming infected in the United States should be considered, despite the fact that few locally acquired cases have been documented. The prerequisites for the Fasciola life cycle exist in some parts of the United States. In addition, transmission because of imported contaminated produce could occur, as has been documented in Europe.
|
Question:
How to diagnose Parasites - Fascioliasis (Fasciola Infection) ?
Answer:
The standard way to be sure a person is infected with Fasciola is by seeing the parasite. This is usually done by finding Fasciola eggs in stool (fecal) specimens examined under a microscope. More than one specimen may need to be examined to find the parasite. Sometimes eggs are found by examining duodenal contents or bile.
Infected people don't start passing eggs until they have been infected for several months; people don't pass eggs during the acute phase of the infection. Therefore, early on, the infection has to be diagnosed in other ways than by examining stool. Even during the chronic phase of infection, it can be difficult to find eggs in stool specimens from people who have light infections.
Certain types of blood tests can be helpful for diagnosing Fasciola infection, including routine blood work and tests that detect antibodies (an immune response) to the parasite.
More on: Resources for Health Professionals: Diagnosis
|
Question:
What are the treatments for Parasites - Fascioliasis (Fasciola Infection) ?
Answer:
The first step is to make sure the diagnosis is correct. For more information, patients should consult their health care provider. Health care providers may consult with CDC staff about the diagnosis and treatment of fascioliasis.
The drug of choice is triclabendazole. In the United States, this drug is available through CDC, under a special (investigational) protocol. The drug is given by mouth, usually in one or two doses. Most people respond well to the treatment.
More on: Resources for Health Professionals: Treatment
|
Question:
How to prevent Parasites - Fascioliasis (Fasciola Infection) ?
Answer:
No vaccine is available to protect people against Fasciola infection.
In some areas of the world where fascioliasis is found (endemic), special control programs are in place or are planned. The types of control measures depend on the setting (such as epidemiologic, ecologic, and cultural factors). Strict control of the growth and sale of watercress and other edible water plants is important.
Individual people can protect themselves by not eating raw watercress and other water plants, especially from endemic grazing areas. As always, travelers to areas with poor sanitation should avoid food and water that might be contaminated (tainted). Vegetables grown in fields that might have been irrigated with polluted water should be thoroughly cooked, as should viscera from potentially infected animals.
|
Question:
What is (are) Parasites - Ascariasis ?
Answer:
Ascaris is an intestinal parasite of humans. It is the most common human worm infection. The larvae and adult worms live in the small intestine and can cause intestinal disease.
|
Question:
Who is at risk for Parasites - Ascariasis? ?
Answer:
Ascaris infection is one of the most common intestinal worm infections. It is found in association with poor personal hygiene, poor sanitation, and in places where human feces are used as fertilizer.
Geographic Distribution
The geographic distributions of Ascaris are worldwide in areas with warm, moist climates and are widely overlapping. Infection occurs worldwide and is most common in tropical and subtropical areas where sanitation and hygiene are poor.
|
Question:
How to diagnose Parasites - Ascariasis ?
Answer:
The standard method for diagnosing ascariasis is by identifying Ascaris eggs in a stool sample using a microscope. Because eggs may be difficult to find in light infections, a concentration procedure is recommended.
|
Question:
What are the treatments for Parasites - Ascariasis ?
Answer:
Anthelminthic medications (drugs that rid the body of parasitic worms), such as albendazole and mebendazole, are the drugs of choice for treatment of Ascaris infections. Infections are generally treated for 1-3 days. The drugs are effective and appear to have few side effects.
More on: Resources for Health Professionals: Treatment
|
Question:
How to prevent Parasites - Ascariasis ?
Answer:
The best way to prevent ascariasis is to always:
- Avoid ingesting soil that may be contaminated with human feces, including where human fecal matter ("night soil") or wastewater is used to fertilize crops.
- Wash your hands with soap and warm water before handling food.
- Teach children the importance of washing hands to prevent infection.
- Wash, peel, or cook all raw vegetables and fruits before eating, particularly those that have been grown in soil that has been fertilized with manure.
More on: Handwashing
Transmission of infection to others can be prevented by
- Not defecating outdoors.
- Effective sewage disposal systems.
More on: Handwashing
|
Question:
What is (are) Parasites - Enterobiasis (also known as Pinworm Infection) ?
Answer:
A pinworm ("threadworm") is a small, thin, white roundworm (nematode) called Enterobius vermicularis that sometimes lives in the colon and rectum of humans. Pinworms are about the length of a staple. While an infected person sleeps, female pinworms leave the intestine through the anus and deposit their eggs on the surrounding skin.
|
Question:
Who is at risk for Parasites - Enterobiasis (also known as Pinworm Infection)? ?
