metadata
dict
text
stringlengths
0
40.6M
id
stringlengths
14
255
{ "filename": "tests.py", "repo_name": "ldolan05/ACID", "repo_path": "ACID_extracted/ACID-main/tests/tests.py", "type": "Python" }
from astropy.io import fits import ACID_code.ACID as acid import numpy as np import matplotlib.pyplot as plt import glob def test_run_e2ds(): e2ds_files = glob.glob('tests/data/*e2ds_A*.fits') linelist = 'example/example_linelist.txt' save_path = 'no save' velocities = np.arange(-25, 25, 0.82) # run ACID on e2ds files ACID_results_e2ds = acid.ACID_HARPS(e2ds_files, linelist, vgrid = velocities, save_path = save_path, order_range = np.arange(41, 43)) def test_run_s1d(): s1d_files = glob.glob('tests/data/*s1d_A*.fits') linelist = 'example/example_linelist.txt' save_path = 'no save' velocities = np.arange(-25, 25, 0.82) # run ACID on s1d files ACID_results_s1d = acid.ACID_HARPS(s1d_files, linelist, vgrid = velocities, save_path = save_path, order_range = np.arange(41, 43), file_type = 's1d') test_run_e2ds() test_run_s1d()
ldolan05REPO_NAMEACIDPATH_START.@ACID_extracted@ACID-main@[email protected]@.PATH_END.py
{ "filename": "uldm.py", "repo_name": "sibirrer/lenstronomy", "repo_path": "lenstronomy_extracted/lenstronomy-main/lenstronomy/LensModel/Profiles/uldm.py", "type": "Python" }
__author__ = "lucateo" # this file contains a class to compute the Ultra Light Dark Matter soliton profile import numpy as np from scipy.special import gamma, hyp2f1 from lenstronomy.LensModel.Profiles.base_profile import LensProfileBase __all__ = ["Uldm"] class Uldm(LensProfileBase): """ This class contains functions concerning the ULDM soliton density profile, whose good approximation is (see for example https://arxiv.org/pdf/1406.6586.pdf ) .. math:: \\rho = \\rho_0 (1 + a(\\theta/\\theta_c)^2)^{-\\beta} where :math:`\\theta_c` is the core radius, corresponding to the radius where the density drops by half its central value, :math: `\\beta` is the slope (called just slope in the parameters of this model), :math: `\\rho_0 = \\kappa_0 \\Sigma_c/D_lens`, and :math: `a` is a parameter, dependent on :math: `\\beta`, chosen such that :math: `\\theta_c` indeed corresponds to the radius where the density drops by half (simple math gives :math: `a = 0.5^{-1/\\beta} - 1` ). For an ULDM soliton profile without contributions to background potential, it turns out that :math: `\\beta = 8, a = 0.091`. We allow :math: `\\beta` to be different from 8 to model solitons which feel the influence of background potential (see 2105.10873) The profile has, as parameters: - kappa_0: central convergence - theta_c: core radius (in arcseconds) - slope: exponent entering the profile, default value is 8 """ _s = 0.000001 # numerical limit for minimal radius param_names = ["kappa_0", "theta_c", "slope", "center_x", "center_y"] lower_limit_default = { "kappa_0": 0, "theta_c": 0, "slope": 3.5, "center_x": -100, "center_y": -100, } upper_limit_default = { "kappa_0": 1.0, "theta_c": 100, "slope": 10, "center_x": 100, "center_y": 100, } @staticmethod def rhotilde(kappa_0, theta_c, slope=8): """Computes the central density in angular units. :param kappa_0: central convergence of profile :param theta_c: core radius (in arcsec) :param slope: exponent entering the profile :return: central density in 1/arcsec """ a_factor_sqrt = np.sqrt(0.5 ** (-1 / slope) - 1) num_factor = ( gamma(slope) / gamma(slope - 1 / 2) * a_factor_sqrt / np.sqrt(np.pi) ) return kappa_0 * num_factor / theta_c def function(self, x, y, kappa_0, theta_c, center_x=0, center_y=0, slope=8): """ :param x: angular position (normally in units of arc seconds) :param y: angular position (normally in units of arc seconds) :param kappa_0: central convergence of profile :param theta_c: core radius (in arcsec) :param slope: exponent entering the profile :param center_x: center of halo (in angular units) :param center_y: center of halo (in angular units) :return: lensing potential (in arcsec^2) """ from mpmath import hyp3f2 x_ = x - center_x y_ = y - center_y r = np.sqrt(x_**2 + y_**2) r = np.maximum(r, self._s) a_factor_sqrt = np.sqrt((0.5) ** (-1.0 / slope) - 1) if np.isscalar(r) == True: hypgeom = float( kappa_0 / 2 * r**2 * hyp3f2(1, 1, slope - 0.5, 2, 2, -((a_factor_sqrt * r / theta_c) ** 2)) ) else: hypgeom = np.array( [ kappa_0 / 2.0 * r_i**2.0 * hyp3f2( 1, 1, slope - 0.5, 2, 2, -((a_factor_sqrt * r_i / theta_c) ** 2.0), ) for r_i in r ], dtype=float, ) return hypgeom @staticmethod def alpha_radial(r, kappa_0, theta_c, slope=8): """Returns the radial part of the deflection angle. :param kappa_0: central convergence of profile :param theta_c: core radius (in arcsec) :param slope: exponent entering the profile :param r: radius where the deflection angle is computed :return: radial deflection angle """ a_factor = 0.5 ** (-1.0 / slope) - 1 prefactor = 2.0 / (2 * slope - 3) * kappa_0 * theta_c**2 / a_factor denominator_factor = (1 + a_factor * r**2 / theta_c**2) ** (slope - 3.0 / 2) return prefactor / r * (1 - 1 / denominator_factor) def derivatives(self, x, y, kappa_0, theta_c, center_x=0, center_y=0, slope=8): """Returns df/dx and df/dy of the function (lensing potential), which are the deflection angles. :param x: angular position (normally in units of arc seconds) :param y: angular position (normally in units of arc seconds) :param kappa_0: central convergence of profile :param theta_c: core radius (in arcsec) :param slope: exponent entering the profile :param center_x: center of halo (in angular units) :param center_y: center of halo (in angular units) :return: deflection angle in x, deflection angle in y """ x_ = x - center_x y_ = y - center_y R = np.sqrt(x_**2 + y_**2) R = np.maximum(R, 0.00000001) f_x = self.alpha_radial(R, kappa_0, theta_c, slope) * x_ / R f_y = self.alpha_radial(R, kappa_0, theta_c, slope) * y_ / R return f_x, f_y def hessian(self, x, y, kappa_0, theta_c, center_x=0, center_y=0, slope=8): """ :param x: angular position (normally in units of arc seconds) :param y: angular position (normally in units of arc seconds) :param kappa_0: central convergence of profile :param theta_c: core radius (in arcsec) :param slope: exponent entering the profile :param center_x: center of halo (in angular units) :param center_y: center of halo (in angular units) :return: Hessian matrix of function d^2f/dx^2, d^2/dxdy, d^2/dydx, d^f/dy^2 """ x_ = x - center_x y_ = y - center_y R = np.sqrt(x_**2 + y_**2) R = np.maximum(R, 0.00000001) a_factor = 0.5 ** (-1.0 / slope) - 1 prefactor = 2.0 / (2 * slope - 3) * kappa_0 * theta_c**2 / a_factor # denominator factor denominator = 1 + a_factor * R**2 / theta_c**2 factor1 = ( (2 * slope - 3) * a_factor * denominator ** (1.0 / 2 - slope) / (theta_c**2 * R**2) ) factor2 = 1 / R**4 * (1 - denominator ** (3.0 / 2 - slope)) f_xx = prefactor * (factor1 * x_**2 + factor2 * (y_**2 - x_**2)) f_yy = prefactor * (factor1 * y_**2 + factor2 * (x_**2 - y_**2)) f_xy = prefactor * (factor1 * x_ * y_ - factor2 * 2 * x_ * y_) return f_xx, f_xy, f_xy, f_yy def density(self, R, kappa_0, theta_c, slope=8): """Three dimensional ULDM profile in angular units (rho0_physical = rho0_angular Sigma_crit / D_lens) :param R: radius of interest :param kappa_0: central convergence of profile :param theta_c: core radius (in arcsec) :param slope: exponent entering the profile :return: rho(R) density in angular units """ rhotilde = self.rhotilde(kappa_0, theta_c, slope) a_factor = 0.5 ** (-1.0 / slope) - 1 return rhotilde / (1 + a_factor * (R / theta_c) ** 2) ** slope def density_lens(self, r, kappa_0, theta_c, slope=8): """Computes the density at 3d radius r given lens model parameterization. The integral in the LOS projection of this quantity results in the convergence quantity. :param r: 3d radius :param kappa_0: central convergence of profile :param theta_c: core radius (in arcsec) :param slope: exponent entering the profile :return: density rho(r) """ return self.density(r, kappa_0, theta_c, slope) @staticmethod def kappa_r(R, kappa_0, theta_c, slope=8): """Convergence of the cored density profile. This routine is also for testing. :param R: radius (angular scale) :param kappa_0: convergence in the core :param theta_c: core radius :param slope: exponent entering the profile :return: convergence at r """ a_factor = (0.5) ** (-1.0 / slope) - 1 return kappa_0 * (1 + a_factor * (R / theta_c) ** 2) ** (1.0 / 2 - slope) def density_2d(self, x, y, kappa_0, theta_c, center_x=0, center_y=0, slope=8): """Projected two dimensional ULDM profile (convergence * Sigma_crit), but given our units convention for rho0, it is basically the convergence. :param x: x-coordinate :param y: y-coordinate :param kappa_0: central convergence of profile :param theta_c: core radius (in arcsec) :param slope: exponent entering the profile :return: Epsilon(R) projected density at radius R """ x_ = x - center_x y_ = y - center_y R = np.sqrt(x_**2 + y_**2) return self.kappa_r(R, kappa_0, theta_c, slope) def _mass_integral(self, x, slope=8): """Returns the analytic result of the integral appearing in mass expression. :param slope: exponent entering the profile :return: integral result """ hypF = np.real(hyp2f1(3.0 / 2, slope, 5.0 / 2, -(x**2))) return 1.0 / 3 * x**3 * hypF def mass_3d(self, R, kappa_0, theta_c, slope=8): """Mass enclosed a 3d sphere or radius r. :param R: radius in arcseconds :param kappa_0: central convergence of profile :param theta_c: core radius (in arcsec) :param slope: exponent entering the profile :return: mass of soliton in angular units """ rhotilde = self.rhotilde(kappa_0, theta_c, slope) a_factor = 0.5 ** (-1.0 / slope) - 1 prefactor = 4.0 * np.pi * rhotilde * theta_c**3 / (a_factor) ** (1.5) m_3d = prefactor * ( self._mass_integral(R / theta_c * np.sqrt(a_factor), slope) - self._mass_integral(0, slope) ) return m_3d def mass_3d_lens(self, r, kappa_0, theta_c, slope=8): """Mass enclosed a 3d sphere or radius r. :param r: radius over which the mass is computed :param kappa_0: central convergence of profile :param theta_c: core radius (in arcsec) :param slope: exponent entering the profile :return: mass enclosed in 3D ball """ m_3d = self.mass_3d(r, kappa_0, theta_c, slope) return m_3d def mass_2d(self, R, kappa_0, theta_c, slope=8): """Mass enclosed a 2d sphere or radius r. :param R: radius over which the mass is computed :param kappa_0: central convergence of profile :param theta_c: core radius (in arcsec) :param slope: exponent entering the profile :return: mass enclosed in 2d sphere """ m_2d = np.pi * R * self.alpha_radial(R, kappa_0, theta_c, slope) return m_2d
sibirrerREPO_NAMElenstronomyPATH_START.@lenstronomy_extracted@lenstronomy-main@lenstronomy@LensModel@[email protected]@.PATH_END.py
{ "filename": "_dtickrange.py", "repo_name": "catboost/catboost", "repo_path": "catboost_extracted/catboost-master/contrib/python/plotly/py3/plotly/validators/icicle/marker/colorbar/tickformatstop/_dtickrange.py", "type": "Python" }
import _plotly_utils.basevalidators class DtickrangeValidator(_plotly_utils.basevalidators.InfoArrayValidator): def __init__( self, plotly_name="dtickrange", parent_name="icicle.marker.colorbar.tickformatstop", **kwargs, ): super(DtickrangeValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, edit_type=kwargs.pop("edit_type", "colorbars"), items=kwargs.pop( "items", [ {"editType": "colorbars", "valType": "any"}, {"editType": "colorbars", "valType": "any"}, ], ), **kwargs, )
catboostREPO_NAMEcatboostPATH_START.@catboost_extracted@catboost-master@contrib@python@plotly@py3@plotly@validators@icicle@marker@colorbar@tickformatstop@[email protected]_END.py
{ "filename": "bulkDataNTtest.py", "repo_name": "ACS-Community/ACS", "repo_path": "ACS_extracted/ACS-master/LGPL/CommonSoftware/bulkDataNT/src/bulkDataNTtest.py", "type": "Python" }
#! /usr/bin/env python #******************************************************************************* # ALMA - Atacama Large Millimiter Array # (c) Associated Universities Inc., 2010 # # This library is free software; you can redistribute it and/or # modify it under the terms of the GNU Lesser General Public # License as published by the Free Software Foundation; either # version 2.1 of the License, or (at your option) any later version. # # This library is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU # Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public # License along with this library; if not, write to the Free Software # Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA # # "@(#) $Id: bulkDataNTtest.py,v 1.1 2012/10/23 09:44:16 bjeram Exp $" # # who when what # -------- -------- ---------------------------------------------- # from subprocess import Popen, PIPE import os import sys import time class bulkDataNTtestSuite(object): def startSenders(self): flow = 0 numOfHosts = len(sys.argv) output = [] process = [] cmd = [] print 'aa:' + str(sys.argv) for i in range(1, numOfHosts): flowString = format(flow, "02d") command = ("ssh " + os.environ['USER']+ "@" + sys.argv[i] + " 'source .bash_profile; export BULKDATA_NT_DEBUG=1; export ACS_LOG_STDOUT=2; bulkDataNTGenSender -l 50 -b 640000 -s TS -f "+ flowString+ " | grep -v lost | tee bulkDataNTGenSender.$HOST'") print "#",i,' : '+ command p = Popen(command, stdin=PIPE, stdout=PIPE, stderr=PIPE, shell=True) # print p.pid, p.returncode, p.poll() if p is not None: process.append(p) cmd.append(command) flow+=1 else: print 'Problem to execute: ' + command print 'Going to start sending data' time.sleep(3) for i in range(1, numOfHosts): p = process[i-1] p.poll() if p.returncode is None: p.stdin.write('\n\n') else: print "#",i, 'command: '+cmd[i-1]+' exit with an error: ', p.returncode, p.stderr.read() for i in range(1, numOfHosts): p = process[i-1] p.wait() output.append(p.stdout.read().strip()) if p.returncode is 0: print "#",i," : ", p.returncode, " : "+output[i-1] else: print "#",i, 'command: '+cmd[i-1]+' exit with an error: ', p.returncode, p.stderr.read() if __name__ == '__main__': testSuit = bulkDataNTtestSuite() testSuit.startSenders() # ___oOo___
ACS-CommunityREPO_NAMEACSPATH_START.@ACS_extracted@ACS-master@LGPL@CommonSoftware@bulkDataNT@[email protected]@.PATH_END.py
{ "filename": "vimba_c.py", "repo_name": "alliedvision/VimbaPython", "repo_path": "VimbaPython_extracted/VimbaPython-master/vimba/c_binding/vimba_c.py", "type": "Python" }
"""BSD 2-Clause License Copyright (c) 2019, Allied Vision Technologies GmbH All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. """ import copy import ctypes from typing import Callable, Any, Tuple from ctypes import c_void_p, c_char_p, byref, sizeof, POINTER as c_ptr, c_char_p as c_str from ..util import TraceEnable from ..error import VimbaSystemError from .vimba_common import Uint32Enum, Int32Enum, VmbInt32, VmbUint32, VmbInt64, VmbUint64, \ VmbHandle, VmbBool, VmbDouble, VmbError, VimbaCError, VmbPixelFormat, \ fmt_enum_repr, fmt_repr, fmt_flags_repr, load_vimba_lib __version__ = None __all__ = [ 'VmbPixelFormat', 'VmbInterface', 'VmbAccessMode', 'VmbFeatureData', 'VmbFeaturePersist', 'VmbFeatureVisibility', 'VmbFeatureFlags', 'VmbFrameStatus', 'VmbFrameFlags', 'VmbVersionInfo', 'VmbInterfaceInfo', 'VmbCameraInfo', 'VmbFeatureInfo', 'VmbFeatureEnumEntry', 'VmbFrame', 'VmbFeaturePersistSettings', 'G_VIMBA_C_HANDLE', 'VIMBA_C_VERSION', 'EXPECTED_VIMBA_C_VERSION', 'call_vimba_c', 'build_callback_type' ] # Types class VmbInterface(Uint32Enum): """ Camera Interface Types: Unknown - Interface is not known to this version of the API Firewire - 1394 Ethernet - GigE Usb - USB 3.0 CL - Camera Link CSI2 - CSI-2 """ Unknown = 0 Firewire = 1 Ethernet = 2 Usb = 3 CL = 4 CSI2 = 5 def __str__(self): return self._name_ class VmbAccessMode(Uint32Enum): """ Camera Access Mode: None_ - No access Full - Read and write access Read - Read-only access Config - Configuration access (GeV) Lite - Read and write access without feature access (only addresses) """ None_ = 0 Full = 1 Read = 2 Config = 4 Lite = 8 def __str__(self): return self._name_ class VmbFeatureData(Uint32Enum): """ Feature Data Types Unknown - Unknown feature type Int - 64 bit integer feature Float - 64 bit floating point feature Enum - Enumeration feature String - String feature Bool - Boolean feature Command - Command feature Raw - Raw (direct register access) feature None_ - Feature with no data """ Unknown = 0 Int = 1 Float = 2 Enum = 3 String = 4 Bool = 5 Command = 6 Raw = 7 None_ = 8 def __str__(self): return self._name_ class VmbFeaturePersist(Uint32Enum): """ Type of features that are to be saved (persisted) to the XML file when using VmbCameraSettingsSave All - Save all features to XML, including look-up tables Streamable - Save only features marked as streamable, excluding look-up tables NoLUT - Save all features except look-up tables (default) """ All = 0 Streamable = 1 NoLUT = 2 def __str__(self): return self._name_ class VmbFeatureVisibility(Uint32Enum): """ Feature Visibility Unknown - Feature visibility is not known Beginner - Feature is visible in feature list (beginner level) Expert - Feature is visible in feature list (expert level) Guru - Feature is visible in feature list (guru level) Invisible - Feature is not visible in feature list """ Unknown = 0 Beginner = 1 Expert = 2 Guru = 3 Invisible = 4 def __str__(self): return self._name_ class VmbFeatureFlags(Uint32Enum): """ Feature Flags None_ - No additional information is provided Read - Static info about read access. Current status depends on access mode, check with VmbFeatureAccessQuery() Write - Static info about write access. Current status depends on access mode, check with VmbFeatureAccessQuery() Volatile - Value may change at any time ModifyWrite - Value may change after a write """ None_ = 0 Read = 1 Write = 2 Undocumented = 4 Volatile = 8 ModifyWrite = 16 def __str__(self): return self._name_ class VmbFrameStatus(Int32Enum): """ Frame transfer status Complete - Frame has been completed without errors Incomplete - Frame could not be filled to the end TooSmall - Frame buffer was too small Invalid - Frame buffer was invalid """ Complete = 0 Incomplete = -1 TooSmall = -2 Invalid = -3 def __str__(self): return self._name_ class VmbFrameFlags(Uint32Enum): """ Frame Flags None_ - No additional information is provided Dimension - Frame's dimension is provided Offset - Frame's offset is provided (ROI) FrameID - Frame's ID is provided Timestamp - Frame's timestamp is provided """ None_ = 0 Dimension = 1 Offset = 2 FrameID = 4 Timestamp = 8 def __str__(self): return self._name_ class VmbVersionInfo(ctypes.Structure): """ Version Information Fields: major - Type: VmbUint32, Info: Major version number minor - Type: VmbUint32, Info: Minor version number patch - Type: VmbUint32, Info: Patch version number """ _fields_ = [ ("major", VmbUint32), ("minor", VmbUint32), ("patch", VmbUint32) ] def __str__(self): return '{}.{}.{}'.format(self.major, self.minor, self.patch) def __repr__(self): rep = 'VmbVersionInfo' rep += '(major=' + repr(self.major) rep += ',minor=' + repr(self.minor) rep += ',patch=' + repr(self.patch) rep += ')' return rep class VmbInterfaceInfo(ctypes.Structure): """ Interface information. Holds read-only information about an interface. Fields: interfaceIdString - Type: c_char_p Info: Unique identifier for each interface interfaceType - Type: VmbInterface (VmbUint32) Info: Interface type, see VmbInterface interfaceName - Type: c_char_p Info: Interface name, given by transport layer serialString - Type: c_char_p Info: Serial number permittedAccess - Type: VmbAccessMode (VmbUint32) Info: Used access mode, see VmbAccessMode """ _fields_ = [ ("interfaceIdString", c_char_p), ("interfaceType", VmbUint32), ("interfaceName", c_char_p), ("serialString", c_char_p), ("permittedAccess", VmbUint32) ] def __repr__(self): rep = 'VmbInterfaceInfo' rep += fmt_repr('(interfaceIdString={}', self.interfaceIdString) rep += fmt_enum_repr(',interfaceType={}', VmbInterface, self.interfaceType) rep += fmt_repr(',interfaceName={}', self.interfaceName) rep += fmt_repr(',serialString={}', self.serialString) rep += fmt_flags_repr(',permittedAccess={}', VmbAccessMode, self.permittedAccess) rep += ')' return rep class VmbCameraInfo(ctypes.Structure): """ Camera information. Holds read-only information about a camera. Fields: cameraIdString - Type: c_char_p Info: Unique identifier for each camera cameraName - Type: c_char_p Info: Name of the camera modelName - Type: c_char_p Info: Model name serialString - Type: c_char_p Info: Serial number permittedAccess - Type: VmbAccessMode (VmbUint32) Info: Used access mode, see VmbAccessMode interfaceIdString - Type: c_char_p Info: Unique value for each interface or bus """ _fields_ = [ ("cameraIdString", c_char_p), ("cameraName", c_char_p), ("modelName", c_char_p), ("serialString", c_char_p), ("permittedAccess", VmbUint32), ("interfaceIdString", c_char_p) ] def __repr__(self): rep = 'VmbCameraInfo' rep += fmt_repr('(cameraIdString={}', self.cameraIdString) rep += fmt_repr(',cameraName={}', self.cameraName) rep += fmt_repr(',modelName={}', self.modelName) rep += fmt_repr(',serialString={}', self.serialString) rep += fmt_flags_repr(',permittedAccess={}', VmbAccessMode, self.permittedAccess) rep += fmt_repr(',interfaceIdString={}', self.interfaceIdString) rep += ')' return rep class VmbFeatureInfo(ctypes.Structure): """ Feature information. Holds read-only information about a feature. Fields: name - Type: c_char_p Info: Name used in the API featureDataType - Type: VmbFeatureData (VmbUint32) Info: Data type of this feature featureFlags - Type: VmbFeatureFlags (VmbUint32) Info: Access flags for this feature category - Type: c_char_p Info: Category this feature can be found in displayName - Type: c_char_p Info: Feature name to be used in GUIs pollingTime - Type: VmbUint32 Info: Predefined polling time for volatile features unit - Type: c_char_p Info: Measuring unit as given in the XML file representation - Type: c_char_p Info: Representation of a numeric feature visibility - Type: VmbFeatureVisibility (VmbUint32) Info: GUI visibility tooltip - Type: c_char_p Info: Short description, e.g. for a tooltip description - Type: c_char_p Info: Longer description sfncNamespace - Type: c_char_p Info: Namespace this feature resides in isStreamable - Type: VmbBool Info: Indicates if a feature can be stored to / loaded from a file hasAffectedFeatures - Type: VmbBool Info: Indicates if the feature potentially affects other features hasSelectedFeatures - Type: VmbBool Info: Indicates if the feature selects other features """ _fields_ = [ ("name", c_char_p), ("featureDataType", VmbUint32), ("featureFlags", VmbUint32), ("category", c_char_p), ("displayName", c_char_p), ("pollingTime", VmbUint32), ("unit", c_char_p), ("representation", c_char_p), ("visibility", VmbUint32), ("tooltip", c_char_p), ("description", c_char_p), ("sfncNamespace", c_char_p), ("isStreamable", VmbBool), ("hasAffectedFeatures", VmbBool), ("hasSelectedFeatures", VmbBool) ] def __repr__(self): rep = 'VmbFeatureInfo' rep += fmt_repr('(name={}', self.name) rep += fmt_enum_repr(',featureDataType={}', VmbFeatureData, self.featureDataType) rep += fmt_flags_repr(',featureFlags={}', VmbFeatureFlags, self.featureFlags) rep += fmt_repr(',category={}', self.category) rep += fmt_repr(',displayName={}', self.displayName) rep += fmt_repr(',pollingTime={}', self.pollingTime) rep += fmt_repr(',unit={}', self.unit) rep += fmt_repr(',representation={}', self.representation) rep += fmt_enum_repr(',visibility={}', VmbFeatureVisibility, self.visibility) rep += fmt_repr(',tooltip={}', self.tooltip) rep += fmt_repr(',description={}', self.description) rep += fmt_repr(',sfncNamespace={}', self.sfncNamespace) rep += fmt_repr(',isStreamable={}', self.isStreamable) rep += fmt_repr(',hasAffectedFeatures={}', self.hasAffectedFeatures) rep += fmt_repr(',hasSelectedFeatures={}', self.hasSelectedFeatures) rep += ')' return rep class VmbFeatureEnumEntry(ctypes.Structure): """ Info about possible entries of an enumeration feature: Fields: name - Type: c_char_p Info: Name used in the API displayName - Type: c_char_p Info: Enumeration entry name to be used in GUIs visibility - Type: VmbFeatureVisibility (VmbUint32) Info: GUI visibility tooltip - Type: c_char_p Info: Short description, e.g. for a tooltip description - Type: c_char_p Info: Longer description sfncNamespace - Type: c_char_p Info: Namespace this feature resides in intValue - Type: VmbInt64 Info: Integer value of this enumeration entry """ _fields_ = [ ("name", c_char_p), ("displayName", c_char_p), ("visibility", VmbUint32), ("tooltip", c_char_p), ("description", c_char_p), ("sfncNamespace", c_char_p), ("intValue", VmbInt64) ] def __repr__(self): rep = 'VmbFeatureEnumEntry' rep += fmt_repr('(name={}', self.name) rep += fmt_repr(',displayName={}', self.displayName) rep += fmt_enum_repr(',visibility={}', VmbFeatureVisibility, self.visibility) rep += fmt_repr(',tooltip={}', self.tooltip) rep += fmt_repr(',description={}', self.description) rep += fmt_repr(',sfncNamespace={}', self.sfncNamespace) rep += fmt_repr(',intValue={},', self.intValue) rep += ')' return rep class VmbFrame(ctypes.Structure): """ Frame delivered by Camera Fields (in): buffer - Type: c_void_p Info: Comprises image and ancillary data bufferSize - Type: VmbUint32_t Info: Size of the data buffer context - Type: c_void_p[4] Info: 4 void pointers that can be employed by the user (e.g. for storing handles) Fields (out): receiveStatus - Type: VmbFrameStatus (VmbInt32) Info: Resulting status of the receive operation receiveFlags - Type: VmbFrameFlags (VmbUint32) Info: Flags indicating which additional frame information is available imageSize - Type: VmbUint32 Info: Size of the image data inside the data buffer ancillarySize - Type: VmbUint32 Info: Size of the ancillary data inside the data buffer pixelFormat - Type: VmbPixelFormat (VmbUint32) Info: Pixel format of the image width - Type: VmbUint32 Info: Width of an image height - Type: VmbUint32 Info: Height of an image offsetX - Type: VmbUint32 Info: Horizontal offset of an image offsetY - Type: VmbUint32 Info: Vertical offset of an image frameID - Type: VmbUint64 Info: Unique ID of this frame in this stream timestamp - Type: VmbUint64 Info: Timestamp set by the camera """ _fields_ = [ ("buffer", c_void_p), ("bufferSize", VmbUint32), ("context", c_void_p * 4), ("receiveStatus", VmbInt32), ("receiveFlags", VmbUint32), ("imageSize", VmbUint32), ("ancillarySize", VmbUint32), ("pixelFormat", VmbUint32), ("width", VmbUint32), ("height", VmbUint32), ("offsetX", VmbUint32), ("offsetY", VmbUint32), ("frameID", VmbUint64), ("timestamp", VmbUint64) ] def __repr__(self): rep = 'VmbFrame' rep += fmt_repr('(buffer={}', self.buffer) rep += fmt_repr(',bufferSize={}', self.bufferSize) rep += fmt_repr(',context={}', self.context) rep += fmt_enum_repr('receiveStatus: {}', VmbFrameStatus, self.receiveStatus) rep += fmt_flags_repr(',receiveFlags={}', VmbFrameFlags, self.receiveFlags) rep += fmt_repr(',imageSize={}', self.imageSize) rep += fmt_repr(',ancillarySize={}', self.ancillarySize) rep += fmt_enum_repr(',pixelFormat={}', VmbPixelFormat, self.pixelFormat) rep += fmt_repr(',width={}', self.width) rep += fmt_repr(',height={}', self.height) rep += fmt_repr(',offsetX={}', self.offsetX) rep += fmt_repr(',offsetY={}', self.offsetY) rep += fmt_repr(',frameID={}', self.frameID) rep += fmt_repr(',timestamp={}', self.timestamp) rep += ')' return rep def deepcopy_skip_ptr(self, memo): result = VmbFrame() memo[id(self)] = result result.buffer = None result.bufferSize = 0 result.context = (None, None, None, None) setattr(result, 'receiveStatus', copy.deepcopy(self.receiveStatus, memo)) setattr(result, 'receiveFlags', copy.deepcopy(self.receiveFlags, memo)) setattr(result, 'imageSize', copy.deepcopy(self.imageSize, memo)) setattr(result, 'ancillarySize', copy.deepcopy(self.ancillarySize, memo)) setattr(result, 'pixelFormat', copy.deepcopy(self.pixelFormat, memo)) setattr(result, 'width', copy.deepcopy(self.width, memo)) setattr(result, 'height', copy.deepcopy(self.height, memo)) setattr(result, 'offsetX', copy.deepcopy(self.offsetX, memo)) setattr(result, 'offsetY', copy.deepcopy(self.offsetY, memo)) setattr(result, 'frameID', copy.deepcopy(self.frameID, memo)) setattr(result, 'timestamp', copy.deepcopy(self.timestamp, memo)) return result class VmbFeaturePersistSettings(ctypes.Structure): """ Parameters determining the operation mode of VmbCameraSettingsSave and VmbCameraSettingsLoad Fields: persistType - Type: VmbFeaturePersist (VmbUint32) Info: Type of features that are to be saved maxIterations - Type: VmbUint32 Info: Number of iterations when loading settings loggingLevel - Type: VmbUint32 Info: Determines level of detail for load/save settings logging """ _fields_ = [ ("persistType", VmbUint32), ("maxIterations", VmbUint32), ("loggingLevel", VmbUint32) ] def __repr__(self): rep = 'VmbFrame' rep += fmt_enum_repr('(persistType={}', VmbFeaturePersist, self.persistType) rep += fmt_repr(',maxIterations={}', self.maxIterations) rep += fmt_repr(',loggingLevel={}', self.loggingLevel) rep += ')' return rep G_VIMBA_C_HANDLE = VmbHandle(1) VIMBA_C_VERSION = None EXPECTED_VIMBA_C_VERSION = '1.9.0' # For detailed information on the signatures see "VimbaC.h" # To improve readability, suppress 'E501 line too long (> 100 characters)' # check of flake8 _SIGNATURES = { 'VmbVersionQuery': (VmbError, [c_ptr(VmbVersionInfo), VmbUint32]), 'VmbStartup': (VmbError, None), 'VmbShutdown': (None, None), 'VmbCamerasList': (VmbError, [c_ptr(VmbCameraInfo), VmbUint32, c_ptr(VmbUint32), VmbUint32]), 'VmbCameraInfoQuery': (VmbError, [c_str, c_ptr(VmbCameraInfo), VmbUint32]), 'VmbCameraOpen': (VmbError, [c_str, VmbAccessMode, c_ptr(VmbHandle)]), 'VmbCameraClose': (VmbError, [VmbHandle]), 'VmbFeaturesList': (VmbError, [VmbHandle, c_ptr(VmbFeatureInfo), VmbUint32, c_ptr(VmbUint32), VmbUint32]), # noqa: E501 'VmbFeatureInfoQuery': (VmbError, [VmbHandle, c_str, c_ptr(VmbFeatureInfo), VmbUint32]), 'VmbFeatureListAffected': (VmbError, [VmbHandle, c_str, c_ptr(VmbFeatureInfo), VmbUint32, c_ptr(VmbUint32), VmbUint32]), # noqa: E501 'VmbFeatureListSelected': (VmbError, [VmbHandle, c_str, c_ptr(VmbFeatureInfo), VmbUint32, c_ptr(VmbUint32), VmbUint32]), # noqa: E501 'VmbFeatureAccessQuery': (VmbError, [VmbHandle, c_str, c_ptr(VmbBool), c_ptr(VmbBool)]), 'VmbFeatureIntGet': (VmbError, [VmbHandle, c_str, c_ptr(VmbInt64)]), 'VmbFeatureIntSet': (VmbError, [VmbHandle, c_str, VmbInt64]), 'VmbFeatureIntRangeQuery': (VmbError, [VmbHandle, c_str, c_ptr(VmbInt64), c_ptr(VmbInt64)]), # noqa: E501 'VmbFeatureIntIncrementQuery': (VmbError, [VmbHandle, c_str, c_ptr(VmbInt64)]), 'VmbFeatureFloatGet': (VmbError, [VmbHandle, c_str, c_ptr(VmbDouble)]), 'VmbFeatureFloatSet': (VmbError, [VmbHandle, c_str, VmbDouble]), 'VmbFeatureFloatRangeQuery': (VmbError, [VmbHandle, c_str, c_ptr(VmbDouble), c_ptr(VmbDouble)]), 'VmbFeatureFloatIncrementQuery': (VmbError, [VmbHandle, c_str, c_ptr(VmbBool), c_ptr(VmbDouble)]), # noqa: E501 'VmbFeatureEnumGet': (VmbError, [VmbHandle, c_str, c_ptr(c_str)]), 'VmbFeatureEnumSet': (VmbError, [VmbHandle, c_str, c_str]), 'VmbFeatureEnumRangeQuery': (VmbError, [VmbHandle, c_str, c_ptr(c_str), VmbUint32, c_ptr(VmbUint32)]), # noqa: E501 'VmbFeatureEnumIsAvailable': (VmbError, [VmbHandle, c_str, c_str, c_ptr(VmbBool)]), 'VmbFeatureEnumAsInt': (VmbError, [VmbHandle, c_str, c_str, c_ptr(VmbInt64)]), 'VmbFeatureEnumAsString': (VmbError, [VmbHandle, c_str, VmbInt64, c_ptr(c_str)]), 'VmbFeatureEnumEntryGet': (VmbError, [VmbHandle, c_str, c_str, c_ptr(VmbFeatureEnumEntry), VmbUint32]), # noqa: E501 'VmbFeatureStringGet': (VmbError, [VmbHandle, c_str, c_str, VmbUint32, c_ptr(VmbUint32)]), # noqa: E501 'VmbFeatureStringSet': (VmbError, [VmbHandle, c_str, c_str]), 'VmbFeatureStringMaxlengthQuery': (VmbError, [VmbHandle, c_str, c_ptr(VmbUint32)]), 'VmbFeatureBoolGet': (VmbError, [VmbHandle, c_str, c_ptr(VmbBool)]), 'VmbFeatureBoolSet': (VmbError, [VmbHandle, c_str, VmbBool]), 'VmbFeatureCommandRun': (VmbError, [VmbHandle, c_str]), 'VmbFeatureCommandIsDone': (VmbError, [VmbHandle, c_str, c_ptr(VmbBool)]), 'VmbFeatureRawGet': (VmbError, [VmbHandle, c_str, c_str, VmbUint32, c_ptr(VmbUint32)]), 'VmbFeatureRawSet': (VmbError, [VmbHandle, c_str, c_str, VmbUint32]), 'VmbFeatureRawLengthQuery': (VmbError, [VmbHandle, c_str, c_ptr(VmbUint32)]), 'VmbFeatureInvalidationRegister': (VmbError, [VmbHandle, c_str, c_void_p, c_void_p]), # noqa: E501 'VmbFeatureInvalidationUnregister': (VmbError, [VmbHandle, c_str, c_void_p]), 'VmbFrameAnnounce': (VmbError, [VmbHandle, c_ptr(VmbFrame), VmbUint32]), 'VmbFrameRevoke': (VmbError, [VmbHandle, c_ptr(VmbFrame)]), 'VmbFrameRevokeAll': (VmbError, [VmbHandle]), 'VmbCaptureStart': (VmbError, [VmbHandle]), 'VmbCaptureEnd': (VmbError, [VmbHandle]), 'VmbCaptureFrameQueue': (VmbError, [VmbHandle, c_ptr(VmbFrame), c_void_p]), 'VmbCaptureFrameWait': (VmbError, [VmbHandle, c_ptr(VmbFrame), VmbUint32]), 'VmbCaptureQueueFlush': (VmbError, [VmbHandle]), 'VmbInterfacesList': (VmbError, [c_ptr(VmbInterfaceInfo), VmbUint32, c_ptr(VmbUint32), VmbUint32]), # noqa: E501 'VmbInterfaceOpen': (VmbError, [c_str, c_ptr(VmbHandle)]), 'VmbInterfaceClose': (VmbError, [VmbHandle]), 'VmbAncillaryDataOpen': (VmbError, [c_ptr(VmbFrame), c_ptr(VmbHandle)]), 'VmbAncillaryDataClose': (VmbError, [VmbHandle]), 'VmbMemoryRead': (VmbError, [VmbHandle, VmbUint64, VmbUint32, c_str, c_ptr(VmbUint32)]), 'VmbMemoryWrite': (VmbError, [VmbHandle, VmbUint64, VmbUint32, c_str, c_ptr(VmbUint32)]), 'VmbRegistersRead': (VmbError, [VmbHandle, VmbUint32, c_ptr(VmbUint64), c_ptr(VmbUint64), c_ptr(VmbUint32)]), # noqa: E501 'VmbRegistersWrite': (VmbError, [VmbHandle, VmbUint32, c_ptr(VmbUint64), c_ptr(VmbUint64), c_ptr(VmbUint32)]), # noqa: E501 'VmbCameraSettingsSave': (VmbError, [VmbHandle, c_str, c_ptr(VmbFeaturePersistSettings), VmbUint32]), # noqa: E501 'VmbCameraSettingsLoad': (VmbError, [VmbHandle, c_str, c_ptr(VmbFeaturePersistSettings), VmbUint32]) # noqa: E501 } def _attach_signatures(lib_handle): global _SIGNATURES for function_name, signature in _SIGNATURES.items(): fn = getattr(lib_handle, function_name) fn.restype, fn.argtypes = signature fn.errcheck = _eval_vmberror return lib_handle def _check_version(lib_handle): global EXPECTED_VIMBA_C_VERSION global VIMBA_C_VERSION v = VmbVersionInfo() lib_handle.VmbVersionQuery(byref(v), sizeof(v)) VIMBA_C_VERSION = str(v) loaded_version = (v.major, v.minor, v.patch) expected_version = tuple(map(int, EXPECTED_VIMBA_C_VERSION.split("."))) # major and minor version must be equal, patch version may be equal or greater if not(loaded_version[0:2] == expected_version[0:2] and loaded_version[2] >= expected_version[2]): msg = 'Invalid VimbaC Version: Expected: {}, Found:{}' raise VimbaSystemError(msg.format(EXPECTED_VIMBA_C_VERSION, VIMBA_C_VERSION)) return lib_handle def _eval_vmberror(result: VmbError, func: Callable[..., Any], *args: Tuple[Any, ...]): if result not in (VmbError.Success, None): raise VimbaCError(result) _lib_instance = _check_version(_attach_signatures(load_vimba_lib('VimbaC'))) @TraceEnable() def call_vimba_c(func_name: str, *args): """This function encapsulates the entire VimbaC access. For Details on valid function signatures see the 'VimbaC.h'. Arguments: func_name: The function name from VimbaC to be called. args: Varargs passed directly to the underlaying C-Function. Raises: TypeError if given are do not match the signature of the function. AttributeError if func with name 'func_name' does not exist. VimbaCError if the function call is valid but neither None or VmbError.Success was returned. The following functions of VimbaC can be executed: VmbVersionQuery VmbStartup VmbShutdown VmbCamerasList VmbCameraInfoQuery VmbCameraOpen VmbCameraClose VmbFeaturesList VmbFeatureInfoQuery VmbFeatureListAffected VmbFeatureListSelected VmbFeatureAccessQuery VmbFeatureIntGet VmbFeatureIntSet VmbFeatureIntRangeQuery VmbFeatureIntIncrementQuery VmbFeatureFloatGet VmbFeatureFloatSet VmbFeatureFloatRangeQuery VmbFeatureFloatIncrementQuery VmbFeatureEnumGet VmbFeatureEnumSet VmbFeatureEnumRangeQuery VmbFeatureEnumIsAvailable VmbFeatureEnumAsInt VmbFeatureEnumAsString VmbFeatureEnumEntryGet VmbFeatureStringGet VmbFeatureStringSet VmbFeatureStringMaxlengthQuery VmbFeatureBoolGet VmbFeatureBoolSet VmbFeatureCommandRun VmbFeatureCommandIsDone VmbFeatureRawGet VmbFeatureRawSet VmbFeatureRawLengthQuery VmbFeatureInvalidationRegister VmbFeatureInvalidationUnregister VmbFrameAnnounce VmbFrameRevoke VmbFrameRevokeAll VmbCaptureStart VmbCaptureEnd VmbCaptureFrameQueue VmbCaptureFrameWait VmbCaptureQueueFlush VmbInterfacesList VmbInterfaceOpen VmbInterfaceClose VmbAncillaryDataOpen VmbAncillaryDataClose VmbMemoryRead VmbMemoryWrite VmbRegistersRead VmbRegistersWrite VmbCameraSettingsSave VmbCameraSettingsLoad """ global _lib_instance getattr(_lib_instance, func_name)(*args) def build_callback_type(*args): global _lib_instance lib_type = type(_lib_instance) if lib_type == ctypes.CDLL: return ctypes.CFUNCTYPE(*args) elif lib_type == ctypes.WinDLL: return ctypes.WINFUNCTYPE(*args) else: raise VimbaSystemError('Unknown Library Type. Abort.')
alliedvisionREPO_NAMEVimbaPythonPATH_START.@VimbaPython_extracted@VimbaPython-master@vimba@c_binding@[email protected]_END.py
{ "filename": "_legendgroup.py", "repo_name": "catboost/catboost", "repo_path": "catboost_extracted/catboost-master/contrib/python/plotly/py3/plotly/validators/ohlc/_legendgroup.py", "type": "Python" }
import _plotly_utils.basevalidators class LegendgroupValidator(_plotly_utils.basevalidators.StringValidator): def __init__(self, plotly_name="legendgroup", parent_name="ohlc", **kwargs): super(LegendgroupValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, edit_type=kwargs.pop("edit_type", "style"), **kwargs, )
catboostREPO_NAMEcatboostPATH_START.@catboost_extracted@catboost-master@contrib@python@plotly@py3@plotly@validators@ohlc@[email protected]_END.py
{ "filename": "modeling_2D.py", "repo_name": "gammapy/gammapy", "repo_path": "gammapy_extracted/gammapy-main/examples/tutorials/analysis-2d/modeling_2D.py", "type": "Python" }
""" 2D map fitting ============== Source modelling and fitting in stacked observations using the high level interface. Prerequisites ------------- - To understand how a general modelling and fitting works in gammapy, please refer to the :doc:`/tutorials/analysis-3d/analysis_3d` tutorial. Context ------- We often want the determine the position and morphology of an object. To do so, we don’t necessarily have to resort to a full 3D fitting but can perform a simple image fitting, in particular, in an energy range where the PSF does not vary strongly, or if we want to explore a possible energy dependence of the morphology. Objective --------- To localize a source and/or constrain its morphology. Proposed approach ----------------- The first step here, as in most analysis with DL3 data, is to create reduced datasets. For this, we will use the `Analysis` class to create a single set of stacked maps with a single bin in energy (thus, an *image* which behaves as a *cube*). This, we will then model with a spatial model of our choice, while keeping the spectral model fixed to an integrated power law. """ # %matplotlib inline import astropy.units as u import matplotlib.pyplot as plt ###################################################################### # Setup # ----- # # As usual, we’ll start with some general imports… # from IPython.display import display from gammapy.analysis import Analysis, AnalysisConfig ###################################################################### # Check setup # ----------- from gammapy.utils.check import check_tutorials_setup check_tutorials_setup() ###################################################################### # Creating the config file # ------------------------ # # Now, we create a config file for out analysis. You may load this from # disc if you have a pre-defined config file. # # Here, we use 3 simulated CTAO runs of the galactic center. # config = AnalysisConfig() # Selecting the observations config.observations.datastore = "$GAMMAPY_DATA/cta-1dc/index/gps/" config.observations.obs_ids = [110380, 111140, 111159] ###################################################################### # Technically, gammapy implements 2D analysis as a special case of 3D # analysis (one bin in energy). So, we must specify the type of # analysis as *3D*, and define the geometry of the analysis. # config.datasets.type = "3d" config.datasets.geom.wcs.skydir = { "lon": "0 deg", "lat": "0 deg", "frame": "galactic", } # The WCS geometry - centered on the galactic center config.datasets.geom.wcs.width = {"width": "8 deg", "height": "6 deg"} config.datasets.geom.wcs.binsize = "0.02 deg" # The FoV radius to use for cutouts config.datasets.geom.selection.offset_max = 2.5 * u.deg config.datasets.safe_mask.methods = ["offset-max"] config.datasets.safe_mask.parameters = {"offset_max": "2.5 deg"} config.datasets.background.method = "fov_background" config.fit.fit_range = {"min": "0.1 TeV", "max": "30.0 TeV"} # We now fix the energy axis for the counts map - (the reconstructed energy binning) config.datasets.geom.axes.energy.min = "0.1 TeV" config.datasets.geom.axes.energy.max = "10 TeV" config.datasets.geom.axes.energy.nbins = 1 config.datasets.geom.wcs.binsize_irf = "0.2 deg" print(config) ###################################################################### # Getting the reduced dataset # --------------------------- # ###################################################################### # We now use the config file and create a single `MapDataset` containing # `counts`, `background`, `exposure`, `psf` and `edisp` maps. # # %%time analysis = Analysis(config) analysis.get_observations() analysis.get_datasets() print(analysis.datasets["stacked"]) ###################################################################### # The counts and background maps have only one bin in reconstructed # energy. The exposure and IRF maps are in true energy, and hence, have a # different binning based upon the binning of the IRFs. We need not bother # about them presently. # print(analysis.datasets["stacked"].counts) print(analysis.datasets["stacked"].background) print(analysis.datasets["stacked"].exposure) ###################################################################### # We can have a quick look of these maps in the following way: # analysis.datasets["stacked"].counts.reduce_over_axes().plot(vmax=10, add_cbar=True) plt.show() ###################################################################### # Modelling # --------- # # Now, we define a model to be fitted to the dataset. **The important # thing to note here is the dummy spectral model - an integrated powerlaw # with only free normalisation**. Here, we use its YAML definition to load # it: # model_config = """ components: - name: GC-1 type: SkyModel spatial: type: PointSpatialModel frame: galactic parameters: - name: lon_0 value: 0.02 unit: deg - name: lat_0 value: 0.01 unit: deg spectral: type: PowerLaw2SpectralModel parameters: - name: amplitude value: 1.0e-12 unit: cm-2 s-1 - name: index value: 2.0 unit: '' frozen: true - name: emin value: 0.1 unit: TeV frozen: true - name: emax value: 10.0 unit: TeV frozen: true """ analysis.set_models(model_config) ###################################################################### # We will freeze the parameters of the background # analysis.datasets["stacked"].background_model.parameters["tilt"].frozen = True # To run the fit analysis.run_fit() # To see the best fit values along with the errors display(analysis.models.to_parameters_table())
gammapyREPO_NAMEgammapyPATH_START.@gammapy_extracted@gammapy-main@examples@tutorials@analysis-2d@[email protected]_END.py
{ "filename": "__init__.py", "repo_name": "1313e/PRISM", "repo_path": "PRISM_extracted/PRISM-master/prism/emulator/__init__.py", "type": "Python" }
# -*- coding: utf-8 -*- """ Emulator ======== Contains the definition of *PRISM*'s :class:`~Emulator` base class and various specialized :class:`~Emulator` subclasses. """ # %% IMPORTS # Import base Emulator class from ._emulator import Emulator # Import specialized Emulator subclasses # All declaration __all__ = ['Emulator']
1313eREPO_NAMEPRISMPATH_START.@PRISM_extracted@PRISM-master@prism@emulator@[email protected]_END.py
{ "filename": "tempita.py", "repo_name": "catboost/catboost", "repo_path": "catboost_extracted/catboost-master/contrib/python/scipy/py3/scipy/_build_utils/tempita.py", "type": "Python" }
import sys import os import argparse from Cython import Tempita as tempita # XXX: If this import ever fails (does it really?), vendor either # cython.tempita or numpy/npy_tempita. def process_tempita(fromfile, outfile=None): """Process tempita templated file and write out the result. The template file is expected to end in `.c.in` or `.pyx.in`: E.g. processing `template.c.in` generates `template.c`. """ if outfile is None: # We're dealing with a distutils build here, write in-place outfile = os.path.splitext(fromfile)[0] from_filename = tempita.Template.from_filename template = from_filename(fromfile, encoding=sys.getdefaultencoding()) content = template.substitute() with open(outfile, 'w') as f: f.write(content) def main(): parser = argparse.ArgumentParser() parser.add_argument("infile", type=str, help="Path to the input file") parser.add_argument("-o", "--outdir", type=str, help="Path to the output directory") parser.add_argument("-i", "--ignore", type=str, help="An ignored input - may be useful to add a " "dependency between custom targets") args = parser.parse_args() if not args.infile.endswith('.in'): raise ValueError(f"Unexpected extension: {args.infile}") outdir_abs = os.path.join(os.getcwd(), args.outdir) outfile = os.path.join(outdir_abs, os.path.splitext(os.path.split(args.infile)[1])[0]) process_tempita(args.infile, outfile) if __name__ == "__main__": main()
catboostREPO_NAMEcatboostPATH_START.@catboost_extracted@catboost-master@contrib@python@scipy@py3@scipy@[email protected]@.PATH_END.py
{ "filename": "sampling.py", "repo_name": "astro-informatics/QuantifAI", "repo_path": "QuantifAI_extracted/QuantifAI-main/quantifai/sampling.py", "type": "Python" }
import torch import math import numpy as np from typing import Callable def ULA_kernel( X: torch.Tensor, delta: float, grad_likelihood_prior: Callable ) -> torch.Tensor: """ULA sampling algorithm kernel Args: X (torch.Tensor): Tensor to update delta (float): Step size for the ULA algorithm grad_likelihood_prior (function): drift term or gradient of the likelihood and prior terms Returns: torch.Tensor: New generated sample """ return ( torch.clone(X) - delta * grad_likelihood_prior(X) + math.sqrt(2 * delta) * torch.randn_like(X) ) def MYULA_kernel( X: torch.Tensor, delta: float, lmbd: float, grad_likelihood: Callable, prox_prior: Callable, op_drift=lambda _x: torch.real(_x), ) -> torch.Tensor: """ULA sampling algorithm kernel Args: X (torch.Tensor): Tensor to update delta (float): Step size for the MYULA algorithm lmbd (float): Moreau-Yosida envelope parameter grad_likelihood (function): gradient of the likelihood prox_prior (function): prox of the non-smooth prior op_drift (function): operator to apply to the drift term. Defaults to the real projection. Returns: torch.Tensor: New generated sample """ return ( (1.0 - (delta / lmbd)) * torch.clone(X) + op_drift( -delta * grad_likelihood(torch.clone(X)) + (delta / lmbd) * prox_prior(X, lmbd) ) + math.sqrt(2 * delta) * torch.randn_like(X) ) def SKROCK_kernel( X: torch.Tensor, Lipschitz_U: float, nStages: int, eta: float, dt_perc: float, grad_likelihood_prior: Callable, ) -> torch.Tensor: """SKROCK sampling algorithm kernel Args: X (torch.Tensor): Tensor to update Lipschitz_U (float): Lipschitz constant of the likelihood and prior terms nStages (float): Number of gradient evaluations to store and use for the update eta (int): Variable appearing in the max step-size calculation dt_perc (float): Percentage of the step-size to be used grad_likelihood_prior (function): drift term or gradient of the likelihood and prior terms Returns: Xts (torch.Tensor): New generated sample """ # SK-ROCK parameters # First kind Chebyshev function T_s = lambda s, x: np.cosh(s * np.arccosh(x)) # First derivative Chebyshev polynomial first kind T_prime_s = lambda s, x: s * np.sinh(s * np.arccosh(x)) / np.sqrt(x**2 - 1) # computing SK-ROCK stepsize given a number of stages # and parameters needed in the algorithm denNStag = 2 - (4 / 3) * eta rhoSKROCK = ((nStages - 0.5) ** 2) * denNStag - 1.5 # stiffness ratio dtSKROCK = dt_perc * rhoSKROCK / Lipschitz_U # step-size w0 = 1 + eta / (nStages**2) # parameter \omega_0 w1 = T_s(nStages, w0) / T_prime_s(nStages, w0) # parameter \omega_1 mu1 = w1 / w0 # parameter \mu_1 nu1 = nStages * (w1 / 2) # parameter \nu_1 kappa1 = nStages * (w1 / w0) # parameter \kappa_1 # Sampling the variable X (SKROCK) Q = math.sqrt(2 * dtSKROCK) * torch.randn_like(X) # diffusion term # SKROCK # SKROCK first internal iteration (s=1) XtsMinus2 = X.clone() Xts = X.clone() - mu1 * dtSKROCK * grad_likelihood_prior(X + nu1 * Q) + kappa1 * Q for js in range(2, nStages + 1): # s=2,...,nStages SK-ROCK internal iterations XprevSMinus2 = Xts.clone() mu = 2 * w1 * T_s(js - 1, w0) / T_s(js, w0) # parameter \mu_js nu = 2 * w0 * T_s(js - 1, w0) / T_s(js, w0) # parameter \nu_js kappa = 1 - nu # parameter \kappa_js Xts = -mu * dtSKROCK * grad_likelihood_prior(Xts) + nu * Xts + kappa * XtsMinus2 XtsMinus2 = XprevSMinus2 return Xts # new sample produced by the SK-ROCK algorithm
astro-informaticsREPO_NAMEQuantifAIPATH_START.@QuantifAI_extracted@QuantifAI-main@[email protected]@.PATH_END.py
{ "filename": "drm_funcs.py", "repo_name": "Swift-BAT/NITRATES", "repo_path": "NITRATES_extracted/NITRATES-main/nitrates/lib/drm_funcs.py", "type": "Python" }
import numpy as np from astropy.io import fits import os from ..lib.logllh_ebins_funcs import get_cnt_ebins_normed, get_cnt_ebins def get_drm_arr(drm_dir): drm_fnames = np.array([fn for fn in os.listdir(drm_dir) if "drm_" in fn]) imxs = np.array([float(fn.split("_")[1]) for fn in drm_fnames]) imys = np.array([float(fn.split("_")[2]) for fn in drm_fnames]) dtp = [("imx", np.float64), ("imy", np.float64), ("fname", drm_fnames.dtype)] drm_arr = np.empty(len(imxs), dtype=dtp) drm_arr["imx"] = imxs drm_arr["imy"] = imys drm_arr["fname"] = drm_fnames return drm_arr def get_ebin_ind_edges(drm, ebins0, ebins1): # drm = fits.open(os.path.join(b_dir, drm_arr['fname'][0])) drm_ebins0 = drm[2].data["E_MIN"] drm_ebins1 = drm[2].data["E_MAX"] ebin_ind_edges = [ ( np.argmin(np.abs(drm_ebins0 - ebins0[i])), np.argmin(np.abs(drm_ebins1 - ebins1[i])), ) for i in range(len(ebins0)) ] return ebin_ind_edges class DRMs(object): def __init__(self, drm_dir): self.drm_dir = drm_dir self.drm_arr = get_drm_arr(drm_dir) def get_closest_ind(self, imx, imy): return np.argmin(np.hypot(imx - self.drm_arr["imx"], imy - self.drm_arr["imy"])) def get_drm(self, imx, imy, ret_pos=False): ind = self.get_closest_ind(imx, imy) fname = os.path.join(self.drm_dir, self.drm_arr["fname"][ind]) # print "Opening DRM ", fname drm = fits.open(fname, memmap=False) if ret_pos: drm_imx = self.drm_arr["imx"][ind] drm_imy = self.drm_arr["imy"][ind] return drm, drm_imx, drm_imy return drm class cnts_norm_intp(object): def __init__(self, cnt_ebins_norm_ind_mat, ind_ax): self.ind_ax = ind_ax self.cnt_ebins_norm_ind_mat = cnt_ebins_norm_ind_mat self.ind0 = np.min(ind_ax) self.ind1 = np.max(ind_ax) def __call__(self, ind): if (ind <= self.ind0) or (ind >= self.ind1): return np.nan * np.ones(np.shape(self.cnt_ebins_norm_ind_mat)[1]) ind_ind0 = np.argmin(np.abs(ind - self.ind_ax)) ind_ind1 = ind_ind0 + 1 if ind > self.ind_ax[ind_ind0] else ind_ind0 - 1 A0 = np.abs(ind - self.ind_ax[ind_ind1]) / np.abs( self.ind_ax[ind_ind0] - self.ind_ax[ind_ind1] ) A1 = 1.0 - A0 cnts_norm = ( A0 * self.cnt_ebins_norm_ind_mat[ind_ind0] + A1 * self.cnt_ebins_norm_ind_mat[ind_ind1] ) return cnts_norm class cnts_intp(object): def __init__(self, cnt_ebins_ind_mat, ind_ax): self.ind_ax = ind_ax self.cnt_ebins_ind_mat = cnt_ebins_ind_mat self.ind0 = np.min(ind_ax) self.ind1 = np.max(ind_ax) def __call__(self, ind): if (ind <= self.ind0) or (ind >= self.ind1): return np.nan * np.ones(np.shape(self.cnt_ebins_ind_mat)[1]) ind_ind0 = np.argmin(np.abs(ind - self.ind_ax)) ind_ind1 = ind_ind0 + 1 if ind > self.ind_ax[ind_ind0] else ind_ind0 - 1 A0 = np.abs(ind - self.ind_ax[ind_ind1]) / np.abs( self.ind_ax[ind_ind0] - self.ind_ax[ind_ind1] ) A1 = 1 - A0 cnts = ( A0 * self.cnt_ebins_ind_mat[ind_ind0] + A1 * self.cnt_ebins_ind_mat[ind_ind1] ) return cnts def get_cnts_intp_obj(ind_ax, drm, ebin_ind_edges, abs_cor, E0=50.0, normed=True): nebins = len(ebin_ind_edges) cnt_ebins_ind_mat = np.zeros((len(ind_ax), nebins)) for i in range(len(ind_ax)): if normed: cnt_ebins_ind_mat[i] = get_cnt_ebins_normed( ind_ax[i], drm, ebin_ind_edges, abs_cor=abs_cor, E0=E0 ) else: cnt_ebins_ind_mat[i] = get_cnt_ebins( 1.0, ind_ax[i], drm, ebin_ind_edges, abs_cor=abs_cor, E0=E0 ) if np.any(np.isnan(cnt_ebins_ind_mat)): print("Bad cnt_ebins_ind_mat") print((np.sum(np.isnan(cnt_ebins_ind_mat)))) if normed: intp_obj = cnts_norm_intp(cnt_ebins_ind_mat, ind_ax) else: intp_obj = cnts_intp(cnt_ebins_ind_mat, ind_ax) return intp_obj
Swift-BATREPO_NAMENITRATESPATH_START.@NITRATES_extracted@NITRATES-main@nitrates@lib@[email protected]_END.py
{ "filename": "recipe_divide_a0v.py", "repo_name": "igrins/plp", "repo_path": "plp_extracted/plp-master/igrins/recipes/recipe_divide_a0v.py", "type": "Python" }
from .argh_helper import argh from .process_divide_a0v import process_band from ..libs.recipe_factory import new_recipe_class, new_recipe_func _recipe_class_divide_a0v = new_recipe_class("RecipeDivideA0V", ("EXTENDED_*", "STELLAR_*"), process_band) divide_a0v = new_recipe_func("divide_a0v", _recipe_class_divide_a0v) # FIXME: This is ugly. divide_a0v = argh.arg('-a', '--a0v', default="GROUP2")(divide_a0v) divide_a0v = argh.arg('--a0v-obsid', default=None, type=int)(divide_a0v) divide_a0v = argh.arg('--basename-postfix', default=None, type=str)(divide_a0v) divide_a0v = argh.arg('--outname-postfix', default=None, type=str)(divide_a0v) divide_a0v = argh.arg("-g", "--groups", default=None)(divide_a0v) __all__ = divide_a0v
igrinsREPO_NAMEplpPATH_START.@plp_extracted@plp-master@igrins@recipes@[email protected]_END.py
{ "filename": "gradDivVectorFieldListPairWiseInst.cc.py", "repo_name": "LLNL/spheral", "repo_path": "spheral_extracted/spheral-main/src/FieldOperations/gradDivVectorFieldListPairWiseInst.cc.py", "type": "Python" }
text = """ //------------------------------------------------------------------------------ // Explicit instantiation. //------------------------------------------------------------------------------ #include "FieldOperations/gradDivVectorFieldListPairWise.cc" #include "Geometry/Dimension.hh" namespace Spheral { //============================== gradDivVectorFieldList() ============================== template FieldList<Dim< %(ndim)s >, Dim< %(ndim)s >::Vector> gradDivVectorFieldListPairWise< Dim< %(ndim)s > > (const FieldList<Dim< %(ndim)s >, Dim< %(ndim)s >::Vector>& fieldList, const FieldList<Dim< %(ndim)s >, Dim< %(ndim)s >::Vector>& position, const FieldList<Dim< %(ndim)s >, Dim< %(ndim)s >::Scalar>& weight, const FieldList<Dim< %(ndim)s >, Dim< %(ndim)s >::Scalar>& mass, const FieldList<Dim< %(ndim)s >, Dim< %(ndim)s >::Scalar>& density, const FieldList<Dim< %(ndim)s >, Dim< %(ndim)s >::SymTensor>& Hfield, const TableKernel< Dim< %(ndim)s > >& kernel); } """
LLNLREPO_NAMEspheralPATH_START.@spheral_extracted@spheral-main@src@[email protected]@.PATH_END.py
{ "filename": "result.py", "repo_name": "waynebhayes/SpArcFiRe", "repo_path": "SpArcFiRe_extracted/SpArcFiRe-master/scripts/SpArcFiRe-pyvenv/lib/python2.7/site-packages/astropy/io/votable/validator/result.py", "type": "Python" }
# Licensed under a 3-clause BSD style license - see LICENSE.rst """ Contains a class to handle a validation result for a single VOTable file. """ from __future__ import absolute_import, division, print_function, unicode_literals from ....extern import six from ....extern.six.moves import http_client, urllib from ....extern.six.moves import cPickle as pickle # STDLIB from xml.parsers.expat import ExpatError import hashlib import os import shutil import socket import subprocess import warnings # VO from .. import table from .. import exceptions from .. import xmlutil class Result(object): def __init__(self, url, root='results', timeout=10): self.url = url m = hashlib.md5() m.update(url) self._hash = m.hexdigest() self._root = root self._path = os.path.join( self._hash[0:2], self._hash[2:4], self._hash[4:]) if not os.path.exists(self.get_dirpath()): os.makedirs(self.get_dirpath()) self.timeout = timeout self.load_attributes() def __enter__(self): return self def __exit__(self, *args): self.save_attributes() def get_dirpath(self): return os.path.join(self._root, self._path) def get_htmlpath(self): return self._path def get_attribute_path(self): return os.path.join(self.get_dirpath(), "values.dat") def get_vo_xml_path(self): return os.path.join(self.get_dirpath(), "vo.xml") # ATTRIBUTES def load_attributes(self): path = self.get_attribute_path() if os.path.exists(path): try: with open(path, 'rb') as fd: self._attributes = pickle.load(fd) except Exception: shutil.rmtree(self.get_dirpath()) os.makedirs(self.get_dirpath()) self._attributes = {} else: self._attributes = {} def save_attributes(self): path = self.get_attribute_path() with open(path, 'wb') as fd: pickle.dump(self._attributes, fd) def __getitem__(self, key): return self._attributes[key] def __setitem__(self, key, val): self._attributes[key] = val def __contains__(self, key): return key in self._attributes # VO XML def download_xml_content(self): path = self.get_vo_xml_path() if 'network_error' not in self._attributes: self['network_error'] = None if os.path.exists(path): return def fail(reason): reason = str(reason) with open(path, 'wb') as fd: fd.write('FAILED: {0}\n'.format(reason).encode('utf-8')) self['network_error'] = reason r = None try: if six.PY2: r = urllib.request.urlopen(self.url, timeout=self.timeout) else: r = urllib.request.urlopen( self.url.decode('ascii'), timeout=self.timeout) except urllib.error.URLError as e: if hasattr(e, 'reason'): reason = e.reason else: reason = e.code fail(reason) return except http_client.HTTPException as e: fail("HTTPException: {}".format(str(e))) return except (socket.timeout, socket.error) as e: fail("Timeout") return if r is None: fail("Invalid URL") return try: content = r.read() except socket.timeout as e: fail("Timeout") return else: r.close() with open(path, 'wb') as fd: fd.write(content) def get_xml_content(self): path = self.get_vo_xml_path() if not os.path.exists(path): self.download_xml_content() with open(path, 'rb') as fd: content = fd.read() return content def validate_vo(self): path = self.get_vo_xml_path() if not os.path.exists(path): self.download_xml_content() self['version'] = '' if 'network_error' in self and self['network_error'] is not None: self['nwarnings'] = 0 self['nexceptions'] = 0 self['warnings'] = [] self['xmllint'] = None self['warning_types'] = set() return nexceptions = 0 nwarnings = 0 t = None lines = [] with open(path, 'rb') as input: with warnings.catch_warnings(record=True) as warning_lines: try: t = table.parse(input, pedantic=False, filename=path) except (ValueError, TypeError, ExpatError) as e: lines.append(str(e)) nexceptions += 1 lines = [str(x.message) for x in warning_lines] + lines if t is not None: self['version'] = version = t.version else: self['version'] = version = "1.0" if 'xmllint' not in self: # Now check the VO schema based on the version in # the file. try: success, stdout, stderr = xmlutil.validate_schema(path, version) # OSError is raised when XML file eats all memory and # system sends kill signal. except OSError as e: self['xmllint'] = None self['xmllint_content'] = str(e) else: self['xmllint'] = (success == 0) self['xmllint_content'] = stderr warning_types = set() for line in lines: w = exceptions.parse_vowarning(line) if w['is_warning']: nwarnings += 1 if w['is_exception']: nexceptions += 1 warning_types.add(w['warning']) self['nwarnings'] = nwarnings self['nexceptions'] = nexceptions self['warnings'] = lines self['warning_types'] = warning_types def has_warning(self, warning_code): return warning_code in self['warning_types'] def match_expectations(self): if 'network_error' not in self: self['network_error'] = None if self['expected'] == 'good': return (not self['network_error'] and self['nwarnings'] == 0 and self['nexceptions'] == 0) elif self['expected'] == 'incorrect': return (not self['network_error'] and (self['nwarnings'] > 0 or self['nexceptions'] > 0)) elif self['expected'] == 'broken': return self['network_error'] is not None def validate_with_votlint(self, path_to_stilts_jar): filename = self.get_vo_xml_path() p = subprocess.Popen( "java -jar {} votlint validate=false {}".format( path_to_stilts_jar, filename), shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE) stdout, stderr = p.communicate() if len(stdout) or p.returncode: self['votlint'] = False else: self['votlint'] = True self['votlint_content'] = stdout def get_result_subsets(results, root, s=None): all_results = [] correct = [] not_expected = [] fail_schema = [] schema_mismatch = [] fail_votlint = [] votlint_mismatch = [] network_failures = [] version_10 = [] version_11 = [] version_12 = [] version_unknown = [] has_warnings = [] warning_set = {} has_exceptions = [] exception_set = {} for url in results: if s: six.next(s) if isinstance(url, Result): x = url else: x = Result(url, root=root) all_results.append(x) if (x['nwarnings'] == 0 and x['nexceptions'] == 0 and x['xmllint'] is True): correct.append(x) if not x.match_expectations(): not_expected.append(x) if x['xmllint'] is False: fail_schema.append(x) if (x['xmllint'] is False and x['nwarnings'] == 0 and x['nexceptions'] == 0): schema_mismatch.append(x) if 'votlint' in x and x['votlint'] is False: fail_votlint.append(x) if 'network_error' not in x: x['network_error'] = None if (x['nwarnings'] == 0 and x['nexceptions'] == 0 and x['network_error'] is None): votlint_mismatch.append(x) if 'network_error' in x and x['network_error'] is not None: network_failures.append(x) version = x['version'] if version == '1.0': version_10.append(x) elif version == '1.1': version_11.append(x) elif version == '1.2': version_12.append(x) else: version_unknown.append(x) if x['nwarnings'] > 0: has_warnings.append(x) for warning in x['warning_types']: if (warning is not None and len(warning) == 3 and warning.startswith('W')): warning_set.setdefault(warning, []) warning_set[warning].append(x) if x['nexceptions'] > 0: has_exceptions.append(x) for exc in x['warning_types']: if exc is not None and len(exc) == 3 and exc.startswith('E'): exception_set.setdefault(exc, []) exception_set[exc].append(x) warning_set = list(warning_set.items()) warning_set.sort() exception_set = list(exception_set.items()) exception_set.sort() tables = [ ('all', 'All tests', all_results), ('correct', 'Correct', correct), ('unexpected', 'Unexpected', not_expected), ('schema', 'Invalid against schema', fail_schema), ('schema_mismatch', 'Invalid against schema/Passed vo.table', schema_mismatch, ['ul']), ('fail_votlint', 'Failed votlint', fail_votlint), ('votlint_mismatch', 'Failed votlint/Passed vo.table', votlint_mismatch, ['ul']), ('network_failures', 'Network failures', network_failures), ('version1.0', 'Version 1.0', version_10), ('version1.1', 'Version 1.1', version_11), ('version1.2', 'Version 1.2', version_12), ('version_unknown', 'Version unknown', version_unknown), ('warnings', 'Warnings', has_warnings)] for warning_code, warning in warning_set: if s: six.next(s) warning_class = getattr(exceptions, warning_code, None) if warning_class: warning_descr = warning_class.get_short_name() tables.append( (warning_code, '{}: {}'.format(warning_code, warning_descr), warning, ['ul', 'li'])) tables.append( ('exceptions', 'Exceptions', has_exceptions)) for exception_code, exc in exception_set: if s: six.next(s) exception_class = getattr(exceptions, exception_code, None) if exception_class: exception_descr = exception_class.get_short_name() tables.append( (exception_code, '{}: {}'.format(exception_code, exception_descr), exc, ['ul', 'li'])) return tables
waynebhayesREPO_NAMESpArcFiRePATH_START.@SpArcFiRe_extracted@SpArcFiRe-master@scripts@SpArcFiRe-pyvenv@[email protected]@site-packages@astropy@io@votable@[email protected]@.PATH_END.py
{ "filename": "sample.py", "repo_name": "POSYDON-code/POSYDON", "repo_path": "POSYDON_extracted/POSYDON-main/posydon/active_learning/psy_cris/sample.py", "type": "Python" }
"""The definition of the `Sampler` class in PSY-CRIS.""" __authors__ = [ "Kyle Akira Rocha <[email protected]>", "Scott Coughlin <[email protected]>", ] import numpy as np import matplotlib.pyplot as plt import pandas as pd import time import sys from collections import OrderedDict import scipy.stats from scipy.spatial.distance import pdist class Sampler: """Class implementing PTMCMC and MCMC for PSY-CRIS algorith. Modular implementation of PTMCMC and MCMC designed to implement the PSY-CRIS algorithm of sampling points in a target distribution constructed with a Classifier and Regressor. After a posterior is generated, methods in this class are also used to downsample. """ def __init__(self, classifier=None, regressor=None): """Initialize the sampler. Parameters ---------- classifier : instance of <class, Classifier> A trained classifier object. regressor : instance of <class, Regressor>, optional A trained regressor object. """ self._Classifier_ = classifier self._Regressor_ = regressor if (self._Classifier_ is not None) or (self._Regressor_ is not None): if self._Classifier_ is not None: self._TableData_ = self._Classifier_._TableData_ else: self._TableData_ = self._Regressor_._TableData_ # Find the bounds of the walker - should be a TableData attribute self._max_vals_ = self._TableData_._max_input_vals self._min_vals_ = self._TableData_._min_input_vals # You can save chains_history in here self._chain_step_hist_holder_ = OrderedDict() # Not fully implemented yet I'm pretty sure.... self._MAX_APC_str_ = [] def TD_2d_analytic(self, name, args, **kwargs): r"""2-dimensional analytic target distribution for testing MCMC/PTMCMC. The function: $\frac{16}{3\pi} \left( \exp\left[-\mu^2 - (9 + 4\mu^2 + 8\nu)^2\right] + \frac{1}{2} \exp\left[- 8 \mu^2 - 8 (\nu-2)^2\right] \right)$ Parameters ---------- name : str Name of algorithm to use. For this method None. args : array 2D location to get the value of the function. **kwargs Kwargs for more complex target distributions. Returns ------- array or float """ mu, nu = args arg1 = -(mu ** 2) - (9 + 4 * mu ** 2 + 8 * nu) ** 2 arg2 = -8 * mu ** 2 - 8 * (nu - 2) ** 2 return (16) / (3 * np.pi) * (np.exp(arg1) + 0.5 * np.exp(arg2)) def get_TD_classification_data(self, *args, **kwargs): """Get target-distribution classification data. Calculate terms relevant for creating target distributions with classification terms. Parameters ---------- classifier_name : str Trained classifier name to use for predictions. position : array Position in parameter space to eval **kwargs TD_verbose : bool Print useful output Returns ------- max_probs : array Maximum probabilities at each query point position : array Position in parameter space being queried cls_key : array Classification key predicted for each query position """ classifier_name, position = args position = np.array(position) if position.ndim == 1: position = position[np.newaxis, :] TD_verbose = kwargs.get("TD_verbose", False) normalized_probs, where_not_nan = self._Classifier_.return_probs( classifier_name, position, verbose=TD_verbose ) where_nan = np.array( [i for i in range(len(position)) if i not in where_not_nan] ) max_probs = np.max(normalized_probs, axis=1) cls_key = np.argmax(normalized_probs, axis=1) position = np.array(position) if len(where_nan) > 0: max_probs = np.zeros(position.shape[0]) + 1e-16 cls_key = [None] * position.shape[0] if TD_verbose: print('\t', max_probs, position, cls_key) return max_probs, position, cls_key else: max_probs = np.where(max_probs == 1, 1-1e-16, max_probs) if TD_verbose: print('\t', max_probs, position, cls_key) return max_probs, position, cls_key def TD_classification(self, classifier_name, position, **kwargs): r"""Target distribution using classification. $f(x) = 1 - max[P_{\rm class}(x)]$ Parameters ---------- classifier_name : str String to specify the trained classification algorithm to use. position : array Single location in parameter space for the target distribution to be evaluated at. **kwargs TD_BETA : float Exponent of target distribution - $f(x)^{\rm TD_BETA}$ Used for smoothing or sharpening. TD_verbose : bool Extra print output every method call. Returns ------- array If classification probability is Nan: f(x) = 1E-16 """ # TD_verbose = kwargs.get("TD_verbose", False) TD_BETA = kwargs.get("TD_BETA", 1.0) max_probs, pos, cls_keys = self.get_TD_classification_data( classifier_name, position, **kwargs ) theoretical_max_TD_cls_term = 1 - 1 / self._TableData_.num_classes return ((1 - max_probs) * 1 / theoretical_max_TD_cls_term) ** (TD_BETA) def TD_classification_regression(self, names, args, **kwargs): r"""Target distribution using both classification & regression. Classification: $1 - max[P_{\rm class}(x)]$ Regression: $ A_0 \log( A_1* abs( max[APC_n [loc]]) + 1 )$ Parameters ---------- names : list like Iterable containing the two strings specifying the classification and regression algorithm to use. args : array Position in parameter space to evaluate the target distribution at. **kwargs TD_A1 : float, optional Scaling factor inside the Log regression error term. (Default = 0.5) TD_TAU : float, optional Relative weight of classification to regression term. (Default = 0.5) TD_BETA : float, optional Exponent of the entire target distribution. Used for smoothing or sharpening the distribution. Default is 1. TD_verbose : bool, optional Print more diagnostic information. Rreturns -------- array """ normalized_probs, where_not_nan = self._Classifier_.return_probs( names[0], args, verbose=False ) max_probs = np.max(normalized_probs, axis=1) pred_class_ids = np.argmax(normalized_probs, axis=1) cls_key = [self._Classifier_.class_id_mapping[i] for i in pred_class_ids] theoretical_max_TD_cls_term = ( 1 - 1 / self._Classifier_._TableData_.num_classes) if max_probs == 1: max_probs = 1 - 1e-16 classification_term = (1 - max_probs) * 1 / theoretical_max_TD_cls_term if len(where_not_nan) != len(normalized_probs): return 1e-16 else: if isinstance( self._Regressor_.regr_dfs_per_class[cls_key[0]], pd.DataFrame ): max_APC, which_col_max = self._Regressor_.get_max_APC_val( names[1], cls_key[0], args ) self._MAX_APC_str_.append(which_col_max) if self._Regressor_.abs_max_APC is None: raise ValueError("No max APC value found in TableData...") A1 = kwargs.get("TD_A1", 0.5) scaling_log_func = lambda A1, x: np.log10(A1 * np.abs(x) + 1) A0 = 1 / scaling_log_func(A1, self._Regressor_.abs_max_APC) regression_term = A0 * scaling_log_func(A1, max_APC) else: regression_term = 1e-16 TD_TAU = kwargs.get("TD_TAU", 0.5) TD_BETA = kwargs.get("TD_BETA", 1.0) if kwargs.get("TD_verbose", False): print("TD_TAU: {0} | TD_BETA: {1}".format(TD_TAU, TD_BETA)) return (TD_TAU * classification_term + (1 - TD_TAU) * regression_term) ** TD_BETA def save_chain_step_history(self, key, chain_step_history, overwrite=False): """Save PTMCMC output chain_step_history inside the sampler object.""" if not (key not in self._chain_step_hist_holder_.keys() or overwrite): raise Exception( "\nYou are about to overwrite an existing element in '{0}'\n\n" "\tUse the option 'overwrite=True' to reassign.".format(key)) self._chain_step_hist_holder_[key] = chain_step_history print("Saved chain to '{0}'.".format(key)) def get_saved_chain_step_history(self, key, return_all=False): """Return the saved chain step history.""" if return_all: return self._chain_step_hist_holder_ else: return self._chain_step_hist_holder_[key] def run_PTMCMC(self, T_max, N_tot, target_dist, classifier_name, init_pos=None, N_draws_per_swap=3, c_spacing=1.2, alpha=None, upper_limit_reject=1e5, verbose=False, trace_plots=False, **TD_kwargs): """Run a Paralel Tempered MCMC with user-specified target distribution. Calls the method `run_MCMC`. Parameters ---------- T_max : float Sets the maximum temperature MCMC in the chain. N_tot : int The total number of iterations for the PTMCMC. target_dist : callable The target distribution to sample. Must take arguments (method_name, location_to_eval) (A 2D analytic function is provided - analytic_target_dist) classifier_name : str, list A single string or list of strings specifying the interpolator to use for classification or classification & regression respectively. init_pos : array Initial position of walkers in each axis. Default is the median of the input data in TableData. N_draws_per_swap : int, optional Number of draws to perform for each MCMC before swap proposals. c_spacing : float, optional Sets the spacing of temperatures in each chain. T_{i+1} = T_{i}^{1/c}, range: [T_max , T=1] alpha : float, optional Sets the standard deviation of steps taken by the walkers. Default is 1/5 the range of training data from TableData. upper_limit_reject : float, optional Sets the upper limit of rejected points. verbose : bool, optional Useful print statements during execution. Returns ------- chain_step_history : dict Hold the step history for every chain. Keys are integers that range from 0 (max T) to the total number of chains -1 (min T). T_list : array Array filled with the temperatures of each chain from max to min. Notes ----- There is a zero prior on the PTMCMC outside the range of training data. """ # create list of Temperatures: T_{i+1}=T_{i}^{1/c}, range: [T_max, T=1] T_list = [T_max] while T_list[-1] > 1.3: T_list.append(T_list[-1] ** (1 / c_spacing)) T_list.append(1) T_list = np.array(T_list) num_chains = len(T_list) if verbose: print("Num chains: {0}\nTemperatures: {1}\n".format(num_chains, T_list)) # data storage chain_holder = OrderedDict() for i in range(len(T_list)): chain_holder[i] = [] N_loops = int(N_tot / N_draws_per_swap) # Initial conditions for all links in chain # ADD: init_pos can be a unitless position in the range of the axes of # the data. This change should also be applied to alpha - user just # gives num(0, 1] if init_pos is None: init_pos = np.median(self._TableData_._input_.values, axis=0) if not isinstance(init_pos, np.ndarray): init_pos = np.array(init_pos) if init_pos.ndim > 1: raise ValueError( "init_pos has {0} dimensions, must be one dimensional.".format( init_pos.ndim ) ) if alpha is None: alpha = [abs(max_val-min_val)/5 for min_val, max_val in zip(self._min_vals_, self._max_vals_)] # start chains in the same position this_iter_step_loc = [init_pos] * num_chains # Accept ratio tracker total_acc = np.zeros(num_chains) total_rej = np.zeros(num_chains) acc_ratio_holder = np.zeros(num_chains) start_time = time.time() for counter in range(N_loops): # Number of draws before swap N_draws = N_draws_per_swap last_step_holder = [] for i in range(num_chains): # Run MCMC as f(T) N_draw times step_history = [this_iter_step_loc[i]] steps, acc, rej = self.run_MCMC( N_draws, alpha, step_history, target_dist, classifier_name, T=T_list[i], upper_limit_reject=upper_limit_reject, **TD_kwargs ) # save 'current' params for each T last_step_holder.append(steps[-1]) total_acc[i] += acc total_rej[i] += rej acc_ratio_holder[i] = total_acc[i] / (total_acc[i] + total_rej[i]) # data storage chain_holder[i].append(np.array(steps)) if verbose: # useful output during the PTMCMC num_bars = 20 how_close = int((counter / (N_loops - 1)) * num_bars) progress_bar = ( "|" + how_close * "=" + ">" + abs(num_bars - how_close) * " " + "|" + "{0:.1f}%".format(counter / (N_loops - 1) * 100) ) b = ("num_acc/total: Tmax={0:.4f} Tmin={1:.4f} loop #{2}, {3}". format(acc_ratio_holder[0], acc_ratio_holder[-1], counter, progress_bar)) sys.stdout.write("\r" + b) # Calc H to see if chains SWAP accept = 0 reject = 0 for i in range(len(T_list) - 1): args_i = last_step_holder[i] args_i_1 = last_step_holder[i + 1] top = (target_dist(classifier_name, args_i_1, **TD_kwargs))**( 1 / T_list[i] ) * (target_dist(classifier_name, args_i, **TD_kwargs)) ** ( 1 / T_list[i + 1] ) bot = (target_dist(classifier_name, args_i, **TD_kwargs)) ** ( 1 / T_list[i] ) * (target_dist(classifier_name, args_i_1, **TD_kwargs)) ** ( 1 / T_list[i + 1] ) # can get div 0 errors when using linear because of nans if bot == 0: ratio = 0 else: ratio = top / bot # inter-chain transition probability H = min(1, ratio) chance = np.random.uniform(low=0, high=1) if chance <= H: accept += 1 # SWAP the params between the two chains last_step_holder[i] = args_i_1 last_step_holder[i + 1] = args_i else: reject += 1 # print(accept, reject); print(last_step_holder) # Update current params (could be swapped) # to read into MCMC on next iteration!!! this_iter_step_loc = last_step_holder chain_step_history = OrderedDict() for pos, steps in chain_holder.items(): chain_step_history[pos] = np.concatenate(steps) if verbose: print("\nLength of chains: \n{0}".format( np.array([len(chain_step_history[i]) for i in range(num_chains)]))) fin_time_s = time.time() - start_time print( "Finished in {0:.2f} seconds, {1:.2f} minutes.".format( fin_time_s, fin_time_s / 60 ) ) if trace_plots: self.make_trace_plot(chain_step_history, T_list, 0, save_fig=False) self.make_trace_plot(chain_step_history, T_list, num_chains - 1, save_fig=False) return chain_step_history, T_list def run_MCMC(self, N_trials, alpha, step_history, target_dist, classifier_name, T=1, upper_limit_reject=1e4, **TD_kwargs): """Run a Markov chain Monte Carlo given a target distribution. Parameters ---------- N_trials : int Number of proposals or trial steps to take before stopping. alpha : float Related to the step size of the MCMC walker. Defines the standard deviation of a zero mean normal from which the step is randomly drawn. step_history : list Initial starting location in parameter space. Could contain an arbitrary number of previous steps but a walker will start at the last step in the list. targe_dist : callable The target distribution to sample. Must take arguments ( method_name, element_of_step_history ) (A 2D analytic function is provided - TD_2d_analytic) classifier_name : str Name of interpolation technique used in the target_dist. T : float, optional Temperature of the MCMC. upper_limit_reject : int, optional Sets the maximum number of rejected steps before the MCMC stops walking. Avoiding a slowly converging walk with few accepted points. Returns ------- step_history : array An array containing all accepted steps of the MCMC. accept : int Total number of accepted steps. reject : int Total number of rejected steps. Notes ----- Assumes uniform priors and a symetric jump proposal (gaussian). """ if not isinstance(step_history, np.ndarray): step_history = np.array(step_history) if step_history.ndim == 1: step_history = np.array([step_history]) # We will be appending to the list step_history = list(step_history) accept = 0 reject = 0 while (accept + reject < N_trials and reject < abs(int(upper_limit_reject))): current_step = step_history[-1] # f(θ) val = target_dist(classifier_name, current_step, **TD_kwargs) # θ+Δθ trial_step = current_step + np.random.normal( 0, alpha, size=len(current_step) ) # f(θ+Δθ) trial_val = target_dist(classifier_name, trial_step, **TD_kwargs) # check if the trial step is in the range of data for i, step_in_axis in enumerate(trial_step): if ( step_in_axis <= self._max_vals_[i] and step_in_axis >= self._min_vals_[i] ): pass else: trial_val = 0 # essential reject points outside of range if val == 0: # avoid div 0 errors ratio = 0 else: ratio = trial_val / val accept_prob = min(1, (ratio) ** (1 / T)) chance = np.random.uniform(low=0, high=1) if chance <= accept_prob: accept += 1 step_history.append(trial_step) else: reject += 1 return np.array(step_history), accept, reject def normalize_step_history(self, step_history): """Take steps and normalize [0,1] according to min/max in each axis. The max and min are taken from the original data set from TableData. """ normed_steps = np.copy(step_history) for j, steps_in_axis in enumerate(step_history.T): normed_steps.T[j] = (steps_in_axis - self._min_vals_[j]) / ( self._max_vals_[j] - self._min_vals_[j] ) return normed_steps def undo_normalize_step_history(self, normed_steps): """Rescale step history. Take normed steps from [0,1] and return their value in the original range of the axes based off the range in TableData. """ mapped_steps = np.copy(normed_steps) for j, steps_in_axis in enumerate(normed_steps.T): mapped_steps.T[j] = ( steps_in_axis * (self._max_vals_[j] - self._min_vals_[j]) + self._min_vals_[j] ) return mapped_steps def do_simple_density_logic(self, step_history, N_points, Kappa, var_mult=None, add_mvns_together=False, include_training_data=True, verbose=False): """Perform multivariate normal density logic on a given step history. This is a simplified version of the method 'do_density_logic'. It assumes that every accepted point will have the same exact MVN. Each proposal distribution starts with the training set from TableData which keeps training data from being proposed again. Parameters ---------- step_history : ndarray List of points from a PTMCMC or MCMC. (posterior) N_points : int Number of points desired to be drawn from the posterior but may not actually be the number of points accepted. Contributes to the length scale of the MVN distribution of accepted points (along with kappa). Kappa : float Scaling factor that sets the initial size of the MVN for accepted points. This should be proportional to the filling factor of the area of iterest described by the target distribution used to create the posterior. var_mult : float, ndarray, optional Variance multiplier for the MVN of accepted points. add_mvns_together : bool, optional Add MVNs together when creating the accepted point distribution. include_training_data : bool, optional Include the trainind data in the target distribution before sampling. verbose : bool, optional Print useful diagnostic information. Returns ------- accepted_points : ndarray Accepted points from the posterior to be labled by the user. (query points) rejected_points : ndarray Rejected points from the posterior. Notes ----- The accepted laguage here is indicative of query points for the oracle to label in an active learning scheme. It is not accepted vs rejected normally used for MCMC. """ if include_training_data: if self._TableData_ is None: raise ValueError("No TableData found in sampler. " "Set `include_training_data` to false.") original_training_data = self._TableData_.get_data("input") else: original_training_data = [] how_many_training_data = len(original_training_data) n_dim = len(original_training_data[0]) # approximate scaling of the variance given a set of N proposal points # the filling factor Kappa is not generally known a priori if var_mult is None: var_mult = 1 sigma = Kappa * 0.5 * (N_points) ** (-1.0 / n_dim) * var_mult Covariance = sigma * np.identity(n_dim) if verbose: print("Covariance: \n{0}".format(Covariance)) single_MVN = scipy.stats.multivariate_normal(np.zeros(n_dim), Covariance) max_val = 1 / np.sqrt(( 2 * np.pi) ** (n_dim) * np.linalg.det(Covariance)) # treat the training data as already accepted points accepted_points = list(original_training_data) rejected_points = [] for step in step_history: if len(accepted_points) < 1: accepted_points.append(step) continue # distance: how far is this point from all the accepted_points dist_to_acc_pts = step - np.array(accepted_points) pdf_val_at_point = single_MVN.pdf(dist_to_acc_pts) if isinstance(pdf_val_at_point, float): pdf_val_at_point = [pdf_val_at_point] if add_mvns_together: pdf_val_at_point = [np.sum(pdf_val_at_point)] random_chances = np.random.uniform( low=0, high=max_val, size=len(pdf_val_at_point) ) chance_above_distr = random_chances > pdf_val_at_point if chance_above_distr.all(): accepted_points.append(step) else: rejected_points.append(step) # remove training data from accepted points only_new_accpeted_points = accepted_points[how_many_training_data:] return np.array(only_new_accpeted_points), np.array(rejected_points) def do_density_logic(self, step_history, N_points, Kappa, shuffle=False, norm_steps=False, var_mult=None, add_mvns_together=False, pre_acc_points=None, verbose=False): """Do the density based of the normal gaussian kernel on each point. This method automatically takes out the first 5% of steps of the MCMC so that the initial starting points are not chosen automatically (if you start in a non-ideal region). Wait for the burn in. Parameters ---------- step_history : ndarray N_points : int Kappa : float shuffle : bool, optional norm_steps : bool, optional var_mult : float, optional add_mvns_together : bool, optional verbose : bool, optional Returns ------- accepted_points : ndarray rejected_points : ndarray accepted_sigmas : ndarray """ if shuffle: # shuffle the order of the steps if verbose: print("Shuffling steps....") np.random.shuffle(step_history) # returns none if norm_steps: # normalize steps if verbose: print("Normalizing steps....") step_history = self.normalize_step_history(step_history) # Set the default average length scale num_dim = len(self._Classifier_.input_data[0]) sigma = Kappa * 0.5 * (N_points) ** (-1.0 / num_dim) # We assume the covaraince is the identity - later we may pass the # entire array but for now we just assume you pass a # variance multiplier (var_mult) if var_mult is None: var_mult = np.array([1] * num_dim) else: var_mult = np.array(var_mult) if var_mult.ndim != num_dim: raise ValueError( "var_mult must be the same dimensionality as input data." ) if verbose: print("Num dims: {0}".format(num_dim)) print("length scale sigma: {0}".format(sigma)) print("var_mult: {0}".format(var_mult)) print("Kappa: {0}".format(Kappa)) # -> Forcing a few key points to always be accepted, for example if pre_acc_points is None: accepted_points = [] elif isinstance(pre_acc_points, np.ndarray): accepted_points = list(pre_acc_points) else: accepted_points = [] accepted_points = [] accepted_sigmas = [] max_val_holder = [] accepted_mvn_holder = [] rejected_points = [] skip_steps = int(len(step_history) * 0.05) good_steps = step_history[ skip_steps: ] # skip first 5% of steps to get into a good region for i in range(len(good_steps)): proposed_step = good_steps[i] accept = False if len(accepted_points) == 0: accept = True else: # If you enter you must have accepted one point Sigma = accepted_sigmas[-1:] k = len(Sigma) max_val = 1 / np.sqrt((2 * np.pi)**k * np.linalg.det(Sigma)) max_val_holder.append(max_val) rnd_chance = np.random.uniform( low=0, high=np.max(max_val_holder), size=1 ) # we will choose the chance from [0, highest point in distr] distr_holder = [] for point in accepted_mvn_holder: eval_mvn_at_new_step = point.pdf(proposed_step) distr_holder.append(eval_mvn_at_new_step) if add_mvns_together: # instead of checking each individual point keeping all # mvns seperate, we want to add them # together and get upper bound # IF we do this we need to change the MVN to not be # normalized !!!! # THE UNORMALIZED MVN IS NOT IMPLEMENTED total_chance_above_distr = ( rnd_chance > np.sum(distr_holder)) else: total_chance_above_distr = np.sum( rnd_chance > distr_holder) if len(accepted_points) == total_chance_above_distr: accept = True else: pass # REJECT if accept: # https://stackoverflow.com/questions/619335 # corner = np.random.normal(0,0.1, 1) # A = np.array( [ [sigma, corner], [corner, sigma] ] ) # Sigma = np.dot(A,A.transpose()) # Sigma = [ [sigma*var_mult[0], 0.], [0., sigma*var_mult[1]] ] Sigma = (sigma * np.identity(len(var_mult)) * np.array([var_mult])) mvn = scipy.stats.multivariate_normal(proposed_step, Sigma) accepted_mvn_holder.append(mvn) accepted_sigmas.append(Sigma) accepted_points.append(proposed_step) else: rejected_points.append(proposed_step) if verbose: print("Num accepted: {0}".format(len(accepted_points))) print("Num rejected: {0}".format(len(rejected_points))) if norm_steps: if verbose: print("Unormalizing steps....") accepted_points = self.undo_normalize_step_history(accepted_points) rejected_points = self.undo_normalize_step_history(rejected_points) return ( np.array(accepted_points), np.array(rejected_points), np.array(accepted_sigmas), ) def get_proposed_points(self, step_history, N_points, Kappa, shuffle=False, norm_steps=False, add_mvns_together=False, include_training_data=True, var_mult=None, seed=None, n_repeats=1, max_iters=1e3, verbose=False, **kwargs): """Get proposed points in parameter space given a MCMC step history. The desnity logic is not deterministic, so multiple iterations may be needed to converge on a desired number of proposed points. This method performs multiple calls to do_density_logic while changing Kappa in order to return the desired number of points. After n_iters instances of the correct number of N_points, the distibution with the largest average distance is chosen. Warning: This algorithm has not been tested for large N data sets and may struggle to converge. Parameters ---------- step_history : ndarray Posterior from which to sample new query points. N_points : int N query points to converge to. Kappa : float Multiplies the length scale of MVNs and changes such that the desired number of query points is found. shuffle : bool, optional Shuffle points in posterior in place before sampling. norm_steps : bool, optional Normalize steps before sampling. add_mvns_together : bool, optional Add MVNs of accepted point distribution together. include_training_data : bool, optional Include training data in the accpeted point distribution before sampling. var_mult : ndarray, optional Variance multiplier. seed : float, optional Random seed to use for random sampling. n_repeats: int, optional Number of times to converge to the correct number of points. Each iteration may be a different realization of the posterior. verbose : bool, optional Print useful information. **kwargs show_plots : bool, optional Show 2D plot of proposed points with step history & training data. Returns ------- acc_pts : ndarray Array of proposed points to be used as initial conditions in new simulations. Kappa : float Scaling factor which reproduced the desired number of accepted points. Notes ----- Will automatically exit if it goes through max_iters iterations without converging on the desired number of points. """ if seed is not None: np.random.seed(seed=seed) print("Setting seed: {0}".format(seed)) if verbose: print( "Converging to {0} points, {1} times.".format(N_points, int(n_repeats)) ) enough_good_pts = False how_many_good_pts = int(n_repeats) good_n_points = [] avg_distances = [] good_kappas = [] iters = 1 start_time = time.time() while not (enough_good_pts) and iters < max_iters: acc_pts, rej_pts = self.do_simple_density_logic( step_history, N_points, Kappa, var_mult=var_mult, add_mvns_together=add_mvns_together, include_training_data=include_training_data, verbose=False, ) if len(acc_pts) == 0: Kappa = Kappa * 0.5 iters += 1 continue if len(acc_pts) == N_points: average_dist_between_acc_points = np.mean(pdist(acc_pts)) good_n_points.append(acc_pts) avg_distances.append(average_dist_between_acc_points) good_kappas.append(Kappa) if len(good_n_points) >= how_many_good_pts: enough_good_pts = True if verbose: if len(acc_pts) == N_points: print_str = " *{0}* {1:2.2f}s".format( len(good_n_points), abs(start_time - time.time()) ) ending = "\n" else: print_str = "" ending = "\r" print( "\t acc_pts: {0}, Kappa = {1:.3f}".format(len(acc_pts), Kappa) + print_str, end=ending, ) diff = abs(len(acc_pts) - N_points) change_factor = 0.01 / (max(1, np.log10(iters))) if len(acc_pts) > N_points: Kappa = Kappa * (1 + change_factor * diff) # increase kappa elif len(acc_pts) < N_points: if (1 - change_factor * diff) < 0: Kappa = Kappa * 0.1 else: Kappa = Kappa * (1 - change_factor*diff) # decrease kappa iters += 1 if iters == max_iters: print("Reached max iters before converging!") if verbose: print("\nFinal Kappa = {0}\nConverged in {1} iters.".format(Kappa, iters)) # we want 1/r dependance to penalize closely spaced points where_best_distribution = np.argmax(avg_distances) best_acc_pts = good_n_points[where_best_distribution] best_Kappa = good_kappas[where_best_distribution] if verbose: print("Average Distances: \n{0}".format(np.array(avg_distances))) print("Kappas: \n{0}".format(np.array(good_kappas))) print("loc: {0}".format(where_best_distribution)) if kwargs.get("show_plots", False): self.make_prop_points_plots(step_history, best_acc_pts) return best_acc_pts, best_Kappa def make_prop_points_plots(self, step_hist, prop_points, axes=(0, 1), show_fig=True, save_fig=False): """Plot the proposed / accepted points over the step history.""" axis1, axis2 = axes fig, sub = plt.subplots(nrows=1, ncols=1, figsize=(4, 4), dpi=90) training_data = self._Classifier_.input_data sub.scatter( training_data.T[axis1], training_data.T[axis2], color="k", marker="x", label="training data", ) sub.scatter( step_hist.T[axis1], step_hist.T[axis2], color="C0", alpha=0.5, label="step history", ) sub.scatter( prop_points.T[axis1], prop_points.T[axis2], color="pink", label="new proposed points", ) sub.set_xlim(self._min_vals_[axis1], self._max_vals_[axis1]) sub.set_ylim(self._min_vals_[axis2], self._max_vals_[axis2]) plt.legend(loc="best", bbox_to_anchor=[1, 0, 0.22, 1]) return fig, sub def make_trace_plot(self, chain_holder, T_list, Temp, save_fig=False, show_fig=True): """Make a `step number` vs. `position of a sampler in an axis` plot. This function makes titles assuming you are using the data from the classifier. """ if not show_fig and not save_fig: return which_temp = Temp # int? index n_axis = len(chain_holder[which_temp].T) steps = chain_holder[which_temp].T axis_names = self._Classifier_._TableData_.get_data( what_data="input", return_df=True ).keys() fig, axs = plt.subplots( nrows=n_axis, ncols=2, figsize=(10, 2.5 * n_axis), dpi=100, gridspec_kw={"width_ratios": [1.8, 1]}, ) for num, ax in enumerate(axs): ax[0].plot(steps[num], "-", linewidth=0.5, color="C4") ax[0].set_title("Input: {0}".format(axis_names[num])) ax[0].set_ylabel("Axis {0}".format(num) + " , T={0:.2f}". format(T_list[which_temp]), fontsize=12) ax[0].set_xlabel("N steps", fontsize=12) ax[1].hist(steps[num], bins=50, histtype="step", density=True, color="C1") ax[1].set_xlabel("Axis {0}".format(num), fontsize=12) ax[1].set_ylabel("Posterior", fontsize=12) fig.subplots_adjust(hspace=0.45) if save_fig: plt.savefig("trace_plot_T{0:.0f}.pdf".format(T_list[which_temp])) if show_fig: plt.show() return None
POSYDON-codeREPO_NAMEPOSYDONPATH_START.@POSYDON_extracted@POSYDON-main@posydon@active_learning@[email protected]@.PATH_END.py
{ "filename": "__init__.py", "repo_name": "catboost/catboost", "repo_path": "catboost_extracted/catboost-master/contrib/python/plotly/py2/plotly/validators/scatterternary/selected/__init__.py", "type": "Python" }
import sys if sys.version_info < (3, 7): from ._textfont import TextfontValidator from ._marker import MarkerValidator else: from _plotly_utils.importers import relative_import __all__, __getattr__, __dir__ = relative_import( __name__, [], ["._textfont.TextfontValidator", "._marker.MarkerValidator"] )
catboostREPO_NAMEcatboostPATH_START.@catboost_extracted@catboost-master@contrib@python@plotly@py2@plotly@validators@scatterternary@selected@[email protected]_END.py
{ "filename": "densvar.py", "repo_name": "desihub/LSS", "repo_path": "LSS_extracted/LSS-main/Sandbox/imaging/densvar.py", "type": "Python" }
