dataset_info:
features:
- name: transcription_id
dtype: string
- name: transcription
dtype: string
- name: description
dtype: string
- name: intonation
dtype: string
- name: interpretation_id
dtype: string
- name: audio
dtype:
audio:
sampling_rate: 16000
- name: metadata
struct:
- name: gender
dtype: string
- name: language_code
dtype: string
- name: sample_rate_hertz
dtype: int64
- name: voice_name
dtype: string
- name: possible_answers
sequence: string
- name: label
dtype: int64
- name: stress_pattern
struct:
- name: binary
sequence: int64
- name: indices
sequence: int64
- name: words
sequence: string
- name: audio_lm_prompt
dtype: string
splits:
- name: test
num_bytes: 29451897.32142857
num_examples: 218
download_size: 22754357
dataset_size: 29451897.32142857
configs:
- config_name: default
data_files:
- split: test
path: data/test-*
license: cc-by-nc-4.0
StressTest Evaluation Dataset
This dataset supports the evaluation of models on Sentence Stress Reasoning (SSR) and Sentence Stress Detection (SSD) tasks, as introduced in our paper:
StressTest: Can YOUR Speech LM Handle the Stress?
π Paper | π» Code Repository | π€ Model: StresSLM
ποΈ Dataset Overview
This dataset includes 218 evaluation samples (split: test
) with the following features:
transcription_id
: Identifier for each transcription sample.transcription
: The spoken text.description
: Description of the interpretation of the stress pattern.intonation
: The stressed version of the transcription.interpretation_id
: Unique reference to the interpretation imposed by the stress pattern of the sentence.audio
: Audio data at 16kHz sampling rate.metadata
: Structured metadata including:gender
: Speaker gender.language_code
: Language of the transcription.sample_rate_hertz
: Sampling rate in Hz.voice_name
: Voice name.
possible_answers
: List of possible interpretations for SSR.label
: Ground truth label for SSR.stress_pattern
: Structured stress annotation including:binary
: Sequence of 0/1 labels marking stressed words.indices
: Stressed word positions in the transcription.words
: The actual stressed words.
audio_lm_prompt
: The prompt used for SSR.
Evaluate YOUR model
This dataset is designed for evaluating models following the protocol and scripts in our StressTest repository.
To evaluate a model, refer to the instructions in the repository. For example:
python -m stresstest.evaluation.main \
--task ssr \
--model_to_evaluate stresslm
Replace ssr
with ssd
for stress detection, and use your modelβs name with --model_to_evaluate
.
How to use
This dataset is formatted for with the HuggingFace Datasets library:
from datasets import load_dataset
dataset = load_dataset("slprl/StressTest")
π Citation
If you use this dataset in your work, please cite:
@misc{yosha2025stresstest,
title={StressTest: Can YOUR Speech LM Handle the Stress?},
author={Iddo Yosha and Gallil Maimon and Yossi Adi},
year={2025},
eprint={2505.22765},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/2505.22765},
}