repo_id
stringlengths
15
86
file_path
stringlengths
28
180
content
stringlengths
1
1.75M
__index_level_0__
int64
0
0
hf_public_repos/peft/examples
hf_public_repos/peft/examples/causal_language_modeling/peft_prefix_tuning_clm.ipynb
from transformers import AutoModelForCausalLM from peft import get_peft_config, get_peft_model, PrefixTuningConfig, TaskType, PeftType import torch from datasets import load_dataset import os from transformers import AutoTokenizer from torch.utils.data import DataLoader from transformers import default_data_collator, get_linear_schedule_with_warmup from tqdm import tqdm from datasets import load_dataset device = "cuda" model_name_or_path = "bigscience/bloomz-560m" tokenizer_name_or_path = "bigscience/bloomz-560m" peft_config = PrefixTuningConfig(task_type=TaskType.CAUSAL_LM, num_virtual_tokens=30) dataset_name = "twitter_complaints" checkpoint_name = f"{dataset_name}_{model_name_or_path}_{peft_config.peft_type}_{peft_config.task_type}_v1.pt".replace( "/", "_" ) text_column = "Tweet text" label_column = "text_label" max_length = 64 lr = 3e-2 num_epochs = 50 batch_size = 8from datasets import load_dataset dataset = load_dataset("ought/raft", dataset_name) classes = [k.replace("_", " ") for k in dataset["train"].features["Label"].names] print(classes) dataset = dataset.map( lambda x: {"text_label": [classes[label] for label in x["Label"]]}, batched=True, num_proc=1, ) print(dataset) dataset["train"][0]# data preprocessing tokenizer = AutoTokenizer.from_pretrained(model_name_or_path) if tokenizer.pad_token_id is None: tokenizer.pad_token_id = tokenizer.eos_token_id target_max_length = max([len(tokenizer(class_label)["input_ids"]) for class_label in classes]) print(target_max_length) def preprocess_function(examples): batch_size = len(examples[text_column]) inputs = [f"{text_column} : {x} Label : " for x in examples[text_column]] targets = [str(x) for x in examples[label_column]] model_inputs = tokenizer(inputs) labels = tokenizer(targets) for i in range(batch_size): sample_input_ids = model_inputs["input_ids"][i] label_input_ids = labels["input_ids"][i] + [tokenizer.pad_token_id] # print(i, sample_input_ids, label_input_ids) model_inputs["input_ids"][i] = sample_input_ids + label_input_ids labels["input_ids"][i] = [-100] * len(sample_input_ids) + label_input_ids model_inputs["attention_mask"][i] = [1] * len(model_inputs["input_ids"][i]) # print(model_inputs) for i in range(batch_size): sample_input_ids = model_inputs["input_ids"][i] label_input_ids = labels["input_ids"][i] model_inputs["input_ids"][i] = [tokenizer.pad_token_id] * ( max_length - len(sample_input_ids) ) + sample_input_ids model_inputs["attention_mask"][i] = [0] * (max_length - len(sample_input_ids)) + model_inputs[ "attention_mask" ][i] labels["input_ids"][i] = [-100] * (max_length - len(sample_input_ids)) + label_input_ids model_inputs["input_ids"][i] = torch.tensor(model_inputs["input_ids"][i][:max_length]) model_inputs["attention_mask"][i] = torch.tensor(model_inputs["attention_mask"][i][:max_length]) labels["input_ids"][i] = torch.tensor(labels["input_ids"][i][:max_length]) model_inputs["labels"] = labels["input_ids"] return model_inputs processed_datasets = dataset.map( preprocess_function, batched=True, num_proc=1, remove_columns=dataset["train"].column_names, load_from_cache_file=False, desc="Running tokenizer on dataset", ) train_dataset = processed_datasets["train"] eval_dataset = processed_datasets["train"] train_dataloader = DataLoader( train_dataset, shuffle=True, collate_fn=default_data_collator, batch_size=batch_size, pin_memory=True ) eval_dataloader = DataLoader(eval_dataset, collate_fn=default_data_collator, batch_size=batch_size, pin_memory=True)def test_preprocess_function(examples): batch_size = len(examples[text_column]) inputs = [f"{text_column} : {x} Label : " for x in examples[text_column]] model_inputs = tokenizer(inputs) # print(model_inputs) for i in range(batch_size): sample_input_ids = model_inputs["input_ids"][i] model_inputs["input_ids"][i] = [tokenizer.pad_token_id] * ( max_length - len(sample_input_ids) ) + sample_input_ids model_inputs["attention_mask"][i] = [0] * (max_length - len(sample_input_ids)) + model_inputs[ "attention_mask" ][i] model_inputs["input_ids"][i] = torch.tensor(model_inputs["input_ids"][i][:max_length]) model_inputs["attention_mask"][i] = torch.tensor(model_inputs["attention_mask"][i][:max_length]) return model_inputs test_dataset = dataset["test"].map( test_preprocess_function, batched=True, num_proc=1, remove_columns=dataset["train"].column_names, load_from_cache_file=False, desc="Running tokenizer on dataset", ) test_dataloader = DataLoader(test_dataset, collate_fn=default_data_collator, batch_size=batch_size, pin_memory=True) next(iter(test_dataloader))next(iter(train_dataloader))len(test_dataloader)next(iter(test_dataloader))# creating model model = AutoModelForCausalLM.from_pretrained(model_name_or_path) model = get_peft_model(model, peft_config) model.print_trainable_parameters()model.print_trainable_parameters()modelmodel.peft_config# model # optimizer and lr scheduler optimizer = torch.optim.AdamW(model.parameters(), lr=lr) lr_scheduler = get_linear_schedule_with_warmup( optimizer=optimizer, num_warmup_steps=0, num_training_steps=(len(train_dataloader) * num_epochs), )# training and evaluation model = model.to(device) for epoch in range(num_epochs): model.train() total_loss = 0 for step, batch in enumerate(tqdm(train_dataloader)): batch = {k: v.to(device) for k, v in batch.items()} # print(batch) # print(batch["input_ids"].shape) outputs = model(**batch) loss = outputs.loss total_loss += loss.detach().float() loss.backward() optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() eval_loss = 0 eval_preds = [] for step, batch in enumerate(tqdm(eval_dataloader)): batch = {k: v.to(device) for k, v in batch.items()} with torch.no_grad(): outputs = model(**batch) loss = outputs.loss eval_loss += loss.detach().float() eval_preds.extend( tokenizer.batch_decode(torch.argmax(outputs.logits, -1).detach().cpu().numpy(), skip_special_tokens=True) ) eval_epoch_loss = eval_loss / len(eval_dataloader) eval_ppl = torch.exp(eval_epoch_loss) train_epoch_loss = total_loss / len(train_dataloader) train_ppl = torch.exp(train_epoch_loss) print(f"{epoch=}: {train_ppl=} {train_epoch_loss=} {eval_ppl=} {eval_epoch_loss=}")model.eval() i = 16 inputs = tokenizer(f'{text_column} : {dataset["test"][i]["Tweet text"]} Label : ', return_tensors="pt") print(dataset["test"][i]["Tweet text"]) print(inputs) with torch.no_grad(): inputs = {k: v.to(device) for k, v in inputs.items()} outputs = model.generate( input_ids=inputs["input_ids"], attention_mask=inputs["attention_mask"], max_new_tokens=10, eos_token_id=3 ) print(outputs) print(tokenizer.batch_decode(outputs.detach().cpu().numpy(), skip_special_tokens=True))# saving model peft_model_id = f"{model_name_or_path}_{peft_config.peft_type}_{peft_config.task_type}" model.save_pretrained(peft_model_id)ckpt = f"{peft_model_id}/adapter_model.bin" !du -h $ckptfrom peft import PeftModel, PeftConfig peft_model_id = f"{model_name_or_path}_{peft_config.peft_type}_{peft_config.task_type}" config = PeftConfig.from_pretrained(peft_model_id) model = AutoModelForCausalLM.from_pretrained(config.base_model_name_or_path) model = PeftModel.from_pretrained(model, peft_model_id)model.to(device) model.eval() i = 4 inputs = tokenizer(f'{text_column} : {dataset["test"][i]["Tweet text"]} Label : ', return_tensors="pt") print(dataset["test"][i]["Tweet text"]) print(inputs) with torch.no_grad(): inputs = {k: v.to(device) for k, v in inputs.items()} outputs = model.generate( input_ids=inputs["input_ids"], attention_mask=inputs["attention_mask"], max_new_tokens=10, eos_token_id=3 ) print(outputs) print(tokenizer.batch_decode(outputs.detach().cpu().numpy(), skip_special_tokens=True))
0
hf_public_repos/peft/examples
hf_public_repos/peft/examples/multi_adapter_examples/PEFT_Multi_LoRA_Inference.ipynb
import os os.environ["CUDA_VISIBLE_DEVICES"] = "0"from huggingface_hub import notebook_login import torch notebook_login()from peft import PeftModel from transformers import LlamaTokenizer, LlamaForCausalLM, GenerationConfig model_name = "decapoda-research/llama-7b-hf" tokenizer = LlamaTokenizer.from_pretrained(model_name) model = LlamaForCausalLM.from_pretrained(model_name, load_in_8bit=True, device_map="auto", use_auth_token=True)%%time model = PeftModel.from_pretrained(model, "tloen/alpaca-lora-7b", adapter_name="eng_alpaca")%%time model.load_adapter("22h/cabrita-lora-v0-1", adapter_name="portuguese_alpaca")modelmodel.to("cuda")import torch device = "cuda" def generate_prompt(instruction, input=None): if input: return f"""Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request. ### Instruction: {instruction} ### Input: {input} ### Response:""" else: return f"""Below is an instruction that describes a task. Write a response that appropriately completes the request. ### Instruction: {instruction} ### Response:""" def evaluate( instruction, input=None, temperature=0.1, top_p=0.75, top_k=40, num_beams=4, max_new_tokens=256, **kwargs, ): prompt = generate_prompt(instruction, input) inputs = tokenizer(prompt, return_tensors="pt") input_ids = inputs["input_ids"].to(device) generation_config = GenerationConfig( temperature=temperature, top_p=top_p, top_k=top_k, num_beams=num_beams, no_repeat_ngram_size=3, **kwargs, ) with torch.no_grad(): generation_output = model.generate( input_ids=input_ids, generation_config=generation_config, return_dict_in_generate=True, output_scores=True, max_new_tokens=max_new_tokens, ) s = generation_output.sequences[0] output = tokenizer.decode(s) return output.split("### Response:")[1].strip()%%time model.set_adapter("eng_alpaca")instruction = "Tell me about alpacas." print(evaluate(instruction))%%time model.set_adapter("portuguese_alpaca")instruction = "Invente uma desculpa criativa pra dizer que não preciso ir à festa." print(evaluate(instruction))with model.disable_adapter(): instruction = "Invente uma desculpa criativa pra dizer que não preciso ir à festa." print(evaluate(instruction))
0
hf_public_repos/peft/examples
hf_public_repos/peft/examples/int8_training/Finetune_flan_t5_large_bnb_peft.ipynb
# Select CUDA device index import os import torch os.environ["CUDA_VISIBLE_DEVICES"] = "0" from datasets import load_dataset from transformers import AutoModelForSeq2SeqLM, AutoTokenizer model_name = "google/flan-t5-large" model = AutoModelForSeq2SeqLM.from_pretrained(model_name, load_in_8bit=True) tokenizer = AutoTokenizer.from_pretrained(model_name)from peft import prepare_model_for_int8_training model = prepare_model_for_int8_training(model)from peft import LoraConfig, get_peft_model, TaskType def print_trainable_parameters(model): """ Prints the number of trainable parameters in the model. """ trainable_params = 0 all_param = 0 for _, param in model.named_parameters(): all_param += param.numel() if param.requires_grad: trainable_params += param.numel() print( f"trainable params: {trainable_params} || all params: {all_param} || trainable%: {100 * trainable_params / all_param}" ) lora_config = LoraConfig( r=16, lora_alpha=32, target_modules=["q", "v"], lora_dropout=0.05, bias="none", task_type="SEQ_2_SEQ_LM" ) model = get_peft_model(model, lora_config) print_trainable_parameters(model)# loading dataset dataset = load_dataset("financial_phrasebank", "sentences_allagree") dataset = dataset["train"].train_test_split(test_size=0.1) dataset["validation"] = dataset["test"] del dataset["test"] classes = dataset["train"].features["label"].names dataset = dataset.map( lambda x: {"text_label": [classes[label] for label in x["label"]]}, batched=True, num_proc=1, )# data preprocessing text_column = "sentence" label_column = "text_label" max_length = 128 def preprocess_function(examples): inputs = examples[text_column] targets = examples[label_column] model_inputs = tokenizer(inputs, max_length=max_length, padding="max_length", truncation=True, return_tensors="pt") labels = tokenizer(targets, max_length=3, padding="max_length", truncation=True, return_tensors="pt") labels = labels["input_ids"] labels[labels == tokenizer.pad_token_id] = -100 model_inputs["labels"] = labels return model_inputs processed_datasets = dataset.map( preprocess_function, batched=True, num_proc=1, remove_columns=dataset["train"].column_names, load_from_cache_file=False, desc="Running tokenizer on dataset", ) train_dataset = processed_datasets["train"] eval_dataset = processed_datasets["validation"]from transformers import TrainingArguments, Trainer training_args = TrainingArguments( "temp", evaluation_strategy="epoch", learning_rate=1e-3, gradient_accumulation_steps=1, auto_find_batch_size=True, num_train_epochs=1, save_steps=100, save_total_limit=8, ) trainer = Trainer( model=model, args=training_args, train_dataset=train_dataset, eval_dataset=eval_dataset, ) model.config.use_cache = False # silence the warnings. Please re-enable for inference!trainer.train()model.eval() input_text = "In January-September 2009 , the Group 's net interest income increased to EUR 112.4 mn from EUR 74.3 mn in January-September 2008 ." inputs = tokenizer(input_text, return_tensors="pt") outputs = model.generate(input_ids=inputs["input_ids"], max_new_tokens=10) print("input sentence: ", input_text) print(" output prediction: ", tokenizer.batch_decode(outputs.detach().cpu().numpy(), skip_special_tokens=True))from huggingface_hub import notebook_login notebook_login()model.push_to_hub("ybelkada/flan-t5-large-financial-phrasebank-lora", use_auth_token=True)import torch from peft import PeftModel, PeftConfig from transformers import AutoModelForSeq2SeqLM, AutoTokenizer peft_model_id = "ybelkada/flan-t5-large-financial-phrasebank-lora" config = PeftConfig.from_pretrained(peft_model_id) model = AutoModelForSeq2SeqLM.from_pretrained(config.base_model_name_or_path, torch_dtype="auto", device_map="auto") tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path) # Load the Lora model model = PeftModel.from_pretrained(model, peft_model_id)model.eval() input_text = "In January-September 2009 , the Group 's net interest income increased to EUR 112.4 mn from EUR 74.3 mn in January-September 2008 ." inputs = tokenizer(input_text, return_tensors="pt") outputs = model.generate(input_ids=inputs["input_ids"], max_new_tokens=10) print("input sentence: ", input_text) print(" output prediction: ", tokenizer.batch_decode(outputs.detach().cpu().numpy(), skip_special_tokens=True))
0
hf_public_repos/peft/examples
hf_public_repos/peft/examples/int8_training/Finetune_opt_bnb_peft.ipynb
import os import torch import torch.nn as nn import bitsandbytes as bnb from transformers import AutoTokenizer, AutoConfig, AutoModelForCausalLM model = AutoModelForCausalLM.from_pretrained("facebook/opt-6.7b", load_in_8bit=True) tokenizer = AutoTokenizer.from_pretrained("facebook/opt-6.7b")from peft import prepare_model_for_int8_training model = prepare_model_for_int8_training(model)def print_trainable_parameters(model): """ Prints the number of trainable parameters in the model. """ trainable_params = 0 all_param = 0 for _, param in model.named_parameters(): all_param += param.numel() if param.requires_grad: trainable_params += param.numel() print( f"trainable params: {trainable_params} || all params: {all_param} || trainable%: {100 * trainable_params / all_param}" )from peft import LoraConfig, get_peft_model config = LoraConfig( r=16, lora_alpha=32, target_modules=["q_proj", "v_proj"], lora_dropout=0.05, bias="none", task_type="CAUSAL_LM" ) model = get_peft_model(model, config) print_trainable_parameters(model)import transformers from datasets import load_dataset data = load_dataset("Abirate/english_quotes") data = data.map(lambda samples: tokenizer(samples["quote"]), batched=True) trainer = transformers.Trainer( model=model, train_dataset=data["train"], args=transformers.TrainingArguments( per_device_train_batch_size=4, gradient_accumulation_steps=4, warmup_steps=100, max_steps=200, learning_rate=2e-4, fp16=True, logging_steps=1, output_dir="outputs", ), data_collator=transformers.DataCollatorForLanguageModeling(tokenizer, mlm=False), ) model.config.use_cache = False # silence the warnings. Please re-enable for inference! trainer.train()from huggingface_hub import notebook_login notebook_login()model.push_to_hub("ybelkada/opt-6.7b-lora", use_auth_token=True)import torch from peft import PeftModel, PeftConfig from transformers import AutoModelForCausalLM, AutoTokenizer peft_model_id = "ybelkada/opt-6.7b-lora" config = PeftConfig.from_pretrained(peft_model_id) model = AutoModelForCausalLM.from_pretrained( config.base_model_name_or_path, return_dict=True, load_in_8bit=True, device_map="auto" ) tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path) # Load the Lora model model = PeftModel.from_pretrained(model, peft_model_id)batch = tokenizer("Two things are infinite: ", return_tensors="pt") with torch.cuda.amp.autocast(): output_tokens = model.generate(**batch, max_new_tokens=50) print("\n\n", tokenizer.decode(output_tokens[0], skip_special_tokens=True))
0
hf_public_repos/peft/examples
hf_public_repos/peft/examples/int8_training/peft_bnb_whisper_large_v2_training.ipynb
from huggingface_hub import notebook_login notebook_login()# Select CUDA device index import os os.environ["CUDA_VISIBLE_DEVICES"] = "0" model_name_or_path = "openai/whisper-large-v2" language = "Marathi" language_abbr = "mr" task = "transcribe" dataset_name = "mozilla-foundation/common_voice_11_0"from datasets import load_dataset, DatasetDict common_voice = DatasetDict() common_voice["train"] = load_dataset(dataset_name, language_abbr, split="train+validation", use_auth_token=True) common_voice["test"] = load_dataset(dataset_name, language_abbr, split="test", use_auth_token=True) print(common_voice)common_voice = common_voice.remove_columns( ["accent", "age", "client_id", "down_votes", "gender", "locale", "path", "segment", "up_votes"] ) print(common_voice)from transformers import WhisperFeatureExtractor feature_extractor = WhisperFeatureExtractor.from_pretrained(model_name_or_path)from transformers import WhisperTokenizer tokenizer = WhisperTokenizer.from_pretrained(model_name_or_path, language=language, task=task)from transformers import WhisperProcessor processor = WhisperProcessor.from_pretrained(model_name_or_path, language=language, task=task)print(common_voice["train"][0])from datasets import Audio common_voice = common_voice.cast_column("audio", Audio(sampling_rate=16000))print(common_voice["train"][0])def prepare_dataset(batch): # load and resample audio data from 48 to 16kHz audio = batch["audio"] # compute log-Mel input features from input audio array batch["input_features"] = feature_extractor(audio["array"], sampling_rate=audio["sampling_rate"]).input_features[0] # encode target text to label ids batch["labels"] = tokenizer(batch["sentence"]).input_ids return batchcommon_voice = common_voice.map(prepare_dataset, remove_columns=common_voice.column_names["train"], num_proc=2)common_voice["train"]import torch from dataclasses import dataclass from typing import Any, Dict, List, Union @dataclass class DataCollatorSpeechSeq2SeqWithPadding: processor: Any def __call__(self, features: List[Dict[str, Union[List[int], torch.Tensor]]]) -> Dict[str, torch.Tensor]: # split inputs and labels since they have to be of different lengths and need different padding methods # first treat the audio inputs by simply returning torch tensors input_features = [{"input_features": feature["input_features"]} for feature in features] batch = self.processor.feature_extractor.pad(input_features, return_tensors="pt") # get the tokenized label sequences label_features = [{"input_ids": feature["labels"]} for feature in features] # pad the labels to max length labels_batch = self.processor.tokenizer.pad(label_features, return_tensors="pt") # replace padding with -100 to ignore loss correctly labels = labels_batch["input_ids"].masked_fill(labels_batch.attention_mask.ne(1), -100) # if bos token is appended in previous tokenization step, # cut bos token here as it's append later anyways if (labels[:, 0] == self.processor.tokenizer.bos_token_id).all().cpu().item(): labels = labels[:, 1:] batch["labels"] = labels return batchdata_collator = DataCollatorSpeechSeq2SeqWithPadding(processor=processor)import evaluate metric = evaluate.load("wer")def compute_metrics(pred): pred_ids = pred.predictions label_ids = pred.label_ids # replace -100 with the pad_token_id label_ids[label_ids == -100] = tokenizer.pad_token_id # we do not want to group tokens when computing the metrics pred_str = tokenizer.batch_decode(pred_ids, skip_special_tokens=True) label_str = tokenizer.batch_decode(label_ids, skip_special_tokens=True) wer = 100 * metric.compute(predictions=pred_str, references=label_str) return {"wer": wer}from transformers import WhisperForConditionalGeneration model = WhisperForConditionalGeneration.from_pretrained(model_name_or_path, load_in_8bit=True) # model.hf_device_map - this should be {" ": 0}model.config.forced_decoder_ids = None model.config.suppress_tokens = []from peft import prepare_model_for_int8_training model = prepare_model_for_int8_training(model)from peft import LoraConfig, PeftModel, LoraModel, LoraConfig, get_peft_model config = LoraConfig(r=32, lora_alpha=64, target_modules=["q_proj", "v_proj"], lora_dropout=0.05, bias="none") model = get_peft_model(model, config) model.print_trainable_parameters()from transformers import Seq2SeqTrainingArguments training_args = Seq2SeqTrainingArguments( output_dir="temp", # change to a repo name of your choice per_device_train_batch_size=8, gradient_accumulation_steps=1, # increase by 2x for every 2x decrease in batch size learning_rate=1e-3, warmup_steps=50, num_train_epochs=3, evaluation_strategy="epoch", fp16=True, per_device_eval_batch_size=8, generation_max_length=128, logging_steps=25, remove_unused_columns=False, # required as the PeftModel forward doesn't have the signature of the wrapped model's forward label_names=["labels"], # same reason as above )from transformers import Seq2SeqTrainer, TrainerCallback, TrainingArguments, TrainerState, TrainerControl from transformers.trainer_utils import PREFIX_CHECKPOINT_DIR class SavePeftModelCallback(TrainerCallback): def on_save( self, args: TrainingArguments, state: TrainerState, control: TrainerControl, **kwargs, ): checkpoint_folder = os.path.join(args.output_dir, f"{PREFIX_CHECKPOINT_DIR}-{state.global_step}") peft_model_path = os.path.join(checkpoint_folder, "adapter_model") kwargs["model"].save_pretrained(peft_model_path) pytorch_model_path = os.path.join(checkpoint_folder, "pytorch_model.bin") if os.path.exists(pytorch_model_path): os.remove(pytorch_model_path) return control trainer = Seq2SeqTrainer( args=training_args, model=model, train_dataset=common_voice["train"], eval_dataset=common_voice["test"], data_collator=data_collator, # compute_metrics=compute_metrics, tokenizer=processor.feature_extractor, callbacks=[SavePeftModelCallback], ) model.config.use_cache = False # silence the warnings. Please re-enable for inference!trainer.train()model_name_or_path = "openai/whisper-large-v2" peft_model_id = "smangrul/" + f"{model_name_or_path}-{model.peft_config.peft_type}-colab".replace("/", "-") model.push_to_hub(peft_model_id) print(peft_model_id)from peft import PeftModel, PeftConfig from transformers import WhisperForConditionalGeneration, Seq2SeqTrainer peft_model_id = "smangrul/openai-whisper-large-v2-LORA-colab" peft_config = PeftConfig.from_pretrained(peft_model_id) model = WhisperForConditionalGeneration.from_pretrained( peft_config.base_model_name_or_path, load_in_8bit=True, device_map="auto" ) model = PeftModel.from_pretrained(model, peft_model_id)from torch.utils.data import DataLoader from tqdm import tqdm import numpy as np import gc eval_dataloader = DataLoader(common_voice["test"], batch_size=8, collate_fn=data_collator) model.eval() for step, batch in enumerate(tqdm(eval_dataloader)): with torch.cuda.amp.autocast(): with torch.no_grad(): generated_tokens = ( model.generate( input_features=batch["input_features"].to("cuda"), decoder_input_ids=batch["labels"][:, :4].to("cuda"), max_new_tokens=255, ) .cpu() .numpy() ) labels = batch["labels"].cpu().numpy() labels = np.where(labels != -100, labels, tokenizer.pad_token_id) decoded_preds = tokenizer.batch_decode(generated_tokens, skip_special_tokens=True) decoded_labels = tokenizer.batch_decode(labels, skip_special_tokens=True) metric.add_batch( predictions=decoded_preds, references=decoded_labels, ) del generated_tokens, labels, batch gc.collect() wer = 100 * metric.compute() print(f"{wer=}")import torch import gradio as gr from transformers import ( AutomaticSpeechRecognitionPipeline, WhisperForConditionalGeneration, WhisperTokenizer, WhisperProcessor, ) from peft import PeftModel, PeftConfig peft_model_id = "smangrul/openai-whisper-large-v2-LORA-colab" language = "Marathi" task = "transcribe" peft_config = PeftConfig.from_pretrained(peft_model_id) model = WhisperForConditionalGeneration.from_pretrained( peft_config.base_model_name_or_path, load_in_8bit=True, device_map="auto" ) model = PeftModel.from_pretrained(model, peft_model_id) tokenizer = WhisperTokenizer.from_pretrained(peft_config.base_model_name_or_path, language=language, task=task) processor = WhisperProcessor.from_pretrained(peft_config.base_model_name_or_path, language=language, task=task) feature_extractor = processor.feature_extractor forced_decoder_ids = processor.get_decoder_prompt_ids(language=language, task=task) pipe = AutomaticSpeechRecognitionPipeline(model=model, tokenizer=tokenizer, feature_extractor=feature_extractor) def transcribe(audio): with torch.cuda.amp.autocast(): text = pipe(audio, generate_kwargs={"forced_decoder_ids": forced_decoder_ids}, max_new_tokens=255)["text"] return text iface = gr.Interface( fn=transcribe, inputs=gr.Audio(source="microphone", type="filepath"), outputs="text", title="PEFT LoRA + INT8 Whisper Large V2 Marathi", description="Realtime demo for Marathi speech recognition using `PEFT-LoRA+INT8` fine-tuned Whisper Large V2 model.", ) iface.launch(share=True)
0
hf_public_repos/peft/examples
hf_public_repos/peft/examples/int8_training/fine_tune_blip2_int8.py
# coding=utf-8 # Copyright 2023-present the HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from datasets import load_dataset from torch.utils.data import DataLoader, Dataset from transformers import AutoModelForVision2Seq, AutoProcessor from peft import LoraConfig, get_peft_model # Let's define the LoraConfig config = LoraConfig( r=16, lora_alpha=32, lora_dropout=0.05, bias="none", ) # We load our model and processor using `transformers` model = AutoModelForVision2Seq.from_pretrained("Salesforce/blip2-opt-2.7b", load_in_8bit=True) processor = AutoProcessor.from_pretrained("Salesforce/blip2-opt-2.7b") # Get our peft model and print the number of trainable parameters model = get_peft_model(model, config) model.print_trainable_parameters() # Let's load the dataset here! dataset = load_dataset("ybelkada/football-dataset", split="train") class ImageCaptioningDataset(Dataset): def __init__(self, dataset, processor): self.dataset = dataset self.processor = processor def __len__(self): return len(self.dataset) def __getitem__(self, idx): item = self.dataset[idx] encoding = self.processor(images=item["image"], padding="max_length", return_tensors="pt") # remove batch dimension encoding = {k: v.squeeze() for k, v in encoding.items()} encoding["text"] = item["text"] return encoding def collator(batch): # pad the input_ids and attention_mask processed_batch = {} for key in batch[0].keys(): if key != "text": processed_batch[key] = torch.stack([example[key] for example in batch]) else: text_inputs = processor.tokenizer( [example["text"] for example in batch], padding=True, return_tensors="pt" ) processed_batch["input_ids"] = text_inputs["input_ids"] processed_batch["attention_mask"] = text_inputs["attention_mask"] return processed_batch train_dataset = ImageCaptioningDataset(dataset, processor) train_dataloader = DataLoader(train_dataset, shuffle=True, batch_size=2, collate_fn=collator) optimizer = torch.optim.AdamW(model.parameters(), lr=5e-5) device = "cuda" if torch.cuda.is_available() else "cpu" model.train() for epoch in range(50): print("Epoch:", epoch) for idx, batch in enumerate(train_dataloader): input_ids = batch.pop("input_ids").to(device) pixel_values = batch.pop("pixel_values").to(device, torch.float16) outputs = model(input_ids=input_ids, pixel_values=pixel_values, labels=input_ids) loss = outputs.loss print("Loss:", loss.item()) loss.backward() optimizer.step() optimizer.zero_grad() if idx % 10 == 0: generated_output = model.generate(pixel_values=pixel_values) print(processor.batch_decode(generated_output, skip_special_tokens=True))
0
hf_public_repos/peft/examples
hf_public_repos/peft/examples/int8_training/peft_adalora_whisper_large_training.py
import argparse import gc import json import logging import math import os from dataclasses import dataclass from datetime import datetime from pathlib import Path from random import randint from typing import Any, Dict, List, Union # datasets imports import datasets # metric imports import evaluate import numpy as np import torch import transformers import wandb # accelerate imports from accelerate import Accelerator, dispatch_model from accelerate.logging import get_logger from datasets import Audio, DatasetDict, IterableDatasetDict, interleave_datasets, load_dataset # hf imports from huggingface_hub import Repository from torch.utils.data import DataLoader from tqdm import tqdm from transformers import ( SchedulerType, WhisperForConditionalGeneration, WhisperProcessor, get_scheduler, set_seed, ) from transformers.models.whisper.english_normalizer import BasicTextNormalizer from transformers.utils import get_full_repo_name # peft imports from peft import AdaLoraConfig, LoraConfig, PeftModel, get_peft_model logger = get_logger(__name__, log_level="INFO") def parse_args(): parser = argparse.ArgumentParser(description="Whisper Fine-Tuning with AdaLora") parser.add_argument( "--model_name_or_path", type=str, help="Path to pretrained model or model identifier from huggingface.co/models.", required=True, ) parser.add_argument("--language", type=str, help="Language to use for training; e.g., 'Hindi' ", required=True) parser.add_argument("--language_abbr", type=str, help="Language to use for training; e.g., 'hi' ", required=True) parser.add_argument( "--task", type=str, default="transcribe", help="Task to use for training; e.g., 'transcribe' ", required=False ) parser.add_argument( "--dataset_name", type=str, default="mozilla-foundation/common_voice_11_0", help="Dataset to use for training; e.g., 'whisper' ", required=False, ) parser.add_argument( "--dataset_in_streaming_mode", action="store_true", help="Whether to use streaming mode for the dataset.", ) parser.add_argument( "--do_lower_case", action="store_true", help="lowercase the transcribed text before tokenizing" ) parser.add_argument( "--do_remove_punctuation", action="store_true", help="remove punctuation from the transcribed text" ) parser.add_argument("--push_to_hub", action="store_true", help="Whether or not to push the model to the Hub.") parser.add_argument( "--overwrite_cache", type=bool, default=False, help="Overwrite the cached training and evaluation sets" ) parser.add_argument("--max_audio_input_length", type=float, default=30.0, help="Maximum audio length in seconds.") parser.add_argument( "--preprocessing_num_workers", type=int, default=None, help="The number of processes to use for the preprocessing.", ) parser.add_argument( "--per_device_train_batch_size", type=int, default=8, help="Batch size (per device) for the training dataloader.", ) parser.add_argument( "--per_device_eval_batch_size", type=int, default=8, help="Batch size (per device) for the evaluation dataloader.", ) parser.add_argument( "--buffer_size", type=int, default=5000, help="Number of samples to prefetch in the streaming mode.", ) parser.add_argument( "--dataloader_pin_memory", action="store_true", help="Whether or not to pin memory for the DataLoader.", ) parser.add_argument( "--dataloader_num_workers", type=int, default=0, help="Number of subprocesses to use for data loading.", ) parser.add_argument( "--learning_rate", type=float, default=5e-5, help="Initial learning rate (after the potential warmup period) to use.", ) parser.add_argument("--weight_decay", type=float, default=0.0, help="Weight decay to use.") parser.add_argument("--num_train_epochs", type=int, default=3, help="Total number of training epochs to perform.") parser.add_argument( "--max_train_steps", type=int, default=None, help="Total number of training steps to perform. If provided, overrides num_train_epochs.", ) parser.add_argument( "--gradient_accumulation_steps", type=int, default=1, help="Number of updates steps to accumulate before performing a backward/update pass.", ) parser.add_argument( "--lr_scheduler_type", type=SchedulerType, default="linear", help="The scheduler type to use.", choices=["linear", "cosine", "cosine_with_restarts", "polynomial", "constant", "constant_with_warmup"], ) parser.add_argument( "--num_warmup_steps", type=int, default=0, help="Number of steps for the warmup in the lr scheduler." ) parser.add_argument("--output_dir", type=str, default=None, help="Where to store the final model.") parser.add_argument("--seed", type=int, default=None, help="A seed for reproducible training.") parser.add_argument( "--load_best_model", action="store_true", help="Whether to load the best model at the end of training", ) parser.add_argument( "--with_tracking", action="store_true", help="Whether to enable experiment trackers for logging.", ) parser.add_argument( "--report_to", type=str, default="all", help=( 'The integration to report the results and logs to. Supported platforms are `"tensorboard"`,' ' `"wandb"` and `"comet_ml"`. Use `"all"` (default) to report to all integrations.' "Only applicable when `--with_tracking` is passed." ), ) parser.add_argument("--hub_token", type=str, help="The token to use to push to the Model Hub.") parser.add_argument( "--hub_model_id", type=str, help="The name of the repository to keep in sync with the local `output_dir`." ) parser.add_argument( "--checkpointing_steps", type=int, default=500, help="Whether the various states should be saved at the end of every n steps, or 'epoch' for each epoch.", ) parser.add_argument( "--logging_steps", type=int, default=100, help="Whether the various states should be saved at the end of every n steps, or 'epoch' for each epoch.", ) parser.add_argument( "--evaluation_steps", type=int, default=500, help="Whether the various states should be saved at the end of every n steps, or 'epoch' for each epoch.", ) parser.add_argument( "--resume_from_checkpoint", type=str, default=None, help="If the training should continue from a checkpoint folder.", ) # lora/adalora specific args parser.add_argument( "--use_peft", action="store_true", help="Whether to use PEFT", ) parser.add_argument( "--use_adalora", action="store_true", help="Whether to use AdaLoRA or LoRA. If set, uses AdaLoRA instead of the default LoRA.", ) parser.add_argument( "--init_r", type=int, default=12, help="Initial AdaLoRA rank", ) parser.add_argument( "--target_r", type=int, default=4, help="Target AdaLoRA rank", ) parser.add_argument( "--tinit", type=int, default=200, help="number of warmup steps for AdaLoRA wherein no pruning is performed", ) parser.add_argument( "--tfinal", type=int, default=1000, help=" fix the resulting budget distribution and fine-tune the model for tfinal steps when using AdaLoRA ", ) parser.add_argument( "--delta_t", type=int, default=10, help="interval of steps for AdaLoRA to update rank", ) parser.add_argument( "--lora_alpha", type=int, default=32, help="LORA alpha", ) parser.add_argument( "--r", type=int, default=8, help="LORA rank", ) parser.add_argument( "--lora_dropout", type=float, default=0.1, help="LORA dropout", ) parser.add_argument( "--orth_reg_weight", type=float, default=0.5, help="Orthogonal regularization weight", ) parser.add_argument( "--debug_mode", action="store_true", help="Whether to use debug mode", ) args = parser.parse_args() if args.push_to_hub: assert args.output_dir is not None, "Need an `output_dir` to create a repo when `--push_to_hub` is passed." return args def load_streaming_dataset(dataset_name, dataset_config_name, split, **kwargs): if "+" in split: # load multiple splits separated by the `+` symbol *with* streaming mode dataset_splits = [ load_dataset(dataset_name, dataset_config_name, split=split_name, streaming=True, **kwargs) for split_name in split.split("+") ] # interleave multiple splits to form one dataset interleaved_dataset = interleave_datasets(dataset_splits) return interleaved_dataset else: # load a single split *with* streaming mode dataset = load_dataset(dataset_name, dataset_config_name, split=split, streaming=True, **kwargs) return dataset def prepare_dataset_wrapper(do_lower_case, do_remove_punctuation, processor, normalizer): def prepare_dataset(batch): # load and (possibly) resample audio data to 16kHz audio = batch["audio"] # compute log-Mel input features from input audio array batch["input_features"] = processor.feature_extractor( audio["array"], sampling_rate=audio["sampling_rate"] ).input_features[0] # compute input length of audio sample in seconds batch["input_length"] = len(audio["array"]) / audio["sampling_rate"] # optional pre-processing steps transcription = batch["sentence"] if do_lower_case: transcription = transcription.lower() if do_remove_punctuation: transcription = normalizer(transcription).strip() # encode target text to label ids batch["labels"] = processor.tokenizer(transcription).input_ids return batch return prepare_dataset def save_model_hook(models, weights, output_dir): for model in models: model.save_pretrained(output_dir) # make sure to pop weight so that corresponding model is not saved again weights.pop() def load_model_hook(models, input_dir): while len(models) > 0: model = models.pop() # pop models so that they are not loaded again PeftModel.from_pretrained(model.base_model.model, input_dir) @dataclass class DataCollatorSpeechSeq2SeqWithPadding: processor: Any def __call__(self, features: List[Dict[str, Union[List[int], torch.Tensor]]]) -> Dict[str, torch.Tensor]: # split inputs and labels since they have to be of different lengths and need different padding methods # first treat the audio inputs by simply returning torch tensors input_features = [{"input_features": feature["input_features"]} for feature in features] batch = self.processor.feature_extractor.pad(input_features, return_tensors="pt") # get the tokenized label sequences label_features = [{"input_ids": feature["labels"]} for feature in features] # pad the labels to max length labels_batch = self.processor.tokenizer.pad(label_features, return_tensors="pt") # replace padding with -100 to ignore loss correctly labels = labels_batch["input_ids"].masked_fill(labels_batch.attention_mask.ne(1), -100) # if bos token is appended in previous tokenization step, # cut bos token here as it's append later anyways if (labels[:, 0] == self.processor.tokenizer.bos_token_id).all().cpu().item(): labels = labels[:, 1:] batch["labels"] = labels return batch def get_audio_length_processor(max_input_length): def is_audio_in_length_range(length): return length < max_input_length return is_audio_in_length_range def evaluation_loop(model, eval_dataloader, processor, normalizer, metric, forced_decoder_ids, accelerator): model.eval() predictions = [] references = [] normalized_predictions = [] normalized_references = [] for _, batch in enumerate(tqdm(eval_dataloader)): with torch.cuda.amp.autocast(): with torch.no_grad(): generated_tokens = ( model.generate( input_features=batch["input_features"], forced_decoder_ids=forced_decoder_ids, max_new_tokens=255, ) .cpu() .numpy() ) labels = batch["labels"].cpu().numpy() labels = np.where(labels != -100, labels, processor.tokenizer.pad_token_id) decoded_preds = processor.tokenizer.batch_decode(generated_tokens, skip_special_tokens=True) decoded_labels = processor.tokenizer.batch_decode(labels, skip_special_tokens=True) predictions.extend(decoded_preds) references.extend(decoded_labels) normalized_predictions.extend([normalizer(pred).strip() for pred in decoded_preds]) normalized_references.extend([normalizer(label).strip() for label in decoded_labels]) del generated_tokens, labels, batch gc.collect() wer = 100 * metric.compute(predictions=predictions, references=references) normalized_wer = 100 * metric.compute(predictions=normalized_predictions, references=normalized_references) eval_metrics = {"eval/wer": wer, "eval/normalized_wer": normalized_wer} if accelerator.get_tracker("wandb"): sample_size = min(len(predictions), 256) ids = [randint(0, len(predictions) - 1) for p in range(0, sample_size)] sample_predictions = [predictions[i] for i in ids] sample_references = [references[i] for i in ids] sample_normalized_predictions = [normalized_predictions[i] for i in ids] sample_normalized_references = [normalized_references[i] for i in ids] table_rows = [ list(r) for r in zip( sample_predictions, sample_references, sample_normalized_predictions, sample_normalized_references ) ] eval_metrics["eval_samples"] = wandb.Table( columns=["predictions", "references", "normalized_predictions", "normalized_references"], rows=table_rows, ) return eval_metrics def main(): args = parse_args() # initialize accelerator accelerator = ( Accelerator( log_with=args.report_to, project_dir=args.output_dir, gradient_accumulation_steps=args.gradient_accumulation_steps, ) if args.with_tracking else Accelerator(gradient_accumulation_steps=args.gradient_accumulation_steps) ) # Make one log on every process with the configuration for debugging. logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO, ) logger.info(accelerator.state, main_process_only=False) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed) # Handle the repository creation if accelerator.is_main_process: if args.push_to_hub: if args.hub_model_id is None: repo_name = get_full_repo_name(Path(args.output_dir).name, token=args.hub_token) else: repo_name = args.hub_model_id repo = Repository(args.output_dir, clone_from=repo_name) with open(os.path.join(args.output_dir, ".gitignore"), "w+") as gitignore: if "step_*" not in gitignore: gitignore.write("step_*\n") if "epoch_*" not in gitignore: gitignore.write("epoch_*\n") elif args.output_dir is not None: os.makedirs(args.output_dir, exist_ok=True) accelerator.wait_for_everyone() # load dataset either in streaming mode or not processor = WhisperProcessor.from_pretrained(args.model_name_or_path, language=args.language, task=args.task) normalizer = BasicTextNormalizer() prepare_dataset = prepare_dataset_wrapper(args.do_lower_case, args.do_remove_punctuation, processor, normalizer) is_audio_in_length_range = get_audio_length_processor(args.max_audio_input_length) data_collator = DataCollatorSpeechSeq2SeqWithPadding(processor=processor) if args.dataset_in_streaming_mode: raw_datasets = IterableDatasetDict() loading_method = load_streaming_dataset else: raw_datasets = DatasetDict() loading_method = load_dataset if args.debug_mode: train_split = "train[:100]" test_split = "test[:10]" else: train_split = "train+validation" test_split = "test" raw_datasets["train"] = loading_method( args.dataset_name, args.language_abbr, split=train_split, use_auth_token=True ) raw_datasets["test"] = loading_method(args.dataset_name, args.language_abbr, split=test_split, use_auth_token=True) raw_datasets = raw_datasets.cast_column("audio", Audio(sampling_rate=16000)) logger.info("Dataset loaded: %s", raw_datasets) logger.info(f'{raw_datasets["train"][0]}') vectorized_datasets = raw_datasets.map( prepare_dataset, remove_columns=list(next(iter(raw_datasets.values())).features), num_proc=args.preprocessing_num_workers, ).with_format("torch") if args.dataset_in_streaming_mode: vectorized_datasets["train"] = vectorized_datasets["train"].shuffle( buffer_size=args.buffer_size, seed=args.seed, ) # filter out audio files that are too long from the training set is_audio_in_length_range = get_audio_length_processor(args.max_audio_input_length) vectorized_datasets["train"] = vectorized_datasets["train"].filter( is_audio_in_length_range, input_columns=["input_length"] ) # get dataloaders train_dataloader = DataLoader( vectorized_datasets["train"], batch_size=args.per_device_train_batch_size, shuffle=True, collate_fn=data_collator, num_workers=args.dataloader_num_workers, pin_memory=args.dataloader_pin_memory, ) eval_dataloader = DataLoader( vectorized_datasets["test"], batch_size=args.per_device_eval_batch_size, collate_fn=data_collator, num_workers=args.dataloader_num_workers, pin_memory=args.dataloader_pin_memory, ) # metric metric = evaluate.load("wer") # model model = WhisperForConditionalGeneration.from_pretrained(args.model_name_or_path, load_in_8bit=True) model.config.forced_decoder_ids = None model.config.suppress_tokens = [] if len(set(model.hf_device_map.values()).intersection({"cpu", "disk"})) > 0: raise ValueError("Training on CPU or disk is not supported.") if len(set(model.hf_device_map.values())) > 1: device_map = model.hf_device_map.copy() # required because `labels` are on main execution device (0) while the output of `proj_out` is on other device. # So, this leads to device mismatch error when calculation cross-entropy between logits and labels. # Won't arise during inference as `labels` aren't supplied during that time # instead of changing device of one of the tied modules, I have to do this for all tied modules # else the execution device of remaining tied modules isn't changed device_map["model.decoder.embed_tokens"] = model._hf_hook.execution_device device_map["model.decoder.embed_positions"] = model._hf_hook.execution_device device_map["proj_out"] = model._hf_hook.execution_device dispatch_model(model, device_map=device_map) # preparing peft model if args.use_peft: from peft import prepare_model_for_int8_training model = prepare_model_for_int8_training(model) # as Whisper model uses Conv layer in encoder, checkpointing disables grad computation # to avoid this, make the inputs trainable def make_inputs_require_grad(module, input, output): output.requires_grad_(True) model.model.encoder.conv1.register_forward_hook(make_inputs_require_grad) # wrapping model with adalora tuner if args.use_adalora: config = AdaLoraConfig( init_r=args.init_r, target_r=args.target_r, beta1=0.85, beta2=0.85, tinit=args.tinit, tfinal=args.tfinal, deltaT=args.delta_t, lora_alpha=args.lora_alpha, lora_dropout=args.lora_dropout, target_modules=["k_proj", "q_proj", "v_proj", "out_proj", "fc1", "fc2"], orth_reg_weight=args.orth_reg_weight, ) else: config = LoraConfig( r=args.r, lora_alpha=args.lora_alpha, target_modules=["q_proj", "v_proj"], lora_dropout=args.lora_dropout, ) model = get_peft_model(model, config) model.print_trainable_parameters() # optimizer optimizer = torch.optim.AdamW(model.parameters(), lr=args.learning_rate, weight_decay=args.weight_decay) if args.max_train_steps is None: num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps) args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch else: args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch) # scheduler lr_scheduler = get_scheduler( name=args.lr_scheduler_type, optimizer=optimizer, num_warmup_steps=args.num_warmup_steps, num_training_steps=args.max_train_steps, ) # Prepare everything with our `accelerator`. model, optimizer, train_dataloader, eval_dataloader, lr_scheduler = accelerator.prepare( model, optimizer, train_dataloader, eval_dataloader, lr_scheduler ) accelerator.print(model) # Note here that the max steps is adjusted by the accelerator's num_processes args.max_train_steps = math.ceil(args.max_train_steps / accelerator.num_processes) if args.use_peft and args.use_adalora: model.base_model.peft_config["default"].total_step = args.max_train_steps # model.base_model.peft_config.total_step = args.max_train_steps # We need to initialize the trackers we use, and also store our configuration. # The trackers initializes automatically on the main process. if args.with_tracking: run_name = f"run-{datetime.now().strftime('%Y-%m-%d_%H-%M-%S')}" experiment_config = vars(args) # TensorBoard cannot log Enums, need the raw value experiment_config["lr_scheduler_type"] = experiment_config["lr_scheduler_type"].value accelerator.init_trackers( "Whisper PEFT Fine-Tuning", config=experiment_config, init_kwargs={"wandb": {"name": run_name}} ) # saving and loading checkpoints for resuming training accelerator.register_save_state_pre_hook(save_model_hook) accelerator.register_load_state_pre_hook(load_model_hook) total_batch_size = args.per_device_train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps logger.info("***** Running training *****") logger.info(f" Num Epochs = {args.num_train_epochs}") logger.info(f" Instantaneous batch size per device = {args.per_device_train_batch_size}") logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}") logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}") logger.info(f" Total optimization steps = {args.max_train_steps}") # Only show the progress bar once on each machine. progress_bar = tqdm(range(args.max_train_steps), disable=not accelerator.is_local_main_process) global_step = 0 starting_epoch = 0 best_metric = None resume_step = 0 forced_decoder_ids = processor.get_decoder_prompt_ids(language=args.language, task=args.task) # Potentially load in the weights and states from a previous save if args.resume_from_checkpoint: accelerator.load_state(args.resume_from_checkpoint) path = os.path.basename(args.resume_from_checkpoint) training_difference = os.path.splitext(path)[0] global_step = resume_step = int(training_difference.replace("step_", "")) starting_epoch = resume_step // len(train_dataloader) resume_step -= starting_epoch * len(train_dataloader) # We need to adjust the progress bar to the current step progress_bar.update(resume_step) for epoch in range(starting_epoch, args.num_train_epochs): model.train() if args.with_tracking: total_loss = 0 running_loss = 0 for step, batch in enumerate(accelerator.skip_first_batches(train_dataloader, num_batches=resume_step)): with accelerator.accumulate(model): outputs = model(**batch) loss = outputs.loss accelerator.backward(loss) optimizer.step() lr_scheduler.step() # Update the importance of low-rank matrices # and allocate the budget accordingly. # This is only needed for AdaLora. # Note that this requires parameter gradients. # Hence being called before optimizer.zero_grad(). if args.use_peft and args.use_adalora: model.update_and_allocate(global_step) optimizer.zero_grad() global_step += 1 progress_bar.update(1) if args.with_tracking: step_loss = accelerator.reduce(loss.detach().clone()).item() total_loss += step_loss running_loss += step_loss if global_step % args.checkpointing_steps == 0: output_dir = os.path.join(args.output_dir, f"step_{global_step}") accelerator.save_state(output_dir) if global_step % args.logging_steps == 0: if args.with_tracking: accelerator.log({"train/running_loss": running_loss / args.logging_steps}, step=global_step) running_loss = 0 if global_step % args.evaluation_steps == 0: eval_metrics = evaluation_loop( model, eval_dataloader, processor, normalizer, metric, forced_decoder_ids, accelerator ) if args.with_tracking: logger.info(f"Step {global_step} eval metrics: {eval_metrics}") accelerator.log(eval_metrics, step=global_step) if best_metric is None or eval_metrics["eval/wer"] < best_metric: best_metric = eval_metrics["eval/wer"] accelerator.save_state(os.path.join(args.output_dir, "best_checkpoint")) model.train() if global_step >= args.max_train_steps: break if args.with_tracking: train_epoch_loss = total_loss / (step + 1) logger.info(f"Epoch {epoch} train loss: {train_epoch_loss}") accelerator.log({"epoch/train_loss": train_epoch_loss}, step=epoch) if args.push_to_hub and epoch <= args.num_train_epochs - 1: accelerator.wait_for_everyone() unwrapped_model = accelerator.unwrap_model(model) unwrapped_model.save_pretrained(args.output_dir, is_main_process=accelerator.is_main_process) # evaluate the model at the end of training eval_metrics = evaluation_loop( model, eval_dataloader, processor, normalizer, metric, forced_decoder_ids, accelerator ) if args.with_tracking: logger.info(f"Step {global_step} eval metrics: {eval_metrics}") accelerator.log(eval_metrics, step=global_step) if best_metric is None or eval_metrics["eval/wer"] < best_metric: best_metric = eval_metrics["eval/wer"] accelerator.save_state(os.path.join(args.output_dir, "best_checkpoint")) if accelerator.is_main_process: processor.tokenizer.save_pretrained(args.output_dir) repo.push_to_hub( commit_message=f"Training in progress epoch {epoch}", blocking=False, auto_lfs_prune=True ) if args.load_best_model: # load the best model accelerator.load_state(os.path.join(args.output_dir, "best_checkpoint")) model.resize_modules_by_rank_pattern(model.peft_config["default"].rank_pattern, "default") eval_metrics = evaluation_loop( model, eval_dataloader, processor, normalizer, metric, forced_decoder_ids, accelerator ) if args.with_tracking: best_metrics = {"best_" + k: v for k, v in eval_metrics.items()} accelerator.log(best_metrics, step=global_step) accelerator.wait_for_everyone() unwrapped_model = accelerator.unwrap_model(model) unwrapped_model.save_pretrained(args.output_dir, is_main_process=accelerator.is_main_process) if accelerator.is_main_process: processor.tokenizer.save_pretrained(args.output_dir) if args.push_to_hub: repo.push_to_hub(commit_message="End of training", auto_lfs_prune=True) with open(os.path.join(args.output_dir, "all_results.json"), "w") as f: eval_metrics.pop("eval_samples") json.dump(eval_metrics, f) if __name__ == "__main__": main()
0
hf_public_repos/peft/examples
hf_public_repos/peft/examples/int8_training/run_adalora_whisper_int8.sh
accelerate launch --config_file config.yaml peft_adalora_whisper_large_training.py \ --model_name_or_path "openai/whisper-large-v2" \ --language "Marathi" \ --language_abbr "mr" \ --task "transcribe" \ --dataset_name "mozilla-foundation/common_voice_11_0" \ --push_to_hub \ --preprocessing_num_workers 2 \ --per_device_train_batch_size 8 \ --per_device_eval_batch_size 8 \ --dataloader_pin_memory \ --dataloader_num_workers 2 \ --learning_rate 1e-3 \ --weight_decay 1e-4 \ --num_train_epochs 3 \ --gradient_accumulation_steps 1 \ --lr_scheduler_type "linear" \ --num_warmup_steps 50 \ --output_dir "adalora_whisper_large_marathi_multi_adapter" \ --seed 42 \ --load_best_model \ --with_tracking \ --report_to "wandb" \ --hub_token $HUB_TOKEN \ --checkpointing_steps 2000 \ --evaluation_steps 2000 \ --logging_steps 25 \ --use_peft \ --use_adalora \ --init_r 12 \ --target_r 8 \ --tinit 100 \ --tfinal 800 \ --delta_t 10 \ --lora_alpha 32 \ --lora_dropout 0.1 \ --orth_reg_weight 0.5
0
hf_public_repos/peft/examples
hf_public_repos/peft/examples/token_classification/requirements.txt
transformers accelerate evaluate tqdm datasets Pillow torchvision
0
hf_public_repos/peft/examples
hf_public_repos/peft/examples/token_classification/peft_lora_token_cls.ipynb
# ! rm -r unilm # ! pip install unilm# ! wget https://guillaumejaume.github.io/FUNSD/dataset.zip # ! unzip dataset.zip && mv dataset data && rm -rf dataset.zip __MACOSXfrom PIL import Image, ImageDraw, ImageFont import os base_path = "/home/sourab/temp/data/dataset" image = Image.open(os.path.join(base_path, "training_data/images/0000971160.png")) image = image.convert("RGB") imageimport json with open(os.path.join(base_path, "training_data/annotations/0000971160.json")) as f: data = json.load(f) for annotation in data["form"]: print(annotation)draw = ImageDraw.Draw(image, "RGBA") font = ImageFont.load_default() label2color = {"question": "blue", "answer": "green", "header": "orange", "other": "violet"} for annotation in data["form"]: label = annotation["label"] general_box = annotation["box"] draw.rectangle(general_box, outline=label2color[label], width=2) draw.text((general_box[0] + 10, general_box[1] - 10), label, fill=label2color[label], font=font) words = annotation["words"] for word in words: box = word["box"] draw.rectangle(box, outline=label2color[label], width=1) image# ! python unilm/layoutlm/examples/seq_labeling/preprocess.py --data_dir data/dataset/training_data/annotations \ # --data_split train \ # --output_dir data \ # --model_name_or_path microsoft/layoutlm-base-uncased \ # --max_len 510 # ! python unilm/layoutlm/examples/seq_labeling/preprocess.py --data_dir data/dataset/testing_data/annotations \ # --data_split test \ # --output_dir data \ # --model_name_or_path microsoft/layoutlm-base-uncased \ # --max_len 510# ! cat data/train.txt | cut -d$'\t' -f 2 | grep -v "^$"| sort | uniq > data/labels.txtfrom torch.nn import CrossEntropyLoss def get_labels(path): with open(path, "r") as f: labels = f.read().splitlines() if "O" not in labels: labels = ["O"] + labels return labels labels = get_labels("data/labels.txt") num_labels = len(labels) label_map = {i: label for i, label in enumerate(labels)} # Use cross entropy ignore index as padding label id so that only real label ids contribute to the loss later pad_token_label_id = CrossEntropyLoss().ignore_indexprint(labels)import logging import os import torch from torch.utils.data import Dataset logger = logging.getLogger(__name__) class FunsdDataset(Dataset): def __init__(self, args, tokenizer, labels, pad_token_label_id, mode): if args.local_rank not in [-1, 0] and mode == "train": torch.distributed.barrier() # Make sure only the first process in distributed training process the dataset, and the others will use the cache # Load data features from cache or dataset file cached_features_file = os.path.join( args.data_dir, "cached_{}_{}_{}".format( mode, list(filter(None, args.model_name_or_path.split("/"))).pop(), str(args.max_seq_length), ), ) if os.path.exists(cached_features_file) and not args.overwrite_cache: logger.info("Loading features from cached file %s", cached_features_file) features = torch.load(cached_features_file) else: logger.info("Creating features from dataset file at %s", args.data_dir) examples = read_examples_from_file(args.data_dir, mode) features = convert_examples_to_features( examples, labels, args.max_seq_length, tokenizer, cls_token_at_end=bool(args.model_type in ["xlnet"]), # xlnet has a cls token at the end cls_token=tokenizer.cls_token, cls_token_segment_id=2 if args.model_type in ["xlnet"] else 0, sep_token=tokenizer.sep_token, sep_token_extra=bool(args.model_type in ["roberta"]), # roberta uses an extra separator b/w pairs of sentences, cf. github.com/pytorch/fairseq/commit/1684e166e3da03f5b600dbb7855cb98ddfcd0805 pad_on_left=bool(args.model_type in ["xlnet"]), # pad on the left for xlnet pad_token=tokenizer.convert_tokens_to_ids([tokenizer.pad_token])[0], pad_token_segment_id=4 if args.model_type in ["xlnet"] else 0, pad_token_label_id=pad_token_label_id, ) # if args.local_rank in [-1, 0]: # logger.info("Saving features into cached file %s", cached_features_file) # torch.save(features, cached_features_file) if args.local_rank == 0 and mode == "train": torch.distributed.barrier() # Make sure only the first process in distributed training process the dataset, and the others will use the cache self.features = features # Convert to Tensors and build dataset self.all_input_ids = torch.tensor([f.input_ids for f in features], dtype=torch.long) self.all_input_mask = torch.tensor([f.input_mask for f in features], dtype=torch.long) self.all_segment_ids = torch.tensor([f.segment_ids for f in features], dtype=torch.long) self.all_label_ids = torch.tensor([f.label_ids for f in features], dtype=torch.long) self.all_bboxes = torch.tensor([f.boxes for f in features], dtype=torch.long) def __len__(self): return len(self.features) def __getitem__(self, index): return ( self.all_input_ids[index], self.all_input_mask[index], self.all_segment_ids[index], self.all_label_ids[index], self.all_bboxes[index], ) class InputExample(object): """A single training/test example for token classification.""" def __init__(self, guid, words, labels, boxes, actual_bboxes, file_name, page_size): """Constructs a InputExample. Args: guid: Unique id for the example. words: list. The words of the sequence. labels: (Optional) list. The labels for each word of the sequence. This should be specified for train and dev examples, but not for test examples. """ self.guid = guid self.words = words self.labels = labels self.boxes = boxes self.actual_bboxes = actual_bboxes self.file_name = file_name self.page_size = page_size class InputFeatures(object): """A single set of features of data.""" def __init__( self, input_ids, input_mask, segment_ids, label_ids, boxes, actual_bboxes, file_name, page_size, ): assert ( 0 <= all(boxes) <= 1000 ), "Error with input bbox ({}): the coordinate value is not between 0 and 1000".format(boxes) self.input_ids = input_ids self.input_mask = input_mask self.segment_ids = segment_ids self.label_ids = label_ids self.boxes = boxes self.actual_bboxes = actual_bboxes self.file_name = file_name self.page_size = page_size def read_examples_from_file(data_dir, mode): file_path = os.path.join(data_dir, "{}.txt".format(mode)) box_file_path = os.path.join(data_dir, "{}_box.txt".format(mode)) image_file_path = os.path.join(data_dir, "{}_image.txt".format(mode)) guid_index = 1 examples = [] with open(file_path, encoding="utf-8") as f, open(box_file_path, encoding="utf-8") as fb, open( image_file_path, encoding="utf-8" ) as fi: words = [] boxes = [] actual_bboxes = [] file_name = None page_size = None labels = [] for line, bline, iline in zip(f, fb, fi): if line.startswith("-DOCSTART-") or line == "" or line == "\n": if words: examples.append( InputExample( guid="{}-{}".format(mode, guid_index), words=words, labels=labels, boxes=boxes, actual_bboxes=actual_bboxes, file_name=file_name, page_size=page_size, ) ) guid_index += 1 words = [] boxes = [] actual_bboxes = [] file_name = None page_size = None labels = [] else: splits = line.split("\t") bsplits = bline.split("\t") isplits = iline.split("\t") assert len(splits) == 2 assert len(bsplits) == 2 assert len(isplits) == 4 assert splits[0] == bsplits[0] words.append(splits[0]) if len(splits) > 1: labels.append(splits[-1].replace("\n", "")) box = bsplits[-1].replace("\n", "") box = [int(b) for b in box.split()] boxes.append(box) actual_bbox = [int(b) for b in isplits[1].split()] actual_bboxes.append(actual_bbox) page_size = [int(i) for i in isplits[2].split()] file_name = isplits[3].strip() else: # Examples could have no label for mode = "test" labels.append("O") if words: examples.append( InputExample( guid="%s-%d".format(mode, guid_index), words=words, labels=labels, boxes=boxes, actual_bboxes=actual_bboxes, file_name=file_name, page_size=page_size, ) ) return examples def convert_examples_to_features( examples, label_list, max_seq_length, tokenizer, cls_token_at_end=False, cls_token="[CLS]", cls_token_segment_id=1, sep_token="[SEP]", sep_token_extra=False, pad_on_left=False, pad_token=0, cls_token_box=[0, 0, 0, 0], sep_token_box=[1000, 1000, 1000, 1000], pad_token_box=[0, 0, 0, 0], pad_token_segment_id=0, pad_token_label_id=-1, sequence_a_segment_id=0, mask_padding_with_zero=True, ): """Loads a data file into a list of `InputBatch`s `cls_token_at_end` define the location of the CLS token: - False (Default, BERT/XLM pattern): [CLS] + A + [SEP] + B + [SEP] - True (XLNet/GPT pattern): A + [SEP] + B + [SEP] + [CLS] `cls_token_segment_id` define the segment id associated to the CLS token (0 for BERT, 2 for XLNet) """ label_map = {label: i for i, label in enumerate(label_list)} features = [] for ex_index, example in enumerate(examples): file_name = example.file_name page_size = example.page_size width, height = page_size if ex_index % 10000 == 0: logger.info("Writing example %d of %d", ex_index, len(examples)) tokens = [] token_boxes = [] actual_bboxes = [] label_ids = [] for word, label, box, actual_bbox in zip(example.words, example.labels, example.boxes, example.actual_bboxes): word_tokens = tokenizer.tokenize(word) tokens.extend(word_tokens) token_boxes.extend([box] * len(word_tokens)) actual_bboxes.extend([actual_bbox] * len(word_tokens)) # Use the real label id for the first token of the word, and padding ids for the remaining tokens label_ids.extend([label_map[label]] + [pad_token_label_id] * (len(word_tokens) - 1)) # Account for [CLS] and [SEP] with "- 2" and with "- 3" for RoBERTa. special_tokens_count = 3 if sep_token_extra else 2 if len(tokens) > max_seq_length - special_tokens_count: tokens = tokens[: (max_seq_length - special_tokens_count)] token_boxes = token_boxes[: (max_seq_length - special_tokens_count)] actual_bboxes = actual_bboxes[: (max_seq_length - special_tokens_count)] label_ids = label_ids[: (max_seq_length - special_tokens_count)] # The convention in BERT is: # (a) For sequence pairs: # tokens: [CLS] is this jack ##son ##ville ? [SEP] no it is not . [SEP] # type_ids: 0 0 0 0 0 0 0 0 1 1 1 1 1 1 # (b) For single sequences: # tokens: [CLS] the dog is hairy . [SEP] # type_ids: 0 0 0 0 0 0 0 # # Where "type_ids" are used to indicate whether this is the first # sequence or the second sequence. The embedding vectors for `type=0` and # `type=1` were learned during pre-training and are added to the wordpiece # embedding vector (and position vector). This is not *strictly* necessary # since the [SEP] token unambiguously separates the sequences, but it makes # it easier for the model to learn the concept of sequences. # # For classification tasks, the first vector (corresponding to [CLS]) is # used as as the "sentence vector". Note that this only makes sense because # the entire model is fine-tuned. tokens += [sep_token] token_boxes += [sep_token_box] actual_bboxes += [[0, 0, width, height]] label_ids += [pad_token_label_id] if sep_token_extra: # roberta uses an extra separator b/w pairs of sentences tokens += [sep_token] token_boxes += [sep_token_box] actual_bboxes += [[0, 0, width, height]] label_ids += [pad_token_label_id] segment_ids = [sequence_a_segment_id] * len(tokens) if cls_token_at_end: tokens += [cls_token] token_boxes += [cls_token_box] actual_bboxes += [[0, 0, width, height]] label_ids += [pad_token_label_id] segment_ids += [cls_token_segment_id] else: tokens = [cls_token] + tokens token_boxes = [cls_token_box] + token_boxes actual_bboxes = [[0, 0, width, height]] + actual_bboxes label_ids = [pad_token_label_id] + label_ids segment_ids = [cls_token_segment_id] + segment_ids input_ids = tokenizer.convert_tokens_to_ids(tokens) # The mask has 1 for real tokens and 0 for padding tokens. Only real # tokens are attended to. input_mask = [1 if mask_padding_with_zero else 0] * len(input_ids) # Zero-pad up to the sequence length. padding_length = max_seq_length - len(input_ids) if pad_on_left: input_ids = ([pad_token] * padding_length) + input_ids input_mask = ([0 if mask_padding_with_zero else 1] * padding_length) + input_mask segment_ids = ([pad_token_segment_id] * padding_length) + segment_ids label_ids = ([pad_token_label_id] * padding_length) + label_ids token_boxes = ([pad_token_box] * padding_length) + token_boxes else: input_ids += [pad_token] * padding_length input_mask += [0 if mask_padding_with_zero else 1] * padding_length segment_ids += [pad_token_segment_id] * padding_length label_ids += [pad_token_label_id] * padding_length token_boxes += [pad_token_box] * padding_length assert len(input_ids) == max_seq_length assert len(input_mask) == max_seq_length assert len(segment_ids) == max_seq_length assert len(label_ids) == max_seq_length assert len(token_boxes) == max_seq_length if ex_index < 5: logger.info("*** Example ***") logger.info("guid: %s", example.guid) logger.info("tokens: %s", " ".join([str(x) for x in tokens])) logger.info("input_ids: %s", " ".join([str(x) for x in input_ids])) logger.info("input_mask: %s", " ".join([str(x) for x in input_mask])) logger.info("segment_ids: %s", " ".join([str(x) for x in segment_ids])) logger.info("label_ids: %s", " ".join([str(x) for x in label_ids])) logger.info("boxes: %s", " ".join([str(x) for x in token_boxes])) logger.info("actual_bboxes: %s", " ".join([str(x) for x in actual_bboxes])) features.append( InputFeatures( input_ids=input_ids, input_mask=input_mask, segment_ids=segment_ids, label_ids=label_ids, boxes=token_boxes, actual_bboxes=actual_bboxes, file_name=file_name, page_size=page_size, ) ) return featuresfrom transformers import LayoutLMTokenizer # from .unilm.layoutlm.data.funsd import FunsdDataset, InputFeatures from torch.utils.data import DataLoader, RandomSampler, SequentialSampler batch_size = 16 args = { "local_rank": -1, "overwrite_cache": True, "data_dir": "/home/sourab/temp/data/", "model_name_or_path": "microsoft/layoutlm-base-uncased", "max_seq_length": 512, "model_type": "layoutlm", } # class to turn the keys of a dict into attributes (thanks Stackoverflow) class AttrDict(dict): def __init__(self, *args, **kwargs): super(AttrDict, self).__init__(*args, **kwargs) self.__dict__ = self args = AttrDict(args) tokenizer = LayoutLMTokenizer.from_pretrained("microsoft/layoutlm-base-uncased") # the LayoutLM authors already defined a specific FunsdDataset, so we are going to use this here train_dataset = FunsdDataset(args, tokenizer, labels, pad_token_label_id, mode="train") train_sampler = RandomSampler(train_dataset) train_dataloader = DataLoader(train_dataset, sampler=train_sampler, batch_size=batch_size) eval_dataset = FunsdDataset(args, tokenizer, labels, pad_token_label_id, mode="test") eval_sampler = SequentialSampler(eval_dataset) eval_dataloader = DataLoader(eval_dataset, sampler=eval_sampler, batch_size=batch_size)len(train_dataloader)len(eval_dataloader)batch = next(iter(train_dataloader)) input_ids = batch[0][0] tokenizer.decode(input_ids)from peft import get_peft_config, PeftModel, get_peft_model, LoraConfig, TaskType peft_config = LoraConfig( task_type=TaskType.TOKEN_CLS, inference_mode=False, r=16, lora_alpha=16, lora_dropout=0.1, bias="all" ) peft_configfrom transformers import LayoutLMForTokenClassification import torch from transformers import set_seed seed = 100 set_seed(seed) device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model = LayoutLMForTokenClassification.from_pretrained("microsoft/layoutlm-base-uncased", num_labels=num_labels) model = get_peft_model(model, peft_config) model.to(device)print(model.model.layoutlm.encoder.layer[0].attention.self.query.weight) print(model.model.layoutlm.encoder.layer[0].attention.self.query.lora_A.weight) print(model.model.classifier.weight)from transformers import AdamW, get_linear_schedule_with_warmup from tqdm import tqdm num_train_epochs = 100 optimizer = torch.optim.AdamW(model.parameters(), lr=3e-3) lr_scheduler = get_linear_schedule_with_warmup( optimizer=optimizer, num_warmup_steps=0.06 * (len(train_dataloader) * num_train_epochs), num_training_steps=(len(train_dataloader) * num_train_epochs), ) global_step = 0 t_total = len(train_dataloader) * num_train_epochs # total number of training steps # put the model in training mode model.train() for epoch in range(num_train_epochs): for batch in tqdm(train_dataloader, desc="Training"): input_ids = batch[0].to(device) bbox = batch[4].to(device) attention_mask = batch[1].to(device) token_type_ids = batch[2].to(device) labels = batch[3].to(device) # forward pass outputs = model( input_ids=input_ids, bbox=bbox, attention_mask=attention_mask, token_type_ids=token_type_ids, labels=labels ) loss = outputs.loss # print loss every 100 steps if global_step % 10 == 0: print(f"Loss after {global_step} steps: {loss.item()}") # backward pass to get the gradients loss.backward() # print("Gradients on classification head:") # print(model.classifier.weight.grad[6,:].sum()) # update optimizer.step() lr_scheduler.step() optimizer.zero_grad() global_step += 1import numpy as np from seqeval.metrics import ( classification_report, f1_score, precision_score, recall_score, ) eval_loss = 0.0 nb_eval_steps = 0 preds = None out_label_ids = None # put model in evaluation mode model.eval() for batch in tqdm(eval_dataloader, desc="Evaluating"): with torch.no_grad(): input_ids = batch[0].to(device) bbox = batch[4].to(device) attention_mask = batch[1].to(device) token_type_ids = batch[2].to(device) labels = batch[3].to(device) # forward pass outputs = model( input_ids=input_ids, bbox=bbox, attention_mask=attention_mask, token_type_ids=token_type_ids, labels=labels ) # get the loss and logits tmp_eval_loss = outputs.loss logits = outputs.logits eval_loss += tmp_eval_loss.item() nb_eval_steps += 1 # compute the predictions if preds is None: preds = logits.detach().cpu().numpy() out_label_ids = labels.detach().cpu().numpy() else: preds = np.append(preds, logits.detach().cpu().numpy(), axis=0) out_label_ids = np.append(out_label_ids, labels.detach().cpu().numpy(), axis=0) # compute average evaluation loss eval_loss = eval_loss / nb_eval_steps preds = np.argmax(preds, axis=2) out_label_list = [[] for _ in range(out_label_ids.shape[0])] preds_list = [[] for _ in range(out_label_ids.shape[0])] for i in range(out_label_ids.shape[0]): for j in range(out_label_ids.shape[1]): if out_label_ids[i, j] != pad_token_label_id: out_label_list[i].append(label_map[out_label_ids[i][j]]) preds_list[i].append(label_map[preds[i][j]]) results = { "loss": eval_loss, "precision": precision_score(out_label_list, preds_list), "recall": recall_score(out_label_list, preds_list), "f1": f1_score(out_label_list, preds_list), } print(results)model.print_trainable_parameters()model.save_pretrained("peft_layoutlm")
0
hf_public_repos/peft/examples
hf_public_repos/peft/examples/feature_extraction/requirements.txt
git+https://github.com/huggingface/peft git+https://github.com/huggingface/accelerate git+https://github.com/huggingface/transformers datasets evaluate hnswlib pandas tqdm huggingface_hub wandb
0
hf_public_repos/peft/examples
hf_public_repos/peft/examples/feature_extraction/peft_lora_embedding_semantic_search.py