import fitsio import astropy.io.fits as fits import healpy as hp import numpy as np from matplotlib import pyplot as plt pixfn = '/global/cfs/cdirs/desi/target/catalogs/dr9m/0.44.0/pixweight/main/resolve/dark/pixweight-dark.fits' hdr = fits.getheader(pixfn,1) nside,nest = hdr['HPXNSIDE'],hdr['HPXNEST'] print(nside,nest) R_G=3.214 # http://legacysurvey.org/dr8/catalogs/#galactic-extinction-coefficients R_R=2.165 R_Z=1.211 dr = '9' fidf = 'targetDR9m44.fits' ranf = '/global/cfs/cdirs/desi/target/catalogs/dr9m/0.44.0/randoms/resolve/randoms-1-0.fits' if dr == '9': #this will be needed no matter the sample, might want more #rall = fitsio.read('/global/cfs/cdirs/desi/target/catalogs/dr9m/0.44.0/randoms/resolve/randoms-1-0.fits') #print(len(rall)) sdir = '/project/projectdirs/desi/users/ajross/dr9/' def mask(dd,mb=[1,5,6,7,11,12,13]): keep = (dd['NOBS_G']>0) & (dd['NOBS_R']>0) & (dd['NOBS_Z']>0) print(len(dd[keep])) keepelg = keep for bit in mb: keepelg &= ((dd['MASKBITS'] & 2**bit)==0) print(len(dd[keepelg])) dd = dd[keepelg] return dd def sel_reg(ra,dec,reg): wra = (ra > 100-dec) wra &= (ra < 280 +dec) if reg == 'DN': w = dec < 32.375 w &= wra if reg == 'DS': w = ~wra w &= dec > -25 return w #def split_reg(): #rall = mask(rall) def radec2thphi(ra,dec): return (-dec+90.)*np.pi/180.,ra*np.pi/180. def thphi2radec(theta,phi): return 180./np.pi*phi,-(180./np.pi*theta-90) def plot_hpdens(type,reg=False,fnc=None,sz=.2,vx=1.5,vm=.5,weights=None): if fnc is None: ff = fidf else: ff = fnc ft = fitsio.read(sdir+type+ff,columns=['RA','DEC','PHOTSYS','NOBS_G','NOBS_R','NOBS_Z','MASKBITS']) print(len(ft)) ft = mask(ft) print(len(ft)) rl = fitsio.read(ranf,columns=['RA','DEC','PHOTSYS','NOBS_G','NOBS_R','NOBS_Z','MASKBITS']) print(len(rl)) rl = mask(rl) print(len(rl)) if reg: if reg == 'S' or reg == 'N': wr = rl['PHOTSYS'] == reg wd = ft['PHOTSYS'] == reg else: wr = sel_reg(rl['RA'],rl['DEC'],reg) wd = sel_reg(ft['RA'],ft['DEC'],reg) rl = rl[wr] ft = ft[wd] rth,rphi = radec2thphi(rl['RA'],rl['DEC']) rpix = hp.ang2pix(nside,rth,rphi,nest=nest) dth,dphi = radec2thphi(ft['RA'],ft['DEC']) dpix = hp.ang2pix(nside,dth,dphi,nest=nest) pixlr = np.zeros(12*nside*nside) pixlg = np.zeros(12*nside*nside) if weights is None: weights = np.ones(len(pixlr)) for pix in rpix: pixlr[pix] += 1. print('randoms done') for pix in dpix: pixlg[pix] += 1. wp = (pixlr > 0) & (weights*0 == 0) pixls = [] for i in range(0,len(pixlr)): if pixlr[i] > 0 and weights[i]*0 == 0: pixls.append(i) pixls = np.array(pixls).astype(int) th,phi = hp.pix2ang(nside,pixls,nest=nest) od = pixlg[wp]/pixlr[wp]*weights[wp] od = od/np.mean(od) ra,dec = thphi2radec(th,phi) if reg == 'DS': wr = ra > 250 ra[wr] -=360 if vx == None: vx = np.max(od) if vm == None: vm = np.min(od) plt.scatter(ra,np.sin(dec*np.pi/180),c=od,s=sz,vmax=vx,vmin=vm)#,vmin=1.,vmax=2) plt.xlabel('RA') plt.ylabel('sin(DEC)') plt.colorbar() plt.title('relative '+type+' density') plt.show() def plot_hpprop(par,type='ELG',reg=False,fnc=None,sz=.2,vx=None,vm=None,weights=None): if fnc is None: ff = fidf else: ff = fnc ft = fitsio.read(sdir+type+ff,columns=['RA','DEC','PHOTSYS','NOBS_G','NOBS_R','NOBS_Z','MASKBITS']) print(len(ft)) ft = mask(ft) print(len(ft)) rl = fitsio.read(ranf,columns=['RA','DEC','PHOTSYS','NOBS_G','NOBS_R','NOBS_Z','MASKBITS']) print(len(rl)) rl = mask(rl) print(len(rl)) if reg: if reg == 'S' or reg == 'N': wr = rl['PHOTSYS'] == reg wd = ft['PHOTSYS'] == reg else: wr = sel_reg(rl['RA'],rl['DEC'],reg) wd = sel_reg(ft['RA'],ft['DEC'],reg) rl = rl[wr] ft = ft[wd] rth,rphi = radec2thphi(rl['RA'],rl['DEC']) rpix = hp.ang2pix(nside,rth,rphi,nest=nest) dth,dphi = radec2thphi(ft['RA'],ft['DEC']) dpix = hp.ang2pix(nside,dth,dphi,nest=nest) pixlr = np.zeros(12*nside*nside) pixlg = np.zeros(12*nside*nside) if weights is None: weights = np.ones(len(pixlr)) for pix in rpix: pixlr[pix] += 1. print('randoms done') for pix in dpix: pixlg[pix] += 1. wp = (pixlr > 0) & (weights*0 == 0) parv = fitsio.read(pixfn) if par == 'PSFTOT': parv = (parv[wp]['PSFSIZE_G'])*(parv[wp]['PSFSIZE_R'])*(parv[wp]['PSFSIZE_Z']) elif par == 'SN2TOT_FLAT': ebv = parv[wp]['EBV'] parv = 10.**(-0.4*R_G*ebv*2.)*parv[wp]['PSFDEPTH_G'] + 10.**(-0.4*R_R*ebv*2.)*parv[wp]['PSFDEPTH_R'] + 10.**(-0.4*R_Z*ebv*2.)*parv[wp]['PSFDEPTH_Z'] elif par == 'fracPSF': wpsf = ft['MORPHTYPE'] == 'PSF' pixlgp = np.zeros(12*nside*nside) dpixp = dpix[wpsf] for i in range(0,len(dpixp)): pix = dpixp[i] pixlgp[pix] += 1. parv = pixlgp[wp]/pixlg[wp] else: parv = parv[wp][par] pixls = [] for i in range(0,len(pixlr)): if pixlr[i] > 0 and weights[i]*0 == 0: pixls.append(i) pixls = np.array(pixls).astype(int) th,phi = hp.pix2ang(nside,pixls,nest=nest) od = parv if vx == None: vx = np.max(od) if vm == None: vm = np.min(od) ra,dec = thphi2radec(th,phi) if reg == 'DS': wr = ra > 250 ra[wr] -= 360 plt.scatter(ra,np.sin(dec*np.pi/180),c=od,s=sz,vmax=vx,vmin=vm)#,vmin=1.,vmax=2) plt.xlabel('RA') plt.ylabel('sin(DEC)') plt.colorbar() plt.title(par) plt.show() def plot_brickdens(type,reg=False,sz=.2,vx=2): brickf = fitsio.read('/global/cfs/cdirs/cosmo/work/legacysurvey/dr9m/survey-bricks.fits.gz') brickdictrd = {} for i in range(0,len(brickf)): brickdictrd[brickf[i]['BRICKID']] = (brickf[i]['RA'],brickf[i]['DEC']) if fnc is None: ff = fidf else: ff = fnc ft = fitsio.read(sdir+type+ff) print(len(ft)) rl = fitsio.read(ranf,columns=['RA','DEC','PHOTSYS']) if reg: wr = rl['PHOTSYS'] == reg rl = rl[wr] wd = ft['PHOTSYS'] == reg ft = ft[wd] nbr = np.max(rl['BRICKID']) nbd = np.max(ft['BRICKID']) nbx = np.max([nbr,nbd])+1 print('maximum brickid is '+str(nbx)) pixlr = np.zeros(nbx) pixlg = np.zeros(nbx) for i in range(0,len(rl)): id = rl[i]['BRICKID'] pixlr[id] += 1. print('randoms done') for i in range(0,len(ft)): id = ft[i]['BRICKID'] pixlg[id] += 1. wp = pixlr > 0 pixls = [] for i in range(0,len(pixlr)): if pixlr[i] > 0: pixls.append(i) pixls = np.array(pixls).astype(int) rap = [] decp = [] for id in pixls: rai,deci = brickdictrd[id] rap.append(rai) decp.append(deci) od = pixlg[wp]/pixlr[wp] od = od/np.mean(od) decp = np.array(decp) plt.scatter(rap,np.sin(decp*np.pi/180),c=od,s=sz,vmax=vx)#,vmin=1.,vmax=2) plt.xlabel('RA') plt.ylabel('sin(DEC)') plt.show() def plot_brickprop(type,prop,reg=False,fnc=None,sz=.2,vx=None,vm=None,decmin=-90,decmax=91,decsp=30): brickf = fitsio.read('/global/cfs/cdirs/cosmo/work/legacysurvey/dr9m/survey-bricks.fits.gz') brickdictrd = {} for i in range(0,len(brickf)): brickdictrd[brickf[i]['BRICKID']] = (brickf[i]['RA'],brickf[i]['DEC']) if fnc is None: ff = fidf else: ff = fnc ft = fitsio.read(sdir+type+ff,columns=['RA','DEC','PHOTSYS','NOBS_G','NOBS_R','NOBS_Z','MASKBITS','BRICKID',prop]) print(len(ft)) if reg: wd = ft['PHOTSYS'] == reg ft = ft[wd] nbd = np.max(ft['BRICKID']) nbx = nbd+1 print('maximum brickid is '+str(nbx)) pixlr = np.zeros(nbx) pixlg = np.zeros(nbx) for i in range(0,len(ft)): id = ft[i]['BRICKID'] pixlr[id] += 1. pixlg[id] += ft[i][prop] wp = pixlr > 0 pixls = [] for i in range(0,len(pixlr)): if pixlr[i] > 0: pixls.append(i) pixls = np.array(pixls).astype(int) rap = [] decp = [] for id in pixls: rai,deci = brickdictrd[id] rap.append(rai) decp.append(deci) od = pixlg[wp]/pixlr[wp] if vx == None: vx = np.max(od) if vm == None: vm = np.min(od) #od = od/np.mean(od) print(vm,vx) decp = np.array(decp) fig = plt.figure() ax = fig.add_axes([0.1, 0.1, .8, .8]) ax.scatter(rap,np.sin(decp*np.pi/180),c=od,s=sz,vmax=vx,vmin=vm) ax.set_title(prop +' averaged in bricks') ax.set_xlabel('RA') ax.set_ylabel('DEC') yt = np.arange(decmin,decmax,decsp) yl = [] for i in range(0,len(yt)): yl.append(str(yt[i])) ax.set_yticks(np.sin(yt*np.pi/180.)) ax.set_yticklabels(yl) rarn = np.max(rap)/90.-np.min(rap)/90. ar = (np.sin(np.pi/180.*decmax)-np.sin(np.pi/180.*decmin))/rarn print(ar,rarn,np.sin(np.pi/180.*decmax)-np.sin(np.pi/180.*decmin)) ax.set_aspect(ar*180) fig.colorbar() plt.show() def plot_brickpropvar(type,prop,reg=False,fnc=None,sz=.2,vx=None,vm=None): brickf = fitsio.read('/global/cfs/cdirs/cosmo/work/legacysurvey/dr9m/survey-bricks.fits.gz') brickdictrd = {} for i in range(0,len(brickf)): brickdictrd[brickf[i]['BRICKID']] = (brickf[i]['RA'],brickf[i]['DEC']) if fnc is None: ff = fidf else: ff = fnc ft = fitsio.read(sdir+type+ff,columns=['RA','DEC','PHOTSYS','NOBS_G','NOBS_R','NOBS_Z','MASKBITS','BRICKID',prop]) print(len(ft)) if reg: wd = ft['PHOTSYS'] == reg ft = ft[wd] nbd = np.max(ft['BRICKID']) nbx = nbd+1 print('maximum brickid is '+str(nbx)) pixlr = np.zeros(nbx) pixlg = np.zeros(nbx) pixlv = np.zeros(nbx) for i in range(0,len(ft)): id = ft[i]['BRICKID'] pixlr[id] += 1. pixlg[id] += ft[i][prop] pixlv[id] += ft[i][prop]**2. wp = pixlr > 0 pixls = [] for i in range(0,len(pixlr)): if pixlr[i] > 0: pixls.append(i) pixls = np.array(pixls).astype(int) rap = [] decp = [] for id in pixls: rai,deci = brickdictrd[id] rap.append(rai) decp.append(deci) od = pixlv[wp]/pixlr[wp]-(pixlg[wp]/pixlr[wp])**2. if vx == None: vx = np.max(od) if vm == None: vm = np.min(od) #od = od/np.mean(od) print(vm,vx) decp = np.array(decp) plt.scatter(rap,np.sin(decp*np.pi/180),c=od,s=sz,vmax=vx,vmin=vm) plt.title('variance in ' +prop +' per brick') plt.xlabel('RA') plt.ylabel('sin(DEC)') plt.colorbar() plt.show() def plot_brickprop_stdper(type,prop,reg=False,fnc=None,sz=.2,vx=None,vm=None,minn = 10): brickf = fitsio.read('/global/cfs/cdirs/cosmo/work/legacysurvey/dr9m/survey-bricks.fits.gz') brickdictrd = {} for i in range(0,len(brickf)): brickdictrd[brickf[i]['BRICKID']] = (brickf[i]['RA'],brickf[i]['DEC']) if fnc is None: ff = fidf else: ff = fnc ft = fitsio.read(sdir+type+ff,columns=['RA','DEC','PHOTSYS','NOBS_G','NOBS_R','NOBS_Z','MASKBITS','BRICKID',prop]) print(len(ft)) if reg: wd = ft['PHOTSYS'] == reg ft = ft[wd] nbd = np.max(ft['BRICKID']) nbx = nbd+1 print('maximum brickid is '+str(nbx)) pixlr = np.zeros(nbx) pixlg = np.zeros(nbx) pixlv = np.zeros(nbx) for i in range(0,len(ft)): id = ft[i]['BRICKID'] pixlr[id] += 1. pixlg[id] += ft[i][prop] pixlv[id] += ft[i][prop]**2. wp = pixlr > minn pixls = [] for i in range(0,len(pixlr)): if pixlr[i] > minn: pixls.append(i) pixls = np.array(pixls).astype(int) rap = [] decp = [] for id in pixls: rai,deci = brickdictrd[id] rap.append(rai) decp.append(deci) od = (pixlv[wp]/pixlr[wp]-(pixlg[wp]/pixlr[wp])**2.)**.5/(pixlg[wp]/pixlr[wp]) wo = od*0 == 0 od = od[wo] if vx == None: vx = np.max(od) if vm == None: vm = np.min(od) #od = od/np.mean(od) print(vm,vx) decp = np.array(decp) rap = np.array(rap) plt.scatter(rap[wo],np.sin(decp[wo]*np.pi/180),c=od,s=sz,vmax=vx,vmin=vm) plt.title('variance/mean in ' +prop +' per brick') plt.xlabel('RA') plt.ylabel('sin(DEC)') plt.colorbar() plt.show() def densvsimpar_ran(type,par,reg=None,fnc=None,vmin=None,vmax=None,nbin=10): if fnc is None: ff = fidf else: ff = fnc print('using '+sdir+type+ff) ft = fitsio.read(sdir+type+ff) ft = mask(ft) print(len(ft)) rl = fitsio.read(ranf,columns=['RA','DEC','PHOTSYS',par,'NOBS_G','NOBS_R','NOBS_Z','MASKBITS']) rl = mask(rl) print(len(rl)) if reg == None: reg = 'All' else: wr = rl['PHOTSYS'] == reg rl = rl[wr] wd = ft['PHOTSYS'] == reg ft = ft[wd] if vmin is None: vmin = np.min(rl[par]) if vmax is None: vmax = np.max(rl[par]) rh,bn = np.histogram(rl[par],bins=nbin,range=(vmin,vmax)) dh,db = np.histogram(ft[par],bins=bn) rf = len(rl)/len(ft) sv = dh/rh*rf ep = np.sqrt(dh)/rh*rf bc = [] for i in range(0,len(bn)-1): bc.append((bn[i]+bn[i+1])/2.) plt.errorbar(bc,sv-1.,ep,fmt='ko') plt.hist(rl[par],bins=nbin,range=(vmin,vmax),weights=0.2*np.ones(len(rl))/np.max(rh)) plt.ylim(-.3,.3) plt.xlabel(par) plt.ylabel('Ngal/<Ngal> - 1') plt.title(type+' in '+reg + ' footprint') plt.show() wv = (rl[par]>vmin) & (rl[par] < vmax) frac = len(rl[~wv])/len(rl) print('fraction of randoms not included in plot: '+str(frac)) def densvsinput_pix(type,parl,wsel,reg=None,fnc=None,xlab='',vmin=None,vmax=None,ebvcut=None,edscut=None,sn2cut=None,fpsfcut=None,gfluxcut=None,rfluxcut=None,gbcut=None,nbin=10,weights=None,titl=''): #input custom map/mask if fnc is None: ff = fidf else: ff = fnc ft = fitsio.read(sdir+type+ff) print(len(ft)) rl = fitsio.read(ranf,columns=['RA','DEC','PHOTSYS']) if reg: wr = rl['PHOTSYS'] == reg rl = rl[wr] wd = ft['PHOTSYS'] == reg ft = ft[wd] if gfluxcut: wg = ft['FLUX_G']/ft['MW_TRANSMISSION_G'] > gfluxcut print(len(ft)) ft = ft[wg] print(len(ft)) if rfluxcut: wg = ft['FLUX_R']/ft['MW_TRANSMISSION_R'] > rfluxcut ft = ft[wg] rth,rphi = radec2thphi(rl['RA'],rl['DEC']) rpix = hp.ang2pix(nside,rth,rphi,nest=nest) dth,dphi = radec2thphi(ft['RA'],ft['DEC']) dpix = hp.ang2pix(nside,dth,dphi,nest=nest) pixlr = np.zeros(12*nside*nside) pixlg = np.zeros(12*nside*nside) if weights is None: weights = np.ones(len(pixlr)) for pix in rpix: pixlr[pix] += 1. print('randoms done') for i in range(0,len(dpix)): pix = dpix[i] pixlg[pix] += 1. wp = wsel wp &= (pixlr > 0) & (weights*0 == 0) parv = fitsio.read(pixfn) ebv = parv['EBV'] sn2tf = 10.**(-0.4*R_G*ebv*2.)*parv['PSFDEPTH_G'] + 10.**(-0.4*R_R*ebv*2.)*parv['PSFDEPTH_R'] + 10.**(-0.4*R_Z*ebv*2.)*parv['PSFDEPTH_Z'] print(len(parv[wp])) if sn2cut: wp &= (sn2tf > sn2cut) if fpsfcut: wpsf = ft['MORPHTYPE'] == 'PSF' pixlgp = np.zeros(12*nside*nside) dpixp = dpix[wpsf] for i in range(0,len(dpixp)): pix = dpixp[i] pixlgp[pix] += 1. fpsf = pixlgp/pixlg wp &= (fpsf < fpsfcut) if ebvcut: wp &= (parv['EBV'] < ebvcut) if edscut: eds = parv['EBV']/parv['STARDENS'] wp &= (eds < edscut) parv = parl wp &= parv !=0 wp &= parv*0 == 0 print(len(parv[wp])) if vmin is None: vmin = np.min(parv[wp]) if vmax is None: vmax = np.max(parv[wp]) parv = parv[wp] rh,bn = np.histogram(parv,bins=nbin,range=(vmin,vmax),weights=pixlr[wp]) dh,db = np.histogram(parv,bins=bn,weights=pixlg[wp]*weights[wp]) norm = sum(rh)/sum(dh) sv = dh/rh*norm ep = np.sqrt(dh)/rh*norm bc = [] for i in range(0,len(bn)-1): bc.append((bn[i]+bn[i+1])/2.) plt.errorbar(bc,sv-1.,ep,fmt='ko') plt.hist(parv,bins=nbin,range=(vmin,vmax),weights=pixlr[wp]*0.2*np.ones(len(pixlr[wp]))/np.max(rh)) plt.ylim(-.3,.3) plt.xlabel(xlab) plt.ylabel('Ngal/<Ngal> - 1') plt.title(type+' in '+reg + ' footprint, using pixelized map'+titl) plt.show() wv = (parv>=vmin) & (parv <=vmax) frac = sum(pixlr[wp][~wv])/sum(pixlr[wp]) print('fraction of randoms not included in plot: '+str(frac)) return bc,sv,ep def densvsskyres_pix(type,par,reg=None,fnc=None,vmin=None,vmax=None,ebvcut=None,edscut=None,sn2cut=None,fpsfcut=None,gfluxcut=None,rfluxcut=None,gbcut=None,nbin=10,weights=None,titl=''): #test against Rongpu's residuals if fnc is None: ff = fidf else: ff = fnc ft = fitsio.read(sdir+type+ff) print(len(ft)) rl = rall if reg: wr = rall['PHOTSYS'] == reg rl = rl[wr] wd = ft['PHOTSYS'] == reg ft = ft[wd] if gfluxcut: wg = ft['FLUX_G']/ft['MW_TRANSMISSION_G'] > gfluxcut print(len(ft)) ft = ft[wg] print(len(ft)) if rfluxcut: wg = ft['FLUX_R']/ft['MW_TRANSMISSION_R'] > rfluxcut ft = ft[wg] rth,rphi = radec2thphi(rl['RA'],rl['DEC']) rpix = hp.ang2pix(nside,rth,rphi,nest=nest) dth,dphi = radec2thphi(ft['RA'],ft['DEC']) dpix = hp.ang2pix(nside,dth,dphi,nest=nest) pixlr = np.zeros(12*nside*nside) pixlg = np.zeros(12*nside*nside) if weights is None: weights = np.ones(len(pixlr)) for pix in rpix: pixlr[pix] += 1. print('randoms done') for i in range(0,len(dpix)): pix = dpix[i] pixlg[pix] += 1. wp = (pixlr > 0) & (weights*0 == 0) parv = fitsio.read(pixfn) ebv = parv['EBV'] sn2tf = 10.**(-0.4*R_G*ebv*2.)*parv['PSFDEPTH_G'] + 10.**(-0.4*R_R*ebv*2.)*parv['PSFDEPTH_R'] + 10.**(-0.4*R_Z*ebv*2.)*parv['PSFDEPTH_Z'] print(len(parv[wp])) if sn2cut: wp &= (sn2tf > sn2cut) if fpsfcut: wpsf = ft['MORPHTYPE'] == 'PSF' pixlgp = np.zeros(12*nside*nside) dpixp = dpix[wpsf] for i in range(0,len(dpixp)): pix = dpixp[i] pixlgp[pix] += 1. fpsf = pixlgp/pixlg wp &= (fpsf < fpsfcut) if ebvcut: wp &= (parv['EBV'] < ebvcut) if edscut: eds = parv['EBV']/parv['STARDENS'] wp &= (eds < edscut) rf = fitsio.read('/global/u2/r/rongpu/share/desi/sky_residual_dr9_partial/sky_residual_dr9_north_256.fits') parv = np.zeros(12*nside*nside) for i in range(0,len(rf)): px = rf['hp_idx'][i] parv[px] = rf[par][i] parv = hp.reorder(parv,r2n=True) wp &= parv !=0 wp &= parv*0 == 0 print(len(parv[wp])) if vmin is None: vmin = np.min(parv[wp]) if vmax is None: vmax = np.max(parv[wp]) parv = parv[wp] rh,bn = np.histogram(parv,bins=nbin,range=(vmin,vmax),weights=pixlr[wp]) dh,db = np.histogram(parv,bins=bn,weights=pixlg[wp]*weights[wp]) norm = sum(rh)/sum(dh) sv = dh/rh*norm ep = np.sqrt(dh)/rh*norm bc = [] for i in range(0,len(bn)-1): bc.append((bn[i]+bn[i+1])/2.) plt.errorbar(bc,sv-1.,ep,fmt='ko') plt.hist(parv,bins=nbin,range=(vmin,vmax),weights=pixlr[wp]*0.2*np.ones(len(pixlr[wp]))/np.max(rh)) plt.ylim(-.3,.3) plt.xlabel(par) plt.ylabel('Ngal/<Ngal> - 1') plt.title(type+' in '+reg + ' footprint, using pixelized map'+titl) plt.show() wv = (parv>=vmin) & (parv <=vmax) frac = sum(pixlr[wp][~wv])/sum(pixlr[wp]) print('fraction of randoms not included in plot: '+str(frac)) return bc,sv,ep def densvsimpar_pix(type,par,reg=None,fnc=None,vmin=None,vmax=None,ebvcut=None,edscut=None,sn2cut=None,fpsfcut=None,gfluxcut=None,rfluxcut=None,gbcut=None,nbin=10,weights=None,titl=''): if fnc is None: ff = fidf else: ff = fnc ft = fitsio.read(sdir+type+ff) print(len(ft)) ft = mask(ft) print(len(ft)) rl = fitsio.read(ranf,columns=['RA','DEC','PHOTSYS','NOBS_G','NOBS_R','NOBS_Z','MASKBITS']) print(len(rl)) rl = mask(rl) print(len(rl)) if reg: if reg == 'S' or reg == 'N': wr = rl['PHOTSYS'] == reg wd = ft['PHOTSYS'] == reg else: wr = sel_reg(rl['RA'],rl['DEC'],reg) wd = sel_reg(ft['RA'],ft['DEC'],reg) rl = rl[wr] ft = ft[wd] if gfluxcut: wg = ft['FLUX_G']/ft['MW_TRANSMISSION_G'] > gfluxcut print(len(ft)) ft = ft[wg] print(len(ft)) if rfluxcut: wg = ft['FLUX_R']/ft['MW_TRANSMISSION_R'] > rfluxcut ft = ft[wg] rth,rphi = radec2thphi(rl['RA'],rl['DEC']) rpix = hp.ang2pix(nside,rth,rphi,nest=nest) dth,dphi = radec2thphi(ft['RA'],ft['DEC']) dpix = hp.ang2pix(nside,dth,dphi,nest=nest) pixlr = np.zeros(12*nside*nside) pixlg = np.zeros(12*nside*nside) if par.split('-')[0] == 'VAR' or par.split('-')[0] == 'STDPER': pixlp = np.zeros(12*nside*nside) pixlv = np.zeros(12*nside*nside) if weights is None: weights = np.ones(len(pixlr)) for pix in rpix: pixlr[pix] += 1. print('randoms done') for i in range(0,len(dpix)): pix = dpix[i] pixlg[pix] += 1. if par.split('-')[0] == 'VAR' or par.split('-')[0] == 'STDPER': pixlp[pix] += ft[i][par.split('-')[1]] pixlv[pix] += ft[i][par.split('-')[1]]**2. wp = (pixlr > 0) & (weights*0 == 0) parv = fitsio.read(pixfn) ebv = parv['EBV'] sn2tf = 10.**(-0.4*R_G*ebv*2.)*parv['PSFDEPTH_G'] + 10.**(-0.4*R_R*ebv*2.)*parv['PSFDEPTH_R'] + 10.**(-0.4*R_Z*ebv*2.)*parv['PSFDEPTH_Z'] print(len(parv[wp])) if sn2cut: wp &= (sn2tf > sn2cut) if fpsfcut: wpsf = ft['MORPHTYPE'] == 'PSF' pixlgp = np.zeros(12*nside*nside) dpixp = dpix[wpsf] for i in range(0,len(dpixp)): pix = dpixp[i] pixlgp[pix] += 1. fpsf = pixlgp/pixlg wp &= (fpsf < fpsfcut) if ebvcut: wp &= (parv['EBV'] < ebvcut) if edscut: eds = parv['EBV']/parv['STARDENS'] wp &= (eds < edscut) if gbcut is not None: print('applying background cut of '+str(gbcut)) rf = fitsio.read('/global/u2/r/rongpu/share/desi/sky_residual_dr9_partial/sky_residual_dr9_north_256.fits') gb = np.zeros(12*nside*nside) for i in range(0,len(rf)): px = rf['hp_idx'][i] gb[px] = rf['g_blobsky'][i] gb = hp.reorder(gb,r2n=True) wp &= (gb != 0) wp &= (gb < gbcut) print(len(parv[wp])) if len(par.split('-')) > 1: if par.split('-')[0] == 'VAR': parv = pixlv[wp]/pixlg[wp]-(pixlp[wp]/pixlg[wp])**2. elif par.split('-')[0] == 'STDPER': var = pixlv[wp]/pixlg[wp]-(pixlp[wp]/pixlg[wp])**2. parv = var**.5/(pixlp[wp]/pixlg[wp]) elif par.split('-')[1] == 'X': parv = parv[wp][par.split('-')[0]]*parv[wp][par.split('-')[2]] elif par.split('-')[1] == 'DIV': parv = parv[wp][par.split('-')[0]]/parv[wp][par.split('-')[2]] elif par == 'PSFTOT': parv = (parv[wp]['PSFSIZE_G'])*(parv[wp]['PSFSIZE_R'])*(parv[wp]['PSFSIZE_Z']) elif par == 'SN2TOT_FLAT': ebv = parv[wp]['EBV'] parv = 10.**(-0.4*R_G*ebv*2.)*parv[wp]['PSFDEPTH_G'] + 10.**(-0.4*R_R*ebv*2.)*parv[wp]['PSFDEPTH_R'] + 10.**(-0.4*R_Z*ebv*2.)*parv[wp]['PSFDEPTH_Z'] elif par == 'SN2TOT_G': ebv = parv[wp]['EBV'] parv = 10.**(-0.4*R_G*ebv*2.)*parv[wp]['PSFDEPTH_G'] elif par == 'fracPSF': wpsf = ft['MORPHTYPE'] == 'PSF' pixlgp = np.zeros(12*nside*nside) dpixp = dpix[wpsf] for i in range(0,len(dpixp)): pix = dpixp[i] pixlgp[pix] += 1. parv = pixlgp[wp]/pixlg[wp] else: parv = parv[wp][par] wo = parv*0 == 0 if vmin is None: vmin = np.min(parv[wo]) if vmax is None: vmax = np.max(parv[wo]) rh,bn = np.histogram(parv,bins=nbin,range=(vmin,vmax),weights=pixlr[wp]) dh,db = np.histogram(parv,bins=bn,weights=pixlg[wp]*weights[wp]) norm = sum(rh)/sum(dh) sv = dh/rh*norm ep = np.sqrt(dh)/rh*norm bc = [] for i in range(0,len(bn)-1): bc.append((bn[i]+bn[i+1])/2.) plt.errorbar(bc,sv-1.,ep,fmt='ko') plt.hist(parv,bins=nbin,range=(vmin,vmax),weights=pixlr[wp]*0.2*np.ones(len(pixlr[wp]))/np.max(rh)) plt.ylim(-.3,.3) plt.xlabel(par) plt.ylabel('Ngal/<Ngal> - 1') plt.title(type+' in '+reg + ' footprint, using pixelized map'+titl) plt.show() wv = (parv>=vmin) & (parv <=vmax) frac = sum(pixlr[wp][~wv])/sum(pixlr[wp]) print('fraction of randoms not included in plot: '+str(frac)) return bc,sv,ep #plot density vs depth with healpix values def plotvshp_compmc(type,sys,rng,mcl=None,ws=None,reg=None,fnc=None,gdzm=0,ebvm=100,title='',effac=1.,mingd=0,maxgd=1.e6,minpsfg=0,maxpsfg=100,south=True): if fnc is None: ff = fidf else: ff = fnc ft = fitsio.read(sdir+type+ff) print(len(ft)) rl = rall if reg: wr = rall['PHOTSYS'] == reg rl = rl[wr] wd = ft['PHOTSYS'] == reg ft = ft[wd] rth,rphi = radec2thphi(rl['RA'],rl['DEC']) rpix = hp.ang2pix(nside,rth,rphi,nest=nest) dth,dphi = radec2thphi(ft['RA'],ft['DEC']) dpix = hp.ang2pix(nside,dth,dphi,nest=nest) r1 = np.zeros(12*nside*nside) d1= np.zeros(12*nside*nside) for pix in rpix: r1[pix] += 1. print('randoms done') for pix in dpix: d1[pix] += 1. hpq = fitsio.read(pixfn) #hpq = parv[par] w = r1 > 0 print(len(hpq[w])) w &= hpq['GALDEPTH_Z'] > gdzm w &= hpq['GALDEPTH_G'] > mingd w &= hpq['GALDEPTH_G'] < maxgd w &= hpq['EBV'] < ebvm w &= hpq['PSFSIZE_G'] > minpsfg w &= hpq['PSFSIZE_G'] < maxpsfg if ws is not None: w &= ws*0 == 0 if mcl is not None: w &= mcl*0 == 0 w &= mcl > 0 print(len(hpq[w])) #w if sys != 'gdc' and sys != 'rdc' and sys != 'zdc' and sys != 'dg' and sys != 'dr' and sys != 'dz' and sys != 'dgr' and sys != 'drz' and sys != 'dgz': sm = hpq[w][sys] xlab = sys else: if sys == 'gdc': print('g band depth, extinction corrected') sm = hpq[w]['GALDEPTH_G']*10.**(-0.4*R_G*hpq[w]['EBV']) xlab = 'g band depth, extinction corrected' if sys == 'rdc': sm = hpq[w]['GALDEPTH_R']*10.**(-0.4*R_R*hpq[w]['EBV']) xlab = 'r band depth, extinction corrected' if sys == 'zdc': sm = hpq[w]['GALDEPTH_Z']*10.**(-0.4*R_Z*hpq[w]['EBV']) xlab = 'z band depth, extinction corrected' if sys == 'dg': sm = dg[w] xlab = 'g band PS1 residual' if sys == 'dr': sm = dr[w] xlab = 'r band PS1 residual' if sys == 'dz': sm = dz[w] xlab = 'z band PS1 residual' if sys == 'dgr': sm = dg[w]-dr[w] xlab = 'g-r band PS1 residual' if sys == 'drz': sm = dr[w]-dz[w] xlab = 'r-z band PS1 residual' if sys == 'dgz': sm = dg[w]-dz[w] xlab = 'g-z band PS1 residual' ds = np.ones(len(d1)) print(len(ds),len(d1),len(w),len(sm)) hdnoc = np.histogram(sm,weights=d1[w],range=rng) #print(hd1) hr1 = np.histogram(sm,weights=r1[w],bins=hdnoc[1],range=rng) xl = [] for i in range(0,len(hr1[0])): xl.append((hr1[1][i]+hr1[1][i+1])/2.) plt.errorbar(xl,hdnoc[0]/hr1[0]/(sum(d1[w])/sum(r1[w])),np.sqrt(hdnoc[0])/hr1[0]/(sum(d1[w])/sum(r1[w])),fmt='ko',label='raw') if ws is not None: ds = ws hd1 = np.histogram(sm,weights=d1[w]*ds[w],bins=hdnoc[1],range=rng) plt.plot(xl,hd1[0]/hr1[0]/(sum(d1[w]*ds[w])/sum(r1[w])),'b-',label='+ EBV weights') #hd1 = np.histogram(sm,weights=d1[w]*ds[w],bins=hdnoc[1],range=rng) #plt.plot(xl,hd1[0]/hr1[0]/(sum(d1[w]*ds[w])/sum(r1[w])),'k--',label='with stellar density weights') if mcl is not None: dmcse = mcl**effac hd1 = np.histogram(sm,weights=d1[w]/dmcse[w],bins=hdnoc[1],range=rng) plt.plot(xl,hd1[0]/hr1[0]/(sum(d1[w]/dmcse[w])/sum(r1[w])),'r-',label='+MC weights') if ws is not None and mcl is not None: hd1 = np.histogram(sm,weights=d1[w]*ds[w]/dmcse[w],bins=hdnoc[1],range=rng) plt.plot(xl,hd1[0]/hr1[0]/(sum(d1[w]*ds[w]/dmcse[w])/sum(r1[w])),'-',color='purple',label='+MC weights + EBV weights') #dmcs = mcls**effac #hd1 = np.histogram(sm,weights=d1[w]*ds[w]/dmcs[w],bins=hdnoc[1],range=rng) #plt.plot(xl,hd1[0]/hr1[0]/(sum(d1[w]*ds[w]/dmcs[w])/sum(r1[w])),'b-',label='+MC; sed w ext sigma') #dmco = mclo**effac #hd1 = np.histogram(sm,weights=d1[w]*ds[w]/dmco[w],bins=hdnoc[1],range=rng) #plt.plot(xl,hd1[0]/hr1[0]/(sum(d1[w]*ds[w]/dmco[w])/sum(r1[w])),'-',color='purple',label='old MC') #plt.title(str(mp)+reg) plt.plot(xl,np.ones(len(xl)),'k:',label='null') plt.legend()#(['raw','with stellar density weights','+sed ext MC','just sed MC','old MC','null'])) plt.ylabel('relative density') plt.xlabel(xlab) plt.ylim(0.7,1.3) plt.title(title) plt.show()
desihubREPO_NAMELSSPATH_START.@LSS_extracted@LSS-main@Sandbox@[email protected]@.PATH_END.py
{ "filename": "_borderwidth.py", "repo_name": "catboost/catboost", "repo_path": "catboost_extracted/catboost-master/contrib/python/plotly/py3/plotly/validators/scattermap/marker/colorbar/_borderwidth.py", "type": "Python" }
import _plotly_utils.basevalidators class BorderwidthValidator(_plotly_utils.basevalidators.NumberValidator): def __init__( self, plotly_name="borderwidth", parent_name="scattermap.marker.colorbar", **kwargs, ): super(BorderwidthValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, edit_type=kwargs.pop("edit_type", "calc"), min=kwargs.pop("min", 0), **kwargs, )
catboostREPO_NAMEcatboostPATH_START.@catboost_extracted@catboost-master@contrib@python@plotly@py3@plotly@validators@scattermap@marker@colorbar@[email protected]_END.py
{ "filename": "hou_config_funcs.py", "repo_name": "meyeralexj/gubas", "repo_path": "gubas_extracted/gubas-master/hou_config_funcs.py", "type": "Python" }
def hou_config_read(filename): CFG=cfp.ConfigParser() CFG.read(filename) # get flags fahnestock_flag=CFG.getboolean("Initial Conditions","Fahnestock Input File Flag") C_flag=CFG.getboolean("Initial Conditions","B into A Euler Flag") Cc_flag=CFG.getboolean("Initial Conditions","A into N Euler Flag") integ=CFG.getint("Integration Settings", "Integrator Flag") Tgen=CFG.getint("Body Model Definitions","Inertia Integral Generation Flag") a_shape=CFG.getint("Body Model Definitions","Primary Shape Flag") b_shape=CFG.getint("Body Model Definitions","Secondary Shape Flag") # get gracity expansion values n=CFG.getint("Mutual Gravity Expansion Parameters","Gravity Expansion Truncation Order") nA=CFG.getint("Mutual Gravity Expansion Parameters","Primary Inertia Integral Truncation Order") nB=CFG.getint("Mutual Gravity Expansion Parameters","Secondary Inertia Integral Truncation Order") # get integrator settings t0=CFG.getfloat("Integration Settings","Start Time") tf=CFG.getfloat("Integration Settings","Final Time") h=CFG.getfloat("Integration Settings","Fixed Time Step") tol=CFG.getfloat("Integration Settings","Absolute Tolerance") # get shape settings - values converted to km aA=CFG.getfloat("Body Model Definitions","Primary Semi-Major Axis") bA=CFG.getfloat("Body Model Definitions","Primary Semi-Intermediate Axis") cA=CFG.getfloat("Body Model Definitions","Primary Semi-Minor Axis") aB=CFG.getfloat("Body Model Definitions","Secondary Semi-Major Axis") bB=CFG.getfloat("Body Model Definitions","Secondary Semi-Intermediate Axis") cB=CFG.getfloat("Body Model Definitions","Secondary Semi-Minor Axis") tet_fileA=CFG.get("Body Model Definitions","Primary Tetrahedron File") vert_fileA=CFG.get("Body Model Definitions","Primary Vertex File") tet_fileB=CFG.get("Body Model Definitions","Secondary Tetrahedron File") vert_fileB=CFG.get("Body Model Definitions","Secondary Vertex File") # get output settings postProcessing=CFG.getint("Output Settings", "Post Processing") #added by hagrusa, option to only output binaries out_freq=CFG.getfloat("Output Settings", "Fixed Output Frequency") out_time_name=CFG.get("Output Settings","Specified Time List Filename") case=CFG.get("Output Settings","Case Name") # get additional forces settings flyby_toggle = CFG.getint("Additional Forces and Perturbations","Flyby") sg_toggle = CFG.getint("Additional Forces and Perturbations","Solar Gravity") tt_toggle = CFG.getint("Additional Forces and Perturbations","Tidal Torque") helio_toggle = CFG.getint("Additional Forces and Perturbations","Heliocentric Orbit") Mplanet = CFG.getfloat("Additional Forces and Perturbations","Planetary Mass") a_hyp = CFG.getfloat("Additional Forces and Perturbations","Semimajor Axis") e_hyp = CFG.getfloat("Additional Forces and Perturbations","Eccentricity") i_hyp = CFG.getfloat("Additional Forces and Perturbations","Inclination") RAAN_hyp = CFG.getfloat("Additional Forces and Perturbations","RAAN") om_hyp = CFG.getfloat("Additional Forces and Perturbations","Argument of Periapsis") tau_hyp = CFG.getfloat("Additional Forces and Perturbations","Flyby Time") Msolar = CFG.getfloat("Additional Forces and Perturbations","Solar Mass") a_helio = CFG.getfloat("Additional Forces and Perturbations","Heliocentric Semimajor Axis") e_helio = CFG.getfloat("Additional Forces and Perturbations","Heliocentric Eccentricity") i_helio = CFG.getfloat("Additional Forces and Perturbations","Heliocentric Inclination") RAAN_helio = CFG.getfloat("Additional Forces and Perturbations","Heliocentric RAAN") om_helio = CFG.getfloat("Additional Forces and Perturbations","Heliocentric Argument of Periapsis") tau_helio = CFG.getfloat("Additional Forces and Perturbations","Time of periapsis passage") sol_rad = CFG.getfloat("Additional Forces and Perturbations","Solar Orbit Radius") au_def = CFG.getfloat("Additional Forces and Perturbations","AU Definition")/1000. love1 = CFG.getfloat("Additional Forces and Perturbations","Primary Love Number") love2 = CFG.getfloat("Additional Forces and Perturbations","Secondary Love Number") refrad1 = CFG.getfloat("Additional Forces and Perturbations","Primary Reference Radius") refrad2 = CFG.getfloat("Additional Forces and Perturbations","Secondary Reference Radius") eps1 = CFG.getfloat("Additional Forces and Perturbations","Primary Tidal Lag Angle") eps2 = CFG.getfloat("Additional Forces and Perturbations","Secondary Tidal Lag Angle") Msun = CFG.getfloat("Additional Forces and Perturbations","Sun Mass") # check initial conditions type with fahnestock flag if fahnestock_flag==1: (G,rhoA,rhoB,x0)=read_bench("systemdata_standard_MKS_units","initstate_standard_MKS_units") # (G,rhoA,rhoB,x0)=read_bench("systemdata_standard_MKS_units","d3_1320") else: # get gravity parameter - convert to kg km s units G=CFG.getfloat("Gravity Parameter","G")/1.e9 # get densities - convert to km kg s units rhoA=CFG.getfloat("Body Model Definitions","Primary Density")*1.e12 rhoB=CFG.getfloat("Body Model Definitions","Secondary Density")*1.e12 # get initial conditions - convert to km kg s units x0=np.zeros([30]) x0[0]=CFG.getfloat("Initial Conditions","Relative Position X")/1000. x0[1]=CFG.getfloat("Initial Conditions","Relative Position Y")/1000. x0[2]=CFG.getfloat("Initial Conditions","Relative Position Z")/1000. x0[3]=CFG.getfloat("Initial Conditions","Relative Velocity X")/1000. x0[4]=CFG.getfloat("Initial Conditions","Relative Velocity Y")/1000. x0[5]=CFG.getfloat("Initial Conditions","Relative Velocity Z")/1000. x0[6]=CFG.getfloat("Initial Conditions","Primary Angular Velocity X") x0[7]=CFG.getfloat("Initial Conditions","Primary Angular Velocity Y") x0[8]=CFG.getfloat("Initial Conditions","Primary Angular Velocity Z") x0[9]=CFG.getfloat("Initial Conditions","Secondary Angular Velocity X") x0[10]=CFG.getfloat("Initial Conditions","Secondary Angular Velocity Y") x0[11]=CFG.getfloat("Initial Conditions","Secondary Angular Velocity Z") if C_flag==0: x0[21]=CFG.getfloat("Initial Conditions","B into A (1,1)") x0[22]=CFG.getfloat("Initial Conditions","B into A (1,2)") x0[23]=CFG.getfloat("Initial Conditions","B into A (1,3)") x0[24]=CFG.getfloat("Initial Conditions","B into A (2,1)") x0[25]=CFG.getfloat("Initial Conditions","B into A (2,2)") x0[26]=CFG.getfloat("Initial Conditions","B into A (2,3)") x0[27]=CFG.getfloat("Initial Conditions","B into A (3,1)") x0[28]=CFG.getfloat("Initial Conditions","B into A (3,2)") x0[29]=CFG.getfloat("Initial Conditions","B into A (3,3)") C=np.reshape(x0[21:30],[3,3]) else:# if user defines euler angles use this rotation matrix definition - MAKE SURE INPUT EULER ANGLES MATCH THEIR DEFINITIONS th1=CFG.getfloat("Initial Conditions","B into A Euler 1 X") th2=CFG.getfloat("Initial Conditions","B into A Euler 2 Y") th3=CFG.getfloat("Initial Conditions","B into A Euler 3 Z") C=np.array([[np.cos(th2)*np.cos(th3),np.sin(th1)*np.sin(th2)*np.cos(th3)+np.cos(th1)*np.sin(th3),-np.cos(th1)*np.sin(th2)*np.cos(th3)+np.sin(th1)*np.sin(th3)],\ [-np.cos(th2)*np.sin(th3),-np.sin(th1)*np.sin(th2)*np.sin(th3)+np.cos(th1)*np.cos(th3),np.cos(th1)*np.sin(th2)*np.sin(th3)+np.sin(th1)*np.cos(th3)],\ [np.sin(th2),-np.sin(th1)*np.cos(th2),np.cos(th1)*np.cos(th2)]]).T x0[21:30]=np.reshape(C,[1,9]) if Cc_flag==0: x0[12]=CFG.getfloat("Initial Conditions","A into N (1,1)") x0[13]=CFG.getfloat("Initial Conditions","A into N (1,2)") x0[14]=CFG.getfloat("Initial Conditions","A into N (1,3)") x0[15]=CFG.getfloat("Initial Conditions","A into N (2,1)") x0[16]=CFG.getfloat("Initial Conditions","A into N (2,2)") x0[17]=CFG.getfloat("Initial Conditions","A into N (2,3)") x0[18]=CFG.getfloat("Initial Conditions","A into N (3,1)") x0[19]=CFG.getfloat("Initial Conditions","A into N (3,2)") x0[20]=CFG.getfloat("Initial Conditions","A into N (3,3)") else:# if user defines euler angles use this rotation matrix definition - MAKE SURE INPUT EULER ANGLES MATCH THEIR DEFINITIONS th1=CFG.getfloat("Initial Conditions","A into N Euler 1 X") th2=CFG.getfloat("Initial Conditions","A into N Euler 2 Y") th3=CFG.getfloat("Initial Conditions","A into N Euler 3 Z") Cc=np.array([[np.cos(th2)*np.cos(th3),np.sin(th1)*np.sin(th2)*np.cos(th3)+np.cos(th1)*np.sin(th3),-np.cos(th1)*np.sin(th2)*np.cos(th3)+np.sin(th1)*np.sin(th3)],\ [-np.cos(th2)*np.sin(th3),-np.sin(th1)*np.sin(th2)*np.sin(th3)+np.cos(th1)*np.cos(th3),np.cos(th1)*np.sin(th2)*np.sin(th3)+np.sin(th1)*np.cos(th3)],\ [np.sin(th2),-np.sin(th1)*np.cos(th2),np.cos(th1)*np.cos(th2)]]).T x0[12:21]=np.reshape(Cc,[1,9]) x0[9:12]=np.dot(C,np.array([x0[9:12]]).T).T[0] return(G,n,nA,nB,aA,bA,cA,aB,bB,cB,a_shape,b_shape,rhoA,rhoB,t0,tf,tet_fileA,vert_fileA,tet_fileB,vert_fileB,x0,Tgen,integ,h,tol,out_freq,out_time_name,case,flyby_toggle,helio_toggle,sg_toggle,tt_toggle,Mplanet,a_hyp,e_hyp,i_hyp,RAAN_hyp,om_hyp,tau_hyp,Msolar,a_helio,e_helio,i_helio,RAAN_helio,om_helio,tau_helio,sol_rad,au_def,love1,love2,refrad1,refrad2,eps1,eps2,Msun,postProcessing)
meyeralexjREPO_NAMEgubasPATH_START.@gubas_extracted@gubas-master@[email protected]_END.py
{ "filename": "_ticklen.py", "repo_name": "catboost/catboost", "repo_path": "catboost_extracted/catboost-master/contrib/python/plotly/py3/plotly/validators/histogram/marker/colorbar/_ticklen.py", "type": "Python" }
import _plotly_utils.basevalidators class TicklenValidator(_plotly_utils.basevalidators.NumberValidator): def __init__( self, plotly_name="ticklen", parent_name="histogram.marker.colorbar", **kwargs ): super(TicklenValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, edit_type=kwargs.pop("edit_type", "colorbars"), min=kwargs.pop("min", 0), **kwargs, )
catboostREPO_NAMEcatboostPATH_START.@catboost_extracted@catboost-master@contrib@python@plotly@py3@plotly@validators@histogram@marker@colorbar@[email protected]_END.py
{ "filename": "6_paper_imaging_plots_SIM2.py", "repo_name": "eogarvin/MLCCS", "repo_path": "MLCCS_extracted/MLCCS-main/tests/6_paper_imaging_plots_SIM2.py", "type": "Python" }
# -*- coding: utf-8 -*- """ Created on Sat Feb 19 2023 @author: emily This script intends to plot results for several experiments conducted on different alpha values. """ ## LIBRARIES import gc import pandas as pd import numpy as np import seaborn as sns from functools import partial from itertools import chain, repeat from matplotlib import pyplot from matplotlib.lines import Line2D import matplotlib.pyplot as plt from astropy.io import fits from sklearn.datasets import make_classification from sklearn.linear_model import LogisticRegression from sklearn.model_selection import train_test_split from sklearn.metrics import roc_curve, roc_auc_score, confusion_matrix, f1_score, precision_recall_curve, auc from multiprocessing import Pool, freeze_support import concurrent.futures import random import time import pickle import os import copy import sys # sys.path.append(code_path + "ml_spectroscopy/ml_spectroscopy") # sys.path.append("C:/Users/emily/Documents/ML_spectroscopy_thesis/50_code/ml_spectroscopy") from ml_spectroscopy.crosscorrNormVec import crosscorrRV_vec from ml_spectroscopy.config import path_init from ml_spectroscopy.DataPreprocessing_utils import image_reconstruct, image_deconstruct from ml_spectroscopy.plottings_utils_results import ROC_curve_customplot, ROC_curve_saveplt ,PR_curve_customplot, \ PR_curve_saveplt from ml_spectroscopy.utility_functions import flatten, Average, grid_search0 ## SET SEED FOR REPRODUCIBILITY random.seed(100) ## Settings data_name = 'GQlupb' planet = 'GQlupB' alpha = 5 # [2,5,8,11,22,32,43,55] # alpha=2 bal = 50 v = 6 frame = 'simple' # folds = [7,13,14,16] plotname = 'test' methods_ls = ['SNR', 'PCT', 'CNN1', 'CNN2'] color_ls = {'SNR': 'red', 'SNR_auto': 'brown', 'ENET': 'forestgreen', 'RID': 'lime', 'PCT': 'lightblue', 'DNN': 'blue', 'CNN1': 'navy', 'CNN2': 'purple'} title_ls = {'SNR': 'S/N', 'SNR_auto': 'SNR_auto', 'ENET': 'Elasticnet', 'RID': 'Ridge', 'PCT': 'Perceptron', 'DNN': 'DNN', 'CNN1': 'CNN', 'CNN2': 'CNN'} planetlist = ['GQlupb0', 'GQlupb1', 'GQlupb2', 'GQlupb3', 'GQlupb4', 'GQlupb5', 'GQlupb6', 'GQlupb7', 'PZTel_10', 'PZTel_11', 'PZTel_12', 'PZTel_13', 'PZTel_20', 'PZTel_21', 'PZTel_22', 'PZTel_23', 'PZTel_24', 'PZTel_25', 'PZTel_26'] ## ACTIVE SUBDIR subdir = path_init() # subdir = "C:/Users/emily/Documents/ML_spectroscopy_thesis/" # PATHS code_path = subdir + "50_code/" data_path = subdir + "30_data/DataSets/" plot_path = subdir + "60_plots/" results_path = subdir + "70_results/" # visual_path = subdir + "80_visualisation/" # csv_res_path = subdir + "80_visualisation/" # Directory to fetch results dir_path = results_path + "export_CV/from_GPU_byfold/Res_SIM_planets_220324_CO/" # Depending on the way we pick the files, can't we directly point to the right directory from the start? # Directory to store results visualisation_path = subdir + "80_visualisation/Realistic_fakeplanets/Vis_07_220324_SIM/" csv_path = subdir + "80_visualisation/Realistic_fakeplanets/Vis_07_220324_SIM/" k2 = [0, 1, 2] #alpha_set = ["alphanone", "alphaover3", "alphaover6", "alphamin"] alpha_set = ["alphanone", "alphaover2", "alphaover3", "alphaover6"] #alpha_set = ["alphanone", "alphanone2", "alphaover2", "alphaover3", "alphaover4", "alphaover6"] cubes = ["Cube 0", "Cube 1", "Cube 2"] ###################### Try with TPR cnstraint image_size = 56 hfov = 56*0.025/2 planet_rel_star = [0,0] extent0 = [-hfov+planet_rel_star[0], hfov+planet_rel_star[0], -hfov+planet_rel_star[1], hfov+planet_rel_star[1]] # initiate the loop for a in range(len(alpha_set)): # What was the base template used for the experiemnts? template_characteristics = {'Temp': 2800, 'Surf_grav': 4.1, 'H2O': 0, 'CO': 1} tp_path = '/home/ipa/quanz/user_accounts/egarvin/Thesis/70_results/export_CV/from_GPU_byfold/Res_SIM_planets_220324_CO/' # keys = folds # ls_results_realistic_fake = {key: None for key in keys} # for i in folds: with open(tp_path + 'results_SIM_CO_data_alpha_'+alpha_set[a]+'_CV_testfold.pkl', "rb") as f: ls_results_realistic_fake = pickle.load(f) # i is the validation number but the proper set is at i+1 data00 = pd.read_pickle( data_path + 'csv_inputs/intro_plot_dataset/PZ_Tel_signals_alphanone_temp2800_logg_4.1_H2O_0_CO_1.pkl') data0 = data00.loc[data00.index.levels[0][k2]] data01 = pd.read_pickle( data_path + 'csv_inputs/intro_plot_dataset/PZ_Tel_signals_' + str(alpha_set[a]) + '_temp2800_logg_4.1_H2O_0_CO_1.pkl') data1 = data01.loc[data01.index.levels[0][k2]] # data1 = pd.read_pickle( # data_path + 'csv_inputs/CCF_realistic_fakeplanets/final_test_sets/final_testset_H2O_crosscorr_data_alpha_' + str( # alpha) + '_temp2800.0_sg4.1.pkl') meta_data = pd.read_pickle(data_path + "csv_inputs/intro_plot_dataset/PZ_Tel_signals_alphanone_H2O_0_CO_1_meta.pkl") # For each fold: # get the results # get the indices of the results # Fill the gaps of the image with nans? # reconstruct the image with the results # Image should contain: # Map of accuracy (correctly classified is green , badly classified is red) # Map of True vs false positives? # Map of true vs false negatives ? # Could also have: Orange = negatives, true are dark, false are light; blue = true and false positives; true are dark, wrong are light # for j in folds: # + 1): # if j == 0: # i = (len(planetlist) - 1) # else: # i = j - 1 data_test_original_sim = data0.loc[data0.index.levels[0][k2]].drop("planet", axis=1) data_test = data1.loc[data1.index.levels[0][k2]].drop("planet", axis=1) j = 12 # Get the data dtpath0 = data_path + "csv_inputs/True_Spectrum_Data" noise_temp_wl_shape = 2 # here we do not need the wavelength dimension # Get the data where the planet is indicated path0 = os.path.join(dtpath0, str( planetlist[j]) + '_spectrum_dt.csv') # Untrimmed data. therefore, take the WL range from the trimmed data- original_df = pd.read_csv(path0) dir_file_planet = data_path + 'True_HCI_data' dir_file_WR = data_path + 'wavelength_ranges' # If templates have more molecules, remember to adapt the number of dropped end columns in the function dir_file_mol_template = data_path + 'csv_inputs/Molecular_Templates_df2.csv' savedirccf = data_path + 'csv_inputs/True_CCF_data' savedirdata = data_path + 'csv_inputs/True_Spectrum_Data' hdu_list0 = fits.open(dir_file_planet + '/res_' + planetlist[j] + '.fits') hdu_list0.info() Planet_HCI = hdu_list0[0].data hdu_list0.close() Planet_HCI = Planet_HCI[:, ::-1, :] # To get the north up, as python opens fits upside down # Planet_WR = importWavelength_asList(dir_file_WR + '/WR_' + WRFilename, extension) # Transform the 3d cube into a 2d set of rows of spectrums and columns of wavelengths. NANS are removed but the info is stored in the last output PlanetHCI_nanrm, Planet_vec_shape, Planet_position_nan = image_deconstruct(Planet_HCI) fig2, ax2 = plt.subplots(3, 4, figsize=(4.5 * 4, 4 * 3), layout='constrained') fig2.suptitle("Grid of PZ Tel B simulations inserted in real SINFONI noise and resulting CO maps ("+str(int(a+1))+")", fontsize=20, fontweight="bold") for i in range(3): image_scores = {} for m in methods_ls: if m in ['ENET', 'LAS', 'RID', 'ENET2', 'XGB']: prob_Y0 = ls_results_realistic_fake['results'][m]['Y_pred_prob'] # Y_pred = np.array(prob_Y > 0.5) * 1 elif m in ['SNR', 'SNR_auto']: prob_Y0 = ls_results_realistic_fake['results'][m]['SNR'] # Y_pred = np.array(prob_Y > 3) * 1 else: prob_Y0 = ls_results_realistic_fake['results'][m]['Y_pred_prob'][:, 1] # Y_pred = np.array(prob_Y > 0.5) * 1 Y_pred0 = ls_results_realistic_fake['results'][m]['Y_pred'] # dt_true = pd.read_pickle(data_path + "csv_inputs/CCF_realistic_fakeplanets/noise_and_planets_spectra/injection_labels_set.pkl") # Y_true = dt_true.iloc[0:3041] # Y_pred[np.where(Y_true == 1)[0].tolist()] # # Positives_predictions = [Y_pred[index] for index in np.where(Y_true == 1)[0].tolist()] # Positives_scores = [prob_Y[index] for index in np.where(Y_true == 1)[0].tolist()] # Deconstruct a full image (here we only use two frames as the wavelength dimension is not of interest - but the function was built for more than one dimensio) # PlanetHCI_nanrm, Planet_vec_shape, Planet_position_nan = image_deconstruct( ) if planetlist[j][:2] == 'PZ': size = 1795 rv = 22 elif planetlist[j][:2] == 'GQ': size = 1958 rv = 44 fold_name = [ 'PZTel_20', 'PZTel_21', 'PZTel_22', 'PZTel_23',] Y_pred = np.array_split(Y_pred0, 3)[i] prob_Y = np.array_split(prob_Y0, 3)[i] reconstruct_prediction = np.tile(Y_pred, size).reshape(size, len(Y_pred)).T reconstruct_scores = np.tile(prob_Y, size).reshape(size, len(prob_Y)).T reconstruct_ccf = np.tile(data_test.loc[fold_name[i]][0], size).reshape(size, len(data_test.loc[fold_name[i]][0])).T reconstruct_ccf_original_sim = np.tile(data_test_original_sim.loc[fold_name[i]][0], size).reshape(size, len(data_test_original_sim.loc[fold_name[i]][0])).T img_prediction = image_reconstruct(reconstruct_prediction, Planet_vec_shape[0], Planet_vec_shape[1],Planet_position_nan) img_scores = image_reconstruct(reconstruct_scores, Planet_vec_shape[0], Planet_vec_shape[1],Planet_position_nan) img_ccf_original_sim = image_reconstruct(reconstruct_ccf_original_sim, Planet_vec_shape[0], Planet_vec_shape[1],Planet_position_nan) img_ccf = image_reconstruct(reconstruct_ccf, Planet_vec_shape[0], Planet_vec_shape[1],Planet_position_nan) image_scores[m] = img_scores # prediction #plt.imshow(img_prediction[1, :, :]) #plt.title(str(title_ls[m]), fontsize=18) #plt.xlabel('[px]', fontsize=17) #plt.ylabel('[px]', fontsize=17) #plt.savefig( # visualisation_path + 'img_realisticfake_' + planetlist[j] + '_method_' + str(m) + '_alpha_' + str( # alpha) + '_Base_Prediction_areas.pdf', bbox_inches='tight') #plt.show() #plt.close() # # # CCF # plt.imshow(img_ccf_original_sim[0, :, :], cmap='inferno') # plt.title('Good Obs. Conditions', fontsize=18) # clb = plt.colorbar() # clb.set_label('Normalised CCF Values', fontsize=14) # plt.set_xlabel('[px]', fontsize=17) # plt.ylabel('[px]', fontsize=17) # #plt.savefig( # # visualisation_path + 'img_realisticfake_' + planetlist[j] + '_method_' + str(m) + '_alpha_' + str( # # alpha) + '_CCF.pdf', bbox_inches='tight') # # # CCF # plt.imshow(img_ccf[0, :, :], cmap='inferno') # plt.title('Bad Conditions', fontsize=18) # clb = plt.colorbar() # clb.set_label('Normalised CCF Values', fontsize=14) # plt.xlabel('[px]', fontsize=17) # plt.ylabel('[px]', fontsize=17) # #plt.savefig( # # visualisation_path + 'img_realisticfake_' + planetlist[j] + '_method_' + str(m) + '_alpha_' + str( # # alpha) + '_CCF.pdf', bbox_inches='tight') # # plt.imshow(image_scores[m][1, :, :], cmap='inferno') # plt.set_title(str(title_ls[m]), fontsize=18) # clb = plt.colorbar() # if m in ['SNR', 'SNR_auto']: # clb.set_label('Scores: S/N Values', fontsize=14) # else: # clb.set_label('Scores: Probabilities', fontsize=14) # # # Y_pred = np.array(prob_Y > 0.5) * 1 # plt.xlabel('[px]', fontsize=17) # plt.ylabel('[px]', fontsize=17) # #plt.savefig( # # visualisation_path + 'img_realisticfake_' + planetlist[j] + '_method_' + str(m) + '_alpha_' + str( # # alpha) + '_Scores.pdf', bbox_inches='tight') # plt.show() # plt.close() # # fig1, ax1 = plt.subplots(1, 4, figsize=(4.5 * 4, 5 * 1), layout='constrained') fig_title = fig1.suptitle("PZ Tel B simulation inserted in real SINFONI noise and recovery of CO map", fontsize=20, fontweight="bold") # CCF img0 = ax1[0].imshow(img_ccf_original_sim[0, :, :], extent=extent0, cmap='inferno') ax1[0].set_title('Molecular Map \n Good Conditions', fontsize=20) clb = plt.colorbar(img0, ax=ax1[0], shrink=0.68) clb.set_label('Normalised CCF Values', fontsize=17) clb.ax.tick_params(labelsize=14) ax1[0].set_xlim([-hfov + planet_rel_star[0], hfov + planet_rel_star[0]]) ax1[0].set_ylim([-hfov + planet_rel_star[1], hfov + planet_rel_star[1]]) ax1[0].set_xlabel(r'$\Delta$ RA (arcsec)', fontsize=20) ax1[0].set_ylabel(r'$\Delta$ Dec (arcsec)', fontsize=20) ax1[0].xaxis.set_major_locator(plt.MaxNLocator(5)) ax1[0].yaxis.set_major_locator(plt.MaxNLocator(5)) ax1[0].tick_params(labelsize=16) ax1[0].label_outer() #plt.savefig( # visualisation_path + 'img_realisticfake_' + planetlist[j] + '_method_' + str(m) + '_alpha_' + str( # alpha) + '_CCF.pdf', bbox_inches='tight') # CCF img1= ax1[1].imshow(img_ccf[0, :, :], extent=extent0, cmap='inferno') ax1[1].set_title('Molecular Map \n Bad Conditions', fontsize=20) clb = plt.colorbar(img1, ax=ax1[1], shrink=0.68) clb.set_label('Normalised CCF Values', fontsize=17) clb.ax.tick_params(labelsize=14) ax1[1].set_xlim([-hfov + planet_rel_star[0], hfov + planet_rel_star[0]]) ax1[1].set_ylim([-hfov + planet_rel_star[1], hfov + planet_rel_star[1]]) ax1[1].set_xlabel(r'$\Delta$ RA (arcsec)', fontsize=20) ax1[1].set_ylabel(r'$\Delta$ Dec (arcsec)', fontsize=20) ax1[1].xaxis.set_major_locator(plt.MaxNLocator(5)) ax1[1].yaxis.set_major_locator(plt.MaxNLocator(5)) ax1[1].tick_params(labelsize=16) ax1[1].label_outer() #plt.savefig( # visualisation_path + 'img_realisticfake_' + planetlist[j] + '_method_' + str(m) + '_alpha_' + str( # alpha) + '_CCF.pdf', bbox_inches='tight') ms = ["SNR", "CNN2"] for s in range(2): # score img2 = ax1[2+s].imshow(image_scores[ms[s]][1, :, :], extent=extent0, cmap='inferno') ax1[2+s].set_title(str(title_ls[ms[s]]+' scores \n Bad Conditions'), fontsize=20) clb = plt.colorbar(img2, ax=ax1[2+s], shrink=0.68) clb.ax.tick_params(labelsize=14) if m in ['SNR', 'SNR_auto']: clb.set_label('Scores: S/N Values', fontsize=17) else: clb.set_label('Scores: Probabilities', fontsize=17) # Y_pred = np.array(prob_Y > 0.5) * 1 ax1[2+s].set_xlim([-hfov + planet_rel_star[0], hfov + planet_rel_star[0]]) ax1[2+s].set_ylim([-hfov + planet_rel_star[1], hfov + planet_rel_star[1]]) ax1[2+s].set_xlabel(r'$\Delta$ RA (arcsec)', fontsize=20) ax1[2+s].set_ylabel(r'$\Delta$ Dec (arcsec)', fontsize=20) ax1[2+s].xaxis.set_major_locator(plt.MaxNLocator(5)) ax1[2+s].yaxis.set_major_locator(plt.MaxNLocator(5)) ax1[2+s].tick_params(labelsize=16) ax1[2+s].label_outer() fig1.savefig(visualisation_path + 'SIM_CO_alpha_' + str(alpha_set[a]) + '_Scores_'+str(fold_name[i])+'.pdf', bbox_inches='tight', dpi=600) fig1.show() #plt.savefig( # visualisation_path + 'img_realisticfake_' + planetlist[j] + '_method_' + str(m) + '_alpha_' + str( # alpha) + '_Scores.pdf', bbox_inches='tight') # CCF img0 = ax2[i,0].imshow(img_ccf_original_sim[0, :, :], extent=extent0, cmap='inferno') if i == 0: ax2[i,0].set_title('Good Conditions', fontsize=19) #cax00 = fig2.add_axes([ax2[i,0].get_position().x1+0.01,ax2[i,0].get_position().y0,0.02,ax2[i,0].get_position().height]) clb = plt.colorbar(img0, ax=ax2[i,0], shrink=0.9) clb.set_label('Normalised CCF Values', fontsize=17) clb.ax.tick_params(labelsize=14) clb.ax.tick_params(labelsize=14) ax2[i,0].set_xlim([-hfov + planet_rel_star[0], hfov + planet_rel_star[0]]) ax2[i,0].set_ylim([-hfov + planet_rel_star[1], hfov + planet_rel_star[1]]) ax2[i,0].set_xlabel(r'$\Delta$ RA (arcsec)', fontsize=19) ax2[i,0].set_ylabel(r'$\Delta$ Dec (arcsec)', fontsize=19) ax2[i,0].xaxis.set_major_locator(plt.MaxNLocator(5)) ax2[i,0].yaxis.set_major_locator(plt.MaxNLocator(5)) ax2[i,0].tick_params(labelsize=15) ax2[i,0].label_outer() #plt.savefig( # visualisation_path + 'img_realisticfake_' + planetlist[j] + '_method_' + str(m) + '_alpha_' + str( # alpha) + '_CCF.pdf', bbox_inches='tight') # CCF img1= ax2[i,1].imshow(img_ccf[0, :, :], extent=extent0, cmap='inferno') if i == 0: ax2[i,1].set_title('Bad Conditions', fontsize=19) #cax01 = fig2.add_axes([ax2[i,1].get_position().x1+0.01,ax2[i,1].get_position().y0,0.02,ax2[i,1].get_position().height]) clb = plt.colorbar(img1, ax=ax2[i,1], shrink=0.9) clb.set_label('Normalised CCF Values', fontsize=17) clb.ax.tick_params(labelsize=14) ax2[i,1].set_xlim([-hfov + planet_rel_star[0], hfov + planet_rel_star[0]]) ax2[i,1].set_ylim([-hfov + planet_rel_star[1], hfov + planet_rel_star[1]]) ax2[i,1].set_xlabel(r'$\Delta$ RA (arcsec)', fontsize=19) ax2[i,1].set_ylabel(r'$\Delta$ Dec (arcsec)', fontsize=19) ax2[i,1].xaxis.set_major_locator(plt.MaxNLocator(5)) ax2[i,1].yaxis.set_major_locator(plt.MaxNLocator(5)) ax2[i,1].tick_params(labelsize=15) ax2[i,1].label_outer() #plt.savefig( # visualisation_path + 'img_realisticfake_' + planetlist[j] + '_method_' + str(m) + '_alpha_' + str( # alpha) + '_CCF.pdf', bbox_inches='tight') mt = ["SNR","CNN2"] for s in range(2): # score img2 = ax2[i,2+s].imshow(image_scores[mt[s]][1, :, :], extent=extent0, cmap='inferno') if i == 0: ax2[i,2+s].set_title(str(title_ls[mt[s]] + ' (Bad Conditions)'), fontsize=19) #cax02 = fig2.add_axes([ax2[i, 2+s].get_position().x1 + 0.01, ax2[i, 2+s].get_position().y0, 0.02, ax2[i, 2+s].get_position().height]) clb = plt.colorbar(img2, ax=ax2[i,2+s], shrink=0.9) if m in ['SNR', 'SNR_auto']: clb.set_label('Scores: S/N Values', fontsize=17) else: clb.set_label('Scores: Probabilities', fontsize=17) # Y_pred = np.array(prob_Y > 0.5) * 1 ax2[i,2+s].set_xlim([-hfov + planet_rel_star[0], hfov + planet_rel_star[0]]) ax2[i,2+s].set_ylim([-hfov + planet_rel_star[1], hfov + planet_rel_star[1]]) ax2[i,2+s].set_xlabel(r'$\Delta$ RA (arcsec)', fontsize=19) ax2[i,2+s].set_ylabel(r'$\Delta$ Dec (arcsec)', fontsize=19) ax2[i,2+s].tick_params(labelsize=15) ax2[i,2+s].xaxis.set_major_locator(plt.MaxNLocator(5)) ax2[i,2+s].yaxis.set_major_locator(plt.MaxNLocator(5)) ax2[i,2+s].label_outer() fig2.savefig(visualisation_path + 'SIM_CO_alpha_' + str(alpha_set[a]) + '_Scores_allfolds.pdf', bbox_inches='tight', dpi=400) fig2.show() plt.close() #plt.savefig( # visualisation_path + 'img_realisticfake_' + planetlist[j] + '_method_' + str(m) + '_alpha_' + str( # alpha) + '_Scores.pdf', bbox_inches='tight')
eogarvinREPO_NAMEMLCCSPATH_START.@MLCCS_extracted@MLCCS-main@tests@[email protected]_END.py
{ "filename": "_sizesrc.py", "repo_name": "catboost/catboost", "repo_path": "catboost_extracted/catboost-master/contrib/python/plotly/py3/plotly/validators/scattergeo/hoverlabel/font/_sizesrc.py", "type": "Python" }
import _plotly_utils.basevalidators class SizesrcValidator(_plotly_utils.basevalidators.SrcValidator): def __init__( self, plotly_name="sizesrc", parent_name="scattergeo.hoverlabel.font", **kwargs ): super(SizesrcValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, edit_type=kwargs.pop("edit_type", "none"), **kwargs, )
catboostREPO_NAMEcatboostPATH_START.@catboost_extracted@catboost-master@contrib@python@plotly@py3@plotly@validators@scattergeo@hoverlabel@font@[email protected]_END.py
{ "filename": "test_memory.py", "repo_name": "langchain-ai/langchain", "repo_path": "langchain_extracted/langchain-master/libs/langchain/tests/unit_tests/schema/test_memory.py", "type": "Python" }
from langchain.schema.memory import __all__ EXPECTED_ALL = ["BaseMemory"] def test_all_imports() -> None: assert set(__all__) == set(EXPECTED_ALL)
langchain-aiREPO_NAMElangchainPATH_START.@langchain_extracted@langchain-master@libs@langchain@tests@unit_tests@schema@[email protected]_END.py
{ "filename": "cli__approx-on-full-history__first-sentence.md", "repo_name": "catboost/catboost", "repo_path": "catboost_extracted/catboost-master/catboost/docs/en/_includes/work_src/reusage/cli__approx-on-full-history__first-sentence.md", "type": "Markdown" }
The principles for calculating the approximated values.
catboostREPO_NAMEcatboostPATH_START.@catboost_extracted@catboost-master@catboost@docs@en@_includes@work_src@reusage@[email protected]_END.py
{ "filename": "test_ufunc.py", "repo_name": "numpy/numpy", "repo_path": "numpy_extracted/numpy-main/numpy/_core/tests/test_ufunc.py", "type": "Python" }
import warnings import itertools import sys import ctypes as ct import pickle import pytest from pytest import param import numpy as np import numpy._core.umath as ncu import numpy._core._umath_tests as umt import numpy.linalg._umath_linalg as uml import numpy._core._operand_flag_tests as opflag_tests import numpy._core._rational_tests as _rational_tests from numpy.exceptions import AxisError from numpy.testing import ( assert_, assert_equal, assert_raises, assert_array_equal, assert_almost_equal, assert_array_almost_equal, assert_no_warnings, assert_allclose, HAS_REFCOUNT, suppress_warnings, IS_WASM, IS_PYPY, ) from numpy.testing._private.utils import requires_memory UNARY_UFUNCS = [obj for obj in np._core.umath.__dict__.values() if isinstance(obj, np.ufunc)] UNARY_OBJECT_UFUNCS = [uf for uf in UNARY_UFUNCS if "O->O" in uf.types] # Remove functions that do not support `floats` UNARY_OBJECT_UFUNCS.remove(np.bitwise_count) class TestUfuncKwargs: def test_kwarg_exact(self): assert_raises(TypeError, np.add, 1, 2, castingx='safe') assert_raises(TypeError, np.add, 1, 2, dtypex=int) assert_raises(TypeError, np.add, 1, 2, extobjx=[4096]) assert_raises(TypeError, np.add, 1, 2, outx=None) assert_raises(TypeError, np.add, 1, 2, sigx='ii->i') assert_raises(TypeError, np.add, 1, 2, signaturex='ii->i') assert_raises(TypeError, np.add, 1, 2, subokx=False) assert_raises(TypeError, np.add, 1, 2, wherex=[True]) def test_sig_signature(self): assert_raises(TypeError, np.add, 1, 2, sig='ii->i', signature='ii->i') def test_sig_dtype(self): assert_raises(TypeError, np.add, 1, 2, sig='ii->i', dtype=int) assert_raises(TypeError, np.add, 1, 2, signature='ii->i', dtype=int) def test_extobj_removed(self): assert_raises(TypeError, np.add, 1, 2, extobj=[4096]) class TestUfuncGenericLoops: """Test generic loops. The loops to be tested are: PyUFunc_ff_f_As_dd_d PyUFunc_ff_f PyUFunc_dd_d PyUFunc_gg_g PyUFunc_FF_F_As_DD_D PyUFunc_DD_D PyUFunc_FF_F PyUFunc_GG_G PyUFunc_OO_O PyUFunc_OO_O_method PyUFunc_f_f_As_d_d PyUFunc_d_d PyUFunc_f_f PyUFunc_g_g PyUFunc_F_F_As_D_D PyUFunc_F_F PyUFunc_D_D PyUFunc_G_G PyUFunc_O_O PyUFunc_O_O_method PyUFunc_On_Om Where: f -- float d -- double g -- long double F -- complex float D -- complex double G -- complex long double O -- python object It is difficult to assure that each of these loops is entered from the Python level as the special cased loops are a moving target and the corresponding types are architecture dependent. We probably need to define C level testing ufuncs to get at them. For the time being, I've just looked at the signatures registered in the build directory to find relevant functions. """ np_dtypes = [ (np.single, np.single), (np.single, np.double), (np.csingle, np.csingle), (np.csingle, np.cdouble), (np.double, np.double), (np.longdouble, np.longdouble), (np.cdouble, np.cdouble), (np.clongdouble, np.clongdouble)] @pytest.mark.parametrize('input_dtype,output_dtype', np_dtypes) def test_unary_PyUFunc(self, input_dtype, output_dtype, f=np.exp, x=0, y=1): xs = np.full(10, input_dtype(x), dtype=output_dtype) ys = f(xs)[::2] assert_allclose(ys, y) assert_equal(ys.dtype, output_dtype) def f2(x, y): return x**y @pytest.mark.parametrize('input_dtype,output_dtype', np_dtypes) def test_binary_PyUFunc(self, input_dtype, output_dtype, f=f2, x=0, y=1): xs = np.full(10, input_dtype(x), dtype=output_dtype) ys = f(xs, xs)[::2] assert_allclose(ys, y) assert_equal(ys.dtype, output_dtype) # class to use in testing object method loops class foo: def conjugate(self): return np.bool(1) def logical_xor(self, obj): return np.bool(1) def test_unary_PyUFunc_O_O(self): x = np.ones(10, dtype=object) assert_(np.all(np.abs(x) == 1)) def test_unary_PyUFunc_O_O_method_simple(self, foo=foo): x = np.full(10, foo(), dtype=object) assert_(np.all(np.conjugate(x) == True)) def test_binary_PyUFunc_OO_O(self): x = np.ones(10, dtype=object) assert_(np.all(np.add(x, x) == 2)) def test_binary_PyUFunc_OO_O_method(self, foo=foo): x = np.full(10, foo(), dtype=object) assert_(np.all(np.logical_xor(x, x))) def test_binary_PyUFunc_On_Om_method(self, foo=foo): x = np.full((10, 2, 3), foo(), dtype=object) assert_(np.all(np.logical_xor(x, x))) def test_python_complex_conjugate(self): # The conjugate ufunc should fall back to calling the method: arr = np.array([1+2j, 3-4j], dtype="O") assert isinstance(arr[0], complex) res = np.conjugate(arr) assert res.dtype == np.dtype("O") assert_array_equal(res, np.array([1-2j, 3+4j], dtype="O")) @pytest.mark.parametrize("ufunc", UNARY_OBJECT_UFUNCS) def test_unary_PyUFunc_O_O_method_full(self, ufunc): """Compare the result of the object loop with non-object one""" val = np.float64(np.pi/4) class MyFloat(np.float64): def __getattr__(self, attr): try: return super().__getattr__(attr) except AttributeError: return lambda: getattr(np._core.umath, attr)(val) # Use 0-D arrays, to ensure the same element call num_arr = np.array(val, dtype=np.float64) obj_arr = np.array(MyFloat(val), dtype="O") with np.errstate(all="raise"): try: res_num = ufunc(num_arr) except Exception as exc: with assert_raises(type(exc)): ufunc(obj_arr) else: res_obj = ufunc(obj_arr) assert_array_almost_equal(res_num.astype("O"), res_obj) def _pickleable_module_global(): pass class TestUfunc: def test_pickle(self): for proto in range(2, pickle.HIGHEST_PROTOCOL + 1): assert_(pickle.loads(pickle.dumps(np.sin, protocol=proto)) is np.sin) # Check that ufunc not defined in the top level numpy namespace # such as numpy._core._rational_tests.test_add can also be pickled res = pickle.loads(pickle.dumps(_rational_tests.test_add, protocol=proto)) assert_(res is _rational_tests.test_add) def test_pickle_withstring(self): astring = (b"cnumpy.core\n_ufunc_reconstruct\np0\n" b"(S'numpy._core.umath'\np1\nS'cos'\np2\ntp3\nRp4\n.") assert_(pickle.loads(astring) is np.cos) @pytest.mark.skipif(IS_PYPY, reason="'is' check does not work on PyPy") def test_pickle_name_is_qualname(self): # This tests that a simplification of our ufunc pickle code will # lead to allowing qualnames as names. Future ufuncs should # possible add a specific qualname, or a hook into pickling instead # (dask+numba may benefit). _pickleable_module_global.ufunc = umt._pickleable_module_global_ufunc obj = pickle.loads(pickle.dumps(_pickleable_module_global.ufunc)) assert obj is umt._pickleable_module_global_ufunc def test_reduceat_shifting_sum(self): L = 6 x = np.arange(L) idx = np.array(list(zip(np.arange(L - 2), np.arange(L - 2) + 2))).ravel() assert_array_equal(np.add.reduceat(x, idx)[::2], [1, 3, 5, 7]) def test_all_ufunc(self): """Try to check presence and results of all ufuncs. The list of ufuncs comes from generate_umath.py and is as follows: ===== ==== ============= =============== ======================== done args function types notes ===== ==== ============= =============== ======================== n 1 conjugate nums + O n 1 absolute nums + O complex -> real n 1 negative nums + O n 1 sign nums + O -> int n 1 invert bool + ints + O flts raise an error n 1 degrees real + M cmplx raise an error n 1 radians real + M cmplx raise an error n 1 arccos flts + M n 1 arccosh flts + M n 1 arcsin flts + M n 1 arcsinh flts + M n 1 arctan flts + M n 1 arctanh flts + M n 1 cos flts + M n 1 sin flts + M n 1 tan flts + M n 1 cosh flts + M n 1 sinh flts + M n 1 tanh flts + M n 1 exp flts + M n 1 expm1 flts + M n 1 log flts + M n 1 log10 flts + M n 1 log1p flts + M n 1 sqrt flts + M real x < 0 raises error n 1 ceil real + M n 1 trunc real + M n 1 floor real + M n 1 fabs real + M n 1 rint flts + M n 1 isnan flts -> bool n 1 isinf flts -> bool n 1 isfinite flts -> bool n 1 signbit real -> bool n 1 modf real -> (frac, int) n 1 logical_not bool + nums + M -> bool n 2 left_shift ints + O flts raise an error n 2 right_shift ints + O flts raise an error n 2 add bool + nums + O boolean + is || n 2 subtract bool + nums + O boolean - is ^ n 2 multiply bool + nums + O boolean * is & n 2 divide nums + O n 2 floor_divide nums + O n 2 true_divide nums + O bBhH -> f, iIlLqQ -> d n 2 fmod nums + M n 2 power nums + O n 2 greater bool + nums + O -> bool n 2 greater_equal bool + nums + O -> bool n 2 less bool + nums + O -> bool n 2 less_equal bool + nums + O -> bool n 2 equal bool + nums + O -> bool n 2 not_equal bool + nums + O -> bool n 2 logical_and bool + nums + M -> bool n 2 logical_or bool + nums + M -> bool n 2 logical_xor bool + nums + M -> bool n 2 maximum bool + nums + O n 2 minimum bool + nums + O n 2 bitwise_and bool + ints + O flts raise an error n 2 bitwise_or bool + ints + O flts raise an error n 2 bitwise_xor bool + ints + O flts raise an error n 2 arctan2 real + M n 2 remainder ints + real + O n 2 hypot real + M ===== ==== ============= =============== ======================== Types other than those listed will be accepted, but they are cast to the smallest compatible type for which the function is defined. The casting rules are: bool -> int8 -> float32 ints -> double """ pass # from include/numpy/ufuncobject.h size_inferred = 2 can_ignore = 4 def test_signature0(self): # the arguments to test_signature are: nin, nout, core_signature enabled, num_dims, ixs, flags, sizes = umt.test_signature( 2, 1, "(i),(i)->()") assert_equal(enabled, 1) assert_equal(num_dims, (1, 1, 0)) assert_equal(ixs, (0, 0)) assert_equal(flags, (self.size_inferred,)) assert_equal(sizes, (-1,)) def test_signature1(self): # empty core signature; treat as plain ufunc (with trivial core) enabled, num_dims, ixs, flags, sizes = umt.test_signature( 2, 1, "(),()->()") assert_equal(enabled, 0) assert_equal(num_dims, (0, 0, 0)) assert_equal(ixs, ()) assert_equal(flags, ()) assert_equal(sizes, ()) def test_signature2(self): # more complicated names for variables enabled, num_dims, ixs, flags, sizes = umt.test_signature( 2, 1, "(i1,i2),(J_1)->(_kAB)") assert_equal(enabled, 1) assert_equal(num_dims, (2, 1, 1)) assert_equal(ixs, (0, 1, 2, 3)) assert_equal(flags, (self.size_inferred,)*4) assert_equal(sizes, (-1, -1, -1, -1)) def test_signature3(self): enabled, num_dims, ixs, flags, sizes = umt.test_signature( 2, 1, "(i1, i12), (J_1)->(i12, i2)") assert_equal(enabled, 1) assert_equal(num_dims, (2, 1, 2)) assert_equal(ixs, (0, 1, 2, 1, 3)) assert_equal(flags, (self.size_inferred,)*4) assert_equal(sizes, (-1, -1, -1, -1)) def test_signature4(self): # matrix_multiply signature from _umath_tests enabled, num_dims, ixs, flags, sizes = umt.test_signature( 2, 1, "(n,k),(k,m)->(n,m)") assert_equal(enabled, 1) assert_equal(num_dims, (2, 2, 2)) assert_equal(ixs, (0, 1, 1, 2, 0, 2)) assert_equal(flags, (self.size_inferred,)*3) assert_equal(sizes, (-1, -1, -1)) def test_signature5(self): # matmul signature from _umath_tests enabled, num_dims, ixs, flags, sizes = umt.test_signature( 2, 1, "(n?,k),(k,m?)->(n?,m?)") assert_equal(enabled, 1) assert_equal(num_dims, (2, 2, 2)) assert_equal(ixs, (0, 1, 1, 2, 0, 2)) assert_equal(flags, (self.size_inferred | self.can_ignore, self.size_inferred, self.size_inferred | self.can_ignore)) assert_equal(sizes, (-1, -1, -1)) def test_signature6(self): enabled, num_dims, ixs, flags, sizes = umt.test_signature( 1, 1, "(3)->()") assert_equal(enabled, 1) assert_equal(num_dims, (1, 0)) assert_equal(ixs, (0,)) assert_equal(flags, (0,)) assert_equal(sizes, (3,)) def test_signature7(self): enabled, num_dims, ixs, flags, sizes = umt.test_signature( 3, 1, "(3),(03,3),(n)->(9)") assert_equal(enabled, 1) assert_equal(num_dims, (1, 2, 1, 1)) assert_equal(ixs, (0, 0, 0, 1, 2)) assert_equal(flags, (0, self.size_inferred, 0)) assert_equal(sizes, (3, -1, 9)) def test_signature8(self): enabled, num_dims, ixs, flags, sizes = umt.test_signature( 3, 1, "(3?),(3?,3?),(n)->(9)") assert_equal(enabled, 1) assert_equal(num_dims, (1, 2, 1, 1)) assert_equal(ixs, (0, 0, 0, 1, 2)) assert_equal(flags, (self.can_ignore, self.size_inferred, 0)) assert_equal(sizes, (3, -1, 9)) def test_signature9(self): enabled, num_dims, ixs, flags, sizes = umt.test_signature( 1, 1, "( 3) -> ( )") assert_equal(enabled, 1) assert_equal(num_dims, (1, 0)) assert_equal(ixs, (0,)) assert_equal(flags, (0,)) assert_equal(sizes, (3,)) def test_signature10(self): enabled, num_dims, ixs, flags, sizes = umt.test_signature( 3, 1, "( 3? ) , (3? , 3?) ,(n )-> ( 9)") assert_equal(enabled, 1) assert_equal(num_dims, (1, 2, 1, 1)) assert_equal(ixs, (0, 0, 0, 1, 2)) assert_equal(flags, (self.can_ignore, self.size_inferred, 0)) assert_equal(sizes, (3, -1, 9)) def test_signature_failure_extra_parenthesis(self): with assert_raises(ValueError): umt.test_signature(2, 1, "((i)),(i)->()") def test_signature_failure_mismatching_parenthesis(self): with assert_raises(ValueError): umt.test_signature(2, 1, "(i),)i(->()") def test_signature_failure_signature_missing_input_arg(self): with assert_raises(ValueError): umt.test_signature(2, 1, "(i),->()") def test_signature_failure_signature_missing_output_arg(self): with assert_raises(ValueError): umt.test_signature(2, 2, "(i),(i)->()") def test_get_signature(self): assert_equal(np.vecdot.signature, "(n),(n)->()") def test_forced_sig(self): a = 0.5*np.arange(3, dtype='f8') assert_equal(np.add(a, 0.5), [0.5, 1, 1.5]) with pytest.warns(DeprecationWarning): assert_equal(np.add(a, 0.5, sig='i', casting='unsafe'), [0, 0, 1]) assert_equal(np.add(a, 0.5, sig='ii->i', casting='unsafe'), [0, 0, 1]) with pytest.warns(DeprecationWarning): assert_equal(np.add(a, 0.5, sig=('i4',), casting='unsafe'), [0, 0, 1]) assert_equal(np.add(a, 0.5, sig=('i4', 'i4', 'i4'), casting='unsafe'), [0, 0, 1]) b = np.zeros((3,), dtype='f8') np.add(a, 0.5, out=b) assert_equal(b, [0.5, 1, 1.5]) b[:] = 0 with pytest.warns(DeprecationWarning): np.add(a, 0.5, sig='i', out=b, casting='unsafe') assert_equal(b, [0, 0, 1]) b[:] = 0 np.add(a, 0.5, sig='ii->i', out=b, casting='unsafe') assert_equal(b, [0, 0, 1]) b[:] = 0 with pytest.warns(DeprecationWarning): np.add(a, 0.5, sig=('i4',), out=b, casting='unsafe') assert_equal(b, [0, 0, 1]) b[:] = 0 np.add(a, 0.5, sig=('i4', 'i4', 'i4'), out=b, casting='unsafe') assert_equal(b, [0, 0, 1]) def test_signature_all_None(self): # signature all None, is an acceptable alternative (since 1.21) # to not providing a signature. res1 = np.add([3], [4], sig=(None, None, None)) res2 = np.add([3], [4]) assert_array_equal(res1, res2) res1 = np.maximum([3], [4], sig=(None, None, None)) res2 = np.maximum([3], [4]) assert_array_equal(res1, res2) with pytest.raises(TypeError): # special case, that would be deprecated anyway, so errors: np.add(3, 4, signature=(None,)) def test_signature_dtype_type(self): # Since that will be the normal behaviour (past NumPy 1.21) # we do support the types already: float_dtype = type(np.dtype(np.float64)) np.add(3, 4, signature=(float_dtype, float_dtype, None)) @pytest.mark.parametrize("get_kwarg", [ lambda dt: dict(dtype=dt), lambda dt: dict(signature=(dt, None, None))]) def test_signature_dtype_instances_allowed(self, get_kwarg): # We allow certain dtype instances when there is a clear singleton # and the given one is equivalent; mainly for backcompat. int64 = np.dtype("int64") int64_2 = pickle.loads(pickle.dumps(int64)) # Relies on pickling behavior, if assert fails just remove test... assert int64 is not int64_2 assert np.add(1, 2, **get_kwarg(int64_2)).dtype == int64 td = np.timedelta(2, "s") assert np.add(td, td, **get_kwarg("m8")).dtype == "m8[s]" @pytest.mark.parametrize("get_kwarg", [ param(lambda x: dict(dtype=x), id="dtype"), param(lambda x: dict(signature=(x, None, None)), id="signature")]) def test_signature_dtype_instances_allowed(self, get_kwarg): msg = "The `dtype` and `signature` arguments to ufuncs" with pytest.raises(TypeError, match=msg): np.add(3, 5, **get_kwarg(np.dtype("int64").newbyteorder())) with pytest.raises(TypeError, match=msg): np.add(3, 5, **get_kwarg(np.dtype("m8[ns]"))) with pytest.raises(TypeError, match=msg): np.add(3, 5, **get_kwarg("m8[ns]")) @pytest.mark.parametrize("casting", ["unsafe", "same_kind", "safe"]) def test_partial_signature_mismatch(self, casting): # If the second argument matches already, no need to specify it: res = np.ldexp(np.float32(1.), np.int_(2), dtype="d") assert res.dtype == "d" res = np.ldexp(np.float32(1.), np.int_(2), signature=(None, None, "d")) assert res.dtype == "d" # ldexp only has a loop for long input as second argument, overriding # the output cannot help with that (no matter the casting) with pytest.raises(TypeError): np.ldexp(1., np.uint64(3), dtype="d") with pytest.raises(TypeError): np.ldexp(1., np.uint64(3), signature=(None, None, "d")) def test_partial_signature_mismatch_with_cache(self): with pytest.raises(TypeError): np.add(np.float16(1), np.uint64(2), sig=("e", "d", None)) # Ensure e,d->None is in the dispatching cache (double loop) np.add(np.float16(1), np.float64(2)) # The error must still be raised: with pytest.raises(TypeError): np.add(np.float16(1), np.uint64(2), sig=("e", "d", None)) def test_use_output_signature_for_all_arguments(self): # Test that providing only `dtype=` or `signature=(None, None, dtype)` # is sufficient if falling back to a homogeneous signature works. # In this case, the `intp, intp -> intp` loop is chosen. res = np.power(1.5, 2.8, dtype=np.intp, casting="unsafe") assert res == 1 # the cast happens first. res = np.power(1.5, 2.8, signature=(None, None, np.intp), casting="unsafe") assert res == 1 with pytest.raises(TypeError): # the unsafe casting would normally cause errors though: np.power(1.5, 2.8, dtype=np.intp) def test_signature_errors(self): with pytest.raises(TypeError, match="the signature object to ufunc must be a string or"): np.add(3, 4, signature=123.) # neither a string nor a tuple with pytest.raises(ValueError): # bad symbols that do not translate to dtypes np.add(3, 4, signature="%^->#") with pytest.raises(ValueError): np.add(3, 4, signature=b"ii-i") # incomplete and byte string with pytest.raises(ValueError): np.add(3, 4, signature="ii>i") # incomplete string with pytest.raises(ValueError): np.add(3, 4, signature=(None, "f8")) # bad length with pytest.raises(UnicodeDecodeError): np.add(3, 4, signature=b"\xff\xff->i") def test_forced_dtype_times(self): # Signatures only set the type numbers (not the actual loop dtypes) # so using `M` in a signature/dtype should generally work: a = np.array(['2010-01-02', '1999-03-14', '1833-03'], dtype='>M8[D]') np.maximum(a, a, dtype="M") np.maximum.reduce(a, dtype="M") arr = np.arange(10, dtype="m8[s]") np.add(arr, arr, dtype="m") np.maximum(arr, arr, dtype="m") @pytest.mark.parametrize("ufunc", [np.add, np.sqrt]) def test_cast_safety(self, ufunc): """Basic test for the safest casts, because ufuncs inner loops can indicate a cast-safety as well (which is normally always "no"). """ def call_ufunc(arr, **kwargs): return ufunc(*(arr,) * ufunc.nin, **kwargs) arr = np.array([1., 2., 3.], dtype=np.float32) arr_bs = arr.astype(arr.dtype.newbyteorder()) expected = call_ufunc(arr) # Normally, a "no" cast: res = call_ufunc(arr, casting="no") assert_array_equal(expected, res) # Byte-swapping is not allowed with "no" though: with pytest.raises(TypeError): call_ufunc(arr_bs, casting="no") # But is allowed with "equiv": res = call_ufunc(arr_bs, casting="equiv") assert_array_equal(expected, res) # Casting to float64 is safe, but not equiv: with pytest.raises(TypeError): call_ufunc(arr_bs, dtype=np.float64, casting="equiv") # but it is safe cast: res = call_ufunc(arr_bs, dtype=np.float64, casting="safe") expected = call_ufunc(arr.astype(np.float64)) # upcast assert_array_equal(expected, res) @pytest.mark.parametrize("ufunc", [np.add, np.equal]) def test_cast_safety_scalar(self, ufunc): # We test add and equal, because equal has special scalar handling # Note that the "equiv" casting behavior should maybe be considered # a current implementation detail. with pytest.raises(TypeError): # this picks an integer loop, which is not safe ufunc(3., 4., dtype=int, casting="safe") with pytest.raises(TypeError): # We accept python float as float64 but not float32 for equiv. ufunc(3., 4., dtype="float32", casting="equiv") # Special case for object and equal (note that equiv implies safe) ufunc(3, 4, dtype=object, casting="equiv") # Picks a double loop for both, first is equiv, second safe: ufunc(np.array([3.]), 3., casting="equiv") ufunc(np.array([3.]), 3, casting="safe") ufunc(np.array([3]), 3, casting="equiv") def test_cast_safety_scalar_special(self): # We allow this (and it succeeds) via object, although the equiv # part may not be important. np.equal(np.array([3]), 2**300, casting="equiv") def test_true_divide(self): a = np.array(10) b = np.array(20) tgt = np.array(0.5) for tc in 'bhilqBHILQefdgFDG': dt = np.dtype(tc) aa = a.astype(dt) bb = b.astype(dt) # Check result value and dtype. for x, y in itertools.product([aa, -aa], [bb, -bb]): # Check with no output type specified if tc in 'FDG': tgt = complex(x)/complex(y) else: tgt = float(x)/float(y) res = np.true_divide(x, y) rtol = max(np.finfo(res).resolution, 1e-15) assert_allclose(res, tgt, rtol=rtol) if tc in 'bhilqBHILQ': assert_(res.dtype.name == 'float64') else: assert_(res.dtype.name == dt.name ) # Check with output type specified. This also checks for the # incorrect casts in issue gh-3484 because the unary '-' does # not change types, even for unsigned types, Hence casts in the # ufunc from signed to unsigned and vice versa will lead to # errors in the values. for tcout in 'bhilqBHILQ': dtout = np.dtype(tcout) assert_raises(TypeError, np.true_divide, x, y, dtype=dtout) for tcout in 'efdg': dtout = np.dtype(tcout) if tc in 'FDG': # Casting complex to float is not allowed assert_raises(TypeError, np.true_divide, x, y, dtype=dtout) else: tgt = float(x)/float(y) rtol = max(np.finfo(dtout).resolution, 1e-15) # The value of tiny for double double is NaN with suppress_warnings() as sup: sup.filter(UserWarning) if not np.isnan(np.finfo(dtout).tiny): atol = max(np.finfo(dtout).tiny, 3e-308) else: atol = 3e-308 # Some test values result in invalid for float16 # and the cast to it may overflow to inf. with np.errstate(invalid='ignore', over='ignore'): res = np.true_divide(x, y, dtype=dtout) if not np.isfinite(res) and tcout == 'e': continue assert_allclose(res, tgt, rtol=rtol, atol=atol) assert_(res.dtype.name == dtout.name) for tcout in 'FDG': dtout = np.dtype(tcout) tgt = complex(x)/complex(y) rtol = max(np.finfo(dtout).resolution, 1e-15) # The value of tiny for double double is NaN with suppress_warnings() as sup: sup.filter(UserWarning) if not np.isnan(np.finfo(dtout).tiny): atol = max(np.finfo(dtout).tiny, 3e-308) else: atol = 3e-308 res = np.true_divide(x, y, dtype=dtout) if not np.isfinite(res): continue assert_allclose(res, tgt, rtol=rtol, atol=atol) assert_(res.dtype.name == dtout.name) # Check booleans a = np.ones((), dtype=np.bool) res = np.true_divide(a, a) assert_(res == 1.0) assert_(res.dtype.name == 'float64') res = np.true_divide(~a, a) assert_(res == 0.0) assert_(res.dtype.name == 'float64') def test_sum_stability(self): a = np.ones(500, dtype=np.float32) assert_almost_equal((a / 10.).sum() - a.size / 10., 0, 4) a = np.ones(500, dtype=np.float64) assert_almost_equal((a / 10.).sum() - a.size / 10., 0, 13) @pytest.mark.skipif(IS_WASM, reason="fp errors don't work in wasm") def test_sum(self): for dt in (int, np.float16, np.float32, np.float64, np.longdouble): for v in (0, 1, 2, 7, 8, 9, 15, 16, 19, 127, 128, 1024, 1235): # warning if sum overflows, which it does in float16 with warnings.catch_warnings(record=True) as w: warnings.simplefilter("always", RuntimeWarning) tgt = dt(v * (v + 1) / 2) overflow = not np.isfinite(tgt) assert_equal(len(w), 1 * overflow) d = np.arange(1, v + 1, dtype=dt) assert_almost_equal(np.sum(d), tgt) assert_equal(len(w), 2 * overflow) assert_almost_equal(np.sum(d[::-1]), tgt) assert_equal(len(w), 3 * overflow) d = np.ones(500, dtype=dt) assert_almost_equal(np.sum(d[::2]), 250.) assert_almost_equal(np.sum(d[1::2]), 250.) assert_almost_equal(np.sum(d[::3]), 167.) assert_almost_equal(np.sum(d[1::3]), 167.) assert_almost_equal(np.sum(d[::-2]), 250.) assert_almost_equal(np.sum(d[-1::-2]), 250.) assert_almost_equal(np.sum(d[::-3]), 167.) assert_almost_equal(np.sum(d[-1::-3]), 167.) # sum with first reduction entry != 0 d = np.ones((1,), dtype=dt) d += d assert_almost_equal(d, 2.) def test_sum_complex(self): for dt in (np.complex64, np.complex128, np.clongdouble): for v in (0, 1, 2, 7, 8, 9, 15, 16, 19, 127, 128, 1024, 1235): tgt = dt(v * (v + 1) / 2) - dt((v * (v + 1) / 2) * 1j) d = np.empty(v, dtype=dt) d.real = np.arange(1, v + 1) d.imag = -np.arange(1, v + 1) assert_almost_equal(np.sum(d), tgt) assert_almost_equal(np.sum(d[::-1]), tgt) d = np.ones(500, dtype=dt) + 1j assert_almost_equal(np.sum(d[::2]), 250. + 250j) assert_almost_equal(np.sum(d[1::2]), 250. + 250j) assert_almost_equal(np.sum(d[::3]), 167. + 167j) assert_almost_equal(np.sum(d[1::3]), 167. + 167j) assert_almost_equal(np.sum(d[::-2]), 250. + 250j) assert_almost_equal(np.sum(d[-1::-2]), 250. + 250j) assert_almost_equal(np.sum(d[::-3]), 167. + 167j) assert_almost_equal(np.sum(d[-1::-3]), 167. + 167j) # sum with first reduction entry != 0 d = np.ones((1,), dtype=dt) + 1j d += d assert_almost_equal(d, 2. + 2j) def test_sum_initial(self): # Integer, single axis assert_equal(np.sum([3], initial=2), 5) # Floating point assert_almost_equal(np.sum([0.2], initial=0.1), 0.3) # Multiple non-adjacent axes assert_equal(np.sum(np.ones((2, 3, 5), dtype=np.int64), axis=(0, 2), initial=2), [12, 12, 12]) def test_sum_where(self): # More extensive tests done in test_reduction_with_where. assert_equal(np.sum([[1., 2.], [3., 4.]], where=[True, False]), 4.) assert_equal(np.sum([[1., 2.], [3., 4.]], axis=0, initial=5., where=[True, False]), [9., 5.]) def test_vecdot(self): arr1 = np.arange(6).reshape((2, 3)) arr2 = np.arange(3).reshape((1, 3)) actual = np.vecdot(arr1, arr2) expected = np.array([5, 14]) assert_array_equal(actual, expected) actual2 = np.vecdot(arr1.T, arr2.T, axis=-2) assert_array_equal(actual2, expected) actual3 = np.vecdot(arr1.astype("object"), arr2) assert_array_equal(actual3, expected.astype("object")) def test_matvec(self): arr1 = np.arange(6).reshape((2, 3)) arr2 = np.arange(3).reshape((1, 3)) actual = np.matvec(arr1, arr2) expected = np.array([[5, 14]]) assert_array_equal(actual, expected) actual2 = np.matvec(arr1.T, arr2.T, axes=[(-1, -2), -2, -1]) assert_array_equal(actual2, expected) actual3 = np.matvec(arr1.astype("object"), arr2) assert_array_equal(actual3, expected.astype("object")) @pytest.mark.parametrize("vec", [ np.array([[1., 2., 3.], [4., 5., 6.]]), np.array([[1., 2j, 3.], [4., 5., 6j]]), np.array([[1., 2., 3.], [4., 5., 6.]], dtype=object), np.array([[1., 2j, 3.], [4., 5., 6j]], dtype=object)]) @pytest.mark.parametrize("matrix", [ None, np.array([[1.+1j, 0.5, -0.5j], [0.25, 2j, 0.], [4., 0., -1j]])]) def test_vecmatvec_identity(self, matrix, vec): """Check that (x†A)x equals x†(Ax).""" mat = matrix if matrix is not None else np.eye(3) matvec = np.matvec(mat, vec) # Ax vecmat = np.vecmat(vec, mat) # x†A if matrix is None: assert_array_equal(matvec, vec) assert_array_equal(vecmat.conj(), vec) assert_array_equal(matvec, (mat @ vec[..., np.newaxis]).squeeze(-1)) assert_array_equal(vecmat, (vec[..., np.newaxis].mT.conj() @ mat).squeeze(-2)) expected = np.einsum('...i,ij,...j', vec.conj(), mat, vec) vec_matvec = (vec.conj() * matvec).sum(-1) vecmat_vec = (vecmat * vec).sum(-1) assert_array_equal(vec_matvec, expected) assert_array_equal(vecmat_vec, expected) @pytest.mark.parametrize("ufunc, shape1, shape2, conj", [ (np.vecdot, (3,), (3,), True), (np.vecmat, (3,), (3, 1), True), (np.matvec, (1, 3), (3,), False), (np.matmul, (1, 3), (3, 1), False), ]) def test_vecdot_matvec_vecmat_complex(self, ufunc, shape1, shape2, conj): arr1 = np.array([1, 2j, 3]) arr2 = np.array([1, 2, 3]) actual1 = ufunc(arr1.reshape(shape1), arr2.reshape(shape2)) expected1 = np.array(((arr1.conj() if conj else arr1) * arr2).sum(), ndmin=min(len(shape1), len(shape2))) assert_array_equal(actual1, expected1) # This would fail for conj=True, since matmul omits the conjugate. if not conj: assert_array_equal(arr1.reshape(shape1) @ arr2.reshape(shape2), expected1) actual2 = ufunc(arr2.reshape(shape1), arr1.reshape(shape2)) expected2 = np.array(((arr2.conj() if conj else arr2) * arr1).sum(), ndmin=min(len(shape1), len(shape2))) assert_array_equal(actual2, expected2) actual3 = ufunc(arr1.reshape(shape1).astype("object"), arr2.reshape(shape2).astype("object")) expected3 = expected1.astype(object) assert_array_equal(actual3, expected3) def test_vecdot_subclass(self): class MySubclass(np.ndarray): pass arr1 = np.arange(6).reshape((2, 3)).view(MySubclass) arr2 = np.arange(3).reshape((1, 3)).view(MySubclass) result = np.vecdot(arr1, arr2) assert isinstance(result, MySubclass) def test_vecdot_object_no_conjugate(self): arr = np.array(["1", "2"], dtype=object) with pytest.raises(AttributeError, match="conjugate"): np.vecdot(arr, arr) def test_vecdot_object_breaks_outer_loop_on_error(self): arr1 = np.ones((3, 3)).astype(object) arr2 = arr1.copy() arr2[1, 1] = None out = np.zeros(3).astype(object) with pytest.raises(TypeError, match=r"\*: 'float' and 'NoneType'"): np.vecdot(arr1, arr2, out=out) assert out[0] == 3 assert out[1] == out[2] == 0 def test_broadcast(self): msg = "broadcast" a = np.arange(4).reshape((2, 1, 2)) b = np.arange(4).reshape((1, 2, 2)) assert_array_equal(np.vecdot(a, b), np.sum(a*b, axis=-1), err_msg=msg) msg = "extend & broadcast loop dimensions" b = np.arange(4).reshape((2, 2)) assert_array_equal(np.vecdot(a, b), np.sum(a*b, axis=-1), err_msg=msg) # Broadcast in core dimensions should fail a = np.arange(8).reshape((4, 2)) b = np.arange(4).reshape((4, 1)) assert_raises(ValueError, np.vecdot, a, b) # Extend core dimensions should fail a = np.arange(8).reshape((4, 2)) b = np.array(7) assert_raises(ValueError, np.vecdot, a, b) # Broadcast should fail a = np.arange(2).reshape((2, 1, 1)) b = np.arange(3).reshape((3, 1, 1)) assert_raises(ValueError, np.vecdot, a, b) # Writing to a broadcasted array with overlap should warn, gh-2705 a = np.arange(2) b = np.arange(4).reshape((2, 2)) u, v = np.broadcast_arrays(a, b) assert_equal(u.strides[0], 0) x = u + v with warnings.catch_warnings(record=True) as w: warnings.simplefilter("always") u += v assert_equal(len(w), 1) assert_(x[0, 0] != u[0, 0]) # Output reduction should not be allowed. # See gh-15139 a = np.arange(6).reshape(3, 2) b = np.ones(2) out = np.empty(()) assert_raises(ValueError, np.vecdot, a, b, out) out2 = np.empty(3) c = np.vecdot(a, b, out2) assert_(c is out2) def test_out_broadcasts(self): # For ufuncs and gufuncs (not for reductions), we currently allow # the output to cause broadcasting of the input arrays. # both along dimensions with shape 1 and dimensions which do not # exist at all in the inputs. arr = np.arange(3).reshape(1, 3) out = np.empty((5, 4, 3)) np.add(arr, arr, out=out) assert (out == np.arange(3) * 2).all() # The same holds for gufuncs (gh-16484) np.vecdot(arr, arr, out=out) # the result would be just a scalar `5`, but is broadcast fully: assert (out == 5).all() @pytest.mark.parametrize(["arr", "out"], [ ([2], np.empty(())), ([1, 2], np.empty(1)), (np.ones((4, 3)), np.empty((4, 1)))], ids=["(1,)->()", "(2,)->(1,)", "(4, 3)->(4, 1)"]) def test_out_broadcast_errors(self, arr, out): # Output is (currently) allowed to broadcast inputs, but it cannot be # smaller than the actual result. with pytest.raises(ValueError, match="non-broadcastable"): np.positive(arr, out=out) with pytest.raises(ValueError, match="non-broadcastable"): np.add(np.ones(()), arr, out=out) def test_type_cast(self): msg = "type cast" a = np.arange(6, dtype='short').reshape((2, 3)) assert_array_equal(np.vecdot(a, a), np.sum(a*a, axis=-1), err_msg=msg) msg = "type cast on one argument" a = np.arange(6).reshape((2, 3)) b = a + 0.1 assert_array_almost_equal(np.vecdot(a, b), np.sum(a*b, axis=-1), err_msg=msg) def test_endian(self): msg = "big endian" a = np.arange(6, dtype='>i4').reshape((2, 3)) assert_array_equal(np.vecdot(a, a), np.sum(a*a, axis=-1), err_msg=msg) msg = "little endian" a = np.arange(6, dtype='<i4').reshape((2, 3)) assert_array_equal(np.vecdot(a, a), np.sum(a*a, axis=-1), err_msg=msg) # Output should always be native-endian Ba = np.arange(1, dtype='>f8') La = np.arange(1, dtype='<f8') assert_equal((Ba+Ba).dtype, np.dtype('f8')) assert_equal((Ba+La).dtype, np.dtype('f8')) assert_equal((La+Ba).dtype, np.dtype('f8')) assert_equal((La+La).dtype, np.dtype('f8')) assert_equal(np.absolute(La).dtype, np.dtype('f8')) assert_equal(np.absolute(Ba).dtype, np.dtype('f8')) assert_equal(np.negative(La).dtype, np.dtype('f8')) assert_equal(np.negative(Ba).dtype, np.dtype('f8')) def test_incontiguous_array(self): msg = "incontiguous memory layout of array" x = np.arange(64).reshape((2, 2, 2, 2, 2, 2)) a = x[:, 0,:, 0,:, 0] b = x[:, 1,:, 1,:, 1] a[0, 0, 0] = -1 msg2 = "make sure it references to the original array" assert_equal(x[0, 0, 0, 0, 0, 0], -1, err_msg=msg2) assert_array_equal(np.vecdot(a, b), np.sum(a*b, axis=-1), err_msg=msg) x = np.arange(24).reshape(2, 3, 4) a = x.T b = x.T a[0, 0, 0] = -1 assert_equal(x[0, 0, 0], -1, err_msg=msg2) assert_array_equal(np.vecdot(a, b), np.sum(a*b, axis=-1), err_msg=msg) def test_output_argument(self): msg = "output argument" a = np.arange(12).reshape((2, 3, 2)) b = np.arange(4).reshape((2, 1, 2)) + 1 c = np.zeros((2, 3), dtype='int') np.vecdot(a, b, c) assert_array_equal(c, np.sum(a*b, axis=-1), err_msg=msg) c[:] = -1 np.vecdot(a, b, out=c) assert_array_equal(c, np.sum(a*b, axis=-1), err_msg=msg) msg = "output argument with type cast" c = np.zeros((2, 3), dtype='int16') np.vecdot(a, b, c) assert_array_equal(c, np.sum(a*b, axis=-1), err_msg=msg) c[:] = -1 np.vecdot(a, b, out=c) assert_array_equal(c, np.sum(a*b, axis=-1), err_msg=msg) msg = "output argument with incontiguous layout" c = np.zeros((2, 3, 4), dtype='int16') np.vecdot(a, b, c[..., 0]) assert_array_equal(c[..., 0], np.sum(a*b, axis=-1), err_msg=msg) c[:] = -1 np.vecdot(a, b, out=c[..., 0]) assert_array_equal(c[..., 0], np.sum(a*b, axis=-1), err_msg=msg) def test_axes_argument(self): # vecdot signature: '(n),(n)->()' a = np.arange(27.).reshape((3, 3, 3)) b = np.arange(10., 19.).reshape((3, 1, 3)) # basic tests on inputs (outputs tested below with matrix_multiply). c = np.vecdot(a, b) assert_array_equal(c, (a * b).sum(-1)) # default c = np.vecdot(a, b, axes=[(-1,), (-1,), ()]) assert_array_equal(c, (a * b).sum(-1)) # integers ok for single axis. c = np.vecdot(a, b, axes=[-1, -1, ()]) assert_array_equal(c, (a * b).sum(-1)) # mix fine c = np.vecdot(a, b, axes=[(-1,), -1, ()]) assert_array_equal(c, (a * b).sum(-1)) # can omit last axis. c = np.vecdot(a, b, axes=[-1, -1]) assert_array_equal(c, (a * b).sum(-1)) # can pass in other types of integer (with __index__ protocol) c = np.vecdot(a, b, axes=[np.int8(-1), np.array(-1, dtype=np.int32)]) assert_array_equal(c, (a * b).sum(-1)) # swap some axes c = np.vecdot(a, b, axes=[0, 0]) assert_array_equal(c, (a * b).sum(0)) c = np.vecdot(a, b, axes=[0, 2]) assert_array_equal(c, (a.transpose(1, 2, 0) * b).sum(-1)) # Check errors for improperly constructed axes arguments. # should have list. assert_raises(TypeError, np.vecdot, a, b, axes=-1) # needs enough elements assert_raises(ValueError, np.vecdot, a, b, axes=[-1]) # should pass in indices. assert_raises(TypeError, np.vecdot, a, b, axes=[-1.0, -1.0]) assert_raises(TypeError, np.vecdot, a, b, axes=[(-1.0,), -1]) assert_raises(TypeError, np.vecdot, a, b, axes=[None, 1]) # cannot pass an index unless there is only one dimension # (output is wrong in this case) assert_raises(AxisError, np.vecdot, a, b, axes=[-1, -1, -1]) # or pass in generally the wrong number of axes assert_raises(AxisError, np.vecdot, a, b, axes=[-1, -1, (-1,)]) assert_raises(AxisError, np.vecdot, a, b, axes=[-1, (-2, -1), ()]) # axes need to have same length. assert_raises(ValueError, np.vecdot, a, b, axes=[0, 1]) # matrix_multiply signature: '(m,n),(n,p)->(m,p)' mm = umt.matrix_multiply a = np.arange(12).reshape((2, 3, 2)) b = np.arange(8).reshape((2, 2, 2, 1)) + 1 # Sanity check. c = mm(a, b) assert_array_equal(c, np.matmul(a, b)) # Default axes. c = mm(a, b, axes=[(-2, -1), (-2, -1), (-2, -1)]) assert_array_equal(c, np.matmul(a, b)) # Default with explicit axes. c = mm(a, b, axes=[(1, 2), (2, 3), (2, 3)]) assert_array_equal(c, np.matmul(a, b)) # swap some axes. c = mm(a, b, axes=[(0, -1), (1, 2), (-2, -1)]) assert_array_equal(c, np.matmul(a.transpose(1, 0, 2), b.transpose(0, 3, 1, 2))) # Default with output array. c = np.empty((2, 2, 3, 1)) d = mm(a, b, out=c, axes=[(1, 2), (2, 3), (2, 3)]) assert_(c is d) assert_array_equal(c, np.matmul(a, b)) # Transposed output array c = np.empty((1, 2, 2, 3)) d = mm(a, b, out=c, axes=[(-2, -1), (-2, -1), (3, 0)]) assert_(c is d) assert_array_equal(c, np.matmul(a, b).transpose(3, 0, 1, 2)) # Check errors for improperly constructed axes arguments. # wrong argument assert_raises(TypeError, mm, a, b, axis=1) # axes should be list assert_raises(TypeError, mm, a, b, axes=1) assert_raises(TypeError, mm, a, b, axes=((-2, -1), (-2, -1), (-2, -1))) # list needs to have right length assert_raises(ValueError, mm, a, b, axes=[]) assert_raises(ValueError, mm, a, b, axes=[(-2, -1)]) # list should not contain None, or lists assert_raises(TypeError, mm, a, b, axes=[None, None, None]) assert_raises(TypeError, mm, a, b, axes=[[-2, -1], [-2, -1], [-2, -1]]) assert_raises(TypeError, mm, a, b, axes=[(-2, -1), (-2, -1), [-2, -1]]) assert_raises(TypeError, mm, a, b, axes=[(-2, -1), (-2, -1), None]) # single integers are AxisErrors if more are required assert_raises(AxisError, mm, a, b, axes=[-1, -1, -1]) assert_raises(AxisError, mm, a, b, axes=[(-2, -1), (-2, -1), -1]) # tuples should not have duplicated values assert_raises(ValueError, mm, a, b, axes=[(-2, -1), (-2, -1), (-2, -2)]) # arrays should have enough axes. z = np.zeros((2, 2)) assert_raises(ValueError, mm, z, z[0]) assert_raises(ValueError, mm, z, z, out=z[:, 0]) assert_raises(ValueError, mm, z[1], z, axes=[0, 1]) assert_raises(ValueError, mm, z, z, out=z[0], axes=[0, 1]) # Regular ufuncs should not accept axes. assert_raises(TypeError, np.add, 1., 1., axes=[0]) # should be able to deal with bad unrelated kwargs. assert_raises(TypeError, mm, z, z, axes=[0, 1], parrot=True) def test_axis_argument(self): # vecdot signature: '(n),(n)->()' a = np.arange(27.).reshape((3, 3, 3)) b = np.arange(10., 19.).reshape((3, 1, 3)) c = np.vecdot(a, b) assert_array_equal(c, (a * b).sum(-1)) c = np.vecdot(a, b, axis=-1) assert_array_equal(c, (a * b).sum(-1)) out = np.zeros_like(c) d = np.vecdot(a, b, axis=-1, out=out) assert_(d is out) assert_array_equal(d, c) c = np.vecdot(a, b, axis=0) assert_array_equal(c, (a * b).sum(0)) # Sanity checks on innerwt and cumsum. a = np.arange(6).reshape((2, 3)) b = np.arange(10, 16).reshape((2, 3)) w = np.arange(20, 26).reshape((2, 3)) assert_array_equal(umt.innerwt(a, b, w, axis=0), np.sum(a * b * w, axis=0)) assert_array_equal(umt.cumsum(a, axis=0), np.cumsum(a, axis=0)) assert_array_equal(umt.cumsum(a, axis=-1), np.cumsum(a, axis=-1)) out = np.empty_like(a) b = umt.cumsum(a, out=out, axis=0) assert_(out is b) assert_array_equal(b, np.cumsum(a, axis=0)) b = umt.cumsum(a, out=out, axis=1) assert_(out is b) assert_array_equal(b, np.cumsum(a, axis=-1)) # Check errors. # Cannot pass in both axis and axes. assert_raises(TypeError, np.vecdot, a, b, axis=0, axes=[0, 0]) # Not an integer. assert_raises(TypeError, np.vecdot, a, b, axis=[0]) # more than 1 core dimensions. mm = umt.matrix_multiply assert_raises(TypeError, mm, a, b, axis=1) # Output wrong size in axis. out = np.empty((1, 2, 3), dtype=a.dtype) assert_raises(ValueError, umt.cumsum, a, out=out, axis=0) # Regular ufuncs should not accept axis. assert_raises(TypeError, np.add, 1., 1., axis=0) def test_keepdims_argument(self): # vecdot signature: '(n),(n)->()' a = np.arange(27.).reshape((3, 3, 3)) b = np.arange(10., 19.).reshape((3, 1, 3)) c = np.vecdot(a, b) assert_array_equal(c, (a * b).sum(-1)) c = np.vecdot(a, b, keepdims=False) assert_array_equal(c, (a * b).sum(-1)) c = np.vecdot(a, b, keepdims=True) assert_array_equal(c, (a * b).sum(-1, keepdims=True)) out = np.zeros_like(c) d = np.vecdot(a, b, keepdims=True, out=out) assert_(d is out) assert_array_equal(d, c) # Now combined with axis and axes. c = np.vecdot(a, b, axis=-1, keepdims=False) assert_array_equal(c, (a * b).sum(-1, keepdims=False)) c = np.vecdot(a, b, axis=-1, keepdims=True) assert_array_equal(c, (a * b).sum(-1, keepdims=True)) c = np.vecdot(a, b, axis=0, keepdims=False) assert_array_equal(c, (a * b).sum(0, keepdims=False)) c = np.vecdot(a, b, axis=0, keepdims=True) assert_array_equal(c, (a * b).sum(0, keepdims=True)) c = np.vecdot(a, b, axes=[(-1,), (-1,), ()], keepdims=False) assert_array_equal(c, (a * b).sum(-1)) c = np.vecdot(a, b, axes=[(-1,), (-1,), (-1,)], keepdims=True) assert_array_equal(c, (a * b).sum(-1, keepdims=True)) c = np.vecdot(a, b, axes=[0, 0], keepdims=False) assert_array_equal(c, (a * b).sum(0)) c = np.vecdot(a, b, axes=[0, 0, 0], keepdims=True) assert_array_equal(c, (a * b).sum(0, keepdims=True)) c = np.vecdot(a, b, axes=[0, 2], keepdims=False) assert_array_equal(c, (a.transpose(1, 2, 0) * b).sum(-1)) c = np.vecdot(a, b, axes=[0, 2], keepdims=True) assert_array_equal(c, (a.transpose(1, 2, 0) * b).sum(-1, keepdims=True)) c = np.vecdot(a, b, axes=[0, 2, 2], keepdims=True) assert_array_equal(c, (a.transpose(1, 2, 0) * b).sum(-1, keepdims=True)) c = np.vecdot(a, b, axes=[0, 2, 0], keepdims=True) assert_array_equal(c, (a * b.transpose(2, 0, 1)).sum(0, keepdims=True)) # Hardly useful, but should work. c = np.vecdot(a, b, axes=[0, 2, 1], keepdims=True) assert_array_equal(c, (a.transpose(1, 0, 2) * b.transpose(0, 2, 1)) .sum(1, keepdims=True)) # Check with two core dimensions. a = np.eye(3) * np.arange(4.)[:, np.newaxis, np.newaxis] expected = uml.det(a) c = uml.det(a, keepdims=False) assert_array_equal(c, expected) c = uml.det(a, keepdims=True) assert_array_equal(c, expected[:, np.newaxis, np.newaxis]) a = np.eye(3) * np.arange(4.)