license: cc-by-sa-4.0
task_categories:
- question-answering
- multiple-choice
language:
- ja
configs:
- config_name: v1.0
data_files:
- split: test
path: v1.0/test-*
- split: dev
path: v1.0/dev-*
dataset_info:
config_name: v1.0
features:
- name: qid
dtype: string
- name: category
dtype: string
- name: question
dtype: string
- name: choice0
dtype: string
- name: choice1
dtype: string
- name: choice2
dtype: string
- name: choice3
dtype: string
- name: answer_index
dtype: int64
splits:
- name: dev
num_bytes: 7089
num_examples: 32
- name: test
num_bytes: 515785
num_examples: 2309
download_size: 1174968
dataset_size: 522874
Dataset Card for JamC-QA
English/Japanese
Dataset Summary
This benchmark evaluates knowledge specific to Japan through multiple-choice questions. It covers eight categories: culture, custom, regional_identity, geography, history, government, law, and healthcare. Achieving high performance requires broad and detailed understanding of Japan across these categories.
Leaderboard
Evaluation Metric
In this multiple-choice QA task, the LLM outputs the option string rather than the option label. The following table shows the proportion of outputs that exactly match the gold option string.
Model | All | culture | custom | regional_identity | geography | history | government | law | healthcare |
---|---|---|---|---|---|---|---|---|---|
sarashina2-8x70b | 0.725 | 0.714 | 0.775 | 0.761 | 0.654 | 0.784 | 0.736 | 0.632 | 0.917 |
sarashina2-70b | 0.725 | 0.719 | 0.745 | 0.736 | 0.673 | 0.764 | 0.764 | 0.666 | 0.917 |
Llama-3.3-Swallow-70B-v0.4 | 0.697 | 0.689 | 0.775 | 0.589 | 0.566 | 0.776 | 0.773 | 0.783 | 0.854 |
RakutenAI-2.0-8x7B | 0.633 | 0.622 | 0.725 | 0.617 | 0.511 | 0.714 | 0.709 | 0.575 | 0.813 |
plamo-100b | 0.603 | 0.602 | 0.650 | 0.637 | 0.504 | 0.682 | 0.609 | 0.515 | 0.688 |
Mixtral-8x7B-v0.1-japanese | 0.593 | 0.602 | 0.670 | 0.579 | 0.493 | 0.612 | 0.736 | 0.545 | 0.667 |
Meta-Llama-3.1-405B | 0.571 | 0.558 | 0.545 | 0.484 | 0.500 | 0.679 | 0.646 | 0.629 | 0.688 |
llm-jp-3.1-8x13b | 0.568 | 0.595 | 0.635 | 0.582 | 0.449 | 0.589 | 0.627 | 0.502 | 0.625 |
Nemotron-4-340B-Base | 0.567 | 0.573 | 0.615 | 0.511 | 0.467 | 0.595 | 0.727 | 0.582 | 0.667 |
Qwen2.5-72B | 0.527 | 0.522 | 0.595 | 0.426 | 0.438 | 0.606 | 0.609 | 0.562 | 0.688 |
Language
Japanese
Dataset Structure
Data Instances
An example from culture category looks as follows:
{
"qid": "jamcqa-test-culture-00001",
"category": "culture",
"question": "「狂った世で気が狂うなら気は確かだ」の名言を残した映画はどれ?",
"choice0": "影武者",
"choice1": "羅生門",
"choice2": "隠し砦の三悪人",
"choice3": "乱",
"answer_index": 3,
}
Data Fields
qid (str)
: A unique identifier for each question.category (str)
: The category of the question.- culture, custom, regional_identity, geography, history, government, law, and healthcare
question (str)
: The question text.- Converted from full-width to half-width characters, excluding katakana characters.
- Does not contain any line breaks (
\n
). - Leading and trailing whitespace is removed.
choice{0..3} (str)
: Four answer options (choice0
tochoice3
).- Converted from full-width to half-width characters, excluding katakana characters.
- Does not contain any line breaks (
\n
). - Leading and trailing whitespace is removed.
answer_index (int)
: The index of the correct answer amongchoice0
tochoice3
(0–3).
Data Splits
dev
: 4 examples per category, intended for few-shot evaluationtest
: 2,309 examples in total
Number of Examples:
Category | dev | test |
---|---|---|
culture | 4 | 640 |
custom | 4 | 200 |
regional_identity | 4 | 397 |
geography | 4 | 272 |
history | 4 | 343 |
government | 4 | 110 |
law | 4 | 299 |
healthcare | 4 | 48 |
total | 32 | 2,309 |
Licensing Information
Usage
Dataset Loading
$ python
>>> import datasets
>>> jamcqa = datasets.load_dataset('sbintuitions/JamC-QA', 'v1.0')
>>> print(jamcqa)
DatasetDict({
test: Dataset({
features: ['qid', 'category', 'question', 'choice0', 'choice1', 'choice2', 'choice3', 'answer_index'],
num_rows: 2309
})
dev: Dataset({
features: ['qid', 'category', 'question', 'choice0', 'choice1', 'choice2', 'choice3', 'answer_index'],
num_rows: 32
})
})
>>> jamcqa_test = jamcqa['test']
>>> print(jamcqa_test)
Dataset({
features: ['qid', 'category', 'question', 'choice0', 'choice1', 'choice2', 'choice3', 'answer_index'],
num_rows: 2309
})
>>> print(jamcqa_test[0])
{'qid': 'jamcqa-test-culture-00001', 'category': 'culture', 'question': '「狂った世で気が狂うなら気は確かだ」の名言を残した映画はどれ?', 'choice0': '影武者', 'choice1': '羅生門', 'choice2': '隠し砦の三悪人', 'choice3': '乱', 'answer_index': 3}
>>>
Evaluation with FlexEval
You can easily use FlexEval (version 0.13.3 or later)
to evaluate the JamC-QA score by simply replacing commonsense_qa
with jamcqa
in the
Quickstart guide.
flexeval_lm \
--language_model HuggingFaceLM \
--language_model.model "sbintuitions/tiny-lm" \
--language_model.default_gen_kwargs "{ do_sample: false }" \
--eval_setup "jamcqa" \
--save_dir "results/jamcqa"
--language_model.default_gen_kwargs "{ do_sample: false }"
disables sampling and performs
greedy search.
Citation Information
@inproceedings{Oka2025,
author={岡 照晃, 柴田 知秀, 吉田 奈央},
title={JamC-QA: 日本固有の知識を問う多肢選択式質問応答ベンチマークの構築},
year={2025},
month={March},
booktitle={言語処理学会第31回年次大会(NLP2025)},
pages={839--844},
}