# coding=utf-8 # Copyright 2023-present the HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import logging import math import os import random from pathlib import Path import datasets import evaluate import torch import transformers from accelerate import Accelerator from accelerate.logging import get_logger from accelerate.utils import set_seed from datasets import DatasetDict, load_dataset from huggingface_hub import Repository, create_repo from torch import nn from torch.utils.data import DataLoader from tqdm import tqdm from transformers import AutoModel, AutoTokenizer, SchedulerType, default_data_collator, get_scheduler from transformers.utils import get_full_repo_name from peft import LoraConfig, TaskType, get_peft_model logger = get_logger(__name__) def parse_args(): parser = argparse.ArgumentParser(description="Training a PEFT model for Sematic Search task") parser.add_argument("--dataset_name", type=str, default=None, help="dataset name on HF hub") parser.add_argument( "--max_length", type=int, default=128, help=( "The maximum total input sequence length after tokenization. Sequences longer than this will be truncated," " sequences shorter will be padded if `--pad_to_max_length` is passed." ), ) parser.add_argument( "--model_name_or_path", type=str, help="Path to pretrained model or model identifier from huggingface.co/models.", required=True, ) parser.add_argument( "--per_device_train_batch_size", type=int, default=8, help="Batch size (per device) for the training dataloader.", ) parser.add_argument( "--per_device_eval_batch_size", type=int, default=8, help="Batch size (per device) for the evaluation dataloader.", ) parser.add_argument( "--learning_rate", type=float, default=5e-5, help="Initial learning rate (after the potential warmup period) to use.", ) parser.add_argument("--weight_decay", type=float, default=0.0, help="Weight decay to use.") parser.add_argument("--num_train_epochs", type=int, default=3, help="Total number of training epochs to perform.") parser.add_argument( "--max_train_steps", type=int, default=None, help="Total number of training steps to perform. If provided, overrides num_train_epochs.", ) parser.add_argument( "--gradient_accumulation_steps", type=int, default=1, help="Number of updates steps to accumulate before performing a backward/update pass.", ) parser.add_argument( "--lr_scheduler_type", type=SchedulerType, default="linear", help="The scheduler type to use.", choices=["linear", "cosine", "cosine_with_restarts", "polynomial", "constant", "constant_with_warmup"], ) parser.add_argument( "--num_warmup_steps", type=int, default=0, help="Number of steps for the warmup in the lr scheduler." ) parser.add_argument("--output_dir", type=str, default=None, help="Where to store the final model.") parser.add_argument("--seed", type=int, default=None, help="A seed for reproducible training.") parser.add_argument("--push_to_hub", action="store_true", help="Whether or not to push the model to the Hub.") parser.add_argument( "--hub_model_id", type=str, help="The name of the repository to keep in sync with the local `output_dir`." ) parser.add_argument("--hub_token", type=str, help="The token to use to push to the Model Hub.") parser.add_argument( "--checkpointing_steps", type=str, default=None, help="Whether the various states should be saved at the end of every n steps, or 'epoch' for each epoch.", ) parser.add_argument( "--resume_from_checkpoint", type=str, default=None, help="If the training should continue from a checkpoint folder.", ) parser.add_argument( "--with_tracking", action="store_true", help="Whether to enable experiment trackers for logging.", ) parser.add_argument( "--report_to", type=str, default="all", help=( 'The integration to report the results and logs to. Supported platforms are `"tensorboard"`,' ' `"wandb"`, `"comet_ml"` and `"clearml"`. Use `"all"` (default) to report to all integrations.' "Only applicable when `--with_tracking` is passed." ), ) parser.add_argument( "--sanity_test", action="store_true", help="Whether to enable experiment trackers for logging.", ) parser.add_argument( "--use_peft", action="store_true", help="Whether to enable experiment trackers for logging.", ) args = parser.parse_args() if args.push_to_hub: assert args.output_dir is not None, "Need an `output_dir` to create a repo when `--push_to_hub` is passed." return args def save_model_hook(models, weights, output_dir): for i, model in enumerate(models): model.save_pretrained(output_dir, state_dict=weights[i]) # make sure to pop weight so that corresponding model is not saved again weights.pop() def load_model_hook(models, input_dir): while len(models) > 0: model = models.pop() # pop models so that they are not loaded again if hasattr(model, "active_adapter") and hasattr(model, "load_adapter"): model.load_adapter(input_dir, model.active_adapter, is_trainable=True) class AutoModelForSentenceEmbedding(nn.Module): def __init__(self, model_name, tokenizer, normalize=True): super(AutoModelForSentenceEmbedding, self).__init__() self.model = AutoModel.from_pretrained(model_name) # , load_in_8bit=True, device_map={"":0}) self.normalize = normalize self.tokenizer = tokenizer def forward(self, **kwargs): model_output = self.model(**kwargs) embeddings = self.mean_pooling(model_output, kwargs["attention_mask"]) if self.normalize: embeddings = torch.nn.functional.normalize(embeddings, p=2, dim=1) return embeddings def mean_pooling(self, model_output, attention_mask): token_embeddings = model_output[0] # First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) def __getattr__(self, name: str): """Forward missing attributes to the wrapped module.""" try: return super().__getattr__(name) # defer to nn.Module's logic except AttributeError: return getattr(self.model, name) def get_cosing_embeddings(query_embs, product_embs): return torch.sum(query_embs * product_embs, axis=1) def get_loss(cosine_score, labels): return torch.mean(torch.square(labels * (1 - cosine_score) + torch.clamp((1 - labels) * cosine_score, min=0.0))) def main(): args = parse_args() accelerator = ( Accelerator(log_with=args.report_to, project_dir=args.output_dir) if args.with_tracking else Accelerator() ) # Make one log on every process with the configuration for debugging. logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO, ) logger.info(accelerator.state, main_process_only=False) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed) # Handle the repository creation if accelerator.is_main_process: if args.push_to_hub: if args.hub_model_id is None: repo_name = get_full_repo_name(Path(args.output_dir).name, token=args.hub_token) else: repo_name = args.hub_model_id create_repo(repo_name, exist_ok=True, token=args.hub_token) repo = Repository(args.output_dir, clone_from=repo_name, token=args.hub_token) with open(os.path.join(args.output_dir, ".gitignore"), "w+") as gitignore: if "step_*" not in gitignore: gitignore.write("step_*\n") if "epoch_*" not in gitignore: gitignore.write("epoch_*\n") elif args.output_dir is not None: os.makedirs(args.output_dir, exist_ok=True) accelerator.wait_for_everyone() # get the tokenizer tokenizer = AutoTokenizer.from_pretrained(args.model_name_or_path) # dataset download and preprocessing if args.sanity_test: train_dataset = load_dataset("smangrul/amazon_esci", split="train[:1024]") val_dataset = load_dataset("smangrul/amazon_esci", split="validation[:1024]") dataset = DatasetDict({"train": train_dataset, "validation": val_dataset}) else: dataset = load_dataset(args.dataset_name) def preprocess_function(examples): queries = examples["query"] result = tokenizer(queries, padding="max_length", max_length=70, truncation=True) result = {f"query_{k}": v for k, v in result.items()} products = examples["product_title"] result_products = tokenizer(products, padding="max_length", max_length=70, truncation=True) for k, v in result_products.items(): result[f"product_{k}"] = v result["labels"] = examples["relevance_label"] return result processed_datasets = dataset.map( preprocess_function, batched=True, remove_columns=dataset["train"].column_names, desc="Running tokenizer on dataset", ) # Log a few random samples from the training set: for index in random.sample(range(len(processed_datasets["train"])), 3): logger.info(f"Sample {index} of the training set: {processed_datasets['train'][index]}.") # base model model = AutoModelForSentenceEmbedding(args.model_name_or_path, tokenizer) if args.use_peft: # peft config and wrapping peft_config = LoraConfig( r=8, lora_alpha=16, bias="none", task_type=TaskType.FEATURE_EXTRACTION, target_modules=["key", "query", "value"], ) model = get_peft_model(model, peft_config) model.print_trainable_parameters() accelerator.print(model) # get dataloaders train_dataloader = DataLoader( processed_datasets["train"], shuffle=True, collate_fn=default_data_collator, batch_size=args.per_device_train_batch_size, pin_memory=True, ) eval_dataloader = DataLoader( processed_datasets["validation"], shuffle=False, collate_fn=default_data_collator, batch_size=args.per_device_eval_batch_size, pin_memory=True, ) optimizer = torch.optim.Adam(model.parameters(), lr=args.learning_rate) # Scheduler and math around the number of training steps. overrode_max_train_steps = False num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps) if args.max_train_steps is None: args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch overrode_max_train_steps = True lr_scheduler = get_scheduler( name=args.lr_scheduler_type, optimizer=optimizer, num_warmup_steps=args.num_warmup_steps, num_training_steps=args.max_train_steps, ) # Prepare everything with our `accelerator`. model, optimizer, train_dataloader, eval_dataloader, lr_scheduler = accelerator.prepare( model, optimizer, train_dataloader, eval_dataloader, lr_scheduler ) # We need to recalculate our total training steps as the size of the training dataloader may have changed num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps) if overrode_max_train_steps: args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch # Afterwards we recalculate our number of training epochs args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch) # Figure out how many steps we should save the Accelerator states checkpointing_steps = args.checkpointing_steps if checkpointing_steps is not None and checkpointing_steps.isdigit(): checkpointing_steps = int(checkpointing_steps) # We need to initialize the trackers we use, and also store our configuration. # The trackers initializes automatically on the main process. if args.with_tracking: experiment_config = vars(args) # TensorBoard cannot log Enums, need the raw value experiment_config["lr_scheduler_type"] = experiment_config["lr_scheduler_type"].value accelerator.init_trackers("peft_semantic_search", experiment_config) metric = evaluate.load("roc_auc") total_batch_size = args.per_device_train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps if args.use_peft: # saving and loading checkpoints for resuming training accelerator.register_save_state_pre_hook(save_model_hook) accelerator.register_load_state_pre_hook(load_model_hook) logger.info("***** Running training *****") logger.info(f" Num examples = {len(processed_datasets['train'])}") logger.info(f" Num Epochs = {args.num_train_epochs}") logger.info(f" Instantaneous batch size per device = {args.per_device_train_batch_size}") logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}") logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}") logger.info(f" Total optimization steps = {args.max_train_steps}") # Only show the progress bar once on each machine. progress_bar = tqdm(range(args.max_train_steps), disable=not accelerator.is_local_main_process) completed_steps = 0 starting_epoch = 0 # Potentially load in the weights and states from a previous save if args.resume_from_checkpoint: if args.resume_from_checkpoint is not None or args.resume_from_checkpoint != "": accelerator.print(f"Resumed from checkpoint: {args.resume_from_checkpoint}") accelerator.load_state(args.resume_from_checkpoint) path = os.path.basename(args.resume_from_checkpoint) else: # Get the most recent checkpoint dirs = [f.name for f in os.scandir(os.getcwd()) if f.is_dir()] dirs.sort(key=os.path.getctime) path = dirs[-1] # Sorts folders by date modified, most recent checkpoint is the last # Extract `epoch_{i}` or `step_{i}` training_difference = os.path.splitext(path)[0] if "epoch" in training_difference: starting_epoch = int(training_difference.replace("epoch_", "")) + 1 resume_step = None completed_steps = starting_epoch * num_update_steps_per_epoch else: # need to multiply `gradient_accumulation_steps` to reflect real steps resume_step = int(training_difference.replace("step_", "")) * args.gradient_accumulation_steps starting_epoch = resume_step // len(train_dataloader) resume_step -= starting_epoch * len(train_dataloader) completed_steps = resume_step // args.gradient_accumulation_stepp # update the progress_bar if load from checkpoint progress_bar.update(completed_steps) for epoch in range(starting_epoch, args.num_train_epochs): model.train() if args.with_tracking: total_loss = 0 if args.resume_from_checkpoint and epoch == starting_epoch and resume_step is not None: # We skip the first `n` batches in the dataloader when resuming from a checkpoint active_dataloader = accelerator.skip_first_batches(train_dataloader, resume_step) else: active_dataloader = train_dataloader for step, batch in enumerate(active_dataloader): with accelerator.accumulate(model): query_embs = model(**{k.replace("query_", ""): v for k, v in batch.items() if "query" in k}) product_embs = model(**{k.replace("product_", ""): v for k, v in batch.items() if "product" in k}) loss = get_loss(get_cosing_embeddings(query_embs, product_embs), batch["labels"]) total_loss += accelerator.reduce(loss.detach().float(), reduction="sum") accelerator.backward(loss) optimizer.step() lr_scheduler.step() model.zero_grad() # Checks if the accelerator has performed an optimization step behind the scenes if accelerator.sync_gradients: progress_bar.update(1) completed_steps += 1 if (step + 1) % 100 == 0: logger.info(f"Step: {step+1}, Loss: {total_loss/(step+1)}") if args.with_tracking: accelerator.log({"train/loss": total_loss / (step + 1)}, step=completed_steps) if isinstance(checkpointing_steps, int): if completed_steps % checkpointing_steps == 0: output_dir = f"step_{completed_steps }" if args.output_dir is not None: output_dir = os.path.join(args.output_dir, output_dir) accelerator.save_state(output_dir) if completed_steps >= args.max_train_steps: break model.eval() for step, batch in enumerate(eval_dataloader): with torch.no_grad(): query_embs = model(**{k.replace("query_", ""): v for k, v in batch.items() if "query" in k}) product_embs = model(**{k.replace("product_", ""): v for k, v in batch.items() if "product" in k}) prediction_scores = get_cosing_embeddings(query_embs, product_embs) prediction_scores, references = accelerator.gather_for_metrics((prediction_scores, batch["labels"])) metric.add_batch( prediction_scores=prediction_scores, references=references, ) result = metric.compute() result = {f"eval/{k}": v for k, v in result.items()} # Use accelerator.print to print only on the main process. accelerator.print(f"epoch {epoch}:", result) if args.with_tracking: result["train/epoch_loss"] = total_loss.item() / len(train_dataloader) accelerator.log(result, step=completed_steps) if args.output_dir is not None: accelerator.wait_for_everyone() if accelerator.is_main_process: if isinstance(checkpointing_steps, str): accelerator.save_state(os.path.join(args.output_dir, f"epoch_{epoch}")) accelerator.unwrap_model(model).save_pretrained( args.output_dir, state_dict=accelerator.get_state_dict(accelerator.unwrap_model(model)) ) tokenizer.save_pretrained(args.output_dir) if args.push_to_hub: commit_message = ( f"Training in progress epoch {epoch}" if epoch < args.num_train_epochs - 1 else "End of training" ) repo.push_to_hub(commit_message=commit_message, blocking=False, auto_lfs_prune=True) accelerator.wait_for_everyone() accelerator.end_training() if __name__ == "__main__": main()
0
hf_public_repos/peft/examples
hf_public_repos/peft/examples/feature_extraction/peft_lora_embedding_semantic_similarity_inference.ipynb
import argparse import json import logging import math import os import random from pathlib import Path from tqdm import tqdm import datasets from datasets import load_dataset, DatasetDict import evaluate import torch from torch import nn from torch.utils.data import DataLoader import transformers from transformers import AutoTokenizer, AutoModel, default_data_collator, SchedulerType, get_scheduler from transformers.utils import check_min_version, get_full_repo_name, send_example_telemetry from transformers.utils.versions import require_version from huggingface_hub import Repository, create_repo from accelerate import Accelerator from accelerate.logging import get_logger from accelerate.utils import set_seed from peft import PeftModel import hnswlibclass AutoModelForSentenceEmbedding(nn.Module): def __init__(self, model_name, tokenizer, normalize=True): super(AutoModelForSentenceEmbedding, self).__init__() self.model = AutoModel.from_pretrained(model_name) # , load_in_8bit=True, device_map={"":0}) self.normalize = normalize self.tokenizer = tokenizer def forward(self, **kwargs): model_output = self.model(**kwargs) embeddings = self.mean_pooling(model_output, kwargs["attention_mask"]) if self.normalize: embeddings = torch.nn.functional.normalize(embeddings, p=2, dim=1) return embeddings def mean_pooling(self, model_output, attention_mask): token_embeddings = model_output[0] # First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) def __getattr__(self, name: str): """Forward missing attributes to the wrapped module.""" try: return super().__getattr__(name) # defer to nn.Module's logic except AttributeError: return getattr(self.model, name) def get_cosing_embeddings(query_embs, product_embs): return torch.sum(query_embs * product_embs, axis=1)model_name_or_path = "intfloat/e5-large-v2" peft_model_id = "smangrul/peft_lora_e5_semantic_search" dataset_name = "smangrul/amazon_esci" max_length = 70 batch_size = 256import pandas as pd tokenizer = AutoTokenizer.from_pretrained(model_name_or_path) dataset = load_dataset(dataset_name) train_product_dataset = dataset["train"].to_pandas()[["product_title"]] val_product_dataset = dataset["validation"].to_pandas()[["product_title"]] product_dataset_for_indexing = pd.concat([train_product_dataset, val_product_dataset]) product_dataset_for_indexing = product_dataset_for_indexing.drop_duplicates() product_dataset_for_indexing.reset_index(drop=True, inplace=True) product_dataset_for_indexing.reset_index(inplace=True)product_dataset_for_indexingpd.set_option("max_colwidth", 300) product_dataset_for_indexing.sample(10)from datasets import Dataset dataset = Dataset.from_pandas(product_dataset_for_indexing) def preprocess_function(examples): products = examples["product_title"] result = tokenizer(products, padding="max_length", max_length=70, truncation=True) return result processed_dataset = dataset.map( preprocess_function, batched=True, remove_columns=dataset.column_names, desc="Running tokenizer on dataset", ) processed_dataset# base model model = AutoModelForSentenceEmbedding(model_name_or_path, tokenizer) # peft config and wrapping model = PeftModel.from_pretrained(model, peft_model_id) print(model)dataloader = DataLoader( processed_dataset, shuffle=False, collate_fn=default_data_collator, batch_size=batch_size, pin_memory=True, )next(iter(dataloader))ids_to_products_dict = {i: p for i, p in zip(dataset["index"], dataset["product_title"])} ids_to_products_dictdevice = "cuda" model.to(device) model.eval() model = model.merge_and_unload()import numpy as np num_products = len(dataset) d = 1024 product_embeddings_array = np.zeros((num_products, d)) for step, batch in enumerate(tqdm(dataloader)): with torch.no_grad(): with torch.amp.autocast(dtype=torch.bfloat16, device_type="cuda"): product_embs = model(**{k: v.to(device) for k, v in batch.items()}).detach().float().cpu() start_index = step * batch_size end_index = start_index + batch_size if (start_index + batch_size) < num_products else num_products product_embeddings_array[start_index:end_index] = product_embs del product_embs, batchdef construct_search_index(dim, num_elements, data): # Declaring index search_index = hnswlib.Index(space="ip", dim=dim) # possible options are l2, cosine or ip # Initializing index - the maximum number of elements should be known beforehand search_index.init_index(max_elements=num_elements, ef_construction=200, M=100) # Element insertion (can be called several times): ids = np.arange(num_elements) search_index.add_items(data, ids) return search_indexproduct_search_index = construct_search_index(d, num_products, product_embeddings_array)def get_query_embeddings(query, model, tokenizer, device): inputs = tokenizer(query, padding="max_length", max_length=70, truncation=True, return_tensors="pt") model.eval() with torch.no_grad(): query_embs = model(**{k: v.to(device) for k, v in inputs.items()}).detach().cpu() return query_embs[0] def get_nearest_neighbours(k, search_index, query_embeddings, ids_to_products_dict, threshold=0.7): # Controlling the recall by setting ef: search_index.set_ef(100) # ef should always be > k # Query dataset, k - number of the closest elements (returns 2 numpy arrays) labels, distances = search_index.knn_query(query_embeddings, k=k) return [ (ids_to_products_dict[label], (1 - distance)) for label, distance in zip(labels[0], distances[0]) if (1 - distance) >= threshold ]query = "NLP and ML books" k = 10 query_embeddings = get_query_embeddings(query, model, tokenizer, device) search_results = get_nearest_neighbours(k, product_search_index, query_embeddings, ids_to_products_dict, threshold=0.7) print(f"{query=}") for product, cosine_sim_score in search_results: print(f"cosine_sim_score={round(cosine_sim_score,2)} {product=}")
0
hf_public_repos/peft/examples
hf_public_repos/peft/examples/semantic_segmentation/semantic_segmentation_peft_lora.ipynb
from huggingface_hub import notebook_login notebook_login()from datasets import load_dataset ds = load_dataset("scene_parse_150", split="train[:150]")ds = ds.train_test_split(test_size=0.1) train_ds = ds["train"] test_ds = ds["test"]import json from huggingface_hub import cached_download, hf_hub_url repo_id = "huggingface/label-files" filename = "ade20k-id2label.json" id2label = json.load(open(cached_download(hf_hub_url(repo_id, filename, repo_type="dataset")), "r")) id2label = {int(k): v for k, v in id2label.items()} label2id = {v: k for k, v in id2label.items()} num_labels = len(id2label)from transformers import AutoImageProcessor checkpoint = "nvidia/mit-b0" image_processor = AutoImageProcessor.from_pretrained(checkpoint, reduce_labels=True)from torchvision.transforms import ColorJitter jitter = ColorJitter(brightness=0.25, contrast=0.25, saturation=0.25, hue=0.1)from PIL import Image import numpy as np def handle_grayscale_image(image): np_image = np.array(image) if np_image.ndim == 2: tiled_image = np.tile(np.expand_dims(np_image, -1), 3) return Image.fromarray(tiled_image) else: return Image.fromarray(np_image) def train_transforms(example_batch): images = [jitter(handle_grayscale_image(x)) for x in example_batch["image"]] labels = [x for x in example_batch["annotation"]] inputs = image_processor(images, labels) return inputs def val_transforms(example_batch): images = [handle_grayscale_image(x) for x in example_batch["image"]] labels = [x for x in example_batch["annotation"]] inputs = image_processor(images, labels) return inputstrain_ds.set_transform(train_transforms) test_ds.set_transform(val_transforms)import torch from torch import nn import evaluate metric = evaluate.load("mean_iou") def compute_metrics(eval_pred): with torch.no_grad(): logits, labels = eval_pred logits_tensor = torch.from_numpy(logits) # scale the logits to the size of the label logits_tensor = nn.functional.interpolate( logits_tensor, size=labels.shape[-2:], mode="bilinear", align_corners=False, ).argmax(dim=1) pred_labels = logits_tensor.detach().cpu().numpy() # currently using _compute instead of compute # see this issue for more info: https://github.com/huggingface/evaluate/pull/328#issuecomment-1286866576 metrics = metric._compute( predictions=pred_labels, references=labels, num_labels=len(id2label), ignore_index=0, reduce_labels=image_processor.reduce_labels, ) # add per category metrics as individual key-value pairs per_category_accuracy = metrics.pop("per_category_accuracy").tolist() per_category_iou = metrics.pop("per_category_iou").tolist() metrics.update({f"accuracy_{id2label[i]}": v for i, v in enumerate(per_category_accuracy)}) metrics.update({f"iou_{id2label[i]}": v for i, v in enumerate(per_category_iou)}) return metricsdef print_trainable_parameters(model): """ Prints the number of trainable parameters in the model. """ trainable_params = 0 all_param = 0 for _, param in model.named_parameters(): all_param += param.numel() if param.requires_grad: trainable_params += param.numel() print( f"trainable params: {trainable_params} || all params: {all_param} || trainable%: {100 * trainable_params / all_param:.2f}" )from transformers import AutoModelForSemanticSegmentation, TrainingArguments, Trainer model = AutoModelForSemanticSegmentation.from_pretrained( checkpoint, id2label=id2label, label2id=label2id, ignore_mismatched_sizes=True ) print_trainable_parameters(model)from peft import LoraConfig, get_peft_model config = LoraConfig( r=32, lora_alpha=32, target_modules=["query", "value"], lora_dropout=0.1, bias="lora_only", modules_to_save=["decode_head"], ) lora_model = get_peft_model(model, config) print_trainable_parameters(lora_model)for name, param in lora_model.named_parameters(): if param.requires_grad: print(name, param.shape)model_name = checkpoint.split("/")[-1] training_args = TrainingArguments( output_dir=f"{model_name}-scene-parse-150-lora", learning_rate=5e-4, num_train_epochs=50, per_device_train_batch_size=4, per_device_eval_batch_size=2, save_total_limit=3, evaluation_strategy="epoch", save_strategy="epoch", logging_steps=5, remove_unused_columns=False, push_to_hub=True, label_names=["labels"], ) trainer = Trainer( model=lora_model, args=training_args, train_dataset=train_ds, eval_dataset=test_ds, compute_metrics=compute_metrics, ) trainer.train()model_id = "segformer-scene-parse-150-lora" lora_model.save_pretrained(model_id)from peft import PeftConfig config = PeftConfig.from_pretrained(model_id) model = AutoModelForSemanticSegmentation.from_pretrained( checkpoint, id2label=id2label, label2id=label2id, ignore_mismatched_sizes=True ) # Load the Lora model inference_model = PeftModel.from_pretrained(model, model_id)import requests url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/semantic-seg-image.png" image = Image.open(requests.get(url, stream=True).raw) image# prepare image for the model encoding = image_processor(image.convert("RGB"), return_tensors="pt") print(encoding.pixel_values.shape)with torch.no_grad(): outputs = inference_model(pixel_values=encoding.pixel_values) logits = outputs.logits upsampled_logits = nn.functional.interpolate( logits, size=image.size[::-1], mode="bilinear", align_corners=False, ) pred_seg = upsampled_logits.argmax(dim=1)[0]def ade_palette(): """Creates a label colormap used in ADE20K segmentation benchmark. Returns: A colormap for visualizing segmentation results. """ return np.asarray( [ [0, 0, 0], [120, 120, 120], [180, 120, 120], [6, 230, 230], [80, 50, 50], [4, 200, 3], [120, 120, 80], [140, 140, 140], [204, 5, 255], [230, 230, 230], [4, 250, 7], [224, 5, 255], [235, 255, 7], [150, 5, 61], [120, 120, 70], [8, 255, 51], [255, 6, 82], [143, 255, 140], [204, 255, 4], [255, 51, 7], [204, 70, 3], [0, 102, 200], [61, 230, 250], [255, 6, 51], [11, 102, 255], [255, 7, 71], [255, 9, 224], [9, 7, 230], [220, 220, 220], [255, 9, 92], [112, 9, 255], [8, 255, 214], [7, 255, 224], [255, 184, 6], [10, 255, 71], [255, 41, 10], [7, 255, 255], [224, 255, 8], [102, 8, 255], [255, 61, 6], [255, 194, 7], [255, 122, 8], [0, 255, 20], [255, 8, 41], [255, 5, 153], [6, 51, 255], [235, 12, 255], [160, 150, 20], [0, 163, 255], [140, 140, 140], [250, 10, 15], [20, 255, 0], [31, 255, 0], [255, 31, 0], [255, 224, 0], [153, 255, 0], [0, 0, 255], [255, 71, 0], [0, 235, 255], [0, 173, 255], [31, 0, 255], [11, 200, 200], [255, 82, 0], [0, 255, 245], [0, 61, 255], [0, 255, 112], [0, 255, 133], [255, 0, 0], [255, 163, 0], [255, 102, 0], [194, 255, 0], [0, 143, 255], [51, 255, 0], [0, 82, 255], [0, 255, 41], [0, 255, 173], [10, 0, 255], [173, 255, 0], [0, 255, 153], [255, 92, 0], [255, 0, 255], [255, 0, 245], [255, 0, 102], [255, 173, 0], [255, 0, 20], [255, 184, 184], [0, 31, 255], [0, 255, 61], [0, 71, 255], [255, 0, 204], [0, 255, 194], [0, 255, 82], [0, 10, 255], [0, 112, 255], [51, 0, 255], [0, 194, 255], [0, 122, 255], [0, 255, 163], [255, 153, 0], [0, 255, 10], [255, 112, 0], [143, 255, 0], [82, 0, 255], [163, 255, 0], [255, 235, 0], [8, 184, 170], [133, 0, 255], [0, 255, 92], [184, 0, 255], [255, 0, 31], [0, 184, 255], [0, 214, 255], [255, 0, 112], [92, 255, 0], [0, 224, 255], [112, 224, 255], [70, 184, 160], [163, 0, 255], [153, 0, 255], [71, 255, 0], [255, 0, 163], [255, 204, 0], [255, 0, 143], [0, 255, 235], [133, 255, 0], [255, 0, 235], [245, 0, 255], [255, 0, 122], [255, 245, 0], [10, 190, 212], [214, 255, 0], [0, 204, 255], [20, 0, 255], [255, 255, 0], [0, 153, 255], [0, 41, 255], [0, 255, 204], [41, 0, 255], [41, 255, 0], [173, 0, 255], [0, 245, 255], [71, 0, 255], [122, 0, 255], [0, 255, 184], [0, 92, 255], [184, 255, 0], [0, 133, 255], [255, 214, 0], [25, 194, 194], [102, 255, 0], [92, 0, 255], ] )import matplotlib.pyplot as plt color_seg = np.zeros((pred_seg.shape[0], pred_seg.shape[1], 3), dtype=np.uint8) palette = np.array(ade_palette()) for label, color in enumerate(palette): color_seg[pred_seg == label, :] = color color_seg = color_seg[..., ::-1] # convert to BGR img = np.array(image) * 0.5 + color_seg * 0.5 # plot the image with the segmentation map img = img.astype(np.uint8) plt.figure(figsize=(15, 10)) plt.imshow(img) plt.show()
0
hf_public_repos/peft/examples
hf_public_repos/peft/examples/semantic_segmentation/README.md
# Fine-tuning for semantic segmentation using LoRA and 🤗 PEFT [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/peft/blob/main/examples/semantic_segmentation/semantic_segmentation_peft_lora.ipynb) We provide a notebook (`semantic_segmentation_peft_lora.ipynb`) where we learn how to use [LoRA](https://arxiv.org/abs/2106.09685) from 🤗 PEFT to fine-tune an semantic segmentation by ONLY using **14%%** of the original trainable parameters of the model. LoRA adds low-rank "update matrices" to certain blocks in the underlying model (in this case the attention blocks) and ONLY trains those matrices during fine-tuning. During inference, these update matrices are _merged_ with the original model parameters. For more details, check out the [original LoRA paper](https://arxiv.org/abs/2106.09685).
0
hf_public_repos/peft/examples
hf_public_repos/peft/examples/fp4_finetuning/finetune_fp4_opt_bnb_peft.py
import os import torch import torch.nn as nn import transformers from datasets import load_dataset from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig from peft import LoraConfig, get_peft_model os.environ["CUDA_VISIBLE_DEVICES"] = "0" # -*- coding: utf-8 -*- """Finetune-opt-bnb-peft.ipynb Automatically generated by Colaboratory. Original file is located at https://colab.research.google.com/drive/1jCkpikz0J2o20FBQmYmAGdiKmJGOMo-o ## Fine-tune large models using 🤗 `peft` adapters, `transformers` & `bitsandbytes` In this tutorial we will cover how we can fine-tune large language models using the very recent `peft` library and `bitsandbytes` for loading large models in 8-bit. The fine-tuning method will rely on a recent method called "Low Rank Adapters" (LoRA), instead of fine-tuning the entire model you just have to fine-tune these adapters and load them properly inside the model. After fine-tuning the model you can also share your adapters on the 🤗 Hub and load them very easily. Let's get started! ### Install requirements First, run the cells below to install the requirements: """ """### Model loading Here let's load the `opt-6.7b` model, its weights in half-precision (float16) are about 13GB on the Hub! If we load them in 8-bit we would require around 7GB of memory instead. """ free_in_GB = int(torch.cuda.mem_get_info()[0] / 1024**3) max_memory = f"{free_in_GB-2}GB" n_gpus = torch.cuda.device_count() max_memory = {i: max_memory for i in range(n_gpus)} model = AutoModelForCausalLM.from_pretrained( "facebook/opt-350m", max_memory=max_memory, quantization_config=BitsAndBytesConfig( load_in_4bit=True, llm_int8_threshold=6.0, llm_int8_has_fp16_weight=False, bnb_4bit_compute_dtype=torch.float16, bnb_4bit_use_double_quant=True, bnb_4bit_quant_type="nf4", ), torch_dtype=torch.float16, ) tokenizer = AutoTokenizer.from_pretrained("facebook/opt-350m") """### Post-processing on the model Finally, we need to apply some post-processing on the 8-bit model to enable training, let's freeze all our layers, and cast the layer-norm in `float32` for stability. We also cast the output of the last layer in `float32` for the same reasons. """ print(model) for param in model.parameters(): param.requires_grad = False # freeze the model - train adapters later if param.ndim == 1: # cast the small parameters (e.g. layernorm) to fp32 for stability param.data = param.data.to(torch.float32) # model.gradient_checkpointing_enable() # reduce number of stored activations # model.model.decoder.project_in = lambda x: x.requires_grad_(True) class CastOutputToFloat(nn.Sequential): def forward(self, x): return super().forward(x).to(torch.float32) model.lm_head = CastOutputToFloat(model.lm_head) """### Apply LoRA Here comes the magic with `peft`! Let's load a `PeftModel` and specify that we are going to use low-rank adapters (LoRA) using `get_peft_model` utility function from `peft`. """ def print_trainable_parameters(model): """ Prints the number of trainable parameters in the model. """ trainable_params = 0 all_param = 0 for _, param in model.named_parameters(): all_param += param.numel() if param.requires_grad: trainable_params += param.numel() print( f"trainable params: {trainable_params} || all params: {all_param} || trainable%: {100 * trainable_params / all_param}" ) config = LoraConfig( r=64, lora_alpha=32, target_modules=["q_proj", "v_proj", "out_proj", "fc1", "fc2"], lora_dropout=0.01, bias="none", task_type="CAUSAL_LM", ) model = get_peft_model(model, config) print_trainable_parameters(model) # Verifying the datatypes. dtypes = {} for _, p in model.named_parameters(): dtype = p.dtype if dtype not in dtypes: dtypes[dtype] = 0 dtypes[dtype] += p.numel() total = 0 for k, v in dtypes.items(): total += v for k, v in dtypes.items(): print(k, v, v / total) """### Training""" data = load_dataset("Abirate/english_quotes") data = data.map(lambda samples: tokenizer(samples["quote"]), batched=True) data = load_dataset("Abirate/english_quotes") data = data.map(lambda samples: tokenizer(samples["quote"]), batched=True) trainer = transformers.Trainer( model=model, train_dataset=data["train"], args=transformers.TrainingArguments( per_device_train_batch_size=4, gradient_accumulation_steps=4, warmup_steps=10, max_steps=20, learning_rate=3e-4, fp16=True, logging_steps=1, output_dir="outputs", ), data_collator=transformers.DataCollatorForLanguageModeling(tokenizer, mlm=False), ) model.config.use_cache = False # silence the warnings. Please re-enable for inference! trainer.train() # from huggingface_hub import notebook_login # notebook_login() # model.push_to_hub("ybelkada/opt-6.7b-lora", use_auth_token=True) """## Load adapters from the Hub You can also directly load adapters from the Hub using the commands below: """ # import torch # from peft import PeftModel, PeftConfig # from transformers import AutoModelForCausalLM, AutoTokenizer # # peft_model_id = "ybelkada/opt-6.7b-lora" # config = PeftConfig.from_pretrained(peft_model_id) # model = AutoModelForCausalLM.from_pretrained(config.base_model_name_or_path, return_dict=True, load_in_8bit=True, device_map='auto') # tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path) # ## Load the Lora model # model = PeftModel.from_pretrained(model, peft_model_id) # # """## Inference # # You can then directly use the trained model or the model that you have loaded from the 🤗 Hub for inference as you would do it usually in `transformers`. # """ # batch = tokenizer("Two things are infinite: ", return_tensors="pt") model.config.use_cache = False # silence the warnings. Please re-enable for inference! model.eval() with torch.cuda.amp.autocast(): output_tokens = model.generate(**batch, max_new_tokens=50) print("\n\n", tokenizer.decode(output_tokens[0], skip_special_tokens=True)) # model.save('./test.pt') # """As you can see by fine-tuning for few steps we have almost recovered the quote from Albert Einstein that is present in the [training data](https://huggingface.co/datasets/Abirate/english_quotes)."""
0
hf_public_repos/peft/examples
hf_public_repos/peft/examples/conditional_generation/requirements.txt
transformers accelerate evaluate deepspeed tqdm datasets
0
hf_public_repos/peft/examples
hf_public_repos/peft/examples/conditional_generation/peft_prompt_tuning_seq2seq_with_generate.ipynb
import os import torch from transformers import ( AutoTokenizer, default_data_collator, AutoModelForSeq2SeqLM, Seq2SeqTrainingArguments, Seq2SeqTrainer, GenerationConfig, ) from peft import get_peft_model, PromptTuningInit, PromptTuningConfig, TaskType from datasets import load_dataset os.environ["CUDA_VISIBLE_DEVICES"] = "0" os.environ["TOKENIZERS_PARALLELISM"] = "false" device = "cuda" model_name_or_path = "t5-large" tokenizer_name_or_path = "t5-large" checkpoint_name = "financial_sentiment_analysis_prefix_tuning_v1.pt" text_column = "sentence" label_column = "text_label" max_length = 8 lr = 1e0 num_epochs = 5 batch_size = 8# creating model peft_config = peft_config = PromptTuningConfig( task_type=TaskType.SEQ_2_SEQ_LM, prompt_tuning_init=PromptTuningInit.TEXT, num_virtual_tokens=20, prompt_tuning_init_text="What is the sentiment of this article?\n", inference_mode=False, tokenizer_name_or_path=model_name_or_path, ) model = AutoModelForSeq2SeqLM.from_pretrained(model_name_or_path) model = get_peft_model(model, peft_config) model.print_trainable_parameters() model# loading dataset dataset = load_dataset("financial_phrasebank", "sentences_allagree") dataset = dataset["train"].train_test_split(test_size=0.1) dataset["validation"] = dataset["test"] del dataset["test"] classes = dataset["train"].features["label"].names dataset = dataset.map( lambda x: {"text_label": [classes[label] for label in x["label"]]}, batched=True, num_proc=1, ) dataset["train"][0]# data preprocessing tokenizer = AutoTokenizer.from_pretrained(model_name_or_path) def preprocess_function(examples): inputs = examples[text_column] targets = examples[label_column] model_inputs = tokenizer(inputs, max_length=max_length, padding="max_length", truncation=True, return_tensors="pt") labels = tokenizer(targets, max_length=2, padding="max_length", truncation=True, return_tensors="pt") labels = labels["input_ids"] labels[labels == tokenizer.pad_token_id] = -100 model_inputs["labels"] = labels return model_inputs processed_datasets = dataset.map( preprocess_function, batched=True, num_proc=1, remove_columns=dataset["train"].column_names, load_from_cache_file=False, desc="Running tokenizer on dataset", ) train_dataset = processed_datasets["train"].shuffle() eval_dataset = processed_datasets["validation"]# training and evaluation def compute_metrics(eval_preds): preds, labels = eval_preds preds = tokenizer.batch_decode(preds, skip_special_tokens=True) labels = tokenizer.batch_decode(labels, skip_special_tokens=True) correct = 0 total = 0 for pred, true in zip(preds, labels): if pred.strip() == true.strip(): correct += 1 total += 1 accuracy = correct / total return {"accuracy": accuracy} training_args = Seq2SeqTrainingArguments( "out", per_device_train_batch_size=batch_size, learning_rate=lr, num_train_epochs=num_epochs, evaluation_strategy="epoch", logging_strategy="epoch", save_strategy="no", report_to=[], predict_with_generate=True, generation_config=GenerationConfig(max_length=max_length), ) trainer = Seq2SeqTrainer( model=model, tokenizer=tokenizer, args=training_args, train_dataset=train_dataset, eval_dataset=eval_dataset, data_collator=default_data_collator, compute_metrics=compute_metrics, ) trainer.train()# saving model peft_model_id = f"{model_name_or_path}_{peft_config.peft_type}_{peft_config.task_type}" model.save_pretrained(peft_model_id)ckpt = f"{peft_model_id}/adapter_model.bin" !du -h $ckptfrom peft import PeftModel, PeftConfig peft_model_id = f"{model_name_or_path}_{peft_config.peft_type}_{peft_config.task_type}" config = PeftConfig.from_pretrained(peft_model_id) model = AutoModelForSeq2SeqLM.from_pretrained(config.base_model_name_or_path) model = PeftModel.from_pretrained(model, peft_model_id)model.eval() i = 107 inputs = tokenizer(dataset["validation"][text_column][i], return_tensors="pt") print(dataset["validation"][text_column][i]) print(inputs) with torch.no_grad(): outputs = model.generate(input_ids=inputs["input_ids"], max_new_tokens=10) print(outputs) print(tokenizer.batch_decode(outputs.detach().cpu().numpy(), skip_special_tokens=True))
0
hf_public_repos/peft/examples
hf_public_repos/peft/examples/conditional_generation/accelerate_ds_zero3_cpu_offload_config.yaml
compute_environment: LOCAL_MACHINE deepspeed_config: gradient_accumulation_steps: 1 gradient_clipping: 1.0 offload_optimizer_device: none offload_param_device: none zero3_init_flag: true zero3_save_16bit_model: true zero_stage: 3 distributed_type: DEEPSPEED downcast_bf16: 'no' dynamo_backend: 'NO' fsdp_config: {} machine_rank: 0 main_training_function: main megatron_lm_config: {} mixed_precision: 'no' num_machines: 1 num_processes: 1 rdzv_backend: static same_network: true use_cpu: false
0
hf_public_repos/peft/examples
hf_public_repos/peft/examples/conditional_generation/peft_lora_seq2seq_accelerate_ds_zero3_offload.py
import gc import os import sys import threading import numpy as np import psutil import torch from accelerate import Accelerator from datasets import load_dataset from torch.utils.data import DataLoader from tqdm import tqdm from transformers import AutoModelForSeq2SeqLM, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from peft import LoraConfig, TaskType, get_peft_model def levenshtein_distance(str1, str2): # TC: O(N^2) # SC: O(N^2) if str1 == str2: return 0 num_rows = len(str1) + 1 num_cols = len(str2) + 1 dp_matrix = np.empty((num_rows, num_cols)) dp_matrix[0, :] = range(num_cols) dp_matrix[:, 0] = range(num_rows) for i in range(1, num_rows): for j in range(1, num_cols): if str1[i - 1] == str2[j - 1]: dp_matrix[i, j] = dp_matrix[i - 1, j - 1] else: dp_matrix[i, j] = min(dp_matrix[i - 1, j - 1], dp_matrix[i - 1, j], dp_matrix[i, j - 1]) + 1 return dp_matrix[num_rows - 1, num_cols - 1] def get_closest_label(eval_pred, classes): min_id = sys.maxsize min_edit_distance = sys.maxsize for i, class_label in enumerate(classes): edit_distance = levenshtein_distance(eval_pred.strip(), class_label) if edit_distance < min_edit_distance: min_id = i min_edit_distance = edit_distance return classes[min_id] # Converting Bytes to Megabytes def b2mb(x): return int(x / 2**20) # This context manager is used to track the peak memory usage of the process class TorchTracemalloc: def __enter__(self): gc.collect() torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() # reset the peak gauge to zero self.begin = torch.cuda.memory_allocated() self.process = psutil.Process() self.cpu_begin = self.cpu_mem_used() self.peak_monitoring = True peak_monitor_thread = threading.Thread(target=self.peak_monitor_func) peak_monitor_thread.daemon = True peak_monitor_thread.start() return self def cpu_mem_used(self): """get resident set size memory for the current process""" return self.process.memory_info().rss def peak_monitor_func(self): self.cpu_peak = -1 while True: self.cpu_peak = max(self.cpu_mem_used(), self.cpu_peak) # can't sleep or will not catch the peak right (this comment is here on purpose) # time.sleep(0.001) # 1msec if not self.peak_monitoring: break def __exit__(self, *exc): self.peak_monitoring = False gc.collect() torch.cuda.empty_cache() self.end = torch.cuda.memory_allocated() self.peak = torch.cuda.max_memory_allocated() self.used = b2mb(self.end - self.begin) self.peaked = b2mb(self.peak - self.begin) self.cpu_end = self.cpu_mem_used() self.cpu_used = b2mb(self.cpu_end - self.cpu_begin) self.cpu_peaked = b2mb(self.cpu_peak - self.cpu_begin) # print(f"delta used/peak {self.used:4d}/{self.peaked:4d}") def main(): accelerator = Accelerator() # model_name_or_path = "bigscience/T0_3B" model_name_or_path = "facebook/bart-large" dataset_name = "twitter_complaints" peft_config = LoraConfig( task_type=TaskType.SEQ_2_SEQ_LM, inference_mode=False, r=8, lora_alpha=32, lora_dropout=0.1 ) text_column = "Tweet text" label_column = "text_label" lr = 3e-3 num_epochs = 5 batch_size = 8 seed = 42 do_test = False set_seed(seed) dataset = load_dataset("ought/raft", dataset_name) classes = [k.replace("_", " ") for k in dataset["train"].features["Label"].names] dataset = dataset.map( lambda x: {"text_label": [classes[label] for label in x["Label"]]}, batched=True, num_proc=1, ) tokenizer = AutoTokenizer.from_pretrained(model_name_or_path) target_max_length = max([len(tokenizer(class_label)["input_ids"]) for class_label in classes]) def preprocess_function(examples): inputs = examples[text_column] targets = examples[label_column] model_inputs = tokenizer(inputs, truncation=True) labels = tokenizer( targets, max_length=target_max_length, padding="max_length", truncation=True, return_tensors="pt" ) labels = labels["input_ids"] labels[labels == tokenizer.pad_token_id] = -100 model_inputs["labels"] = labels return model_inputs with accelerator.main_process_first(): processed_datasets = dataset.map( preprocess_function, batched=True, num_proc=1, remove_columns=dataset["train"].column_names, load_from_cache_file=True, desc="Running tokenizer on dataset", ) accelerator.wait_for_everyone() train_dataset = processed_datasets["train"] eval_dataset = processed_datasets["train"] test_dataset = processed_datasets["test"] def collate_fn(examples): return tokenizer.pad(examples, padding="longest", return_tensors="pt") train_dataloader = DataLoader( train_dataset, shuffle=True, collate_fn=collate_fn, batch_size=batch_size, pin_memory=True ) eval_dataloader = DataLoader(eval_dataset, collate_fn=collate_fn, batch_size=batch_size, pin_memory=True) test_dataloader = DataLoader(test_dataset, collate_fn=collate_fn, batch_size=batch_size, pin_memory=True) # creating model model = AutoModelForSeq2SeqLM.from_pretrained(model_name_or_path) model = get_peft_model(model, peft_config) model.print_trainable_parameters() # optimizer optimizer = torch.optim.AdamW(model.parameters(), lr=lr) # lr scheduler lr_scheduler = get_linear_schedule_with_warmup( optimizer=optimizer, num_warmup_steps=0, num_training_steps=(len(train_dataloader) * num_epochs), ) model, train_dataloader, eval_dataloader, test_dataloader, optimizer, lr_scheduler = accelerator.prepare( model, train_dataloader, eval_dataloader, test_dataloader, optimizer, lr_scheduler ) accelerator.print(model) is_ds_zero_3 = False if getattr(accelerator.state, "deepspeed_plugin", None): is_ds_zero_3 = accelerator.state.deepspeed_plugin.zero_stage == 3 for epoch in range(num_epochs): with TorchTracemalloc() as tracemalloc: model.train() total_loss = 0 for step, batch in enumerate(tqdm(train_dataloader)): outputs = model(**batch) loss = outputs.loss total_loss += loss.detach().float() accelerator.backward(loss) optimizer.step() lr_scheduler.step() optimizer.zero_grad() # Printing the GPU memory usage details such as allocated memory, peak memory, and total memory usage accelerator.print("GPU Memory before entering the train : {}".format(b2mb(tracemalloc.begin))) accelerator.print("GPU Memory consumed at the end of the train (end-begin): {}".format(tracemalloc.used)) accelerator.print("GPU Peak Memory consumed during the train (max-begin): {}".format(tracemalloc.peaked)) accelerator.print( "GPU Total Peak Memory consumed during the train (max): {}".format( tracemalloc.peaked + b2mb(tracemalloc.begin) ) ) accelerator.print("CPU Memory before entering the train : {}".format(b2mb(tracemalloc.cpu_begin))) accelerator.print("CPU Memory consumed at the end of the train (end-begin): {}".format(tracemalloc.cpu_used)) accelerator.print("CPU Peak Memory consumed during the train (max-begin): {}".format(tracemalloc.cpu_peaked)) accelerator.print( "CPU Total Peak Memory consumed during the train (max): {}".format( tracemalloc.cpu_peaked + b2mb(tracemalloc.cpu_begin) ) ) train_epoch_loss = total_loss / len(train_dataloader) train_ppl = torch.exp(train_epoch_loss) accelerator.print(f"{epoch=}: {train_ppl=} {train_epoch_loss=}") model.eval() eval_preds = [] with TorchTracemalloc() as tracemalloc: for _, batch in enumerate(tqdm(eval_dataloader)): batch = {k: v for k, v in batch.items() if k != "labels"} with torch.no_grad(): outputs = accelerator.unwrap_model(model).generate( **batch, synced_gpus=is_ds_zero_3 ) # synced_gpus=True for DS-stage 3 outputs = accelerator.pad_across_processes(outputs, dim=1, pad_index=tokenizer.pad_token_id) preds = accelerator.gather_for_metrics(outputs).detach().cpu().numpy() eval_preds.extend(tokenizer.batch_decode(preds, skip_special_tokens=True)) # Printing the GPU memory usage details such as allocated memory, peak memory, and total memory usage accelerator.print("GPU Memory before entering the eval : {}".format(b2mb(tracemalloc.begin))) accelerator.print("GPU Memory consumed at the end of the eval (end-begin): {}".format(tracemalloc.used)) accelerator.print("GPU Peak Memory consumed during the eval (max-begin): {}".format(tracemalloc.peaked)) accelerator.print( "GPU Total Peak Memory consumed during the eval (max): {}".format( tracemalloc.peaked + b2mb(tracemalloc.begin) ) ) accelerator.print("CPU Memory before entering the eval : {}".format(b2mb(tracemalloc.cpu_begin))) accelerator.print("CPU Memory consumed at the end of the eval (end-begin): {}".format(tracemalloc.cpu_used)) accelerator.print("CPU Peak Memory consumed during the eval (max-begin): {}".format(tracemalloc.cpu_peaked)) accelerator.print( "CPU Total Peak Memory consumed during the eval (max): {}".format( tracemalloc.cpu_peaked + b2mb(tracemalloc.cpu_begin) ) ) correct = 0 total = 0 assert len(eval_preds) == len( dataset["train"][label_column] ), f"{len(eval_preds)} != {len(dataset['train'][label_column])}" for pred, true in zip(eval_preds, dataset["train"][label_column]): if pred.strip() == true.strip(): correct += 1 total += 1 accuracy = correct / total * 100 accelerator.print(f"{accuracy=}") accelerator.print(f"{eval_preds[:10]=}") accelerator.print(f"{dataset['train'][label_column][:10]=}") if do_test: model.eval() test_preds = [] for _, batch in enumerate(tqdm(test_dataloader)): batch = {k: v for k, v in batch.items() if k != "labels"} with torch.no_grad(): outputs = accelerator.unwrap_model(model).generate( **batch, synced_gpus=is_ds_zero_3 ) # synced_gpus=True for DS-stage 3 outputs = accelerator.pad_across_processes(outputs, dim=1, pad_index=tokenizer.pad_token_id) preds = accelerator.gather(outputs).detach().cpu().numpy() test_preds.extend(tokenizer.batch_decode(preds, skip_special_tokens=True)) test_preds_cleaned = [] for _, pred in enumerate(test_preds): test_preds_cleaned.append(get_closest_label(pred, classes)) test_df = dataset["test"].to_pandas() assert len(test_preds_cleaned) == len(test_df), f"{len(test_preds_cleaned)} != {len(test_df)}" test_df[label_column] = test_preds_cleaned test_df["text_labels_orig"] = test_preds accelerator.print(test_df[[text_column, label_column]].sample(20)) pred_df = test_df[["ID", label_column]] pred_df.columns = ["ID", "Label"] os.makedirs(f"data/{dataset_name}", exist_ok=True) pred_df.to_csv(f"data/{dataset_name}/predictions.csv", index=False) accelerator.wait_for_everyone() model.push_to_hub( "smangrul/" + f"{dataset_name}_{model_name_or_path}_{peft_config.peft_type}_{peft_config.task_type}".replace("/", "_"), state_dict=accelerator.get_state_dict(model), use_auth_token=True, ) accelerator.wait_for_everyone() if __name__ == "__main__": main()
0
hf_public_repos/peft/examples
hf_public_repos/peft/examples/conditional_generation/peft_adalora_seq2seq.py
import os import torch from datasets import load_dataset from torch.utils.data import DataLoader from tqdm import tqdm from transformers import AutoModelForSeq2SeqLM, AutoTokenizer, default_data_collator, get_linear_schedule_with_warmup from peft import AdaLoraConfig, PeftConfig, PeftModel, TaskType, get_peft_model os.environ["TOKENIZERS_PARALLELISM"] = "false" device = "cuda" model_name_or_path = "facebook/bart-base" tokenizer_name_or_path = "facebook/bart-base" checkpoint_name = "financial_sentiment_analysis_lora_v1.pt" text_column = "sentence" label_column = "text_label" max_length = 128 lr = 1e-3 num_epochs = 8 batch_size = 8 # creating model peft_config = AdaLoraConfig( init_r=12, target_r=8, beta1=0.85, beta2=0.85, tinit=200, tfinal=1000, deltaT=10, lora_alpha=32, lora_dropout=0.1, task_type=TaskType.SEQ_2_SEQ_LM, inference_mode=False, ) model = AutoModelForSeq2SeqLM.from_pretrained(model_name_or_path) model = get_peft_model(model, peft_config) model.print_trainable_parameters() # loading dataset dataset = load_dataset("financial_phrasebank", "sentences_allagree") dataset = dataset["train"].train_test_split(test_size=0.1) dataset["validation"] = dataset["test"] del dataset["test"] classes = dataset["train"].features["label"].names dataset = dataset.map( lambda x: {"text_label": [classes[label] for label in x["label"]]}, batched=True, num_proc=1, ) # data preprocessing tokenizer = AutoTokenizer.from_pretrained(model_name_or_path) def preprocess_function(examples): inputs = examples[text_column] targets = examples[label_column] model_inputs = tokenizer(inputs, max_length=max_length, padding="max_length", truncation=True, return_tensors="pt") labels = tokenizer(targets, max_length=3, padding="max_length", truncation=True, return_tensors="pt") labels = labels["input_ids"] labels[labels == tokenizer.pad_token_id] = -100 model_inputs["labels"] = labels return model_inputs processed_datasets = dataset.map( preprocess_function, batched=True, num_proc=1, remove_columns=dataset["train"].column_names, load_from_cache_file=False, desc="Running tokenizer on dataset", ) train_dataset = processed_datasets["train"] eval_dataset = processed_datasets["validation"] train_dataloader = DataLoader( train_dataset, shuffle=True, collate_fn=default_data_collator, batch_size=batch_size, pin_memory=True ) eval_dataloader = DataLoader(eval_dataset, collate_fn=default_data_collator, batch_size=batch_size, pin_memory=True) # optimizer and lr scheduler optimizer = torch.optim.AdamW(model.parameters(), lr=lr) lr_scheduler = get_linear_schedule_with_warmup( optimizer=optimizer, num_warmup_steps=0, num_training_steps=(len(train_dataloader) * num_epochs), ) model.base_model.peft_config.total_step = len(train_dataloader) * num_epochs # training and evaluation model = model.to(device) global_step = 0 for epoch in range(num_epochs): model.train() total_loss = 0 for step, batch in enumerate(tqdm(train_dataloader)): batch = {k: v.to(device) for k, v in batch.items()} outputs = model(**batch) loss = outputs.loss total_loss += loss.detach().float() loss.backward() optimizer.step() lr_scheduler.step() # Update the importance of low-rank matrices # and allocate the budget accordingly. model.base_model.update_and_allocate(global_step) optimizer.zero_grad() global_step += 1 model.eval() eval_loss = 0 eval_preds = [] for step, batch in enumerate(tqdm(eval_dataloader)): batch = {k: v.to(device) for k, v in batch.items()} with torch.no_grad(): outputs = model(**batch) loss = outputs.loss eval_loss += loss.detach().float() eval_preds.extend( tokenizer.batch_decode(torch.argmax(outputs.logits, -1).detach().cpu().numpy(), skip_special_tokens=True) ) eval_epoch_loss = eval_loss / len(train_dataloader) eval_ppl = torch.exp(eval_epoch_loss) train_epoch_loss = total_loss / len(eval_dataloader) train_ppl = torch.exp(train_epoch_loss) print(f"{epoch=}: {train_ppl=} {train_epoch_loss=} {eval_ppl=} {eval_epoch_loss=}") # print accuracy correct = 0 total = 0 for pred, true in zip(eval_preds, dataset["validation"]["text_label"]): if pred.strip() == true.strip(): correct += 1 total += 1 accuracy = correct / total * 100 print(f"{accuracy=} % on the evaluation dataset") print(f"{eval_preds[:10]=}") print(f"{dataset['validation']['text_label'][:10]=}") # saving model peft_model_id = f"{model_name_or_path}_{peft_config.peft_type}_{peft_config.task_type}" model.save_pretrained(peft_model_id) ckpt = f"{peft_model_id}/adapter_model.bin" # get_ipython().system('du -h $ckpt') peft_model_id = f"{model_name_or_path}_{peft_config.peft_type}_{peft_config.task_type}" config = PeftConfig.from_pretrained(peft_model_id) model = AutoModelForSeq2SeqLM.from_pretrained(config.base_model_name_or_path) model = PeftModel.from_pretrained(model, peft_model_id) model.eval() i = 13 inputs = tokenizer(dataset["validation"][text_column][i], return_tensors="pt") print(dataset["validation"][text_column][i]) print(inputs) with torch.no_grad(): outputs = model.generate(input_ids=inputs["input_ids"], max_new_tokens=10) print(outputs) print(tokenizer.batch_decode(outputs.detach().cpu().numpy(), skip_special_tokens=True))
0
hf_public_repos/peft/examples
hf_public_repos/peft/examples/conditional_generation/peft_prompt_tuning_seq2seq.ipynb
import os import torch from transformers import AutoModelForSeq2SeqLM, AutoTokenizer, default_data_collator, get_linear_schedule_with_warmup from peft import get_peft_model, PromptTuningConfig, TaskType, PromptTuningInit from torch.utils.data import DataLoader from tqdm import tqdm from datasets import load_dataset os.environ["TOKENIZERS_PARALLELISM"] = "false" device = "cuda" model_name_or_path = "t5-large" tokenizer_name_or_path = "t5-large" checkpoint_name = "financial_sentiment_analysis_prompt_tuning_v1.pt" text_column = "sentence" label_column = "text_label" max_length = 128 lr = 1 num_epochs = 5 batch_size = 8# creating model peft_config = PromptTuningConfig( task_type=TaskType.SEQ_2_SEQ_LM, prompt_tuning_init=PromptTuningInit.TEXT, num_virtual_tokens=20, prompt_tuning_init_text="What is the sentiment of this article?\n", inference_mode=False, tokenizer_name_or_path=model_name_or_path, ) model = AutoModelForSeq2SeqLM.from_pretrained(model_name_or_path) model = get_peft_model(model, peft_config) model.print_trainable_parameters() model# loading dataset dataset = load_dataset("financial_phrasebank", "sentences_allagree") dataset = dataset["train"].train_test_split(test_size=0.1) dataset["validation"] = dataset["test"] del dataset["test"] classes = dataset["train"].features["label"].names dataset = dataset.map( lambda x: {"text_label": [classes[label] for label in x["label"]]}, batched=True, num_proc=1, ) dataset["train"][0]# data preprocessing tokenizer = AutoTokenizer.from_pretrained(model_name_or_path) target_max_length = max([len(tokenizer(class_label)["input_ids"]) for class_label in classes]) def preprocess_function(examples): inputs = examples[text_column] targets = examples[label_column] model_inputs = tokenizer(inputs, max_length=max_length, padding="max_length", truncation=True, return_tensors="pt") labels = tokenizer( targets, max_length=target_max_length, padding="max_length", truncation=True, return_tensors="pt" ) labels = labels["input_ids"] labels[labels == tokenizer.pad_token_id] = -100 model_inputs["labels"] = labels return model_inputs processed_datasets = dataset.map( preprocess_function, batched=True, num_proc=1, remove_columns=dataset["train"].column_names, load_from_cache_file=False, desc="Running tokenizer on dataset", ) train_dataset = processed_datasets["train"] eval_dataset = processed_datasets["validation"] train_dataloader = DataLoader( train_dataset, shuffle=True, collate_fn=default_data_collator, batch_size=batch_size, pin_memory=True ) eval_dataloader = DataLoader(eval_dataset, collate_fn=default_data_collator, batch_size=batch_size, pin_memory=True)# optimizer and lr scheduler optimizer = torch.optim.AdamW(model.parameters(), lr=lr) lr_scheduler = get_linear_schedule_with_warmup( optimizer=optimizer, num_warmup_steps=0, num_training_steps=(len(train_dataloader) * num_epochs), )# training and evaluation model = model.to(device) for epoch in range(num_epochs): model.train() total_loss = 0 for step, batch in enumerate(tqdm(train_dataloader)): batch = {k: v.to(device) for k, v in batch.items()} outputs = model(**batch) loss = outputs.loss total_loss += loss.detach().float() loss.backward() optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() eval_loss = 0 eval_preds = [] for step, batch in enumerate(tqdm(eval_dataloader)): batch = {k: v.to(device) for k, v in batch.items()} with torch.no_grad(): outputs = model(**batch) loss = outputs.loss eval_loss += loss.detach().float() eval_preds.extend( tokenizer.batch_decode(torch.argmax(outputs.logits, -1).detach().cpu().numpy(), skip_special_tokens=True) ) eval_epoch_loss = eval_loss / len(eval_dataloader) eval_ppl = torch.exp(eval_epoch_loss) train_epoch_loss = total_loss / len(train_dataloader) train_ppl = torch.exp(train_epoch_loss) print(f"{epoch=}: {train_ppl=} {train_epoch_loss=} {eval_ppl=} {eval_epoch_loss=}")# print accuracy correct = 0 total = 0 for pred, true in zip(eval_preds, dataset["validation"]["text_label"]): if pred.strip() == true.strip(): correct += 1 total += 1 accuracy = correct / total * 100 print(f"{accuracy=} % on the evaluation dataset") print(f"{eval_preds[:10]=}") print(f"{dataset['validation']['text_label'][:10]=}")# saving model peft_model_id = f"{model_name_or_path}_{peft_config.peft_type}_{peft_config.task_type}" model.save_pretrained(peft_model_id)ckpt = f"{peft_model_id}/adapter_model.bin" !du -h $ckptfrom peft import PeftModel, PeftConfig peft_model_id = f"{model_name_or_path}_{peft_config.peft_type}_{peft_config.task_type}" config = PeftConfig.from_pretrained(peft_model_id) model = AutoModelForSeq2SeqLM.from_pretrained(config.base_model_name_or_path) model = PeftModel.from_pretrained(model, peft_model_id)model.eval() i = 107 input_ids = tokenizer(dataset["validation"][text_column][i], return_tensors="pt").input_ids print(dataset["validation"][text_column][i]) print(input_ids) with torch.no_grad(): outputs = model.generate(input_ids=input_ids, max_new_tokens=10) print(outputs) print(tokenizer.batch_decode(outputs.detach().cpu().numpy(), skip_special_tokens=True))
0
hf_public_repos/peft/examples
hf_public_repos/peft/examples/conditional_generation/peft_lora_seq2seq_accelerate_big_model_inference.ipynb
from transformers import AutoModelForSeq2SeqLM from peft import PeftModel, PeftConfig import torch from datasets import load_dataset import os from transformers import AutoTokenizer from torch.utils.data import DataLoader from transformers import default_data_collator, get_linear_schedule_with_warmup from tqdm import tqdm from datasets import load_dataset dataset_name = "twitter_complaints" text_column = "Tweet text" label_column = "text_label" batch_size = 8 peft_model_id = "smangrul/twitter_complaints_bigscience_T0_3B_LORA_SEQ_2_SEQ_LM" config = PeftConfig.from_pretrained(peft_model_id)peft_model_id = "smangrul/twitter_complaints_bigscience_T0_3B_LORA_SEQ_2_SEQ_LM" max_memory = {0: "6GIB", 1: "0GIB", 2: "0GIB", 3: "0GIB", 4: "0GIB", "cpu": "30GB"} config = PeftConfig.from_pretrained(peft_model_id) model = AutoModelForSeq2SeqLM.from_pretrained(config.base_model_name_or_path, device_map="auto", max_memory=max_memory) model = PeftModel.from_pretrained(model, peft_model_id, device_map="auto", max_memory=max_memory)from datasets import load_dataset dataset = load_dataset("ought/raft", dataset_name) classes = [k.replace("_", " ") for k in dataset["train"].features["Label"].names] print(classes) dataset = dataset.map( lambda x: {"text_label": [classes[label] for label in x["Label"]]}, batched=True, num_proc=1, ) print(dataset) dataset["train"][0]tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path) target_max_length = max([len(tokenizer(class_label)["input_ids"]) for class_label in classes]) def preprocess_function(examples): inputs = examples[text_column] targets = examples[label_column] model_inputs = tokenizer(inputs, truncation=True) labels = tokenizer( targets, max_length=target_max_length, padding="max_length", truncation=True, return_tensors="pt" ) labels = labels["input_ids"] labels[labels == tokenizer.pad_token_id] = -100 model_inputs["labels"] = labels return model_inputs processed_datasets = dataset.map( preprocess_function, batched=True, num_proc=1, remove_columns=dataset["train"].column_names, load_from_cache_file=True, desc="Running tokenizer on dataset", ) train_dataset = processed_datasets["train"] eval_dataset = processed_datasets["train"] test_dataset = processed_datasets["test"] def collate_fn(examples): return tokenizer.pad(examples, padding="longest", return_tensors="pt") train_dataloader = DataLoader( train_dataset, shuffle=True, collate_fn=collate_fn, batch_size=batch_size, pin_memory=True ) eval_dataloader = DataLoader(eval_dataset, collate_fn=collate_fn, batch_size=batch_size, pin_memory=True) test_dataloader = DataLoader(test_dataset, collate_fn=collate_fn, batch_size=batch_size, pin_memory=True)model.eval() i = 15 inputs = tokenizer(f'{text_column} : {dataset["test"][i]["Tweet text"]} Label : ', return_tensors="pt") print(dataset["test"][i]["Tweet text"]) print(inputs) with torch.no_grad(): outputs = model.generate(input_ids=inputs["input_ids"].to("cuda"), max_new_tokens=10) print(outputs) print(tokenizer.batch_decode(outputs.detach().cpu().numpy(), skip_special_tokens=True))model.eval() eval_preds = [] for _, batch in enumerate(tqdm(eval_dataloader)): batch = {k: v.to("cuda") for k, v in batch.items() if k != "labels"} with torch.no_grad(): outputs = model.generate(**batch, max_new_tokens=10) preds = outputs.detach().cpu().numpy() eval_preds.extend(tokenizer.batch_decode(preds, skip_special_tokens=True))correct = 0 total = 0 for pred, true in zip(eval_preds, dataset["train"][label_column]): if pred.strip() == true.strip(): correct += 1 total += 1 accuracy = correct / total * 100 print(f"{accuracy=}") print(f"{eval_preds[:10]=}") print(f"{dataset['train'][label_column][:10]=}")model.eval() test_preds = [] for _, batch in enumerate(tqdm(test_dataloader)): batch = {k: v for k, v in batch.items() if k != "labels"} with torch.no_grad(): outputs = model.generate(**batch, max_new_tokens=10) preds = outputs.detach().cpu().numpy() test_preds.extend(tokenizer.batch_decode(preds, skip_special_tokens=True)) if len(test_preds) > 100: break test_preds
0
hf_public_repos/peft/examples
hf_public_repos/peft/examples/conditional_generation/peft_lora_seq2seq_accelerate_fsdp.py
import os import torch from accelerate import Accelerator from datasets import load_dataset from torch.utils.data import DataLoader from tqdm import tqdm from transformers import AutoModelForSeq2SeqLM, AutoTokenizer, default_data_collator, get_linear_schedule_with_warmup from peft import LoraConfig, TaskType, get_peft_model from peft.utils.other import fsdp_auto_wrap_policy def main(): accelerator = Accelerator() model_name_or_path = "t5-base" batch_size = 8 text_column = "sentence" label_column = "label" max_length = 64 lr = 1e-3 num_epochs = 1 base_path = "temp/data/FinancialPhraseBank-v1.0" peft_config = LoraConfig( task_type=TaskType.SEQ_2_SEQ_LM, inference_mode=False, r=8, lora_alpha=32, lora_dropout=0.1 ) model = AutoModelForSeq2SeqLM.from_pretrained(model_name_or_path) model = get_peft_model(model, peft_config) accelerator.print(model.print_trainable_parameters()) dataset = load_dataset( "json", data_files={ "train": os.path.join(base_path, "financial_phrase_bank_train.jsonl"), "validation": os.path.join(base_path, "financial_phrase_bank_val.jsonl"), }, ) tokenizer = AutoTokenizer.from_pretrained(model_name_or_path) def preprocess_function(examples): inputs = examples[text_column] targets = examples[label_column] model_inputs = tokenizer( inputs, max_length=max_length, padding="max_length", truncation=True, return_tensors="pt" ) labels = tokenizer(targets, max_length=2, padding="max_length", truncation=True, return_tensors="pt") labels = labels["input_ids"] labels[labels == tokenizer.pad_token_id] = -100 model_inputs["labels"] = labels return model_inputs with accelerator.main_process_first(): processed_datasets = dataset.map( preprocess_function, batched=True, num_proc=1, remove_columns=dataset["train"].column_names, load_from_cache_file=False, desc="Running tokenizer on dataset", ) train_dataset = processed_datasets["train"] eval_dataset = processed_datasets["validation"] train_dataloader = DataLoader( train_dataset, shuffle=True, collate_fn=default_data_collator, batch_size=batch_size, pin_memory=True ) eval_dataloader = DataLoader( eval_dataset, collate_fn=default_data_collator, batch_size=batch_size, pin_memory=True ) optimizer = torch.optim.AdamW(model.parameters(), lr=lr) lr_scheduler = get_linear_schedule_with_warmup( optimizer=optimizer, num_warmup_steps=0, num_training_steps=(len(train_dataloader) * num_epochs), ) if getattr(accelerator.state, "fsdp_plugin", None) is not None: accelerator.state.fsdp_plugin.auto_wrap_policy = fsdp_auto_wrap_policy(model) model, train_dataloader, eval_dataloader, optimizer, lr_scheduler = accelerator.prepare( model, train_dataloader, eval_dataloader, optimizer, lr_scheduler ) accelerator.print(model) for epoch in range(num_epochs): model.train() total_loss = 0 for step, batch in enumerate(tqdm(train_dataloader)): outputs = model(**batch) loss = outputs.loss total_loss += loss.detach().float() loss.backward() optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() eval_loss = 0 eval_preds = [] for step, batch in enumerate(tqdm(eval_dataloader)): with torch.no_grad(): outputs = model(**batch) loss = outputs.loss eval_loss += loss.detach().float() preds = accelerator.gather_for_metrics(torch.argmax(outputs.logits, -1)).detach().cpu().numpy() eval_preds.extend(tokenizer.batch_decode(preds, skip_special_tokens=True)) eval_epoch_loss = eval_loss / len(eval_dataloader) eval_ppl = torch.exp(eval_epoch_loss) train_epoch_loss = total_loss / len(train_dataloader) train_ppl = torch.exp(train_epoch_loss) accelerator.print(f"{epoch=}: {train_ppl=} {train_epoch_loss=} {eval_ppl=} {eval_epoch_loss=}") correct = 0 total = 0 for pred, true in zip(eval_preds, dataset["validation"][label_column]): if pred.strip() == true.strip(): correct += 1 total += 1 accuracy = correct / total * 100 accelerator.print(f"{accuracy=}") accelerator.print(f"{eval_preds[:10]=}") accelerator.print(f"{dataset['validation'][label_column][:10]=}") accelerator.wait_for_everyone() model.push_to_hub( "smangrul/" + f"{model_name_or_path}_{peft_config.peft_type}_{peft_config.task_type}".replace("/", "_"), state_dict=accelerator.get_state_dict(model), use_auth_token=True, ) accelerator.wait_for_everyone() if __name__ == "__main__": main()
0
hf_public_repos/peft/examples
hf_public_repos/peft/examples/conditional_generation/peft_ia3_seq2seq.ipynb
from transformers import AutoModelForSeq2SeqLM import peft from peft import get_peft_config, get_peft_model, get_peft_model_state_dict, IA3Config, TaskType import torch from datasets import load_dataset import os os.environ["TOKENIZERS_PARALLELISM"] = "false" from transformers import AutoTokenizer from torch.utils.data import DataLoader from transformers import default_data_collator, get_linear_schedule_with_warmup from tqdm import tqdm from datasets import load_dataset device = "cuda" model_name_or_path = "bigscience/mt0-large" tokenizer_name_or_path = "bigscience/mt0-large" checkpoint_name = "financial_sentiment_analysis_ia3_v1.pt" text_column = "sentence" label_column = "text_label" max_length = 128 lr = 8e-3 num_epochs = 3 batch_size = 8import importlib importlib.reload(peft)# creating model peft_config = IA3Config(task_type=TaskType.SEQ_2_SEQ_LM, inference_mode=False, feedforward_modules=[]) model = AutoModelForSeq2SeqLM.from_pretrained(model_name_or_path)modelmodel = get_peft_model(model, peft_config) model.print_trainable_parameters() model# loading dataset dataset = load_dataset("financial_phrasebank", "sentences_allagree") dataset = dataset["train"].train_test_split(test_size=0.1) dataset["validation"] = dataset["test"] del dataset["test"] classes = dataset["train"].features["label"].names dataset = dataset.map( lambda x: {"text_label": [classes[label] for label in x["label"]]}, batched=True, num_proc=1, ) dataset["train"][0]# data preprocessing tokenizer = AutoTokenizer.from_pretrained(model_name_or_path) def preprocess_function(examples): inputs = examples[text_column] targets = examples[label_column] model_inputs = tokenizer(inputs, max_length=max_length, padding="max_length", truncation=True, return_tensors="pt") labels = tokenizer(targets, max_length=3, padding="max_length", truncation=True, return_tensors="pt") labels = labels["input_ids"] labels[labels == tokenizer.pad_token_id] = -100 model_inputs["labels"] = labels return model_inputs processed_datasets = dataset.map( preprocess_function, batched=True, num_proc=1, remove_columns=dataset["train"].column_names, load_from_cache_file=False, desc="Running tokenizer on dataset", ) train_dataset = processed_datasets["train"] eval_dataset = processed_datasets["validation"] train_dataloader = DataLoader( train_dataset, shuffle=True, collate_fn=default_data_collator, batch_size=batch_size, pin_memory=True ) eval_dataloader = DataLoader(eval_dataset, collate_fn=default_data_collator, batch_size=batch_size, pin_memory=True)# optimizer and lr scheduler optimizer = torch.optim.AdamW(model.parameters(), lr=lr) lr_scheduler = get_linear_schedule_with_warmup( optimizer=optimizer, num_warmup_steps=0, num_training_steps=(len(train_dataloader) * num_epochs), )# training and evaluation model = model.to(device) for epoch in range(num_epochs): model.train() total_loss = 0 for step, batch in enumerate(tqdm(train_dataloader)): batch = {k: v.to(device) for k, v in batch.items()} outputs = model(**batch) loss = outputs.loss total_loss += loss.detach().float() loss.backward() optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() eval_loss = 0 eval_preds = [] for step, batch in enumerate(tqdm(eval_dataloader)): batch = {k: v.to(device) for k, v in batch.items()} with torch.no_grad(): outputs = model(**batch) loss = outputs.loss eval_loss += loss.detach().float() eval_preds.extend( tokenizer.batch_decode(torch.argmax(outputs.logits, -1).detach().cpu().numpy(), skip_special_tokens=True) ) eval_epoch_loss = eval_loss / len(eval_dataloader) eval_ppl = torch.exp(eval_epoch_loss) train_epoch_loss = total_loss / len(train_dataloader) train_ppl = torch.exp(train_epoch_loss) print(f"{epoch=}: {train_ppl=} {train_epoch_loss=} {eval_ppl=} {eval_epoch_loss=}")# print accuracy correct = 0 total = 0 for pred, true in zip(eval_preds, dataset["validation"]["text_label"]): if pred.strip() == true.strip(): correct += 1 total += 1 accuracy = correct / total * 100 print(f"{accuracy=} % on the evaluation dataset") print(f"{eval_preds[:10]=}") print(f"{dataset['validation']['text_label'][:10]=}")# saving model peft_model_id = f"{model_name_or_path}_{peft_config.peft_type}_{peft_config.task_type}" model.save_pretrained(peft_model_id)ckpt = f"{peft_model_id}/adapter_model.bin" !du -h $ckptfrom peft import PeftModel, PeftConfig peft_model_id = f"{model_name_or_path}_{peft_config.peft_type}_{peft_config.task_type}" config = PeftConfig.from_pretrained(peft_model_id) model = AutoModelForSeq2SeqLM.from_pretrained(config.base_model_name_or_path) model = PeftModel.from_pretrained(model, peft_model_id)model.eval() i = 13 inputs = tokenizer(dataset["validation"][text_column][i], return_tensors="pt") print(dataset["validation"][text_column][i]) print(inputs) with torch.no_grad(): outputs = model.generate(input_ids=inputs["input_ids"], max_new_tokens=10) print(outputs) print(tokenizer.batch_decode(outputs.detach().cpu().numpy(), skip_special_tokens=True))
0
hf_public_repos/peft/examples
hf_public_repos/peft/examples/conditional_generation/peft_lora_seq2seq.ipynb
from transformers import AutoModelForSeq2SeqLM from peft import get_peft_config, get_peft_model, get_peft_model_state_dict, LoraConfig, TaskType import torch from datasets import load_dataset import os os.environ["TOKENIZERS_PARALLELISM"] = "false" from transformers import AutoTokenizer from torch.utils.data import DataLoader from transformers import default_data_collator, get_linear_schedule_with_warmup from tqdm import tqdm from datasets import load_dataset device = "cuda" model_name_or_path = "bigscience/mt0-large" tokenizer_name_or_path = "bigscience/mt0-large" checkpoint_name = "financial_sentiment_analysis_lora_v1.pt" text_column = "sentence" label_column = "text_label" max_length = 128 lr = 1e-3 num_epochs = 3 batch_size = 8# creating model peft_config = LoraConfig(task_type=TaskType.SEQ_2_SEQ_LM, inference_mode=False, r=8, lora_alpha=32, lora_dropout=0.1) model = AutoModelForSeq2SeqLM.from_pretrained(model_name_or_path) model = get_peft_model(model, peft_config) model.print_trainable_parameters() model# loading dataset dataset = load_dataset("financial_phrasebank", "sentences_allagree") dataset = dataset["train"].train_test_split(test_size=0.1) dataset["validation"] = dataset["test"] del dataset["test"] classes = dataset["train"].features["label"].names dataset = dataset.map( lambda x: {"text_label": [classes[label] for label in x["label"]]}, batched=True, num_proc=1, ) dataset["train"][0]# data preprocessing tokenizer = AutoTokenizer.from_pretrained(model_name_or_path) def preprocess_function(examples): inputs = examples[text_column] targets = examples[label_column] model_inputs = tokenizer(inputs, max_length=max_length, padding="max_length", truncation=True, return_tensors="pt") labels = tokenizer(targets, max_length=3, padding="max_length", truncation=True, return_tensors="pt") labels = labels["input_ids"] labels[labels == tokenizer.pad_token_id] = -100 model_inputs["labels"] = labels return model_inputs processed_datasets = dataset.map( preprocess_function, batched=True, num_proc=1, remove_columns=dataset["train"].column_names, load_from_cache_file=False, desc="Running tokenizer on dataset", ) train_dataset = processed_datasets["train"] eval_dataset = processed_datasets["validation"] train_dataloader = DataLoader( train_dataset, shuffle=True, collate_fn=default_data_collator, batch_size=batch_size, pin_memory=True ) eval_dataloader = DataLoader(eval_dataset, collate_fn=default_data_collator, batch_size=batch_size, pin_memory=True)# optimizer and lr scheduler optimizer = torch.optim.AdamW(model.parameters(), lr=lr) lr_scheduler = get_linear_schedule_with_warmup( optimizer=optimizer, num_warmup_steps=0, num_training_steps=(len(train_dataloader) * num_epochs), )# training and evaluation model = model.to(device) for epoch in range(num_epochs): model.train() total_loss = 0 for step, batch in enumerate(tqdm(train_dataloader)): batch = {k: v.to(device) for k, v in batch.items()} outputs = model(**batch) loss = outputs.loss total_loss += loss.detach().float() loss.backward() optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() eval_loss = 0 eval_preds = [] for step, batch in enumerate(tqdm(eval_dataloader)): batch = {k: v.to(device) for k, v in batch.items()} with torch.no_grad(): outputs = model(**batch) loss = outputs.loss eval_loss += loss.detach().float() eval_preds.extend( tokenizer.batch_decode(torch.argmax(outputs.logits, -1).detach().cpu().numpy(), skip_special_tokens=True) ) eval_epoch_loss = eval_loss / len(eval_dataloader) eval_ppl = torch.exp(eval_epoch_loss) train_epoch_loss = total_loss / len(train_dataloader) train_ppl = torch.exp(train_epoch_loss) print(f"{epoch=}: {train_ppl=} {train_epoch_loss=} {eval_ppl=} {eval_epoch_loss=}")# print accuracy correct = 0 total = 0 for pred, true in zip(eval_preds, dataset["validation"]["text_label"]): if pred.strip() == true.strip(): correct += 1 total += 1 accuracy = correct / total * 100 print(f"{accuracy=} % on the evaluation dataset") print(f"{eval_preds[:10]=}") print(f"{dataset['validation']['text_label'][:10]=}")# saving model peft_model_id = f"{model_name_or_path}_{peft_config.peft_type}_{peft_config.task_type}" model.save_pretrained(peft_model_id)ckpt = f"{peft_model_id}/adapter_model.bin" !du -h $ckptfrom peft import PeftModel, PeftConfig peft_model_id = f"{model_name_or_path}_{peft_config.peft_type}_{peft_config.task_type}" config = PeftConfig.from_pretrained(peft_model_id) model = AutoModelForSeq2SeqLM.from_pretrained(config.base_model_name_or_path) model = PeftModel.from_pretrained(model, peft_model_id)model.eval() i = 13 inputs = tokenizer(dataset["validation"][text_column][i], return_tensors="pt") print(dataset["validation"][text_column][i]) print(inputs) with torch.no_grad(): outputs = model.generate(input_ids=inputs["input_ids"], max_new_tokens=10) print(outputs) print(tokenizer.batch_decode(outputs.detach().cpu().numpy(), skip_special_tokens=True))
0
hf_public_repos/peft/examples
hf_public_repos/peft/examples/conditional_generation/peft_prefix_tuning_seq2seq.ipynb
from transformers import AutoModelForSeq2SeqLM from peft import get_peft_config, get_peft_model, get_peft_model_state_dict, PrefixTuningConfig, TaskType import torch from datasets import load_dataset import os os.environ["TOKENIZERS_PARALLELISM"] = "false" os.environ["CUDA_VISIBLE_DEVICES"] = "3" from transformers import AutoTokenizer from torch.utils.data import DataLoader from transformers import default_data_collator, get_linear_schedule_with_warmup from tqdm import tqdm from datasets import load_dataset device = "cuda" model_name_or_path = "t5-large" tokenizer_name_or_path = "t5-large" checkpoint_name = "financial_sentiment_analysis_prefix_tuning_v1.pt" text_column = "sentence" label_column = "text_label" max_length = 128 lr = 1e-2 num_epochs = 5 batch_size = 8# creating model peft_config = PrefixTuningConfig(task_type=TaskType.SEQ_2_SEQ_LM, inference_mode=False, num_virtual_tokens=20) model = AutoModelForSeq2SeqLM.from_pretrained(model_name_or_path) model = get_peft_model(model, peft_config) model.print_trainable_parameters() model# loading dataset dataset = load_dataset("financial_phrasebank", "sentences_allagree") dataset = dataset["train"].train_test_split(test_size=0.1) dataset["validation"] = dataset["test"] del dataset["test"] classes = dataset["train"].features["label"].names dataset = dataset.map( lambda x: {"text_label": [classes[label] for label in x["label"]]}, batched=True, num_proc=1, ) dataset["train"][0]# data preprocessing tokenizer = AutoTokenizer.from_pretrained(model_name_or_path) def preprocess_function(examples): inputs = examples[text_column] targets = examples[label_column] model_inputs = tokenizer(inputs, max_length=max_length, padding="max_length", truncation=True, return_tensors="pt") labels = tokenizer(targets, max_length=2, padding="max_length", truncation=True, return_tensors="pt") labels = labels["input_ids"] labels[labels == tokenizer.pad_token_id] = -100 model_inputs["labels"] = labels return model_inputs processed_datasets = dataset.map( preprocess_function, batched=True, num_proc=1, remove_columns=dataset["train"].column_names, load_from_cache_file=False, desc="Running tokenizer on dataset", ) train_dataset = processed_datasets["train"] eval_dataset = processed_datasets["validation"] train_dataloader = DataLoader( train_dataset, shuffle=True, collate_fn=default_data_collator, batch_size=batch_size, pin_memory=True ) eval_dataloader = DataLoader(eval_dataset, collate_fn=default_data_collator, batch_size=batch_size, pin_memory=True)# optimizer and lr scheduler optimizer = torch.optim.AdamW(model.parameters(), lr=lr) lr_scheduler = get_linear_schedule_with_warmup( optimizer=optimizer, num_warmup_steps=0, num_training_steps=(len(train_dataloader) * num_epochs), )# training and evaluation model = model.to(device) for epoch in range(num_epochs): model.train() total_loss = 0 for step, batch in enumerate(tqdm(train_dataloader)): batch = {k: v.to(device) for k, v in batch.items()} outputs = model(**batch) loss = outputs.loss total_loss += loss.detach().float() loss.backward() optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() eval_loss = 0 eval_preds = [] for step, batch in enumerate(tqdm(eval_dataloader)): batch = {k: v.to(device) for k, v in batch.items()} with torch.no_grad(): outputs = model(**batch) loss = outputs.loss eval_loss += loss.detach().float() eval_preds.extend( tokenizer.batch_decode(torch.argmax(outputs.logits, -1).detach().cpu().numpy(), skip_special_tokens=True) ) eval_epoch_loss = eval_loss / len(eval_dataloader) eval_ppl = torch.exp(eval_epoch_loss) train_epoch_loss = total_loss / len(train_dataloader) train_ppl = torch.exp(train_epoch_loss) print(f"{epoch=}: {train_ppl=} {train_epoch_loss=} {eval_ppl=} {eval_epoch_loss=}")# print accuracy correct = 0 total = 0 for pred, true in zip(eval_preds, dataset["validation"]["text_label"]): if pred.strip() == true.strip(): correct += 1 total += 1 accuracy = correct / total * 100 print(f"{accuracy=} % on the evaluation dataset") print(f"{eval_preds[:10]=}") print(f"{dataset['validation']['text_label'][:10]=}")# saving model peft_model_id = f"{model_name_or_path}_{peft_config.peft_type}_{peft_config.task_type}" model.save_pretrained(peft_model_id)ckpt = f"{peft_model_id}/adapter_model.bin" !du -h $ckptfrom peft import PeftModel, PeftConfig peft_model_id = f"{model_name_or_path}_{peft_config.peft_type}_{peft_config.task_type}" config = PeftConfig.from_pretrained(peft_model_id) model = AutoModelForSeq2SeqLM.from_pretrained(config.base_model_name_or_path) model = PeftModel.from_pretrained(model, peft_model_id)model.eval() i = 107 inputs = tokenizer(dataset["validation"][text_column][i], return_tensors="pt") print(dataset["validation"][text_column][i]) print(inputs) with torch.no_grad(): outputs = model.generate(input_ids=inputs["input_ids"], max_new_tokens=10) print(outputs) print(tokenizer.batch_decode(outputs.detach().cpu().numpy(), skip_special_tokens=True))