[:, np.newaxis, np.newaxis] expected_s, expected_l = uml.slogdet(a) cs, cl = uml.slogdet(a, keepdims=False) assert_array_equal(cs, expected_s) assert_array_equal(cl, expected_l) cs, cl = uml.slogdet(a, keepdims=True) assert_array_equal(cs, expected_s[:, np.newaxis, np.newaxis]) assert_array_equal(cl, expected_l[:, np.newaxis, np.newaxis]) # Sanity check on innerwt. a = np.arange(6).reshape((2, 3)) b = np.arange(10, 16).reshape((2, 3)) w = np.arange(20, 26).reshape((2, 3)) assert_array_equal(umt.innerwt(a, b, w, keepdims=True), np.sum(a * b * w, axis=-1, keepdims=True)) assert_array_equal(umt.innerwt(a, b, w, axis=0, keepdims=True), np.sum(a * b * w, axis=0, keepdims=True)) # Check errors. # Not a boolean assert_raises(TypeError, np.vecdot, a, b, keepdims='true') # More than 1 core dimension, and core output dimensions. mm = umt.matrix_multiply assert_raises(TypeError, mm, a, b, keepdims=True) assert_raises(TypeError, mm, a, b, keepdims=False) # Regular ufuncs should not accept keepdims. assert_raises(TypeError, np.add, 1., 1., keepdims=False) def test_innerwt(self): a = np.arange(6).reshape((2, 3)) b = np.arange(10, 16).reshape((2, 3)) w = np.arange(20, 26).reshape((2, 3)) assert_array_equal(umt.innerwt(a, b, w), np.sum(a*b*w, axis=-1)) a = np.arange(100, 124).reshape((2, 3, 4)) b = np.arange(200, 224).reshape((2, 3, 4)) w = np.arange(300, 324).reshape((2, 3, 4)) assert_array_equal(umt.innerwt(a, b, w), np.sum(a*b*w, axis=-1)) def test_innerwt_empty(self): """Test generalized ufunc with zero-sized operands""" a = np.array([], dtype='f8') b = np.array([], dtype='f8') w = np.array([], dtype='f8') assert_array_equal(umt.innerwt(a, b, w), np.sum(a*b*w, axis=-1)) def test_cross1d(self): """Test with fixed-sized signature.""" a = np.eye(3) assert_array_equal(umt.cross1d(a, a), np.zeros((3, 3))) out = np.zeros((3, 3)) result = umt.cross1d(a[0], a, out) assert_(result is out) assert_array_equal(result, np.vstack((np.zeros(3), a[2], -a[1]))) assert_raises(ValueError, umt.cross1d, np.eye(4), np.eye(4)) assert_raises(ValueError, umt.cross1d, a, np.arange(4.)) # Wrong output core dimension. assert_raises(ValueError, umt.cross1d, a, np.arange(3.), np.zeros((3, 4))) # Wrong output broadcast dimension (see gh-15139). assert_raises(ValueError, umt.cross1d, a, np.arange(3.), np.zeros(3)) def test_can_ignore_signature(self): # Comparing the effects of ? in signature: # matrix_multiply: (m,n),(n,p)->(m,p) # all must be there. # matmul: (m?,n),(n,p?)->(m?,p?) # allow missing m, p. mat = np.arange(12).reshape((2, 3, 2)) single_vec = np.arange(2) col_vec = single_vec[:, np.newaxis] col_vec_array = np.arange(8).reshape((2, 2, 2, 1)) + 1 # matrix @ single column vector with proper dimension mm_col_vec = umt.matrix_multiply(mat, col_vec) # matmul does the same thing matmul_col_vec = umt.matmul(mat, col_vec) assert_array_equal(matmul_col_vec, mm_col_vec) # matrix @ vector without dimension making it a column vector. # matrix multiply fails -> missing core dim. assert_raises(ValueError, umt.matrix_multiply, mat, single_vec) # matmul mimicker passes, and returns a vector. matmul_col = umt.matmul(mat, single_vec) assert_array_equal(matmul_col, mm_col_vec.squeeze()) # Now with a column array: same as for column vector, # broadcasting sensibly. mm_col_vec = umt.matrix_multiply(mat, col_vec_array) matmul_col_vec = umt.matmul(mat, col_vec_array) assert_array_equal(matmul_col_vec, mm_col_vec) # As above, but for row vector single_vec = np.arange(3) row_vec = single_vec[np.newaxis, :] row_vec_array = np.arange(24).reshape((4, 2, 1, 1, 3)) + 1 # row vector @ matrix mm_row_vec = umt.matrix_multiply(row_vec, mat) matmul_row_vec = umt.matmul(row_vec, mat) assert_array_equal(matmul_row_vec, mm_row_vec) # single row vector @ matrix assert_raises(ValueError, umt.matrix_multiply, single_vec, mat) matmul_row = umt.matmul(single_vec, mat) assert_array_equal(matmul_row, mm_row_vec.squeeze()) # row vector array @ matrix mm_row_vec = umt.matrix_multiply(row_vec_array, mat) matmul_row_vec = umt.matmul(row_vec_array, mat) assert_array_equal(matmul_row_vec, mm_row_vec) # Now for vector combinations # row vector @ column vector col_vec = row_vec.T col_vec_array = row_vec_array.swapaxes(-2, -1) mm_row_col_vec = umt.matrix_multiply(row_vec, col_vec) matmul_row_col_vec = umt.matmul(row_vec, col_vec) assert_array_equal(matmul_row_col_vec, mm_row_col_vec) # single row vector @ single col vector assert_raises(ValueError, umt.matrix_multiply, single_vec, single_vec) matmul_row_col = umt.matmul(single_vec, single_vec) assert_array_equal(matmul_row_col, mm_row_col_vec.squeeze()) # row vector array @ matrix mm_row_col_array = umt.matrix_multiply(row_vec_array, col_vec_array) matmul_row_col_array = umt.matmul(row_vec_array, col_vec_array) assert_array_equal(matmul_row_col_array, mm_row_col_array) # Finally, check that things are *not* squeezed if one gives an # output. out = np.zeros_like(mm_row_col_array) out = umt.matrix_multiply(row_vec_array, col_vec_array, out=out) assert_array_equal(out, mm_row_col_array) out[:] = 0 out = umt.matmul(row_vec_array, col_vec_array, out=out) assert_array_equal(out, mm_row_col_array) # And check one cannot put missing dimensions back. out = np.zeros_like(mm_row_col_vec) assert_raises(ValueError, umt.matrix_multiply, single_vec, single_vec, out) # But fine for matmul, since it is just a broadcast. out = umt.matmul(single_vec, single_vec, out) assert_array_equal(out, mm_row_col_vec.squeeze()) def test_matrix_multiply(self): self.compare_matrix_multiply_results(np.int64) self.compare_matrix_multiply_results(np.double) def test_matrix_multiply_umath_empty(self): res = umt.matrix_multiply(np.ones((0, 10)), np.ones((10, 0))) assert_array_equal(res, np.zeros((0, 0))) res = umt.matrix_multiply(np.ones((10, 0)), np.ones((0, 10))) assert_array_equal(res, np.zeros((10, 10))) def compare_matrix_multiply_results(self, tp): d1 = np.array(np.random.rand(2, 3, 4), dtype=tp) d2 = np.array(np.random.rand(2, 3, 4), dtype=tp) msg = "matrix multiply on type %s" % d1.dtype.name def permute_n(n): if n == 1: return ([0],) ret = () base = permute_n(n-1) for perm in base: for i in range(n): new = perm + [n-1] new[n-1] = new[i] new[i] = n-1 ret += (new,) return ret def slice_n(n): if n == 0: return ((),) ret = () base = slice_n(n-1) for sl in base: ret += (sl+(slice(None),),) ret += (sl+(slice(0, 1),),) return ret def broadcastable(s1, s2): return s1 == s2 or s1 == 1 or s2 == 1 permute_3 = permute_n(3) slice_3 = slice_n(3) + ((slice(None, None, -1),)*3,) ref = True for p1 in permute_3: for p2 in permute_3: for s1 in slice_3: for s2 in slice_3: a1 = d1.transpose(p1)[s1] a2 = d2.transpose(p2)[s2] ref = ref and a1.base is not None ref = ref and a2.base is not None if (a1.shape[-1] == a2.shape[-2] and broadcastable(a1.shape[0], a2.shape[0])): assert_array_almost_equal( umt.matrix_multiply(a1, a2), np.sum(a2[..., np.newaxis].swapaxes(-3, -1) * a1[..., np.newaxis,:], axis=-1), err_msg=msg + ' %s %s' % (str(a1.shape), str(a2.shape))) assert_equal(ref, True, err_msg="reference check") def test_euclidean_pdist(self): a = np.arange(12, dtype=float).reshape(4, 3) out = np.empty((a.shape[0] * (a.shape[0] - 1) // 2,), dtype=a.dtype) umt.euclidean_pdist(a, out) b = np.sqrt(np.sum((a[:, None] - a)**2, axis=-1)) b = b[~np.tri(a.shape[0], dtype=bool)] assert_almost_equal(out, b) # An output array is required to determine p with signature (n,d)->(p) assert_raises(ValueError, umt.euclidean_pdist, a) def test_cumsum(self): a = np.arange(10) result = umt.cumsum(a) assert_array_equal(result, a.cumsum()) def test_object_logical(self): a = np.array([3, None, True, False, "test", ""], dtype=object) assert_equal(np.logical_or(a, None), np.array([x or None for x in a], dtype=object)) assert_equal(np.logical_or(a, True), np.array([x or True for x in a], dtype=object)) assert_equal(np.logical_or(a, 12), np.array([x or 12 for x in a], dtype=object)) assert_equal(np.logical_or(a, "blah"), np.array([x or "blah" for x in a], dtype=object)) assert_equal(np.logical_and(a, None), np.array([x and None for x in a], dtype=object)) assert_equal(np.logical_and(a, True), np.array([x and True for x in a], dtype=object)) assert_equal(np.logical_and(a, 12), np.array([x and 12 for x in a], dtype=object)) assert_equal(np.logical_and(a, "blah"), np.array([x and "blah" for x in a], dtype=object)) assert_equal(np.logical_not(a), np.array([not x for x in a], dtype=object)) assert_equal(np.logical_or.reduce(a), 3) assert_equal(np.logical_and.reduce(a), None) def test_object_comparison(self): class HasComparisons: def __eq__(self, other): return '==' arr0d = np.array(HasComparisons()) assert_equal(arr0d == arr0d, True) assert_equal(np.equal(arr0d, arr0d), True) # normal behavior is a cast arr1d = np.array([HasComparisons()]) assert_equal(arr1d == arr1d, np.array([True])) assert_equal(np.equal(arr1d, arr1d), np.array([True])) # normal behavior is a cast assert_equal(np.equal(arr1d, arr1d, dtype=object), np.array(['=='])) def test_object_array_reduction(self): # Reductions on object arrays a = np.array(['a', 'b', 'c'], dtype=object) assert_equal(np.sum(a), 'abc') assert_equal(np.max(a), 'c') assert_equal(np.min(a), 'a') a = np.array([True, False, True], dtype=object) assert_equal(np.sum(a), 2) assert_equal(np.prod(a), 0) assert_equal(np.any(a), True) assert_equal(np.all(a), False) assert_equal(np.max(a), True) assert_equal(np.min(a), False) assert_equal(np.array([[1]], dtype=object).sum(), 1) assert_equal(np.array([[[1, 2]]], dtype=object).sum((0, 1)), [1, 2]) assert_equal(np.array([1], dtype=object).sum(initial=1), 2) assert_equal(np.array([[1], [2, 3]], dtype=object) .sum(initial=[0], where=[False, True]), [0, 2, 3]) def test_object_array_accumulate_inplace(self): # Checks that in-place accumulates work, see also gh-7402 arr = np.ones(4, dtype=object) arr[:] = [[1] for i in range(4)] # Twice reproduced also for tuples: np.add.accumulate(arr, out=arr) np.add.accumulate(arr, out=arr) assert_array_equal(arr, np.array([[1]*i for i in [1, 3, 6, 10]], dtype=object), ) # And the same if the axis argument is used arr = np.ones((2, 4), dtype=object) arr[0, :] = [[2] for i in range(4)] np.add.accumulate(arr, out=arr, axis=-1) np.add.accumulate(arr, out=arr, axis=-1) assert_array_equal(arr[0, :], np.array([[2]*i for i in [1, 3, 6, 10]], dtype=object), ) def test_object_array_accumulate_failure(self): # Typical accumulation on object works as expected: res = np.add.accumulate(np.array([1, 0, 2], dtype=object)) assert_array_equal(res, np.array([1, 1, 3], dtype=object)) # But errors are propagated from the inner-loop if they occur: with pytest.raises(TypeError): np.add.accumulate([1, None, 2]) def test_object_array_reduceat_inplace(self): # Checks that in-place reduceats work, see also gh-7465 arr = np.empty(4, dtype=object) arr[:] = [[1] for i in range(4)] out = np.empty(4, dtype=object) out[:] = [[1] for i in range(4)] np.add.reduceat(arr, np.arange(4), out=arr) np.add.reduceat(arr, np.arange(4), out=arr) assert_array_equal(arr, out) # And the same if the axis argument is used arr = np.ones((2, 4), dtype=object) arr[0, :] = [[2] for i in range(4)] out = np.ones((2, 4), dtype=object) out[0, :] = [[2] for i in range(4)] np.add.reduceat(arr, np.arange(4), out=arr, axis=-1) np.add.reduceat(arr, np.arange(4), out=arr, axis=-1) assert_array_equal(arr, out) def test_object_array_reduceat_failure(self): # Reduceat works as expected when no invalid operation occurs (None is # not involved in an operation here) res = np.add.reduceat(np.array([1, None, 2], dtype=object), [1, 2]) assert_array_equal(res, np.array([None, 2], dtype=object)) # But errors when None would be involved in an operation: with pytest.raises(TypeError): np.add.reduceat([1, None, 2], [0, 2]) def test_zerosize_reduction(self): # Test with default dtype and object dtype for a in [[], np.array([], dtype=object)]: assert_equal(np.sum(a), 0) assert_equal(np.prod(a), 1) assert_equal(np.any(a), False) assert_equal(np.all(a), True) assert_raises(ValueError, np.max, a) assert_raises(ValueError, np.min, a) def test_axis_out_of_bounds(self): a = np.array([False, False]) assert_raises(AxisError, a.all, axis=1) a = np.array([False, False]) assert_raises(AxisError, a.all, axis=-2) a = np.array([False, False]) assert_raises(AxisError, a.any, axis=1) a = np.array([False, False]) assert_raises(AxisError, a.any, axis=-2) def test_scalar_reduction(self): # The functions 'sum', 'prod', etc allow specifying axis=0 # even for scalars assert_equal(np.sum(3, axis=0), 3) assert_equal(np.prod(3.5, axis=0), 3.5) assert_equal(np.any(True, axis=0), True) assert_equal(np.all(False, axis=0), False) assert_equal(np.max(3, axis=0), 3) assert_equal(np.min(2.5, axis=0), 2.5) # Check scalar behaviour for ufuncs without an identity assert_equal(np.power.reduce(3), 3) # Make sure that scalars are coming out from this operation assert_(type(np.prod(np.float32(2.5), axis=0)) is np.float32) assert_(type(np.sum(np.float32(2.5), axis=0)) is np.float32) assert_(type(np.max(np.float32(2.5), axis=0)) is np.float32) assert_(type(np.min(np.float32(2.5), axis=0)) is np.float32) # check if scalars/0-d arrays get cast assert_(type(np.any(0, axis=0)) is np.bool) # assert that 0-d arrays get wrapped class MyArray(np.ndarray): pass a = np.array(1).view(MyArray) assert_(type(np.any(a)) is MyArray) def test_casting_out_param(self): # Test that it's possible to do casts on output a = np.ones((200, 100), np.int64) b = np.ones((200, 100), np.int64) c = np.ones((200, 100), np.float64) np.add(a, b, out=c) assert_equal(c, 2) a = np.zeros(65536) b = np.zeros(65536, dtype=np.float32) np.subtract(a, 0, out=b) assert_equal(b, 0) def test_where_param(self): # Test that the where= ufunc parameter works with regular arrays a = np.arange(7) b = np.ones(7) c = np.zeros(7) np.add(a, b, out=c, where=(a % 2 == 1)) assert_equal(c, [0, 2, 0, 4, 0, 6, 0]) a = np.arange(4).reshape(2, 2) + 2 np.power(a, [2, 3], out=a, where=[[0, 1], [1, 0]]) assert_equal(a, [[2, 27], [16, 5]]) # Broadcasting the where= parameter np.subtract(a, 2, out=a, where=[True, False]) assert_equal(a, [[0, 27], [14, 5]]) def test_where_param_buffer_output(self): # This test is temporarily skipped because it requires # adding masking features to the nditer to work properly # With casting on output a = np.ones(10, np.int64) b = np.ones(10, np.int64) c = 1.5 * np.ones(10, np.float64) np.add(a, b, out=c, where=[1, 0, 0, 1, 0, 0, 1, 1, 1, 0]) assert_equal(c, [2, 1.5, 1.5, 2, 1.5, 1.5, 2, 2, 2, 1.5]) def test_where_param_alloc(self): # With casting and allocated output a = np.array([1], dtype=np.int64) m = np.array([True], dtype=bool) assert_equal(np.sqrt(a, where=m), [1]) # No casting and allocated output a = np.array([1], dtype=np.float64) m = np.array([True], dtype=bool) assert_equal(np.sqrt(a, where=m), [1]) def test_where_with_broadcasting(self): # See gh-17198 a = np.random.random((5000, 4)) b = np.random.random((5000, 1)) where = a > 0.3 out = np.full_like(a, 0) np.less(a, b, where=where, out=out) b_where = np.broadcast_to(b, a.shape)[where] assert_array_equal((a[where] < b_where), out[where].astype(bool)) assert not out[~where].any() # outside mask, out remains all 0 @staticmethod def identityless_reduce_arrs(): yield np.empty((2, 3, 4), order='C') yield np.empty((2, 3, 4), order='F') # Mixed order (reduce order differs outer) yield np.empty((2, 4, 3), order='C').swapaxes(1, 2) # Reversed order yield np.empty((2, 3, 4), order='C')[::-1, ::-1, ::-1] # Not contiguous yield np.empty((3, 5, 4), order='C').swapaxes(1, 2)[1:, 1:, 1:] # Not contiguous and not aligned a = np.empty((3*4*5*8 + 1,), dtype='i1') a = a[1:].view(dtype='f8') a.shape = (3, 4, 5) a = a[1:, 1:, 1:] yield a @pytest.mark.parametrize("a", identityless_reduce_arrs()) @pytest.mark.parametrize("pos", [(1, 0, 0), (0, 1, 0), (0, 0, 1)]) def test_identityless_reduction(self, a, pos): # np.minimum.reduce is an identityless reduction a[...] = 1 a[pos] = 0 for axis in [None, (0, 1), (0, 2), (1, 2), 0, 1, 2, ()]: if axis is None: axes = np.array([], dtype=np.intp) else: axes = np.delete(np.arange(a.ndim), axis) expected_pos = tuple(np.array(pos)[axes]) expected = np.ones(np.array(a.shape)[axes]) expected[expected_pos] = 0 res = np.minimum.reduce(a, axis=axis) assert_equal(res, expected, strict=True) res = np.full_like(res, np.nan) np.minimum.reduce(a, axis=axis, out=res) assert_equal(res, expected, strict=True) @requires_memory(6 * 1024**3) @pytest.mark.skipif(sys.maxsize < 2**32, reason="test array too large for 32bit platform") def test_identityless_reduction_huge_array(self): # Regression test for gh-20921 (copying identity incorrectly failed) arr = np.zeros((2, 2**31), 'uint8') arr[:, 0] = [1, 3] arr[:, -1] = [4, 1] res = np.maximum.reduce(arr, axis=0) del arr assert res[0] == 3 assert res[-1] == 4 def test_reduce_identity_depends_on_loop(self): """ The type of the result should always depend on the selected loop, not necessarily the output (only relevant for object arrays). """ # For an object loop, the default value 0 with type int is used: assert type(np.add.reduce([], dtype=object)) is int out = np.array(None, dtype=object) # When the loop is float64 but `out` is object this does not happen, # the result is float64 cast to object (which gives Python `float`). np.add.reduce([], out=out, dtype=np.float64) assert type(out[()]) is float def test_initial_reduction(self): # np.minimum.reduce is an identityless reduction # For cases like np.maximum(np.abs(...), initial=0) # More generally, a supremum over non-negative numbers. assert_equal(np.maximum.reduce([], initial=0), 0) # For cases like reduction of an empty array over the reals. assert_equal(np.minimum.reduce([], initial=np.inf), np.inf) assert_equal(np.maximum.reduce([], initial=-np.inf), -np.inf) # Random tests assert_equal(np.minimum.reduce([5], initial=4), 4) assert_equal(np.maximum.reduce([4], initial=5), 5) assert_equal(np.maximum.reduce([5], initial=4), 5) assert_equal(np.minimum.reduce([4], initial=5), 4) # Check initial=None raises ValueError for both types of ufunc reductions assert_raises(ValueError, np.minimum.reduce, [], initial=None) assert_raises(ValueError, np.add.reduce, [], initial=None) # Also in the somewhat special object case: with pytest.raises(ValueError): np.add.reduce([], initial=None, dtype=object) # Check that np._NoValue gives default behavior. assert_equal(np.add.reduce([], initial=np._NoValue), 0) # Check that initial kwarg behaves as intended for dtype=object a = np.array([10], dtype=object) res = np.add.reduce(a, initial=5) assert_equal(res, 15) def test_empty_reduction_and_identity(self): arr = np.zeros((0, 5)) # OK, since the reduction itself is *not* empty, the result is assert np.true_divide.reduce(arr, axis=1).shape == (0,) # Not OK, the reduction itself is empty and we have no identity with pytest.raises(ValueError): np.true_divide.reduce(arr, axis=0) # Test that an empty reduction fails also if the result is empty arr = np.zeros((0, 0, 5)) with pytest.raises(ValueError): np.true_divide.reduce(arr, axis=1) # Division reduction makes sense with `initial=1` (empty or not): res = np.true_divide.reduce(arr, axis=1, initial=1) assert_array_equal(res, np.ones((0, 5))) @pytest.mark.parametrize('axis', (0, 1, None)) @pytest.mark.parametrize('where', (np.array([False, True, True]), np.array([[True], [False], [True]]), np.array([[True, False, False], [False, True, False], [False, True, True]]))) def test_reduction_with_where(self, axis, where): a = np.arange(9.).reshape(3, 3) a_copy = a.copy() a_check = np.zeros_like(a) np.positive(a, out=a_check, where=where) res = np.add.reduce(a, axis=axis, where=where) check = a_check.sum(axis) assert_equal(res, check) # Check we do not overwrite elements of a internally. assert_array_equal(a, a_copy) @pytest.mark.parametrize(('axis', 'where'), ((0, np.array([True, False, True])), (1, [True, True, False]), (None, True))) @pytest.mark.parametrize('initial', (-np.inf, 5.)) def test_reduction_with_where_and_initial(self, axis, where, initial): a = np.arange(9.).reshape(3, 3) a_copy = a.copy() a_check = np.full(a.shape, -np.inf) np.positive(a, out=a_check, where=where) res = np.maximum.reduce(a, axis=axis, where=where, initial=initial) check = a_check.max(axis, initial=initial) assert_equal(res, check) def test_reduction_where_initial_needed(self): a = np.arange(9.).reshape(3, 3) m = [False, True, False] assert_raises(ValueError, np.maximum.reduce, a, where=m) def test_identityless_reduction_nonreorderable(self): a = np.array([[8.0, 2.0, 2.0], [1.0, 0.5, 0.25]]) res = np.divide.reduce(a, axis=0) assert_equal(res, [8.0, 4.0, 8.0]) res = np.divide.reduce(a, axis=1) assert_equal(res, [2.0, 8.0]) res = np.divide.reduce(a, axis=()) assert_equal(res, a) assert_raises(ValueError, np.divide.reduce, a, axis=(0, 1)) def test_reduce_zero_axis(self): # If we have a n x m array and do a reduction with axis=1, then we are # doing n reductions, and each reduction takes an m-element array. For # a reduction operation without an identity, then: # n > 0, m > 0: fine # n = 0, m > 0: fine, doing 0 reductions of m-element arrays # n > 0, m = 0: can't reduce a 0-element array, ValueError # n = 0, m = 0: can't reduce a 0-element array, ValueError (for # consistency with the above case) # This test doesn't actually look at return values, it just checks to # make sure that error we get an error in exactly those cases where we # expect one, and assumes the calculations themselves are done # correctly. def ok(f, *args, **kwargs): f(*args, **kwargs) def err(f, *args, **kwargs): assert_raises(ValueError, f, *args, **kwargs) def t(expect, func, n, m): expect(func, np.zeros((n, m)), axis=1) expect(func, np.zeros((m, n)), axis=0) expect(func, np.zeros((n // 2, n // 2, m)), axis=2) expect(func, np.zeros((n // 2, m, n // 2)), axis=1) expect(func, np.zeros((n, m // 2, m // 2)), axis=(1, 2)) expect(func, np.zeros((m // 2, n, m // 2)), axis=(0, 2)) expect(func, np.zeros((m // 3, m // 3, m // 3, n // 2, n // 2)), axis=(0, 1, 2)) # Check what happens if the inner (resp. outer) dimensions are a # mix of zero and non-zero: expect(func, np.zeros((10, m, n)), axis=(0, 1)) expect(func, np.zeros((10, n, m)), axis=(0, 2)) expect(func, np.zeros((m, 10, n)), axis=0) expect(func, np.zeros((10, m, n)), axis=1) expect(func, np.zeros((10, n, m)), axis=2) # np.maximum is just an arbitrary ufunc with no reduction identity assert_equal(np.maximum.identity, None) t(ok, np.maximum.reduce, 30, 30) t(ok, np.maximum.reduce, 0, 30) t(err, np.maximum.reduce, 30, 0) t(err, np.maximum.reduce, 0, 0) err(np.maximum.reduce, []) np.maximum.reduce(np.zeros((0, 0)), axis=()) # all of the combinations are fine for a reduction that has an # identity t(ok, np.add.reduce, 30, 30) t(ok, np.add.reduce, 0, 30) t(ok, np.add.reduce, 30, 0) t(ok, np.add.reduce, 0, 0) np.add.reduce([]) np.add.reduce(np.zeros((0, 0)), axis=()) # OTOH, accumulate always makes sense for any combination of n and m, # because it maps an m-element array to an m-element array. These # tests are simpler because accumulate doesn't accept multiple axes. for uf in (np.maximum, np.add): uf.accumulate(np.zeros((30, 0)), axis=0) uf.accumulate(np.zeros((0, 30)), axis=0) uf.accumulate(np.zeros((30, 30)), axis=0) uf.accumulate(np.zeros((0, 0)), axis=0) def test_safe_casting(self): # In old versions of numpy, in-place operations used the 'unsafe' # casting rules. In versions >= 1.10, 'same_kind' is the # default and an exception is raised instead of a warning. # when 'same_kind' is not satisfied. a = np.array([1, 2, 3], dtype=int) # Non-in-place addition is fine assert_array_equal(assert_no_warnings(np.add, a, 1.1), [2.1, 3.1, 4.1]) assert_raises(TypeError, np.add, a, 1.1, out=a) def add_inplace(a, b): a += b assert_raises(TypeError, add_inplace, a, 1.1) # Make sure that explicitly overriding the exception is allowed: assert_no_warnings(np.add, a, 1.1, out=a, casting="unsafe") assert_array_equal(a, [2, 3, 4]) def test_ufunc_custom_out(self): # Test ufunc with built in input types and custom output type a = np.array([0, 1, 2], dtype='i8') b = np.array([0, 1, 2], dtype='i8') c = np.empty(3, dtype=_rational_tests.rational) # Output must be specified so numpy knows what # ufunc signature to look for result = _rational_tests.test_add(a, b, c) target = np.array([0, 2, 4], dtype=_rational_tests.rational) assert_equal(result, target) # The new resolution means that we can (usually) find custom loops # as long as they match exactly: result = _rational_tests.test_add(a, b) assert_equal(result, target) # This works even more generally, so long the default common-dtype # promoter works out: result = _rational_tests.test_add(a, b.astype(np.uint16), out=c) assert_equal(result, target) # This scalar path used to go into legacy promotion, but doesn't now: result = _rational_tests.test_add(a, np.uint16(2)) target = np.array([2, 3, 4], dtype=_rational_tests.rational) assert_equal(result, target) def test_operand_flags(self): a = np.arange(16, dtype=int).reshape(4, 4) b = np.arange(9, dtype=int).reshape(3, 3) opflag_tests.inplace_add(a[:-1, :-1], b) assert_equal(a, np.array([[0, 2, 4, 3], [7, 9, 11, 7], [14, 16, 18, 11], [12, 13, 14, 15]])) a = np.array(0) opflag_tests.inplace_add(a, 3) assert_equal(a, 3) opflag_tests.inplace_add(a, [3, 4]) assert_equal(a, 10) def test_struct_ufunc(self): import numpy._core._struct_ufunc_tests as struct_ufunc a = np.array([(1, 2, 3)], dtype='u8,u8,u8') b = np.array([(1, 2, 3)], dtype='u8,u8,u8') result = struct_ufunc.add_triplet(a, b) assert_equal(result, np.array([(2, 4, 6)], dtype='u8,u8,u8')) assert_raises(RuntimeError, struct_ufunc.register_fail) def test_custom_ufunc(self): a = np.array( [_rational_tests.rational(1, 2), _rational_tests.rational(1, 3), _rational_tests.rational(1, 4)], dtype=_rational_tests.rational) b = np.array( [_rational_tests.rational(1, 2), _rational_tests.rational(1, 3), _rational_tests.rational(1, 4)], dtype=_rational_tests.rational) result = _rational_tests.test_add_rationals(a, b) expected = np.array( [_rational_tests.rational(1), _rational_tests.rational(2, 3), _rational_tests.rational(1, 2)], dtype=_rational_tests.rational) assert_equal(result, expected) def test_custom_ufunc_forced_sig(self): # gh-9351 - looking for a non-first userloop would previously hang with assert_raises(TypeError): np.multiply(_rational_tests.rational(1), 1, signature=(_rational_tests.rational, int, None)) def test_custom_array_like(self): class MyThing: __array_priority__ = 1000 rmul_count = 0 getitem_count = 0 def __init__(self, shape): self.shape = shape def __len__(self): return self.shape[0] def __getitem__(self, i): MyThing.getitem_count += 1 if not isinstance(i, tuple): i = (i,) if len(i) > self.ndim: raise IndexError("boo") return MyThing(self.shape[len(i):]) def __rmul__(self, other): MyThing.rmul_count += 1 return self np.float64(5)*MyThing((3, 3)) assert_(MyThing.rmul_count == 1, MyThing.rmul_count) assert_(MyThing.getitem_count <= 2, MyThing.getitem_count) @pytest.mark.parametrize("a", ( np.arange(10, dtype=int), np.arange(10, dtype=_rational_tests.rational), )) def test_ufunc_at_basic(self, a): aa = a.copy() np.add.at(aa, [2, 5, 2], 1) assert_equal(aa, [0, 1, 4, 3, 4, 6, 6, 7, 8, 9]) with pytest.raises(ValueError): # missing second operand np.add.at(aa, [2, 5, 3]) aa = a.copy() np.negative.at(aa, [2, 5, 3]) assert_equal(aa, [0, 1, -2, -3, 4, -5, 6, 7, 8, 9]) aa = a.copy() b = np.array([100, 100, 100]) np.add.at(aa, [2, 5, 2], b) assert_equal(aa, [0, 1, 202, 3, 4, 105, 6, 7, 8, 9]) with pytest.raises(ValueError): # extraneous second operand np.negative.at(a, [2, 5, 3], [1, 2, 3]) with pytest.raises(ValueError): # second operand cannot be converted to an array np.add.at(a, [2, 5, 3], [[1, 2], 1]) # ufuncs with indexed loops for performance in ufunc.at indexed_ufuncs = [np.add, np.subtract, np.multiply, np.floor_divide, np.maximum, np.minimum, np.fmax, np.fmin] @pytest.mark.parametrize( "typecode", np.typecodes['AllInteger'] + np.typecodes['Float']) @pytest.mark.parametrize("ufunc", indexed_ufuncs) def test_ufunc_at_inner_loops(self, typecode, ufunc): if ufunc is np.divide and typecode in np.typecodes['AllInteger']: # Avoid divide-by-zero and inf for integer divide a = np.ones(100, dtype=typecode) indx = np.random.randint(100, size=30, dtype=np.intp) vals = np.arange(1, 31, dtype=typecode) else: a = np.ones(1000, dtype=typecode) indx = np.random.randint(1000, size=3000, dtype=np.intp) vals = np.arange(3000, dtype=typecode) atag = a.copy() # Do the calculation twice and compare the answers with warnings.catch_warnings(record=True) as w_at: warnings.simplefilter('always') ufunc.at(a, indx, vals) with warnings.catch_warnings(record=True) as w_loop: warnings.simplefilter('always') for i, v in zip(indx, vals): # Make sure all the work happens inside the ufunc # in order to duplicate error/warning handling ufunc(atag[i], v, out=atag[i:i+1], casting="unsafe") assert_equal(atag, a) # If w_loop warned, make sure w_at warned as well if len(w_loop) > 0: # assert len(w_at) > 0 assert w_at[0].category == w_loop[0].category assert str(w_at[0].message)[:10] == str(w_loop[0].message)[:10] @pytest.mark.parametrize("typecode", np.typecodes['Complex']) @pytest.mark.parametrize("ufunc", [np.add, np.subtract, np.multiply]) def test_ufunc_at_inner_loops_complex(self, typecode, ufunc): a = np.ones(10, dtype=typecode) indx = np.concatenate([np.ones(6, dtype=np.intp), np.full(18, 4, dtype=np.intp)]) value = a.dtype.type(1j) ufunc.at(a, indx, value) expected = np.ones_like(a) if ufunc is np.multiply: expected[1] = expected[4] = -1 else: expected[1] += 6 * (value if ufunc is np.add else -value) expected[4] += 18 * (value if ufunc is np.add else -value) assert_array_equal(a, expected) def test_ufunc_at_ellipsis(self): # Make sure the indexed loop check does not choke on iters # with subspaces arr = np.zeros(5) np.add.at(arr, slice(None), np.ones(5)) assert_array_equal(arr, np.ones(5)) def test_ufunc_at_negative(self): arr = np.ones(5, dtype=np.int32) indx = np.arange(5) umt.indexed_negative.at(arr, indx) # If it is [-1, -1, -1, -100, 0] then the regular strided loop was used assert np.all(arr == [-1, -1, -1, -200, -1]) def test_ufunc_at_large(self): # issue gh-23457 indices = np.zeros(8195, dtype=np.int16) b = np.zeros(8195, dtype=float) b[0] = 10 b[1] = 5 b[8192:] = 100 a = np.zeros(1, dtype=float) np.add.at(a, indices, b) assert a[0] == b.sum() def test_cast_index_fastpath(self): arr = np.zeros(10) values = np.ones(100000) # index must be cast, which may be buffered in chunks: index = np.zeros(len(values), dtype=np.uint8) np.add.at(arr, index, values) assert arr[0] == len(values) @pytest.mark.parametrize("value", [ np.ones(1), np.ones(()), np.float64(1.), 1.]) def test_ufunc_at_scalar_value_fastpath(self, value): arr = np.zeros(1000) # index must be cast, which may be buffered in chunks: index = np.repeat(np.arange(1000), 2) np.add.at(arr, index, value) assert_array_equal(arr, np.full_like(arr, 2 * value)) def test_ufunc_at_multiD(self): a = np.arange(9).reshape(3, 3) b = np.array([[100, 100, 100], [200, 200, 200], [300, 300, 300]]) np.add.at(a, (slice(None), [1, 2, 1]), b) assert_equal(a, [[0, 201, 102], [3, 404, 205], [6, 607, 308]]) a = np.arange(27).reshape(3, 3, 3) b = np.array([100, 200, 300]) np.add.at(a, (slice(None), slice(None), [1, 2, 1]), b) assert_equal(a, [[[0, 401, 202], [3, 404, 205], [6, 407, 208]], [[9, 410, 211], [12, 413, 214], [15, 416, 217]], [[18, 419, 220], [21, 422, 223], [24, 425, 226]]]) a = np.arange(9).reshape(3, 3) b = np.array([[100, 100, 100], [200, 200, 200], [300, 300, 300]]) np.add.at(a, ([1, 2, 1], slice(None)), b) assert_equal(a, [[0, 1, 2], [403, 404, 405], [206, 207, 208]]) a = np.arange(27).reshape(3, 3, 3) b = np.array([100, 200, 300]) np.add.at(a, (slice(None), [1, 2, 1], slice(None)), b) assert_equal(a, [[[0, 1, 2], [203, 404, 605], [106, 207, 308]], [[9, 10, 11], [212, 413, 614], [115, 216, 317]], [[18, 19, 20], [221, 422, 623], [124, 225, 326]]]) a = np.arange(9).reshape(3, 3) b = np.array([100, 200, 300]) np.add.at(a, (0, [1, 2, 1]), b) assert_equal(a, [[0, 401, 202], [3, 4, 5], [6, 7, 8]]) a = np.arange(27).reshape(3, 3, 3) b = np.array([100, 200, 300]) np.add.at(a, ([1, 2, 1], 0, slice(None)), b) assert_equal(a, [[[0, 1, 2], [3, 4, 5], [6, 7, 8]], [[209, 410, 611], [12, 13, 14], [15, 16, 17]], [[118, 219, 320], [21, 22, 23], [24, 25, 26]]]) a = np.arange(27).reshape(3, 3, 3) b = np.array([100, 200, 300]) np.add.at(a, (slice(None), slice(None), slice(None)), b) assert_equal(a, [[[100, 201, 302], [103, 204, 305], [106, 207, 308]], [[109, 210, 311], [112, 213, 314], [115, 216, 317]], [[118, 219, 320], [121, 222, 323], [124, 225, 326]]]) def test_ufunc_at_0D(self): a = np.array(0) np.add.at(a, (), 1) assert_equal(a, 1) assert_raises(IndexError, np.add.at, a, 0, 1) assert_raises(IndexError, np.add.at, a, [], 1) def test_ufunc_at_dtypes(self): # Test mixed dtypes a = np.arange(10) np.power.at(a, [1, 2, 3, 2], 3.5) assert_equal(a, np.array([0, 1, 4414, 46, 4, 5, 6, 7, 8, 9])) def test_ufunc_at_boolean(self): # Test boolean indexing and boolean ufuncs a = np.arange(10) index = a % 2 == 0 np.equal.at(a, index, [0, 2, 4, 6, 8]) assert_equal(a, [1, 1, 1, 3, 1, 5, 1, 7, 1, 9]) # Test unary operator a = np.arange(10, dtype='u4') np.invert.at(a, [2, 5, 2]) assert_equal(a, [0, 1, 2, 3, 4, 5 ^ 0xffffffff, 6, 7, 8, 9]) def test_ufunc_at_advanced(self): # Test empty subspace orig = np.arange(4) a = orig[:, None][:, 0:0] np.add.at(a, [0, 1], 3) assert_array_equal(orig, np.arange(4)) # Test with swapped byte order index = np.array([1, 2, 1], np.dtype('i').newbyteorder()) values = np.array([1, 2, 3, 4], np.dtype('f').newbyteorder()) np.add.at(values, index, 3) assert_array_equal(values, [1, 8, 6, 4]) # Test exception thrown values = np.array(['a', 1], dtype=object) assert_raises(TypeError, np.add.at, values, [0, 1], 1) assert_array_equal(values, np.array(['a', 1], dtype=object)) # Test multiple output ufuncs raise error, gh-5665 assert_raises(ValueError, np.modf.at, np.arange(10), [1]) # Test maximum a = np.array([1, 2, 3]) np.maximum.at(a, [0], 0) assert_equal(a, np.array([1, 2, 3])) @pytest.mark.parametrize("dtype", np.typecodes['AllInteger'] + np.typecodes['Float']) @pytest.mark.parametrize("ufunc", [np.add, np.subtract, np.divide, np.minimum, np.maximum]) def test_at_negative_indexes(self, dtype, ufunc): a = np.arange(0, 10).astype(dtype) indxs = np.array([-1, 1, -1, 2]).astype(np.intp) vals = np.array([1, 5, 2, 10], dtype=a.dtype) expected = a.copy() for i, v in zip(indxs, vals): expected[i] = ufunc(expected[i], v) ufunc.at(a, indxs, vals) assert_array_equal(a, expected) assert np.all(indxs == [-1, 1, -1, 2]) def test_at_not_none_signature(self): # Test ufuncs with non-trivial signature raise a TypeError a = np.ones((2, 2, 2)) b = np.ones((1, 2, 2)) assert_raises(TypeError, np.matmul.at, a, [0], b) a = np.array([[[1, 2], [3, 4]]]) assert_raises(TypeError, np.linalg._umath_linalg.det.at, a, [0]) def test_at_no_loop_for_op(self): # str dtype does not have a ufunc loop for np.add arr = np.ones(10, dtype=str) with pytest.raises(np._core._exceptions._UFuncNoLoopError): np.add.at(arr, [0, 1], [0, 1]) def test_at_output_casting(self): arr = np.array([-1]) np.equal.at(arr, [0], [0]) assert arr[0] == 0 def test_at_broadcast_failure(self): arr = np.arange(5) with pytest.raises(ValueError): np.add.at(arr, [0, 1], [1, 2, 3]) def test_reduce_arguments(self): f = np.add.reduce d = np.ones((5,2), dtype=int) o = np.ones((2,), dtype=d.dtype) r = o * 5 assert_equal(f(d), r) # a, axis=0, dtype=None, out=None, keepdims=False assert_equal(f(d, axis=0), r) assert_equal(f(d, 0), r) assert_equal(f(d, 0, dtype=None), r) assert_equal(f(d, 0, dtype='i'), r) assert_equal(f(d, 0, 'i'), r) assert_equal(f(d, 0, None), r) assert_equal(f(d, 0, None, out=None), r) assert_equal(f(d, 0, None, out=o), r) assert_equal(f(d, 0, None, o), r) assert_equal(f(d, 0, None, None), r) assert_equal(f(d, 0, None, None, keepdims=False), r) assert_equal(f(d, 0, None, None, True), r.reshape((1,) + r.shape)) assert_equal(f(d, 0, None, None, False, 0), r) assert_equal(f(d, 0, None, None, False, initial=0), r) assert_equal(f(d, 0, None, None, False, 0, True), r) assert_equal(f(d, 0, None, None, False, 0, where=True), r) # multiple keywords assert_equal(f(d, axis=0, dtype=None, out=None, keepdims=False), r) assert_equal(f(d, 0, dtype=None, out=None, keepdims=False), r) assert_equal(f(d, 0, None, out=None, keepdims=False), r) assert_equal(f(d, 0, None, out=None, keepdims=False, initial=0, where=True), r) # too little assert_raises(TypeError, f) # too much assert_raises(TypeError, f, d, 0, None, None, False, 0, True, 1) # invalid axis assert_raises(TypeError, f, d, "invalid") assert_raises(TypeError, f, d, axis="invalid") assert_raises(TypeError, f, d, axis="invalid", dtype=None, keepdims=True) # invalid dtype assert_raises(TypeError, f, d, 0, "invalid") assert_raises(TypeError, f, d, dtype="invalid") assert_raises(TypeError, f, d, dtype="invalid", out=None) # invalid out assert_raises(TypeError, f, d, 0, None, "invalid") assert_raises(TypeError, f, d, out="invalid") assert_raises(TypeError, f, d, out="invalid", dtype=None) # keepdims boolean, no invalid value # assert_raises(TypeError, f, d, 0, None, None, "invalid") # assert_raises(TypeError, f, d, keepdims="invalid", axis=0, dtype=None) # invalid mix assert_raises(TypeError, f, d, 0, keepdims="invalid", dtype="invalid", out=None) # invalid keyword assert_raises(TypeError, f, d, axis=0, dtype=None, invalid=0) assert_raises(TypeError, f, d, invalid=0) assert_raises(TypeError, f, d, 0, keepdims=True, invalid="invalid", out=None) assert_raises(TypeError, f, d, axis=0, dtype=None, keepdims=True, out=None, invalid=0) assert_raises(TypeError, f, d, axis=0, dtype=None, out=None, invalid=0) def test_structured_equal(self): # https://github.com/numpy/numpy/issues/4855 class MyA(np.ndarray): def __array_ufunc__(self, ufunc, method, *inputs, **kwargs): return getattr(ufunc, method)(*(input.view(np.ndarray) for input in inputs), **kwargs) a = np.arange(12.).reshape(4,3) ra = a.view(dtype=('f8,f8,f8')).squeeze() mra = ra.view(MyA) target = np.array([ True, False, False, False], dtype=bool) assert_equal(np.all(target == (mra == ra[0])), True) def test_scalar_equal(self): # Scalar comparisons should always work, without deprecation warnings. # even when the ufunc fails. a = np.array(0.) b = np.array('a') assert_(a != b) assert_(b != a) assert_(not (a == b)) assert_(not (b == a)) def test_NotImplemented_not_returned(self): # See gh-5964 and gh-2091. Some of these functions are not operator # related and were fixed for other reasons in the past. binary_funcs = [ np.power, np.add, np.subtract, np.multiply, np.divide, np.true_divide, np.floor_divide, np.bitwise_and, np.bitwise_or, np.bitwise_xor, np.left_shift, np.right_shift, np.fmax, np.fmin, np.fmod, np.hypot, np.logaddexp, np.logaddexp2, np.maximum, np.minimum, np.mod, np.greater, np.greater_equal, np.less, np.less_equal, np.equal, np.not_equal] a = np.array('1') b = 1 c = np.array([1., 2.]) for f in binary_funcs: assert_raises(TypeError, f, a, b) assert_raises(TypeError, f, c, a) @pytest.mark.parametrize("ufunc", [np.logical_and, np.logical_or]) # logical_xor object loop is bad @pytest.mark.parametrize("signature", [(None, None, object), (object, None, None), (None, object, None)]) def test_logical_ufuncs_object_signatures(self, ufunc, signature): a = np.array([True, None, False], dtype=object) res = ufunc(a, a, signature=signature) assert res.dtype == object @pytest.mark.parametrize("ufunc", [np.logical_and, np.logical_or, np.logical_xor]) @pytest.mark.parametrize("signature", [(bool, None, object), (object, None, bool), (None, object, bool)]) def test_logical_ufuncs_mixed_object_signatures(self, ufunc, signature): # Most mixed signatures fail (except those with bool out, e.g. `OO->?`) a = np.array([True, None, False]) with pytest.raises(TypeError): ufunc(a, a, signature=signature) @pytest.mark.parametrize("ufunc", [np.logical_and, np.logical_or, np.logical_xor]) def test_logical_ufuncs_support_anything(self, ufunc): # The logical ufuncs support even input that can't be promoted: a = np.array(b'1', dtype="V3") c = np.array([1., 2.]) assert_array_equal(ufunc(a, c), ufunc([True, True], True)) assert ufunc.reduce(a) == True # check that the output has no effect: out = np.zeros(2, dtype=np.int32) expected = ufunc([True, True], True).astype(out.dtype) assert_array_equal(ufunc(a, c, out=out), expected) out = np.zeros((), dtype=np.int32) assert ufunc.reduce(a, out=out) == True # Last check, test reduction when out and a match (the complexity here # is that the "i,i->?" may seem right, but should not match. a = np.array([3], dtype="i") out = np.zeros((), dtype=a.dtype) assert ufunc.reduce(a, out=out) == 1 @pytest.mark.parametrize("ufunc", [np.logical_and, np.logical_or, np.logical_xor]) @pytest.mark.parametrize("dtype", ["S", "U"]) @pytest.mark.parametrize("values", [["1", "hi", "0"], ["", ""]]) def test_logical_ufuncs_supports_string(self, ufunc, dtype, values): # note that values are either all true or all false arr = np.array(values, dtype=dtype) obj_arr = np.array(values, dtype=object) res = ufunc(arr, arr) expected = ufunc(obj_arr, obj_arr, dtype=bool) assert_array_equal(res, expected) res = ufunc.reduce(arr) expected = ufunc.reduce(obj_arr, dtype=bool) assert_array_equal(res, expected) @pytest.mark.parametrize("ufunc", [np.logical_and, np.logical_or, np.logical_xor]) def test_logical_ufuncs_out_cast_check(self, ufunc): a = np.array('1') c = np.array([1., 2.]) out = a.copy() with pytest.raises(TypeError): # It would be safe, but not equiv casting: ufunc(a, c, out=out, casting="equiv") def test_reducelike_byteorder_resolution(self): # See gh-20699, byte-order changes need some extra care in the type # resolution to make the following succeed: arr_be = np.arange(10, dtype=">i8") arr_le = np.arange(10, dtype="<i8") assert np.add.reduce(arr_be) == np.add.reduce(arr_le) assert_array_equal(np.add.accumulate(arr_be), np.add.accumulate(arr_le)) assert_array_equal( np.add.reduceat(arr_be, [1]), np.add.reduceat(arr_le, [1])) def test_reducelike_out_promotes(self): # Check that the out argument to reductions is considered for # promotion. See also gh-20455. # Note that these paths could prefer `initial=` in the future and # do not up-cast to the default integer for add and prod arr = np.ones(1000, dtype=np.uint8) out = np.zeros((), dtype=np.uint16) assert np.add.reduce(arr, out=out) == 1000 arr[:10] = 2 assert np.multiply.reduce(arr, out=out) == 2**10 # For legacy dtypes, the signature currently has to be forced if `out=` # is passed. The two paths below should differ, without `dtype=` the # expected result should be: `np.prod(arr.astype("f8")).astype("f4")`! arr = np.full(5, 2**25-1, dtype=np.int64) # float32 and int64 promote to float64: res = np.zeros((), dtype=np.float32) # If `dtype=` is passed, the calculation is forced to float32: single_res = np.zeros((), dtype=np.float32) np.multiply.reduce(arr, out=single_res, dtype=np.float32) assert single_res != res def test_reducelike_output_needs_identical_cast(self): # Checks the case where a simple byte-swap works, mainly tests that # this is not rejected directly. # (interesting because we require descriptor identity in reducelikes). arr = np.ones(20, dtype="f8") out = np.empty((), dtype=arr.dtype.newbyteorder()) expected = np.add.reduce(arr) np.add.reduce(arr, out=out) assert_array_equal(expected, out) # Check reduceat: out = np.empty(2, dtype=arr.dtype.newbyteorder()) expected = np.add.reduceat(arr, [0, 1]) np.add.reduceat(arr, [0, 1], out=out) assert_array_equal(expected, out) # And accumulate: out = np.empty(arr.shape, dtype=arr.dtype.newbyteorder()) expected = np.add.accumulate(arr) np.add.accumulate(arr, out=out) assert_array_equal(expected, out) def test_reduce_noncontig_output(self): # Check that reduction deals with non-contiguous output arrays # appropriately. # # gh-8036 x = np.arange(7*13*8, dtype=np.int16).reshape(7, 13, 8) x = x[4:6,1:11:6,1:5].transpose(1, 2, 0) y_base = np.arange(4*4, dtype=np.int16).reshape(4, 4) y = y_base[::2,:] y_base_copy = y_base.copy() r0 = np.add.reduce(x, out=y.copy(), axis=2) r1 = np.add.reduce(x, out=y, axis=2) # The results should match, and y_base shouldn't get clobbered assert_equal(r0, r1) assert_equal(y_base[1,:], y_base_copy[1,:]) assert_equal(y_base[3,:], y_base_copy[3,:]) @pytest.mark.parametrize("with_cast", [True, False]) def test_reduceat_and_accumulate_out_shape_mismatch(self, with_cast): # Should raise an error mentioning "shape" or "size" arr = np.arange(5) out = np.arange(3) # definitely wrong shape if with_cast: # If a cast is necessary on the output, we can be sure to use # the generic NpyIter (non-fast) path. out = out.astype(np.float64) with pytest.raises(ValueError, match="(shape|size)"): np.add.reduceat(arr, [0, 3], out=out) with pytest.raises(ValueError, match="(shape|size)"): np.add.accumulate(arr, out=out) @pytest.mark.parametrize('out_shape', [(), (1,), (3,), (1, 1), (1, 3), (4, 3)]) @pytest.mark.parametrize('keepdims', [True, False]) @pytest.mark.parametrize('f_reduce', [np.add.reduce, np.minimum.reduce]) def test_reduce_wrong_dimension_output(self, f_reduce, keepdims, out_shape): # Test that we're not incorrectly broadcasting dimensions. # See gh-15144 (failed for np.add.reduce previously). a = np.arange(12.).reshape(4, 3) out = np.empty(out_shape, a.dtype) correct_out = f_reduce(a, axis=0, keepdims=keepdims) if out_shape != correct_out.shape: with assert_raises(ValueError): f_reduce(a, axis=0, out=out, keepdims=keepdims) else: check = f_reduce(a, axis=0, out=out, keepdims=keepdims) assert_(check is out) assert_array_equal(check, correct_out) def test_reduce_output_does_not_broadcast_input(self): # Test that the output shape cannot broadcast an input dimension # (it never can add dimensions, but it might expand an existing one) a = np.ones((1, 10)) out_correct = (np.empty((1, 1))) out_incorrect = np.empty((3, 1)) np.add.reduce(a, axis=-1, out=out_correct, keepdims=True) np.add.reduce(a, axis=-1, out=out_correct[:, 0], keepdims=False) with assert_raises(ValueError): np.add.reduce(a, axis=-1, out=out_incorrect, keepdims=True) with assert_raises(ValueError): np.add.reduce(a, axis=-1, out=out_incorrect[:, 0], keepdims=False) def test_reduce_output_subclass_ok(self): class MyArr(np.ndarray): pass out = np.empty(()) np.add.reduce(np.ones(5), out=out) # no subclass, all fine out = out.view(MyArr) assert np.add.reduce(np.ones(5), out=out) is out assert type(np.add.reduce(out)) is MyArr def test_no_doc_string(self): # gh-9337 assert_('\n' not in umt.inner1d_no_doc.__doc__) def test_invalid_args(self): # gh-7961 exc = pytest.raises(TypeError, np.sqrt, None) # minimally check the exception text assert exc.match('loop of ufunc does not support') @pytest.mark.parametrize('nat', [np.datetime64('nat'), np.timedelta64('nat')]) def test_nat_is_not_finite(self, nat): try: assert not np.isfinite(nat) except TypeError: pass # ok, just not implemented @pytest.mark.parametrize('nat', [np.datetime64('nat'), np.timedelta64('nat')]) def test_nat_is_nan(self, nat): try: assert np.isnan(nat) except TypeError: pass # ok, just not implemented @pytest.mark.parametrize('nat', [np.datetime64('nat'), np.timedelta64('nat')]) def test_nat_is_not_inf(self, nat): try: assert not np.isinf(nat) except TypeError: pass # ok, just not implemented class TestGUFuncProcessCoreDims: def test_conv1d_full_without_out(self): x = np.arange(5.0) y = np.arange(13.0) w = umt.conv1d_full(x, y) assert_equal(w, np.convolve(x, y, mode='full')) def test_conv1d_full_with_out(self): x = np.arange(5.0) y = np.arange(13.0) out = np.zeros(len(x) + len(y) - 1) umt.conv1d_full(x, y, out=out) assert_equal(out, np.convolve(x, y, mode='full')) def test_conv1d_full_basic_broadcast(self): # x.shape is (3, 6) x = np.array([[1, 3, 0, -10, 2, 2], [0, -1, 2, 2, 10, 4], [8, 9, 10, 2, 23, 3]]) # y.shape is (2, 1, 7) y = np.array([[[3, 4, 5, 20, 30, 40, 29]], [[5, 6, 7, 10, 11, 12, -5]]]) # result should have shape (2, 3, 12) result = umt.conv1d_full(x, y) assert result.shape == (2, 3, 12) for i in range(2): for j in range(3): assert_equal(result[i, j], np.convolve(x[j], y[i, 0])) def test_bad_out_shape(self): x = np.ones((1, 2)) y = np.ones((2, 3)) out = np.zeros((2, 3)) # Not the correct shape. with pytest.raises(ValueError, match=r'does not equal m \+ n - 1'): umt.conv1d_full(x, y, out=out) def test_bad_input_both_inputs_length_zero(self): with pytest.raises(ValueError, match='both inputs have core dimension 0'): umt.conv1d_full([], []) @pytest.mark.parametrize('ufunc', [getattr(np, x) for x in dir(np) if isinstance(getattr(np, x), np.ufunc)]) def test_ufunc_types(ufunc): ''' Check all ufuncs that the correct type is returned. Avoid object and boolean types since many operations are not defined for for them. Choose the shape so even dot and matmul will succeed ''' for typ in ufunc.types: # types is a list of strings like ii->i if 'O' in typ or '?' in typ: continue inp, out = typ.split('->') args = [np.ones((3, 3), t) for t in inp] with warnings.catch_warnings(record=True): warnings.filterwarnings("always") res = ufunc(*args) if isinstance(res, tuple): outs = tuple(out) assert len(res) == len(outs) for r, t in zip(res, outs): assert r.dtype == np.dtype(t) else: assert res.dtype == np.dtype(out) @pytest.mark.parametrize('ufunc', [getattr(np, x) for x in dir(np) if isinstance(getattr(np, x), np.ufunc)]) def test_ufunc_noncontiguous(ufunc): ''' Check that contiguous and non-contiguous calls to ufuncs have the same results for values in range(9) ''' for typ in ufunc.types: # types is a list of strings like ii->i if any(set('O?mM') & set(typ)): # bool, object, datetime are too irregular for this simple test continue inp, out = typ.split('->') args_c = [np.empty((6, 6), t) for t in inp] # non contiguous (2, 3 step on the two dimensions) args_n = [np.empty((12, 18), t)[::2, ::3] for t in inp] # alignment != itemsize is possible. So create an array with such # an odd step manually. args_o = [] for t in inp: orig_dt = np.dtype(t) off_dt = f"S{orig_dt.alignment}" # offset by alignment dtype = np.dtype([("_", off_dt), ("t", orig_dt)], align=False) args_o.append(np.empty((6, 6), dtype=dtype)["t"]) for a in args_c + args_n + args_o: a.flat = range(1, 37) with warnings.catch_warnings(record=True): warnings.filterwarnings("always") res_c = ufunc(*args_c) res_n = ufunc(*args_n) res_o = ufunc(*args_o) if len(out) == 1: res_c = (res_c,) res_n = (res_n,) res_o = (res_o,) for c_ar, n_ar, o_ar in zip(res_c, res_n, res_o): dt = c_ar.dtype if np.issubdtype(dt, np.floating): # for floating point results allow a small fuss in comparisons # since different algorithms (libm vs. intrinsics) can be used # for different input strides res_eps = np.finfo(dt).eps tol = 3*res_eps assert_allclose(res_c, res_n, atol=tol, rtol=tol) assert_allclose(res_c, res_o, atol=tol, rtol=tol) else: assert_equal(c_ar, n_ar) assert_equal(c_ar, o_ar) @pytest.mark.parametrize('ufunc', [np.sign, np.equal]) def test_ufunc_warn_with_nan(ufunc): # issue gh-15127 # test that calling certain ufuncs with a non-standard `nan` value does not # emit a warning # `b` holds a 64 bit signaling nan: the most significant bit of the # significand is zero. b = np.array([0x7ff0000000000001], 'i8').view('f8') assert np.isnan(b) if ufunc.nin == 1: ufunc(b) elif ufunc.nin == 2: ufunc(b, b.copy()) else: raise ValueError('ufunc with more than 2 inputs') @pytest.mark.skipif(not HAS_REFCOUNT, reason="Python lacks refcounts") def test_ufunc_out_casterrors(): # Tests that casting errors are correctly reported and buffers are # cleared. # The following array can be added to itself as an object array, but # the result cannot be cast to an integer output: value = 123 # relies on python cache (leak-check will still find it) arr = np.array([value] * int(ncu.BUFSIZE * 1.5) + ["string"] + [value] * int(1.5 * ncu.BUFSIZE), dtype=object) out = np.ones(len(arr), dtype=np.intp) count = sys.getrefcount(value) with pytest.raises(ValueError): # Output casting failure: np.add(arr, arr, out=out, casting="unsafe") assert count == sys.getrefcount(value) # output is unchanged after the error, this shows that the iteration # was aborted (this is not necessarily defined behaviour) assert out[-1] == 1 with pytest.raises(ValueError): # Input casting failure: np.add(arr, arr, out=out, dtype=np.intp, casting="unsafe") assert count == sys.getrefcount(value) # output is unchanged after the error, this shows that the iteration # was aborted (this is not necessarily defined behaviour) assert out[-1] == 1 @pytest.mark.parametrize("bad_offset", [0, int(ncu.BUFSIZE * 1.5)]) def test_ufunc_input_casterrors(bad_offset): value = 123 arr = np.array([value] * bad_offset + ["string"] + [value] * int(1.5 * ncu.BUFSIZE), dtype=object) with pytest.raises(ValueError): # Force cast inputs, but the buffered cast of `arr` to intp fails: np.add(arr, arr, dtype=np.intp, casting="unsafe") @pytest.mark.skipif(IS_WASM, reason="fp errors don't work in wasm") @pytest.mark.parametrize("bad_offset", [0, int(ncu.BUFSIZE * 1.5)]) def test_ufunc_input_floatingpoint_error(bad_offset): value = 123 arr = np.array([value] * bad_offset + [np.nan] + [value] * int(1.5 * ncu.BUFSIZE)) with np.errstate(invalid="raise"), pytest.raises(FloatingPointError): # Force cast inputs, but the buffered cast of `arr` to intp fails: np.add(arr, arr, dtype=np.intp, casting="unsafe") def test_trivial_loop_invalid_cast(): # This tests the fast-path "invalid cast", see gh-19904. with pytest.raises(TypeError, match="cast ufunc 'add' input 0"): # the void dtype definitely cannot cast to double: np.add(np.array(1, "i,i"), 3, signature="dd->d") @pytest.mark.skipif(not HAS_REFCOUNT, reason="Python lacks refcounts") @pytest.mark.parametrize("offset", [0, ncu.BUFSIZE//2, int(1.5*ncu.BUFSIZE)]) def test_reduce_casterrors(offset): # Test reporting of casting errors in reductions, we test various # offsets to where the casting error will occur, since these may occur # at different places during the reduction procedure. For example # the first item may be special. value = 123 # relies on python cache (leak-check will still find it) arr = np.array([value] * offset + ["string"] + [value] * int(1.5 * ncu.BUFSIZE), dtype=object) out = np.array(-1, dtype=np.intp) count = sys.getrefcount(value) with pytest.raises(ValueError, match="invalid literal"): # This is an unsafe cast, but we currently always allow that. # Note that the double loop is picked, but the cast fails. # `initial=None` disables the use of an identity here to test failures # while copying the first values path (not used when identity exists). np.add.reduce(arr, dtype=np.intp, out=out, initial=None) assert count == sys.getrefcount(value) # If an error occurred during casting, the operation is done at most until # the error occurs (the result of which would be `value * offset`) and -1 # if the error happened immediately. # This does not define behaviour, the output is invalid and thus undefined assert out[()] < value * offset def test_object_reduce_cleanup_on_failure(): # Test cleanup, including of the initial value (manually provided or not) with pytest.raises(TypeError): np.add.reduce([1, 2, None], initial=4) with pytest.raises(TypeError): np.add.reduce([1, 2, None]) @pytest.mark.skipif(IS_WASM, reason="fp errors don't work in wasm") @pytest.mark.parametrize("method", [np.add.accumulate, np.add.reduce, pytest.param(lambda x: np.add.reduceat(x, [0]), id="reduceat"), pytest.param(lambda x: np.log.at(x, [2]), id="at")]) def test_ufunc_methods_floaterrors(method): # adding inf and -inf (or log(-inf) creates an invalid float and warns arr = np.array([np.inf, 0, -np.inf]) with np.errstate(all="warn"): with pytest.warns(RuntimeWarning, match="invalid value"): method(arr) arr = np.array([np.inf, 0, -np.inf]) with np.errstate(all="raise"): with pytest.raises(FloatingPointError): method(arr) def _check_neg_zero(value): if value != 0.0: return False if not np.signbit(value.real): return False if value.dtype.kind == "c": return np.signbit(value.imag) return True @pytest.mark.parametrize("dtype", np.typecodes["AllFloat"]) def test_addition_negative_zero(dtype): dtype = np.dtype(dtype) if dtype.kind == "c": neg_zero = dtype.type(complex(-0.0, -0.0)) else: neg_zero = dtype.type(-0.0) arr = np.array(neg_zero) arr2 = np.array(neg_zero) assert _check_neg_zero(arr + arr2) # In-place ops may end up on a different path (reduce path) see gh-21211 arr += arr2 assert _check_neg_zero(arr) @pytest.mark.parametrize("dtype", np.typecodes["AllFloat"]) @pytest.mark.parametrize("use_initial", [True, False]) def test_addition_reduce_negative_zero(dtype, use_initial): dtype = np.dtype(dtype) if dtype.kind == "c": neg_zero = dtype.type(complex(-0.0, -0.0)) else: neg_zero = dtype.type(-0.0) kwargs = {} if use_initial: kwargs["initial"] = neg_zero else: pytest.xfail("-0. propagation in sum currently requires initial") # Test various length, in case SIMD paths or chunking play a role. # 150 extends beyond the pairwise blocksize; probably not important. for i in range(0, 150): arr = np.array([neg_zero] * i, dtype=dtype) res = np.sum(arr, **kwargs) if i > 0 or use_initial: assert _check_neg_zero(res) else: # `sum([])` should probably be 0.0 and not -0.0 like `sum([-0.0])` assert not np.signbit(res.real) assert not np.signbit(res.imag) @pytest.mark.parametrize(["dt1", "dt2"], [("S", "U"), ("U", "S"), ("S", "d"), ("S", "V"), ("U", "l")]) def test_addition_string_types(dt1, dt2): arr1 = np.array([1234234], dtype=dt1) arr2 = np.array([b"423"], dtype=dt2) with pytest.raises(np._core._exceptions.UFuncTypeError) as exc: np.add(arr1, arr2) @pytest.mark.parametrize("order1,order2", [(">", ">"), ("<", "<"), (">", "<"), ("<", ">")]) def test_addition_unicode_inverse_byte_order(order1, order2): element = 'abcd' arr1 = np.array([element], dtype=f"{order1}U4") arr2 = np.array([element], dtype=f"{order2}U4") result = arr1 + arr2 assert result == 2*element @pytest.mark.parametrize("dtype", [np.int8, np.int16, np.int32, np.int64]) def test_find_non_long_args(dtype): element = 'abcd' start = dtype(0) end = dtype(len(element)) arr = np.array([element]) result = np._core.umath.find(arr, "a", start, end) assert result.dtype == np.dtype("intp") assert result == 0 def test_find_access_past_buffer(): # This checks that no read past the string buffer occurs in # string_fastsearch.h. The buffer class makes sure this is checked. # To see it in action, you can remove the checks in the buffer and # this test will produce an 'Invalid read' if run under valgrind. arr = np.array([b'abcd', b'ebcd']) result = np._core.umath.find(arr, b'cde', 0, np.iinfo(np.int64).max) assert np.all(result == -1) class TestLowlevelAPIAccess: def test_resolve_dtypes_basic(self): # Basic test for dtype resolution: i4 = np.dtype("i4") f4 = np.dtype("f4") f8 = np.dtype("f8") r = np.add.resolve_dtypes((i4, f4, None)) assert r == (f8, f8, f8) # Signature uses the same logic to parse as ufunc (less strict) # the following is "same-kind" casting so works: r = np.add.resolve_dtypes(( i4, i4, None), signature=(None, None, "f4")) assert r == (f4, f4, f4) # Check NEP 50 "weak" promotion also: r = np.add.resolve_dtypes((f4, int, None)) assert r == (f4, f4, f4) with pytest.raises(TypeError): np.add.resolve_dtypes((i4, f4, None), casting="no") def test_resolve_dtypes_comparison(self): i4 = np.dtype("i4") i8 = np.dtype("i8") b = np.dtype("?") r = np.equal.resolve_dtypes((i4, i8, None)) assert r == (i8, i8, b) def test_weird_dtypes(self): S0 = np.dtype("S0") # S0 is often converted by NumPy to S1, but not here: r = np.equal.resolve_dtypes((S0, S0, None)) assert r == (S0, S0, np.dtype(bool)) # Subarray dtypes are weird and may not work fully, we preserve them # leading to a TypeError (currently no equal loop for void/structured) dts = np.dtype("10i") with pytest.raises(TypeError): np.equal.resolve_dtypes((dts, dts, None)) def test_resolve_dtypes_reduction(self): i2 = np.dtype("i2") default_int_ = np.dtype(np.int_) # Check special addition resolution: res = np.add.resolve_dtypes((None, i2, None), reduction=True) assert res == (default_int_, default_int_, default_int_) def test_resolve_dtypes_reduction_no_output(self): i4 = np.dtype("i4") with pytest.raises(TypeError): # May be allowable at some point? np.add.resolve_dtypes((i4, i4, i4), reduction=True) @pytest.mark.parametrize("dtypes", [ (np.dtype("i"), np.dtype("i")), (None, np.dtype("i"), np.dtype("f")), (np.dtype("i"), None, np.dtype("f")), ("i4", "i4", None)]) def test_resolve_dtypes_errors(self, dtypes): with pytest.raises(TypeError): np.add.resolve_dtypes(dtypes) def test_resolve_dtypes_reduction_errors(self): i2 = np.dtype("i2") with pytest.raises(TypeError): np.add.resolve_dtypes((None, i2, i2)) with pytest.raises(TypeError): np.add.signature((None, None, "i4")) @pytest.mark.skipif(not hasattr(ct, "pythonapi"), reason="`ctypes.pythonapi` required for capsule unpacking.") def test_loop_access(self): # This is a basic test for the full strided loop access data_t = ct.c_char_p * 2 dim_t = ct.c_ssize_t * 1 strides_t = ct.c_ssize_t * 2 strided_loop_t = ct.CFUNCTYPE( ct.c_int, ct.c_void_p, data_t, dim_t, strides_t, ct.c_void_p) class call_info_t(ct.Structure): _fields_ = [ ("strided_loop", strided_loop_t), ("context", ct.c_void_p), ("auxdata", ct.c_void_p), ("requires_pyapi", ct.c_byte), ("no_floatingpoint_errors", ct.c_byte), ] i4 = np.dtype("i4") dt, call_info_obj = np.negative._resolve_dtypes_and_context((i4, i4)) assert dt == (i4, i4) # can be used without casting # Fill in the rest of the information: np.negative._get_strided_loop(call_info_obj) ct.pythonapi.PyCapsule_GetPointer.restype = ct.c_void_p call_info = ct.pythonapi.PyCapsule_GetPointer( ct.py_object(call_info_obj), ct.c_char_p(b"numpy_1.24_ufunc_call_info")) call_info = ct.cast(call_info, ct.POINTER(call_info_t)).contents arr = np.arange(10, dtype=i4) call_info.strided_loop( call_info.context, data_t(arr.ctypes.data, arr.ctypes.data), arr.ctypes.shape, # is a C-array with 10 here strides_t(arr.ctypes.strides[0], arr.ctypes.strides[0]), call_info.auxdata) # We just directly called the negative inner-loop in-place: assert_array_equal(arr, -np.arange(10, dtype=i4)) @pytest.mark.parametrize("strides", [1, (1, 2, 3), (1, "2")]) def test__get_strided_loop_errors_bad_strides(self, strides): i4 = np.dtype("i4") dt, call_info = np.negative._resolve_dtypes_and_context((i4, i4)) with pytest.raises(TypeError, match="fixed_strides.*tuple.*or None"): np.negative._get_strided_loop(call_info, fixed_strides=strides) def test__get_strided_loop_errors_bad_call_info(self): i4 = np.dtype("i4") dt, call_info = np.negative._resolve_dtypes_and_context((i4, i4)) with pytest.raises(ValueError, match="PyCapsule"): np.negative._get_strided_loop("not the capsule!") with pytest.raises(TypeError, match=".*incompatible context"): np.add._get_strided_loop(call_info) np.negative._get_strided_loop(call_info) with pytest.raises(TypeError): # cannot call it a second time: np.negative._get_strided_loop(call_info) def test_long_arrays(self): t = np.zeros((1029, 917), dtype=np.single) t[0][0] = 1 t[28][414] = 1 tc = np.cos(t) assert_equal(tc[0][0], tc[28][414])
numpyREPO_NAMEnumpyPATH_START.@numpy_extracted@numpy-main@numpy@_core@tests@[email protected]_END.py
{ "filename": "decorators.py", "repo_name": "gwpy/gwpy", "repo_path": "gwpy_extracted/gwpy-main/gwpy/utils/decorators.py", "type": "Python" }
# -*- coding: utf-8 -*- # Copyright (C) Duncan Macleod (2014-2020) # # This file is part of GWpy. # # GWpy is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # GWpy is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with GWpy. If not, see <http://www.gnu.org/licenses/>. """Decorators for GWpy """ import warnings from functools import wraps __author__ = 'Duncan Macleod <[email protected]>' DEPRECATED_FUNCTION_WARNING = ( "{0.__module__}.{0.__name__} has been deprecated, and will be " "removed in a future release." ) class deprecated_property(property): # pylint: disable=invalid-name """sub-class of `property` that invokes DeprecationWarning on every call """ def __init__(self, fget=None, fset=None, fdel=None, doc=None): # get name of property pname = fget.__name__ # build a wrapper that will spawn a DeprecationWarning for all calls def _warn(func): @wraps(func) def _wrapped(self, *args, **kwargs): parent = type(self).__name__ # parent class name warnings.warn('the {0}.{1} property is deprecated, and will ' 'be removed in a future release, please stop ' 'using it.'.format(parent, pname), DeprecationWarning) return func(self, *args, **kwargs) return _wrapped # wrap the property methods if fdel: fdel = _warn(fdel) if fset: fset = _warn(fset) if not fset and not fdel: # only wrap once fget = _warn(fget) super().__init__(fget, fset, fdel, doc) def deprecated_function(func=None, message=DEPRECATED_FUNCTION_WARNING): """Adds a `DeprecationWarning` to a function Parameters ---------- func : `callable` the function to decorate with a `DeprecationWarning` message : `str`, optional the warning message to present Notes ----- The final warning message is formatted as ``message.format(func)`` so you can use attribute references to the function itself. See the default message as an example. """ def _decorator(func): @wraps(func) def wrapped_func(*args, **kwargs): warnings.warn( message.format(func), category=DeprecationWarning, stacklevel=2, ) return func(*args, **kwargs) return wrapped_func if func: return _decorator(func) return _decorator def return_as(returntype): """Decorator to cast return of function as the given type Parameters ---------- returntype : `type` the desired return type of the decorated function """ def decorator(func): @wraps(func) def wrapped(*args, **kwargs): result = func(*args, **kwargs) try: return returntype(result) except (TypeError, ValueError) as exc: exc.args = ( 'failed to cast return from {0} as {1}: {2}'.format( func.__name__, returntype.__name__, str(exc)), ) raise return wrapped return decorator
gwpyREPO_NAMEgwpyPATH_START.@gwpy_extracted@gwpy-main@gwpy@[email protected]@.PATH_END.py
{ "filename": "__init__.py", "repo_name": "langchain-ai/langchain", "repo_path": "langchain_extracted/langchain-master/libs/langchain/langchain/chains/qa_with_sources/__init__.py", "type": "Python" }
"""Load question answering with sources chains.""" from langchain.chains.qa_with_sources.loading import load_qa_with_sources_chain __all__ = ["load_qa_with_sources_chain"]
langchain-aiREPO_NAMElangchainPATH_START.@langchain_extracted@langchain-master@libs@langchain@langchain@chains@qa_with_sources@[email protected]_END.py
{ "filename": "test_jplsbdb.py", "repo_name": "D-arioSpace/astroquery", "repo_path": "astroquery_extracted/astroquery-main/astroquery/jplsbdb/tests/test_jplsbdb.py", "type": "Python" }
# Licensed under a 3-clause BSD style license - see LICENSE.rst import pytest import os from astroquery.utils.mocks import MockResponse import astropy.units as u from astropy.tests.helper import assert_quantity_allclose from .. import SBDB, SBDBClass # files in data/ for different query types DATA_FILES = {'1': 'ceres.dat', 'Apophis': 'apophis.dat', '3200': 'phaethon.dat', '67P': '67P.dat', 'Ceres': 'ceres_missing_value.dat' } SCHEMATICS = {'1': '| +-- n_del_obs_used: 405', 'Apophis': '| +-- albedo_note: http://www.esa.int/Our_', '3200': '| | +-- A2_kind: EST', '67P': '| | +-- name: Jupiter-family Comet', 'Ceres': '| +-- n_del_obs_used: 405' } SEMI_MAJOR = {'1': 2.767046248500289 * u.au, 'Apophis': .9224383019077086 * u.au, '3200': 1.271196435728355 * u.au, '67P': 3.46473701803964 * u.au, 'Ceres': 2.767046248500289 * u.au} def data_path(filename): data_dir = os.path.join(os.path.dirname(__file__), 'data') return os.path.join(data_dir, filename) # monkeypatch replacement request function def nonremote_request(self, url, **kwargs): targetname = kwargs['params']['sstr'] with open(data_path(DATA_FILES[targetname]), 'rb') as f: response = MockResponse(content=f.read(), url=url) return response # use a pytest fixture to create a dummy 'requests.get' function, # that mocks(monkeypatches) the actual 'requests.get' function: @pytest.fixture def patch_request(request): mp = request.getfixturevalue("monkeypatch") mp.setattr(SBDBClass, '_request', nonremote_request) return mp # --------------------------------- actual test functions def test_objects_numerically(patch_request): for targetname in DATA_FILES.keys(): sbdb = SBDB.query(targetname, id_type='search', phys=True, alternate_id=True, full_precision=True, covariance='mat', validity=True, alternate_orbit=True, close_approach=True, virtual_impactor=True, discovery=True, radar=True) assert_quantity_allclose(sbdb['orbit']['elements']['a'], SEMI_MAJOR[targetname]) def test_missing_value(patch_request): """test whether a missing value causes an error""" sbdb = SBDB.query('Ceres', id_type='search', phys=True, alternate_id=True, full_precision=True, covariance='mat', validity=True, alternate_orbit=True, close_approach=True, virtual_impactor=True, discovery=True, radar=True) assert sbdb['orbit']['elements']['per'] is None def test_quantities(patch_request): """Make sure query returns quantities. Regression test for astroquery #2011. """ sbdb = SBDB.query('Ceres', id_type='search', phys=True, alternate_id=True, full_precision=True, covariance='mat', validity=True, alternate_orbit=True, close_approach=True, virtual_impactor=True, discovery=True, radar=True) assert isinstance(sbdb['phys_par']['H'], u.Quantity) assert sbdb['phys_par']['H'].unit == u.mag # def test_objects_against_schema(patch_request): # for targetname in DATA_FILES.keys(): # sbdb = SBDB.query(targetname, id_type='search', phys=True, # alternate_id=True, full_precision=True, # covariance='mat', validity=True, # alternate_orbit=True, close_approach=True, # virtual_impactor=True, # discovery=True, radar=True) # assert SCHEMATICS[targetname] in SBDB.schematic(sbdb)
D-arioSpaceREPO_NAMEastroqueryPATH_START.@astroquery_extracted@astroquery-main@astroquery@jplsbdb@tests@[email protected]_END.py
{ "filename": "vis_formats_write.md", "repo_name": "MWATelescope/mwa_hyperdrive", "repo_path": "mwa_hyperdrive_extracted/mwa_hyperdrive-main/mdbook/src/defs/vis_formats_write.md", "type": "Markdown" }
# Supported visibility formats for writing The following examples illustrate how to produce each of the supported visibility file formats with `solutions-apply`, but other aspects of `hyperdrive` are also able to produce these file formats, and all aspects are able to perform averaging and write to multiple outputs. ~~~admonish info title="Measurement sets" ```shell hyperdrive solutions-apply \ -d *gpubox*.fits *.metafits \ -s hyp_sols.fits \ -o hyp_cal.ms ``` ~~~ ~~~admonish info title="uvfits" ```shell hyperdrive solutions-apply \ -d *gpubox*.fits *.metafits \ -s hyp_sols.fits \ -o hyp_cal.uvfits ``` A copy of the uvfits standard is [here](https://library.nrao.edu/public/memos/aips/memos/AIPSM_117.pdf). ~~~ ~~~admonish tip title="Visibility averaging" When writing out visibilities, they can be averaged in time and frequency. Units can be given to these; e.g. using seconds and kiloHertz: ```shell hyperdrive solutions-apply \ -d *gpubox*.fits *.metafits *.mwaf \ -s hyp_sols.fits \ -o hyp_cal.ms \ --time-average 8s \ --freq-average 80kHz ``` Units are not required; in this case, these factors multiply the observation's time and freq. resolutions: ```shell hyperdrive solutions-apply \ -d *gpubox*.fits *.metafits *.mwaf \ -s hyp_sols.fits \ -o hyp_cal.ms \ --time-average 4 \ --freq-average 2 ``` If the same observation is used in both examples, with a time resolution of 2s and a freq. resolution of 40kHz, then both commands will yield the same result. See [this page](blocks.md) for information on how visibilities are averaged in time and frequency. ~~~ ~~~admonish tip title="Writing to multiple visibility outputs" All aspects of `hyperdrive` that can write visibilities can write to multiple outputs. Note that it probably does not make sense to write out more than one of each kind (e.g. two uvfits files), as each of these files will be exactly the same, and a simple `cp` from one to the other is probably faster than writing to two files simultaneously from `hyperdrive`. Example (a measurement set and uvfits): ```shell hyperdrive solutions-apply \ -d *gpubox*.fits *.metafits *.mwaf \ -s hyp_sols.fits \ -o hyp_cal.ms hyp_cal.uvfits \ --time-average 4 \ --freq-average 2 ``` ~~~
MWATelescopeREPO_NAMEmwa_hyperdrivePATH_START.@mwa_hyperdrive_extracted@mwa_hyperdrive-main@mdbook@src@defs@[email protected]_END.py
{ "filename": "time_weighted_retriever.py", "repo_name": "langchain-ai/langchain", "repo_path": "langchain_extracted/langchain-master/libs/langchain/langchain/retrievers/time_weighted_retriever.py", "type": "Python" }
import datetime from copy import deepcopy from typing import Any, Dict, List, Optional, Tuple from langchain_core.callbacks import ( AsyncCallbackManagerForRetrieverRun, CallbackManagerForRetrieverRun, ) from langchain_core.documents import Document from langchain_core.retrievers import BaseRetriever from langchain_core.vectorstores import VectorStore from pydantic import ConfigDict, Field def _get_hours_passed(time: datetime.datetime, ref_time: datetime.datetime) -> float: """Get the hours passed between two datetimes.""" return (time - ref_time).total_seconds() / 3600 class TimeWeightedVectorStoreRetriever(BaseRetriever): """Retriever that combines embedding similarity with recency in retrieving values.""" vectorstore: VectorStore """The vectorstore to store documents and determine salience.""" search_kwargs: dict = Field(default_factory=lambda: dict(k=100)) """Keyword arguments to pass to the vectorstore similarity search.""" # TODO: abstract as a queue memory_stream: List[Document] = Field(default_factory=list) """The memory_stream of documents to search through.""" decay_rate: float = Field(default=0.01) """The exponential decay factor used as (1.0-decay_rate)**(hrs_passed).""" k: int = 4 """The maximum number of documents to retrieve in a given call.""" other_score_keys: List[str] = [] """Other keys in the metadata to factor into the score, e.g. 'importance'.""" default_salience: Optional[float] = None """The salience to assign memories not retrieved from the vector store. None assigns no salience to documents not fetched from the vector store. """ model_config = ConfigDict( arbitrary_types_allowed=True, ) def _document_get_date(self, field: str, document: Document) -> datetime.datetime: """Return the value of the date field of a document.""" if field in document.metadata: if isinstance(document.metadata[field], float): return datetime.datetime.fromtimestamp(document.metadata[field]) return document.metadata[field] return datetime.datetime.now() def _get_combined_score( self, document: Document, vector_relevance: Optional[float], current_time: datetime.datetime, ) -> float: """Return the combined score for a document.""" hours_passed = _get_hours_passed( current_time, self._document_get_date("last_accessed_at", document), ) score = (1.0 - self.decay_rate) ** hours_passed for key in self.other_score_keys: if key in document.metadata: score += document.metadata[key] if vector_relevance is not None: score += vector_relevance return score def get_salient_docs(self, query: str) -> Dict[int, Tuple[Document, float]]: """Return documents that are salient to the query.""" docs_and_scores: List[Tuple[Document, float]] docs_and_scores = self.vectorstore.similarity_search_with_relevance_scores( query, **self.search_kwargs ) results = {} for fetched_doc, relevance in docs_and_scores: if "buffer_idx" in fetched_doc.metadata: buffer_idx = fetched_doc.metadata["buffer_idx"] doc = self.memory_stream[buffer_idx] results[buffer_idx] = (doc, relevance) return results async def aget_salient_docs(self, query: str) -> Dict[int, Tuple[Document, float]]: """Return documents that are salient to the query.""" docs_and_scores: List[Tuple[Document, float]] docs_and_scores = ( await self.vectorstore.asimilarity_search_with_relevance_scores( query, **self.search_kwargs ) ) results = {} for fetched_doc, relevance in docs_and_scores: if "buffer_idx" in fetched_doc.metadata: buffer_idx = fetched_doc.metadata["buffer_idx"] doc = self.memory_stream[buffer_idx] results[buffer_idx] = (doc, relevance) return results def _get_rescored_docs( self, docs_and_scores: Dict[Any, Tuple[Document, Optional[float]]] ) -> List[Document]: current_time = datetime.datetime.now() rescored_docs = [ (doc, self._get_combined_score(doc, relevance, current_time)) for doc, relevance in docs_and_scores.values() ] rescored_docs.sort(key=lambda x: x[1], reverse=True) result = [] # Ensure frequently accessed memories aren't forgotten for doc, _ in rescored_docs[: self.k]: # TODO: Update vector store doc once `update` method is exposed. buffered_doc = self.memory_stream[doc.metadata["buffer_idx"]] buffered_doc.metadata["last_accessed_at"] = current_time result.append(buffered_doc) return result def _get_relevant_documents( self, query: str, *, run_manager: CallbackManagerForRetrieverRun ) -> List[Document]: docs_and_scores = { doc.metadata["buffer_idx"]: (doc, self.default_salience) for doc in self.memory_stream[-self.k :] } # If a doc is considered salient, update the salience score docs_and_scores.update(self.get_salient_docs(query)) return self._get_rescored_docs(docs_and_scores) async def _aget_relevant_documents( self, query: str, *, run_manager: AsyncCallbackManagerForRetrieverRun ) -> List[Document]: docs_and_scores = { doc.metadata["buffer_idx"]: (doc, self.default_salience) for doc in self.memory_stream[-self.k :] } # If a doc is considered salient, update the salience score docs_and_scores.update(await self.aget_salient_docs(query)) return self._get_rescored_docs(docs_and_scores) def add_documents(self, documents: List[Document], **kwargs: Any) -> List[str]: """Add documents to vectorstore.""" current_time = kwargs.get("current_time") if current_time is None: current_time = datetime.datetime.now() # Avoid mutating input documents dup_docs = [deepcopy(d) for d in documents] for i, doc in enumerate(dup_docs): if "last_accessed_at" not in doc.metadata: doc.metadata["last_accessed_at"] = current_time if "created_at" not in doc.metadata: doc.metadata["created_at"] = current_time doc.metadata["buffer_idx"] = len(self.memory_stream) + i self.memory_stream.extend(dup_docs) return self.vectorstore.add_documents(dup_docs, **kwargs) async def aadd_documents( self, documents: List[Document], **kwargs: Any ) -> List[str]: """Add documents to vectorstore.""" current_time = kwargs.get("current_time") if current_time is None: current_time = datetime.datetime.now() # Avoid mutating input documents dup_docs = [deepcopy(d) for d in documents] for i, doc in enumerate(dup_docs): if "last_accessed_at" not in doc.metadata: doc.metadata["last_accessed_at"] = current_time if "created_at" not in doc.metadata: doc.metadata["created_at"] = current_time doc.metadata["buffer_idx"] = len(self.memory_stream) + i self.memory_stream.extend(dup_docs) return await self.vectorstore.aadd_documents(dup_docs, **kwargs)
langchain-aiREPO_NAMElangchainPATH_START.@langchain_extracted@langchain-master@libs@langchain@langchain@retrievers@[email protected]_END.py
{ "filename": "orbit.py", "repo_name": "lucabaldini/ixpeobssim", "repo_path": "ixpeobssim_extracted/ixpeobssim-main/docs/macro/orbit.py", "type": "Python" }
#!/urs/bin/env python # # Copyright (C) 2020, the ixpeobssim team. # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License along # with this program; if not, write to the Free Software Foundation, Inc., # 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. from __future__ import print_function, division import sys import numpy import matplotlib.dates from ixpeobssim.instrument.traj import xIXPETrajectory, xSAABoundary, xTLE from ixpeobssim.utils.matplotlib_ import plt, setup_gca, DEFAULT_COLORS from ixpeobssim.utils.matplotlib_ import save_all_figures from ixpeobssim.utils.time_ import string_to_met_utc, met_to_num from ixpeobssim.core.hist import xHistogram1d from ixpeobssim.utils.logging_ import logger import ixpeobssim.core.pipeline as pipeline from ixpeobssim import IXPEOBSSIM_DOC_FIG_MISC if sys.flags.interactive: plt.ion() def plot(start_date = '2021-06-01', duration=86400, save=False): """ """ start_met = string_to_met_utc(start_date, lazy=True) stop_met = start_met + duration met = numpy.linspace(start_met, stop_met, 5000) trajectory = xIXPETrajectory() saa = xSAABoundary() geo_fmt = dict(xlabel='Longitude [deg]', ylabel='Latitude [deg]', xmin=-180., xmax=180., grids=True) print('%s\n%s' % xTLE.lines()) altitude = 600. mean_motion = xTLE._mean_motion(altitude) period = 86400. / mean_motion print('Mean motion = %.5f, period = %.5f' % (mean_motion, period)) # Calculate the trajectory and altitude. lon, lat = trajectory.position(met) alt = trajectory.elevation(met) # Split the trajectory into segements to avoid annoying horizontal lines # in the plot when passing from 180 to -180 in longitude. idx = numpy.where(numpy.diff(lon) < 0.)[0] + 1 lon = numpy.split(lon, idx) lat = numpy.split(lat, idx) # Plain satellite orbit. plt.figure('IXPE trajectory') for _lon, _lat in zip(lon, lat): plt.plot(_lon, _lat, color=DEFAULT_COLORS[0]) plt.plot([lon[0][0], lon[-1][-1]], [lat[0][0], lat[-1][-1]], 'o') setup_gca(**geo_fmt) # Altitude plt.figure('IXPE altitude') plt.plot(met_to_num(met), alt) setup_gca(ylabel='Altitude [km]', ymin=599.6, ymax=600.4, grids=True) locator = matplotlib.dates.AutoDateLocator() formatter = matplotlib.dates.ConciseDateFormatter(locator) plt.gca().xaxis.set_major_formatter(formatter) # SAA plt.figure('IXPE SAA polygon') saa.plot() setup_gca(ymin=-35., **geo_fmt) # Satellite orbit with SAA. plt.figure('IXPE trajectory SAA') for _lon, _lat in zip(lon, lat): plt.plot(_lon, _lat, color=DEFAULT_COLORS[0]) mask = saa.contains(_lon, _lat) plt.plot(_lon[mask], _lat[mask], color='lightgray') saa.plot() setup_gca(ymin=-31., ymax=6., **geo_fmt) axins = plt.gca().inset_axes([0.575, 0.35, 0.4, 0.4]) axins.set_xlim(-78., 0.) axins.set_ylim(-0.55, 0.55) axins.set_xticklabels('') axins.set_yticklabels('') for _lon, _lat in zip(lon, lat): axins.plot(_lon, _lat, color=DEFAULT_COLORS[0]) mask = saa.contains(_lon, _lat) axins.plot(_lon[mask], _lat[mask], color='lightgray') fmt = dict(facecolor='orange', edgecolor='black', alpha=0.5) patch = matplotlib.patches.PathPatch(saa, **fmt) axins.add_patch(patch) plt.plot(*numpy.hsplit(saa.vertices, 2), 'o', color=fmt.get('edgecolor')) plt.gca().indicate_inset_zoom(axins) axins.grid(which='both') # SAA passages epochs = trajectory.saa_epochs(start_met, start_met + 1000000, 700) delta = numpy.array([t2 - t1 for (t1, t2) in epochs]) min_ = delta.min() max_ = delta.max() mean = delta.mean() rms = delta.std(ddof=1) plt.figure('IXPE SAA epochs') hist = xHistogram1d(numpy.linspace(780., 840., 75)).fill(delta) hist.plot() setup_gca(ymax=17., grids=True, xlabel='SAA epoch duration [s]', ylabel='Entries per bin') pipeline.xpvisibility(srcname='Crab', startdate='2021-01-01') if save: save_all_figures(IXPEOBSSIM_DOC_FIG_MISC, ('pdf', 'png')) if __name__ == '__main__': plot(save=True)
lucabaldiniREPO_NAMEixpeobssimPATH_START.@ixpeobssim_extracted@ixpeobssim-main@docs@[email protected]@.PATH_END.py
{ "filename": "test_fouriersqrt.py", "repo_name": "GalSim-developers/GalSim", "repo_path": "GalSim_extracted/GalSim-main/tests/test_fouriersqrt.py", "type": "Python" }
# Copyright (c) 2012-2023 by the GalSim developers team on GitHub # https://github.com/GalSim-developers # # This file is part of GalSim: The modular galaxy image simulation toolkit. # https://github.com/GalSim-developers/GalSim # # GalSim is free software: redistribution and use in source and binary forms, # with or without modification, are permitted provided that the following # conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions, and the disclaimer given in the accompanying LICENSE # file. # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions, and the disclaimer given in the documentation # and/or other materials provided with the distribution. # import numpy as np import os import galsim from galsim_test_helpers import * imgdir = os.path.join(".", "SBProfile_comparison_images") # Directory containing the reference # images. @timer def test_fourier_sqrt(): """Test that the FourierSqrt operator is the inverse of auto-convolution. """ dx = 0.4 myImg1 = galsim.ImageF(80,80, scale=dx) myImg1.setCenter(0,0) myImg2 = galsim.ImageF(80,80, scale=dx) myImg2.setCenter(0,0) # Test trivial case, where we could (but don't) analytically collapse the # chain of profiles by recognizing that FourierSqrt is the inverse of # AutoConvolve. psf = galsim.Moffat(beta=3.8, fwhm=1.3, flux=5) psf.drawImage(myImg1, method='no_pixel') sqrt1 = galsim.FourierSqrt(psf) psf2 = galsim.AutoConvolve(sqrt1) np.testing.assert_almost_equal(psf.stepk, psf2.stepk) psf2.drawImage(myImg2, method='no_pixel') printval(myImg1, myImg2) np.testing.assert_array_almost_equal( myImg1.array, myImg2.array, 4, err_msg="Moffat sqrt convolved with self disagrees with original") check_basic(sqrt1, "FourierSqrt", do_x=False) # Test non-trivial case where we compare (in Fourier space) sqrt(a*a + b*b + 2*a*b) against (a + b) a = galsim.Moffat(beta=3.8, fwhm=1.3, flux=5) a.shift(dx=0.5, dy=-0.3) # need nonzero centroid to test b = galsim.Moffat(beta=2.5, fwhm=1.6, flux=3) check = galsim.Sum([a, b]) sqrt = galsim.FourierSqrt( galsim.Sum([ galsim.AutoConvolve(a), galsim.AutoConvolve(b), 2*galsim.Convolve([a, b]) ]) ) np.testing.assert_almost_equal(check.stepk, sqrt.stepk) check.drawImage(myImg1, method='no_pixel') sqrt.drawImage(myImg2, method='no_pixel') np.testing.assert_almost_equal(check.centroid.x, sqrt.centroid.x) np.testing.assert_almost_equal(check.centroid.y, sqrt.centroid.y) np.testing.assert_almost_equal(check.flux, sqrt.flux) np.testing.assert_almost_equal(check.xValue(check.centroid), check.max_sb) print('check.max_sb = ',check.max_sb) print('sqrt.max_sb = ',sqrt.max_sb) # This isn't super accurate... np.testing.assert_allclose(check.max_sb, sqrt.max_sb, rtol=0.1) printval(myImg1, myImg2) np.testing.assert_array_almost_equal( myImg1.array, myImg2.array, 4, err_msg="Fourier square root of expanded square disagrees with original") # Check picklability check_pickle(sqrt1, lambda x: x.drawImage(method='no_pixel')) check_pickle(sqrt1) # Should raise an exception for invalid arguments assert_raises(TypeError, galsim.FourierSqrt) assert_raises(TypeError, galsim.FourierSqrt, myImg1) assert_raises(TypeError, galsim.FourierSqrt, [psf]) assert_raises(TypeError, galsim.FourierSqrt, psf, psf) assert_raises(TypeError, galsim.FourierSqrt, psf, real_space=False) assert_raises(TypeError, galsim.FourierSqrtProfile) assert_raises(TypeError, galsim.FourierSqrtProfile, myImg1) assert_raises(TypeError, galsim.FourierSqrtProfile, [psf]) assert_raises(TypeError, galsim.FourierSqrtProfile, psf, psf) assert_raises(TypeError, galsim.FourierSqrtProfile, psf, real_space=False) assert_raises(NotImplementedError, sqrt1.xValue, galsim.PositionD(0,0)) assert_raises(NotImplementedError, sqrt1.drawReal, myImg1) assert_raises(NotImplementedError, sqrt1.shoot, 1) if __name__ == "__main__": runtests(__file__)
GalSim-developersREPO_NAMEGalSimPATH_START.@GalSim_extracted@GalSim-main@tests@[email protected]_END.py
{ "filename": "synthetic.py", "repo_name": "ander-son-almeida/DashboardOCmass", "repo_path": "DashboardOCmass_extracted/DashboardOCmass-main/synthetic.py", "type": "Python" }
# -*- coding: utf-8 -*- """ Created on Mon Aug 23 15:33:17 2021 @author: Anderson Almeida """ # from ocs_functions import * import numpy as np from oc_tools_padova_edr3 import * def synthetic(age, dist, Av, FeH, bin_frac, nstars, Mlim): # read isochrones mod_grid, age_grid, z_grid = load_mod_grid() filters = ['Gmag','G_BPmag','G_RPmag'] refMag = 'Gmag' seed= 2 met = (10.**FeH)*0.0152 mod_cluster = model_cluster(age,dist,FeH,Av,bin_frac,nstars,filters, refMag,error=False,Mcut=Mlim,seed=seed, imf='chabrier',alpha=2.1, beta=-3., gaia_ext = True) # adicionando erros dos filtros gaia mod_cluster = get_phot_errors(mod_cluster,filters) # simulando o cluster com os erros de observação mod_cluster_obs = np.copy(mod_cluster) #amostra aleatórias de uma distribuição gaussiana mod_cluster_obs['Gmag'] = np.random.normal(mod_cluster['Gmag'],mod_cluster['e_Gmag']) mod_cluster_obs['G_BPmag'] = np.random.normal(mod_cluster['G_BPmag'],mod_cluster['e_G_BPmag']) mod_cluster_obs['G_RPmag'] = np.random.normal(mod_cluster['G_RPmag'],mod_cluster['e_G_RPmag']) # atribuindo coordenadas RA e DEC - distribuicao perfil de King ra_cen, dec_cen = 232.45,-64.86 rcore, rtidal = 5., 10 cluster_ra, cluster_dec = gen_cluster_coordinates(ra_cen, dec_cen,nstars, rcore, rtidal, 0.85*nstars,mod_cluster['Mini']) mod_cluster_obs = add_col(mod_cluster_obs,cluster_ra,'RA_ICRS') mod_cluster_obs = add_col(mod_cluster_obs,cluster_dec,'DEC_ICRS') #ordenando de acordo com a mag indV = np.argsort(mod_cluster[refMag]) # cor sintético cor = mod_cluster['G_BPmag']-mod_cluster['G_RPmag'] absMag = mod_cluster[refMag] # cor sintético observável cor_obs = mod_cluster_obs['G_BPmag']-mod_cluster_obs['G_RPmag'] absMag_obs = mod_cluster_obs[refMag] ############################################################################### # Obtendo a isocrona bruta do grid, dada uma idade e metalicidade grid_iso = get_iso_from_grid(age,(10.**FeH)*0.0152,filters,refMag, nointerp=False) # Faz uma isocrona - levando em consideração os parametros observacionais fit_iso = make_obs_iso(filters, grid_iso, dist, Av, gaia_ext = True) total_mass = np.around((np.sum(mod_cluster_obs['Mass'])) + (np.sum(mod_cluster_obs['comp_mass'])), decimals=2) return mod_cluster_obs, mod_cluster, cor_obs, absMag_obs, fit_iso, total_mass
ander-son-almeidaREPO_NAMEDashboardOCmassPATH_START.@DashboardOCmass_extracted@[email protected]@.PATH_END.py
{ "filename": "_hoverinfo.py", "repo_name": "plotly/plotly.py", "repo_path": "plotly.py_extracted/plotly.py-master/packages/python/plotly/plotly/validators/histogram/_hoverinfo.py", "type": "Python" }
import _plotly_utils.basevalidators class HoverinfoValidator(_plotly_utils.basevalidators.FlaglistValidator): def __init__(self, plotly_name="hoverinfo", parent_name="histogram", **kwargs): super(HoverinfoValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, array_ok=kwargs.pop("array_ok", True), edit_type=kwargs.pop("edit_type", "none"), extras=kwargs.pop("extras", ["all", "none", "skip"]), flags=kwargs.pop("flags", ["x", "y", "z", "text", "name"]), **kwargs, )
[email protected][email protected]@packages@python@plotly@plotly@validators@histogram@[email protected]_END.py
{ "filename": "calculate_calibration_coefficients.ipynb", "repo_name": "cta-observatory/cta-lstchain", "repo_path": "cta-lstchain_extracted/cta-lstchain-main/notebooks/calculate_calibration_coefficients.ipynb", "type": "Jupyter Notebook" }