Answer:
Risk Factors
The people most likely to be infected with pinworm are children under 18, people who take care of infected children and people who are institutionalized. In these groups, the prevalence can reach 50%.
Pinworm is the most common worm infection in the United States. Humans are the only species that can transfer this parasite. Household pets like dogs and cats cannot become infected with human pinworms. Pinworm eggs can survive in the indoor environment for 2 to 3 weeks.
Epidemiology
Pinworm infections are more common within families with school-aged children, in primary caregivers of infected children, and in institutionalized children.
A person is infected with pinworms by ingesting pinworm eggs either directly or indirectly. These eggs are deposited around the anus by the worm and can be carried to common surfaces such as hands, toys, bedding, clothing, and toilet seats. By putting anyone’s contaminated hands (including one’s own) around the mouth area or putting one’s mouth on common contaminated surfaces, a person can ingest pinworm eggs and become infected with the pinworm parasite. Since pinworm eggs are so small, it is possible to ingest them while breathing.
Once someone has ingested pinworm eggs, there is an incubation period of 1 to 2 months or longer for the adult gravid female to mature in the small intestine. Once mature, the adult female worm migrates to the colon and lays eggs around the anus at night, when many of their hosts are asleep. People who are infected with pinworm can transfer the parasite to others for as long as there is a female pinworm depositing eggs on the perianal skin. A person can also re-infect themselves, or be re-infected by eggs from another person.
|
Question:
How to diagnose Parasites - Enterobiasis (also known as Pinworm Infection) ?
Answer:
A person infected with pinworm is often asymptomatic, but itching around the anus is a common symptom. Diagnosis of pinworm can be reached from three simple techniques. The first option is to look for the worms in the perianal reqion 2 to 3 hours after the infected person is asleep. The second option is to touch the perianal skin with transparent tape to collect possible pinworm eggs around the anus first thing in the morning. If a person is infected, the eggs on the tape will be visible under a microscope. The tape method should be conducted on 3 consecutive mornings right after the infected person wakes up and before he/she does any washing. Since anal itching is a common symptom of pinworm, the third option for diagnosis is analyzing samples from under fingernails under a microscope. An infected person who has scratched the anal area may have picked up some pinworm eggs under the nails that could be used for diagnosis.
Since pinworm eggs and worms are often sparse in stool, examining stool samples is not recommended. Serologic tests are not available for diagnosing pinworm infections.
|
Question:
What are the treatments for Parasites - Enterobiasis (also known as Pinworm Infection) ?
Answer:
The medications used for the treatment of pinworm are mebendazole, pyrantel pamoate, and albendazole. All three of these drugs are to be given in 1 dose at first and then another single dose 2 weeks later. Pyrantel pamoate is available without prescription. The medication does not reliably kill pinworm eggs. Therefore, the second dose is to prevent re-infection by adult worms that hatch from any eggs not killed by the first treatment.Health practitioners and parents should weigh the health risks and benefits of these drugs for patients under 2 years of age.
Repeated infections should be treated by the same method as the first infection. In households where more than one member is infected or where repeated, symptomatic infections occur, it is recommended that all household members be treated at the same time. In institutions, mass and simultaneous treatment, repeated in 2 weeks, can be effective.
|
Question:
How to prevent Parasites - Enterobiasis (also known as Pinworm Infection) ?
Answer:
Washing your hands with soap and warm water after using the toilet, changing diapers, and before handling food is the most successful way to prevent pinworm infection. In order to stop the spread of pinworm and possible re-infection, people who are infected should bathe every morning to help remove a large amount of the eggs on the skin. Showering is a better method than taking a bath, because showering avoids potentially contaminating the bath water with pinworm eggs. Infected people should not co-bathe with others during their time of infection.
Also, infected people should comply with good hygiene practices such as washing their hands with soap and warm water after using the toilet, changing diapers, and before handling food. They should also cut fingernails regularly, and avoid biting the nails and scratching around the anus. Frequent changing of underclothes and bed linens first thing in the morning is a great way to prevent possible transmission of eggs in the environment and risk of reinfection. These items should not be shaken and carefully placed into a washer and laundered in hot water followed by a hot dryer to kill any eggs that may be there.
In institutions, day care centers, and schools, control of pinworm can be difficult, but mass drug administration during an outbreak can be successful. Teach children the importance of washing hands to prevent infection.
More on: Handwashing
|
Question:
Who is at risk for Hendra Virus Disease (HeV)? ?
Answer:
Transmission of Hendra virus to humans can occur after exposure to body fluids and tissues or excretions of horses infected with Hendra virus.
Horses may be infected after exposure to virus in the urine of infected flying foxes.
To date, no human-to-human transmission has been documented.
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.