0
hf_public_repos/peft/examples
hf_public_repos/peft/examples/sequence_classification/requirements.txt
transformers accelerate evaluate tqdm datasets
0
hf_public_repos/peft/examples
hf_public_repos/peft/examples/sequence_classification/P_Tuning.ipynb
import argparse import os import torch from torch.optim import AdamW from torch.utils.data import DataLoader from peft import ( get_peft_config, get_peft_model, get_peft_model_state_dict, set_peft_model_state_dict, PeftType, PrefixTuningConfig, PromptEncoderConfig, ) import evaluate from datasets import load_dataset from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from tqdm import tqdmbatch_size = 32 model_name_or_path = "roberta-large" task = "mrpc" peft_type = PeftType.P_TUNING device = "cuda" num_epochs = 20peft_config = PromptEncoderConfig(task_type="SEQ_CLS", num_virtual_tokens=20, encoder_hidden_size=128) lr = 1e-3if any(k in model_name_or_path for k in ("gpt", "opt", "bloom")): padding_side = "left" else: padding_side = "right" tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, padding_side=padding_side) if getattr(tokenizer, "pad_token_id") is None: tokenizer.pad_token_id = tokenizer.eos_token_id datasets = load_dataset("glue", task) metric = evaluate.load("glue", task) def tokenize_function(examples): # max_length=None => use the model max length (it's actually the default) outputs = tokenizer(examples["sentence1"], examples["sentence2"], truncation=True, max_length=None) return outputs tokenized_datasets = datasets.map( tokenize_function, batched=True, remove_columns=["idx", "sentence1", "sentence2"], ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library tokenized_datasets = tokenized_datasets.rename_column("label", "labels") def collate_fn(examples): return tokenizer.pad(examples, padding="longest", return_tensors="pt") # Instantiate dataloaders. train_dataloader = DataLoader(tokenized_datasets["train"], shuffle=True, collate_fn=collate_fn, batch_size=batch_size) eval_dataloader = DataLoader( tokenized_datasets["validation"], shuffle=False, collate_fn=collate_fn, batch_size=batch_size )model = AutoModelForSequenceClassification.from_pretrained(model_name_or_path, return_dict=True) model = get_peft_model(model, peft_config) model.print_trainable_parameters() modeloptimizer = AdamW(params=model.parameters(), lr=lr) # Instantiate scheduler lr_scheduler = get_linear_schedule_with_warmup( optimizer=optimizer, num_warmup_steps=0, # 0.06*(len(train_dataloader) * num_epochs), num_training_steps=(len(train_dataloader) * num_epochs), )model.to(device) for epoch in range(num_epochs): model.train() for step, batch in enumerate(tqdm(train_dataloader)): batch.to(device) outputs = model(**batch) loss = outputs.loss loss.backward() optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(tqdm(eval_dataloader)): batch.to(device) with torch.no_grad(): outputs = model(**batch) predictions = outputs.logits.argmax(dim=-1) predictions, references = predictions, batch["labels"] metric.add_batch( predictions=predictions, references=references, ) eval_metric = metric.compute() print(f"epoch {epoch}:", eval_metric)model.push_to_hub("smangrul/roberta-large-peft-p-tuning", use_auth_token=True)import torch from peft import PeftModel, PeftConfig from transformers import AutoModelForCausalLM, AutoTokenizer peft_model_id = "smangrul/roberta-large-peft-p-tuning" config = PeftConfig.from_pretrained(peft_model_id) inference_model = AutoModelForSequenceClassification.from_pretrained(config.base_model_name_or_path) tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path) # Load the Lora model inference_model = PeftModel.from_pretrained(inference_model, peft_model_id) inference_model.to(device) inference_model.eval() for step, batch in enumerate(tqdm(eval_dataloader)): batch.to(device) with torch.no_grad(): outputs = inference_model(**batch) predictions = outputs.logits.argmax(dim=-1) predictions, references = predictions, batch["labels"] metric.add_batch( predictions=predictions, references=references, ) eval_metric = metric.compute() print(eval_metric)
0
hf_public_repos/peft/examples
hf_public_repos/peft/examples/sequence_classification/Prompt_Tuning.ipynb
import argparse import os import torch from torch.optim import AdamW from torch.utils.data import DataLoader from peft import ( get_peft_config, get_peft_model, get_peft_model_state_dict, set_peft_model_state_dict, PeftType, PrefixTuningConfig, PromptEncoderConfig, PromptTuningConfig, ) import evaluate from datasets import load_dataset from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from tqdm import tqdmbatch_size = 32 model_name_or_path = "roberta-large" task = "mrpc" peft_type = PeftType.PROMPT_TUNING device = "cuda" num_epochs = 20peft_config = PromptTuningConfig(task_type="SEQ_CLS", num_virtual_tokens=10) lr = 1e-3if any(k in model_name_or_path for k in ("gpt", "opt", "bloom")): padding_side = "left" else: padding_side = "right" tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, padding_side=padding_side) if getattr(tokenizer, "pad_token_id") is None: tokenizer.pad_token_id = tokenizer.eos_token_id datasets = load_dataset("glue", task) metric = evaluate.load("glue", task) def tokenize_function(examples): # max_length=None => use the model max length (it's actually the default) outputs = tokenizer(examples["sentence1"], examples["sentence2"], truncation=True, max_length=None) return outputs tokenized_datasets = datasets.map( tokenize_function, batched=True, remove_columns=["idx", "sentence1", "sentence2"], ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library tokenized_datasets = tokenized_datasets.rename_column("label", "labels") def collate_fn(examples): return tokenizer.pad(examples, padding="longest", return_tensors="pt") # Instantiate dataloaders. train_dataloader = DataLoader(tokenized_datasets["train"], shuffle=True, collate_fn=collate_fn, batch_size=batch_size) eval_dataloader = DataLoader( tokenized_datasets["validation"], shuffle=False, collate_fn=collate_fn, batch_size=batch_size )model = AutoModelForSequenceClassification.from_pretrained(model_name_or_path, return_dict=True) model = get_peft_model(model, peft_config) model.print_trainable_parameters() modeloptimizer = AdamW(params=model.parameters(), lr=lr) # Instantiate scheduler lr_scheduler = get_linear_schedule_with_warmup( optimizer=optimizer, num_warmup_steps=0.06 * (len(train_dataloader) * num_epochs), num_training_steps=(len(train_dataloader) * num_epochs), )model.to(device) for epoch in range(num_epochs): model.train() for step, batch in enumerate(tqdm(train_dataloader)): batch.to(device) outputs = model(**batch) loss = outputs.loss loss.backward() optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(tqdm(eval_dataloader)): batch.to(device) with torch.no_grad(): outputs = model(**batch) predictions = outputs.logits.argmax(dim=-1) predictions, references = predictions, batch["labels"] metric.add_batch( predictions=predictions, references=references, ) eval_metric = metric.compute() print(f"epoch {epoch}:", eval_metric)model.push_to_hub("smangrul/roberta-large-peft-prompt-tuning", use_auth_token=True)import torch from peft import PeftModel, PeftConfig from transformers import AutoModelForCausalLM, AutoTokenizer peft_model_id = "smangrul/roberta-large-peft-prompt-tuning" config = PeftConfig.from_pretrained(peft_model_id) inference_model = AutoModelForSequenceClassification.from_pretrained(config.base_model_name_or_path) tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path) # Load the Lora model inference_model = PeftModel.from_pretrained(inference_model, peft_model_id) inference_model.to(device) inference_model.eval() for step, batch in enumerate(tqdm(eval_dataloader)): batch.to(device) with torch.no_grad(): outputs = inference_model(**batch) predictions = outputs.logits.argmax(dim=-1) predictions, references = predictions, batch["labels"] metric.add_batch( predictions=predictions, references=references, ) eval_metric = metric.compute() print(eval_metric)
0
hf_public_repos/peft/examples
hf_public_repos/peft/examples/sequence_classification/LoRA.ipynb
import argparse import os import torch from torch.optim import AdamW from torch.utils.data import DataLoader from peft import ( get_peft_config, get_peft_model, get_peft_model_state_dict, set_peft_model_state_dict, LoraConfig, PeftType, PrefixTuningConfig, PromptEncoderConfig, ) import evaluate from datasets import load_dataset from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from tqdm import tqdmbatch_size = 32 model_name_or_path = "roberta-large" task = "mrpc" peft_type = PeftType.LORA device = "cuda" num_epochs = 20peft_config = LoraConfig(task_type="SEQ_CLS", inference_mode=False, r=8, lora_alpha=16, lora_dropout=0.1) lr = 3e-4if any(k in model_name_or_path for k in ("gpt", "opt", "bloom")): padding_side = "left" else: padding_side = "right" tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, padding_side=padding_side) if getattr(tokenizer, "pad_token_id") is None: tokenizer.pad_token_id = tokenizer.eos_token_id datasets = load_dataset("glue", task) metric = evaluate.load("glue", task) def tokenize_function(examples): # max_length=None => use the model max length (it's actually the default) outputs = tokenizer(examples["sentence1"], examples["sentence2"], truncation=True, max_length=None) return outputs tokenized_datasets = datasets.map( tokenize_function, batched=True, remove_columns=["idx", "sentence1", "sentence2"], ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library tokenized_datasets = tokenized_datasets.rename_column("label", "labels") def collate_fn(examples): return tokenizer.pad(examples, padding="longest", return_tensors="pt") # Instantiate dataloaders. train_dataloader = DataLoader(tokenized_datasets["train"], shuffle=True, collate_fn=collate_fn, batch_size=batch_size) eval_dataloader = DataLoader( tokenized_datasets["validation"], shuffle=False, collate_fn=collate_fn, batch_size=batch_size )model = AutoModelForSequenceClassification.from_pretrained(model_name_or_path, return_dict=True) model = get_peft_model(model, peft_config) model.print_trainable_parameters() modeloptimizer = AdamW(params=model.parameters(), lr=lr) # Instantiate scheduler lr_scheduler = get_linear_schedule_with_warmup( optimizer=optimizer, num_warmup_steps=0.06 * (len(train_dataloader) * num_epochs), num_training_steps=(len(train_dataloader) * num_epochs), )model.to(device) for epoch in range(num_epochs): model.train() for step, batch in enumerate(tqdm(train_dataloader)): batch.to(device) outputs = model(**batch) loss = outputs.loss loss.backward() optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(tqdm(eval_dataloader)): batch.to(device) with torch.no_grad(): outputs = model(**batch) predictions = outputs.logits.argmax(dim=-1) predictions, references = predictions, batch["labels"] metric.add_batch( predictions=predictions, references=references, ) eval_metric = metric.compute() print(f"epoch {epoch}:", eval_metric)model.push_to_hub("smangrul/roberta-large-peft-lora", use_auth_token=True)import torch from peft import PeftModel, PeftConfig from transformers import AutoModelForCausalLM, AutoTokenizer peft_model_id = "smangrul/roberta-large-peft-lora" config = PeftConfig.from_pretrained(peft_model_id) inference_model = AutoModelForSequenceClassification.from_pretrained(config.base_model_name_or_path) tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path) # Load the Lora model inference_model = PeftModel.from_pretrained(inference_model, peft_model_id) inference_model.to(device) inference_model.eval() for step, batch in enumerate(tqdm(eval_dataloader)): batch.to(device) with torch.no_grad(): outputs = inference_model(**batch) predictions = outputs.logits.argmax(dim=-1) predictions, references = predictions, batch["labels"] metric.add_batch( predictions=predictions, references=references, ) eval_metric = metric.compute() print(eval_metric)
0
hf_public_repos/peft/examples
hf_public_repos/peft/examples/sequence_classification/prefix_tuning.ipynb
import argparse import os import torch from torch.optim import AdamW from torch.utils.data import DataLoader from peft import ( get_peft_config, get_peft_model, get_peft_model_state_dict, set_peft_model_state_dict, PeftType, PrefixTuningConfig, PromptEncoderConfig, ) import evaluate from datasets import load_dataset from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from tqdm import tqdmbatch_size = 32 model_name_or_path = "roberta-large" task = "mrpc" peft_type = PeftType.PREFIX_TUNING device = "cuda" num_epochs = 20peft_config = PrefixTuningConfig(task_type="SEQ_CLS", num_virtual_tokens=20) lr = 1e-2if any(k in model_name_or_path for k in ("gpt", "opt", "bloom")): padding_side = "left" else: padding_side = "right" tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, padding_side=padding_side) if getattr(tokenizer, "pad_token_id") is None: tokenizer.pad_token_id = tokenizer.eos_token_id datasets = load_dataset("glue", task) metric = evaluate.load("glue", task) def tokenize_function(examples): # max_length=None => use the model max length (it's actually the default) outputs = tokenizer(examples["sentence1"], examples["sentence2"], truncation=True, max_length=None) return outputs tokenized_datasets = datasets.map( tokenize_function, batched=True, remove_columns=["idx", "sentence1", "sentence2"], ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library tokenized_datasets = tokenized_datasets.rename_column("label", "labels") def collate_fn(examples): return tokenizer.pad(examples, padding="longest", return_tensors="pt") # Instantiate dataloaders. train_dataloader = DataLoader(tokenized_datasets["train"], shuffle=True, collate_fn=collate_fn, batch_size=batch_size) eval_dataloader = DataLoader( tokenized_datasets["validation"], shuffle=False, collate_fn=collate_fn, batch_size=batch_size )model = AutoModelForSequenceClassification.from_pretrained(model_name_or_path, return_dict=True) model = get_peft_model(model, peft_config) model.print_trainable_parameters() modeloptimizer = AdamW(params=model.parameters(), lr=lr) # Instantiate scheduler lr_scheduler = get_linear_schedule_with_warmup( optimizer=optimizer, num_warmup_steps=0.06 * (len(train_dataloader) * num_epochs), num_training_steps=(len(train_dataloader) * num_epochs), )model.to(device) for epoch in range(num_epochs): model.train() for step, batch in enumerate(tqdm(train_dataloader)): batch.to(device) outputs = model(**batch) loss = outputs.loss loss.backward() optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(tqdm(eval_dataloader)): batch.to(device) with torch.no_grad(): outputs = model(**batch) predictions = outputs.logits.argmax(dim=-1) predictions, references = predictions, batch["labels"] metric.add_batch( predictions=predictions, references=references, ) eval_metric = metric.compute() print(f"epoch {epoch}:", eval_metric)model.push_to_hub("smangrul/roberta-large-peft-prefix-tuning", use_auth_token=True)import torch from peft import PeftModel, PeftConfig from transformers import AutoModelForCausalLM, AutoTokenizer peft_model_id = "smangrul/roberta-large-peft-prefix-tuning" config = PeftConfig.from_pretrained(peft_model_id) inference_model = AutoModelForSequenceClassification.from_pretrained(config.base_model_name_or_path) tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path) # Load the Lora model inference_model = PeftModel.from_pretrained(inference_model, peft_model_id) inference_model.to(device) inference_model.eval() for step, batch in enumerate(tqdm(eval_dataloader)): batch.to(device) with torch.no_grad(): outputs = inference_model(**batch) predictions = outputs.logits.argmax(dim=-1) predictions, references = predictions, batch["labels"] metric.add_batch( predictions=predictions, references=references, ) eval_metric = metric.compute() print(eval_metric)
0
hf_public_repos/peft/examples
hf_public_repos/peft/examples/sequence_classification/IA3.ipynb
import argparse import os import torch from torch.optim import AdamW from torch.utils.data import DataLoader import peft import evaluate from datasets import load_dataset from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from tqdm import tqdmbatch_size = 8 model_name_or_path = "roberta-large" task = "mrpc" peft_type = peft.PeftType.IA3 device = "cuda" num_epochs = 12# peft_config = LoraConfig(task_type="SEQ_CLS", inference_mode=False, r=8, lora_alpha=16, lora_dropout=0.1) peft_config = peft.IA3Config(task_type="SEQ_CLS", inference_mode=False) lr = 1e-3if any(k in model_name_or_path for k in ("gpt", "opt", "bloom")): padding_side = "left" else: padding_side = "right" tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, padding_side=padding_side) if getattr(tokenizer, "pad_token_id") is None: tokenizer.pad_token_id = tokenizer.eos_token_id datasets = load_dataset("glue", task) metric = evaluate.load("glue", task) def tokenize_function(examples): # max_length=None => use the model max length (it's actually the default) outputs = tokenizer(examples["sentence1"], examples["sentence2"], truncation=True, max_length=None) return outputs tokenized_datasets = datasets.map( tokenize_function, batched=True, remove_columns=["idx", "sentence1", "sentence2"], ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library tokenized_datasets = tokenized_datasets.rename_column("label", "labels") def collate_fn(examples): return tokenizer.pad(examples, padding="longest", return_tensors="pt") # Instantiate dataloaders. train_dataloader = DataLoader(tokenized_datasets["train"], shuffle=True, collate_fn=collate_fn, batch_size=batch_size) eval_dataloader = DataLoader( tokenized_datasets["validation"], shuffle=False, collate_fn=collate_fn, batch_size=batch_size ) test_dataloader = DataLoader(tokenized_datasets["test"], shuffle=False, collate_fn=collate_fn, batch_size=batch_size)model = AutoModelForSequenceClassification.from_pretrained(model_name_or_path, return_dict=True) model = peft.get_peft_model(model, peft_config) model.print_trainable_parameters() modeloptimizer = AdamW(params=model.parameters(), lr=lr) # Instantiate scheduler lr_scheduler = get_linear_schedule_with_warmup( optimizer=optimizer, num_warmup_steps=0.06 * (len(train_dataloader) * num_epochs), num_training_steps=(len(train_dataloader) * num_epochs), )model.to(device) for epoch in range(num_epochs): model.train() for step, batch in enumerate(tqdm(train_dataloader)): batch.to(device) outputs = model(**batch) loss = outputs.loss loss.backward() optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(tqdm(eval_dataloader)): batch.to(device) with torch.no_grad(): outputs = model(**batch) predictions = outputs.logits.argmax(dim=-1) predictions, references = predictions, batch["labels"] metric.add_batch( predictions=predictions, references=references, ) eval_metric = metric.compute() print(f"epoch {epoch}:", eval_metric)model.push_to_hub("SumanthRH/roberta-large-peft-ia3", use_auth_token=True)import torch from peft import PeftModel, PeftConfig from transformers import AutoModelForCausalLM, AutoTokenizer peft_model_id = "SumanthRH/roberta-large-peft-ia3" config = PeftConfig.from_pretrained(peft_model_id) inference_model = AutoModelForSequenceClassification.from_pretrained(config.base_model_name_or_path) tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path) # Load the Lora model inference_model = PeftModel.from_pretrained(inference_model, peft_model_id) inference_model.to(device) inference_model.eval() for step, batch in enumerate(tqdm(eval_dataloader)): batch.to(device) with torch.no_grad(): outputs = inference_model(**batch) predictions = outputs.logits.argmax(dim=-1) predictions, references = predictions, batch["labels"] metric.add_batch( predictions=predictions, references=references, ) eval_metric = metric.compute() print(eval_metric)
0
hf_public_repos/peft/examples
hf_public_repos/peft/examples/sequence_classification/peft_no_lora_accelerate.py
import argparse import evaluate import torch from accelerate import Accelerator, DistributedDataParallelKwargs from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from tqdm import tqdm from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from peft import ( PrefixTuningConfig, PromptEncoderConfig, PromptTuningConfig, get_peft_model, ) from peft.utils.other import fsdp_auto_wrap_policy def parse_args(): parser = argparse.ArgumentParser(description="PEFT a transformers model on a sequence classification task") parser.add_argument( "--num_virtual_tokens", type=int, default=20, help="num_virtual_tokens if the number of virtual tokens used in prompt/prefix/P tuning.", ) parser.add_argument( "--encoder_hidden_size", type=int, default=128, help="encoder_hidden_size if the encoder hidden size used in P tuninig/Prefix tuning.", ) parser.add_argument( "--model_name_or_path", type=str, help="Path to pretrained model or model identifier from huggingface.co/models.", required=True, ) parser.add_argument( "--per_device_train_batch_size", type=int, default=8, help="Batch size (per device) for the training dataloader.", ) parser.add_argument( "--per_device_eval_batch_size", type=int, default=8, help="Batch size (per device) for the evaluation dataloader.", ) parser.add_argument( "--learning_rate", type=float, default=1e-3, help="Initial learning rate (after the potential warmup period) to use.", ) parser.add_argument("--num_train_epochs", type=int, default=3, help="Total number of training epochs to perform.") parser.add_argument( "--num_warmup_steps", type=int, default=0, help="Number of steps for the warmup in the lr scheduler." ) parser.add_argument("--output_dir", type=str, default=None, help="Where to store the final model.") parser.add_argument("--seed", type=int, default=None, help="A seed for reproducible training.") parser.add_argument( "--peft_type", type=str, default="p_tuning", help="The PEFT type to use.", choices=["p_tuning", "prefix_tuning", "prompt_tuning"], ) args = parser.parse_args() assert args.output_dir is not None, "Need an `output_dir` to store the finetune model and verify." return args def main(): args = parse_args() ddp_scaler = DistributedDataParallelKwargs(find_unused_parameters=True) accelerator = Accelerator(kwargs_handlers=[ddp_scaler]) task = "mrpc" # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed) if args.peft_type == "p_tuning": peft_config = PromptEncoderConfig( task_type="SEQ_CLS", num_virtual_tokens=args.num_virtual_tokens, encoder_hidden_size=args.encoder_hidden_size, ) elif args.peft_type == "prefix_tuning": peft_config = PrefixTuningConfig( task_type="SEQ_CLS", num_virtual_tokens=args.num_virtual_tokens, encoder_hidden_size=args.encoder_hidden_size, ) else: peft_config = PromptTuningConfig(task_type="SEQ_CLS", num_virtual_tokens=args.num_virtual_tokens) tokenizer_kwargs = {} if any(k in args.model_name_or_path for k in ("gpt", "opt", "bloom")): tokenizer_kwargs["padding_side"] = "left" else: tokenizer_kwargs["padding_side"] = "right" tokenizer = AutoTokenizer.from_pretrained(args.model_name_or_path, **tokenizer_kwargs) if getattr(tokenizer, "pad_token_id") is None: tokenizer.pad_token_id = tokenizer.eos_token_id datasets = load_dataset("glue", task) metric = evaluate.load("glue", task) def tokenize_function(examples): # max_length=None => use the model max length (it's actually the default) outputs = tokenizer(examples["sentence1"], examples["sentence2"], truncation=True, max_length=None) return outputs def collate_fn(examples): return tokenizer.pad(examples, padding="longest", return_tensors="pt") with accelerator.main_process_first(): tokenized_datasets = datasets.map( tokenize_function, batched=True, remove_columns=["idx", "sentence1", "sentence2"], ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library tokenized_datasets = tokenized_datasets.rename_column("label", "labels") # Instantiate dataloaders. train_dataloader = DataLoader( tokenized_datasets["train"], shuffle=True, collate_fn=collate_fn, batch_size=args.per_device_train_batch_size ) eval_dataloader = DataLoader( tokenized_datasets["validation"], shuffle=False, collate_fn=collate_fn, batch_size=args.per_device_eval_batch_size, ) model = AutoModelForSequenceClassification.from_pretrained(args.model_name_or_path) model = get_peft_model(model, peft_config) model.print_trainable_parameters() if getattr(accelerator.state, "fsdp_plugin", None) is not None: accelerator.state.fsdp_plugin.auto_wrap_policy = fsdp_auto_wrap_policy(model) model = accelerator.prepare(model) optimizer = AdamW(params=model.parameters(), lr=args.learning_rate) # Instantiate scheduler lr_scheduler = get_linear_schedule_with_warmup( optimizer=optimizer, num_warmup_steps=args.num_warmup_steps, num_training_steps=(len(train_dataloader) * args.num_train_epochs), ) if getattr(accelerator.state, "fsdp_plugin", None) is not None: train_dataloader, eval_dataloader, optimizer, lr_scheduler = accelerator.prepare( train_dataloader, eval_dataloader, optimizer, lr_scheduler ) else: model, train_dataloader, eval_dataloader, optimizer, lr_scheduler = accelerator.prepare( model, train_dataloader, eval_dataloader, optimizer, lr_scheduler ) for epoch in range(args.num_train_epochs): model.train() for step, batch in enumerate(tqdm(train_dataloader)): outputs = model(**batch) loss = outputs.loss accelerator.backward(loss) optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() samples_seen = 0 for step, batch in enumerate(tqdm(eval_dataloader)): with torch.no_grad(): outputs = model(**batch) predictions = outputs.logits.argmax(dim=-1) predictions, references = accelerator.gather((predictions, batch["labels"])) # If we are in a multiprocess environment, the last batch has duplicates if accelerator.num_processes > 1: if step == len(eval_dataloader) - 1: predictions = predictions[: len(eval_dataloader.dataset) - samples_seen] references = references[: len(eval_dataloader.dataset) - samples_seen] else: samples_seen += references.shape[0] metric.add_batch( predictions=predictions, references=references, ) eval_metric = metric.compute() accelerator.print(f"epoch {epoch}:", eval_metric) accelerator.wait_for_everyone() unwrapped_model = accelerator.unwrap_model(model) unwrapped_model.save_pretrained(args.output_dir, state_dict=accelerator.get_state_dict(model)) if accelerator.is_main_process: tokenizer.save_pretrained(args.output_dir) if __name__ == "__main__": main()
0
hf_public_repos/peft/examples
hf_public_repos/peft/examples/lora_dreambooth/requirements.txt
transformers accelerate evaluate tqdm datasets diffusers Pillow torchvision huggingface_hub safetensors wandb
0
hf_public_repos/peft/examples
hf_public_repos/peft/examples/lora_dreambooth/train_dreambooth.py
import argparse import gc import hashlib import itertools import logging import math import os import threading import warnings from pathlib import Path from typing import Optional import datasets import diffusers import numpy as np import psutil import torch import torch.nn.functional as F import torch.utils.checkpoint import transformers from accelerate import Accelerator from accelerate.logging import get_logger from accelerate.utils import set_seed from diffusers import ( AutoencoderKL, DDPMScheduler, DiffusionPipeline, DPMSolverMultistepScheduler, UNet2DConditionModel, ) from diffusers.optimization import get_scheduler from diffusers.utils import check_min_version from diffusers.utils.import_utils import is_xformers_available from huggingface_hub import HfFolder, Repository, whoami from PIL import Image from torch.utils.data import Dataset from torchvision import transforms from tqdm.auto import tqdm from transformers import AutoTokenizer, PretrainedConfig from peft import LoraConfig, get_peft_model # Will error if the minimal version of diffusers is not installed. Remove at your own risks. check_min_version("0.10.0.dev0") logger = get_logger(__name__) UNET_TARGET_MODULES = ["to_q", "to_v", "query", "value"] # , "ff.net.0.proj"] TEXT_ENCODER_TARGET_MODULES = ["q_proj", "v_proj"] def import_model_class_from_model_name_or_path(pretrained_model_name_or_path: str, revision: str): text_encoder_config = PretrainedConfig.from_pretrained( pretrained_model_name_or_path, subfolder="text_encoder", revision=revision, ) model_class = text_encoder_config.architectures[0] if model_class == "CLIPTextModel": from transformers import CLIPTextModel return CLIPTextModel elif model_class == "RobertaSeriesModelWithTransformation": from diffusers.pipelines.alt_diffusion.modeling_roberta_series import RobertaSeriesModelWithTransformation return RobertaSeriesModelWithTransformation else: raise ValueError(f"{model_class} is not supported.") def parse_args(input_args=None): parser = argparse.ArgumentParser(description="Simple example of a training script.") parser.add_argument( "--pretrained_model_name_or_path", type=str, default=None, required=True, help="Path to pretrained model or model identifier from huggingface.co/models.", ) parser.add_argument( "--revision", type=str, default=None, required=False, help="Revision of pretrained model identifier from huggingface.co/models.", ) parser.add_argument( "--tokenizer_name", type=str, default=None, help="Pretrained tokenizer name or path if not the same as model_name", ) parser.add_argument( "--instance_data_dir", type=str, default=None, required=True, help="A folder containing the training data of instance images.", ) parser.add_argument( "--class_data_dir", type=str, default=None, required=False, help="A folder containing the training data of class images.", ) parser.add_argument( "--instance_prompt", type=str, default=None, required=True, help="The prompt with identifier specifying the instance", ) parser.add_argument( "--class_prompt", type=str, default=None, help="The prompt to specify images in the same class as provided instance images.", ) parser.add_argument( "--with_prior_preservation", default=False, action="store_true", help="Flag to add prior preservation loss.", ) parser.add_argument("--prior_loss_weight", type=float, default=1.0, help="The weight of prior preservation loss.") parser.add_argument( "--num_class_images", type=int, default=100, help=( "Minimal class images for prior preservation loss. If there are not enough images already present in" " class_data_dir, additional images will be sampled with class_prompt." ), ) parser.add_argument( "--validation_prompt", type=str, default=None, help="A prompt that is used during validation to verify that the model is learning.", ) parser.add_argument( "--num_validation_images", type=int, default=4, help="Number of images that should be generated during validation with `validation_prompt`.", ) parser.add_argument( "--validation_steps", type=int, default=100, help=( "Run dreambooth validation every X steps. Dreambooth validation consists of running the prompt" " `args.validation_prompt` multiple times: `args.num_validation_images`." ), ) parser.add_argument( "--output_dir", type=str, default="text-inversion-model", help="The output directory where the model predictions and checkpoints will be written.", ) parser.add_argument("--seed", type=int, default=None, help="A seed for reproducible training.") parser.add_argument( "--resolution", type=int, default=512, help=( "The resolution for input images, all the images in the train/validation dataset will be resized to this" " resolution" ), ) parser.add_argument( "--center_crop", action="store_true", help="Whether to center crop images before resizing to resolution" ) parser.add_argument("--train_text_encoder", action="store_true", help="Whether to train the text encoder") # lora args parser.add_argument("--use_lora", action="store_true", help="Whether to use Lora for parameter efficient tuning") parser.add_argument("--lora_r", type=int, default=8, help="Lora rank, only used if use_lora is True") parser.add_argument("--lora_alpha", type=int, default=32, help="Lora alpha, only used if use_lora is True") parser.add_argument("--lora_dropout", type=float, default=0.0, help="Lora dropout, only used if use_lora is True") parser.add_argument( "--lora_bias", type=str, default="none", help="Bias type for Lora. Can be 'none', 'all' or 'lora_only', only used if use_lora is True", ) parser.add_argument( "--lora_text_encoder_r", type=int, default=8, help="Lora rank for text encoder, only used if `use_lora` and `train_text_encoder` are True", ) parser.add_argument( "--lora_text_encoder_alpha", type=int, default=32, help="Lora alpha for text encoder, only used if `use_lora` and `train_text_encoder` are True", ) parser.add_argument( "--lora_text_encoder_dropout", type=float, default=0.0, help="Lora dropout for text encoder, only used if `use_lora` and `train_text_encoder` are True", ) parser.add_argument( "--lora_text_encoder_bias", type=str, default="none", help="Bias type for Lora. Can be 'none', 'all' or 'lora_only', only used if use_lora and `train_text_encoder` are True", ) parser.add_argument( "--train_batch_size", type=int, default=4, help="Batch size (per device) for the training dataloader." ) parser.add_argument( "--sample_batch_size", type=int, default=4, help="Batch size (per device) for sampling images." ) parser.add_argument("--num_train_epochs", type=int, default=1) parser.add_argument( "--max_train_steps", type=int, default=None, help="Total number of training steps to perform. If provided, overrides num_train_epochs.", ) parser.add_argument( "--checkpointing_steps", type=int, default=500, help=( "Save a checkpoint of the training state every X updates. These checkpoints can be used both as final" " checkpoints in case they are better than the last checkpoint, and are also suitable for resuming" " training using `--resume_from_checkpoint`." ), ) parser.add_argument( "--resume_from_checkpoint", type=str, default=None, help=( "Whether training should be resumed from a previous checkpoint. Use a path saved by" ' `--checkpointing_steps`, or `"latest"` to automatically select the last available checkpoint.' ), ) parser.add_argument( "--gradient_accumulation_steps", type=int, default=1, help="Number of updates steps to accumulate before performing a backward/update pass.", ) parser.add_argument( "--gradient_checkpointing", action="store_true", help="Whether or not to use gradient checkpointing to save memory at the expense of slower backward pass.", ) parser.add_argument( "--learning_rate", type=float, default=5e-6, help="Initial learning rate (after the potential warmup period) to use.", ) parser.add_argument( "--scale_lr", action="store_true", default=False, help="Scale the learning rate by the number of GPUs, gradient accumulation steps, and batch size.", ) parser.add_argument( "--lr_scheduler", type=str, default="constant", help=( 'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",' ' "constant", "constant_with_warmup"]' ), ) parser.add_argument( "--lr_warmup_steps", type=int, default=500, help="Number of steps for the warmup in the lr scheduler." ) parser.add_argument( "--lr_num_cycles", type=int, default=1, help="Number of hard resets of the lr in cosine_with_restarts scheduler.", ) parser.add_argument("--lr_power", type=float, default=1.0, help="Power factor of the polynomial scheduler.") parser.add_argument( "--use_8bit_adam", action="store_true", help="Whether or not to use 8-bit Adam from bitsandbytes." ) parser.add_argument("--adam_beta1", type=float, default=0.9, help="The beta1 parameter for the Adam optimizer.") parser.add_argument("--adam_beta2", type=float, default=0.999, help="The beta2 parameter for the Adam optimizer.") parser.add_argument("--adam_weight_decay", type=float, default=1e-2, help="Weight decay to use.") parser.add_argument("--adam_epsilon", type=float, default=1e-08, help="Epsilon value for the Adam optimizer") parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.") parser.add_argument("--push_to_hub", action="store_true", help="Whether or not to push the model to the Hub.") parser.add_argument("--hub_token", type=str, default=None, help="The token to use to push to the Model Hub.") parser.add_argument( "--hub_model_id", type=str, default=None, help="The name of the repository to keep in sync with the local `output_dir`.", ) parser.add_argument( "--logging_dir", type=str, default="logs", help=( "[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to" " *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***." ), ) parser.add_argument( "--allow_tf32", action="store_true", help=( "Whether or not to allow TF32 on Ampere GPUs. Can be used to speed up training. For more information, see" " https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices" ), ) parser.add_argument( "--report_to", type=str, default="tensorboard", help=( 'The integration to report the results and logs to. Supported platforms are `"tensorboard"`' ' (default), `"wandb"` and `"comet_ml"`. Use `"all"` to report to all integrations.' ), ) parser.add_argument( "--wandb_key", type=str, default=None, help=("If report to option is set to wandb, api-key for wandb used for login to wandb "), ) parser.add_argument( "--wandb_project_name", type=str, default=None, help=("If report to option is set to wandb, project name in wandb for log tracking "), ) parser.add_argument( "--mixed_precision", type=str, default=None, choices=["no", "fp16", "bf16"], help=( "Whether to use mixed precision. Choose between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >=" " 1.10.and an Nvidia Ampere GPU. Default to the value of accelerate config of the current system or the" " flag passed with the `accelerate.launch` command. Use this argument to override the accelerate config." ), ) parser.add_argument( "--prior_generation_precision", type=str, default=None, choices=["no", "fp32", "fp16", "bf16"], help=( "Choose prior generation precision between fp32, fp16 and bf16 (bfloat16). Bf16 requires PyTorch >=" " 1.10.and an Nvidia Ampere GPU. Default to fp16 if a GPU is available else fp32." ), ) parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank") parser.add_argument( "--enable_xformers_memory_efficient_attention", action="store_true", help="Whether or not to use xformers." ) if input_args is not None: args = parser.parse_args(input_args) else: args = parser.parse_args() env_local_rank = int(os.environ.get("LOCAL_RANK", -1)) if env_local_rank != -1 and env_local_rank != args.local_rank: args.local_rank = env_local_rank if args.with_prior_preservation: if args.class_data_dir is None: raise ValueError("You must specify a data directory for class images.") if args.class_prompt is None: raise ValueError("You must specify prompt for class images.") else: # logger is not available yet if args.class_data_dir is not None: warnings.warn("You need not use --class_data_dir without --with_prior_preservation.") if args.class_prompt is not None: warnings.warn("You need not use --class_prompt without --with_prior_preservation.") return args # Converting Bytes to Megabytes def b2mb(x): return int(x / 2**20) # This context manager is used to track the peak memory usage of the process class TorchTracemalloc: def __enter__(self): gc.collect() torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() # reset the peak gauge to zero self.begin = torch.cuda.memory_allocated() self.process = psutil.Process() self.cpu_begin = self.cpu_mem_used() self.peak_monitoring = True peak_monitor_thread = threading.Thread(target=self.peak_monitor_func) peak_monitor_thread.daemon = True peak_monitor_thread.start() return self def cpu_mem_used(self): """get resident set size memory for the current process""" return self.process.memory_info().rss def peak_monitor_func(self): self.cpu_peak = -1 while True: self.cpu_peak = max(self.cpu_mem_used(), self.cpu_peak) # can't sleep or will not catch the peak right (this comment is here on purpose) # time.sleep(0.001) # 1msec if not self.peak_monitoring: break def __exit__(self, *exc): self.peak_monitoring = False gc.collect() torch.cuda.empty_cache() self.end = torch.cuda.memory_allocated() self.peak = torch.cuda.max_memory_allocated() self.used = b2mb(self.end - self.begin) self.peaked = b2mb(self.peak - self.begin) self.cpu_end = self.cpu_mem_used() self.cpu_used = b2mb(self.cpu_end - self.cpu_begin) self.cpu_peaked = b2mb(self.cpu_peak - self.cpu_begin) # print(f"delta used/peak {self.used:4d}/{self.peaked:4d}") class DreamBoothDataset(Dataset): """ A dataset to prepare the instance and class images with the prompts for fine-tuning the model. It pre-processes the images and the tokenizes prompts. """ def __init__( self, instance_data_root, instance_prompt, tokenizer, class_data_root=None, class_prompt=None, size=512, center_crop=False, ): self.size = size self.center_crop = center_crop self.tokenizer = tokenizer self.instance_data_root = Path(instance_data_root) if not self.instance_data_root.exists(): raise ValueError("Instance images root doesn't exists.") self.instance_images_path = list(Path(instance_data_root).iterdir()) self.num_instance_images = len(self.instance_images_path) self.instance_prompt = instance_prompt self._length = self.num_instance_images if class_data_root is not None: self.class_data_root = Path(class_data_root) self.class_data_root.mkdir(parents=True, exist_ok=True) self.class_images_path = list(self.class_data_root.iterdir()) self.num_class_images = len(self.class_images_path) self._length = max(self.num_class_images, self.num_instance_images) self.class_prompt = class_prompt else: self.class_data_root = None self.image_transforms = transforms.Compose( [ transforms.Resize(size, interpolation=transforms.InterpolationMode.BILINEAR), transforms.CenterCrop(size) if center_crop else transforms.RandomCrop(size), transforms.ToTensor(), transforms.Normalize([0.5], [0.5]), ] ) def __len__(self): return self._length def __getitem__(self, index): example = {} instance_image = Image.open(self.instance_images_path[index % self.num_instance_images]) if not instance_image.mode == "RGB": instance_image = instance_image.convert("RGB") example["instance_images"] = self.image_transforms(instance_image) example["instance_prompt_ids"] = self.tokenizer( self.instance_prompt, truncation=True, padding="max_length", max_length=self.tokenizer.model_max_length, return_tensors="pt", ).input_ids if self.class_data_root: class_image = Image.open(self.class_images_path[index % self.num_class_images]) if not class_image.mode == "RGB": class_image = class_image.convert("RGB") example["class_images"] = self.image_transforms(class_image) example["class_prompt_ids"] = self.tokenizer( self.class_prompt, truncation=True, padding="max_length", max_length=self.tokenizer.model_max_length, return_tensors="pt", ).input_ids return example def collate_fn(examples, with_prior_preservation=False): input_ids = [example["instance_prompt_ids"] for example in examples] pixel_values = [example["instance_images"] for example in examples] # Concat class and instance examples for prior preservation. # We do this to avoid doing two forward passes. if with_prior_preservation: input_ids += [example["class_prompt_ids"] for example in examples] pixel_values += [example["class_images"] for example in examples] pixel_values = torch.stack(pixel_values) pixel_values = pixel_values.to(memory_format=torch.contiguous_format).float() input_ids = torch.cat(input_ids, dim=0) batch = { "input_ids": input_ids, "pixel_values": pixel_values, } return batch class PromptDataset(Dataset): "A simple dataset to prepare the prompts to generate class images on multiple GPUs." def __init__(self, prompt, num_samples): self.prompt = prompt self.num_samples = num_samples def __len__(self): return self.num_samples def __getitem__(self, index): example = {} example["prompt"] = self.prompt example["index"] = index return example def get_full_repo_name(model_id: str, organization: Optional[str] = None, token: Optional[str] = None): if token is None: token = HfFolder.get_token() if organization is None: username = whoami(token)["name"] return f"{username}/{model_id}" else: return f"{organization}/{model_id}" def main(args): logging_dir = Path(args.output_dir, args.logging_dir) accelerator = Accelerator( gradient_accumulation_steps=args.gradient_accumulation_steps, mixed_precision=args.mixed_precision, log_with=args.report_to, project_dir=logging_dir, ) if args.report_to == "wandb": import wandb wandb.login(key=args.wandb_key) wandb.init(project=args.wandb_project_name) # Currently, it's not possible to do gradient accumulation when training two models with accelerate.accumulate # This will be enabled soon in accelerate. For now, we don't allow gradient accumulation when training two models. # TODO (patil-suraj): Remove this check when gradient accumulation with two models is enabled in accelerate. if args.train_text_encoder and args.gradient_accumulation_steps > 1 and accelerator.num_processes > 1: raise ValueError( "Gradient accumulation is not supported when training the text encoder in distributed training. " "Please set gradient_accumulation_steps to 1. This feature will be supported in the future." ) # Make one log on every process with the configuration for debugging. logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO, ) logger.info(accelerator.state, main_process_only=False) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_warning() diffusers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() diffusers.utils.logging.set_verbosity_error() # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed) # Generate class images if prior preservation is enabled. if args.with_prior_preservation: class_images_dir = Path(args.class_data_dir) if not class_images_dir.exists(): class_images_dir.mkdir(parents=True) cur_class_images = len(list(class_images_dir.iterdir())) if cur_class_images < args.num_class_images: torch_dtype = torch.float16 if accelerator.device.type == "cuda" else torch.float32 if args.prior_generation_precision == "fp32": torch_dtype = torch.float32 elif args.prior_generation_precision == "fp16": torch_dtype = torch.float16 elif args.prior_generation_precision == "bf16": torch_dtype = torch.bfloat16 pipeline = DiffusionPipeline.from_pretrained( args.pretrained_model_name_or_path, torch_dtype=torch_dtype, safety_checker=None, revision=args.revision, ) pipeline.set_progress_bar_config(disable=True) num_new_images = args.num_class_images - cur_class_images logger.info(f"Number of class images to sample: {num_new_images}.") sample_dataset = PromptDataset(args.class_prompt, num_new_images) sample_dataloader = torch.utils.data.DataLoader(sample_dataset, batch_size=args.sample_batch_size) sample_dataloader = accelerator.prepare(sample_dataloader) pipeline.to(accelerator.device) for example in tqdm( sample_dataloader, desc="Generating class images", disable=not accelerator.is_local_main_process ): images = pipeline(example["prompt"]).images for i, image in enumerate(images): hash_image = hashlib.sha1(image.tobytes()).hexdigest() image_filename = class_images_dir / f"{example['index'][i] + cur_class_images}-{hash_image}.jpg" image.save(image_filename) del pipeline if torch.cuda.is_available(): torch.cuda.empty_cache() # Handle the repository creation if accelerator.is_main_process: if args.push_to_hub: if args.hub_model_id is None: repo_name = get_full_repo_name(Path(args.output_dir).name, token=args.hub_token) else: repo_name = args.hub_model_id repo = Repository(args.output_dir, clone_from=repo_name) # noqa: F841 with open(os.path.join(args.output_dir, ".gitignore"), "w+") as gitignore: if "step_*" not in gitignore: gitignore.write("step_*\n") if "epoch_*" not in gitignore: gitignore.write("epoch_*\n") elif args.output_dir is not None: os.makedirs(args.output_dir, exist_ok=True) # Load the tokenizer if args.tokenizer_name: tokenizer = AutoTokenizer.from_pretrained(args.tokenizer_name, revision=args.revision, use_fast=False) elif args.pretrained_model_name_or_path: tokenizer = AutoTokenizer.from_pretrained( args.pretrained_model_name_or_path, subfolder="tokenizer", revision=args.revision, use_fast=False, ) # import correct text encoder class text_encoder_cls = import_model_class_from_model_name_or_path(args.pretrained_model_name_or_path, args.revision) # Load scheduler and models noise_scheduler = DDPMScheduler( beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", num_train_timesteps=1000, ) # DDPMScheduler.from_pretrained(args.pretrained_model_name_or_path, subfolder="scheduler") text_encoder = text_encoder_cls.from_pretrained( args.pretrained_model_name_or_path, subfolder="text_encoder", revision=args.revision ) vae = AutoencoderKL.from_pretrained(args.pretrained_model_name_or_path, subfolder="vae", revision=args.revision) unet = UNet2DConditionModel.from_pretrained( args.pretrained_model_name_or_path, subfolder="unet", revision=args.revision ) if args.use_lora: config = LoraConfig( r=args.lora_r, lora_alpha=args.lora_alpha, target_modules=UNET_TARGET_MODULES, lora_dropout=args.lora_dropout, bias=args.lora_bias, ) unet = get_peft_model(unet, config) unet.print_trainable_parameters() print(unet) vae.requires_grad_(False) if not args.train_text_encoder: text_encoder.requires_grad_(False) elif args.train_text_encoder and args.use_lora: config = LoraConfig( r=args.lora_text_encoder_r, lora_alpha=args.lora_text_encoder_alpha, target_modules=TEXT_ENCODER_TARGET_MODULES, lora_dropout=args.lora_text_encoder_dropout, bias=args.lora_text_encoder_bias, ) text_encoder = get_peft_model(text_encoder, config) text_encoder.print_trainable_parameters() print(text_encoder) if args.enable_xformers_memory_efficient_attention: if is_xformers_available(): unet.enable_xformers_memory_efficient_attention() else: raise ValueError("xformers is not available. Make sure it is installed correctly") if args.gradient_checkpointing: unet.enable_gradient_checkpointing() # below fails when using lora so commenting it out if args.train_text_encoder and not args.use_lora: text_encoder.gradient_checkpointing_enable() # Enable TF32 for faster training on Ampere GPUs, # cf https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices if args.allow_tf32: torch.backends.cuda.matmul.allow_tf32 = True if args.scale_lr: args.learning_rate = ( args.learning_rate * args.gradient_accumulation_steps * args.train_batch_size * accelerator.num_processes ) # Use 8-bit Adam for lower memory usage or to fine-tune the model in 16GB GPUs if args.use_8bit_adam: try: import bitsandbytes as bnb except ImportError: raise ImportError( "To use 8-bit Adam, please install the bitsandbytes library: `pip install bitsandbytes`." ) optimizer_class = bnb.optim.AdamW8bit else: optimizer_class = torch.optim.AdamW # Optimizer creation params_to_optimize = ( itertools.chain(unet.parameters(), text_encoder.parameters()) if args.train_text_encoder else unet.parameters() ) optimizer = optimizer_class( params_to_optimize, lr=args.learning_rate, betas=(args.adam_beta1, args.adam_beta2), weight_decay=args.adam_weight_decay, eps=args.adam_epsilon, ) # Dataset and DataLoaders creation: train_dataset = DreamBoothDataset( instance_data_root=args.instance_data_dir, instance_prompt=args.instance_prompt, class_data_root=args.class_data_dir if args.with_prior_preservation else None, class_prompt=args.class_prompt, tokenizer=tokenizer, size=args.resolution, center_crop=args.center_crop, ) train_dataloader = torch.utils.data.DataLoader( train_dataset, batch_size=args.train_batch_size, shuffle=True, collate_fn=lambda examples: collate_fn(examples, args.with_prior_preservation), num_workers=1, ) # Scheduler and math around the number of training steps. overrode_max_train_steps = False num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps) if args.max_train_steps is None: args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch overrode_max_train_steps = True lr_scheduler = get_scheduler( args.lr_scheduler, optimizer=optimizer, num_warmup_steps=args.lr_warmup_steps * args.gradient_accumulation_steps, num_training_steps=args.max_train_steps * args.gradient_accumulation_steps, num_cycles=args.lr_num_cycles, power=args.lr_power, ) # Prepare everything with our `accelerator`. if args.train_text_encoder: unet, text_encoder, optimizer, train_dataloader, lr_scheduler = accelerator.prepare( unet, text_encoder, optimizer, train_dataloader, lr_scheduler ) else: unet, optimizer, train_dataloader, lr_scheduler = accelerator.prepare( unet, optimizer, train_dataloader, lr_scheduler ) # For mixed precision training we cast the text_encoder and vae weights to half-precision # as these models are only used for inference, keeping weights in full precision is not required. weight_dtype = torch.float32 if accelerator.mixed_precision == "fp16": weight_dtype = torch.float16 elif accelerator.mixed_precision == "bf16": weight_dtype = torch.bfloat16 # Move vae and text_encoder to device and cast to weight_dtype vae.to(accelerator.device, dtype=weight_dtype) if not args.train_text_encoder: text_encoder.to(accelerator.device, dtype=weight_dtype) # We need to recalculate our total training steps as the size of the training dataloader may have changed. num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps) if overrode_max_train_steps: args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch # Afterwards we recalculate our number of training epochs args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch) # We need to initialize the trackers we use, and also store our configuration. # The trackers initializes automatically on the main process. if accelerator.is_main_process: accelerator.init_trackers("dreambooth", config=vars(args)) # Train! total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps logger.info("***** Running training *****") logger.info(f" Num examples = {len(train_dataset)}") logger.info(f" Num batches each epoch = {len(train_dataloader)}") logger.info(f" Num Epochs = {args.num_train_epochs}") logger.info(f" Instantaneous batch size per device = {args.train_batch_size}") logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}") logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}") logger.info(f" Total optimization steps = {args.max_train_steps}") global_step = 0 first_epoch = 0 # Potentially load in the weights and states from a previous save if args.resume_from_checkpoint: if args.resume_from_checkpoint != "latest": path = os.path.basename(args.resume_from_checkpoint) else: # Get the mos recent checkpoint dirs = os.listdir(args.output_dir) dirs = [d for d in dirs if d.startswith("checkpoint")] dirs = sorted(dirs, key=lambda x: int(x.split("-")[1])) path = dirs[-1] accelerator.print(f"Resuming from checkpoint {path}") accelerator.load_state(os.path.join(args.output_dir, path)) global_step = int(path.split("-")[1]) resume_global_step = global_step * args.gradient_accumulation_steps first_epoch = resume_global_step // num_update_steps_per_epoch resume_step = resume_global_step % num_update_steps_per_epoch # Only show the progress bar once on each machine. progress_bar = tqdm(range(global_step, args.max_train_steps), disable=not accelerator.is_local_main_process) progress_bar.set_description("Steps") for epoch in range(first_epoch, args.num_train_epochs): unet.train() if args.train_text_encoder: text_encoder.train() with TorchTracemalloc() as tracemalloc: for step, batch in enumerate(train_dataloader): # Skip steps until we reach the resumed step if args.resume_from_checkpoint and epoch == first_epoch and step < resume_step: if step % args.gradient_accumulation_steps == 0: progress_bar.update(1) if args.report_to == "wandb": accelerator.print(progress_bar) continue with accelerator.accumulate(unet): # Convert images to latent space latents = vae.encode(batch["pixel_values"].to(dtype=weight_dtype)).latent_dist.sample() latents = latents * 0.18215 # Sample noise that we'll add to the latents noise = torch.randn_like(latents) bsz = latents.shape[0] # Sample a random timestep for each image timesteps = torch.randint( 0, noise_scheduler.config.num_train_timesteps, (bsz,), device=latents.device ) timesteps = timesteps.long() # Add noise to the latents according to the noise magnitude at each timestep # (this is the forward diffusion process) noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps) # Get the text embedding for conditioning encoder_hidden_states = text_encoder(batch["input_ids"])[0] # Predict the noise residual model_pred = unet(noisy_latents, timesteps, encoder_hidden_states).sample # Get the target for loss depending on the prediction type if noise_scheduler.config.prediction_type == "epsilon": target = noise elif noise_scheduler.config.prediction_type == "v_prediction": target = noise_scheduler.get_velocity(latents, noise, timesteps) else: raise ValueError(f"Unknown prediction type {noise_scheduler.config.prediction_type}") if args.with_prior_preservation: # Chunk the noise and model_pred into two parts and compute the loss on each part separately. model_pred, model_pred_prior = torch.chunk(model_pred, 2, dim=0) target, target_prior = torch.chunk(target, 2, dim=0) # Compute instance loss loss = F.mse_loss(model_pred.float(), target.float(), reduction="mean") # Compute prior loss prior_loss = F.mse_loss(model_pred_prior.float(), target_prior.float(), reduction="mean") # Add the prior loss to the instance loss. loss = loss + args.prior_loss_weight * prior_loss else: loss = F.mse_loss(model_pred.float(), target.float(), reduction="mean") accelerator.backward(loss) if accelerator.sync_gradients: params_to_clip = ( itertools.chain(unet.parameters(), text_encoder.parameters()) if args.train_text_encoder else unet.parameters() ) accelerator.clip_grad_norm_(params_to_clip, args.max_grad_norm) optimizer.step() lr_scheduler.step() optimizer.zero_grad() # Checks if the accelerator has performed an optimization step behind the scenes if accelerator.sync_gradients: progress_bar.update(1) if args.report_to == "wandb": accelerator.print(progress_bar) global_step += 1 # if global_step % args.checkpointing_steps == 0: # if accelerator.is_main_process: # save_path = os.path.join(args.output_dir, f"checkpoint-{global_step}") # accelerator.save_state(save_path) # logger.info(f"Saved state to {save_path}") logs = {"loss": loss.detach().item(), "lr": lr_scheduler.get_last_lr()[0]} progress_bar.set_postfix(**logs) accelerator.log(logs, step=global_step) if ( args.validation_prompt is not None and (step + num_update_steps_per_epoch * epoch) % args.validation_steps == 0 ): logger.info( f"Running validation... \n Generating {args.num_validation_images} images with prompt:" f" {args.validation_prompt}." ) # create pipeline pipeline = DiffusionPipeline.from_pretrained( args.pretrained_model_name_or_path, safety_checker=None, revision=args.revision, ) # set `keep_fp32_wrapper` to True because we do not want to remove # mixed precision hooks while we are still training pipeline.unet = accelerator.unwrap_model(unet, keep_fp32_wrapper=True) pipeline.text_encoder = accelerator.unwrap_model(text_encoder, keep_fp32_wrapper=True) pipeline.scheduler = DPMSolverMultistepScheduler.from_config(pipeline.scheduler.config) pipeline = pipeline.to(accelerator.device) pipeline.set_progress_bar_config(disable=True) # run inference if args.seed is not None: generator = torch.Generator(device=accelerator.device).manual_seed(args.seed) else: generator = None images = [] for _ in range(args.num_validation_images): image = pipeline(args.validation_prompt, num_inference_steps=25, generator=generator).images[0] images.append(image) for tracker in accelerator.trackers: if tracker.name == "tensorboard": np_images = np.stack([np.asarray(img) for img in images]) tracker.writer.add_images("validation", np_images, epoch, dataformats="NHWC") if tracker.name == "wandb": import wandb tracker.log( { "validation": [ wandb.Image(image, caption=f"{i}: {args.validation_prompt}") for i, image in enumerate(images) ] } ) del pipeline torch.cuda.empty_cache() if global_step >= args.max_train_steps: break # Printing the GPU memory usage details such as allocated memory, peak memory, and total memory usage accelerator.print("GPU Memory before entering the train : {}".format(b2mb(tracemalloc.begin))) accelerator.print("GPU Memory consumed at the end of the train (end-begin): {}".format(tracemalloc.used)) accelerator.print("GPU Peak Memory consumed during the train (max-begin): {}".format(tracemalloc.peaked)) accelerator.print( "GPU Total Peak Memory consumed during the train (max): {}".format( tracemalloc.peaked + b2mb(tracemalloc.begin) ) ) accelerator.print("CPU Memory before entering the train : {}".format(b2mb(tracemalloc.cpu_begin))) accelerator.print("CPU Memory consumed at the end of the train (end-begin): {}".format(tracemalloc.cpu_used)) accelerator.print("CPU Peak Memory consumed during the train (max-begin): {}".format(tracemalloc.cpu_peaked)) accelerator.print( "CPU Total Peak Memory consumed during the train (max): {}".format( tracemalloc.cpu_peaked + b2mb(tracemalloc.cpu_begin) ) ) # Create the pipeline using using the trained modules and save it. accelerator.wait_for_everyone() if accelerator.is_main_process: if args.use_lora: unwarpped_unet = accelerator.unwrap_model(unet) unwarpped_unet.save_pretrained( os.path.join(args.output_dir, "unet"), state_dict=accelerator.get_state_dict(unet) ) if args.train_text_encoder: unwarpped_text_encoder = accelerator.unwrap_model(text_encoder) unwarpped_text_encoder.save_pretrained( os.path.join(args.output_dir, "text_encoder"), state_dict=accelerator.get_state_dict(text_encoder), ) else: pipeline = DiffusionPipeline.from_pretrained( args.pretrained_model_name_or_path, unet=accelerator.unwrap_model(unet), text_encoder=accelerator.unwrap_model(text_encoder), revision=args.revision, ) pipeline.save_pretrained(args.output_dir) if args.push_to_hub: repo.push_to_hub(commit_message="End of training", blocking=False, auto_lfs_prune=True) accelerator.end_training() if __name__ == "__main__": args = parse_args() main(args)
0
hf_public_repos/peft/examples
hf_public_repos/peft/examples/lora_dreambooth/convert_peft_sd_lora_to_kohya_ss.py
import argparse import os from typing import Dict import torch from diffusers import UNet2DConditionModel from safetensors.torch import save_file from transformers import CLIPTextModel from peft import PeftModel, get_peft_model_state_dict # Default kohya_ss LoRA replacement modules # https://github.com/kohya-ss/sd-scripts/blob/c924c47f374ac1b6e33e71f82948eb1853e2243f/networks/lora.py#L664 LORA_PREFIX_UNET = "lora_unet" LORA_PREFIX_TEXT_ENCODER = "lora_te" LORA_ADAPTER_NAME = "default" def get_module_kohya_state_dict( module: PeftModel, prefix: str, dtype: torch.dtype, adapter_name: str = LORA_ADAPTER_NAME ) -> Dict[str, torch.Tensor]: kohya_ss_state_dict = {} for peft_key, weight in get_peft_model_state_dict(module, adapter_name=adapter_name).items(): kohya_key = peft_key.replace("base_model.model", prefix) kohya_key = kohya_key.replace("lora_A", "lora_down") kohya_key = kohya_key.replace("lora_B", "lora_up") kohya_key = kohya_key.replace(".", "_", kohya_key.count(".") - 2) kohya_ss_state_dict[kohya_key] = weight.to(dtype) # Set alpha parameter if "lora_down" in kohya_key: alpha_key = f'{kohya_key.split(".")[0]}.alpha' kohya_ss_state_dict[alpha_key] = torch.tensor(module.peft_config[adapter_name].lora_alpha).to(dtype) return kohya_ss_state_dict if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument( "--sd_checkpoint", default=None, type=str, required=True, help="Path to pretrained model or model identifier from huggingface.co/models.", ) parser.add_argument( "--sd_checkpoint_revision", type=str, default=None, required=False, help="Revision of pretrained model identifier from huggingface.co/models.", ) parser.add_argument("--peft_lora_path", default=None, type=str, required=True, help="Path to peft trained LoRA") parser.add_argument( "--dump_path", default=None, type=str, required=True, help="Path to the output safetensors file for use with webui.", ) parser.add_argument("--half", action="store_true", help="Save weights in half precision.") args = parser.parse_args() # Store kohya_ss state dict kohya_ss_state_dict = {} dtype = torch.float16 if args.half else torch.float32 # Load Text Encoder LoRA model text_encoder_peft_lora_path = os.path.join(args.peft_lora_path, "text_encoder") if os.path.exists(text_encoder_peft_lora_path): text_encoder = CLIPTextModel.from_pretrained( args.sd_checkpoint, subfolder="text_encoder", revision=args.sd_checkpoint_revision ) text_encoder = PeftModel.from_pretrained( text_encoder, text_encoder_peft_lora_path, adapter_name=LORA_ADAPTER_NAME ) kohya_ss_state_dict.update( get_module_kohya_state_dict(text_encoder, LORA_PREFIX_TEXT_ENCODER, dtype, LORA_ADAPTER_NAME) ) # Load UNet LoRA model unet_peft_lora_path = os.path.join(args.peft_lora_path, "unet") if os.path.exists(unet_peft_lora_path): unet = UNet2DConditionModel.from_pretrained( args.sd_checkpoint, subfolder="unet", revision=args.sd_checkpoint_revision ) unet = PeftModel.from_pretrained(unet, unet_peft_lora_path, adapter_name=LORA_ADAPTER_NAME) kohya_ss_state_dict.update(get_module_kohya_state_dict(unet, LORA_PREFIX_UNET, dtype, LORA_ADAPTER_NAME)) # Save state dict save_file( kohya_ss_state_dict, args.dump_path, )
0
hf_public_repos/peft/examples
hf_public_repos/peft/examples/lora_dreambooth/lora_dreambooth_inference.ipynb
import argparse import gc import hashlib import itertools import logging import math import os import threading import warnings from pathlib import Path from typing import Optional import psutil import json import torch import torch.nn.functional as F import torch.utils.checkpoint from torch.utils.data import Dataset import datasets import diffusers import transformers from accelerate import Accelerator from accelerate.logging import get_logger from accelerate.utils import set_seed from diffusers import AutoencoderKL, DDPMScheduler, DiffusionPipeline, UNet2DConditionModel from diffusers import DDPMScheduler, PNDMScheduler, StableDiffusionPipeline from diffusers.pipelines.stable_diffusion import StableDiffusionSafetyChecker from diffusers.optimization import get_scheduler from diffusers.utils import check_min_version from diffusers.utils.import_utils import is_xformers_available from huggingface_hub import HfFolder, Repository, whoami from PIL import Image from torchvision import transforms from tqdm.auto import tqdm from transformers import AutoTokenizer, PretrainedConfig, CLIPFeatureExtractor from peft import PeftModel, LoraConfig, get_peft_model_state_dict, set_peft_model_state_dict # Will error if the minimal version of diffusers is not installed. Remove at your own risks. check_min_version("0.10.0.dev0") logger = get_logger(__name__) MODEL_NAME = "CompVis/stable-diffusion-v1-4" # "stabilityai/stable-diffusion-2-1-base" INSTANCE_PROMPT = "a photo of sks dog" base_path = "/home/sourab/temp/"def get_lora_sd_pipeline( ckpt_dir, base_model_name_or_path=None, dtype=torch.float16, device="cuda", adapter_name="default" ): unet_sub_dir = os.path.join(ckpt_dir, "unet") text_encoder_sub_dir = os.path.join(ckpt_dir, "text_encoder") if os.path.exists(text_encoder_sub_dir) and base_model_name_or_path is None: config = LoraConfig.from_pretrained(text_encoder_sub_dir) base_model_name_or_path = config.base_model_name_or_path if base_model_name_or_path is None: raise ValueError("Please specify the base model name or path") pipe = StableDiffusionPipeline.from_pretrained( base_model_name_or_path, torch_dtype=dtype, requires_safety_checker=False ).to(device) pipe.unet = PeftModel.from_pretrained(pipe.unet, unet_sub_dir, adapter_name=adapter_name) if os.path.exists(text_encoder_sub_dir): pipe.text_encoder = PeftModel.from_pretrained( pipe.text_encoder, text_encoder_sub_dir, adapter_name=adapter_name ) if dtype in (torch.float16, torch.bfloat16): pipe.unet.half() pipe.text_encoder.half() pipe.to(device) return pipe def load_adapter(pipe, ckpt_dir, adapter_name): unet_sub_dir = os.path.join(ckpt_dir, "unet") text_encoder_sub_dir = os.path.join(ckpt_dir, "text_encoder") pipe.unet.load_adapter(unet_sub_dir, adapter_name=adapter_name) if os.path.exists(text_encoder_sub_dir): pipe.text_encoder.load_adapter(text_encoder_sub_dir, adapter_name=adapter_name) def set_adapter(pipe, adapter_name): pipe.unet.set_adapter(adapter_name) if isinstance(pipe.text_encoder, PeftModel): pipe.text_encoder.set_adapter(adapter_name) def merging_lora_with_base(pipe, ckpt_dir, adapter_name="default"): unet_sub_dir = os.path.join(ckpt_dir, "unet") text_encoder_sub_dir = os.path.join(ckpt_dir, "text_encoder") if isinstance(pipe.unet, PeftModel): pipe.unet.set_adapter(adapter_name) else: pipe.unet = PeftModel.from_pretrained(pipe.unet, unet_sub_dir, adapter_name=adapter_name) pipe.unet = pipe.unet.merge_and_unload() if os.path.exists(text_encoder_sub_dir): if isinstance(pipe.text_encoder, PeftModel): pipe.text_encoder.set_adapter(adapter_name) else: pipe.text_encoder = PeftModel.from_pretrained( pipe.text_encoder, text_encoder_sub_dir, adapter_name=adapter_name ) pipe.text_encoder = pipe.text_encoder.merge_and_unload() return pipe def create_weighted_lora_adapter(pipe, adapters, weights, adapter_name="default"): pipe.unet.add_weighted_adapter(adapters, weights, adapter_name) if isinstance(pipe.text_encoder, PeftModel): pipe.text_encoder.add_weighted_adapter(adapters, weights, adapter_name) return pipe%%time pipe = get_lora_sd_pipeline(os.path.join(base_path, "dog_dreambooth_updated"), adapter_name="dog")%%time load_adapter(pipe, os.path.join(base_path, "toy_dreambooth"), adapter_name="toy")pipe = create_weighted_lora_adapter(pipe, ["toy", "dog"], [1.0, 1.05], adapter_name="toy_dog")%%time set_adapter(pipe, adapter_name="dog")prompt = "sks dog playing fetch in the park" negative_prompt = "low quality, blurry, unfinished" image = pipe(prompt, num_inference_steps=50, guidance_scale=7, negative_prompt=negative_prompt).images[0] image%%time set_adapter(pipe, adapter_name="toy")prompt = "narendra modi rendered in the style of <1>" negative_prompt = "low quality, blurry, unfinished" image = pipe(prompt, num_inference_steps=50, guidance_scale=7, negative_prompt=negative_prompt).images[0] imageset_adapter(pipe, adapter_name="dog") prompt = "sks dog in a big red bucket" negative_prompt = "low quality, blurry, unfinished" image = pipe(prompt, num_inference_steps=50, guidance_scale=7, negative_prompt=negative_prompt).images[0] imageset_adapter(pipe, adapter_name="toy") prompt = "superman rendered in the style of <1>, close up potrait" negative_prompt = "low quality, blurry, unfinished" image = pipe(prompt, num_inference_steps=50, guidance_scale=7, negative_prompt=negative_prompt).images[0] imageset_adapter(pipe, adapter_name="toy_dog") prompt = "sks dog rendered in the style of <1>, close up potrait, 4K HD" negative_prompt = "low quality, blurry, unfinished" image = pipe(prompt, num_inference_steps=50, guidance_scale=7, negative_prompt=negative_prompt).images[0] image
0
hf_public_repos/peft/examples
hf_public_repos/peft/examples/lora_dreambooth/colab_notebook.ipynb
%cd "peft-lora-sd-dreambooth" !pip install -r requirements.txt
0
hf_public_repos/peft/examples
hf_public_repos/peft/examples/lora_dreambooth/convert_kohya_ss_sd_lora_to_peft.py
import argparse import os import re from typing import Callable, List, Optional, Union import safetensors import torch import torch.nn as nn from diffusers import UNet2DConditionModel from transformers import CLIPTextModel from peft import LoraConfig, get_peft_model, get_peft_model_state_dict, set_peft_model_state_dict # Default kohya_ss LoRA replacement modules # https://github.com/kohya-ss/sd-scripts/blob/c924c47f374ac1b6e33e71f82948eb1853e2243f/networks/lora.py#L661 UNET_TARGET_REPLACE_MODULE = ["Transformer2DModel", "Attention"] UNET_TARGET_REPLACE_MODULE_CONV2D_3X3 = ["ResnetBlock2D", "Downsample2D", "Upsample2D"] TEXT_ENCODER_TARGET_REPLACE_MODULE = ["CLIPAttention", "CLIPMLP"] LORA_PREFIX_UNET = "lora_unet" LORA_PREFIX_TEXT_ENCODER = "lora_te" def get_modules_names( root_module: nn.Module, target_replace_modules_linear: Optional[List[str]] = [], target_replace_modules_conv2d: Optional[List[str]] = [], ): # Combine replacement modules target_replace_modules = target_replace_modules_linear + target_replace_modules_conv2d # Store result modules_names = set() # https://github.com/kohya-ss/sd-scripts/blob/c924c47f374ac1b6e33e71f82948eb1853e2243f/networks/lora.py#L720 for name, module in root_module.named_modules(): if module.__class__.__name__ in target_replace_modules: if len(name) == 0: continue for child_name, child_module in module.named_modules(): if len(child_name) == 0: continue is_linear = child_module.__class__.__name__ == "Linear" is_conv2d = child_module.__class__.__name__ == "Conv2d" if (is_linear and module.__class__.__name__ in target_replace_modules_linear) or ( is_conv2d and module.__class__.__name__ in target_replace_modules_conv2d ): modules_names.add(f"{name}.{child_name}") return sorted(modules_names) def get_rank_alpha( layer_names: List[str], value_getter: Callable[[str], Union[int, float]], filter_string: str, ) -> Union[int, float]: values = [value_getter(p) for p in filter(lambda x: bool(re.search(filter_string, x)), layer_names)] value = values[0] assert all(v == value for v in values), f"All LoRA ranks and alphas must be same, found: {values}" return value if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("--sd_checkpoint", default=None, type=str, required=True, help="SD checkpoint to use") parser.add_argument( "--kohya_lora_path", default=None, type=str, required=True, help="Path to kohya_ss trained LoRA" ) parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the output model.") parser.add_argument("--half", action="store_true", help="Save weights in half precision.") args = parser.parse_args() # Find text encoder modules to add LoRA to text_encoder = CLIPTextModel.from_pretrained(args.sd_checkpoint, subfolder="text_encoder") text_encoder_modules_names = get_modules_names( text_encoder, target_replace_modules_linear=TEXT_ENCODER_TARGET_REPLACE_MODULE ) # Find unet2d modules to add LoRA to unet = UNet2DConditionModel.from_pretrained(args.sd_checkpoint, subfolder="unet") unet_modules_names = get_modules_names( unet, target_replace_modules_linear=UNET_TARGET_REPLACE_MODULE, target_replace_modules_conv2d=UNET_TARGET_REPLACE_MODULE, ) # Open kohya_ss checkpoint with safetensors.safe_open(args.kohya_lora_path, framework="pt", device="cpu") as f: # Extract information about LoRA structure metadata = f.metadata() if (metadata is not None) and ("ss_network_dim" in metadata) and ("ss_network_alpha" in metadata): # LoRA rank and alpha are in safetensors metadata, just get it lora_r = lora_text_encoder_r = int(metadata["ss_network_dim"]) lora_alpha = lora_text_encoder_alpha = float(metadata["ss_network_alpha"]) else: # LoRA rank and alpha are not present, so infer them lora_r = get_rank_alpha( f.keys(), lambda n: f.get_tensor(n).size(0), f"^{LORA_PREFIX_UNET}\w+\.lora_down\.weight$" ) lora_text_encoder_r = get_rank_alpha( f.keys(), lambda n: f.get_tensor(n).size(0), f"^{LORA_PREFIX_TEXT_ENCODER}\w+\.lora_down\.weight$" ) lora_alpha = get_rank_alpha(f.keys(), lambda n: f.get_tensor(n).item(), f"^{LORA_PREFIX_UNET}\w+\.alpha$") lora_text_encoder_alpha = get_rank_alpha( f.keys(), lambda n: f.get_tensor(n).item(), f"^{LORA_PREFIX_TEXT_ENCODER}\w+\.alpha$" ) # Create LoRA for text encoder text_encoder_config = LoraConfig( r=lora_text_encoder_r, lora_alpha=lora_text_encoder_alpha, target_modules=text_encoder_modules_names, lora_dropout=0.0, bias="none", ) text_encoder = get_peft_model(text_encoder, text_encoder_config) text_encoder_lora_state_dict = {x: None for x in get_peft_model_state_dict(text_encoder).keys()} # Load text encoder values from kohya_ss LoRA for peft_te_key in text_encoder_lora_state_dict.keys(): kohya_ss_te_key = peft_te_key.replace("base_model.model", LORA_PREFIX_TEXT_ENCODER) kohya_ss_te_key = kohya_ss_te_key.replace("lora_A", "lora_down") kohya_ss_te_key = kohya_ss_te_key.replace("lora_B", "lora_up") kohya_ss_te_key = kohya_ss_te_key.replace(".", "_", kohya_ss_te_key.count(".") - 2) text_encoder_lora_state_dict[peft_te_key] = f.get_tensor(kohya_ss_te_key).to(text_encoder.dtype) # Load converted kohya_ss text encoder LoRA back to PEFT set_peft_model_state_dict(text_encoder, text_encoder_lora_state_dict) if args.half: text_encoder.to(torch.float16) # Save text encoder result text_encoder.save_pretrained( os.path.join(args.dump_path, "text_encoder"), ) # Create LoRA for unet2d unet_config = LoraConfig( r=lora_r, lora_alpha=lora_alpha, target_modules=unet_modules_names, lora_dropout=0.0, bias="none" ) unet = get_peft_model(unet, unet_config) unet_lora_state_dict = {x: None for x in get_peft_model_state_dict(unet).keys()} # Load unet2d values from kohya_ss LoRA for peft_unet_key in unet_lora_state_dict.keys(): kohya_ss_unet_key = peft_unet_key.replace("base_model.model", LORA_PREFIX_UNET) kohya_ss_unet_key = kohya_ss_unet_key.replace("lora_A", "lora_down") kohya_ss_unet_key = kohya_ss_unet_key.replace("lora_B", "lora_up") kohya_ss_unet_key = kohya_ss_unet_key.replace(".", "_", kohya_ss_unet_key.count(".") - 2) unet_lora_state_dict[peft_unet_key] = f.get_tensor(kohya_ss_unet_key).to(unet.dtype) # Load converted kohya_ss unet LoRA back to PEFT set_peft_model_state_dict(unet, unet_lora_state_dict) if args.half: unet.to(torch.float16) # Save text encoder result unet.save_pretrained( os.path.join(args.dump_path, "unet"), )
0
hf_public_repos/peft/examples
hf_public_repos/peft/examples/image_classification/README.md
# Fine-tuning for image classification using LoRA and 🤗 PEFT [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/peft/blob/main/examples/image_classification/image_classification_peft_lora.ipynb) We provide a notebook (`image_classification_peft_lora.ipynb`) where we learn how to use [LoRA](https://arxiv.org/abs/2106.09685) from 🤗 PEFT to fine-tune an image classification model by ONLY using **0.7%** of the original trainable parameters of the model. LoRA adds low-rank "update matrices" to certain blocks in the underlying model (in this case the attention blocks) and ONLY trains those matrices during fine-tuning. During inference, these update matrices are _merged_ with the original model parameters. For more details, check out the [original LoRA paper](https://arxiv.org/abs/2106.09685).