```python %load_ext autoreload %autoreload 2 from ctapipe.io import EventSource import sys from matplotlib import pyplot as plt import numpy as np %matplotlib inline import sys from scipy.stats import norm from traitlets.config.loader import Config from ctapipe import utils # ctapipe modules from ctapipe.visualization import CameraDisplay from ctapipe.plotting.camera import CameraPlotter from ctapipe.image.extractor import * from ctapipe.containers import PedestalContainer from ctapipe.io.hdf5tableio import HDF5TableWriter, HDF5TableReader from lstchain.calib.camera.r0 import LSTR0Corrections r0calib = LSTR0Corrections( pedestal_path="../../cta-lstchain-extra/calib/camera/pedestal_file_run446_0000.fits", r1_sample_start=2,r1_sample_end=38) # flat field run with interleaved flatfield and pedestal events (for the moment to big for cta-lstchain-extra) run = 472 #datadir = '/ctadata/franca/LST' datadir = '/fefs/onsite/data/20190527' file = f'{datadir}/LST-1.1.Run00{run}.0000.fits.fz' reader = EventSource(file, max_events=None) print(f"\n Read {len(reader.multi_file)} total events in files\n") print(f"{reader.file_list} ") channel=['HG','LG'] # use the tool to write calibration coefficients from lstchain.tools.calc_camera_calibration import CalibrationHDF5Writer tel_id=0 # LST1 for the moment ``` The autoreload extension is already loaded. To reload it, use: %reload_ext autoreload Read 53004 total events in files ['/ctadata/franca/LST/LST-1.1.Run00472.0000.fits.fz', '/ctadata/franca/LST/LST-1.2.Run00472.0000.fits.fz', '/ctadata/franca/LST/LST-1.3.Run00472.0000.fits.fz', '/ctadata/franca/LST/LST-1.4.Run00472.0000.fits.fz'] ```python # read first flatfield event for i, event in enumerate(reader): # calibrate r0 --> r1 r0calib.calibrate(event) # select only flatfield events if event.r0.tel[0].trigger_type == 32: continue break print(f"read event id: {event.r0.event_id}, trigger {event.r0.tel[0].trigger_type}") ``` read event id: 2, trigger 1 ```python # plot R1 waveform of module [module] def view_waveform(chan=0, pix_id=6,i=0): waveform = event.r1.tel[tel_id].waveform plt.plot(waveform[chan, pix_id], label=f'pixel {pix_id}') plt.title(f"module {module}, pixel {pix_id}, channel {channel[chan]}",) max_now=waveform[chan, pix_id].max() min_now=waveform[chan, pix_id].min() plt.legend() plt.ylabel('DC',fontsize=15) plt.xlabel('ns',fontsize=15) # module number module=0 # channel chan=0 # ids of pixel in module pixels_mod=event.lst.tel[0].svc.pixel_ids[module*7:module*7+7] fig = plt.figure(num=0,figsize=(12,12)) for i,pix in enumerate(pixels_mod): view_waveform(chan=chan, pix_id=pix,i=i) #plt.savefig(f"Run{run}_low_level_correction_{channel[chan]}_mod{modu}.png") ``` ![png](output_2_0.png) ```python # plot effect of low-level calibration on module def view_waveform(chan=0, pix_id=6,i=0): plot_id=i*2+1 plt.subplot(7,2,plot_id) plt.plot(event.r0.tel[tel_id].waveform[chan, pix_id,2:38], label='not corrected') plt.plot(event.r1.tel[tel_id].waveform[chan, pix_id], label='corrected') plt.title(f"pixel {pix_id}, channel {channel[chan]}",) mymax=max(newwaveform[chan, pix_id].max(),oldwaveform[chan, pix_id].max()) + 50 mymin=min(newwaveform[chan, pix_id].min(),oldwaveform[chan, pix_id].min()) - 50 plt.ylim(mymin,mymax) plt.legend() plot_id=(i*2)+2 plt.subplot(7,2,plot_id) plt.plot(newwaveform[chan, pix_id]-oldwaveform[chan, pix_id]) plt.ylabel('corrections',fontsize=10) # module number module=0 # ids of pixel in module pixels_mod=event.lst.tel[0].svc.pixel_ids[module*7:module*7+7] # r0 newwaveform = event.r1.tel[tel_id].waveform # R1 oldwaveform = event.r0.tel[tel_id].waveform[:,:,2:38] for i,pix in enumerate(pixels_mod): for chan in(np.arange(2)): plt.figure(num=chan,figsize=(12,24)) # plot waveform of selected channel view_waveform(chan=chan, pix_id=pix,i=i) #plt.savefig(f"Run{run}_low_level_correction_{channel[chan]}_mod{modu}.png") ``` ```python # integrate the charge on 12 ns around the peak value config = Config({ "LocalPeakWindowSum": { "window_shift": 5, "window_width": 11 } }) integrator = LocalPeakWindowSum(config=config) waveform=event.r1.tel[0].waveform image, peakpos = integrator(waveform) fig = plt.figure(figsize=(16, 16)) for chan in(np.arange(2)): ax = plt.subplot(2, 2, chan+1) disp = CameraDisplay(event.inst.subarray.tels[0].camera) disp.image = image[chan] #disp.set_limits_minmax(2000,4000) disp.cmap = plt.cm.coolwarm disp.axes.text(2.0, 0, f'{channel[chan]} charge (DC)', rotation=90) disp.add_colorbar() ax = plt.subplot(2, 2, chan+3) disp = CameraDisplay(event.inst.subarray.tels[0].camera) disp.image = peakpos[chan] disp.cmap = plt.cm.coolwarm disp.set_limits_minmax(0,35) disp.axes.text(2.0, 0, f'{channel[chan]} time (ns)', rotation=90) disp.add_colorbar() disp.update() #plt.savefig(f"Run{run}_event_{event.lst.tel[0].evt.event_id}_charge_time.png") ``` ![png](output_4_0.png) ```python # Plot the part of the waveform that is integrated # (this work only after the line above) fig = plt.figure(0,figsize=(12,12)) # consider only 36 samples samples=np.arange(0,36) # chose the module module=0 module_rank=np.where(event.lst.tel[0].svc.module_ids==module) # find pixel index in module pix_in_mod=event.lst.tel[0].svc.pixel_ids[module_rank[0][0]*7:module_rank[0][0]*7+7] for chan in(np.arange(2)): plt.subplot(1,2,chan+1) for i,pix in enumerate(pix_in_mod): # samples used to calculate the charge start=int(peakpos[chan,pix]-integrator.window_shift) stop=int(start+integrator.window_width) used_samples=np.arange(start,stop) used=waveform[chan,pix,start:stop] plt.plot(waveform[chan,pix,], color='b', label='all samples') plt.plot(used_samples,used, color='r', label='integrated samples') if i==0: plt.legend() plt.ylabel("[DC]") plt.xlabel(f"{channel[chan]} waveforms in module {module}") plt.ylim(-100,2500) fig.savefig(f"Run{run}_waverforms_module_{module}.png") ``` ![png](output_5_0.png) ```python # flat field calculations from ctapipe.calib.camera.pedestals import PedestalIntegrator from ctapipe.calib.camera.flatfield import FlasherFlatFieldCalculator # configuration for the pedestal charge integrator ped_config = Config({ "FixedWindowSum": { "window_start": 11, "window_width": 11, } }) # configuration for the flatfield charge integrator ff_config = Config({ "LocalPeakWindowSum": { "window_shift": 4, "window_width": 11, } }) ped_calculator = PedestalIntegrator(tel_id=0, sample_size=100, charge_median_cut_outliers = [-4,4], charge_std_cut_outliers = [-4,4], charge_product="FixedWindowSum", config=ped_config) ff_calculator = FlasherFlatFieldCalculator(tel_id = 0, sample_size=100, sample_duration = 1000, charge_cut_outliers = [-0.4,0.4], time_cut_outliers = [0,30], charge_product = "LocalPeakWindowSum", config=ff_config) calib_event=0 ped_event = False ped_initialized = False initialized = False for i, event in enumerate(reader): # create r1 r0calib.calibrate(event) # get link to monitoring containers if not initialized: ped_data = event.mon.tel[tel_id].pedestal ff_data = event.mon.tel[tel_id].flatfield status_data = event.mon.tel[tel_id].pixel_status calib_data = event.mon.tel[tel_id].calibration # if new pedestal calculation if event.lst.tel[0].evt.tib_masked_trigger == 32: if ped_calculator.calculate_pedestals(event): ped_event = True print(f"new pedestal at event n. {event.r0.event_id} ({i+1})") # consider flat field events only after first pedestal event (for pedestal mask initalization) elif event.lst.tel[0].evt.tib_masked_trigger == 1 and event.r1.tel[tel_id].waveform.max()>1000: if ff_calculator.calculate_relative_gain(event): calib_event+=1 print(f"new flatfield at event n. {event.r0.event_id} ({i+1})") # consider values only after first flat field event (for flat field mask initialitation) if calib_event > 1: # mask from pedestal and flat-fleid data monitoring_unusable_pixels= np.logical_or(status_data.pedestal_failing_pixels, status_data.flatfield_failing_pixels) # calibration unusable pixels are an OR of all maskes calib_data.unusable_pixels = np.logical_or(monitoring_unusable_pixels,status_data.hardware_failing_pixels) # Extract calibraiton coefficients with F-factor method # Assume fix F2 factor, F2=1+Var(gain)/Mean(Gain)**2 must be known from elsewhere F2 =1.2 # calculate photon-electrons pe = F2*(ff_data.charge_median - ped_data.charge_median)**2/(ff_data.charge_std**2 - ped_data.charge_std**2) masked_pe = np.ma.array(pe, mask=calib_data.unusable_pixels) break ``` new pedestal at event n. 201 (199) new flatfield at event n. 202 (200) new pedestal at event n. 399 (397) new flatfield at event n. 404 (402) ```python # plot results mask = calib_data.unusable_pixels # charge fig = plt.figure(10,figsize=(16, 5)) image = ff_data.charge_median for chan in(np.arange(2)): ax = plt.subplot(1, 2, chan+1) disp = CameraDisplay(event.inst.subarray.tels[tel_id].camera) disp.highlight_pixels(mask[chan]) disp.image = image[chan] disp.cmap = plt.cm.coolwarm disp.axes.text(2.4, 0, 'charge median', rotation=90) disp.add_colorbar() # time fig = plt.figure(11,figsize=(16, 5)) image = ff_data.time_median for chan in(np.arange(2)): ax = plt.subplot(1, 2, chan+1) disp = CameraDisplay(event.inst.subarray.tels[tel_id].camera) disp.highlight_pixels(mask[chan]) disp.image = image[chan] disp.cmap = plt.cm.coolwarm disp.axes.text(2.4, 0, 'time', rotation=90) disp.add_colorbar() #pe fig = plt.figure(12,figsize=(16, 5)) image = pe for chan in(np.arange(2)): ax = plt.subplot(1, 2, chan+1) disp = CameraDisplay(event.inst.subarray.tels[tel_id].camera) disp.highlight_pixels(mask[chan]) disp.set_limits_minmax(0,150) disp.image = image[chan] disp.cmap = plt.cm.coolwarm disp.axes.text(2.4, 0, 'pe', rotation=90) disp.add_colorbar() # plot some histograms for chan in np.arange(2): n_pe = pe[chan] gain_median = ff_data.relative_gain_median[chan] charge_median = ff_data.charge_median[chan] charge_std = ff_data.charge_std[chan] median_ped = ped_data.charge_median[chan] ped_std = ped_data.charge_std[chan] # select good pixels select = np.logical_not(mask[chan]) #select = mask[chan] fig = plt.figure(chan,figsize=(12,18)) fig.suptitle(f"channel: {channel[chan]}", fontsize=25) # charge plt.subplot(321) median= int(np.median(charge_median[select])) rms= np.std(charge_median[select]) plt.title(f"Median {median:3.2f}, std {rms:5.0f}") plt.xlabel('charge (ADC)',fontsize=20) plt.ylabel('pixels',fontsize=20) plt.hist(charge_median[select]) # signal std plt.subplot(322) plt.ylabel('pixels',fontsize=20) plt.xlabel('charge std',fontsize=20) median= np.median(charge_std[select]) rms= np.std(charge_std[select]) plt.title(f"Median {median:3.2f}, std {rms:3.2f}") plt.hist(charge_std[select]) # pedestal charge plt.subplot(323) plt.ylabel('pixels',fontsize=20) plt.xlabel('pedestal',fontsize=20) median= np.median(median_ped[select]) rms= np.std(median_ped[select]) plt.title(f"Median {median:3.2f}, std {rms:3.2f}") plt.hist(median_ped[select]) # pedestal std plt.subplot(324) plt.ylabel('pixels',fontsize=20) plt.xlabel('pedestal std',fontsize=20) median= np.median(ped_std[select]) rms= np.std(ped_std[select]) plt.title(f"Median {median:3.2f}, std {rms:3.2f}") plt.hist(ped_std[select]) # relative gain plt.subplot(325) plt.ylabel('pixels',fontsize=20) plt.xlabel('relative gain',fontsize=20) plt.hist(gain_median[select]) median= np.median(gain_median[select]) rms= np.std(gain_median[select]) plt.title(f"Relative gain {median:3.2f}, std {rms:5.2f}") # photon electrons plt.subplot(326) plt.ylabel('pixels',fontsize=20) plt.xlabel('pe',fontsize=20) median= np.median(n_pe[select]) rms= np.std(n_pe[select]) plt.title(f"Median {median:3.2f}, std {rms:3.2f}") plt.hist(n_pe[select],range=(0,200)) ``` ```python # use the tool to write calibration coefficients from lstchain.tools.calc_camera_calibration import CalibrationHDF5Writer calibration_tool= CalibrationHDF5Writer() calibration_tool.print_help() ``` Generate a HDF5 file with camera calibration coefficients Options ------- Arguments that take values are actually convenience aliases to full Configurables, whose aliases are listed on the help line. For more information on full configurables, see '--help-all'. --input_file=<Unicode> (EventSource.input_url) Default: '' Path to the input file containing events. --output_file=<Unicode> (CalibrationHDF5Writer.output_file) Default: 'calibration.hdf5' Name of the output file --log_file=<Unicode> (CalibrationHDF5Writer.log_file) Default: 'None' Name of the log file --max_events=<Int> (EventSource.max_events) Default: None Maximum number of events that will be read from the file --pedestal_file=<Unicode> (LSTR0Corrections.pedestal_path) Default: '' Path to the LST pedestal binary file --flatfield_product=<CaselessStrEnum> (CalibrationHDF5Writer.flatfield_product) Default: 'FlasherFlatFieldCalculator' Choices: ['FlasherFlatFieldCalculator', 'FlasherFlatFieldCalculator'] FlatFieldCalculator to use. --pedestal_product=<CaselessStrEnum> (CalibrationHDF5Writer.pedestal_product) Default: 'PedestalIntegrator' Choices: ['PedestalIntegrator', 'PedestalIntegrator'] PedestalCalculator to use. --r0calibrator_product=<CaselessStrEnum> (CalibrationHDF5Writer.r0calibrator_product) Default: 'NullR0Calibrator' Choices: ['LSTR0Corrections', 'NullR0Calibrator'] CameraR0Calibrator to use. --log-level=<Enum> (Application.log_level) Default: 30 Choices: (0, 10, 20, 30, 40, 50, 'DEBUG', 'INFO', 'WARN', 'ERROR', 'CRITICAL') Set the log level by value or name. --config=<Unicode> (Tool.config_file) Default: '' name of a configuration file with parameters to load in addition to command- line parameters To see all available configurables, use `--help-all` ```python # calibration_tool.run(argv=['--config','/astro/users/cassol/soft/python/cta-lstchain/lstchain/tools/camera_calibration_param.json']) ``` INFO [CalibrationHDF5Writer] (tool/initialize): ctapipe version 0.6.2.post180+git5a1a6d4 INFO [CalibrationHDF5Writer] (tool/run): Starting: CalibrationHDF5Writer DEBUG [CalibrationHDF5Writer] (calc_camera_calibration/setup): Input file has file 53004 events INFO [CalibrationHDF5Writer.FlasherFlatFieldCalculator] (flatfield/__init__): extractor <ctapipe.image.extractor.LocalPeakWindowSum object at 0x7fd7463a4128> INFO [CalibrationHDF5Writer.FlasherFlatFieldCalculator] (flatfield/__init__): Used events statistics : 100 INFO [CalibrationHDF5Writer.PedestalIntegrator] (pedestals/__init__): extractor <ctapipe.image.extractor.FixedWindowSum object at 0x7fd7442c3908> INFO [CalibrationHDF5Writer.PedestalIntegrator] (pedestals/__init__): Used events statistics : 100 DEBUG [CalibrationHDF5Writer] (calc_camera_calibration/setup): Open output file calibration.hdf5 INFO [CalibrationHDF5Writer] (tool/run): CONFIG: {'CalibrationHDF5Writer': {'config_file': '/astro/users/cassol/soft/python/cta-lstchain/lstchain/tools/camera_calibration_param.json', 'flatfield_product': 'FlasherFlatFieldCalculator', 'log_datefmt': '%Y-%m-%d %H:%M:%S', 'log_file': 'log.txt', 'log_format': '%(levelname)s [%(name)s] (%(module)s/%(funcName)s): %(message)s', 'log_level': 10, 'minimum_charge': 800.0, 'output_file': 'calibration.hdf5', 'pedestal_product': 'PedestalIntegrator', 'r0calibrator_product': 'LSTR0Corrections'}} DEBUG [CalibrationHDF5Writer] (calc_camera_calibration/start): Start loop DEBUG [CalibrationHDF5Writer] (calc_camera_calibration/start): Event 0 DEBUG [CalibrationHDF5Writer] (calc_camera_calibration/start): Write pedestal data at event n. 199, id 199 stat = 100 events DEBUG [CalibrationHDF5Writer] (calc_camera_calibration/start): Write flatfield data at event n. 200, id 200 stat = 100 events DEBUG [CalibrationHDF5Writer] (calc_camera_calibration/start): Write pixel_status data DEBUG [CalibrationHDF5Writer] (calc_camera_calibration/start): Write calibration data DEBUG [CalibrationHDF5Writer] (calc_camera_calibration/start): Write pedestal data at event n. 397, id 397 stat = 100 events DEBUG [CalibrationHDF5Writer] (calc_camera_calibration/start): Write flatfield data at event n. 402, id 402 stat = 100 events DEBUG [CalibrationHDF5Writer] (calc_camera_calibration/start): Write pixel_status data DEBUG [CalibrationHDF5Writer] (calc_camera_calibration/start): Write calibration data DEBUG [CalibrationHDF5Writer] (calc_camera_calibration/start): Write pedestal data at event n. 597, id 597 stat = 100 events DEBUG [CalibrationHDF5Writer] (calc_camera_calibration/start): Write flatfield data at event n. 602, id 602 stat = 100 events DEBUG [CalibrationHDF5Writer] (calc_camera_calibration/start): Write pixel_status data DEBUG [CalibrationHDF5Writer] (calc_camera_calibration/start): Write calibration data DEBUG [CalibrationHDF5Writer] (calc_camera_calibration/start): Write pedestal data at event n. 795, id 795 stat = 100 events DEBUG [CalibrationHDF5Writer] (calc_camera_calibration/start): Write flatfield data at event n. 804, id 804 stat = 100 events DEBUG [CalibrationHDF5Writer] (calc_camera_calibration/start): Write pixel_status data DEBUG [CalibrationHDF5Writer] (calc_camera_calibration/start): Write calibration data DEBUG [CalibrationHDF5Writer] (calc_camera_calibration/start): Write pedestal data at event n. 995, id 995 stat = 100 events DEBUG [CalibrationHDF5Writer] (calc_camera_calibration/start): Last event, count = 999 DEBUG [CalibrationHDF5Writer] (calc_camera_calibration/start): Write pedestal data at event n. 1000, id 1000 stat = 2 events DEBUG [CalibrationHDF5Writer] (calc_camera_calibration/start): Write flatfield data at event n. 1000, id 1000 stat = 98 events DEBUG [CalibrationHDF5Writer] (calc_camera_calibration/start): Write pixel_status data DEBUG [CalibrationHDF5Writer] (calc_camera_calibration/start): Write calibration data INFO [CalibrationHDF5Writer] (tool/run): Finished: CalibrationHDF5Writer INFO [CalibrationHDF5Writer] (tool/run): Output: /scratch4/franca/soft/cta-lstchain/notebooks/calibration.hdf5 DEBUG [CalibrationHDF5Writer] (tool/run): PROVENANCE: '[ { "activity_name": "CalibrationHDF5Writer", "activity_uuid": "e3dc5342-00df-4e24-8f80-11cda00ae71b", "start": { "time_utc": "2019-07-30T08:04:58.560" }, "stop": { "time_utc": "2019-07-30T08:05:25.191" }, "system": { "ctapipe_version": "0.6.2.post180+git5a1a6d4", "ctapipe_resources_version": "0.2.15", "pyhessio_version": "2.1.1", "eventio_version": "0.20.3", "ctapipe_svc_path": ":/astro/users/cassol/soft/python/ctapipe_io_lst:/astro/users/cassol/soft/python/WriteCameraGeometry", "executable": "/scratch4/CTA_soft/anaconda3/envs/cta-dev/bin/python", "platform": { "architecture_bits": "64bit", "architecture_linkage": "", "machine": "x86_64", "processor": "x86_64", "node": "marcta2.in2p3.fr", "version": "#1 SMP Tue May 14 15:23:27 CDT 2019", "system": "Linux", "release": "3.10.0-957.12.2.el7.x86_64", "libcver": [ "glibc", "2.9" ], "num_cpus": 24, "boot_time": "2019-06-28T12:00:52.000" }, "python": { "version_string": "3.6.4 |Anaconda, Inc.| (default, Jan 16 2018, 18:10:19) \n[GCC 7.2.0]", "version": [ "3", "6", "4" ], "compiler": "GCC 7.2.0", "implementation": "CPython" }, "environment": { "CONDA_DEFAULT_ENV": "cta-dev", "CONDA_PREFIX": "/scratch4/CTA_soft/anaconda3/envs/cta-dev", "CONDA_PYTHON_EXE": "/scratch4/CTA_soft/anaconda3/bin/python", "CONDA_EXE": "/scratch4/CTA_soft/anaconda3/bin/conda", "CONDA_PROMPT_MODIFIER": "(cta-dev) ", "CONDA_SHLVL": "1", "PATH": "/scratch4/CTA_soft/anaconda3/envs/cta-dev/bin:/scratch4/CTA_soft/anaconda3/envs/cta-dev/bin:/cern/root/root_v6.12.04/bin:/scratch4/CTA_soft/eclipse/eclipse:/scratch4/CTA_soft/anaconda3/bin:/scratch4/CTA_soft/bin:/cta/soft/SL7/CamerasToACTL/Build.Release/bin:/cta/soft/SL7/bin:/usr/lib64/qt-3.3/bin:/usr/bin:/bin:/usr/sbin:/sbin:/usr/local/openssh/bin:/usr/local/sbin:/astro/users/cassol/bin", "LD_LIBRARY_PATH": null, "DYLD_LIBRARY_PATH": null, "USER": "cassol", "HOME": "/astro/users/cassol", "SHELL": "/bin/bash" }, "arguments": [ "/scratch4/CTA_soft/anaconda3/envs/cta-dev/lib/python3.6/site-packages/ipykernel_launcher.py", "-f", "/run/user/911/jupyter/kernel-289b4332-cf01-4183-afde-2bf35847fcd8.json" ], "start_time_utc": "2019-07-30T08:04:58.664" }, "input": [ { "url": "/ctadata/franca/LST/LST-1.1.Run00472.0000.fits.fz", "role": "dl0.sub.evt" }, { "url": "/ctadata/franca/LST/LST-1.1.Run00472.0000.fits.fz", "role": "r0.sub.evt" }, { "url": "/ctadata/franca/LST/LST-1.2.Run00472.0000.fits.fz", "role": "r0.sub.evt" }, { "url": "/ctadata/franca/LST/LST-1.3.Run00472.0000.fits.fz", "role": "r0.sub.evt" }, { "url": "/ctadata/franca/LST/LST-1.4.Run00472.0000.fits.fz", "role": "r0.sub.evt" }, { "url": "/scratch4/franca/soft/ctapipe-extra/ctapipe_resources/optics.ecsv.txt", "role": "dl0.tel.svc.optics" }, { "url": "/astro/users/cassol/soft/python/WriteCameraGeometry/LSTCam-002.camgeom.fits.gz", "role": "dl0.tel.svc.camera" } ], "output": [ { "url": "/scratch4/franca/soft/cta-lstchain/notebooks/calibration.hdf5", "role": "mon.tel.calibration" } ], "config": { "CalibrationHDF5Writer": { "config_file": "/astro/users/cassol/soft/python/cta-lstchain/lstchain/tools/camera_calibration_param.json", "flatfield_product": "FlasherFlatFieldCalculator", "log_datefmt": "%Y-%m-%d %H:%M:%S", "log_file": "log.txt", "log_format": "%(levelname)s [%(name)s] (%(module)s/%(funcName)s): %(message)s", "log_level": 10, "minimum_charge": 800.0, "output_file": "calibration.hdf5", "pedestal_product": "PedestalIntegrator", "r0calibrator_product": "LSTR0Corrections" } }, "status": "completed", "duration_min": 0.44384999999993013 } ]' ```python # read back the monitoring containers written with the tool calc_camera_calibration.py from ctapipe.containers import FlatFieldContainer, WaveformCalibrationContainer from ctapipe.io.hdf5tableio import HDF5TableWriter, HDF5TableReader ff_data = FlatFieldContainer() cal_data = WaveformCalibrationContainer() #with HDF5TableReader('/astro/users/cassol/soft/python/cta-lstchain/lstchain/tools/calibration.hdf5') as h5_table: with HDF5TableReader('/astro/users/cassol/soft/python/lstchain-test/calibration.hdf5') as h5_table: assert h5_table._h5file.isopen == True for cont in h5_table.read('/tel_0/flatfield', ff_data): print(cont.as_dict()) for calib in h5_table.read('/tel_0/calibration', cal_data): print(calib.as_dict()) #plt.hist(1/calib.dc_to_pe[0], color='r', histtype='step', bins = 50, stacked=True, fill=False) h5_table.close() # Perform some plots fig = plt.figure(13,figsize=(16, 5)) disp = CameraDisplay(event.inst.subarray.tels[0].camera) disp.image = calib.unusable_pixels[chan] disp.set_limits_minmax(0,1) disp.cmap = plt.cm.coolwarm disp.axes.text(2.4, 0, 'failing pixels', rotation=90) disp.add_colorbar() # select=np.logical_not(calib.unusable_pixels[0]) values=1/calib.dc_to_pe[0] fig = plt.figure(12,figsize=(16, 5)) plt.hist(values[select], color='r', histtype='step', bins = 50, stacked=True, fill=False) plt.title(f"ADC per photon-electrons, mean={np.mean(values[select]):5.0f} ADC") ``` Table '/tel_0/flatfield' is missing column 'charge_std_outliers' that is in container FlatFieldContainer. It will be skipped. Table '/tel_0/calibration' is missing column 'pedestal_per_sample' that is in container WaveformCalibrationContainer. It will be skipped. {'sample_time': <Quantity 1.61459295 s>, 'sample_time_range': <Quantity [140.7604873, 143.9896732] s>, 'n_events': 100, 'charge_mean': array([[8750.65, 8023.01, 6412.18, ..., 6019.34, 8470.88, 8905.34], [ 463.79, 0. , 337.79, ..., 0. , 445.92, 461.43]]), 'charge_median': array([[9251.5, 8535. , 6624.5, ..., 6354.5, 8844. , 9329.5], [ 491.5, 0. , 354. , ..., 0. , 469.5, 483.5]]), 'charge_std': array([[2597.08472859, 2335.80559763, 1917.29261397, ..., 1813.91913943, 2659.01584155, 2688.28660012], [ 143.03358312, 0. , 109.52984023, ..., 0. , 148.550172 , 144.58770729]]), 'time_mean': array([[25.29471524, 25.01204876, 25.68331372, ..., 24.86632861, 23.4798646 , 24.21229397], [25.28042316, 0. , 26.63137701, ..., 0. , 24.41452561, 24.07448368]]), 'time_median': array([[25.6315467 , 25.55059458, 26.6625068 , ..., 25.61345969, 24.25807469, 24.7955816 ], [25.68022675, 0. , 27.17320141, ..., 0. , 24.93063072, 24.9121641 ]]), 'time_std': array([[2.83058873, 3.16934295, 4.51880939, ..., 3.76996467, 4.98322383, 4.05328374], [3.55216273, 0. , 3.9482311 , ..., 0. , 4.29526504, 5.01458122]]), 'relative_gain_mean': array([[1.30451001, 1.22760165, 0.88209902, ..., 0.88034753, 1.17002552, 1.18932563], [1.17155036, 0. , 0.84799366, ..., 0. , 1.14570761, 1.23091316]]), 'relative_gain_median': array([[1.22092021, 1.1501553 , 0.87969747, ..., 0.8484229 , 1.1807245 , 1.23374739], [1.23678959, 0. , 0.90915423, ..., 0. , 1.16321198, 1.21151003]]), 'relative_gain_std': array([[0.82198046, 0.50933086, 0.37406142, ..., 0.4902031 , 0.27347099, 0.42770867], [0.67131925, 0. , 1.04037136, ..., 0. , 0.46297653, 0.24645082]]), 'relative_time_median': array([[ 0.32426494, 0.24331283, 1.35522504, ..., 0.30617793, -1.04920707, -0.51170015], [-0.0236355 , 0. , 1.46933916, ..., 0. , -0.77323153, -0.79169815]]), 'charge_median_outliers': array([[False, False, False, ..., False, False, False], [False, False, False, ..., False, False, False]]), 'charge_std_outliers': None, 'time_median_outliers': array([[False, False, False, ..., False, False, False], [False, True, False, ..., True, False, False]])} {'time': <Quantity 1.61459295 s>, 'time_range': <Quantity [140.7604873, 143.9896732] s>, 'dc_to_pe': array([[0.00167079, 0.00193604, 0.00221365, ..., 0.0024197 , 0.00152392, 0.00157557], [0.03598056, -inf, 0.0554121 , ..., -inf, 0.03557958, 0.03805101]]), 'pedestal_per_sample': None, 'time_correction': array([[-0.32426494, -0.24331283, -1.35522504, ..., -0.30617793, 1.04920707, 0.51170015], [ 0.0236355 , -0. , -1.46933916, ..., -0. , 0.77323153, 0.79169815]]), 'n_pe': array([[15.45729144, 16.52410704, 14.6643551 , ..., 15.37598668, 13.47751264, 14.69926461], [17.68444642, -0.33549366, 19.61588304, ..., -8.08172832, 16.7046134 , 18.39766368]]), 'unusable_pixels': array([[False, False, False, ..., False, False, False], [False, True, False, ..., True, False, False]])} Text(0.5,1,'ADC per photon-electrons, mean= 495 ADC') ![png](output_10_3.png) ![png](output_10_4.png) ```python ``` ```python ``` ```python ```
cta-observatoryREPO_NAMEcta-lstchainPATH_START.@cta-lstchain_extracted@cta-lstchain-main@notebooks@[email protected]_END.py
{ "filename": "Compatibility-Policy.md", "repo_name": "crossbario/crossbar", "repo_path": "crossbar_extracted/crossbar-master/docs-old/pages/about/Compatibility-Policy.md", "type": "Markdown" }
title: Compatibility Policy toc: [Documentation, Compatibility Policy] # Compatibility Policy This document describes our compatibility policies for Crossbar.io: 1. [Backward Compatibility of Releases](#backward-compatibility-of-releases) 2. [Compatibility with WAMP Client Libraries](#compatibility-with-wamp-client-libraries) ## Backward Compatibility of Releases It is important to first define the scope of "backward compatibility". Crossbar.io has a backward compatibility policy defined with respect to the following aspects and areas: 1. WAMP protocol (the wire level) 2. WAMP meta API 3. Crossbar.io specific WAMP meta API 4. Crossbar.io node configuration file format 5. Crossbar.io command line Crossbar.io (after the first official, stable release 2016.3) follows a strict backwards compatibility policy. **We promise to do our best to not break any of above.** We consider the above list to be an exhaustive description of the **public API** of Crossbar.io. Anything else isn't public, and you should avoid relying on private things. > **IMPORTANT**: Everything not listed in above is subject to change at any time. In particular, functions and classes from the Crossbar.io code base. You absolutely MUST NOT import any of these directly in code and applications of yours. The Crossbar.io code base itself should be considered fully internal, private and an implementation artifact. Of course, since Crossbar.io is fully open-source, we cannot technically stop you from not following this advice. However, you should note that due to the AGPL license of Crossbar.io, you would need to follow the requirements of the AGPL if you were to import and use the Crossbar.io source code directly. Also not covered by our compatibility policy is the *internal management API* of Crossbar.io. This API isn't for public consumption, but for management via the upcoming Crossbar.io DevOps Center. The management API is also covered by an API license that comes with some strings attached that effectively disallows any third-party use. Please see the `LICENSE-FOR-API` document in the Crossbar.io repository for complete details. **Details** If you have a WAMP client component that is connecting to Crossbar.io via the WAMP protocol, we ensure that this component will continue to work as new Crossbar.io releases are published. We think this is an extremely important aspect. Consider an embedded device with a WAMP component burned into the firmware. Even if you have a way of updating and upgrading the device firmware in the field (which you totally should have!), we believe doing is often complex and requires coordination specific to the device and the application or solution it is part of. That needs to be under your control, and Crossbar.io should not impose additional requirements and restrictions. What if new features are introduced in the WAMP protocol? Firstly, the WAMP protocol now (2016) has been stable for quite some time. Secondly, if there are new developments at the WAMP protocol level, we ensure that these changes to the WAMP protocol are made in an backwards compatible way (that is, Crossbar.io will be able to talk to "old" and "new" clients at the same time). We make the same promises for the WAMP meta API as implemented in Crossbar.io, and the Crossbar.io specific WAMP meta API. **In other words, our policy is: existing WAMP clients MUST NOT break.** > IMPORTANT: We do make these promises only for WAMP clients talking over the WAMP protocol, and connecting via an actual WAMP transport (like TCP). Whether the client is started externally or started by Crossbar.io as **guest workers** doesn't matter. We do NOT make these promises for WAMP Python based components running side-by-side in **router workers**, or started in separate **container workers**. In fact, the possibility to start Python components in such a way (in router/container workers, rather than in guest workers) might be deprecated or made private in the future. Regarding the Crossbar.io node configuration file format, our backwards compatibility policy works slightly differently. An "old" node configuration file can be upgraded to a "new" format from the Crossbar.io command line (`crossbar upgrade`). The node configuration file has an embedded version number, and Crossbar.io uses this to ugprade the configuration file stepwise (one version increment at a time) until the final, current format has been reached. Regarding the Crossbar.io command line arguments and parameters. These are simply "extend only". That is, a command line option available today will continue to be supported "as is". New commands, arguments or parameter values might be added from time to time (though we don't expect much here), but nothing will be removed. ## Compatibility with WAMP Client Libraries WAMP is an open standard, and a major focus is on interoperability between implementations from different parties. We also believe that we have a track record of being open and supportive towards third parties. We deeply believe in open standards, open source and not discriminating between implementations. We don't like vendor lock-in. On the other hand, as there are now literally dozens of WAMP client library implementations out there, most not under our control, we cannot guarantee interoperability or long-term support of these particular clients. **We are committed to maintaining and supporting the Autobahn family of WAMP client libraries,** and we work on a best-effort basis to work nice with other WAMP client library implementors.
crossbarioREPO_NAMEcrossbarPATH_START.@crossbar_extracted@crossbar-master@docs-old@pages@[email protected]@.PATH_END.py
{ "filename": "audio_classifier.md", "repo_name": "tensorflow/tensorflow", "repo_path": "tensorflow_extracted/tensorflow-master/tensorflow/lite/g3doc/api_docs/python/tflite_model_maker/audio_classifier.md", "type": "Markdown" }
page_type: reference description: APIs to train an audio classification model. <link rel="stylesheet" href="/site-assets/css/style.css"> <!-- DO NOT EDIT! Automatically generated file. --> <div itemscope itemtype="http://developers.google.com/ReferenceObject"> <meta itemprop="name" content="tflite_model_maker.audio_classifier" /> <meta itemprop="path" content="Stable" /> </div> # Module: tflite_model_maker.audio_classifier <!-- Insert buttons and diff --> <table class="tfo-notebook-buttons tfo-api nocontent" align="left"> <td> <a target="_blank" href="https://github.com/tensorflow/examples/blob/tflmm/v0.4.2/tensorflow_examples/lite/model_maker/public/audio_classifier/__init__.py"> <img src="https://www.tensorflow.org/images/GitHub-Mark-32px.png" /> View source on GitHub </a> </td> </table> APIs to train an audio classification model. #### Tutorial: <a href="https://colab.research.google.com/github/googlecodelabs/odml-pathways/blob/main/audio_classification/colab/model_maker_audio_colab.ipynb">https://colab.research.google.com/github/googlecodelabs/odml-pathways/blob/main/audio_classification/colab/model_maker_audio_colab.ipynb</a> #### Demo code: <a href="https://github.com/tensorflow/examples/blob/master/tensorflow_examples/lite/model_maker/demo/audio_classification_demo.py">https://github.com/tensorflow/examples/blob/master/tensorflow_examples/lite/model_maker/demo/audio_classification_demo.py</a> ## Classes [`class AudioClassifier`](../tflite_model_maker/audio_classifier/AudioClassifier): Audio classifier for training/inference and exporing. [`class BrowserFftSpec`](../tflite_model_maker/audio_classifier/BrowserFftSpec): Model good at detecting speech commands, using Browser FFT spectrum. [`class DataLoader`](../tflite_model_maker/audio_classifier/DataLoader): DataLoader for audio tasks. [`class YamNetSpec`](../tflite_model_maker/audio_classifier/YamNetSpec): Model good at detecting environmental sounds, using YAMNet embedding. ## Functions [`create(...)`](../tflite_model_maker/audio_classifier/create): Loads data and retrains the model.
tensorflowREPO_NAMEtensorflowPATH_START.@tensorflow_extracted@tensorflow-master@tensorflow@lite@g3doc@api_docs@python@tflite_model_maker@[email protected]_END.py
{ "filename": "async_helpers.py", "repo_name": "catboost/catboost", "repo_path": "catboost_extracted/catboost-master/contrib/python/ipython/py3/IPython/core/async_helpers.py", "type": "Python" }
""" Async helper function that are invalid syntax on Python 3.5 and below. This code is best effort, and may have edge cases not behaving as expected. In particular it contain a number of heuristics to detect whether code is effectively async and need to run in an event loop or not. Some constructs (like top-level `return`, or `yield`) are taken care of explicitly to actually raise a SyntaxError and stay as close as possible to Python semantics. """ import ast import asyncio import inspect from functools import wraps _asyncio_event_loop = None def get_asyncio_loop(): """asyncio has deprecated get_event_loop Replicate it here, with our desired semantics: - always returns a valid, not-closed loop - not thread-local like asyncio's, because we only want one loop for IPython - if called from inside a coroutine (e.g. in ipykernel), return the running loop .. versionadded:: 8.0 """ try: return asyncio.get_running_loop() except RuntimeError: # not inside a coroutine, # track our own global pass # not thread-local like asyncio's, # because we only track one event loop to run for IPython itself, # always in the main thread. global _asyncio_event_loop if _asyncio_event_loop is None or _asyncio_event_loop.is_closed(): _asyncio_event_loop = asyncio.new_event_loop() return _asyncio_event_loop class _AsyncIORunner: def __call__(self, coro): """ Handler for asyncio autoawait """ return get_asyncio_loop().run_until_complete(coro) def __str__(self): return "asyncio" _asyncio_runner = _AsyncIORunner() class _AsyncIOProxy: """Proxy-object for an asyncio Any coroutine methods will be wrapped in event_loop.run_ """ def __init__(self, obj, event_loop): self._obj = obj self._event_loop = event_loop def __repr__(self): return f"<_AsyncIOProxy({self._obj!r})>" def __getattr__(self, key): attr = getattr(self._obj, key) if inspect.iscoroutinefunction(attr): # if it's a coroutine method, # return a threadsafe wrapper onto the _current_ asyncio loop @wraps(attr) def _wrapped(*args, **kwargs): concurrent_future = asyncio.run_coroutine_threadsafe( attr(*args, **kwargs), self._event_loop ) return asyncio.wrap_future(concurrent_future) return _wrapped else: return attr def __dir__(self): return dir(self._obj) def _curio_runner(coroutine): """ handler for curio autoawait """ import curio return curio.run(coroutine) def _trio_runner(async_fn): import trio async def loc(coro): """ We need the dummy no-op async def to protect from trio's internal. See https://github.com/python-trio/trio/issues/89 """ return await coro return trio.run(loc, async_fn) def _pseudo_sync_runner(coro): """ A runner that does not really allow async execution, and just advance the coroutine. See discussion in https://github.com/python-trio/trio/issues/608, Credit to Nathaniel Smith """ try: coro.send(None) except StopIteration as exc: return exc.value else: # TODO: do not raise but return an execution result with the right info. raise RuntimeError( "{coro_name!r} needs a real async loop".format(coro_name=coro.__name__) ) def _should_be_async(cell: str) -> bool: """Detect if a block of code need to be wrapped in an `async def` Attempt to parse the block of code, it it compile we're fine. Otherwise we wrap if and try to compile. If it works, assume it should be async. Otherwise Return False. Not handled yet: If the block of code has a return statement as the top level, it will be seen as async. This is a know limitation. """ try: code = compile( cell, "<>", "exec", flags=getattr(ast, "PyCF_ALLOW_TOP_LEVEL_AWAIT", 0x0) ) return inspect.CO_COROUTINE & code.co_flags == inspect.CO_COROUTINE except (SyntaxError, MemoryError): return False
catboostREPO_NAMEcatboostPATH_START.@catboost_extracted@catboost-master@contrib@python@ipython@py3@IPython@core@[email protected]_END.py
{ "filename": "test_results.py", "repo_name": "ConorMacBride/mcalf", "repo_path": "mcalf_extracted/mcalf-main/src/mcalf/tests/models/test_results.py", "type": "Python" }
import numpy as np import pytest from mcalf.models import FitResult, FitResults from mcalf.models import ModelBase as DummyModel fitted_parameters = [1, 2, 1000.2, 1001.8, 5] fit_info = {'chi2': 1.4, 'classification': 2, 'profile': 'abc', 'success': True, 'index': [123, 456, 789]} def test_fitresult_passthrough(): fit = FitResult(fitted_parameters, fit_info) assert fit.parameters == [1, 2, 1000.2, 1001.8, 5] assert len(fit) == 5 assert fit.chi2 == 1.4 assert fit.classification == 2 assert fit.profile == 'abc' assert isinstance(fit.success, bool) and fit.success assert fit.index == [123, 456, 789] # Test that the string representation can be formed without error repr(fit) fit.index = [None]*3 repr(fit) def test_fitresult_velocity(): m = DummyModel(original_wavelengths=[1000.4, 1000.6]) m.stationary_line_core = 1000.5 m.quiescent_wavelength = 2 m.active_wavelength = 3 fit = FitResult(fitted_parameters, fit_info) assert fit.velocity(m, vtype='quiescent') == pytest.approx(-89.95502249) assert fit.velocity(m, vtype='active') == pytest.approx(389.80509745) # Ensure nan is returned if no active component fitted fitted_parameters_trim = fitted_parameters[:3] fit = FitResult(fitted_parameters_trim, fit_info) vel = fit.velocity(m, vtype='active') assert vel != vel # assert is nan # Ensure an invalid velocity type is detected with pytest.raises(ValueError): vel = fit.velocity(m, vtype='unknown-vtype') def test_fitresults_init(): fits = FitResults((49, 52), 4, time=12) assert fits.parameters.shape == (49, 52, 4) assert fits.chi2.shape == (49, 52) assert fits.classifications.shape == (49, 52) assert fits.profile.shape == (49, 52) assert fits.success.shape == (49, 52) assert fits.time == 12 with pytest.raises(TypeError): # Should be a tuple fits = FitResults(10, 3) with pytest.raises(TypeError): # Should be a tuple of length 2 fits = FitResults((10, 32, 53), 8) with pytest.raises(ValueError): # Should be an integer >= 1 fits = FitResults((10, 5), 5.5) with pytest.raises(ValueError): # Should be an integer >= 1 fits = FitResults((10, 5), 0) def test_fitresults_append(): # Create dummy fit results fit1 = FitResult( [2, 6, 254.6, 963.4], {'chi2': 7.43, 'classification': 4, 'profile': 'absorption', 'success': True, 'index': [12, 34, 81]} ) fit2 = FitResult( [9, 2, 724.32, 134.8], {'chi2': 1.34, 'classification': 2, 'profile': 'emission', 'success': True, 'index': [12, 0, 99]} ) fit3 = FitResult( [1, 8, 932.1, 327.5, 3.7, 9, 2, 0.2], {'chi2': 0.79, 'classification': 1, 'profile': 'both', 'success': False, 'index': [12, 99, 0]} ) fit4 = FitResult( # With incorrect time index [6, 4, 356.2, 738.5], {'chi2': 8.2, 'classification': 3, 'profile': 'absorption', 'success': True, 'index': [3, 0, 25]} ) fit5 = FitResult( # With unknown profile name [5, 3, 256.2, 628.5], {'chi2': 8.1, 'classification': 3, 'profile': 'continuum', 'success': True, 'index': [12, 10, 40]} ) # Initialise empty FitResults object fits = FitResults((100, 100), 8, time=12) # Append dummy fits fits.append(fit1) fits.append(fit2) fits.append(fit3) with pytest.raises(ValueError): # Time index does not match fits.append(fit4) with pytest.raises(ValueError): # Unknown profile fits.append(fit5) assert all([a == b for a, b in zip(fits.parameters[34, 81][:4], fit1.parameters)]) assert fits.chi2[34, 81] == fit1.chi2 assert fits.classifications[34, 81] == fit1.classification assert fits.profile[34, 81] == fit1.profile assert fits.success[34, 81] == fit1.success assert all([a == b for a, b in zip(fits.parameters[0, 99][4:], fit2.parameters)]) assert fits.chi2[0, 99] == fit2.chi2 assert fits.classifications[0, 99] == fit2.classification assert fits.profile[0, 99] == fit2.profile assert fits.success[0, 99] == fit2.success assert all([a == b for a, b in zip(fits.parameters[99, 0], fit3.parameters)]) assert fits.chi2[99, 0] == fit3.chi2 assert fits.classifications[99, 0] == fit3.classification assert fits.profile[99, 0] == fit3.profile assert fits.success[99, 0] == fit3.success def test_fitresults_velocities(): m = DummyModel(original_wavelengths=[1000.4, 1000.6]) m.stationary_line_core = 1000.5 m.quiescent_wavelength = 0 m.active_wavelength = 1 fits = FitResults((4, 4), 2) fits.parameters = np.array([ [[1000.2, 192.4], [826.5, 534.23], [8365.86, 1252.32], [1532.3, 2152.3]], [[978.73, 753.52], [1253.5, 1329.3], [6423.4, 2355.45], [12.53, 2523.3]], [[825.8, 862.5], [1759.5, 1000.9], [2633.4, 234.43], [2535.353, 152.34]], [[896.53, 153.2], [1224.3, 1111.11], [634.54, 2353.97], [242.35, 763.4]] ]) truth_quiescent = np.array([[-8.99550225e+01, -5.21739130e+04, 2.20850375e+06, 1.59460270e+05], [-6.52773613e+03, 7.58620690e+04, 1.62605697e+06, -2.96242879e+05], [-5.23838081e+04, 2.27586207e+05, 4.89625187e+05, 4.60225787e+05], [-3.11754123e+04, 6.71064468e+04, -1.09733133e+05, -2.27331334e+05]]) truth_active = np.array([[-2.42308846e+05, -1.39811094e+05, 7.55082459e+04, 3.45367316e+05], [-7.40569715e+04, 9.85907046e+04, 4.06281859e+05, 4.56611694e+05], [-4.13793103e+04, 1.19940030e+02, -2.29706147e+05, -2.54320840e+05], [-2.54062969e+05, 3.31664168e+04, 4.05838081e+05, -7.10944528e+04]]) result_quiescent = fits.velocities(m, vtype='quiescent') result_active = fits.velocities(m, vtype='active') with pytest.raises(ValueError): fits.velocities(m, vtype='unknown-vtype') assert result_quiescent == pytest.approx(truth_quiescent) assert result_active == pytest.approx(truth_active)
ConorMacBrideREPO_NAMEmcalfPATH_START.@mcalf_extracted@mcalf-main@src@mcalf@tests@models@[email protected]_END.py
{ "filename": "_blend.py", "repo_name": "catboost/catboost", "repo_path": "catboost_extracted/catboost-master/contrib/python/plotly/py2/plotly/validators/pointcloud/marker/_blend.py", "type": "Python" }
import _plotly_utils.basevalidators class BlendValidator(_plotly_utils.basevalidators.BooleanValidator): def __init__(self, plotly_name="blend", parent_name="pointcloud.marker", **kwargs): super(BlendValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, edit_type=kwargs.pop("edit_type", "calc"), role=kwargs.pop("role", "style"), **kwargs )
catboostREPO_NAMEcatboostPATH_START.@catboost_extracted@catboost-master@contrib@python@plotly@py2@plotly@validators@pointcloud@marker@[email protected]_END.py
{ "filename": "CHANGELOG.md", "repo_name": "NannyML/nannyml", "repo_path": "nannyml_extracted/nannyml-main/CHANGELOG.md", "type": "Markdown" }
# Changelog All notable changes to this project will be documented in this file. The format is based on [Keep a Changelog](https://keepachangelog.com/en/1.0.0/), and this project adheres to [Semantic Versioning](https://semver.org/spec/v2.0.0.html). ## [0.12.1] - 2024-09-06 ### Fixed - Fixed component filtering misbehaving for CBPE results. [(#423)](https://github.com/NannyML/nannyml/issues/423) ## [0.12.0] - 2024-09-06 ### Fixed - Fixed broken links in usage logging docs. Cheers once more to [@NeoKish](https://github.com/neokish)! [(#417)](https://github.com/NannyML/nannyml/issues/417) - Fixed issues with runner type validation due to changes in Pydantic 2 behavior. [(#421)](https://github.com/NannyML/nannyml/issues/421) - Fixed a typo in one the plotting blueprint modules. Eagle eyes [@nikml](https://github.com/nikml)! [(#418)](https://github.com/NannyML/nannyml/issues/418) ### Added - Added multiclass support for estimated and realized performance metrics `average_precision` and `business_value`. [(#409)](https://github.com/NannyML/nannyml/issues/409) - Added threshold value limits for multiclass metrics. [(#411)](https://github.com/NannyML/nannyml/issues/411) ### Changed - Made the dependencies required for database access optional. Big thanks to [@Duncan-Hunter](https://github.com/Duncan-Hunter) - Improved denominator checks in CBPE base estimation functions. [(#416)](https://github.com/NannyML/nannyml/issues/416) - Relaxed constraints for the `rich` dependency. [(#422)](https://github.com/NannyML/nannyml/issues/422) ### Removed - Dropped support for Python 3.7 as it was causing major issues with dependencies. [(#410)](https://github.com/NannyML/nannyml/issues/410) ## [0.11.0] - 2024-07-19 ### Changed - Updated `Pydantic` to `^2.7.4`, `SQLModel` to `^0.0.19`. [(#401)](https://github.com/NannyML/nannyml/issues/401) - Removed the `drop_duplicates` step from the `DomainClassifier` for a further speedup. [(#402)](https://github.com/NannyML/nannyml/issues/402) - Reverted to previous working dependency configuration for `matplotlib` as the current one causes issues in `conda`. [(#403)](https://github.com/NannyML/nannyml/issues/403) ### Fixed - Added `DomainClassifier` method for drift detection to be run in the CLI. - Fixed `NaN` handling for multiclass confusion matrix estimation in CBPE. [(#400)](https://github.com/NannyML/nannyml/issues/400) - Fixed incorrect handling of columns marked as categorical in Wasserstein and Hellinger drift detection methods. The `treat_as_categorical` value was ignored. We've also added a `treat_as_continuous` column to explicitly mark columns as continuous. [(#404)](https://github.com/NannyML/nannyml/issues/404) - Fixed an issue with multiclass `AUROC` calculation and estimation when not all classes are available in a reference chunk during fitting. [(#405)](https://github.com/NannyML/nannyml/issues/405) ### Added - Added a new data quality calculator to check if continuous values in analysis data are within the ranges encountered in the reference data. Big thanks to [@jnesfield](https://github.com/jnesfield)! Still needs some documentation... [(#408)](https://github.com/NannyML/nannyml/issues/408) ## [0.10.7] - 2024-06-07 ### Changed - Optimized summary stats and overall performance by avoiding unnecessary copy operations and index resets in during chunking [(#390)](https://github.com/NannyML/nannyml/issues/390) - Optimized performance of `nannyml.base.PerMetricPerColumnResult` filter operations by adding a short-circuit path when only filtering on period. [(#391)](https://github.com/NannyML/nannyml/issues/391) - Optimized performance of all data quality calculators by avoiding unnecessary evaluations and avoiding copy and index reset operations [(#392)](https://github.com/NannyML/nannyml/issues/392) ### Fixed - Fixed an issue in the Wasserstein "big data heuristic" where outliers caused the binning to cause out-of-memory errors. Thanks! [@nikml](https://github.com/nikml)! [(#393)](https://github.com/NannyML/nannyml/issues/393) - Fixed a typo in the `salary_range` values of the synthetic car loan example dataset. `20K - 20K €` is now `20K - 40K €`. [(#395)](https://github.com/NannyML/nannyml/issues/395) ## [0.10.6] - 2024-05-16 ### Changed - Make predictions optional for performance calcuation. When not provided, only AUROC and average precision will be calculated. [(#380)](https://github.com/NannyML/nannyml/issues/380) - Small DLE docs updates - Combed through and optimized the reconstruction error calculation with PCA resulting in a nice speedup. Cheers [@nikml](https://github.com/nikml)! [(#385)](https://github.com/NannyML/nannyml/issues/385) - Updated summary stats value limits to be in line with the rest of the library. Changed from `np.nan` to `None`. [(#387)](https://github.com/NannyML/nannyml/issues/387) ### Fixed - Fixed a breaking issue in the sampling error calculation for the median summary statistic when there is only a single value for a column. [(#377)](https://github.com/NannyML/nannyml/issues/377) - Drop `identifier` column from the documentation example for reconstruction error calculation with PCA. [(#382)](https://github.com/NannyML/nannyml/issues/382) - Fix an issue where default threshold configurations would get changed when upon setting custom thresholds, bad mutables! [(#386)](https://github.com/NannyML/nannyml/issues/386) ## [0.10.5] - 2024-03-08 ### Changed - Updated dependencies for Python 3.8 and up. [(#375)](https://github.com/NannyML/nannyml/issues/375) ### Added - Support for the *average precision* metric for binary classification in realized and estimated performance. [(#374)](https://github.com/NannyML/nannyml/issues/374) ## [0.10.4] - 2024-03-04 ### Changed - We've changed the defaults for the `incomplete` parameter in the `SizeBasedChunker` and `CountBasedChunker` to `keep` from the previous `append`. This means that from now on, by default, you might have an additional "incomplete" final chunk. Previously these records would have been appended to the last "complete" chunk. This change was required for some internal developments, and we also felt it made more sense when looking at continuous monitoring (as the incomplete chunk will be filled up later as more data is appended). [(#367)](https://github.com/NannyML/nannyml/issues/367) - We've renamed the *Classifier for Drift Detection (CDD)* to the more appropriate *Domain Classifier*. [(#368)](https://github.com/NannyML/nannyml/issues/368) - Bumped the version of the `pyarrow` dependency to `^14.0.0` if you're running on Python 3.8 or up. Congrats on your first contribution here [@amrit110](https://github.com/amrit110), much appreciated! ### Fixed - Continuous distribution plots will now be scaled per chunk, as opposed to globally. [(#369)](https://github.com/NannyML/nannyml/issues/369) ## [0.10.3] - 2024-02-17 ### Fixed - Handle median summary stat calculation failing due to NaN values - Fix standard deviation summary stat sampling error calculation occasionally returning infinity [(#363)](https://github.com/NannyML/nannyml/issues/363) - Fix plotting confidence bands when value gaps occur [(#364)](https://github.com/NannyML/nannyml/issues/364) ### Added - New multivariate drift detection method using a classifier and density ration estimation. ## [0.10.2] - 2024-02-13 ### Changed - Removed p-value based thresholds for Chi2 univariate drift detection [(#349)](https://github.com/NannyML/nannyml/issues/349) - Change default thresholds for univariate drift methods to standard deviation based thresholds. - Add summary stats support to the Runner and CLI [(#353)](https://github.com/NannyML/nannyml/issues/353) - Add unique identifier columns to included datasets for better joining [(#348)](https://github.com/NannyML/nannyml/issues/348) - Remove unused `confidence_deviation` properties in CBPE metrics [(#357)](https://github.com/NannyML/nannyml/issues/357) - Improved error handling: failing metric calculation for a single chunk will no longer stop an entire calculator. ### Added - Add feature distribution calculators [(#352)](https://github.com/NannyML/nannyml/issues/352) ### Fixed - Fix join column settings for CLI [(#356)](https://github.com/NannyML/nannyml/issues/356) - Fix crashes in `UnseenValuesCalculator` ## [0.10.1] - 2023-11-21 - Various small fixes to the docs, thanks once again ghostwriter [@NeoKish](https://github.com/NeoKish)! [(#345)](https://github.com/NannyML/nannyml/issues/345) - Fixed an issue with estimated accuracy for multiclass classification in CBPE. [(#346)](https://github.com/NannyML/nannyml/issues/346) ## [0.10.0] - 2023-11-21 ### Changed - Telemetry now detects AKS and EKS and NannyML Cloud runtimes. [(#325)](https://github.com/NannyML/nannyml/issues/325) - Runner was refactored, so it can be extended with premium NannyML calculators and estimators. [(#325)](https://github.com/NannyML/nannyml/issues/325) - Sped up telemetry reporting to ensure it doesn't hinder performance. - Some love for the docs as [@santiviquez](https://github.com/santiviquez) tediously standardized variable names. [(#338)](https://github.com/NannyML/nannyml/issues/338) - Optimize calculations for L-infinity method. [[(#340)](https://github.com/NannyML/nannyml/issues/340)] - Refactored the `CalibratorFactory` to align with our other factory implementations. [[(#341)](https://github.com/NannyML/nannyml/issues/341)] - Updated the `Calibrator` interface with `*args` and `**kwargs` for easier extension. - Small refactor to the `ResultComparisonMixin` to allow easier extension. ### Added - Added support for directly estimating the confusion matrix of multiclass classification models using CBPE. Big thanks to our appreciated alumnus [@cartgr](https://github.com/cartgr) for the effort (and sorry it took soooo long). [(#287)](https://github.com/NannyML/nannyml/issues/287) - Added `DatabaseWriter` support for results from `MissingValuesCaclulator` and `UnseenValuesCalculator`. Some excellent work by [@bgalvao](https://github.com/bgalvao), thanks for being a long-time user and supporter! ### Fixed - Fix issues with calculation and filtering in performance calculation and estimation. [(#321)](https://github.com/NannyML/nannyml/issues/321) - Fix multivariate reconstruction error plot labels. [(#323)](https://github.com/NannyML/nannyml/issues/323) - Log a warning when performance metrics for a chunk will return `NaN` value. [(#326)](https://github.com/NannyML/nannyml/issues/326) - Fix issues with ReadTheDocs build failing - Fix erroneous `specificity` calculation, both realized and estimated. Well spotted [@nikml](https://github.com/nikml)! [(#334)](https://github.com/NannyML/nannyml/issues/334) - Fix threshold computation when dealing with `NaN` values. Major thanks to the eagle-eyed [@giodavoli](https://github.com/giodavoli). [(#333)](https://github.com/NannyML/nannyml/issues/333) - Fix exports for confusion matrix metrics using the `DatabaseWriter`. An inspiring commit that lead to some other changes. Great job [@shezadkhan137](https://github.com/shezadkhan137)! [(#335)](https://github.com/NannyML/nannyml/issues/335) - Fix incorrect normalization for the business value metric in realized and estimated performance. [(#337)](https://github.com/NannyML/nannyml/issues/337) - Fix handling `NaN` values when fitting univariate drift. [[(#340)](https://github.com/NannyML/nannyml/issues/340)] ## [0.9.1] - 2023-07-12 ### Changed - Updated Mendable client library version to deal with styling overrides in the RTD documentation theme - Removed superfluous limits for confidence bands in the CBPE class (these are present in the metric classes instead) - Threshold value limiting behaviour (e.g. overriding a value and emitting a warning) will be triggered not only when the value crosses the threshold but also when it is equal to the threshold value. This is because we interpret the threshold as a theoretical maximum. ### Added - Added a new example notebook walking through a full use case using the NYC Green Taxi dataset, based on the blog of [@santiviquez](https://github.com/santiviquez) ### Fixed - Fixed broken Docker container build due to changes in public Poetry installation procedure - Fixed broken image source link in the README, thanks [@NeoKish](https://github.com/NeoKish)! ## [0.9.0] - 2023-06-26 ### Changed - Updated API docs for the `nannyml.io` package, thanks [@maciejbalawejder](https://github.com/maciejbalawejder) [(#286)](https://github.com/NannyML/nannyml/issues/286) - Restricted versions of `numpy` to be `<1.25`, since there seems to be a change in the `roc_auc` calculation somehow [(#301)](https://github.com/NannyML/nannyml/issues/301) ### Added - Support for Data Quality calculators in the CLI runner - Support for Data Quality results in `Ranker` implementations [(#297)](https://github.com/NannyML/nannyml/issues/297) - Support `mendable` in the docs [(#295)](https://github.com/NannyML/nannyml/issues/295) - Documentation landing page [(#303)](https://github.com/NannyML/nannyml/issues/303) - Support for calculations with delayed targets [(#306)](https://github.com/NannyML/nannyml/issues/306) ### Fixed - Small changes to quickstart, thanks [@NeoKish](https://github.com/NeoKish) [(#291)](https://github.com/NannyML/nannyml/issues/291) - Fix an issue passing `*args` and `**kwargs` in `Result.filter()` and subclasses [(#298)](https://github.com/NannyML/nannyml/issues/298) - Double listing of the binary dataset documentation page - Add missing thresholds to `roc_auc` in `CBPE` [(#294)](https://github.com/NannyML/nannyml/issues/294) - Fix plotting issue due to introduction of additional values in the 'display names tuple' [(#305)](https://github.com/NannyML/nannyml/issues/305) - Fix broken exception handling due to inheriting from `BaseException` and not `Exception` [(#307)](https://github.com/NannyML/nannyml/issues/307) ## [0.8.6] - 2023-05-24 ### Changed - Significant QA work on all the documentation, thanks [@santiviquez](https://github.com/santiviquez) and [@maciejbalawejder](https://github.com/maciejbalawejder) - Reworked the [`nannyml.runner`](nannyml/runner.py) and the accompanying configuration format to improve flexibility (e.g. setting custom initialization parameters, running a calculator multiple times, excluding a calculator, ...). - Added support for custom thresholds to the [`nannyml.runner`](nannyml/runner.py) - Simplified some of the `nannyml.io` interfaces, especially the [`nannyml.io.RawFilesWriter`](nannyml/io/raw_files_writer.py) - Reworked the [`nannyml.base.Result`](nannyml/base.py) - Totally revamped [quickstart documentation](docs/quick.rst) based on a real life dataset, thanks [@jakubnml](https://github.com/jakubnml) ### Added - Added new calculators to support simple data quality metrics such as counting missing or unseen values. For more information, check out the [data quality tutorials](https://nannyml.readthedocs.io/en/main/tutorials/data_quality.html). ### Fixed - Fixed an issue where x-axis titles would appear on top of plots - Removed erroneous checks during calculation of realized regression performance metrics. [(#279)](https://github.com/NannyML/nannyml/issues/279) - Fixed an issue dealing with `az://` URLs in the CLI, thanks [@michael-nml](https://github.com/michael-nml) [(#283)](https://github.com/NannyML/nannyml/issues/283) ## [0.8.5] - 2023-03-29 ### Changed - Applied new rules for visualizations. Estimated values will be the color indigo and represented with a dashed line. Calculated values will be blue and have a solid line. This color coding might be overridden in comparison plots. Data periods will no longer have different colors, we've added some additional text fields to the plot to indicate the data period. - Cleaned up legends in plots, since there will no longer be a different entry for reference and analysis periods of metrics. - Removed the lower threshold for default thresholds of the KS and Wasserstein drift detection methods. ### Added - We've added the `business_value` metric for both estimated and realized binary classification performance. It allows you to assign a value (or cost) to true positive, true negative, false positive and false negative occurrences. This can help you track something like a monetary value or business impact of a model as a metric. Read more in the business value tutorials ([estimated](https://nannyml.readthedocs.io/en/latest/tutorials/performance_estimation/binary_performance_estimation/business_value_estimation.html) or [realized](https://nannyml.readthedocs.io/en/latest/tutorials/performance_calculation/binary_performance_calculation/business_value_calculation.html)) or the [how it works](https://nannyml.readthedocs.io/en/latest/how_it_works/business_value.html) page. ### Fixed - Sync quickstart of the README with the dedicated quickstart page. [(#256)](https://github.com/NannyML/nannyml/issues/256) Thanks [@NeoKish](https://github.com/NeoKish)! - Fixed incorrect code snippet order in the thresholding tutorial. [(#258)](https://github.com/NannyML/nannyml/issues/258) Thanks once more to the one and only [@NeoKish](https://github.com/NeoKish)! - Fixed broken container build that had sneakily been going on for a while - Fixed incorrect confidence band color in comparison plots [(#259)](https://github.com/NannyML/nannyml/issues/259) - Fixed incorrect titles and missing legends in comparison plots [(#264)](https://github.com/NannyML/nannyml/issues/264) - Fixed an issue where numerical series marked as category would cause issues during Chi2 calculation ## [0.8.4] - 2023-03-17 ### Changed - Updated univariate drift methods to no longer store all reference data by default [(#182)](https://github.com/NannyML/nannyml/issues/182) - Updated univariate drift methods to deal better with missing data [(#202)](https://github.com/NannyML/nannyml/issues/202) - Updated the included example datasets - Critical security updates for dependencies - Updated visualization of multi-level table headers in the docs [(#242)](https://github.com/NannyML/nannyml/issues/242) - Improved typing support for Result classes using generics ### Added - Support for estimating the confusion matrix for binary classification [(#191)](https://github.com/NannyML/nannyml/issues/191) - Added `treat_as_categorical` parameter to univariate drift calculator [(#239)](https://github.com/NannyML/nannyml/issues/239) - Added comparison plots to help visualize two different metrics at once ### Fixed - Fix missing confidence boundaries in some plots [(#193)](https://github.com/NannyML/nannyml/issues/193) - Fix incorrect metric names on plot y-axes [(#195)](https://github.com/NannyML/nannyml/issues/195) - Fix broken links to external docs [(#196)](https://github.com/NannyML/nannyml/issues/196) - Fix missing display name to performance calculation and estimation charts [(#200)](https://github.com/NannyML/nannyml/issues/200) - Fix missing confidence boundaries for single metric plots [(#203)](https://github.com/NannyML/nannyml/issues/203) - Fix incorrect code in example notebook for ranking - Fix result corruption when re-using calculators [(#206)](https://github.com/NannyML/nannyml/issues/206) - Fix unintentional period filtering [(#199)](https://github.com/NannyML/nannyml/issues/199) - Fixed some typing issues [(#213)](https://github.com/NannyML/nannyml/issues/213) - Fixed missing data requirements documentation on regression [(#215)](https://github.com/NannyML/nannyml/issues/215) - Corrections in the glossary [(#214)](https://github.com/NannyML/nannyml/issues/214), thanks [@sebasmos](https://github.com/sebasmos)! - Fix missing treshold in plotting legend [(#219)](https://github.com/NannyML/nannyml/issues/219) - Fix missing annotation in single row & column charts [(#221)](https://github.com/NannyML/nannyml/issues/221) - Fix outdated performance estimation and calculation docs [(#223)](https://github.com/NannyML/nannyml/issues/223) - Fix categorical encoding of unseen values for DLE [(#224)](https://github.com/NannyML/nannyml/issues/224) - Fix incorrect legend for None timeseries [(#235)](https://github.com/NannyML/nannyml/issues/235) ## [0.8.3] - 2023-01-31 ### Added - Added some extra semantic methods on results for easy property access. No dealing with multilevel indexes required. - Added functionality to compare results and plot that comparison. Early release version. ### Fixed - Pinned Sphinx version to 4.5.0 in the [documentation requirements](docs/requirements.txt). Version selector, copy toggle buttons and some styling were broken on RTD due to unintended usage of Sphinx 6 which treats jQuery in a different way. ## [0.8.2] - 2023-01-24 ### Changed - Log Ranker usage logging - Remove some redundant parameters in `plot()` function calls for data reconstruction results, univariate drift results, CBPE results and DLE results. - Support "single metric/column" arguments in addition to lists in class creation [(#165)](https://github.com/NannyML/nannyml/issues/165) - Fix incorrect 'None' checks when dealing with defaults in univariate drift calculator - Multiple updates and corrections to the docs (thanks [@nikml](https://github.com/nikml)!), including: - Updating univariate drift tutorial - Updating README - Update PCA: How it works - Fix incorrect plots - Fix quickstart [(#171)](https://github.com/NannyML/nannyml/issues/171) - Update chunker docstrings to match parameter names, thanks [@mrggementiza](https://github.com/jrggementiza)! - Make sequence 'None' checks more readable, thanks [@mrggementiza](https://github.com/jrggementiza)! - Ensure error handling in usage logging does not cause errors... - Start using `OrdinalEncoder` instead of `LabelEncorder` in DLE. This allows us to deal with "unseen" values in the analysis period. ### Added - Added a Store to provide persistence for objects. Main use case for now is storing fitted calculators to be reused later without needing to fit on reference again. Current store implementation uses a local or remote filesystem as a persistence layer. Check out the documentation on [persisting calculators](https://nannyml.readthedocs.io/en/latest/tutorials/persisting_calculators.html). ### Fixed - Fix incorrect interpretation of `y_pred` column as continuous values for the included sample binary classification data. Converting the column explicitly to "category" data type for now, update of the dataset to follow soon. [(#171)](https://github.com/NannyML/nannyml/issues/171) - Fix broken image link in README, thanks [@mrggementiza](https://github.com/jrggementiza)! - Fix missing key in the CLI section on raw files output, thanks [@CoffiDev](https://github.com/CoffiDev)! - Fix upper and lower thresholds for data reconstruction being swapped [(#179)](https://github.com/NannyML/nannyml/issues/179) - Fix stacked bar chart plots (missing bars + too many categories shown) ## [0.8.1] - 2022-12-01 ### Changed - Thorough refactor of the `nannyml.drift.ranker` module. The abstract base class and factory have been dropped in favor of a more flexible approach. - Thorough refactor of our Plotly-based plotting modules. These have been rewritten from scratch to make them more modular and composable. This will allow us to deliver more powerful and meaningful visualizations faster. ### Added - Added a new univariate drift method. The [`Hellinger distance`](https://nannyml.readthedocs.io/en/v0.8.1/how_it_works/univariate_drift_detection.html#hellinger-distance), used for continuous variables. - Added an [extensive write-up]() on when to use which univariate drift method. - Added a new way to rank the results of univariate drift calculation. The `CorrelationRanker` ranks columns based on the correlation between the drift value and the change in realized or estimated performance. Read all about it in the [ranking documentation](https://nannyml.readthedocs.io/en/v0.8.1/how_it_works/ranking.html) ### Fixed - Disabled usage logging for or GitHub workflows - Allow passing a single string to the `metrics` parameter of the `result.filter()` function, as per special request. ## [0.8.0] - 2022-11-22 ### Changed - Updated `mypy` to a new version, immediately resulting in some new checks that failed. ### Added - Added new univariate drift methods. The [`Wasserstein distance`](https://nannyml.readthedocs.io/en/latest/how_it_works/univariate_drift_detection.html#wasserstein-distance) for continuous variables, and the [`L-Infinity distance`](https://nannyml.readthedocs.io/en/main/how_it_works/univariate_drift_detection.html#l-infinity-distance) for categorical variables. - Added usage logging to our key functions. Check out the [docs](https://nannyml.readthedocs.io/en/latest/usage_logging.html#providing-a-env-file) to find out more on what, why, how, and how to disable it if you want to. ### Fixed - Fixed and updated various parts of the docs, reported at warp speed! Thanks [@NeoKish](https://github.com/NeoKish)! - Fixed `mypy` issues concerning 'implicit optionals'. ## [0.7.0] - 2022-11-07 ### Changed - Updated the handling of "leftover" observations when using the `SizeBasedChunker` and `CountBasedChunker`. Renamed the parameter for tweaking that behavior to `incomplete`, that can be set to `keep`, `drop` or `append`. Default behavior for both is now to append leftover observations to the last _full_ chunk. - Refactored the `nannyml.drift` module. The intermediate structural level (`model_inputs`, `model_outputs`, `targets`) has been removed and turned into a single unified `UnivariateDriftCalculator`. The old built-in statistics have been re-implemented as `Methods`, allowing us to add new methods to detect univariate drift. - Simplified a lot of the codebase (but also complicated some bits) by storing results internally as multilevel-indexed DataFrames. This means we no longer have to 'convey information' by encoding data column names and method names in the names of result columns. We've introduced a new paradigm to deal with results. Drill down to the data you really need by using the `filter` method, which returns a new `Result` instance, with a smaller 'scope'. Then turn this `Result` into a DataFrame using the `to_df` method. - Changed the structure of the [pyproject.toml](pyproject.toml) file due to a Poetry upgrade to version 1.2.1. ### Added - Expanded the `nannyml.io` module with new `Writer` implementations: `DatabaseWriter` that exports data into multiple tables in a relational database and the `PickleFileWriter` which stores the pickled `Results` on local/remote/cloud disk. - Added a new univariate drift detection method based on the Jensen-Shannon distance. Used within the `UnivariateDriftCalculator`. ### Fixed - Added [lightgbm](https://github.com/microsoft/LightGBM) installation instructions to our installation guide. ## [0.6.3] - 2022-09-22 ### Changed - `dependencybot` dependency updates - `stalebot` setup ### Fixed - CBPE now uses uncalibrated `y_pred_proba` values to calculate realized performance. Fixed for both binary and multiclass use cases [(#98)](https://github.com/NannyML/nannyml/issues/98) - Fix an issue where reference data was rendered incorrectly on joy plots - Updated the 'California Housing' example docs, thanks for the help [@NeoKish](https://github.com/NeoKish) - Fix lower confidence bounds and thresholds under zero for regression cases. When the lower limit is set to 0, the lower threshold will not be plotted. [(#127)](https://github.com/NannyML/nannyml/issues/127) ## [0.6.2] - 2022-09-16 ### Changed - Made the `timestamp_column_name` required by all calculators and estimators optional. The main consequences of this are plots have a chunk-index based x-axis now when no timestamp column name was given. You can also not chunk by period when the timestamp column name is not specified. ### Fixed - Added missing `s3fs` dependency - Fixed outdated plotting kind constants in the runner (used by CLI) - Fixed some missing images and incorrect version numbers in the README, thanks [@NeoKish](https://github.com/NeoKish)! ### Added - Added a lot of additional tests, mainly concerning plotting and the [`Runner`](nannyml/runner.py) class ## [0.6.1] - 2022-09-09 ### Changed - Use the `problem_type` parameter to determine the correct graph to output when plotting model output drift ### Fixed - Showing the wrong plot title for DLE estimation result plots, thanks [@NeoKish](https://github.com/NeoKish) - Fixed incorrect plot kinds in some error feedback for the model output drift calculator - Fixed missing `problem_type` argument in the Quickstart guide - Fix incorrect visualization of confidence bands on reference data in DEE and CBPE result plots ## [0.6.0] - 2022-09-07 ### Added - Added support for regression problems across all calculators and estimators. In some cases a required `problem_type` parameter is required during calculator/estimator initialization, this is a breaking change. Read more about using regression in our [tutorials](https://nannyml.readthedocs.io/en/main/tutorials.html) and about our new performance estimation for regression using the [Direct Loss Estimation (DLE)](https://nannyml.readthedocs.io/en/main/how_it_works/performance_estimation.html#direct-loss-estimation-dle) algorithm. ### Changed - Improved `tox` running speed by skipping some unnecessary package installations. Thanks [@baskervilski](https://github.com/baskervilski)! ### Fixed - Fixed an issue where some Pandas column datatypes were not recognized as continuous by NannyML, causing them to be dropped in calculations. Thanks for reporting [@Dbhasin1](https://github.com/Dbhasin1)! - Fixed an issue where some helper columns for visualization crept into the stored reference results. Good catch [@Dbhasin1](https://github.com/Dbhasin1)! - Fixed an issue where a `Reader` instance would raise a `WriteException`. Thanks for those eagle eyes [@baskervilski](https://github.com/baskervilski)! ## [0.5.3] - 2022-08-30 ### Changed - We've completely overhauled the way we determine the "stability" of our estimations. We've moved on from determining a minimum `Chunk` size to estimating the *sampling error* for an operation on a `Chunk`. - A **sampling error** value will be provided per metric per `Chunk` in the result data for **reconstruction error multivariate drift calculator**, all **performance calculation metrics** and all **performance estimation metrics**. - Confidence bounds are now also based on this *sampling error* and will display a range around an estimation +/- 3 times the *sampling error* in **CBPE** and **reconstruction error multivariate drift calculator**. Be sure to check out our [in-depth documentation](https://nannyml.readthedocs.io/en/main/how_it_works/estimation_of_standard_error.html#estimation-of-standard-error) on how it works or dive right into the [implementation](nannyml/sampling_error). ### Fixed - Fixed issue where an outdated version of Numpy caused Pandas to fail reading string columns in some scenarios [(#93)](https://github.com/NannyML/nannyml/issues/93). Thank you, [@bernhardbarker](https://github.com/bernhardbarker) and [@ga-tardochisalles](https://github.com/ga-tardochisalles) for the investigative work! ## [0.5.2] - 2022-08-17 ### Changed - Swapped out ASCII art library from 'art' to 'PyFiglet' because the former was not yet present in conda-forge. ### Fixed - Some leftover parameter was forgotten during cleanup, breaking CLI functionality - CLI progressbar was broken due to a boolean check with task ID 0. ## [0.5.1] - 2022-08-16 ### Added - Added simple CLI implementation to support automation and MLOps toolchain use cases. Supports reading/writing to cloud storage using S3, GCS, ADL, ABFS and AZ protocols. Containerized version available at [dockerhub](https://hub.docker.com/repository/docker/nannyml/nannyml). ### Changed - `make clean` now also clears `__pycache__` - Fixed some inconsistencies in docstrings (they still need some additional love though) ## [0.5.0] - 2022-07-07 ### Changed - Replaced the whole Metadata system by a more intuitive approach. ### Fixed - Fix docs [(#87)](https://github.com/NannyML/nannyml/issues/79) and [(#89)](https://github.com/NannyML/nannyml/issues/89), thanks [@NeoKish](https://github.com/NeoKish) - Fix confidence bounds for binary settings [(#86)](https://github.com/NannyML/nannyml/issues/86), thanks [@rfrenoy](https://github.com/rfrenoy) - Fix README [(#87)](https://github.com/NannyML/nannyml/issues/79), thanks [@NeoKish](https://github.com/NeoKish) - Fix index misalignment on calibration [(#79)](https://github.com/NannyML/nannyml/issues/79) - Fix Poetry dev-dependencies issues [(#78)](https://github.com/NannyML/nannyml/issues/78), thanks [@rfrenoy](https://github.com/rfrenoy) - Fix incorrect documentation links [(#76)](https://github.com/NannyML/nannyml/issues/76), thanks [@SoyGema](https://github.com/SoyGema) ## [0.4.1] - 2022-05-19 ### Added - Added limited support for ``regression`` use cases: create or extract ``RegressionMetadata`` and use it for drift detection. Performance estimation and calculation require more research. ### Changed - ``DefaultChunker`` splits into 10 chunks of equal size. - ``SizeBasedChunker`` no longer drops incomplete last chunk by default, but this is now configurable behavior. ## [0.4.0] - 2022-05-13 ### Added - Added support for new metrics in the Confidence Based Performance Estimator (CBPE). It now estimates ``roc_auc``, ``f1``, ``precision``, ``recall`` and ``accuracy``. - Added support for **multiclass classification**. This includes - Specifying ``multiclass classification metadata`` + support in automated metadata extraction (by introducing a ``model_type`` parameter). - Support for all ``CBPE`` metrics. - Support for realized performance calculation using the ``PerformanceCalculator``. - Support for all types of drift detection (model inputs, model output, target distribution). - A new synthetic toy dataset. ### Changed - Removed the ``identifier`` property from the ``ModelMetadata`` class. Joining ``analysis`` data and ``analysis target`` values should be done upfront or index-based. - Added an ``exclude_columns`` parameter to the ``extract_metadata`` function. Use it to specify the columns that should not be considered as model metadata or features. - All ``fit`` methods now return the fitted object. This allows chaining ``Calculator``/``Estimator`` instantiation and fitting into a single line. - Custom metrics are no longer supported in the ``PerformanceCalculator``. Only the predefined metrics remain supported. - Big documentation revamp: we've tweaked overall structure, page structure and incorporated lots of feedback. - Improvements to consistency and readability for the 'hover' visualization in the step plots, including consistent color usage, conditional formatting, icon usage etc. - Improved indication of "realized" and "estimated" performance in all ``CBPE`` step plots (changes to hover, axes and legends) ### Fixed - Updated homepage in project metadata - Added missing metadata modification to the *quickstart* - Perform some additional check on reference data during preprocessing - Various documentation suggestions [(#58)](https://github.com/NannyML/nannyml/issues/58) ## [0.3.2] - 2022-05-03 ### Fixed - Deal with out-of-time-order data when chunking - Fix reversed Y-axis and plot labels in continuous distribution plots ## [0.3.1] - 2022-04-11 ### Changed - Publishing to PyPi did not like raw sections in ReST, replaced by Markdown version. ## [0.3.0] - 2022-04-08 ### Added - Added support for both predicted labels and predicted probabilities in ``ModelMetadata``. - Support for monitoring model performance metrics using the ``PerformanceCalculator``. - Support for monitoring target distribution using the ``TargetDistributionCalculator`` ### Changed - Plotting will default to using step plots. - Restructured the ``nannyml.drift`` package and subpackages. *Breaking changes*! - Metadata completeness check will now fail when there are features of ``FeatureType.UNKNOWN``. - Chunk date boundaries are now calculated differently for a ``PeriodBasedChunker``, using the theoretical period for boundaries as opposed to the observed boundaries within the chunk observations. - Updated version of the ``black`` pre-commit hook due to breaking changes in its ``click`` dependency. - The *minimum chunk size* will now be provided by each individual ``calculator`` / ``estimator`` / ``metric``, allowing for each of them to warn the end user when chunk sizes are suboptimal. ### Fixed - Restrict version of the ``scipy`` dependency to be ``>=1.7.3, <1.8.0``. Planned to be relaxed ASAP. - Deal with missing values in chunks causing ``NaN`` values when concatenating. - Crash when estimating CBPE without a target column present - Incorrect label in ``ModelMetadata`` printout ## [0.2.1] - 2022-03-22 ### Changed - Allow calculators/estimators to provide appropriate ``min_chunk_size`` upon splitting into ``chunks``. ### Fixed - Data reconstruction drift calculation failing when there are no categorical or continuous features [(#36)](https://github.com/NannyML/nannyml/issues/36) - Incorrect scaling on continuous feature distribution plot [(#39)](https://github.com/NannyML/nannyml/issues/39) - Missing ``needs_calibration`` checks before performing score calibration in CBPE - Fix crash on chunking when missing target values in reference data ## [0.2.0] - 2022-03-03 ### Added - Result classes for Calculators and Estimators. ### Changed - Updated the documentation to reflect the changes introduced by result classes, specifically to plotting functionality. - Add support for imputing of missing values in the ``DataReconstructionDriftCalculator``. ### Removed - ``nannyml.plots.plots`` was removed. Plotting is now meant to be done using ``DriftResult.plot()`` or ``EstimatorResult.plot()``. ## [0.1.1] - 2022-03-03 ### Fixed - Fixed an issue where data reconstruction drift calculation also used model predictions during decomposition. ## [0.1.0] - 2022-03-03 ### Added - Chunking base classes and implementations - Metadata definitions and utilities - Drift calculator base classes and implementations - Univariate statistical drift calculator - Multivariate data reconstruction drift calculator - Drifted feature ranking base classes and implementations - Alert count based ranking - Performance estimator base classes and implementations - Certainty based performance estimator - Plotting utilities with support for - Stacked bar plots - Line plots - Joy plots - Documentation - Quick start guide - User guides - Deep dives - Example notebooks - Technical reference documentation
NannyMLREPO_NAMEnannymlPATH_START.@nannyml_extracted@[email protected]@.PATH_END.py
{ "filename": "check.py", "repo_name": "pandas-dev/pandas", "repo_path": "pandas_extracted/pandas-main/pandas/core/computation/check.py", "type": "Python" }
from __future__ import annotations from pandas.compat._optional import import_optional_dependency ne = import_optional_dependency("numexpr", errors="warn") NUMEXPR_INSTALLED = ne is not None __all__ = ["NUMEXPR_INSTALLED"]
pandas-devREPO_NAMEpandasPATH_START.@pandas_extracted@pandas-main@pandas@core@[email protected]@.PATH_END.py
{ "filename": "mcmc.py", "repo_name": "annadeg/jwst-msafit", "repo_path": "jwst-msafit_extracted/jwst-msafit-main/msafit/fitting/mcmc.py", "type": "Python" }
import numpy as np import matplotlib.pyplot as plt import emcee __all__ = ["make_init_ball","get_scale_estimate","plot_autocorr"] def get_scale_estimate(prior_func): """find a reasonable typical value for the prior distribution. For uniform priors this is somewhere around the middle, for other priors it is the sigma or scale. Parameters ---------- prior_func : Prior prior class instance from msafit.fitting.priors Returns ------- float value from the prior distribution """ pf_name = str(type(prior_func)) params = prior_func.params if 'Uniform' in pf_name: diff = params['maxi']-params['mini'] if 'Log' in pf_name: return np.exp(diff/2.) else: return diff/10. elif 'Normal' in pf_name: if 'Log' in pf_name: return np.exp(params['mode']+params['sigma'])-np.exp(params['mode']) else: return params['sigma'] elif 'Beta' in pf_name: return prior_func.loc + np.sqrt( (params['alpha']*params['beta']) / ((params['alpha']+params['beta'])**2 * (params['alpha']+params['beta']+1)) ) elif 'StudentT' in pf_name: return params['scale'] else: return 1. def make_init_ball(init_point,fit_model,nwalkers,e=0.01): """creates a small Gaussian ball around the initial parameter vector Parameters ---------- init_point : 1D array parameter values of the initial point fit_model : FitModel instance holds fit details, the physical model and psf library nwalkers : int number of walkers for emcee e : float, optional value used to scale the dispersion of the Gaussian Returns ------- ndarray array of size (nwalkers,nparams) """ ball = np.zeros((len(init_point),nwalkers)) for i, ival in enumerate(init_point): pn,pn_mod = fit_model.free_params[i] prior_func = fit_model.fit_config["fit_params"][pn]["prior"] pval = get_scale_estimate(prior_func) ball[i] = np.random.normal(loc=ival,scale=np.abs(e*pval),size=nwalkers) return ball.T def plot_autocorr(tau_mean,niter_check,fdir): """make basic plot of the autocorrelation timescale vs the iteration number Parameters ---------- tau_mean : float autocorr niter_check : int interval to plot fname : str output file """ plt.figure() plt.plot(np.arange(len(tau_mean))[niter_check::niter_check],tau_mean[niter_check::niter_check],ls='solid') plt.xlabel('iteration number',fontsize=14) plt.ylabel(r'$\tau$',fontsize=14) plt.tick_params(direction='in',top=True,right=True) plt.tight_layout() plt.savefig(fdir+'autocorr.pdf') plt.close()
annadegREPO_NAMEjwst-msafitPATH_START.@jwst-msafit_extracted@jwst-msafit-main@msafit@[email protected]@.PATH_END.py
{ "filename": "hst.py", "repo_name": "natashabatalha/PandExo", "repo_path": "PandExo_extracted/PandExo-master/pandexo/engine/hst.py", "type": "Python" }
import numpy as np import pandas as pd from .create_input import hst_spec import batman from .RECTE import RECTE from scipy import optimize def wfc3_GuessNOrbits(trdur): '''Predict number of HST orbits Predict number of HST orbits for transit observation when not provided by the user. Parameters ---------- trdur : float transit duration in days Returns ------- float number of requested orbits per transit (including discarded thermal-settling orbit) ''' # Compute # of HST orbits during transit # ~96 minutes per HST orbit orbitsTr = trdur*24.*60/96 if orbitsTr <= 1.5: norbits = 4. elif orbitsTr <= 2.0: norbits = 5. else: norbits = np.ceil(orbitsTr*2+1) return norbits def wfc3_GuessParams(jmag, disperser, scanDirection, subarray, obsTime, maxScanHeight=180., maxExptime=150., targetFluence=30000., hmag=None): '''Predict nsamp and samp_seq when values not provided by the user. Parameters ---------- jmag : float J-band magnitude disperser : str grism ('G141' or 'G102') scanDirection : str spatial scan direction ('Forward' or 'Round Trip') subarray : str Subarray aperture ('grism256' or 'grism512') obsTime : float Available observing time per HST orbit in seconds maxScanHeight : float (optional) maximum scan height in pixels maxExptime : float (Optional) default=150.0, maximum exposure time in seconds targetFluence : float (Optional) Desired fluence in electrons per pixel hmag : float (Optional) H-band magnitude Returns ------- float nsamp--number of up-the-ramp samples (1..15) str samp_seq--time between non-destructive reads ''' allnsamp = np.arange(1, 16) allsampseq = ['spars5', 'spars10', 'spars25'] maxDutyCycle = 0 for samp_seq in allsampseq: for nsamp in allnsamp: exptime, tottime, scanRate, scanHeight, fluence = wfc3_obs(jmag, disperser, scanDirection, subarray, nsamp, samp_seq, targetFluence, hmag) # Compute duty cycle and compare # Exposure time should be less than 2.5 minutes to achieve good time resolution ptsOrbit = np.floor(obsTime/tottime) dutyCycle = (exptime*(ptsOrbit-1))/50./60*100 if (dutyCycle > maxDutyCycle) and (exptime < maxExptime) and (scanHeight < maxScanHeight): maxDutyCycle = dutyCycle bestsampseq = samp_seq bestnsamp = nsamp return bestnsamp, bestsampseq def wfc3_obs(jmag, disperser, scanDirection, subarray, nsamp, samp_seq, targetFluence=30000., hmag=None): '''Determine the recommended exposure time, scan rate, scan height, and overheads. Parameters ---------- jmag : float J-band magnitude disperser : str Grism ('G141' or 'G102') scanDirection : str spatial scan direction ('Forward' or 'Round Trip') subarray : str Subarray aperture ('grism256' or 'grism512') nsamp : float Number of up-the-ramp samples (1..15) samp_seq : str Time between non-destructive reads ('SPARS5', 'SPARS10', or 'SPARS25') targetFluence : float (Optional) Desired fluence in electrons per pixel hmag : float (Optional) H-band magnitude Returns ------- float exptime--exposure time in seconds float tottime--total frame time including overheads in seconds float scanRate--recommented scan rate in arcsec/s float scanHeight--scan height in pixels float fluence--maximum pixel fluence in electrons ''' # Estimate exposure time if subarray == 'grism512': # GRISM512 if samp_seq == 'spars5': exptime = 0.853 + (nsamp-1)*2.9215 # SPARS5 elif samp_seq == 'spars10': exptime = 0.853 + (nsamp-1)*7.9217 # SPARS10 elif samp_seq == 'spars25': exptime = 0.853 + (nsamp-1)*22.9213 # SPARS25 else: print(("****HALTED: Unknown SAMP_SEQ: %s" % samp_seq)) return else: # GRISM256 if samp_seq == 'spars5': exptime = 0.280 + (nsamp-1)*2.349 # SPARS5 elif samp_seq == 'spars10': exptime = 0.278 + (nsamp-1)*7.3465 # SPARS10 elif samp_seq == 'spars25': exptime = 0.278 + (nsamp-1)*22.346 # SPARS25 else: print(("****HALTED: Unknown SAMP_SEQ: %s" % samp_seq)) return # Recommended scan rate if hmag == None: hmag = jmag #scanRate = np.round(1.9*10**(-0.4*(hmag-5.9)), 3) # arcsec/s #scanRate = np.round(2363./targetFluence*10**(-0.4*(jmag-9.75)), 3) # arcsec/s scanRate = (2491./targetFluence)*10**(-0.4*(jmag-9.75)) - (161/targetFluence)*10**(-0.4*(jmag-hmag)) if disperser == 'g102': # G102/G141 flux ratio is ~0.8 scanRate *= 0.8 # Max fluence in electrons/pixel #fluence = (5.5/scanRate)*10**(-0.4*(hmag-15))*2.4 # electrons #fluence = (2363./scanRate)*10**(-0.4*(jmag-9.75)) # electrons fluence = (2491./scanRate)*10**(-0.4*(jmag-9.75)) - (161/scanRate)*10**(-0.4*(jmag-hmag)) if disperser == 'g102': # WFC3_ISR_2012-08 states that the G102/G141 scale factor is 0.96 DN/electron fluence *= 0.96 # G102/G141 flux ratio is ~0.8 fluence *= 0.8 # Scan height in pixels scanRatep = scanRate/0.121 # pixels/s scanHeight = scanRatep*exptime # pixels ''' #Quadratic correlation between scanRate and read overhead foo = np.array([0.0,0.1,0.3,0.5,1.0,2.0,3.0,4.0])/0.121 bar = np.array([ 40, 40, 41, 42, 45, 50, 56, 61]) c = np.polyfit(foo,bar,2) model = c[2] + c[1]*foo + c[0]*foo**2 #c = [ 6.12243227e-04, 6.31621064e-01, 3.96040946e+01] ''' # Define instrument overheads (in seconds) c = [6.12243227e-04, 6.31621064e-01, 3.96040946e+01] read = c[2] + c[1]*scanRatep + c[0]*scanRatep**2 # Correlation between scanHeight/scanRate and pointing overhead was determined elsewhere if scanDirection == 'Round Trip': # Round Trip scan direction doesn't have to return to starting point, therefore no overhead pointing = 0. elif scanDirection == 'Forward': c = [3.18485340e+01, 3.32968829e-02, 1.65687590e-02, 7.65510038e-01, -6.24504499e+01, 5.51452028e-03] pointing = c[0]*(1 - np.exp(-c[2]*(scanHeight-c[4]))) + \ c[1]*scanHeight + c[3]*scanRatep + c[5]*scanRatep**2 else: print(("****HALTED: Unknown scan direction: %s" % scanDirection)) return # Estimate total frame time including overheads tottime = exptime+read+pointing # seconds return exptime, tottime, scanRate, scanHeight, fluence def wfc3_TExoNS(dictinput): '''Compute Transit depth uncertainty Compute the transit depth uncertainty for a defined system and number of spectrophotometric channels. Written by Kevin Stevenson October 2016 Parameters ---------- dictinput : dict dictionary containing instrument parameters and exoplanet specific parameters. {"pandeia_input":dict1, "pandexo_input":dict1} Returns ------- float deptherr--transit depth uncertainty per spectrophotometric channel float chanrms--light curve root mean squarerms float ptsOrbit--number of HST frames per orbit ''' pandeia_input = dictinput['pandeia_input'] pandexo_input = dictinput['pandexo_input'] jmag = pandexo_input['star']['jmag'] if np.ma.is_masked(jmag): print("Jmag not found.") try: hmag = pandexo_input['star']['hmag'] except: hmag = jmag print("Hmag not found. Assuming no color dependence in the stellar type.") trdur = pandexo_input['planet']['transit_duration'] numTr = pandexo_input['observation']['noccultations'] schedulability = pandeia_input['strategy']['schedulability'] scanDirection = pandeia_input['strategy']['scanDirection'] nchan = pandeia_input['strategy']['nchan'] norbits = pandeia_input['strategy']['norbits'] useFirstOrbit = pandeia_input['strategy']['useFirstOrbit'] try: targetFluence = pandeia_input['strategy']['targetFluence'] except: targetFluence = 30000. print("Assuming a target fluence of 30,000 electrons.") disperser = pandeia_input['configuration']['instrument']['disperser'].lower( ) subarray = pandeia_input['configuration']['detector']['subarray'].lower() nsamp = pandeia_input['configuration']['detector']['nsamp'] samp_seq = pandeia_input['configuration']['detector']['samp_seq'] try: samp_seq = samp_seq.lower() except: pass if disperser == 'g141': # Define reference Jmag, flux, variance, and exposure time for GJ1214 refmag = 9.750 refflux = 2.32e8 refvar = 2.99e8 refexptime = 88.436 elif disperser == 'g102': # Define reference Jmag, flux, variance, and exposure time for WASP12 refmag = 10.477 refflux = 8.26e7 refvar = 9.75e7 refexptime = 103.129 else: print(("****HALTED: Unknown disperser: %s" % disperser)) return # Determine max recommended scan height if subarray == 'grism512': maxScanHeight = 430 elif subarray == 'grism256': maxScanHeight = 180 else: print(("****HALTED: Unknown subarray aperture: %s" % subarray)) return # Define maximum frame time maxExptime = 150. # Define available observing time per HST orbit in seconds if str(schedulability) == '30': obsTime = 51.3*60 elif str(schedulability) == '100': obsTime = 46.3*60 else: print(("****HALTED: Unknown schedulability: %s" % schedulability)) return # Compute recommended number of HST orbits and compare to user specified value guessorbits = wfc3_GuessNOrbits(trdur) if norbits == None: norbits = guessorbits elif norbits != guessorbits: print(("****WARNING: Number of specified HST orbits does not match number of recommended orbits: %0.0f" % guessorbits)) if nsamp == 0 or nsamp == None or samp_seq == None or samp_seq == "none": # Estimate reasonable values nsamp, samp_seq = wfc3_GuessParams(jmag, disperser, scanDirection, subarray, obsTime, maxScanHeight, maxExptime, targetFluence, hmag) # Calculate observation parameters exptime, tottime, scanRate, scanHeight, fluence = wfc3_obs(jmag, disperser, scanDirection, subarray, nsamp, samp_seq, targetFluence, hmag=hmag) if scanHeight > maxScanHeight: print(("****WARNING: Computed scan height exceeds maximum recommended height of %0.0f pixels." % maxScanHeight)) if exptime > maxExptime: print(("****WARNING: Computed frame time (%0.0f seconds) exceeds maximum recommended duration of %0.0f seconds." % (exptime, maxExptime))) # Compute number of data points (frames) per orbit ptsOrbit = np.floor(obsTime/tottime) # First point (frame) is always low, ignore when computing duty cycle dutyCycle = (exptime*(ptsOrbit-1))/50./60*100 # Compute number of non-destructive reads per orbit readsOrbit = ptsOrbit*(nsamp+1) # Look for mid-orbit buffer dumps if (subarray == 'grism256') and (readsOrbit >= 300) and (exptime <= 43): print( "****WARNING: Observing plan may incur mid-orbit buffer dumps. Check with APT.") if (subarray == 'grism512') and (readsOrbit >= 120) and (exptime <= 100): print( "****WARNING: Observing plan may incur mid-orbit buffer dumps. Check with APT.") # Compute number of HST orbits per transit # ~96 minutes per HST orbit orbitsTr = trdur*24.