Datasets:
Update README.md
Browse files
README.md
CHANGED
|
@@ -1,4 +1,16 @@
|
|
| 1 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
dataset_info:
|
| 3 |
- config_name: mined-negative
|
| 4 |
features:
|
|
@@ -72,3 +84,62 @@ configs:
|
|
| 72 |
- split: train
|
| 73 |
path: triplet/train-*
|
| 74 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
---
|
| 2 |
+
language:
|
| 3 |
+
- en
|
| 4 |
+
multilinguality:
|
| 5 |
+
- monolingual
|
| 6 |
+
size_categories:
|
| 7 |
+
- 1M<n<10M
|
| 8 |
+
tags:
|
| 9 |
+
- sentence-transformers
|
| 10 |
+
task_categories:
|
| 11 |
+
- feature-extraction
|
| 12 |
+
- sentence-similarity
|
| 13 |
+
pretty_name: SQL Questions
|
| 14 |
dataset_info:
|
| 15 |
- config_name: mined-negative
|
| 16 |
features:
|
|
|
|
| 84 |
- split: train
|
| 85 |
path: triplet/train-*
|
| 86 |
---
|
| 87 |
+
|
| 88 |
+
# Dataset card for SQL Questions
|
| 89 |
+
|
| 90 |
+
This dataset is a reformatting of the [`sql_questions_triplets`](https://huggingface.co/datasets/sergeyvi4ev/sql_questions_triplets) dataset by [@sergeyvi4ev](https://huggingface.co/sergeyvi4ev), such that the dataset can be directly used to train Sentence Transformer models.
|
| 91 |
+
|
| 92 |
+
## Dataset Subsets
|
| 93 |
+
|
| 94 |
+
### `pair` subset
|
| 95 |
+
|
| 96 |
+
* Columns: "query", "positive"
|
| 97 |
+
* Column types: `str`, `str`
|
| 98 |
+
* Examples:
|
| 99 |
+
```python
|
| 100 |
+
{
|
| 101 |
+
'query': 'How many zip codes are under Barre, VT?',
|
| 102 |
+
'positive': '"Barre, VT" is the CBSA_name',
|
| 103 |
+
}
|
| 104 |
+
```
|
| 105 |
+
* Collection strategy: Reading the SQL Questions dataset and selecting all query-positive pairs.
|
| 106 |
+
* Deduplified: Yes
|
| 107 |
+
|
| 108 |
+
### `triplet` subset
|
| 109 |
+
|
| 110 |
+
* Columns: "query", "positive", "negative"
|
| 111 |
+
* Column types: `str`, `str`, `str`
|
| 112 |
+
* Examples:
|
| 113 |
+
```python
|
| 114 |
+
{
|
| 115 |
+
'query': 'How many zip codes are under Barre, VT?',
|
| 116 |
+
'positive': '"Barre, VT" is the CBSA_name',
|
| 117 |
+
'negative': "coordinates refers to latitude, longitude; latitude = '18.090875; longitude = '-66.867756'"
|
| 118 |
+
}
|
| 119 |
+
```
|
| 120 |
+
* Collection strategy: Reading the SQL Questions dataset and selecting all possible triplet pairs.
|
| 121 |
+
* Deduplified: No
|
| 122 |
+
|
| 123 |
+
### `mined-negative` subset
|
| 124 |
+
|
| 125 |
+
* Columns: "query", "positive", "negative_1", "negative_2", "negative_3", "negative_4", "negative_5", "negative_6", "negative_7", "negative_8", "negative_9", "negative_10"
|
| 126 |
+
* Column types: `str`, `str`, `str`, `str`, `str`, `str`, `str`, `str`, `str`, `str`, `str`, `str`
|
| 127 |
+
* Examples:
|
| 128 |
+
```python
|
| 129 |
+
{
|
| 130 |
+
"query": "How many zip codes are under Barre, VT?",
|
| 131 |
+
"positive": "\"Barre, VT\" is the CBSA_name",
|
| 132 |
+
"negative_1": "coordinates refers to latitude, longitude; latitude = '18.090875; longitude = '-66.867756'",
|
| 133 |
+
"negative_2": "name of county refers to county",
|
| 134 |
+
"negative_3": "median age over 40 refers to median_age > 40",
|
| 135 |
+
"negative_4": "\"PHILLIPS\" is the county; 'Montana' is the name of state",
|
| 136 |
+
"negative_5": "name of the CBSA officer refers to CBSA_name; position of the CBSA officer refers to CBSA_type;",
|
| 137 |
+
"negative_6": "population greater than 10000 in 2010 refers to population_2010 > 10000;",
|
| 138 |
+
"negative_7": "postal points refer to zip_code; under New York-Newark-Jersey City, NY-NJ-PA refers to CBSA_name = 'New York-Newark-Jersey City, NY-NJ-PA';",
|
| 139 |
+
"negative_8": "the largest water area refers to MAX(water_area);",
|
| 140 |
+
"negative_9": "\"Wisconsin\" is the state; largest land area refers to Max(land_area); full name refers to first_name, last_name; postal code refers to zip_code",
|
| 141 |
+
"negative_10": "\"Alabama\" and \"Illinois\" are both state; Ratio = Divide (Count(state = 'Alabama'), Count(state = 'Illinois'))"
|
| 142 |
+
}
|
| 143 |
+
```
|
| 144 |
+
* Collection strategy: Reading the SQL Questions dataset, filtering away the 15 samples that did not have 10 negative pairs, and formatting them in the described columns.
|
| 145 |
+
* Deduplified: No
|