0
hf_public_repos/peft/examples
hf_public_repos/peft/examples/image_classification/image_classification_peft_lora.ipynb
from huggingface_hub import notebook_login notebook_login()import transformers import accelerate import peftprint(f"Transformers version: {transformers.__version__}") print(f"Accelerate version: {accelerate.__version__}") print(f"PEFT version: {peft.__version__}")model_checkpoint = "google/vit-base-patch16-224-in21k" # pre-trained model from which to fine-tunefrom datasets import load_dataset dataset = load_dataset("food101", split="train[:5000]")labels = dataset.features["label"].names label2id, id2label = dict(), dict() for i, label in enumerate(labels): label2id[label] = i id2label[i] = label id2label[2]from transformers import AutoImageProcessor image_processor = AutoImageProcessor.from_pretrained(model_checkpoint) image_processorfrom torchvision.transforms import ( CenterCrop, Compose, Normalize, RandomHorizontalFlip, RandomResizedCrop, Resize, ToTensor, ) normalize = Normalize(mean=image_processor.image_mean, std=image_processor.image_std) train_transforms = Compose( [ RandomResizedCrop(image_processor.size["height"]), RandomHorizontalFlip(), ToTensor(), normalize, ] ) val_transforms = Compose( [ Resize(image_processor.size["height"]), CenterCrop(image_processor.size["height"]), ToTensor(), normalize, ] ) def preprocess_train(example_batch): """Apply train_transforms across a batch.""" example_batch["pixel_values"] = [train_transforms(image.convert("RGB")) for image in example_batch["image"]] return example_batch def preprocess_val(example_batch): """Apply val_transforms across a batch.""" example_batch["pixel_values"] = [val_transforms(image.convert("RGB")) for image in example_batch["image"]] return example_batch# split up training into training + validation splits = dataset.train_test_split(test_size=0.1) train_ds = splits["train"] val_ds = splits["test"]train_ds.set_transform(preprocess_train) val_ds.set_transform(preprocess_val)def print_trainable_parameters(model): """ Prints the number of trainable parameters in the model. """ trainable_params = 0 all_param = 0 for _, param in model.named_parameters(): all_param += param.numel() if param.requires_grad: trainable_params += param.numel() print( f"trainable params: {trainable_params} || all params: {all_param} || trainable%: {100 * trainable_params / all_param:.2f}" )from transformers import AutoModelForImageClassification, TrainingArguments, Trainer model = AutoModelForImageClassification.from_pretrained( model_checkpoint, label2id=label2id, id2label=id2label, ignore_mismatched_sizes=True, # provide this in case you're planning to fine-tune an already fine-tuned checkpoint ) print_trainable_parameters(model)from peft import LoraConfig, get_peft_model config = LoraConfig( r=16, lora_alpha=16, target_modules=["query", "value"], lora_dropout=0.1, bias="none", modules_to_save=["classifier"], ) lora_model = get_peft_model(model, config) print_trainable_parameters(lora_model)from transformers import TrainingArguments, Trainer model_name = model_checkpoint.split("/")[-1] batch_size = 128 args = TrainingArguments( f"{model_name}-finetuned-lora-food101", remove_unused_columns=False, evaluation_strategy="epoch", save_strategy="epoch", learning_rate=5e-3, per_device_train_batch_size=batch_size, gradient_accumulation_steps=4, per_device_eval_batch_size=batch_size, fp16=True, num_train_epochs=5, logging_steps=10, load_best_model_at_end=True, metric_for_best_model="accuracy", push_to_hub=True, label_names=["labels"], )import numpy as np import evaluate metric = evaluate.load("accuracy") # the compute_metrics function takes a Named Tuple as input: # predictions, which are the logits of the model as Numpy arrays, # and label_ids, which are the ground-truth labels as Numpy arrays. def compute_metrics(eval_pred): """Computes accuracy on a batch of predictions""" predictions = np.argmax(eval_pred.predictions, axis=1) return metric.compute(predictions=predictions, references=eval_pred.label_ids)import torch def collate_fn(examples): pixel_values = torch.stack([example["pixel_values"] for example in examples]) labels = torch.tensor([example["label"] for example in examples]) return {"pixel_values": pixel_values, "labels": labels}trainer = Trainer( model, args, train_dataset=train_ds, eval_dataset=val_ds, tokenizer=image_processor, compute_metrics=compute_metrics, data_collator=collate_fn, ) train_results = trainer.train()trainer.evaluate(val_ds)repo_name = f"sayakpaul/{model_name}-finetuned-lora-food101" lora_model.push_to_hub(repo_name)from peft import PeftConfig, PeftModel config = PeftConfig.from_pretrained(repo_name) model = model = AutoModelForImageClassification.from_pretrained( config.base_model_name_or_path, label2id=label2id, id2label=id2label, ignore_mismatched_sizes=True, # provide this in case you're planning to fine-tune an already fine-tuned checkpoint ) # Load the Lora model inference_model = PeftModel.from_pretrained(model, repo_name)from PIL import Image import requests url = "https://huggingface.co/datasets/sayakpaul/sample-datasets/resolve/main/beignets.jpeg" image = Image.open(requests.get(url, stream=True).raw) imageimage_processor = AutoImageProcessor.from_pretrained(repo_name)# prepare image for the model encoding = image_processor(image.convert("RGB"), return_tensors="pt") print(encoding.pixel_values.shape)import torch # forward pass with torch.no_grad(): outputs = inference_model(**encoding) logits = outputs.logits predicted_class_idx = logits.argmax(-1).item() print("Predicted class:", inference_model.config.id2label[predicted_class_idx])
0
hf_public_repos/peft
hf_public_repos/peft/tests/test_decoder_models.py
# coding=utf-8 # Copyright 2023-present the HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import torch from parameterized import parameterized from transformers import AutoModelForCausalLM from .testing_common import PeftCommonTester, PeftTestConfigManager PEFT_DECODER_MODELS_TO_TEST = [ "hf-internal-testing/tiny-random-OPTForCausalLM", "hf-internal-testing/tiny-random-GPTNeoXForCausalLM", "hf-internal-testing/tiny-random-GPT2LMHeadModel", "hf-internal-testing/tiny-random-BloomForCausalLM", "hf-internal-testing/tiny-random-gpt_neo", "hf-internal-testing/tiny-random-GPTJForCausalLM", "hf-internal-testing/tiny-random-GPTBigCodeForCausalLM", "HuggingFaceM4/tiny-random-LlamaForCausalLM", ] FULL_GRID = { "model_ids": PEFT_DECODER_MODELS_TO_TEST, "task_type": "CAUSAL_LM", } def skip_non_pt_mqa(test_list): r""" Skip tests that are prefix tuning for MQA models (not supported yet) """ return [test for test in test_list if not ("prefix_tuning" in test[0] and "GPTBigCodeForCausalLM" in test[0])] class PeftDecoderModelTester(unittest.TestCase, PeftCommonTester): r""" Test if the PeftModel behaves as expected. This includes: - test if the model has the expected methods We use parametrized.expand for debugging purposes to test each model individually. """ transformers_class = AutoModelForCausalLM def prepare_inputs_for_testing(self): input_ids = torch.tensor([[1, 1, 1], [1, 2, 1]]).to(self.torch_device) attention_mask = torch.tensor([[1, 1, 1], [1, 0, 1]]).to(self.torch_device) input_dict = { "input_ids": input_ids, "attention_mask": attention_mask, } return input_dict @parameterized.expand(PeftTestConfigManager.get_grid_parameters(FULL_GRID)) def test_attributes_parametrized(self, test_name, model_id, config_cls, config_kwargs): self._test_model_attr(model_id, config_cls, config_kwargs) @parameterized.expand(PeftTestConfigManager.get_grid_parameters(FULL_GRID)) def test_adapter_name(self, test_name, model_id, config_cls, config_kwargs): self._test_adapter_name(model_id, config_cls, config_kwargs) @parameterized.expand(PeftTestConfigManager.get_grid_parameters(FULL_GRID)) def test_prepare_for_training_parametrized(self, test_name, model_id, config_cls, config_kwargs): self._test_prepare_for_training(model_id, config_cls, config_kwargs) @parameterized.expand(PeftTestConfigManager.get_grid_parameters(FULL_GRID)) def test_save_pretrained(self, test_name, model_id, config_cls, config_kwargs): self._test_save_pretrained(model_id, config_cls, config_kwargs) @parameterized.expand(PeftTestConfigManager.get_grid_parameters(FULL_GRID)) def test_save_pretrained_selected_adapters(self, test_name, model_id, config_cls, config_kwargs): self._test_save_pretrained_selected_adapters(model_id, config_cls, config_kwargs) @parameterized.expand(PeftTestConfigManager.get_grid_parameters(FULL_GRID)) def test_from_pretrained_config_construction(self, test_name, model_id, config_cls, config_kwargs): self._test_from_pretrained_config_construction(model_id, config_cls, config_kwargs) @parameterized.expand( PeftTestConfigManager.get_grid_parameters( { "model_ids": PEFT_DECODER_MODELS_TO_TEST, "lora_kwargs": {"init_lora_weights": [False]}, "ia3_kwargs": {"init_ia3_weights": [False]}, "task_type": "CAUSAL_LM", }, ) ) def test_merge_layers(self, test_name, model_id, config_cls, config_kwargs): self._test_merge_layers(model_id, config_cls, config_kwargs) @parameterized.expand(PeftTestConfigManager.get_grid_parameters(FULL_GRID, filter_params_func=skip_non_pt_mqa)) def test_generate(self, test_name, model_id, config_cls, config_kwargs): self._test_generate(model_id, config_cls, config_kwargs) @parameterized.expand(PeftTestConfigManager.get_grid_parameters(FULL_GRID, filter_params_func=skip_non_pt_mqa)) def test_generate_half_prec(self, test_name, model_id, config_cls, config_kwargs): self._test_generate_half_prec(model_id, config_cls, config_kwargs) @parameterized.expand(PeftTestConfigManager.get_grid_parameters(FULL_GRID, filter_params_func=skip_non_pt_mqa)) def test_prefix_tuning_half_prec_conversion(self, test_name, model_id, config_cls, config_kwargs): self._test_prefix_tuning_half_prec_conversion(model_id, config_cls, config_kwargs) @parameterized.expand(PeftTestConfigManager.get_grid_parameters(FULL_GRID)) def test_training_decoders(self, test_name, model_id, config_cls, config_kwargs): self._test_training(model_id, config_cls, config_kwargs) @parameterized.expand(PeftTestConfigManager.get_grid_parameters(FULL_GRID)) def test_training_decoders_layer_indexing(self, test_name, model_id, config_cls, config_kwargs): self._test_training_layer_indexing(model_id, config_cls, config_kwargs) @parameterized.expand(PeftTestConfigManager.get_grid_parameters(FULL_GRID)) def test_training_decoders_gradient_checkpointing(self, test_name, model_id, config_cls, config_kwargs): self._test_training_gradient_checkpointing(model_id, config_cls, config_kwargs) @parameterized.expand(PeftTestConfigManager.get_grid_parameters(FULL_GRID)) def test_inference_safetensors(self, test_name, model_id, config_cls, config_kwargs): self._test_inference_safetensors(model_id, config_cls, config_kwargs) @parameterized.expand(PeftTestConfigManager.get_grid_parameters(FULL_GRID)) def test_peft_model_device_map(self, test_name, model_id, config_cls, config_kwargs): self._test_peft_model_device_map(model_id, config_cls, config_kwargs) @parameterized.expand(PeftTestConfigManager.get_grid_parameters(FULL_GRID)) def test_delete_adapter(self, test_name, model_id, config_cls, config_kwargs): self._test_delete_adapter(model_id, config_cls, config_kwargs) @parameterized.expand( PeftTestConfigManager.get_grid_parameters( { "model_ids": PEFT_DECODER_MODELS_TO_TEST, "lora_kwargs": {"init_lora_weights": [False]}, "task_type": "CAUSAL_LM", }, ) ) def test_unload_adapter(self, test_name, model_id, config_cls, config_kwargs): self._test_unload_adapter(model_id, config_cls, config_kwargs) @parameterized.expand( PeftTestConfigManager.get_grid_parameters( { "model_ids": PEFT_DECODER_MODELS_TO_TEST, "lora_kwargs": {"init_lora_weights": [False]}, "task_type": "CAUSAL_LM", }, ) ) def test_weighted_combination_of_adapters(self, test_name, model_id, config_cls, config_kwargs): self._test_weighted_combination_of_adapters(model_id, config_cls, config_kwargs) @parameterized.expand(PeftTestConfigManager.get_grid_parameters(FULL_GRID, filter_params_func=skip_non_pt_mqa)) def test_training_prompt_learning_tasks(self, test_name, model_id, config_cls, config_kwargs): self._test_training_prompt_learning_tasks(model_id, config_cls, config_kwargs) @parameterized.expand( PeftTestConfigManager.get_grid_parameters( { "model_ids": PEFT_DECODER_MODELS_TO_TEST, "lora_kwargs": {"init_lora_weights": [False]}, "ia3_kwargs": {"init_ia3_weights": [False]}, "task_type": "CAUSAL_LM", }, filter_params_func=skip_non_pt_mqa, ) ) def test_disable_adapter(self, test_name, model_id, config_cls, config_kwargs): self._test_disable_adapter(model_id, config_cls, config_kwargs)
0
hf_public_repos/peft
hf_public_repos/peft/tests/test_adaption_prompt.py
# coding=utf-8 # Copyright 2023-present the HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import importlib import os import tempfile import unittest from unittest import TestCase import torch from torch.testing import assert_close from peft.mapping import get_peft_model from peft.peft_model import PeftModel from peft.tuners.adaption_prompt import AdaptionPromptConfig from peft.utils.other import prepare_model_for_int8_training from peft.utils.save_and_load import get_peft_model_state_dict from tests.testing_common import PeftCommonTester def is_llama_available() -> bool: """Check if Llama is available in the transformers library (it's not in earlier versions).""" try: return importlib.util.find_spec("transformers.models.llama.modeling_llama") is not None except ModuleNotFoundError: return False if is_llama_available(): # We guard the import statement so that our unit tests will pass in CI environments # that don't have a transformers package with Llama. from transformers import LlamaConfig, LlamaForCausalLM, LlamaModel class AdaptionPromptTester(TestCase, PeftCommonTester): """ Tests for the AdaptionPrompt model. Some of these tests were adapted from `test_peft_model.py` (which has been refactored since), but since we haven't checked in the test checkpoints for Llama into `hf-internal-testing`, we separate them for now. """ def setUp(self): """Check that llama is available in transformers package before running each test.""" if not is_llama_available(): self.skipTest("Llama not available in transformers. Skipping test.") @staticmethod def _create_test_llama_config(): """Create a test config for a small Llama model for testing.""" return LlamaConfig( vocab_size=16, hidden_size=8, intermediate_size=8, num_hidden_layers=8, num_attention_heads=4, use_cache=False, ) def test_attributes(self) -> None: model = LlamaModel(self._create_test_llama_config()) config = AdaptionPromptConfig(adapter_layers=1, adapter_len=4) model = get_peft_model(model, config) self.assertTrue(hasattr(model, "save_pretrained")) self.assertTrue(hasattr(model, "from_pretrained")) self.assertTrue(hasattr(model, "push_to_hub")) def test_prepare_for_training(self) -> None: model = LlamaForCausalLM(self._create_test_llama_config()) config = AdaptionPromptConfig(adapter_layers=1, adapter_len=4, task_type="CAUSAL_LM") model = get_peft_model(model, config) model = model.to(self.torch_device) dummy_input = torch.LongTensor([[1, 1, 1]]).to(self.torch_device) dummy_output = model.get_input_embeddings()(dummy_input) self.assertTrue(not dummy_output.requires_grad) def test_prepare_for_int8_training(self) -> None: model = LlamaForCausalLM(self._create_test_llama_config()) model = prepare_model_for_int8_training(model) model = model.to(self.torch_device) for param in model.parameters(): self.assertTrue(not param.requires_grad) config = AdaptionPromptConfig(adapter_layers=1, adapter_len=4, task_type="CAUSAL_LM") model = get_peft_model(model, config) # For backward compatibility if hasattr(model, "enable_input_require_grads"): model.enable_input_require_grads() else: def make_inputs_require_grad(module, input, output): output.requires_grad_(True) model.get_input_embeddings().register_forward_hook(make_inputs_require_grad) dummy_input = torch.LongTensor([[1, 1, 1]]).to(self.torch_device) dummy_output = model.get_input_embeddings()(dummy_input) self.assertTrue(dummy_output.requires_grad) def test_save_pretrained(self) -> None: seed = 420 torch.manual_seed(seed) model = LlamaForCausalLM(self._create_test_llama_config()) config = AdaptionPromptConfig(adapter_layers=2, adapter_len=4, task_type="CAUSAL_LM") model = get_peft_model(model, config) model = model.to(self.torch_device) with tempfile.TemporaryDirectory() as tmp_dirname: model.save_pretrained(tmp_dirname) torch.manual_seed(seed) model_from_pretrained = LlamaForCausalLM(self._create_test_llama_config()) model_from_pretrained = PeftModel.from_pretrained(model_from_pretrained, tmp_dirname) # check if the state dicts are equal state_dict = get_peft_model_state_dict(model) state_dict_from_pretrained = get_peft_model_state_dict(model_from_pretrained) # check if same keys self.assertEqual(state_dict.keys(), state_dict_from_pretrained.keys()) # Check that the number of saved parameters is 4 -- 2 layers of (tokens and gate). self.assertEqual(len(list(state_dict.keys())), 4) # check if tensors equal for key in state_dict.keys(): self.assertTrue( torch.allclose( state_dict[key].to(self.torch_device), state_dict_from_pretrained[key].to(self.torch_device) ) ) # check if `adapter_model.bin` is present self.assertTrue(os.path.exists(os.path.join(tmp_dirname, "adapter_model.bin"))) # check if `adapter_config.json` is present self.assertTrue(os.path.exists(os.path.join(tmp_dirname, "adapter_config.json"))) # check if `pytorch_model.bin` is not present self.assertFalse(os.path.exists(os.path.join(tmp_dirname, "pytorch_model.bin"))) # check if `config.json` is not present self.assertFalse(os.path.exists(os.path.join(tmp_dirname, "config.json"))) def test_save_pretrained_selected_adapters(self) -> None: seed = 420 torch.manual_seed(seed) model = LlamaForCausalLM(self._create_test_llama_config()) config = AdaptionPromptConfig(adapter_layers=2, adapter_len=4, task_type="CAUSAL_LM") model = get_peft_model(model, config) model = model.to(self.torch_device) new_adapter_config = AdaptionPromptConfig(adapter_layers=2, adapter_len=4, task_type="CAUSAL_LM") model.add_adapter("new_adapter", new_adapter_config) with tempfile.TemporaryDirectory() as tmp_dirname: model.save_pretrained(tmp_dirname) torch.manual_seed(seed) model_from_pretrained = LlamaForCausalLM(self._create_test_llama_config()) model_from_pretrained = PeftModel.from_pretrained(model_from_pretrained, tmp_dirname) model_from_pretrained.load_adapter(tmp_dirname, "new_adapter") # check if the state dicts are equal state_dict = get_peft_model_state_dict(model) state_dict_from_pretrained = get_peft_model_state_dict(model_from_pretrained) # check if same keys self.assertEqual(state_dict.keys(), state_dict_from_pretrained.keys()) # Check that the number of saved parameters is 4 -- 2 layers of (tokens and gate). self.assertEqual(len(list(state_dict.keys())), 4) # check if tensors equal for key in state_dict.keys(): self.assertTrue( torch.allclose( state_dict[key].to(self.torch_device), state_dict_from_pretrained[key].to(self.torch_device) ) ) # check if `adapter_model.bin` is present self.assertTrue(os.path.exists(os.path.join(tmp_dirname, "adapter_model.bin"))) # check if `adapter_config.json` is present self.assertTrue(os.path.exists(os.path.join(tmp_dirname, "adapter_config.json"))) # check if `pytorch_model.bin` is not present self.assertFalse(os.path.exists(os.path.join(tmp_dirname, "pytorch_model.bin"))) # check if `config.json` is not present self.assertFalse(os.path.exists(os.path.join(tmp_dirname, "config.json"))) def test_generate(self) -> None: model = LlamaForCausalLM(self._create_test_llama_config()) config = AdaptionPromptConfig(adapter_layers=2, adapter_len=4, task_type="CAUSAL_LM") model = get_peft_model(model, config) model = model.to(self.torch_device) input_ids = torch.LongTensor([[1, 1, 1], [2, 1, 2]]).to(self.torch_device) attention_mask = torch.LongTensor([[1, 1, 1], [1, 0, 1]]).to(self.torch_device) # check if `generate` works _ = model.generate(input_ids=input_ids, attention_mask=attention_mask) with self.assertRaises(TypeError): # check if `generate` raises an error if no positional arguments are passed _ = model.generate(input_ids, attention_mask=attention_mask) def test_sequence_adapter_ops(self) -> None: """Test sequence of adapter operations.""" # Test input data. input_ids = torch.LongTensor([[1, 1, 1], [2, 1, 2]]).to(self.torch_device) target_ids = torch.LongTensor([[0, 0, 0], [0, 0, 0]]).to(self.torch_device) attention_mask = torch.LongTensor([[1, 1, 1], [1, 0, 1]]).to(self.torch_device) # Create original llama model. original = LlamaForCausalLM(self._create_test_llama_config()) original = original.to(self.torch_device) original_before = original(input_ids=input_ids, attention_mask=attention_mask) # Get AdaptionPrompt model. adapted = get_peft_model( original, AdaptionPromptConfig(adapter_layers=2, adapter_len=4, task_type="CAUSAL_LM") ) adapted = adapted.to(self.torch_device) default_before = adapted(input_ids=input_ids, attention_mask=attention_mask, labels=target_ids) # Test zero-init: The logits should be exactly the same. assert_close(original_before.logits, default_before.logits, rtol=0, atol=0) # Single fine-tuning step on "default" adapter. optimizer = torch.optim.SGD(adapted.parameters(), lr=1) optimizer.zero_grad() default_before.loss.backward() optimizer.step() # Test that the output changed. default_after = adapted(input_ids=input_ids, attention_mask=attention_mask, labels=target_ids) self.assertFalse(torch.allclose(default_before.logits, default_after.logits)) with adapted.disable_adapter(): # Test that the output is the same as the original ouput. default_disabled = adapted(input_ids=input_ids, attention_mask=attention_mask, labels=target_ids) assert_close(original_before.logits, default_disabled.logits, rtol=0, atol=0) # Add new adapter 1. adapted.add_adapter("adapter 1", AdaptionPromptConfig(adapter_layers=3, adapter_len=8, task_type="CAUSAL_LM")) # Test zero-init adapter_1_before = adapted(input_ids=input_ids, attention_mask=attention_mask, labels=target_ids) assert_close(original_before.logits, adapter_1_before.logits, rtol=0, atol=0) # Single fine-tuning step on adapter 1. optimizer = torch.optim.SGD(adapted.parameters(), lr=1) optimizer.zero_grad() adapter_1_before.loss.backward() optimizer.step() # Test that adapter 1 output changed. adapter_1_after = adapted(input_ids=input_ids, attention_mask=attention_mask, labels=target_ids) self.assertFalse(torch.allclose(adapter_1_before.logits, adapter_1_after.logits)) self.assertFalse(torch.allclose(original_before.logits, adapter_1_after.logits)) self.assertFalse(torch.allclose(default_after.logits, adapter_1_after.logits)) with adapted.disable_adapter(): # Test that the output is the same as the original output. adapter_1_disabled = adapted(input_ids=input_ids, attention_mask=attention_mask, labels=target_ids) assert_close(original_before.logits, adapter_1_disabled.logits, rtol=0, atol=0) # Set adapter back to default. adapted.set_adapter("default") # Test that the output is the same as the default output after training. default_after_set = adapted(input_ids=input_ids, attention_mask=attention_mask, labels=target_ids) assert_close(default_after.logits, default_after_set.logits, rtol=0, atol=0) self.assertFalse(torch.allclose(original_before.logits, default_after_set.logits)) self.assertFalse(torch.allclose(adapter_1_after.logits, default_after_set.logits)) def test_add_and_set_while_disabled(self): """Test that adding and setting adapters while disabled works as intended.""" # Test input data. input_ids = torch.LongTensor([[1, 1, 1], [2, 1, 2]]).to(self.torch_device) target_ids = torch.LongTensor([[0, 0, 0], [0, 0, 0]]).to(self.torch_device) attention_mask = torch.LongTensor([[1, 1, 1], [1, 0, 1]]).to(self.torch_device) # Create original llama model. original = LlamaForCausalLM(self._create_test_llama_config()) original = original.to(self.torch_device) original_before = original(input_ids=input_ids, attention_mask=attention_mask) # Get AdaptionPrompt model. adapted = get_peft_model( original, AdaptionPromptConfig(adapter_layers=2, adapter_len=4, task_type="CAUSAL_LM") ) adapted = adapted.to(self.torch_device) with adapted.disable_adapter(): adapted.add_adapter( "adapter 1", AdaptionPromptConfig(adapter_layers=3, adapter_len=8, task_type="CAUSAL_LM") ) # Test that the output is the same as the original output. adapter_1_before = adapted(input_ids=input_ids, attention_mask=attention_mask, labels=target_ids) assert_close(original_before.logits, adapter_1_before.logits, rtol=0, atol=0) # Single fine-tuning step on adapter 1. optimizer = torch.optim.SGD(adapted.parameters(), lr=1) optimizer.zero_grad() adapter_1_before.loss.backward() optimizer.step() # Test that adapter 1 output changed. adapter_1_after = adapted(input_ids=input_ids, attention_mask=attention_mask, labels=target_ids) self.assertFalse(torch.allclose(original_before.logits, adapter_1_after.logits)) adapted.set_adapter("default") with adapted.disable_adapter(): adapted.set_adapter("adapter 1") # Test that adapter 1 is active again. adapter_1_after_set = adapted(input_ids=input_ids, attention_mask=attention_mask, labels=target_ids) assert_close(adapter_1_after.logits, adapter_1_after_set.logits, rtol=0, atol=0) def test_use_cache(self) -> None: """Test that AdaptionPrompt works when Llama config use_cache=True.""" input_ids = torch.LongTensor([[1, 1, 1], [2, 1, 2]]).to(self.torch_device) original = LlamaForCausalLM( LlamaConfig( vocab_size=16, hidden_size=8, intermediate_size=8, num_hidden_layers=8, num_attention_heads=4, use_cache=False, ) ) adapted = get_peft_model( original, AdaptionPromptConfig(adapter_layers=2, adapter_len=4, task_type="CAUSAL_LM") ) adapted = adapted.to(self.torch_device) expected = adapted.generate(input_ids=input_ids, max_length=8) # Set use_cache = True and generate output again. adapted.base_model.config.use_cache = True actual = adapted.generate(input_ids=input_ids, max_length=8) assert_close(expected, actual, rtol=0, atol=0) def test_bf16_inference(self) -> None: """Test that AdaptionPrompt works when Llama using a half-precision model.""" input_ids = torch.LongTensor([[1, 1, 1], [2, 1, 2]]).to(self.torch_device) original = LlamaForCausalLM.from_pretrained( "trl-internal-testing/tiny-random-LlamaForCausalLM", torch_dtype=torch.bfloat16 ) adapted = get_peft_model( original, AdaptionPromptConfig(adapter_layers=2, adapter_len=4, task_type="CAUSAL_LM") ) adapted = adapted.to(self.torch_device) _ = adapted.generate(input_ids=input_ids) @unittest.expectedFailure def test_disable_adapter(self): llama_config = self._create_test_llama_config() model = LlamaForCausalLM(llama_config).to(self.torch_device) dummy_input = torch.LongTensor([[1, 1, 1]]).to(self.torch_device) output_before = model(dummy_input).logits config = AdaptionPromptConfig(adapter_layers=1, adapter_len=4, task_type="CAUSAL_LM") model = get_peft_model(model, config).to(self.torch_device) output_peft = model(dummy_input).logits # TODO currently this fails because scores are zeroed out: # https://github.com/huggingface/peft/blob/062d95a09eb5d1de35c0e5e23d4387daba99e2db/src/peft/tuners/adaption_prompt.py#L303 # This is fine for users but makes it difficult to test if anything happens. In the future, we will have a clean # way to control initialization. Until then, this test is expected to fail. self.assertFalse(torch.allclose(output_before, output_peft)) with model.disable_adapter(): output_peft_disabled = model(dummy_input).logits self.assertTrue(torch.allclose(output_before, output_peft_disabled))
0
hf_public_repos/peft
hf_public_repos/peft/tests/test_encoder_decoder_models.py
# coding=utf-8 # Copyright 2023-present the HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import torch from parameterized import parameterized from transformers import AutoModelForSeq2SeqLM from .testing_common import PeftCommonTester, PeftTestConfigManager PEFT_ENCODER_DECODER_MODELS_TO_TEST = [ "ybelkada/tiny-random-T5ForConditionalGeneration-calibrated", "hf-internal-testing/tiny-random-BartForConditionalGeneration", ] FULL_GRID = {"model_ids": PEFT_ENCODER_DECODER_MODELS_TO_TEST, "task_type": "SEQ_2_SEQ_LM"} class PeftEncoderDecoderModelTester(unittest.TestCase, PeftCommonTester): r""" Test if the PeftModel behaves as expected. This includes: - test if the model has the expected methods We use parametrized.expand for debugging purposes to test each model individually. """ transformers_class = AutoModelForSeq2SeqLM def prepare_inputs_for_testing(self): input_ids = torch.tensor([[1, 1, 1], [1, 2, 1]]).to(self.torch_device) decoder_input_ids = torch.tensor([[1, 1, 1], [1, 2, 1]]).to(self.torch_device) attention_mask = torch.tensor([[1, 1, 1], [1, 0, 1]]).to(self.torch_device) input_dict = { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, } return input_dict @parameterized.expand(PeftTestConfigManager.get_grid_parameters(FULL_GRID)) def test_attributes_parametrized(self, test_name, model_id, config_cls, config_kwargs): self._test_model_attr(model_id, config_cls, config_kwargs) @parameterized.expand(PeftTestConfigManager.get_grid_parameters(FULL_GRID)) def test_adapter_name(self, test_name, model_id, config_cls, config_kwargs): self._test_adapter_name(model_id, config_cls, config_kwargs) @parameterized.expand(PeftTestConfigManager.get_grid_parameters(FULL_GRID)) def test_prepare_for_training_parametrized(self, test_name, model_id, config_cls, config_kwargs): self._test_prepare_for_training(model_id, config_cls, config_kwargs) @parameterized.expand(PeftTestConfigManager.get_grid_parameters(FULL_GRID)) def test_save_pretrained(self, test_name, model_id, config_cls, config_kwargs): self._test_save_pretrained(model_id, config_cls, config_kwargs) @parameterized.expand(PeftTestConfigManager.get_grid_parameters(FULL_GRID)) def test_save_pretrained_selected_adapters(self, test_name, model_id, config_cls, config_kwargs): self._test_save_pretrained_selected_adapters(model_id, config_cls, config_kwargs) @parameterized.expand(PeftTestConfigManager.get_grid_parameters(FULL_GRID)) def test_from_pretrained_config_construction(self, test_name, model_id, config_cls, config_kwargs): self._test_from_pretrained_config_construction(model_id, config_cls, config_kwargs) @parameterized.expand( PeftTestConfigManager.get_grid_parameters( { "model_ids": PEFT_ENCODER_DECODER_MODELS_TO_TEST, "lora_kwargs": {"init_lora_weights": [False]}, "ia3_kwargs": {"init_ia3_weights": [False]}, "task_type": "SEQ_2_SEQ_LM", }, ) ) def test_merge_layers(self, test_name, model_id, config_cls, config_kwargs): self._test_merge_layers(model_id, config_cls, config_kwargs) # skip non lora models - generate does not work for prefix tuning, prompt tuning @parameterized.expand(PeftTestConfigManager.get_grid_parameters(FULL_GRID)) def test_generate(self, test_name, model_id, config_cls, config_kwargs): self._test_generate(model_id, config_cls, config_kwargs) @parameterized.expand(PeftTestConfigManager.get_grid_parameters(FULL_GRID)) def test_generate_half_prec(self, test_name, model_id, config_cls, config_kwargs): self._test_generate_half_prec(model_id, config_cls, config_kwargs) @parameterized.expand(PeftTestConfigManager.get_grid_parameters(FULL_GRID)) def test_prefix_tuning_half_prec_conversion(self, test_name, model_id, config_cls, config_kwargs): self._test_prefix_tuning_half_prec_conversion(model_id, config_cls, config_kwargs) @parameterized.expand(PeftTestConfigManager.get_grid_parameters(FULL_GRID)) def test_training_encoder_decoders(self, test_name, model_id, config_cls, config_kwargs): self._test_training(model_id, config_cls, config_kwargs) @parameterized.expand(PeftTestConfigManager.get_grid_parameters(FULL_GRID)) def test_training_encoder_decoders_layer_indexing(self, test_name, model_id, config_cls, config_kwargs): self._test_training_layer_indexing(model_id, config_cls, config_kwargs) @parameterized.expand(PeftTestConfigManager.get_grid_parameters(FULL_GRID)) def test_training_encoder_decoders_gradient_checkpointing(self, test_name, model_id, config_cls, config_kwargs): self._test_training_gradient_checkpointing(model_id, config_cls, config_kwargs) @parameterized.expand(PeftTestConfigManager.get_grid_parameters(FULL_GRID)) def test_inference_safetensors(self, test_name, model_id, config_cls, config_kwargs): self._test_inference_safetensors(model_id, config_cls, config_kwargs) @parameterized.expand(PeftTestConfigManager.get_grid_parameters(FULL_GRID)) def test_peft_model_device_map(self, test_name, model_id, config_cls, config_kwargs): self._test_peft_model_device_map(model_id, config_cls, config_kwargs) @parameterized.expand(PeftTestConfigManager.get_grid_parameters(FULL_GRID)) def test_delete_adapter(self, test_name, model_id, config_cls, config_kwargs): self._test_delete_adapter(model_id, config_cls, config_kwargs) @parameterized.expand( PeftTestConfigManager.get_grid_parameters( { "model_ids": PEFT_ENCODER_DECODER_MODELS_TO_TEST, "lora_kwargs": {"init_lora_weights": [False]}, "ia3_kwargs": {"init_ia3_weights": [False]}, "task_type": "SEQ_2_SEQ_LM", }, ) ) def test_unload_adapter(self, test_name, model_id, config_cls, config_kwargs): self._test_unload_adapter(model_id, config_cls, config_kwargs) @parameterized.expand( PeftTestConfigManager.get_grid_parameters( { "model_ids": PEFT_ENCODER_DECODER_MODELS_TO_TEST, "lora_kwargs": {"init_lora_weights": [False]}, "task_type": "SEQ_2_SEQ_LM", }, ) ) def test_weighted_combination_of_adapters(self, test_name, model_id, config_cls, config_kwargs): self._test_weighted_combination_of_adapters(model_id, config_cls, config_kwargs) @parameterized.expand(PeftTestConfigManager.get_grid_parameters(FULL_GRID)) def test_training_prompt_learning_tasks(self, test_name, model_id, config_cls, config_kwargs): self._test_training_prompt_learning_tasks(model_id, config_cls, config_kwargs) @parameterized.expand( PeftTestConfigManager.get_grid_parameters( { "model_ids": PEFT_ENCODER_DECODER_MODELS_TO_TEST, "lora_kwargs": {"init_lora_weights": [False]}, "ia3_kwargs": {"init_ia3_weights": [False]}, "task_type": "SEQ_2_SEQ_LM", }, ) ) def test_disable_adapter(self, test_name, model_id, config_cls, config_kwargs): self._test_disable_adapter(model_id, config_cls, config_kwargs)
0
hf_public_repos/peft
hf_public_repos/peft/tests/test_hub_features.py
# coding=utf-8 # Copyright 2023-present the HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest from transformers import AutoModelForCausalLM from peft import PeftConfig, PeftModel PEFT_MODELS_TO_TEST = [("peft-internal-testing/test-lora-subfolder", "test")] class PeftHubFeaturesTester(unittest.TestCase): def test_subfolder(self): r""" Test if subfolder argument works as expected """ for model_id, subfolder in PEFT_MODELS_TO_TEST: config = PeftConfig.from_pretrained(model_id, subfolder=subfolder) model = AutoModelForCausalLM.from_pretrained( config.base_model_name_or_path, ) model = PeftModel.from_pretrained(model, model_id, subfolder=subfolder) self.assertTrue(isinstance(model, PeftModel))
0
hf_public_repos/peft
hf_public_repos/peft/tests/test_common_gpu.py
# coding=utf-8 # Copyright 2023-present the HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import gc import unittest import pytest import torch from transformers import ( AutoModelForCausalLM, AutoModelForSeq2SeqLM, AutoTokenizer, BitsAndBytesConfig, LlamaForCausalLM, WhisperForConditionalGeneration, ) from peft import AdaptionPromptConfig, LoraConfig, PeftModel, get_peft_model, prepare_model_for_kbit_training from peft.import_utils import is_bnb_4bit_available, is_bnb_available from .testing_utils import require_bitsandbytes, require_torch_gpu, require_torch_multi_gpu if is_bnb_available(): from peft.tuners.lora import Linear8bitLt if is_bnb_4bit_available(): from peft.tuners.lora import Linear4bit @require_torch_gpu class PeftGPUCommonTests(unittest.TestCase): r""" A common tester to run common operations that are performed on GPU such as generation, loading in 8bit, etc. """ def setUp(self): self.seq2seq_model_id = "google/flan-t5-base" self.causal_lm_model_id = "facebook/opt-350m" self.audio_model_id = "openai/whisper-large" self.device = torch.device("cuda:0") def tearDown(self): r""" Efficient mechanism to free GPU memory after each test. Based on https://github.com/huggingface/transformers/issues/21094 """ gc.collect() torch.cuda.empty_cache() gc.collect() @require_bitsandbytes @pytest.mark.multi_gpu_tests @pytest.mark.single_gpu_tests def test_lora_bnb_8bit_quantization(self): r""" Test that tests if the 8bit quantization using LoRA works as expected """ whisper_8bit = WhisperForConditionalGeneration.from_pretrained( self.audio_model_id, device_map="auto", load_in_8bit=True, ) opt_8bit = AutoModelForCausalLM.from_pretrained( self.causal_lm_model_id, device_map="auto", load_in_8bit=True, ) flan_8bit = AutoModelForSeq2SeqLM.from_pretrained( self.seq2seq_model_id, device_map="auto", load_in_8bit=True, ) flan_lora_config = LoraConfig( r=16, lora_alpha=32, target_modules=["q", "v"], lora_dropout=0.05, bias="none", task_type="SEQ_2_SEQ_LM" ) opt_lora_config = LoraConfig( r=16, lora_alpha=32, target_modules=["q_proj", "v_proj"], lora_dropout=0.05, bias="none", task_type="CAUSAL_LM", ) config = LoraConfig(r=32, lora_alpha=64, target_modules=["q_proj", "v_proj"], lora_dropout=0.05, bias="none") flan_8bit = get_peft_model(flan_8bit, flan_lora_config) self.assertTrue(isinstance(flan_8bit.base_model.model.encoder.block[0].layer[0].SelfAttention.q, Linear8bitLt)) opt_8bit = get_peft_model(opt_8bit, opt_lora_config) self.assertTrue(isinstance(opt_8bit.base_model.model.model.decoder.layers[0].self_attn.v_proj, Linear8bitLt)) whisper_8bit = get_peft_model(whisper_8bit, config) self.assertTrue( isinstance(whisper_8bit.base_model.model.model.decoder.layers[0].self_attn.v_proj, Linear8bitLt) ) @require_bitsandbytes @pytest.mark.multi_gpu_tests @pytest.mark.single_gpu_tests def test_lora_bnb_4bit_quantization_from_pretrained_safetensors(self): r""" Test that tests if the 4bit quantization using LoRA works as expected with safetensors weights. """ model_id = "facebook/opt-350m" peft_model_id = "ybelkada/test-st-lora" model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto", load_in_4bit=True) model = PeftModel.from_pretrained(model, peft_model_id) _ = model.generate(input_ids=torch.LongTensor([[0, 2, 3, 1]]).to(0)) @require_bitsandbytes @pytest.mark.multi_gpu_tests @pytest.mark.single_gpu_tests def test_lora_bnb_4bit_quantization(self): r""" Test that tests if the 4bit quantization using LoRA works as expected """ whisper_4bit = WhisperForConditionalGeneration.from_pretrained( self.audio_model_id, device_map="auto", load_in_4bit=True, ) opt_4bit = AutoModelForCausalLM.from_pretrained( self.causal_lm_model_id, device_map="auto", load_in_4bit=True, ) flan_4bit = AutoModelForSeq2SeqLM.from_pretrained( self.seq2seq_model_id, device_map="auto", load_in_4bit=True, ) flan_lora_config = LoraConfig( r=16, lora_alpha=32, target_modules=["q", "v"], lora_dropout=0.05, bias="none", task_type="SEQ_2_SEQ_LM" ) opt_lora_config = LoraConfig( r=16, lora_alpha=32, target_modules=["q_proj", "v_proj"], lora_dropout=0.05, bias="none", task_type="CAUSAL_LM", ) config = LoraConfig(r=32, lora_alpha=64, target_modules=["q_proj", "v_proj"], lora_dropout=0.05, bias="none") flan_4bit = get_peft_model(flan_4bit, flan_lora_config) self.assertTrue(isinstance(flan_4bit.base_model.model.encoder.block[0].layer[0].SelfAttention.q, Linear4bit)) opt_4bit = get_peft_model(opt_4bit, opt_lora_config) self.assertTrue(isinstance(opt_4bit.base_model.model.model.decoder.layers[0].self_attn.v_proj, Linear4bit)) whisper_4bit = get_peft_model(whisper_4bit, config) self.assertTrue(isinstance(whisper_4bit.base_model.model.model.decoder.layers[0].self_attn.v_proj, Linear4bit)) @pytest.mark.multi_gpu_tests @require_torch_multi_gpu def test_lora_causal_lm_mutli_gpu_inference(self): r""" Test if LORA can be used for inference on multiple GPUs. """ lora_config = LoraConfig( r=16, lora_alpha=32, target_modules=["q_proj", "v_proj"], lora_dropout=0.05, bias="none", task_type="CAUSAL_LM", ) model = AutoModelForCausalLM.from_pretrained(self.causal_lm_model_id, device_map="balanced") tokenizer = AutoTokenizer.from_pretrained(self.seq2seq_model_id) self.assertEqual(set(model.hf_device_map.values()), {0, 1}) model = get_peft_model(model, lora_config) self.assertTrue(isinstance(model, PeftModel)) dummy_input = "This is a dummy input:" input_ids = tokenizer(dummy_input, return_tensors="pt").input_ids.to(self.device) # this should work without any problem _ = model.generate(input_ids=input_ids) @require_torch_multi_gpu @pytest.mark.multi_gpu_tests @require_bitsandbytes def test_lora_seq2seq_lm_mutli_gpu_inference(self): r""" Test if LORA can be used for inference on multiple GPUs - 8bit version. """ lora_config = LoraConfig( r=16, lora_alpha=32, target_modules=["q", "v"], lora_dropout=0.05, bias="none", task_type="SEQ_2_SEQ_LM" ) model = AutoModelForSeq2SeqLM.from_pretrained(self.seq2seq_model_id, device_map="balanced", load_in_8bit=True) tokenizer = AutoTokenizer.from_pretrained(self.seq2seq_model_id) self.assertEqual(set(model.hf_device_map.values()), {0, 1}) model = get_peft_model(model, lora_config) self.assertTrue(isinstance(model, PeftModel)) self.assertTrue(isinstance(model.base_model.model.encoder.block[0].layer[0].SelfAttention.q, Linear8bitLt)) dummy_input = "This is a dummy input:" input_ids = tokenizer(dummy_input, return_tensors="pt").input_ids.to(self.device) # this should work without any problem _ = model.generate(input_ids=input_ids) @require_torch_multi_gpu @pytest.mark.multi_gpu_tests @require_bitsandbytes def test_adaption_prompt_8bit(self): model = LlamaForCausalLM.from_pretrained( "HuggingFaceM4/tiny-random-LlamaForCausalLM", load_in_8bit=True, torch_dtype=torch.float16, device_map="auto", ) model = prepare_model_for_kbit_training(model) config = AdaptionPromptConfig( adapter_len=10, adapter_layers=2, task_type="CAUSAL_LM", ) model = get_peft_model(model, config) random_input = torch.LongTensor([[1, 0, 1, 0, 1, 0]]).to(0) _ = model(random_input) @require_torch_multi_gpu @pytest.mark.multi_gpu_tests @require_bitsandbytes def test_adaption_prompt_4bit(self): model = LlamaForCausalLM.from_pretrained( "HuggingFaceM4/tiny-random-LlamaForCausalLM", load_in_4bit=True, torch_dtype=torch.float16, device_map="auto", ) model = prepare_model_for_kbit_training(model) config = AdaptionPromptConfig( adapter_len=10, adapter_layers=2, task_type="CAUSAL_LM", ) model = get_peft_model(model, config) random_input = torch.LongTensor([[1, 0, 1, 0, 1, 0]]).to(0) _ = model(random_input) @require_torch_gpu @pytest.mark.single_gpu_tests @require_bitsandbytes def test_print_4bit_expected(self): EXPECTED_TRAINABLE_PARAMS = 294912 EXPECTED_ALL_PARAMS = 125534208 model = AutoModelForCausalLM.from_pretrained( "facebook/opt-125m", load_in_4bit=True, ) config = LoraConfig( r=8, ) model = get_peft_model(model, config) trainable_params, all_params = model.get_nb_trainable_parameters() self.assertEqual(trainable_params, EXPECTED_TRAINABLE_PARAMS) self.assertEqual(all_params, EXPECTED_ALL_PARAMS) # test with double quant bnb_config = BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_use_double_quant=True, ) model = AutoModelForCausalLM.from_pretrained( "facebook/opt-125m", quantization_config=bnb_config, ) config = LoraConfig( r=8, ) model = get_peft_model(model, config) trainable_params, all_params = model.get_nb_trainable_parameters() self.assertEqual(trainable_params, EXPECTED_TRAINABLE_PARAMS) self.assertEqual(all_params, EXPECTED_ALL_PARAMS)
0
hf_public_repos/peft
hf_public_repos/peft/tests/test_gpu_examples.py
# coding=utf-8 # Copyright 2023-present the HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import gc import os import tempfile import unittest from dataclasses import dataclass from typing import Any, Dict, List, Union import pytest import torch from datasets import Audio, DatasetDict, load_dataset from transformers import ( AutoModelForCausalLM, AutoModelForSeq2SeqLM, AutoTokenizer, DataCollatorForLanguageModeling, Seq2SeqTrainer, Seq2SeqTrainingArguments, Trainer, TrainingArguments, WhisperFeatureExtractor, WhisperForConditionalGeneration, WhisperProcessor, WhisperTokenizer, ) from peft import ( AdaLoraConfig, LoraConfig, get_peft_model, prepare_model_for_int8_training, prepare_model_for_kbit_training, ) from .testing_utils import require_bitsandbytes, require_torch_gpu, require_torch_multi_gpu # A full testing suite that tests all the necessary features on GPU. The tests should # rely on the example scripts to test the features. @dataclass class DataCollatorSpeechSeq2SeqWithPadding: r""" Directly copied from: https://github.com/huggingface/peft/blob/main/examples/int8_training/peft_bnb_whisper_large_v2_training.ipynb """ processor: Any def __call__(self, features: List[Dict[str, Union[List[int], torch.Tensor]]]) -> Dict[str, torch.Tensor]: # split inputs and labels since they have to be of different lengths and need different padding methods # first treat the audio inputs by simply returning torch tensors input_features = [{"input_features": feature["input_features"]} for feature in features] batch = self.processor.feature_extractor.pad(input_features, return_tensors="pt") # get the tokenized label sequences label_features = [{"input_ids": feature["labels"]} for feature in features] # pad the labels to max length labels_batch = self.processor.tokenizer.pad(label_features, return_tensors="pt") # replace padding with -100 to ignore loss correctly labels = labels_batch["input_ids"].masked_fill(labels_batch.attention_mask.ne(1), -100) # if bos token is appended in previous tokenization step, # cut bos token here as it's append later anyways if (labels[:, 0] == self.processor.tokenizer.bos_token_id).all().cpu().item(): labels = labels[:, 1:] batch["labels"] = labels return batch @require_torch_gpu @require_bitsandbytes class PeftBnbGPUExampleTests(unittest.TestCase): r""" A single GPU int8 + fp4 test suite, this will test if training fits correctly on a single GPU device (1x NVIDIA T4 16GB) using bitsandbytes. The tests are the following: - Seq2Seq model training based on: https://github.com/huggingface/peft/blob/main/examples/int8_training/Finetune_flan_t5_large_bnb_peft.ipynb - Causal LM model training based on: https://github.com/huggingface/peft/blob/main/examples/int8_training/Finetune_opt_bnb_peft.ipynb - Audio model training based on: https://github.com/huggingface/peft/blob/main/examples/int8_training/peft_bnb_whisper_large_v2_training.ipynb """ def setUp(self): self.seq2seq_model_id = "google/flan-t5-base" self.causal_lm_model_id = "facebook/opt-6.7b" self.audio_model_id = "openai/whisper-large" def tearDown(self): r""" Efficient mechanism to free GPU memory after each test. Based on https://github.com/huggingface/transformers/issues/21094 """ gc.collect() torch.cuda.empty_cache() gc.collect() @pytest.mark.single_gpu_tests def test_causal_lm_training(self): r""" Test the CausalLM training on a single GPU device. This test is a converted version of https://github.com/huggingface/peft/blob/main/examples/int8_training/Finetune_opt_bnb_peft.ipynb where we train `opt-6.7b` on `english_quotes` dataset in few steps. The test would simply fail if the adapters are not set correctly. """ with tempfile.TemporaryDirectory() as tmp_dir: model = AutoModelForCausalLM.from_pretrained( self.causal_lm_model_id, load_in_8bit=True, device_map="auto", ) tokenizer = AutoTokenizer.from_pretrained(self.causal_lm_model_id) model = prepare_model_for_int8_training(model) config = LoraConfig( r=16, lora_alpha=32, target_modules=["q_proj", "v_proj"], lora_dropout=0.05, bias="none", task_type="CAUSAL_LM", ) model = get_peft_model(model, config) data = load_dataset("ybelkada/english_quotes_copy") data = data.map(lambda samples: tokenizer(samples["quote"]), batched=True) trainer = Trainer( model=model, train_dataset=data["train"], args=TrainingArguments( per_device_train_batch_size=4, gradient_accumulation_steps=4, warmup_steps=2, max_steps=3, learning_rate=2e-4, fp16=True, logging_steps=1, output_dir=tmp_dir, ), data_collator=DataCollatorForLanguageModeling(tokenizer, mlm=False), ) model.config.use_cache = False trainer.train() model.cpu().save_pretrained(tmp_dir) self.assertTrue("adapter_config.json" in os.listdir(tmp_dir)) self.assertTrue("adapter_model.bin" in os.listdir(tmp_dir)) # assert loss is not None self.assertIsNotNone(trainer.state.log_history[-1]["train_loss"]) @pytest.mark.single_gpu_tests @require_torch_gpu def test_4bit_adalora_causalLM(self): r""" Tests the 4bit training with adalora """ model_id = "facebook/opt-350m" model = AutoModelForCausalLM.from_pretrained(model_id, load_in_4bit=True) tokenizer = AutoTokenizer.from_pretrained(model_id) model.gradient_checkpointing_enable() model = prepare_model_for_kbit_training(model) peft_config = AdaLoraConfig( init_r=6, target_r=4, tinit=50, tfinal=100, deltaT=5, beta1=0.3, beta2=0.3, orth_reg_weight=0.2, lora_alpha=32, lora_dropout=0.05, bias="none", task_type="CAUSAL_LM", ) model = get_peft_model(model, peft_config) data = load_dataset("ybelkada/english_quotes_copy") data = data.map(lambda samples: tokenizer(samples["quote"]), batched=True) with tempfile.TemporaryDirectory() as tmp_dir: trainer = Trainer( model=model, train_dataset=data["train"], args=TrainingArguments( per_device_train_batch_size=4, gradient_accumulation_steps=4, warmup_steps=2, max_steps=3, learning_rate=2e-4, fp16=True, logging_steps=1, output_dir=tmp_dir, ), data_collator=DataCollatorForLanguageModeling(tokenizer, mlm=False), ) model.config.use_cache = False trainer.train() model.cpu().save_pretrained(tmp_dir) self.assertTrue("adapter_config.json" in os.listdir(tmp_dir)) self.assertTrue("adapter_model.bin" in os.listdir(tmp_dir)) # assert loss is not None self.assertIsNotNone(trainer.state.log_history[-1]["train_loss"]) @pytest.mark.multi_gpu_tests @require_torch_multi_gpu def test_causal_lm_training_mutli_gpu(self): r""" Test the CausalLM training on a multi-GPU device. This test is a converted version of https://github.com/huggingface/peft/blob/main/examples/int8_training/Finetune_opt_bnb_peft.ipynb where we train `opt-6.7b` on `english_quotes` dataset in few steps. The test would simply fail if the adapters are not set correctly. """ with tempfile.TemporaryDirectory() as tmp_dir: model = AutoModelForCausalLM.from_pretrained( self.causal_lm_model_id, load_in_8bit=True, device_map="auto", ) self.assertEqual(set(model.hf_device_map.values()), {0, 1}) tokenizer = AutoTokenizer.from_pretrained(self.causal_lm_model_id) model = prepare_model_for_int8_training(model) setattr(model, "model_parallel", True) setattr(model, "is_parallelizable", True) config = LoraConfig( r=16, lora_alpha=32, target_modules=["q_proj", "v_proj"], lora_dropout=0.05, bias="none", task_type="CAUSAL_LM", ) model = get_peft_model(model, config) data = load_dataset("Abirate/english_quotes") data = data.map(lambda samples: tokenizer(samples["quote"]), batched=True) trainer = Trainer( model=model, train_dataset=data["train"], args=TrainingArguments( per_device_train_batch_size=4, gradient_accumulation_steps=4, warmup_steps=2, max_steps=3, learning_rate=2e-4, fp16=True, logging_steps=1, output_dir=tmp_dir, ), data_collator=DataCollatorForLanguageModeling(tokenizer, mlm=False), ) model.config.use_cache = False trainer.train() model.cpu().save_pretrained(tmp_dir) self.assertTrue("adapter_config.json" in os.listdir(tmp_dir)) self.assertTrue("adapter_model.bin" in os.listdir(tmp_dir)) # assert loss is not None self.assertIsNotNone(trainer.state.log_history[-1]["train_loss"]) @pytest.mark.single_gpu_tests def test_seq2seq_lm_training_single_gpu(self): r""" Test the Seq2SeqLM training on a single GPU device. This test is a converted version of https://github.com/huggingface/peft/blob/main/examples/int8_training/Finetune_opt_bnb_peft.ipynb where we train `flan-large` on `english_quotes` dataset in few steps. The test would simply fail if the adapters are not set correctly. """ with tempfile.TemporaryDirectory() as tmp_dir: model = AutoModelForSeq2SeqLM.from_pretrained( self.seq2seq_model_id, load_in_8bit=True, device_map={"": 0}, ) self.assertEqual(set(model.hf_device_map.values()), {0}) tokenizer = AutoTokenizer.from_pretrained(self.seq2seq_model_id) model = prepare_model_for_int8_training(model) config = LoraConfig( r=16, lora_alpha=32, target_modules=["q", "v"], lora_dropout=0.05, bias="none", task_type="CAUSAL_LM", ) model = get_peft_model(model, config) data = load_dataset("ybelkada/english_quotes_copy") data = data.map(lambda samples: tokenizer(samples["quote"]), batched=True) trainer = Trainer( model=model, train_dataset=data["train"], args=TrainingArguments( per_device_train_batch_size=4, gradient_accumulation_steps=4, warmup_steps=2, max_steps=3, learning_rate=2e-4, fp16=True, logging_steps=1, output_dir=tmp_dir, ), data_collator=DataCollatorForLanguageModeling(tokenizer, mlm=False), ) model.config.use_cache = False trainer.train() model.cpu().save_pretrained(tmp_dir) self.assertTrue("adapter_config.json" in os.listdir(tmp_dir)) self.assertTrue("adapter_model.bin" in os.listdir(tmp_dir)) # assert loss is not None self.assertIsNotNone(trainer.state.log_history[-1]["train_loss"]) @pytest.mark.multi_gpu_tests @require_torch_multi_gpu def test_seq2seq_lm_training_mutli_gpu(self): r""" Test the Seq2SeqLM training on a multi-GPU device. This test is a converted version of https://github.com/huggingface/peft/blob/main/examples/int8_training/Finetune_opt_bnb_peft.ipynb where we train `flan-large` on `english_quotes` dataset in few steps. The test would simply fail if the adapters are not set correctly. """ with tempfile.TemporaryDirectory() as tmp_dir: model = AutoModelForSeq2SeqLM.from_pretrained( self.seq2seq_model_id, load_in_8bit=True, device_map="balanced", ) self.assertEqual(set(model.hf_device_map.values()), {0, 1}) tokenizer = AutoTokenizer.from_pretrained(self.seq2seq_model_id) model = prepare_model_for_int8_training(model) config = LoraConfig( r=16, lora_alpha=32, target_modules=["q", "v"], lora_dropout=0.05, bias="none", task_type="CAUSAL_LM", ) model = get_peft_model(model, config) data = load_dataset("ybelkada/english_quotes_copy") data = data.map(lambda samples: tokenizer(samples["quote"]), batched=True) trainer = Trainer( model=model, train_dataset=data["train"], args=TrainingArguments( per_device_train_batch_size=4, gradient_accumulation_steps=4, warmup_steps=2, max_steps=3, learning_rate=2e-4, fp16=True, logging_steps=1, output_dir="outputs", ), data_collator=DataCollatorForLanguageModeling(tokenizer, mlm=False), ) model.config.use_cache = False trainer.train() model.cpu().save_pretrained(tmp_dir) self.assertTrue("adapter_config.json" in os.listdir(tmp_dir)) self.assertTrue("adapter_model.bin" in os.listdir(tmp_dir)) # assert loss is not None self.assertIsNotNone(trainer.state.log_history[-1]["train_loss"]) @pytest.mark.single_gpu_tests def test_audio_model_training(self): r""" Test the audio model training on a single GPU device. This test is a converted version of https://github.com/huggingface/peft/blob/main/examples/int8_training/peft_bnb_whisper_large_v2_training.ipynb """ with tempfile.TemporaryDirectory() as tmp_dir: dataset_name = "ybelkada/common_voice_mr_11_0_copy" task = "transcribe" language = "Marathi" common_voice = DatasetDict() common_voice["train"] = load_dataset(dataset_name, split="train+validation") common_voice = common_voice.remove_columns( ["accent", "age", "client_id", "down_votes", "gender", "locale", "path", "segment", "up_votes"] ) feature_extractor = WhisperFeatureExtractor.from_pretrained(self.audio_model_id) tokenizer = WhisperTokenizer.from_pretrained(self.audio_model_id, language=language, task=task) processor = WhisperProcessor.from_pretrained(self.audio_model_id, language=language, task=task) common_voice = common_voice.cast_column("audio", Audio(sampling_rate=16000)) def prepare_dataset(batch): # load and resample audio data from 48 to 16kHz audio = batch["audio"] # compute log-Mel input features from input audio array batch["input_features"] = feature_extractor( audio["array"], sampling_rate=audio["sampling_rate"] ).input_features[0] # encode target text to label ids batch["labels"] = tokenizer(batch["sentence"]).input_ids return batch common_voice = common_voice.map( prepare_dataset, remove_columns=common_voice.column_names["train"], num_proc=2 ) data_collator = DataCollatorSpeechSeq2SeqWithPadding(processor=processor) model = WhisperForConditionalGeneration.from_pretrained( self.audio_model_id, load_in_8bit=True, device_map="auto" ) model.config.forced_decoder_ids = None model.config.suppress_tokens = [] model = prepare_model_for_int8_training(model) # as Whisper model uses Conv layer in encoder, checkpointing disables grad computation # to avoid this, make the inputs trainable def make_inputs_require_grad(module, input, output): output.requires_grad_(True) model.model.encoder.conv1.register_forward_hook(make_inputs_require_grad) config = LoraConfig( r=32, lora_alpha=64, target_modules=["q_proj", "v_proj"], lora_dropout=0.05, bias="none" ) model = get_peft_model(model, config) model.print_trainable_parameters() training_args = Seq2SeqTrainingArguments( output_dir=tmp_dir, # change to a repo name of your choice per_device_train_batch_size=8, gradient_accumulation_steps=1, # increase by 2x for every 2x decrease in batch size learning_rate=1e-3, warmup_steps=2, max_steps=3, fp16=True, per_device_eval_batch_size=8, generation_max_length=128, logging_steps=25, remove_unused_columns=False, # required as the PeftModel forward doesn't have the signature of the wrapped model's forward label_names=["labels"], # same reason as above ) trainer = Seq2SeqTrainer( args=training_args, model=model, train_dataset=common_voice["train"], data_collator=data_collator, tokenizer=processor.feature_extractor, ) trainer.train() model.cpu().save_pretrained(tmp_dir) self.assertTrue("adapter_config.json" in os.listdir(tmp_dir)) self.assertTrue("adapter_model.bin" in os.listdir(tmp_dir)) # assert loss is not None self.assertIsNotNone(trainer.state.log_history[-1]["train_loss"])
0
hf_public_repos/peft
hf_public_repos/peft/tests/test_auto.py
# coding=utf-8 # Copyright 2023-present the HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import tempfile import unittest import torch from peft import ( AutoPeftModel, AutoPeftModelForCausalLM, AutoPeftModelForFeatureExtraction, AutoPeftModelForQuestionAnswering, AutoPeftModelForSeq2SeqLM, AutoPeftModelForSequenceClassification, AutoPeftModelForTokenClassification, PeftModel, PeftModelForCausalLM, PeftModelForFeatureExtraction, PeftModelForQuestionAnswering, PeftModelForSeq2SeqLM, PeftModelForSequenceClassification, PeftModelForTokenClassification, ) class PeftAutoModelTester(unittest.TestCase): def test_peft_causal_lm(self): model_id = "peft-internal-testing/tiny-OPTForCausalLM-lora" model = AutoPeftModelForCausalLM.from_pretrained(model_id) self.assertTrue(isinstance(model, PeftModelForCausalLM)) with tempfile.TemporaryDirectory() as tmp_dirname: model.save_pretrained(tmp_dirname) model = AutoPeftModelForCausalLM.from_pretrained(model_id) self.assertTrue(isinstance(model, PeftModelForCausalLM)) # check if kwargs are passed correctly model = AutoPeftModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.bfloat16) self.assertTrue(isinstance(model, PeftModelForCausalLM)) self.assertTrue(model.base_model.lm_head.weight.dtype == torch.bfloat16) adapter_name = "default" is_trainable = False # This should work _ = AutoPeftModelForCausalLM.from_pretrained(model_id, adapter_name, is_trainable, torch_dtype=torch.bfloat16) def test_peft_seq2seq_lm(self): model_id = "peft-internal-testing/tiny_T5ForSeq2SeqLM-lora" model = AutoPeftModelForSeq2SeqLM.from_pretrained(model_id) self.assertTrue(isinstance(model, PeftModelForSeq2SeqLM)) with tempfile.TemporaryDirectory() as tmp_dirname: model.save_pretrained(tmp_dirname) model = AutoPeftModelForSeq2SeqLM.from_pretrained(model_id) self.assertTrue(isinstance(model, PeftModelForSeq2SeqLM)) # check if kwargs are passed correctly model = AutoPeftModelForSeq2SeqLM.from_pretrained(model_id, torch_dtype=torch.bfloat16) self.assertTrue(isinstance(model, PeftModelForSeq2SeqLM)) self.assertTrue(model.base_model.lm_head.weight.dtype == torch.bfloat16) adapter_name = "default" is_trainable = False # This should work _ = AutoPeftModelForSeq2SeqLM.from_pretrained(model_id, adapter_name, is_trainable, torch_dtype=torch.bfloat16) def test_peft_sequence_cls(self): model_id = "peft-internal-testing/tiny_OPTForSequenceClassification-lora" model = AutoPeftModelForSequenceClassification.from_pretrained(model_id) self.assertTrue(isinstance(model, PeftModelForSequenceClassification)) with tempfile.TemporaryDirectory() as tmp_dirname: model.save_pretrained(tmp_dirname) model = AutoPeftModelForSequenceClassification.from_pretrained(model_id) self.assertTrue(isinstance(model, PeftModelForSequenceClassification)) # check if kwargs are passed correctly model = AutoPeftModelForSequenceClassification.from_pretrained(model_id, torch_dtype=torch.bfloat16) self.assertTrue(isinstance(model, PeftModelForSequenceClassification)) self.assertTrue(model.score.original_module.weight.dtype == torch.bfloat16) adapter_name = "default" is_trainable = False # This should work _ = AutoPeftModelForSequenceClassification.from_pretrained( model_id, adapter_name, is_trainable, torch_dtype=torch.bfloat16 ) def test_peft_token_classification(self): model_id = "peft-internal-testing/tiny_GPT2ForTokenClassification-lora" model = AutoPeftModelForTokenClassification.from_pretrained(model_id) self.assertTrue(isinstance(model, PeftModelForTokenClassification)) with tempfile.TemporaryDirectory() as tmp_dirname: model.save_pretrained(tmp_dirname) model = AutoPeftModelForTokenClassification.from_pretrained(model_id) self.assertTrue(isinstance(model, PeftModelForTokenClassification)) # check if kwargs are passed correctly model = AutoPeftModelForTokenClassification.from_pretrained(model_id, torch_dtype=torch.bfloat16) self.assertTrue(isinstance(model, PeftModelForTokenClassification)) self.assertTrue(model.base_model.classifier.original_module.weight.dtype == torch.bfloat16) adapter_name = "default" is_trainable = False # This should work _ = AutoPeftModelForTokenClassification.from_pretrained( model_id, adapter_name, is_trainable, torch_dtype=torch.bfloat16 ) def test_peft_question_answering(self): model_id = "peft-internal-testing/tiny_OPTForQuestionAnswering-lora" model = AutoPeftModelForQuestionAnswering.from_pretrained(model_id) self.assertTrue(isinstance(model, PeftModelForQuestionAnswering)) with tempfile.TemporaryDirectory() as tmp_dirname: model.save_pretrained(tmp_dirname) model = AutoPeftModelForQuestionAnswering.from_pretrained(model_id) self.assertTrue(isinstance(model, PeftModelForQuestionAnswering)) # check if kwargs are passed correctly model = AutoPeftModelForQuestionAnswering.from_pretrained(model_id, torch_dtype=torch.bfloat16) self.assertTrue(isinstance(model, PeftModelForQuestionAnswering)) self.assertTrue(model.base_model.qa_outputs.original_module.weight.dtype == torch.bfloat16) adapter_name = "default" is_trainable = False # This should work _ = AutoPeftModelForQuestionAnswering.from_pretrained( model_id, adapter_name, is_trainable, torch_dtype=torch.bfloat16 ) def test_peft_feature_extraction(self): model_id = "peft-internal-testing/tiny_OPTForFeatureExtraction-lora" model = AutoPeftModelForFeatureExtraction.from_pretrained(model_id) self.assertTrue(isinstance(model, PeftModelForFeatureExtraction)) with tempfile.TemporaryDirectory() as tmp_dirname: model.save_pretrained(tmp_dirname) model = AutoPeftModelForFeatureExtraction.from_pretrained(model_id) self.assertTrue(isinstance(model, PeftModelForFeatureExtraction)) # check if kwargs are passed correctly model = AutoPeftModelForFeatureExtraction.from_pretrained(model_id, torch_dtype=torch.bfloat16) self.assertTrue(isinstance(model, PeftModelForFeatureExtraction)) self.assertTrue(model.base_model.model.decoder.embed_tokens.weight.dtype == torch.bfloat16) adapter_name = "default" is_trainable = False # This should work _ = AutoPeftModelForFeatureExtraction.from_pretrained( model_id, adapter_name, is_trainable, torch_dtype=torch.bfloat16 ) def test_peft_whisper(self): model_id = "peft-internal-testing/tiny_WhisperForConditionalGeneration-lora" model = AutoPeftModel.from_pretrained(model_id) self.assertTrue(isinstance(model, PeftModel)) with tempfile.TemporaryDirectory() as tmp_dirname: model.save_pretrained(tmp_dirname) model = AutoPeftModel.from_pretrained(model_id) self.assertTrue(isinstance(model, PeftModel)) # check if kwargs are passed correctly model = AutoPeftModel.from_pretrained(model_id, torch_dtype=torch.bfloat16) self.assertTrue(isinstance(model, PeftModel)) self.assertTrue(model.base_model.model.model.encoder.embed_positions.weight.dtype == torch.bfloat16) adapter_name = "default" is_trainable = False # This should work _ = AutoPeftModel.from_pretrained(model_id, adapter_name, is_trainable, torch_dtype=torch.bfloat16)
0
