CanolaTrack / README.md
shl-shawn's picture
Update README.md
ecb8f52 verified
---
task_categories:
- image-to-image
- image-feature-extraction
- object-detection
language:
- en
tags:
- plant
- precision agriculture
- plant phenotyping
- tracking
size_categories:
- 10B<n<100B
pretty_name: CanolaTrack
---
# CanolaTrack
**CanolaTrack** is a curated dataset for **leaf-level multi-object tracking (MOT)** and **detection** from top-down RGB imagery of *Brassica napus* (canola) plants. Each sequence records a single plant over time; frames contain annotated **bounding boxes** with **persistent leaf IDs** for tracking.
- For baseline methods and a reference pipeline built on CanolaTrack, see **LeafTrackNet** (training, inference, and TrackEval integration) in our [Github repo](https://github.com/shl-shawn/LeafTrackNet).
---
## Dataset Summary
- **Domain:** Plant phenotyping (leaf-level analysis, time series)
- **Modalities:** RGB images (top-down)
- **Use cases:** Multi-object tracking (leaf IDs), detection, re-identification
- **Content:** Sequences of a single plant over days; each frame has MOT-style annotations
- **Annotations:** `gt/gt.txt` per sequence with **frame**, **leaf_id**, **x**, **y**, **w**, **h** (pixels)
- **Extras:** YOLOv10 **proposals JSONs** and **LeafTrackNet model weights**for reproducible tracking baselines
---
## Repository Structure
```
CanolaTrack/
β”‚ β”œβ”€β”€ train/
β”‚ β”‚ └── <plant_id>/
β”‚ β”‚ β”œβ”€β”€ gt/gt.txt # CSV: frame,id,x,y,w,h,,,*
β”‚ β”‚ └── img/{frame:08d}.jpg
β”‚ └──val/
β”‚ └── <plant_id>/
β”‚ β”œβ”€β”€ gt/gt.txt
β”‚ └── img/{frame:08d}.jpg
proposals/ # detection proposals for standardized benchmarking
β”‚ β”œβ”€β”€ det_db_train.json
β”‚ └── det_db_val.json
weights/ # detctors and tracker weights
└── <files>
```
## Supported Tasks and Benchmarks
- **Multi-Object Tracking (MOT)** at the **leaf** level
- **Object Detection** (per-frame leaf boxes)
- **Leaf Segmentation** (per-frame leaf masks)
---
## How to Cite
Please cite the dataset and the accompanying papers:
```bib
@article{leaftracknet2025,
title={LeafTrackNet: A Deep Learning Framework for Robust Leaf Tracking in Top-Down Plant Phenotyping},
year={2025},
author = {},
url = {}
}
```
> CanolaTrack datasetΒ© BASF SE 2025. This dataset may be freely used for non-commercial research and educational purposes.