*60/96 # Estimate number of good points during planet transit # First point in each HST orbit is flagged as bad; therefore, subtract from total if orbitsTr < 0.5: # Entire transit fits within one HST orbit ptsInTr = ptsOrbit * orbitsTr/0.5 - 1 elif orbitsTr <= 1.5: # Assume one orbit centered on mid-transit time ptsInTr = ptsOrbit - 1 elif orbitsTr < 2.: # Assume one orbit during full transit and one orbit during ingress/egress ptsInTr = ptsOrbit * \ (np.floor(orbitsTr) + np.min((1, np.remainder(orbitsTr-np.floor(orbitsTr)-0.5, 1)/0.5))) - 2 else: # Assume transit contains 2+ orbits timed to maximize # of data points. ptsInTr = ptsOrbit * (np.floor(orbitsTr) + np.min( (1, np.remainder(orbitsTr-np.floor(orbitsTr), 1)/0.5))) - np.ceil(orbitsTr) # Estimate number of good points outside of transit # Discard first HST orbit ptsOutTr = (ptsOrbit-1) * (norbits-1) - ptsInTr # Compute transit depth uncertainty per spectrophotometric channel ratio = 10**((refmag - jmag)/2.5) flux = ratio*refflux*exptime/refexptime fluxvar = ratio*refvar*exptime/refexptime chanflux = flux/nchan chanvar = fluxvar/nchan chanrms = np.sqrt(chanvar)/chanflux*1e6 # ppm inTrrms = chanrms/np.sqrt(ptsInTr*numTr) # ppm outTrrms = chanrms/np.sqrt(ptsOutTr*numTr) # ppm deptherr = np.sqrt(inTrrms**2 + outTrrms**2) # ppm info = {"Number of HST orbits": norbits, "Use first orbit": useFirstOrbit, "WFC3 parameters: NSAMP": nsamp, "WFC3 parameters: SAMP_SEQ": samp_seq.upper(), "Scan Direction": scanDirection, "Recommended scan rate (arcsec/s)": scanRate, "Scan height (pixels)": scanHeight, "Maximum pixel fluence (electrons)": fluence, "exposure time": exptime, "Estimated duty cycle (outside of Earth occultation)": dutyCycle, "Transit depth uncertainty(ppm)": deptherr, "Number of channels": nchan, "Number of Transits": numTr} return {"spec_error": deptherr/1e6, "light_curve_rms": chanrms/1e6, "nframes_per_orb": ptsOrbit, "info": info} def calc_start_window(eventType, rms, ptsOrbit, numOrbits, depth, inc, aRs, period, windowSize, ecc=0, w=90., duration=None, offset=0., useFirstOrbit=False): '''Calculate earliest and latest start times Plot earliest and latest possible spectroscopic light curves for given start window size Parameters ---------- eventType : str 'transit' or 'eclipse' rms : float light curve root-mean-square ptsOrbit : int number of frames per HST orbit numOrbits : int number of HST orbits per visit depth : float transit/eclipse depth inc : float orbital inclination in degrees aRs : float Semi-major axis in units of stellar radii (a/R*) period : float orbital period in days windowSize : float observation start window size in minutes ecc : float (Optional) eccentricity w : float (Optional) longitude of periastron in degrees duration : float (Optional) full transit/eclipse duration in days offset : float (Optional) manual offset in observation start time, in minutes useFirstOrbit : bool (Optional) whether to use first orbit Returns ------- float minphase--earliest observation start phase float maxphase--latest observation start phase ''' ptsOrbit = int(ptsOrbit) numOrbits = int(numOrbits) hstperiod = 96./60/24 # HST orbital period, days punc = windowSize/120./24/period # Half start window size, in phase cosi = np.cos(inc*np.pi/180) # Cosine of the inclination rprs = np.sqrt(depth) # Planet-star radius ratio params = batman.TransitParams() if eventType == 'transit': midpt = period b = aRs*cosi*(1-ecc**2)/(1+ecc*np.sin(w*np.pi/180)) # Impact parameter # Account for planet speed on eccentric orbits sfactor = np.sqrt(1-ecc**2)/(1+ecc*np.sin(w*np.pi/180)) # limb darkening coefficients params.u = [0.1, 0.1] elif eventType == 'eclipse': #midpt = period/2*(1+4*ecc*np.cos(w*np.pi/180)/np.pi) midpt = calculate_tsec(period, ecc, w*np.pi/180, inc*np.pi/180, t0=0, tperi=None, winn_approximation=False) b = aRs*cosi*(1-ecc**2)/(1-ecc*np.sin(w*np.pi/180)) # Impact parameter # Account for planet speed on eccentric orbits sfactor = np.sqrt(1-ecc**2)/(1-ecc*np.sin(w*np.pi/180)) # limb darkening coefficients params.u = [0.0, 0.0] else: print(("****HALTED: Unknown event type: %s" % eventType)) return params.t0 = midpt/period # phase of transit/eclipse params.per = 1. # orbital period, units are orbital phase # planet radius (in units of stellar radii) params.rp = rprs # semi-major axis (in units of stellar radii) params.a = aRs params.inc = inc # orbital inclination (in degrees) params.ecc = ecc # eccentricity params.w = w # longitude of periastron (in degrees) params.limb_dark = "quadratic" # limb darkening model # Transit/eclipse duration (in days) if duration == None: duration = period/np.pi * \ np.arcsin( 1./aRs*np.sqrt(((1+rprs)**2-(aRs*cosi)**2)/(1-cosi**2)))*sfactor phase1 = (midpt + duration/2. - hstperiod*(numOrbits-2 - useFirstOrbit) - hstperiod/2 + offset/24./60)/period phase2 = (midpt - duration/2. - hstperiod*2 + offset/24./60)/period minphase = (phase1+phase2)/2-punc maxphase = (phase1+phase2)/2+punc # Compute light curves at extremes of HST start window npts = int(4 * ptsOrbit * numOrbits) phdur = duration/period phase1 = np.linspace(minphase+(1-useFirstOrbit)*hstperiod/period, minphase+hstperiod/period*(numOrbits-1)+hstperiod/period/2, int(npts)) phase2 = np.linspace(maxphase+(1-useFirstOrbit)*hstperiod/period, maxphase+hstperiod/period*(numOrbits-1)+hstperiod/period/2, int(npts)) m = batman.TransitModel(params, phase1) trmodel1 = m.light_curve(params) m = batman.TransitModel(params, phase2) trmodel2 = m.light_curve(params) obsphase1 = [] obsphase2 = [] for i in range(numOrbits): obsphase1 = np.r_[obsphase1, np.linspace( minphase+hstperiod/period*i, minphase+hstperiod/period*i+hstperiod/period/2, int(ptsOrbit))] obsphase2 = np.r_[obsphase2, np.linspace( maxphase+hstperiod/period*i, maxphase+hstperiod/period*i+hstperiod/period/2, int(ptsOrbit))] m = batman.TransitModel(params, obsphase1) obstr1 = m.light_curve(params) + np.random.normal(0, rms, obsphase1.shape) m = batman.TransitModel(params, obsphase2) obstr2 = m.light_curve(params) + np.random.normal(0, rms, obsphase2.shape) return {'obsphase1': obsphase1, 'light_curve_rms': rms, 'obstr1': obstr1, 'obsphase2': obsphase2, 'obstr2': obstr2, 'minphase': minphase, 'maxphase': maxphase, 'phase1': phase1, 'phase2': phase2, 'trmodel1': trmodel1, 'trmodel2': trmodel2, 'eventType': eventType, 'planet period':period} def planet_spec(planet, star, w_unit, disperser, deptherr, nchan, smooth=None): '''Plot exoplanet transmission/emission spectrum Parameters ---------- planet: dict planet dictionary from exo_input star : dict star dictionary from exo_input w_unit : str wavelength unit (um or nm) disperser : grism (g102 or g141) deptherr : float simulated transit/eclipse depth uncertainty nchan : float number of spectrophotometric channels smooth : float (Optional)length of smoothing kernel Returns ------- dict contains following keys {'model_wave','model_spec','binwave','binspec', 'error','wmin','wmax'} ''' # Load model wavelengths and spectrum mwave, mspec = hst_spec(planet, star) # np.loadtxt(specfile, unpack=True) # Convert wavelength to microns # if w_unit == 'um': # pass # elif w_unit == 'nm': # mwave /= 1000. # else: # print(("****HALTED: Unrecognized wavelength unit: '%s'" % w_unit)) # return # Smooth model spectrum (optional) if smooth != None: from .hst_smooth import smooth as sm mspec = sm(mspec, smooth) # Determine disperser wavelength boundaries if disperser == 'g141': wmin = 1.125 wmax = 1.650 elif disperser == 'g102': wmin = 0.84 wmax = 1.13 else: print(("****HALTED: Unrecognized disperser name: '%s'" % disperser)) return # Determine wavelength bins binsize = (wmax - wmin)/nchan wave_low = np.round([i for i in np.linspace(wmin, wmax-binsize, nchan)], 3) wave_hi = np.round([i for i in np.linspace(wmin+binsize, wmax, nchan)], 3) binwave = (wave_low + wave_hi)/2. # Create simulated spectrum by binning model spectrum and addding uncertainty binspec = np.zeros(nchan) for i in range(nchan): ispec = np.where((mwave >= wave_low[i])*(mwave <= wave_hi[i])) binspec[i] = np.mean(mspec[ispec]) binspec += np.random.normal(0, deptherr, nchan) return {'model_wave': mwave, 'model_spec': mspec, 'binwave': binwave, 'binspec': binspec, 'error': deptherr, 'wmin': wmin, 'wmax': wmax} def compute_sim_lightcurve(exposureDict, lightCurveDict, calRamp=False): """Compute simulated HST light curves Function to take the fluence and error estimates from wfc3_TExoNS and the model light curve from calc_start_window to simulate observed light curves. Ramp effect systemacts simulated by RECTE can be included by turning on the calRamp switch Parameters ---------- exposureDict : dict Includes information for the observation. This dictionary is returned by function wfc3_TExoNS. Relevant keys in the dictionary are ['info']["Maximum pixel fluence (electrons)"] and ['info']['exposure time'] lightCurveDict : dict Includes the model light curve. The light curves are estimed by calc_start_window calRamp : bool (default: False) Switch to turn on/off RECTE ramp calculation. Calculate realistic ramp effect systematics when the switch is turned on. Returns ------- dict Resulting light curve (unit: e/pixel) for the earliest and latest time """ fluence = exposureDict['info']["Maximum pixel fluence (electrons)"] exptime = exposureDict['info']['exposure time'] obst1 = (lightCurveDict['obsphase1'] - lightCurveDict['obsphase1'][0]) *\ lightCurveDict['planet period'] * 86400 # in seconds obst2 = (lightCurveDict['obsphase2'] - lightCurveDict['obsphase2'][0]) *\ lightCurveDict['planet period'] * 86400 # in seconds counts1 = lightCurveDict['obstr1'] * fluence counts2 = lightCurveDict['obstr2'] * fluence # use RECTE to calculate the ramp if calRamp option is turned on if calRamp: counts1 = RECTE(counts1 / exptime, obst1, exptime) counts2 = RECTE(counts2 / exptime, obst2, exptime) count_noise = lightCurveDict['light_curve_rms'] * fluence resultDict = lightCurveDict.copy() resultDict['counts1'] = counts1 resultDict['counts2'] = counts2 resultDict['count_noise'] = count_noise resultDict['ramp_included'] = calRamp resultDict['model_counts1'] = resultDict['trmodel1'] * fluence resultDict['model_counts2'] = resultDict['trmodel2'] * fluence return resultDict def compute_sim_hst(dictinput,verbose=False): """Sets up HST simulations Function to set up explanet observations for HST only and compute simulated spectrum. Parameters ---------- dictinput : dict instrument and pandexo dictionaries in format {"pandeia_input":dict1, "pandexo_input":dict2} Returns ------- dict All hst output info needed to plot simulated data, light curves timing info """ pandexo_input = dictinput['pandexo_input'] pandeia_input = dictinput['pandeia_input'] disperser = pandeia_input['configuration']['instrument']['disperser'].lower() # add a switch for ramp calculation calRamp = pandeia_input['strategy']['calculateRamp'] if not pandeia_input['strategy']['useFirstOrbit']: if verbose:print("Dropping first orbit designed by observation strategy") if verbose:print("Do not calculate ramp profile") calRamp = False numorbits = pandeia_input['strategy']['norbits'] nchan = pandeia_input['strategy']['nchan'] windowSize = pandeia_input['strategy']['windowSize'] useFirstOrbit = pandeia_input['strategy']['useFirstOrbit'] calc_type = pandexo_input['planet']['type'] jmag = pandexo_input['star']['jmag'] hmag = pandexo_input['star']['hmag'] specfile = pandexo_input['planet']['exopath'] w_unit = pandexo_input['planet']['w_unit'] f_unit = pandexo_input['planet']['f_unit'] depth = pandexo_input['planet']['depth'] inc = pandexo_input['planet']['i'] aRs = pandexo_input['planet']['ars'] period = pandexo_input['planet']['period'] ecc = pandexo_input['planet']['ecc'] w = pandexo_input['planet']['w'] try: offset = pandeia_input['strategy']['offset'] except: offset = 0. # check to see if ecc or w was provided if (type(ecc) != float) and (type(ecc) != int): ecc = 0.0 if (type(w) != float) and (type(w) != int): w = 90.0 if (type(windowSize) != float) and (type(windowSize) != int): windowSize = 20.0 if f_unit == "rp^2/r*^2": eventType = 'transit' elif f_unit == "fp/f*": eventType = 'eclipse' elif calc_type == 'grid': eventType = 'transit' else: raise Exception('Units are not correct. Pick rp^2/r*^2 or fp/f*') a = wfc3_TExoNS(dictinput) b = calc_start_window(eventType, a['light_curve_rms'], a['nframes_per_orb'], a['info']['Number of HST orbits'], depth, inc, aRs, period, windowSize, ecc, w, useFirstOrbit=useFirstOrbit, offset=offset) c = planet_spec(pandexo_input['planet'], pandexo_input['star'], w_unit, disperser, a['spec_error'], nchan, smooth=20) info_div = create_out_div(a['info'], b['minphase'], b['maxphase']) simLightCurve = compute_sim_lightcurve(a, b, calRamp=calRamp) return {"wfc3_TExoNS": a, "calc_start_window": b, "planet_spec": c, "light_curve": simLightCurve, "info_div": info_div} def create_out_div(input_dict, minphase, maxphase): """Function to render input dicts in html format for web front end Parameters ---------- input_dict : dict any input dictionary Returns ------- div html rendered table """ input_dict['Start observations between orbital phases'] = str( minphase)+'-'+str(maxphase) input_div = pd.DataFrame.from_dict(input_dict, orient='index') input_div.columns = ['Value'] input_div = input_div.to_html() input_div = '<table class="table table-striped"> \n' + \ input_div[36:len(input_div)] input_div = input_div.encode() return input_div def calculate_tsec(period, ecc, omega, inc, t0 = None, tperi = None, winn_approximation = False): ''' Function to calculate the time of secondary eclipse. This uses Halley's method (Newton-Raphson, but using second derivatives) to first find the true anomaly (f) at which secondary eclipse occurs, then uses this to get the eccentric anomaly (E) at secondary eclipse, which gives the mean anomaly (M) at secondary eclipse using Kepler's equation. This finally leads to the time of secondary eclipse using the definition of the mean anomaly (M = n*(t - tau) --- here tau is the time of pericenter passage, n = 2*pi/period the mean motion). Time inputs can be either the time of periastron passage directly or the time of transit center. If the latter, the true anomaly for primary transit will be calculated using Halley's method as well, and this will be used to get the time of periastron passage. Parameters ---------- period : float The period of the transit in days. ecc : float Eccentricity of the orbit omega : float Argument of periastron passage (in radians) inc : string Inclination of the orbit (in radians) t0 : float The transit time in BJD or HJD (will be used to get time of periastron passage). tperi : float The time of periastron passage in BJD or HJD (needed if t0 is not supplied). winn_approximation : boolean If True, the approximation in Winn (2010) is used --- (only valid for not very eccentric and inclined orbits). Returns ------- tsec : float The time of secondary eclipse ''' # Check user is not playing trick on us: if period<0: raise Exception('Period cannot be a negative number.') if ecc<0 or ecc>1: raise Exception('Eccentricity (e) is out of bounds (0 < e < 1).') # Use true anomaly approximation given in Winn (2010) as starting point: f_occ_0 = (-0.5*np.pi) - omega if not winn_approximation: f_occ = optimize.newton(drsky, f_occ_0, fprime = drsky_prime, fprime2 = drsky_2prime, args = (ecc, omega, inc,)) else: f_occ = f_occ_0 # Define the mean motion, n: n = 2.*np.pi/period # If time of transit center is given, use it to calculate the time of periastron passage. If no time of periastron # or time-of-transit center given, raise error: if tperi is None: # For this, find true anomaly during transit. Use Winn (2010) as starting point: f_tra_0 = (np.pi/2.) - omega if not winn_approximation: f_tra = optimize.newton(drsky, f_tra_0, fprime = drsky_prime, fprime2 = drsky_2prime, args = (ecc, omega, inc,)) else: f_tra = f_tra_0 # Get eccentric anomaly during transit: E = getE(f_tra, ecc) # Get mean anomaly during transit: M = getM(E, ecc) # Get time of periastron passage from mean anomaly definition: tperi = t0 - (M/n) elif (tperi is None) and (t0 is None): raise ValueError('The time of periastron passage or time-of-transit center has to be supplied for the calculation to work.') # Get eccentric anomaly: E = getE(f_occ, ecc) # Get mean anomaly during secondary eclipse: M = getM(E, ecc) # Get the time of secondary eclipse using the definition of the mean anomaly: tsec = (M/n) + tperi # Note returned time-of-secondary eclipse is the closest to the time of periastron passage and/or time-of-transit center. Check that # the returned tsec is the *next* tsec to the time of periastron or t0 (i.e., the closest *future* tsec): if t0 is not None: tref = t0 else: tref = tperi if tref > tsec: while True: tsec += period if tsec > tref: break return tsec def drsky_2prime(x, ecc, omega, inc): ''' Second derivative of function drsky. This is the second derivative with respect to f of the drsky function. Parameters ---------- x : float True anomaly ecc : float Eccentricity of the orbit omega : float Argument of periastron passage (in radians) inc : float Inclination of the orbit (in radians) Returns ------- drsky_2prime : float Function evaluated at x, ecc, omega, inc''' sq_sini = np.sin(inc)**2 sin_o_p_f = np.sin(x+omega) cos_o_p_f = np.cos(x+omega) ecosf = ecc*np.cos(x) esinf = ecc*np.sin(x) f1 = esinf - esinf*sq_sini*(sin_o_p_f**2) f2 = -sq_sini*(ecosf + 4.)*(sin_o_p_f*cos_o_p_f) return f1+f2 def drsky_prime(x, ecc, omega, inc): ''' Derivative of function drsky. This is the first derivative with respect to f of the drsky function. Parameters ---------- x : float True anomaly ecc : float Eccentricity of the orbit omega : float Argument of periastron passage (in radians) inc : float Inclination of the orbit (in radians) Returns ------- drsky_prime : float Function evaluated at x, ecc, omega, inc''' sq_sini = np.sin(inc)**2 sin_o_p_f = np.sin(x+omega) cos_o_p_f = np.cos(x+omega) ecosf = ecc*np.cos(x) esinf = ecc*np.sin(x) f1 = (cos_o_p_f**2 - sin_o_p_f**2)*(sq_sini)*(1. + ecosf) f2 = -ecosf*(1 - (sin_o_p_f**2)*(sq_sini)) f3 = esinf*sin_o_p_f*cos_o_p_f*sq_sini return f1+f2+f3 def drsky(x, ecc, omega, inc): ''' Function whose roots we wish to find to obtain time of secondary (and primary) eclipse(s) When one takes the derivative of equation (5) in Winn (2010; https://arxiv.org/abs/1001.2010v5), and equates that to zero (to find the minimum/maximum of said function), one gets to an equation of the form g(x) = 0. This function (drsky) is g(x), where x is the true anomaly. Parameters ---------- x : float True anomaly ecc : float Eccentricity of the orbit omega : float Argument of periastron passage (in radians) inc : float Inclination of the orbit (in radians) Returns ------- drsky : float Function evaluated at x, ecc, omega, inc ''' sq_sini = np.sin(inc)**2 sin_o_p_f = np.sin(x+omega) cos_o_p_f = np.cos(x+omega) f1 = sin_o_p_f*cos_o_p_f*sq_sini*(1. + ecc*np.cos(x)) f2 = ecc*np.sin(x)*(1. - sin_o_p_f**2 * sq_sini) return f1 - f2 def getE(f,ecc): """ Function that returns the eccentric anomaly Note normally this is defined in terms of cosines (see, e.g., Section 2.4 in Murray and Dermott), but numerically this is troublesome because the arccosine doesn't handle negative numbers by definition (equation 2.43). That's why the arctan version is better as signs are preserved (derivation is also in the same section, equation 2.46). Parameters ---------- f : float True anomaly ecc : float Eccentricity Returns ------- E : float Eccentric anomaly """ return 2. * np.arctan(np.sqrt((1.-ecc)/(1.+ecc))*np.tan(f/2.)) def getM(E, ecc): """ Function that returns the mean anomaly using Kepler's equation Parameters ---------- E : float Eccentric anomaly ecc: float Eccentricity Returns ------- M : float Mean anomaly """ return E - ecc*np.sin(E)
natashabatalhaREPO_NAMEPandExoPATH_START.@PandExo_extracted@PandExo-master@pandexo@[email protected]@.PATH_END.py
{ "filename": "_offsetgroup.py", "repo_name": "catboost/catboost", "repo_path": "catboost_extracted/catboost-master/contrib/python/plotly/py2/plotly/validators/box/_offsetgroup.py", "type": "Python" }
import _plotly_utils.basevalidators class OffsetgroupValidator(_plotly_utils.basevalidators.StringValidator): def __init__(self, plotly_name="offsetgroup", parent_name="box", **kwargs): super(OffsetgroupValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, edit_type=kwargs.pop("edit_type", "calc"), role=kwargs.pop("role", "info"), **kwargs )
catboostREPO_NAMEcatboostPATH_START.@catboost_extracted@catboost-master@contrib@python@plotly@py2@plotly@validators@box@[email protected]_END.py
{ "filename": "__init__.py", "repo_name": "yt-project/yt", "repo_path": "yt_extracted/yt-main/yt/frontends/eagle/__init__.py", "type": "Python" }
yt-projectREPO_NAMEytPATH_START.@yt_extracted@yt-main@yt@frontends@eagle@[email protected]_END.py
{ "filename": "test_arxiv.py", "repo_name": "langchain-ai/langchain", "repo_path": "langchain_extracted/langchain-master/libs/community/tests/integration_tests/document_loaders/test_arxiv.py", "type": "Python" }
import shutil from http.client import HTTPMessage from pathlib import Path from typing import List, Union from unittest.mock import patch from urllib.error import HTTPError import pytest from langchain_core.documents import Document from langchain_community.document_loaders.arxiv import ArxivLoader EXAMPLE_HELLO_PDF_PATH = Path(__file__).parents[1] / "examples" / "hello.pdf" def assert_docs(docs: List[Document]) -> None: for doc in docs: assert doc.page_content assert doc.metadata assert set(doc.metadata) == {"Published", "Title", "Authors", "Summary"} def test_load_success() -> None: """Test that returns one document""" loader = ArxivLoader(query="1605.08386", load_max_docs=2) docs = loader.load() assert len(docs) == 1 print(docs[0].metadata) # noqa: T201 print(docs[0].page_content) # noqa: T201 assert_docs(docs) def test_load_returns_no_result() -> None: """Test that returns no docs""" loader = ArxivLoader(query="1605.08386WWW", load_max_docs=2) docs = loader.load() assert len(docs) == 0 def test_load_returns_limited_docs() -> None: """Test that returns several docs""" expected_docs = 2 loader = ArxivLoader(query="ChatGPT", load_max_docs=expected_docs) docs = loader.load() assert len(docs) == expected_docs assert_docs(docs) def test_load_returns_full_set_of_metadata() -> None: """Test that returns several docs""" loader = ArxivLoader(query="ChatGPT", load_max_docs=1, load_all_available_meta=True) docs = loader.load() assert len(docs) == 1 for doc in docs: assert doc.page_content assert doc.metadata assert set(doc.metadata).issuperset( {"Published", "Title", "Authors", "Summary"} ) print(doc.metadata) # noqa: T201 assert len(set(doc.metadata)) > 4 def test_skip_http_error() -> None: """Test skipping unexpected Http 404 error of a single doc""" tmp_hello_pdf_path = Path(__file__).parent / "hello.pdf" def first_download_fails() -> Union[HTTPError, str]: if not hasattr(first_download_fails, "firstCall"): first_download_fails.__setattr__("firstCall", False) raise HTTPError( url="", code=404, msg="Not Found", hdrs=HTTPMessage(), fp=None ) else: # Return temporary example pdf path shutil.copy(EXAMPLE_HELLO_PDF_PATH, tmp_hello_pdf_path) return str(tmp_hello_pdf_path.absolute()) with patch("arxiv.Result.download_pdf") as mock_download_pdf: # Set up the mock to raise HTTP 404 error mock_download_pdf.side_effect = first_download_fails # Load documents loader = ArxivLoader( query="ChatGPT", load_max_docs=2, load_all_available_meta=True, continue_on_failure=True, ) docs = loader.load() # Only 1 of 2 documents should be loaded assert len(docs) == 1 @pytest.mark.skip(reason="test could be flaky") def test_load_issue_9046() -> None: """Test for the fixed issue 9046""" expected_docs = 3 # ":" character could not be an issue loader = ArxivLoader( query="MetaGPT: Meta Programming for Multi-Agent Collaborative Framework", load_max_docs=expected_docs, ) docs = loader.load() assert_docs(docs) assert "MetaGPT" in docs[0].metadata["Title"] # "-" character could not be an issue loader = ArxivLoader( query="MetaGPT - Meta Programming for Multi-Agent Collaborative Framework", load_max_docs=expected_docs, ) docs = loader.load() assert_docs(docs) assert "MetaGPT" in docs[0].metadata["Title"]
langchain-aiREPO_NAMElangchainPATH_START.@langchain_extracted@langchain-master@libs@community@tests@integration_tests@document_loaders@[email protected]_END.py
{ "filename": "python-reference_sum_models.md", "repo_name": "catboost/catboost", "repo_path": "catboost_extracted/catboost-master/catboost/docs/en/concepts/python-reference_sum_models.md", "type": "Markdown" }
# sum_models ## {{ dl--purpose }} {#purpose} {% include [sum_limits-python__sum-limits__desc](../_includes/work_src/reusage-python/python__sum-limits__desc.md) %} ## {{ dl--invoke-format }} {#call-format} ```python sum_models(models, weights=None, ctr_merge_policy='IntersectingCountersAverage') ``` ## {{ dl--parameters }} {#parameters} {% include [sum_limits-python__sum-limits__parameters](../_includes/work_src/reusage-python/python__sum-limits__parameters.md) %} {% note info %} - The bias of the models sum is equal to the weighted sum of models biases. - The scale of the models sum is equal to 1, leaf values are scaled before the summation. {% endnote %} ## {{ dl--output-format }} {#usage-example} {{ product }} model ## {{ input_data__title__example }} {#example} ```python from catboost import CatBoostClassifier, Pool, sum_models from catboost.datasets import amazon import numpy as np from sklearn.model_selection import train_test_split train_df, _ = amazon() y = train_df.ACTION X = train_df.drop('ACTION', axis=1) categorical_features_indices = np.where(X.dtypes != np.float)[0] X_train, X_validation, y_train, y_validation = train_test_split(X, y, train_size=0.8, random_state=42) train_pool = Pool(X_train, y_train, cat_features=categorical_features_indices) validate_pool = Pool(X_validation, y_validation, cat_features=categorical_features_indices) models = [] for i in range(5): model = CatBoostClassifier(iterations=100, random_seed=i) model.fit(train_pool, eval_set=validate_pool) models.append(model) models_avrg = sum_models(models, weights=[1.0/len(models)] * len(models)) ```
catboostREPO_NAMEcatboostPATH_START.@catboost_extracted@catboost-master@catboost@docs@en@concepts@[email protected]_END.py
{ "filename": "line_prob.py", "repo_name": "HETDEX/elixer", "repo_path": "elixer_extracted/elixer-main/elixer/line_prob.py", "type": "Python" }
#import Bayes.bayesian #import Bayes.nb import math try: from ConfigParser import RawConfigParser except: from configparser import RawConfigParser import os import sys import astropy.stats.biweight as biweight import matplotlib.pyplot as plt from scipy.stats import bayes_mvs try: from elixer import global_config as G from elixer import weighted_biweight as elixer_biweight import elixer.line_classifier.probs.classification_prob as LineClassifierPro # import elixer.line_classifier.probs.classification_prob_leung as LineClassifierPro_Leung except: import global_config as G import line_classifier.probs.classification_prob as LineClassifierPro import weighted_biweight as elixer_biweight # import line_classifier.probs.classification_prob_leung as LineClassifierPro_Leung import numpy as np #numpy import array #don't need to do this ... is performed in source_prob call #from line_classifier.misc.tools import generate_cosmology_from_config, read_flim_file MAX_PLAE_POII = 1000. MIN_PLAE_POII = 0.001 UNIVERSE_CONFIG = None FLUX_LIMIT_FN = None COSMOLOGY = None #log = G.logging.getLogger('line_prob_logger') #log.setLevel(G.logging.DEBUG) log = G.Global_Logger('line_prob_logger') log.setlevel(G.LOG_LEVEL) def conf_interval_asym(data,avg,conf=0.68): """ :param data: :param avg: :param conf: :return: """ high, low = None, None try: size = len(data) if size < 10: log.info(f"conf_interval_asym, data size too small {size}") return None, None step = int(round(conf/2. * size)) s = np.array(sorted(data)) idx = (np.abs(s - avg)).argmin() if (idx == 0) or (idx == size-1): #there is a problem or the list is all essentially identical if np.std(s) < 1e-5: #effectively zero, the average has no error and the ci is avg +/- 0 return s[idx], s[idx] #what if many of the same value, want to put our position in the center of that run same_idx = np.where(s==s[idx])[0] if len(same_idx) > 1: log.debug(f"conf_interval_asym, multiple matches ({len(same_idx)}) to avg {avg}") idx = int(np.nanmedian(same_idx)) low = s[max(0,idx-step)] high = s[min(size-1,idx+step)] log.debug(f"Asym Confidence interval: high: {high}, low: {low}, ci: {conf}, len: {size}") except: log.debug("Exception in conf_interval_asym",exc_info=True) return high, low def conf_interval(num_samples,sd,conf=0.95): """ mean +/- error ... this is the +/- error part as 95% (or other) confidence interval (assuming normal distro) :param num_samples: :param sd: standard deviation :param conf: :return: """ if num_samples < 30: return None #todo: put in other values if conf == 0.68: t = 1.0 elif conf == 0.95: t = 1.96 elif conf == 0.99: t = 2.576 else: log.debug("todo: need to handle other confidence intervals: ", conf) return None return t * sd / np.sqrt(num_samples) # def example_prob_LAE(): # Cosmology = {'omega_M_0': 0.3, 'omega_lambda_0': 0.7, 'h': 0.70, 'omega_k_0': 0} # LAE_Priors = 1 # case 1 # alpha_LAE = -1.65 # but can have other values based on LAE_Priors case adopted (-1.36, -1.3, etc?) # # # def main(): # # # initialization taken directly from Andrew's code, but I don't know what they mean # Bayes.nb.init(_alpha_LAE=-1.65, _mult_LStar_LAE=1, _mult_PhiStar_LAE=1, _mult_w0_LAE=1, # _alpha_OII=-1.2, _mult_LStar_OII=1, _mult_PhiStar_OII=1, _mult_w0_OII=1) # # ratio_LAE, plgd, pogd = Bayes.bayesian.prob_ratio(wl_obs=3900.0, lineFlux=1.6e-17, ew_obs=-20.0, # c_obs=None, which_color=None, addl_fluxes=None, # sky_area=5.5e-07, cosmo=Cosmology, LAE_priors=LAE_Priors, # EW_case=1, W_0=None, z_OII=None, sigma=None) # # print(ratio_LAE, plgd, pogd) def fiber_area_in_sqdeg(num_fibers=1): #assumes no overlap return num_fibers*(math.pi*G.Fiber_Radius**2)/(3600.)**2 # # # #wrapper for Andrew Leung's base code # def prob_LAE_old(wl_obs,lineFlux,ew_obs,c_obs, which_color=None, addl_wavelengths=None, addl_fluxes=None,addl_errors=None, # sky_area=None, cosmo=None, lae_priors=None, ew_case=None, W_0=None, z_OII=None, sigma=None): # ''' # # :param wl_obs: # :param lineFlux: # :param ew_obs: # :param c_obs: # :param which_color: # :param addl_fluxes: cgs flux # :param addl_wavelengths: wavelength(observed) for each addl_flux at same index # :param sky_area: # :param cosmo: # :param lae_priors: # :param ew_case: # :param W_0: # :param z_OII: # :param sigma: # :return: # ''' # # #sanity check # if (ew_obs is None) or (ew_obs == -300) or (ew_obs == 666) or (lineFlux < 0): # #bsically, sentinel (null) values from Karl's input file # return 0.0,0.0,0.0 # # #what about different equivalent width calculations for LAE vs OII (different rest wavelength ... or is the ew_obs # #not rest_frame --- the more likely ... in which case, don't divide by the ratio of observed wavelength/rest)? # # #addl_fluxes should be a dictionary: {wavlength,flux} (need to update downstream code though) # #to be consistent with Andrew's code, made addl_fluxex and addl_wavelengths, index matched arrays # # #sky_area in square degrees (should this be the overlapped sum of all fibers? each at 0.75" radius? # #makes very little difference in the output # # #LAE call needs LAE_Priors, but OII does not # #OII calls need the last four parameters (EW_case, z_OII, W_0, sigma) but the LAE calls do not # # Cosmology_default = {'omega_M_0': 0.3, 'omega_lambda_0': 0.7, 'h': 0.70, 'omega_k_0': 0} # LAE_Priors_default = 1 # case 1 # EW_case_default = 1 # alpha_LAE_default = -1.65 # but can have other values based on LAE_Priors case adopted (-1.36, -1.3, etc?) # sky_area_default = 1.36e-7 # one fiber in square degrees (has very little effect on probabilities anyway and # # really is only used in the simulation # #looks like z_OII is meant to be a list that is used by the simulation, so not needed here # #the actual z_OII that is used is calculated as you would expect from the wavelength, assuming it is OII # # # def main(): # if cosmo is None: # cosmo = Cosmology_default # # if lae_priors is None: # lae_priors = LAE_Priors_default # # if ew_case is None: # ew_case = EW_case_default # # if sky_area is None: # sky_area = sky_area_default # # # #looks like lineFlux should be in cgs units (despite the paper showing luminosity func in Jy) # #convert lineFlux from cgs to Jansky # #lineFlux = lineFlux / (1e-23) * (wl_obs**2)/(3e18) # # #suppress sign of EW (always wants positive) # ew_obs = abs(ew_obs) # # #todo: addl_errors=None # try: # # initialization taken directly from Andrew's code, but I don't know what they mean # Bayes.nb.init(_alpha_LAE=alpha_LAE_default, _mult_LStar_LAE=1, _mult_PhiStar_LAE=1, _mult_w0_LAE=1, # _alpha_OII=-1.2, _mult_LStar_OII=1, _mult_PhiStar_OII=1, _mult_w0_OII=1) # # #plgd == Probability of lae given the data? # #pogd = Probability of OII given the data ? # ratio_LAE, plgd, pogd = Bayes.bayesian.prob_ratio(wl_obs=wl_obs, lineFlux=lineFlux, ew_obs=ew_obs, # c_obs=c_obs, which_color=which_color, # addl_wavelengths=addl_wavelengths, # addl_fluxes=addl_fluxes, # sky_area=sky_area, cosmo=cosmo, LAE_priors=lae_priors, # EW_case=ew_case, W_0=W_0, z_OII=z_OII, sigma=sigma) # # # #ratio_LAE is plgd/pogd # #slightly different representation of ratio_LAE (so recomputed for elixer use) # if (plgd is not None) and (plgd > 0.0): # if (pogd is not None) and (pogd > 0.0): # ratio_LAE = float(plgd) / pogd # else: # ratio_LAE = float('inf') # else: # ratio_LAE = 0.0 # # ratio_LAE = min(MAX_PLAE_POII,ratio_LAE) # except: # ratio_LAE = 0 # plgd = 0 # pogd = 0 # log.error("Exception calling into Bayes: ", exc_info=True) # # # return ratio_LAE, plgd, pogd # #def source_prob(config, ra, dec, zs, fluxes, flux_errs, ews_obs, ew_err, c_obs, which_color, addl_fluxes, # addl_fluxes_error, addl_line_names, flim_file, extended_output=False): # """ # Return P(LAE) = P(LAE|DATA)/P(DATA) and evidence ratio P(DATA|LAE)P(LAE)/(P(DATA|OII)P(OII)) # given input information about the sources # # Parameters # ---------- # config : ConfigParser # configuration object # ra, dec, zs, fluxes, flux_errs, ews_obs, ew_err, c_obs : array # positions, redshifts (assuming LAE), line fluxes, errors on # line fluxes, equivalent widths, errors on EW and # colours of the sources (latter two not used!) # which_color : str # which colour is given # addl_fluxes, addl_fluxes_error : 2D array # each i of addl_fluxes[i, :] should correspond, # in order, to the fluxes measured for each source # for the emission line named at position i in # addl_line_names. To not use set to None (not an # array of None!) # addl_line_names : array # names of emission lines stored in addl_fluxes, in the # correct order (see above). To not use set to None (not an array of None!) # flim_file : str # file containing the flux limits # h : float # Hubbles constant/100 # extended_output : bool # Return extended output # # Returns # ------- # posterior_odds, prob_lae_given_data : float arrays # posterior_odds = P(DATA|LAE)P(LAE)/(P(DATA|OII)P(OII)) # P(LAE|DATA) = P(DATA|LAE)*P(LAE)/(P(DATA|LAE)*P(LAE) + P(DATA|OII)*P(OII)) # # """ # # def xxx_bootstrap_prob_LAE(wl_obs,lineFlux,lineFlux_err=None, continuum=None, continuum_err=None, c_obs=None, which_color=None, # addl_wavelengths=None, addl_fluxes=None,addl_errors=None, sky_area=None, cosmo=None, lae_priors=None, ew_case=None, W_0=None, # z_OII=None, sigma=None, num_bootstraps=10000, confidence=0.68): # """ # # :param wl_obs: # :param lineFlux: # :param lineFlux_err: # :param continuum: # :param continuum_err: # :param c_obs: # :param which_color: # :param addl_wavelengths: # :param addl_fluxes: # :param addl_errors: # :param sky_area: # :param cosmo: # :param lae_priors: # :param ew_case: # :param W_0: # :param z_OII: # :param sigma: # :param num_bootstraps: # :param confidence: confidence interval ... commonly 0.68 or 0.95 or 0.99, etc # :return: # """ # #sanity check # if confidence < 0 or confidence > 1.0: # log.debug("Nonsense confidence (%f) in bootstrap_prob_LAE" %(confidence)) # return None, None, None, None # # lineflux_array = np.random.normal(lineFlux,lineFlux_err,num_bootstraps) # continuum_array = np.random.normal(continuum,continuum_err,num_bootstraps) # ew_obs_array = lineflux_array / continuum_array # # lae_oii_ratio_list = [] # p_lae_list = [] # p_oii_list = [] # # for lf,ew in zip(lineflux_array,ew_obs_array): # try: # lae_oii_ratio, p_lae, p_oii = prob_LAE(wl_obs=wl_obs, # lineFlux=lf, # ew_obs=ew, # lineFlux_err=0, # ew_obs_err=0, # c_obs=None, which_color=None, addl_wavelengths=addl_wavelengths, # addl_fluxes=addl_fluxes, addl_errors=addl_errors, sky_area=None, # cosmo=None, lae_priors=None, # ew_case=None, W_0=None, # z_OII=None, sigma=None, estimate_error=False) # # lae_oii_ratio_list.append(lae_oii_ratio) # p_lae_list.append(p_lae) # p_oii_list.append(p_oii) # # except: # log.debug("Exception calling prob_LAE in bootstrap_prob_LAE",exc_info=True) # # #now the "original" single call at the "exact" values for the flux and ew # try: # lae_oii_ratio, p_lae, p_oii = prob_LAE(wl_obs=wl_obs, # lineFlux=lineFlux, # ew_obs=lineFlux/continuum, # lineFlux_err=0, # ew_obs_err=0, # c_obs=None, which_color=None, addl_wavelengths=addl_wavelengths, # addl_fluxes=addl_fluxes, addl_errors=addl_errors, sky_area=None, # cosmo=None, lae_priors=None, # ew_case=None, W_0=None, # z_OII=None, sigma=None, estimate_error=False) # except: # log.debug("Exception calling standard prob_LAE in bootstrap_prob_LAE", exc_info=True) # return None, None, None, None # # try: # #using biweight # loc = biweight.biweight_location(lae_oii_ratio_list) #the "average" # scale = biweight.biweight_scale(lae_oii_ratio_list) # ci = conf_interval(len(lae_oii_ratio_list),scale,conf=0.68) # ratio_LAE_list = [loc,loc-ci,loc+ci] # # temp: # #import matplotlib.pyplot as plt # plt.close('all') # plt.figure() # vals, bins, _ = plt.hist(lae_oii_ratio_list, bins="auto") # plt.title("%0.3g (%0.3g, %0.3g) bins (%d)\n min (%0.3g) max (%0.3g)" # % (ratio_LAE_list[0], ratio_LAE_list[1], ratio_LAE_list[2], len(bins) - 1, min(vals), max(vals))) # plt.savefig("plae_bw_hist_%d.png" %num_bootstraps) # except: # log.debug("Exception calling biweight or conf_interval in bootstap_prob_LAE", exc_info=True) # return lae_oii_ratio, p_lae, p_oii, None # # # # try: # if True: # mean_cntr, var_cntr, std_cntr = bayes_mvs(lae_oii_ratio_list, alpha=0.68) # ratio_LAE_list = [lae_oii_ratio, None, None] # if not np.isnan(mean_cntr[0]): # ratio_LAE_list[0] = mean_cntr[0] # ratio_LAE_list[1] = mean_cntr[1][0] # ratio_LAE_list[2] = mean_cntr[1][1] # #temp: # #import matplotlib.pyplot as plt # plt.close('all') # plt.figure() # vals, bins, _ = plt.hist(lae_oii_ratio_list,bins="auto") # plt.title("%0.3g (%0.3g, %0.3g) bins (%d)\n min (%0.3g) max (%0.3g)" # % (ratio_LAE_list[0], ratio_LAE_list[1], ratio_LAE_list[2],len(bins)-1,min(vals),max(vals))) # plt.savefig("plae_mean_hist_%d.png" %num_bootstraps) # else: # ratio_LAE_list[1] = lae_oii_ratio # ratio_LAE_list[2] = lae_oii_ratio # # mean_cntr, var_cntr, std_cntr = bayes_mvs(p_lae_list, alpha=0.68) # plgd_list = [p_lae,None,None] # if not np.isnan(mean_cntr[0]): # plgd_list[0] = mean_cntr[0] # plgd_list[1] = mean_cntr[1][0] # plgd_list[2] = mean_cntr[1][1] # else: # plgd_list[1] = p_lae # plgd_list[2] = p_lae # # mean_cntr, var_cntr, std_cntr = bayes_mvs(p_oii_list, alpha=0.68) # pogd_list = [p_oii,None,None] # if not np.isnan(mean_cntr[0]): # pogd_list[0] = mean_cntr[0] # pogd_list[1] = mean_cntr[1][0] # pogd_list[2] = mean_cntr[1][1] # else: # pogd_list[1] = p_oii # pogd_list[2] = p_oii # except: # log.debug("Exception calling bayes_mvs in bootstrap_prob_LAE", exc_info=True) # return lae_oii_ratio, p_lae, p_oii, None # # log.info("Bootstrap PLAE: %0.4g (%0.4g, %0.4g) " %(ratio_LAE_list[0],ratio_LAE_list[1],ratio_LAE_list[2])) # # return lae_oii_ratio, p_lae, p_oii, {'ratio':ratio_LAE_list,'plgd':plgd_list,'pogd':pogd_list} # # def prob_LAE(wl_obs,lineFlux,lineFlux_err=None, ew_obs=None, ew_obs_err=None, c_obs=None, which_color=None, addl_wavelengths=None, addl_fluxes=None,addl_errors=None, sky_area=None, cosmo=None, lae_priors=None, ew_case=None, W_0=None, z_OII=None, sigma=None,estimate_error=False): #temporarary ... call both and compare # old_ratio_LAE, old_plgd, old_pogd = prob_LAE_old(wl_obs,lineFlux,ew_obs,c_obs, which_color=which_color, # addl_wavelengths=addl_wavelengths, addl_fluxes=addl_fluxes,addl_errors=addl_errors, # sky_area=sky_area, cosmo=cosmo, lae_priors=lae_priors, ew_case=ew_case, W_0=W_0, z_OII=z_OII, sigma=sigma) # global UNIVERSE_CONFIG, FLUX_LIMIT_FN if UNIVERSE_CONFIG is None: try: config_fn = os.path.join(os.path.dirname(os.path.realpath(__file__)), G.RELATIVE_PATH_UNIVERSE_CONFIG) UNIVERSE_CONFIG = RawConfigParser() UNIVERSE_CONFIG.read(config_fn) log.debug("Load universe config for LAE/OII discriminator: %s" %config_fn) FLUX_LIMIT_FN = os.path.join(os.path.dirname(os.path.realpath(__file__)),G.RELATIVE_PATH_FLUX_LIM_FN) log.debug("Load flux limit filename for LAE/OII discriminator: %s" % FLUX_LIMIT_FN) # don't need to do this ... is performed in source_prob call #COSMOLOGY = generate_cosmology_from_config(UNIVERSE_CONFIG) except: log.warning("Exception loading LAE/OII discriminator config",exc_info=True) print("Exception loading LAE/OII discriminator config") # posterior_odds = 0.0 # prob_lae_given_data = 0.0 #build up parameters (need to be numpy arrays for the call) ra = None #have no meaning in this case? could set to [100.0] and [0.0] per example? dec = None z_LyA = wl_obs / G.LyA_rest - 1.0 z_OII = wl_obs / G.OII_rest - 1.0 #suppress sign of EW (always wants positive) # (and, note this is the OBSERVERED EqW, not EW/(1+z_LAE) ... that calc occurs inside the calls) ew_obs = abs(ew_obs) if lineFlux_err is None: lineFlux_err = 0.0 if ew_obs_err is None: ew_obs_err = 0.0 #convert additional wavelengths into names for the call #from the UNIVERSE_CONFIG file known_lines = UNIVERSE_CONFIG.items("wavelengths") #array of tuples (name,wavelength) extra_fluxes = [] extra_fluxes_err = [] extra_fluxes_name = [] #all the extra lines used by the Bayes code are visible in our range only if OII is the primary #so assume OII and shift to rest frame # LAE = 1215.668 # OII = 3727.45 # NeIII = 3869.00 # H_beta = 4861.32 # OIII4959 = 4958.91 # OIII5007 = 5006.84 #iterate over all in addl_wavelengths, if +/- (1? 2? AA ... what are we using elsewhere?) assign name #if no match, toss the additional flux, etc wl_unc = 2.0 #AA if (addl_wavelengths is None) or (addl_fluxes is None) or (addl_errors is None): addl_wavelengths = [] addl_fluxes = [] addl_errors = [] try: for n, w in known_lines: w_oii = float(w) * (z_OII + 1.) for i in range(len(addl_fluxes)): if abs(w_oii-addl_wavelengths[i]) < wl_unc: extra_fluxes.append(addl_fluxes[i]) extra_fluxes_name.append(n) try: extra_fluxes_err.append(addl_errors[i]) except: extra_fluxes_err.append(0.0) log.warning("Exception (non-fatal) building extra line fluxes in line_prob.py. " + \ "Unable to set flux uncertainty.", exc_info=True) break except: log.error("Exception building extra line fluxes in line_prob.py.", exc_info=True) if estimate_error: return 0,0,0,{} else: return 0,0,0 plae_errors = {} #call classifier multiple times and get an error estimate on the PLAE/POII ratio #at least for now, just call for EqW ... that is the biggest error source #flux_array_range = [lineFlux] if estimate_error and ew_obs_err: ew_list = [ew_obs,ew_obs-ew_obs_err,ew_obs+ew_obs_err] # so: value, -error, +error else: ew_list = [ew_obs] posterior_odds_list = [] prob_lae_given_data_list = [] for e in ew_list: try: posterior_odds, prob_lae_given_data = LineClassifierPro.source_prob(UNIVERSE_CONFIG, np.array([ra]), np.array([dec]), np.array([z_LyA]), np.array([lineFlux]), np.array([lineFlux_err]), np.array([e]), np.array([ew_obs_err]), c_obs=None, which_color=None, addl_fluxes=np.array(extra_fluxes), addl_fluxes_error=np.array(extra_fluxes_err), addl_line_names=np.array(extra_fluxes_name), flim_file=FLUX_LIMIT_FN,extended_output=False) if isinstance(posterior_odds,list) or isinstance(posterior_odds,np.ndarray): if len(posterior_odds) == 1: posterior_odds = posterior_odds[0] else: log.info("Weird. posterior_odds %s" %(posterior_odds)) if isinstance(prob_lae_given_data,list) or isinstance(prob_lae_given_data,np.ndarray): if len(prob_lae_given_data) == 1: prob_lae_given_data = prob_lae_given_data[0] else: log.info("Weird. prob_lae_given_data %s" %(prob_lae_given_data)) posterior_odds_list.append(posterior_odds) prob_lae_given_data_list.append(prob_lae_given_data) except: log.error("Exception calling LineClassifierPro::source_prob()", exc_info=True) ############################### #just testing .... ############################### if False: # @pytest.mark.parametrize("z, fluxes, ew_obs, addl_fluxes, addl_names, e_ratio, e_prob_lae", # [ # (1.9, 9e-17, 40, None, None, 1e+32, 1.0), # (2.48, 9e-17, 40, None, None, 9.0769011810393501, 0.90076314314944406), # (3.18, 9e-17, 40, None, None, 0.17790889751426178, 0.151037909544365), # (2.08, 9e-17, 40, [[5e-17]], ["NeIII"], 10.917948575339162, 0.91609294219734949), # (2.12, 9e-17, 40, [[6e-17]], ["H_beta"], 2.2721726484396545e-09, # 2.2721726536024229e-09), # (2.08, 9e-17, 40, [[7e-17], [9e-17 * 4.752 / 1.791]], ["OIII4959", "OIII5007"], 0.0, # 0.0) # ]) #flim_file = '/home/dustin/code/python/elixer/line_classifier_install/tests/data/Line_flux_limit_5_sigma_baseline.dat' #posterior_odds, prob_lae_given_data = LineClassifierPro.source_prob(UNIVERSE_CONFIG, [100.0], [0.0], # [2.08], array([9e-17]), # array([0.0]), [40.], [0.0], None, None, None, None, None, # FLUX_LIMIT_FN) try: from elixer.line_classifier.misc.tools import read_flim_file except: from line_classifier.misc.tools import read_flim_file flims = read_flim_file(FLUX_LIMIT_FN) errors = [] for x in ["NeIII"]: zoii = (1.0 + 2.08) * UNIVERSE_CONFIG.getfloat("wavelengths", "LAE") / UNIVERSE_CONFIG.getfloat("wavelengths", "OII") - 1.0 lambda_ = UNIVERSE_CONFIG.getfloat("wavelengths", x) * (1.0 + zoii) errors.append(0.2 * flims(lambda_ / UNIVERSE_CONFIG.getfloat("wavelengths", "LAE") - 1.0)) errors = np.array(errors) posterior_odds, prob_lae_given_data = LineClassifierPro.source_prob(UNIVERSE_CONFIG, ra,dec, np.array([2.08]), np.array([9e-17]), np.array([0.0]), [40.0], [0.0], None, None, np.array([5e-17]), errors, np.array(["NeIII"]), FLUX_LIMIT_FN) #LineClassifierPro.source_prob(extended_output=False) ################################ # end testing ############################### pogd_list = [] plgd_list = [] ratio_LAE_list = [] for posterior_odds in posterior_odds_list: if (posterior_odds is not None) and (posterior_odds != 0): pogd = float(prob_lae_given_data) / posterior_odds else: pogd = 0. plgd = float(prob_lae_given_data) ratio_LAE = float(min(MAX_PLAE_POII, posterior_odds)) ratio_LAE = float(max(ratio_LAE,MIN_PLAE_POII)) ratio_LAE_list.append(ratio_LAE) plgd_list.append(plgd) if type(pogd) != float: pogd_list.append(pogd.value) else: pogd_list.append(pogd) #temporary -- compare results and note if the new method disagrees with the old # if old_ratio_LAE + ratio_LAE > 0.2: #if they are both small, don't bother # if abs((old_ratio_LAE - ratio_LAE)/(0.5*(old_ratio_LAE+ratio_LAE))) > 0.01: # msg = "Warning! Difference in P(LAE)/P(OII).\n Original: P(LAE|data) = %f, P(OII|data) = %f, ratio = %f" \ # "\n New: P(LAE|data) = %f, P(OII|data) = %f, ratio = %f" \ # %(old_plgd,old_pogd,old_ratio_LAE,plgd,pogd,ratio_LAE) # # log.warning("***" + msg) # #print(msg) if estimate_error: return ratio_LAE_list[0], plgd_list[0], pogd_list[0], {'ratio':ratio_LAE_list,'plgd':plgd_list,'pogd':pogd_list} else: return ratio_LAE_list[0], plgd_list[0], pogd_list[0] def mc_prob_LAE(wl_obs,lineFlux,lineFlux_err=None, continuum=None, continuum_err=None, ew_obs=None, ew_obs_err=None, c_obs=None, which_color=None, addl_wavelengths=None, addl_fluxes=None,addl_errors=None, sky_area=None, cosmo=None, lae_priors=None, ew_case=None, W_0=None, z_OII=None, sigma=None, num_mc=G.MC_PLAE_SAMPLE_SIZE, confidence=G.MC_PLAE_CONF_INTVL, continuum_err_statistical=None): """ :param wl_obs: :param lineFlux: :param lineFlux_err: :param continuum: :param continuum_err: :param ew_obs: reconstruct continuum if not provided :param ew_obs_err: reconstruct continuum_err if not provided :param c_obs: :param which_color: :param addl_wavelengths: :param addl_fluxes: :param addl_errors: :param sky_area: :param cosmo: :param lae_priors: :param ew_case: :param W_0: :param z_OII: :param sigma: :param num_mc: :param confidence: confidence interval ... commonly 0.68 or 0.95 or 0.99, etc :return: """ try: #sanity check if confidence < 0 or confidence > 1.0: log.debug("Nonsense confidence (%f) in mc_prob_LAE" %(confidence)) return None, None, None, None if (continuum is None): if (ew_obs is None): log.debug("Insufficient info for mc_prob_LAE, continuum and ew_obs not provided") return 0, 0, 0, {'ratio':[0,0,0],'plgd':[0],'pogd':[0]} else: #build continuum and continuum error from ew if ew_obs > 0: continuum = lineFlux / ew_obs if (ew_obs_err is not None) and (ew_obs_err != 0): #this can be negative if the ew error is unreasonably small compared to the lineflux error #in which case the sqrt fails, but set it to 0.0 and the error will be dominated by the lineflux anyway continuum_err = continuum * np.sqrt(max(0.0,(ew_obs_err/ew_obs)**2 - (lineFlux_err/lineFlux)**2)) else: continuum_err = 0.0 else: log.debug("Invalid lineflux or continuum or ew_obs") return 0, 0, 0, {'ratio':[0,0,0],'plgd':[0],'pogd':[0]} if (lineFlux <= 0) or (continuum <= 0) or (np.isnan(lineFlux)) or (np.isnan(continuum)): log.debug("Invalid lineflux or continuum") return 0, 0, 0, {'ratio':[0,0,0],'plgd':[0],'pogd':[0]} if (lineFlux_err is None): log.debug("LineFlux error is None") lineFlux_err = 0 if (lineFlux_err < 0): log.debug("LineFlux error < 0") lineFlux_err = 0 #if lineFlux_err > lineFlux: # log.debug(f"LineFlux error large: {lineFlux_err:0.4g}. Set to lineflux: {lineFlux:0.4g}") # lineFlux_err = lineFlux if (continuum_err is None): log.debug("Continuum error is None") continuum_err = 0 if (continuum_err < 0): log.debug("Continuum error < 0") continuum_err = 0 #if continuum_err > continuum: # log.debug(f"continuum error large: {continuum_err:0.4g}. Set to continuum: {continuum:0.4g}") # continuum_err = continuum if continuum_err == lineFlux_err == 0: log.debug("Continuum error and Lineflux error set to zero. Single run only (no mc).") num_mc = 1 _max_sample_retry = 10 #number of attemps to get a valid lineflux and continuum (both must be positive) log.debug(f"Sampling {num_mc} PLAE/POII. Lf {lineFlux} +/- {lineFlux_err}, Cont {continuum} +/- {continuum_err}") # lineflux_array = np.random.normal(lineFlux,lineFlux_err,num_mc) # continuum_array = np.random.normal(continuum,continuum_err,num_mc) # ew_obs_array = lineflux_array / continuum_array lae_oii_ratio_list = [] p_lae_list = [] p_oii_list = [] continuum_bright_limit = min(continuum+continuum_err, continuum * (1. + G.CONTINUUM_BRIGHT_REL_ERR_LIMIT)) global UNIVERSE_CONFIG, FLUX_LIMIT_FN if UNIVERSE_CONFIG is None: try: config_fn = os.path.join(os.path.dirname(os.path.realpath(__file__)), G.RELATIVE_PATH_UNIVERSE_CONFIG) UNIVERSE_CONFIG = RawConfigParser() UNIVERSE_CONFIG.read(config_fn) log.debug("Load universe config for LAE/OII discriminator: %s" %config_fn) FLUX_LIMIT_FN = os.path.join(os.path.dirname(os.path.realpath(__file__)),G.RELATIVE_PATH_FLUX_LIM_FN) log.debug("Load flux limit filename for LAE/OII discriminator: %s" % FLUX_LIMIT_FN) # don't need to do this ... is performed in source_prob call #COSMOLOGY = generate_cosmology_from_config(UNIVERSE_CONFIG) except: log.warning("Exception loading LAE/OII discriminator config",exc_info=True) print("Exception loading LAE/OII discriminator config") # posterior_odds = 0.0 # prob_lae_given_data = 0.0 #build up parameters (need to be numpy arrays for the call) ra = None #have no meaning in this case? could set to [100.0] and [0.0] per example? dec = None z_LyA = wl_obs / G.LyA_rest - 1.0 z_OII = wl_obs / G.OII_rest - 1.0 #convert additional wavelengths into names for the call #from the UNIVERSE_CONFIG file known_lines = UNIVERSE_CONFIG.items("wavelengths") #array of tuples (name,wavelength) extra_fluxes = [] extra_fluxes_err = [] extra_fluxes_name = [] #all the extra lines used by the Bayes code are visible in our range only if OII is the primary #so assume OII and shift to rest frame # LAE = 1215.668 # OII = 3727.45 # NeIII = 3869.00 # H_beta = 4861.32 # OIII4959 = 4958.91 # OIII5007 = 5006.84 #iterate over all in addl_wavelengths, if +/- (1? 2? AA ... what are we using elsewhere?) assign name #if no match, toss the additional flux, etc wl_unc = 2.0 #AA if (addl_wavelengths is None) or (addl_fluxes is None) or (addl_errors is None): addl_wavelengths = [] addl_fluxes = [] addl_errors = [] try: for n, w in known_lines: w_oii = float(w) * (z_OII + 1.) for i in range(len(addl_fluxes)): if abs(w_oii-addl_wavelengths[i]) < wl_unc: extra_fluxes.append(addl_fluxes[i]) extra_fluxes_name.append(n) try: extra_fluxes_err.append(addl_errors[i]) except: extra_fluxes_err.append(0.0) log.warning("Exception (non-fatal) building extra line fluxes in line_prob.py. " + \ "Unable to set flux uncertainty.", exc_info=True) break except: log.error("Exception building extra line fluxes in line_prob.py.", exc_info=True) if estimate_error: return 0, 0, 0, {'ratio':[0,0,0],'plgd':[0],'pogd':[0]} else: return 0,0,0 plae_errors = {} #call classifier multiple times and get an error estimate on the PLAE/POII ratio #at least for now, just call for EqW ... that is the biggest error source #flux_array_range = [lineFlux] posterior_odds_list = [] prob_lae_given_data_list = [] setup = {} #first run setup date for the LineClassifierPro ... will be populated by source_prob on first call #then passed in on subsequent calls to speed up processing #ct = 0 #for lf,ew in zip(lineflux_array,ew_obs_array): # if continuum_err_statistical is not None: # continuum_err_use = continuum_err_statistical # else: # continuum_err_use = continuum_err for i in range(num_mc): tryagain = 0 lf = 0 cn = 0 ew = 0 while tryagain < _max_sample_retry: lf = np.random.normal(lineFlux, lineFlux_err) cn = np.random.normal(continuum, continuum_err) #if cn > continuum_bright_limit: # cn = np.random.normal(continuum, continuum * G.CONTINUUM_BRIGHT_REL_ERR_LIMIT) #ontinuum_bright_limit if lf > 0 and cn > 0: ew = lf / cn break else: tryagain += 1 if not (tryagain < _max_sample_retry): log.info("Failed to properly sample lineflux and/or continuum. Cannot continue.") break try: #z_LyA = 2.2 #ct += 1 #log.debug("%d"%ct) posterior_odds, prob_lae_given_data,setup = LineClassifierPro.source_prob(UNIVERSE_CONFIG, np.array([ra]), np.array([dec]), np.array([z_LyA]), np.array([lf]), np.array([0.0]), np.array([ew]), np.array([0.0]), c_obs=None, which_color=None, addl_fluxes=np.array(extra_fluxes), addl_fluxes_error=np.array( extra_fluxes_err), addl_line_names=np.array( extra_fluxes_name), flim_file=FLUX_LIMIT_FN, extended_output=False, setup=setup) #log.debug(f"LF {lf}, Cont {cn}, z {z_LyA:0.4f}, EW {ew:0.2f}, EWr {ew/(z_LyA+1):0.2f} PLAE/POII {float(posterior_odds):0.2f}") if isinstance(posterior_odds,list) or isinstance(posterior_odds,np.ndarray): if len(posterior_odds) == 1: posterior_odds = posterior_odds[0] else: log.info("Weird. posterior_odds %s" %(posterior_odds)) if isinstance(prob_lae_given_data,list) or isinstance(prob_lae_given_data,np.ndarray): if len(prob_lae_given_data) == 1: prob_lae_given_data = prob_lae_given_data[0] else: log.info("Weird. prob_lae_given_data %s" %(prob_lae_given_data)) if (posterior_odds is not None) and (posterior_odds != 0): pogd = float(prob_lae_given_data) / posterior_odds else: pogd = 0. plgd = float(prob_lae_given_data) pogd = float(pogd) #the base code can limit this to 1000.0 (explicitly) if P(OII|Data) == 0, #so we DO need to force these to the max of 1000.0 (which could otherwise be exceeded #if P(OII|data) > 0 but very small) posterior_odds = float(posterior_odds) posterior_odds = max(MIN_PLAE_POII,min(MAX_PLAE_POII,posterior_odds)) lae_oii_ratio_list.append(float(posterior_odds)) p_lae_list.append(plgd) p_oii_list.append(pogd) except: log.debug("Exception calling prob_LAE in mc_prob_LAE",exc_info=True) #we were unable to get a sampling, so just call once with the exact values if len(lae_oii_ratio_list) == 0: try: lf = lineFlux ew = lineFlux/continuum posterior_odds, prob_lae_given_data,setup = LineClassifierPro.source_prob(UNIVERSE_CONFIG, np.array([ra]), np.array([dec]), np.array([z_LyA]), np.array([lf]), np.array([0.0]), np.array([ew]), np.array([0.0]), c_obs=None, which_color=None, addl_fluxes=np.array(extra_fluxes), addl_fluxes_error=np.array( extra_fluxes_err), addl_line_names=np.array( extra_fluxes_name), flim_file=FLUX_LIMIT_FN, extended_output=False, setup=setup) if isinstance(posterior_odds,list) or isinstance(posterior_odds,np.ndarray): if len(posterior_odds) == 1: posterior_odds = posterior_odds[0] else: log.info("Weird. posterior_odds %s" %(posterior_odds)) if isinstance(prob_lae_given_data,list) or isinstance(prob_lae_given_data,np.ndarray): if len(prob_lae_given_data) == 1: prob_lae_given_data = prob_lae_given_data[0] else: log.info("Weird. prob_lae_given_data %s" %(prob_lae_given_data)) if (posterior_odds is not None) and (posterior_odds != 0): pogd = float(prob_lae_given_data) / posterior_odds else: pogd = 0. plgd = float(prob_lae_given_data) pogd = float(pogd) log.debug("Sampling (%d) PLAE/POII ... done. Unable to sample. No details returned." % (num_mc)) return float(posterior_odds), plgd, pogd, None except: log.debug("Exception calling prob_LAE in mc_prob_LAE",exc_info=True) try: #lae_oii_ratio_list = np.array(lae_oii_ratio_list) #using biweight log.debug("Biweight ...") try: loc = biweight.biweight_location(lae_oii_ratio_list) hi,lo = conf_interval_asym(lae_oii_ratio_list,loc) #the actual std can be huge and is dodgy to compute since we are capped 1000 - 0.001 #so, use the quantiles in the middle 0.68 (rouhgly +/- 1sd IF this were normal distro adj_std = 0.5 * (np.quantile(lae_oii_ratio_list,0.16) + np.quantile(lae_oii_ratio_list,0.84)) if (hi is None) or (lo is None): log.debug("Unable to perform direct asym confidence interval. Reverting to old method.") loc = biweight.biweight_location(lae_oii_ratio_list) # the "average" scale = biweight.biweight_scale(lae_oii_ratio_list) ci = conf_interval(len(lae_oii_ratio_list), scale * np.sqrt(num_mc), conf=confidence) if ci is not None: ratio_LAE_list = [loc, loc - ci, loc + ci, adj_std] # np.nanstd(lae_oii_ratio_list)] else: log.warning("Confidence Interval is None in line_prob::mc_prob_LAE (p1)") ratio_LAE_list = [loc, 0.001, 1000.0, adj_std] else: ratio_LAE_list = [loc, lo, hi,adj_std] #np.nanstd(lae_oii_ratio_list)] except: log.debug("Unable to perform direct asym confidence interval. Reverting to old method.") loc = biweight.biweight_location(lae_oii_ratio_list) # the "average" scale = biweight.biweight_scale(lae_oii_ratio_list) ci = conf_interval(len(lae_oii_ratio_list), scale * np.sqrt(num_mc), conf=confidence) adj_std = 0.5 * (np.quantile(lae_oii_ratio_list, 0.16) + np.quantile(lae_oii_ratio_list, 0.84)) if ci is not None: ratio_LAE_list = [loc, loc - ci, loc + ci,adj_std]#np.nanstd(lae_oii_ratio_list)] else: log.warning("Confidence Interval is None in line_prob::mc_prob_LAE (p2)") ratio_LAE_list = [loc,0.001,1000.0,adj_std] if False: try: #this data is often skewed, so run bootstraps to normalize and take the confidence interval there loc,ci = elixer_biweight.bootstrap_confidence_interval(lae_oii_ratio_list,confidence=confidence) if (loc is None) or (ci is None): log.debug("Unable to perform confidence interval via bootstrap. Reverting to old method.") loc = biweight.biweight_location(lae_oii_ratio_list) # the "average" scale = biweight.biweight_scale(lae_oii_ratio_list) ci = conf_interval(len(lae_oii_ratio_list), scale * np.sqrt(num_mc), conf=confidence) ratio_LAE_list = [loc, loc - ci, loc + ci,np.nanstd(lae_oii_ratio_list)] except: #if it fails, fall back to the old way (and assume a normal distribution) loc = biweight.biweight_location(lae_oii_ratio_list) # the "average" scale = biweight.biweight_scale(lae_oii_ratio_list) ci = conf_interval(len(lae_oii_ratio_list), scale * np.sqrt(num_mc), conf=confidence) ratio_LAE_list = [loc, loc - ci, loc + ci,np.nanstd(lae_oii_ratio_list)] #??? should the 'scale' by multiplied by sqrt(# samples) to be consistent? #??? I think the sigma_mc == true sigma / sqrt(# samples) (kind of backward from sample vs population) #ci = conf_interval(len(lae_oii_ratio_list), scale, conf=confidence) #ci = conf_interval(len(lae_oii_ratio_list),scale*np.sqrt(num_mc),conf=confidence) log.debug("Raw Biweight: %0.4g (%0.4g, %0.4g), min (%0.4g) max (%0.4g) std (%0.4g), Q1 (%0.4g) Q2 (%0.4g) Q3 (%0.4g)" % (ratio_LAE_list[0], ratio_LAE_list[1], ratio_LAE_list[2], min(lae_oii_ratio_list), max(lae_oii_ratio_list),ratio_LAE_list[3], np.quantile(lae_oii_ratio_list,0.25),np.quantile(lae_oii_ratio_list,0.50),np.quantile(lae_oii_ratio_list,0.75)) ) try: mean_cntr, var_cntr, std_cntr = bayes_mvs(lae_oii_ratio_list, alpha=confidence) log.debug("Bayes MVS: %0.4g (%0.4g, %0.4g), min (%0.4g) max (%0.4g) std(%0.4g), Q1 (%0.4g) Q2 (%0.4g) Q3 (%0.4g)" % (mean_cntr[0], mean_cntr[1][0], mean_cntr[1][1], min(lae_oii_ratio_list), max(lae_oii_ratio_list), std_cntr[0], np.quantile(lae_oii_ratio_list,0.25),np.quantile(lae_oii_ratio_list,0.50),np.quantile(lae_oii_ratio_list,0.75)) ) except: pass # for i in range(len(ratio_LAE_list)): #force the range to be between MIN_PLAE_POII and MAX_PLAE_POII # ratio_LAE_list[i] = max(min(MAX_PLAE_POII,ratio_LAE_list[i]),MIN_PLAE_POII) # log.debug("Limited Biweight: %0.3g (%0.3g, %0.3g) min (%0.3g) max (%0.3g)" # % (ratio_LAE_list[0], ratio_LAE_list[1], ratio_LAE_list[2], min(lae_oii_ratio_list), # max(lae_oii_ratio_list))) # temp: if False: log.debug("plotting ..." ) plt.close('all') #plt.figure() vals, bins, _ = plt.hist(lae_oii_ratio_list, bins="auto") plt.title("%0.3g (%0.3g, %0.3g) bins (%d)\n min (%0.3g) max (%0.3g) " % (ratio_LAE_list[0], ratio_LAE_list[1], ratio_LAE_list[2], len(bins) - 1, min(vals), max(vals))) plt.savefig("plae_bw_hist_%d.png" %num_mc) except: log.debug("Exception calling biweight or conf_interval in mc_prob_LAE", exc_info=True) return None, None, None, None log.debug("Sampling (%d) PLAE/POII ... done" % (num_mc)) return ratio_LAE_list[0], p_lae_list[0], p_oii_list[0], {'ratio':ratio_LAE_list,'plgd':p_lae_list,'pogd':p_oii_list} except: log.debug("Exception calling mc_prob_LAE", exc_info=True) return None, None, None, None
HETDEXREPO_NAMEelixerPATH_START.@elixer_extracted@elixer-main@elixer@[email protected]_END.py
{ "filename": "test_from_texts.py", "repo_name": "langchain-ai/langchain", "repo_path": "langchain_extracted/langchain-master/libs/partners/qdrant/tests/integration_tests/test_from_texts.py", "type": "Python" }
import tempfile import uuid from typing import Optional import pytest # type: ignore[import-not-found] from langchain_core.documents import Document from langchain_qdrant import Qdrant from langchain_qdrant.vectorstores import QdrantException from tests.integration_tests.common import ( ConsistentFakeEmbeddings, assert_documents_equals, ) from tests.integration_tests.fixtures import qdrant_locations def test_qdrant_from_texts_stores_duplicated_texts() -> None: """Test end to end Qdrant.from_texts stores duplicated texts separately.""" from qdrant_client import QdrantClient collection_name = uuid.uuid4().hex with tempfile.TemporaryDirectory() as tmpdir: vec_store = Qdrant.from_texts( ["abc", "abc"], ConsistentFakeEmbeddings(), collection_name=collection_name, path=str(tmpdir), ) del vec_store client = QdrantClient(path=str(tmpdir)) assert 2 == client.count(collection_name).count @pytest.mark.parametrize("batch_size", [1, 64]) @pytest.mark.parametrize("vector_name", [None, "my-vector"]) def test_qdrant_from_texts_stores_ids( batch_size: int, vector_name: Optional[str] ) -> None: """Test end to end Qdrant.from_texts stores provided ids.""" from qdrant_client import QdrantClient collection_name = uuid.uuid4().hex with tempfile.TemporaryDirectory() as tmpdir: ids = [ "fa38d572-4c31-4579-aedc-1960d79df6df", "cdc1aa36-d6ab-4fb2-8a94-56674fd27484", ] vec_store = Qdrant.from_texts( ["abc", "def"], ConsistentFakeEmbeddings(), ids=ids, collection_name=collection_name, path=str(tmpdir), batch_size=batch_size, vector_name=vector_name, ) del vec_store client = QdrantClient(path=str(tmpdir)) assert 2 == client.count(collection_name).count stored_ids = [point.id for point in client.scroll(collection_name)[0]] assert set(ids) == set(stored_ids) @pytest.mark.parametrize("vector_name", ["custom-vector"]) def test_qdrant_from_texts_stores_embeddings_as_named_vectors(vector_name: str) -> None: """Test end to end Qdrant.from_texts stores named vectors if name is provided.""" from qdrant_client import QdrantClient collection_name = uuid.uuid4().hex with tempfile.TemporaryDirectory() as tmpdir: vec_store = Qdrant.from_texts( ["lorem", "ipsum", "dolor", "sit", "amet"], ConsistentFakeEmbeddings(), collection_name=collection_name, path=str(tmpdir), vector_name=vector_name, ) del vec_store client = QdrantClient(path=str(tmpdir)) assert 5 == client.count(collection_name).count assert all( vector_name in point.vector # type: ignore[operator] for point in client.scroll(collection_name, with_vectors=True)[0] ) @pytest.mark.parametrize("vector_name", [None, "custom-vector"]) def test_qdrant_from_texts_reuses_same_collection(vector_name: Optional[str]) -> None: """Test if Qdrant.from_texts reuses the same collection""" from qdrant_client import QdrantClient collection_name = uuid.uuid4().hex embeddings = ConsistentFakeEmbeddings() with tempfile.TemporaryDirectory() as tmpdir: vec_store = Qdrant.from_texts( ["lorem", "ipsum", "dolor", "sit", "amet"], embeddings, collection_name=collection_name, path=str(tmpdir), vector_name=vector_name, ) del vec_store vec_store = Qdrant.from_texts( ["foo", "bar"], embeddings, collection_name=collection_name, path=str(tmpdir), vector_name=vector_name, ) del vec_store client = QdrantClient(path=str(tmpdir)) assert 7 == client.count(collection_name).count @pytest.mark.parametrize("vector_name", [None, "custom-vector"]) def test_qdrant_from_texts_raises_error_on_different_dimensionality( vector_name: Optional[str], ) -> None: """Test if Qdrant.from_texts raises an exception if dimensionality does not match""" collection_name = uuid.uuid4().hex with tempfile.TemporaryDirectory() as tmpdir: vec_store = Qdrant.from_texts( ["lorem", "ipsum", "dolor", "sit", "amet"], ConsistentFakeEmbeddings(dimensionality=10), collection_name=collection_name, path=str(tmpdir), vector_name=vector_name, ) del vec_store with pytest.raises(QdrantException): Qdrant.from_texts( ["foo", "bar"], ConsistentFakeEmbeddings(dimensionality=5), collection_name=collection_name, path=str(tmpdir), vector_name=vector_name, ) @pytest.mark.parametrize( ["first_vector_name", "second_vector_name"], [ (None, "custom-vector"), ("custom-vector", None), ("my-first-vector", "my-second_vector"), ], ) def test_qdrant_from_texts_raises_error_on_different_vector_name( first_vector_name: Optional[str], second_vector_name: Optional[str], ) -> None: """Test if Qdrant.from_texts raises an exception if vector name does not match""" collection_name = uuid.uuid4().hex with tempfile.TemporaryDirectory() as tmpdir: vec_store = Qdrant.from_texts( ["lorem", "ipsum", "dolor", "sit", "amet"], ConsistentFakeEmbeddings(dimensionality=10), collection_name=collection_name, path=str(tmpdir), vector_name=first_vector_name, ) del vec_store with pytest.raises(QdrantException): Qdrant.from_texts( ["foo", "bar"], ConsistentFakeEmbeddings(dimensionality=5), collection_name=collection_name, path=str(tmpdir), vector_name=second_vector_name, ) def test_qdrant_from_texts_raises_error_on_different_distance() -> None: """Test if Qdrant.from_texts raises an exception if distance does not match""" collection_name = uuid.uuid4().hex with tempfile.TemporaryDirectory() as tmpdir: vec_store = Qdrant.from_texts( ["lorem", "ipsum", "dolor", "sit", "amet"], ConsistentFakeEmbeddings(), collection_name=collection_name, path=str(tmpdir), distance_func="Cosine", ) del vec_store with pytest.raises(QdrantException) as excinfo: Qdrant.from_texts( ["foo", "bar"], ConsistentFakeEmbeddings(), collection_name=collection_name, path=str(tmpdir), distance_func="Euclid", ) expected_message = ( "configured for COSINE similarity, but requested EUCLID. Please set " "`distance_func` parameter to `COSINE`" ) assert expected_message in str(excinfo.value) @pytest.mark.parametrize("vector_name", [None, "custom-vector"]) def test_qdrant_from_texts_recreates_collection_on_force_recreate( vector_name: Optional[str], ) -> None: """Test if Qdrant.from_texts recreates the collection even if config mismatches""" from qdrant_client import QdrantClient collection_name = uuid.uuid4().hex with tempfile.TemporaryDirectory() as tmpdir: vec_store = Qdrant.from_texts( ["lorem", "ipsum", "dolor", "sit", "amet"], ConsistentFakeEmbeddings(dimensionality=10), collection_name=collection_name, path=str(tmpdir), vector_name=vector_name, ) del vec_store vec_store = Qdrant.from_texts( ["foo", "bar"], ConsistentFakeEmbeddings(dimensionality=5), collection_name=collection_name, path=str(tmpdir), vector_name=vector_name, force_recreate=True, ) del vec_store client = QdrantClient(path=str(tmpdir)) assert 2 == client.count(collection_name).count @pytest.mark.parametrize("batch_size", [1, 64]) @pytest.mark.parametrize("content_payload_key", [Qdrant.CONTENT_KEY, "foo"]) @pytest.mark.parametrize("metadata_payload_key", [Qdrant.METADATA_KEY, "bar"]) def test_qdrant_from_texts_stores_metadatas( batch_size: int, content_payload_key: str, metadata_payload_key: str ) -> None: """Test end to end construction and search.""" texts = ["foo", "bar", "baz"] metadatas = [{"page": i} for i in range(len(texts))] docsearch = Qdrant.from_texts( texts, ConsistentFakeEmbeddings(), metadatas=metadatas, location=":memory:", content_payload_key=content_payload_key, metadata_payload_key=metadata_payload_key, batch_size=batch_size, ) output = docsearch.similarity_search("foo", k=1) assert_documents_equals( output, [Document(page_content="foo", metadata={"page": 0})] ) @pytest.mark.parametrize("location", qdrant_locations(use_in_memory=False)) def test_from_texts_passed_optimizers_config_and_on_disk_payload(location: str) -> None: from qdrant_client import models collection_name = uuid.uuid4().hex texts = ["foo", "bar", "baz"] metadatas = [{"page": i} for i in range(len(texts))] optimizers_config = models.OptimizersConfigDiff(memmap_threshold=1000) vec_store = Qdrant.from_texts( texts, ConsistentFakeEmbeddings(), metadatas=metadatas, optimizers_config=optimizers_config, on_disk_payload=True, on_disk=True, collection_name=collection_name, location=location, ) collection_info = vec_store.client.get_collection(collection_name) assert collection_info.config.params.vectors.on_disk is True # type: ignore assert collection_info.config.optimizer_config.memmap_threshold == 1000 assert collection_info.config.params.on_disk_payload is True
langchain-aiREPO_NAMElangchainPATH_START.@langchain_extracted@langchain-master@libs@partners@qdrant@tests@integration_tests@[email protected]_END.py
{ "filename": "_marker.py", "repo_name": "catboost/catboost", "repo_path": "catboost_extracted/catboost-master/contrib/python/plotly/py3/plotly/graph_objs/choropleth/unselected/_marker.py", "type": "Python" }
from plotly.basedatatypes import BaseTraceHierarchyType as _BaseTraceHierarchyType import copy as _copy class Marker(_BaseTraceHierarchyType): # class properties # -------------------- _parent_path_str = "choropleth.unselected" _path_str = "choropleth.unselected.marker" _valid_props = {"opacity"} # opacity # ------- @property def opacity(self): """ Sets the marker opacity of unselected points, applied only when a selection exists. The 'opacity' property is a number and may be specified as: - An int or float in the interval [0, 1] Returns ------- int|float """ return self["opacity"] @opacity.setter def opacity(self, val): self["opacity"] = val # Self properties description # --------------------------- @property def _prop_descriptions(self): return """\ opacity Sets the marker opacity of unselected points, applied only when a selection exists. """ def __init__(self, arg=None, opacity=None, **kwargs): """ Construct a new Marker object Parameters ---------- arg dict of properties compatible with this constructor or an instance of :class:`plotly.graph_objs.choropleth.unselected.Marker` opacity Sets the marker opacity of unselected points, applied only when a selection exists. Returns ------- Marker """ super(Marker, self).__init__("marker") if "_parent" in kwargs: self._parent = kwargs["_parent"] return # Validate arg # ------------ if arg is None: arg = {} elif isinstance(arg, self.__class__): arg = arg.to_plotly_json() elif isinstance(arg, dict): arg = _copy.copy(arg) else: raise ValueError( """\ The first argument to the plotly.graph_objs.choropleth.unselected.Marker constructor must be a dict or an instance of :class:`plotly.graph_objs.choropleth.unselected.Marker`""" ) # Handle skip_invalid # ------------------- self._skip_invalid = kwargs.pop("skip_invalid", False) self._validate = kwargs.pop("_validate", True) # Populate data dict with properties # ---------------------------------- _v = arg.pop("opacity", None) _v = opacity if opacity is not None else _v if _v is not None: self["opacity"] = _v # Process unknown kwargs # ---------------------- self._process_kwargs(**dict(arg, **kwargs)) # Reset skip_invalid # ------------------ self._skip_invalid = False
catboostREPO_NAMEcatboostPATH_START.@catboost_extracted@catboost-master@contrib@python@plotly@py3@plotly@graph_objs@choropleth@unselected@[email protected]_END.py
{ "filename": "test.py", "repo_name": "wmpg/WesternMeteorPyLib", "repo_path": "WesternMeteorPyLib_extracted/WesternMeteorPyLib-master/test.py", "type": "Python" }
""" Working script for testing chunks of code. Nothing really of value here. """ import numpy as np from wmpl.Utils.Math import findClosestPoints, vectNorm, vectMag from wmpl.Utils.TrajConversions import date2JD, ecef2ENU, enu2ECEF, cartesian2Geo, geo2Cartesian def calcSpatialResidual(jd, state_vect, radiant_eci, stat, meas): """ Calculate horizontal and vertical residuals from the radiant line, for the given observed point. Arguments: jd: [float] Julian date state_vect: [3 element ndarray] ECI position of the state vector radiant_eci: [3 element ndarray] radiant direction vector in ECI stat: [3 element ndarray] position of the station in ECI meas: [3 element ndarray] line of sight from the station, in ECI Return: (hres, vres): [tuple of floats] residuals in horitontal and vertical direction from the radiant line """ meas = vectNorm(meas) # Calculate closest points of approach (observed line of sight to radiant line) from the state vector obs_cpa, rad_cpa, d = findClosestPoints(stat, meas, state_vect, radiant_eci) # Vector pointing from the point on the trajectory to the point on the line of sight p = obs_cpa - rad_cpa # Calculate geographical coordinates of the state vector lat, lon, elev = cartesian2Geo(jd, *state_vect) # Calculate ENU (East, North, Up) vector at the position of the state vector, and direction of the radiant nn = np.array(ecef2ENU(lat, lon, *radiant_eci)) # Convert the vector to polar coordinates theta = np.arctan2(nn[1], nn[0]) phi = np.arccos(nn[2]/vectMag(nn)) # Local reference frame unit vectors hx = np.array([ -np.cos(theta), np.sin(theta), 0.0]) vz = np.array([-np.cos(phi)*np.sin(theta), -np.cos(phi)*np.cos(theta), np.sin(phi)]) hy = np.array([ np.sin(phi)*np.sin(theta), np.sin(phi)*np.cos(theta), np.cos(phi)]) # Calculate local reference frame unit vectors in ECEF coordinates ehorzx = enu2ECEF(lat, lon, *hx) ehorzy = enu2ECEF(lat, lon, *hy) evert = enu2ECEF(lat, lon, *vz) ehx = np.dot(p, ehorzx) ehy = np.dot(p, ehorzy) # Calculate vertical residuals vres = np.sign(ehx)*np.hypot(ehx, ehy) # Calculate horizontal residuals hres = np.dot(p, evert) return hres, vres if __name__ == "__main__": import sys import matplotlib.pyplot as plt import pyximport pyximport.install(setup_args={'include_dirs':[np.get_include()]}) from wmpl.MetSim.MetSimErosionCyTools import luminousEfficiency, ionizationEfficiency ### Plot different lum effs ### # Range of velocities vel_range = np.linspace(2000, 72000, 100) # Range of masses masses = [1e-11, 1e-9, 1e-7, 1e-5, 0.001, 0.01, 0.1, 1, 10, 100, 1000] lum_eff_types = [1, 2, 3, 4, 5, 6, 7] lum_eff_labels = ["Revelle & Ceplecha (2001) - Type I", "Revelle & Ceplecha (2001) - Type II", "Revelle & Ceplecha (2001) - Type III", "Borovicka et al. (2013) - Kosice", "CAMO faint meteors", "Ceplecha & McCrosky (1976)", "Borovicka et al. (2020) - Two strengths"] for i, lum_type in enumerate(lum_eff_types): for mass in masses: lum_list = [] for vel in vel_range: lum = luminousEfficiency(lum_type, 0.0, vel, mass) lum_list.append(lum) plt.plot(vel_range/1000, 100*np.array(lum_list), label="{:s} kg".format(str(mass)), zorder=4) plt.title(lum_eff_labels[i]) plt.xlabel("Velocity (km/s)") plt.ylabel("Tau (%)") plt.legend() plt.grid(color='0.9') plt.show() # Plot the ionization efficiency beta_arr = np.array([ionizationEfficiency(vel) for vel in vel_range]) plt.semilogy(vel_range/1000, 100*beta_arr, label="Jones (1997)") plt.xlabel("Velocity (km/s)") plt.ylabel("Beta (%)") plt.show() sys.exit() ### ### from mpl_toolkits.mplot3d import Axes3D import matplotlib.pyplot as plt jd = date2JD(2018, 2, 14, 10, 30, 0) lat = np.radians(45.0) lon = np.radians(13.0) h = 100000 state_vect = np.array(geo2Cartesian(lat, lon, h, jd)) radiant_eci = np.array([0.0, 1.0, 0.0]) stat = np.array(geo2Cartesian(lat, lon, h + 10, jd)) meas = np.array([0.0, 0.0, 1.0]) fig = plt.figure() ax = fig.add_subplot(111, projection='3d') print(calcSpatialResidual(jd, state_vect, radiant_eci, stat, meas)) # Plot the origin #ax.scatter(0, 0, 0) # Plot the first point ax.scatter(*state_vect) # Plot the line from the origin rad_x, rad_y, rad_z = -vectNorm(state_vect) rst_x, rst_y, rst_z = state_vect meteor_len = 1000000 ax.quiver(rst_x, rst_y, rst_z, rad_x, rad_y, rad_z, length=meteor_len, normalize=True, color='b', arrow_length_ratio=0.1) # Plot the radiant direction line rad_x, rad_y, rad_z = -radiant_eci rst_x, rst_y, rst_z = state_vect meteor_len = 1000000 ax.quiver(rst_x, rst_y, rst_z, rad_x, rad_y, rad_z, length=meteor_len, normalize=True, color='r', arrow_length_ratio=0.1) # Plot the second point ax.scatter(*stat) # Plot the direction of the second vector rad_x, rad_y, rad_z = -meas rst_x, rst_y, rst_z = stat meteor_len = 1000000 ax.quiver(rst_x, rst_y, rst_z, rad_x, rad_y, rad_z, length=meteor_len, normalize=True, color='g', arrow_length_ratio=0.1) # Calculate closest points of approach (observed line of sight to radiant line) from the state vector obs_cpa, rad_cpa, d = findClosestPoints(stat, meas, state_vect, radiant_eci) # Plot the closest points ax.scatter(*obs_cpa) ax.scatter(*rad_cpa) # Set a constant aspect ratio ax.set_aspect('equal', adjustable='box-forced') plt.show()
wmpgREPO_NAMEWesternMeteorPyLibPATH_START.@WesternMeteorPyLib_extracted@[email protected]@.PATH_END.py
{ "filename": "test_verbosity.py", "repo_name": "wdpozzo/raynest", "repo_path": "raynest_extracted/raynest-main/raynest/tests/test_verbosity.py", "type": "Python" }
import unittest import numpy as np import raynest.model class GaussianModel(raynest.model.Model): """ A simple gaussian model with parameters mean and sigma """ names=['mean','sigma'] bounds=[[-5,5],[0.05,1]] data = np.array([x for x in np.random.normal(0.5,0.5,size=10)]) analyticZ = np.log(0.05) @classmethod def log_likelihood(cls,x): return -0.5*x['mean']**2/x['sigma']**2 - np.log(x['sigma']) - 0.5*np.log(2.0*np.pi) def log_prior(self,p): if not self.in_bounds(p): return -np.inf return -np.log(p['sigma']) - np.log(10) - np.log(0.95) def force(self,x): return np.zeros(1, dtype = {'names':x.names, 'formats':['f8' for _ in x.names]}) class GaussianTestCase(unittest.TestCase): """ Test the gaussian model with different verbose levels """ def setUp(self): self.model = GaussianModel() self.runs=[] for v in range(4): self.runs.append(raynest.raynest(self.model,verbose=v,nensemble=8,nlive=100,maxmcmc=100)) def test_run(self): for r in self.runs: r.run() print('Analytic evidence: {0}'.format(self.model.analyticZ)) def test_all(): unittest.main(verbosity=2) if __name__=='__main__': unittest.main(verbosity=2)
wdpozzoREPO_NAMEraynestPATH_START.@raynest_extracted@raynest-main@raynest@tests@[email protected]_END.py
{ "filename": "test_sdsstractor.py", "repo_name": "dstndstn/tractor", "repo_path": "tractor_extracted/tractor-main/test/not-real-tests/test_sdsstractor.py", "type": "Python" }
from __future__ import print_function import sys from math import pi import numpy as np import pylab as plt from astrometry.util.sip import Tan from sdsstractor import * #from compiled_profiles import * #from galaxy_profiles import * class FitsWcs(object): def __init__(self, wcs): self.wcs = wcs def positionToPixel(self, pos, src=None): x,y = self.wcs.radec2pixelxy(pos.ra, pos.dec) return x,y def pixelToPosition(self, x, y, src=None): r,d = self.wcs.pixelxy2radec(x, y) return RaDecPos(r,d) def cdAtPixel(self, x, y): cd = self.wcs.cd return np.array([[cd[0], cd[1]], [cd[2],cd[3]]]) def main(): from optparse import OptionParser parser = OptionParser() parser.add_option('-v', '--verbose', dest='verbose', action='count', default=0, help='Make more verbose') opt,args = parser.parse_args() print('Opt.verbose = ', opt.verbose) if opt.verbose == 0: lvl = logging.INFO else: # opt.verbose == 1: lvl = logging.DEBUG logging.basicConfig(level=lvl, format='%(message)s', stream=sys.stdout) (images, simplexys, rois, zrange, nziv, footradecs ) = prepareTractor(False, False, rcfcut=[0]) print('Creating tractor...') tractor = SDSSTractor(images, debugnew=False, debugchange=True) ''' step 19, change-011 Changing source [131] PointSource at RA,Dec (120.5813, 9.3017) with SdssFlux: 2512.0 with scalar 373541.300971 Pixel position in image 1: 162.38751309 22.0818652585 * NCircularGaussianPSF: sigmas [ 0.911, 2.687, 9.871, 7.172, 18.284 ], weights [ 1.005, 0.083, -0.032, -0.007, 0.138 ] * NCircularGaussianPSF: sigmas [ 1.014, 1.507, 3.778, 4.812 ], weights [ 1.002, 0.037, 0.050, 0.065 ] ''' ''' to [ExpGalaxy(pos=RaDecPos(120.5813, 9.3017), flux=SdssFlux(2260.2), re=1.0, ab=0.50, phi=0.0)] --> ExpGalaxy at RA,Dec (120.5813, 9.3017) with SdssFlux: 3452.9, re=0.6, ab=0.88, phi=-0.1 to [DevGalaxy(pos=RaDecPos(120.5813, 9.3017), flux=SdssFlux(2260.2), re=1.0, ab=0.50, phi=0.0)] DevGalaxy at RA,Dec (120.5813, 9.3018) with SdssFlux: 5292.4, re=1.0, ab=1.24, phi=-0.0 ''' pos = RaDecPos(120.5813, 9.3017) flux = SdssFlux(3452.9 / SdssPhotoCal.scale) #src = ExpGalaxy(pos, flux, 0.6, 0.88, -0.1) src = ExpGalaxy(pos, flux, 0.6, 0.5, -0.1) # After optimizing from ab=0.5: pos = RaDecPos(120.58129, 9.30171) flux = SdssFlux(4570. / SdssPhotoCal.scale) src = ExpGalaxy(pos, flux, 0.9, 0.75, -35.7) # small test galaxy (img 1) src.setParams([120.5812843997946, 9.3017035130757009, 0.0049199047382452428, 1.2052972074376225, 0.55429578631330578, -47.611423262836823]) # big honkin' galaxy (img 0) src = DevGalaxy(pos, flux, 0.9, 0.75, -35.7) src.setParams([120.60275, 9.41350, 5.2767052, 22.8, 0.81, 5.0]) tractor.catalog.append(src) def makePlots(tractor, fnpat, title1='', title2=''): mods = tractor.getModelImages() imgs = tractor.getImages() chis = tractor.getChiImages() for i,(mod,img,chi) in enumerate(zip(mods,imgs,chis)): zr = zrange[i] imargs = dict(interpolation='nearest', origin='lower', vmin=zr[0], vmax=zr[1]) srcpatch = src.getModelPatch(img) slc = srcpatch.getSlice(img) plt.clf() plt.subplot(2,2,1) plotimage(img.getImage()[slc], **imargs) plt.title(title1) plt.subplot(2,2,2) plotimage(mod[slc], **imargs) plt.title(title2) plt.subplot(2,2,3) plotimage(chi[slc], interpolation='nearest', origin='lower', vmin=-5, vmax=5) plt.title('chi') #plt.subplot(2,2,4) #plotimage(img.getInvError()[slc], # interpolation='nearest', origin='lower', # vmin=0, vmax=0.1) #plt.title('inv err') fn = fnpat % i plt.savefig(fn) print('wrote', fn) makePlots(tractor, 'opt-s00-%02i.png', #'pre-%02i.png', title2='re %.1f, ab %.2f, phi %.1f' % (src.re, src.ab, src.phi)) if False: p0 = src.getParams() lnp0 = tractor.getLogProb() for i,step in enumerate([3e-5, 3e-5, 1e-3, 0.1, 0.1, 15.]): src.setParams(p0) for j in range(5): src.stepParam(i, -step) for j in range(9): src.stepParam(i, step) lnp = tractor.getLogProb() dlnp = lnp - lnp0 makePlots(tractor, 'step-%i-%02i-%%02i.png' % (i,j), title1='dlnp=%.1f' % dlnp, title2='re %.1f, ab %.2f, phi %.1f' % (src.re, src.ab, src.phi)) src.setParams(p0) for ostep in range(10): print() print('Optimizing...') #alphas = [1., 0.5, 0.25, 0.1, 0.01] alphas=None ppre = src.getParams() lnppre = tractor.getLogProb() dlnp,X,alpha = tractor.optimizeCatalogAtFixedComplexityStep(alphas=alphas) ppost = src.getParams() makePlots(tractor, 'opt-s%02i-%%02i.png' % (ostep+1), title1='dlnp = %.1f' % dlnp, title2='re %.1f, ab %.2f, phi %.1f' % (src.re, src.ab, src.phi)) print() src.setParams(ppre) print('Pre :', src) src.setParams(ppost) print('Post:', src) src.setParams(ppre) src.stepParams(X * 0.001) dlnptiny = tractor.getLogProb() - lnppre print('1e-3:', src) makePlots(tractor, 'opt-s%02i-%%02ib.png' % (ostep+1), title1='dlnp = %.1f' % dlnptiny, title2='re %.1f, ab %.2f, phi %.1f' % (src.re, src.ab, src.phi)) src.setParams(ppre) src.stepParams(X) dlnpfull = tractor.getLogProb() - lnppre print('Full:', src) makePlots(tractor, 'opt-s%02i-%%02ic.png' % (ostep+1), title1='dlnp = %.1f' % dlnpfull, title2='re %.1f, ab %.2f, phi %.1f' % (src.re, src.ab, src.phi)) src.setParams(ppost) print() if dlnp < 1e-3: break print('Final source:', src) print('Params:', src.getParams()) sys.exit(0) imgi = 1 img = images[imgi] patch = src.getModelPatch(img) imargs1 = dict(interpolation='nearest', origin='lower') plt.clf() plt.imshow(patch.getImage(), **imargs1) plt.colorbar() plt.title('model') plt.savefig('eg-1.png') derivs = src.getParamDerivatives(img) for i,deriv in enumerate(derivs): plt.clf() plt.imshow(deriv.getImage(), **imargs1) plt.colorbar() plt.title('derivative ' + deriv.getName()) plt.savefig('eg-deriv%i-0a.png' % i) chi = tractor.getChiImage(imgi) sl = patch.getSlice(img) plt.clf() plt.imshow(img.getImage()[sl], **imargs1) plt.colorbar() plt.title('image') plt.savefig('eg-image.png') plt.clf() plt.imshow(chi[sl], **imargs1) plt.colorbar() plt.title('chi') plt.savefig('eg-chi.png') for i,deriv in enumerate(derivs): plt.clf() (H,W) = chi.shape deriv.clipTo(W,H) sl = deriv.getSlice(chi) print('slice', sl) print('deriv:', deriv) print('chi sliced:', chi[sl].shape) print('deriv:', deriv.getImage().shape) plt.imshow(chi[sl] * deriv.getImage(), **imargs1) plt.colorbar() plt.title('chi * derivative ' + deriv.getName()) plt.savefig('eg-chideriv%i-0a.png' % i) if False: src = PointSource(pos, SdssFlux(2512.0 / SdssPhotoCal.scale)) tractor.catalog.append(src) x,y = images[1].getWcs().positionToPixel(pos, src=src) print('Pixel position in image 1:', x,y) tractor.changeSourceTypes(srcs=[src]) if __name__ == '__main__': main() sys.exit(0) angles = np.linspace(0, 2.*pi, 360) x,y = np.cos(angles), np.sin(angles) re = 3600./2. # arcsec ab = 0.5 phi = 30. # deg abfactor = ab re_deg = re / 3600. phi = np.deg2rad(phi) # units of degrees G = np.array([[ re_deg * np.cos(phi), re_deg * np.sin(phi) ], [ re_deg * abfactor * -np.sin(phi), re_deg * abfactor * np.cos(phi) ]]) R = np.array([[ np.cos(phi), np.sin(phi) ], [-np.sin(phi), np.cos(phi) ]]) S = re_deg * np.array([[ 1., 0 ], [ 0, abfactor ]]) cp = np.cos(phi) sp = np.sin(phi) GG = re_deg * np.array([[ cp, sp * abfactor], [-sp, cp * abfactor]]) print('R', R) print('S', S) RS = np.dot(R, S) print('RS', RS) print('G', G) #G = RS G = GG rd = np.dot(G, np.vstack((x,y))) print('rd', rd.shape) r = rd[0,:] d = rd[1,:] plt.clf() plt.plot(r, d, 'b-') plt.axis('equal') plt.savefig('g.png') width = (2./7.2) # in deg W,H = 500,500 scale = width / float(W) cd = np.array([[-scale, 0],[0,-scale]]) cdi = linalg.inv(cd) pg = np.dot(cdi, G) pxy = np.dot(pg, np.vstack((x,y))) px = pxy[0,:] py = pxy[1,:] plt.clf() plt.plot(px, py, 'b-') plt.axis('equal') plt.savefig('g2.png') T = np.dot(linalg.inv(G), cd) XX,YY = np.meshgrid(np.arange(-1000,1200, 200), np.arange( -600, 800, 200)) XX = XX.ravel() YY = YY.ravel() XY = vstack((XX,YY)) Tij = np.dot(T, XY) print('Tij', Tij.shape) for i in range(len(XX)): plt.text(XX[i], YY[i], '(%.1f,%.1f)' % (Tij[0,i], Tij[1,i]), fontsize=8, ha='center', va='center') plt.savefig('g3.png') profile = CompiledProfile(modelname='exp', profile_func=profile_exp, re=100, nrad=4) #re_deg = 0.005 # 9 pix re_deg = 0.002 # repix = re_deg / scale print('repix', repix) cp = np.cos(phi) sp = np.sin(phi) G = re_deg * np.array([[ cp, sp * abfactor], [-sp, cp * abfactor]]) T = np.dot(linalg.inv(G), cd) X = profile.sample_transform(T, repix, ab, W/2, H/2, W, H, 1, debugstep=1) (xlo,xhi,ylo,yhi, cre,cn, cpixw, cpixh, re_factor, ab_factor, Tij, ii, jj) = X print('box size', cpixw, cpixh) print('re_factor', re_factor) print('ab_factor', ab_factor) plt.clf() plt.plot(Tij[0,:], Tij[1,:], 'b.') plt.title('Tij') plt.savefig('g4.png') plt.clf() plt.plot(ii, jj, 'b.') plt.savefig('g5.png') plt.clf() print('boxes:', len(xlo)) plt.plot(np.vstack((xlo,xhi,xhi,xlo,xlo)), np.vstack((ylo,ylo,yhi,yhi,ylo)), 'b-') plt.savefig('g6.png') plt.axis([0,1000,0,1000]) plt.savefig('g7.png') #sys.exit(0) ra,dec = 1.,45. width = (2./7.2) # in deg W,H = 500,500 wcs = Tan() wcs.crval[0] = ra wcs.crval[1] = dec wcs.crpix[0] = W/2. wcs.crpix[1] = H/2. scale = width / float(W) wcs.cd[0] = -scale wcs.cd[1] = 0 wcs.cd[2] = 0 wcs.cd[3] = -scale wcs.imagew = W wcs.imageh = H wcs = FitsWcs(wcs) pos = RaDecPos(ra, dec) flux = SdssFlux(1e4) # arcsec repix = 25. re = 3600. * scale * repix ab = 0.5 phi = 30.0 eg = ExpGalaxy(pos, flux, re, ab, phi) image = np.zeros((H,W)) invvar = np.zeros_like(image) + 1. photocal = SdssPhotoCal(SdssPhotoCal.scale) psf = NCircularGaussianPSF([1.5], [1.0]) sky = 0. img = Image(data=image, invvar=invvar, psf=psf, wcs=wcs, sky=sky, photocal=photocal) patch = eg.getModelPatch(img) imargs1 = dict(interpolation='nearest', origin='lower') plt.clf() plt.imshow(patch.getImage(), **imargs1) plt.colorbar() plt.savefig('eg-1.png')
dstndstnREPO_NAMEtractorPATH_START.@tractor_extracted@tractor-main@test@not-real-tests@[email protected]_END.py
{ "filename": "_familysrc.py", "repo_name": "catboost/catboost", "repo_path": "catboost_extracted/catboost-master/contrib/python/plotly/py2/plotly/validators/area/hoverlabel/font/_familysrc.py", "type": "Python" }
import _plotly_utils.basevalidators class FamilysrcValidator(_plotly_utils.basevalidators.SrcValidator): def __init__( self, plotly_name="familysrc", parent_name="area.hoverlabel.font", **kwargs ): super(FamilysrcValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, edit_type=kwargs.pop("edit_type", "none"), role=kwargs.pop("role", "info"), **kwargs )
catboostREPO_NAMEcatboostPATH_START.@catboost_extracted@catboost-master@contrib@python@plotly@py2@plotly@validators@area@hoverlabel@font@[email protected]_END.py
{ "filename": "prepare_internet.ipynb", "repo_name": "catboost/catboost", "repo_path": "catboost_extracted/catboost-master/catboost/benchmarks/quality_benchmarks/prepare_internet/prepare_internet.ipynb", "type": "Jupyter Notebook" }
### Instruction To obtain the dataset Internet used for algorithms comparison: 1) Download `kdd_internet_usage.arff` file from http://www.cs.odu.edu/~mukka/cs795sum10dm/datasets/uci-20070111/nominal/kdd_internet_usage.arff. 2) Put it to the same directory as this notebook. 3) Run all the cells of this notebook successively to produce files for training and testing. ```python resulting_train_filename = "train" resulting_test_filename = "test" ``` ### Preparing the data ```python import pandas as pd import re import scipy.io.arff ``` ```python with open("kdd_internet_usage.arff", "rb") as fin: data, meta = scipy.io.arff.loadarff(fin) data = pd.DataFrame(data) ``` ```python data.head() ``` <div> <table border="1" class="dataframe"> <thead> <tr style="text-align: right;"> <th></th> <th>Actual_Time</th> <th>Age</th> <th>Community_Building</th> <th>Community_Membership_Family</th> <th>Community_Membership_Hobbies</th> <th>Community_Membership_None</th> <th>Community_Membership_Other</th> <th>Community_Membership_Political</th> <th>Community_Membership_Professional</th> <th>Community_Membership_Religious</th> <th>...</th> <th>Web_Page_Creation</th> <th>Who_Pays_for_Access_Dont_Know</th> <th>Who_Pays_for_Access_Other</th> <th>Who_Pays_for_Access_Parents</th> <th>Who_Pays_for_Access_School</th> <th>Who_Pays_for_Access_Self</th> <th>Who_Pays_for_Access_Work</th> <th>Willingness_to_Pay_Fees</th> <th>Years_on_Internet</th> <th>who</th> </tr> </thead> <tbody> <tr> <th>0</th> <td>Consultant</td> <td>41</td> <td>Equally</td> <td>0</td> <td>0</td> <td>1</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>...</td> <td>Yes</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>1</td> <td>0</td> <td>Other_sources</td> <td>1-3_yr</td> <td>93819</td> </tr> <tr> <th>1</th> <td>College_Student</td> <td>28</td> <td>Equally</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>...</td> <td>No</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>1</td> <td>0</td> <td>Already_paying</td> <td>Under_6_mo</td> <td>95708</td> </tr> <tr> <th>2</th> <td>Other</td> <td>25</td> <td>More</td> <td>1</td> <td>1</td> <td>0</td> <td>0</td> <td>0</td> <td>1</td> <td>0</td> <td>...</td> <td>Yes</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>1</td> <td>1</td> <td>Other_sources</td> <td>1-3_yr</td> <td>97218</td> </tr> <tr> <th>3</th> <td>Salesperson</td> <td>28</td> <td>More</td> <td>0</td> <td>0</td> <td>0</td> <td>1</td> <td>0</td> <td>0</td> <td>0</td> <td>...</td> <td>Yes</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>1</td> <td>0</td> <td>Already_paying</td> <td>1-3_yr</td> <td>91627</td> </tr> <tr> <th>4</th> <td>K-12_Student</td> <td>17</td> <td>More</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>1</td> <td>1</td> <td>0</td> <td>...</td> <td>Yes</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>1</td> <td>0</td> <td>Already_paying</td> <td>1-3_yr</td> <td>49906</td> </tr> </tbody> </table> <p>5 rows × 72 columns</p> </div> ```python target = data["Who_Pays_for_Access_Work"].apply(lambda x: 1 if x == '0' else -1) data.drop(["Who_Pays_for_Access_Work", "Willingness_to_Pay_Fees", "Years_on_Internet", "who"], axis=1, inplace=True) ``` ```python data.shape ``` (10108, 68) ### Preparing train/test split ```python train_idx = pd.read_csv("stratified_train_idx.txt", header=None) test_idx = pd.read_csv("stratified_test_idx.txt", header=None) ``` ```python Xtrain = data.iloc[train_idx[0]] Ytrain = target.iloc[train_idx[0]] Xtest = data.iloc[test_idx[0]] Ytest = target.iloc[test_idx[0]] ``` ```python # creating file with features def prepare_pool(data, labels, filename): X = data.values y = labels.values with open(filename, "w") as fout: for i in range(data.shape[0]): fout.write(str(y[i]) + "\t" + "\t".join(map(str, X[i])) + "\n") ``` ```python prepare_pool(Xtrain, Ytrain, resulting_train_filename) prepare_pool(Xtest, Ytest, resulting_test_filename) ``` ```python categorical_features = {0, 1, 2, 11, 12, 18, 19, 20, 21, 31, 32, 33, 34, 36, 37, 38, 39, 59, 60, 61, 62} with open(resulting_train_filename + '.cd', 'w') as fout: fout.write('0\tTarget\n') for cat_f_id in sorted(categorical_features): fout.write('{}\tCateg\n'.format(cat_f_id + 1)) ```
catboostREPO_NAMEcatboostPATH_START.@catboost_extracted@catboost-master@catboost@benchmarks@quality_benchmarks@prepare_internet@[email protected]_END.py
{ "filename": "obslog.py", "repo_name": "plazar/coast_guard", "repo_path": "coast_guard_extracted/coast_guard-master/database/obslog.py", "type": "Python" }
import sqlalchemy as sa # Create metadata object metadata = sa.MetaData() # Define the metadata object for the obsinfo table sa.Table('obsinfo', metadata, sa.Column('object', sa.String(32), nullable=False), sa.Column('mjd', sa.Float(53), nullable=False), sa.Column('equinox', sa.Float, nullable=False), sa.Column('equinox_obs', sa.Float, nullable=False), sa.Column('exposuretime', sa.Float, nullable=False), sa.Column('projectid', sa.String(32), nullable=False), sa.Column('observer', sa.String(32), nullable=False), sa.Column('scan', sa.Integer, nullable=False), sa.Column('obstimestamp', sa.String(32), nullable=False), sa.Column('lst', sa.Float(53), nullable=False), sa.Column('nobs', sa.Integer, nullable=False), sa.Column('nsubs', sa.Integer, nullable=False), sa.Column('subsnum', sa.Integer, nullable=False), sa.Column('obsnum', sa.Integer, nullable=False), sa.Column('subfirstmjd', sa.Float(53), nullable=False), sa.Column('sublastmjd', sa.Float(53), nullable=False), sa.Column('ctype1', sa.String(32), nullable=False), sa.Column('ctype2', sa.String(32), nullable=False), sa.Column('wcsname', sa.String(32), nullable=False), sa.Column('lon', sa.Float, nullable=False), sa.Column('lat', sa.Float, nullable=False), sa.Column('longoff', sa.Float, nullable=False), sa.Column('latoff', sa.Float, nullable=False), sa.Column('scantype', sa.String(32), nullable=False), sa.Column('scanmode', sa.String(32), nullable=False), sa.Column('scandir', sa.String(8), nullable=False), sa.Column('scanlen', sa.Float, nullable=False), sa.Column('scanrot', sa.Float, nullable=False), sa.Column('scanxvel', sa.Float, nullable=False), sa.Column('nuseband', sa.Integer, nullable=False), sa.Column('nusefeed', sa.Integer, nullable=False), sa.Column('phases', sa.Integer, nullable=False), sa.Column('freqthrow', sa.Float, nullable=False), sa.Column('azcorr', sa.Float, nullable=False), sa.Column('elcorr', sa.Float, nullable=False), sa.Column('refraction', sa.Float, nullable=False), sa.Column('nula', sa.Float, nullable=False), sa.Column('nule', sa.Float, nullable=False), sa.Column('cols', sa.Float, nullable=False), sa.Column('linx', sa.Float, nullable=False), sa.Column('liny', sa.Float, nullable=False), sa.Column('linz', sa.Float, nullable=False), sa.Column('rotx', sa.Float, nullable=False), sa.Column('roty', sa.Float, nullable=False), sa.Column('rotz', sa.Float, nullable=False), sa.Column('temperature', sa.Float, nullable=False), sa.Column('pressure', sa.Float, nullable=False), sa.Column('humidity', sa.Float, nullable=False), sa.Column('windspeed', sa.Float, nullable=False), sa.Column('winddir', sa.Float, nullable=False), sa.Column('vlsr', sa.Float, nullable=False), sa.Column('vblsr', sa.Float, nullable=False), sa.Column('vhel', sa.Float, nullable=False), sa.Column('vbar', sa.Float, nullable=False), sa.Column('azim', sa.Float, nullable=False), sa.Column('elev', sa.Float, nullable=False), sa.Column('focus1', sa.Float, nullable=False), sa.Column('focus2', sa.Float, nullable=False), sa.Column('focus3', sa.Float, nullable=False), sa.Column('focus4', sa.Float, nullable=False), sa.Column('focus5', sa.Float, nullable=False), sa.Column('focus6', sa.Float, nullable=False), sa.Column('focus7', sa.Float, nullable=False), sa.Column('focus8', sa.Float, nullable=False), sa.Column('febe', sa.String(32), nullable=False), sa.Column('feversion', sa.String(32), nullable=False), sa.Column('ifinvert', sa.String(1), nullable=False), sa.Column('obstype', sa.String(32), nullable=False), sa.Column('scantime', sa.Float, nullable=False), sa.Column('scanxspacing', sa.Float, nullable=False), sa.Column('scanyspacing', sa.Float, nullable=False), sa.Column('scanskew', sa.Float, nullable=False), sa.Column('posgnp', sa.Float, nullable=False), sa.Column('dewang', sa.Float, nullable=False), sa.Column('channels', sa.Integer, nullable=False), sa.Column('freqres', sa.Float, nullable=False), sa.Column('bandwidth', sa.Float, nullable=False), sa.Column('molecule', sa.String(32), nullable=False), sa.Column('restfreq', sa.Float(53), nullable=False), sa.Column('sideband', sa.String(32), nullable=False), sa.Column('velwcsname', sa.String(32), nullable=False), sa.Column('velsys', sa.String(32), nullable=False), sa.Column('refchan', sa.Float, nullable=False), sa.Column('velrefchan', sa.Float, nullable=False), sa.Column('velchansep', sa.Float, nullable=False), sa.Column('velrestframe', sa.String(32), nullable=False), sa.Column('velobsframe', sa.String(32), nullable=False), sa.Column('velsource', sa.Float, nullable=False), sa.Column('velobserver', sa.Float, nullable=False), sa.Column('utc2ut1', sa.Float, nullable=False), sa.Column('tblank', sa.Float, nullable=False), sa.Column('tsync', sa.Float, nullable=False), sa.Column('dayofyear', sa.Integer, nullable=False), sa.Column('skyfreq', sa.Float(53), nullable=False), sa.Column('movefoc', sa.String(1), nullable=False), sa.Column('ctrlbuttons', sa.Integer, nullable=False), sa.Column('obsstatus', sa.String(8), nullable=False), mysql_engine='InnoDB', mysql_charset='ascii')
plazarREPO_NAMEcoast_guardPATH_START.@coast_guard_extracted@coast_guard-master@[email protected]@.PATH_END.py
{ "filename": "proxy.py", "repo_name": "crossbario/crossbar", "repo_path": "crossbar_extracted/crossbar-master/crossbar/master/api/proxy.py", "type": "Python" }