hf_public_repos/peft
hf_public_repos/peft/tests/test_config.py
# coding=utf-8 # Copyright 2023-present the HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import copy import os import pickle import tempfile import unittest import warnings import pytest from peft import ( AdaptionPromptConfig, IA3Config, LoraConfig, PeftConfig, PrefixTuningConfig, PromptEncoder, PromptEncoderConfig, PromptTuningConfig, ) PEFT_MODELS_TO_TEST = [("lewtun/tiny-random-OPTForCausalLM-delta", "v1")] class PeftConfigTestMixin: all_config_classes = ( LoraConfig, PromptEncoderConfig, PrefixTuningConfig, PromptTuningConfig, AdaptionPromptConfig, IA3Config, ) class PeftConfigTester(unittest.TestCase, PeftConfigTestMixin): def test_methods(self): r""" Test if all configs have the expected methods. Here we test - to_dict - save_pretrained - from_pretrained - from_json_file """ # test if all configs have the expected methods for config_class in self.all_config_classes: config = config_class() self.assertTrue(hasattr(config, "to_dict")) self.assertTrue(hasattr(config, "save_pretrained")) self.assertTrue(hasattr(config, "from_pretrained")) self.assertTrue(hasattr(config, "from_json_file")) def test_task_type(self): for config_class in self.all_config_classes: # assert this will not fail _ = config_class(task_type="test") def test_from_pretrained(self): r""" Test if the config is correctly loaded using: - from_pretrained """ for config_class in self.all_config_classes: for model_name, revision in PEFT_MODELS_TO_TEST: # Test we can load config from delta _ = config_class.from_pretrained(model_name, revision=revision) def test_save_pretrained(self): r""" Test if the config is correctly saved and loaded using - save_pretrained """ for config_class in self.all_config_classes: config = config_class() with tempfile.TemporaryDirectory() as tmp_dirname: config.save_pretrained(tmp_dirname) config_from_pretrained = config_class.from_pretrained(tmp_dirname) self.assertEqual(config.to_dict(), config_from_pretrained.to_dict()) def test_from_json_file(self): for config_class in self.all_config_classes: config = config_class() with tempfile.TemporaryDirectory() as tmp_dirname: config.save_pretrained(tmp_dirname) config_from_json = config_class.from_json_file(os.path.join(tmp_dirname, "adapter_config.json")) self.assertEqual(config.to_dict(), config_from_json) def test_to_dict(self): r""" Test if the config can be correctly converted to a dict using: - to_dict """ for config_class in self.all_config_classes: config = config_class() self.assertTrue(isinstance(config.to_dict(), dict)) def test_from_pretrained_cache_dir(self): r""" Test if the config is correctly loaded with extra kwargs """ with tempfile.TemporaryDirectory() as tmp_dirname: for config_class in self.all_config_classes: for model_name, revision in PEFT_MODELS_TO_TEST: # Test we can load config from delta _ = config_class.from_pretrained(model_name, revision=revision, cache_dir=tmp_dirname) def test_from_pretrained_cache_dir_remote(self): r""" Test if the config is correctly loaded with a checkpoint from the hub """ with tempfile.TemporaryDirectory() as tmp_dirname: _ = PeftConfig.from_pretrained("ybelkada/test-st-lora", cache_dir=tmp_dirname) self.assertTrue("models--ybelkada--test-st-lora" in os.listdir(tmp_dirname)) def test_set_attributes(self): # manually set attributes and check if they are correctly written for config_class in self.all_config_classes: config = config_class(peft_type="test") # save pretrained with tempfile.TemporaryDirectory() as tmp_dirname: config.save_pretrained(tmp_dirname) config_from_pretrained = config_class.from_pretrained(tmp_dirname) self.assertEqual(config.to_dict(), config_from_pretrained.to_dict()) def test_config_copy(self): # see https://github.com/huggingface/peft/issues/424 for config_class in self.all_config_classes: config = config_class() copied = copy.copy(config) self.assertEqual(config.to_dict(), copied.to_dict()) def test_config_deepcopy(self): # see https://github.com/huggingface/peft/issues/424 for config_class in self.all_config_classes: config = config_class() copied = copy.deepcopy(config) self.assertEqual(config.to_dict(), copied.to_dict()) def test_config_pickle_roundtrip(self): # see https://github.com/huggingface/peft/issues/424 for config_class in self.all_config_classes: config = config_class() copied = pickle.loads(pickle.dumps(config)) self.assertEqual(config.to_dict(), copied.to_dict()) def test_prompt_encoder_warning_num_layers(self): # This test checks that if a prompt encoder config is created with an argument that is ignored, there should be # warning. However, there should be no warning if the default value is used. kwargs = { "num_virtual_tokens": 20, "num_transformer_submodules": 1, "token_dim": 768, "encoder_hidden_size": 768, } # there should be no warning with just default argument for encoder_num_layer config = PromptEncoderConfig(**kwargs) with warnings.catch_warnings(): PromptEncoder(config) # when changing encoder_num_layer, there should be a warning for MLP since that value is not used config = PromptEncoderConfig(encoder_num_layers=123, **kwargs) with pytest.warns(UserWarning) as record: PromptEncoder(config) expected_msg = "for MLP, the argument `encoder_num_layers` is ignored. Exactly 2 MLP layers are used." assert str(record.list[0].message) == expected_msg
0
hf_public_repos/peft
hf_public_repos/peft/tests/testing_utils.py
# coding=utf-8 # Copyright 2023-present the HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest from contextlib import contextmanager import numpy as np import torch def require_torch_gpu(test_case): """ Decorator marking a test that requires a GPU. Will be skipped when no GPU is available. """ if not torch.cuda.is_available(): return unittest.skip("test requires GPU")(test_case) else: return test_case def require_torch_multi_gpu(test_case): """ Decorator marking a test that requires multiple GPUs. Will be skipped when less than 2 GPUs are available. """ if not torch.cuda.is_available() or torch.cuda.device_count() < 2: return unittest.skip("test requires multiple GPUs")(test_case) else: return test_case def require_bitsandbytes(test_case): """ Decorator marking a test that requires the bitsandbytes library. Will be skipped when the library is not installed. """ try: import bitsandbytes # noqa: F401 except ImportError: return unittest.skip("test requires bitsandbytes")(test_case) else: return test_case @contextmanager def temp_seed(seed: int): """Temporarily set the random seed. This works for python numpy, pytorch.""" np_state = np.random.get_state() np.random.seed(seed) torch_state = torch.random.get_rng_state() torch.random.manual_seed(seed) if torch.cuda.is_available(): torch_cuda_states = torch.cuda.get_rng_state_all() torch.cuda.manual_seed_all(seed) try: yield finally: np.random.set_state(np_state) torch.random.set_rng_state(torch_state) if torch.cuda.is_available(): torch.cuda.set_rng_state_all(torch_cuda_states)
0
hf_public_repos/peft
hf_public_repos/peft/tests/test_custom_models.py
#!/usr/bin/env python3 # coding=utf-8 # Copyright 2023-present the HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import copy import unittest import torch from parameterized import parameterized from torch import nn from transformers.pytorch_utils import Conv1D from peft import LoraConfig, get_peft_model from .testing_common import PeftCommonTester # MLP is a vanilla FF network with only linear layers # EmbConv1D has an embedding and a Conv1D layer # Conv2D has a Conv2D layer TEST_CASES = [ ("Vanilla MLP 1", "MLP", LoraConfig, {"target_modules": "lin0"}), ("Vanilla MLP 2", "MLP", LoraConfig, {"target_modules": ["lin0"]}), ("Vanilla MLP 3", "MLP", LoraConfig, {"target_modules": ["lin1"]}), ("Vanilla MLP 4", "MLP", LoraConfig, {"target_modules": ["lin0", "lin1"]}), ("Vanilla MLP 5", "MLP", LoraConfig, {"target_modules": ["lin0"], "modules_to_save": ["lin1"]}), ( "Vanilla MLP 6", "MLP", LoraConfig, { "target_modules": ["lin0"], "lora_alpha": 4, "lora_dropout": 0.1, }, ), ("Embedding + transformers Conv1D 1", "EmbConv1D", LoraConfig, {"target_modules": ["conv1d"]}), ("Embedding + transformers Conv1D 2", "EmbConv1D", LoraConfig, {"target_modules": ["emb"]}), ("Embedding + transformers Conv1D 3", "EmbConv1D", LoraConfig, {"target_modules": ["emb", "conv1d"]}), ("Conv2d 1", "Conv2d", LoraConfig, {"target_modules": ["conv2d"]}), ("Conv2d 2", "Conv2d", LoraConfig, {"target_modules": ["conv2d", "lin0"]}), ] class MLP(nn.Module): def __init__(self): super().__init__() self.lin0 = nn.Linear(10, 20) self.relu = nn.ReLU() self.drop = nn.Dropout(0.5) self.lin1 = nn.Linear(20, 2) self.sm = nn.LogSoftmax(dim=-1) def forward(self, X): X = X.float() X = self.lin0(X) X = self.relu(X) X = self.drop(X) X = self.lin1(X) X = self.sm(X) return X class ModelEmbConv1D(nn.Module): def __init__(self): super().__init__() self.emb = nn.Embedding(100, 5) self.conv1d = Conv1D(1, 5) self.relu = nn.ReLU() self.flat = nn.Flatten() self.lin0 = nn.Linear(10, 2) def forward(self, X): X = self.emb(X) X = self.conv1d(X) X = self.relu(X) X = self.flat(X) X = self.lin0(X) return X class ModelConv2D(nn.Module): def __init__(self): super().__init__() self.conv2d = nn.Conv2d(5, 10, 3) self.relu = nn.ReLU() self.flat = nn.Flatten() self.lin0 = nn.Linear(10, 2) def forward(self, X): X = X.float().reshape(2, 5, 3, 3) X = self.conv2d(X) X = self.relu(X) X = self.flat(X) X = self.lin0(X) return X class MockTransformerWrapper: """Mock class to behave like a transformers model. This is needed because the tests initialize the model by calling transformers_class.from_pretrained. """ @classmethod def from_pretrained(cls, model_id): # set the seed so that from_pretrained always returns the same model torch.manual_seed(0) if model_id == "MLP": return MLP() if model_id == "EmbConv1D": return ModelEmbConv1D() if model_id == "Conv2d": return ModelConv2D() raise ValueError(f"model_id {model_id} not implemented") class PeftCustomModelTester(unittest.TestCase, PeftCommonTester): """TODO""" transformers_class = MockTransformerWrapper def prepare_inputs_for_testing(self): X = torch.arange(90).view(9, 10).to(self.torch_device) return {"X": X} @parameterized.expand(TEST_CASES) def test_attributes_parametrized(self, test_name, model_id, config_cls, config_kwargs): self._test_model_attr(model_id, config_cls, config_kwargs) @parameterized.expand(TEST_CASES) def test_adapter_name(self, test_name, model_id, config_cls, config_kwargs): self._test_adapter_name(model_id, config_cls, config_kwargs) @parameterized.expand(TEST_CASES) def test_prepare_for_training_parametrized(self, test_name, model_id, config_cls, config_kwargs): # This test does not work with custom models because it assumes that # there is always a method get_input_embeddings that returns a layer # which does not need updates. Instead, a new test is added below that # checks that LoRA works as expected. pass @parameterized.expand(TEST_CASES) def test_save_pretrained(self, test_name, model_id, config_cls, config_kwargs): self._test_save_pretrained(model_id, config_cls, config_kwargs) @parameterized.expand(TEST_CASES) def test_from_pretrained_config_construction(self, test_name, model_id, config_cls, config_kwargs): self._test_from_pretrained_config_construction(model_id, config_cls, config_kwargs) @parameterized.expand(TEST_CASES) def test_merge_layers(self, test_name, model_id, config_cls, config_kwargs): # for embeddings, even with init_lora_weights=False, the LoRA embeddings weights are still initialized to # perform the identity transform, thus the test would fail. if config_kwargs["target_modules"] == ["emb"]: return config_kwargs = config_kwargs.copy() config_kwargs["init_lora_weights"] = False self._test_merge_layers(model_id, config_cls, config_kwargs) @parameterized.expand(TEST_CASES) def test_generate(self, test_name, model_id, config_cls, config_kwargs): # Custom models do not (necessarily) have a generate method, so this test is not performed pass @parameterized.expand(TEST_CASES) def test_generate_half_prec(self, test_name, model_id, config_cls, config_kwargs): # Custom models do not (necessarily) have a generate method, so this test is not performed pass @parameterized.expand(TEST_CASES) def test_training_customs(self, test_name, model_id, config_cls, config_kwargs): self._test_training(model_id, config_cls, config_kwargs) @parameterized.expand(TEST_CASES) def test_training_customs_layer_indexing(self, test_name, model_id, config_cls, config_kwargs): # At the moment, layer indexing only works when layer names conform to a specific pattern, which is not # guaranteed here. Therefore, this test is not performed. pass @parameterized.expand(TEST_CASES) def test_training_customs_gradient_checkpointing(self, test_name, model_id, config_cls, config_kwargs): self._test_training_gradient_checkpointing(model_id, config_cls, config_kwargs) @parameterized.expand(TEST_CASES) def test_inference_safetensors(self, test_name, model_id, config_cls, config_kwargs): self._test_inference_safetensors(model_id, config_cls, config_kwargs) @parameterized.expand(TEST_CASES) def test_peft_model_device_map(self, test_name, model_id, config_cls, config_kwargs): self._test_peft_model_device_map(model_id, config_cls, config_kwargs) @parameterized.expand(TEST_CASES) def test_only_params_are_updated(self, test_name, model_id, config_cls, config_kwargs): # An explicit test that when using LoRA on a custom model, only the LoRA parameters are updated during training X = self.prepare_inputs_for_testing() model = self.transformers_class.from_pretrained(model_id).to(self.torch_device) config = config_cls( base_model_name_or_path=model_id, **config_kwargs, ) model = get_peft_model(model, config) model_before = copy.deepcopy(model) model.train() optimizer = torch.optim.SGD(model.parameters(), lr=0.5) # train at least 3 steps for all parameters to be updated (probably this is required because of symmetry # breaking of some LoRA layers that are initialized with constants) for _ in range(3): optimizer.zero_grad() y_pred = model(**X) loss = y_pred.sum() loss.backward() optimizer.step() tol = 1e-4 params_before = dict(model_before.named_parameters()) params_after = dict(model.named_parameters()) self.assertEqual(params_before.keys(), params_after.keys()) for name, param_before in params_before.items(): param_after = params_after[name] if ("lora_" in name) or ("modules_to_save" in name): # target_modules and modules_to_save _are_ updated self.assertFalse(torch.allclose(param_before, param_after, atol=tol, rtol=tol)) else: self.assertTrue(torch.allclose(param_before, param_after, atol=tol, rtol=tol)) @parameterized.expand(TEST_CASES) def test_disable_adapters(self, test_name, model_id, config_cls, config_kwargs): X = self.prepare_inputs_for_testing() model = self.transformers_class.from_pretrained(model_id).to(self.torch_device) config = config_cls( base_model_name_or_path=model_id, **config_kwargs, ) model = get_peft_model(model, config) model.eval() outputs_before = model(**X) model.train() optimizer = torch.optim.SGD(model.parameters(), lr=0.01) # train at least 3 steps for all parameters to be updated (probably this is required because of symmetry # breaking of some LoRA layers that are initialized with constants) for _ in range(3): optimizer.zero_grad() y_pred = model(**X) loss = y_pred.sum() loss.backward() optimizer.step() model.eval() outputs_after = model(**X) with model.disable_adapter(): outputs_disabled = model(**X) # check that after leaving the disable_adapter context, everything is enabled again outputs_enabled_after_disable = model(**X) self.assertFalse(torch.allclose(outputs_before, outputs_after)) self.assertTrue(torch.allclose(outputs_before, outputs_disabled)) self.assertTrue(torch.allclose(outputs_after, outputs_enabled_after_disable)) @parameterized.expand(TEST_CASES) def test_disable_adapter_with_bias_warns(self, test_name, model_id, config_cls, config_kwargs): # When training biases in lora, disabling adapters does not reset the biases, so the output is not what users # might expect. Therefore, a warning should be given. # Note: We test only with custom models since they run really fast. There is really no point in testing the same # thing with decoder, encoder_decoder, etc. def run_with_disable(config_kwargs, bias): config_kwargs = config_kwargs.copy() config_kwargs["bias"] = bias model = self.transformers_class.from_pretrained(model_id).to(self.torch_device) config = config_cls( base_model_name_or_path=model_id, **config_kwargs, ) peft_model = get_peft_model(model, config) with peft_model.disable_adapter(): pass # there is nothing to be done # check that bias=all and bias=lora_only give a warning with the correct message msg_start = "Careful, disabling adapter layers with bias configured to be" with self.assertWarns(UserWarning, msg=msg_start): run_with_disable(config_kwargs, bias="lora_only") with self.assertWarns(UserWarning, msg=msg_start): run_with_disable(config_kwargs, bias="all") # For bias=none, there is no warning. Unfortunately, AFAIK unittest has no option to assert that no warning is # given, therefore, we check that the unittest gives us an AssertionError if we check for a warning bias_warning_was_given = False try: with self.assertWarns(UserWarning) as cm: run_with_disable(config_kwargs, bias="none") # if we get here, it means there was no AssertionError, i.e. there are warnings -- let's check that they # are not related to the bias setting if any(warning.message.args[0].startswith(msg_start) for warning in cm.warnings): bias_warning_was_given = True except AssertionError: # This is good, there was an AssertionError, i.e. there was no warning pass if bias_warning_was_given: # This is bad, there was a warning about the bias when there should not have been any. self.fail("There should be no warning when bias is set to 'none'")
0
hf_public_repos/peft
hf_public_repos/peft/tests/test_feature_extraction_models.py
# coding=utf-8 # Copyright 2023-present the HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import torch from parameterized import parameterized from transformers import AutoModel from .testing_common import PeftCommonTester, PeftTestConfigManager PEFT_FEATURE_EXTRACTION_MODELS_TO_TEST = [ "hf-internal-testing/tiny-random-BertModel", "hf-internal-testing/tiny-random-RobertaModel", "hf-internal-testing/tiny-random-DebertaModel", "hf-internal-testing/tiny-random-DebertaV2Model", ] FULL_GRID = { "model_ids": PEFT_FEATURE_EXTRACTION_MODELS_TO_TEST, "task_type": "FEATURE_EXTRACTION", } def skip_deberta_lora_tests(test_list): r""" Skip tests that are checkpointing with lora/ia3 tests for Deberta models (couldn't find much info on the error) """ return [test for test in test_list if not (any(k in test[0] for k in ["lora", "ia3"]) and "Deberta" in test[0])] def skip_deberta_pt_tests(test_list): r""" Skip tests that are checkpointing with lora/ia3 tests for Deberta models (couldn't find much info on the error) """ return [test for test in test_list if not ("prefix_tuning" in test[0] and "Deberta" in test[0])] class PeftFeatureExtractionModelTester(unittest.TestCase, PeftCommonTester): r""" Test if the PeftModel behaves as expected. This includes: - test if the model has the expected methods We use parametrized.expand for debugging purposes to test each model individually. """ transformers_class = AutoModel def prepare_inputs_for_testing(self): input_ids = torch.tensor([[1, 1, 1], [1, 2, 1]]).to(self.torch_device) attention_mask = torch.tensor([[1, 1, 1], [1, 0, 1]]).to(self.torch_device) input_dict = { "input_ids": input_ids, "attention_mask": attention_mask, } return input_dict @parameterized.expand(PeftTestConfigManager.get_grid_parameters(FULL_GRID)) def test_attributes_parametrized(self, test_name, model_id, config_cls, config_kwargs): self._test_model_attr(model_id, config_cls, config_kwargs) @parameterized.expand(PeftTestConfigManager.get_grid_parameters(FULL_GRID)) def test_adapter_name(self, test_name, model_id, config_cls, config_kwargs): self._test_adapter_name(model_id, config_cls, config_kwargs) @parameterized.expand(PeftTestConfigManager.get_grid_parameters(FULL_GRID)) def test_prepare_for_training_parametrized(self, test_name, model_id, config_cls, config_kwargs): self._test_prepare_for_training(model_id, config_cls, config_kwargs) @parameterized.expand(PeftTestConfigManager.get_grid_parameters(FULL_GRID)) def test_save_pretrained(self, test_name, model_id, config_cls, config_kwargs): self._test_save_pretrained(model_id, config_cls, config_kwargs) @parameterized.expand(PeftTestConfigManager.get_grid_parameters(FULL_GRID)) def test_save_pretrained_selected_adapters(self, test_name, model_id, config_cls, config_kwargs): self._test_save_pretrained_selected_adapters(model_id, config_cls, config_kwargs) @parameterized.expand(PeftTestConfigManager.get_grid_parameters(FULL_GRID)) def test_from_pretrained_config_construction(self, test_name, model_id, config_cls, config_kwargs): self._test_from_pretrained_config_construction(model_id, config_cls, config_kwargs) @parameterized.expand( PeftTestConfigManager.get_grid_parameters( { "model_ids": PEFT_FEATURE_EXTRACTION_MODELS_TO_TEST, "lora_kwargs": {"init_lora_weights": [False]}, "ia3_kwargs": {"init_ia3_weights": [False]}, "task_type": "FEATURE_EXTRACTION", }, ) ) def test_merge_layers(self, test_name, model_id, config_cls, config_kwargs): self._test_merge_layers(model_id, config_cls, config_kwargs) @parameterized.expand(PeftTestConfigManager.get_grid_parameters(FULL_GRID)) def test_training(self, test_name, model_id, config_cls, config_kwargs): self._test_training(model_id, config_cls, config_kwargs) @parameterized.expand( PeftTestConfigManager.get_grid_parameters(FULL_GRID, filter_params_func=skip_deberta_pt_tests) ) def test_training_prompt_learning_tasks(self, test_name, model_id, config_cls, config_kwargs): self._test_training_prompt_learning_tasks(model_id, config_cls, config_kwargs) @parameterized.expand(PeftTestConfigManager.get_grid_parameters(FULL_GRID)) def test_training_layer_indexing(self, test_name, model_id, config_cls, config_kwargs): self._test_training_layer_indexing(model_id, config_cls, config_kwargs) @parameterized.expand( PeftTestConfigManager.get_grid_parameters(FULL_GRID, filter_params_func=skip_deberta_lora_tests) ) def test_training_gradient_checkpointing(self, test_name, model_id, config_cls, config_kwargs): self._test_training_gradient_checkpointing(model_id, config_cls, config_kwargs) @parameterized.expand(PeftTestConfigManager.get_grid_parameters(FULL_GRID)) def test_inference_safetensors(self, test_name, model_id, config_cls, config_kwargs): self._test_inference_safetensors(model_id, config_cls, config_kwargs) @parameterized.expand(PeftTestConfigManager.get_grid_parameters(FULL_GRID)) def test_peft_model_device_map(self, test_name, model_id, config_cls, config_kwargs): self._test_peft_model_device_map(model_id, config_cls, config_kwargs) @parameterized.expand(PeftTestConfigManager.get_grid_parameters(FULL_GRID)) def test_delete_adapter(self, test_name, model_id, config_cls, config_kwargs): self._test_delete_adapter(model_id, config_cls, config_kwargs) @parameterized.expand( PeftTestConfigManager.get_grid_parameters( { "model_ids": PEFT_FEATURE_EXTRACTION_MODELS_TO_TEST, "lora_kwargs": {"init_lora_weights": [False]}, "task_type": "FEATURE_EXTRACTION", }, ) ) def test_unload_adapter(self, test_name, model_id, config_cls, config_kwargs): self._test_unload_adapter(model_id, config_cls, config_kwargs) @parameterized.expand( PeftTestConfigManager.get_grid_parameters( { "model_ids": PEFT_FEATURE_EXTRACTION_MODELS_TO_TEST, "lora_kwargs": {"init_lora_weights": [False]}, "task_type": "FEATURE_EXTRACTION", }, ) ) def test_weighted_combination_of_adapters(self, test_name, model_id, config_cls, config_kwargs): self._test_weighted_combination_of_adapters(model_id, config_cls, config_kwargs)
0
hf_public_repos/peft
hf_public_repos/peft/tests/testing_common.py
# coding=utf-8 # Copyright 2023-present the HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import pickle import tempfile from collections import OrderedDict from dataclasses import replace import torch from diffusers import StableDiffusionPipeline from peft import ( IA3Config, LoraConfig, PeftModel, PrefixTuningConfig, PromptEncoderConfig, PromptLearningConfig, PromptTuningConfig, get_peft_model, get_peft_model_state_dict, prepare_model_for_int8_training, ) from peft.tuners.lora import LoraLayer from peft.utils import _get_submodules CONFIG_CLASSES = ( IA3Config, LoraConfig, PrefixTuningConfig, PromptEncoderConfig, PromptTuningConfig, ) CONFIG_TESTING_KWARGS = ( { "target_modules": None, "feedforward_modules": None, }, { "r": 8, "lora_alpha": 32, "target_modules": None, "lora_dropout": 0.05, "bias": "none", }, { "num_virtual_tokens": 10, }, { "num_virtual_tokens": 10, "encoder_hidden_size": 32, }, { "num_virtual_tokens": 10, }, ) CLASSES_MAPPING = { "ia3": (IA3Config, CONFIG_TESTING_KWARGS[0]), "lora": (LoraConfig, CONFIG_TESTING_KWARGS[1]), "prefix_tuning": (PrefixTuningConfig, CONFIG_TESTING_KWARGS[2]), "prompt_encoder": (PromptEncoderConfig, CONFIG_TESTING_KWARGS[3]), "prompt_tuning": (PromptTuningConfig, CONFIG_TESTING_KWARGS[4]), } # Adapted from https://github.com/huggingface/transformers/blob/48327c57182fdade7f7797d1eaad2d166de5c55b/src/transformers/activations.py#LL166C7-L166C22 class ClassInstantier(OrderedDict): def __getitem__(self, key, *args, **kwargs): # check if any of the kwargs is inside the config class kwargs if any(kwarg in self[key][1] for kwarg in kwargs): new_config_kwargs = self[key][1].copy() new_config_kwargs.update(kwargs) return (self[key][0], new_config_kwargs) return super().__getitem__(key, *args, **kwargs) def get_grid_parameters(self, grid_parameters, filter_params_func=None): r""" Returns a list of all possible combinations of the parameters in the config classes. Args: grid_parameters (`dict`): A dictionary containing the parameters to be tested. There should be at least the key "model_ids" which contains a list of model ids to be tested. The other keys should be the name of the config class post-fixed with "_kwargs" and the value should be a dictionary containing the parameters to be tested for that config class. filter_params_func (`callable`, `optional`): A function that takes a list of tuples and returns a list of tuples. This function is used to filter out the tests that needs for example to be skipped. Returns: generated_tests (`list`): A list of tuples containing the name of the test, the model id, the config class and the config class kwargs. """ generated_tests = [] model_list = grid_parameters["model_ids"] task_type = grid_parameters["task_type"] if "task_type" in grid_parameters else None for model_id in model_list: for key, value in self.items(): if "{}_kwargs".format(key) in grid_parameters: peft_configs = [] current_peft_config = value[1].copy() for current_key, current_value in grid_parameters[f"{key}_kwargs"].items(): for kwarg in current_value: current_peft_config.update({current_key: kwarg}) if task_type is not None: current_peft_config.update({"task_type": task_type}) peft_configs.append(current_peft_config.copy()) else: current_peft_config = value[1].copy() if task_type is not None: current_peft_config.update({"task_type": task_type}) peft_configs = [current_peft_config] for peft_config in peft_configs: generated_tests.append((f"test_{model_id}_{key}", model_id, value[0], peft_config)) if filter_params_func is not None: generated_tests = filter_params_func(generated_tests) return generated_tests PeftTestConfigManager = ClassInstantier(CLASSES_MAPPING) class PeftCommonTester: r""" A large testing suite for testing common functionality of the PEFT models. Attributes: torch_device (`torch.device`): The device on which the tests will be run. transformers_class (`transformers.PreTrainedModel`): The transformers class that is being tested. """ torch_device = "cuda" if torch.cuda.is_available() else "cpu" transformers_class = None def prepare_inputs_for_common(self): raise NotImplementedError def _test_model_attr(self, model_id, config_cls, config_kwargs): model = self.transformers_class.from_pretrained(model_id) config = config_cls( base_model_name_or_path=model_id, **config_kwargs, ) model = get_peft_model(model, config) self.assertTrue(hasattr(model, "save_pretrained")) self.assertTrue(hasattr(model, "from_pretrained")) self.assertTrue(hasattr(model, "push_to_hub")) def _test_adapter_name(self, model_id, config_cls, config_kwargs): model = self.transformers_class.from_pretrained(model_id) config = config_cls( base_model_name_or_path=model_id, **config_kwargs, ) model = get_peft_model(model, config, adapter_name="test-adapter") correctly_converted = False for n, _ in model.named_parameters(): if "test-adapter" in n: correctly_converted = True break self.assertTrue(correctly_converted) def _test_prepare_for_training(self, model_id, config_cls, config_kwargs): model = self.transformers_class.from_pretrained(model_id).to(self.torch_device) config = config_cls( base_model_name_or_path=model_id, **config_kwargs, ) model = get_peft_model(model, config) dummy_input = self.prepare_inputs_for_testing() dummy_output = model.get_input_embeddings()(dummy_input["input_ids"]) self.assertTrue(not dummy_output.requires_grad) # load with `prepare_model_for_int8_training` model = self.transformers_class.from_pretrained(model_id).to(self.torch_device) model = prepare_model_for_int8_training(model) for param in model.parameters(): self.assertTrue(not param.requires_grad) config = config_cls( base_model_name_or_path=model_id, **config_kwargs, ) model = get_peft_model(model, config) # For backward compatibility if hasattr(model, "enable_input_require_grads"): model.enable_input_require_grads() else: def make_inputs_require_grad(module, input, output): output.requires_grad_(True) model.get_input_embeddings().register_forward_hook(make_inputs_require_grad) dummy_input = self.prepare_inputs_for_testing() dummy_output = model.get_input_embeddings()(dummy_input["input_ids"]) self.assertTrue(dummy_output.requires_grad) def _test_save_pretrained(self, model_id, config_cls, config_kwargs): model = self.transformers_class.from_pretrained(model_id) config = config_cls( base_model_name_or_path=model_id, **config_kwargs, ) model = get_peft_model(model, config) model = model.to(self.torch_device) with tempfile.TemporaryDirectory() as tmp_dirname: model.save_pretrained(tmp_dirname) model_from_pretrained = self.transformers_class.from_pretrained(model_id) model_from_pretrained = PeftModel.from_pretrained(model_from_pretrained, tmp_dirname) # check if the state dicts are equal state_dict = get_peft_model_state_dict(model) state_dict_from_pretrained = get_peft_model_state_dict(model_from_pretrained) # check if same keys self.assertEqual(state_dict.keys(), state_dict_from_pretrained.keys()) # check if tensors equal for key in state_dict.keys(): self.assertTrue( torch.allclose( state_dict[key].to(self.torch_device), state_dict_from_pretrained[key].to(self.torch_device) ) ) # check if `adapter_model.bin` is present self.assertTrue(os.path.exists(os.path.join(tmp_dirname, "adapter_model.bin"))) # check if `adapter_config.json` is present self.assertTrue(os.path.exists(os.path.join(tmp_dirname, "adapter_config.json"))) # check if `pytorch_model.bin` is not present self.assertFalse(os.path.exists(os.path.join(tmp_dirname, "pytorch_model.bin"))) # check if `config.json` is not present self.assertFalse(os.path.exists(os.path.join(tmp_dirname, "config.json"))) def _test_save_pretrained_selected_adapters(self, model_id, config_cls, config_kwargs): model = self.transformers_class.from_pretrained(model_id) config = config_cls( base_model_name_or_path=model_id, **config_kwargs, ) model = get_peft_model(model, config) model = model.to(self.torch_device) new_adapter_config = config_cls( base_model_name_or_path=model_id, **config_kwargs, ) model.add_adapter("new_adapter", new_adapter_config) with tempfile.TemporaryDirectory() as tmp_dirname: model.save_pretrained(tmp_dirname) model_from_pretrained = self.transformers_class.from_pretrained(model_id) model_from_pretrained = PeftModel.from_pretrained(model_from_pretrained, tmp_dirname) model_from_pretrained.load_adapter(tmp_dirname, "new_adapter") # check if the state dicts are equal state_dict = get_peft_model_state_dict(model) state_dict_from_pretrained = get_peft_model_state_dict(model_from_pretrained) # check if same keys self.assertEqual(state_dict.keys(), state_dict_from_pretrained.keys()) # check if tensors equal for key in state_dict.keys(): self.assertTrue( torch.allclose( state_dict[key].to(self.torch_device), state_dict_from_pretrained[key].to(self.torch_device) ) ) # check if `adapter_model.bin` is present self.assertTrue(os.path.exists(os.path.join(tmp_dirname, "adapter_model.bin"))) # check if `adapter_config.json` is present self.assertTrue(os.path.exists(os.path.join(tmp_dirname, "adapter_config.json"))) # check if `pytorch_model.bin` is not present self.assertFalse(os.path.exists(os.path.join(tmp_dirname, "pytorch_model.bin"))) # check if `config.json` is not present self.assertFalse(os.path.exists(os.path.join(tmp_dirname, "config.json"))) with tempfile.TemporaryDirectory() as tmp_dirname: model.save_pretrained(tmp_dirname, selected_adapters=["default"]) model_from_pretrained = self.transformers_class.from_pretrained(model_id) model_from_pretrained = PeftModel.from_pretrained(model_from_pretrained, tmp_dirname) self.assertTrue("default" in model_from_pretrained.peft_config.keys()) self.assertTrue("new_adapter" not in model_from_pretrained.peft_config.keys()) def _test_from_pretrained_config_construction(self, model_id, config_cls, config_kwargs): model = self.transformers_class.from_pretrained(model_id) config = config_cls(base_model_name_or_path=model_id, **config_kwargs) model = get_peft_model(model, config) model = model.to(self.torch_device) with tempfile.TemporaryDirectory() as tmp_dirname: model.save_pretrained(tmp_dirname) model_from_pretrained = self.transformers_class.from_pretrained(model_id) model_from_pretrained = PeftModel.from_pretrained( model_from_pretrained, tmp_dirname, is_trainable=False, config=config ) self.assertTrue(model_from_pretrained.peft_config["default"].inference_mode) self.assertIs(model_from_pretrained.peft_config["default"], config) def _test_merge_layers(self, model_id, config_cls, config_kwargs): if config_cls not in (LoraConfig, IA3Config): # Merge layers only supported for LoRA and IA³ return if ("gpt2" in model_id.lower()) and (config_cls != LoraConfig): self.skipTest("Merging GPT2 adapters not supported for IA³ (yet)") model = self.transformers_class.from_pretrained(model_id) config = config_cls( base_model_name_or_path=model_id, **config_kwargs, ) model = get_peft_model(model, config) model = model.to(self.torch_device) if config.peft_type not in ("IA3", "LORA"): with self.assertRaises(AttributeError): model = model.merge_and_unload() dummy_input = self.prepare_inputs_for_testing() model.eval() logits_unmerged = model(**dummy_input)[0] model = model.merge_and_unload() logits_merged = model(**dummy_input)[0] self.assertTrue(torch.allclose(logits_unmerged, logits_merged, atol=1e-4, rtol=1e-4)) # For this test to work, init_lora_weights must be False. This ensures that weights are not initialized to # the identity transform. transformers_model = self.transformers_class.from_pretrained(model_id).to(self.torch_device) logits_transformers = transformers_model(**dummy_input)[0] self.assertFalse(torch.allclose(logits_merged, logits_transformers, atol=1e-10, rtol=1e-10)) # test that the logits are identical after a save-load-roundtrip if hasattr(model, "save_pretrained"): # model is a transformers model with tempfile.TemporaryDirectory() as tmp_dirname: model.save_pretrained(tmp_dirname) model_from_pretrained = self.transformers_class.from_pretrained(tmp_dirname).to(self.torch_device) else: # model is not a transformers model model_from_pretrained = pickle.loads(pickle.dumps(model)) logits_merged_from_pretrained = model_from_pretrained(**dummy_input)[0] self.assertTrue(torch.allclose(logits_merged, logits_merged_from_pretrained, atol=1e-4, rtol=1e-4)) def _test_generate(self, model_id, config_cls, config_kwargs): model = self.transformers_class.from_pretrained(model_id) config = config_cls( base_model_name_or_path=model_id, **config_kwargs, ) model = get_peft_model(model, config) model = model.to(self.torch_device) inputs = self.prepare_inputs_for_testing() # check if `generate` works _ = model.generate(**inputs) with self.assertRaises(TypeError): # check if `generate` raises an error if no positional arguments are passed _ = model.generate(inputs["input_ids"]) def _test_generate_half_prec(self, model_id, config_cls, config_kwargs): if config_cls not in (IA3Config, LoraConfig, PrefixTuningConfig): return model = self.transformers_class.from_pretrained(model_id, torch_dtype=torch.bfloat16) config = config_cls( base_model_name_or_path=model_id, **config_kwargs, ) model = get_peft_model(model, config) model = model.to(self.torch_device) input_ids = torch.LongTensor([[1, 1, 1], [2, 1, 2]]).to(self.torch_device) attention_mask = torch.LongTensor([[1, 1, 1], [1, 0, 1]]).to(self.torch_device) # check if `generate` works _ = model.generate(input_ids=input_ids, attention_mask=attention_mask) with self.assertRaises(TypeError): # check if `generate` raises an error if no positional arguments are passed _ = model.generate(input_ids, attention_mask=attention_mask) def _test_prefix_tuning_half_prec_conversion(self, model_id, config_cls, config_kwargs): if config_cls not in (PrefixTuningConfig,): return config = config_cls( base_model_name_or_path=model_id, **config_kwargs, ) model = self.transformers_class.from_pretrained(model_id) model = get_peft_model(model, config) model = model.half() self.assertEqual(model.base_model_torch_dtype, torch.float16) def _test_training(self, model_id, config_cls, config_kwargs): if config_cls not in (IA3Config, LoraConfig): return model = self.transformers_class.from_pretrained(model_id) config = config_cls( base_model_name_or_path=model_id, **config_kwargs, ) model = get_peft_model(model, config) model = model.to(self.torch_device) inputs = self.prepare_inputs_for_testing() # check if `training` works output = model(**inputs)[0] loss = output.sum() loss.backward() parameter_prefix = "ia3" if config_cls == IA3Config else "lora" for n, param in model.named_parameters(): if (parameter_prefix in n) or ("modules_to_save" in n): self.assertIsNotNone(param.grad) else: self.assertIsNone(param.grad) def _test_inference_safetensors(self, model_id, config_cls, config_kwargs): if config_cls not in (LoraConfig,): return config = config_cls( base_model_name_or_path=model_id, **config_kwargs, ) model = self.transformers_class.from_pretrained(model_id) model = get_peft_model(model, config) model = model.to(self.torch_device) inputs = self.prepare_inputs_for_testing() # check if `training` works output = model(**inputs)[0] logits = output[0] loss = output.sum() loss.backward() # set to eval mode, since things like dropout can affect the output otherwise model.eval() logits = model(**inputs)[0][0] with tempfile.TemporaryDirectory() as tmp_dirname: model.save_pretrained(tmp_dirname, safe_serialization=True) self.assertTrue("adapter_model.safetensors" in os.listdir(tmp_dirname)) self.assertTrue("adapter_model.bin" not in os.listdir(tmp_dirname)) model_from_pretrained = self.transformers_class.from_pretrained(model_id) model_from_pretrained = PeftModel.from_pretrained(model_from_pretrained, tmp_dirname).to(self.torch_device) logits_from_pretrained = model_from_pretrained(**inputs)[0][0] self.assertTrue(torch.allclose(logits, logits_from_pretrained, atol=1e-4, rtol=1e-4)) def _test_training_layer_indexing(self, model_id, config_cls, config_kwargs): if config_cls not in (LoraConfig,): return config = config_cls( base_model_name_or_path=model_id, layers_to_transform=[0], **config_kwargs, ) model = self.transformers_class.from_pretrained(model_id) model = get_peft_model(model, config) model = model.to(self.torch_device) inputs = self.prepare_inputs_for_testing() # check if `training` works output = model(**inputs)[0] logits = output[0] loss = output.sum() loss.backward() nb_trainable = 0 for n, param in model.named_parameters(): if "lora" in n: self.assertIsNotNone(param.grad) nb_trainable += 1 else: self.assertIsNone(param.grad) with tempfile.TemporaryDirectory() as tmp_dirname: model.save_pretrained(tmp_dirname) model_from_pretrained = self.transformers_class.from_pretrained(model_id) model_from_pretrained = PeftModel.from_pretrained(model_from_pretrained, tmp_dirname).to(self.torch_device) logits_from_pretrained = model_from_pretrained(**inputs)[0][0] self.assertTrue(torch.allclose(logits, logits_from_pretrained, atol=1e-4, rtol=1e-4)) model = self.transformers_class.from_pretrained(model_id) config = config_cls( base_model_name_or_path=model_id, **config_kwargs, ) model = get_peft_model(model, config) nb_trainable_all = 0 for n, param in model.named_parameters(): if "lora" in n: nb_trainable_all += 1 self.assertLess(nb_trainable, nb_trainable_all) def _test_training_gradient_checkpointing(self, model_id, config_cls, config_kwargs): if config_cls not in (LoraConfig, IA3Config): return model = self.transformers_class.from_pretrained(model_id) if not getattr(model, "supports_gradient_checkpointing", False): return model.gradient_checkpointing_enable() config = config_cls( base_model_name_or_path=model_id, **config_kwargs, ) model = get_peft_model(model, config) model = model.to(self.torch_device) inputs = self.prepare_inputs_for_testing() # check if `training` works output = model(**inputs)[0] loss = output.sum() loss.backward() parameter_prefix = "ia3" if config_cls == IA3Config else "lora" for n, param in model.named_parameters(): if parameter_prefix in n: self.assertIsNotNone(param.grad) else: self.assertIsNone(param.grad) def _test_peft_model_device_map(self, model_id, config_cls, config_kwargs): if config_cls not in (LoraConfig,): return config = config_cls( base_model_name_or_path=model_id, **config_kwargs, ) model = self.transformers_class.from_pretrained(model_id) model = get_peft_model(model, config) model = model.to(self.torch_device) with tempfile.TemporaryDirectory() as tmp_dirname: model.save_pretrained(tmp_dirname) model_from_pretrained = self.transformers_class.from_pretrained(model_id) _ = PeftModel.from_pretrained(model_from_pretrained, tmp_dirname, device_map={"": "cpu"}).to( self.torch_device ) def _test_training_prompt_learning_tasks(self, model_id, config_cls, config_kwargs): if not issubclass(config_cls, PromptLearningConfig): return model = self.transformers_class.from_pretrained(model_id) config = config_cls( base_model_name_or_path=model_id, **config_kwargs, ) model = get_peft_model(model, config) model = model.to(self.torch_device) inputs = self.prepare_inputs_for_testing() # check if `training` works output = model(**inputs)[0] loss = output.sum() loss.backward() # check that prompt encoder has grads for param in model.prompt_encoder.parameters(): self.assertIsNotNone(param.grad) def _test_delete_adapter(self, model_id, config_cls, config_kwargs): model = self.transformers_class.from_pretrained(model_id) config = config_cls( base_model_name_or_path=model_id, **config_kwargs, ) adapter_to_delete = "delete_me" model = get_peft_model(model, config) model.add_adapter(adapter_to_delete, config) model.set_adapter(adapter_to_delete) model = model.to(self.torch_device) if config.peft_type not in ("LORA"): with self.assertRaises(AttributeError): model.delete_adapter(adapter_to_delete) else: model.delete_adapter(adapter_to_delete) self.assertFalse(adapter_to_delete in model.peft_config) key_list = [key for key, _ in model.named_modules() if "lora" not in key] for key in key_list: _, target, _ = _get_submodules(model, key) if isinstance(target, LoraLayer): for attr in [ "r", "lora_alpha", "scaling", "lora_A", "lora_B", "lora_embedding_A", "lora_embedding_B", "lora_dropout", ]: self.assertFalse(adapter_to_delete in getattr(target, attr)) def _test_unload_adapter(self, model_id, config_cls, config_kwargs): model = self.transformers_class.from_pretrained(model_id) config = config_cls( base_model_name_or_path=model_id, **config_kwargs, ) model = get_peft_model(model, config) model = model.to(self.torch_device) if config.peft_type not in ("LORA"): with self.assertRaises(AttributeError): model = model.unload() else: dummy_input = self.prepare_inputs_for_testing() logits_with_lora = model(**dummy_input)[0] transformers_model = self.transformers_class.from_pretrained(model_id).to(self.torch_device) logits_transformers = transformers_model(**dummy_input)[0] model.eval() model = model.unload() logits_unload = model(**dummy_input)[0] self.assertFalse(torch.allclose(logits_with_lora, logits_unload, atol=1e-10, rtol=1e-10)) self.assertTrue(torch.allclose(logits_transformers, logits_unload, atol=1e-4, rtol=1e-4)) def _test_weighted_combination_of_adapters(self, model_id, config_cls, config_kwargs): adapter_list = ["adapter1", "adapter_2", "adapter_3"] weight_list = [0.5, 1.5, 1.5] model = self.transformers_class.from_pretrained(model_id) config = config_cls( base_model_name_or_path=model_id, **config_kwargs, ) if not isinstance(config, (LoraConfig)): return model = get_peft_model(model, config, adapter_list[0]) model.add_adapter(adapter_list[1], config) model.add_adapter(adapter_list[2], replace(config, r=20)) model = model.to(self.torch_device) # test re-weighting single adapter model.add_weighted_adapter([adapter_list[0]], [weight_list[0]], "single_adapter_reweighting") # test svd re-weighting with multiple adapters model.add_weighted_adapter(adapter_list[1:], weight_list[1:], "multi_adapter_svd_reweighting") # test linear re-weighting with multiple adapters model.add_weighted_adapter( adapter_list[:2], weight_list[:2], "multi_adapter_linear_reweighting", combination_type="linear" ) with self.assertRaises(ValueError): model.add_weighted_adapter( adapter_list[1:], weight_list[1:], "multi_adapter_linear_reweighting_uneven_r", combination_type="linear", ) new_adapters = [ "single_adapter_reweighting", "multi_adapter_svd_reweighting", "multi_adapter_linear_reweighting", ] for new_adapter in new_adapters: self.assertTrue(new_adapter in model.peft_config) key_list = [key for key, _ in model.named_modules() if "lora" not in key] for key in key_list: _, target, _ = _get_submodules(model, key) if isinstance(target, LoraLayer): for adapter_name in new_adapters: if "single" in adapter_name: new_delta_weight = target.get_delta_weight(adapter_name) weighted_original_delta_weights = target.get_delta_weight(adapter_list[0]) * weight_list[0] self.assertTrue( torch.allclose(new_delta_weight, weighted_original_delta_weights, atol=1e-4, rtol=1e-4) ) elif "svd" in adapter_name: self.assertTrue(target.r[adapter_name] == 20) elif "linear" in adapter_name: self.assertTrue(target.r[adapter_name] == 8) for adapter_name in new_adapters: # ensuring new adapters pass the forward loop model.set_adapter(adapter_name) dummy_input = self.prepare_inputs_for_testing() model.eval() _ = model(**dummy_input)[0] def _test_disable_adapter(self, model_id, config_cls, config_kwargs): task_type = config_kwargs.get("task_type") if (task_type == "SEQ_2_SEQ_LM") and (config_cls in (PromptTuningConfig, PromptEncoderConfig)): self.skipTest("Seq2Seq + prompt tuning/prompt encoder does not work with disabling adapters") def get_output(model): # helper function that works with different model types torch.manual_seed(0) if hasattr(model, "generate"): # let's check the scores, not the output ids, since the latter can easily be identical even if the # weights are slightly changed output = model.generate(**input, return_dict_in_generate=True, output_scores=True).scores[0] # take element 0, as output is a tuple else: output = model(**input) if hasattr(output, "images"): # for SD import numpy as np img = output.images[0] return torch.from_numpy(np.array(img)) return output # initialize model model = self.transformers_class.from_pretrained(model_id).to(self.torch_device) # output from BASE MODEL input = self.prepare_inputs_for_testing() output_before = get_output(model) # output from PEFT MODEL if hasattr(self, "instantiate_sd_peft"): # SD models are instantiated differently peft_model = self.instantiate_sd_peft(model_id, config_cls, config_kwargs) else: config = config_cls( base_model_name_or_path=model_id, **config_kwargs, ) peft_model = get_peft_model(model, config) output_peft = get_output(peft_model) # first check trivial case is not true that peft does not affect the output; for this to work, init_lora_weight # must be False if isinstance(peft_model, StableDiffusionPipeline): # for SD, check that most pixels have different values self.assertTrue((output_before != output_peft).float().mean() > 0.9) else: self.assertFalse(torch.allclose(output_before, output_peft)) # output with DISABLED ADAPTER if isinstance(peft_model, StableDiffusionPipeline): with peft_model.unet.disable_adapter(): with peft_model.text_encoder.disable_adapter(): output_peft_disabled = get_output(peft_model) # for SD, very rarely, a pixel can differ self.assertTrue((output_before != output_peft_disabled).float().mean() < 1e-4) else: with peft_model.disable_adapter(): output_peft_disabled = get_output(peft_model) self.assertTrue(torch.allclose(output_before, output_peft_disabled, atol=1e-6, rtol=1e-6)) # TODO: add tests to check if disabling adapters works after calling merge_adapter
0
hf_public_repos/peft
hf_public_repos/peft/tests/test_stablediffusion.py
# coding=utf-8 # Copyright 2023-present the HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from dataclasses import asdict, replace from unittest import TestCase import numpy as np from diffusers import StableDiffusionPipeline from parameterized import parameterized from peft import LoraConfig, get_peft_model from .testing_common import ClassInstantier, PeftCommonTester from .testing_utils import temp_seed PEFT_DIFFUSERS_SD_MODELS_TO_TEST = ["hf-internal-testing/tiny-stable-diffusion-torch"] CONFIG_TESTING_KWARGS = ( { "text_encoder": { "r": 8, "lora_alpha": 32, "target_modules": ["k_proj", "q_proj", "v_proj", "out_proj", "fc1", "fc2"], "lora_dropout": 0.0, "bias": "none", }, "unet": { "r": 8, "lora_alpha": 32, "target_modules": ["proj_in", "proj_out", "to_k", "to_q", "to_v", "to_out.0", "ff.net.0.proj", "ff.net.2"], "lora_dropout": 0.0, "bias": "none", }, }, ) CLASSES_MAPPING = { "lora": (LoraConfig, CONFIG_TESTING_KWARGS[0]), } PeftStableDiffusionTestConfigManager = ClassInstantier(CLASSES_MAPPING) class StableDiffusionModelTester(TestCase, PeftCommonTester): r""" Tests that diffusers StableDiffusion model works with PEFT as expected. """ transformers_class = StableDiffusionPipeline def instantiate_sd_peft(self, model_id, config_cls, config_kwargs): # Instantiate StableDiffusionPipeline model = self.transformers_class.from_pretrained(model_id) config_kwargs = config_kwargs.copy() text_encoder_kwargs = config_kwargs.pop("text_encoder") unet_kwargs = config_kwargs.pop("unet") # the remaining config kwargs should be applied to both configs for key, val in config_kwargs.items(): text_encoder_kwargs[key] = val unet_kwargs[key] = val # Instantiate text_encoder adapter config_text_encoder = config_cls(**text_encoder_kwargs) model.text_encoder = get_peft_model(model.text_encoder, config_text_encoder) # Instantiate unet adapter config_unet = config_cls(**unet_kwargs) model.unet = get_peft_model(model.unet, config_unet) # Move model to device model = model.to(self.torch_device) return model def prepare_inputs_for_testing(self): return { "prompt": "a high quality digital photo of a cute corgi", "num_inference_steps": 20, } @parameterized.expand( PeftStableDiffusionTestConfigManager.get_grid_parameters( { "model_ids": PEFT_DIFFUSERS_SD_MODELS_TO_TEST, "lora_kwargs": {"init_lora_weights": [False]}, }, ) ) def test_merge_layers(self, test_name, model_id, config_cls, config_kwargs): # Instantiate model & adapters model = self.instantiate_sd_peft(model_id, config_cls, config_kwargs) # Generate output for peft modified StableDiffusion dummy_input = self.prepare_inputs_for_testing() with temp_seed(seed=42): peft_output = np.array(model(**dummy_input).images[0]).astype(np.float32) # Merge adapter and model model.text_encoder = model.text_encoder.merge_and_unload() model.unet = model.unet.merge_and_unload() # Generate output for peft merged StableDiffusion with temp_seed(seed=42): merged_output = np.array(model(**dummy_input).images[0]).astype(np.float32) # Images are in uint8 drange, so use large atol self.assertTrue(np.allclose(peft_output, merged_output, atol=1.0)) @parameterized.expand( PeftStableDiffusionTestConfigManager.get_grid_parameters( { "model_ids": PEFT_DIFFUSERS_SD_MODELS_TO_TEST, "lora_kwargs": {"init_lora_weights": [False]}, }, ) ) def test_add_weighted_adapter_base_unchanged(self, test_name, model_id, config_cls, config_kwargs): # Instantiate model & adapters model = self.instantiate_sd_peft(model_id, config_cls, config_kwargs) # Get current available adapter config text_encoder_adapter_name = next(iter(model.text_encoder.peft_config.keys())) unet_adapter_name = next(iter(model.unet.peft_config.keys())) text_encoder_adapter_config = replace(model.text_encoder.peft_config[text_encoder_adapter_name]) unet_adapter_config = replace(model.unet.peft_config[unet_adapter_name]) # Create weighted adapters model.text_encoder.add_weighted_adapter([unet_adapter_name], [0.5], "weighted_adapter_test") model.unet.add_weighted_adapter([unet_adapter_name], [0.5], "weighted_adapter_test") # Assert that base adapters config did not change self.assertTrue( asdict(text_encoder_adapter_config) == asdict(model.text_encoder.peft_config[text_encoder_adapter_name]) ) self.assertTrue(asdict(unet_adapter_config) == asdict(model.unet.peft_config[unet_adapter_name])) @parameterized.expand( PeftStableDiffusionTestConfigManager.get_grid_parameters( { "model_ids": PEFT_DIFFUSERS_SD_MODELS_TO_TEST, "lora_kwargs": {"init_lora_weights": [False]}, }, ) ) def test_disable_adapter(self, test_name, model_id, config_cls, config_kwargs): self._test_disable_adapter(model_id, config_cls, config_kwargs)
0
hf_public_repos/peft
hf_public_repos/peft/docs/README.md
<!--- Copyright 2023 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. --> # Generating the documentation To generate the documentation, you first have to build it. Several packages are necessary to build the doc, you can install them with the following command, at the root of the code repository: ```bash pip install -e ".[docs]" ``` Then you need to install our special tool that builds the documentation: ```bash pip install git+https://github.com/huggingface/doc-builder ``` --- **NOTE** You only need to generate the documentation to inspect it locally (if you're planning changes and want to check how they look before committing for instance). You don't have to commit the built documentation. --- ## Building the documentation Once you have setup the `doc-builder` and additional packages, you can generate the documentation by typing the following command: ```bash doc-builder build peft docs/source/ --build_dir ~/tmp/test-build ``` You can adapt the `--build_dir` to set any temporary folder that you prefer. This command will create it and generate the MDX files that will be rendered as the documentation on the main website. You can inspect them in your favorite Markdown editor. ## Previewing the documentation To preview the docs, first install the `watchdog` module with: ```bash pip install watchdog ``` Then run the following command: ```bash doc-builder preview {package_name} {path_to_docs} ``` For example: ```bash doc-builder preview peft docs/source ``` The docs will be viewable at [http://localhost:3000](http://localhost:3000). You can also preview the docs once you have opened a PR. You will see a bot add a comment to a link where the documentation with your changes lives. --- **NOTE** The `preview` command only works with existing doc files. When you add a completely new file, you need to update `_toctree.yml` & restart `preview` command (`ctrl-c` to stop it & call `doc-builder preview ...` again). --- ## Adding a new element to the navigation bar Accepted files are Markdown (.md or .mdx). Create a file with its extension and put it in the source directory. You can then link it to the toc-tree by putting the filename without the extension in the [`_toctree.yml`](https://github.com/huggingface/peft/blob/main/docs/source/_toctree.yml) file. ## Renaming section headers and moving sections It helps to keep the old links working when renaming the section header and/or moving sections from one document to another. This is because the old links are likely to be used in Issues, Forums, and Social media and it'd make for a much more superior user experience if users reading those months later could still easily navigate to the originally intended information. Therefore, we simply keep a little map of moved sections at the end of the document where the original section was. The key is to preserve the original anchor. So if you renamed a section from: "Section A" to "Section B", then you can add at the end of the file: ``` Sections that were moved: [ <a href="#section-b">Section A</a><a id="section-a"></a> ] ``` and of course, if you moved it to another file, then: ``` Sections that were moved: [ <a href="../new-file#section-b">Section A</a><a id="section-a"></a> ] ``` Use the relative style to link to the new file so that the versioned docs continue to work. ## Writing Documentation - Specification The `huggingface/peft` documentation follows the [Google documentation](https://sphinxcontrib-napoleon.readthedocs.io/en/latest/example_google.html) style for docstrings, although we can write them directly in Markdown. ### Adding a new tutorial Adding a new tutorial or section is done in two steps: - Add a new file under `./source`. This file can either be ReStructuredText (.rst) or Markdown (.md). - Link that file in `./source/_toctree.yml` on the correct toc-tree. Make sure to put your new file under the proper section. It's unlikely to go in the first section (*Get Started*), so depending on the intended targets (beginners, more advanced users, or researchers) it should go in sections two, three, or four. ### Writing source documentation Values that should be put in `code` should either be surrounded by backticks: \`like so\`. Note that argument names and objects like True, None, or any strings should usually be put in `code`. When mentioning a class, function, or method, it is recommended to use our syntax for internal links so that our tool adds a link to its documentation with this syntax: \[\`XXXClass\`\] or \[\`function\`\]. This requires the class or function to be in the main package. If you want to create a link to some internal class or function, you need to provide its path. For instance: \[\`utils.gather\`\]. This will be converted into a link with `utils.gather` in the description. To get rid of the path and only keep the name of the object you are linking to in the description, add a ~: \[\`~utils.gather\`\] will generate a link with `gather` in the description. The same works for methods so you can either use \[\`XXXClass.method\`\] or \[~\`XXXClass.method\`\]. #### Defining arguments in a method Arguments should be defined with the `Args:` (or `Arguments:` or `Parameters:`) prefix, followed by a line return and an indentation. The argument should be followed by its type, with its shape if it is a tensor, a colon, and its description: ``` Args: n_layers (`int`): The number of layers of the model. ``` If the description is too long to fit in one line (more than 119 characters in total), another indentation is necessary before writing the description after the argument. Finally, to maintain uniformity if any *one* description is too long to fit on one line, the rest of the parameters should follow suit and have an indention before their description. Here's an example showcasing everything so far: ``` Args: gradient_accumulation_steps (`int`, *optional*, default to 1): The number of steps that should pass before gradients are accumulated. A number > 1 should be combined with `Accelerator.accumulate`. cpu (`bool`, *optional*): Whether or not to force the script to execute on CPU. Will ignore GPU available if set to `True` and force the execution on one process only. ``` For optional arguments or arguments with defaults we follow the following syntax: imagine we have a function with the following signature: ``` def my_function(x: str = None, a: float = 1): ``` then its documentation should look like this: ``` Args: x (`str`, *optional*): This argument controls ... and has a description longer than 119 chars. a (`float`, *optional*, defaults to 1): This argument is used to ... and has a description longer than 119 chars. ``` Note that we always omit the "defaults to \`None\`" when None is the default for any argument. Also note that even if the first line describing your argument type and its default gets long, you can't break it on several lines. You can however write as many lines as you want in the indented description (see the example above with `input_ids`). #### Writing a multi-line code block Multi-line code blocks can be useful for displaying examples. They are done between two lines of three backticks as usual in Markdown: ```` ```python # first line of code # second line # etc ``` ```` #### Writing a return block The return block should be introduced with the `Returns:` prefix, followed by a line return and an indentation. The first line should be the type of the return, followed by a line return. No need to indent further for the elements building the return. Here's an example of a single value return: ``` Returns: `List[int]`: A list of integers in the range [0, 1] --- 1 for a special token, 0 for a sequence token. ``` Here's an example of a tuple return, comprising several objects: ``` Returns: `tuple(torch.FloatTensor)` comprising various elements depending on the configuration ([`BertConfig`]) and inputs: - ** loss** (*optional*, returned when `masked_lm_labels` is provided) `torch.FloatTensor` of shape `(1,)` -- Total loss is the sum of the masked language modeling loss and the next sequence prediction (classification) loss. - **prediction_scores** (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`) -- Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). ``` ## Styling the docstring We have an automatic script running with the `make style` comment that will make sure that: - the docstrings fully take advantage of the line width - all code examples are formatted using black, like the code of the Transformers library This script may have some weird failures if you made a syntax mistake or if you uncover a bug. Therefore, it's recommended to commit your changes before running `make style`, so you can revert the changes done by that script easily. ## Writing documentation examples The syntax for Example docstrings can look as follows: ``` Example: ```python >>> import time >>> from accelerate import Accelerator >>> accelerator = Accelerator() >>> if accelerator.is_main_process: ... time.sleep(2) >>> else: ... print("I'm waiting for the main process to finish its sleep...") >>> accelerator.wait_for_everyone() >>> # Should print on every process at the same time >>> print("Everyone is here") ``` ``` The docstring should give a minimal, clear example of how the respective function is to be used in inference and also include the expected (ideally sensible) output. Often, readers will try out the example before even going through the function or class definitions. Therefore, it is of utmost importance that the example works as expected.
