rk-random/PACT-Net
			Graph Machine Learning
			• 
		
	
				Updated
					
				
				
				
	
				• 
					
					1
				
SMILES
				 
			stringlengths 1 
			98 
			 | label
				 
			float64 -11.6 
			1.58 
			 | 
|---|---|
	OCC3OC(OCC2OC(OC(C#N)c1ccccc1)C(O)C(O)C2O)C(O)C(O)C3O  
 | -0.77 
							 | 
					
	Cc1occc1C(=O)Nc2ccccc2 
 | -3.3 
							 | 
					
	CC(C)=CCCC(C)=CC(=O) 
 | -2.06 
							 | 
					
	c1ccc2c(c1)ccc3c2ccc4c5ccccc5ccc43 
 | -7.87 
							 | 
					
	c1ccsc1 
 | -1.33 
							 | 
					
	c2ccc1scnc1c2  
 | -1.5 
							 | 
					
	Clc1cc(Cl)c(c(Cl)c1)c2c(Cl)cccc2Cl 
 | -7.32 
							 | 
					
	CC12CCC3C(CCc4cc(O)ccc34)C2CCC1O 
 | -5.03 
							 | 
					
	ClC4=C(Cl)C5(Cl)C3C1CC(C2OC12)C3C4(Cl)C5(Cl)Cl 
 | -6.29 
							 | 
					
	COc5cc4OCC3Oc2c1CC(Oc1ccc2C(=O)C3c4cc5OC)C(C)=C  
 | -4.42 
							 | 
					
	O=C1CCCN1 
 | 1.07 
							 | 
					
	Clc1ccc2ccccc2c1 
 | -4.14 
							 | 
					
	CCCC=C 
 | -2.68 
							 | 
					
	CCC1(C(=O)NCNC1=O)c2ccccc2 
 | -2.64 
							 | 
					
	CCCCCCCCCCCCCC 
 | -7.96 
							 | 
					
	CC(C)Cl 
 | -1.41 
							 | 
					
	CCC(C)CO 
 | -0.47 
							 | 
					
	N#Cc1ccccc1 
 | -1 
							 | 
					
	CCOP(=S)(OCC)Oc1cc(C)nc(n1)C(C)C 
 | -3.64 
							 | 
					
	CCCCCCCCCC(C)O 
 | -2.94 
							 | 
					
	Clc1ccc(c(Cl)c1)c2c(Cl)ccc(Cl)c2Cl  
 | -7.43 
							 | 
					
	O=c2[nH]c1CCCc1c(=O)n2C3CCCCC3 
 | -4.594 
							 | 
					
	CCOP(=S)(OCC)SCSCC 
 | -4.11 
							 | 
					
	CCOc1ccc(NC(=O)C)cc1 
 | -2.35 
							 | 
					
	CCN(CC)c1c(cc(c(N)c1N(=O)=O)C(F)(F)F)N(=O)=O 
 | -5.47 
							 | 
					
	CCCCCCCO 
 | -1.81 
							 | 
					
	Cn1c(=O)n(C)c2nc[nH]c2c1=O 
 | -1.39 
							 | 
					
	CCCCC1(CC)C(=O)NC(=O)NC1=O 
 | -1.661 
							 | 
					
	ClC(Cl)=C(c1ccc(Cl)cc1)c2ccc(Cl)cc2 
 | -6.9 
							 | 
					
	CCCCCCCC(=O)OC 
 | -3.17 
							 | 
					
	CCc1ccc(CC)cc1 
 | -3.75 
							 | 
					
	CCOP(=S)(OCC)SCSC(C)(C)C 
 | -4.755 
							 | 
					
	COC(=O)Nc1cccc(OC(=O)Nc2cccc(C)c2)c1 
 | -4.805 
							 | 
					
	ClC(=C)Cl 
 | -1.64 
							 | 
					
	Cc1cccc2c1Cc3ccccc32 
 | -5.22 
							 | 
					
	CCCCC=O 
 | -0.85 
							 | 
					
	N(c1ccccc1)c2ccccc2 
 | -3.504 
							 | 
					
	CN(C)C(=O)SCCCCOc1ccccc1 
 | -3.927 
							 | 
					
	CCCOP(=S)(OCCC)SCC(=O)N1CCCCC1C 
 | -4.15 
							 | 
					
	CCCCCCCI 
 | -4.81 
							 | 
					
	c1c(Cl)cccc1c2ccccc2 
 | -4.88 
							 | 
					
	OCCCC=C 
 | -0.15 
							 | 
					
	O=C2NC(=O)C1(CCC1)C(=O)N2 
 | -1.655 
							 | 
					
	CC(C)C1CCC(C)CC1O  
 | -2.53 
							 | 
					
	CC(C)OC=O 
 | -0.63 
							 | 
					
	CCCCCC(C)O 
 | -1.55 
							 | 
					
	CC(=O)Nc1ccc(Br)cc1 
 | -3.083 
							 | 
					
	c1ccccc1n2ncc(N)c(Br)c2(=O) 
 | -3.127 
							 | 
					
	COC(=O)C1=C(C)NC(=C(C1c2ccccc2N(=O)=O)C(=O)OC)C  
 | -4.76 
							 | 
					
	c2c(C)cc1nc(C)ccc1c2  
 | -1.94 
							 | 
					
	CCCCCCC#C 
 | -3.66 
							 | 
					
	CCC1(C(=O)NC(=O)NC1=O)C2=CCCCC2  
 | -2.17 
							 | 
					
	c1ccc2c(c1)ccc3c4ccccc4ccc23 
 | -8.057 
							 | 
					
	CCC(C)n1c(=O)[nH]c(C)c(Br)c1=O  
 | -2.523 
							 | 
					
	Clc1cccc(c1Cl)c2c(Cl)c(Cl)cc(Cl)c2Cl  
 | -8.6 
							 | 
					
	Cc1ccccc1O 
 | -0.62 
							 | 
					
	CC(C)CCC(C)(C)C 