############################################################################### # # Crossbar.io Master # Copyright (c) typedef int GmbH. Licensed under EUPLv1.2. # ############################################################################### from crossbar.master.api.remote import RemoteApi __all__ = ('RemoteProxyApi', ) class RemoteProxyApi(RemoteApi): PREFIX = 'crossbarfabriccenter.remote.proxy.' PROCS = { # these are worker level procedures 'worker': [ 'get_proxy_transports', 'get_proxy_transport', 'start_proxy_transport', 'stop_proxy_transport', 'get_web_transport_services', 'get_web_transport_service', 'start_web_transport_service', 'stop_web_transport_service', 'get_proxy_routes', 'get_proxy_realm_route', 'list_proxy_realm_routes', 'start_proxy_realm_route', 'stop_proxy_realm_route', 'get_proxy_connections', 'get_proxy_connection', 'start_proxy_connection', 'stop_proxy_connection', ], } EVENTS = { # these are worker level topics 'worker': [ 'on_proxy_transport_starting', 'on_proxy_transport_started', 'on_proxy_transport_stopping', 'on_proxy_transport_stopped', ] }
crossbarioREPO_NAMEcrossbarPATH_START.@crossbar_extracted@crossbar-master@crossbar@master@[email protected]@.PATH_END.py
{ "filename": "_dual_annealing.py", "repo_name": "catboost/catboost", "repo_path": "catboost_extracted/catboost-master/contrib/python/scipy/py3/scipy/optimize/_dual_annealing.py", "type": "Python" }
# Dual Annealing implementation. # Copyright (c) 2018 Sylvain Gubian <[email protected]>, # Yang Xiang <[email protected]> # Author: Sylvain Gubian, Yang Xiang, PMP S.A. """ A Dual Annealing global optimization algorithm """ import numpy as np from scipy.optimize import OptimizeResult from scipy.optimize import minimize, Bounds from scipy.special import gammaln from scipy._lib._util import check_random_state from scipy.optimize._constraints import new_bounds_to_old __all__ = ['dual_annealing'] class VisitingDistribution: """ Class used to generate new coordinates based on the distorted Cauchy-Lorentz distribution. Depending on the steps within the strategy chain, the class implements the strategy for generating new location changes. Parameters ---------- lb : array_like A 1-D NumPy ndarray containing lower bounds of the generated components. Neither NaN or inf are allowed. ub : array_like A 1-D NumPy ndarray containing upper bounds for the generated components. Neither NaN or inf are allowed. visiting_param : float Parameter for visiting distribution. Default value is 2.62. Higher values give the visiting distribution a heavier tail, this makes the algorithm jump to a more distant region. The value range is (1, 3]. Its value is fixed for the life of the object. rand_gen : {`~numpy.random.RandomState`, `~numpy.random.Generator`} A `~numpy.random.RandomState`, `~numpy.random.Generator` object for using the current state of the created random generator container. """ TAIL_LIMIT = 1.e8 MIN_VISIT_BOUND = 1.e-10 def __init__(self, lb, ub, visiting_param, rand_gen): # if you wish to make _visiting_param adjustable during the life of # the object then _factor2, _factor3, _factor5, _d1, _factor6 will # have to be dynamically calculated in `visit_fn`. They're factored # out here so they don't need to be recalculated all the time. self._visiting_param = visiting_param self.rand_gen = rand_gen self.lower = lb self.upper = ub self.bound_range = ub - lb # these are invariant numbers unless visiting_param changes self._factor2 = np.exp((4.0 - self._visiting_param) * np.log( self._visiting_param - 1.0)) self._factor3 = np.exp((2.0 - self._visiting_param) * np.log(2.0) / (self._visiting_param - 1.0)) self._factor4_p = np.sqrt(np.pi) * self._factor2 / (self._factor3 * ( 3.0 - self._visiting_param)) self._factor5 = 1.0 / (self._visiting_param - 1.0) - 0.5 self._d1 = 2.0 - self._factor5 self._factor6 = np.pi * (1.0 - self._factor5) / np.sin( np.pi * (1.0 - self._factor5)) / np.exp(gammaln(self._d1)) def visiting(self, x, step, temperature): """ Based on the step in the strategy chain, new coordinates are generated by changing all components is the same time or only one of them, the new values are computed with visit_fn method """ dim = x.size if step < dim: # Changing all coordinates with a new visiting value visits = self.visit_fn(temperature, dim) upper_sample, lower_sample = self.rand_gen.uniform(size=2) visits[visits > self.TAIL_LIMIT] = self.TAIL_LIMIT * upper_sample visits[visits < -self.TAIL_LIMIT] = -self.TAIL_LIMIT * lower_sample x_visit = visits + x a = x_visit - self.lower b = np.fmod(a, self.bound_range) + self.bound_range x_visit = np.fmod(b, self.bound_range) + self.lower x_visit[np.fabs( x_visit - self.lower) < self.MIN_VISIT_BOUND] += 1.e-10 else: # Changing only one coordinate at a time based on strategy # chain step x_visit = np.copy(x) visit = self.visit_fn(temperature, 1)[0] if visit > self.TAIL_LIMIT: visit = self.TAIL_LIMIT * self.rand_gen.uniform() elif visit < -self.TAIL_LIMIT: visit = -self.TAIL_LIMIT * self.rand_gen.uniform() index = step - dim x_visit[index] = visit + x[index] a = x_visit[index] - self.lower[index] b = np.fmod(a, self.bound_range[index]) + self.bound_range[index] x_visit[index] = np.fmod(b, self.bound_range[ index]) + self.lower[index] if np.fabs(x_visit[index] - self.lower[ index]) < self.MIN_VISIT_BOUND: x_visit[index] += self.MIN_VISIT_BOUND return x_visit def visit_fn(self, temperature, dim): """ Formula Visita from p. 405 of reference [2] """ x, y = self.rand_gen.normal(size=(dim, 2)).T factor1 = np.exp(np.log(temperature) / (self._visiting_param - 1.0)) factor4 = self._factor4_p * factor1 # sigmax x *= np.exp(-(self._visiting_param - 1.0) * np.log( self._factor6 / factor4) / (3.0 - self._visiting_param)) den = np.exp((self._visiting_param - 1.0) * np.log(np.fabs(y)) / (3.0 - self._visiting_param)) return x / den class EnergyState: """ Class used to record the energy state. At any time, it knows what is the currently used coordinates and the most recent best location. Parameters ---------- lower : array_like A 1-D NumPy ndarray containing lower bounds for generating an initial random components in the `reset` method. upper : array_like A 1-D NumPy ndarray containing upper bounds for generating an initial random components in the `reset` method components. Neither NaN or inf are allowed. callback : callable, ``callback(x, f, context)``, optional A callback function which will be called for all minima found. ``x`` and ``f`` are the coordinates and function value of the latest minimum found, and `context` has value in [0, 1, 2] """ # Maximum number of trials for generating a valid starting point MAX_REINIT_COUNT = 1000 def __init__(self, lower, upper, callback=None): self.ebest = None self.current_energy = None self.current_location = None self.xbest = None self.lower = lower self.upper = upper self.callback = callback def reset(self, func_wrapper, rand_gen, x0=None): """ Initialize current location is the search domain. If `x0` is not provided, a random location within the bounds is generated. """ if x0 is None: self.current_location = rand_gen.uniform(self.lower, self.upper, size=len(self.lower)) else: self.current_location = np.copy(x0) init_error = True reinit_counter = 0 while init_error: self.current_energy = func_wrapper.fun(self.current_location) if self.current_energy is None: raise ValueError('Objective function is returning None') if (not np.isfinite(self.current_energy) or np.isnan( self.current_energy)): if reinit_counter >= EnergyState.MAX_REINIT_COUNT: init_error = False message = ( 'Stopping algorithm because function ' 'create NaN or (+/-) infinity values even with ' 'trying new random parameters' ) raise ValueError(message) self.current_location = rand_gen.uniform(self.lower, self.upper, size=self.lower.size) reinit_counter += 1 else: init_error = False # If first time reset, initialize ebest and xbest if self.ebest is None and self.xbest is None: self.ebest = self.current_energy self.xbest = np.copy(self.current_location) # Otherwise, we keep them in case of reannealing reset def update_best(self, e, x, context): self.ebest = e self.xbest = np.copy(x) if self.callback is not None: val = self.callback(x, e, context) if val is not None: if val: return ('Callback function requested to stop early by ' 'returning True') def update_current(self, e, x): self.current_energy = e self.current_location = np.copy(x) class StrategyChain: """ Class that implements within a Markov chain the strategy for location acceptance and local search decision making. Parameters ---------- acceptance_param : float Parameter for acceptance distribution. It is used to control the probability of acceptance. The lower the acceptance parameter, the smaller the probability of acceptance. Default value is -5.0 with a range (-1e4, -5]. visit_dist : VisitingDistribution Instance of `VisitingDistribution` class. func_wrapper : ObjectiveFunWrapper Instance of `ObjectiveFunWrapper` class. minimizer_wrapper: LocalSearchWrapper Instance of `LocalSearchWrapper` class. rand_gen : {None, int, `numpy.random.Generator`, `numpy.random.RandomState`}, optional If `seed` is None (or `np.random`), the `numpy.random.RandomState` singleton is used. If `seed` is an int, a new ``RandomState`` instance is used, seeded with `seed`. If `seed` is already a ``Generator`` or ``RandomState`` instance then that instance is used. energy_state: EnergyState Instance of `EnergyState` class. """ def __init__(self, acceptance_param, visit_dist, func_wrapper, minimizer_wrapper, rand_gen, energy_state): # Local strategy chain minimum energy and location self.emin = energy_state.current_energy self.xmin = np.array(energy_state.current_location) # Global optimizer state self.energy_state = energy_state # Acceptance parameter self.acceptance_param = acceptance_param # Visiting distribution instance self.visit_dist = visit_dist # Wrapper to objective function self.func_wrapper = func_wrapper # Wrapper to the local minimizer self.minimizer_wrapper = minimizer_wrapper self.not_improved_idx = 0 self.not_improved_max_idx = 1000 self._rand_gen = rand_gen self.temperature_step = 0 self.K = 100 * len(energy_state.current_location) def accept_reject(self, j, e, x_visit): r = self._rand_gen.uniform() pqv_temp = 1.0 - ((1.0 - self.acceptance_param) * (e - self.energy_state.current_energy) / self.temperature_step) if pqv_temp <= 0.: pqv = 0. else: pqv = np.exp(np.log(pqv_temp) / ( 1. - self.acceptance_param)) if r <= pqv: # We accept the new location and update state self.energy_state.update_current(e, x_visit) self.xmin = np.copy(self.energy_state.current_location) # No improvement for a long time if self.not_improved_idx >= self.not_improved_max_idx: if j == 0 or self.energy_state.current_energy < self.emin: self.emin = self.energy_state.current_energy self.xmin = np.copy(self.energy_state.current_location) def run(self, step, temperature): self.temperature_step = temperature / float(step + 1) self.not_improved_idx += 1 for j in range(self.energy_state.current_location.size * 2): if j == 0: if step == 0: self.energy_state_improved = True else: self.energy_state_improved = False x_visit = self.visit_dist.visiting( self.energy_state.current_location, j, temperature) # Calling the objective function e = self.func_wrapper.fun(x_visit) if e < self.energy_state.current_energy: # We have got a better energy value self.energy_state.update_current(e, x_visit) if e < self.energy_state.ebest: val = self.energy_state.update_best(e, x_visit, 0) if val is not None: if val: return val self.energy_state_improved = True self.not_improved_idx = 0 else: # We have not improved but do we accept the new location? self.accept_reject(j, e, x_visit) if self.func_wrapper.nfev >= self.func_wrapper.maxfun: return ('Maximum number of function call reached ' 'during annealing') # End of StrategyChain loop def local_search(self): # Decision making for performing a local search # based on strategy chain results # If energy has been improved or no improvement since too long, # performing a local search with the best strategy chain location if self.energy_state_improved: # Global energy has improved, let's see if LS improves further e, x = self.minimizer_wrapper.local_search(self.energy_state.xbest, self.energy_state.ebest) if e < self.energy_state.ebest: self.not_improved_idx = 0 val = self.energy_state.update_best(e, x, 1) if val is not None: if val: return val self.energy_state.update_current(e, x) if self.func_wrapper.nfev >= self.func_wrapper.maxfun: return ('Maximum number of function call reached ' 'during local search') # Check probability of a need to perform a LS even if no improvement do_ls = False if self.K < 90 * len(self.energy_state.current_location): pls = np.exp(self.K * ( self.energy_state.ebest - self.energy_state.current_energy) / self.temperature_step) if pls >= self._rand_gen.uniform(): do_ls = True # Global energy not improved, let's see what LS gives # on the best strategy chain location if self.not_improved_idx >= self.not_improved_max_idx: do_ls = True if do_ls: e, x = self.minimizer_wrapper.local_search(self.xmin, self.emin) self.xmin = np.copy(x) self.emin = e self.not_improved_idx = 0 self.not_improved_max_idx = self.energy_state.current_location.size if e < self.energy_state.ebest: val = self.energy_state.update_best( self.emin, self.xmin, 2) if val is not None: if val: return val self.energy_state.update_current(e, x) if self.func_wrapper.nfev >= self.func_wrapper.maxfun: return ('Maximum number of function call reached ' 'during dual annealing') class ObjectiveFunWrapper: def __init__(self, func, maxfun=1e7, *args): self.func = func self.args = args # Number of objective function evaluations self.nfev = 0 # Number of gradient function evaluation if used self.ngev = 0 # Number of hessian of the objective function if used self.nhev = 0 self.maxfun = maxfun def fun(self, x): self.nfev += 1 return self.func(x, *self.args) class LocalSearchWrapper: """ Class used to wrap around the minimizer used for local search Default local minimizer is SciPy minimizer L-BFGS-B """ LS_MAXITER_RATIO = 6 LS_MAXITER_MIN = 100 LS_MAXITER_MAX = 1000 def __init__(self, search_bounds, func_wrapper, *args, **kwargs): self.func_wrapper = func_wrapper self.kwargs = kwargs self.jac = self.kwargs.get('jac', None) self.minimizer = minimize bounds_list = list(zip(*search_bounds)) self.lower = np.array(bounds_list[0]) self.upper = np.array(bounds_list[1]) # If no minimizer specified, use SciPy minimize with 'L-BFGS-B' method if not self.kwargs: n = len(self.lower) ls_max_iter = min(max(n * self.LS_MAXITER_RATIO, self.LS_MAXITER_MIN), self.LS_MAXITER_MAX) self.kwargs['method'] = 'L-BFGS-B' self.kwargs['options'] = { 'maxiter': ls_max_iter, } self.kwargs['bounds'] = list(zip(self.lower, self.upper)) elif callable(self.jac): def wrapped_jac(x): return self.jac(x, *args) self.kwargs['jac'] = wrapped_jac def local_search(self, x, e): # Run local search from the given x location where energy value is e x_tmp = np.copy(x) mres = self.minimizer(self.func_wrapper.fun, x, **self.kwargs) if 'njev' in mres: self.func_wrapper.ngev += mres.njev if 'nhev' in mres: self.func_wrapper.nhev += mres.nhev # Check if is valid value is_finite = np.all(np.isfinite(mres.x)) and np.isfinite(mres.fun) in_bounds = np.all(mres.x >= self.lower) and np.all( mres.x <= self.upper) is_valid = is_finite and in_bounds # Use the new point only if it is valid and return a better results if is_valid and mres.fun < e: return mres.fun, mres.x else: return e, x_tmp def dual_annealing(func, bounds, args=(), maxiter=1000, minimizer_kwargs=None, initial_temp=5230., restart_temp_ratio=2.e-5, visit=2.62, accept=-5.0, maxfun=1e7, seed=None, no_local_search=False, callback=None, x0=None): """ Find the global minimum of a function using Dual Annealing. Parameters ---------- func : callable The objective function to be minimized. Must be in the form ``f(x, *args)``, where ``x`` is the argument in the form of a 1-D array and ``args`` is a tuple of any additional fixed parameters needed to completely specify the function. bounds : sequence or `Bounds` Bounds for variables. There are two ways to specify the bounds: 1. Instance of `Bounds` class. 2. Sequence of ``(min, max)`` pairs for each element in `x`. args : tuple, optional Any additional fixed parameters needed to completely specify the objective function. maxiter : int, optional The maximum number of global search iterations. Default value is 1000. minimizer_kwargs : dict, optional Extra keyword arguments to be passed to the local minimizer (`minimize`). Some important options could be: ``method`` for the minimizer method to use and ``args`` for objective function additional arguments. initial_temp : float, optional The initial temperature, use higher values to facilitates a wider search of the energy landscape, allowing dual_annealing to escape local minima that it is trapped in. Default value is 5230. Range is (0.01, 5.e4]. restart_temp_ratio : float, optional During the annealing process, temperature is decreasing, when it reaches ``initial_temp * restart_temp_ratio``, the reannealing process is triggered. Default value of the ratio is 2e-5. Range is (0, 1). visit : float, optional Parameter for visiting distribution. Default value is 2.62. Higher values give the visiting distribution a heavier tail, this makes the algorithm jump to a more distant region. The value range is (1, 3]. accept : float, optional Parameter for acceptance distribution. It is used to control the probability of acceptance. The lower the acceptance parameter, the smaller the probability of acceptance. Default value is -5.0 with a range (-1e4, -5]. maxfun : int, optional Soft limit for the number of objective function calls. If the algorithm is in the middle of a local search, this number will be exceeded, the algorithm will stop just after the local search is done. Default value is 1e7. seed : {None, int, `numpy.random.Generator`, `numpy.random.RandomState`}, optional If `seed` is None (or `np.random`), the `numpy.random.RandomState` singleton is used. If `seed` is an int, a new ``RandomState`` instance is used, seeded with `seed`. If `seed` is already a ``Generator`` or ``RandomState`` instance then that instance is used. Specify `seed` for repeatable minimizations. The random numbers generated with this seed only affect the visiting distribution function and new coordinates generation. no_local_search : bool, optional If `no_local_search` is set to True, a traditional Generalized Simulated Annealing will be performed with no local search strategy applied. callback : callable, optional A callback function with signature ``callback(x, f, context)``, which will be called for all minima found. ``x`` and ``f`` are the coordinates and function value of the latest minimum found, and ``context`` has value in [0, 1, 2], with the following meaning: - 0: minimum detected in the annealing process. - 1: detection occurred in the local search process. - 2: detection done in the dual annealing process. If the callback implementation returns True, the algorithm will stop. x0 : ndarray, shape(n,), optional Coordinates of a single N-D starting point. Returns ------- res : OptimizeResult The optimization result represented as a `OptimizeResult` object. Important attributes are: ``x`` the solution array, ``fun`` the value of the function at the solution, and ``message`` which describes the cause of the termination. See `OptimizeResult` for a description of other attributes. Notes ----- This function implements the Dual Annealing optimization. This stochastic approach derived from [3]_ combines the generalization of CSA (Classical Simulated Annealing) and FSA (Fast Simulated Annealing) [1]_ [2]_ coupled to a strategy for applying a local search on accepted locations [4]_. An alternative implementation of this same algorithm is described in [5]_ and benchmarks are presented in [6]_. This approach introduces an advanced method to refine the solution found by the generalized annealing process. This algorithm uses a distorted Cauchy-Lorentz visiting distribution, with its shape controlled by the parameter :math:`q_{v}` .. math:: g_{q_{v}}(\\Delta x(t)) \\propto \\frac{ \\ \\left[T_{q_{v}}(t) \\right]^{-\\frac{D}{3-q_{v}}}}{ \\ \\left[{1+(q_{v}-1)\\frac{(\\Delta x(t))^{2}} { \\ \\left[T_{q_{v}}(t)\\right]^{\\frac{2}{3-q_{v}}}}}\\right]^{ \\ \\frac{1}{q_{v}-1}+\\frac{D-1}{2}}} Where :math:`t` is the artificial time. This visiting distribution is used to generate a trial jump distance :math:`\\Delta x(t)` of variable :math:`x(t)` under artificial temperature :math:`T_{q_{v}}(t)`. From the starting point, after calling the visiting distribution function, the acceptance probability is computed as follows: .. math:: p_{q_{a}} = \\min{\\{1,\\left[1-(1-q_{a}) \\beta \\Delta E \\right]^{ \\ \\frac{1}{1-q_{a}}}\\}} Where :math:`q_{a}` is a acceptance parameter. For :math:`q_{a}<1`, zero acceptance probability is assigned to the cases where .. math:: [1-(1-q_{a}) \\beta \\Delta E] < 0 The artificial temperature :math:`T_{q_{v}}(t)` is decreased according to .. math:: T_{q_{v}}(t) = T_{q_{v}}(1) \\frac{2^{q_{v}-1}-1}{\\left( \\ 1 + t\\right)^{q_{v}-1}-1} Where :math:`q_{v}` is the visiting parameter. .. versionadded:: 1.2.0 References ---------- .. [1] Tsallis C. Possible generalization of Boltzmann-Gibbs statistics. Journal of Statistical Physics, 52, 479-487 (1998). .. [2] Tsallis C, Stariolo DA. Generalized Simulated Annealing. Physica A, 233, 395-406 (1996). .. [3] Xiang Y, Sun DY, Fan W, Gong XG. Generalized Simulated Annealing Algorithm and Its Application to the Thomson Model. Physics Letters A, 233, 216-220 (1997). .. [4] Xiang Y, Gong XG. Efficiency of Generalized Simulated Annealing. Physical Review E, 62, 4473 (2000). .. [5] Xiang Y, Gubian S, Suomela B, Hoeng J. Generalized Simulated Annealing for Efficient Global Optimization: the GenSA Package for R. The R Journal, Volume 5/1 (2013). .. [6] Mullen, K. Continuous Global Optimization in R. Journal of Statistical Software, 60(6), 1 - 45, (2014). :doi:`10.18637/jss.v060.i06` Examples -------- The following example is a 10-D problem, with many local minima. The function involved is called Rastrigin (https://en.wikipedia.org/wiki/Rastrigin_function) >>> import numpy as np >>> from scipy.optimize import dual_annealing >>> func = lambda x: np.sum(x*x - 10*np.cos(2*np.pi*x)) + 10*np.size(x) >>> lw = [-5.12] * 10 >>> up = [5.12] * 10 >>> ret = dual_annealing(func, bounds=list(zip(lw, up))) >>> ret.x array([-4.26437714e-09, -3.91699361e-09, -1.86149218e-09, -3.97165720e-09, -6.29151648e-09, -6.53145322e-09, -3.93616815e-09, -6.55623025e-09, -6.05775280e-09, -5.00668935e-09]) # random >>> ret.fun 0.000000 """ if isinstance(bounds, Bounds): bounds = new_bounds_to_old(bounds.lb, bounds.ub, len(bounds.lb)) # noqa: E501 if x0 is not None and not len(x0) == len(bounds): raise ValueError('Bounds size does not match x0') lu = list(zip(*bounds)) lower = np.array(lu[0]) upper = np.array(lu[1]) # Check that restart temperature ratio is correct if restart_temp_ratio <= 0. or restart_temp_ratio >= 1.: raise ValueError('Restart temperature ratio has to be in range (0, 1)') # Checking bounds are valid if (np.any(np.isinf(lower)) or np.any(np.isinf(upper)) or np.any( np.isnan(lower)) or np.any(np.isnan(upper))): raise ValueError('Some bounds values are inf values or nan values') # Checking that bounds are consistent if not np.all(lower < upper): raise ValueError('Bounds are not consistent min < max') # Checking that bounds are the same length if not len(lower) == len(upper): raise ValueError('Bounds do not have the same dimensions') # Wrapper for the objective function func_wrapper = ObjectiveFunWrapper(func, maxfun, *args) # minimizer_kwargs has to be a dict, not None minimizer_kwargs = minimizer_kwargs or {} minimizer_wrapper = LocalSearchWrapper( bounds, func_wrapper, *args, **minimizer_kwargs) # Initialization of random Generator for reproducible runs if seed provided rand_state = check_random_state(seed) # Initialization of the energy state energy_state = EnergyState(lower, upper, callback) energy_state.reset(func_wrapper, rand_state, x0) # Minimum value of annealing temperature reached to perform # re-annealing temperature_restart = initial_temp * restart_temp_ratio # VisitingDistribution instance visit_dist = VisitingDistribution(lower, upper, visit, rand_state) # Strategy chain instance strategy_chain = StrategyChain(accept, visit_dist, func_wrapper, minimizer_wrapper, rand_state, energy_state) need_to_stop = False iteration = 0 message = [] # OptimizeResult object to be returned optimize_res = OptimizeResult() optimize_res.success = True optimize_res.status = 0 t1 = np.exp((visit - 1) * np.log(2.0)) - 1.0 # Run the search loop while not need_to_stop: for i in range(maxiter): # Compute temperature for this step s = float(i) + 2.0 t2 = np.exp((visit - 1) * np.log(s)) - 1.0 temperature = initial_temp * t1 / t2 if iteration >= maxiter: message.append("Maximum number of iteration reached") need_to_stop = True break # Need a re-annealing process? if temperature < temperature_restart: energy_state.reset(func_wrapper, rand_state) break # starting strategy chain val = strategy_chain.run(i, temperature) if val is not None: message.append(val) need_to_stop = True optimize_res.success = False break # Possible local search at the end of the strategy chain if not no_local_search: val = strategy_chain.local_search() if val is not None: message.append(val) need_to_stop = True optimize_res.success = False break iteration += 1 # Setting the OptimizeResult values optimize_res.x = energy_state.xbest optimize_res.fun = energy_state.ebest optimize_res.nit = iteration optimize_res.nfev = func_wrapper.nfev optimize_res.njev = func_wrapper.ngev optimize_res.nhev = func_wrapper.nhev optimize_res.message = message return optimize_res
catboostREPO_NAMEcatboostPATH_START.@catboost_extracted@catboost-master@contrib@python@scipy@py3@scipy@optimize@[email protected]_END.py
{ "filename": "README.md", "repo_name": "deepskies/deeplenstronomy", "repo_path": "deeplenstronomy_extracted/deeplenstronomy-master/README.md", "type": "Markdown" }
# Welcome to `deeplenstronomy`! [![status](https://joss.theoj.org/papers/e978dd566d1f290055a02d76288e95e1/status.svg)](https://joss.theoj.org/papers/e978dd566d1f290055a02d76288e95e1) [![status](https://img.shields.io/badge/arXiv-2102.02830-red)](http://arxiv.org/abs/2102.02830) [![status](https://img.shields.io/badge/PyPi-0.0.2.3-blue)](https://pypi.org/project/deeplenstronomy/) [![status](https://img.shields.io/badge/License-MIT-lightgrey)](https://github.com/deepskies/deeplenstronomy/blob/master/LICENSE) `deeplenstronomy` is a tool for simulating large datasets for applying deep learning to strong gravitational lensing. It works by wrapping the functionalities of [`lenstronomy`](https://github.com/sibirrer/lenstronomy) in a convenient yaml-style interface, allowing users to embrace the astronomer part of their brain rather than their programmer part when generating training datasets. ## Installation **With conda (Recommended)** - Step 0: Set up an environment. This can be done straightforwardly with a `conda` installation: ``` conda create -n deeplens python=3.7 jupyter scipy pandas numpy matplotlib astropy h5py PyYAML mpmath future conda activate deeplens ``` - Step 1: `pip install lenstronomy` - Step 2: `pip install deeplenstronomy` **With pip** - Step 1: `pip install deeplenstronomy` ## [Getting Started and Example Notebooks](https://deepskies.github.io/deeplenstronomy/Notebooks/) Start by reading the [Getting Started Guide](https://deepskies.github.io/deeplenstronomy/Notebooks/GettingStarted.html) to familiarize yourself with the `deeplenstronomy` style. After that, check out the example notebooks below: ### Notebooks for `deeplenstronomy` Utilities - [Creating `deeplenstronomy` Configuration Files](https://deepskies.github.io/deeplenstronomy/Notebooks/ConfigFiles.html) - [Generating Datasets](https://deepskies.github.io/deeplenstronomy/Notebooks/DeepLenstronomyDemo.html) - [Visualizing `deeplenstronomy` Images](https://deepskies.github.io/deeplenstronomy/Notebooks/Visualization.html) - [Utilizing Astronomical Surveys](https://deepskies.github.io/deeplenstronomy/Notebooks/Surveys.html) - [Defining Your Own Probability Distributions](https://deepskies.github.io/deeplenstronomy/Notebooks/UserDistributions.html) - [Using Your Own Images as Backgrounds](https://deepskies.github.io/deeplenstronomy/Notebooks/BackgroundsDemo.html) - [Simulating Time-Series Datasets](https://deepskies.github.io/deeplenstronomy/Notebooks/TimeSeriesDemo.html) ### Notebooks for Applying `deeplenstronomy` to Machine Learning Analyses - [Using `deeplenstronomy` for Active Learning](https://deepskies.github.io/deeplenstronomy/Notebooks/ActiveUpdateDemo.html) - [Using `deeplenstronomy` for Classification and Regression](https://deepskies.github.io/deeplenstronomy/Notebooks/Metrics.html) ### Notebooks for Suggested Science Cases - [A Walkthrough of Using `deeplenstronomy` for Science](https://deepskies.github.io/deeplenstronomy/Notebooks/FullExample.html) ## API Documentation `deeplenstronomy` is designed so that users only need to work with their personal configuration files and the dataset generatation and image visualization functions. However, if you would like to view the full API documentation, you can visit the [docs](https://deepskies.github.io/deeplenstronomy/docs/) page. ## Citation If you use `deeplenstronomy` in your work, please include the following citations: ``` @article{deeplenstronomy, doi = {10.21105/joss.02854}, url = {https://doi.org/10.21105/joss.02854}, year = {2021}, publisher = {The Open Journal}, volume = {6}, number = {58}, pages = {2854}, author = {Robert Morgan and Brian Nord and Simon Birrer and Joshua Yao-Yu Lin and Jason Poh}, title = {deeplenstronomy: A dataset simulation package for strong gravitational lensing}, journal = {Journal of Open Source Software} } @article{lenstronomy, title = "lenstronomy: Multi-purpose gravitational lens modelling software package", journal = "Physics of the Dark Universe", volume = "22", pages = "189 - 201", year = "2018", issn = "2212-6864", doi = "10.1016/j.dark.2018.11.002", url = "http://www.sciencedirect.com/science/article/pii/S2212686418301869", author = "Simon Birrer and Adam Amara", keywords = "Gravitational lensing, Software, Image simulations" } ``` ## Contact If you have any questions or run into any errors with the beta release of `deeplenstronomy`, please don't hesitate to reach out: Rob Morgan <br> robert [dot] morgan [at] wisc.edu You can also message me on the DES, DELVE, LSSTC, deepskies, or lenstronomers Slack workspaces <!--- .. image:: https://badge.fury.io/py/deeplenstronomy.png :target: http://badge.fury.io/py/deeplenstronomy .. image:: https://travis-ci.org/bnord/deeplenstronomy.png?branch=master :target: https://travis-ci.org/bnord/deeplenstronomy --->
deepskiesREPO_NAMEdeeplenstronomyPATH_START.@deeplenstronomy_extracted@[email protected]@.PATH_END.py
{ "filename": "_center.py", "repo_name": "catboost/catboost", "repo_path": "catboost_extracted/catboost-master/contrib/python/plotly/py3/plotly/graph_objs/layout/geo/_center.py", "type": "Python" }
from plotly.basedatatypes import BaseLayoutHierarchyType as _BaseLayoutHierarchyType import copy as _copy class Center(_BaseLayoutHierarchyType): # class properties # -------------------- _parent_path_str = "layout.geo" _path_str = "layout.geo.center" _valid_props = {"lat", "lon"} # lat # --- @property def lat(self): """ Sets the latitude of the map's center. For all projection types, the map's latitude center lies at the middle of the latitude range by default. The 'lat' property is a number and may be specified as: - An int or float Returns ------- int|float """ return self["lat"] @lat.setter def lat(self, val): self["lat"] = val # lon # --- @property def lon(self): """ Sets the longitude of the map's center. By default, the map's longitude center lies at the middle of the longitude range for scoped projection and above `projection.rotation.lon` otherwise. The 'lon' property is a number and may be specified as: - An int or float Returns ------- int|float """ return self["lon"] @lon.setter def lon(self, val): self["lon"] = val # Self properties description # --------------------------- @property def _prop_descriptions(self): return """\ lat Sets the latitude of the map's center. For all projection types, the map's latitude center lies at the middle of the latitude range by default. lon Sets the longitude of the map's center. By default, the map's longitude center lies at the middle of the longitude range for scoped projection and above `projection.rotation.lon` otherwise. """ def __init__(self, arg=None, lat=None, lon=None, **kwargs): """ Construct a new Center object Parameters ---------- arg dict of properties compatible with this constructor or an instance of :class:`plotly.graph_objs.layout.geo.Center` lat Sets the latitude of the map's center. For all projection types, the map's latitude center lies at the middle of the latitude range by default. lon Sets the longitude of the map's center. By default, the map's longitude center lies at the middle of the longitude range for scoped projection and above `projection.rotation.lon` otherwise. Returns ------- Center """ super(Center, self).__init__("center") if "_parent" in kwargs: self._parent = kwargs["_parent"] return # Validate arg # ------------ if arg is None: arg = {} elif isinstance(arg, self.__class__): arg = arg.to_plotly_json() elif isinstance(arg, dict): arg = _copy.copy(arg) else: raise ValueError( """\ The first argument to the plotly.graph_objs.layout.geo.Center constructor must be a dict or an instance of :class:`plotly.graph_objs.layout.geo.Center`""" ) # Handle skip_invalid # ------------------- self._skip_invalid = kwargs.pop("skip_invalid", False) self._validate = kwargs.pop("_validate", True) # Populate data dict with properties # ---------------------------------- _v = arg.pop("lat", None) _v = lat if lat is not None else _v if _v is not None: self["lat"] = _v _v = arg.pop("lon", None) _v = lon if lon is not None else _v if _v is not None: self["lon"] = _v # Process unknown kwargs # ---------------------- self._process_kwargs(**dict(arg, **kwargs)) # Reset skip_invalid # ------------------ self._skip_invalid = False
catboostREPO_NAMEcatboostPATH_START.@catboost_extracted@catboost-master@contrib@python@plotly@py3@plotly@graph_objs@layout@geo@[email protected]_END.py
{ "filename": "michi2_filter_flux_2sigma.py", "repo_name": "1054/Crab.Toolkit.michi2", "repo_path": "Crab.Toolkit.michi2_extracted/Crab.Toolkit.michi2-master/bin/michi2_filter_flux_2sigma.py", "type": "Python" }
#!/usr/bin/env python # import os import sys import numpy import astropy import astropy.io.ascii as asciitable from copy import copy #################################### # MAIN # #################################### if not len(sys.argv) > 2: print('Usage: michi2_filter_flux_3sigma.py input_flux.txt output_flux.txt') sys.exit() data_table = asciitable.read(sys.argv[1]) if not len(data_table.colnames) >= 3: print('Error! The input flux data table does not have at least three columns: wavelength, flux density and error in flux density.') sys.exit() # w = data_table.field(data_table.colnames[0]) f = data_table.field(data_table.colnames[1]) ferr = data_table.field(data_table.colnames[2]) mask = (f<2.0*ferr) | (w<=0) isel = numpy.argwhere(mask).flatten() if len(isel) > 0: #print(isel) #print(data_table) data_table.remove_rows(isel) #print(data_table) # set zero error data error to 1/3 flux w = data_table.field(data_table.colnames[0]) f = data_table.field(data_table.colnames[1]) ferr = data_table.field(data_table.colnames[2]) mask = (ferr==0) isel = numpy.argwhere(mask).flatten() if len(isel) > 0: ferr[mask] = f[mask] / 3.0 for iseli in isel: print('Limited row %d error from zero to 1/3: w = %s, f = %s, ferr = %s'%(iseli, w[iseli], f[iseli], ferr[iseli])) # deal with duplicated w i = 0 while i < len(data_table): w = data_table.field(data_table.colnames[0]) f = data_table.field(data_table.colnames[1]) ferr = data_table.field(data_table.colnames[2]) # identify duplicated w mask2 = (w==w[i]) isel2 = numpy.argwhere(mask2).flatten() if len(isel2) >= 2: # found duplicated w print('Found wavelength-duplicated rows: %s'%(isel2)) print(data_table[isel2]) f_to_average = f[mask2] ferr_to_average = ferr[mask2] f_averaged = numpy.sum(f_to_average/ferr_to_average**2)/numpy.sum(1/ferr_to_average**2) ferr_averaged = numpy.sqrt(1/numpy.sum(ferr_to_average**(-2))) # error propagation of weighted mean, see -- http://www.physics.umd.edu/courses/Phys261/F06/ErrorPropagation.pdf # limit S/N not larger than 10 #if ferr_averaged < f_averaged/10.0: # ferr_averaged = f_averaged/10.0 # store into data_table f[i] = f_averaged # change f will directly change data_table! ferr[i] = ferr_averaged # change ferr will directly change data_table! print('Averaged wavelength-duplicated rows: w = %s, f = %s, ferr = %s'%(w[i], f_averaged, ferr_averaged)) # remove those duplicated rows, but keep current i row. isel3 = isel2[(isel2 != i)] for iseli in isel3: print('data_table.remove_rows(%d)'%(iseli)) data_table.remove_rows(isel3) i = i+1 # limit S/N to be not larger than 10 w = data_table.field(data_table.colnames[0]) f = data_table.field(data_table.colnames[1]) ferr = data_table.field(data_table.colnames[2]) mask = (ferr<f/10.0) isel = numpy.argwhere(mask).flatten() if len(isel) > 0: ferr[mask] = f[mask] / 10.0 for iseli in isel: print('Limited row %d S/N no larger than 10: w = %s, f = %s, ferr = %s'%(iseli, w[iseli], f[iseli], ferr[iseli])) # sort data_table.sort(data_table.colnames[0]) # output out_file = sys.argv[2] asciitable.write(data_table, out_file, Writer=asciitable.Ipac, delimiter=' ', overwrite=True) #asciitable.write(data_table, sys.stdout, Writer=asciitable.Ipac, delimiter=' ') with open(out_file, 'r+') as fp: out_content = fp.readlines() # read everything in the file out_iline = 0 out_header = [] # Ipac format has multiple comment lines (commented by the char '\\') and 4 header lines. fp.seek(0) while out_iline < len(out_content): if out_content[out_iline][0] == '\\': # if his is a commented line, then we change the comment mark to '#' out_content[out_iline] = '#' + out_content[out_iline][1:] fp.write(out_content[out_iline]) else: if len(out_header) == 0: # if this is the first header line, then replace the first white space by '#', or if there is no white space, preprend '#'. if out_content[out_iline][0] == ' ': out_content[out_iline] = '#' + out_content[out_iline][1:] else: out_content[out_iline] = '#' + out_content[out_iline] # append header to 'out_header' list out_header.append(out_content[out_iline]) # write only one header line fp.write(out_content[out_iline]) # elif len(out_header) < 4: # append header to 'out_header' list out_header.append(out_content[out_iline]) # skip the 2nd to 4th header line pass else: # write data line fp.write(out_content[out_iline]) # out_iline = out_iline + 1 fp.truncate() fp.close() #os.system('sed -i.bak -e "$(grep \"\\\" %s | wc -l)s/^ /#/" "%s"'%(out_file, out_file)) #os.system('sed -i.bak -e "2d;3d;4d" "%s"'%(out_file)) #if os.path.isfile(out_file+'.bak'): # os.system('rm "%s"'%(out_file+'.bak')) print('Output to "%s"!'%(out_file))
{ "filename": "test_functional.py", "repo_name": "radiocosmology/driftscan", "repo_path": "driftscan_extracted/driftscan-master/tests/test_functional.py", "type": "Python" }
"""Functional test suite for checking integrity of the analysis product generation. The tests using the KL spectrum are effected by changes to the default cosmology/power spectrum in cora, and there is no easy way to pin this during the tests. Best option is to just update the products *if* the defaults change. Also, due to problems with double forking MPI processes this test suite can only run once within a single process. In particular you can't run this test suite followed by `test_functional_skip.py` """ import shutil import os import subprocess import tarfile import numpy as np import pytest import h5py from pathlib import Path from platform import python_version from urllib.request import urlretrieve # Ensure we're using the correct package _basedir = Path(__file__).parent.resolve() def approx(x, rel=1e-4, abs=1e-8): """Pytest approx with changed defaults.""" return pytest.approx(x, rel=rel, abs=abs) def orth_equal_approx(x, y, abs=1e-8): """Tet if two basis sets are roughly equal.""" overlap = np.dot(x, y.T.conj()) d = np.abs(np.abs(overlap) - np.identity(y.shape[0])) return (d < abs).all() @pytest.fixture(scope="module") def test_dir(tmpdir_factory): # If DRIFT_TESTDIR is set then use that if "DRIFT_TESTDIR" in os.environ: _base = Path(os.environ["DRIFT_TESTDIR"]) else: _base = Path(str(tmpdir_factory.mktemp("testdrift"))) return _base # NOTE: we can't run this twice in the same test run. I think this is because # MPI refuses to startup if you try to fork and MPI process from within an MPI # process. It works once because the MPI env is not initialised until the # `ProductManager` call which occurs *after* the product generation. def _gen_prod(output_dir: Path, config: Path): # If the data already exists then we don't need to re-run the tests if not output_dir.exists(): output_dir.mkdir(parents=True) shutil.copy(config, output_dir / "params.yaml") cmd = "drift-makeproducts run params.yaml" # If we're not on macOS try running under MPI # On macOS this has recently been giving problems when running the MPI # job from within pytest if "DRIFT_NO_MPI" not in os.environ: nproc = 2 # Use a fixed number to check that the MPI code works cmd = ("mpirun -np %i --oversubscribe -bind-to none " % nproc) + cmd print(f"Running test in: {output_dir}") print("Generating products:", cmd) proc = subprocess.run(cmd.split(), cwd=output_dir) print("Done.") retval = proc.returncode else: retval = 0 # Can't import this until the subprocess call is done, otherwise the nested # MPI environments will fail from drift.core import manager as pm manager = pm.ProductManager.from_config(output_dir / "params.yaml") return retval, output_dir, manager @pytest.fixture(scope="module") def products_run(test_dir): # Generate the standard test products return _gen_prod( test_dir / f"prod_python_{python_version()}", _basedir / "testparams.yaml" ) @pytest.fixture() def return_code(products_run): return products_run[0] @pytest.fixture() def testdir(products_run): return products_run[1] @pytest.fixture() def manager(products_run): return products_run[2] @pytest.fixture(scope="module") def saved_products(test_dir: Path): _base = test_dir / "saved_products" _base.mkdir(parents=True, exist_ok=True) # Download the products into the root directory such that they don't need # to be downloaded on each test run prodfile = _basedir / "drift_testproducts.tar.gz" # Download the test products if they don't exist locally if not prodfile.exists(): print("Downloading test verification data.") url = "http://bao.chimenet.ca/testcache/drift_testproducts.tar.gz" urlretrieve(url, prodfile) with tarfile.open(prodfile, "r:gz") as tf: tf.extractall(path=_base) def _load(fname): path = _base / fname if not path.exists(): raise ValueError("Saved product %s does not exist" % path) return h5py.File(path, "r") return _load def test_return_code(return_code): """Test that the products exited cleanly.""" code = return_code // 256 assert code == 0 def test_signal_exit(return_code): """Test that the products exited cleanly.""" signal = return_code % 256 assert signal == 0 def test_manager(manager, testdir): """Check that the product manager code loads properly.""" mfile = Path(manager.directory) tfile = testdir / "testdir" assert mfile.samefile(tfile) # Manager does not see same directory # Add padding to start of the btm dataset to account for the compact storage def _pad_btm_m(fh): bm_saved = fh["beam_m"][:] m = int(fh.attrs["m"]) final_pad = [(0, 0)] * (bm_saved.ndim - 1) + [(m, 0)] return np.pad(bm_saved, final_pad, mode="constant", constant_values=0) # This works despite the non-determinism because the elements are small. def test_beam_m(manager, saved_products): """Check the consistency of the m-ordered beams.""" # Load cached beam transfer and insert the zeros that are missing from the beginning # of the l axis with saved_products("beam_m_14.hdf5") as f: bm_saved = _pad_btm_m(f) bm = manager.beamtransfer.beam_m(14) assert bm_saved.shape == bm.shape # Beam matrix (m=14) shape has changed assert bm == approx(bm_saved) # Beam matrix (m=14) is incorrect def test_svd_spectrum(manager, saved_products): """Test the SVD spectrum.""" with saved_products("svdspectrum.hdf5") as f: svd_saved = f["singularvalues"][:] svd = manager.beamtransfer.svd_all() assert svd_saved.shape == svd.shape # SVD spectrum shapes not equal assert svd == approx(svd_saved, rel=1e-3, abs=400) # SVD spectrum is incorrect def test_kl_spectrum(manager, saved_products): """Check the KL spectrum (for the foregroundless model).""" with saved_products("evals_kl.hdf5") as f: ev_saved = f["evals"][:] ev = manager.kltransforms["kl"].evals_all() assert ev_saved.shape == ev.shape # KL spectrum shapes not equal assert ev == approx(ev_saved) # KL spectrum is incorrect @pytest.mark.skip(reason="Non determinstic SHT (libsharp), means this doesn't work") def test_kl_mode(manager, saved_products): """Check a KL mode (m=26) for the foregroundless model.""" with saved_products("ev_kl_m_26.hdf5") as f: evecs_saved = f["evecs"][:] evals, evecs = manager.kltransforms["kl"].modes_m(26) assert evecs_saved.shape == evecs.shape # KL mode shapes not equal assert orth_equal_approx(evecs, evecs_saved, abs=1e-5) # KL mode is incorrect @pytest.mark.skip(reason="Non determinstic SHT (libsharp), means this doesn't work") def test_dk_mode(manager, saved_products): """Check a KL mode (m=38) for the model with foregrounds.""" with saved_products("ev_dk_m_38.hdf5") as f: evecs_saved = f["evecs"][:] evals, evecs = manager.kltransforms["dk"].modes_m(38) assert evecs_saved.shape == evecs.shape # DK mode shapes not equal assert evecs == approx(evecs_saved) # DK mode is incorrect def test_kl_fisher(manager, saved_products): """Test the Fisher matrix consistency. Use an approximate test as Monte-Carlo.""" with saved_products("fisher_kl.hdf5") as f: fisher_saved = f["fisher"][:] bias_saved = f["bias"][:] ps = manager.psestimators["ps1"] fisher, bias = ps.fisher_bias() assert fisher_saved.shape == fisher.shape # KL Fisher shapes not equal assert fisher == approx(fisher_saved, rel=3e-2, abs=1) # KL Fisher is incorrect assert bias_saved.shape == bias.shape # KL bias shapes not equal assert bias == approx(bias_saved, rel=3e-2, abs=1) # KL bias is incorrect. def test_dk_fisher(manager, saved_products): """Test the DK Fisher matrix consistency. Use an approximate test as Monte-Carlo.""" with saved_products("fisher_dk.hdf5") as f: fisher_saved = f["fisher"][:] bias_saved = f["bias"][:] ps = manager.psestimators["ps2"] fisher, bias = ps.fisher_bias() assert fisher_saved.shape == fisher.shape # DK Fisher shapes not equal assert fisher == approx(fisher_saved, rel=3e-2, abs=1) # DK Fisher is incorrect assert bias_saved.shape == bias.shape # DK bias shapes not equal assert bias == approx(bias_saved, rel=3e-2, abs=1) # DK bias is incorrect. @pytest.mark.skip(reason="Non determinstic SHT (libsharp), means this doesn't work") def test_svd_mode(manager, saved_products): """Test that the SVD modes are correct.""" with saved_products("svd_m_14.hdf5") as f: svd_saved = f["beam_svd"][:] invsvd_saved = f["invbeam_svd"][:] ut_saved = f["beam_ut"][:] svd = manager.beamtransfer.beam_svd(14) invsvd = manager.beamtransfer.invbeam_svd(14) ut = manager.beamtransfer.beam_ut(14) assert svd_saved.shape == svd.shape # SVD beam matrix (m=14) shape has changed assert svd == approx(svd_saved) # SVD beam matrix (m=14) is incorrect assert invsvd == approx(invsvd_saved) # Inverse SVD beam matrix (m=14) is incorrect assert ut == approx(ut_saved) # SVD UT matrix (m=14) is incorrect def test_dk_spectrum(manager, saved_products): """Check the KL spectrum (for the model with foregrounds).""" with saved_products("evals_dk.hdf5") as f: ev_saved = f["evals"][:] ev = manager.kltransforms["dk"].evals_all() assert ev_saved.shape == ev.shape # DK spectrum shapes not equal assert ev == approx(ev_saved, rel=1e-2) # DK spectrum is incorrect
radiocosmologyREPO_NAMEdriftscanPATH_START.@driftscan_extracted@driftscan-master@tests@[email protected]_END.py
{ "filename": "instrument.py", "repo_name": "trident-project/trident", "repo_path": "trident_extracted/trident-main/trident/instrument.py", "type": "Python" }
""" Instrument class and member functions. """ #----------------------------------------------------------------------------- # Copyright (c) 2016, Trident Development Team. # # Distributed under the terms of the Modified BSD License. # # The full license is in the file LICENSE, distributed with this software. #----------------------------------------------------------------------------- from yt.units.yt_array import \ YTQuantity from trident.absorption_spectrum.absorption_spectrum import \ _bin_space_units class Instrument(object): """ An instrument class for specifying a spectrograph/telescope pair **Parameters** :lambda_min: float or YTQuantity Minimum desired wavelength for generated spectrum in angstroms :lambda_max: float or YTQuantity Maximum desired wavelength for generated spectrum in angstroms :n_lambda: int Number of desired wavelength bins for the spectrum Setting dlambda overrides n_lambda value Default: None :dlambda: float or YTQuantity Desired bin width for the spectrum in angstroms Setting dlambda overrides n_lambda value Default: None :lsf_kernel: string The filename for the :class:`~trident.LSF` kernel Default: None :name: string Name assigned to the :class:`~trident.Instrument` object Default: None """ def __init__(self, lambda_min, lambda_max, n_lambda=None, dlambda=None, lsf_kernel=None, bin_space='wavelength', name=None): self.bin_space = bin_space if str(lambda_min) != 'auto' and not isinstance(lambda_min, YTQuantity): lambda_min = YTQuantity(lambda_min, _bin_space_units[self.bin_space]) self.lambda_min = lambda_min if str(lambda_max) != 'auto' and not isinstance(lambda_max, YTQuantity): lambda_max = YTQuantity(lambda_max, _bin_space_units[self.bin_space]) self.lambda_max = lambda_max self.lsf_kernel = lsf_kernel self.name = name if n_lambda is None and dlambda is None: raise RuntimeError("Either n_lambda or dlambda must be set to " "specify the binsize") elif dlambda is not None: if not isinstance(dlambda, YTQuantity): dlambda = YTQuantity(dlambda, _bin_space_units[self.bin_space]) if str(lambda_min) == 'auto' or str(lambda_max) == 'auto': n_lambda = 'auto' else: # adding 1 here to assure we cover full lambda range n_lambda = (lambda_max - lambda_min) / dlambda + 1 self.n_lambda = n_lambda if dlambda is None: # adding 1 here to assure we cover full lambda range dlambda = (lambda_max - lambda_min) / float(n_lambda - 1) self.dlambda = dlambda def __repr__(self): disp = "<Instrument>:\n" disp += " name: %s\n" % self.name disp += " lambda_min: %s\n" % self.lambda_min disp += " lambda_max: %s\n" % self.lambda_max disp += " n_lambda: %s\n" % self.n_lambda disp += " dlambda: %s\n" % self.dlambda disp += " lsf_kernel: %s\n" % self.lsf_kernel return disp
trident-projectREPO_NAMEtridentPATH_START.@trident_extracted@trident-main@[email protected]@.PATH_END.py
{ "filename": "functions.py", "repo_name": "justinread/gravsphere", "repo_path": "gravsphere_extracted/gravsphere-master/functions.py", "type": "Python" }
import numpy as np from scipy.integrate import simps as integrator from scipy.misc.common import derivative from scipy.special import gamma from scipy.integrate import quad, dblquad from constants import * multimode = 'normal' ########################################################### #For setting cosmology priors on coreNFWtides parameters. def cosmo_cfunc(M200,h): #From Dutton & Maccio 2014. Requires as input masses #defined in 200c system in units of Msun: c = 10.**(0.905 - 0.101 * (np.log10(M200*h)-12.)) return c def cosmo_cfunc_WDM(M200,h,OmegaM,rhocrit,mWDM): #Use formula in https://arxiv.org/pdf/1112.0330.pdf #to modify CDM M200-c200 relation to the WDM #one. Assumes mWDM in keV, dimensionless h #M200 in Msun and rhocrit in Msun kpc^-3. cCDM = cosmo_cfunc(M200,h) gamma1 = 15.0 gamma2 = 0.3 lamfseff = 0.049*(mWDM)**(-1.11)*\ (OmegaM/0.25)**(0.11)*(h/0.7)**(1.22)*1000.0 lamhm = 13.93*lamfseff Mhm = 4.0/3.0*np.pi*rhocrit*(lamhm/2.0)**3.0 cWDM = cCDM * (1.0 + gamma1*Mhm / M200)**(-gamma2) return cWDM ########################################################### #For constraining particle DM models: def rhoNFW(r,rhos,rs): return rhos/((r/rs)*(1.+(r/rs))**2.) def sidm_novel(rc,M200,c,oden,rhocrit): #Calculate SIDM model parameters from the coreNFWtides #model fit. For this to be valid, the coreNFWtides fit #should assume a pure-core model, with n=1. See #Read et al. 2018 for further details. #Returns cross section/particle mass in cm^2 / g. GammaX = 0.005/(1e9*year) Guse = G*Msun/kpc rho_unit = Msun/kpc**3.0 rc = np.abs(rc)*10.0 gcon=1./(np.log(1.+c)-c/(1.+c)) deltachar=oden*c**3.*gcon/3. rv=(3./4.*M200/(np.pi*oden*rhocrit))**(1./3.) rs=rv/c rhos=rhocrit*deltachar rhorc = rhoNFW(rc,rhos,rs) r = np.logspace(np.log10(rc),np.log10(rs*5000.0),50000) rho = rhoNFW(r,rhos,rs) mass = M200*gcon*(np.log(1.0 + r/rs)-r/rs/(1.0+r/rs)) sigvtworc = Guse/rhorc*integrator(mass*rho/r**2.0,r) sigvrc = np.sqrt(sigvtworc) sigm = np.sqrt(np.pi)*GammaX/(4.0*rhorc*rho_unit*sigvrc) return sigm*100.0**2.0/1000.0 def radius_dsph(s, b, distance): return np.sqrt((distance * np.sin(b))**2. + s*s) def integrand(s, b, distance, rho, Mpars): value = np.sin(b) * rho(np.array([radius_dsph(s, b, distance)]), Mpars)**2 return value def integrand_D(s, b, distance, rho, Mpars): value = np.sin(b) * rho(np.array([radius_dsph(s, b, distance)]), Mpars) return value def get_J(rho, Mpars, distance, r_max): """ Compute the J factor. :param distance: the distance of the galaxy in kpc :param r_max: the maximum radius over which to integrate [this gives an integration angle of alpha = r_max/distance (rads)] :param r: the radius array for the density profile in kpc :param rho: the density array for the density profile in Msun/kpc^3 :return: the J factor in in GeV c^-4 cm^-5 """ #Min/max integration angles in radians: b_min = 0.0 b_max = np.arcsin(r_max/distance) #This is an appropriate choice for Dwarf galaxies but #should be reconsidered for large mass systems: Rmaximum = 250.0 #Upper/lower limits: s_min_bound = lambda b : -(Rmaximum**2 - (distance*np.sin(b))**2 )**0.5 s_max_bound = lambda b : (Rmaximum**2 - (distance*np.sin(b))**2 )**0.5 #Computation J_max: Acc_arr = 1.0e-8 J_max = dblquad(integrand,b_min,b_max,s_min_bound,\ s_max_bound,args=(distance,rho,Mpars),\ epsabs=Acc_arr,epsrel=Acc_arr) J_max = J_max[0]*kpccm*2.*np.pi*Msunkpc3toGeVcm3**2.0 #Error checking: if (J_max == np.inf): print('Argh! Infinite J_max!! Bye bye...') sys.exit(0) if (J_max < 0): print('Argh! Negative J_max!! Bye bye...') sys.exit(0) return J_max # in GeV^2 c^-4 cm^-5 def get_D(rho, Mpars, distance, r_max): """ Compute the D factor. :param distance: the distance of the galaxy in kpc :param r_max: the maximum radius over which to integrate [this gives an integration angle of alpha = r_max/distance (rads)] :param r: the radius array for the density profile in kpc :param rho: the density array for the density profile in Msun/kpc^3 :return: the D factor in in GeV c^-2 cm^-2 """ # Min/max integration angles in radians: r_min = 0.0 b_min = np.arcsin(r_min/distance) b_max = np.arcsin(r_max/distance) #This is an appropriate choice for Dwarf galaxies but #should be reconsidered for large mass systems: Rmaximum = 250.0 #Upper/lower limits: s_min_bound = lambda b : -(Rmaximum**2 - (distance*np.sin(b))**2 )**0.5 s_max_bound = lambda b : (Rmaximum**2 - (distance*np.sin(b))**2 )**0.5 #Computation J_max: Acc_arr = 1.0e-8 D_max = dblquad(integrand_D,b_min,b_max,s_min_bound,\ s_max_bound,args=(distance,rho,Mpars),\ epsabs=Acc_arr,epsrel=Acc_arr) D_max = D_max[0]*kpccm*2.*np.pi*Msunkpc3toGeVcm3 #Error checking: if (D_max == np.inf): print('Argh! Infinite D_max!! Bye bye...') sys.exit(0) if (D_max < 0): print('Argh! Negative D_max!! Bye bye...') sys.exit(0) return D_max # in GeV c^-2 cm^-2 ########################################################### #For DM mass profile: def corenfw_tides_den(r,M200,c,rc,n,rt,delta): gcon=1./(np.log(1.+c)-c/(1.+c)) deltachar=oden*c**3.*gcon/3. rv=(3./4.*M200/(np.pi*oden*rhocrit))**(1./3.) rs=rv/c rhos=rhocrit*deltachar rhoanal = rhos/((r/rs)*(1.+(r/rs))**2.) manal = M200 * gcon * (np.log(1.0 + r/rs)-r/rs/(1.0+r/rs)) x = r/np.abs(rc) f = np.tanh(x) my_manal = manal*f**n my_rhoanal = rhoanal*f**n + \ 1.0/(4.*np.pi*r**2.*np.abs(rc))*manal*(1.0-f**2.)*n*f**(n-1.0) frt = np.tanh(rt/np.abs(rc)) manal_rt = M200 * gcon * (np.log(1.0 + rt/rs)-rt/rs/(1.0+rt/rs)) my_rhoanal_rt = rhos/((rt/rs)*(1.+(rt/rs))**2.)*frt**n + \ 1.0/(4.*np.pi*rt**2.*np.abs(rc))*manal_rt*(1.0-frt**2.)*n*frt**(n-1.0) my_rhoanal[r > rt] = my_rhoanal_rt * (r[r > rt]/rt)**(-delta) return my_rhoanal def corenfw_tides_mass(r,M200,c,rc,n,rt,delta): gcon=1./(np.log(1.+c)-c/(1.+c)) deltachar=oden*c**3.*gcon/3. rv=(3./4.*M200/(np.pi*oden*rhocrit))**(1./3.) rs=rv/c rhos=rhocrit*deltachar rhoanal = rhos/((r/rs)*(1.+(r/rs))**2.) manal = M200 * gcon * (np.log(1.0 + r/rs)-r/rs/(1.0+r/rs)) x = r/np.abs(rc) f = np.tanh(x) my_manal = manal*f**n frt = np.tanh(rt/np.abs(rc)) manal_rt = M200 * gcon * (np.log(1.0 + rt/rs)-rt/rs/(1.0+rt/rs)) my_rhoanal_rt = rhos/((rt/rs)*(1.+(rt/rs))**2.)*frt**n + \ 1.0/(4.*np.pi*rt**2.*np.abs(rc))*manal_rt*(1.0-frt**2.)*n*frt**(n-1.0) Mrt = manal_rt*frt**n my_manal[r > rt] = Mrt + \ 4.0*np.pi*my_rhoanal_rt*rt**3.0/(3.0-delta)*\ ((r[r > rt]/rt)**(3.0-delta)-1.0) return my_manal def corenfw_tides_dlnrhodlnr(r,M200,c,rc,n,rt,delta): dden = derivative(\ lambda x: corenfw_tides_den(x,M200,c,rc,n,rt,delta),\ r,dx=1e-6) dlnrhodlnr = dden / corenfw_tides_den(r,M200,c,rc,n,rt,delta) * r return dlnrhodlnr def vmax_func(M200,c200,h): oden = 200.0 Guse = G*Msun/kpc r200=(3./4.*M200/(np.pi*oden*rhocrit))**(1./3.) #This from Sigad et al. 2000 (via Schneider et al. 2017): vmax = 0.465*np.sqrt(Guse*M200/r200)/\ np.sqrt(1.0/c200*np.log(1.0+c200)-(1.0+c200)**(-1.0)) return vmax/kms ########################################################### #For DM mass profile and VSPs of GC mocks (for overlaying #true solution): def alpbetgamden(r,rho0,r0,alp,bet,gam): return rho0*(r/r0)**(-gam)*(1.0+(r/r0)**alp)**((gam-bet)/alp) def alpbetgamdlnrhodlnr(r,rho0,r0,alp,bet,gam): return -gam + (gam-bet)*(r/r0)**alp*(1.0+(r/r0)**alp)**(-1.0) def alpbetgammass(r,rho0,r0,alp,bet,gam): den = rho0*(r/r0)**(-gam)*(1.0+(r/r0)**alp)**((gam-bet)/alp) mass = np.zeros(len(r)) for i in range(3,len(r)): mass[i] = integrator(4.0*np.pi*r[:i]**2.*den[:i],r[:i]) return mass def alpbetgamsigr(r,rho0s,r0s,alps,bets,gams,rho0,r0,alp,bet,gam,ra): nu = alpbetgamden(r,rho0s,r0s,alps,bets,gams) mass = alpbetgammass(r,rho0,r0,alp,bet,gam) gf = gfunc_osipkov(r,ra) sigr = np.zeros(len(r)) for i in range(len(r)-3): sigr[i] = 1.0/nu[i]/gf[i] * \ integrator(Guse*mass[i:]*nu[i:]/r[i:]**2.0*\ gf[i:],r[i:]) return sigr def osipkov(r,r0): return r**2.0/(r**2.0+r0**2.0) def gfunc_osipkov(r,r0): n0 = 2.0 bet0 = 0.0 betinf = 1.0 gfunc = r**(2.0*betinf)*\ ((r0/r)**n0+1.0)**(2.0/n0*(betinf-bet0)) return gfunc def alpbetgamvsp(rho0s,r0s,alps,bets,gams,rho0,r0,alp,bet,gam,ra): intpnts = np.int(1e4) r = np.logspace(np.log10(r0s/50.0),np.log10(500.0*r0s),\ np.int(intpnts)) nu = alpbetgamden(r,rho0s,r0s,alps,bets,gams) massnu = alpbetgamden(r,rho0s,r0s,alps,bets,gams) mass = alpbetgammass(r,rho0,r0,alp,bet,gam) sigr = alpbetgamsigr(r,rho0s,r0s,alps,bets,gams,rho0,\ r0,alp,bet,gam,ra) bet = osipkov(r,ra) sigstar = np.zeros(len(r)) for i in range(1,len(r)-3): sigstar[i] = 2.0*integrator(nu[i:]*r[i:]/\ np.sqrt(r[i:]**2.0-r[i-1]**2.0),\ r[i:]) #Normalise similarly to the data: norm = integrator(sigstar*2.0*np.pi*r,r) nu = nu / norm sigstar = sigstar / norm #VSPs: vsp1 = \ integrator(2.0/5.0*Guse*mass*nu*(5.0-2.0*bet)*\ sigr*r,r)/1.0e12 vsp2 = \ integrator(4.0/35.0*Guse*mass*nu*(7.0-6.0*bet)*\ sigr*r**3.0,r)/1.0e12 #Richardson & Fairbairn zeta parameters: Ntotuse = integrator(sigstar*r,r) sigint = integrator(sigstar*r**3.0,r) zeta_A = 9.0/10.0*Ntotuse*integrator(Guse*mass*nu*(\ 5.0-2.0*bet)*sigr*r,r)/\ (integrator(Guse*mass*nu*r,r))**2.0 zeta_B = 9.0/35.0*Ntotuse**2.0*\ integrator(Guse*mass*nu*(7.0-6.0*bet)*sigr*r**3.0,r)/\ ((integrator(Guse*mass*nu*r,r))**2.0*sigint) return vsp1, vsp2, zeta_A, zeta_B #Richardson-Fairbairn VSP estimators: def richfair_vsp(vz,Rkin,mskin): vsp1_RF = 1.0/(np.pi*2.0)*\ np.sum(vz**4.0*mskin)/np.sum(mskin) vsp2_RF = 1.0/(np.pi*2.0)*\ np.sum(vz**4.0*mskin*Rkin**2.0)/np.sum(mskin*Rkin**2.0) return vsp1_RF, vsp2_RF ########################################################### #For optional central dark mass (e.g. remnants, black hole): def plumden(r,pars): return 3.0*pars[0]/(4.*np.pi*pars[1]**3.)*\ (1.0+r**2./pars[1]**2.)**(-5./2.) def plummass(r,pars): return pars[0]*r**3./(r**2.+pars[1]**2.)**(3./2.) ########################################################### #For Jeans modelling: def sigp(r1,r2,nu,Sigfunc,M,Mcentral,beta,betaf,nupars,Mpars,\ betpars,\ Mstar_rad,Mstar_prof,Mstar,Arot,Rhalf,G,rmin,rmax): #Calculate projected velocity dispersion profiles #given input *functions* nu(r); M(r); beta(r); betaf(r). #Also input is an array Mstar_prof(Mstar_rad) describing the 3D #cumulative stellar mass profile. This should be normalised #so that it peaks at 1.0. The total stellar mass is passed in Mstar. #Set up theta integration array: intpnts = np.int(150) thmin = 0. bit = 1.e-5 thmax = np.pi/2.-bit th = np.linspace(thmin,thmax,intpnts) sth = np.sin(th) cth = np.cos(th) cth2 = cth**2. #Set up rint interpolation array: rint = np.logspace(np.log10(rmin),np.log10(rmax),intpnts) #First calc sigr2(rint): sigr2 = np.zeros(len(rint)) nur = nu(rint,nupars) betafunc = betaf(rint,betpars,Rhalf,Arot) for i in range(len(rint)): rq = rint[i]/cth Mq = M(rq,Mpars)+Mcentral(rq,Mpars) if (Mstar > 0): Mq = Mq+Mstar*np.interp(rq,Mstar_rad,Mstar_prof) nuq = nu(rq,nupars) betafuncq = betaf(rq,betpars,Rhalf,Arot) sigr2[i] = 1./nur[i]/rint[i]/betafunc[i] * \ integrator(G*Mq*nuq*betafuncq*sth,th) #And now the sig_LOS projection: Sig = Sigfunc(rint,nupars) sigLOS2 = np.zeros(len(rint)) for i in range(len(rint)): rq = rint[i]/cth nuq = nu(rq,nupars) sigr2q = np.interp(rq,rint,sigr2,left=0,right=0) betaq = beta(rq,betpars) sigLOS2[i] = 2.0*rint[i]/Sig[i]*\ integrator((1.0-betaq*cth2)*nuq*sigr2q/cth2,th) sigr2out = np.interp(r2,rint,sigr2,left=0,right=0) sigLOS2out = np.interp(r2,rint,sigLOS2,left=0,right=0) Sigout = np.interp(r1,rint,Sig,left=0,right=0) return sigr2out,Sigout,sigLOS2out def sigp_vs(r1,r2,nu,Sigfunc,M,Mcentral,beta,betaf,nupars,Mpars,\ betpars,\ Mstar_rad,Mstar_prof,Mstar,Arot,Rhalf,G,rmin,rmax): #Calculate projected velocity dispersion profiles #given input *functions* nu(r); M(r); beta(r); betaf(r). #Also input is an array Mstar_prof(Mstar_rad) describing the 3D #cumulative stellar mass profile. This should be normalised #so that it peaks at 1.0. The total stellar mass is passed in Mstar. #Finally, the routine calculates a dimensional version of the #fourth order "virial shape" parmaeters in Richardson & Fairbairn 2014 #described in their equations 8 and 9. #Set up theta integration array: intpnts = np.int(150) thmin = 0. bit = 1.e-5 thmax = np.pi/2.-bit th = np.linspace(thmin,thmax,intpnts) sth = np.sin(th) cth = np.cos(th) cth2 = cth**2. #Set up rint interpolation array: rintpnts = np.int(150) rint = np.logspace(np.log10(rmin),\ np.log10(rmax),rintpnts) #First calc sigr2(rint): sigr2 = np.zeros(len(rint)) nur = nu(rint,nupars) betafunc = betaf(rint,betpars,Rhalf,Arot) for i in range(len(rint)): rq = rint[i]/cth Mq = M(rq,Mpars)+Mcentral(rq,Mpars) if (Mstar > 0): Mq = Mq+Mstar*np.interp(rq,Mstar_rad,Mstar_prof) nuq = nu(rq,nupars) betafuncq = betaf(rq,betpars,Rhalf,Arot) sigr2[i] = 1./nur[i]/rint[i]/betafunc[i] * \ integrator(G*Mq*nuq*betafuncq*sth,th) #And now the sig_LOS projection: Sig = Sigfunc(rint,nupars) sigLOS2 = np.zeros(len(rint)) for i in range(len(rint)): rq = rint[i]/cth nuq = nu(rq,nupars) sigr2q = np.interp(rq,rint,sigr2,left=0,right=0) betaq = beta(rq,betpars) sigLOS2[i] = 2.0*rint[i]/Sig[i]*\ integrator((1.0-betaq*cth2)*nuq*sigr2q/cth2,th) #And now the dimensional fourth order "virial shape" #parameters: betar = beta(rint,betpars) Mr = M(rint,Mpars)+Mstar*np.interp(rint,Mstar_rad,Mstar_prof) vs1 = 2.0/5.0*integrator(nur*(5.0-2.0*betar)*sigr2*\ G*Mr*rint,rint) vs2 = 4.0/35.0*integrator(nur*(7.0-6.0*betar)*sigr2*\ G*Mr*rint**3.0,rint) sigr2out = np.interp(r2,rint,sigr2,left=0,right=0) sigLOS2out = np.interp(r2,rint,sigLOS2,left=0,right=0) Sigout = np.interp(r1,rint,Sig,left=0,right=0) return sigr2out,Sigout,sigLOS2out,vs1,vs2 def sigp_prop(r1,r2,r3,nu,Sigfunc,M,Mcentral,beta,betaf,nupars,Mpars,\ betpars,\ Mstar_rad,Mstar_prof,Mstar,Arot,Rhalf,G,rmin,rmax): #Calculate projected velocity dispersion profiles #given input *functions* nu(r); M(r); beta(r); betaf(r). #Also input is an array Mstar_prof(Mstar_rad) describing the 3D #cumulative stellar mass profile. This should be normalised #so that it peaks at 1.0. The total stellar mass is passed in Mstar. #Set up theta integration array: intpnts = np.int(150) thmin = 0. bit = 1.e-5 thmax = np.pi/2.-bit th = np.linspace(thmin,thmax,intpnts) sth = np.sin(th) cth = np.cos(th) cth2 = cth**2. rint = np.logspace(np.log10(rmin),np.log10(rmax),intpnts) sigr2 = np.zeros(len(rint)) nur = nu(rint,nupars) betafunc = betaf(rint,betpars,Rhalf,Arot) for i in range(len(rint)): rq = rint[i]/cth Mq = M(rq,Mpars)+Mcentral(rq,Mpars) if (Mstar > 0): Mq = Mq+Mstar*np.interp(rq,Mstar_rad,Mstar_prof) nuq = nu(rq,nupars) betafuncq = betaf(rq,betpars,Rhalf,Arot) sigr2[i] = 1./nur[i]/rint[i]/betafunc[i] * \ integrator(G*Mq*nuq*betafuncq*sth,th) Sig = Sigfunc(rint,nupars) sigLOS2 = np.zeros(len(rint)) sigpmr2 = np.zeros(len(rint)) sigpmt2 = np.zeros(len(rint)) for i in range(len(rint)): rq = rint[i]/cth nuq = nu(rq,nupars) sigr2q = np.interp(rq,rint,sigr2,left=0,right=0) betaq = beta(rq,betpars) sigLOS2[i] = 2.0*rint[i]/Sig[i]*\ integrator((1.0-betaq*cth2)*nuq*sigr2q/cth2,th) sigpmr2[i] = 2.0*rint[i]/Sig[i]*\ integrator((1.0-betaq+betaq*cth2)*nuq*sigr2q/cth2,th) sigpmt2[i] = 2.0*rint[i]/Sig[i]*\ integrator((1.0-betaq)*nuq*sigr2q/cth2,th) sigr2out = np.interp(r2,rint,sigr2,left=0,right=0) sigLOS2out = np.interp(r2,rint,sigLOS2,left=0,right=0) sigpmr2out = np.interp(r3,rint,sigpmr2,left=0,right=0) sigpmt2out = np.interp(r3,rint,sigpmt2,left=0,right=0) Sigout = np.interp(r1,rint,Sig,left=0,right=0) return sigr2out,Sigout,sigLOS2out,sigpmr2out,sigpmt2out def sigp_prop_vs(r1,r2,r3,nu,Sigfunc,M,Mcentral,beta,betaf,nupars,Mpars,\ betpars,\ Mstar_rad,Mstar_prof,Mstar,Arot,Rhalf,G,rmin,rmax): #Calculate projected velocity dispersion profiles #given input *functions* nu(r); M(r); beta(r); betaf(r). #Also input is an array Mstar_prof(Mstar_rad) describing the 3D #cumulative stellar mass profile. This should be normalised #so that it peaks at 1.0. The total stellar mass is passed in Mstar. #Set up theta integration array: intpnts = np.int(150) thmin = 0. bit = 1.e-5 thmax = np.pi/2.-bit th = np.linspace(thmin,thmax,intpnts) sth = np.sin(th) cth = np.cos(th) cth2 = cth**2. rint = np.logspace(np.log10(rmin),np.log10(rmax),intpnts) sigr2 = np.zeros(len(rint)) nur = nu(rint,nupars) betafunc = betaf(rint,betpars,Rhalf,Arot) for i in range(len(rint)): rq = rint[i]/cth Mq = M(rq,Mpars)+Mcentral(rq,Mpars) if (Mstar > 0): Mq = Mq+Mstar*np.interp(rq,Mstar_rad,Mstar_prof) nuq = nu(rq,nupars) betafuncq = betaf(rq,betpars,Rhalf,Arot) sigr2[i] = 1./nur[i]/rint[i]/betafunc[i] * \ integrator(G*Mq*nuq*betafuncq*sth,th) Sig = Sigfunc(rint,nupars) sigLOS2 = np.zeros(len(rint)) sigpmr2 = np.zeros(len(rint)) sigpmt2 = np.zeros(len(rint)) for i in range(len(rint)): rq = rint[i]/cth nuq = nu(rq,nupars) sigr2q = np.interp(rq,rint,sigr2,left=0,right=0) betaq = beta(rq,betpars) sigLOS2[i] = 2.0*rint[i]/Sig[i]*\ integrator((1.0-betaq*cth2)*nuq*sigr2q/cth2,th) sigpmr2[i] = 2.0*rint[i]/Sig[i]*\ integrator((1.0-betaq+betaq*cth2)*nuq*sigr2q/cth2,th) sigpmt2[i] = 2.0*rint[i]/Sig[i]*\ integrator((1.0-betaq)*nuq*sigr2q/cth2,th) sigr2out = np.interp(r2,rint,sigr2,left=0,right=0) sigLOS2out = np.interp(r2,rint,sigLOS2,left=0,right=0) sigpmr2out = np.interp(r3,rint,sigpmr2,left=0,right=0) sigpmt2out = np.interp(r3,rint,sigpmt2,left=0,right=0) Sigout = np.interp(r1,rint,Sig,left=0,right=0) #And now the dimensional fourth order "virial shape" #parameters: betar = beta(rint,betpars) Mr = M(rint,Mpars)+Mstar*np.interp(rint,Mstar_rad,Mstar_prof) vs1 = 2.0/5.0*integrator(nur*(5.0-2.0*betar)*sigr2*\ G*Mr*rint,rint) vs2 = 4.0/35.0*integrator(nur*(7.0-6.0*betar)*sigr2*\ G*Mr*rint**3.0,rint) return sigr2out,Sigout,sigLOS2out,sigpmr2out,sigpmt2out,\ vs1,vs2 def beta(r,betpars): bet0star = betpars[0] betinfstar = betpars[1] r0 = 10.**betpars[2] n = betpars[3] #Ensure stability at beta extremities: if (bet0star > 0.98): bet0star = 0.98 if (bet0star < -0.95): bet0star = -0.95 if (betinfstar > 0.98): betinfstar = 0.98 if (betinfstar < -0.95): betinfstar = -0.95 bet0 = 2.0*bet0star / (1.0 + bet0star) betinf = 2.0*betinfstar / (1.0 + betinfstar) beta = bet0 + (betinf-bet0)*(1.0/(1.0 + (r0/r)**n)) return beta def betaf(r,betpars,Rhalf,Arot): bet0star = betpars[0] betinfstar = betpars[1] r0 = 10.**betpars[2] n = betpars[3] #Ensure stability at beta extremities: if (bet0star > 0.98): bet0star = 0.98 if (bet0star < -0.95): bet0star = -0.95 if (betinfstar > 0.98): betinfstar = 0.98 if (betinfstar < -0.95): betinfstar = -0.95 bet0 = 2.0*bet0star / (1.0 + bet0star) betinf = 2.0*betinfstar / (1.0 + betinfstar) betafn = r**(2.0*betinf)*((r0/r)**n+1.0)**(2.0/n*(betinf-bet0))*\ np.exp(-2.0*Arot*r/Rhalf) return betafn ########################################################### #For data binning: def binthedata(R,ms,Nbin): #Nbin is the number of particles / bin: index = np.argsort(R) right_bin_edge = np.zeros(len(R)) norm = np.zeros(len(R)) cnt = 0 jsum = 0 for i in range(len(R)): if (jsum < Nbin): norm[cnt] = norm[cnt] + ms[index[i]] right_bin_edge[cnt] = R[index[i]] jsum = jsum + ms[index[i]] if (jsum >= Nbin): jsum = 0.0 cnt = cnt + 1 right_bin_edge = right_bin_edge[:cnt] norm = norm[:cnt] surfden = np.zeros(cnt) rbin = np.zeros(cnt) for i in range(len(rbin)): if (i == 0): surfden[i] = norm[i] / \ (np.pi*right_bin_edge[i]**2.0) rbin[i] = right_bin_edge[i]/2.0 else: surfden[i] = norm[i] / \ (np.pi*right_bin_edge[i]**2.0-\ np.pi*right_bin_edge[i-1]**2.0) rbin[i] = (right_bin_edge[i]+right_bin_edge[i-1])/2.0 surfdenerr = surfden / np.sqrt(Nbin) #Calculate the projected half light radius & #surface density integral: Rhalf, Menc_tot = surf_renorm(rbin,surfden) #And normalise the profile: surfden = surfden / Menc_tot surfdenerr = surfdenerr / Menc_tot return rbin, surfden, surfdenerr, Rhalf def surf_renorm(rbin,surfden): #Calculate the integral of the surface density #so that it can then be renormalised. #Calcualte also Rhalf. ranal = np.linspace(0,10,np.int(5000)) surfden_ranal = np.interp(ranal,rbin,surfden,left=0,right=0) Menc_tot = 2.0*np.pi*integrator(surfden_ranal*ranal,ranal) Menc_half = 0.0 i = 3 while (Menc_half < Menc_tot/2.0): Menc_half = 2.0*np.pi*\ integrator(surfden_ranal[:i]*ranal[:i],ranal[:i]) i = i + 1 Rhalf = ranal[i-1] return Rhalf, Menc_tot ########################################################### #For calculating confidence intervals: def calcmedquartnine(array): index = np.argsort(array,axis=0) median = array[index[np.int(len(array)/2.)]] sixlowi = np.int(16./100. * len(array)) sixhighi = np.int(84./100. * len(array)) ninelowi = np.int(2.5/100. * len(array)) ninehighi = np.int(97.5/100. * len(array)) nineninelowi = np.int(0.15/100. * len(array)) nineninehighi = np.int(99.85/100. * len(array)) sixhigh = array[index[sixhighi]] sixlow = array[index[sixlowi]] ninehigh = array[index[ninehighi]] ninelow = array[index[ninelowi]] nineninehigh = array[index[nineninehighi]] nineninelow = array[index[nineninelowi]] return median, sixlow, sixhigh, ninelow, ninehigh,\ nineninelow, nineninehigh ########################################################### #For fitting the surface brightness: def Sig_addpnts(x,y,yerr): #If using neg. Plummer component, add some more #"data points" at large & small radii bounded on #zero and the outermost data point. This #will disfavour models with globally #negative tracer density. addpnts = len(x) xouter = np.max(x) youter = np.min(y) xinner = np.min(x) yinner = np.max(y) xadd_right = np.logspace(np.log10(xouter),\ np.log10(xouter*1000),addpnts) yadd_right = np.zeros(addpnts) + youter/2.0 yerradd_right = yadd_right xadd_left = np.logspace(np.log10(xinner),\ np.log10(xinner/1000),addpnts) yadd_left = np.zeros(addpnts) + yinner yerradd_left = yadd_left/2.0 x = np.concatenate((x,xadd_right)) y = np.concatenate((y,yadd_right)) yerr = np.concatenate((yerr,yerradd_right)) x = np.concatenate((xadd_left,x)) y = np.concatenate((yadd_left,y)) yerr = np.concatenate((yerradd_left,yerr)) return x,y,yerr #For stellar and tracer profiles: def multiplumden(r,pars): Mpars = pars[0:np.int(len(pars)/2.0)] apars = pars[np.int(len(pars)/2.0):len(pars)] nplum = len(Mpars) multplum = np.zeros(len(r)) for i in range(len(Mpars)): if (multimode == 'seq'): if (i == 0): aparsu = apars[0] else: aparsu = apars[i] + apars[i-1] else: aparsu = apars[i] multplum = multplum + \ 3.0*Mpars[i]/(4.*np.pi*aparsu**3.)*\ (1.0+r**2./aparsu**2.)**(-5./2.) return multplum def multiplumsurf(r,pars): Mpars = pars[0:np.int(len(pars)/2.0)] apars = pars[np.int(len(pars)/2.0):len(pars)] nplum = len(Mpars) multplum = np.zeros(len(r)) for i in range(len(Mpars)): if (multimode == 'seq'): if (i == 0): aparsu = apars[0] else: aparsu = apars[i] + apars[i-1] else: aparsu = apars[i] multplum = multplum + \ Mpars[i]*aparsu**2.0 / \ (np.pi*(aparsu**2.0+r**2.0)**2.0) return multplum def multiplumdlnrhodlnr(r,pars): Mpars = pars[0:np.int(len(pars)/2.0)] apars = pars[np.int(len(pars)/2.0):len(pars)] nplum = len(Mpars) multplumden = np.zeros(len(r)) multplumdden = np.zeros(len(r)) for i in range(len(Mpars)): if (multimode == 'seq'): if (i == 0): aparsu = apars[0] else: aparsu = apars[i] + apars[i-1] else: aparsu = apars[i] multplumden = multplumden + \ 3.0*Mpars[i]/(4.*np.pi*aparsu**3.)*\ (1.0+r**2./aparsu**2.)**(-5./2.) multplumdden = multplumdden - \ 15.0*Mpars[i]/(4.*np.pi*aparsu**3.)*\ r/aparsu**2.*(1.0+r**2./aparsu**2.)**(-7./2.) return multplumdden*r/multplumden def multiplummass(r,pars): Mpars = pars[0:np.int(len(pars)/2.0)] apars = pars[np.int(len(pars)/2.0):len(pars)] nplum = len(Mpars) multplum = np.zeros(len(r)) for i in range(len(Mpars)): if (multimode == 'seq'): if (i == 0): aparsu = apars[0] else: aparsu = apars[i] + apars[i-1] else: aparsu = apars[i] multplum = multplum + \ Mpars[i]*r**3./(r**2.+aparsu**2.)**(3./2.) return multplum def threeplumsurf(r,M1,M2,M3,a1,a2,a3): return multiplumsurf(r,[M1,M2,M3,\ a1,a2,a3]) def threeplumden(r,M1,M2,M3,a1,a2,a3): return multiplumden(r,[M1,M2,M3,\ a1,a2,a3]) def threeplummass(r,M1,M2,M3,a1,a2,a3): return multiplummass(r,[M1,M2,M3,\ a1,a2,a3]) def Rhalf_func(M1,M2,M3,a1,a2,a3): #Calculate projected half light radius for #the threeplum model: ranal = np.logspace(-3,1,np.int(500)) Mstar_surf = threeplumsurf(ranal,M1,M2,M3,a1,a2,a3) Menc_half = 0.0 i = 3 while (Menc_half < (M1+M2+M3)/2.0): Menc_half = 2.0*np.pi*\ integrator(Mstar_surf[:i]*ranal[:i],ranal[:i]) i = i + 1 Rhalf = ranal[i-1] return Rhalf ########################################################### #For fitting the velocity distribution in each bin [no errors]: def monte(func,a,b,n): #Function to perform fast 1D Monte-Carlo integration #for convolution integrals: xrand = np.random.uniform(a,b,n) integral = func(xrand).sum() return (b-a)/np.float(n)*integral def velpdf_noerr(vz,theta): vzmean = theta[0] alp = theta[1] bet = theta[2] backamp = theta[3] backmean = theta[4] backsig = theta[5] pdf = (1.0-backamp)*bet/(2.0*alp*gamma(1.0/bet))*\ np.exp(-(np.abs(vz-vzmean)/alp)**bet) + \ backamp/(np.sqrt(2.0*np.pi)*backsig)*\ np.exp(-0.5*(vz-backmean)**2.0/backsig**2.0) return pdf #For fitting the velocity distribution in each bin [fast] #Uses an approximation to the true convolution integral. def velpdffast(vz,vzerr,theta): vzmean = theta[0] bet = theta[2] fgamma = gamma(1.0/bet)/gamma(3.0/bet) alp = np.sqrt(theta[1]**2.0+vzerr**2.0*fgamma) backamp = theta[3] backmean = theta[4] backsig = np.sqrt(theta[5]**2.0 + vzerr**2.0) pdf = (1.0-backamp)*bet/(2.0*alp*gamma(1.0/bet))*\ np.exp(-(np.abs(vz-vzmean)/alp)**bet) + \ backamp/(np.sqrt(2.0*np.pi)*backsig)*\ np.exp(-0.5*(vz-backmean)**2.0/backsig**2.0) return pdf def velpdf_func(vz,vzerr,vzint,theta): #Inner integral function for convolving #velpdf with a Gaussian error PDF. Change #this function to implement non-Gaussian #errors. vzmean = theta[0] alp = theta[1] bet = theta[2] backamp = theta[3] backmean = theta[4] backsig = theta[5] pdf = (1.0-backamp)*bet/(2.0*alp*gamma(1.0/bet))*\ np.exp(-(np.abs(vzint-vzmean)/alp)**bet)*\ 1.0/(np.sqrt(2.0*np.pi)*vzerr)*\ np.exp(-0.5*(vz-vzint)**2.0/vzerr**2.0)+\ backamp/(np.sqrt(2.0*np.pi)*backsig)*\ np.exp(-0.5*(vzint-backmean)**2.0/backsig**2.0)*\ 1.0/(np.sqrt(2.0*np.pi)*vzerr)*\ np.exp(-0.5*(vz-vzint)**2.0/vzerr**2.0) return pdf #For fitting the velocity distribution in each bin with #full (expensive) convolution integral: def velpdf(vz,vzerr,theta): #Generalised Gaussian + Gaussian convolved with #vzerr, assuming Gaussian errors: vzmean = theta[0] sig = vztwo_calc(theta) vzlow = -sig*10+vzmean vzhigh = sig*10+vzmean if (type(vz) == np.ndarray): pdf = np.zeros(len(vz)) for i in range(len(vz)): pdf_func = lambda vzint : velpdf_func(vz[i],\ vzerr[i],vzint,theta) pdf[i] = quad(pdf_func,vzlow,vzhigh)[0] else: pdf_func = lambda vzint : velpdf_func(vz,\ vzerr,vzint,theta) pdf = quad(pdf_func,vzlow,vzhigh)[0] return pdf def velpdfmonte(vz,vzerr,theta): #Generalised Gaussian + Gaussian convolved with #vzerr, assuming Gaussian errors: npnts = np.int(500) vzmean = theta[0] sig = vztwo_calc(theta) vzlow = -sig*10+vzmean vzhigh = sig*10+vzmean if (type(vz) == np.ndarray): pdf = np.zeros(len(vz)) for i in range(len(vz)): pdf_func = lambda vzint : velpdf_func(vz[i],\ vzerr[i],vzint,theta) pdf[i] = monte(pdf_func,vzlow,vzhigh,npnts) else: pdf_func = lambda vzint : velpdf_func(vz,\ vzerr,vzint,theta) pdf = monte(pdf_func,vzlow,vzhigh,npnts) return pdf def vztwo_calc(theta): #Calculate <vlos^2>^(1/2) from #generalised Gaussian parameters: alp = theta[1] bet = theta[2] return np.sqrt(alp**2.0*gamma(3.0/bet)/gamma(1.0/bet)) def vzfour_calc(theta): #Calculate <vlos^4> from #generalised Gaussian parameters: alp = theta[1] bet = theta[2] sig = vztwo_calc(theta) kurt = gamma(5.0/bet)*gamma(1.0/bet)/(gamma(3.0/bet))**2.0 return kurt*sig**4.0 def kurt_calc(theta): #Calculate kurtosis from generalised #Gaussian parameters: alp = theta[1] bet = theta[2] kurt = gamma(5.0/bet)*gamma(1.0/bet)/(gamma(3.0/bet))**2.0 return kurt def vzfourfunc(ranal,rbin,vzfourbin): #Interpolate and extrapolate #vzfour(R) over and beyond the data: vzfour = np.interp(ranal,rbin,vzfourbin) return vzfour #For calculating the Likelihood from the vsp array: def vsppdf_calc(vsp): #First bin the data: nbins = 50 bins_plus_one = np.linspace(np.min(vsp),np.max(vsp),nbins+1) bins = np.linspace(np.min(vsp),np.max(vsp),nbins) vsp_pdf, bins_plus_one = np.histogram(vsp, bins=bins_plus_one) vsp_pdf = vsp_pdf / np.max(vsp_pdf) binsout = bins[vsp_pdf > 0] vsp_pdfout = vsp_pdf[vsp_pdf > 0] return binsout, vsp_pdfout def vsp_pdf(vsp,bins,vsp_pdf): return np.interp(vsp,bins,vsp_pdf,left=0,right=0)
justinreadREPO_NAMEgravspherePATH_START.@gravsphere_extracted@[email protected]@.PATH_END.py
{ "filename": "setup.py", "repo_name": "dfm/emcee", "repo_path": "emcee_extracted/emcee-main/setup.py", "type": "Python" }
#!/usr/bin/env python # Inspired by: # https://hynek.me/articles/sharing-your-labor-of-love-pypi-quick-and-dirty/ import codecs import os import re from setuptools import find_packages, setup # PROJECT SPECIFIC NAME = "emcee" PACKAGES = find_packages(where="src") META_PATH = os.path.join("src", "emcee", "__init__.py") CLASSIFIERS = [ "Development Status :: 5 - Production/Stable", "Intended Audience :: Developers", "Intended Audience :: Science/Research", "License :: OSI Approved :: MIT License", "Operating System :: OS Independent", "Programming Language :: Python", ] INSTALL_REQUIRES = ["numpy"] SETUP_REQUIRES = [ "setuptools>=40.6.0", "setuptools_scm", "wheel", ] EXTRA_REQUIRE = { "extras": ["h5py", "scipy"], "tests": ["pytest", "pytest-cov", "coverage[toml]"], } # END PROJECT SPECIFIC HERE = os.path.dirname(os.path.realpath(__file__)) def read(*parts): with codecs.open(os.path.join(HERE, *parts), "rb", "utf-8") as f: return f.read() def find_meta(meta, meta_file=read(META_PATH)): meta_match = re.search( r"^__{meta}__ = ['\"]([^'\"]*)['\"]".format(meta=meta), meta_file, re.M ) if meta_match: return meta_match.group(1) raise RuntimeError("Unable to find __{meta}__ string.".format(meta=meta)) if __name__ == "__main__": setup( name=NAME, use_scm_version={ "write_to": os.path.join( "src", NAME, "{0}_version.py".format(NAME) ), "write_to_template": '__version__ = "{version}"\n', }, author=find_meta("author"), author_email=find_meta("email"), maintainer=find_meta("author"), maintainer_email=find_meta("email"), url=find_meta("uri"), project_urls={ "Source": "https://github.com/dfm/emcee", }, license=find_meta("license"), description=find_meta("description"), long_description=read("README.rst"), long_description_content_type="text/x-rst", packages=PACKAGES, package_dir={"": "src"}, include_package_data=True, install_requires=INSTALL_REQUIRES, setup_requires=SETUP_REQUIRES, extras_require=EXTRA_REQUIRE, classifiers=CLASSIFIERS, zip_safe=False, options={"bdist_wheel": {"universal": "1"}}, )
dfmREPO_NAMEemceePATH_START.@emcee_extracted@[email protected]@.PATH_END.py
{ "filename": "np_array_ops.py", "repo_name": "tensorflow/tensorflow", "repo_path": "tensorflow_extracted/tensorflow-master/tensorflow/python/ops/numpy_ops/np_array_ops.py", "type": "Python" }