0
hf_public_repos/peft
hf_public_repos/peft/docs/Makefile
# Minimal makefile for Sphinx documentation # # You can set these variables from the command line. SPHINXOPTS = SPHINXBUILD = sphinx-build SOURCEDIR = source BUILDDIR = _build # Put it first so that "make" without argument is like "make help". help: @$(SPHINXBUILD) -M help "$(SOURCEDIR)" "$(BUILDDIR)" $(SPHINXOPTS) $(O) .PHONY: help Makefile # Catch-all target: route all unknown targets to Sphinx using the new # "make mode" option. $(O) is meant as a shortcut for $(SPHINXOPTS). %: Makefile @$(SPHINXBUILD) -M $@ "$(SOURCEDIR)" "$(BUILDDIR)" $(SPHINXOPTS) $(O)
0
hf_public_repos/peft/docs
hf_public_repos/peft/docs/source/install.mdx
<!--Copyright 2023 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. --> # Installation Before you start, you will need to setup your environment, install the appropriate packages, and configure 🤗 PEFT. 🤗 PEFT is tested on **Python 3.8+**. 🤗 PEFT is available on PyPI, as well as GitHub: ## PyPI To install 🤗 PEFT from PyPI: ```bash pip install peft ``` ## Source New features that haven't been released yet are added every day, which also means there may be some bugs. To try them out, install from the GitHub repository: ```bash pip install git+https://github.com/huggingface/peft ``` If you're working on contributing to the library or wish to play with the source code and see live results as you run the code, an editable version can be installed from a locally-cloned version of the repository: ```bash git clone https://github.com/huggingface/peft cd peft pip install -e . ```
0
hf_public_repos/peft/docs
hf_public_repos/peft/docs/source/index.mdx
<!--Copyright 2023 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. --> # PEFT 🤗 PEFT, or Parameter-Efficient Fine-Tuning (PEFT), is a library for efficiently adapting pre-trained language models (PLMs) to various downstream applications without fine-tuning all the model's parameters. PEFT methods only fine-tune a small number of (extra) model parameters, significantly decreasing computational and storage costs because fine-tuning large-scale PLMs is prohibitively costly. Recent state-of-the-art PEFT techniques achieve performance comparable to that of full fine-tuning. PEFT is seamlessly integrated with 🤗 Accelerate for large-scale models leveraging DeepSpeed and [Big Model Inference](https://huggingface.co/docs/accelerate/usage_guides/big_modeling). <div class="mt-10"> <div class="w-full flex flex-col space-y-4 md:space-y-0 md:grid md:grid-cols-2 md:gap-y-4 md:gap-x-5"> <a class="!no-underline border dark:border-gray-700 p-5 rounded-lg shadow hover:shadow-lg" href="quicktour" ><div class="w-full text-center bg-gradient-to-br from-blue-400 to-blue-500 rounded-lg py-1.5 font-semibold mb-5 text-white text-lg leading-relaxed">Get started</div> <p class="text-gray-700">Start here if you're new to 🤗 PEFT to get an overview of the library's main features, and how to train a model with a PEFT method.</p> </a> <a class="!no-underline border dark:border-gray-700 p-5 rounded-lg shadow hover:shadow-lg" href="./task_guides/image_classification_lora" ><div class="w-full text-center bg-gradient-to-br from-indigo-400 to-indigo-500 rounded-lg py-1.5 font-semibold mb-5 text-white text-lg leading-relaxed">How-to guides</div> <p class="text-gray-700">Practical guides demonstrating how to apply various PEFT methods across different types of tasks like image classification, causal language modeling, automatic speech recognition, and more. Learn how to use 🤗 PEFT with the DeepSpeed and Fully Sharded Data Parallel scripts.</p> </a> <a class="!no-underline border dark:border-gray-700 p-5 rounded-lg shadow hover:shadow-lg" href="./conceptual_guides/lora" ><div class="w-full text-center bg-gradient-to-br from-pink-400 to-pink-500 rounded-lg py-1.5 font-semibold mb-5 text-white text-lg leading-relaxed">Conceptual guides</div> <p class="text-gray-700">Get a better theoretical understanding of how LoRA and various soft prompting methods help reduce the number of trainable parameters to make training more efficient.</p> </a> <a class="!no-underline border dark:border-gray-700 p-5 rounded-lg shadow hover:shadow-lg" href="./package_reference/config" ><div class="w-full text-center bg-gradient-to-br from-purple-400 to-purple-500 rounded-lg py-1.5 font-semibold mb-5 text-white text-lg leading-relaxed">Reference</div> <p class="text-gray-700">Technical descriptions of how 🤗 PEFT classes and methods work.</p> </a> </div> </div> ## Supported methods 1. LoRA: [LORA: LOW-RANK ADAPTATION OF LARGE LANGUAGE MODELS](https://arxiv.org/pdf/2106.09685.pdf) 2. Prefix Tuning: [Prefix-Tuning: Optimizing Continuous Prompts for Generation](https://aclanthology.org/2021.acl-long.353/), [P-Tuning v2: Prompt Tuning Can Be Comparable to Fine-tuning Universally Across Scales and Tasks](https://arxiv.org/pdf/2110.07602.pdf) 3. P-Tuning: [GPT Understands, Too](https://arxiv.org/pdf/2103.10385.pdf) 4. Prompt Tuning: [The Power of Scale for Parameter-Efficient Prompt Tuning](https://arxiv.org/pdf/2104.08691.pdf) 5. AdaLoRA: [Adaptive Budget Allocation for Parameter-Efficient Fine-Tuning](https://arxiv.org/abs/2303.10512) 6. [LLaMA-Adapter: Efficient Fine-tuning of Language Models with Zero-init Attention](https://github.com/ZrrSkywalker/LLaMA-Adapter) 7. IA3: [Infused Adapter by Inhibiting and Amplifying Inner Activations](https://arxiv.org/abs/2205.05638) ## Supported models The tables provided below list the PEFT methods and models supported for each task. To apply a particular PEFT method for a task, please refer to the corresponding Task guides. ### Causal Language Modeling | Model | LoRA | Prefix Tuning | P-Tuning | Prompt Tuning | IA3 | |--------------| ---- | ---- | ---- | ---- | ---- | | GPT-2 | ✅ | ✅ | ✅ | ✅ | ✅ | | Bloom | ✅ | ✅ | ✅ | ✅ | ✅ | | OPT | ✅ | ✅ | ✅ | ✅ | ✅ | | GPT-Neo | ✅ | ✅ | ✅ | ✅ | ✅ | | GPT-J | ✅ | ✅ | ✅ | ✅ | ✅ | | GPT-NeoX-20B | ✅ | ✅ | ✅ | ✅ | ✅ | | LLaMA | ✅ | ✅ | ✅ | ✅ | ✅ | | ChatGLM | ✅ | ✅ | ✅ | ✅ | ✅ | ### Conditional Generation | Model | LoRA | Prefix Tuning | P-Tuning | Prompt Tuning | IA3 | | --------- | ---- | ---- | ---- | ---- | ---- | | T5 | ✅ | ✅ | ✅ | ✅ | ✅ | | BART | ✅ | ✅ | ✅ | ✅ | ✅ | ### Sequence Classification | Model | LoRA | Prefix Tuning | P-Tuning | Prompt Tuning | IA3 | | --------- | ---- | ---- | ---- | ---- | ---- | | BERT | ✅ | ✅ | ✅ | ✅ | ✅ | | RoBERTa | ✅ | ✅ | ✅ | ✅ | ✅ | | GPT-2 | ✅ | ✅ | ✅ | ✅ | | | Bloom | ✅ | ✅ | ✅ | ✅ | | | OPT | ✅ | ✅ | ✅ | ✅ | | | GPT-Neo | ✅ | ✅ | ✅ | ✅ | | | GPT-J | ✅ | ✅ | ✅ | ✅ | | | Deberta | ✅ | | ✅ | ✅ | | | Deberta-v2 | ✅ | | ✅ | ✅ | | ### Token Classification | Model | LoRA | Prefix Tuning | P-Tuning | Prompt Tuning | IA3 | | --------- | ---- | ---- | ---- | ---- | --- | | BERT | ✅ | ✅ | | | | | RoBERTa | ✅ | ✅ | | | | | GPT-2 | ✅ | ✅ | | | | | Bloom | ✅ | ✅ | | | | | OPT | ✅ | ✅ | | | | | GPT-Neo | ✅ | ✅ | | | | | GPT-J | ✅ | ✅ | | | | | Deberta | ✅ | | | | | | Deberta-v2 | ✅ | | | | | ### Text-to-Image Generation | Model | LoRA | Prefix Tuning | P-Tuning | Prompt Tuning | IA3 | | --------- | ---- | ---- | ---- | ---- | ---- | | Stable Diffusion | ✅ | | | | | ### Image Classification | Model | LoRA | Prefix Tuning | P-Tuning | Prompt Tuning | IA3 | | --------- | ---- | ---- | ---- | ---- | ---- | ---- | | ViT | ✅ | | | | | | Swin | ✅ | | | | | ### Image to text (Multi-modal models) We have tested LoRA for [ViT](https://huggingface.co/docs/transformers/model_doc/vit) and [Swin](https://huggingface.co/docs/transformers/model_doc/swin) for fine-tuning on image classification. However, it should be possible to use LoRA for any [ViT-based model](https://huggingface.co/models?pipeline_tag=image-classification&sort=downloads&search=vit) from 🤗 Transformers. Check out the [Image classification](/task_guides/image_classification_lora) task guide to learn more. If you run into problems, please open an issue. | Model | LoRA | Prefix Tuning | P-Tuning | Prompt Tuning | IA3 | | --------- | ---- | ---- | ---- | ---- | ---- | | Blip-2 | ✅ | | | | | ### Semantic Segmentation As with image-to-text models, you should be able to apply LoRA to any of the [segmentation models](https://huggingface.co/models?pipeline_tag=image-segmentation&sort=downloads). It's worth noting that we haven't tested this with every architecture yet. Therefore, if you come across any issues, kindly create an issue report. | Model | LoRA | Prefix Tuning | P-Tuning | Prompt Tuning | IA3 | | --------- | ---- | ---- | ---- | ---- | ---- | | SegFormer | ✅ | | | | |
0
hf_public_repos/peft/docs
hf_public_repos/peft/docs/source/_toctree.yml
- title: Get started sections: - local: index title: 🤗 PEFT - local: quicktour title: Quicktour - local: install title: Installation - title: Task guides sections: - local: task_guides/image_classification_lora title: Image classification using LoRA - local: task_guides/seq2seq-prefix-tuning title: Prefix tuning for conditional generation - local: task_guides/clm-prompt-tuning title: Prompt tuning for causal language modeling - local: task_guides/semantic_segmentation_lora title: Semantic segmentation using LoRA - local: task_guides/ptuning-seq-classification title: P-tuning for sequence classification - local: task_guides/dreambooth_lora title: Dreambooth fine-tuning with LoRA - local: task_guides/token-classification-lora title: LoRA for token classification - local: task_guides/int8-asr title: int8 training for automatic speech recognition - local: task_guides/semantic-similarity-lora title: semantic similairty with peft - title: 🤗 Accelerate integrations sections: - local: accelerate/deepspeed-zero3-offload title: DeepSpeed - local: accelerate/fsdp title: Fully Sharded Data Parallel - title: Conceptual guides sections: - local: conceptual_guides/lora title: LoRA - local: conceptual_guides/prompting title: Prompting - local: conceptual_guides/ia3 title: IA3 - title: Reference sections: - local: package_reference/peft_model title: PEFT model - local: package_reference/config title: Configuration - local: package_reference/tuners title: Tuners
0
hf_public_repos/peft/docs
hf_public_repos/peft/docs/source/quicktour.mdx
<!--Copyright 2023 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. --> # Quicktour 🤗 PEFT contains parameter-efficient finetuning methods for training large pretrained models. The traditional paradigm is to finetune all of a model's parameters for each downstream task, but this is becoming exceedingly costly and impractical because of the enormous number of parameters in models today. Instead, it is more efficient to train a smaller number of prompt parameters or use a reparametrization method like low-rank adaptation (LoRA) to reduce the number of trainable parameters. This quicktour will show you 🤗 PEFT's main features and help you train large pretrained models that would typically be inaccessible on consumer devices. You'll see how to train the 1.2B parameter [`bigscience/mt0-large`](https://huggingface.co/bigscience/mt0-large) model with LoRA to generate a classification label and use it for inference. ## PeftConfig Each 🤗 PEFT method is defined by a [`PeftConfig`] class that stores all the important parameters for building a [`PeftModel`]. Because you're going to use LoRA, you'll need to load and create a [`LoraConfig`] class. Within `LoraConfig`, specify the following parameters: - the `task_type`, or sequence-to-sequence language modeling in this case - `inference_mode`, whether you're using the model for inference or not - `r`, the dimension of the low-rank matrices - `lora_alpha`, the scaling factor for the low-rank matrices - `lora_dropout`, the dropout probability of the LoRA layers ```python from peft import LoraConfig, TaskType peft_config = LoraConfig(task_type=TaskType.SEQ_2_SEQ_LM, inference_mode=False, r=8, lora_alpha=32, lora_dropout=0.1) ``` <Tip> 💡 See the [`LoraConfig`] reference for more details about other parameters you can adjust. </Tip> ## PeftModel A [`PeftModel`] is created by the [`get_peft_model`] function. It takes a base model - which you can load from the 🤗 Transformers library - and the [`PeftConfig`] containing the instructions for how to configure a model for a specific 🤗 PEFT method. Start by loading the base model you want to finetune. ```python from transformers import AutoModelForSeq2SeqLM model_name_or_path = "bigscience/mt0-large" tokenizer_name_or_path = "bigscience/mt0-large" model = AutoModelForSeq2SeqLM.from_pretrained(model_name_or_path) ``` Wrap your base model and `peft_config` with the `get_peft_model` function to create a [`PeftModel`]. To get a sense of the number of trainable parameters in your model, use the [`print_trainable_parameters`] method. In this case, you're only training 0.19% of the model's parameters! 🤏 ```python from peft import get_peft_model model = get_peft_model(model, peft_config) model.print_trainable_parameters() "output: trainable params: 2359296 || all params: 1231940608 || trainable%: 0.19151053100118282" ``` That is it 🎉! Now you can train the model using the 🤗 Transformers [`~transformers.Trainer`], 🤗 Accelerate, or any custom PyTorch training loop. ## Save and load a model After your model is finished training, you can save your model to a directory using the [`~transformers.PreTrainedModel.save_pretrained`] function. You can also save your model to the Hub (make sure you log in to your Hugging Face account first) with the [`~transformers.PreTrainedModel.push_to_hub`] function. ```python model.save_pretrained("output_dir") # if pushing to Hub from huggingface_hub import notebook_login notebook_login() model.push_to_hub("my_awesome_peft_model") ``` This only saves the incremental 🤗 PEFT weights that were trained, meaning it is super efficient to store, transfer, and load. For example, this [`bigscience/T0_3B`](https://huggingface.co/smangrul/twitter_complaints_bigscience_T0_3B_LORA_SEQ_2_SEQ_LM) model trained with LoRA on the [`twitter_complaints`](https://huggingface.co/datasets/ought/raft/viewer/twitter_complaints/train) subset of the RAFT [dataset](https://huggingface.co/datasets/ought/raft) only contains two files: `adapter_config.json` and `adapter_model.bin`. The latter file is just 19MB! Easily load your model for inference using the [`~transformers.PreTrainedModel.from_pretrained`] function: ```diff from transformers import AutoModelForSeq2SeqLM + from peft import PeftModel, PeftConfig + peft_model_id = "smangrul/twitter_complaints_bigscience_T0_3B_LORA_SEQ_2_SEQ_LM" + config = PeftConfig.from_pretrained(peft_model_id) model = AutoModelForSeq2SeqLM.from_pretrained(config.base_model_name_or_path) + model = PeftModel.from_pretrained(model, peft_model_id) tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path) model = model.to(device) model.eval() inputs = tokenizer("Tweet text : @HondaCustSvc Your customer service has been horrible during the recall process. I will never purchase a Honda again. Label :", return_tensors="pt") with torch.no_grad(): outputs = model.generate(input_ids=inputs["input_ids"].to("cuda"), max_new_tokens=10) print(tokenizer.batch_decode(outputs.detach().cpu().numpy(), skip_special_tokens=True)[0]) 'complaint' ``` ## Easy loading with Auto classes If you have saved your adapter locally or on the Hub, you can leverage the `AutoPeftModelForxxx` classes and load any PEFT model with a single line of code: ```diff - from peft import PeftConfig, PeftModel - from transformers import AutoModelForCausalLM + from peft import AutoPeftModelForCausalLM - peft_config = PeftConfig.from_pretrained("ybelkada/opt-350m-lora") - base_model_path = peft_config.base_model_name_or_path - transformers_model = AutoModelForCausalLM.from_pretrained(base_model_path) - peft_model = PeftModel.from_pretrained(transformers_model, peft_config) + peft_model = AutoPeftModelForCausalLM.from_pretrained("ybelkada/opt-350m-lora") ``` Currently, supported auto classes are: `AutoPeftModelForCausalLM`, `AutoPeftModelForSequenceClassification`, `AutoPeftModelForSeq2SeqLM`, `AutoPeftModelForTokenClassification`, `AutoPeftModelForQuestionAnswering` and `AutoPeftModelForFeatureExtraction`. For other tasks (e.g. Whisper, StableDiffusion), you can load the model with: ```diff - from peft import PeftModel, PeftConfig, AutoPeftModel + from peft import AutoPeftModel - from transformers import WhisperForConditionalGeneration - model_id = "smangrul/openai-whisper-large-v2-LORA-colab" peft_model_id = "smangrul/openai-whisper-large-v2-LORA-colab" - peft_config = PeftConfig.from_pretrained(peft_model_id) - model = WhisperForConditionalGeneration.from_pretrained( - peft_config.base_model_name_or_path, load_in_8bit=True, device_map="auto" - ) - model = PeftModel.from_pretrained(model, peft_model_id) + model = AutoPeftModel.from_pretrained(peft_model_id) ``` ## Next steps Now that you've seen how to train a model with one of the 🤗 PEFT methods, we encourage you to try out some of the other methods like prompt tuning. The steps are very similar to the ones shown in this quickstart; prepare a [`PeftConfig`] for a 🤗 PEFT method, and use the `get_peft_model` to create a [`PeftModel`] from the configuration and base model. Then you can train it however you like! Feel free to also take a look at the task guides if you're interested in training a model with a 🤗 PEFT method for a specific task such as semantic segmentation, multilingual automatic speech recognition, DreamBooth, and token classification.
0
hf_public_repos/peft/docs
hf_public_repos/peft/docs/source/_config.py
# docstyle-ignore INSTALL_CONTENT = """ # PEFT installation ! pip install peft accelerate transformers # To install from source instead of the last release, comment the command above and uncomment the following one. # ! pip install git+https://github.com/huggingface/peft.git """
0
hf_public_repos/peft/docs/source
hf_public_repos/peft/docs/source/accelerate/deepspeed-zero3-offload.mdx
# DeepSpeed [DeepSpeed](https://www.deepspeed.ai/) is a library designed for speed and scale for distributed training of large models with billions of parameters. At its core is the Zero Redundancy Optimizer (ZeRO) that shards optimizer states (ZeRO-1), gradients (ZeRO-2), and parameters (ZeRO-3) across data parallel processes. This drastically reduces memory usage, allowing you to scale your training to billion parameter models. To unlock even more memory efficiency, ZeRO-Offload reduces GPU compute and memory by leveraging CPU resources during optimization. Both of these features are supported in 🤗 Accelerate, and you can use them with 🤗 PEFT. This guide will help you learn how to use our DeepSpeed [training script](https://github.com/huggingface/peft/blob/main/examples/conditional_generation/peft_lora_seq2seq_accelerate_ds_zero3_offload.py). You'll configure the script to train a large model for conditional generation with ZeRO-3 and ZeRO-Offload. <Tip> 💡 To help you get started, check out our example training scripts for [causal language modeling](https://github.com/huggingface/peft/blob/main/examples/causal_language_modeling/peft_lora_clm_accelerate_ds_zero3_offload.py) and [conditional generation](https://github.com/huggingface/peft/blob/main/examples/conditional_generation/peft_lora_seq2seq_accelerate_ds_zero3_offload.py). You can adapt these scripts for your own applications or even use them out of the box if your task is similar to the one in the scripts. </Tip> ## Configuration Start by running the following command to [create a DeepSpeed configuration file](https://huggingface.co/docs/accelerate/quicktour#launching-your-distributed-script) with 🤗 Accelerate. The `--config_file` flag allows you to save the configuration file to a specific location, otherwise it is saved as a `default_config.yaml` file in the 🤗 Accelerate cache. The configuration file is used to set the default options when you launch the training script. ```bash accelerate config --config_file ds_zero3_cpu.yaml ``` You'll be asked a few questions about your setup, and configure the following arguments. In this example, you'll use ZeRO-3 and ZeRO-Offload so make sure you pick those options. ```bash `zero_stage`: [0] Disabled, [1] optimizer state partitioning, [2] optimizer+gradient state partitioning and [3] optimizer+gradient+parameter partitioning `gradient_accumulation_steps`: Number of training steps to accumulate gradients before averaging and applying them. `gradient_clipping`: Enable gradient clipping with value. `offload_optimizer_device`: [none] Disable optimizer offloading, [cpu] offload optimizer to CPU, [nvme] offload optimizer to NVMe SSD. Only applicable with ZeRO >= Stage-2. `offload_param_device`: [none] Disable parameter offloading, [cpu] offload parameters to CPU, [nvme] offload parameters to NVMe SSD. Only applicable with ZeRO Stage-3. `zero3_init_flag`: Decides whether to enable `deepspeed.zero.Init` for constructing massive models. Only applicable with ZeRO Stage-3. `zero3_save_16bit_model`: Decides whether to save 16-bit model weights when using ZeRO Stage-3. `mixed_precision`: `no` for FP32 training, `fp16` for FP16 mixed-precision training and `bf16` for BF16 mixed-precision training. ``` An example [configuration file](https://github.com/huggingface/peft/blob/main/examples/conditional_generation/accelerate_ds_zero3_cpu_offload_config.yaml) might look like the following. The most important thing to notice is that `zero_stage` is set to `3`, and `offload_optimizer_device` and `offload_param_device` are set to the `cpu`. ```yml compute_environment: LOCAL_MACHINE deepspeed_config: gradient_accumulation_steps: 1 gradient_clipping: 1.0 offload_optimizer_device: cpu offload_param_device: cpu zero3_init_flag: true zero3_save_16bit_model: true zero_stage: 3 distributed_type: DEEPSPEED downcast_bf16: 'no' dynamo_backend: 'NO' fsdp_config: {} machine_rank: 0 main_training_function: main megatron_lm_config: {} mixed_precision: 'no' num_machines: 1 num_processes: 1 rdzv_backend: static same_network: true use_cpu: false ``` ## The important parts Let's dive a little deeper into the script so you can see what's going on, and understand how it works. Within the [`main`](https://github.com/huggingface/peft/blob/2822398fbe896f25d4dac5e468624dc5fd65a51b/examples/conditional_generation/peft_lora_seq2seq_accelerate_ds_zero3_offload.py#L103) function, the script creates an [`~accelerate.Accelerator`] class to initialize all the necessary requirements for distributed training. <Tip> 💡 Feel free to change the model and dataset inside the `main` function. If your dataset format is different from the one in the script, you may also need to write your own preprocessing function. </Tip> The script also creates a configuration for the 🤗 PEFT method you're using, which in this case, is LoRA. The [`LoraConfig`] specifies the task type and important parameters such as the dimension of the low-rank matrices, the matrices scaling factor, and the dropout probability of the LoRA layers. If you want to use a different 🤗 PEFT method, make sure you replace `LoraConfig` with the appropriate [class](../package_reference/tuners). ```diff def main(): + accelerator = Accelerator() model_name_or_path = "facebook/bart-large" dataset_name = "twitter_complaints" + peft_config = LoraConfig( task_type=TaskType.SEQ_2_SEQ_LM, inference_mode=False, r=8, lora_alpha=32, lora_dropout=0.1 ) ``` Throughout the script, you'll see the [`~accelerate.Accelerator.main_process_first`] and [`~accelerate.Accelerator.wait_for_everyone`] functions which help control and synchronize when processes are executed. The [`get_peft_model`] function takes a base model and the [`peft_config`] you prepared earlier to create a [`PeftModel`]: ```diff model = AutoModelForSeq2SeqLM.from_pretrained(model_name_or_path) + model = get_peft_model(model, peft_config) ``` Pass all the relevant training objects to 🤗 Accelerate's [`~accelerate.Accelerator.prepare`] which makes sure everything is ready for training: ```py model, train_dataloader, eval_dataloader, test_dataloader, optimizer, lr_scheduler = accelerator.prepare( model, train_dataloader, eval_dataloader, test_dataloader, optimizer, lr_scheduler ) ``` The next bit of code checks whether the DeepSpeed plugin is used in the `Accelerator`, and if the plugin exists, then the `Accelerator` uses ZeRO-3 as specified in the configuration file: ```py is_ds_zero_3 = False if getattr(accelerator.state, "deepspeed_plugin", None): is_ds_zero_3 = accelerator.state.deepspeed_plugin.zero_stage == 3 ``` Inside the training loop, the usual `loss.backward()` is replaced by 🤗 Accelerate's [`~accelerate.Accelerator.backward`] which uses the correct `backward()` method based on your configuration: ```diff for epoch in range(num_epochs): with TorchTracemalloc() as tracemalloc: model.train() total_loss = 0 for step, batch in enumerate(tqdm(train_dataloader)): outputs = model(**batch) loss = outputs.loss total_loss += loss.detach().float() + accelerator.backward(loss) optimizer.step() lr_scheduler.step() optimizer.zero_grad() ``` That is all! The rest of the script handles the training loop, evaluation, and even pushes it to the Hub for you. ## Train Run the following command to launch the training script. Earlier, you saved the configuration file to `ds_zero3_cpu.yaml`, so you'll need to pass the path to the launcher with the `--config_file` argument like this: ```bash accelerate launch --config_file ds_zero3_cpu.yaml examples/peft_lora_seq2seq_accelerate_ds_zero3_offload.py ``` You'll see some output logs that track memory usage during training, and once it's completed, the script returns the accuracy and compares the predictions to the labels: ```bash GPU Memory before entering the train : 1916 GPU Memory consumed at the end of the train (end-begin): 66 GPU Peak Memory consumed during the train (max-begin): 7488 GPU Total Peak Memory consumed during the train (max): 9404 CPU Memory before entering the train : 19411 CPU Memory consumed at the end of the train (end-begin): 0 CPU Peak Memory consumed during the train (max-begin): 0 CPU Total Peak Memory consumed during the train (max): 19411 epoch=4: train_ppl=tensor(1.0705, device='cuda:0') train_epoch_loss=tensor(0.0681, device='cuda:0') 100%|████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:27<00:00, 3.92s/it] GPU Memory before entering the eval : 1982 GPU Memory consumed at the end of the eval (end-begin): -66 GPU Peak Memory consumed during the eval (max-begin): 672 GPU Total Peak Memory consumed during the eval (max): 2654 CPU Memory before entering the eval : 19411 CPU Memory consumed at the end of the eval (end-begin): 0 CPU Peak Memory consumed during the eval (max-begin): 0 CPU Total Peak Memory consumed during the eval (max): 19411 accuracy=100.0 eval_preds[:10]=['no complaint', 'no complaint', 'complaint', 'complaint', 'no complaint', 'no complaint', 'no complaint', 'complaint', 'complaint', 'no complaint'] dataset['train'][label_column][:10]=['no complaint', 'no complaint', 'complaint', 'complaint', 'no complaint', 'no complaint', 'no complaint', 'complaint', 'complaint', 'no complaint'] ```
0
hf_public_repos/peft/docs/source
hf_public_repos/peft/docs/source/accelerate/fsdp.mdx
# Fully Sharded Data Parallel [Fully sharded data parallel](https://pytorch.org/docs/stable/fsdp.html) (FSDP) is developed for distributed training of large pretrained models up to 1T parameters. FSDP achieves this by sharding the model parameters, gradients, and optimizer states across data parallel processes and it can also offload sharded model parameters to a CPU. The memory efficiency afforded by FSDP allows you to scale training to larger batch or model sizes. <Tip warning={true}> Currently, FSDP does not confer any reduction in GPU memory usage and FSDP with CPU offload actually consumes 1.65x more GPU memory during training. You can track this PyTorch [issue](https://github.com/pytorch/pytorch/issues/91165) for any updates. </Tip> FSDP is supported in 🤗 Accelerate, and you can use it with 🤗 PEFT. This guide will help you learn how to use our FSDP [training script](https://github.com/huggingface/peft/blob/main/examples/conditional_generation/peft_lora_seq2seq_accelerate_fsdp.py). You'll configure the script to train a large model for conditional generation. ## Configuration Begin by running the following command to [create a FSDP configuration file](https://huggingface.co/docs/accelerate/main/en/usage_guides/fsdp) with 🤗 Accelerate. Use the `--config_file` flag to save the configuration file to a specific location, otherwise it is saved as a `default_config.yaml` file in the 🤗 Accelerate cache. The configuration file is used to set the default options when you launch the training script. ```bash accelerate config --config_file fsdp_config.yaml ``` You'll be asked a few questions about your setup, and configure the following arguments. For this example, make sure you fully shard the model parameters, gradients, optimizer states, leverage the CPU for offloading, and wrap model layers based on the Transformer layer class name. ```bash `Sharding Strategy`: [1] FULL_SHARD (shards optimizer states, gradients and parameters), [2] SHARD_GRAD_OP (shards optimizer states and gradients), [3] NO_SHARD `Offload Params`: Decides Whether to offload parameters and gradients to CPU `Auto Wrap Policy`: [1] TRANSFORMER_BASED_WRAP, [2] SIZE_BASED_WRAP, [3] NO_WRAP `Transformer Layer Class to Wrap`: When using `TRANSFORMER_BASED_WRAP`, user specifies comma-separated string of transformer layer class names (case-sensitive) to wrap ,e.g, `BertLayer`, `GPTJBlock`, `T5Block`, `BertLayer,BertEmbeddings,BertSelfOutput`... `Min Num Params`: minimum number of parameters when using `SIZE_BASED_WRAP` `Backward Prefetch`: [1] BACKWARD_PRE, [2] BACKWARD_POST, [3] NO_PREFETCH `State Dict Type`: [1] FULL_STATE_DICT, [2] LOCAL_STATE_DICT, [3] SHARDED_STATE_DICT ``` For example, your FSDP configuration file may look like the following: ```yaml command_file: null commands: null compute_environment: LOCAL_MACHINE deepspeed_config: {} distributed_type: FSDP downcast_bf16: 'no' dynamo_backend: 'NO' fsdp_config: fsdp_auto_wrap_policy: TRANSFORMER_BASED_WRAP fsdp_backward_prefetch_policy: BACKWARD_PRE fsdp_offload_params: true fsdp_sharding_strategy: 1 fsdp_state_dict_type: FULL_STATE_DICT fsdp_transformer_layer_cls_to_wrap: T5Block gpu_ids: null machine_rank: 0 main_process_ip: null main_process_port: null main_training_function: main megatron_lm_config: {} mixed_precision: 'no' num_machines: 1 num_processes: 2 rdzv_backend: static same_network: true tpu_name: null tpu_zone: null use_cpu: false ``` ## The important parts Let's dig a bit deeper into the training script to understand how it works. The [`main()`](https://github.com/huggingface/peft/blob/2822398fbe896f25d4dac5e468624dc5fd65a51b/examples/conditional_generation/peft_lora_seq2seq_accelerate_fsdp.py#L14) function begins with initializing an [`~accelerate.Accelerator`] class which handles everything for distributed training, such as automatically detecting your training environment. <Tip> 💡 Feel free to change the model and dataset inside the `main` function. If your dataset format is different from the one in the script, you may also need to write your own preprocessing function. </Tip> The script also creates a configuration corresponding to the 🤗 PEFT method you're using. For LoRA, you'll use [`LoraConfig`] to specify the task type, and several other important parameters such as the dimension of the low-rank matrices, the matrices scaling factor, and the dropout probability of the LoRA layers. If you want to use a different 🤗 PEFT method, replace `LoraConfig` with the appropriate [class](../package_reference/tuners). Next, the script wraps the base model and `peft_config` with the [`get_peft_model`] function to create a [`PeftModel`]. ```diff def main(): + accelerator = Accelerator() model_name_or_path = "t5-base" base_path = "temp/data/FinancialPhraseBank-v1.0" + peft_config = LoraConfig( task_type=TaskType.SEQ_2_SEQ_LM, inference_mode=False, r=8, lora_alpha=32, lora_dropout=0.1 ) model = AutoModelForSeq2SeqLM.from_pretrained(model_name_or_path) + model = get_peft_model(model, peft_config) ``` Throughout the script, you'll see the [`~accelerate.Accelerator.main_process_first`] and [`~accelerate.Accelerator.wait_for_everyone`] functions which help control and synchronize when processes are executed. After your dataset is prepared, and all the necessary training components are loaded, the script checks if you're using the `fsdp_plugin`. PyTorch offers two ways for wrapping model layers in FSDP, automatically or manually. The simplest method is to allow FSDP to automatically recursively wrap model layers without changing any other code. You can choose to wrap the model layers based on the layer name or on the size (number of parameters). In the FSDP configuration file, it uses the `TRANSFORMER_BASED_WRAP` option to wrap the [`T5Block`] layer. ```py if getattr(accelerator.state, "fsdp_plugin", None) is not None: accelerator.state.fsdp_plugin.auto_wrap_policy = fsdp_auto_wrap_policy(model) ``` Next, use 🤗 Accelerate's [`~accelerate.Accelerator.prepare`] function to prepare the model, datasets, optimizer, and scheduler for training. ```py model, train_dataloader, eval_dataloader, optimizer, lr_scheduler = accelerator.prepare( model, train_dataloader, eval_dataloader, optimizer, lr_scheduler ) ``` From here, the remainder of the script handles the training loop, evaluation, and sharing your model to the Hub. ## Train Run the following command to launch the training script. Earlier, you saved the configuration file to `fsdp_config.yaml`, so you'll need to pass the path to the launcher with the `--config_file` argument like this: ```bash accelerate launch --config_file fsdp_config.yaml examples/peft_lora_seq2seq_accelerate_fsdp.py ``` Once training is complete, the script returns the accuracy and compares the predictions to the labels.
0
hf_public_repos/peft/docs/source
hf_public_repos/peft/docs/source/task_guides/seq2seq-prefix-tuning.mdx
# Prefix tuning for conditional generation [[open-in-colab]] Prefix tuning is an additive method where only a sequence of continuous task-specific vectors is attached to the beginning of the input, or *prefix*. Only the prefix parameters are optimized and added to the hidden states in every layer of the model. The tokens of the input sequence can still attend to the prefix as *virtual tokens*. As a result, prefix tuning stores 1000x fewer parameters than a fully finetuned model, which means you can use one large language model for many tasks. <Tip> 💡 Read [Prefix-Tuning: Optimizing Continuous Prompts for Generation](https://arxiv.org/abs/2101.00190) to learn more about prefix tuning. </Tip> This guide will show you how to apply prefix tuning to train a [`t5-large`](https://huggingface.co/t5-large) model on the `sentences_allagree` subset of the [financial_phrasebank](https://huggingface.co/datasets/financial_phrasebank) dataset. Before you begin, make sure you have all the necessary libraries installed: ```bash !pip install -q peft transformers datasets ``` ## Setup Start by defining the model and tokenizer, text and label columns, and some hyperparameters so it'll be easier to start training faster later. Set the environment variable `TOKENIZERS_PARALLELSIM` to `false` to disable the fast Rust-based tokenizer which processes data in parallel by default so you can use multiprocessing in Python. ```py from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, default_data_collator, get_linear_schedule_with_warmup from peft import get_peft_config, get_peft_model, get_peft_model_state_dict, PrefixTuningConfig, TaskType from datasets import load_dataset from torch.utils.data import DataLoader from tqdm import tqdm import torch import os os.environ["TOKENIZERS_PARALLELISM"] = "false" os.environ["CUDA_VISIBLE_DEVICES"] = "3" device = "cuda" model_name_or_path = "t5-large" tokenizer_name_or_path = "t5-large" text_column = "sentence" label_column = "text_label" max_length = 128 lr = 1e-2 num_epochs = 5 batch_size = 8 ``` ## Load dataset For this guide, you'll train on the `sentences_allagree` subset of the [`financial_phrasebank`](https://huggingface.co/datasets/financial_phrasebank) dataset. This dataset contains financial news categorized by sentiment. Use 🤗 [Datasets](https://huggingface.co/docs/datasets/index) [`~datasets.Dataset.train_test_split`] function to create a training and validation split and convert the `label` value to the more readable `text_label`. All of the changes can be applied with the [`~datasets.Dataset.map`] function: ```py from datasets import load_dataset dataset = load_dataset("financial_phrasebank", "sentences_allagree") dataset = dataset["train"].train_test_split(test_size=0.1) dataset["validation"] = dataset["test"] del dataset["test"] classes = dataset["train"].features["label"].names dataset = dataset.map( lambda x: {"text_label": [classes[label] for label in x["label"]]}, batched=True, num_proc=1, ) dataset["train"][0] {"sentence": "Profit before taxes was EUR 4.0 mn , down from EUR 4.9 mn .", "label": 0, "text_label": "negative"} ``` ## Preprocess dataset Initialize a tokenizer, and create a function to pad and truncate the `model_inputs` and `labels`: ```py tokenizer = AutoTokenizer.from_pretrained(model_name_or_path) def preprocess_function(examples): inputs = examples[text_column] targets = examples[label_column] model_inputs = tokenizer(inputs, max_length=max_length, padding="max_length", truncation=True, return_tensors="pt") labels = tokenizer(targets, max_length=2, padding="max_length", truncation=True, return_tensors="pt") labels = labels["input_ids"] labels[labels == tokenizer.pad_token_id] = -100 model_inputs["labels"] = labels return model_inputs ``` Use the [`~datasets.Dataset.map`] function to apply the `preprocess_function` to the dataset. You can remove the unprocessed columns since the model doesn't need them anymore: ```py processed_datasets = dataset.map( preprocess_function, batched=True, num_proc=1, remove_columns=dataset["train"].column_names, load_from_cache_file=False, desc="Running tokenizer on dataset", ) ``` Create a [`DataLoader`](https://pytorch.org/docs/stable/data.html#torch.utils.data.DataLoader) from the `train` and `eval` datasets. Set `pin_memory=True` to speed up the data transfer to the GPU during training if the samples in your dataset are on a CPU. ```py train_dataset = processed_datasets["train"] eval_dataset = processed_datasets["validation"] train_dataloader = DataLoader( train_dataset, shuffle=True, collate_fn=default_data_collator, batch_size=batch_size, pin_memory=True ) eval_dataloader = DataLoader(eval_dataset, collate_fn=default_data_collator, batch_size=batch_size, pin_memory=True) ``` ## Train model Now you can setup your model and make sure it is ready for training. Specify the task in [`PrefixTuningConfig`], create the base `t5-large` model from [`~transformers.AutoModelForSeq2SeqLM`], and then wrap the model and configuration in a [`PeftModel`]. Feel free to print the [`PeftModel`]'s parameters and compare it to fully training all the model parameters to see how much more efficient it is! ```py peft_config = PrefixTuningConfig(task_type=TaskType.SEQ_2_SEQ_LM, inference_mode=False, num_virtual_tokens=20) model = AutoModelForSeq2SeqLM.from_pretrained(model_name_or_path) model = get_peft_model(model, peft_config) model.print_trainable_parameters() "trainable params: 983040 || all params: 738651136 || trainable%: 0.13308583065659835" ``` Setup the optimizer and learning rate scheduler: ```py optimizer = torch.optim.AdamW(model.parameters(), lr=lr) lr_scheduler = get_linear_schedule_with_warmup( optimizer=optimizer, num_warmup_steps=0, num_training_steps=(len(train_dataloader) * num_epochs), ) ``` Move the model to the GPU, and then write a training loop to begin! ```py model = model.to(device) for epoch in range(num_epochs): model.train() total_loss = 0 for step, batch in enumerate(tqdm(train_dataloader)): batch = {k: v.to(device) for k, v in batch.items()} outputs = model(**batch) loss = outputs.loss total_loss += loss.detach().float() loss.backward() optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() eval_loss = 0 eval_preds = [] for step, batch in enumerate(tqdm(eval_dataloader)): batch = {k: v.to(device) for k, v in batch.items()} with torch.no_grad(): outputs = model(**batch) loss = outputs.loss eval_loss += loss.detach().float() eval_preds.extend( tokenizer.batch_decode(torch.argmax(outputs.logits, -1).detach().cpu().numpy(), skip_special_tokens=True) ) eval_epoch_loss = eval_loss / len(eval_dataloader) eval_ppl = torch.exp(eval_epoch_loss) train_epoch_loss = total_loss / len(train_dataloader) train_ppl = torch.exp(train_epoch_loss) print(f"{epoch=}: {train_ppl=} {train_epoch_loss=} {eval_ppl=} {eval_epoch_loss=}") ``` Let's see how well the model performs on the validation set: ```py correct = 0 total = 0 for pred, true in zip(eval_preds, dataset["validation"]["text_label"]): if pred.strip() == true.strip(): correct += 1 total += 1 accuracy = correct / total * 100 print(f"{accuracy=} % on the evaluation dataset") print(f"{eval_preds[:10]=}") print(f"{dataset['validation']['text_label'][:10]=}") "accuracy=97.3568281938326 % on the evaluation dataset" "eval_preds[:10]=['neutral', 'positive', 'neutral', 'positive', 'neutral', 'negative', 'negative', 'neutral', 'neutral', 'neutral']" "dataset['validation']['text_label'][:10]=['neutral', 'positive', 'neutral', 'positive', 'neutral', 'negative', 'negative', 'neutral', 'neutral', 'neutral']" ``` 97% accuracy in just a few minutes; pretty good! ## Share model You can store and share your model on the Hub if you'd like. Login to your Hugging Face account and enter your token when prompted: ```py from huggingface_hub import notebook_login notebook_login() ``` Upload the model to a specifc model repository on the Hub with the [`~transformers.PreTrainedModel.push_to_hub`] function: ```py peft_model_id = "your-name/t5-large_PREFIX_TUNING_SEQ2SEQ" model.push_to_hub("your-name/t5-large_PREFIX_TUNING_SEQ2SEQ", use_auth_token=True) ``` If you check the model file size in the repository, you'll see that it is only 3.93MB! 🤏 ## Inference Once the model has been uploaded to the Hub, anyone can easily use it for inference. Load the configuration and model: ```py from peft import PeftModel, PeftConfig peft_model_id = "stevhliu/t5-large_PREFIX_TUNING_SEQ2SEQ" config = PeftConfig.from_pretrained(peft_model_id) model = AutoModelForSeq2SeqLM.from_pretrained(config.base_model_name_or_path) model = PeftModel.from_pretrained(model, peft_model_id) ``` Get and tokenize some text about financial news: ```py inputs = tokenizer( "The Lithuanian beer market made up 14.41 million liters in January , a rise of 0.8 percent from the year-earlier figure , the Lithuanian Brewers ' Association reporting citing the results from its members .", return_tensors="pt", ) ``` Put the model on a GPU and *generate* the predicted text sentiment: ```py model.to(device) with torch.no_grad(): inputs = {k: v.to(device) for k, v in inputs.items()} outputs = model.generate(input_ids=inputs["input_ids"], max_new_tokens=10) print(tokenizer.batch_decode(outputs.detach().cpu().numpy(), skip_special_tokens=True)) ["positive"] ```
0
hf_public_repos/peft/docs/source
hf_public_repos/peft/docs/source/task_guides/semantic-similarity-lora.md
# LoRA for semantic similarity tasks Low-Rank Adaptation (LoRA) is a reparametrization method that aims to reduce the number of trainable parameters with low-rank representations. The weight matrix is broken down into low-rank matrices that are trained and updated. All the pretrained model parameters remain frozen. After training, the low-rank matrices are added back to the original weights. This makes it more efficient to store and train a LoRA model because there are significantly fewer parameters. <Tip> 💡 Read [LoRA: Low-Rank Adaptation of Large Language Models](https://arxiv.org/abs/2106.09685) to learn more about LoRA. </Tip> In this guide, we'll be using a LoRA [script](https://github.com/huggingface/peft/tree/main/examples/lora_dreambooth) to fine-tune a [`intfloat/e5-large-v2`](https://huggingface.co/intfloat/e5-large-v2) model on the [`smangrul/amazon_esci`](https://huggingface.co/datasets/smangrul/amazon_esci) dataset for semantic similarity tasks. Feel free to explore the script to learn how things work in greater detail! ## Setup Start by installing 🤗 PEFT from [source](https://github.com/huggingface/peft), and then navigate to the directory containing the training scripts for fine-tuning DreamBooth with LoRA: ```bash cd peft/examples/feature_extraction ``` Install all the necessary required libraries with: ```bash pip install -r requirements.txt ``` ## Setup Let's start by importing all the necessary libraries you'll need: - 🤗 Transformers for loading the `intfloat/e5-large-v2` model and tokenizer - 🤗 Accelerate for the training loop - 🤗 Datasets for loading and preparing the `smangrul/amazon_esci` dataset for training and inference - 🤗 Evaluate for evaluating the model's performance - 🤗 PEFT for setting up the LoRA configuration and creating the PEFT model - 🤗 huggingface_hub for uploading the trained model to HF hub - hnswlib for creating the search index and doing fast approximate nearest neighbor search <Tip> It is assumed that PyTorch with CUDA support is already installed. </Tip> ## Train Launch the training script with `accelerate launch` and pass your hyperparameters along with the `--use_peft` argument to enable LoRA. This guide uses the following [`LoraConfig`]: ```py peft_config = LoraConfig( r=8, lora_alpha=16, bias="none", task_type=TaskType.FEATURE_EXTRACTION, target_modules=["key", "query", "value"], ) ``` Here's what a full set of script arguments may look like when running in Colab on a V100 GPU with standard RAM: ```bash accelerate launch \ --mixed_precision="fp16" \ peft_lora_embedding_semantic_search.py \ --dataset_name="smangrul/amazon_esci" \ --max_length=70 --model_name_or_path="intfloat/e5-large-v2" \ --per_device_train_batch_size=64 \ --per_device_eval_batch_size=128 \ --learning_rate=5e-4 \ --weight_decay=0.0 \ --num_train_epochs 3 \ --gradient_accumulation_steps=1 \ --output_dir="results/peft_lora_e5_ecommerce_semantic_search_colab" \ --seed=42 \ --push_to_hub \ --hub_model_id="smangrul/peft_lora_e5_ecommerce_semantic_search_colab" \ --with_tracking \ --report_to="wandb" \ --use_peft \ --checkpointing_steps "epoch" ``` ## Dataset for semantic similarity The dataset we'll be using is a small subset of the [esci-data](https://github.com/amazon-science/esci-data.git) dataset (it can be found on Hub at [smangrul/amazon_esci](https://huggingface.co/datasets/smangrul/amazon_esci)). Each sample contains a tuple of `(query, product_title, relevance_label)` where `relevance_label` is `1` if the product matches the intent of the `query`, otherwise it is `0`. Our task is to build an embedding model that can retrieve semantically similar products given a product query. This is usually the first stage in building a product search engine to retrieve all the potentially relevant products of a given query. Typically, this involves using Bi-Encoder models to cross-join the query and millions of products which could blow up quickly. Instead, you can use a Transformer model to retrieve the top K nearest similar products for a given query by embedding the query and products in the same latent embedding space. The millions of products are embedded offline to create a search index. At run time, only the query is embedded by the model, and products are retrieved from the search index with a fast approximate nearest neighbor search library such as [FAISS](https://github.com/facebookresearch/faiss) or [HNSWlib](https://github.com/nmslib/hnswlib). The next stage involves reranking the retrieved list of products to return the most relevant ones; this stage can utilize cross-encoder based models as the cross-join between the query and a limited set of retrieved products. The diagram below from [awesome-semantic-search](https://github.com/rom1504/awesome-semantic-search) outlines a rough semantic search pipeline: <div class="flex justify-center"> <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/peft/semantic_search_pipeline.png" alt="Semantic Search Pipeline"/> </div> For this task guide, we will explore the first stage of training an embedding model to predict semantically similar products given a product query. ## Training script deep dive We finetune [e5-large-v2](https://huggingface.co/intfloat/e5-large-v2) which tops the [MTEB benchmark](https://huggingface.co/spaces/mteb/leaderboard) using PEFT-LoRA. [`AutoModelForSentenceEmbedding`] returns the query and product embeddings, and the `mean_pooling` function pools them across the sequence dimension and normalizes them: ```py class AutoModelForSentenceEmbedding(nn.Module): def __init__(self, model_name, tokenizer, normalize=True): super(AutoModelForSentenceEmbedding, self).__init__() self.model = AutoModel.from_pretrained(model_name) self.normalize = normalize self.tokenizer = tokenizer def forward(self, **kwargs): model_output = self.model(**kwargs) embeddings = self.mean_pooling(model_output, kwargs["attention_mask"]) if self.normalize: embeddings = torch.nn.functional.normalize(embeddings, p=2, dim=1) return embeddings def mean_pooling(self, model_output, attention_mask): token_embeddings = model_output[0] # First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) def __getattr__(self, name: str): """Forward missing attributes to the wrapped module.""" try: return super().__getattr__(name) # defer to nn.Module's logic except AttributeError: return getattr(self.model, name) def get_cosine_embeddings(query_embs, product_embs): return torch.sum(query_embs * product_embs, axis=1) def get_loss(cosine_score, labels): return torch.mean(torch.square(labels * (1 - cosine_score) + torch.clamp((1 - labels) * cosine_score, min=0.0))) ``` The `get_cosine_embeddings` function computes the cosine similarity and the `get_loss` function computes the loss. The loss enables the model to learn that a cosine score of `1` for query and product pairs is relevant, and a cosine score of `0` or below is irrelevant. Define the [`PeftConfig`] with your LoRA hyperparameters, and create a [`PeftModel`]. We use 🤗 Accelerate for handling all device management, mixed precision training, gradient accumulation, WandB tracking, and saving/loading utilities. ## Results The table below compares the training time, the batch size that could be fit in Colab, and the best ROC-AUC scores between a PEFT model and a fully fine-tuned model: | Training Type | Training time per epoch (Hrs) | Batch Size that fits | ROC-AUC score (higher is better) | | ----------------- | ------------- | ---------- | -------- | | Pre-Trained e5-large-v2 | - | - | 0.68 | | PEFT | 1.73 | 64 | 0.787 | | Full Fine-Tuning | 2.33 | 32 | 0.7969 | The PEFT-LoRA model trains **1.35X** faster and can fit **2X** batch size compared to the fully fine-tuned model, and the performance of PEFT-LoRA is comparable to the fully fine-tuned model with a relative drop of **-1.24%** in ROC-AUC. This gap can probably be closed with bigger models as mentioned in [The Power of Scale for Parameter-Efficient Prompt Tuning ](https://huggingface.co/papers/2104.08691). ## Inference Let's go! Now we have the model, we need to create a search index of all the products in our catalog. Please refer to `peft_lora_embedding_semantic_similarity_inference.ipynb` for the complete inference code. 1. Get a list of ids to products which we can call `ids_to_products_dict`: ```bash {0: 'RamPro 10" All Purpose Utility Air Tires/Wheels with a 5/8" Diameter Hole with Double Sealed Bearings (Pack of 2)', 1: 'MaxAuto 2-Pack 13x5.00-6 2PLY Turf Mower Tractor Tire with Yellow Rim, (3" Centered Hub, 3/4" Bushings )', 2: 'NEIKO 20601A 14.5 inch Steel Tire Spoon Lever Iron Tool Kit | Professional Tire Changing Tool for Motorcycle, Dirt Bike, Lawn Mower | 3 pcs Tire Spoons | 3 Rim Protector | Valve Tool | 6 Valve Cores', 3: '2PK 13x5.00-6 13x5.00x6 13x5x6 13x5-6 2PLY Turf Mower Tractor Tire with Gray Rim', 4: '(Set of 2) 15x6.00-6 Husqvarna/Poulan Tire Wheel Assy .75" Bearing', 5: 'MaxAuto 2 Pcs 16x6.50-8 Lawn Mower Tire for Garden Tractors Ridings, 4PR, Tubeless', 6: 'Dr.Roc Tire Spoon Lever Dirt Bike Lawn Mower Motorcycle Tire Changing Tools with Durable Bag 3 Tire Irons 2 Rim Protectors 1 Valve Stems Set TR412 TR413', 7: 'MARASTAR 21446-2PK 15x6.00-6" Front Tire Assembly Replacement-Craftsman Mower, Pack of 2', 8: '15x6.00-6" Front Tire Assembly Replacement for 100 and 300 Series John Deere Riding Mowers - 2 pack', 9: 'Honda HRR Wheel Kit (2 Front 44710-VL0-L02ZB, 2 Back 42710-VE2-M02ZE)', 10: 'Honda 42710-VE2-M02ZE (Replaces 42710-VE2-M01ZE) Lawn Mower Rear Wheel Set of 2' ... ``` 2. Use the trained [smangrul/peft_lora_e5_ecommerce_semantic_search_colab](https://huggingface.co/smangrul/peft_lora_e5_ecommerce_semantic_search_colab) model to get the product embeddings: ```py # base model model = AutoModelForSentenceEmbedding(model_name_or_path, tokenizer) # peft config and wrapping model = PeftModel.from_pretrained(model, peft_model_id) device = "cuda" model.to(device) model.eval() model = model.merge_and_unload() import numpy as np num_products= len(dataset) d = 1024 product_embeddings_array = np.zeros((num_products, d)) for step, batch in enumerate(tqdm(dataloader)): with torch.no_grad(): with torch.amp.autocast(dtype=torch.bfloat16, device_type="cuda"): product_embs = model(**{k:v.to(device) for k, v in batch.items()}).detach().float().cpu() start_index = step*batch_size end_index = start_index+batch_size if (start_index+batch_size) < num_products else num_products product_embeddings_array[start_index:end_index] = product_embs del product_embs, batch ``` 3. Create a search index using HNSWlib: ```py def construct_search_index(dim, num_elements, data): # Declaring index search_index = hnswlib.Index(space = 'ip', dim = dim) # possible options are l2, cosine or ip # Initializing index - the maximum number of elements should be known beforehand search_index.init_index(max_elements = num_elements, ef_construction = 200, M = 100) # Element insertion (can be called several times): ids = np.arange(num_elements) search_index.add_items(data, ids) return search_index product_search_index = construct_search_index(d, num_products, product_embeddings_array) ``` 4. Get the query embeddings and nearest neighbors: ```py def get_query_embeddings(query, model, tokenizer, device): inputs = tokenizer(query, padding="max_length", max_length=70, truncation=True, return_tensors="pt") model.eval() with torch.no_grad(): query_embs = model(**{k:v.to(device) for k, v in inputs.items()}).detach().cpu() return query_embs[0] def get_nearest_neighbours(k, search_index, query_embeddings, ids_to_products_dict, threshold=0.7): # Controlling the recall by setting ef: search_index.set_ef(100) # ef should always be > k # Query dataset, k - number of the closest elements (returns 2 numpy arrays) labels, distances = search_index.knn_query(query_embeddings, k = k) return [(ids_to_products_dict[label], (1-distance)) for label, distance in zip(labels[0], distances[0]) if (1-distance)>=threshold] ``` 5. Let's test it out with the query `deep learning books`: ```py query = "deep learning books" k = 10 query_embeddings = get_query_embeddings(query, model, tokenizer, device) search_results = get_nearest_neighbours(k, product_search_index, query_embeddings, ids_to_products_dict, threshold=0.7) print(f"{query=}") for product, cosine_sim_score in search_results: print(f"cosine_sim_score={round(cosine_sim_score,2)} {product=}") ``` Output: ```bash query='deep learning books' cosine_sim_score=0.95 product='Deep Learning (The MIT Press Essential Knowledge series)' cosine_sim_score=0.93 product='Practical Deep Learning: A Python-Based Introduction' cosine_sim_score=0.9 product='Hands-On Machine Learning with Scikit-Learn and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems' cosine_sim_score=0.9 product='Machine Learning: A Hands-On, Project-Based Introduction to Machine Learning for Absolute Beginners: Mastering Engineering ML Systems using Scikit-Learn and TensorFlow' cosine_sim_score=0.9 product='Mastering Machine Learning on AWS: Advanced machine learning in Python using SageMaker, Apache Spark, and TensorFlow' cosine_sim_score=0.9 product='The Hundred-Page Machine Learning Book' cosine_sim_score=0.89 product='Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems' cosine_sim_score=0.89 product='Machine Learning: A Journey from Beginner to Advanced Including Deep Learning, Scikit-learn and Tensorflow' cosine_sim_score=0.88 product='Mastering Machine Learning with scikit-learn' cosine_sim_score=0.88 product='Mastering Machine Learning with scikit-learn - Second Edition: Apply effective learning algorithms to real-world problems using scikit-learn' ``` Books on deep learning and machine learning are retrieved even though `machine learning` wasn't included in the query. This means the model has learned that these books are semantically relevant to the query based on the purchase behavior of customers on Amazon. The next steps would ideally involve using ONNX/TensorRT to optimize the model and using a Triton server to host it. Check out 🤗 [Optimum](https://huggingface.co/docs/optimum/index) for related optimizations for efficient serving!