 | -5.05 
							 | 
					
	Cc1ccc(C)c2ccccc12 
 | -4.14 
							 | 
					
	Cc1cc2c3ccccc3ccc2c4ccccc14 
 | -6.57 
							 | 
					
	CCCC(=O)C 
 | -0.19 
							 | 
					
	Clc1cc(Cl)c(Cl)c(c1Cl)c2c(Cl)c(Cl)cc(Cl)c2Cl  
 | -9.15 
							 | 
					
	CCCOC(=O)CC 
 | -0.82 
							 | 
					
	CC34CC(O)C1(F)C(CCC2=CC(=O)C=CC12C)C3CC(O)C4(O)C(=O)CO 
 | -3.68 
							 | 
					
	Nc1ccc(O)cc1 
 | -0.8 
							 | 
					
	O=C(Cn1ccnc1N(=O)=O)NCc2ccccc2 
 | -2.81 
							 | 
					
	OC4=C(C1CCC(CC1)c2ccc(Cl)cc2)C(=O)c3ccccc3C4=O 
 | -5.931 
							 | 
					
	CCNc1nc(Cl)nc(n1)N(CC)CC 
 | -4.06 
							 | 
					
	NC(=O)c1cnccn1 
 | -0.667 
							 | 
					
	CCC(Br)(CC)C(=O)NC(N)=O 
 | -2.68 
							 | 
					
	Clc1ccccc1c2ccccc2Cl  
 | -5.27 
							 | 
					
	O=C2CN(N=Cc1ccc(o1)N(=O)=O)C(=O)N2  
 | -3.38 
							 | 
					
	Clc2ccc(Oc1ccc(cc1)N(=O)=O)c(Cl)c2 
 | -5.46 
							 | 
					
	CC1(C)C2CCC1(C)C(=O)C2 
 | -1.96 
							 | 
					
	O=C1NC(=O)NC(=O)C1(CC=C)c1ccccc1 
 | -2.369 
							 | 
					
	CCCCC(=O)OCC 
 | -2.25 
							 | 
					
	CC(C)CCOC(=O)C 
 | -1.92 
							 | 
					
	O=C1N(COC(=O)CCCCC)C(=O)C(N1)(c2ccccc2)c3ccccc3 
 | -5.886 
							 | 
					
	Clc1cccc(c1)c2cc(Cl)ccc2Cl  
 | -6.01 
							 | 
					
	CCCBr 
 | -1.73 
							 | 
					
	CCCC1COC(Cn2cncn2)(O1)c3ccc(Cl)cc3Cl 
 | -3.493 
							 | 
					
	COP(=S)(OC)SCC(=O)N(C)C=O 
 | -1.995 
							 | 
					
	Cc1ncnc2nccnc12 
 | -0.466 
							 | 
					
	NC(=S)N 
 | 0.32 
							 | 
					
	Cc1ccc(C)cc1 
 | -2.77 
							 | 
					
	CCc1ccccc1CC 
 | -3.28 
							 | 
					
	ClC(Cl)(Cl)C(Cl)(Cl)Cl 
 | -3.67 
							 | 
					
	CC(C)C(C(=O)OC(C#N)c1cccc(Oc2ccccc2)c1)c3ccc(OC(F)F)cc3 
 | -6.876 
							 | 
					
	CCCN(=O)=O 
 | -0.8 
							 | 
					
	CC(C)C1CCC(C)CC1=O 
 | -2.35 
							 | 
					
	CCN2c1cc(Cl)ccc1NC(=O)c3cccnc23  
 | -5.36 
							 | 
					
	O=N(=O)c1c(Cl)c(Cl)ccc1 
 | -3.48 
							 | 
					
	CCCC(C)C1(CC=C)C(=O)NC(=S)NC1=O  
 | -3.46 
							 | 
					
	c1ccc2c(c1)c3cccc4cccc2c34 
 | -6 
							 | 
					
	CCCOC(C)C 
 | -1.34 
							 | 
					
	Cc1cc(C)c2ccccc2c1 
 | -4.29 
							 | 
					
	CCC(=C(CC)c1ccc(O)cc1)c2ccc(O)cc2  
 | -4.07 
							 | 
					
	c1(C#N)c(Cl)c(C#N)c(Cl)c(Cl)c(Cl)1 
 | -5.64 
							 | 
					
	Clc1ccc(Cl)c(c1)c2ccc(Cl)c(Cl)c2 
 | -7.25 
							 | 
					
	C1OC1c2ccccc2  
 | -1.6 
							 | 
					
	CC(C)c1ccccc1 
 | -3.27 
							 | 
					
ESOL (Estimated SOLubility) dataset [1], part of MoleculeNet [2] benchmark. It is intended to be used through scikit-fingerprints library.
The task is to predict aqueous solubility. Targets are log-transformed, and the unit is log mols per litre (log Mol/L).
| Characteristic | Description | 
|---|---|
| Tasks | 1 | 
| Task type | regression | 
| Total samples | 1128 | 
| Recommended split | scaffold | 
| Recommended metric | RMSE | 
[1] John S. Delaney "ESOL: Estimating Aqueous Solubility Directly from Molecular Structure" J. Chem. Inf. Comput. Sci. 2004, 44, 3, 1000–1005 https://pubs.acs.org/doi/10.1021/ci034243x
[2] Wu, Zhenqin, et al. "MoleculeNet: a benchmark for molecular machine learning." Chemical Science 9.2 (2018): 513-530 https://pubs.rsc.org/en/content/articlelanding/2018/sc/c7sc02664a