# Copyright 2020 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Common array methods.""" # pylint: disable=g-direct-tensorflow-import import builtins import enum import functools import math import numbers import numpy as np from tensorflow.python.framework import constant_op from tensorflow.python.framework import dtypes from tensorflow.python.framework import ops from tensorflow.python.framework import tensor as tensor_lib from tensorflow.python.framework import tensor_shape from tensorflow.python.ops import array_ops from tensorflow.python.ops import array_ops_stack from tensorflow.python.ops import clip_ops from tensorflow.python.ops import control_flow_assert from tensorflow.python.ops import linalg_ops from tensorflow.python.ops import manip_ops from tensorflow.python.ops import math_ops from tensorflow.python.ops import sort_ops from tensorflow.python.ops.numpy_ops import np_arrays from tensorflow.python.ops.numpy_ops import np_dtypes from tensorflow.python.ops.numpy_ops import np_utils from tensorflow.python.types import core as core_tf_types from tensorflow.python.util import nest from tensorflow.python.util import tf_export newaxis = np.newaxis tf_export.tf_export('experimental.numpy.newaxis', v1=[]).export_constant( __name__, 'newaxis' ) @tf_export.tf_export('experimental.numpy.empty', v1=[]) @np_utils.np_doc('empty') def empty(shape, dtype=float): # pylint: disable=redefined-outer-name return zeros(shape, dtype) @tf_export.tf_export('experimental.numpy.empty_like', v1=[]) @np_utils.np_doc('empty_like') def empty_like(a, dtype=None): return zeros_like(a, dtype) @tf_export.tf_export('experimental.numpy.zeros', v1=[]) @np_utils.np_doc('zeros') def zeros(shape, dtype=float): # pylint: disable=redefined-outer-name dtype = ( np_utils.result_type(dtype) if dtype else np_dtypes.default_float_type() ) return array_ops.zeros(shape, dtype=dtype) @tf_export.tf_export('experimental.numpy.zeros_like', v1=[]) @np_utils.np_doc('zeros_like') def zeros_like(a, dtype=None): # pylint: disable=missing-docstring dtype = np_utils.result_type_unary(a, dtype) dtype = dtypes.as_dtype(dtype) # Work around b/149877262 return array_ops.zeros_like(a, dtype) @tf_export.tf_export('experimental.numpy.ones', v1=[]) @np_utils.np_doc('ones') def ones(shape, dtype=float): # pylint: disable=redefined-outer-name if dtype: dtype = np_utils.result_type(dtype) return array_ops.ones(shape, dtype=dtype) @tf_export.tf_export('experimental.numpy.ones_like', v1=[]) @np_utils.np_doc('ones_like') def ones_like(a, dtype=None): dtype = np_utils.result_type_unary(a, dtype) return array_ops.ones_like(a, dtype) @tf_export.tf_export('experimental.numpy.eye', v1=[]) @np_utils.np_doc('eye') def eye(N, M=None, k=0, dtype=float): # pylint: disable=invalid-name,missing-docstring if dtype: dtype = np_utils.result_type(dtype) if not M: M = N # Making sure N, M and k are `int` N = int(N) M = int(M) k = int(k) if k >= M or -k >= N: # tf.linalg.diag will raise an error in this case return zeros([N, M], dtype=dtype) if k == 0: return linalg_ops.eye(N, M, dtype=dtype) # We need the precise length, otherwise tf.linalg.diag will raise an error diag_len = builtins.min(N, M) if k > 0: if N >= M: diag_len -= k elif N + k > M: diag_len = M - k elif k <= 0: if M >= N: diag_len += k elif M - k > N: diag_len = N + k diagonal_ = array_ops.ones([diag_len], dtype=dtype) return array_ops.matrix_diag(diagonal=diagonal_, num_rows=N, num_cols=M, k=k) @tf_export.tf_export('experimental.numpy.identity', v1=[]) @np_utils.np_doc('identity') def identity(n, dtype=float): return eye(N=n, M=n, dtype=dtype) @tf_export.tf_export('experimental.numpy.full', v1=[]) @np_utils.np_doc('full') def full(shape, fill_value, dtype=None): # pylint: disable=redefined-outer-name if not isinstance(shape, np_arrays.ndarray): shape = asarray(np_arrays.convert_to_tensor(shape, dtype_hint=np.int32)) shape = atleast_1d(shape) fill_value = asarray(fill_value, dtype=dtype) return array_ops.broadcast_to(fill_value, shape) # Using doc only here since np full_like signature doesn't seem to have the # shape argument (even though it exists in the documentation online). @tf_export.tf_export('experimental.numpy.full_like', v1=[]) @np_utils.np_doc_only('full_like') def full_like(a, fill_value, dtype=None, order='K', subok=True, shape=None): # pylint: disable=missing-docstring,redefined-outer-name """order, subok and shape arguments mustn't be changed.""" if order != 'K': raise ValueError('Non-standard orders are not supported.') if not subok: raise ValueError('subok being False is not supported.') if shape: raise ValueError('Overriding the shape is not supported.') a = asarray(a) dtype = dtype or np_utils.result_type(a) fill_value = asarray(fill_value, dtype=dtype) return array_ops.broadcast_to(fill_value, array_ops.shape(a)) def _array_internal(val, dtype=None, copy=True, ndmin=0): # pylint: disable=redefined-outer-name """Main implementation of np.array().""" result_t = val if not isinstance(result_t, tensor_lib.Tensor): dtype = np_utils.result_type_unary(result_t, dtype) # We can't call `convert_to_tensor(result_t, dtype=dtype)` here because # convert_to_tensor doesn't allow incompatible arguments such as (5.5, int) # while np.array allows them. We need to convert-then-cast. # EagerTensor conversion complains about "mixed types" when converting # tensors with no dtype information. This is because it infers types based # on one selected item in the list. So e.g. when converting [2., 2j] # to a tensor, it will select float32 as the inferred type and not be able # to convert the list to a float 32 tensor. # Since we have some information about the final dtype we care about, we # supply that information so that convert_to_tensor will do best-effort # conversion to that dtype first. result_t = np_arrays.convert_to_tensor(result_t, dtype_hint=dtype) result_t = math_ops.cast(result_t, dtype=dtype) elif dtype: result_t = math_ops.cast(result_t, dtype) if copy: result_t = array_ops.identity(result_t) max_ndmin = 32 if ndmin > max_ndmin: raise ValueError( f'ndmin bigger than allowable number of dimensions: {max_ndmin}.' ) if ndmin == 0: return result_t ndims = array_ops.rank(result_t) def true_fn(): old_shape = array_ops.shape(result_t) new_shape = array_ops.concat( [array_ops.ones(ndmin - ndims, dtypes.int32), old_shape], axis=0 ) return array_ops.reshape(result_t, new_shape) result_t = np_utils.cond( np_utils.greater(ndmin, ndims), true_fn, lambda: result_t ) return result_t # TODO(wangpeng): investigate whether we can make `copy` default to False. # pylint: disable=g-short-docstring-punctuation,g-no-space-after-docstring-summary,g-doc-return-or-yield,g-doc-args @tf_export.tf_export('experimental.numpy.array', v1=[]) @np_utils.np_doc_only('array') def array(val, dtype=None, copy=True, ndmin=0): # pylint: disable=redefined-outer-name """Since Tensors are immutable, a copy is made only if val is placed on a different device than the current one. Even if `copy` is False, a new Tensor may need to be built to satisfy `dtype` and `ndim`. This is used only if `val` is an ndarray or a Tensor. """ # pylint:disable=g-docstring-missing-newline if dtype: dtype = np_utils.result_type(dtype) return _array_internal(val, dtype, copy, ndmin) # pylint: enable=g-short-docstring-punctuation,g-no-space-after-docstring-summary,g-doc-return-or-yield,g-doc-args @tf_export.tf_export('experimental.numpy.asarray', v1=[]) @np_utils.np_doc('asarray') def asarray(a, dtype=None): if dtype: dtype = np_utils.result_type(dtype) if isinstance(a, np_arrays.ndarray) and ( not dtype or dtype == a.dtype.as_numpy_dtype ): return a return array(a, dtype, copy=False) @tf_export.tf_export('experimental.numpy.asanyarray', v1=[]) @np_utils.np_doc('asanyarray') def asanyarray(a, dtype=None): return asarray(a, dtype) @tf_export.tf_export('experimental.numpy.ascontiguousarray', v1=[]) @np_utils.np_doc('ascontiguousarray') def ascontiguousarray(a, dtype=None): return array(a, dtype, ndmin=1) # Numerical ranges. @tf_export.tf_export('experimental.numpy.arange', v1=[]) @np_utils.np_doc('arange') def arange(start, stop=None, step=1, dtype=None): """Returns `step`-separated values in the range [start, stop). Args: start: Start of the interval. Included in the range. stop: End of the interval. If not specified, `start` is treated as 0 and `start` value is used as `stop`. If specified, it is not included in the range if `step` is integer. When `step` is floating point, it may or may not be included. step: The difference between 2 consecutive values in the output range. It is recommended to use `linspace` instead of using non-integer values for `step`. dtype: Optional. Type of the resulting ndarray. Could be a python type, a NumPy type or a TensorFlow `DType`. If not provided, the largest type of `start`, `stop`, `step` is used. Raises: ValueError: If step is zero. """ if not step: raise ValueError('step must be non-zero.') if dtype: dtype = np_utils.result_type(dtype) else: if stop is None: dtype = np_utils.result_type(start, step) else: dtype = np_utils.result_type(start, step, stop) if step > 0 and ( (stop is not None and start > stop) or (stop is None and start < 0) ): return array([], dtype=dtype) if step < 0 and ( (stop is not None and start < stop) or (stop is None and start > 0) ): return array([], dtype=dtype) # TODO(srbs): There are some bugs when start or stop is float type and dtype # is integer type. return math_ops.cast( math_ops.range(start, limit=stop, delta=step), dtype=dtype ) # Building matrices. @tf_export.tf_export('experimental.numpy.diag', v1=[]) @np_utils.np_doc('diag') def diag(v, k=0): # pylint: disable=missing-docstring """Raises an error if input is not 1- or 2-d.""" v = asarray(v) v_rank = array_ops.rank(v) v.shape.with_rank_at_most(2) # TODO(nareshmodi): Consider a np_utils.Assert version that will fail during # tracing time if the shape is known. control_flow_assert.Assert( np_utils.logical_or(math_ops.equal(v_rank, 1), math_ops.equal(v_rank, 2)), [v_rank], ) def _diag(v, k): return np_utils.cond( math_ops.equal(array_ops.size(v), 0), lambda: array_ops.zeros([abs(k), abs(k)], dtype=v.dtype), lambda: array_ops.matrix_diag(v, k=k), ) def _diag_part(v, k): v_shape = array_ops.shape(v) v, k = np_utils.cond( np_utils.logical_or( np_utils.less_equal(k, -1 * np_utils.getitem(v_shape, 0)), np_utils.greater_equal(k, np_utils.getitem(v_shape, 1)), ), lambda: (array_ops.zeros([0, 0], dtype=v.dtype), 0), lambda: (v, k), ) result = array_ops.matrix_diag_part(v, k=k) return result result = np_utils.cond( math_ops.equal(v_rank, 1), lambda: _diag(v, k), lambda: _diag_part(v, k) ) return result @tf_export.tf_export('experimental.numpy.diagonal', v1=[]) @np_utils.np_doc('diagonal') def diagonal(a, offset=0, axis1=0, axis2=1): # pylint: disable=missing-docstring a = asarray(a) maybe_rank = a.shape.rank if ( maybe_rank is not None and offset == 0 and (axis1 == maybe_rank - 2 or axis1 == -2) and (axis2 == maybe_rank - 1 or axis2 == -1) ): return array_ops.matrix_diag_part(a) a = moveaxis(a, (axis1, axis2), (-2, -1)) a_shape = array_ops.shape(a) def _zeros(): # pylint: disable=missing-docstring return ( array_ops.zeros( array_ops.concat([a_shape[:-1], [0]], 0), dtype=a.dtype ), 0, ) # All zeros since diag_part doesn't handle all possible k (aka offset). # Written this way since cond will run shape inference on both branches, # and diag_part shape inference will fail when offset is out of bounds. a, offset = np_utils.cond( np_utils.logical_or( np_utils.less_equal(offset, -1 * np_utils.getitem(a_shape, -2)), np_utils.greater_equal(offset, np_utils.getitem(a_shape, -1)), ), _zeros, lambda: (a, offset), ) a = array_ops.matrix_diag_part(a, k=offset) return a @tf_export.tf_export('experimental.numpy.diagflat', v1=[]) @np_utils.np_doc('diagflat') def diagflat(v, k=0): v = asarray(v) return diag(array_ops.reshape(v, [-1]), k) def _promote_dtype(*arrays): dtype = np_utils.result_type(*arrays) def _fast_asarray(a): if isinstance(a, np_arrays.ndarray) and dtype == a.dtype.as_numpy_dtype: return a return _array_internal(a, dtype=dtype, copy=False) return [_fast_asarray(a) for a in arrays] def _promote_dtype_binary(t1, t2): dtype = np_utils._result_type_binary(t1, t2) # pylint: disable=protected-access if not ( isinstance(t1, np_arrays.ndarray) and dtype == t1.dtype.as_numpy_dtype ): t1 = _array_internal(t1, dtype=dtype, copy=False) if not ( isinstance(t2, np_arrays.ndarray) and dtype == t2.dtype.as_numpy_dtype ): t2 = _array_internal(t2, dtype=dtype, copy=False) return t1, t2 @tf_export.tf_export('experimental.numpy.all', v1=[]) @np_utils.np_doc('all') def all(a, axis=None, keepdims=None): # pylint: disable=redefined-builtin a = asarray(a, dtype=bool) return math_ops.reduce_all(input_tensor=a, axis=axis, keepdims=keepdims) @tf_export.tf_export('experimental.numpy.any', v1=[]) @np_utils.np_doc('any') def any(a, axis=None, keepdims=None): # pylint: disable=redefined-builtin a = asarray(a, dtype=bool) return math_ops.reduce_any(input_tensor=a, axis=axis, keepdims=keepdims) @tf_export.tf_export('experimental.numpy.compress', v1=[]) @np_utils.np_doc('compress') def compress(condition, a, axis=None): # pylint: disable=redefined-outer-name,missing-function-docstring condition = asarray(condition, dtype=bool) a = asarray(a) if condition.ndim != 1: raise ValueError('condition must be a 1-d array.') # `np.compress` treats scalars as 1-d arrays. if a.ndim == 0: a = ravel(a) if axis is None: a = ravel(a) axis = 0 if axis < 0: axis += a.ndim assert axis >= 0 and axis < a.ndim # `tf.boolean_mask` requires the first dimensions of array and condition to # match. `np.compress` pads condition with False when it is shorter. condition_t = condition a_t = a if condition.shape[0] < a.shape[axis]: padding = array_ops.fill([a.shape[axis] - condition.shape[0]], False) condition_t = array_ops.concat([condition_t, padding], axis=0) return array_ops.boolean_mask(tensor=a_t, mask=condition_t, axis=axis) @tf_export.tf_export('experimental.numpy.copy', v1=[]) @np_utils.np_doc('copy') def copy(a): return array(a, copy=True) def _maybe_promote_to_int(a): if dtypes.as_dtype(a.dtype).is_integer: # If a is an integer type and its precision is less than that of `int`, # the output type will be `int`. a_numpy_dtype = a.dtype.as_numpy_dtype output_type = np.promote_types(a_numpy_dtype, int) if output_type != a_numpy_dtype: a = asarray(a, dtype=output_type) return a @tf_export.tf_export('experimental.numpy.cumprod', v1=[]) @np_utils.np_doc('cumprod') def cumprod(a, axis=None, dtype=None): # pylint: disable=missing-docstring a = asarray(a, dtype=dtype) if dtype is None: a = _maybe_promote_to_int(a) # If axis is None, the input is flattened. if axis is None: a = ravel(a) axis = 0 elif axis < 0: axis += array_ops.rank(a) return math_ops.cumprod(a, axis) @tf_export.tf_export('experimental.numpy.cumsum', v1=[]) @np_utils.np_doc('cumsum') def cumsum(a, axis=None, dtype=None): # pylint: disable=missing-docstring a = asarray(a, dtype=dtype) if dtype is None: a = _maybe_promote_to_int(a) # If axis is None, the input is flattened. if axis is None: a = ravel(a) axis = 0 elif axis < 0: axis += array_ops.rank(a) return math_ops.cumsum(a, axis) @tf_export.tf_export('experimental.numpy.imag', v1=[]) @np_utils.np_doc('imag') def imag(val): val = asarray(val) # TODO(srbs): np.imag returns a scalar if `val` is a scalar, whereas we always # return an ndarray. return math_ops.imag(val) _TO_INT_ = 0 _TO_FLOAT = 1 def _reduce( tf_fn, a, axis=None, dtype=None, keepdims=None, promote_int=_TO_INT_, tf_bool_fn=None, preserve_bool=False, ): """A general reduction function. Args: tf_fn: the TF reduction function. a: the array to be reduced. axis: (optional) the axis along which to do the reduction. If None, all dimensions are reduced. dtype: (optional) the dtype of the result. keepdims: (optional) whether to keep the reduced dimension(s). promote_int: how to promote integer and bool inputs. There are three choices. (1) `_TO_INT_` always promotes them to np.int_ or np.uint; (2) `_TO_FLOAT` always promotes them to a float type (determined by dtypes.default_float_type); (3) None: don't promote. tf_bool_fn: (optional) the TF reduction function for bool inputs. It will only be used if `dtype` is explicitly set to `np.bool_` or if `a`'s dtype is `np.bool_` and `preserve_bool` is True. preserve_bool: a flag to control whether to use `tf_bool_fn` if `a`'s dtype is `np.bool_` (some reductions such as np.sum convert bools to integers, while others such as np.max preserve bools. Returns: An ndarray. """ if dtype: dtype = np_utils.result_type(dtype) if keepdims is None: keepdims = False a = asarray(a, dtype=dtype) if ( dtype == np.bool_ or preserve_bool and a.dtype == np.bool_ ) and tf_bool_fn is not None: return tf_bool_fn(input_tensor=a, axis=axis, keepdims=keepdims) if dtype is None: dtype = a.dtype.as_numpy_dtype if np.issubdtype(dtype, np.integer) or dtype == np.bool_: if promote_int == _TO_INT_: # If a is an integer/bool type and whose bit width is less than np.int_, # numpy up-casts it to np.int_ based on the documentation at # https://numpy.org/doc/1.18/reference/generated/numpy.sum.html if dtype == np.bool_: is_signed = True width = 8 # We can use any number here that is less than 64 else: is_signed = np.issubdtype(dtype, np.signedinteger) width = np.iinfo(dtype).bits # Numpy int_ and uint are defined as 'long' and 'unsigned long', so # should have the same bit width. if ops.is_auto_dtype_conversion_enabled(): # We default to 32 bits when using auto dtype conversion semantics. if width < np.iinfo(np.int32).bits: if is_signed: dtype = np.int32 else: dtype = np.uint32 else: if width < np.iinfo(np.int_).bits: if is_signed: dtype = np.int_ else: dtype = np.uint a = math_ops.cast(a, dtype) elif promote_int == _TO_FLOAT: # Use a default float type. a = math_ops.cast(a, np_utils.result_type(float)) if isinstance(axis, tensor_lib.Tensor) and axis.dtype not in ( dtypes.int32, dtypes.int64, ): axis = math_ops.cast(axis, dtypes.int64) return tf_fn(input_tensor=a, axis=axis, keepdims=keepdims) # TODO (DarrenZhang01): Add `axis` support to the `size` API. @tf_export.tf_export('experimental.numpy.size', v1=[]) @np_utils.np_doc('size') def size(x, axis=None): # pylint: disable=missing-docstring if axis is not None: raise NotImplementedError( 'axis argument is not supported in the current `np.size` implementation' ) if isinstance(x, (int, float, np.int32, np.int64, np.float32, np.float64)): return 1 x = asarray(x) if x.shape.is_fully_defined(): return np.prod(x.shape.as_list(), dtype=int) else: return array_ops.size_v2(x) @tf_export.tf_export('experimental.numpy.sum', v1=[]) @np_utils.np_doc('sum') def sum(a, axis=None, dtype=None, keepdims=None): # pylint: disable=redefined-builtin return _reduce( math_ops.reduce_sum, a, axis=axis, dtype=dtype, keepdims=keepdims, tf_bool_fn=math_ops.reduce_any, ) @tf_export.tf_export('experimental.numpy.prod', v1=[]) @np_utils.np_doc('prod') def prod(a, axis=None, dtype=None, keepdims=None): return _reduce( math_ops.reduce_prod, a, axis=axis, dtype=dtype, keepdims=keepdims, tf_bool_fn=math_ops.reduce_all, ) @tf_export.tf_export('experimental.numpy.mean', v1=[]) @np_utils.np_doc('mean', unsupported_params=['out']) def mean(a, axis=None, dtype=None, out=None, keepdims=None): if out is not None: raise ValueError('Setting out is not supported.') return _reduce( math_ops.reduce_mean, a, axis=axis, dtype=dtype, keepdims=keepdims, promote_int=_TO_FLOAT, ) @tf_export.tf_export('experimental.numpy.amax', v1=[]) @np_utils.np_doc('amax', unsupported_params=['out']) def amax(a, axis=None, out=None, keepdims=None): if out is not None: raise ValueError('Setting out is not supported.') return _reduce( math_ops.reduce_max, a, axis=axis, dtype=None, keepdims=keepdims, promote_int=None, tf_bool_fn=math_ops.reduce_any, preserve_bool=True, ) @tf_export.tf_export('experimental.numpy.amin', v1=[]) @np_utils.np_doc('amin', unsupported_params=['out']) def amin(a, axis=None, out=None, keepdims=None): if out is not None: raise ValueError('Setting out is not supported.') return _reduce( math_ops.reduce_min, a, axis=axis, dtype=None, keepdims=keepdims, promote_int=None, tf_bool_fn=math_ops.reduce_all, preserve_bool=True, ) @tf_export.tf_export('experimental.numpy.var', v1=[]) @np_utils.np_doc('var') def var(a, axis=None, dtype=None, out=None, ddof=0, keepdims=None): # pylint: disable=missing-docstring if dtype: working_dtype = np_utils.result_type(a, dtype) else: working_dtype = None if out is not None: raise ValueError('Setting out is not supported.') if ddof != 0: # TF reduce_variance doesn't support ddof, so calculate it using raw ops. def reduce_fn(input_tensor, axis, keepdims): means = math_ops.reduce_mean(input_tensor, axis=axis, keepdims=True) centered = input_tensor - means if input_tensor.dtype in (dtypes.complex64, dtypes.complex128): centered = math_ops.cast( math_ops.real(centered * math_ops.conj(centered)), input_tensor.dtype, ) else: centered = math_ops.square(centered) squared_deviations = math_ops.reduce_sum( centered, axis=axis, keepdims=keepdims ) if axis is None: n = array_ops.size(input_tensor) else: if axis < 0: axis += array_ops.rank(input_tensor) n = math_ops.reduce_prod( array_ops.gather(array_ops.shape(input_tensor), axis) ) n = math_ops.cast(n - ddof, input_tensor.dtype) return math_ops.cast(math_ops.divide(squared_deviations, n), dtype) else: reduce_fn = math_ops.reduce_variance result = _reduce( reduce_fn, a, axis=axis, dtype=working_dtype, keepdims=keepdims, promote_int=_TO_FLOAT, ) if dtype: result = math_ops.cast(result, dtype) return result @tf_export.tf_export('experimental.numpy.std', v1=[]) @np_utils.np_doc('std') def std(a, axis=None, keepdims=None): # pylint: disable=missing-function-docstring return _reduce( math_ops.reduce_std, a, axis=axis, dtype=None, keepdims=keepdims, promote_int=_TO_FLOAT, ) @tf_export.tf_export('experimental.numpy.ravel', v1=[]) @np_utils.np_doc('ravel') def ravel(a): # pylint: disable=missing-docstring a = asarray(a) return array_ops.reshape(a, [-1]) @tf_export.tf_export('experimental.numpy.real', v1=[]) @np_utils.np_doc('real') def real(val): val = asarray(val) # TODO(srbs): np.real returns a scalar if val is a scalar, whereas we always # return an ndarray. return math_ops.real(val) @tf_export.tf_export('experimental.numpy.repeat', v1=[]) @np_utils.np_doc('repeat') def repeat(a, repeats, axis=None): # pylint: disable=missing-docstring a = asarray(a) original_shape = a._shape_as_list() # pylint: disable=protected-access # Best effort recovery of the shape. known_shape = original_shape is not None and None not in original_shape if known_shape: if not original_shape: original_shape = (repeats,) else: repeats_np = np.ravel(np.array(repeats)) if repeats_np.size == 1: repeats_np = repeats_np.item() if axis is None: original_shape = (repeats_np * np.prod(original_shape),) else: original_shape[axis] = repeats_np * original_shape[axis] else: if axis is None: original_shape = (repeats_np.sum(),) else: original_shape[axis] = repeats_np.sum() repeats = asarray(repeats) result = array_ops.repeat(a, repeats, axis) if known_shape: result.set_shape(original_shape) return result @tf_export.tf_export('experimental.numpy.around', v1=[]) @np_utils.np_doc('around') def around(a, decimals=0): # pylint: disable=missing-docstring a = asarray(a) dtype = a.dtype.as_numpy_dtype factor = math.pow(10, decimals) if np.issubdtype(dtype, np.inexact): factor = math_ops.cast(factor, dtype) else: # Use float as the working dtype when a.dtype is exact (e.g. integer), # because `decimals` can be negative. float_dtype = np_utils.result_type(float) a = a.astype(float_dtype) factor = math_ops.cast(factor, float_dtype) a = math_ops.multiply(a, factor) a = math_ops.round(a) a = math_ops.divide(a, factor) return a.astype(dtype) setattr(np_arrays.ndarray, '__round__', around) @tf_export.tf_export('experimental.numpy.reshape', v1=[]) @np_utils.np_doc('reshape') def reshape(a, newshape, order='C'): """order argument can only b 'C' or 'F'.""" if order not in {'C', 'F'}: raise ValueError('Unsupported order argument {}'.format(order)) a = asarray(a) if isinstance(newshape, int): newshape = [newshape] if order == 'F': r = array_ops.transpose( array_ops.reshape(array_ops.transpose(a), newshape[::-1]) ) else: r = array_ops.reshape(a, newshape) return r def _reshape_method_wrapper(a, *newshape, **kwargs): order = kwargs.pop('order', 'C') if kwargs: raise ValueError('Unsupported arguments: {}'.format(kwargs.keys())) if len(newshape) == 1 and not isinstance(newshape[0], int): newshape = newshape[0] return reshape(a, newshape, order=order) @tf_export.tf_export('experimental.numpy.expand_dims', v1=[]) @np_utils.np_doc('expand_dims') def expand_dims(a, axis): a = asarray(a) return array_ops.expand_dims(a, axis=axis) @tf_export.tf_export('experimental.numpy.squeeze', v1=[]) @np_utils.np_doc('squeeze') def squeeze(a, axis=None): a = asarray(a) return array_ops.squeeze(a, axis) @tf_export.tf_export('experimental.numpy.flatten', v1=[]) @np_utils.np_doc('flatten', link=np_utils.NoLink()) def flatten(a, order='C'): a = asarray(a) if order == 'C' or order == 'A' or order == 'K': # Row major. return array_ops.reshape(a, [-1]) elif order == 'F': # Column major return array_ops.reshape(array_ops.transpose(a), [-1]) else: raise ValueError( 'order can only be C, A, K (all row major) or F (column major).' ) @tf_export.tf_export('experimental.numpy.transpose', v1=[]) @np_utils.np_doc('transpose') def transpose(a, axes=None): a = asarray(a) if axes is not None: axes = asarray(axes) return array_ops.transpose(a=a, perm=axes) @tf_export.tf_export('experimental.numpy.swapaxes', v1=[]) @np_utils.np_doc('swapaxes') def swapaxes(a, axis1, axis2): # pylint: disable=missing-docstring a = asarray(a) def adjust_axes(axes, rank): def f(x): if isinstance(x, int): if x < 0: x = x + rank else: x = array_ops.where_v2(x < 0, np_utils.add(x, a_rank), x) return x return nest.map_structure(f, axes) if ( a.shape.rank is not None and isinstance(axis1, int) and isinstance(axis2, int) ): # This branch makes sure `perm` is statically known, to avoid a # not-compile-time-constant XLA error. a_rank = a.shape.rank axis1, axis2 = adjust_axes((axis1, axis2), a_rank) perm = list(range(a_rank)) perm[axis1] = axis2 perm[axis2] = axis1 else: a_rank = array_ops.rank(a) axis1, axis2 = adjust_axes((axis1, axis2), a_rank) perm = math_ops.range(a_rank) perm = array_ops.tensor_scatter_update( perm, [[axis1], [axis2]], [axis2, axis1] ) a = array_ops.transpose(a, perm) return a @tf_export.tf_export('experimental.numpy.moveaxis', v1=[]) @np_utils.np_doc('moveaxis') def moveaxis(a, source, destination): # pylint: disable=missing-docstring """Raises ValueError if source, destination not in (-ndim(a), ndim(a)).""" if not source and not destination: return a a = asarray(a) if isinstance(source, int): source = (source,) if isinstance(destination, int): destination = (destination,) if len(source) != len(destination): raise ValueError('The lengths of source and destination must equal') a_rank = np_utils._maybe_static(array_ops.rank(a)) # pylint: disable=protected-access def _correct_axis(axis, rank): if axis < 0: return axis + rank return axis source = tuple(_correct_axis(axis, a_rank) for axis in source) destination = tuple(_correct_axis(axis, a_rank) for axis in destination) if a.shape.rank is not None: perm = [i for i in range(a_rank) if i not in source] for dest, src in sorted(zip(destination, source)): assert dest <= len(perm) perm.insert(dest, src) else: r = math_ops.range(a_rank) def _remove_indices(a, b): """Remove indices (`b`) from `a`.""" items = array_ops_stack.unstack( sort_ops.sort(array_ops_stack.stack(b)), num=len(b) ) i = 0 result = [] for item in items: result.append(a[i:item]) i = item + 1 result.append(a[i:]) return array_ops.concat(result, 0) minus_sources = _remove_indices(r, source) minus_dest = _remove_indices(r, destination) perm = array_ops.scatter_nd( array_ops.expand_dims(minus_dest, 1), minus_sources, [a_rank] ) perm = array_ops.tensor_scatter_update( perm, array_ops.expand_dims(destination, 1), source ) a = array_ops.transpose(a, perm) return a @tf_export.tf_export('experimental.numpy.pad', v1=[]) @np_utils.np_doc('pad') def pad(array, pad_width, mode, **kwargs): # pylint: disable=redefined-outer-name """Only supports modes 'constant', 'reflect' and 'symmetric' currently.""" constant_values = kwargs.get('constant_values', 0) if not (mode == 'constant' or mode == 'reflect' or mode == 'symmetric'): raise ValueError('Unsupported padding mode: ' + mode) mode = mode.upper() array = asarray(array) pad_width = asarray(pad_width, dtype=dtypes.int32) return array_ops.pad( tensor=array, paddings=pad_width, mode=mode, constant_values=constant_values, ) @tf_export.tf_export('experimental.numpy.take', v1=[]) @np_utils.np_doc('take') def take(a, indices, axis=None, out=None, mode='clip'): """out argument is not supported, and default mode is clip.""" if out is not None: raise ValueError('out argument is not supported in take.') if mode not in {'raise', 'clip', 'wrap'}: raise ValueError("Invalid mode '{}' for take".format(mode)) a = asarray(a) indices = asarray(indices) if axis is None: a = array_ops.reshape(a, [-1]) axis = 0 axis_size = array_ops.shape(a, out_type=indices.dtype)[axis] if mode == 'clip': indices = clip_ops.clip_by_value(indices, 0, axis_size - 1) elif mode == 'wrap': indices = math_ops.floormod(indices, axis_size) else: raise ValueError("The 'raise' mode to take is not supported.") return array_ops.gather(a, indices, axis=axis) @tf_export.tf_export('experimental.numpy.where', v1=[]) @np_utils.np_doc_only('where') def where(condition, x=None, y=None): """Raises ValueError if exactly one of x or y is not None.""" condition = asarray(condition, dtype=np.bool_) if x is None and y is None: return nonzero(condition) elif x is not None and y is not None: x, y = _promote_dtype(x, y) return array_ops.where_v2(condition, x, y) raise ValueError('Both x and y must be ndarrays, or both must be None.') @tf_export.tf_export('experimental.numpy.select', v1=[]) @np_utils.np_doc('select') def select(condlist, choicelist, default=0): # pylint: disable=missing-docstring if len(condlist) != len(choicelist): msg = 'condlist must have length equal to choicelist ({} vs {})' raise ValueError(msg.format(len(condlist), len(choicelist))) if not condlist: raise ValueError('condlist must be non-empty') choices = _promote_dtype(default, *choicelist) choicelist = choices[1:] output = choices[0] # The traversal is in reverse order so we can return the first value in # choicelist where condlist is True. for cond, choice in zip(condlist[::-1], choicelist[::-1]): output = where(cond, choice, output) return output @tf_export.tf_export('experimental.numpy.shape', v1=[]) @np_utils.np_doc( 'shape', link=np_utils.Link( 'https://numpy.org/doc/1.18/reference/generated/numpy.shape.html' ), ) def shape(a): a = asarray(a) return a.shape @tf_export.tf_export('experimental.numpy.ndim', v1=[]) @np_utils.np_doc('ndim', link=np_utils.NoLink()) def ndim(a): a = asarray(a) return a.ndim @tf_export.tf_export('experimental.numpy.isscalar', v1=[]) @np_utils.np_doc('isscalar') def isscalar(num): return ndim(num) == 0 def _boundaries_to_sizes(a, boundaries, axis): """Converting boundaries of splits to sizes of splits. Args: a: the array to be split. boundaries: the boundaries, as in np.split. axis: the axis along which to split. Returns: A list of sizes of the splits, as in tf.split. """ if axis >= len(a.shape): raise ValueError('axis %s is out of bound for shape %s' % (axis, a.shape)) total_size = a.shape[axis] sizes = [] sizes_sum = 0 prev = 0 for i, b in enumerate(boundaries): size = b - prev if size < 0: raise ValueError( 'The %s-th boundary %s is smaller than the previous boundary %s' % (i, b, prev) ) size = builtins.min(size, builtins.max(0, total_size - sizes_sum)) sizes.append(size) sizes_sum += size prev = b sizes.append(builtins.max(0, total_size - sizes_sum)) return sizes @tf_export.tf_export('experimental.numpy.split', v1=[]) @np_utils.np_doc('split') def split(ary, indices_or_sections, axis=0): ary = asarray(ary) if not isinstance(indices_or_sections, int): indices_or_sections = _boundaries_to_sizes(ary, indices_or_sections, axis) return array_ops.split(ary, indices_or_sections, axis=axis) def _split_on_axis(np_fun_name, axis): # pylint: disable=missing-function-docstring @np_utils.np_doc(np_fun_name) def f(ary, indices_or_sections): # for 1-D array, hsplit becomes vsplit new_axis = np_utils.cond( math_ops.equal(axis, 1), lambda: np_utils.cond( # pylint: disable=g-long-lambda math_ops.equal(array_ops.rank(ary), 1), lambda: 0, lambda: axis ), lambda: axis, ) if isinstance(indices_or_sections, int): ary_shape = ary.shape[new_axis] if ary_shape is not None and ary_shape % indices_or_sections: raise ValueError('array split does not result in an equal division') return split(ary, indices_or_sections, axis=new_axis) return f vsplit = tf_export.tf_export('experimental.numpy.vsplit', v1=[])( _split_on_axis('vsplit', axis=0) ) hsplit = tf_export.tf_export('experimental.numpy.hsplit', v1=[])( _split_on_axis('hsplit', axis=1) ) dsplit = tf_export.tf_export('experimental.numpy.dsplit', v1=[])( _split_on_axis('dsplit', axis=2) ) @tf_export.tf_export('experimental.numpy.broadcast_to', v1=[]) @np_utils.np_doc('broadcast_to') def broadcast_to(array, shape): # pylint: disable=redefined-outer-name return full(shape, array) @tf_export.tf_export('experimental.numpy.stack', v1=[]) @np_utils.np_doc('stack') def stack(arrays, axis=0): # pylint: disable=missing-function-docstring if isinstance(arrays, (np_arrays.ndarray, tensor_lib.Tensor)): arrays = asarray(arrays) if axis == 0: return arrays else: return swapaxes(arrays, 0, axis) arrays = _promote_dtype(*arrays) # pylint: disable=protected-access unwrapped_arrays = [ a if isinstance(a, np_arrays.ndarray) else a for a in arrays ] return asarray(array_ops_stack.stack(unwrapped_arrays, axis)) @tf_export.tf_export('experimental.numpy.hstack', v1=[]) @np_utils.np_doc('hstack') def hstack(tup): arrays = [atleast_1d(a) for a in tup] arrays = _promote_dtype(*arrays) # pylint: disable=protected-access unwrapped_arrays = [ a if isinstance(a, np_arrays.ndarray) else a for a in arrays ] rank = array_ops.rank(unwrapped_arrays[0]) return np_utils.cond( math_ops.equal(rank, 1), lambda: array_ops.concat(unwrapped_arrays, axis=0), lambda: array_ops.concat(unwrapped_arrays, axis=1), ) @tf_export.tf_export('experimental.numpy.vstack', v1=[]) @np_utils.np_doc('vstack') def vstack(tup): arrays = [atleast_2d(a) for a in tup] arrays = _promote_dtype(*arrays) # pylint: disable=protected-access unwrapped_arrays = [ a if isinstance(a, np_arrays.ndarray) else a for a in arrays ] return array_ops.concat(unwrapped_arrays, axis=0) @tf_export.tf_export('experimental.numpy.dstack', v1=[]) @np_utils.np_doc('dstack') def dstack(tup): arrays = [atleast_3d(a) for a in tup] arrays = _promote_dtype(*arrays) # pylint: disable=protected-access unwrapped_arrays = [ a if isinstance(a, np_arrays.ndarray) else a for a in arrays ] return array_ops.concat(unwrapped_arrays, axis=2) def _pad_left_to(n, old_shape): old_shape = asarray(old_shape, dtype=np.int32) new_shape = array_ops.pad( old_shape, [[math_ops.maximum(n - array_ops.size(old_shape), 0), 0]], constant_values=1, ) return asarray(new_shape) def _atleast_nd(n, new_shape, *arys): """Reshape arrays to be at least `n`-dimensional. Args: n: The minimal rank. new_shape: a function that takes `n` and the old shape and returns the desired new shape. *arys: ndarray(s) to be reshaped. Returns: The reshaped array(s). """ def f(x): # pylint: disable=g-long-lambda x = asarray(x) return asarray( np_utils.cond( np_utils.greater(n, array_ops.rank(x)), lambda: reshape(x, new_shape(n, array_ops.shape(x))), lambda: x, ) ) arys = list(map(f, arys)) if len(arys) == 1: return arys[0] else: return arys @tf_export.tf_export('experimental.numpy.atleast_1d', v1=[]) @np_utils.np_doc('atleast_1d') def atleast_1d(*arys): return _atleast_nd(1, _pad_left_to, *arys) @tf_export.tf_export('experimental.numpy.atleast_2d', v1=[]) @np_utils.np_doc('atleast_2d') def atleast_2d(*arys): return _atleast_nd(2, _pad_left_to, *arys) @tf_export.tf_export('experimental.numpy.atleast_3d', v1=[]) @np_utils.np_doc('atleast_3d') def atleast_3d(*arys): # pylint: disable=missing-docstring def new_shape(_, old_shape): # pylint: disable=g-long-lambda ndim_ = array_ops.size(old_shape) return np_utils.cond( math_ops.equal(ndim_, 0), lambda: constant_op.constant([1, 1, 1], dtype=dtypes.int32), lambda: np_utils.cond( math_ops.equal(ndim_, 1), lambda: array_ops.pad(old_shape, [[1, 1]], constant_values=1), lambda: array_ops.pad(old_shape, [[0, 1]], constant_values=1), ), ) return _atleast_nd(3, new_shape, *arys) @tf_export.tf_export('experimental.numpy.nonzero', v1=[]) @np_utils.np_doc('nonzero') def nonzero(a): a = atleast_1d(a) if a.shape.rank is None: raise ValueError( "The rank of `a` is unknown, so we can't decide how many " 'arrays to return.' ) return array_ops_stack.unstack( array_ops.where_v2(math_ops.cast(a, dtypes.bool)), a.shape.rank, axis=1 ) @tf_export.tf_export('experimental.numpy.diag_indices', v1=[]) @np_utils.np_doc('diag_indices') def diag_indices(n, ndim=2): # pylint: disable=missing-docstring,redefined-outer-name if n < 0: raise ValueError( 'n argument to diag_indices must be nonnegative, got {}'.format(n) ) if ndim < 0: raise ValueError( 'ndim argument to diag_indices must be nonnegative, got {}'.format(ndim) ) return (math_ops.range(n),) * ndim @tf_export.tf_export('experimental.numpy.tri', v1=[]) @np_utils.np_doc('tri') def tri(N, M=None, k=0, dtype=None): # pylint: disable=invalid-name,missing-docstring M = M if M is not None else N if dtype is not None: dtype = np_utils.result_type(dtype) else: # Use a default float type. dtype = np_utils.result_type(float) if k < 0: lower = -k - 1 if lower > N: r = array_ops.zeros([N, M], dtype) else: # Keep as tf bool, since we create an upper triangular matrix and invert # it. o = array_ops.ones([N, M], dtype=dtypes.bool) r = math_ops.cast( math_ops.logical_not(array_ops.matrix_band_part(o, lower, -1)), dtype ) else: o = array_ops.ones([N, M], dtype) if k > M: r = o else: r = array_ops.matrix_band_part(o, -1, k) return r @tf_export.tf_export('experimental.numpy.tril', v1=[]) @np_utils.np_doc('tril') def tril(m, k=0): # pylint: disable=missing-docstring m = asarray(m) if m.shape.ndims is None: raise ValueError('Argument to tril should have known rank') m_shape = m.shape.as_list() if len(m_shape) < 2: raise ValueError('Argument to tril must have rank at least 2') if m_shape[-1] is None or m_shape[-2] is None: raise ValueError( 'Currently, the last two dimensions of the input array ' 'need to be known.' ) z = constant_op.constant(0, m.dtype) mask = tri(*m_shape[-2:], k=k, dtype=bool) return array_ops.where_v2( array_ops.broadcast_to(mask, array_ops.shape(m)), m, z ) @tf_export.tf_export('experimental.numpy.triu', v1=[]) @np_utils.np_doc('triu') def triu(m, k=0): # pylint: disable=missing-docstring m = asarray(m) if m.shape.ndims is None: raise ValueError('Argument to triu should have known rank') m_shape = m.shape.as_list() if len(m_shape) < 2: raise ValueError('Argument to triu must have rank at least 2') if m_shape[-1] is None or m_shape[-2] is None: raise ValueError( 'Currently, the last two dimensions of the input array ' 'need to be known.' ) z = constant_op.constant(0, m.dtype) mask = tri(*m_shape[-2:], k=k - 1, dtype=bool) return array_ops.where_v2( array_ops.broadcast_to(mask, array_ops.shape(m)), z, m ) @tf_export.tf_export('experimental.numpy.flip', v1=[]) @np_utils.np_doc('flip') def flip(m, axis=None): # pylint: disable=missing-docstring m = asarray(m) if axis is None: return array_ops.reverse(m, math_ops.range(array_ops.rank(m))) axis = np_utils._canonicalize_axis(axis, array_ops.rank(m)) # pylint: disable=protected-access return array_ops.reverse(m, [axis]) @tf_export.tf_export('experimental.numpy.flipud', v1=[]) @np_utils.np_doc('flipud') def flipud(m): # pylint: disable=missing-docstring return flip(m, 0) @tf_export.tf_export('experimental.numpy.fliplr', v1=[]) @np_utils.np_doc('fliplr') def fliplr(m): # pylint: disable=missing-docstring return flip(m, 1) @tf_export.tf_export('experimental.numpy.roll', v1=[]) @np_utils.np_doc('roll') def roll(a, shift, axis=None): # pylint: disable=missing-docstring a = asarray(a) if axis is not None: return manip_ops.roll(a, shift, axis) # If axis is None, the roll happens as a 1-d tensor. original_shape = array_ops.shape(a) a = manip_ops.roll(array_ops.reshape(a, [-1]), shift, 0) return array_ops.reshape(a, original_shape) @tf_export.tf_export('experimental.numpy.rot90', v1=[]) @np_utils.np_doc('rot90') def rot90(m, k=1, axes=(0, 1)): # pylint: disable=missing-docstring m_rank = array_ops.rank(m) ax1, ax2 = np_utils._canonicalize_axes(axes, m_rank) # pylint: disable=protected-access k = k % 4 if k == 0: return m elif k == 2: return flip(flip(m, ax1), ax2) else: perm = math_ops.range(m_rank) perm = array_ops.tensor_scatter_update(perm, [[ax1], [ax2]], [ax2, ax1]) if k == 1: return transpose(flip(m, ax2), perm) else: return flip(transpose(m, perm), ax2) @tf_export.tf_export('experimental.numpy.vander', v1=[]) @np_utils.np_doc('vander') def vander(x, N=None, increasing=False): # pylint: disable=missing-docstring,invalid-name x = asarray(x) x_shape = array_ops.shape(x) if N is None: N = x_shape[0] N_temp = np_utils.get_static_value(N) # pylint: disable=invalid-name if N_temp is not None: N = N_temp if N < 0: raise ValueError('N must be nonnegative') else: control_flow_assert.Assert(N >= 0, [N]) rank = array_ops.rank(x) rank_temp = np_utils.get_static_value(rank) if rank_temp is not None: rank = rank_temp if rank != 1: raise ValueError('x must be a one-dimensional array') else: control_flow_assert.Assert(math_ops.equal(rank, 1), [rank]) if increasing: start = 0 limit = N delta = 1 else: start = N - 1 limit = -1 delta = -1 x = array_ops.expand_dims(x, -1) return math_ops.pow( x, math_ops.cast(math_ops.range(start, limit, delta), dtype=x.dtype) ) @tf_export.tf_export('experimental.numpy.ix_', v1=[]) @np_utils.np_doc('ix_') def ix_(*args): # pylint: disable=missing-docstring n = len(args) output = [] for i, a in enumerate(args): a = asarray(a) a_rank = array_ops.rank(a) a_rank_temp = np_utils.get_static_value(a_rank) if a_rank_temp is not None: a_rank = a_rank_temp if a_rank != 1: raise ValueError( 'Arguments must be 1-d, got arg {} of rank {}'.format(i, a_rank) ) else: control_flow_assert.Assert(math_ops.equal(a_rank, 1), [a_rank]) new_shape = [1] * n new_shape[i] = -1 dtype = a.dtype if dtype == dtypes.bool: output.append(array_ops.reshape(nonzero(a)[0], new_shape)) elif dtype.is_integer: output.append(array_ops.reshape(a, new_shape)) else: raise ValueError( 'Only integer and bool dtypes are supported, got {}'.format(dtype) ) return output @tf_export.tf_export('experimental.numpy.broadcast_arrays', v1=[]) @np_utils.np_doc('broadcast_arrays') def broadcast_arrays(*args, **kwargs): # pylint: disable=missing-docstring subok = kwargs.pop('subok', False) if subok: raise ValueError('subok=True is not supported.') if kwargs: raise ValueError('Received unsupported arguments {}'.format(kwargs.keys())) args = [asarray(arg) for arg in args] return np_utils.tf_broadcast(*args) @tf_export.tf_export('experimental.numpy.sign', v1=[]) @np_utils.np_doc_only('sign') def sign(x, out=None, where=None, **kwargs): # pylint: disable=missing-docstring,redefined-outer-name if out: raise ValueError('tf.numpy doesnt support setting out.') if where: raise ValueError('tf.numpy doesnt support setting where.') if kwargs: raise ValueError('tf.numpy doesnt support setting {}'.format(kwargs.keys())) x = asarray(x) # Numpy 2.x and later uses the same definition of sign. if np.lib.NumpyVersion(np.__version__) >= '2.0.0.dev0': return math_ops.sign(x) dtype = x.dtype.as_numpy_dtype if np.issubdtype(dtype, np.complexfloating): result = math_ops.cast(math_ops.sign(math_ops.real(x)), dtype) else: result = math_ops.sign(x) return result # Note that np.take_along_axis may not be present in some supported versions of # numpy. @tf_export.tf_export('experimental.numpy.take_along_axis', v1=[]) @np_utils.np_doc('take_along_axis') def take_along_axis(arr, indices, axis): # pylint: disable=missing-docstring arr = asarray(arr) indices = asarray(indices) if axis is None: return take_along_axis(arr.ravel(), indices, 0) rank = array_ops.rank(arr) axis = axis + rank if axis < 0 else axis # Broadcast shapes to match, ensure that the axis of interest is not # broadcast. arr_shape_original = array_ops.shape(arr, out_type=indices.dtype) indices_shape_original = array_ops.shape(indices, out_type=indices.dtype) arr_shape = array_ops.tensor_scatter_update(arr_shape_original, [[axis]], [1]) indices_shape = array_ops.tensor_scatter_update( indices_shape_original, [[axis]], [1] ) broadcasted_shape = array_ops.broadcast_dynamic_shape( arr_shape, indices_shape ) arr_shape = array_ops.tensor_scatter_update( broadcasted_shape, [[axis]], [arr_shape_original[axis]] ) indices_shape = array_ops.tensor_scatter_update( broadcasted_shape, [[axis]], [indices_shape_original[axis]] ) arr = array_ops.broadcast_to(arr, arr_shape) indices = array_ops.broadcast_to(indices, indices_shape) # Save indices shape so we can restore it later. possible_result_shape = indices.shape # Correct indices since gather doesn't correctly handle negative indices. indices = array_ops.where_v2(indices < 0, indices + arr_shape[axis], indices) swapaxes_ = lambda t: swapaxes(t, axis, -1) dont_move_axis_to_end = math_ops.equal(axis, np_utils.subtract(rank, 1)) arr = np_utils.cond( dont_move_axis_to_end, lambda: arr, lambda: swapaxes_(arr) ) indices = np_utils.cond( dont_move_axis_to_end, lambda: indices, lambda: swapaxes_(indices) ) arr_shape = array_ops.shape(arr) arr = array_ops.reshape(arr, [-1, arr_shape[-1]]) indices_shape = array_ops.shape(indices) indices = array_ops.reshape(indices, [-1, indices_shape[-1]]) result = array_ops.gather(arr, indices, batch_dims=1) result = array_ops.reshape(result, indices_shape) result = np_utils.cond( dont_move_axis_to_end, lambda: result, lambda: swapaxes_(result) ) result.set_shape(possible_result_shape) return result # pylint: disable=redefined-builtin,undefined-variable @tf_export.tf_export('experimental.numpy.max', v1=[]) @np_utils.np_doc('max', link=np_utils.AliasOf('amax')) def max(a, axis=None, keepdims=None): return amax(a, axis=axis, keepdims=keepdims) @tf_export.tf_export('experimental.numpy.min', v1=[]) @np_utils.np_doc('min', link=np_utils.AliasOf('amin')) def min(a, axis=None, keepdims=None): return amin(a, axis=axis, keepdims=keepdims) @tf_export.tf_export('experimental.numpy.round', v1=[]) @np_utils.np_doc('round', link=np_utils.AliasOf('around')) def round(a, decimals=0): return around(a, decimals=decimals) # pylint: enable=redefined-builtin,undefined-variable _SLICE_ERROR = ( 'only integers, slices (`:`), ellipsis (`...`), ' 'numpy.newaxis (`None`) and integer or boolean arrays are valid indices' ) def _as_index(idx, need_scalar=True): """Helper function to parse idx as an index. Args: idx: index need_scalar: If idx needs to be a scalar value. Returns: A pair, (indx, bool). First one is the parsed index and can be a tensor, or scalar integer / Dimension. Second one is True if rank is known to be 0. Raises: IndexError: For incorrect indices. """ if isinstance(idx, (numbers.Integral, tensor_shape.Dimension)): return idx, True data = asarray(idx) if data.dtype == dtypes.bool: if data.shape.ndims != 1: # TODO(agarwal): handle higher rank boolean masks. raise NotImplementedError('Need rank 1 for bool index %s' % idx) data = array_ops.where_v2(data) data = array_ops.reshape(data, [-1]) if need_scalar and data.shape.rank not in (None, 0): raise IndexError(_SLICE_ERROR + ', got {!r}'.format(idx)) np_dtype = data.dtype.as_numpy_dtype if not np.issubdtype(np_dtype, np.integer): raise IndexError(_SLICE_ERROR + ', got {!r}'.format(idx)) if data.dtype not in (dtypes.int64, dtypes.int32): # TF slicing can only handle int32/int64. So we need to cast. promoted_dtype = np.promote_types(np.int32, np_dtype) if promoted_dtype == np.int32: data = math_ops.cast(data, dtypes.int32) elif promoted_dtype == np.int64: data = math_ops.cast(data, dtypes.int64) else: raise IndexError(_SLICE_ERROR + ', got {!r}'.format(idx)) return data, data.shape.rank == 0 class _UpdateMethod(enum.Enum): UPDATE = 0 ADD = 1 MIN = 2 MAX = 3 def _slice_helper(tensor, slice_spec, update_method=None, updates=None): """Helper function for __getitem__ and _with_index_update_helper. This function collects the indices in `slice_spec` into two buckets, which we can call "idx1" and "idx2" here. idx1 is intended for `strided_slice`, idx2 `gather`. They also correspond to "basic indices" and "advanced indices" in numpy. This function supports both reading and writing at the indices. The reading path can be summarized as `gather(stride_slice(tensor, idx1), idx2)`. The writing path can be summarized as `strided_slice_update(tensor, idx1, scatter(strided_slice(tensor, idx1), idx2, updates))`. (`gather` here means `tf.gather` or `tf.gather_nd`; `scatter` here means `tf.tensor_scatter_update`.) The writing path is inefficient because it needs to first read out a portion (probably much larger than `updates`) of `tensor` using `strided_slice`, update it, and then write the portion back. An alternative approach is to only use `scatter`, which amounts to using the indexing mechanism of gather/scatter to implement strided_slice/strided_slice_update. This is feasible for XLA Gather/Scatter because they support spans (e.g. `2:5`) in indices (as begin/end pairs), but not TF gather/scatter because they don't support spans (except those that cover entire dimensions, i.e. `:`). If we materialize spans into individual indices, the size of the index tensor would explode. (Note that XLA Gather/Scatter have a similar problem for stride > 1 because they don't support strides. Indices such as `1:2:8` will need to be materialized into individual indices such as [1, 3, 5, 7].) Args: tensor: the tensor to be read from or write into. slice_spec: the indices. update_method: (optional) a member of `_UpdateMethod`, indicating how to update the values (replacement, add, etc.). `None` indicates just reading. updates: (optional) the new values to write into `tensor`. It must have the same dtype as `tensor`. Returns: The result of reading (if `update_method` is `None`) or the updated `tensor` after writing. """ begin, end, strides = [], [], [] new_axis_mask, shrink_axis_mask = 0, 0 begin_mask, end_mask = 0, 0 ellipsis_mask = 0 advanced_indices = [] shrink_indices = [] for index, s in enumerate(slice_spec): if isinstance(s, slice): if s.start is not None: begin.append(_as_index(s.start)[0]) else: begin.append(0) begin_mask |= 1 << index if s.stop is not None: end.append(_as_index(s.stop)[0]) else: end.append(0) end_mask |= 1 << index if s.step is not None: strides.append(_as_index(s.step)[0]) else: strides.append(1) elif s is Ellipsis: begin.append(0) end.append(0) strides.append(1) ellipsis_mask |= 1 << index elif s is array_ops.newaxis: begin.append(0) end.append(0) strides.append(1) new_axis_mask |= 1 << index else: s, is_scalar = _as_index(s, False) if is_scalar: begin.append(s) end.append(s + 1) strides.append(1) shrink_axis_mask |= 1 << index shrink_indices.append(index) else: begin.append(0) end.append(0) strides.append(1) begin_mask |= 1 << index end_mask |= 1 << index advanced_indices.append((index, s, ellipsis_mask != 0)) # stack possibly involves no tensors, so we must use op_scope correct graph. with ops.name_scope( None, 'strided_slice', [tensor] + begin + end + strides, skip_on_eager=False, ) as name: if begin: packed_begin, packed_end, packed_strides = ( array_ops_stack.stack(begin), array_ops_stack.stack(end), array_ops_stack.stack(strides), ) if ( packed_begin.dtype == dtypes.int64 or packed_end.dtype == dtypes.int64 or packed_strides.dtype == dtypes.int64 ): if packed_begin.dtype != dtypes.int64: packed_begin = math_ops.cast(packed_begin, dtypes.int64) if packed_end.dtype != dtypes.int64: packed_end = math_ops.cast(packed_end, dtypes.int64) if packed_strides.dtype != dtypes.int64: packed_strides = math_ops.cast(packed_strides, dtypes.int64) else: var_empty = constant_op.constant([], dtype=dtypes.int32) packed_begin = packed_end = packed_strides = var_empty if update_method == _UpdateMethod.UPDATE and not advanced_indices: return array_ops.tensor_strided_slice_update( tensor, packed_begin, packed_end, packed_strides, updates, begin_mask=begin_mask, end_mask=end_mask, shrink_axis_mask=shrink_axis_mask, new_axis_mask=new_axis_mask, ellipsis_mask=ellipsis_mask, name=name, ) else: # TODO(b/164251540): Find a better way to support update that does not # involve one read + two writes. if updates is not None: original_tensor = tensor # TODO(agarwal): set_shape on tensor to set rank. tensor = array_ops.strided_slice( tensor, packed_begin, packed_end, packed_strides, begin_mask=begin_mask, end_mask=end_mask, shrink_axis_mask=shrink_axis_mask, new_axis_mask=new_axis_mask, ellipsis_mask=ellipsis_mask, name=name, ) if not advanced_indices: if update_method is None: return tensor assert update_method != _UpdateMethod.UPDATE # TF lacks TensorStridedSliceAdd and alike, so we need to do # read+add+update. if update_method == _UpdateMethod.ADD: update_op = math_ops.add elif update_method == _UpdateMethod.MIN: update_op = math_ops.minimum elif update_method == _UpdateMethod.MAX: update_op = math_ops.maximum return array_ops.tensor_strided_slice_update( original_tensor, packed_begin, packed_end, packed_strides, update_op(tensor, updates), begin_mask=begin_mask, end_mask=end_mask, shrink_axis_mask=shrink_axis_mask, new_axis_mask=new_axis_mask, ellipsis_mask=ellipsis_mask, name=name + '_2', ) advanced_indices_map = {} for index, data, had_ellipsis in advanced_indices: if had_ellipsis: num_shrink = len([x for x in shrink_indices if x > index]) dim = index - len(slice_spec) + num_shrink else: num_shrink = len([x for x in shrink_indices if x < index]) dim = index - num_shrink advanced_indices_map[dim] = data dims = sorted(advanced_indices_map.keys()) dims_contiguous = True if len(dims) > 1: if dims[0] < 0 and dims[-1] >= 0: # not all same sign dims_contiguous = False else: for i in range(len(dims) - 1): if dims[i] + 1 != dims[i + 1]: dims_contiguous = False break indices = [advanced_indices_map[x] for x in dims] indices = _promote_dtype(*indices) indices = np_utils.tf_broadcast(*indices) stacked_indices = array_ops_stack.stack(indices, axis=-1) # Skip the contiguous-dims optimization for update because there is no # tf.*scatter* op that supports the `axis` argument. if not dims_contiguous or updates is not None: if range(len(dims)) != dims: tensor = moveaxis(tensor, dims, range(len(dims))) tensor_shape_prefix = array_ops.shape( tensor, out_type=stacked_indices.dtype )[: len(dims)] stacked_indices = array_ops.where_v2( stacked_indices < 0, stacked_indices + tensor_shape_prefix, stacked_indices, ) if updates is None: return array_ops.gather_nd(tensor, stacked_indices) else: # We only need to move-axis `updates` in the contiguous case becausce # only in this case the result dimensions of advanced indexing are in # the middle of `updates`. In the non-contiguous case, those dimensions # are always at the front. if dims_contiguous: # TODO(wangpeng): Support unknown rank (e.g. by partially flattening # `updates`) if stacked_indices.shape.rank is None: raise NotImplementedError( 'Rank of the advanced indices must currently be known' ) batch_size = stacked_indices.shape.rank - 1 batch_start = dims[0] if batch_start < 0: batch_start += len(dims) - batch_size def range_(start, length): return range(start, start + length) updates = moveaxis( updates, range_(batch_start, batch_size), range(batch_size) ) if update_method == _UpdateMethod.UPDATE: update_op = array_ops.tensor_scatter_update elif update_method == _UpdateMethod.ADD: update_op = array_ops.tensor_scatter_add elif update_method == _UpdateMethod.MIN: update_op = array_ops.tensor_scatter_min elif update_method == _UpdateMethod.MAX: update_op = array_ops.tensor_scatter_max tensor = update_op(tensor, stacked_indices, updates) if range(len(dims)) != dims: tensor = moveaxis(tensor, range(len(dims)), dims) return array_ops.tensor_strided_slice_update( original_tensor, packed_begin, packed_end, packed_strides, tensor, begin_mask=begin_mask, end_mask=end_mask, shrink_axis_mask=shrink_axis_mask, new_axis_mask=new_axis_mask, ellipsis_mask=ellipsis_mask, name=name + '_2', ) # Note that gather_nd does not support gathering from inside the array. # To avoid shuffling data back and forth, we transform the indices and # do a gather instead. rank = np_utils._maybe_static(array_ops.rank(tensor)) # pylint: disable=protected-access dims = [(x + rank if x < 0 else x) for x in dims] shape_tensor = array_ops.shape(tensor) dim_sizes = array_ops.gather(shape_tensor, dims) if len(dims) == 1: stacked_indices = indices[0] stacked_indices = math_ops.cast(stacked_indices, dtypes.int32) stacked_indices = array_ops.where_v2( stacked_indices < 0, stacked_indices + dim_sizes, stacked_indices ) axis = dims[0] if len(dims) > 1: index_scaling = math_ops.cumprod(dim_sizes, reverse=True, exclusive=True) def _tensordot(a, b): # TODO(b/168657656): This function should be replaced by # tensordot(axis=1) once MatMul has int32 XLA kernel. b = array_ops.broadcast_to(b, array_ops.shape(a)) return math_ops.reduce_sum(a * b, axis=-1) stacked_indices = _tensordot(stacked_indices, index_scaling) flat_shape = array_ops.concat( [shape_tensor[:axis], [-1], shape_tensor[axis + len(dims) :]], axis=0 ) tensor = array_ops.reshape(tensor, flat_shape) return array_ops.gather(tensor, stacked_indices, axis=axis) def _as_spec_tuple(slice_spec): """Convert slice_spec to tuple.""" if isinstance(slice_spec, (list, tuple)) and not isinstance( slice_spec, np.ndarray ): is_index = True for s in slice_spec: if s is None or s is Ellipsis or isinstance(s, (list, tuple, slice)): is_index = False break elif isinstance(s, (np_arrays.ndarray, np.ndarray)) and s.ndim != 0: is_index = False break if not is_index: return tuple(slice_spec) return (slice_spec,) def _getitem(self, slice_spec): """Implementation of ndarray.__getitem__.""" if ( isinstance(slice_spec, bool) or ( isinstance(slice_spec, core_tf_types.Tensor) and slice_spec.dtype == dtypes.bool ) or ( isinstance(slice_spec, (np.ndarray, np_arrays.ndarray)) and slice_spec.dtype == np.bool_ ) ): return array_ops.boolean_mask(tensor=self, mask=slice_spec) if not isinstance(slice_spec, tuple): slice_spec = _as_spec_tuple(slice_spec) result_t = _slice_helper(self, slice_spec) return result_t def _with_index_update_helper(update_method, a, slice_spec, updates): """Implementation of ndarray._with_index_*.""" if ( isinstance(slice_spec, bool) or ( isinstance(slice_spec, core_tf_types.Tensor) and slice_spec.dtype == dtypes.bool ) or ( isinstance(slice_spec, (np.ndarray, np_arrays.ndarray)) and slice_spec.dtype == np.bool_ ) ): slice_spec = nonzero(slice_spec) if not isinstance(slice_spec, tuple): slice_spec = _as_spec_tuple(slice_spec) a_dtype = a.dtype a, updates = _promote_dtype_binary(a, updates) result_t = _slice_helper(a, slice_spec, update_method, updates) return result_t.astype(a_dtype) setattr(np_arrays.ndarray, '_numpy_style_getitem', _getitem) setattr( np_arrays.ndarray, '_with_index_update', functools.partial(_with_index_update_helper, _UpdateMethod.UPDATE), ) setattr( np_arrays.ndarray, '_with_index_add', functools.partial(_with_index_update_helper, _UpdateMethod.ADD), ) setattr( np_arrays.ndarray, '_with_index_min', functools.partial(_with_index_update_helper, _UpdateMethod.MIN), ) setattr( np_arrays.ndarray, '_with_index_max', functools.partial(_with_index_update_helper, _UpdateMethod.MAX), )
tensorflowREPO_NAMEtensorflowPATH_START.@tensorflow_extracted@tensorflow-master@tensorflow@python@ops@numpy_ops@[email protected]_END.py
{ "filename": "__init__.py", "repo_name": "PrefectHQ/prefect", "repo_path": "prefect_extracted/prefect-main/src/prefect/server/services/__init__.py", "type": "Python" }
import prefect.server.services.cancellation_cleanup import prefect.server.services.flow_run_notifications import prefect.server.services.foreman import prefect.server.services.late_runs import prefect.server.services.pause_expirations import prefect.server.services.scheduler import prefect.server.services.telemetry
PrefectHQREPO_NAMEprefectPATH_START.@prefect_extracted@prefect-main@src@prefect@server@services@[email protected]_END.py
{ "filename": "incremental_pca.py", "repo_name": "catboost/catboost", "repo_path": "catboost_extracted/catboost-master/contrib/python/scikit-learn/py2/sklearn/decomposition/incremental_pca.py", "type": "Python" }
"""Incremental Principal Components Analysis.""" # Author: Kyle Kastner <[email protected]> # Giorgio Patrini # License: BSD 3 clause import numpy as np from scipy import linalg from .base import _BasePCA from ..utils import check_array, gen_batches from ..utils.extmath import svd_flip, _incremental_mean_and_var class IncrementalPCA(_BasePCA): """Incremental principal components analysis (IPCA). Linear dimensionality reduction using Singular Value Decomposition of centered data, keeping only the most significant singular vectors to project the data to a lower dimensional space. Depending on the size of the input data, this algorithm can be much more memory efficient than a PCA. This algorithm has constant memory complexity, on the order of ``batch_size``, enabling use of np.memmap files without loading the entire file into memory. The computational overhead of each SVD is ``O(batch_size * n_features ** 2)``, but only 2 * batch_size samples remain in memory at a time. There will be ``n_samples / batch_size`` SVD computations to get the principal components, versus 1 large SVD of complexity ``O(n_samples * n_features ** 2)`` for PCA. Read more in the :ref:`User Guide <IncrementalPCA>`. Parameters ---------- n_components : int or None, (default=None) Number of components to keep. If ``n_components `` is ``None``, then ``n_components`` is set to ``min(n_samples, n_features)``. batch_size : int or None, (default=None) The number of samples to use for each batch. Only used when calling ``fit``. If ``batch_size`` is ``None``, then ``batch_size`` is inferred from the data and set to ``5 * n_features``, to provide a balance between approximation accuracy and memory consumption. copy : bool, (default=True) If False, X will be overwritten. ``copy=False`` can be used to save memory but is unsafe for general use. whiten : bool, optional When True (False by default) the ``components_`` vectors are divided by ``n_samples`` times ``components_`` to ensure uncorrelated outputs with unit component-wise variances. Whitening will remove some information from the transformed signal (the relative variance scales of the components) but can sometimes improve the predictive accuracy of the downstream estimators by making data respect some hard-wired assumptions. Attributes ---------- components_ : array, shape (n_components, n_features) Components with maximum variance. explained_variance_ : array, shape (n_components,) Variance explained by each of the selected components. explained_variance_ratio_ : array, shape (n_components,) Percentage of variance explained by each of the selected components. If all components are stored, the sum of explained variances is equal to 1.0 mean_ : array, shape (n_features,) Per-feature empirical mean, aggregate over calls to ``partial_fit``. var_ : array, shape (n_features,) Per-feature empirical variance, aggregate over calls to ``partial_fit``. noise_variance_ : float The estimated noise covariance following the Probabilistic PCA model from Tipping and Bishop 1999. See "Pattern Recognition and Machine Learning" by C. Bishop, 12.2.1 p. 574 or http://www.miketipping.com/papers/met-mppca.pdf. n_components_ : int The estimated number of components. Relevant when ``n_components=None``. n_samples_seen_ : int The number of samples processed by the estimator. Will be reset on new calls to fit, but increments across ``partial_fit`` calls. Notes ----- Implements the incremental PCA model from: `D. Ross, J. Lim, R. Lin, M. Yang, Incremental Learning for Robust Visual Tracking, International Journal of Computer Vision, Volume 77, Issue 1-3, pp. 125-141, May 2008.` See http://www.cs.toronto.edu/~dross/ivt/RossLimLinYang_ijcv.pdf This model is an extension of the Sequential Karhunen-Loeve Transform from: `A. Levy and M. Lindenbaum, Sequential Karhunen-Loeve Basis Extraction and its Application to Images, IEEE Transactions on Image Processing, Volume 9, Number 8, pp. 1371-1374, August 2000.` See http://www.cs.technion.ac.il/~mic/doc/skl-ip.pdf We have specifically abstained from an optimization used by authors of both papers, a QR decomposition used in specific situations to reduce the algorithmic complexity of the SVD. The source for this technique is `Matrix Computations, Third Edition, G. Holub and C. Van Loan, Chapter 5, section 5.4.4, pp 252-253.`. This technique has been omitted because it is advantageous only when decomposing a matrix with ``n_samples`` (rows) >= 5/3 * ``n_features`` (columns), and hurts the readability of the implemented algorithm. This would be a good opportunity for future optimization, if it is deemed necessary. References ---------- D. Ross, J. Lim, R. Lin, M. Yang. Incremental Learning for Robust Visual Tracking, International Journal of Computer Vision, Volume 77, Issue 1-3, pp. 125-141, May 2008. G. Golub and C. Van Loan. Matrix Computations, Third Edition, Chapter 5, Section 5.4.4, pp. 252-253. See also -------- PCA RandomizedPCA KernelPCA SparsePCA TruncatedSVD """ def __init__(self, n_components=None, whiten=False, copy=True, batch_size=None): self.n_components = n_components self.whiten = whiten self.copy = copy self.batch_size = batch_size def fit(self, X, y=None): """Fit the model with X, using minibatches of size batch_size. Parameters ---------- X: array-like, shape (n_samples, n_features) Training data, where n_samples is the number of samples and n_features is the number of features. y: Passthrough for ``Pipeline`` compatibility. Returns ------- self: object Returns the instance itself. """ self.components_ = None self.n_samples_seen_ = 0 self.mean_ = .0 self.var_ = .0 self.singular_values_ = None self.explained_variance_ = None self.explained_variance_ratio_ = None self.noise_variance_ = None X = check_array(X, copy=self.copy, dtype=[np.float64, np.float32]) n_samples, n_features = X.shape if self.batch_size is None: self.batch_size_ = 5 * n_features else: self.batch_size_ = self.batch_size for batch in gen_batches(n_samples, self.batch_size_): self.partial_fit(X[batch], check_input=False) return self def partial_fit(self, X, y=None, check_input=True): """Incremental fit with X. All of X is processed as a single batch. Parameters ---------- X: array-like, shape (n_samples, n_features) Training data, where n_samples is the number of samples and n_features is the number of features. Returns ------- self: object Returns the instance itself. """ if check_input: X = check_array(X, copy=self.copy, dtype=[np.float64, np.float32]) n_samples, n_features = X.shape if not hasattr(self, 'components_'): self.components_ = None if self.n_components is None: self.n_components_ = n_features elif not 1 <= self.n_components <= n_features: raise ValueError("n_components=%r invalid for n_features=%d, need " "more rows than columns for IncrementalPCA " "processing" % (self.n_components, n_features)) else: self.n_components_ = self.n_components if (self.components_ is not None) and (self.components_.shape[0] != self.n_components_): raise ValueError("Number of input features has changed from %i " "to %i between calls to partial_fit! Try " "setting n_components to a fixed value." % (self.components_.shape[0], self.n_components_)) # This is the first partial_fit if not hasattr(self, 'n_samples_seen_'): self.n_samples_seen_ = 0 self.mean_ = .0 self.var_ = .0 # Update stats - they are 0 if this is the fisrt step col_mean, col_var, n_total_samples = \ _incremental_mean_and_var(X, last_mean=self.mean_, last_variance=self.var_, last_sample_count=self.n_samples_seen_) # Whitening if self.n_samples_seen_ == 0: # If it is the first step, simply whiten X X -= col_mean else: col_batch_mean = np.mean(X, axis=0) X -= col_batch_mean # Build matrix of combined previous basis and new data mean_correction = \ np.sqrt((self.n_samples_seen_ * n_samples) / n_total_samples) * (self.mean_ - col_batch_mean) X = np.vstack((self.singular_values_.reshape((-1, 1)) * self.components_, X, mean_correction)) U, S, V = linalg.svd(X, full_matrices=False) U, V = svd_flip(U, V, u_based_decision=False) explained_variance = S ** 2 / n_total_samples explained_variance_ratio = S ** 2 / np.sum(col_var * n_total_samples) self.n_samples_seen_ = n_total_samples self.components_ = V[:self.n_components_] self.singular_values_ = S[:self.n_components_] self.mean_ = col_mean self.var_ = col_var self.explained_variance_ = explained_variance[:self.n_components_] self.explained_variance_ratio_ = \ explained_variance_ratio[:self.n_components_] if self.n_components_ < n_features: self.noise_variance_ = \ explained_variance[self.n_components_:].mean() else: self.noise_variance_ = 0. return self
catboostREPO_NAMEcatboostPATH_START.@catboost_extracted@catboost-master@contrib@python@scikit-learn@py2@sklearn@decomposition@[email protected]_END.py
{ "filename": "_nticks.py", "repo_name": "plotly/plotly.py", "repo_path": "plotly.py_extracted/plotly.py-master/packages/python/plotly/plotly/validators/mesh3d/colorbar/_nticks.py", "type": "Python" }
import _plotly_utils.basevalidators class NticksValidator(_plotly_utils.basevalidators.IntegerValidator): def __init__(self, plotly_name="nticks", parent_name="mesh3d.colorbar", **kwargs): super(NticksValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, edit_type=kwargs.pop("edit_type", "colorbars"), min=kwargs.pop("min", 0), **kwargs, )
[email protected][email protected]@packages@python@plotly@plotly@validators@mesh3d@colorbar@[email protected]_END.py
{ "filename": "test_fouriertransform.py", "repo_name": "AOtools/aotools", "repo_path": "aotools_extracted/aotools-main/test/test_fouriertransform.py", "type": "Python" }
from aotools import fouriertransform import numpy def test_ft(): data = numpy.random.random((100)) ft_data = fouriertransform.ft(data, 0.1) assert ft_data.shape == data.shape def test_ift(): data = numpy.random.random((100)) ift_data = fouriertransform.ift(data, 1.) assert ift_data.shape == data.shape def test_ft2(): data = numpy.zeros((10, 10)) ft_data = fouriertransform.ft2(data, 1.) assert ft_data.shape == data.shape def test_ift2(): data = numpy.zeros((10, 10)) ift_data = fouriertransform.ift2(data, 1.) assert ift_data.shape == data.shape def test_rft(): data = numpy.zeros((100)) data_width = len(data) rft_data = fouriertransform.rft(data, 1.) width, = rft_data.shape rescaled_width = (width-1)*2 assert rescaled_width == data_width # def test_rft2(): # data = numpy.zeros((10, 10)) # rft2_data = fouriertransform.rft2(data, 1.) # print(rft2_data.shape) # assert rft2_data.shape == data.shape
AOtoolsREPO_NAMEaotoolsPATH_START.@aotools_extracted@aotools-main@test@[email protected]_END.py
{ "filename": "galaxy_catalog_analysis_tutorial6.ipynb", "repo_name": "astropy/halotools", "repo_path": "halotools_extracted/halotools-master/docs/notebooks/galcat_analysis/basic_examples/galaxy_catalog_analysis_tutorial6.ipynb", "type": "Jupyter Notebook" }
# Example 6: Mean infall velocity into cluster BCGs In this example we'll show how to calculate the mean infall velocity of galaxies towards the cluster BCGs. ## Generate a mock galaxy catalog Let's start out by generating a mock galaxy catalog into an N-body simulation in the usual way. Here we'll assume you have the z=0 rockstar halos for the bolshoi simulation, as this is the default halo catalog. ```python from halotools.empirical_models import PrebuiltSubhaloModelFactory model = PrebuiltSubhaloModelFactory('smhm_binary_sfr') from halotools.sim_manager import CachedHaloCatalog halocat = CachedHaloCatalog(simname='multidark', redshift=0, halo_finder='rockstar') model.populate_mock(halocat) ``` Our mock galaxies are stored in the ``galaxy_table`` of ``model.mock`` in the form of an Astropy Table. ## Extract the position and velocity coordinates ```python from halotools.mock_observables import return_xyz_formatted_array, mean_radial_velocity_vs_r ``` ```python cluster_central_mask = (model.mock.galaxy_table['stellar_mass'] > 10**11.5) cluster_centrals = model.mock.galaxy_table[cluster_central_mask] low_mass_tracers_mask = ((model.mock.galaxy_table['stellar_mass'] > 10**10) & (model.mock.galaxy_table['stellar_mass'] < 10**10.5)) low_mass_tracers = model.mock.galaxy_table[low_mass_tracers_mask] ``` ```python cluster_pos = return_xyz_formatted_array(cluster_centrals['x'], cluster_centrals['y'] ,cluster_centrals['z']) cluster_vel = return_xyz_formatted_array(cluster_centrals['vx'], cluster_centrals['vy'] ,cluster_centrals['vz']) low_mass_tracers_pos = return_xyz_formatted_array(low_mass_tracers['x'], low_mass_tracers['y'] ,low_mass_tracers['z']) low_mass_tracers_vel = return_xyz_formatted_array(low_mass_tracers['vx'], low_mass_tracers['vy'] ,low_mass_tracers['vz']) ``` ## Calculate $<V_{\rm rad}>(r)$ ```python rbins = np.logspace(-0.5, 1.25, 15) rbin_midpoints = (rbins[1:] + rbins[:-1])/2. vr_clusters = mean_radial_velocity_vs_r(cluster_pos, cluster_vel, rbins_absolute=rbins, sample2=low_mass_tracers_pos, velocities2=low_mass_tracers_vel, period = model.mock.Lbox) ``` ### Plot the result ```python %matplotlib inline fig, ax = plt.subplots(1, 1) __=ax.plot(rbin_midpoints, vr_clusters, color='k') xscale = ax.set_xscale('log') xlim = ax.set_xlim(xmin=0.5, xmax=20) xlabel = ax.set_xlabel(r'$r $ $\rm{[Mpc]}$', fontsize=15) ylabel = ax.set_ylabel(r'$\langle V_{\rm rad}\rangle$ $[{\rm km/s}]$', fontsize=15) title = ax.set_title('Radial infall velocity into cluster BCGs', fontsize=15) fig.savefig('cluster_bcg_infall_velocity.png', bbox_extra_artists=[xlabel, ylabel], bbox_inches='tight') ``` ![png](output_13_0.png) ```python ```
astropyREPO_NAMEhalotoolsPATH_START.@halotools_extracted@halotools-master@docs@notebooks@galcat_analysis@basic_examples@[email protected]_END.py
{ "filename": "gpu_rnn.py", "repo_name": "google/jax", "repo_path": "jax_extracted/jax-main/jaxlib/gpu_rnn.py", "type": "Python" }
# Copyright 2022 The JAX Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import importlib import jaxlib.mlir.ir as ir import jaxlib.mlir.dialects.stablehlo as hlo import numpy as np from jaxlib import xla_client from .gpu_common_utils import GpuLibNotLinkedError for cuda_module_name in [".cuda", "jax_cuda12_plugin"]: try: _rnn = importlib.import_module(f"{cuda_module_name}._rnn", package="jaxlib") except ImportError: _rnn = None else: break if _rnn: for _name, _value in _rnn.registrations().items(): xla_client.register_custom_call_target(_name, _value, platform='CUDA') compute_rnn_workspace_reserve_space_sizes = _rnn.compute_rnn_workspace_reserve_space_sizes def cudnn_rnn_lowering(ctx, input, h_0, c_0, weights, seq_lengths, *, input_size: int, hidden_size: int, num_layers: int, dropout: bool, bidirectional: bool, cudnn_allow_tf32: bool): """CuDnn RNN.""" out_dtype = ctx.avals_out[0].dtype if out_dtype == np.float32: out_type = ir.F32Type.get() elif out_dtype == np.float64: out_type = ir.F64Type.get() elif out_dtype == np.complex64: out_type = ir.ComplexType.get(ir.F32Type.get()) elif out_dtype == np.complex128: out_type = ir.ComplexType.get(ir.F64Type.get()) else: raise ValueError(f'Unknown output type {out_dtype}') output_type = ir.RankedTensorType.get(ctx.avals_out[0].shape, out_type) batch_size = ctx.avals_in[0].shape[0] max_seq_length = ctx.avals_in[0].shape[1] # workspace_shape = ctx.avals_out[3].shape workspace_size, _ = compute_rnn_workspace_reserve_space_sizes( input_size, hidden_size, num_layers, batch_size, max_seq_length, dropout, bidirectional, cudnn_allow_tf32) workspace_shape = (workspace_size,) workspace_type = ir.RankedTensorType.get(workspace_shape, ir.F32Type.get()) reserve_space_shape = ctx.avals_out[3].shape reserve_space_type = ir.RankedTensorType.get(reserve_space_shape, ir.F32Type.get()) if not _rnn: raise GpuLibNotLinkedError() opaque = _rnn.build_rnn_descriptor(input_size, hidden_size, num_layers, batch_size, max_seq_length, dropout, bidirectional, cudnn_allow_tf32, workspace_shape[0], reserve_space_shape[0]) i32_type = ir.IntegerType.get_signless(32) out = hlo.CustomCallOp( [output_type, h_0.type, c_0.type, workspace_type, reserve_space_type], [input, h_0, c_0, weights, seq_lengths], call_target_name=ir.StringAttr.get('cudnn_rnn'), has_side_effect=ir.BoolAttr.get(False), backend_config=ir.StringAttr.get(opaque), api_version=ir.IntegerAttr.get(i32_type, 2), called_computations=ir.ArrayAttr.get([]), ) return out.results[:-2] + out.results[-1:] # drop workspace output def _hlo_zeros_f32(shape): return hlo.constant( ir.DenseElementsAttr.get( np.zeros(shape, dtype=np.float32), type=ir.F32Type.get())) def cudnn_rnn_bwd_lowering(ctx, dy, dhn, dcn, x, h0, c0, w, y, reserve_space, seq_lengths, *, input_size: int, hidden_size: int, num_layers: int, dropout: bool, bidirectional: bool, cudnn_allow_tf32: bool): """CuDnn RNN Backward pass.""" batch_size = ctx.avals_in[3].shape[0] max_seq_length = ctx.avals_in[3].shape[1] workspace_size, _ = compute_rnn_workspace_reserve_space_sizes( input_size, hidden_size, num_layers, batch_size, max_seq_length, dropout, bidirectional, cudnn_allow_tf32) workspace_shape = (workspace_size,) workspace_type = ir.RankedTensorType.get(workspace_shape, ir.F32Type.get()) reserve_space_shape = ctx.avals_in[8].shape if _rnn is None: raise RuntimeError("cuda couldn't be imported") opaque = _rnn.build_rnn_descriptor(input_size, hidden_size, num_layers, batch_size, max_seq_length, dropout, bidirectional, cudnn_allow_tf32, workspace_shape[0], reserve_space_shape[0]) i32_type = ir.IntegerType.get_signless(32) zeroed_dw = _hlo_zeros_f32(ctx.avals_out[3].shape) out = hlo.CustomCallOp( [x.type, h0.type, c0.type, w.type, workspace_type], [ dy, dhn, dcn, x, h0, c0, w, y, reserve_space, zeroed_dw, seq_lengths ], call_target_name=ir.StringAttr.get('cudnn_rnn_bwd'), has_side_effect=ir.BoolAttr.get(False), backend_config=ir.StringAttr.get(opaque), api_version=ir.IntegerAttr.get(i32_type, 2), called_computations=ir.ArrayAttr.get([]), output_operand_aliases=ir.ArrayAttr.get([ hlo.OutputOperandAlias.get( output_tuple_indices=[3], operand_index=9, operand_tuple_indices=[]) ])) return out.results[:-1] # drop workspace output
googleREPO_NAMEjaxPATH_START.@jax_extracted@jax-main@jaxlib@[email protected]_END.py
{ "filename": "_font.py", "repo_name": "catboost/catboost", "repo_path": "catboost_extracted/catboost-master/contrib/python/plotly/py3/plotly/validators/sankey/link/hoverlabel/_font.py", "type": "Python" }
import _plotly_utils.basevalidators class FontValidator(_plotly_utils.basevalidators.CompoundValidator): def __init__( self, plotly_name="font", parent_name="sankey.link.hoverlabel", **kwargs ): super(FontValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, data_class_str=kwargs.pop("data_class_str", "Font"), data_docs=kwargs.pop( "data_docs", """ color colorsrc Sets the source reference on Chart Studio Cloud for `color`. family HTML font family - the typeface that will be applied by the web browser. The web browser will only be able to apply a font if it is available on the system which it operates. Provide multiple font families, separated by commas, to indicate the preference in which to apply fonts if they aren't available on the system. The Chart Studio Cloud (at https://chart-studio.plotly.com or on-premise) generates images on a server, where only a select number of fonts are installed and supported. These include "Arial", "Balto", "Courier New", "Droid Sans", "Droid Serif", "Droid Sans Mono", "Gravitas One", "Old Standard TT", "Open Sans", "Overpass", "PT Sans Narrow", "Raleway", "Times New Roman". familysrc Sets the source reference on Chart Studio Cloud for `family`. lineposition Sets the kind of decoration line(s) with text, such as an "under", "over" or "through" as well as combinations e.g. "under+over", etc. linepositionsrc Sets the source reference on Chart Studio Cloud for `lineposition`. shadow Sets the shape and color of the shadow behind text. "auto" places minimal shadow and applies contrast text font color. See https://developer.mozilla.org/en- US/docs/Web/CSS/text-shadow for additional options. shadowsrc Sets the source reference on Chart Studio Cloud for `shadow`. size sizesrc Sets the source reference on Chart Studio Cloud for `size`. style Sets whether a font should be styled with a normal or italic face from its family. stylesrc Sets the source reference on Chart Studio Cloud for `style`. textcase Sets capitalization of text. It can be used to make text appear in all-uppercase or all- lowercase, or with each word capitalized. textcasesrc Sets the source reference on Chart Studio Cloud for `textcase`. variant Sets the variant of the font. variantsrc Sets the source reference on Chart Studio Cloud for `variant`. weight Sets the weight (or boldness) of the font. weightsrc Sets the source reference on Chart Studio Cloud for `weight`. """, ), **kwargs, )
catboostREPO_NAMEcatboostPATH_START.@catboost_extracted@catboost-master@contrib@python@plotly@py3@plotly@validators@sankey@link@hoverlabel@[email protected]_END.py
{ "filename": "JeffreysPrior.py", "repo_name": "dokester/BayesicFitting", "repo_path": "BayesicFitting_extracted/BayesicFitting-master/BayesicFitting/source/JeffreysPrior.py", "type": "Python" }
import math as math import numpy as numpy import warnings from .Prior import Prior from .Tools import setAttribute as setatt __author__ = "Do Kester" __year__ = 2024 __license__ = "GPL3" __version__ = "3.2.1" __url__ = "https://www.bayesicfitting.nl" __status__ = "Perpetual Beta" # * This file is part of the BayesicFitting package. # * # * BayesicFitting is free software: you can redistribute it and/or modify # * it under the terms of the GNU Lesser General Public License as # * published by the Free Software Foundation, either version 3 of # * the License, or ( at your option ) any later version. # * # * BayesicFitting is distributed in the hope that it will be useful, # * but WITHOUT ANY WARRANTY; without even the implied warranty of # * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # * GNU Lesser General Public License for more details. # * # * The GPL3 license can be found at <http://www.gnu.org/licenses/>. # * # * A JAVA version of this code was part of the Herschel Common # * Science System (HCSS), also under GPL3. # * # * 2010 - 2014 Do Kester, SRON (Java code) # * 2016 - 202024 Do Kester. class JeffreysPrior( Prior ): """ Jeffreys prior distribution, for scale-like parameters. Jeffreys prior is a improper prior ( i.e. its integral is unbound ). Because of that it always needs limits, low and high, such that 0 < low < high < +Inf. Pr( x ) = 1.0 / ( x * norm ) if low < x < high 0.0 otherwise where norm = log( high ) - log( low ) No limits are set by default. domain2unit: u = ( log( d ) - log( lo ) ) / ( log( hi ) - log( lo ) ); unit2domain: d = exp( u * ( log( hi ) - log( lo ) ) + log( lo ) ); Examples -------- >>> pr = JeffreysPrior() # unbound prior >>> pr = JeffreysPrior( limits=[0.1,1.0] ) # limited to the range [0.1,1.0] Hidden Attributes ----------------- _logLo : float log( lowLimit ) _norm : float log( highLimit / lowLimit ) Attributes from Prior --------------------= lowLimit, highLimit, deltaP, _lowDomain, _highDomain The default of lowLimit and _lowDomain is zero. """ # *********CONSTRUCTORS*************************************************** def __init__( self, limits=None, prior=None ): """ Default constructor. Parameters ---------- limits : list of 2 floats 2 limits resp. low and high prior : JeffreysPrior prior to copy (with new limits if applicable) """ super( ).__init__( limits=limits, domain=[0,math.inf], prior=prior ) def copy( self ): return JeffreysPrior( prior=self, limits=self.limits ) def getIntegral( self ) : """ Return the integral of JeffreysPrior from lowLimit to highLimit. """ return self._urng def domain2Unit( self, dval ): """ Return a value in [0,1] given a value within the valid domain of a parameter for a Jeffreys distribution. Parameters ---------- dval : float value within the domain of a parameter """ if numpy.any( dval <= 0 ) : raise ValueError() return numpy.log( dval ) def unit2Domain( self, uval ): """ Return a value within the valid domain of the parameter given a value between [0,1] for a Jeffreys distribution. Parameters ---------- uval : float value within [0,1] """ return numpy.exp( uval ) def result( self, x ): """ Return a the result of the distribution function at x. Parameters ---------- x : float value within the domain of a parameter """ if math.isnan( self._urng ) : raise AttributeError( "Limits are needed for JeffreysPrior" ) try : return 0 if self.isOutOfLimits( x ) else 1.0 / ( x * self._urng ) except ValueError : with warnings.catch_warnings(): warnings.simplefilter( "ignore", category=RuntimeWarning ) return numpy.where( self.isOutOfLimits( x ), 0, 1.0 / ( x * self._urng ) ) # logResult has no better definition than the default: just take the math.log of result. # No specialized method here. def partialLog( self, p ): """ Return partial derivative of log( Prior ) wrt parameter. Parameters ---------- p : float the value """ try : return math.nan if self.isOutOfLimits( p ) else -1 / p except ValueError : return numpy.where( self.isOutOfLimits( p ), math.nan, -1 / p ) def isBound( self ): """ Return true if the integral over the prior is bound. """ return self.hasLowLimit( ) and self.hasHighLimit( ) def shortName( self ): """ Return a string representation of the prior. """ return str( "JeffreysPrior" + ( " unbound." if not self.isBound( ) else "" ) ) # * End of JeffreysPrior
dokesterREPO_NAMEBayesicFittingPATH_START.@BayesicFitting_extracted@BayesicFitting-master@BayesicFitting@[email protected]@.PATH_END.py
{ "filename": "pointless.py", "repo_name": "catboost/catboost", "repo_path": "catboost_extracted/catboost-master/contrib/python/Pygments/py3/pygments/lexers/pointless.py", "type": "Python" }
""" pygments.lexers.pointless ~~~~~~~~~~~~~~~~~~~~~~~~~ Lexers for Pointless. :copyright: Copyright 2006-2024 by the Pygments team, see AUTHORS. :license: BSD, see LICENSE for details. """ from pygments.lexer import RegexLexer, words from pygments.token import Comment, Error, Keyword, Name, Number, Operator, \ Punctuation, String, Text __all__ = ['PointlessLexer'] class PointlessLexer(RegexLexer): """ For Pointless source code. """ name = 'Pointless' url = 'https://ptls.dev' aliases = ['pointless'] filenames = ['*.ptls'] version_added = '2.7' ops = words([ "+", "-", "*", "/", "**", "%", "+=", "-=", "*=", "/=", "**=", "%=", "|>", "=", "==", "!=", "<", ">", "<=", ">=", "=>", "$", "++", ]) keywords = words([ "if", "then", "else", "where", "with", "cond", "case", "and", "or", "not", "in", "as", "for", "requires", "throw", "try", "catch", "when", "yield", "upval", ], suffix=r'\b') tokens = { 'root': [ (r'[ \n\r]+', Text), (r'--.*$', Comment.Single), (r'"""', String, 'multiString'), (r'"', String, 'string'), (r'[\[\](){}:;,.]', Punctuation), (ops, Operator), (keywords, Keyword), (r'\d+|\d*\.\d+', Number), (r'(true|false)\b', Name.Builtin), (r'[A-Z][a-zA-Z0-9]*\b', String.Symbol), (r'output\b', Name.Variable.Magic), (r'(export|import)\b', Keyword.Namespace), (r'[a-z][a-zA-Z0-9]*\b', Name.Variable) ], 'multiString': [ (r'\\.', String.Escape), (r'"""', String, '#pop'), (r'"', String), (r'[^\\"]+', String), ], 'string': [ (r'\\.', String.Escape), (r'"', String, '#pop'), (r'\n', Error), (r'[^\\"]+', String), ], }
catboostREPO_NAMEcatboostPATH_START.@catboost_extracted@catboost-master@contrib@python@Pygments@py3@pygments@[email protected]@.PATH_END.py
{ "filename": "_yref.py", "repo_name": "catboost/catboost", "repo_path": "catboost_extracted/catboost-master/contrib/python/plotly/py3/plotly/validators/funnel/marker/colorbar/_yref.py", "type": "Python" }
import _plotly_utils.basevalidators class YrefValidator(_plotly_utils.basevalidators.EnumeratedValidator): def __init__( self, plotly_name="yref", parent_name="funnel.marker.colorbar", **kwargs ): super(YrefValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, edit_type=kwargs.pop("edit_type", "colorbars"), values=kwargs.pop("values", ["container", "paper"]), **kwargs, )
catboostREPO_NAMEcatboostPATH_START.@catboost_extracted@catboost-master@contrib@python@plotly@py3@plotly@validators@funnel@marker@colorbar@[email protected]_END.py
{ "filename": "calc_slab.py", "repo_name": "galtay/rabacus", "repo_path": "rabacus_extracted/rabacus-master/rabacus/solvers/calc_slab.py", "type": "Python" }
""" Solves a slab with plane parallel radiation incident from one side. """ import numpy as np import one_zone as ozn from rabacus.atomic import chemistry from rabacus.atomic import cooling from rabacus.constants import units from rabacus.utils import utils __all__ = ['Slab'] class Slab: """ Solves a slab geometry with plane parallel radiation incident from one side. The slab is divided into `Nl` layers. Args: `Edges` (array): Distance to layer edges `T` (array): Temperature in each layer `nH` (array): hydrogen number density in each layer `nHe` (array): helium number density in each layer `rad_src` (:class:`~rabacus.rad_src.plane.PlaneSource`): Plane source .. note:: The arrays `T`, `nH`, and `nHe` must all be the same size. This size determines the number of shells, `Nl`. `Edges` determines the positions of the layer edges and must have `Nl+1` entries. Kwargs: `rec_meth` (string): How to treat recombinations {``fixed``, ``thresh``} `fixed_fcA` (float): If `rec_meth` = ``fixed``, constant caseA fraction `thresh_P_A` (float): If `rec_meth` = ``thresh``, this is the probability of absorption, P = 1 - exp(-tau), at which the transition to caseB rates begins. `thresh_P_B` (float): If `rec_meth` = ``thresh``, this is the probability of absorption, P = 1 - exp(-tau), at which the transition to caseB ends. `thresh_xmfp` (float): Determines the distance to probe when calculating optical depth for the caseA to caseB transition. Specifies a multiple of the mean free path for fully neutral gas. In equation form, L = thresh_xmfp / (n * sigma) `atomic_fit_name` (string): Source for atomic rate fits {``hg97``} `find_Teq` (bool): If ``False``, use fixed input T, if ``True`` solve for equilibrium T `z` (float): Redshift, only need if `find_Teq` = ``True`` `verbose` (bool): Verbose output? `tol` (float): tolerance for all convergence tests `thin` (bool): if ``True`` only solves optically thin Attributes: `U` (:class:`~rabacus.constants.units.Units`) `z_c` (array): distance from surface of slab to center of layer `dz` (array): thickness of layer `NH_c` (array): H column density from surface of slab to center of layer `dNH` (array): H column density through layer `NH1_c` (array): HI column density from surface of slab to center of layer `dNH1` (array): HI column density through layer `H1i` (array): HI photo-ionization rate `H1h` (array): HI photo-heating rate `xH1` (array): H neutral fraction nHI / nH `xH2` (array): H ionized fraction nHII / nH `ne` (array): electron number density `fcA_H2` (array): HII case A fraction `cool` (array): cooling rate [erg / (cm^3 K)] `heat` (array): heating rate [erg / (cm^3 K)] `heatH1` (array): contribution to `heat` from H1 photoheating `dtauH1_th` (array): HI optical depth at H1 ionizing threshold through layer `tauH1_th_lo` (array): HI optical depth below this layer `tauH1_th_hi` (array): HI optical depth above this layer `NH1_thru` (float): HI column density through entire slab `Nl` (int): Number of layers `itr` (int): Number of iterations to converge .. note:: For many of the attributes above, there are analagous versions for helium. We also note that the source of the atomic rates fit is stored in the variable `atomic_fit_name`, but the source of the photoionization cross section fits are stored in the point source object in the variable `px_fit_type`. Examples: The following code will solve a monochromatic source incident onto a slab with fixed recombination rates and temperatues. In this case we use a Haardt and Madau 2012 spectrum to calculate a grey photon energy which is then used to create a monochromatic plane source :: import numpy as np import rabacus as ra # create Haardt and Madau 2012 source #--------------------------------------------------------------- q_min = 1.0; q_max = 4.0e2; z = 3.0 hm12 = ra.rad_src.PlaneSource( q_min, q_max, 'hm12', z=z ) # get grey photon energy and create a monochromatic plane source #--------------------------------------------------------------- q_mono = hm12.grey.E.He2 / hm12.PX.Eth_H1 mono = ra.rad_src.PlaneSource( q_mono, q_mono, 'monochromatic' ) mono.normalize_H1i( hm12.thin.H1i ) # describe slab #--------------------------------------------------------------- Nl = 512; Yp = 0.24 nH = np.ones(Nl) * 1.5e-2 / ra.U.cm**3 nHe = nH * Yp * 0.25 / (1.0-Yp) Tslab = np.ones(Nl) * 1.0e4 * ra.U.K Lslab = 200.0 * ra.U.kpc Edges = np.linspace( 0.0 * ra.U.kpc, Lslab, Nl+1 ) # solve slab #--------------------------------------------------------------- slab = ra.solvers.Slab( Edges, Tslab, nH, nHe, mono, rec_meth='fixed', fixed_fcA=1.0 ) """ def __init__(self, Edges, T, nH, nHe, rad_src, # rec_meth = "fixed", fixed_fcA = 1.0, thresh_P_A = 0.01, thresh_P_B = 0.99, thresh_xmfp = 3.0e1, atomic_fit_name = "hg97", find_Teq = False, z = None, verbose = False, tol = 1.0e-10, thin = False, ): # attach units #----------------------------------------------- self.U = units.Units() # check input #----------------------------------------------- assert( Edges.size == T.size + 1 ) assert( T.shape == nH.shape == nHe.shape ) assert( T.shape == (T.size,) ) assert( rec_meth == 'fixed' or rec_meth == 'thresh' ) if find_Teq and z==None: msg = 'need to supply redshift if finding equilibrium temperature' raise utils.InputError(msg) if rad_src.source_type != 'plane': msg = 'source type needs to be plane' raise utils.InputError(msg) # set units #----------------------------------------------- Edges.units = 'cm' T.units = 'K' nH.units = '1.0/cm^3' nHe.units = '1.0/cm^3' # attach input #----------------------------------------------- self.Edges = Edges.copy() self.T = T.copy() self.nH = nH.copy() self.nHe = nHe.copy() self.rad_src = rad_src self.rec_meth = rec_meth if self.rec_meth == 'fixed': self.fixed_fcA = fixed_fcA elif self.rec_meth == 'thresh': assert thresh_xmfp > 0.0 assert thresh_P_B > thresh_P_A self.thresh_xmfp = thresh_xmfp self.thresh_P_A = thresh_P_A self.thresh_P_B = thresh_P_B self.thresh_dPAB = thresh_P_B - thresh_P_A self.thresh_tau_A = -np.log( 1.0 - thresh_P_A ) self.thresh_tau_B = -np.log( 1.0 - thresh_P_B ) self.atomic_fit_name = atomic_fit_name self.find_Teq = find_Teq self.verbose = verbose self.tol = tol self.thin = thin if find_Teq: self.z = z # initialize slab #----------------------------------------------- self.init_slab() self.set_optically_thin() if self.thin: return # solve slab (sweep until convergence) #----------------------------------------------------------- conv_old = np.sum( self.ne ) not_converged = True self.itr = 0 while not_converged: self.sweep_slab() conv_new = np.sum( self.ne ) if np.abs( conv_new/conv_old - 1.0 ) < self.tol: not_converged = False conv_old = conv_new self.itr += 1 # finalize slab #----------------------------------------------------------- self.finalize_slab() def init_slab( self ): """ Initialize slab values. """ if self.verbose: print 'begin initialization' # instantiate atomic rates (optically thin) #----------------------------------------------- if self.rec_meth == 'fixed': fcA_H2 = self.fixed_fcA fcA_He2 = self.fixed_fcA fcA_He3 = self.fixed_fcA elif self.rec_meth == 'thresh': fcA_H2 = 1.0 fcA_He2 = 1.0 fcA_He3 = 1.0 kchem = chemistry.ChemistryRates( self.T[0], fcA_H2, fcA_He2, fcA_He3, H1i = self.rad_src.thin.H1i, He1i = self.rad_src.thin.He1i, He2i = self.rad_src.thin.He2i, fit_name = self.atomic_fit_name ) kcool = cooling.CoolingRates( self.T[0], fcA_H2, fcA_He2, fcA_He3, H1h = self.rad_src.thin.H1h, He1h = self.rad_src.thin.He1h, He2h = self.rad_src.thin.He2h, fit_name = self.atomic_fit_name ) self.kchem = kchem self.kcool = kcool if self.verbose: print ' created kchem and kcool' # setup arrays #----------------------------------------------- self.Nl = self.nH.size Nl = self.Nl self.dz = self.Edges[1:] - self.Edges[0:-1] self.z_c = self.Edges[0:-1] + 0.5 * self.dz self.xH1 = np.zeros(Nl) self.dNH1 = np.zeros(Nl) / self.U.cm**2 self.dtauH1_th = np.zeros(Nl) self.tauH1_th_lo = np.zeros(Nl) # H1 optical depth below layer self.tauH1_th_hi = np.zeros(Nl) # H1 optical depth above layer self.H1i = np.zeros(Nl) / self.U.s self.H1h = np.zeros(Nl) * self.U.eV / self.U.s self.fcA_H2 = np.zeros(Nl) self.xHe1 = np.zeros(Nl) self.dNHe1 = np.zeros(Nl) / self.U.cm**2 self.dtauHe1_th = np.zeros(Nl) self.tauHe1_th_lo = np.zeros(Nl) # He1 optical depth below layer self.tauHe1_th_hi = np.zeros(Nl) # He1 optical depth above layer self.He1i = np.zeros(Nl) / self.U.s self.He1h = np.zeros(Nl) * self.U.eV / self.U.s self.fcA_He2 = np.zeros(Nl) self.xHe2 = np.zeros(Nl) self.dNHe2 = np.zeros(Nl) / self.U.cm**2 self.dtauHe2_th = np.zeros(Nl) self.tauHe2_th_lo = np.zeros(Nl) # He2 optical depth below layer self.tauHe2_th_hi = np.zeros(Nl) # He2 optical depth above layer self.He2i = np.zeros(Nl) / self.U.s self.He2h = np.zeros(Nl) * self.U.eV / self.U.s self.fcA_He3 = np.zeros(Nl) self.cool = np.zeros(Nl) * self.U.eV / (self.U.s * self.U.cm**3) self.heat = np.zeros(Nl) * self.U.eV / (self.U.s * self.U.cm**3) self.heatH1 = np.zeros(Nl) * self.U.eV / (self.U.s * self.U.cm**3) self.heatHe1 = np.zeros(Nl) * self.U.eV / (self.U.s * self.U.cm**3) self.heatHe2 = np.zeros(Nl) * self.U.eV / (self.U.s * self.U.cm**3) self.xH2 = np.zeros(Nl) self.xHe3 = np.zeros(Nl) self.ne = np.zeros(Nl) / self.U.cm**3 if self.verbose: print ' created simple arrays' # calc NH and NHe between S and center of each layer #---------------------------------------- self.dNH = self.dz * self.nH self.dNHe = self.dz * self.nHe self.NH_c = np.zeros(Nl) / self.U.cm**2 self.NHe_c = np.zeros(Nl) / self.U.cm**2 for i in xrange(Nl): self.NH_c[i] = np.sum( self.dNH[0:i] ) + 0.5 * self.dNH[i] self.NHe_c[i] = np.sum( self.dNHe[0:i] ) + 0.5 * self.dNHe[i] if self.verbose: print ' created NH_c and NHe_c' # calc mean free path when fully neutral for each shell # also calculate the bounds for each shell #-------------------------------------------------------- if self.rec_meth == 'thresh': L = self.Edges[-1] self.mfp_H1 = 1.0 / ( self.nH * self.rad_src.th.sigma_H1 ) self.L_H1 = self.mfp_H1 * self.thresh_xmfp if np.any( self.L_H1 > L ): indx = np.where( self.L_H1 > L ) self.L_H1[indx] = L self.mfp_He1 = 1.0 / ( self.nHe * self.rad_src.th.sigma_He1 ) self.L_He1 = self.mfp_He1 * self.thresh_xmfp if np.any( self.L_He1 > L ): indx = np.where( self.L_He1 > L ) self.L_He1[indx] = L self.mfp_He2 = 1.0 / ( self.nHe * self.rad_src.th.sigma_He2 ) self.L_He2 = self.mfp_He2 * self.thresh_xmfp if np.any( self.L_He2 > L ): indx = np.where( self.L_He2 > L ) self.L_He2[indx] = L self.ii_H1 = np.zeros(Nl, dtype=int) self.ff_H1 = np.zeros(Nl, dtype=int) self.ii_He1 = np.zeros(Nl, dtype=int) self.ff_He1 = np.zeros(Nl, dtype=int) self.ii_He2 = np.zeros(Nl, dtype=int) self.ff_He2 = np.zeros(Nl, dtype=int) for i in xrange(Nl): self.ii_H1[i], self.ff_H1[i] = \ self.return_bounds( i, self.L_H1[i] ) self.ii_He1[i], self.ff_He1[i] = \ self.return_bounds( i, self.L_He1[i] ) self.ii_He2[i], self.ff_He2[i] = \ self.return_bounds( i, self.L_He2[i] ) if self.verbose: print ' created index arrays for fcA' if self.verbose: print 'initialization complete' def return_bounds( self, i, Ltarget ): """ Given a shell number and a distance, return the indices such that self.r[i] - self.r[ii] > Ltarget and self.r[ff] - self.r[i] > Ltarget. """ L = 0.0 * self.U.cm k = 1 while L < Ltarget: ii = i-k if ii < 0: ii = 0 L = 1.5 * Ltarget else: L = L + self.dz[ii] k += 1 L = 0.0 * self.U.cm k = 1 while L < Ltarget: ff = i+k if ff >= self.Nl: ff = self.Nl-1 L = 1.5 * Ltarget else: L = L + self.dz[ff] k += 1 return ii,ff def set_optically_thin( self ): """ Set optically thin ionzation state """ # initialize a chemistry object #---------------------------------------- if self.rec_meth == 'fixed': self.fcA_H2 = np.ones(self.Nl) * self.fixed_fcA self.fcA_He2 = np.ones(self.Nl) * self.fixed_fcA self.fcA_He3 = np.ones(self.Nl) * self.fixed_fcA else: self.fcA_H2 = np.ones(self.Nl) self.fcA_He2 = np.ones(self.Nl) self.fcA_He3 = np.ones(self.Nl) kchem = chemistry.ChemistryRates( self.T, self.fcA_H2, self.fcA_He2, self.fcA_He3, H1i = np.ones(self.Nl) * self.rad_src.thin.H1i, He1i = np.ones(self.Nl) * self.rad_src.thin.He1i, He2i = np.ones(self.Nl) * self.rad_src.thin.He2i, fit_name = self.atomic_fit_name, ) kcool = cooling.CoolingRates( self.T, self.fcA_H2, self.fcA_He2, self.fcA_He3, H1h = np.ones(self.Nl) * self.rad_src.thin.H1h, He1h = np.ones(self.Nl) * self.rad_src.thin.He1h, He2h = np.ones(self.Nl) * self.rad_src.thin.He2h, fit_name = self.atomic_fit_name, ) if self.find_Teq: x = ozn.Solve_PCTE( self.nH, self.nHe, kchem, kcool, self.z, self.tol ) self.T = x.Teq else: x = ozn.Solve_PCE( self.nH, self.nHe, kchem, self.tol ) self.xH1 = x.H1 self.xH2 = x.H2 self.xHe1 = x.He1 self.xHe2 = x.He2 self.xHe3 = x.He3 # summarize #---------------------------------------- self.dNH1 = self.dNH * self.xH1 self.dNHe1 = self.dNHe * self.xHe1 self.dNHe2 = self.dNHe * self.xHe2 self.dtauH1_th = self.dNH1 * self.rad_src.th.sigma_H1 self.dtauHe1_th = self.dNHe1 * self.rad_src.th.sigma_He1 self.dtauHe2_th = self.dNHe2 * self.rad_src.th.sigma_He2 self.ne = self.xH2 * self.nH + \ ( self.xHe2 + 2.0 * self.xHe3 ) * self.nHe def set_taus( self, i ): """ Calculate optical depth at the ionization thresholds of each species above and below this layer. Does not include a contribution from the layer itself. Args: `i` (int): layer index """ self.tauH1_th_lo[i] = np.sum( self.dtauH1_th[0:i] ) self.tauH1_th_hi[i] = np.sum( self.dtauH1_th[i+1:self.Nl] ) self.tauHe1_th_lo[i] = np.sum( self.dtauHe1_th[0:i] ) self.tauHe1_th_hi[i] = np.sum( self.dtauHe1_th[i+1:self.Nl] ) self.tauHe2_th_lo[i] = np.sum( self.dtauHe2_th[0:i] ) self.tauHe2_th_hi[i] = np.sum( self.dtauHe2_th[i+1:self.Nl] ) def return_fcA( self, tau_th ): """ Given the optical depth at nu_th for any given species, returns the case A fraction. """ if tau_th < self.thresh_tau_A: fcA = 1.0 elif tau_th > self.thresh_tau_B: fcA = 0.0 else: P = 1.0 - np.exp( -tau_th ) delta = P - self.thresh_P_A fcB = delta / self.thresh_dPAB fcA = 1.0 - fcB return fcA def set_fcA( self, i ): """ Calculate case A fraction for each species in this layer. Args: `i` (int): layer index """ if self.rec_meth == 'fixed': self.fcA_H2[i] = self.fixed_fcA self.fcA_He2[i] = self.fixed_fcA self.fcA_He3[i] = self.fixed_fcA elif self.rec_meth == 'thresh': ii = self.ii_H1[i]; ff = self.ff_H1[i] tau_lo = np.sum( self.dtauH1_th[ii:i] ) fcA_lo = self.return_fcA( tau_lo ) tau_hi = np.sum( self.dtauH1_th[i+1:ff+1] ) fcA_hi = self.return_fcA( tau_hi ) self.fcA_H2[i] = (fcA_lo + fcA_hi) * 0.5 ii = self.ii_He1[i]; ff = self.ff_He1[i] tau_lo = np.sum( self.dtauHe1_th[ii:i] ) fcA_lo = self.return_fcA( tau_lo ) tau_hi = np.sum( self.dtauHe1_th[i+1:ff+1] ) fcA_hi = self.return_fcA( tau_hi ) self.fcA_He2[i] = (fcA_lo + fcA_hi) * 0.5 ii = self.ii_He2[i]; ff = self.ff_He2[i] tau_lo = np.sum( self.dtauHe2_th[ii:i] ) fcA_lo = self.return_fcA( tau_lo ) tau_hi = np.sum( self.dtauHe2_th[i+1:ff+1] ) fcA_hi = self.return_fcA( tau_hi ) self.fcA_He3[i] = (fcA_lo + fcA_hi) * 0.5 def set_photoion_rates( self, i ): """ set photoionization rates for this layer Args: `i` (int): layer index """ tauH1_th = np.float( self.tauH1_th_lo[i] + 0.5 * self.dtauH1_th[i] ) tauHe1_th = np.float( self.tauHe1_th_lo[i] + 0.5 * self.dtauHe1_th[i] ) tauHe2_th = np.float( self.tauHe2_th_lo[i] + 0.5 * self.dtauHe2_th[i] ) self.H1i[i] = self.rad_src.shld_H1i( tauH1_th, tauHe1_th, tauHe2_th ) self.He1i[i] = self.rad_src.shld_He1i( tauH1_th, tauHe1_th, tauHe2_th ) self.He2i[i] = self.rad_src.shld_He2i( tauH1_th, tauHe1_th, tauHe2_th ) def set_photoheat_rates( self, i ): """ set photoheating rates for this layer Args: `i` (int): layer index """ tauH1_th = np.float( self.tauH1_th_lo[i] + 0.5 * self.dtauH1_th[i] ) tauHe1_th = np.float( self.tauHe1_th_lo[i] + 0.5 * self.dtauHe1_th[i] ) tauHe2_th = np.float( self.tauHe2_th_lo[i] + 0.5 * self.dtauHe2_th[i] ) self.H1h[i] = self.rad_src.shld_H1h( tauH1_th, tauHe1_th, tauHe2_th ) self.He1h[i] = self.rad_src.shld_He1h( tauH1_th, tauHe1_th, tauHe2_th ) self.He2h[i] = self.rad_src.shld_He2h( tauH1_th, tauHe1_th, tauHe2_th ) def sweep_slab(self): """ Performs one sweep through slab. """ for i in xrange(self.Nl): if self.verbose: print 'i = ', i # calc tauXX above and below this layer # (constant during iterations) #---------------------------------------- self.set_taus( i ) # calculate fcA (average over directions) # (constant during iterations) #---------------------------------------- self.set_fcA( i ) # iterate until we have convergence in the optical # depth through this layer #-------------------------------------------------- conv_old = self.dtauH1_th[i] + \ self.dtauHe1_th[i] + self.dtauHe2_th[i] not_converged = True itr = 0 while not_converged: # calculate photoion / chemistry rates #---------------------------------------- self.set_photoion_rates( i ) self.kchem.set( self.T[i], self.fcA_H2[i], self.fcA_He2[i], self.fcA_He3[i], H1i = self.H1i[i], He1i = self.He1i[i], He2i = self.He2i[i] ) # calculate photoheat / cooling rates #---------------------------------------- self.set_photoheat_rates( i ) self.kcool.set( self.T[i], self.fcA_H2[i], self.fcA_He2[i], self.fcA_He3[i], H1h = self.H1h[i], He1h = self.He1h[i], He2h = self.He2h[i] ) # if we are finding the equilibrium temperature # we need to call Solve_PCTE #---------------------------------------- if self.find_Teq: x = ozn.Solve_PCTE( np.ones(1) * self.nH[i], np.ones(1) * self.nHe[i], self.kchem, self.kcool, self.z, self.tol ) self.T[i] = x.Teq # otherwise we call Solve_PCE #---------------------------------------- else: x = ozn.Solve_PCE( np.ones(1) * self.nH[i], np.ones(1) * self.nHe[i], self.kchem, self.tol ) # set the ionization fractions in the object #---------------------------------------- self.xH1[i] = x.H1 self.xH2[i] = x.H2 self.xHe1[i] = x.He1 self.xHe2[i] = x.He2 self.xHe3[i] = x.He3 # calculate heating rates in layer #---------------------------------------- self.heatH1[i] = self.H1h[i] * self.nH[i] * self.xH1[i] self.heatHe1[i] = self.He1h[i] * self.nHe[i] * self.xHe1[i] self.heatHe2[i] = self.He2h[i] * self.nHe[i] * self.xHe2[i] self.heat[i] = self.heatH1[i] + \ self.heatHe1[i] + self.heatHe2[i] # calculate electron density in layer #---------------------------------------- self.ne[i] = self.xH2[i] * self.nH[i] + \ ( self.xHe2[i] + 2 * self.xHe3[i] ) * self.nHe[i] # calculate tauXX through layer #---------------------------------------- self.dNH1[i] = self.dNH[i] * self.xH1[i] self.dNHe1[i] = self.dNHe[i] * self.xHe1[i] self.dNHe2[i] = self.dNHe[i] * self.xHe2[i] self.dtauH1_th[i] = self.dNH1[i] * self.rad_src.th.sigma_H1 self.dtauHe1_th[i] = self.dNHe1[i] * self.rad_src.th.sigma_He1 self.dtauHe2_th[i] = self.dNHe2[i] * self.rad_src.th.sigma_He2 # check convergence #---------------------------------------- conv_new = self.dtauH1_th[i] + \ self.dtauHe1_th[i] + self.dtauHe2_th[i] if np.abs( conv_new/conv_old - 1.0 ) < self.tol: not_converged = False conv_old = conv_new itr += 1 def finalize_slab( self ): """ Calculate some final values using fully solved slab. """ # calculate column densities up to each layer #----------------------------------------------------------- self.NH1_c = np.zeros(self.Nl) / self.U.cm**2 self.NHe1_c = np.zeros(self.Nl) / self.U.cm**2 self.NHe2_c = np.zeros(self.Nl) / self.U.cm**2 for i in xrange(self.Nl): self.NH1_c[i] = np.sum( self.dNH1[0:i] ) + 0.5 * self.dNH1[i] self.NHe1_c[i] = np.sum( self.dNHe1[0:i] ) + 0.5 * self.dNHe1[i] self.NHe2_c[i] = np.sum( self.dNHe2[0:i] ) + 0.5 * self.dNHe2[i] # calculate column densities through whole slab #----------------------------------------------------------- self.NH1_thru = np.sum( self.dNH * self.xH1 ) self.logNH1_thru = np.log10( self.NH1_thru.magnitude ) self.NHe1_thru = np.sum( self.dNHe * self.xHe1 ) self.logNHe1_thru = np.log10( self.NHe1_thru.magnitude ) self.NHe2_thru = np.sum( self.dNHe * self.xHe2 ) self.logNHe2_thru = np.log10( self.NHe2_thru.magnitude ) # set preferred units #----------------------------------------------------------- self.z_c.units = 'kpc' # delete things we don't need #----------------------------------------------------------- del(self.kchem) del(self.kcool) # calculate effective photoionization rates # (i.e. the photoionization rates that result in # the same ionization fractions if caseA rates # are used). Note, we assume that the recombination # radiation is peaked near the ionization thresholds # and therefore does not alter the temperature. #------------------------------------------------ kchemA = chemistry.ChemistryRates( self.T, fcA_H2 = 1.0, fcA_He2 = 1.0, fcA_He3 = 1.0, H1i = self.H1i, He1i = self.He1i, He2i = self.He2i, fit_name = self.atomic_fit_name ) self.H1i_eff = kchemA.reH2 * self.ne * self.xH2 / self.xH1 - \ kchemA.ciH1 * self.ne self.He1i_eff = kchemA.reHe2 * self.ne * self.xHe2 / self.xHe1 - \ kchemA.ciHe1 * self.ne self.He2i_eff = kchemA.reHe3 * self.ne * self.xHe3 / self.xHe2 - \ kchemA.ciHe2 * self.ne
galtayREPO_NAMErabacusPATH_START.@rabacus_extracted@rabacus-master@rabacus@solvers@[email protected]_END.py
{ "filename": "muLAnFig.py", "repo_name": "muLAn-project/muLAn", "repo_path": "muLAn_extracted/muLAn-master/muLAn/utils/muLAnFig.py", "type": "Python" }
