license: cc-by-sa-4.0
task_categories:
- question-answering
- multiple-choice
language:
- ja
configs:
- config_name: v1.0
data_files:
- split: test
path: v1.0/test-*
- split: dev
path: v1.0/dev-*
dataset_info:
config_name: v1.0
features:
- name: qid
dtype: string
- name: category
dtype: string
- name: question
dtype: string
- name: choice0
dtype: string
- name: choice1
dtype: string
- name: choice2
dtype: string
- name: choice3
dtype: string
- name: answer_index
dtype: int64
splits:
- name: dev
num_bytes: 7089
num_examples: 32
- name: test
num_bytes: 515785
num_examples: 2309
download_size: 1174968
dataset_size: 522874
Dataset Card for JamC-QA
English/Japanese
Dataset Summary
This benchmark evaluates knowledge specific to Japan through multiple-choice questions. It covers eight categories: culture, custom, regional_identity, geography, history, government, law, and healthcare. Achieving high performance requires broad and detailed understanding of Japan across these categories.
Leaderboard
Evaluation Metric
In our evaluation, the LLM outputs the option string rather than the option label, and the following table shows the proportion of outputs that exactly match the gold option string.
Model | All | culture | custom | regional_identity | geography | history | government | law | healthcare |
---|---|---|---|---|---|---|---|---|---|
sarashina2-8x70b | 0.725 | 0.714 | 0.775 | 0.761 | 0.654 | 0.784 | 0.736 | 0.632 | 0.917 |
sarashina2-70b | 0.725 | 0.719 | 0.745 | 0.736 | 0.673 | 0.764 | 0.764 | 0.666 | 0.917 |
Llama-3.3-Swallow-70B-v0.4 | 0.697 | 0.689 | 0.775 | 0.589 | 0.566 | 0.776 | 0.773 | 0.783 | 0.854 |
RakutenAI-2.0-8x7B | 0.633 | 0.622 | 0.725 | 0.617 | 0.511 | 0.714 | 0.709 | 0.575 | 0.813 |
plamo-100b | 0.603 | 0.602 | 0.650 | 0.637 | 0.504 | 0.682 | 0.609 | 0.515 | 0.688 |
Mixtral-8x7B-v0.1-japanese | 0.593 | 0.602 | 0.670 | 0.579 | 0.493 | 0.612 | 0.736 | 0.545 | 0.667 |
Meta-Llama-3.1-405B | 0.571 | 0.558 | 0.545 | 0.484 | 0.500 | 0.679 | 0.646 | 0.629 | 0.688 |
llm-jp-3.1-8x13b | 0.568 | 0.595 | 0.635 | 0.582 | 0.449 | 0.589 | 0.627 | 0.502 | 0.625 |
Nemotron-4-340B-Base | 0.567 | 0.573 | 0.615 | 0.511 | 0.467 | 0.595 | 0.727 | 0.582 | 0.667 |
Qwen2.5-72B | 0.527 | 0.522 | 0.595 | 0.426 | 0.438 | 0.606 | 0.609 | 0.562 | 0.688 |
Language
Japanese
Dataset Structure
Data Instances
An example from culture category looks as follows:
{
"qid": "jamcqa-test-culture-00001",
"category": "culture",
"question": "「狂った世で気が狂うなら気は確かだ」の名言を残した映画はどれ?",
"choice0": "影武者",
"choice1": "羅生門",
"choice2": "隠し砦の三悪人",
"choice3": "乱",
"answer_index": 3,
}
Data Fields
qid (str)
: A unique identifier for each question.category (str)
: The category of the question.- culture, custom, regional_identity, geography, history, government, law, and healthcare
question (str)
: The question text.- Converted from full-width to half-width characters, excluding katakana characters.
- Does not contain any line breaks (
\n
). - Leading and trailing whitespace is removed.
choice{0..3} (str)
: Four answer options (choice0
tochoice3
).- Converted from full-width to half-width characters, excluding katakana characters.
- Does not contain any line breaks (
\n
). - Leading and trailing whitespace is removed.
answer_index (int)
: The index of the correct answer amongchoice0
tochoice3
(0–3).
Data Splits
dev
: 4 examples per category, intended for few-shot evaluationtest
: 2,309 examples in total
Number of Examples:
Category | dev | test |
---|---|---|
culture | 4 | 640 |
custom | 4 | 200 |
regional_identity | 4 | 397 |
geography | 4 | 272 |
history | 4 | 343 |
government | 4 | 110 |
law | 4 | 299 |
healthcare | 4 | 48 |
total | 32 | 2,309 |
Licensing Information
Usage
Dataset Loading
$ python
>>> import datasets
>>> jamcqa = datasets.load_dataset('sbintuitions/JamC-QA', 'v1.0')
>>> print(jamcqa)
DatasetDict({
test: Dataset({
features: ['qid', 'category', 'question', 'choice0', 'choice1', 'choice2', 'choice3', 'answer_index'],
num_rows: 2309
})
dev: Dataset({
features: ['qid', 'category', 'question', 'choice0', 'choice1', 'choice2', 'choice3', 'answer_index'],
num_rows: 32
})
})
>>> jamcqa_test = jamcqa['test']
>>> print(jamcqa_test)
Dataset({
features: ['qid', 'category', 'question', 'choice0', 'choice1', 'choice2', 'choice3', 'answer_index'],
num_rows: 2309
})
>>> print(jamcqa_test[0])
{'qid': 'jamcqa-test-culture-00001', 'category': 'culture', 'question': '「狂った世で気が狂うなら気は確かだ」の名言を残した映画はどれ?', 'choice0': '影武者', 'choice1': '羅生門', 'choice2': '隠し砦の三悪人', 'choice3': '乱', 'answer_index': 3}
>>>
Evaluation with FlexEval
You can easily use FlexEval (version 0.13.3 or later)
to evaluate the JamC-QA score by simply replacing commonsense_qa
with jamcqa
in the
Quickstart guide.
Run Command
flexeval_lm \
--language_model HuggingFaceLM \
--language_model.model "sbintuitions/sarashina2.2-0.5b" \
--language_model.default_gen_kwargs "{ do_sample: false }" \
--eval_setup "jamcqa" \
--save_dir "results/jamcqa"
--language_model.default_gen_kwargs "{ do_sample: false }"
disables sampling and performs
greedy search.
Output
...
2025-09-03 15:48:24.633 | INFO | flexeval.core.evaluate_generation:evaluate_generation:92 - {'exact_match': 0.2368990905153746, 'finish_reason_ratio-stop': 1.0, 'avg_output_length': 6.94283239497618, 'max_output_length': 93, 'min_output_length': 2}
...
Citation Information
@inproceedings{Oka2025,
author={岡 照晃, 柴田 知秀, 吉田 奈央},
title={JamC-QA: 日本固有の知識を問う多肢選択式質問応答ベンチマークの構築},
year={2025},
month={March},
booktitle={言語処理学会第31回年次大会(NLP2025)},
pages={839--844},
}