0
hf_public_repos/peft/docs/source
hf_public_repos/peft/docs/source/task_guides/int8-asr.mdx
# int8 training for automatic speech recognition Quantization reduces the precision of floating point data types, decreasing the memory required to store model weights. However, quantization degrades inference performance because you lose information when you reduce the precision. 8-bit or `int8` quantization uses only a quarter precision, but it does not degrade performance because it doesn't just drop the bits or data. Instead, `int8` quantization *rounds* from one data type to another. <Tip> 💡 Read the [LLM.int8(): 8-bit Matrix Multiplication for Transformers at Scale](https://arxiv.org/abs/2208.07339) paper to learn more, or you can take a look at the corresponding [blog post](https://huggingface.co/blog/hf-bitsandbytes-integration) for a gentler introduction. </Tip> This guide will show you how to train a [`openai/whisper-large-v2`](https://huggingface.co/openai/whisper-large-v2) model for multilingual automatic speech recognition (ASR) using a combination of `int8` quantization and LoRA. You'll train Whisper for multilingual ASR on Marathi from the [Common Voice 11.0](https://huggingface.co/datasets/mozilla-foundation/common_voice_11_0) dataset. Before you start, make sure you have all the necessary libraries installed: ```bash !pip install -q peft transformers datasets accelerate evaluate jiwer bitsandbytes ``` ## Setup Let's take care of some of the setup first so you can start training faster later. Set the `CUDA_VISIBLE_DEVICES` to `0` to use the first GPU on your machine. Then you can specify the model name (either a Hub model repository id or a path to a directory containing the model), language and language abbreviation to train on, the task type, and the dataset name: ```py import os os.environ["CUDA_VISIBLE_DEVICES"] = "0" model_name_or_path = "openai/whisper-large-v2" language = "Marathi" language_abbr = "mr" task = "transcribe" dataset_name = "mozilla-foundation/common_voice_11_0" ``` You can also log in to your Hugging Face account to save and share your trained model on the Hub if you'd like: ```py from huggingface_hub import notebook_login notebook_login() ``` ## Load dataset and metric The [Common Voice 11.0](https://huggingface.co/datasets/mozilla-foundation/common_voice_11_0) dataset contains many hours of recorded speech in many different languages. This guide uses the [Marathi](https://huggingface.co/datasets/mozilla-foundation/common_voice_11_0/viewer/mr/train) language as an example, but feel free to use any other language you're interested in. Initialize a [`~datasets.DatasetDict`] structure, and load the [`train`] (load both the `train+validation` split into `train`) and [`test`] splits from the dataset into it: ```py from datasets import load_dataset from datasets import load_dataset, DatasetDict common_voice = DatasetDict() common_voice["train"] = load_dataset(dataset_name, language_abbr, split="train+validation", use_auth_token=True) common_voice["test"] = load_dataset(dataset_name, language_abbr, split="test", use_auth_token=True) common_voice["train"][0] ``` ## Preprocess dataset Let's prepare the dataset for training. Load a feature extractor, tokenizer, and processor. You should also pass the language and task to the tokenizer and processor so they know how to process the inputs: ```py from transformers import AutoFeatureExtractor, AutoTokenizer, AutoProcessor feature_extractor = AutoFeatureExtractor.from_pretrained(model_name_or_path) tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, language=language, task=task) processor = AutoProcessor.from_pretrained(model_name_or_path, language=language, task=task) ``` You'll only be training on the `sentence` and `audio` columns, so you can remove the rest of the metadata with [`~datasets.Dataset.remove_columns`]: ```py common_voice = common_voice.remove_columns( ["accent", "age", "client_id", "down_votes", "gender", "locale", "path", "segment", "up_votes"] ) common_voice["train"][0] { "audio": { "path": "/root/.cache/huggingface/datasets/downloads/extracted/f7e1ef6a2d14f20194999aad5040c5d4bb3ead1377de3e1bbc6e9dba34d18a8a/common_voice_mr_30585613.mp3", "array": array( [1.13686838e-13, -1.42108547e-13, -1.98951966e-13, ..., 4.83472422e-06, 3.54798703e-06, 1.63231743e-06] ), "sampling_rate": 48000, }, "sentence": "आईचे आजारपण वाढत चालले, तसतशी मथीही नीट खातपीतनाशी झाली.", } ``` If you look at the `sampling_rate`, you'll see the audio was sampled at 48kHz. The Whisper model was pretrained on audio inputs at 16kHZ which means you'll need to downsample the audio inputs to match what the model was pretrained on. Downsample the audio by using the [`~datasets.Dataset.cast_column`] method on the `audio` column, and set the `sampling_rate` to 16kHz. The audio input is resampled on the fly the next time you call it: ```py from datasets import Audio common_voice = common_voice.cast_column("audio", Audio(sampling_rate=16000)) common_voice["train"][0] { "audio": { "path": "/root/.cache/huggingface/datasets/downloads/extracted/f7e1ef6a2d14f20194999aad5040c5d4bb3ead1377de3e1bbc6e9dba34d18a8a/common_voice_mr_30585613.mp3", "array": array( [-3.06954462e-12, -3.63797881e-12, -4.54747351e-12, ..., -7.74800901e-06, -1.74738125e-06, 4.36312439e-06] ), "sampling_rate": 16000, }, "sentence": "आईचे आजारपण वाढत चालले, तसतशी मथीही नीट खातपीतनाशी झाली.", } ``` Once you've cleaned up the dataset, you can write a function to generate the correct model inputs. The function should: 1. Resample the audio inputs to 16kHZ by loading the `audio` column. 2. Compute the input features from the audio `array` using the feature extractor. 3. Tokenize the `sentence` column to the input labels. ```py def prepare_dataset(batch): audio = batch["audio"] batch["input_features"] = feature_extractor(audio["array"], sampling_rate=audio["sampling_rate"]).input_features[0] batch["labels"] = tokenizer(batch["sentence"]).input_ids return batch ``` Apply the `prepare_dataset` function to the dataset with the [`~datasets.Dataset.map`] function, and set the `num_proc` argument to `2` to enable multiprocessing (if `map` hangs, then set `num_proc=1`): ```py common_voice = common_voice.map(prepare_dataset, remove_columns=common_voice.column_names["train"], num_proc=2) ``` Finally, create a `DataCollator` class to pad the labels in each batch to the maximum length, and replace padding with `-100` so they're ignored by the loss function. Then initialize an instance of the data collator: ```py import torch from dataclasses import dataclass from typing import Any, Dict, List, Union @dataclass class DataCollatorSpeechSeq2SeqWithPadding: processor: Any def __call__(self, features: List[Dict[str, Union[List[int], torch.Tensor]]]) -> Dict[str, torch.Tensor]: input_features = [{"input_features": feature["input_features"]} for feature in features] batch = self.processor.feature_extractor.pad(input_features, return_tensors="pt") label_features = [{"input_ids": feature["labels"]} for feature in features] labels_batch = self.processor.tokenizer.pad(label_features, return_tensors="pt") labels = labels_batch["input_ids"].masked_fill(labels_batch.attention_mask.ne(1), -100) if (labels[:, 0] == self.processor.tokenizer.bos_token_id).all().cpu().item(): labels = labels[:, 1:] batch["labels"] = labels return batch data_collator = DataCollatorSpeechSeq2SeqWithPadding(processor=processor) ``` ## Train Now that the dataset is ready, you can turn your attention to the model. Start by loading the pretrained [`openai/whisper-large-v2`]() model from [`~transformers.AutoModelForSpeechSeq2Seq`], and make sure to set the [`~transformers.BitsAndBytesConfig.load_in_8bit`] argument to `True` to enable `int8` quantization. The `device_map=auto` argument automatically determines how to load and store the model weights: ```py from transformers import AutoModelForSpeechSeq2Seq model = AutoModelForSpeechSeq2Seq.from_pretrained(model_name_or_path, load_in_8bit=True, device_map="auto") ``` You should configure `forced_decoder_ids=None` because no tokens are used before sampling, and you won't need to suppress any tokens during generation either: ```py model.config.forced_decoder_ids = None model.config.suppress_tokens = [] ``` To get the model ready for `int8` quantization, use the utility function [`prepare_model_for_int8_training`](https://github.com/huggingface/peft/blob/34027fe813756897767b9a6f19ae7f1c4c7b418c/src/peft/utils/other.py#L35) to handle the following: - casts all the non `int8` modules to full precision (`fp32`) for stability - adds a forward hook to the input embedding layer to calculate the gradients of the input hidden states - enables gradient checkpointing for more memory-efficient training ```py from peft import prepare_model_for_int8_training model = prepare_model_for_int8_training(model) ``` Let's also apply LoRA to the training to make it even more efficient. Load a [`~peft.LoraConfig`] and configure the following parameters: - `r`, the dimension of the low-rank matrices - `lora_alpha`, scaling factor for the weight matrices - `target_modules`, the name of the attention matrices to apply LoRA to (`q_proj` and `v_proj`, or query and value in this case) - `lora_dropout`, dropout probability of the LoRA layers - `bias`, set to `none` <Tip> 💡 The weight matrix is scaled by `lora_alpha/r`, and a higher `lora_alpha` value assigns more weight to the LoRA activations. For performance, we recommend setting bias to `None` first, and then `lora_only`, before trying `all`. </Tip> ```py from peft import LoraConfig, PeftModel, LoraModel, LoraConfig, get_peft_model config = LoraConfig(r=32, lora_alpha=64, target_modules=["q_proj", "v_proj"], lora_dropout=0.05, bias="none") ``` After you set up the [`~peft.LoraConfig`], wrap it and the base model with the [`get_peft_model`] function to create a [`PeftModel`]. Print out the number of trainable parameters to see how much more efficient LoRA is compared to fully training the model! ```py model = get_peft_model(model, config) model.print_trainable_parameters() "trainable params: 15728640 || all params: 1559033600 || trainable%: 1.0088711365810203" ``` Now you're ready to define some training hyperparameters in the [`~transformers.Seq2SeqTrainingArguments`] class, such as where to save the model to, batch size, learning rate, and number of epochs to train for. The [`PeftModel`] doesn't have the same signature as the base model, so you'll need to explicitly set `remove_unused_columns=False` and `label_names=["labels"]`. ```py from transformers import Seq2SeqTrainingArguments training_args = Seq2SeqTrainingArguments( output_dir="your-name/int8-whisper-large-v2-asr", per_device_train_batch_size=8, gradient_accumulation_steps=1, learning_rate=1e-3, warmup_steps=50, num_train_epochs=3, evaluation_strategy="epoch", fp16=True, per_device_eval_batch_size=8, generation_max_length=128, logging_steps=25, remove_unused_columns=False, label_names=["labels"], ) ``` It is also a good idea to write a custom [`~transformers.TrainerCallback`] to save model checkpoints during training: ```py from transformers.trainer_utils import PREFIX_CHECKPOINT_DIR class SavePeftModelCallback(TrainerCallback): def on_save( self, args: TrainingArguments, state: TrainerState, control: TrainerControl, **kwargs, ): checkpoint_folder = os.path.join(args.output_dir, f"{PREFIX_CHECKPOINT_DIR}-{state.global_step}") peft_model_path = os.path.join(checkpoint_folder, "adapter_model") kwargs["model"].save_pretrained(peft_model_path) pytorch_model_path = os.path.join(checkpoint_folder, "pytorch_model.bin") if os.path.exists(pytorch_model_path): os.remove(pytorch_model_path) return control ``` Pass the `Seq2SeqTrainingArguments`, model, datasets, data collator, tokenizer, and callback to the [`~transformers.Seq2SeqTrainer`]. You can optionally set `model.config.use_cache = False` to silence any warnings. Once everything is ready, call [`~transformers.Trainer.train`] to start training! ```py from transformers import Seq2SeqTrainer, TrainerCallback, Seq2SeqTrainingArguments, TrainerState, TrainerControl trainer = Seq2SeqTrainer( args=training_args, model=model, train_dataset=common_voice["train"], eval_dataset=common_voice["test"], data_collator=data_collator, tokenizer=processor.feature_extractor, callbacks=[SavePeftModelCallback], ) model.config.use_cache = False trainer.train() ``` ## Evaluate [Word error rate](https://huggingface.co/spaces/evaluate-metric/wer) (WER) is a common metric for evaluating ASR models. Load the WER metric from 🤗 Evaluate: ```py import evaluate metric = evaluate.load("wer") ``` Write a loop to evaluate the model performance. Set the model to evaluation mode first, and write the loop with [`torch.cuda.amp.autocast()`](https://pytorch.org/docs/stable/amp.html) because `int8` training requires autocasting. Then, pass a batch of examples to the model to evaluate. Get the decoded predictions and labels, and add them as a batch to the WER metric before calling `compute` to get the final WER score: ```py from torch.utils.data import DataLoader from tqdm import tqdm import numpy as np import gc eval_dataloader = DataLoader(common_voice["test"], batch_size=8, collate_fn=data_collator) model.eval() for step, batch in enumerate(tqdm(eval_dataloader)): with torch.cuda.amp.autocast(): with torch.no_grad(): generated_tokens = ( model.generate( input_features=batch["input_features"].to("cuda"), decoder_input_ids=batch["labels"][:, :4].to("cuda"), max_new_tokens=255, ) .cpu() .numpy() ) labels = batch["labels"].cpu().numpy() labels = np.where(labels != -100, labels, tokenizer.pad_token_id) decoded_preds = tokenizer.batch_decode(generated_tokens, skip_special_tokens=True) decoded_labels = tokenizer.batch_decode(labels, skip_special_tokens=True) metric.add_batch( predictions=decoded_preds, references=decoded_labels, ) del generated_tokens, labels, batch gc.collect() wer = 100 * metric.compute() print(f"{wer=}") ``` ## Share model Once you're happy with your results, you can upload your model to the Hub with the [`~transformers.PreTrainedModel.push_to_hub`] method: ```py model.push_to_hub("your-name/int8-whisper-large-v2-asr") ``` ## Inference Let's test the model out now! Instantiate the model configuration from [`PeftConfig`], and from here, you can use the configuration to load the base and [`PeftModel`], tokenizer, processor, and feature extractor. Remember to define the `language` and `task` in the tokenizer, processor, and `forced_decoder_ids`: ```py from peft import PeftModel, PeftConfig peft_model_id = "smangrul/openai-whisper-large-v2-LORA-colab" language = "Marathi" task = "transcribe" peft_config = PeftConfig.from_pretrained(peft_model_id) model = WhisperForConditionalGeneration.from_pretrained( peft_config.base_model_name_or_path, load_in_8bit=True, device_map="auto" ) model = PeftModel.from_pretrained(model, peft_model_id) tokenizer = WhisperTokenizer.from_pretrained(peft_config.base_model_name_or_path, language=language, task=task) processor = WhisperProcessor.from_pretrained(peft_config.base_model_name_or_path, language=language, task=task) feature_extractor = processor.feature_extractor forced_decoder_ids = processor.get_decoder_prompt_ids(language=language, task=task) ``` Load an audio sample (you can listen to it in the [Dataset Preview](https://huggingface.co/datasets/stevhliu/dummy)) to transcribe, and the [`~transformers.AutomaticSpeechRecognitionPipeline`]: ```py from transformers import AutomaticSpeechRecognitionPipeline audio = "https://huggingface.co/datasets/stevhliu/dummy/resolve/main/mrt_01523_00028548203.wav" pipeline = AutomaticSpeechRecognitionPipeline(model=model, tokenizer=tokenizer, feature_extractor=feature_extractor) ``` Then use the pipeline with autocast as a context manager on the audio sample: ```py with torch.cuda.amp.autocast(): text = pipe(audio, generate_kwargs={"forced_decoder_ids": forced_decoder_ids}, max_new_tokens=255)["text"] text "मी तुमच्यासाठी काही करू शकतो का?" ```
0
hf_public_repos/peft/docs/source
hf_public_repos/peft/docs/source/task_guides/dreambooth_lora.mdx
<!--Copyright 2023 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. --> # DreamBooth fine-tuning with LoRA This guide demonstrates how to use LoRA, a low-rank approximation technique, to fine-tune DreamBooth with the `CompVis/stable-diffusion-v1-4` model. Although LoRA was initially designed as a technique for reducing the number of trainable parameters in large-language models, the technique can also be applied to diffusion models. Performing a complete model fine-tuning of diffusion models is a time-consuming task, which is why lightweight techniques like DreamBooth or Textual Inversion gained popularity. With the introduction of LoRA, customizing and fine-tuning a model on a specific dataset has become even faster. In this guide we'll be using a DreamBooth fine-tuning script that is available in [PEFT's GitHub repo](https://github.com/huggingface/peft/tree/main/examples/lora_dreambooth). Feel free to explore it and learn how things work. ## Set up your environment Start by cloning the PEFT repository: ```bash git clone https://github.com/huggingface/peft ``` Navigate to the directory containing the training scripts for fine-tuning Dreambooth with LoRA: ```bash cd peft/examples/lora_dreambooth ``` Set up your environment: install PEFT, and all the required libraries. At the time of writing this guide we recommend installing PEFT from source. ```bash pip install -r requirements.txt pip install git+https://github.com/huggingface/peft ``` ## Fine-tuning DreamBooth Prepare the images that you will use for fine-tuning the model. Set up a few environment variables: ```bash export MODEL_NAME="CompVis/stable-diffusion-v1-4" export INSTANCE_DIR="path-to-instance-images" export CLASS_DIR="path-to-class-images" export OUTPUT_DIR="path-to-save-model" ``` Here: - `INSTANCE_DIR`: The directory containing the images that you intend to use for training your model. - `CLASS_DIR`: The directory containing class-specific images. In this example, we use prior preservation to avoid overfitting and language-drift. For prior preservation, you need other images of the same class as part of the training process. However, these images can be generated and the training script will save them to a local path you specify here. - `OUTPUT_DIR`: The destination folder for storing the trained model's weights. To learn more about DreamBooth fine-tuning with prior-preserving loss, check out the [Diffusers documentation](https://huggingface.co/docs/diffusers/training/dreambooth#finetuning-with-priorpreserving-loss). Launch the training script with `accelerate` and pass hyperparameters, as well as LoRa-specific arguments to it such as: - `use_lora`: Enables LoRa in the training script. - `lora_r`: The dimension used by the LoRA update matrices. - `lora_alpha`: Scaling factor. - `lora_text_encoder_r`: LoRA rank for text encoder. - `lora_text_encoder_alpha`: LoRA alpha (scaling factor) for text encoder. Here's what the full set of script arguments may look like: ```bash accelerate launch train_dreambooth.py \ --pretrained_model_name_or_path=$MODEL_NAME \ --instance_data_dir=$INSTANCE_DIR \ --class_data_dir=$CLASS_DIR \ --output_dir=$OUTPUT_DIR \ --train_text_encoder \ --with_prior_preservation --prior_loss_weight=1.0 \ --instance_prompt="a photo of sks dog" \ --class_prompt="a photo of dog" \ --resolution=512 \ --train_batch_size=1 \ --lr_scheduler="constant" \ --lr_warmup_steps=0 \ --num_class_images=200 \ --use_lora \ --lora_r 16 \ --lora_alpha 27 \ --lora_text_encoder_r 16 \ --lora_text_encoder_alpha 17 \ --learning_rate=1e-4 \ --gradient_accumulation_steps=1 \ --gradient_checkpointing \ --max_train_steps=800 ``` ## Inference with a single adapter To run inference with the fine-tuned model, first specify the base model with which the fine-tuned LoRA weights will be combined: ```python import os import torch from diffusers import StableDiffusionPipeline from peft import PeftModel, LoraConfig MODEL_NAME = "CompVis/stable-diffusion-v1-4" ``` Next, add a function that will create a Stable Diffusion pipeline for image generation. It will combine the weights of the base model with the fine-tuned LoRA weights using `LoraConfig`. ```python def get_lora_sd_pipeline( ckpt_dir, base_model_name_or_path=None, dtype=torch.float16, device="cuda", adapter_name="default" ): unet_sub_dir = os.path.join(ckpt_dir, "unet") text_encoder_sub_dir = os.path.join(ckpt_dir, "text_encoder") if os.path.exists(text_encoder_sub_dir) and base_model_name_or_path is None: config = LoraConfig.from_pretrained(text_encoder_sub_dir) base_model_name_or_path = config.base_model_name_or_path if base_model_name_or_path is None: raise ValueError("Please specify the base model name or path") pipe = StableDiffusionPipeline.from_pretrained(base_model_name_or_path, torch_dtype=dtype).to(device) pipe.unet = PeftModel.from_pretrained(pipe.unet, unet_sub_dir, adapter_name=adapter_name) if os.path.exists(text_encoder_sub_dir): pipe.text_encoder = PeftModel.from_pretrained( pipe.text_encoder, text_encoder_sub_dir, adapter_name=adapter_name ) if dtype in (torch.float16, torch.bfloat16): pipe.unet.half() pipe.text_encoder.half() pipe.to(device) return pipe ``` Now you can use the function above to create a Stable Diffusion pipeline using the LoRA weights that you have created during the fine-tuning step. Note, if you're running inference on the same machine, the path you specify here will be the same as `OUTPUT_DIR`. ```python pipe = get_lora_sd_pipeline(Path("path-to-saved-model"), adapter_name="dog") ``` Once you have the pipeline with your fine-tuned model, you can use it to generate images: ```python prompt = "sks dog playing fetch in the park" negative_prompt = "low quality, blurry, unfinished" image = pipe(prompt, num_inference_steps=50, guidance_scale=7, negative_prompt=negative_prompt).images[0] image.save("DESTINATION_PATH_FOR_THE_IMAGE") ``` <div class="flex justify-center"> <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/peft/lora_dreambooth_dog_park.png" alt="Generated image of a dog in a park"/> </div> ## Multi-adapter inference With PEFT you can combine multiple adapters for inference. In the previous example you have fine-tuned Stable Diffusion on some dog images. The pipeline created based on these weights got a name - `adapter_name="dog`. Now, suppose you also fine-tuned this base model on images of a crochet toy. Let's see how we can use both adapters. First, you'll need to perform all the steps as in the single adapter inference example: 1. Specify the base model. 2. Add a function that creates a Stable Diffusion pipeline for image generation uses LoRA weights. 3. Create a `pipe` with `adapter_name="dog"` based on the model fine-tuned on dog images. Next, you're going to need a few more helper functions. To load another adapter, create a `load_adapter()` function that leverages `load_adapter()` method of `PeftModel` (e.g. `pipe.unet.load_adapter(peft_model_path, adapter_name)`): ```python def load_adapter(pipe, ckpt_dir, adapter_name): unet_sub_dir = os.path.join(ckpt_dir, "unet") text_encoder_sub_dir = os.path.join(ckpt_dir, "text_encoder") pipe.unet.load_adapter(unet_sub_dir, adapter_name=adapter_name) if os.path.exists(text_encoder_sub_dir): pipe.text_encoder.load_adapter(text_encoder_sub_dir, adapter_name=adapter_name) ``` To switch between adapters, write a function that uses `set_adapter()` method of `PeftModel` (see `pipe.unet.set_adapter(adapter_name)`) ```python def set_adapter(pipe, adapter_name): pipe.unet.set_adapter(adapter_name) if isinstance(pipe.text_encoder, PeftModel): pipe.text_encoder.set_adapter(adapter_name) ``` Finally, add a function to create weighted LoRA adapter. ```python def create_weighted_lora_adapter(pipe, adapters, weights, adapter_name="default"): pipe.unet.add_weighted_adapter(adapters, weights, adapter_name) if isinstance(pipe.text_encoder, PeftModel): pipe.text_encoder.add_weighted_adapter(adapters, weights, adapter_name) return pipe ``` Let's load the second adapter from the model fine-tuned on images of a crochet toy, and give it a unique name: ```python load_adapter(pipe, Path("path-to-the-second-saved-model"), adapter_name="crochet") ``` Create a pipeline using weighted adapters: ```python pipe = create_weighted_lora_adapter(pipe, ["crochet", "dog"], [1.0, 1.05], adapter_name="crochet_dog") ``` Now you can switch between adapters. If you'd like to generate more dog images, set the adapter to `"dog"`: ```python set_adapter(pipe, adapter_name="dog") prompt = "sks dog in a supermarket isle" negative_prompt = "low quality, blurry, unfinished" image = pipe(prompt, num_inference_steps=50, guidance_scale=7, negative_prompt=negative_prompt).images[0] image ``` <div class="flex justify-center"> <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/peft/lora_dreambooth_dog_supermarket.png" alt="Generated image of a dog in a supermarket"/> </div> In the same way, you can switch to the second adapter: ```python set_adapter(pipe, adapter_name="crochet") prompt = "a fish rendered in the style of <1>" negative_prompt = "low quality, blurry, unfinished" image = pipe(prompt, num_inference_steps=50, guidance_scale=7, negative_prompt=negative_prompt).images[0] image ``` <div class="flex justify-center"> <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/peft/lora_dreambooth_fish.png" alt="Generated image of a crochet fish"/> </div> Finally, you can use combined weighted adapters: ```python set_adapter(pipe, adapter_name="crochet_dog") prompt = "sks dog rendered in the style of <1>, close up portrait, 4K HD" negative_prompt = "low quality, blurry, unfinished" image = pipe(prompt, num_inference_steps=50, guidance_scale=7, negative_prompt=negative_prompt).images[0] image ``` <div class="flex justify-center"> <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/peft/lora_dreambooth_crochet_dog.png" alt="Generated image of a crochet dog"/> </div>
0
hf_public_repos/peft/docs/source
hf_public_repos/peft/docs/source/task_guides/clm-prompt-tuning.mdx
<!--Copyright 2023 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. --> # Prompt tuning for causal language modeling [[open-in-colab]] Prompting helps guide language model behavior by adding some input text specific to a task. Prompt tuning is an additive method for only training and updating the newly added prompt tokens to a pretrained model. This way, you can use one pretrained model whose weights are frozen, and train and update a smaller set of prompt parameters for each downstream task instead of fully finetuning a separate model. As models grow larger and larger, prompt tuning can be more efficient, and results are even better as model parameters scale. <Tip> 💡 Read [The Power of Scale for Parameter-Efficient Prompt Tuning](https://arxiv.org/abs/2104.08691) to learn more about prompt tuning. </Tip> This guide will show you how to apply prompt tuning to train a [`bloomz-560m`](https://huggingface.co/bigscience/bloomz-560m) model on the `twitter_complaints` subset of the [RAFT](https://huggingface.co/datasets/ought/raft) dataset. Before you begin, make sure you have all the necessary libraries installed: ```bash !pip install -q peft transformers datasets ``` ## Setup Start by defining the model and tokenizer, the dataset and the dataset columns to train on, some training hyperparameters, and the [`PromptTuningConfig`]. The [`PromptTuningConfig`] contains information about the task type, the text to initialize the prompt embedding, the number of virtual tokens, and the tokenizer to use: ```py from transformers import AutoModelForCausalLM, AutoTokenizer, default_data_collator, get_linear_schedule_with_warmup from peft import get_peft_config, get_peft_model, PromptTuningInit, PromptTuningConfig, TaskType, PeftType import torch from datasets import load_dataset import os from torch.utils.data import DataLoader from tqdm import tqdm device = "cuda" model_name_or_path = "bigscience/bloomz-560m" tokenizer_name_or_path = "bigscience/bloomz-560m" peft_config = PromptTuningConfig( task_type=TaskType.CAUSAL_LM, prompt_tuning_init=PromptTuningInit.TEXT, num_virtual_tokens=8, prompt_tuning_init_text="Classify if the tweet is a complaint or not:", tokenizer_name_or_path=model_name_or_path, ) dataset_name = "twitter_complaints" checkpoint_name = f"{dataset_name}_{model_name_or_path}_{peft_config.peft_type}_{peft_config.task_type}_v1.pt".replace( "/", "_" ) text_column = "Tweet text" label_column = "text_label" max_length = 64 lr = 3e-2 num_epochs = 50 batch_size = 8 ``` ## Load dataset For this guide, you'll load the `twitter_complaints` subset of the [RAFT](https://huggingface.co/datasets/ought/raft) dataset. This subset contains tweets that are labeled either `complaint` or `no complaint`: ```py dataset = load_dataset("ought/raft", dataset_name) dataset["train"][0] {"Tweet text": "@HMRCcustomers No this is my first job", "ID": 0, "Label": 2} ``` To make the `Label` column more readable, replace the `Label` value with the corresponding label text and store them in a `text_label` column. You can use the [`~datasets.Dataset.map`] function to apply this change over the entire dataset in one step: ```py classes = [k.replace("_", " ") for k in dataset["train"].features["Label"].names] dataset = dataset.map( lambda x: {"text_label": [classes[label] for label in x["Label"]]}, batched=True, num_proc=1, ) dataset["train"][0] {"Tweet text": "@HMRCcustomers No this is my first job", "ID": 0, "Label": 2, "text_label": "no complaint"} ``` ## Preprocess dataset Next, you'll setup a tokenizer; configure the appropriate padding token to use for padding sequences, and determine the maximum length of the tokenized labels: ```py tokenizer = AutoTokenizer.from_pretrained(model_name_or_path) if tokenizer.pad_token_id is None: tokenizer.pad_token_id = tokenizer.eos_token_id target_max_length = max([len(tokenizer(class_label)["input_ids"]) for class_label in classes]) print(target_max_length) 3 ``` Create a `preprocess_function` to: 1. Tokenize the input text and labels. 2. For each example in a batch, pad the labels with the tokenizers `pad_token_id`. 3. Concatenate the input text and labels into the `model_inputs`. 4. Create a separate attention mask for `labels` and `model_inputs`. 5. Loop through each example in the batch again to pad the input ids, labels, and attention mask to the `max_length` and convert them to PyTorch tensors. ```py def preprocess_function(examples): batch_size = len(examples[text_column]) inputs = [f"{text_column} : {x} Label : " for x in examples[text_column]] targets = [str(x) for x in examples[label_column]] model_inputs = tokenizer(inputs) labels = tokenizer(targets) for i in range(batch_size): sample_input_ids = model_inputs["input_ids"][i] label_input_ids = labels["input_ids"][i] + [tokenizer.pad_token_id] # print(i, sample_input_ids, label_input_ids) model_inputs["input_ids"][i] = sample_input_ids + label_input_ids labels["input_ids"][i] = [-100] * len(sample_input_ids) + label_input_ids model_inputs["attention_mask"][i] = [1] * len(model_inputs["input_ids"][i]) # print(model_inputs) for i in range(batch_size): sample_input_ids = model_inputs["input_ids"][i] label_input_ids = labels["input_ids"][i] model_inputs["input_ids"][i] = [tokenizer.pad_token_id] * ( max_length - len(sample_input_ids) ) + sample_input_ids model_inputs["attention_mask"][i] = [0] * (max_length - len(sample_input_ids)) + model_inputs[ "attention_mask" ][i] labels["input_ids"][i] = [-100] * (max_length - len(sample_input_ids)) + label_input_ids model_inputs["input_ids"][i] = torch.tensor(model_inputs["input_ids"][i][:max_length]) model_inputs["attention_mask"][i] = torch.tensor(model_inputs["attention_mask"][i][:max_length]) labels["input_ids"][i] = torch.tensor(labels["input_ids"][i][:max_length]) model_inputs["labels"] = labels["input_ids"] return model_inputs ``` Use the [`~datasets.Dataset.map`] function to apply the `preprocess_function` to the entire dataset. You can remove the unprocessed columns since the model won't need them: ```py processed_datasets = dataset.map( preprocess_function, batched=True, num_proc=1, remove_columns=dataset["train"].column_names, load_from_cache_file=False, desc="Running tokenizer on dataset", ) ``` Create a [`DataLoader`](https://pytorch.org/docs/stable/data.html#torch.utils.data.DataLoader) from the `train` and `eval` datasets. Set `pin_memory=True` to speed up the data transfer to the GPU during training if the samples in your dataset are on a CPU. ```py train_dataset = processed_datasets["train"] eval_dataset = processed_datasets["test"] train_dataloader = DataLoader( train_dataset, shuffle=True, collate_fn=default_data_collator, batch_size=batch_size, pin_memory=True ) eval_dataloader = DataLoader(eval_dataset, collate_fn=default_data_collator, batch_size=batch_size, pin_memory=True) ``` ## Train You're almost ready to setup your model and start training! Initialize a base model from [`~transformers.AutoModelForCausalLM`], and pass it and `peft_config` to the [`get_peft_model`] function to create a [`PeftModel`]. You can print the new [`PeftModel`]'s trainable parameters to see how much more efficient it is than training the full parameters of the original model! ```py model = AutoModelForCausalLM.from_pretrained(model_name_or_path) model = get_peft_model(model, peft_config) print(model.print_trainable_parameters()) "trainable params: 8192 || all params: 559222784 || trainable%: 0.0014648902430985358" ``` Setup an optimizer and learning rate scheduler: ```py optimizer = torch.optim.AdamW(model.parameters(), lr=lr) lr_scheduler = get_linear_schedule_with_warmup( optimizer=optimizer, num_warmup_steps=0, num_training_steps=(len(train_dataloader) * num_epochs), ) ``` Move the model to the GPU, then write a training loop to start training! ```py model = model.to(device) for epoch in range(num_epochs): model.train() total_loss = 0 for step, batch in enumerate(tqdm(train_dataloader)): batch = {k: v.to(device) for k, v in batch.items()} outputs = model(**batch) loss = outputs.loss total_loss += loss.detach().float() loss.backward() optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() eval_loss = 0 eval_preds = [] for step, batch in enumerate(tqdm(eval_dataloader)): batch = {k: v.to(device) for k, v in batch.items()} with torch.no_grad(): outputs = model(**batch) loss = outputs.loss eval_loss += loss.detach().float() eval_preds.extend( tokenizer.batch_decode(torch.argmax(outputs.logits, -1).detach().cpu().numpy(), skip_special_tokens=True) ) eval_epoch_loss = eval_loss / len(eval_dataloader) eval_ppl = torch.exp(eval_epoch_loss) train_epoch_loss = total_loss / len(train_dataloader) train_ppl = torch.exp(train_epoch_loss) print(f"{epoch=}: {train_ppl=} {train_epoch_loss=} {eval_ppl=} {eval_epoch_loss=}") ``` ## Share model You can store and share your model on the Hub if you'd like. Log in to your Hugging Face account and enter your token when prompted: ```py from huggingface_hub import notebook_login notebook_login() ``` Use the [`~transformers.PreTrainedModel.push_to_hub`] function to upload your model to a model repository on the Hub: ```py peft_model_id = "your-name/bloomz-560m_PROMPT_TUNING_CAUSAL_LM" model.push_to_hub("your-name/bloomz-560m_PROMPT_TUNING_CAUSAL_LM", use_auth_token=True) ``` Once the model is uploaded, you'll see the model file size is only 33.5kB! 🤏 ## Inference Let's try the model on a sample input for inference. If you look at the repository you uploaded the model to, you'll see a `adapter_config.json` file. Load this file into [`PeftConfig`] to specify the `peft_type` and `task_type`. Then you can load the prompt tuned model weights, and the configuration into [`~PeftModel.from_pretrained`] to create the [`PeftModel`]: ```py from peft import PeftModel, PeftConfig peft_model_id = "stevhliu/bloomz-560m_PROMPT_TUNING_CAUSAL_LM" config = PeftConfig.from_pretrained(peft_model_id) model = AutoModelForCausalLM.from_pretrained(config.base_model_name_or_path) model = PeftModel.from_pretrained(model, peft_model_id) ``` Grab a tweet and tokenize it: ```py inputs = tokenizer( f'{text_column} : {"@nationalgridus I have no water and the bill is current and paid. Can you do something about this?"} Label : ', return_tensors="pt", ) ``` Put the model on a GPU and *generate* the predicted label: ```py model.to(device) with torch.no_grad(): inputs = {k: v.to(device) for k, v in inputs.items()} outputs = model.generate( input_ids=inputs["input_ids"], attention_mask=inputs["attention_mask"], max_new_tokens=10, eos_token_id=3 ) print(tokenizer.batch_decode(outputs.detach().cpu().numpy(), skip_special_tokens=True)) [ "Tweet text : @nationalgridus I have no water and the bill is current and paid. Can you do something about this? Label : complaint" ] ```
0
hf_public_repos/peft/docs/source
hf_public_repos/peft/docs/source/task_guides/semantic_segmentation_lora.mdx
<!--Copyright 2023 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. --> # Semantic segmentation using LoRA This guide demonstrates how to use LoRA, a low-rank approximation technique, to finetune a SegFormer model variant for semantic segmentation. By using LoRA from 🤗 PEFT, we can reduce the number of trainable parameters in the SegFormer model to only 14% of the original trainable parameters. LoRA achieves this reduction by adding low-rank "update matrices" to specific blocks of the model, such as the attention blocks. During fine-tuning, only these matrices are trained, while the original model parameters are left unchanged. At inference time, the update matrices are merged with the original model parameters to produce the final classification result. For more information on LoRA, please refer to the [original LoRA paper](https://arxiv.org/abs/2106.09685). ## Install dependencies Install the libraries required for model training: ```bash !pip install transformers accelerate evaluate datasets peft -q ``` ## Authenticate to share your model To share the finetuned model with the community at the end of the training, authenticate using your 🤗 token. You can obtain your token from your [account settings](https://huggingface.co/settings/token). ```python from huggingface_hub import notebook_login notebook_login() ``` ## Load a dataset To ensure that this example runs within a reasonable time frame, here we are limiting the number of instances from the training set of the [SceneParse150 dataset](https://huggingface.co/datasets/scene_parse_150) to 150. ```python from datasets import load_dataset ds = load_dataset("scene_parse_150", split="train[:150]") ``` Next, split the dataset into train and test sets. ```python ds = ds.train_test_split(test_size=0.1) train_ds = ds["train"] test_ds = ds["test"] ``` ## Prepare label maps Create a dictionary that maps a label id to a label class, which will be useful when setting up the model later: * `label2id`: maps the semantic classes of the dataset to integer ids. * `id2label`: maps integer ids back to the semantic classes. ```python import json from huggingface_hub import cached_download, hf_hub_url repo_id = "huggingface/label-files" filename = "ade20k-id2label.json" id2label = json.load(open(cached_download(hf_hub_url(repo_id, filename, repo_type="dataset")), "r")) id2label = {int(k): v for k, v in id2label.items()} label2id = {v: k for k, v in id2label.items()} num_labels = len(id2label) ``` ## Prepare datasets for training and evaluation Next, load the SegFormer image processor to prepare the images and annotations for the model. This dataset uses the zero-index as the background class, so make sure to set `reduce_labels=True` to subtract one from all labels since the background class is not among the 150 classes. ```python from transformers import AutoImageProcessor checkpoint = "nvidia/mit-b0" image_processor = AutoImageProcessor.from_pretrained(checkpoint, reduce_labels=True) ``` Add a function to apply data augmentation to the images, so that the model is more robust against overfitting. Here we use the [ColorJitter](https://pytorch.org/vision/stable/generated/torchvision.transforms.ColorJitter.html) function from [torchvision](https://pytorch.org/vision/stable/index.html) to randomly change the color properties of an image. ```python from torchvision.transforms import ColorJitter jitter = ColorJitter(brightness=0.25, contrast=0.25, saturation=0.25, hue=0.1) ``` Add a function to handle grayscale images and ensure that each input image has three color channels, regardless of whether it was originally grayscale or RGB. The function converts RGB images to array as is, and for grayscale images that have only one color channel, the function replicates the same channel three times using `np.tile()` before converting the image into an array. ```python import numpy as np def handle_grayscale_image(image): np_image = np.array(image) if np_image.ndim == 2: tiled_image = np.tile(np.expand_dims(np_image, -1), 3) return Image.fromarray(tiled_image) else: return Image.fromarray(np_image) ``` Finally, combine everything in two functions that you'll use to transform training and validation data. The two functions are similar except data augmentation is applied only to the training data. ```python from PIL import Image def train_transforms(example_batch): images = [jitter(handle_grayscale_image(x)) for x in example_batch["image"]] labels = [x for x in example_batch["annotation"]] inputs = image_processor(images, labels) return inputs def val_transforms(example_batch): images = [handle_grayscale_image(x) for x in example_batch["image"]] labels = [x for x in example_batch["annotation"]] inputs = image_processor(images, labels) return inputs ``` To apply the preprocessing functions over the entire dataset, use the 🤗 Datasets `set_transform` function: ```python train_ds.set_transform(train_transforms) test_ds.set_transform(val_transforms) ``` ## Create evaluation function Including a metric during training is helpful for evaluating your model's performance. You can load an evaluation method with the [🤗 Evaluate](https://huggingface.co/docs/evaluate/index) library. For this task, use the [mean Intersection over Union (IoU)](https://huggingface.co/spaces/evaluate-metric/accuracy) metric (see the 🤗 Evaluate [quick tour](https://huggingface.co/docs/evaluate/a_quick_tour) to learn more about how to load and compute a metric): ```python import torch from torch import nn import evaluate metric = evaluate.load("mean_iou") def compute_metrics(eval_pred): with torch.no_grad(): logits, labels = eval_pred logits_tensor = torch.from_numpy(logits) logits_tensor = nn.functional.interpolate( logits_tensor, size=labels.shape[-2:], mode="bilinear", align_corners=False, ).argmax(dim=1) pred_labels = logits_tensor.detach().cpu().numpy() # currently using _compute instead of compute # see this issue for more info: https://github.com/huggingface/evaluate/pull/328#issuecomment-1286866576 metrics = metric._compute( predictions=pred_labels, references=labels, num_labels=len(id2label), ignore_index=0, reduce_labels=image_processor.reduce_labels, ) per_category_accuracy = metrics.pop("per_category_accuracy").tolist() per_category_iou = metrics.pop("per_category_iou").tolist() metrics.update({f"accuracy_{id2label[i]}": v for i, v in enumerate(per_category_accuracy)}) metrics.update({f"iou_{id2label[i]}": v for i, v in enumerate(per_category_iou)}) return metrics ``` ## Load a base model Before loading a base model, let's define a helper function to check the total number of parameters a model has, as well as how many of them are trainable. ```python def print_trainable_parameters(model): """ Prints the number of trainable parameters in the model. """ trainable_params = 0 all_param = 0 for _, param in model.named_parameters(): all_param += param.numel() if param.requires_grad: trainable_params += param.numel() print( f"trainable params: {trainable_params} || all params: {all_param} || trainable%: {100 * trainable_params / all_param:.2f}" ) ``` Choose a base model checkpoint. For this example, we use the [SegFormer B0 variant](https://huggingface.co/nvidia/mit-b0). In addition to the checkpoint, pass the `label2id` and `id2label` dictionaries to let the `AutoModelForSemanticSegmentation` class know that we're interested in a custom base model where the decoder head should be randomly initialized using the classes from the custom dataset. ```python from transformers import AutoModelForSemanticSegmentation, TrainingArguments, Trainer model = AutoModelForSemanticSegmentation.from_pretrained( checkpoint, id2label=id2label, label2id=label2id, ignore_mismatched_sizes=True ) print_trainable_parameters(model) ``` At this point you can check with the `print_trainable_parameters` helper function that all 100% parameters in the base model (aka `model`) are trainable. ## Wrap the base model as a PeftModel for LoRA training To leverage the LoRa method, you need to wrap the base model as a `PeftModel`. This involves two steps: 1. Defining LoRa configuration with `LoraConfig` 2. Wrapping the original `model` with `get_peft_model()` using the config defined in the step above. ```python from peft import LoraConfig, get_peft_model config = LoraConfig( r=32, lora_alpha=32, target_modules=["query", "value"], lora_dropout=0.1, bias="lora_only", modules_to_save=["decode_head"], ) lora_model = get_peft_model(model, config) print_trainable_parameters(lora_model) ``` Let's review the `LoraConfig`. To enable LoRA technique, we must define the target modules within `LoraConfig` so that `PeftModel` can update the necessary matrices. Specifically, we want to target the `query` and `value` matrices in the attention blocks of the base model. These matrices are identified by their respective names, "query" and "value". Therefore, we should specify these names in the `target_modules` argument of `LoraConfig`. After we wrap our base model `model` with `PeftModel` along with the config, we get a new model where only the LoRA parameters are trainable (so-called "update matrices") while the pre-trained parameters are kept frozen. These include the parameters of the randomly initialized classifier parameters too. This is NOT we want when fine-tuning the base model on our custom dataset. To ensure that the classifier parameters are also trained, we specify `modules_to_save`. This also ensures that these modules are serialized alongside the LoRA trainable parameters when using utilities like `save_pretrained()` and `push_to_hub()`. In addition to specifying the `target_modules` within `LoraConfig`, we also need to specify the `modules_to_save`. When we wrap our base model with `PeftModel` and pass the configuration, we obtain a new model in which only the LoRA parameters are trainable, while the pre-trained parameters and the randomly initialized classifier parameters are kept frozen. However, we do want to train the classifier parameters. By specifying the `modules_to_save` argument, we ensure that the classifier parameters are also trainable, and they will be serialized alongside the LoRA trainable parameters when we use utility functions like `save_pretrained()` and `push_to_hub()`. Let's review the rest of the parameters: - `r`: The dimension used by the LoRA update matrices. - `alpha`: Scaling factor. - `bias`: Specifies if the `bias` parameters should be trained. `None` denotes none of the `bias` parameters will be trained. When all is configured, and the base model is wrapped, the `print_trainable_parameters` helper function lets us explore the number of trainable parameters. Since we're interested in performing **parameter-efficient fine-tuning**, we should expect to see a lower number of trainable parameters from the `lora_model` in comparison to the original `model` which is indeed the case here. You can also manually verify what modules are trainable in the `lora_model`. ```python for name, param in lora_model.named_parameters(): if param.requires_grad: print(name, param.shape) ``` This confirms that only the LoRA parameters appended to the attention blocks and the `decode_head` parameters are trainable. ## Train the model Start by defining your training hyperparameters in `TrainingArguments`. You can change the values of most parameters however you prefer. Make sure to set `remove_unused_columns=False`, otherwise the image column will be dropped, and it's required here. The only other required parameter is `output_dir` which specifies where to save your model. At the end of each epoch, the `Trainer` will evaluate the IoU metric and save the training checkpoint. Note that this example is meant to walk you through the workflow when using PEFT for semantic segmentation. We didn't perform extensive hyperparameter tuning to achieve optimal results. ```python model_name = checkpoint.split("/")[-1] training_args = TrainingArguments( output_dir=f"{model_name}-scene-parse-150-lora", learning_rate=5e-4, num_train_epochs=50, per_device_train_batch_size=4, per_device_eval_batch_size=2, save_total_limit=3, evaluation_strategy="epoch", save_strategy="epoch", logging_steps=5, remove_unused_columns=False, push_to_hub=True, label_names=["labels"], ) ``` Pass the training arguments to `Trainer` along with the model, dataset, and `compute_metrics` function. Call `train()` to finetune your model. ```python trainer = Trainer( model=lora_model, args=training_args, train_dataset=train_ds, eval_dataset=test_ds, compute_metrics=compute_metrics, ) trainer.train() ``` ## Save the model and run inference Use the `save_pretrained()` method of the `lora_model` to save the *LoRA-only parameters* locally. Alternatively, use the `push_to_hub()` method to upload these parameters directly to the Hugging Face Hub (as shown in the [Image classification using LoRA](image_classification_lora) task guide). ```python model_id = "segformer-scene-parse-150-lora" lora_model.save_pretrained(model_id) ``` We can see that the LoRA-only parameters are just **2.2 MB in size**! This greatly improves the portability when using very large models. ```bash !ls -lh {model_id} total 2.2M -rw-r--r-- 1 root root 369 Feb 8 03:09 adapter_config.json -rw-r--r-- 1 root root 2.2M Feb 8 03:09 adapter_model.bin ``` Let's now prepare an `inference_model` and run inference. ```python from peft import PeftConfig config = PeftConfig.from_pretrained(model_id) model = AutoModelForSemanticSegmentation.from_pretrained( checkpoint, id2label=id2label, label2id=label2id, ignore_mismatched_sizes=True ) inference_model = PeftModel.from_pretrained(model, model_id) ``` Get an image: ```python import requests url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/semantic-seg-image.png" image = Image.open(requests.get(url, stream=True).raw) image ``` <div class="flex justify-center"> <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/semantic-seg-image.png" alt="photo of a room"/> </div> Preprocess the image to prepare for inference. ```python encoding = image_processor(image.convert("RGB"), return_tensors="pt") ``` Run inference with the encoded image. ```python with torch.no_grad(): outputs = inference_model(pixel_values=encoding.pixel_values) logits = outputs.logits upsampled_logits = nn.functional.interpolate( logits, size=image.size[::-1], mode="bilinear", align_corners=False, ) pred_seg = upsampled_logits.argmax(dim=1)[0] ``` Next, visualize the results. We need a color palette for this. Here, we use ade_palette(). As it is a long array, so we don't include it in this guide, please copy it from [the TensorFlow Model Garden repository](https://github.com/tensorflow/models/blob/3f1ca33afe3c1631b733ea7e40c294273b9e406d/research/deeplab/utils/get_dataset_colormap.py#L51). ```python import matplotlib.pyplot as plt color_seg = np.zeros((pred_seg.shape[0], pred_seg.shape[1], 3), dtype=np.uint8) palette = np.array(ade_palette()) for label, color in enumerate(palette): color_seg[pred_seg == label, :] = color color_seg = color_seg[..., ::-1] # convert to BGR img = np.array(image) * 0.5 + color_seg * 0.5 # plot the image with the segmentation map img = img.astype(np.uint8) plt.figure(figsize=(15, 10)) plt.imshow(img) plt.show() ``` As you can see, the results are far from perfect, however, this example is designed to illustrate the end-to-end workflow of fine-tuning a semantic segmentation model with LoRa technique, and is not aiming to achieve state-of-the-art results. The results you see here are the same as you would get if you performed full fine-tuning on the same setup (same model variant, same dataset, same training schedule, etc.), except LoRA allows to achieve them with a fraction of total trainable parameters and in less time. If you wish to use this example and improve the results, here are some things that you can try: * Increase the number of training samples. * Try a larger SegFormer model variant (explore available model variants on the [Hugging Face Hub](https://huggingface.co/models?search=segformer)). * Try different values for the arguments available in `LoraConfig`. * Tune the learning rate and batch size.
0
hf_public_repos/peft/docs/source
hf_public_repos/peft/docs/source/task_guides/image_classification_lora.mdx
<!--Copyright 2023 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. --> # Image classification using LoRA This guide demonstrates how to use LoRA, a low-rank approximation technique, to fine-tune an image classification model. By using LoRA from 🤗 PEFT, we can reduce the number of trainable parameters in the model to only 0.77% of the original. LoRA achieves this reduction by adding low-rank "update matrices" to specific blocks of the model, such as the attention blocks. During fine-tuning, only these matrices are trained, while the original model parameters are left unchanged. At inference time, the update matrices are merged with the original model parameters to produce the final classification result. For more information on LoRA, please refer to the [original LoRA paper](https://arxiv.org/abs/2106.09685). ## Install dependencies Install the libraries required for model training: ```bash !pip install transformers accelerate evaluate datasets peft -q ``` Check the versions of all required libraries to make sure you are up to date: ```python import transformers import accelerate import peft print(f"Transformers version: {transformers.__version__}") print(f"Accelerate version: {accelerate.__version__}") print(f"PEFT version: {peft.__version__}") "Transformers version: 4.27.4" "Accelerate version: 0.18.0" "PEFT version: 0.2.0" ``` ## Authenticate to share your model To share the fine-tuned model at the end of the training with the community, authenticate using your 🤗 token. You can obtain your token from your [account settings](https://huggingface.co/settings/token). ```python from huggingface_hub import notebook_login notebook_login() ``` ## Select a model checkpoint to fine-tune Choose a model checkpoint from any of the model architectures supported for [image classification](https://huggingface.co/models?pipeline_tag=image-classification&sort=downloads). When in doubt, refer to the [image classification task guide](https://huggingface.co/docs/transformers/v4.27.2/en/tasks/image_classification) in 🤗 Transformers documentation. ```python model_checkpoint = "google/vit-base-patch16-224-in21k" ``` ## Load a dataset To keep this example's runtime short, let's only load the first 5000 instances from the training set of the [Food-101 dataset](https://huggingface.co/datasets/food101): ```python from datasets import load_dataset dataset = load_dataset("food101", split="train[:5000]") ``` ## Dataset preparation To prepare the dataset for training and evaluation, create `label2id` and `id2label` dictionaries. These will come in handy when performing inference and for metadata information: ```python labels = dataset.features["label"].names label2id, id2label = dict(), dict() for i, label in enumerate(labels): label2id[label] = i id2label[i] = label id2label[2] "baklava" ``` Next, load the image processor of the model you're fine-tuning: ```python from transformers import AutoImageProcessor image_processor = AutoImageProcessor.from_pretrained(model_checkpoint) ``` The `image_processor` contains useful information on which size the training and evaluation images should be resized to, as well as values that should be used to normalize the pixel values. Using the `image_processor`, prepare transformation functions for the datasets. These functions will include data augmentation and pixel scaling: ```python from torchvision.transforms import ( CenterCrop, Compose, Normalize, RandomHorizontalFlip, RandomResizedCrop, Resize, ToTensor, ) normalize = Normalize(mean=image_processor.image_mean, std=image_processor.image_std) train_transforms = Compose( [ RandomResizedCrop(image_processor.size["height"]), RandomHorizontalFlip(), ToTensor(), normalize, ] ) val_transforms = Compose( [ Resize(image_processor.size["height"]), CenterCrop(image_processor.size["height"]), ToTensor(), normalize, ] ) def preprocess_train(example_batch): """Apply train_transforms across a batch.""" example_batch["pixel_values"] = [train_transforms(image.convert("RGB")) for image in example_batch["image"]] return example_batch def preprocess_val(example_batch): """Apply val_transforms across a batch.""" example_batch["pixel_values"] = [val_transforms(image.convert("RGB")) for image in example_batch["image"]] return example_batch ``` Split the dataset into training and validation sets: ```python splits = dataset.train_test_split(test_size=0.1) train_ds = splits["train"] val_ds = splits["test"] ``` Finally, set the transformation functions for the datasets accordingly: ```python train_ds.set_transform(preprocess_train) val_ds.set_transform(preprocess_val) ``` ## Load and prepare a model Before loading the model, let's define a helper function to check the total number of parameters a model has, as well as how many of them are trainable. ```python def print_trainable_parameters(model): trainable_params = 0 all_param = 0 for _, param in model.named_parameters(): all_param += param.numel() if param.requires_grad: trainable_params += param.numel() print( f"trainable params: {trainable_params} || all params: {all_param} || trainable%: {100 * trainable_params / all_param:.2f}" ) ``` It's important to initialize the original model correctly as it will be used as a base to create the `PeftModel` you'll actually fine-tune. Specify the `label2id` and `id2label` so that [`~transformers.AutoModelForImageClassification`] can append a classification head to the underlying model, adapted for this dataset. You should see the following output: ``` Some weights of ViTForImageClassification were not initialized from the model checkpoint at google/vit-base-patch16-224-in21k and are newly initialized: ['classifier.weight', 'classifier.bias'] ``` ```python from transformers import AutoModelForImageClassification, TrainingArguments, Trainer model = AutoModelForImageClassification.from_pretrained( model_checkpoint, label2id=label2id, id2label=id2label, ignore_mismatched_sizes=True, # provide this in case you're planning to fine-tune an already fine-tuned checkpoint ) ``` Before creating a `PeftModel`, you can check the number of trainable parameters in the original model: ```python print_trainable_parameters(model) "trainable params: 85876325 || all params: 85876325 || trainable%: 100.00" ``` Next, use `get_peft_model` to wrap the base model so that "update" matrices are added to the respective places. ```python from peft import LoraConfig, get_peft_model config = LoraConfig( r=16, lora_alpha=16, target_modules=["query", "value"], lora_dropout=0.1, bias="none", modules_to_save=["classifier"], ) lora_model = get_peft_model(model, config) print_trainable_parameters(lora_model) "trainable params: 667493 || all params: 86466149 || trainable%: 0.77" ``` Let's unpack what's going on here. To use LoRA, you need to specify the target modules in `LoraConfig` so that `get_peft_model()` knows which modules inside our model need to be amended with LoRA matrices. In this example, we're only interested in targeting the query and value matrices of the attention blocks of the base model. Since the parameters corresponding to these matrices are "named" "query" and "value" respectively, we specify them accordingly in the `target_modules` argument of `LoraConfig`. We also specify `modules_to_save`. After wrapping the base model with `get_peft_model()` along with the `config`, we get a new model where only the LoRA parameters are trainable (so-called "update matrices") while the pre-trained parameters are kept frozen. However, we want the classifier parameters to be trained too when fine-tuning the base model on our custom dataset. To ensure that the classifier parameters are also trained, we specify `modules_to_save`. This also ensures that these modules are serialized alongside the LoRA trainable parameters when using utilities like `save_pretrained()` and `push_to_hub()`. Here's what the other parameters mean: - `r`: The dimension used by the LoRA update matrices. - `alpha`: Scaling factor. - `bias`: Specifies if the `bias` parameters should be trained. `None` denotes none of the `bias` parameters will be trained. `r` and `alpha` together control the total number of final trainable parameters when using LoRA, giving you the flexibility to balance a trade-off between end performance and compute efficiency. By looking at the number of trainable parameters, you can see how many parameters we're actually training. Since the goal is to achieve parameter-efficient fine-tuning, you should expect to see fewer trainable parameters in the `lora_model` in comparison to the original model, which is indeed the case here. ## Define training arguments For model fine-tuning, use [`~transformers.Trainer`]. It accepts several arguments which you can wrap using [`~transformers.TrainingArguments`]. ```python from transformers import TrainingArguments, Trainer model_name = model_checkpoint.split("/")[-1] batch_size = 128 args = TrainingArguments( f"{model_name}-finetuned-lora-food101", remove_unused_columns=False, evaluation_strategy="epoch", save_strategy="epoch", learning_rate=5e-3, per_device_train_batch_size=batch_size, gradient_accumulation_steps=4, per_device_eval_batch_size=batch_size, fp16=True, num_train_epochs=5, logging_steps=10, load_best_model_at_end=True, metric_for_best_model="accuracy", push_to_hub=True, label_names=["labels"], ) ``` Compared to non-PEFT methods, you can use a larger batch size since there are fewer parameters to train. You can also set a larger learning rate than the normal (1e-5 for example). This can potentially also reduce the need to conduct expensive hyperparameter tuning experiments. ## Prepare evaluation metric ```python import numpy as np import evaluate metric = evaluate.load("accuracy") def compute_metrics(eval_pred): """Computes accuracy on a batch of predictions""" predictions = np.argmax(eval_pred.predictions, axis=1) return metric.compute(predictions=predictions, references=eval_pred.label_ids) ``` The `compute_metrics` function takes a named tuple as input: `predictions`, which are the logits of the model as Numpy arrays, and `label_ids`, which are the ground-truth labels as Numpy arrays. ## Define collation function A collation function is used by [`~transformers.Trainer`] to gather a batch of training and evaluation examples and prepare them in a format that is acceptable by the underlying model. ```python import torch def collate_fn(examples): pixel_values = torch.stack([example["pixel_values"] for example in examples]) labels = torch.tensor([example["label"] for example in examples]) return {"pixel_values": pixel_values, "labels": labels} ``` ## Train and evaluate Bring everything together - model, training arguments, data, collation function, etc. Then, start the training! ```python trainer = Trainer( lora_model, args, train_dataset=train_ds, eval_dataset=val_ds, tokenizer=image_processor, compute_metrics=compute_metrics, data_collator=collate_fn, ) train_results = trainer.train() ``` In just a few minutes, the fine-tuned model shows 96% validation accuracy even on this small subset of the training dataset. ```python trainer.evaluate(val_ds) { "eval_loss": 0.14475855231285095, "eval_accuracy": 0.96, "eval_runtime": 3.5725, "eval_samples_per_second": 139.958, "eval_steps_per_second": 1.12, "epoch": 5.0, } ``` ## Share your model and run inference Once the fine-tuning is done, share the LoRA parameters with the community like so: ```python repo_name = f"sayakpaul/{model_name}-finetuned-lora-food101" lora_model.push_to_hub(repo_name) ``` When calling [`~transformers.PreTrainedModel.push_to_hub`] on the `lora_model`, only the LoRA parameters along with any modules specified in `modules_to_save` are saved. Take a look at the [trained LoRA parameters](https://huggingface.co/sayakpaul/vit-base-patch16-224-in21k-finetuned-lora-food101/blob/main/adapter_model.bin). You'll see that it's only 2.6 MB! This greatly helps with portability, especially when using a very large model to fine-tune (such as [BLOOM](https://huggingface.co/bigscience/bloom)). Next, let's see how to load the LoRA updated parameters along with our base model for inference. When you wrap a base model with `PeftModel`, modifications are done *in-place*. To mitigate any concerns that might stem from in-place modifications, initialize the base model just like you did earlier and construct the inference model. ```python from peft import PeftConfig, PeftModel config = PeftConfig.from_pretrained(repo_name) model = AutoModelForImageClassification.from_pretrained( config.base_model_name_or_path, label2id=label2id, id2label=id2label, ignore_mismatched_sizes=True, # provide this in case you're planning to fine-tune an already fine-tuned checkpoint ) # Load the LoRA model inference_model = PeftModel.from_pretrained(model, repo_name) ``` Let's now fetch an example image for inference. ```python from PIL import Image import requests url = "https://huggingface.co/datasets/sayakpaul/sample-datasets/resolve/main/beignets.jpeg" image = Image.open(requests.get(url, stream=True).raw) image ``` <div class="flex justify-center"> <img src="https://huggingface.co/datasets/sayakpaul/sample-datasets/resolve/main/beignets.jpeg" alt="image of beignets"/> </div> First, instantiate an `image_processor` from the underlying model repo. ```python image_processor = AutoImageProcessor.from_pretrained(repo_name) ``` Then, prepare the example for inference. ```python encoding = image_processor(image.convert("RGB"), return_tensors="pt") ``` Finally, run inference! ```python with torch.no_grad(): outputs = inference_model(**encoding) logits = outputs.logits predicted_class_idx = logits.argmax(-1).item() print("Predicted class:", inference_model.config.id2label[predicted_class_idx]) "Predicted class: beignets" ```
0
hf_public_repos/peft/docs/source
hf_public_repos/peft/docs/source/task_guides/token-classification-lora.mdx
# LoRA for token classification Low-Rank Adaptation (LoRA) is a reparametrization method that aims to reduce the number of trainable parameters with low-rank representations. The weight matrix is broken down into low-rank matrices that are trained and updated. All the pretrained model parameters remain frozen. After training, the low-rank matrices are added back to the original weights. This makes it more efficient to store and train a LoRA model because there are significantly fewer parameters. <Tip> 💡 Read [LoRA: Low-Rank Adaptation of Large Language Models](https://arxiv.org/abs/2106.09685) to learn more about LoRA. </Tip> This guide will show you how to train a [`roberta-large`](https://huggingface.co/roberta-large) model with LoRA on the [BioNLP2004](https://huggingface.co/datasets/tner/bionlp2004) dataset for token classification. Before you begin, make sure you have all the necessary libraries installed: ```bash !pip install -q peft transformers datasets evaluate seqeval ``` ## Setup Let's start by importing all the necessary libraries you'll need: - 🤗 Transformers for loading the base `roberta-large` model and tokenizer, and handling the training loop - 🤗 Datasets for loading and preparing the `bionlp2004` dataset for training - 🤗 Evaluate for evaluating the model's performance - 🤗 PEFT for setting up the LoRA configuration and creating the PEFT model ```py from datasets import load_dataset from transformers import ( AutoModelForTokenClassification, AutoTokenizer, DataCollatorForTokenClassification, TrainingArguments, Trainer, ) from peft import get_peft_config, PeftModel, PeftConfig, get_peft_model, LoraConfig, TaskType import evaluate import torch import numpy as np model_checkpoint = "roberta-large" lr = 1e-3 batch_size = 16 num_epochs = 10 ``` ## Load dataset and metric The [BioNLP2004](https://huggingface.co/datasets/tner/bionlp2004) dataset includes tokens and tags for biological structures like DNA, RNA and proteins. Load the dataset: ```py bionlp = load_dataset("tner/bionlp2004") bionlp["train"][0] { "tokens": [ "Since", "HUVECs", "released", "superoxide", "anions", "in", "response", "to", "TNF", ",", "and", "H2O2", "induces", "VCAM-1", ",", "PDTC", "may", "act", "as", "a", "radical", "scavenger", ".", ], "tags": [0, 7, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0], } ``` The `tags` values are defined in the label ids [dictionary](https://huggingface.co/datasets/tner/bionlp2004#label-id). The letter that prefixes each label indicates the token position: `B` is for the first token of an entity, `I` is for a token inside the entity, and `0` is for a token that is not part of an entity. ```py { "O": 0, "B-DNA": 1, "I-DNA": 2, "B-protein": 3, "I-protein": 4, "B-cell_type": 5, "I-cell_type": 6, "B-cell_line": 7, "I-cell_line": 8, "B-RNA": 9, "I-RNA": 10, } ``` Then load the [`seqeval`](https://huggingface.co/spaces/evaluate-metric/seqeval) framework which includes several metrics - precision, accuracy, F1, and recall - for evaluating sequence labeling tasks. ```py seqeval = evaluate.load("seqeval") ``` Now you can write an evaluation function to compute the metrics from the model predictions and labels, and return the precision, recall, F1, and accuracy scores: ```py label_list = [ "O", "B-DNA", "I-DNA", "B-protein", "I-protein", "B-cell_type", "I-cell_type", "B-cell_line", "I-cell_line", "B-RNA", "I-RNA", ] def compute_metrics(p): predictions, labels = p predictions = np.argmax(predictions, axis=2) true_predictions = [ [label_list[p] for (p, l) in zip(prediction, label) if l != -100] for prediction, label in zip(predictions, labels) ] true_labels = [ [label_list[l] for (p, l) in zip(prediction, label) if l != -100] for prediction, label in zip(predictions, labels) ] results = seqeval.compute(predictions=true_predictions, references=true_labels) return { "precision": results["overall_precision"], "recall": results["overall_recall"], "f1": results["overall_f1"], "accuracy": results["overall_accuracy"], } ``` ## Preprocess dataset Initialize a tokenizer and make sure you set `is_split_into_words=True` because the text sequence has already been split into words. However, this doesn't mean it is tokenized yet (even though it may look like it!), and you'll need to further tokenize the words into subwords. ```py tokenizer = AutoTokenizer.from_pretrained(model_checkpoint, add_prefix_space=True) ``` You'll also need to write a function to: 1. Map each token to their respective word with the [`~transformers.BatchEncoding.word_ids`] method. 2. Ignore the special tokens by setting them to `-100`. 3. Label the first token of a given entity. ```py def tokenize_and_align_labels(examples): tokenized_inputs = tokenizer(examples["tokens"], truncation=True, is_split_into_words=True) labels = [] for i, label in enumerate(examples[f"tags"]): word_ids = tokenized_inputs.word_ids(batch_index=i) previous_word_idx = None label_ids = [] for word_idx in word_ids: if word_idx is None: label_ids.append(-100) elif word_idx != previous_word_idx: label_ids.append(label[word_idx]) else: label_ids.append(-100) previous_word_idx = word_idx labels.append(label_ids) tokenized_inputs["labels"] = labels return tokenized_inputs ``` Use [`~datasets.Dataset.map`] to apply the `tokenize_and_align_labels` function to the dataset: ```py tokenized_bionlp = bionlp.map(tokenize_and_align_labels, batched=True) ``` Finally, create a data collator to pad the examples to the longest length in a batch: ```py data_collator = DataCollatorForTokenClassification(tokenizer=tokenizer) ``` ## Train Now you're ready to create a [`PeftModel`]. Start by loading the base `roberta-large` model, the number of expected labels, and the `id2label` and `label2id` dictionaries: ```py id2label = { 0: "O", 1: "B-DNA", 2: "I-DNA", 3: "B-protein", 4: "I-protein", 5: "B-cell_type", 6: "I-cell_type", 7: "B-cell_line", 8: "I-cell_line", 9: "B-RNA", 10: "I-RNA", } label2id = { "O": 0, "B-DNA": 1, "I-DNA": 2, "B-protein": 3, "I-protein": 4, "B-cell_type": 5, "I-cell_type": 6, "B-cell_line": 7, "I-cell_line": 8, "B-RNA": 9, "I-RNA": 10, } model = AutoModelForTokenClassification.from_pretrained( model_checkpoint, num_labels=11, id2label=id2label, label2id=label2id ) ``` Define the [`LoraConfig`] with: - `task_type`, token classification (`TaskType.TOKEN_CLS`) - `r`, the dimension of the low-rank matrices - `lora_alpha`, scaling factor for the weight matrices - `lora_dropout`, dropout probability of the LoRA layers - `bias`, set to `all` to train all bias parameters <Tip> 💡 The weight matrix is scaled by `lora_alpha/r`, and a higher `lora_alpha` value assigns more weight to the LoRA activations. For performance, we recommend setting `bias` to `None` first, and then `lora_only`, before trying `all`. </Tip> ```py peft_config = LoraConfig( task_type=TaskType.TOKEN_CLS, inference_mode=False, r=16, lora_alpha=16, lora_dropout=0.1, bias="all" ) ``` Pass the base model and `peft_config` to the [`get_peft_model`] function to create a [`PeftModel`]. You can check out how much more efficient training the [`PeftModel`] is compared to fully training the base model by printing out the trainable parameters: ```py model = get_peft_model(model, peft_config) model.print_trainable_parameters() "trainable params: 1855499 || all params: 355894283 || trainable%: 0.5213624069370061" ``` From the 🤗 Transformers library, create a [`~transformers.TrainingArguments`] class and specify where you want to save the model to, the training hyperparameters, how to evaluate the model, and when to save the checkpoints: ```py training_args = TrainingArguments( output_dir="roberta-large-lora-token-classification", learning_rate=lr, per_device_train_batch_size=batch_size, per_device_eval_batch_size=batch_size, num_train_epochs=num_epochs, weight_decay=0.01, evaluation_strategy="epoch", save_strategy="epoch", load_best_model_at_end=True, ) ``` Pass the model, `TrainingArguments`, datasets, tokenizer, data collator and evaluation function to the [`~transformers.Trainer`] class. The `Trainer` handles the training loop for you, and when you're ready, call [`~transformers.Trainer.train`] to begin! ```py trainer = Trainer( model=model, args=training_args, train_dataset=tokenized_bionlp["train"], eval_dataset=tokenized_bionlp["validation"], tokenizer=tokenizer, data_collator=data_collator, compute_metrics=compute_metrics, ) trainer.train() ``` ## Share model Once training is complete, you can store and share your model on the Hub if you'd like. Log in to your Hugging Face account and enter your token when prompted: ```py from huggingface_hub import notebook_login notebook_login() ``` Upload the model to a specific model repository on the Hub with the [`~transformers.PreTrainedModel.push_to_hub`] method: ```py model.push_to_hub("your-name/roberta-large-lora-token-classification") ``` ## Inference To use your model for inference, load the configuration and model: ```py peft_model_id = "stevhliu/roberta-large-lora-token-classification" config = PeftConfig.from_pretrained(peft_model_id) inference_model = AutoModelForTokenClassification.from_pretrained( config.base_model_name_or_path, num_labels=11, id2label=id2label, label2id=label2id ) tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path) model = PeftModel.from_pretrained(inference_model, peft_model_id) ``` Get some text to tokenize: ```py text = "The activation of IL-2 gene expression and NF-kappa B through CD28 requires reactive oxygen production by 5-lipoxygenase." inputs = tokenizer(text, return_tensors="pt") ``` Pass the inputs to the model, and print out the model prediction for each token: ```py with torch.no_grad(): logits = model(**inputs).logits tokens = inputs.tokens() predictions = torch.argmax(logits, dim=2) for token, prediction in zip(tokens, predictions[0].numpy()): print((token, model.config.id2label[prediction])) ("<s>", "O") ("The", "O") ("Ġactivation", "O") ("Ġof", "O") ("ĠIL", "B-DNA") ("-", "O") ("2", "I-DNA") ("Ġgene", "O") ("Ġexpression", "O") ("Ġand", "O") ("ĠNF", "B-protein") ("-", "O") ("k", "I-protein") ("appa", "I-protein") ("ĠB", "I-protein") ("Ġthrough", "O") ("ĠCD", "B-protein") ("28", "I-protein") ("Ġrequires", "O") ("Ġreactive", "O") ("Ġoxygen", "O") ("Ġproduction", "O") ("Ġby", "O") ("Ġ5", "B-protein") ("-", "O") ("lip", "I-protein") ("oxy", "I-protein") ("gen", "I-protein") ("ase", "I-protein") (".", "O") ("</s>", "O") ```
0
hf_public_repos/peft/docs/source
hf_public_repos/peft/docs/source/task_guides/ptuning-seq-classification.mdx
# P-tuning for sequence classification It is challenging to finetune large language models for downstream tasks because they have so many parameters. To work around this, you can use *prompts* to steer the model toward a particular downstream task without fully finetuning a model. Typically, these prompts are handcrafted, which may be impractical because you need very large validation sets to find the best prompts. *P-tuning* is a method for automatically searching and optimizing for better prompts in a continuous space. <Tip> 💡 Read [GPT Understands, Too](https://arxiv.org/abs/2103.10385) to learn more about p-tuning. </Tip> This guide will show you how to train a [`roberta-large`](https://huggingface.co/roberta-large) model (but you can also use any of the GPT, OPT, or BLOOM models) with p-tuning on the `mrpc` configuration of the [GLUE](https://huggingface.co/datasets/glue) benchmark. Before you begin, make sure you have all the necessary libraries installed: ```bash !pip install -q peft transformers datasets evaluate ``` ## Setup To get started, import 🤗 Transformers to create the base model, 🤗 Datasets to load a dataset, 🤗 Evaluate to load an evaluation metric, and 🤗 PEFT to create a [`PeftModel`] and setup the configuration for p-tuning. Define the model, dataset, and some basic training hyperparameters: ```py from transformers import ( AutoModelForSequenceClassification, AutoTokenizer, DataCollatorWithPadding, TrainingArguments, Trainer, ) from peft import ( get_peft_config, get_peft_model, get_peft_model_state_dict, set_peft_model_state_dict, PeftType, PromptEncoderConfig, ) from datasets import load_dataset import evaluate import torch model_name_or_path = "roberta-large" task = "mrpc" num_epochs = 20 lr = 1e-3 batch_size = 32 ``` ## Load dataset and metric Next, load the `mrpc` configuration - a corpus of sentence pairs labeled according to whether they're semantically equivalent or not - from the [GLUE](https://huggingface.co/datasets/glue) benchmark: ```py dataset = load_dataset("glue", task) dataset["train"][0] { "sentence1": 'Amrozi accused his brother , whom he called " the witness " , of deliberately distorting his evidence .', "sentence2": 'Referring to him as only " the witness " , Amrozi accused his brother of deliberately distorting his evidence .', "label": 1, "idx": 0, } ``` From 🤗 Evaluate, load a metric for evaluating the model's performance. The evaluation module returns the accuracy and F1 scores associated with this specific task. ```py metric = evaluate.load("glue", task) ``` Now you can use the `metric` to write a function that computes the accuracy and F1 scores. The `compute_metric` function calculates the scores from the model predictions and labels: ```py import numpy as np def compute_metrics(eval_pred): predictions, labels = eval_pred predictions = np.argmax(predictions, axis=1) return metric.compute(predictions=predictions, references=labels) ``` ## Preprocess dataset Initialize the tokenizer and configure the padding token to use. If you're using a GPT, OPT, or BLOOM model, you should set the `padding_side` to the left; otherwise it'll be set to the right. Tokenize the sentence pairs and truncate them to the maximum length. ```py if any(k in model_name_or_path for k in ("gpt", "opt", "bloom")): padding_side = "left" else: padding_side = "right" tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, padding_side=padding_side) if getattr(tokenizer, "pad_token_id") is None: tokenizer.pad_token_id = tokenizer.eos_token_id def tokenize_function(examples): # max_length=None => use the model max length (it's actually the default) outputs = tokenizer(examples["sentence1"], examples["sentence2"], truncation=True, max_length=None) return outputs ``` Use [`~datasets.Dataset.map`] to apply the `tokenize_function` to the dataset, and remove the unprocessed columns because the model won't need those. You should also rename the `label` column to `labels` because that is the expected name for the labels by models in the 🤗 Transformers library. ```py tokenized_datasets = dataset.map( tokenize_function, batched=True, remove_columns=["idx", "sentence1", "sentence2"], ) tokenized_datasets = tokenized_datasets.rename_column("label", "labels") ``` Create a collator function with [`~transformers.DataCollatorWithPadding`] to pad the examples in the batches to the `longest` sequence in the batch: ```py data_collator = DataCollatorWithPadding(tokenizer=tokenizer, padding="longest") ``` ## Train P-tuning uses a prompt encoder to optimize the prompt parameters, so you'll need to initialize the [`PromptEncoderConfig`] with several arguments: - `task_type`: the type of task you're training on, in this case it is sequence classification or `SEQ_CLS` - `num_virtual_tokens`: the number of virtual tokens to use, or in other words, the prompt - `encoder_hidden_size`: the hidden size of the encoder used to optimize the prompt parameters ```py peft_config = PromptEncoderConfig(task_type="SEQ_CLS", num_virtual_tokens=20, encoder_hidden_size=128) ``` Create the base `roberta-large` model from [`~transformers.AutoModelForSequenceClassification`], and then wrap the base model and `peft_config` with [`get_peft_model`] to create a [`PeftModel`]. If you're curious to see how many parameters you're actually training compared to training on all the model parameters, you can print it out with [`~peft.PeftModel.print_trainable_parameters`]: ```py model = AutoModelForSequenceClassification.from_pretrained(model_name_or_path, return_dict=True) model = get_peft_model(model, peft_config) model.print_trainable_parameters() "trainable params: 1351938 || all params: 355662082 || trainable%: 0.38011867680626127" ``` From the 🤗 Transformers library, set up the [`~transformers.TrainingArguments`] class with where you want to save the model to, the training hyperparameters, how to evaluate the model, and when to save the checkpoints: ```py training_args = TrainingArguments( output_dir="your-name/roberta-large-peft-p-tuning", learning_rate=1e-3, per_device_train_batch_size=32, per_device_eval_batch_size=32, num_train_epochs=2, weight_decay=0.01, evaluation_strategy="epoch", save_strategy="epoch", load_best_model_at_end=True, ) ``` Then pass the model, `TrainingArguments`, datasets, tokenizer, data collator, and evaluation function to the [`~transformers.Trainer`] class, which'll handle the entire training loop for you. Once you're ready, call [`~transformers.Trainer.train`] to start training! ```py trainer = Trainer( model=model, args=training_args, train_dataset=tokenized_datasets["train"], eval_dataset=tokenized_datasets["test"], tokenizer=tokenizer, data_collator=data_collator, compute_metrics=compute_metrics, ) trainer.train() ``` ## Share model You can store and share your model on the Hub if you'd like. Log in to your Hugging Face account and enter your token when prompted: ```py from huggingface_hub import notebook_login notebook_login() ``` Upload the model to a specifc model repository on the Hub with the [`~transformers.PreTrainedModel.push_to_hub`] function: ```py model.push_to_hub("your-name/roberta-large-peft-p-tuning", use_auth_token=True) ``` ## Inference Once the model has been uploaded to the Hub, anyone can easily use it for inference. Load the configuration and model: ```py import torch from peft import PeftModel, PeftConfig from transformers import AutoModelForCausalLM, AutoTokenizer peft_model_id = "smangrul/roberta-large-peft-p-tuning" config = PeftConfig.from_pretrained(peft_model_id) inference_model = AutoModelForSequenceClassification.from_pretrained(config.base_model_name_or_path) tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path) model = PeftModel.from_pretrained(inference_model, peft_model_id) ``` Get some text and tokenize it: ```py classes = ["not equivalent", "equivalent"] sentence1 = "Coast redwood trees are the tallest trees on the planet and can grow over 300 feet tall." sentence2 = "The coast redwood trees, which can attain a height of over 300 feet, are the tallest trees on earth." inputs = tokenizer(sentence1, sentence2, truncation=True, padding="longest", return_tensors="pt") ``` Pass the inputs to the model to classify the sentences: ```py with torch.no_grad(): outputs = model(**inputs).logits print(outputs) paraphrased_text = torch.softmax(outputs, dim=1).tolist()[0] for i in range(len(classes)): print(f"{classes[i]}: {int(round(paraphrased_text[i] * 100))}%") "not equivalent: 4%" "equivalent: 96%" ```
0
hf_public_repos/peft/docs/source
hf_public_repos/peft/docs/source/conceptual_guides/ia3.mdx
<!--Copyright 2023 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. --> # IA3 This conceptual guide gives a brief overview of [IA3](https://arxiv.org/abs/2205.05638), a parameter-efficient fine tuning technique that is intended to improve over [LoRA](./lora). To make fine-tuning more efficient, IA3 (Infused Adapter by Inhibiting and Amplifying Inner Activations) rescales inner activations with learned vectors. These learned vectors are injected in the attention and feedforward modules in a typical transformer-based architecture. These learned vectors are the only trainable parameters during fine-tuning, and thus the original weights remain frozen. Dealing with learned vectors (as opposed to learned low-rank updates to a weight matrix like LoRA) keeps the number of trainable parameters much smaller. Being similar to LoRA, IA3 carries many of the same advantages: * IA3 makes fine-tuning more efficient by drastically reducing the number of trainable parameters. (For T0, an IA3 model only has about 0.01% trainable parameters, while even LoRA has > 0.1%) * The original pre-trained weights are kept frozen, which means you can have multiple lightweight and portable IA3 models for various downstream tasks built on top of them. * Performance of models fine-tuned using IA3 is comparable to the performance of fully fine-tuned models. * IA3 does not add any inference latency because adapter weights can be merged with the base model. In principle, IA3 can be applied to any subset of weight matrices in a neural network to reduce the number of trainable parameters. Following the authors' implementation, IA3 weights are added to the key, value and feedforward layers of a Transformer model. Given the target layers for injecting IA3 parameters, the number of trainable parameters can be determined based on the size of the weight matrices. ## Common IA3 parameters in PEFT As with other methods supported by PEFT, to fine-tune a model using IA3, you need to: 1. Instantiate a base model. 2. Create a configuration (`IA3Config`) where you define IA3-specific parameters. 3. Wrap the base model with `get_peft_model()` to get a trainable `PeftModel`. 4. Train the `PeftModel` as you normally would train the base model. `IA3Config` allows you to control how IA3 is applied to the base model through the following parameters: - `target_modules`: The modules (for example, attention blocks) to apply the IA3 vectors. - `feedforward_modules`: The list of modules to be treated as feedforward layers in `target_modules`. While learned vectors are multiplied with the output activation for attention blocks, the vectors are multiplied with the input for classic feedforward layers. - `modules_to_save`: List of modules apart from IA3 layers to be set as trainable and saved in the final checkpoint. These typically include model's custom head that is randomly initialized for the fine-tuning task.
0
hf_public_repos/peft/docs/source
hf_public_repos/peft/docs/source/conceptual_guides/lora.mdx
<!--Copyright 2023 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. --> # LoRA This conceptual guide gives a brief overview of [LoRA](https://arxiv.org/abs/2106.09685), a technique that accelerates the fine-tuning of large models while consuming less memory. To make fine-tuning more efficient, LoRA's approach is to represent the weight updates with two smaller matrices (called **update matrices**) through low-rank decomposition. These new matrices can be trained to adapt to the new data while keeping the overall number of changes low. The original weight matrix remains frozen and doesn't receive any further adjustments. To produce the final results, both the original and the adapted weights are combined. This approach has a number of advantages: * LoRA makes fine-tuning more efficient by drastically reducing the number of trainable parameters. * The original pre-trained weights are kept frozen, which means you can have multiple lightweight and portable LoRA models for various downstream tasks built on top of them. * LoRA is orthogonal to many other parameter-efficient methods and can be combined with many of them. * Performance of models fine-tuned using LoRA is comparable to the performance of fully fine-tuned models. * LoRA does not add any inference latency because adapter weights can be merged with the base model. In principle, LoRA can be applied to any subset of weight matrices in a neural network to reduce the number of trainable parameters. However, for simplicity and further parameter efficiency, in Transformer models LoRA is typically applied to attention blocks only. The resulting number of trainable parameters in a LoRA model depends on the size of the low-rank update matrices, which is determined mainly by the rank `r` and the shape of the original weight matrix. ## Merge LoRA weights into the base model While LoRA is significantly smaller and faster to train, you may encounter latency issues during inference due to separately loading the base model and the LoRA model. To eliminate latency, use the [`~LoraModel.merge_and_unload`] function to merge the adapter weights with the base model which allows you to effectively use the newly merged model as a standalone model. <div class="flex justify-center"> <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/peft/lora_diagram.png"/> </div> This works because during training, the smaller weight matrices (*A* and *B* in the diagram above) are separate. But once training is complete, the weights can actually be merged into a new weight matrix that is identical. ## Utils for LoRA Use [`~LoraModel.merge_adapter`] to merge the LoRa layers into the base model while retaining the PeftModel. This will help in later unmerging, deleting, loading different adapters and so on. Use [`~LoraModel.unmerge_adapter`] to unmerge the LoRa layers from the base model while retaining the PeftModel. This will help in later merging, deleting, loading different adapters and so on. Use [`~LoraModel.unload`] to get back the base model without the merging of the active lora modules. This will help when you want to get back the pretrained base model in some applications when you want to reset the model to its original state. For example, in Stable Diffusion WebUi, when the user wants to infer with base model post trying out LoRAs. Use [`~LoraModel.delete_adapter`] to delete an existing adapter. Use [`~LoraModel.add_weighted_adapter`] to combine multiple LoRAs into a new adapter based on the user provided weighing scheme. ## Common LoRA parameters in PEFT As with other methods supported by PEFT, to fine-tune a model using LoRA, you need to: 1. Instantiate a base model. 2. Create a configuration (`LoraConfig`) where you define LoRA-specific parameters. 3. Wrap the base model with `get_peft_model()` to get a trainable `PeftModel`. 4. Train the `PeftModel` as you normally would train the base model. `LoraConfig` allows you to control how LoRA is applied to the base model through the following parameters: - `r`: the rank of the update matrices, expressed in `int`. Lower rank results in smaller update matrices with fewer trainable parameters. - `target_modules`: The modules (for example, attention blocks) to apply the LoRA update matrices. - `alpha`: LoRA scaling factor. - `bias`: Specifies if the `bias` parameters should be trained. Can be `'none'`, `'all'` or `'lora_only'`. - `modules_to_save`: List of modules apart from LoRA layers to be set as trainable and saved in the final checkpoint. These typically include model's custom head that is randomly initialized for the fine-tuning task. - `layers_to_transform`: List of layers to be transformed by LoRA. If not specified, all layers in `target_modules` are transformed. - `layers_pattern`: Pattern to match layer names in `target_modules`, if `layers_to_transform` is specified. By default `PeftModel` will look at common layer pattern (`layers`, `h`, `blocks`, etc.), use it for exotic and custom models. ## LoRA examples For an example of LoRA method application to various downstream tasks, please refer to the following guides: * [Image classification using LoRA](../task_guides/image_classification_lora) * [Semantic segmentation](../task_guides/semantic_segmentation_lora) While the original paper focuses on language models, the technique can be applied to any dense layers in deep learning models. As such, you can leverage this technique with diffusion models. See [Dreambooth fine-tuning with LoRA](../task_guides/task_guides/dreambooth_lora) task guide for an example.
0
hf_public_repos/peft/docs/source
hf_public_repos/peft/docs/source/conceptual_guides/prompting.mdx
# Prompting Training large pretrained language models is very time-consuming and compute-intensive. As they continue to grow in size, there is increasing interest in more efficient training methods such as *prompting*. Prompting primes a frozen pretrained model for a specific downstream task by including a text prompt that describes the task or even demonstrates an example of the task. With prompting, you can avoid fully training a separate model for each downstream task, and use the same frozen pretrained model instead. This is a lot easier because you can use the same model for several different tasks, and it is significantly more efficient to train and store a smaller set of prompt parameters than to train all the model's parameters. There are two categories of prompting methods: - hard prompts are manually handcrafted text prompts with discrete input tokens; the downside is that it requires a lot of effort to create a good prompt - soft prompts are learnable tensors concatenated with the input embeddings that can be optimized to a dataset; the downside is that they aren't human readable because you aren't matching these "virtual tokens" to the embeddings of a real word This conceptual guide provides a brief overview of the soft prompt methods included in 🤗 PEFT: prompt tuning, prefix tuning, and P-tuning. ## Prompt tuning <div class="flex justify-center"> <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/peft/prompt-tuning.png"/> </div> <small>Only train and store a significantly smaller set of task-specific prompt parameters <a href="https://arxiv.org/abs/2104.08691">(image source)</a>.</small> Prompt tuning was developed for text classification tasks on T5 models, and all downstream tasks are cast as a text generation task. For example, sequence classification usually assigns a single class label to a sequence of text. By casting it as a text generation task, the tokens that make up the class label are *generated*. Prompts are added to the input as a series of tokens. Typically, the model parameters are fixed which means the prompt tokens are also fixed by the model parameters. The key idea behind prompt tuning is that prompt tokens have their own parameters that are updated independently. This means you can keep the pretrained model's parameters frozen, and only update the gradients of the prompt token embeddings. The results are comparable to the traditional method of training the entire model, and prompt tuning performance scales as model size increases. Take a look at [Prompt tuning for causal language modeling](../task_guides/clm-prompt-tuning) for a step-by-step guide on how to train a model with prompt tuning. ## Prefix tuning <div class="flex justify-center"> <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/peft/prefix-tuning.png"/> </div> <small>Optimize the prefix parameters for each task <a href="https://arxiv.org/abs/2101.00190">(image source)</a>.</small> Prefix tuning was designed for natural language generation (NLG) tasks on GPT models. It is very similar to prompt tuning; prefix tuning also prepends a sequence of task-specific vectors to the input that can be trained and updated while keeping the rest of the pretrained model's parameters frozen. The main difference is that the prefix parameters are inserted in **all** of the model layers, whereas prompt tuning only adds the prompt parameters to the model input embeddings. The prefix parameters are also optimized by a separate feed-forward network (FFN) instead of training directly on the soft prompts because it causes instability and hurts performance. The FFN is discarded after updating the soft prompts. As a result, the authors found that prefix tuning demonstrates comparable performance to fully finetuning a model, despite having 1000x fewer parameters, and it performs even better in low-data settings. Take a look at [Prefix tuning for conditional generation](../task_guides/seq2seq-prefix-tuning) for a step-by-step guide on how to train a model with prefix tuning. ## P-tuning <div class="flex justify-center"> <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/peft/p-tuning.png"/> </div> <small>Prompt tokens can be inserted anywhere in the input sequence, and they are optimized by a prompt encoder <a href="https://arxiv.org/abs/2103.10385">(image source)</a>.</small> P-tuning is designed for natural language understanding (NLU) tasks and all language models. It is another variation of a soft prompt method; P-tuning also adds a trainable embedding tensor that can be optimized to find better prompts, and it uses a prompt encoder (a bidirectional long-short term memory network or LSTM) to optimize the prompt parameters. Unlike prefix tuning though: - the prompt tokens can be inserted anywhere in the input sequence, and it isn't restricted to only the beginning - the prompt tokens are only added to the input instead of adding them to every layer of the model - introducing *anchor* tokens can improve performance because they indicate characteristics of a component in the input sequence The results suggest that P-tuning is more efficient than manually crafting prompts, and it enables GPT-like models to compete with BERT-like models on NLU tasks. Take a look at [P-tuning for sequence classification](../task_guides/ptuning-seq-classification) for a step-by-step guide on how to train a model with P-tuning.