# -*- coding: utf-8 -*- """Create a figure from muLAn outputs of publication quality""" # Copyright (c) 2014-2018 Clément Ranc & Arnaud Cassan # Distributed under the terms of the MIT license # # This module is part of software: # muLAn: gravitational MICROlensing Analysis code # https://github.com/muLAn-project/muLAn import ConfigParser as cp from scipy.interpolate import interp1d import glob import numpy as np from copy import copy import muLAn.mulan as mulan import muLAn.packages.general_tools as gtools import matplotlib.pyplot as plt class figure(): """Create a figure from muLAn outputs Calling muLAnFig ================ fig = muLAnFig.figure(figsize=(10,6), labelposx=0.8, labelposy=[0.6, 0.9], labelsize=10) Parameters ---------- figsize : tuple, optional Figure size (x, y). Default is: figsize=(10,6). labelposx: float, optional Horizontal position of the labels of the observatories names. Possible values are 0 (left) to 1 (right). Default is: labelposx=0.8. labelposy: sequence of float, optional A 2-length sequence [ymin, ymax], which defines the vertical range where the labels of the observatories names will be displayed. Possible values are 0 (down) to 1 (up). Default is: labelposy=[0.6, 0.9]. labelsize=10: float, optional Font size of the labels of the observatories names. Default is: labelsize=10 User methods ------------ addinset_caustics : see below addinset_lightcurve : see below save : see below show : see below Returns ------- out : figure Using show will open a matplotlib.pylab interactive plot. Using save will store the figure in the disk. NB: do not use show before save, the saved figure will be empty. Examples -------- Examples in automatic mode (called from the EVENT/ working directory): >>> fig = muLAnFig.figure(figsize=(10,6), labelposx=0.83, labelposy=[0.54, 0.94], labelsize=9) >>> fig.plot(trange=[7100, 7200], lcrange=[12, 16.8], resrange=[-0.38, 0.38]) >>> fig.addinset_caustics([0.17, 0.64, 0.2, 0.3], xrange=[-1.75, -1.55], yrange=[-0.12, 0.13]) >>> fig.addinset_lightcurve([0.15, 0.65, 0.3, 0.3], trange=[7144, 7148], lcrange=[12, 15.8]) >>> fig.save('Plots/Figure.pdf') >>> fig.show() >>> fig = muLAnFig.figure() >>> fig.plot() >>> fig.addinset_caustics([0.2, 0.7, 0.2, 0.2]) >>> fig.addinset_lightcurve([0.2, 0.4, 0.2, 0.2]) >>> fig.show() Example in manual mode: >>> fig = muLAnFig.figure(labelposx=0.83, labelposy=[0.54, 0.94]) >>> fig.plot(data=[('data1.dat', '#000000', 'Tel1'), ('data2.dat', '#FF00FF', 'Tel2')], lctraj=[('EARTH.dat', 'black')], trange=[7100, 7200], lcrange=[12, 16.8], resrange=[-0.38, 0.38]) >>> fig.addinset_caustics([0.17, 0.64, 0.2, 0.3], caus=[('caustic.dat', 'red')]) >>> fig.save('Plots/Figure.pdf') """ def __init__(self, figsize=(10,6), labelposx=0.8, labelposy=[0.6, 0.9], labelsize=10): """Inititalize figure layout and search for muLAn output files""" self._labelposx = labelposx self._labelposy = labelposy self._labelsize = labelsize self._lccompt = 1 self._causcompt = 1 try: print " Searching for muLAn outputs...", self._getconfig() print "\033[1m\033[32mfound\033[0m" except: self._cfgsetup = None self._cfgobs = None print "\033[1m\033[35mnot found\033[0m (may lead to an error in non-manual mode)" try: print " Searching for muLAn best-fit parameters file...", self._getbestfitparams() print "\033[1m\033[32mfound\033[0m" except: print "\033[1m\033[35mnot found\033[0m (may lead to an error in non-manual mode)" # figure layout plt.close('all') plt.rc('text', usetex=True) plt.rc('font', family='serif') self.fig, (self._LC, self._RES) = plt.subplots(2, sharex=True, figsize=figsize, gridspec_kw={'height_ratios':[3, 1]}) plt.subplots_adjust(left=0.1, bottom=0.1, right=0.97, top=0.97, wspace=None, hspace=0.) def plot(self, data=None, lctraj=None, trange=None, lcrange=None, resrange=None): """Create main figure pannel Parameters ---------- data: sequence of tuples, optional A n-length sequence [..., ('data_i.dat', 'color_i', 'label_i'), ...], where 'data_i.dat' is the ith data file, 'color_i' its color (name or hexadecimal code), and 'label_i' the name to be displayed on the figure labels. Default is: use muLAn outputs (data=None). lctraj: sequence of tuples, optional A n-length sequence [..., ('lctraj_i.dat', 'color_i'), ...], where 'lctraj_i.dat' is the ith trajectory + light curve file, and 'color_i' its color (name or hexadecimal code). Default is: use muLAn outputs (lctraj=None). trange: sequence of float, optional A 2-length sequence [tmin, tmax], which defines the range of dates to be plotted in the main plot. Default is: automatic range (trange=None) lcrange: sequence of float, optional A 2-length sequence [magmin, magmax], which defines the range of magnitudes to be plotted in the main plot. Default is: automatic range (lcrange=None) resrange: sequence of float, optional A 2-length sequence [magmin, magmax], which defines the range of magnitudes to be plotted in the residuals plot. Default is: automatic range (resrange=None) """ print "\033[1m Creating main figure layout...\033[0m" # test whether to select outputs from muLAn's .ini files if (data == None) and (self._cfgobs != None): data = self._getdata() if (lctraj == None) and (self._cfgobs != None): lctraj = self._getlctraj() self.data = data self.lctraj = lctraj if trange: self._RES.set_xlim([trange[0], trange[1]]) if resrange: self._RES.set_ylim([resrange[0], resrange[1]]) if lcrange: self._LC.set_ylim([lcrange[0], lcrange[1]]) self._LC.invert_yaxis() lwidth = 1. fontsize = 12 plt.setp(self._LC.spines.values(), linewidth=lwidth) plt.setp(self._RES.spines.values(), linewidth=lwidth) self._LC.tick_params(labelsize=fontsize, width=0.8, direction='in', length=8) self._RES.tick_params(labelsize=fontsize, width=0.8, direction='in', length=8) self._RES.set_xlabel(r'HJD - 2,450,000', size=fontsize) self._LC.set_ylabel(r'Magnitude', size=fontsize) self._RES.set_ylabel(r'Residuals', size=fontsize) # plot theoretical light curves for lctraji, color in self.lctraj: print " Reading theoretical light curve file:\033[3m", lctraji, "\033[0m" hjdr, amp, magr, xt, yt = np.loadtxt(lctraji, unpack=True) hjd, mag = self._optimizemc(hjdr, magr) self._LC.plot(hjd, mag, color=color, linewidth=1) # observatory names label positions if not self._labelposx: x = 0.7 else: x = self._labelposx if not self._labelposy: ymin, ymax = 0.5, 0.7 else: ymin, ymax = self._labelposy y = iter(np.linspace(ymin, ymax, len(self.data), endpoint=False)) # read and plot data and residuals for datai, color, obsname in self.data: print " Reading data file:\033[3m", datai, "\033[0m" ID, hjd, mag, errmag, resmag, amp, erramp, resamp, bkg, seeing, xs, ys, chi, toto, tata = np.loadtxt(datai, unpack=True) self._LC.errorbar(hjd, mag, errmag, fmt='o', color=color, markersize=4, alpha=0.4, linewidth=1) self._RES.plot((np.min(hjd), np.max(hjd)), (0., 0.), 'k-', linewidth=0.4) self._RES.errorbar(hjd, resmag, errmag, fmt='o', color=color, markersize=4, alpha=0.4, linewidth=1) # display observatory names self._LC.annotate(r'$\bullet$ ' + obsname, xy=(x, y.next()), xycoords='figure fraction', color=color, fontsize=self._labelsize, bbox={'facecolor':'red', 'alpha':0.5, 'pad':10}) def addinset_lightcurve(self, layout, trange=None, lcrange=None): """Add a light curve zoom pannel to the plot Parameters ---------- layout: sequence of float A 4-length sequence [left, bottom, width, height], which defines the position and shape of the inset. trange: sequence of float, optional A 2-length sequence [tmin, tmax], which defines the range of dates to be plotted in the inset plot. Default is: automatic range (trange=None) lcrange: sequence of float, optional A 2-length sequence [magmin, magmax], which defines the range of magnitudes to be plotted in the inset plot. Default is: automatic range (lcrange=None) """ print "\033[1m Creating light curve inset " + str(self._lccompt) + "...\033[0m" self._lccompt += 1 # pannel layout ZLC = self.fig.add_axes(layout) if trange: ZLC.set_xlim(trange) if lcrange: ZLC.set_ylim(lcrange) ZLC.invert_yaxis() # read and plot observed data and residuals for datai, color, obsname in self.data: print " Reading data file:\033[3m", datai, "\033[0m" ID, hjd, mag, errmag, resmag, amp, erramp, resamp, bkg, seeing, xs, ys, chi, toto, tata = np.loadtxt(datai, unpack=True) ZLC.errorbar(hjd, mag, errmag, fmt='o', color=color, markersize=4, alpha=0.4, linewidth=1) # plot theoretical light curves for lctraji, color in self.lctraj: print " Reading theoretical light curve file:\033[3m", lctraji, "\033[0m" hjdr, amp, magr, xt, yt = np.loadtxt(lctraji, unpack=True) hjd, mag = self._optimizemc(hjdr, magr) # hjd, amp, mag, xt, yt = np.loadtxt(lctraji, unpack=True) ZLC.plot(hjd, mag, color=color, linewidth=1) def addinset_caustics(self, layout, caus=None, src=None, xrange=None, yrange=None): """Add a caustic pannel to the plot Parameters ---------- layout: sequence of float A 4-length sequence [left, bottom, width, height], which defines the position and shape of the inset. caus: sequence of tuples, optional A n-length sequence [..., ('caus_i.dat', 'color_i'), ...], where 'caus_i.dat' is the ith caustic file, and 'color_i' its color (name or hexadecimal code). Default is: use muLAn outputs (caus=None). src: sequence of tuples, optional A n-length sequence [..., (date, color), ...], where `date` is the time (HJD) at which the source edge is plotted, and `color` is the color of the edge of the source, that day. Default is None (no source plotted). If src='t0', then the source is plotted at t0 in black. Other exemple: src=[(7387.0, 'green'), (7384.8, 'pink')] xrange: sequence of float, optional A 2-length sequence [xmin, xmax], which defines the horizontal range for the caustic plot. Default is: automatic range (xange=None) yrange: sequence of float, optional A 2-length sequence [ymin, ymax], which defines the vertical range for the caustic plot. Default is: automatic range (yrange=None) """ print "\033[1m Creating caustics inset "+ str(self._causcompt) + "...\033[0m" self._causcompt += 1 # pannel layout CAU = self.fig.add_axes(layout) if not (xrange and yrange): CAU.set_aspect('equal') if xrange: CAU.set_xlim(xrange) if yrange: CAU.set_ylim(yrange) # plot trajectories for lctraji, color in self.lctraj: print " Reading trajectory file:\033[3m", lctraji, "\033[0m" hjd, amp, mag, xt, yt = np.loadtxt(lctraji, unpack=True) CAU.plot(xt, yt, color=color, linewidth=1) # Plot the source edge if src != None: if src == 't0': time_src = [self._bf['t0']] color_src = ['k'] else: time_src = [time for time, color in src] color_src = [color for time, color in src] x_interp = interp1d(hjd, xt) y_interp = interp1d(hjd, yt) for i in range(len(time_src)): print " Plotting the source at \033[3m", time_src[i], "\033[0m" if (time_src[i] < hjd[-1]) & (time_src[i] > hjd[0]): src_edge = (x_interp(time_src[i]) + 1j * y_interp(time_src[i])) src_edge = src_edge + self._bf['rho'] * np.exp(1j * np.linspace(0, 2.0*np.pi, 100)) print color_src[i] CAU.plot(src_edge.real, src_edge.imag, color=color_src[i], linewidth=1) else: print " Skipped: the source trajectory does not include that day (choose a day closer than t0)" # Load caustics fname = "{:s}CAUSTIC.dat".format(self._pathoutputs) fcaustics = np.loadtxt(fname, unpack=False, dtype=np.float64) n_caus = fcaustics.shape[1] / 2 # Load caustic times if n_caus > 1: fname = "{:s}CAUSTIC.dat".format(self._pathoutputs) fcaustics = open(fname, 'r') for line in fcaustics: break fcaustics.close() times = line.replace(" ", "").replace("x", "").replace("y", "").replace("#", "").replace("(", "").replace("\n", "").split(")") times = np.unique(times) try: times[0] = 't0 = {:.6f}'.format(self._bf['t0']) except AttributeError: times[0] = "t0" else: try: times = np.atleast_1d(['t0 = {:.6f}'.format(self._bf['t0'])]) except AttributeError: times = np.atleast_1d(['t0']) # Plot caustics if caus == None: color_caus = ['red', 'Orange', 'SeaGreen', 'LightSeaGreen', 'CornflowerBlue', 'DarkViolet'] else: color_caus = [color for cau, color in caus] for i in range(n_caus): # print " Plotting caustic " + str(i + 1) + "..." print " Plotting caustic:\033[3m", times[i], "\033[0m" xc = fcaustics.T[2*i] yc = fcaustics.T[2*i + 1] CAU.scatter(xc, yc, marker='.', c=color_caus[i], s=0.1) color_caus = np.roll(color_caus, -1) def save(self, figname): """Save figure""" print "\033[1m Saving figure: \033[3m" + figname + "...\033[0m" plt.savefig(figname) def show(self): """Show figure""" plt.show() def _optimizemc(self, x, y, err=0.001): """Optimize the sampling of the input curve""" print " ... optimizing sampling:", N = len(x) ts = np.zeros(N, dtype=np.float_) As = np.zeros(N, dtype=np.float_) # Algorithm n = 0 i = 0 while n < N: cond = True As[n] = y[i] ts[n] = x[i] n += 1 p = 2 while p <= N-1-i: # 2≤p if np.logical_not(cond): break for k in np.arange(p-1)+1: # 1≤k≤p-1 Alin = (x[i+k] - x[i]) * (y[i+p] - y[i]) / (x[i+p] - x[i]) + y[i] cond = np.abs(Alin - y[i+k]) <= err if np.logical_not(cond): i = i+p-1 break p += 1 if (p == N-i): break ts[n-1] = x[i] As[n-1] = y[i] ts[n] = x[N-1] As[n] = y[N-1] xopt = copy(ts[0:n+1]) yopt = copy(As[0:n+1]) # verbose print "\033[3mkeeping " + str(n + 1) + " points out of " + str(N) + "\033[0m" return xopt, yopt def _getdata(self): """Get usefull data file names from muLAn's .ini files""" # Extract required information data = list() for i in xrange(len(self._observatories)): table = [a.strip() for a in self._cfgobs.get('ObservatoriesDetails', self._observatories[i]).split(',')] fname = "{:s}{:s}.dat".format(self._pathoutputs, self._observatories[i].upper()) data.append((fname, "#" + table[1], table[0])) return data def _getlctraj(self): """Get usefull light curve/trajetory file names from muLAn's .ini files""" # Extract required information traj = list() colors = np.array(['black', 'blue', 'orange']) for i in xrange(len(self._observatories)): table = [a.strip() for a in self._cfgobs.get('ObservatoriesDetails', self._observatories[i]).split(',')] traj.append(table[4]) traj = np.unique(traj) traj_final = list() for a in traj: fname = "{:s}{:s}.dat".format(self._pathoutputs, a.upper()) traj_final.append((fname, colors[0])) colors = np.roll(colors, -1) return traj_final def _getconfig(self): """Load the configuration files *.ini.""" # Path of the event path_event = mulan.getpath_event() # Configuration files fname_setup = "{:s}setup.ini".format(path_event) fname_advanced = "{:s}advancedsetup.ini".format(path_event) fname_obs = "{:s}observatories.ini".format(path_event) # Load configuration files cfgsetup = cp.SafeConfigParser() cfgsetup.read([fname_setup, fname_advanced]) cfgobs = cp.SafeConfigParser() cfgobs.read(path_event + 'observatories.ini') # text = "Load parameter files..." # gtools.communicate(cfgsetup, 1, text, opts=[gtools.printoption.level0], prefix=True, newline=True) # Add the path to the configuration cfgsetup.set('FullPaths', 'Event', path_event) # Check the paths if cfgsetup.get('FullPaths', 'Code').replace(" ", "") != "": if cfgsetup.get('FullPaths', 'Code')[-1] != '/': cfgsetup.set('FullPaths', 'Code', cfgsetup.get('FullPaths', 'Code') + '/') if cfgsetup.get('FullPaths', 'Event')[-1] != '/': cfgsetup.set('FullPaths', 'Event', cfgsetup.get('FullPaths', 'Event') + '/') if cfgsetup.get('RelativePaths', 'Data')[-1] != '/': cfgsetup.set('RelativePaths', 'Data', cfgsetup.get('RelativePaths', 'Data') + '/') if cfgsetup.get('RelativePaths', 'Plots')[-1] != '/': cfgsetup.set('RelativePaths', 'Plots', cfgsetup.get('RelativePaths', 'Plots') + '/') if cfgsetup.get('RelativePaths', 'Chains')[-1] != '/': cfgsetup.set('RelativePaths', 'Chains', cfgsetup.get('RelativePaths', 'Chains') + '/') if cfgsetup.get('RelativePaths', 'Outputs')[-1] != '/': cfgsetup.set('RelativePaths', 'Outputs', cfgsetup.get('RelativePaths', 'Outputs') + '/') if cfgsetup.get('RelativePaths', 'Archives')[-1] != '/': cfgsetup.set('RelativePaths', 'Archives', cfgsetup.get('RelativePaths', 'Archives') + '/') if cfgsetup.get('RelativePaths', 'ModelsHistory')[-1] != '/': cfgsetup.set('RelativePaths', 'ModelsHistory', cfgsetup.get('RelativePaths', 'ModelsHistory') + '/') self._cfgsetup = cfgsetup self._cfgobs = cfgobs # Data file names data2find = np.array(self._cfgobs.options('ObservatoriesDetails')) # Cross-match with data to use data2use = np.array(self._cfgsetup.options('Observatories')) data2use = np.array([data2find[i] for i in xrange(len(data2find)) if np.any(data2use == data2find[i])]) # Cross-match with existing files path = self._cfgsetup.get('FullPaths', 'Event') + self._cfgsetup.get('RelativePaths', 'Outputs') data_filenames = glob.glob(path + '*') observatories = [a.split('/')[-1] for a in data_filenames] data_filenames = [data_filenames[i] for i in xrange(len(data_filenames)) if np.any(data2use == observatories[i].rpartition('.')[0].lower())] observatories = [ob.rpartition('.')[0].lower() for ob in observatories if np.any(data2use == ob.rpartition('.')[0].lower())] self._observatories = observatories self._pathoutputs = path def _getbestfitparams(self): """Load the values of the best fit.""" fname = "{:s}Results.txt".format(self._pathoutputs) file_res = open(fname, 'r') res = "" for line in file_res: res = res + line file_res.close() res = res.split("Best-fitting parameters")[1] res = res.split("Site")[0] res = res.replace("\n", "").split(" ") res = [a for a in res if a != ""] res = [a for a in res if a != "="] res = np.reshape(res, (len(res)/2, 2)) bf = dict() [bf.update({res.T[0][i]: float(res.T[1][i])}) for i in range(res.shape[0])] self._bf = bf if __name__ == '__main__': help(muLAnFig)
muLAn-projectREPO_NAMEmuLAnPATH_START.@muLAn_extracted@muLAn-master@muLAn@[email protected]@.PATH_END.py
{ "filename": "_ticktextsrc.py", "repo_name": "catboost/catboost", "repo_path": "catboost_extracted/catboost-master/contrib/python/plotly/py2/plotly/validators/sunburst/marker/colorbar/_ticktextsrc.py", "type": "Python" }
import _plotly_utils.basevalidators class TicktextsrcValidator(_plotly_utils.basevalidators.SrcValidator): def __init__( self, plotly_name="ticktextsrc", parent_name="sunburst.marker.colorbar", **kwargs ): super(TicktextsrcValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, edit_type=kwargs.pop("edit_type", "none"), role=kwargs.pop("role", "info"), **kwargs )
catboostREPO_NAMEcatboostPATH_START.@catboost_extracted@catboost-master@contrib@python@plotly@py2@plotly@validators@sunburst@marker@colorbar@[email protected]_END.py
{ "filename": "functional_api.py", "repo_name": "keras-team/keras", "repo_path": "keras_extracted/keras-master/guides/functional_api.py", "type": "Python" }
""" Title: The Functional API Author: [fchollet](https://twitter.com/fchollet) Date created: 2019/03/01 Last modified: 2020/04/12 Description: Complete guide to the functional API. Accelerator: GPU """ """ ## Setup """ import numpy as np import keras from keras import layers from keras import ops """ ## Introduction The Keras *functional API* is a way to create models that are more flexible than the `keras.Sequential` API. The functional API can handle models with non-linear topology, shared layers, and even multiple inputs or outputs. The main idea is that a deep learning model is usually a directed acyclic graph (DAG) of layers. So the functional API is a way to build *graphs of layers*. Consider the following model: <div class="k-default-codeblock"> ``` (input: 784-dimensional vectors) ↧ [Dense (64 units, relu activation)] ↧ [Dense (64 units, relu activation)] ↧ [Dense (10 units, softmax activation)] ↧ (output: logits of a probability distribution over 10 classes) ``` </div> This is a basic graph with three layers. To build this model using the functional API, start by creating an input node: """ inputs = keras.Input(shape=(784,)) """ The shape of the data is set as a 784-dimensional vector. The batch size is always omitted since only the shape of each sample is specified. If, for example, you have an image input with a shape of `(32, 32, 3)`, you would use: """ # Just for demonstration purposes. img_inputs = keras.Input(shape=(32, 32, 3)) """ The `inputs` that is returned contains information about the shape and `dtype` of the input data that you feed to your model. Here's the shape: """ inputs.shape """ Here's the dtype: """ inputs.dtype """ You create a new node in the graph of layers by calling a layer on this `inputs` object: """ dense = layers.Dense(64, activation="relu") x = dense(inputs) """ The "layer call" action is like drawing an arrow from "inputs" to this layer you created. You're "passing" the inputs to the `dense` layer, and you get `x` as the output. Let's add a few more layers to the graph of layers: """ x = layers.Dense(64, activation="relu")(x) outputs = layers.Dense(10)(x) """ At this point, you can create a `Model` by specifying its inputs and outputs in the graph of layers: """ model = keras.Model(inputs=inputs, outputs=outputs, name="mnist_model") """ Let's check out what the model summary looks like: """ model.summary() """ You can also plot the model as a graph: """ keras.utils.plot_model(model, "my_first_model.png") """ And, optionally, display the input and output shapes of each layer in the plotted graph: """ keras.utils.plot_model( model, "my_first_model_with_shape_info.png", show_shapes=True ) """ This figure and the code are almost identical. In the code version, the connection arrows are replaced by the call operation. A "graph of layers" is an intuitive mental image for a deep learning model, and the functional API is a way to create models that closely mirrors this. """ """ ## Training, evaluation, and inference Training, evaluation, and inference work exactly in the same way for models built using the functional API as for `Sequential` models. The `Model` class offers a built-in training loop (the `fit()` method) and a built-in evaluation loop (the `evaluate()` method). Note that you can easily [customize these loops](/guides/customizing_what_happens_in_fit/) to implement training routines beyond supervised learning (e.g. [GANs](https://keras.io/examples/generative/dcgan_overriding_train_step/)). Here, load the MNIST image data, reshape it into vectors, fit the model on the data (while monitoring performance on a validation split), then evaluate the model on the test data: """ (x_train, y_train), (x_test, y_test) = keras.datasets.mnist.load_data() x_train = x_train.reshape(60000, 784).astype("float32") / 255 x_test = x_test.reshape(10000, 784).astype("float32") / 255 model.compile( loss=keras.losses.SparseCategoricalCrossentropy(from_logits=True), optimizer=keras.optimizers.RMSprop(), metrics=["accuracy"], ) history = model.fit( x_train, y_train, batch_size=64, epochs=2, validation_split=0.2 ) test_scores = model.evaluate(x_test, y_test, verbose=2) print("Test loss:", test_scores[0]) print("Test accuracy:", test_scores[1]) """ For further reading, see the [training and evaluation](/guides/training_with_built_in_methods/) guide. """ """ ## Save and serialize Saving the model and serialization work the same way for models built using the functional API as they do for `Sequential` models. The standard way to save a functional model is to call `model.save()` to save the entire model as a single file. You can later recreate the same model from this file, even if the code that built the model is no longer available. This saved file includes the: - model architecture - model weight values (that were learned during training) - model training config, if any (as passed to `compile()`) - optimizer and its state, if any (to restart training where you left off) """ model.save("my_model.keras") del model # Recreate the exact same model purely from the file: model = keras.models.load_model("my_model.keras") """ For details, read the model [serialization & saving]( /guides/serialization_and_saving/) guide. """ """ ## Use the same graph of layers to define multiple models In the functional API, models are created by specifying their inputs and outputs in a graph of layers. That means that a single graph of layers can be used to generate multiple models. In the example below, you use the same stack of layers to instantiate two models: an `encoder` model that turns image inputs into 16-dimensional vectors, and an end-to-end `autoencoder` model for training. """ encoder_input = keras.Input(shape=(28, 28, 1), name="img") x = layers.Conv2D(16, 3, activation="relu")(encoder_input) x = layers.Conv2D(32, 3, activation="relu")(x) x = layers.MaxPooling2D(3)(x) x = layers.Conv2D(32, 3, activation="relu")(x) x = layers.Conv2D(16, 3, activation="relu")(x) encoder_output = layers.GlobalMaxPooling2D()(x) encoder = keras.Model(encoder_input, encoder_output, name="encoder") encoder.summary() x = layers.Reshape((4, 4, 1))(encoder_output) x = layers.Conv2DTranspose(16, 3, activation="relu")(x) x = layers.Conv2DTranspose(32, 3, activation="relu")(x) x = layers.UpSampling2D(3)(x) x = layers.Conv2DTranspose(16, 3, activation="relu")(x) decoder_output = layers.Conv2DTranspose(1, 3, activation="relu")(x) autoencoder = keras.Model(encoder_input, decoder_output, name="autoencoder") autoencoder.summary() """ Here, the decoding architecture is strictly symmetrical to the encoding architecture, so the output shape is the same as the input shape `(28, 28, 1)`. The reverse of a `Conv2D` layer is a `Conv2DTranspose` layer, and the reverse of a `MaxPooling2D` layer is an `UpSampling2D` layer. """ """ ## All models are callable, just like layers You can treat any model as if it were a layer by invoking it on an `Input` or on the output of another layer. By calling a model you aren't just reusing the architecture of the model, you're also reusing its weights. To see this in action, here's a different take on the autoencoder example that creates an encoder model, a decoder model, and chains them in two calls to obtain the autoencoder model: """ encoder_input = keras.Input(shape=(28, 28, 1), name="original_img") x = layers.Conv2D(16, 3, activation="relu")(encoder_input) x = layers.Conv2D(32, 3, activation="relu")(x) x = layers.MaxPooling2D(3)(x) x = layers.Conv2D(32, 3, activation="relu")(x) x = layers.Conv2D(16, 3, activation="relu")(x) encoder_output = layers.GlobalMaxPooling2D()(x) encoder = keras.Model(encoder_input, encoder_output, name="encoder") encoder.summary() decoder_input = keras.Input(shape=(16,), name="encoded_img") x = layers.Reshape((4, 4, 1))(decoder_input) x = layers.Conv2DTranspose(16, 3, activation="relu")(x) x = layers.Conv2DTranspose(32, 3, activation="relu")(x) x = layers.UpSampling2D(3)(x) x = layers.Conv2DTranspose(16, 3, activation="relu")(x) decoder_output = layers.Conv2DTranspose(1, 3, activation="relu")(x) decoder = keras.Model(decoder_input, decoder_output, name="decoder") decoder.summary() autoencoder_input = keras.Input(shape=(28, 28, 1), name="img") encoded_img = encoder(autoencoder_input) decoded_img = decoder(encoded_img) autoencoder = keras.Model(autoencoder_input, decoded_img, name="autoencoder") autoencoder.summary() """ As you can see, the model can be nested: a model can contain sub-models (since a model is just like a layer). A common use case for model nesting is *ensembling*. For example, here's how to ensemble a set of models into a single model that averages their predictions: """ def get_model(): inputs = keras.Input(shape=(128,)) outputs = layers.Dense(1)(inputs) return keras.Model(inputs, outputs) model1 = get_model() model2 = get_model() model3 = get_model() inputs = keras.Input(shape=(128,)) y1 = model1(inputs) y2 = model2(inputs) y3 = model3(inputs) outputs = layers.average([y1, y2, y3]) ensemble_model = keras.Model(inputs=inputs, outputs=outputs) """ ## Manipulate complex graph topologies ### Models with multiple inputs and outputs The functional API makes it easy to manipulate multiple inputs and outputs. This cannot be handled with the `Sequential` API. For example, if you're building a system for ranking customer issue tickets by priority and routing them to the correct department, then the model will have three inputs: - the title of the ticket (text input), - the text body of the ticket (text input), and - any tags added by the user (categorical input) This model will have two outputs: - the priority score between 0 and 1 (scalar sigmoid output), and - the department that should handle the ticket (softmax output over the set of departments). You can build this model in a few lines with the functional API: """ num_tags = 12 # Number of unique issue tags num_words = 10000 # Size of vocabulary obtained when preprocessing text data num_departments = 4 # Number of departments for predictions title_input = keras.Input( shape=(None,), name="title" ) # Variable-length sequence of ints body_input = keras.Input( shape=(None,), name="body" ) # Variable-length sequence of ints tags_input = keras.Input( shape=(num_tags,), name="tags" ) # Binary vectors of size `num_tags` # Embed each word in the title into a 64-dimensional vector title_features = layers.Embedding(num_words, 64)(title_input) # Embed each word in the text into a 64-dimensional vector body_features = layers.Embedding(num_words, 64)(body_input) # Reduce sequence of embedded words in the title into a single 128-dimensional vector title_features = layers.LSTM(128)(title_features) # Reduce sequence of embedded words in the body into a single 32-dimensional vector body_features = layers.LSTM(32)(body_features) # Merge all available features into a single large vector via concatenation x = layers.concatenate([title_features, body_features, tags_input]) # Stick a logistic regression for priority prediction on top of the features priority_pred = layers.Dense(1, name="priority")(x) # Stick a department classifier on top of the features department_pred = layers.Dense(num_departments, name="department")(x) # Instantiate an end-to-end model predicting both priority and department model = keras.Model( inputs=[title_input, body_input, tags_input], outputs={"priority": priority_pred, "department": department_pred}, ) """ Now plot the model: """ keras.utils.plot_model( model, "multi_input_and_output_model.png", show_shapes=True ) """ When compiling this model, you can assign different losses to each output. You can even assign different weights to each loss -- to modulate their contribution to the total training loss. """ model.compile( optimizer=keras.optimizers.RMSprop(1e-3), loss=[ keras.losses.BinaryCrossentropy(from_logits=True), keras.losses.CategoricalCrossentropy(from_logits=True), ], loss_weights=[1.0, 0.2], ) """ Since the output layers have different names, you could also specify the losses and loss weights with the corresponding layer names: """ model.compile( optimizer=keras.optimizers.RMSprop(1e-3), loss={ "priority": keras.losses.BinaryCrossentropy(from_logits=True), "department": keras.losses.CategoricalCrossentropy(from_logits=True), }, loss_weights={"priority": 1.0, "department": 0.2}, ) """ Train the model by passing lists of NumPy arrays of inputs and targets: """ # Dummy input data title_data = np.random.randint(num_words, size=(1280, 10)) body_data = np.random.randint(num_words, size=(1280, 100)) tags_data = np.random.randint(2, size=(1280, num_tags)).astype("float32") # Dummy target data priority_targets = np.random.random(size=(1280, 1)) dept_targets = np.random.randint(2, size=(1280, num_departments)) model.fit( {"title": title_data, "body": body_data, "tags": tags_data}, {"priority": priority_targets, "department": dept_targets}, epochs=2, batch_size=32, ) """ When calling fit with a `Dataset` object, it should yield either a tuple of lists like `([title_data, body_data, tags_data], [priority_targets, dept_targets])` or a tuple of dictionaries like `({'title': title_data, 'body': body_data, 'tags': tags_data}, {'priority': priority_targets, 'department': dept_targets})`. For more detailed explanation, refer to the [training and evaluation](/guides/training_with_built_in_methods/) guide. """ """ ### A toy ResNet model In addition to models with multiple inputs and outputs, the functional API makes it easy to manipulate non-linear connectivity topologies -- these are models with layers that are not connected sequentially, which the `Sequential` API cannot handle. A common use case for this is residual connections. Let's build a toy ResNet model for CIFAR10 to demonstrate this: """ inputs = keras.Input(shape=(32, 32, 3), name="img") x = layers.Conv2D(32, 3, activation="relu")(inputs) x = layers.Conv2D(64, 3, activation="relu")(x) block_1_output = layers.MaxPooling2D(3)(x) x = layers.Conv2D(64, 3, activation="relu", padding="same")(block_1_output) x = layers.Conv2D(64, 3, activation="relu", padding="same")(x) block_2_output = layers.add([x, block_1_output]) x = layers.Conv2D(64, 3, activation="relu", padding="same")(block_2_output) x = layers.Conv2D(64, 3, activation="relu", padding="same")(x) block_3_output = layers.add([x, block_2_output]) x = layers.Conv2D(64, 3, activation="relu")(block_3_output) x = layers.GlobalAveragePooling2D()(x) x = layers.Dense(256, activation="relu")(x) x = layers.Dropout(0.5)(x) outputs = layers.Dense(10)(x) model = keras.Model(inputs, outputs, name="toy_resnet") model.summary() """ Plot the model: """ keras.utils.plot_model(model, "mini_resnet.png", show_shapes=True) """ Now train the model: """ (x_train, y_train), (x_test, y_test) = keras.datasets.cifar10.load_data() x_train = x_train.astype("float32") / 255.0 x_test = x_test.astype("float32") / 255.0 y_train = keras.utils.to_categorical(y_train, 10) y_test = keras.utils.to_categorical(y_test, 10) model.compile( optimizer=keras.optimizers.RMSprop(1e-3), loss=keras.losses.CategoricalCrossentropy(from_logits=True), metrics=["acc"], ) # We restrict the data to the first 1000 samples so as to limit execution time # on Colab. Try to train on the entire dataset until convergence! model.fit( x_train[:1000], y_train[:1000], batch_size=64, epochs=1, validation_split=0.2, ) """ ## Shared layers Another good use for the functional API are models that use *shared layers*. Shared layers are layer instances that are reused multiple times in the same model -- they learn features that correspond to multiple paths in the graph-of-layers. Shared layers are often used to encode inputs from similar spaces (say, two different pieces of text that feature similar vocabulary). They enable sharing of information across these different inputs, and they make it possible to train such a model on less data. If a given word is seen in one of the inputs, that will benefit the processing of all inputs that pass through the shared layer. To share a layer in the functional API, call the same layer instance multiple times. For instance, here's an `Embedding` layer shared across two different text inputs: """ # Embedding for 1000 unique words mapped to 128-dimensional vectors shared_embedding = layers.Embedding(1000, 128) # Variable-length sequence of integers text_input_a = keras.Input(shape=(None,), dtype="int32") # Variable-length sequence of integers text_input_b = keras.Input(shape=(None,), dtype="int32") # Reuse the same layer to encode both inputs encoded_input_a = shared_embedding(text_input_a) encoded_input_b = shared_embedding(text_input_b) """ ## Extract and reuse nodes in the graph of layers Because the graph of layers you are manipulating is a static data structure, it can be accessed and inspected. And this is how you are able to plot functional models as images. This also means that you can access the activations of intermediate layers ("nodes" in the graph) and reuse them elsewhere -- which is very useful for something like feature extraction. Let's look at an example. This is a VGG19 model with weights pretrained on ImageNet: """ vgg19 = keras.applications.VGG19() """ And these are the intermediate activations of the model, obtained by querying the graph data structure: """ features_list = [layer.output for layer in vgg19.layers] """ Use these features to create a new feature-extraction model that returns the values of the intermediate layer activations: """ feat_extraction_model = keras.Model(inputs=vgg19.input, outputs=features_list) img = np.random.random((1, 224, 224, 3)).astype("float32") extracted_features = feat_extraction_model(img) """ This comes in handy for tasks like [neural style transfer](https://keras.io/examples/generative/neural_style_transfer/), among other things. """ """ ## Extend the API using custom layers `keras` includes a wide range of built-in layers, for example: - Convolutional layers: `Conv1D`, `Conv2D`, `Conv3D`, `Conv2DTranspose` - Pooling layers: `MaxPooling1D`, `MaxPooling2D`, `MaxPooling3D`, `AveragePooling1D` - RNN layers: `GRU`, `LSTM`, `ConvLSTM2D` - `BatchNormalization`, `Dropout`, `Embedding`, etc. But if you don't find what you need, it's easy to extend the API by creating your own layers. All layers subclass the `Layer` class and implement: - `call` method, that specifies the computation done by the layer. - `build` method, that creates the weights of the layer (this is just a style convention since you can create weights in `__init__`, as well). To learn more about creating layers from scratch, read [custom layers and models](/guides/making_new_layers_and_models_via_subclassing) guide. The following is a basic implementation of `keras.layers.Dense`: """ class CustomDense(layers.Layer): def __init__(self, units=32): super().__init__() self.units = units def build(self, input_shape): self.w = self.add_weight( shape=(input_shape[-1], self.units), initializer="random_normal", trainable=True, ) self.b = self.add_weight( shape=(self.units,), initializer="random_normal", trainable=True ) def call(self, inputs): return ops.matmul(inputs, self.w) + self.b inputs = keras.Input((4,)) outputs = CustomDense(10)(inputs) model = keras.Model(inputs, outputs) """ For serialization support in your custom layer, define a `get_config()` method that returns the constructor arguments of the layer instance: """ class CustomDense(layers.Layer): def __init__(self, units=32): super().__init__() self.units = units def build(self, input_shape): self.w = self.add_weight( shape=(input_shape[-1], self.units), initializer="random_normal", trainable=True, ) self.b = self.add_weight( shape=(self.units,), initializer="random_normal", trainable=True ) def call(self, inputs): return ops.matmul(inputs, self.w) + self.b def get_config(self): return {"units": self.units} inputs = keras.Input((4,)) outputs = CustomDense(10)(inputs) model = keras.Model(inputs, outputs) config = model.get_config() new_model = keras.Model.from_config( config, custom_objects={"CustomDense": CustomDense} ) """ Optionally, implement the class method `from_config(cls, config)` which is used when recreating a layer instance given its config dictionary. The default implementation of `from_config` is: ```python def from_config(cls, config): return cls(**config) ``` """ """ ## When to use the functional API Should you use the Keras functional API to create a new model, or just subclass the `Model` class directly? In general, the functional API is higher-level, easier and safer, and has a number of features that subclassed models do not support. However, model subclassing provides greater flexibility when building models that are not easily expressible as directed acyclic graphs of layers. For example, you could not implement a Tree-RNN with the functional API and would have to subclass `Model` directly. For an in-depth look at the differences between the functional API and model subclassing, read [What are Symbolic and Imperative APIs in TensorFlow 2.0?](https://blog.tensorflow.org/2019/01/what-are-symbolic-and-imperative-apis.html). ### Functional API strengths: The following properties are also true for Sequential models (which are also data structures), but are not true for subclassed models (which are Python bytecode, not data structures). #### Less verbose There is no `super().__init__(...)`, no `def call(self, ...):`, etc. Compare: ```python inputs = keras.Input(shape=(32,)) x = layers.Dense(64, activation='relu')(inputs) outputs = layers.Dense(10)(x) mlp = keras.Model(inputs, outputs) ``` With the subclassed version: ```python class MLP(keras.Model): def __init__(self, **kwargs): super().__init__(**kwargs) self.dense_1 = layers.Dense(64, activation='relu') self.dense_2 = layers.Dense(10) def call(self, inputs): x = self.dense_1(inputs) return self.dense_2(x) # Instantiate the model. mlp = MLP() # Necessary to create the model's state. # The model doesn't have a state until it's called at least once. _ = mlp(ops.zeros((1, 32))) ``` #### Model validation while defining its connectivity graph In the functional API, the input specification (shape and dtype) is created in advance (using `Input`). Every time you call a layer, the layer checks that the specification passed to it matches its assumptions, and it will raise a helpful error message if not. This guarantees that any model you can build with the functional API will run. All debugging -- other than convergence-related debugging -- happens statically during the model construction and not at execution time. This is similar to type checking in a compiler. #### A functional model is plottable and inspectable You can plot the model as a graph, and you can easily access intermediate nodes in this graph. For example, to extract and reuse the activations of intermediate layers (as seen in a previous example): ```python features_list = [layer.output for layer in vgg19.layers] feat_extraction_model = keras.Model(inputs=vgg19.input, outputs=features_list) ``` #### A functional model can be serialized or cloned Because a functional model is a data structure rather than a piece of code, it is safely serializable and can be saved as a single file that allows you to recreate the exact same model without having access to any of the original code. See the [serialization & saving guide](/guides/serialization_and_saving/). To serialize a subclassed model, it is necessary for the implementer to specify a `get_config()` and `from_config()` method at the model level. ### Functional API weakness: #### It does not support dynamic architectures The functional API treats models as DAGs of layers. This is true for most deep learning architectures, but not all -- for example, recursive networks or Tree RNNs do not follow this assumption and cannot be implemented in the functional API. """ """ ## Mix-and-match API styles Choosing between the functional API or Model subclassing isn't a binary decision that restricts you into one category of models. All models in the `keras` API can interact with each other, whether they're `Sequential` models, functional models, or subclassed models that are written from scratch. You can always use a functional model or `Sequential` model as part of a subclassed model or layer: """ units = 32 timesteps = 10 input_dim = 5 # Define a Functional model inputs = keras.Input((None, units)) x = layers.GlobalAveragePooling1D()(inputs) outputs = layers.Dense(1)(x) model = keras.Model(inputs, outputs) class CustomRNN(layers.Layer): def __init__(self): super().__init__() self.units = units self.projection_1 = layers.Dense(units=units, activation="tanh") self.projection_2 = layers.Dense(units=units, activation="tanh") # Our previously-defined Functional model self.classifier = model def call(self, inputs): outputs = [] state = ops.zeros(shape=(inputs.shape[0], self.units)) for t in range(inputs.shape[1]): x = inputs[:, t, :] h = self.projection_1(x) y = h + self.projection_2(state) state = y outputs.append(y) features = ops.stack(outputs, axis=1) print(features.shape) return self.classifier(features) rnn_model = CustomRNN() _ = rnn_model(ops.zeros((1, timesteps, input_dim))) """ You can use any subclassed layer or model in the functional API as long as it implements a `call` method that follows one of the following patterns: - `call(self, inputs, **kwargs)` -- Where `inputs` is a tensor or a nested structure of tensors (e.g. a list of tensors), and where `**kwargs` are non-tensor arguments (non-inputs). - `call(self, inputs, training=None, **kwargs)` -- Where `training` is a boolean indicating whether the layer should behave in training mode and inference mode. - `call(self, inputs, mask=None, **kwargs)` -- Where `mask` is a boolean mask tensor (useful for RNNs, for instance). - `call(self, inputs, training=None, mask=None, **kwargs)` -- Of course, you can have both masking and training-specific behavior at the same time. Additionally, if you implement the `get_config` method on your custom Layer or model, the functional models you create will still be serializable and cloneable. Here's a quick example of a custom RNN, written from scratch, being used in a functional model: """ units = 32 timesteps = 10 input_dim = 5 batch_size = 16 class CustomRNN(layers.Layer): def __init__(self): super().__init__() self.units = units self.projection_1 = layers.Dense(units=units, activation="tanh") self.projection_2 = layers.Dense(units=units, activation="tanh") self.classifier = layers.Dense(1) def call(self, inputs): outputs = [] state = ops.zeros(shape=(inputs.shape[0], self.units)) for t in range(inputs.shape[1]): x = inputs[:, t, :] h = self.projection_1(x) y = h + self.projection_2(state) state = y outputs.append(y) features = ops.stack(outputs, axis=1) return self.classifier(features) # Note that you specify a static batch size for the inputs with the `batch_shape` # arg, because the inner computation of `CustomRNN` requires a static batch size # (when you create the `state` zeros tensor). inputs = keras.Input(batch_shape=(batch_size, timesteps, input_dim)) x = layers.Conv1D(32, 3)(inputs) outputs = CustomRNN()(x) model = keras.Model(inputs, outputs) rnn_model = CustomRNN() _ = rnn_model(ops.zeros((1, 10, 5)))
keras-teamREPO_NAMEkerasPATH_START.@keras_extracted@keras-master@guides@[email protected]_END.py
{ "filename": "test_combined_visualise.py", "repo_name": "rhayes777/PyAutoFit", "repo_path": "PyAutoFit_extracted/PyAutoFit-main/test_autofit/analysis/test_combined_visualise.py", "type": "Python" }
import pytest import autofit as af class Analysis(af.Analysis): def visualize(self, paths, instance, during_analysis): assert isinstance(instance, af.Gaussian) assert during_analysis is True paths.output_path.mkdir(parents=True, exist_ok=True) with open(f"{paths.output_path}/visualize.txt", "w+") as f: f.write("test") def visualize_before_fit(self, paths, model): assert model.cls is af.Gaussian paths.output_path.mkdir(parents=True, exist_ok=True) with open(f"{paths.output_path}/visualize_before_fit.txt", "w+") as f: f.write("test") @pytest.fixture(name="analysis") def make_analysis(): return Analysis() @pytest.fixture(name="paths") def make_paths(): return af.DirectoryPaths() def test_visualize(analysis, paths): analysis.visualize(paths, af.Gaussian(), True) assert (paths.output_path / "visualize.txt").exists() @pytest.fixture(name="combined") def make_combined(analysis): combined = analysis + analysis combined.n_cores = 2 yield combined combined._analysis_pool.terminate() @pytest.fixture(name="analyses_path") def make_analyses_path(paths): return paths.output_path / "analyses" def test_combined_visualize( combined, paths, analyses_path, ): combined.visualize( paths, af.Gaussian(), True, ) assert (analyses_path / "analysis_0/visualize.txt").exists() assert (analyses_path / "analysis_1/visualize.txt").exists() def test_visualize_before_fit( combined, paths, analyses_path, ): combined.visualize_before_fit( paths, af.Model(af.Gaussian), ) assert (analyses_path / "analysis_0/visualize_before_fit.txt").exists() assert (analyses_path / "analysis_1/visualize_before_fit.txt").exists()
rhayes777REPO_NAMEPyAutoFitPATH_START.@PyAutoFit_extracted@PyAutoFit-main@test_autofit@analysis@[email protected]_END.py
{ "filename": "README.md", "repo_name": "GBTSpectroscopy/gbtpipe", "repo_path": "gbtpipe_extracted/gbtpipe-master/README.md", "type": "Markdown" }
The `gbtpipe` package is a package for reducing and mapping On-the-fly mapping data created at the GBT in spectral line observations. The module consists of two main components: * An installable version of the the GBTpipeline which is forked from NRAO's [gbt-pipeline](https://github.com/nrao/gbt-pipeline) package. This is adapted for use in ARGUS operations. * An On-the-fly gridding package that builds scan data into spectral line data cubes. **pipeline** The pipeline component of `gbtpipe` is primarily used to calibrate VEGAS spectrometer data generated using the ARGUS W-band focal-plane array. For other cases, such as the KFPA, the gbt-pipeline works well and does not require additional changes. For ARGUS, the calibration process requires custom implementation of switching modes to use the vane calibration.
GBTSpectroscopyREPO_NAMEgbtpipePATH_START.@gbtpipe_extracted@[email protected]@.PATH_END.py
{ "filename": "SiGaps_08_VG03_f045.ipynb", "repo_name": "Echelle/AO_bonding_paper", "repo_path": "AO_bonding_paper_extracted/AO_bonding_paper-master/notebooks/SiGaps_08_VG03_f045.ipynb", "type": "Jupyter Notebook" }
###This IPython Notebook is for performing a fit and generating a figure of the spectrum of sample VG03, in the region with ~4.5% fill factor The filename of the figure is **VG03_f045.pdf**. Author: Michael Gully-Santiago, `[email protected]` Date: January 13, 2015 ```python %pylab inline import emcee import triangle import pandas as pd import seaborn as sns from astroML.decorators import pickle_results ``` Populating the interactive namespace from numpy and matplotlib ```python sns.set_context("paper", font_scale=2.0, rc={"lines.linewidth": 2.5}) sns.set(style="ticks") ``` Read in the data. We want "VG03_pos1" ```python df = pd.read_csv('../data/cln_20130218_cary5000.csv', index_col=0) df = df[df.index > 1250.0] ``` Import all the local models, saved locally as `etalon.py`. See the paper for derivations of these equations. ```python from etalon import * np.random.seed(78704) #My old zip code ``` ```python # Introduce the Real data x = df.index.values N = len(x) # Define T_DSP for the model T_DSP = T_gap_Si(x, 0.0) n1 = sellmeier_Si(x) # Define uncertainty yerr = 0.0002*np.ones(N) iid_cov = np.diag(yerr ** 2) # Select the spectrum of interest # Normalize the spectrum by measured DSP Si wafer. y = df.VG03_pos2/df.VG06 ``` Define the likelihood. ```python def lnlike(d, f, lna, lns): a, s = np.exp(lna), np.exp(lns) off_diag_terms = a**2 * np.exp(-0.5 * (x[:, None] - x[None, :])**2 / s**2) C = iid_cov + off_diag_terms sgn, logdet = np.linalg.slogdet(C) if sgn <= 0: return -np.inf r = y - T_gap_Si_withFF_fast(x, d, f, n1)/T_DSP return -0.5 * (np.dot(r, np.linalg.solve(C, r)) + logdet) ``` Define the prior. ```python def lnprior(d, f, lna, lns): if not (4050 < d < 4200 and 0.0 < f < 0.5 and -12 < lna < -2 and 0 < lns < 10): return -np.inf return 0.0 ``` Combine likelihood and prior to obtain the posterior. ```python def lnprob(p): lp = lnprior(*p) if not np.isfinite(lp): return -np.inf return lp + lnlike(*p) ``` Set up `emcee`. ```python @pickle_results('SiGaps_08_VG03_f045-sampler.pkl') def hammer_time(ndim, nwalkers, d_Guess, f_Guess, a_Guess, s_Guess, nburnins, ntrials): # Initialize the walkers p0 = np.array([d_Guess, f_Guess, np.log(a_Guess), np.log(s_Guess)]) pos = [p0 + 1.0e-2*p0 * np.random.randn(ndim) for i in range(nwalkers)] sampler = emcee.EnsembleSampler(nwalkers, ndim, lnprob) pos, lp, state = sampler.run_mcmc(pos, nburnins) sampler.reset() pos, lp, state = sampler.run_mcmc(pos, ntrials) return sampler ``` Set up the initial conditions. ```python np.random.seed(78704) ndim, nwalkers = 4, 32 d_Guess = 4120.0 f_Guess = 0.045 a_Guess = 0.0016 s_Guess = 25.0 nburnins = 300 ntrials = 1000 ``` Run the burn-in phase. Run the full MCMC. Pickle the results. ```python sampler = hammer_time(ndim, nwalkers, d_Guess, f_Guess, a_Guess, s_Guess, nburnins, ntrials) ``` @pickle_results: computing results and saving to 'SiGaps_08_VG03_f045-sampler.pkl' Linearize $a$ and $s$ for easy inspection of the values. ```python chain = sampler.chain samples_lin = copy(sampler.flatchain) samples_lin[:, 2:] = np.exp(samples_lin[:, 2:]) ``` Inspect the chain. ```python fig, axes = plt.subplots(4, 1, figsize=(5, 6), sharex=True) fig.subplots_adjust(left=0.1, bottom=0.1, right=0.96, top=0.98, wspace=0.0, hspace=0.05) [a.plot(np.arange(chain.shape[1]), chain[:, :, i].T, "k", alpha=0.5) for i, a in enumerate(axes)] [a.set_ylabel("${0}$".format(l)) for a, l in zip(axes, ["d", "f", "\ln a", "\ln s"])] axes[-1].set_xlim(0, chain.shape[1]) axes[-1].set_xlabel("iteration"); ``` ![png](output_23_0.png) Make a triangle corner plot. ```python fig = triangle.corner(samples_lin, labels=map("${0}$".format, ["d", "f", "a", "s"]), quantiles=[0.16, 0.84]) ``` Quantiles: [(0.16, 4089.5832276737651), (0.84, 4098.2914836921846)] Quantiles: [(0.16, 0.045107373191580022), (0.84, 0.046419474652892354)] Quantiles: [(0.16, 0.0017329038120982318), (0.84, 0.0020407225903503303)] Quantiles: [(0.16, 11.37520415783132), (0.84, 12.382196837791241)] ![png](output_25_1.png) ```python fig = triangle.corner(samples_lin[:,0:2], labels=map("${0}$".format, ["d", "f"]), quantiles=[0.16, 0.84]) plt.savefig("VG03p2_corner.pdf") ``` Quantiles: [(0.16, 4089.5832276737651), (0.84, 4098.2914836921846)] Quantiles: [(0.16, 0.045107373191580022), (0.84, 0.046419474652892354)] ![png](output_26_1.png) Calculate confidence intervals. ```python d_mcmc, f_mcmc, a_mcmc, s_mcmc = map(lambda v: (v[1], v[2]-v[1], v[1]-v[0]), zip(*np.percentile(samples_lin, [16, 50, 84], axis=0))) d_mcmc, f_mcmc, a_mcmc, s_mcmc ``` ((4093.8052083810621, 4.4862753111224265, 4.221980707297007), (0.045763037618155915, 0.00065643703473643872, 0.00065566442657589291), (0.001874827095800039, 0.00016589549455029123, 0.00014192328370180723), (11.856952712671731, 0.52524412511951013, 0.48174855484041146)) ```python print "{:.0f}^{{+{:.0f}}}_{{-{:.0f}}}".format(*d_mcmc) print "{:.3f}^{{+{:.3f}}}_{{-{:.3f}}}".format(*f_mcmc) ``` 4094^{+4}_{-4} 0.046^{+0.001}_{-0.001} Overlay draws from the Gaussian Process. ```python plt.figure(figsize=(6,3)) for d, f, a, s in samples_lin[np.random.randint(len(samples_lin), size=60)]: off_diag_terms = a**2 * np.exp(-0.5 * (x[:, None] - x[None, :])**2 / s**2) C = iid_cov + off_diag_terms fit = T_gap_Si_withFF_fast(x, d, f, n1)/T_DSP vec = np.random.multivariate_normal(fit, C) plt.plot(x, vec,"-b", alpha=0.06) plt.step(x, y,color="k", label='Measurement') fit = T_gap_Si_withFF_fast(x, d_mcmc[0], f_mcmc[0], n1)/T_DSP fit_label = 'Model with $d={:.0f}$ nm, $f={:.3f}$'.format(d_mcmc[0], f_mcmc[0]) plt.plot(x, fit, '--', color=sns.xkcd_rgb["pale red"], alpha=1.0, label=fit_label) plt.plot([-10, -9], [-10, -9],"-b", alpha=0.85, label='Draws from GP') plt.plot([0, 5000], [1.0, 1.0], '-.k', alpha=0.5) plt.fill_between([1200, 1250], 2.0, 0.0, hatch='\\', alpha=0.4, color='k', label='Si absorption cutoff') plt.xlabel('$\lambda$ (nm)'); plt.ylabel('$T_{gap}$'); plt.xlim(1200, 2501); plt.ylim(0.9, 1.019); plt.legend(loc='lower right') plt.savefig("VG03_f045.pdf", bbox_inches='tight') ``` ![png](output_31_0.png) Figure for the talk ```python sns.set_context('talk', font_scale=1.3) ``` ```python plt.figure(figsize=(10,7)) for d, f, a, s in samples_lin[np.random.randint(len(samples_lin), size=60)]: off_diag_terms = a**2 * np.exp(-0.5 * (x[:, None] - x[None, :])**2 / s**2) C = iid_cov + off_diag_terms fit = T_gap_Si_withFF_fast(x, d, f, n1)/T_DSP vec = np.random.multivariate_normal(fit, C) plt.plot(x, vec,"-b", alpha=0.06) plt.step(x, y,color="k", label='Measurement') fit = T_gap_Si_withFF_fast(x, d_mcmc[0], f_mcmc[0], n1)/T_DSP fit_label = 'Model with $d={:.0f}$ nm, $f={:.3f}$'.format(d_mcmc[0], f_mcmc[0]) plt.plot(x, fit, '--', color=sns.xkcd_rgb["pale red"], alpha=1.0, label=fit_label) plt.plot([-10, -9], [-10, -9],"-b", alpha=0.85, label='Draws from GP') plt.plot([0, 5000], [1.0, 1.0], '-.k', alpha=0.5) plt.fill_between([1200, 1250], 2.0, 0.0, hatch='\\', alpha=0.4, color='k', label='Si absorption cutoff') plt.xlabel('$\lambda$ (nm)'); plt.ylabel('$T_{gap}$'); plt.xlim(1200, 2501); plt.ylim(0.9, 1.019); plt.legend(loc='lower right') plt.savefig("VG03_f045_GP.pdf", bbox_inches='tight') ``` ![png](output_34_0.png) The end.
EchelleREPO_NAMEAO_bonding_paperPATH_START.@AO_bonding_paper_extracted@AO_bonding_paper-master@notebooks@[email protected]_END.py
{ "filename": "__init__.py", "repo_name": "catboost/catboost", "repo_path": "catboost_extracted/catboost-master/contrib/python/plotly/py3/plotly/validators/layout/legend/__init__.py", "type": "Python" }
import sys from typing import TYPE_CHECKING if sys.version_info < (3, 7) or TYPE_CHECKING: from ._yref import YrefValidator from ._yanchor import YanchorValidator from ._y import YValidator from ._xref import XrefValidator from ._xanchor import XanchorValidator from ._x import XValidator from ._visible import VisibleValidator from ._valign import ValignValidator from ._uirevision import UirevisionValidator from ._traceorder import TraceorderValidator from ._tracegroupgap import TracegroupgapValidator from ._title import TitleValidator from ._orientation import OrientationValidator from ._itemwidth import ItemwidthValidator from ._itemsizing import ItemsizingValidator from ._itemdoubleclick import ItemdoubleclickValidator from ._itemclick import ItemclickValidator from ._indentation import IndentationValidator from ._grouptitlefont import GrouptitlefontValidator from ._groupclick import GroupclickValidator from ._font import FontValidator from ._entrywidthmode import EntrywidthmodeValidator from ._entrywidth import EntrywidthValidator from ._borderwidth import BorderwidthValidator from ._bordercolor import BordercolorValidator from ._bgcolor import BgcolorValidator else: from _plotly_utils.importers import relative_import __all__, __getattr__, __dir__ = relative_import( __name__, [], [ "._yref.YrefValidator", "._yanchor.YanchorValidator", "._y.YValidator", "._xref.XrefValidator", "._xanchor.XanchorValidator", "._x.XValidator", "._visible.VisibleValidator", "._valign.ValignValidator", "._uirevision.UirevisionValidator", "._traceorder.TraceorderValidator", "._tracegroupgap.TracegroupgapValidator", "._title.TitleValidator", "._orientation.OrientationValidator", "._itemwidth.ItemwidthValidator", "._itemsizing.ItemsizingValidator", "._itemdoubleclick.ItemdoubleclickValidator", "._itemclick.ItemclickValidator", "._indentation.IndentationValidator", "._grouptitlefont.GrouptitlefontValidator", "._groupclick.GroupclickValidator", "._font.FontValidator", "._entrywidthmode.EntrywidthmodeValidator", "._entrywidth.EntrywidthValidator", "._borderwidth.BorderwidthValidator", "._bordercolor.BordercolorValidator", "._bgcolor.BgcolorValidator", ], )
catboostREPO_NAMEcatboostPATH_START.@catboost_extracted@catboost-master@contrib@python@plotly@py3@plotly@validators@layout@legend@[email protected]_END.py
{ "filename": "tensorboard_vis.py", "repo_name": "cy-xu/cosmic-conn", "repo_path": "cosmic-conn_extracted/cosmic-conn-main/paper_utils/tensorboard_vis.py", "type": "Python" }
# -*- coding: utf-8 -*- """ Plot the training evaluation figure for paper CY Xu ([email protected]) """ import numpy as np from numpy import genfromtxt import matplotlib.pyplot as plt import matplotlib.ticker as ticker def extract_csv(path, max_epoch, scale_correction=False): """because Tensorboard export CSV is not continuous/complete, we create a new array in order to plot the curves correctly """ array = genfromtxt(path, delimiter=",", dtype="float32") # remove Nan in first row array = array[1:] # new None array sparce_array = np.full(max_epoch+1, None) # init loss = 1 sparce_array[0] = 1 # fill sparce array with availabe data for line in array: epoch = int(line[1]) loss = line[2] if scale_correction: # 1024 model sampled 70 samples per epoch, # while it shuold be 210 to have equal updates per epoch # as 256 models, which used full dataset (Appendix A) epoch = epoch // 3 if epoch > max_epoch: break sparce_array[epoch] = loss return sparce_array.astype('float32') save_path = "paper_utils/training_evaluation.pdf" # March 32 channel batch cosmic_conn_1024 = "paper_utils/tensorboard_logs/run-2021_03_14_16_36_LCO_Cosmic-Conn_1e3continue-tag-loss_valid_cr_loss.csv" cosmic_conn_BN = "paper_utils/tensorboard_logs/run-2021_06_04_17_45_LCO_seed0_Cosmic-CoNN_BN-tag-loss_valid_cr_loss.csv" cosmic_conn_256 = "paper_utils/tensorboard_logs/run-2021_03_14_16_47_LCO_Cosmic-CoNN_256px-tag-loss_valid_cr_loss.csv" deepCR_256 = "paper_utils/tensorboard_logs/run-2021_03_14_16_42_LCO_deepCR_continue-tag-loss_valid_cr_loss.csv" max_epoch = 5000 epochs = np.linspace(0, max_epoch, max_epoch + 1) cosmic_conn_1024 = extract_csv(cosmic_conn_1024, max_epoch, True) cosmic_conn_256 = extract_csv(cosmic_conn_256, max_epoch) cosmic_conn_BN = extract_csv(cosmic_conn_BN, max_epoch) # correctly scaled deepCR_256 = extract_csv(deepCR_256, max_epoch) # plotting plt.rcParams.update({"font.size": 12}) f = plt.figure(figsize=(12, 4)) ax = f.add_subplot() # fig, ax = plt.subplots() width = 0.8 linewidth = 1.5 mask = np.isfinite(cosmic_conn_1024) ax.plot( epochs[mask], cosmic_conn_1024[mask], color="tab:orange", label="(1024px) Cosmic-CoNN", linewidth=linewidth, linestyle="-", ) mask = np.isfinite(cosmic_conn_BN) ax.plot( epochs[mask], cosmic_conn_BN[mask], color="tab:orange", label="(1024px) Cosmic-CoNN w/ BN", linewidth=linewidth, linestyle="--", ) mask = np.isfinite(cosmic_conn_256) ax.plot( epochs[mask], cosmic_conn_256[mask], color="tab:blue", label="(256px) Cosmic-CoNN", linewidth=linewidth, linestyle="-", ) mask = np.isfinite(deepCR_256) ax.plot( epochs[mask], deepCR_256[mask], color="tab:blue", label="(256px) deepCR", linewidth=linewidth, linestyle="--", ) ax.set_ylabel("1 - Dice score") ax.set_xlabel("epochs (defined in Appendix C)") ax.legend() ax.set_yscale('log') ax.set_yticks([0.1, 0.2, 0.3, 0.5, 0.8, 1.0]) ax.get_yaxis().set_major_formatter(ticker.ScalarFormatter()) plt.grid(True) plt.xlim(0, epochs[-1]) min = 0.08 plt.ylim(min, 1) plt.savefig(save_path, bbox_inches="tight")
cy-xuREPO_NAMEcosmic-connPATH_START.@cosmic-conn_extracted@cosmic-conn-main@paper_utils@[email protected]_END.py
{ "filename": "__init__.py", "repo_name": "amusecode/amuse", "repo_path": "amuse_extracted/amuse-main/src/amuse/ic/_limepy/__init__.py", "type": "Python" }
# -*- coding: utf-8 -*- __author__ = 'Mark Gieles, Alice Zocchi' __email__ = '[email protected], [email protected]' __version__ = '0.1.1' from .limepy import limepy from .sample import sample
amusecodeREPO_NAMEamusePATH_START.@amuse_extracted@amuse-main@src@amuse@ic@_limepy@[email protected]_END.py
{ "filename": "README.md", "repo_name": "jax-ml/jax", "repo_path": "jax_extracted/jax-main/tests/filecheck/README.md", "type": "Markdown" }
This directory contains LLVM [FileCheck](https://llvm.org/docs/CommandGuide/FileCheck.html) tests that verify that JAX primitives can be lowered to MLIR. These tests are intended to be a quick and easy-to-understand way to catch regressions from changes due the MLIR Python bindings and from changes to the various MLIR dialects used by JAX, without needing to run the full JAX test suite.
jax-mlREPO_NAMEjaxPATH_START.@jax_extracted@jax-main@tests@[email protected]@.PATH_END.py
{ "filename": "human_parsing.py", "repo_name": "itseez/opencv", "repo_path": "opencv_extracted/opencv-master/samples/dnn/human_parsing.py", "type": "Python" }
#!/usr/bin/env python ''' You can download the converted pb model from https://www.dropbox.com/s/qag9vzambhhkvxr/lip_jppnet_384.pb?dl=0 or convert the model yourself. Follow these steps if you want to convert the original model yourself: To get original .meta pre-trained model download https://drive.google.com/file/d/1BFVXgeln-bek8TCbRjN6utPAgRE0LJZg/view For correct convert .meta to .pb model download original repository https://github.com/Engineering-Course/LIP_JPPNet Change script evaluate_parsing_JPPNet-s2.py for human parsing 1. Remove preprocessing to create image_batch_origin: with tf.name_scope("create_inputs"): ... Add image_batch_origin = tf.placeholder(tf.float32, shape=(2, None, None, 3), name='input') 2. Create input image = cv2.imread(path/to/image) image_rev = np.flip(image, axis=1) input = np.stack([image, image_rev], axis=0) 3. Hardcode image_h and image_w shapes to determine output shapes. We use default INPUT_SIZE = (384, 384) from evaluate_parsing_JPPNet-s2.py. parsing_out1 = tf.reduce_mean(tf.stack([tf.image.resize_images(parsing_out1_100, INPUT_SIZE), tf.image.resize_images(parsing_out1_075, INPUT_SIZE), tf.image.resize_images(parsing_out1_125, INPUT_SIZE)]), axis=0) Do similarly with parsing_out2, parsing_out3 4. Remove postprocessing. Last net operation: raw_output = tf.reduce_mean(tf.stack([parsing_out1, parsing_out2, parsing_out3]), axis=0) Change: parsing_ = sess.run(raw_output, feed_dict={'input:0': input}) 5. To save model after sess.run(...) add: input_graph_def = tf.get_default_graph().as_graph_def() output_node = "Mean_3" output_graph_def = tf.graph_util.convert_variables_to_constants(sess, input_graph_def, output_node) output_graph = "LIP_JPPNet.pb" with tf.gfile.GFile(output_graph, "wb") as f: f.write(output_graph_def.SerializeToString())' ''' import argparse import os.path import numpy as np import cv2 as cv backends = (cv.dnn.DNN_BACKEND_DEFAULT, cv.dnn.DNN_BACKEND_INFERENCE_ENGINE, cv.dnn.DNN_BACKEND_OPENCV, cv.dnn.DNN_BACKEND_VKCOM, cv.dnn.DNN_BACKEND_CUDA) targets = (cv.dnn.DNN_TARGET_CPU, cv.dnn.DNN_TARGET_OPENCL, cv.dnn.DNN_TARGET_OPENCL_FP16, cv.dnn.DNN_TARGET_MYRIAD, cv.dnn.DNN_TARGET_HDDL, cv.dnn.DNN_TARGET_VULKAN, cv.dnn.DNN_TARGET_CUDA, cv.dnn.DNN_TARGET_CUDA_FP16) def preprocess(image): """ Create 4-dimensional blob from image and flip image :param image: input image """ image_rev = np.flip(image, axis=1) input = cv.dnn.blobFromImages([image, image_rev], mean=(104.00698793, 116.66876762, 122.67891434)) return input def run_net(input, model_path, backend, target): """ Read network and infer model :param model_path: path to JPPNet model :param backend: computation backend :param target: computation device """ net = cv.dnn.readNet(model_path) net.setPreferableBackend(backend) net.setPreferableTarget(target) net.setInput(input) out = net.forward() return out def postprocess(out, input_shape): """ Create a grayscale human segmentation :param out: network output :param input_shape: input image width and height """ # LIP classes # 0 Background # 1 Hat # 2 Hair # 3 Glove # 4 Sunglasses # 5 UpperClothes # 6 Dress # 7 Coat # 8 Socks # 9 Pants # 10 Jumpsuits # 11 Scarf # 12 Skirt # 13 Face # 14 LeftArm # 15 RightArm # 16 LeftLeg # 17 RightLeg # 18 LeftShoe # 19 RightShoe head_output, tail_output = np.split(out, indices_or_sections=[1], axis=0) head_output = head_output.squeeze(0) tail_output = tail_output.squeeze(0) head_output = np.stack([cv.resize(img, dsize=input_shape) for img in head_output[:, ...]]) tail_output = np.stack([cv.resize(img, dsize=input_shape) for img in tail_output[:, ...]]) tail_list = np.split(tail_output, indices_or_sections=list(range(1, 20)), axis=0) tail_list = [arr.squeeze(0) for arr in tail_list] tail_list_rev = [tail_list[i] for i in range(14)] tail_list_rev.extend([tail_list[15], tail_list[14], tail_list[17], tail_list[16], tail_list[19], tail_list[18]]) tail_output_rev = np.stack(tail_list_rev, axis=0) tail_output_rev = np.flip(tail_output_rev, axis=2) raw_output_all = np.mean(np.stack([head_output, tail_output_rev], axis=0), axis=0, keepdims=True) raw_output_all = np.argmax(raw_output_all, axis=1) raw_output_all = raw_output_all.transpose(1, 2, 0) return raw_output_all def decode_labels(gray_image): """ Colorize image according to labels :param gray_image: grayscale human segmentation result """ height, width, _ = gray_image.shape colors = [(0, 0, 0), (128, 0, 0), (255, 0, 0), (0, 85, 0), (170, 0, 51), (255, 85, 0), (0, 0, 85), (0, 119, 221), (85, 85, 0), (0, 85, 85), (85, 51, 0), (52, 86, 128), (0, 128, 0), (0, 0, 255), (51, 170, 221), (0, 255, 255),(85, 255, 170), (170, 255, 85), (255, 255, 0), (255, 170, 0)] segm = np.stack([colors[idx] for idx in gray_image.flatten()]) segm = segm.reshape(height, width, 3).astype(np.uint8) segm = cv.cvtColor(segm, cv.COLOR_BGR2RGB) return segm def parse_human(image, model_path, backend=cv.dnn.DNN_BACKEND_OPENCV, target=cv.dnn.DNN_TARGET_CPU): """ Prepare input for execution, run net and postprocess output to parse human. :param image: input image :param model_path: path to JPPNet model :param backend: name of computation backend :param target: name of computation target """ input = preprocess(image) input_h, input_w = input.shape[2:] output = run_net(input, model_path, backend, target) grayscale_out = postprocess(output, (input_w, input_h)) segmentation = decode_labels(grayscale_out) return segmentation if __name__ == '__main__': parser = argparse.ArgumentParser(description='Use this script to run human parsing using JPPNet', formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument('--input', '-i', required=True, help='Path to input image.') parser.add_argument('--model', '-m', default='lip_jppnet_384.pb', help='Path to pb model.') parser.add_argument('--backend', choices=backends, default=cv.dnn.DNN_BACKEND_DEFAULT, type=int, help="Choose one of computation backends: " "%d: automatically (by default), " "%d: Intel's Deep Learning Inference Engine (https://software.intel.com/openvino-toolkit), " "%d: OpenCV implementation, " "%d: VKCOM, " "%d: CUDA"% backends) parser.add_argument('--target', choices=targets, default=cv.dnn.DNN_TARGET_CPU, type=int, help='Choose one of target computation devices: ' '%d: CPU target (by default), ' '%d: OpenCL, ' '%d: OpenCL fp16 (half-float precision), ' '%d: NCS2 VPU, ' '%d: HDDL VPU, ' '%d: Vulkan, ' '%d: CUDA, ' '%d: CUDA fp16 (half-float preprocess)' % targets) args, _ = parser.parse_known_args() if not os.path.isfile(args.model): raise OSError("Model not exist") image = cv.imread(args.input) output = parse_human(image, args.model, args.backend, args.target) winName = 'Deep learning human parsing in OpenCV' cv.namedWindow(winName, cv.WINDOW_AUTOSIZE) cv.imshow(winName, output) cv.waitKey()
itseezREPO_NAMEopencvPATH_START.@opencv_extracted@opencv-master@samples@dnn@[email protected]_END.py
{ "filename": "utils.py", "repo_name": "ArgonneCPAC/dsps", "repo_path": "dsps_extracted/dsps-main/dsps/photometry/utils.py", "type": "Python" }
"""Convenience functions commonly encountered in photometry calculations""" import numpy as np def interpolate_filter_trans_curves(wave_filters, trans_filters, n=None): """Interpolate a collection of filter transmission curves to a common length. Convenience function for analyses vmapping over broadband colors. Parameters ---------- wave_filters : sequence of n_filters ndarrays trans_filters : sequence of n_filters ndarrays n : int, optional Desired length of the output transmission curves. Default is equal to the smallest length transmission curve Returns ------- wave_filters : ndarray of shape (n_filters, n) trans_filters : ndarray of shape (n_filters, n) """ wave0 = wave_filters[0] wave_min, wave_max = wave0.min(), wave0.max() if n is None: n = np.min([x.size for x in wave_filters]) for wave, trans in zip(wave_filters, trans_filters): wave_min = min(wave_min, wave.min()) wave_max = max(wave_max, wave.max()) wave_collector = [] trans_collector = [] for wave, trans in zip(wave_filters, trans_filters): wave_min, wave_max = wave.min(), wave.max() new_wave = np.linspace(wave_min, wave_max, n) new_trans = np.interp(new_wave, wave, trans) wave_collector.append(new_wave) trans_collector.append(new_trans) return np.array(wave_collector), np.array(trans_collector)
ArgonneCPACREPO_NAMEdspsPATH_START.@dsps_extracted@dsps-main@dsps@[email protected]@.PATH_END.py
{ "filename": "ModSMFromNp.py", "repo_name": "saopicc/DDFacet", "repo_path": "DDFacet_extracted/DDFacet-master/SkyModel/Sky/ModSMFromNp.py", "type": "Python" }
from __future__ import division, absolute_import, print_function import numpy as np def ReadFromNp(Cat0): ns=Cat0.shape[0] Cat=np.zeros((ns,),dtype=[('Name','|S200'),('ra',float),('dec',float),('Sref',float),('I',float),('Q',float),\ ('U',float),('V',float),('RefFreq',float),('alpha',float),('ESref',float),\ ('Ealpha',float),('kill',int),('Cluster',int),('Type',int),('Gmin',float),\ ('Gmaj',float),('Gangle',float),("Select",int),('l',float),('m',float),("Exclude",bool)]) Cat=Cat.view(np.recarray) Cat.RefFreq=1. Cat.ra[0:ns]=Cat0.ra Cat.dec[0:ns]=Cat0.dec Cat.I[0:ns]=Cat0.I if "Gmin" in list(Cat0.dtype.fields.keys()): Cat.Gmin[0:ns]=Cat0.Gmin Cat.Gmaj[0:ns]=Cat0.Gmaj Cat.Gangle[0:ns]=Cat0.Gangle Cat=Cat[Cat.ra!=0.] Cat.Type[Cat.Gmaj>0.]=1 Cat.Sref=Cat.I return Cat
saopiccREPO_NAMEDDFacetPATH_START.@DDFacet_extracted@DDFacet-master@SkyModel@[email protected]@.PATH_END.py
{ "filename": "test_dims_dimensionproxy.py", "repo_name": "h5py/h5py", "repo_path": "h5py_extracted/h5py-master/h5py/tests/test_dims_dimensionproxy.py", "type": "Python" }
# This file is part of h5py, a Python interface to the HDF5 library. # # http://www.h5py.org # # Copyright 2008-2013 Andrew Collette and contributors # # License: Standard 3-clause BSD; see "license.txt" for full license terms # and contributor agreement. """ Tests the h5py.Dataset.dims.DimensionProxy class. """ import numpy as np import h5py from .common import ut, TestCase class TestItems(TestCase): def test_empty(self): """ no dimension scales -> empty list """ dset = self.f.create_dataset('x', (10,)) self.assertEqual(dset.dims[0].items(), [])
h5pyREPO_NAMEh5pyPATH_START.@h5py_extracted@h5py-master@h5py@tests@[email protected]_END.py
{ "filename": "README.md", "repo_name": "lenjonah/neutron_star_inference", "repo_path": "neutron_star_inference_extracted/neutron_star_inference-main/README.md", "type": "Markdown" }
# Neural Simulation-Based Inference of the Neutron Star Equation of State directly from Telescope Spectra Neutron stars provide a unique window into the unknown physics of extremely dense matter. Their internal structure is described by the relationship between pressure and energy density, $P(\varepsilon)$, commonly referred to as the **equation of state** (EoS). Many efforts have been made to constrain the EoS based on astrophysical observations of neutron stars using Bayesian inference methods. Since the likelihood for the astrophysical detector data is not analytically available, the conventional inference is carried out in two steps. We have implemented a novel method using recently developed simulation-based inference methods to infer the parameters $[\lambda_1, \lambda_2]$ of an parametrization of the EoS directly from telescope spectra of low-mass X-ray binaries in quiescence. These spectra depend on the mass $M$ and radius $R$ of the star, as well as on additional nuisance parameters $[N_H, d, \log(T_\mathrm{eff})]$. In an approach called **neural likelihood estimation**, normalizing flows are trained on simulated data to approximate the analytically unavailable likelihood. Because normalizing flows are by design differentiable, this method allows the use of improved methods for sampling the posterior, such as **Hamiltonian Monte Carlo**, which scale much better to higher-dimensional parameter spaces. The NLE + HMC approach outperforms previous methods and scales better to the growing number of observations expected in the coming years compared to the conventional two-step methods. More details can be found in our paper (https://arxiv.org/pdf/2403.00287). This repository contains the code used in our analysis to allow future studies to build on our progress. ![alt text](https://github.com/lenjonah/neutron_star_inference/blob/main/illustration.png) ## Organization This repository is organized as follows: - `requirements.txt` contains the packages beyond standard ones necessary to run the code - `NLE_spectra_HMC_xspec.py` python script to run multiple HMC chains in parallel to sample the posterior for a given observation of telescope spectra - `NLE_utils.py` utility functions necessary to run HMC - `working_examples.ipynb` jupyter notebook illustrating how to train the normalizing flows based on the simulated data and how to analyze the HMC chains - `\data` subdirectory contains pretrained normalizing flows, one example output of an HMC run and the parameters of the simulated spectra ## Execution In order to run the code provided in this repository follow the following steps: - install `requirements.txt` - download the telescope spectra `spectra_noisy.npy` (which are to large for github) from this link (https://tumde-my.sharepoint.com/:f:/g/personal/len_brandes_tum_de/Eghm3DM7mvZLuco4Cb76LzsBiwipLeBnIr9XZ2uRj6wi3g?e=Nnwb8E) - optional: take a look at `working_examples.ipynb` to understand the spectral data and the training of the normalizing flows - run `py NLE_spectra_HMC_xspec_mass.py OBS_IDX NUM_DENSITY_ESTIMATORS` to sample the posterior for a provided number of normalizing flows `NUM_DENSITY_ESTIMATORS` between 1 - 5 and an observation index `OBS_IDX` that specifies the spectra used as observations (between 0 and 148 for the test set) ## Citation If you use the code or the data provided in this repository, please cite: ```` @article{Brandes2024, author = "Brandes, Len and Modi, Chirag and Ghosh, Aishik and Farrell, Delaney and Lindblom, Lee and Heinrich, Lukas and Steiner, Andrew W. and Weber, Fridolin and Whiteson, Daniel", title = "{Neural Simulation-Based Inference of the Neutron Star Equation of State directly from Telescope Spectra}", eprint = "2403.00287", archivePrefix = "arXiv", primaryClass = "astro-ph.HE", month = "3", year = "2024" } ````
lenjonahREPO_NAMEneutron_star_inferencePATH_START.@neutron_star_inference_extracted@[email protected]@.PATH_END.py
{ "filename": "test_pixel_likelihood.py", "repo_name": "cta-observatory/ctapipe", "repo_path": "ctapipe_extracted/ctapipe-main/src/ctapipe/image/tests/test_pixel_likelihood.py", "type": "Python" }
import numpy as np from ctapipe.image import ( chi_squared, mean_poisson_likelihood_full, mean_poisson_likelihood_gaussian, neg_log_likelihood, neg_log_likelihood_approx, neg_log_likelihood_numeric, ) def test_chi_squared(): image = np.array([20, 20, 20]) prediction = np.array([20, 20, 20]) bad_prediction = np.array([1, 1, 1]) ped = 1 chi = chi_squared(image, prediction, ped) bad_chi = chi_squared(image, bad_prediction, ped) assert np.sum(chi) < np.sum(bad_chi) def test_mean_poisson_likelihoood_gaussian(): prediction = np.array([50, 50, 50], dtype="float") spe = 0.5 small_mean_likelihood = mean_poisson_likelihood_gaussian(prediction, spe, 0) large_mean_likelihood = mean_poisson_likelihood_gaussian(prediction, spe, 1) assert np.all(small_mean_likelihood < large_mean_likelihood) # Test that the mean likelihood of abunch of samples drawn from the gaussian # behind the approximate log likelihood is indeed the precalculated mean rng = np.random.default_rng(123456) ped = 1 mean_likelihood = mean_poisson_likelihood_gaussian(prediction[0], spe, ped) distribution_width = np.sqrt(ped**2 + prediction[0] * (1 + spe**2)) normal_samples = rng.normal( loc=prediction[0], scale=distribution_width, size=100000 ) rel_diff = ( np.mean(2 * neg_log_likelihood_approx(normal_samples, prediction[0], spe, ped)) - mean_likelihood ) / mean_likelihood assert np.abs(rel_diff) < 5e-4 def test_mean_poisson_likelihood_full(): prediction = np.array([10.0, 10.0]) spe = np.array([0.5]) small_mean_likelihood = mean_poisson_likelihood_full(prediction, spe, [0.1]) large_mean_likelihood = mean_poisson_likelihood_full(prediction, spe, [1]) assert np.all(small_mean_likelihood < large_mean_likelihood) def test_full_likelihood(): """ Simple test of likelihood, test against known values for high and low signal cases. Check that full calculation and the gaussian approx become equal at high signal. """ spe = 0.5 * np.ones(3) # Single photo-electron width pedestal = np.ones(3) # width of the pedestal distribution image_small = np.array([0, 1, 2]) expectation_small = np.array([1, 1, 1]) full_like_small = neg_log_likelihood(image_small, expectation_small, spe, pedestal) exp_rel_diff = ( full_like_small - np.asarray([1.37815294, 1.31084662, 1.69627197]) ) / full_like_small # Check against known values assert np.all(np.abs(exp_rel_diff) < 3e-4) image_large = np.array([40, 50, 60]) expectation_large = np.array([50, 50, 50]) full_like_large = neg_log_likelihood(image_large, expectation_large, spe, pedestal) # Check against known values exp_rel_diff = ( full_like_large - np.asarray([3.78183004, 2.99452694, 3.78183004]) ) / full_like_large assert np.all(np.abs(exp_rel_diff) < 3e-5) gaus_like_large = neg_log_likelihood_approx( image_large, expectation_large, spe, pedestal ) numeric_like_large = neg_log_likelihood_numeric( image_large, expectation_large, spe, pedestal ) # Check that in the large signal case the full expectation is equal to the # gaussian approximation (to 5%) assert np.all( np.abs((numeric_like_large - gaus_like_large) / numeric_like_large) < 0.05 )
cta-observatoryREPO_NAMEctapipePATH_START.@ctapipe_extracted@ctapipe-main@src@ctapipe@image@tests@[email protected]_END.py
{ "filename": "_showexponent.py", "repo_name": "catboost/catboost", "repo_path": "catboost_extracted/catboost-master/contrib/python/plotly/py2/plotly/validators/carpet/baxis/_showexponent.py", "type": "Python" }
import _plotly_utils.basevalidators class ShowexponentValidator(_plotly_utils.basevalidators.EnumeratedValidator): def __init__( self, plotly_name="showexponent", parent_name="carpet.baxis", **kwargs ): super(ShowexponentValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, edit_type=kwargs.pop("edit_type", "calc"), role=kwargs.pop("role", "style"), values=kwargs.pop("values", ["all", "first", "last", "none"]), **kwargs )
catboostREPO_NAMEcatboostPATH_START.@catboost_extracted@catboost-master@contrib@python@plotly@py2@plotly@validators@carpet@baxis@[email protected]_END.py
{ "filename": "recipe_test_unit.py", "repo_name": "Keck-DataReductionPipelines/KPF-Pipeline", "repo_path": "KPF-Pipeline_extracted/KPF-Pipeline-master/kpfpipe/tools/recipe_test_unit.py", "type": "Python" }
# test_recipe_unit.py import sys, os, traceback import tempfile sys.path.insert(0, os.path.abspath('../KeckDRPFramework')) from keckdrpframework.core.framework import Framework from keckdrpframework.models.arguments import Arguments from keckdrpframework.models.action import Action from keckdrpframework.models.processing_context import ProcessingContext from kpfpipe.pipelines.kpfpipeline import KPFPipeline from kpfpipe.logger import start_logger class KpfPipelineForTesting(KPFPipeline): """ Test pipeline class extending KpfPipeline """ def __init__(self, context: ProcessingContext): """ constructor """ KPFPipeline.__init__(self, context) self.event_table['test_primitive_validate_args'] = ("test_primitive_validate_args", "processing", "resume_recipe") @staticmethod def test_primitive_validate_args(action: Action, context: ProcessingContext): """ for each pair of arguments, validate that they are equal """ args = action.args if len(args) % 2 != 0: assert False, f"test_primitive_validate_args called with an odd number of arguments, {len(args)}" arg_iter = iter(args) while True: try: arg1 = next(arg_iter) arg2 = next(arg_iter) except StopIteration: break except Exception as e: assert False, f"Unexpected exception in test_primitive_validate_args: {e}" assert arg1 == arg2, f"values didn't match as expected, {arg1} vs {arg2}" # This is the default framework configuration file path framework_config = 'configs/framework.cfg' framework_logcfg= 'configs/framework_logger.cfg' pipe_config = "examples/default_simple.cfg" def run_recipe(recipe: str, pipe_config: str=pipe_config, date_dir=None, file_path='', watch=False): """ This is the code that runs the given recipe. It mimics the kpf framework/pipeline startup code in cli.py, but writes the recipe string into a temporary file before invoking the framework with start_recipe as the initial event. The framework is put in testing mode so that it passes exceptions on to this testing code. That we can test the proper handling of recipe errors, e.g. undefined variables. """ pipe = KpfPipelineForTesting # Setup a pipeline logger # This is to differentiate between the loggers of framework and pipeline # and individual modules. # The configs related to the logger is under the section [LOGGER] # Try to initialize the framework try: framework = Framework(pipe, framework_config, testing=True) # Overwrite the framework logger with this instance of logger # using framework default logger creates some obscure problem """ framework.logger = start_logger('DRPFrame', framework_logcfg) """ framework.pipeline.start(pipe_config) except Exception as e: print("Failed to initialize framework, exiting ...", e) traceback.print_exc() # sys.exit(1) # python code with tempfile.NamedTemporaryFile(mode='w+') as f: f.write(recipe) f.seek(0) arg = Arguments(name="start_recipe_args", recipe=f.name) if date_dir != None: arg.date_dir = date_dir arg.file_path = file_path arg.watch = watch framework.append_event('start_recipe', arg) framework.main_loop() def recipe_test(recipe: str, pipe_config: str=pipe_config, **kwargs): try: run_recipe(recipe, pipe_config, **kwargs) except Exception as e: assert False, f"test_recipe: unexpected exception {e}"
Keck-DataReductionPipelinesREPO_NAMEKPF-PipelinePATH_START.@KPF-Pipeline_extracted@KPF-Pipeline-master@kpfpipe@tools@[email protected]_END.py
{ "filename": "response_chain.py", "repo_name": "langchain-ai/langchain", "repo_path": "langchain_extracted/langchain-master/libs/community/langchain_community/chains/openapi/response_chain.py", "type": "Python" }
"""Response parser.""" import json import re from typing import Any from langchain.chains.api.openapi.prompts import RESPONSE_TEMPLATE from langchain.chains.llm import LLMChain from langchain_core.language_models import BaseLanguageModel from langchain_core.output_parsers import BaseOutputParser from langchain_core.prompts.prompt import PromptTemplate class APIResponderOutputParser(BaseOutputParser): """Parse the response and error tags.""" def _load_json_block(self, serialized_block: str) -> str: try: response_content = json.loads(serialized_block, strict=False) return response_content.get("response", "ERROR parsing response.") except json.JSONDecodeError: return "ERROR parsing response." except: raise def parse(self, llm_output: str) -> str: """Parse the response and error tags.""" json_match = re.search(r"```json(.*?)```", llm_output, re.DOTALL) if json_match: return self._load_json_block(json_match.group(1).strip()) else: raise ValueError(f"No response found in output: {llm_output}.") @property def _type(self) -> str: return "api_responder" class APIResponderChain(LLMChain): """Get the response parser.""" @classmethod def is_lc_serializable(cls) -> bool: return False @classmethod def from_llm( cls, llm: BaseLanguageModel, verbose: bool = True, **kwargs: Any ) -> LLMChain: """Get the response parser.""" output_parser = APIResponderOutputParser() prompt = PromptTemplate( template=RESPONSE_TEMPLATE, output_parser=output_parser, input_variables=["response", "instructions"], ) return cls(prompt=prompt, llm=llm, verbose=verbose, **kwargs)
langchain-aiREPO_NAMElangchainPATH_START.@langchain_extracted@langchain-master@libs@community@langchain_community@chains@openapi@[email protected]_END.py
{ "filename": "test_html_parsers.py", "repo_name": "langchain-ai/langchain", "repo_path": "langchain_extracted/langchain-master/libs/community/tests/unit_tests/document_loaders/parsers/test_html_parsers.py", "type": "Python" }
"""Tests for the HTML parsers.""" from pathlib import Path import pytest from langchain_community.document_loaders.blob_loaders import Blob from langchain_community.document_loaders.parsers.html import BS4HTMLParser HERE = Path(__file__).parent EXAMPLES = HERE.parent.parent.parent / "integration_tests" / "examples" @pytest.mark.requires("bs4", "lxml") def test_bs_html_loader() -> None: """Test unstructured loader.""" file_path = EXAMPLES / "example.html" blob = Blob.from_path(file_path) parser = BS4HTMLParser(get_text_separator="|") docs = list(parser.lazy_parse(blob)) assert isinstance(docs, list) assert len(docs) == 1 metadata = docs[0].metadata content = docs[0].page_content assert metadata["title"] == "Chew dad's slippers" assert metadata["source"] == str(file_path) assert content[:2] == "\n|"
langchain-aiREPO_NAMElangchainPATH_START.@langchain_extracted@langchain-master@libs@community@tests@unit_tests@document_loaders@parsers@[email protected]_END.py
{ "filename": "donutImageCheck.py", "repo_name": "lsst-ts/ts_wep", "repo_path": "ts_wep_extracted/ts_wep-main/python/lsst/ts/wep/donutImageCheck.py", "type": "Python" }
# This file is part of ts_wep. # # Developed for the LSST Telescope and Site Systems. # This product includes software developed by the LSST Project # (https://www.lsst.org). # See the COPYRIGHT file at the top-level directory of this distribution # for details of code ownership. # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see <https://www.gnu.org/licenses/>. __all__ = ["DonutImageCheck"] import numpy as np from scipy.stats import entropy class DonutImageCheck(object): def __init__(self, numOfBins=256, entroThres=3.5, returnEntro=False): """Donut image check class to judge the donut image is effective or not. Parameters ---------- numOfBins : int, optional Number of bins in the histogram. (the default is 256.) entroThres : float, optional Threshold of entropy (the default is 3.5.) returnEntro: bool, optional Whether to return the calculated entropy value (the default is False). """ # Number of bins in the histogram self.numOfBins = int(numOfBins) # Threshold of entropy self.entroThres = entroThres # Whether to return the calculated value self.returnEntro = returnEntro def isEffDonut(self, donutImg): """Is effective donut image or not. Parameters ---------- donutImg : numpy.ndarray Donut image. Returns ------- bool True if the donut image is effective. """ array1d = donutImg.flatten() hist = np.histogram(array1d, bins=self.numOfBins)[0] # Square the distribution to magnify the difference in entropy imgEntropy = entropy(hist**2) if (imgEntropy < self.entroThres) and (imgEntropy != 0): eff = True else: eff = False # Return the actual entropy value if needed if self.returnEntro: return eff, imgEntropy else: return eff if __name__ == "__main__": pass
lsst-tsREPO_NAMEts_wepPATH_START.@ts_wep_extracted@ts_wep-main@python@lsst@ts@[email protected]@.PATH_END.py
{ "filename": "design.py", "repo_name": "rat-pac/rat-pac", "repo_path": "rat-pac_extracted/rat-pac-master/python/couchdb/design.py", "type": "Python" }
# -*- coding: utf-8 -*- # # Copyright (C) 2008-2009 Christopher Lenz # All rights reserved. # # This software is licensed as described in the file COPYING, which # you should have received as part of this distribution. """Utility code for managing design documents.""" from copy import deepcopy from inspect import getsource from itertools import groupby from operator import attrgetter from textwrap import dedent from types import FunctionType __all__ = ['ViewDefinition'] __docformat__ = 'restructuredtext en' class ViewDefinition(object): r"""Definition of a view stored in a specific design document. An instance of this class can be used to access the results of the view, as well as to keep the view definition in the design document up to date with the definition in the application code. >>> from couchdb import Server >>> server = Server() >>> db = server.create('python-tests') >>> view = ViewDefinition('tests', 'all', '''function(doc) { ... emit(doc._id, null); ... }''') >>> view.get_doc(db) The view is not yet stored in the database, in fact, design doc doesn't even exist yet. That can be fixed using the `sync` method: >>> view.sync(db) >>> design_doc = view.get_doc(db) >>> design_doc #doctest: +ELLIPSIS <Document '_design/tests'@'...' {...}> >>> print design_doc['views']['all']['map'] function(doc) { emit(doc._id, null); } If you use a Python view server, you can also use Python functions instead of code embedded in strings: >>> def my_map(doc): ... yield doc['somekey'], doc['somevalue'] >>> view = ViewDefinition('test2', 'somename', my_map, language='python') >>> view.sync(db) >>> design_doc = view.get_doc(db) >>> design_doc #doctest: +ELLIPSIS <Document '_design/test2'@'...' {...}> >>> print design_doc['views']['somename']['map'] def my_map(doc): yield doc['somekey'], doc['somevalue'] Use the static `sync_many()` method to create or update a collection of views in the database in an atomic and efficient manner, even across different design documents. >>> del server['python-tests'] """ def __init__(self, design, name, map_fun, reduce_fun=None, language='javascript', wrapper=None, options=None, **defaults): """Initialize the view definition. Note that the code in `map_fun` and `reduce_fun` is automatically dedented, that is, any common leading whitespace is removed from each line. :param design: the name of the design document :param name: the name of the view :param map_fun: the map function code :param reduce_fun: the reduce function code (optional) :param language: the name of the language used :param wrapper: an optional callable that should be used to wrap the result rows :param options: view specific options (e.g. {'collation':'raw'}) """ if design.startswith('_design/'): design = design[8:] self.design = design self.name = name if isinstance(map_fun, FunctionType): map_fun = _strip_decorators(getsource(map_fun).rstrip()) self.map_fun = dedent(map_fun.lstrip('\n')) if isinstance(reduce_fun, FunctionType): reduce_fun = _strip_decorators(getsource(reduce_fun).rstrip()) if reduce_fun: reduce_fun = dedent(reduce_fun.lstrip('\n')) self.reduce_fun = reduce_fun self.language = language self.wrapper = wrapper self.options = options self.defaults = defaults def __call__(self, db, **options): """Execute the view in the given database. :param db: the `Database` instance :param options: optional query string parameters :return: the view results :rtype: `ViewResults` """ merged_options = self.defaults.copy() merged_options.update(options) return db.view('/'.join([self.design, self.name]), wrapper=self.wrapper, **merged_options) def __repr__(self): return '<%s %r>' % (type(self).__name__, '/'.join([ '_design', self.design, '_view', self.name ])) def get_doc(self, db): """Retrieve and return the design document corresponding to this view definition from the given database. :param db: the `Database` instance :return: a `client.Document` instance, or `None` if the design document does not exist in the database :rtype: `Document` """ return db.get('_design/%s' % self.design) def sync(self, db): """Ensure that the view stored in the database matches the view defined by this instance. :param db: the `Database` instance """ type(self).sync_many(db, [self]) @staticmethod def sync_many(db, views, remove_missing=False, callback=None): """Ensure that the views stored in the database that correspond to a given list of `ViewDefinition` instances match the code defined in those instances. This function might update more than one design document. This is done using the CouchDB bulk update feature to ensure atomicity of the operation. :param db: the `Database` instance :param views: a sequence of `ViewDefinition` instances :param remove_missing: whether views found in a design document that are not found in the list of `ViewDefinition` instances should be removed :param callback: a callback function that is invoked when a design document gets updated; the callback gets passed the design document as only parameter, before that doc has actually been saved back to the database """ docs = [] for design, views in groupby(views, key=attrgetter('design')): doc_id = '_design/%s' % design doc = db.get(doc_id, {'_id': doc_id}) orig_doc = deepcopy(doc) languages = set() missing = list(doc.get('views', {}).keys()) for view in views: funcs = {'map': view.map_fun} if view.reduce_fun: funcs['reduce'] = view.reduce_fun if view.options: funcs['options'] = view.options doc.setdefault('views', {})[view.name] = funcs languages.add(view.language) if view.name in missing: missing.remove(view.name) if remove_missing and missing: for name in missing: del doc['views'][name] elif missing and 'language' in doc: languages.add(doc['language']) if len(languages) > 1: raise ValueError('Found different language views in one ' 'design document (%r)', list(languages)) doc['language'] = list(languages)[0] if doc != orig_doc: if callback is not None: callback(doc) docs.append(doc) db.update(docs) def _strip_decorators(code): retval = [] beginning = True for line in code.splitlines(): if beginning and not line.isspace(): if line.lstrip().startswith('@'): continue beginning = False retval.append(line) return '\n'.join(retval)
rat-pacREPO_NAMErat-pacPATH_START.@rat-pac_extracted@rat-pac-master@python@[email protected]@.PATH_END.py