potsawee's picture
Update README.md
1e4b3aa verified
metadata
dataset_info:
  features:
    - name: id
      dtype: string
    - name: category
      dtype: string
    - name: text
      dtype: string
  splits:
    - name: all
      num_bytes: 91813
      num_examples: 290
    - name: easy
      num_bytes: 9124
      num_examples: 50
    - name: medium
      num_bytes: 20234
      num_examples: 50
    - name: hard
      num_bytes: 27971
      num_examples: 50
    - name: scbx
      num_bytes: 17314
      num_examples: 50
    - name: name
      num_bytes: 10118
      num_examples: 50
    - name: other
      num_bytes: 7052
      num_examples: 40
  download_size: 103240
  dataset_size: 183626
configs:
  - config_name: default
    data_files:
      - split: all
        path: data/all-*
      - split: easy
        path: data/easy-*
      - split: medium
        path: data/medium-*
      - split: hard
        path: data/hard-*
      - split: scbx
        path: data/scbx-*
      - split: name
        path: data/name-*
      - split: other
        path: data/other-*

Thai-TTS-Intelligibility-Eval

Thai-TTS-Intelligibility-Eval is a curated evaluation set for measuring intelligibility of Thai Text-to-Speech (TTS) systems.
All 290 items are short, challenging phrases that commonly trip up phoneme-to-grapheme converters, prosody models, or pronunciation lexicons.
It is not intended for training; use it purely for benchmarking and regression tests.

Dataset Summary

Split #Utterances Description
easy 50 Everyday phrases that most TTS systems should read correctly
medium 50 More challening than easy
hard 50 Hard phrases, e.g., mixed Thai and English and unique names
scbx 50 SCBX-specific terminology, products, and names
name 50 Synthetic Thai personal names (mixed Thai & foreign roots)
other 40 Miscellaneous edge-cases not covered above
Total 290

Each record contains:

  • idstring Unique identifier
  • textstring sentence/phrase
  • categorystring One of easy, medium, hard, scbx, name, other

Loading With 🤗 datasets

from datasets import load_dataset

ds = load_dataset(
    "scb10x/thai-tts-intelligiblity-eval",
)
ds_scbx = ds["scbx"]
print(ds[0])
# {'id': '53ef39464d9c1e6f', 'text': '...', 'category': 'scbx'}

Intended Use

  1. Objective evaluation
  2. Subjective evaluation
    • Conduct human listening tests (MOS, ABX, etc.)—the dataset is small enough for quick rounds.
    • Future work
  3. Regression testing
    • Track intelligibility across model versions with a fixed set of hard sentences.
    • Future work

CER Evaluation Results

  • CER: lower is better
System All Easy Medium Hard SCBX Name Other
Azure Premwadee 9.39 2.87 2.92 13.80 10.44 13.07 7.57
facebook-mms-tts-tha 28.47 10.31 12.40 38.83 36.04 26.33 30.83
VIZINTZOR-MMS-TTS-THAI-FEMALEV1 27.42 13.30 13.13 30.92 34.76 25.53 54.60