Datasets:
Tasks:
Automatic Speech Recognition
Modalities:
Audio
Formats:
parquet
Languages:
Middle English (1100-1500)
Size:
1K - 10K
License:
metadata
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
- split: test
path: data/test-*
- split: validation
path: data/validation-*
task_categories:
- automatic-speech-recognition
language:
- enm
tags:
- speech
- audio
- whisper
size_categories:
- 1K<n<10K
license: cc-by-nc-4.0
dataset_info:
features:
- name: input_features
sequence:
sequence: float32
- name: labels
sequence: int64
splits:
- name: train
num_bytes: 2932208048
num_examples: 3053
- name: test
num_bytes: 163274288
num_examples: 170
- name: validation
num_bytes: 163274312
num_examples: 170
download_size: 461253903
dataset_size: 3258756648
Enenlhet Whisper Dataset
This dataset contains preprocessed audio features and tokenized text for training Whisper models on the Enenlhet language.
Dataset Summary
- Train: 3,053 examples
- Test: 170 examples
- Validation: 170 examples
- Total: 3,393 examples
Features
input_values
: Preprocessed audio features (16kHz, normalized float32 arrays)labels
: Tokenized text as integer sequences
Usage
from datasets import load_dataset
# Load the dataset
dataset = load_dataset("sjhuskey/enenlhet-whisper-dataset")
# Access splits
train_dataset = dataset['train']
test_dataset = dataset['test']
validation_dataset = dataset['validation']
Citation
If you use this dataset, please cite:
@dataset{enenlhet_whisper_dataset,
title={Enenlhet Whisper Dataset},
author={Samuel J. Huskey},
year={2025},
url={https://huggingface.co/datasets/sjhuskey/enenlhet-whisper-dataset}
}