0
hf_public_repos/peft/docs/source
hf_public_repos/peft/docs/source/package_reference/peft_model.mdx
# Models [`PeftModel`] is the base model class for specifying the base Transformer model and configuration to apply a PEFT method to. The base `PeftModel` contains methods for loading and saving models from the Hub, and supports the [`PromptEncoder`] for prompt learning. ## PeftModel [[autodoc]] PeftModel - all ## PeftModelForSequenceClassification A `PeftModel` for sequence classification tasks. [[autodoc]] PeftModelForSequenceClassification - all ## PeftModelForTokenClassification A `PeftModel` for token classification tasks. [[autodoc]] PeftModelForTokenClassification - all ## PeftModelForCausalLM A `PeftModel` for causal language modeling. [[autodoc]] PeftModelForCausalLM - all ## PeftModelForSeq2SeqLM A `PeftModel` for sequence-to-sequence language modeling. [[autodoc]] PeftModelForSeq2SeqLM - all ## PeftModelForQuestionAnswering A `PeftModel` for question answering. [[autodoc]] PeftModelForQuestionAnswering - all ## PeftModelForFeatureExtraction A `PeftModel` for getting extracting features/embeddings from transformer models. [[autodoc]] PeftModelForFeatureExtraction - all
0
hf_public_repos/peft/docs/source
hf_public_repos/peft/docs/source/package_reference/tuners.mdx
# Tuners Each tuner (or PEFT method) has a configuration and model. ## LoRA For finetuning a model with LoRA. [[autodoc]] LoraConfig [[autodoc]] LoraModel [[autodoc]] tuners.lora.LoraLayer [[autodoc]] tuners.lora.Linear ## P-tuning [[autodoc]] tuners.p_tuning.PromptEncoderConfig [[autodoc]] tuners.p_tuning.PromptEncoder ## Prefix tuning [[autodoc]] tuners.prefix_tuning.PrefixTuningConfig [[autodoc]] tuners.prefix_tuning.PrefixEncoder ## Prompt tuning [[autodoc]] tuners.prompt_tuning.PromptTuningConfig [[autodoc]] tuners.prompt_tuning.PromptEmbedding ## IA3 [[autodoc]] tuners.ia3.IA3Config [[autodoc]] tuners.ia3.IA3Model
0
hf_public_repos/peft/docs/source
hf_public_repos/peft/docs/source/package_reference/config.mdx
# Configuration The configuration classes stores the configuration of a [`PeftModel`], PEFT adapter models, and the configurations of [`PrefixTuning`], [`PromptTuning`], and [`PromptEncoder`]. They contain methods for saving and loading model configurations from the Hub, specifying the PEFT method to use, type of task to perform, and model configurations like number of layers and number of attention heads. ## PeftConfigMixin [[autodoc]] utils.config.PeftConfigMixin - all ## PeftConfig [[autodoc]] PeftConfig - all ## PromptLearningConfig [[autodoc]] PromptLearningConfig - all
0
hf_public_repos/peft
hf_public_repos/peft/scripts/stale.py
# Copyright 2023 The HuggingFace Team, the AllenNLP library authors. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Script to close stale issue. Taken in part from the AllenNLP repository. https://github.com/allenai/allennlp. """ from datetime import datetime as dt import os from github import Github LABELS_TO_EXEMPT = [ "good first issue", "good second issue", "good difficult issue", "feature request", "new model", "wip", "PRs welcome to address this", ] def main(): g = Github(os.environ["GITHUB_TOKEN"]) repo = g.get_repo("huggingface/peft") open_issues = repo.get_issues(state="open") for issue in open_issues: comments = sorted([comment for comment in issue.get_comments()], key=lambda i: i.created_at, reverse=True) last_comment = comments[0] if len(comments) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels()) ): issue.edit(state="closed") elif ( (dt.utcnow() - issue.updated_at).days > 23 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels()) ): issue.create_comment( "This issue has been automatically marked as stale because it has not had " "recent activity. If you think this still needs to be addressed " "please comment on this thread.\n\n" ) if __name__ == "__main__": main()
0
hf_public_repos/peft
hf_public_repos/peft/scripts/log_reports.py
import json, os from pathlib import Path from datetime import date from tabulate import tabulate failed = [] passed = [] group_info = [] total_num_failed = 0 empty_file = False or len(list(Path().glob("*.log"))) == 0 for log in Path().glob("*.log"): section_num_failed = 0 with open(log, "r") as f: nb_lines = sum(1 for _ in f) for i, line in f: line = json.loads(line) if line.get("nodeid", "") != "": test = line["nodeid"] if line.get("duration", None) is not None: duration = f'{line["duration"]:.4f}' if line.get("outcome", "") == "failed": section_num_failed += 1 failed.append([test, duration, log.name.split('_')[0]]) total_num_failed += 1 else: passed.append([test, duration, log.name.split('_')[0]]) if nb_lines == 0: empty_file = True group_info.append([str(log), section_num_failed, failed]) os.remove(log) failed = [] no_error_payload = { "type": "section", "text": { "type": "plain_text", "text": "🌞 There were no failures!" if not empty_file else "Something went wrong - please check GH action results.", "emoji": True } } message = "" payload = [ { "type": "header", "text": { "type": "plain_text", "text": "🤗 Results of the {} PEFT scheduled tests.".format(os.environ.get("TEST_TYPE", "")), } }, ] if total_num_failed > 0: for name, num_failed, failed_tests in group_info: if num_failed > 0: if num_failed == 1: message += f"*{name}: {num_failed} failed test*\n" else: message += f"*{name}: {num_failed} failed tests*\n" failed_table = [] for test in failed_tests: failed_table.append(test[0].split("::")) failed_table = tabulate(failed_table, headers=["Test Location", "Test Case", "Test Name"], showindex="always", tablefmt="grid", maxcolwidths=[12, 12, 12]) message += '\n```\n' +failed_table + '\n```' print(f'### {message}') else: payload.append(no_error_payload) if os.environ.get("TEST_TYPE", "") != "": from slack_sdk import WebClient if len(message) != 0: md_report = { "type": "section", "text": { "type": "mrkdwn", "text": message }, } payload.append(md_report) action_button = { "type": "section", "text": { "type": "mrkdwn", "text": "*For more details:*" }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": f"https://github.com/huggingface/peft/actions/runs/{os.environ['GITHUB_RUN_ID']}", }, } payload.append(action_button) date_report = { "type": "context", "elements": [ { "type": "plain_text", "text": f"Nightly {os.environ.get('TEST_TYPE')} test results for {date.today()}", }, ], } payload.append(date_report) print(payload) client = WebClient(token=os.environ.get("SLACK_API_TOKEN")) client.chat_postMessage(channel="#peft-ci-daily", text=message, blocks=payload)
0
hf_public_repos/peft/docker
hf_public_repos/peft/docker/peft-cpu/Dockerfile
# Builds GPU docker image of PyTorch # Uses multi-staged approach to reduce size # Stage 1 # Use base conda image to reduce time FROM continuumio/miniconda3:latest AS compile-image # Specify py version ENV PYTHON_VERSION=3.8 # Install apt libs - copied from https://github.com/huggingface/accelerate/blob/main/docker/accelerate-gpu/Dockerfile RUN apt-get update && \ apt-get install -y curl git wget software-properties-common git-lfs && \ apt-get clean && \ rm -rf /var/lib/apt/lists* # Install audio-related libraries RUN apt-get update && \ apt install -y ffmpeg RUN apt install -y libsndfile1-dev RUN git lfs install # Create our conda env - copied from https://github.com/huggingface/accelerate/blob/main/docker/accelerate-gpu/Dockerfile RUN conda create --name peft python=${PYTHON_VERSION} ipython jupyter pip RUN python3 -m pip install --no-cache-dir --upgrade pip # Below is copied from https://github.com/huggingface/accelerate/blob/main/docker/accelerate-gpu/Dockerfile # We don't install pytorch here yet since CUDA isn't available # instead we use the direct torch wheel ENV PATH /opt/conda/envs/peft/bin:$PATH # Activate our bash shell RUN chsh -s /bin/bash SHELL ["/bin/bash", "-c"] # Activate the conda env and install transformers + accelerate from source RUN source activate peft && \ python3 -m pip install --no-cache-dir \ librosa \ "soundfile>=0.12.1" \ scipy \ git+https://github.com/huggingface/transformers \ git+https://github.com/huggingface/accelerate \ peft[test]@git+https://github.com/huggingface/peft # Install apt libs RUN apt-get update && \ apt-get install -y curl git wget && \ apt-get clean && \ rm -rf /var/lib/apt/lists* RUN echo "source activate peft" >> ~/.profile # Activate the virtualenv CMD ["/bin/bash"]
0
hf_public_repos/peft/docker
hf_public_repos/peft/docker/peft-gpu/Dockerfile
# Builds GPU docker image of PyTorch # Uses multi-staged approach to reduce size # Stage 1 # Use base conda image to reduce time FROM continuumio/miniconda3:latest AS compile-image # Specify py version ENV PYTHON_VERSION=3.8 # Install apt libs - copied from https://github.com/huggingface/accelerate/blob/main/docker/accelerate-gpu/Dockerfile RUN apt-get update && \ apt-get install -y curl git wget software-properties-common git-lfs && \ apt-get clean && \ rm -rf /var/lib/apt/lists* # Install audio-related libraries RUN apt-get update && \ apt install -y ffmpeg RUN apt install -y libsndfile1-dev RUN git lfs install # Create our conda env - copied from https://github.com/huggingface/accelerate/blob/main/docker/accelerate-gpu/Dockerfile RUN conda create --name peft python=${PYTHON_VERSION} ipython jupyter pip RUN python3 -m pip install --no-cache-dir --upgrade pip # Below is copied from https://github.com/huggingface/accelerate/blob/main/docker/accelerate-gpu/Dockerfile # We don't install pytorch here yet since CUDA isn't available # instead we use the direct torch wheel ENV PATH /opt/conda/envs/peft/bin:$PATH # Activate our bash shell RUN chsh -s /bin/bash SHELL ["/bin/bash", "-c"] # Activate the conda env and install transformers + accelerate from source RUN source activate peft && \ python3 -m pip install --no-cache-dir \ librosa \ "soundfile>=0.12.1" \ scipy \ git+https://github.com/huggingface/transformers \ git+https://github.com/huggingface/accelerate \ peft[test]@git+https://github.com/huggingface/peft RUN python3 -m pip install --no-cache-dir bitsandbytes # Stage 2 FROM nvidia/cuda:11.3.1-devel-ubuntu20.04 AS build-image COPY --from=compile-image /opt/conda /opt/conda ENV PATH /opt/conda/bin:$PATH # Install apt libs RUN apt-get update && \ apt-get install -y curl git wget && \ apt-get clean && \ rm -rf /var/lib/apt/lists* RUN echo "source activate peft" >> ~/.profile # Activate the virtualenv CMD ["/bin/bash"]
0
hf_public_repos/peft/src
hf_public_repos/peft/src/peft/__init__.py
# flake8: noqa # There's no way to ignore "F401 '...' imported but unused" warnings in this # module, but to preserve other warnings. So, don't check this module at all. # coding=utf-8 # Copyright 2023-present the HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. __version__ = "0.5.0.dev0" from .auto import ( AutoPeftModel, AutoPeftModelForCausalLM, AutoPeftModelForSequenceClassification, AutoPeftModelForSeq2SeqLM, AutoPeftModelForTokenClassification, AutoPeftModelForQuestionAnswering, AutoPeftModelForFeatureExtraction, ) from .mapping import MODEL_TYPE_TO_PEFT_MODEL_MAPPING, PEFT_TYPE_TO_CONFIG_MAPPING, get_peft_config, get_peft_model from .peft_model import ( PeftModel, PeftModelForCausalLM, PeftModelForSeq2SeqLM, PeftModelForSequenceClassification, PeftModelForTokenClassification, PeftModelForQuestionAnswering, PeftModelForFeatureExtraction, ) from .tuners import ( AdaptionPromptConfig, AdaptionPromptModel, LoraConfig, LoraModel, IA3Config, IA3Model, AdaLoraConfig, AdaLoraModel, PrefixEncoder, PrefixTuningConfig, PromptEmbedding, PromptEncoder, PromptEncoderConfig, PromptEncoderReparameterizationType, PromptTuningConfig, PromptTuningInit, ) from .utils import ( TRANSFORMERS_MODELS_TO_PREFIX_TUNING_POSTPROCESS_MAPPING, PeftConfig, PeftType, PromptLearningConfig, TaskType, bloom_model_postprocess_past_key_value, get_peft_model_state_dict, prepare_model_for_int8_training, prepare_model_for_kbit_training, set_peft_model_state_dict, shift_tokens_right, )
0
hf_public_repos/peft/src
hf_public_repos/peft/src/peft/auto.py
# coding=utf-8 # Copyright 2023-present the HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import annotations import importlib from typing import Optional from transformers import ( AutoModel, AutoModelForCausalLM, AutoModelForQuestionAnswering, AutoModelForSeq2SeqLM, AutoModelForSequenceClassification, AutoModelForTokenClassification, ) from .mapping import MODEL_TYPE_TO_PEFT_MODEL_MAPPING from .peft_model import ( PeftModel, PeftModelForCausalLM, PeftModelForFeatureExtraction, PeftModelForQuestionAnswering, PeftModelForSeq2SeqLM, PeftModelForSequenceClassification, PeftModelForTokenClassification, ) from .utils import PeftConfig class _BaseAutoPeftModel: _target_class = None _target_peft_class = None def __init__(self, *args, **kwargs): # For consistency with transformers: https://github.com/huggingface/transformers/blob/91d7df58b6537d385e90578dac40204cb550f706/src/transformers/models/auto/auto_factory.py#L400 raise EnvironmentError( f"{self.__class__.__name__} is designed to be instantiated " f"using the `{self.__class__.__name__}.from_pretrained(pretrained_model_name_or_path)` or " f"`{self.__class__.__name__}.from_config(config)` methods." ) @classmethod def from_pretrained( cls, pretrained_model_name_or_path, adapter_name: str = "default", is_trainable: bool = False, config: Optional[PeftConfig] = None, **kwargs, ): r""" A wrapper around all the preprocessing steps a user needs to perform in order to load a PEFT model. The kwargs are passed along to `PeftConfig` that automatically takes care of filtering the kwargs of the Hub methods and the config object init. """ peft_config = PeftConfig.from_pretrained(pretrained_model_name_or_path, **kwargs) base_model_path = peft_config.base_model_name_or_path task_type = getattr(peft_config, "task_type", None) if cls._target_class is not None: target_class = cls._target_class elif cls._target_class is None and task_type is not None: # this is only in the case where we use `AutoPeftModel` raise ValueError( "Cannot use `AutoPeftModel` with a task type, please use a specific class for your task type. (e.g. `AutoPeftModelForCausalLM` for `task_type='CAUSAL_LM'`)" ) if task_type is not None: expected_target_class = MODEL_TYPE_TO_PEFT_MODEL_MAPPING[task_type] if cls._target_peft_class.__name__ != expected_target_class.__name__: raise ValueError( f"Expected target PEFT class: {expected_target_class.__name__}, but you have asked for: {cls._target_peft_class.__name__ }" " make sure that you are loading the correct model for your task type." ) elif task_type is None and getattr(peft_config, "auto_mapping", None) is not None: auto_mapping = getattr(peft_config, "auto_mapping", None) base_model_class = auto_mapping["base_model_class"] parent_library_name = auto_mapping["parent_library"] parent_library = importlib.import_module(parent_library_name) target_class = getattr(parent_library, base_model_class) else: raise ValueError( "Cannot infer the auto class from the config, please make sure that you are loading the correct model for your task type." ) base_model = target_class.from_pretrained(base_model_path, **kwargs) return cls._target_peft_class.from_pretrained( base_model, pretrained_model_name_or_path, adapter_name=adapter_name, is_trainable=is_trainable, config=config, **kwargs, ) class AutoPeftModel(_BaseAutoPeftModel): _target_class = None _target_peft_class = PeftModel class AutoPeftModelForCausalLM(_BaseAutoPeftModel): _target_class = AutoModelForCausalLM _target_peft_class = PeftModelForCausalLM class AutoPeftModelForSeq2SeqLM(_BaseAutoPeftModel): _target_class = AutoModelForSeq2SeqLM _target_peft_class = PeftModelForSeq2SeqLM class AutoPeftModelForSequenceClassification(_BaseAutoPeftModel): _target_class = AutoModelForSequenceClassification _target_peft_class = PeftModelForSequenceClassification class AutoPeftModelForTokenClassification(_BaseAutoPeftModel): _target_class = AutoModelForTokenClassification _target_peft_class = PeftModelForTokenClassification class AutoPeftModelForQuestionAnswering(_BaseAutoPeftModel): _target_class = AutoModelForQuestionAnswering _target_peft_class = PeftModelForQuestionAnswering class AutoPeftModelForFeatureExtraction(_BaseAutoPeftModel): _target_class = AutoModel _target_peft_class = PeftModelForFeatureExtraction
0
hf_public_repos/peft/src
hf_public_repos/peft/src/peft/mapping.py
# coding=utf-8 # Copyright 2023-present the HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import annotations from typing import TYPE_CHECKING, Any, Dict from .peft_model import ( PeftModel, PeftModelForCausalLM, PeftModelForFeatureExtraction, PeftModelForQuestionAnswering, PeftModelForSeq2SeqLM, PeftModelForSequenceClassification, PeftModelForTokenClassification, ) from .tuners import ( AdaLoraConfig, AdaptionPromptConfig, IA3Config, LoraConfig, PrefixTuningConfig, PromptEncoderConfig, PromptTuningConfig, ) from .utils import PromptLearningConfig, _prepare_prompt_learning_config if TYPE_CHECKING: from transformers import PreTrainedModel from .utils.config import PeftConfig MODEL_TYPE_TO_PEFT_MODEL_MAPPING = { "SEQ_CLS": PeftModelForSequenceClassification, "SEQ_2_SEQ_LM": PeftModelForSeq2SeqLM, "CAUSAL_LM": PeftModelForCausalLM, "TOKEN_CLS": PeftModelForTokenClassification, "QUESTION_ANS": PeftModelForQuestionAnswering, "FEATURE_EXTRACTION": PeftModelForFeatureExtraction, } PEFT_TYPE_TO_CONFIG_MAPPING = { "ADAPTION_PROMPT": AdaptionPromptConfig, "PROMPT_TUNING": PromptTuningConfig, "PREFIX_TUNING": PrefixTuningConfig, "P_TUNING": PromptEncoderConfig, "LORA": LoraConfig, "ADALORA": AdaLoraConfig, "IA3": IA3Config, } def get_peft_config(config_dict: Dict[str, Any]): """ Returns a Peft config object from a dictionary. Args: config_dict (`Dict[str, Any]`): Dictionary containing the configuration parameters. """ return PEFT_TYPE_TO_CONFIG_MAPPING[config_dict["peft_type"]](**config_dict) def get_peft_model(model: PreTrainedModel, peft_config: PeftConfig, adapter_name: str = "default") -> PeftModel: """ Returns a Peft model object from a model and a config. Args: model ([`transformers.PreTrainedModel`]): Model to be wrapped. peft_config ([`PeftConfig`]): Configuration object containing the parameters of the Peft model. """ model_config = getattr(model, "config", {"model_type": "custom"}) if hasattr(model_config, "to_dict"): model_config = model_config.to_dict() peft_config.base_model_name_or_path = model.__dict__.get("name_or_path", None) if peft_config.task_type not in MODEL_TYPE_TO_PEFT_MODEL_MAPPING.keys() and not isinstance( peft_config, PromptLearningConfig ): return PeftModel(model, peft_config, adapter_name=adapter_name) if isinstance(peft_config, PromptLearningConfig): peft_config = _prepare_prompt_learning_config(peft_config, model_config) return MODEL_TYPE_TO_PEFT_MODEL_MAPPING[peft_config.task_type](model, peft_config, adapter_name=adapter_name)
0
hf_public_repos/peft/src
hf_public_repos/peft/src/peft/import_utils.py
# coding=utf-8 # Copyright 2023-present the HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import importlib def is_bnb_available(): return importlib.util.find_spec("bitsandbytes") is not None def is_bnb_4bit_available(): if not is_bnb_available(): return False import bitsandbytes as bnb return hasattr(bnb.nn, "Linear4bit")
0
hf_public_repos/peft/src
hf_public_repos/peft/src/peft/peft_model.py
# coding=utf-8 # Copyright 2023-present the HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import annotations import inspect import os import warnings from contextlib import contextmanager from copy import deepcopy from typing import Any, Dict, List, Optional, Union import torch from accelerate import dispatch_model, infer_auto_device_map from accelerate.hooks import AlignDevicesHook, add_hook_to_module, remove_hook_from_submodules from accelerate.utils import get_balanced_memory from huggingface_hub import hf_hub_download from huggingface_hub.utils import EntryNotFoundError from safetensors.torch import load_file as safe_load_file from safetensors.torch import save_file as safe_save_file from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from transformers import PreTrainedModel from transformers.modeling_outputs import QuestionAnsweringModelOutput, SequenceClassifierOutput, TokenClassifierOutput from transformers.utils import PushToHubMixin from . import __version__ from .tuners import ( AdaLoraModel, AdaptionPromptModel, IA3Model, LoraModel, PrefixEncoder, PromptEmbedding, PromptEncoder, ) from .utils import ( SAFETENSORS_WEIGHTS_NAME, TRANSFORMERS_MODELS_TO_PREFIX_TUNING_POSTPROCESS_MAPPING, WEIGHTS_NAME, PeftConfig, PeftType, PromptLearningConfig, TaskType, _prepare_prompt_learning_config, _set_adapter, _set_trainable, add_library_to_model_card, get_peft_model_state_dict, hub_file_exists, set_peft_model_state_dict, shift_tokens_right, ) PEFT_TYPE_TO_MODEL_MAPPING = { PeftType.LORA: LoraModel, PeftType.PROMPT_TUNING: PromptEmbedding, PeftType.P_TUNING: PromptEncoder, PeftType.PREFIX_TUNING: PrefixEncoder, PeftType.ADALORA: AdaLoraModel, PeftType.ADAPTION_PROMPT: AdaptionPromptModel, PeftType.IA3: IA3Model, } class PeftModel(PushToHubMixin, torch.nn.Module): """ Base model encompassing various Peft methods. Args: model ([`~transformers.PreTrainedModel`]): The base transformer model used for Peft. peft_config ([`PeftConfig`]): The configuration of the Peft model. **Attributes**: - **base_model** ([`~transformers.PreTrainedModel`]) -- The base transformer model used for Peft. - **peft_config** ([`PeftConfig`]) -- The configuration of the Peft model. - **modules_to_save** (`list` of `str`) -- The list of sub-module names to save when saving the model. - **prompt_encoder** ([`PromptEncoder`]) -- The prompt encoder used for Peft if using [`PromptLearningConfig`]. - **prompt_tokens** (`torch.Tensor`) -- The virtual prompt tokens used for Peft if using [`PromptLearningConfig`]. - **transformer_backbone_name** (`str`) -- The name of the transformer backbone in the base model if using [`PromptLearningConfig`]. - **word_embeddings** (`torch.nn.Embedding`) -- The word embeddings of the transformer backbone in the base model if using [`PromptLearningConfig`]. """ def __init__(self, model: PreTrainedModel, peft_config: PeftConfig, adapter_name: str = "default"): super().__init__() self.base_model = model self.config = getattr(self.base_model, "config", {"model_type": "custom"}) self.modules_to_save = None self.peft_config = {} self.active_adapter = adapter_name self.peft_type = peft_config.peft_type if not isinstance(peft_config, PromptLearningConfig): self.peft_config[adapter_name] = peft_config self.base_model = PEFT_TYPE_TO_MODEL_MAPPING[peft_config.peft_type]( self.base_model, self.peft_config, adapter_name ) self.set_additional_trainable_modules(peft_config, adapter_name) else: self.add_adapter(adapter_name, peft_config) if getattr(model, "is_gradient_checkpointing", True): model = self._prepare_model_for_gradient_checkpointing(model) # the `pretraining_tp` is set for some models to simulate Tensor Parallelism during inference to avoid # numerical differences, https://github.com/pytorch/pytorch/issues/76232 - to avoid any unexpected # behavior we disable that in this line. if hasattr(self.base_model, "config") and hasattr(self.base_model.config, "pretraining_tp"): self.base_model.config.pretraining_tp = 1 def save_pretrained( self, save_directory: str, safe_serialization: bool = False, selected_adapters: Optional[List[str]] = None, **kwargs: Any, ): r""" This function saves the adapter model and the adapter configuration files to a directory, so that it can be reloaded using the [`LoraModel.from_pretrained`] class method, and also used by the [`LoraModel.push_to_hub`] method. Args: save_directory (`str`): Directory where the adapter model and configuration files will be saved (will be created if it does not exist). kwargs (additional keyword arguments, *optional*): Additional keyword arguments passed along to the `push_to_hub` method. """ if os.path.isfile(save_directory): raise ValueError(f"Provided path ({save_directory}) should be a directory, not a file") if selected_adapters is None: selected_adapters = list(self.peft_config.keys()) else: if any( selected_adapter_name not in list(self.peft_config.keys()) for selected_adapter_name in selected_adapters ): raise ValueError( f"You passed an invalid `selected_adapters` arguments, current supported adapter names are" f" {list(self.peft_config.keys())} - got {selected_adapters}." ) os.makedirs(save_directory, exist_ok=True) self.create_or_update_model_card(save_directory) for adapter_name in selected_adapters: peft_config = self.peft_config[adapter_name] # save only the trainable weights output_state_dict = get_peft_model_state_dict( self, state_dict=kwargs.get("state_dict", None), adapter_name=adapter_name ) output_dir = os.path.join(save_directory, adapter_name) if adapter_name != "default" else save_directory os.makedirs(output_dir, exist_ok=True) if safe_serialization: safe_save_file( output_state_dict, os.path.join(output_dir, SAFETENSORS_WEIGHTS_NAME), metadata={"format": "pt"}, ) else: torch.save(output_state_dict, os.path.join(output_dir, WEIGHTS_NAME)) # save the config and change the inference mode to `True` if peft_config.base_model_name_or_path is None: peft_config.base_model_name_or_path = ( self.base_model.__dict__.get("name_or_path", None) if isinstance(peft_config, PromptLearningConfig) else self.base_model.model.__dict__.get("name_or_path", None) ) inference_mode = peft_config.inference_mode peft_config.inference_mode = True if peft_config.task_type is None: # deal with auto mapping base_model_class = self._get_base_model_class( is_prompt_tuning=isinstance(peft_config, PromptLearningConfig) ) parent_library = base_model_class.__module__ auto_mapping_dict = { "base_model_class": base_model_class.__name__, "parent_library": parent_library, } else: auto_mapping_dict = None peft_config.save_pretrained(output_dir, auto_mapping_dict=auto_mapping_dict) peft_config.inference_mode = inference_mode @classmethod def from_pretrained( cls, model: PreTrainedModel, model_id: Union[str, os.PathLike], adapter_name: str = "default", is_trainable: bool = False, config: Optional[PeftConfig] = None, **kwargs: Any, ): r""" Instantiate a [`LoraModel`] from a pretrained Lora configuration and weights. Args: model ([`~transformers.PreTrainedModel`]): The model to be adapted. The model should be initialized with the [`~transformers.PreTrainedModel.from_pretrained`] method from the 🤗 Transformers library. model_id (`str` or `os.PathLike`): The name of the Lora configuration to use. Can be either: - A string, the `model id` of a Lora configuration hosted inside a model repo on the Hugging Face Hub. - A path to a directory containing a Lora configuration file saved using the `save_pretrained` method (`./my_lora_config_directory/`). adapter_name (`str`, *optional*, defaults to `"default"`): The name of the adapter to be loaded. This is useful for loading multiple adapters. is_trainable (`bool`, *optional*, defaults to `False`): Whether the adapter should be trainable or not. If `False`, the adapter will be frozen and use for inference config ([`~peft.PeftConfig`], *optional*): The configuration object to use instead of an automatically loaded configuation. This configuration object is mutually exclusive with `model_id` and `kwargs`. This is useful when configuration is already loaded before calling `from_pretrained`. kwargs: (`optional`): Additional keyword arguments passed along to the specific Lora configuration class. """ from .mapping import MODEL_TYPE_TO_PEFT_MODEL_MAPPING, PEFT_TYPE_TO_CONFIG_MAPPING # load the config if config is None: config = PEFT_TYPE_TO_CONFIG_MAPPING[ PeftConfig._get_peft_type( model_id, subfolder=kwargs.get("subfolder", None), revision=kwargs.get("revision", None), cache_dir=kwargs.get("cache_dir", None), use_auth_token=kwargs.get("use_auth_token", None), ) ].from_pretrained(model_id, **kwargs) elif isinstance(config, PeftConfig): config.inference_mode = not is_trainable else: raise ValueError(f"The input config must be a PeftConfig, got {config.__class__}") if (getattr(model, "hf_device_map", None) is not None) and len( set(model.hf_device_map.values()).intersection({"cpu", "disk"}) ) > 0: remove_hook_from_submodules(model) if isinstance(config, PromptLearningConfig) and is_trainable: raise ValueError("Cannot set a prompt learning adapter to trainable when loading pretrained adapter.") else: config.inference_mode = not is_trainable if config.task_type not in MODEL_TYPE_TO_PEFT_MODEL_MAPPING.keys(): model = cls(model, config, adapter_name) else: model = MODEL_TYPE_TO_PEFT_MODEL_MAPPING[config.task_type](model, config, adapter_name) model.load_adapter(model_id, adapter_name, is_trainable=is_trainable, **kwargs) return model def _setup_prompt_encoder(self, adapter_name: str): config = self.peft_config[adapter_name] if not hasattr(self, "prompt_encoder"): self.prompt_encoder = torch.nn.ModuleDict({}) self.prompt_tokens = {} transformer_backbone = None for name, module in self.base_model.named_children(): for param in module.parameters(): param.requires_grad = False if isinstance(module, PreTrainedModel): # Make sure to freeze Tranformers model if transformer_backbone is None: transformer_backbone = module self.transformer_backbone_name = name if transformer_backbone is None: transformer_backbone = self.base_model if config.num_transformer_submodules is None: config.num_transformer_submodules = 2 if config.task_type == TaskType.SEQ_2_SEQ_LM else 1 for named_param, value in list(transformer_backbone.named_parameters()): if value.shape[0] == self.base_model.config.vocab_size: self.word_embeddings = transformer_backbone.get_submodule(named_param.replace(".weight", "")) break if config.peft_type == PeftType.PROMPT_TUNING: prompt_encoder = PromptEmbedding(config, self.word_embeddings) elif config.peft_type == PeftType.P_TUNING: prompt_encoder = PromptEncoder(config) elif config.peft_type == PeftType.PREFIX_TUNING: prompt_encoder = PrefixEncoder(config) else: raise ValueError("Not supported") prompt_encoder = prompt_encoder.to(self.device) self.prompt_encoder.update(torch.nn.ModuleDict({adapter_name: prompt_encoder})) self.prompt_tokens[adapter_name] = torch.arange( config.num_virtual_tokens * config.num_transformer_submodules ).long() def _prepare_model_for_gradient_checkpointing(self, model: PreTrainedModel): r""" Prepares the model for gradient checkpointing if necessary """ if not (getattr(model, "is_loaded_in_8bit", False) or getattr(model, "is_loaded_in_4bit", False)): if hasattr(model, "enable_input_require_grads"): model.enable_input_require_grads() elif hasattr(model, "get_input_embeddings"): def make_inputs_require_grad(module, input, output): output.requires_grad_(True) model.get_input_embeddings().register_forward_hook(make_inputs_require_grad) return model def get_prompt_embedding_to_save(self, adapter_name: str): """ Returns the prompt embedding to save when saving the model. Only applicable when `peft_config.peft_type != PeftType.LORA`. """ prompt_encoder = self.prompt_encoder[adapter_name] prompt_tokens = ( self.prompt_tokens[adapter_name].unsqueeze(0).expand(1, -1).to(prompt_encoder.embedding.weight.device) ) if self.peft_config[adapter_name].peft_type == PeftType.PREFIX_TUNING: prompt_tokens = prompt_tokens[:, : self.peft_config[adapter_name].num_virtual_tokens] prompt_embeddings = prompt_encoder(prompt_tokens) return prompt_embeddings[0].detach().cpu() def get_prompt(self, batch_size: int): """ Returns the virtual prompts to use for Peft. Only applicable when `peft_config.peft_type != PeftType.LORA`. """ peft_config = self.active_peft_config prompt_encoder = self.prompt_encoder[self.active_adapter] prompt_tokens = ( self.prompt_tokens[self.active_adapter] .unsqueeze(0) .expand(batch_size, -1) .to(prompt_encoder.embedding.weight.device) ) if peft_config.peft_type == PeftType.PREFIX_TUNING: prompt_tokens = prompt_tokens[:, : peft_config.num_virtual_tokens] if peft_config.inference_mode: past_key_values = prompt_encoder.embedding.weight.repeat(batch_size, 1, 1) else: past_key_values = prompt_encoder(prompt_tokens) if self.base_model_torch_dtype is not None: past_key_values = past_key_values.to(self.base_model_torch_dtype) past_key_values = past_key_values.view( batch_size, peft_config.num_virtual_tokens, peft_config.num_layers * 2, peft_config.num_attention_heads, peft_config.token_dim // peft_config.num_attention_heads, ) if peft_config.num_transformer_submodules == 2: past_key_values = torch.cat([past_key_values, past_key_values], dim=2) past_key_values = past_key_values.permute([2, 0, 3, 1, 4]).split( peft_config.num_transformer_submodules * 2 ) if TRANSFORMERS_MODELS_TO_PREFIX_TUNING_POSTPROCESS_MAPPING.get(self.config.model_type, None) is not None: post_process_fn = TRANSFORMERS_MODELS_TO_PREFIX_TUNING_POSTPROCESS_MAPPING[self.config.model_type] past_key_values = post_process_fn(past_key_values) return past_key_values else: if peft_config.inference_mode: prompts = prompt_encoder.embedding.weight.repeat(batch_size, 1, 1) else: prompts = prompt_encoder(prompt_tokens) return prompts def get_nb_trainable_parameters(self): r""" Returns the number of trainable parameters and number of all parameters in the model. """ trainable_params = 0 all_param = 0 for _, param in self.named_parameters(): num_params = param.numel() # if using DS Zero 3 and the weights are initialized empty if num_params == 0 and hasattr(param, "ds_numel"): num_params = param.ds_numel # Due to the design of 4bit linear layers from bitsandbytes # one needs to multiply the number of parameters by 2 to get # the correct number of parameters if param.__class__.__name__ == "Params4bit": num_params = num_params * 2 all_param += num_params if param.requires_grad: trainable_params += num_params return trainable_params, all_param def print_trainable_parameters(self): """ Prints the number of trainable parameters in the model. """ trainable_params, all_param = self.get_nb_trainable_parameters() print( f"trainable params: {trainable_params:,d} || all params: {all_param:,d} || trainable%: {100 * trainable_params / all_param}" ) def __getattr__(self, name: str): """Forward missing attributes to the wrapped module.""" try: return super().__getattr__(name) # defer to nn.Module's logic except AttributeError: return getattr(self.base_model, name) def forward(self, *args: Any, **kwargs: Any): """ Forward pass of the model. """ return self.get_base_model()(*args, **kwargs) def _get_base_model_class(self, is_prompt_tuning=False): """ Returns the base model class. """ if not is_prompt_tuning: return self.base_model.model.__class__ return self.base_model.__class__ @contextmanager def disable_adapter(self): """ Disables the adapter module. """ try: if isinstance(self.peft_config[self.active_adapter], PromptLearningConfig): # TODO: consider replacing this patching of methods with a more robust mechanism: setting a flag and # letting the underyling methods deal with it, same as how LoRA does it. old_forward = self.forward self.forward = self.base_model.forward old_prepare_inputs_for_generation = self.prepare_inputs_for_generation self.prepare_inputs_for_generation = self.base_model.prepare_inputs_for_generation else: self.base_model.disable_adapter_layers() yield finally: if isinstance(self.peft_config[self.active_adapter], PromptLearningConfig): self.forward = old_forward self.old_prepare_inputs_for_generation = old_prepare_inputs_for_generation else: self.base_model.enable_adapter_layers() def get_base_model(self): """ Returns the base model. """ return self.base_model if isinstance(self.active_peft_config, PromptLearningConfig) else self.base_model.model def add_adapter(self, adapter_name: str, peft_config: PeftConfig): if peft_config.peft_type != self.peft_type: raise ValueError( f"Cannot combine adapters with different peft types. " f"Found {self.peft_type} and {peft_config.peft_type}." ) self.peft_config[adapter_name] = peft_config if isinstance(peft_config, PromptLearningConfig): if hasattr(self.config, "to_dict"): dict_config = self.config.to_dict() else: dict_config = self.config peft_config = _prepare_prompt_learning_config(peft_config, dict_config) self._setup_prompt_encoder(adapter_name) else: self.base_model.add_adapter(adapter_name, peft_config) self.set_additional_trainable_modules(peft_config, adapter_name) def set_additional_trainable_modules(self, peft_config, adapter_name): if getattr(peft_config, "modules_to_save", None) is not None: if self.modules_to_save is None: self.modules_to_save = set(peft_config.modules_to_save) else: self.modules_to_save.update(peft_config.modules_to_save) _set_trainable(self, adapter_name) @classmethod def _split_kwargs(cls, kwargs: Dict[str, Any]): _kwargs_not_in_hf_hub_download_signature = ("use_auth_token",) hf_hub_download_kwargs = {} other_kwargs = {} for key, value in kwargs.items(): if key in inspect.signature(hf_hub_download).parameters or key in _kwargs_not_in_hf_hub_download_signature: hf_hub_download_kwargs[key] = value else: other_kwargs[key] = value return hf_hub_download_kwargs, other_kwargs def load_adapter(self, model_id: str, adapter_name: str, is_trainable: bool = False, **kwargs: Any): from .mapping import PEFT_TYPE_TO_CONFIG_MAPPING hf_hub_download_kwargs, kwargs = self._split_kwargs(kwargs) if adapter_name not in self.peft_config: # load the config peft_config = PEFT_TYPE_TO_CONFIG_MAPPING[ PeftConfig._get_peft_type( model_id, **hf_hub_download_kwargs, ) ].from_pretrained( model_id, **hf_hub_download_kwargs, ) if isinstance(peft_config, PromptLearningConfig) and is_trainable: raise ValueError("Cannot set a prompt learning adapter to trainable when loading pretrained adapter.") else: peft_config.inference_mode = not is_trainable self.add_adapter(adapter_name, peft_config) # load weights if any path = ( os.path.join(model_id, hf_hub_download_kwargs["subfolder"]) if hf_hub_download_kwargs.get("subfolder", None) is not None else model_id ) if os.path.exists(os.path.join(path, SAFETENSORS_WEIGHTS_NAME)): filename = os.path.join(path, SAFETENSORS_WEIGHTS_NAME) use_safetensors = True elif os.path.exists(os.path.join(path, WEIGHTS_NAME)): filename = os.path.join(path, WEIGHTS_NAME) use_safetensors = False else: has_remote_safetensors_file = hub_file_exists( model_id, SAFETENSORS_WEIGHTS_NAME, revision=hf_hub_download_kwargs.get("revision", None), repo_type=hf_hub_download_kwargs.get("repo_type", None), ) use_safetensors = has_remote_safetensors_file if has_remote_safetensors_file: # Priority 1: load safetensors weights filename = hf_hub_download( model_id, SAFETENSORS_WEIGHTS_NAME, **hf_hub_download_kwargs, ) else: try: filename = hf_hub_download(model_id, WEIGHTS_NAME, **hf_hub_download_kwargs) except EntryNotFoundError: raise ValueError( f"Can't find weights for {model_id} in {model_id} or in the Hugging Face Hub. " f"Please check that the file {WEIGHTS_NAME} or {SAFETENSORS_WEIGHTS_NAME} is present at {model_id}." ) if use_safetensors: adapters_weights = safe_load_file(filename, device="cuda" if torch.cuda.is_available() else "cpu") else: adapters_weights = torch.load( filename, map_location=torch.device("cuda" if torch.cuda.is_available() else "cpu") ) # load the weights into the model load_result = set_peft_model_state_dict(self, adapters_weights, adapter_name=adapter_name) if ( (getattr(self, "hf_device_map", None) is not None) and (len(set(self.hf_device_map.values()).intersection({"cpu", "disk"})) > 0) and len(self.peft_config) == 1 ): device_map = kwargs.get("device_map", "auto") max_memory = kwargs.get("max_memory", None) offload_dir = kwargs.get("offload_folder", None) offload_index = kwargs.get("offload_index", None) dispatch_model_kwargs = {} # Safety checker for previous `accelerate` versions # `offload_index` was introduced in https://github.com/huggingface/accelerate/pull/873/ if "offload_index" in inspect.signature(dispatch_model).parameters: dispatch_model_kwargs["offload_index"] = offload_index no_split_module_classes = self._no_split_modules if device_map != "sequential": max_memory = get_balanced_memory( self, max_memory=max_memory, no_split_module_classes=no_split_module_classes, low_zero=(device_map == "balanced_low_0"), ) if isinstance(device_map, str): device_map = infer_auto_device_map( self, max_memory=max_memory, no_split_module_classes=no_split_module_classes ) dispatch_model( self, device_map=device_map, offload_dir=offload_dir, **dispatch_model_kwargs, ) hook = AlignDevicesHook(io_same_device=True) if isinstance(self.peft_config[adapter_name], PromptLearningConfig): remove_hook_from_submodules(self.prompt_encoder) add_hook_to_module(self.get_base_model(), hook) # Set model in evaluation mode to deactivate Dropout modules by default if not is_trainable: self.eval() return load_result def set_adapter(self, adapter_name: str): """ Sets the active adapter. """ if adapter_name not in self.peft_config: raise ValueError(f"Adapter {adapter_name} not found.") self.active_adapter = adapter_name if not isinstance(self.peft_config[adapter_name], PromptLearningConfig): self.base_model.set_adapter(adapter_name) _set_adapter(self, adapter_name) @property def base_model_torch_dtype(self): return getattr(self.base_model, "dtype", None) @property def active_peft_config(self): return self.peft_config[self.active_adapter] def create_or_update_model_card(self, output_dir: str): """ Updates or create model card to include information about peft: 1. Adds `peft` library tag 2. Adds peft version 3. Adds quantization information if it was used """ # Adds `peft` library tag add_library_to_model_card(output_dir) with open(os.path.join(output_dir, "README.md"), "r") as f: lines = f.readlines() quantization_config = None if hasattr(self.config, "quantization_config"): quantization_config = self.config.quantization_config.to_dict() training_config_text = "" # Adds quantization information if it was used if quantization_config is not None: training_config_text += "\nThe following `bitsandbytes` quantization config was used during training:\n" training_config_text += "\n".join([f"- {name}: {value}" for name, value in quantization_config.items()]) training_config_text += "\n" training_procedure_heading = "## Training procedure\n" if training_procedure_heading in lines: lines.insert(lines.index(training_procedure_heading) + 2, training_config_text) else: lines.append(f"{training_procedure_heading}\n{training_config_text}") # Adds peft version framework_block_heading = "### Framework versions\n" if framework_block_heading in lines: lines.insert(lines.index(framework_block_heading) + 2, f"- PEFT {__version__}\n") else: lines.append(f"{framework_block_heading}\n\n- PEFT {__version__}\n") # write the lines back to README.md with open(os.path.join(output_dir, "README.md"), "w") as f: f.writelines(lines) class PeftModelForSequenceClassification(PeftModel): """ Peft model for sequence classification tasks. Args: model ([`~transformers.PreTrainedModel`]): Base transformer model. peft_config ([`PeftConfig`]): Peft config. **Attributes**: - **config** ([`~transformers.PretrainedConfig`]) -- The configuration object of the base model. - **cls_layer_name** (`str`) -- The name of the classification layer. Example: ```py >>> from transformers import AutoModelForSequenceClassification >>> from peft import PeftModelForSequenceClassification, get_peft_config >>> config = { ... "peft_type": "PREFIX_TUNING", ... "task_type": "SEQ_CLS", ... "inference_mode": False, ... "num_virtual_tokens": 20, ... "token_dim": 768, ... "num_transformer_submodules": 1, ... "num_attention_heads": 12, ... "num_layers": 12, ... "encoder_hidden_size": 768, ... "prefix_projection": False, ... "postprocess_past_key_value_function": None, ... } >>> peft_config = get_peft_config(config) >>> model = AutoModelForSequenceClassification.from_pretrained("bert-base-cased") >>> peft_model = PeftModelForSequenceClassification(model, peft_config) >>> peft_model.print_trainable_parameters() trainable params: 370178 || all params: 108680450 || trainable%: 0.3406113979101117 ``` """ def __init__(self, model, peft_config: PeftConfig, adapter_name="default"): super().__init__(model, peft_config, adapter_name) if self.modules_to_save is None: self.modules_to_save = {"classifier", "score"} else: self.modules_to_save.update({"classifier", "score"}) for name, _ in self.base_model.named_children(): if any(module_name in name for module_name in self.modules_to_save): self.cls_layer_name = name break # to make sure classifier layer is trainable _set_trainable(self, adapter_name) def forward( self, input_ids=None, attention_mask=None, inputs_embeds=None, labels=None, output_attentions=None, output_hidden_states=None, return_dict=None, **kwargs, ): return_dict = return_dict if return_dict is not None else self.config.use_return_dict peft_config = self.active_peft_config if not isinstance(peft_config, PromptLearningConfig): return self.base_model( input_ids=input_ids, attention_mask=attention_mask, inputs_embeds=inputs_embeds, labels=labels, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, **kwargs, ) batch_size = input_ids.shape[0] if attention_mask is not None: # concat prompt attention mask prefix_attention_mask = torch.ones(batch_size, peft_config.num_virtual_tokens).to(attention_mask.device) attention_mask = torch.cat((prefix_attention_mask, attention_mask), dim=1) if kwargs.get("position_ids", None) is not None: warnings.warn("Position ids are not supported for parameter efficient tuning. Ignoring position ids.") kwargs["position_ids"] = None kwargs.update( { "attention_mask": attention_mask, "labels": labels, "output_attentions": output_attentions, "output_hidden_states": output_hidden_states, "return_dict": return_dict, } ) if peft_config.peft_type == PeftType.PREFIX_TUNING: return self._prefix_tuning_forward(input_ids=input_ids, **kwargs) else: if kwargs.get("token_type_ids", None) is not None: kwargs["token_type_ids"] = torch.cat( ( torch.zeros(batch_size, peft_config.num_virtual_tokens).to(self.word_embeddings.weight.device), kwargs["token_type_ids"], ), dim=1, ).long() if inputs_embeds is None: inputs_embeds = self.word_embeddings(input_ids) prompts = self.get_prompt(batch_size=batch_size) prompts = prompts.to(inputs_embeds.dtype) inputs_embeds = torch.cat((prompts, inputs_embeds), dim=1) return self.base_model(inputs_embeds=inputs_embeds, **kwargs) def _prefix_tuning_forward( self, input_ids=None, attention_mask=None, inputs_embeds=None, labels=None, output_attentions=None, output_hidden_states=None, return_dict=None, **kwargs, ): batch_size = input_ids.shape[0] past_key_values = self.get_prompt(batch_size) fwd_params = list(inspect.signature(self.base_model.forward).parameters.keys()) kwargs.update( { "input_ids": input_ids, "attention_mask": attention_mask, "inputs_embeds": inputs_embeds, "output_attentions": output_attentions, "output_hidden_states": output_hidden_states, "return_dict": return_dict, "past_key_values": past_key_values, } ) if "past_key_values" in fwd_params: return self.base_model(labels=labels, **kwargs) else: transformer_backbone_name = self.base_model.get_submodule(self.transformer_backbone_name) fwd_params = list(inspect.signature(transformer_backbone_name.forward).parameters.keys()) if "past_key_values" not in fwd_params: raise ValueError("Model does not support past key values which are required for prefix tuning.") outputs = transformer_backbone_name(**kwargs) pooled_output = outputs[1] if len(outputs) > 1 else outputs[0] if "dropout" in [name for name, _ in list(self.base_model.named_children())]: pooled_output = self.base_model.dropout(pooled_output) logits = self.base_model.get_submodule(self.cls_layer_name)(pooled_output) loss = None if labels is not None: if self.config.problem_type is None: if self.base_model.num_labels == 1: self.config.problem_type = "regression" elif self.base_model.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): self.config.problem_type = "single_label_classification" else: self.config.problem_type = "multi_label_classification" if self.config.problem_type == "regression": loss_fct = MSELoss() if self.base_model.num_labels == 1: loss = loss_fct(logits.squeeze(), labels.squeeze()) else: loss = loss_fct(logits, labels) elif self.config.problem_type == "single_label_classification": loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.base_model.num_labels), labels.view(-1)) elif self.config.problem_type == "multi_label_classification": loss_fct = BCEWithLogitsLoss() loss = loss_fct(logits, labels) if not return_dict: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return SequenceClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) class PeftModelForCausalLM(PeftModel): """ Peft model for causal language modeling. Args: model ([`~transformers.PreTrainedModel`]): Base transformer model. peft_config ([`PeftConfig`]): Peft config. Example: ```py >>> from transformers import AutoModelForCausalLM >>> from peft import PeftModelForCausalLM, get_peft_config >>> config = { ... "peft_type": "PREFIX_TUNING", ... "task_type": "CAUSAL_LM", ... "inference_mode": False, ... "num_virtual_tokens": 20, ... "token_dim": 1280, ... "num_transformer_submodules": 1, ... "num_attention_heads": 20, ... "num_layers": 36, ... "encoder_hidden_size": 1280, ... "prefix_projection": False, ... "postprocess_past_key_value_function": None, ... } >>> peft_config = get_peft_config(config) >>> model = AutoModelForCausalLM.from_pretrained("gpt2-large") >>> peft_model = PeftModelForCausalLM(model, peft_config) >>> peft_model.print_trainable_parameters() trainable params: 1843200 || all params: 775873280 || trainable%: 0.23756456724479544 ``` """ def __init__(self, model, peft_config: PeftConfig, adapter_name="default"): super().__init__(model, peft_config, adapter_name) self.base_model_prepare_inputs_for_generation = self.base_model.prepare_inputs_for_generation def forward( self, input_ids=None, attention_mask=None, inputs_embeds=None, labels=None, output_attentions=None, output_hidden_states=None, return_dict=None, **kwargs, ): peft_config = self.active_peft_config if not isinstance(peft_config, PromptLearningConfig): if self.base_model.config.model_type == "mpt": if inputs_embeds is not None: raise AssertionError("forward in MPTForCausalLM does not support inputs_embeds") return self.base_model( input_ids=input_ids, attention_mask=attention_mask, labels=labels, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, **kwargs, ) return self.base_model( input_ids=input_ids, attention_mask=attention_mask, inputs_embeds=inputs_embeds, labels=labels, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, **kwargs, ) batch_size = input_ids.shape[0] if attention_mask is not None: # concat prompt attention mask prefix_attention_mask = torch.ones(batch_size, peft_config.num_virtual_tokens).to(attention_mask.device) attention_mask = torch.cat((prefix_attention_mask, attention_mask), dim=1) if kwargs.get("position_ids", None) is not None: warnings.warn("Position ids are not supported for parameter efficient tuning. Ignoring position ids.") kwargs["position_ids"] = None if kwargs.get("token_type_ids", None) is not None: warnings.warn("Token type ids are not supported for parameter efficient tuning. Ignoring token type ids") kwargs["token_type_ids"] = None kwargs.update( { "attention_mask": attention_mask, "labels": labels, "output_attentions": output_attentions, "output_hidden_states": output_hidden_states, "return_dict": return_dict, } ) if peft_config.peft_type == PeftType.PREFIX_TUNING: past_key_values = self.get_prompt(batch_size) return self.base_model(input_ids=input_ids, past_key_values=past_key_values, **kwargs) else: if inputs_embeds is None: inputs_embeds = self.word_embeddings(input_ids) # concat prompt labels if labels is not None: prefix_labels = torch.full((batch_size, peft_config.num_virtual_tokens), -100).to(labels.device) kwargs["labels"] = torch.cat((prefix_labels, labels), dim=1) prompts = self.get_prompt(batch_size=batch_size) prompts = prompts.to(inputs_embeds.dtype) inputs_embeds = torch.cat((prompts, inputs_embeds), dim=1) return self.base_model(inputs_embeds=inputs_embeds, **kwargs) def generate(self, **kwargs): self.base_model.prepare_inputs_for_generation = self.prepare_inputs_for_generation if hasattr(self.base_model, "model"): self.base_model.model.generation_config = self.generation_config else: self.base_model.generation_config = self.generation_config try: outputs = self.base_model.generate(**kwargs) except: self.base_model.prepare_inputs_for_generation = self.base_model_prepare_inputs_for_generation raise else: self.base_model.prepare_inputs_for_generation = self.base_model_prepare_inputs_for_generation return outputs def prepare_inputs_for_generation(self, *args, **kwargs): peft_config = self.active_peft_config model_kwargs = self.base_model_prepare_inputs_for_generation(*args, **kwargs) if isinstance(peft_config, PromptLearningConfig): if model_kwargs.get("attention_mask", None) is not None: prefix_attention_mask = torch.ones( model_kwargs["input_ids"].shape[0], peft_config.num_virtual_tokens ).to(model_kwargs["input_ids"].device) model_kwargs["attention_mask"] = torch.cat( (prefix_attention_mask, model_kwargs["attention_mask"]), dim=1 ) if model_kwargs.get("position_ids", None) is not None: warnings.warn("Position ids are not supported for parameter efficient tuning. Ignoring position ids.") model_kwargs["position_ids"] = None if kwargs.get("token_type_ids", None) is not None: warnings.warn( "Token type ids are not supported for parameter efficient tuning. Ignoring token type ids" ) kwargs["token_type_ids"] = None if model_kwargs["past_key_values"] is None and peft_config.peft_type == PeftType.PREFIX_TUNING: past_key_values = self.get_prompt(batch_size=model_kwargs["input_ids"].shape[0]) model_kwargs["past_key_values"] = past_key_values else: if model_kwargs["past_key_values"] is None: inputs_embeds = self.word_embeddings(model_kwargs["input_ids"]) prompts = self.get_prompt(batch_size=model_kwargs["input_ids"].shape[0]) prompts = prompts.to(inputs_embeds.dtype) model_kwargs["inputs_embeds"] = torch.cat((prompts, inputs_embeds), dim=1) model_kwargs["input_ids"] = None return model_kwargs class PeftModelForSeq2SeqLM(PeftModel): """ Peft model for sequence-to-sequence language modeling. Args: model ([`~transformers.PreTrainedModel`]): Base transformer model. peft_config ([`PeftConfig`]): Peft config. Example: ```py >>> from transformers import AutoModelForSeq2SeqLM >>> from peft import PeftModelForSeq2SeqLM, get_peft_config >>> config = { ... "peft_type": "LORA", ... "task_type": "SEQ_2_SEQ_LM", ... "inference_mode": False, ... "r": 8, ... "target_modules": ["q", "v"], ... "lora_alpha": 32, ... "lora_dropout": 0.1, ... "fan_in_fan_out": False, ... "enable_lora": None, ... "bias": "none", ... } >>> peft_config = get_peft_config(config) >>> model = AutoModelForSeq2SeqLM.from_pretrained("t5-base") >>> peft_model = PeftModelForSeq2SeqLM(model, peft_config) >>> peft_model.print_trainable_parameters() trainable params: 884736 || all params: 223843584 || trainable%: 0.3952474242013566 ``` """ def __init__(self, model, peft_config: PeftConfig, adapter_name="default"): super().__init__(model, peft_config, adapter_name) self.base_model_prepare_inputs_for_generation = self.base_model.prepare_inputs_for_generation self.base_model_prepare_encoder_decoder_kwargs_for_generation = ( self.base_model._prepare_encoder_decoder_kwargs_for_generation ) def forward( self, input_ids=None, attention_mask=None, inputs_embeds=None, decoder_input_ids=None, decoder_attention_mask=None, decoder_inputs_embeds=None, labels=None, output_attentions=None, output_hidden_states=None, return_dict=None, **kwargs, ): peft_config = self.active_peft_config if not isinstance(peft_config, PromptLearningConfig): return self.base_model( input_ids=input_ids, attention_mask=attention_mask, inputs_embeds=inputs_embeds, decoder_input_ids=decoder_input_ids, decoder_attention_mask=decoder_attention_mask, decoder_inputs_embeds=decoder_inputs_embeds, labels=labels, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, **kwargs, ) batch_size = input_ids.shape[0] if decoder_attention_mask is not None: # concat prompt attention mask prefix_attention_mask = torch.ones(batch_size, peft_config.num_virtual_tokens).to( decoder_attention_mask.device ) decoder_attention_mask = torch.cat((prefix_attention_mask, decoder_attention_mask), dim=1) if kwargs.get("position_ids", None) is not None: warnings.warn("Position ids are not supported for parameter efficient tuning. Ignoring position ids.") kwargs["position_ids"] = None if kwargs.get("token_type_ids", None) is not None: warnings.warn("Token type ids are not supported for parameter efficient tuning. Ignoring token type ids") kwargs["token_type_ids"] = None kwargs.update( { "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "labels": labels, "output_attentions": output_attentions, "output_hidden_states": output_hidden_states, "return_dict": return_dict, } ) if peft_config.peft_type == PeftType.PREFIX_TUNING: past_key_values = self.get_prompt(batch_size) return self.base_model( input_ids=input_ids, decoder_input_ids=decoder_input_ids, decoder_inputs_embeds=decoder_inputs_embeds, past_key_values=past_key_values, **kwargs, ) elif peft_config.peft_type in [PeftType.PROMPT_TUNING, PeftType.P_TUNING]: if inputs_embeds is None: inputs_embeds = self.word_embeddings(input_ids) if attention_mask is not None: # concat prompt attention mask prefix_attention_mask = torch.ones(batch_size, peft_config.num_virtual_tokens).to( attention_mask.device ) kwargs["attention_mask"] = torch.cat((prefix_attention_mask, attention_mask), dim=1) prompts = self.get_prompt(batch_size=batch_size) prompts = prompts.to(inputs_embeds.dtype) inputs_embeds = torch.cat((prompts[:, : peft_config.num_virtual_tokens], inputs_embeds), dim=1) return self.base_model( inputs_embeds=inputs_embeds, decoder_input_ids=decoder_input_ids, decoder_inputs_embeds=decoder_inputs_embeds, **kwargs, ) else: if inputs_embeds is None: inputs_embeds = self.word_embeddings(input_ids) if decoder_inputs_embeds is None and decoder_input_ids is None: decoder_input_ids = shift_tokens_right( labels, self.config.pad_token_id, self.config.decoder_start_token_id ) decoder_inputs_embeds = self.word_embeddings(decoder_input_ids) if attention_mask is not None: # concat prompt attention mask prefix_attention_mask = torch.ones(batch_size, peft_config.num_virtual_tokens).to( attention_mask.device ) kwargs["attention_mask"] = torch.cat((prefix_attention_mask, attention_mask), dim=1) # concat prompt labels if labels is not None: if peft_config.num_transformer_submodules == 1: kwargs["labels"] = labels elif peft_config.num_transformer_submodules == 2: prefix_labels = torch.full((batch_size, peft_config.num_virtual_tokens), -100).to(labels.device) kwargs["labels"] = torch.cat((prefix_labels, labels), dim=1) prompts = self.get_prompt(batch_size=batch_size) prompts = prompts.to(inputs_embeds.dtype) inputs_embeds = torch.cat((prompts[:, : peft_config.num_virtual_tokens], inputs_embeds), dim=1) if peft_config.num_transformer_submodules == 1: return self.base_model(inputs_embeds=inputs_embeds, **kwargs) elif peft_config.num_transformer_submodules == 2: decoder_inputs_embeds = torch.cat( (prompts[:, peft_config.num_virtual_tokens :], decoder_inputs_embeds), dim=1 ) return self.base_model( inputs_embeds=inputs_embeds, decoder_inputs_embeds=decoder_inputs_embeds, **kwargs ) def generate(self, **kwargs): peft_config = self.active_peft_config self.base_model.prepare_inputs_for_generation = self.prepare_inputs_for_generation self.base_model._prepare_encoder_decoder_kwargs_for_generation = ( self._prepare_encoder_decoder_kwargs_for_generation ) try: if not isinstance(peft_config, PromptLearningConfig): outputs = self.base_model.generate(**kwargs) else: if "input_ids" not in kwargs: raise ValueError("input_ids must be provided for Peft model generation") if kwargs.get("position_ids", None) is not None: warnings.warn( "Position ids are not supported for parameter efficient tuning. Ignoring position ids." ) kwargs["position_ids"] = None if kwargs.get("token_type_ids", None) is not None: warnings.warn( "Token type ids are not supported for parameter efficient tuning. Ignoring token type ids" ) kwargs["token_type_ids"] = None if peft_config.peft_type == PeftType.PREFIX_TUNING: outputs = self.base_model.generate(**kwargs) elif peft_config.peft_type in [PeftType.PROMPT_TUNING, PeftType.P_TUNING]: kwargs = deepcopy(kwargs) if "encoder_outputs" in kwargs: del kwargs["encoder_ouputs"] warnings.warn( "`encoder_outputs` should not be passed to `generate` when using prompt tuning. Ignoring it." ) input_ids = kwargs.pop("input_ids") inputs_embeds = self.word_embeddings(input_ids) batch_size = inputs_embeds.shape[0] prompts = self.get_prompt(batch_size=batch_size) prompts = prompts.to(inputs_embeds.dtype) inputs_embeds = torch.cat((prompts[:, : peft_config.num_virtual_tokens], inputs_embeds), dim=1) kwargs["inputs_embeds"] = inputs_embeds if "attention_mask" in kwargs: prefix_attention_mask = torch.ones(batch_size, peft_config.num_virtual_tokens).to( kwargs["attention_mask"].device ) kwargs["attention_mask"] = torch.cat((prefix_attention_mask, kwargs["attention_mask"]), dim=1) return self.base_model.generate(**kwargs) else: raise NotImplementedError except: self.base_model.prepare_inputs_for_generation = self.base_model_prepare_inputs_for_generation self.base_model._prepare_encoder_decoder_kwargs_for_generation = ( self.base_model_prepare_encoder_decoder_kwargs_for_generation ) raise else: self.base_model.prepare_inputs_for_generation = self.base_model_prepare_inputs_for_generation self.base_model._prepare_encoder_decoder_kwargs_for_generation = ( self.base_model_prepare_encoder_decoder_kwargs_for_generation ) return outputs def prepare_inputs_for_generation(self, *args, **kwargs): peft_config = self.active_peft_config model_kwargs = self.base_model_prepare_inputs_for_generation(*args, **kwargs) if model_kwargs["past_key_values"] is None and peft_config.peft_type == PeftType.PREFIX_TUNING: batch_size = model_kwargs["decoder_input_ids"].shape[0] past_key_values = self.get_prompt(batch_size) model_kwargs["past_key_values"] = past_key_values return model_kwargs class PeftModelForTokenClassification(PeftModel): """ Peft model for token classification tasks. Args: model ([`~transformers.PreTrainedModel`]): Base transformer model. peft_config ([`PeftConfig`]): Peft config. **Attributes**: - **config** ([`~transformers.PretrainedConfig`]) -- The configuration object of the base model. - **cls_layer_name** (`str`) -- The name of the classification layer. Example: ```py >>> from transformers import AutoModelForSequenceClassification >>> from peft import PeftModelForTokenClassification, get_peft_config >>> config = { ... "peft_type": "PREFIX_TUNING", ... "task_type": "TOKEN_CLS", ... "inference_mode": False, ... "num_virtual_tokens": 20, ... "token_dim": 768, ... "num_transformer_submodules": 1, ... "num_attention_heads": 12, ... "num_layers": 12, ... "encoder_hidden_size": 768, ... "prefix_projection": False, ... "postprocess_past_key_value_function": None, ... } >>> peft_config = get_peft_config(config) >>> model = AutoModelForTokenClassification.from_pretrained("bert-base-cased") >>> peft_model = PeftModelForTokenClassification(model, peft_config) >>> peft_model.print_trainable_parameters() trainable params: 370178 || all params: 108680450 || trainable%: 0.3406113979101117 ``` """ def __init__(self, model, peft_config: PeftConfig = None, adapter_name="default"): super().__init__(model, peft_config, adapter_name) if self.modules_to_save is None: self.modules_to_save = {"classifier", "score"} else: self.modules_to_save.update({"classifier", "score"}) for name, _ in self.base_model.named_children(): if any(module_name in name for module_name in self.modules_to_save): self.cls_layer_name = name break # to make sure classifier layer is trainable _set_trainable(self, adapter_name) def forward( self, input_ids=None, attention_mask=None, inputs_embeds=None, labels=None, output_attentions=None, output_hidden_states=None, return_dict=None, **kwargs, ): peft_config = self.active_peft_config return_dict = return_dict if return_dict is not None else self.config.use_return_dict if not isinstance(peft_config, PromptLearningConfig): return self.base_model( input_ids=input_ids, attention_mask=attention_mask, inputs_embeds=inputs_embeds, labels=labels, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, **kwargs, ) batch_size = input_ids.shape[0] if attention_mask is not None: # concat prompt attention mask prefix_attention_mask = torch.ones(batch_size, peft_config.num_virtual_tokens).to(attention_mask.device) attention_mask = torch.cat((prefix_attention_mask, attention_mask), dim=1) if kwargs.get("position_ids", None) is not None: warnings.warn("Position ids are not supported for parameter efficient tuning. Ignoring position ids.") kwargs["position_ids"] = None kwargs.update( { "attention_mask": attention_mask, "labels": labels, "output_attentions": output_attentions, "output_hidden_states": output_hidden_states, "return_dict": return_dict, } ) if peft_config.peft_type == PeftType.PREFIX_TUNING: return self._prefix_tuning_forward(input_ids=input_ids, **kwargs) else: if kwargs.get("token_type_ids", None) is not None: kwargs["token_type_ids"] = torch.cat( ( torch.zeros(batch_size, peft_config.num_virtual_tokens).to(self.word_embeddings.weight.device), kwargs["token_type_ids"], ), dim=1, ).long() if inputs_embeds is None: inputs_embeds = self.word_embeddings(input_ids) prompts = self.get_prompt(batch_size=batch_size) prompts = prompts.to(inputs_embeds.dtype) inputs_embeds = torch.cat((prompts, inputs_embeds), dim=1) return self.base_model(inputs_embeds=inputs_embeds, **kwargs) def _prefix_tuning_forward( self, input_ids=None, attention_mask=None, inputs_embeds=None, labels=None, output_attentions=None, output_hidden_states=None, return_dict=None, **kwargs, ): batch_size = input_ids.shape[0] past_key_values = self.get_prompt(batch_size) fwd_params = list(inspect.signature(self.base_model.forward).parameters.keys()) kwargs.update( { "input_ids": input_ids, "attention_mask": attention_mask, "inputs_embeds": inputs_embeds, "output_attentions": output_attentions, "output_hidden_states": output_hidden_states, "return_dict": return_dict, "past_key_values": past_key_values, } ) if "past_key_values" in fwd_params: return self.base_model(labels=labels, **kwargs) else: transformer_backbone_name = self.base_model.get_submodule(self.transformer_backbone_name) fwd_params = list(inspect.signature(transformer_backbone_name.forward).parameters.keys()) if "past_key_values" not in fwd_params: raise ValueError("Model does not support past key values which are required for prefix tuning.") outputs = transformer_backbone_name(**kwargs) sequence_output = outputs[0] if "dropout" in [name for name, _ in list(self.base_model.named_children())]: sequence_output = self.base_model.dropout(sequence_output) logits = self.base_model.get_submodule(self.cls_layer_name)(sequence_output) loss = None if labels is not None: loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) if not return_dict: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TokenClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) class PeftModelForQuestionAnswering(PeftModel): """ Peft model for extractive question answering. Args: model ([`~transformers.PreTrainedModel`]): Base transformer model. peft_config ([`PeftConfig`]): Peft config. **Attributes**: - **config** ([`~transformers.PretrainedConfig`]) -- The configuration object of the base model. - **cls_layer_name** (`str`) -- The name of the classification layer. Example: ```py >>> from transformers import AutoModelForQuestionAnswering >>> from peft import PeftModelForQuestionAnswering, get_peft_config >>> config = { ... "peft_type": "LORA", ... "task_type": "QUESTION_ANS", ... "inference_mode": False, ... "r": 16, ... "target_modules": ["query", "value"], ... "lora_alpha": 32, ... "lora_dropout": 0.05, ... "fan_in_fan_out": False, ... "bias": "none", ... } >>> peft_config = get_peft_config(config) >>> model = AutoModelForQuestionAnswering.from_pretrained("bert-base-cased") >>> peft_model = PeftModelForQuestionAnswering(model, peft_config) >>> peft_model.print_trainable_parameters() trainable params: 592900 || all params: 108312580 || trainable%: 0.5473971721475013 ``` """ def __init__(self, model, peft_config: PeftConfig = None, adapter_name="default"): super().__init__(model, peft_config, adapter_name) if self.modules_to_save is None: self.modules_to_save = {"qa_outputs"} else: self.modules_to_save.update({"qa_outputs"}) for name, _ in self.base_model.named_children(): if any(module_name in name for module_name in self.modules_to_save): self.cls_layer_name = name break # to make sure classifier layer is trainable _set_trainable(self, adapter_name) def forward( self, input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, inputs_embeds=None, start_positions=None, end_positions=None, output_attentions=None, output_hidden_states=None, return_dict=None, **kwargs, ): peft_config = self.active_peft_config return_dict = return_dict if return_dict is not None else self.config.use_return_dict if not isinstance(peft_config, PromptLearningConfig): return self.base_model( input_ids=input_ids, attention_mask=attention_mask, inputs_embeds=inputs_embeds, start_positions=start_positions, end_positions=end_positions, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, **kwargs, ) batch_size = input_ids.shape[0] if attention_mask is not None: # concat prompt attention mask prefix_attention_mask = torch.ones(batch_size, peft_config.num_virtual_tokens).to(attention_mask.device) attention_mask = torch.cat((prefix_attention_mask, attention_mask), dim=1) if kwargs.get("position_ids", None) is not None: warnings.warn("Position ids are not supported for parameter efficient tuning. Ignoring position ids.") kwargs["position_ids"] = None kwargs.update( { "attention_mask": attention_mask, "start_positions": start_positions, "end_positions": end_positions, "output_attentions": output_attentions, "output_hidden_states": output_hidden_states, "return_dict": return_dict, } ) if peft_config.peft_type == PeftType.PREFIX_TUNING: return self._prefix_tuning_forward(input_ids=input_ids, **kwargs) else: if kwargs.get("token_type_ids", None) is not None: kwargs["token_type_ids"] = torch.cat( ( torch.zeros(batch_size, peft_config.num_virtual_tokens).to(self.word_embeddings.weight.device), kwargs["token_type_ids"], ), dim=1, ).long() if inputs_embeds is None: inputs_embeds = self.word_embeddings(input_ids) prompts = self.get_prompt(batch_size=batch_size) prompts = prompts.to(inputs_embeds.dtype) inputs_embeds = torch.cat((prompts, inputs_embeds), dim=1) return self.base_model(inputs_embeds=inputs_embeds, **kwargs) def _prefix_tuning_forward( self, input_ids=None, attention_mask=None, inputs_embeds=None, start_positions=None, end_positions=None, output_attentions=None, output_hidden_states=None, return_dict=None, **kwargs, ): batch_size = input_ids.shape[0] past_key_values = self.get_prompt(batch_size) fwd_params = list(inspect.signature(self.base_model.forward).parameters.keys()) kwargs.update( { "input_ids": input_ids, "attention_mask": attention_mask, "inputs_embeds": inputs_embeds, "output_attentions": output_attentions, "output_hidden_states": output_hidden_states, "return_dict": return_dict, "past_key_values": past_key_values, } ) if "past_key_values" in fwd_params: return self.base_model(start_positions=start_positions, end_positions=end_positions, **kwargs) else: transformer_backbone_name = self.base_model.get_submodule(self.transformer_backbone_name) fwd_params = list(inspect.signature(transformer_backbone_name.forward).parameters.keys()) if "past_key_values" not in fwd_params: raise ValueError("Model does not support past key values which are required for prefix tuning.") outputs = transformer_backbone_name(**kwargs) sequence_output = outputs[0] if "dropout" in [name for name, _ in list(self.base_model.named_children())]: sequence_output = self.base_model.dropout(sequence_output) logits = self.base_model.get_submodule(self.cls_layer_name)(sequence_output) start_logits, end_logits = logits.split(1, dim=-1) start_logits = start_logits.squeeze(-1).contiguous() end_logits = end_logits.squeeze(-1).contiguous() total_loss = None if start_positions is not None and end_positions is not None: # If we are on multi-GPU, split add a dimension if len(start_positions.size()) > 1: start_positions = start_positions.squeeze(-1) if len(end_positions.size()) > 1: end_positions = end_positions.squeeze(-1) # sometimes the start/end positions are outside our model inputs, we ignore these terms ignored_index = start_logits.size(1) start_positions = start_positions.clamp(0, ignored_index) end_positions = end_positions.clamp(0, ignored_index) loss_fct = CrossEntropyLoss(ignore_index=ignored_index) start_loss = loss_fct(start_logits, start_positions) end_loss = loss_fct(end_logits, end_positions) total_loss = (start_loss + end_loss) / 2 if not return_dict: output = (start_logits, end_logits) + outputs[2:] return ((total_loss,) + output) if total_loss is not None else output return QuestionAnsweringModelOutput( loss=total_loss, start_logits=start_logits, end_logits=end_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) class PeftModelForFeatureExtraction(PeftModel): """ Peft model for extracting features/embeddings from transformer models Args: model ([`~transformers.PreTrainedModel`]): Base transformer model. peft_config ([`PeftConfig`]): Peft config. **Attributes**: - **config** ([`~transformers.PretrainedConfig`]) -- The configuration object of the base model. Example: ```py >>> from transformers import AutoModel >>> from peft import PeftModelForFeatureExtraction, get_peft_config >>> config = { ... "peft_type": "LORA", ... "task_type": "FEATURE_EXTRACTION", ... "inference_mode": False, ... "r": 16, ... "target_modules": ["query", "value"], ... "lora_alpha": 32, ... "lora_dropout": 0.05, ... "fan_in_fan_out": False, ... "bias": "none", ... } >>> peft_config = get_peft_config(config) >>> model = AutoModel.from_pretrained("bert-base-cased") >>> peft_model = PeftModelForFeatureExtraction(model, peft_config) >>> peft_model.print_trainable_parameters() ``` """ def __init__(self, model, peft_config: PeftConfig = None, adapter_name="default"): super().__init__(model, peft_config, adapter_name) def forward( self, input_ids=None, attention_mask=None, inputs_embeds=None, output_attentions=None, output_hidden_states=None, return_dict=None, **kwargs, ): peft_config = self.active_peft_config if not isinstance(peft_config, PromptLearningConfig): return self.base_model( input_ids=input_ids, attention_mask=attention_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, **kwargs, ) batch_size = input_ids.shape[0] if attention_mask is not None: # concat prompt attention mask prefix_attention_mask = torch.ones(batch_size, peft_config.num_virtual_tokens).to(attention_mask.device) attention_mask = torch.cat((prefix_attention_mask, attention_mask), dim=1) if kwargs.get("position_ids", None) is not None: warnings.warn("Position ids are not supported for parameter efficient tuning. Ignoring position ids.") kwargs["position_ids"] = None if kwargs.get("token_type_ids", None) is not None: warnings.warn("Token type ids are not supported for parameter efficient tuning. Ignoring token type ids") kwargs["token_type_ids"] = None kwargs.update( { "attention_mask": attention_mask, "output_attentions": output_attentions, "output_hidden_states": output_hidden_states, "return_dict": return_dict, } ) if peft_config.peft_type == PeftType.PREFIX_TUNING: past_key_values = self.get_prompt(batch_size) return self.base_model(input_ids=input_ids, past_key_values=past_key_values, **kwargs) else: if inputs_embeds is None: inputs_embeds = self.word_embeddings(input_ids) prompts = self.get_prompt(batch_size=batch_size) prompts = prompts.to(inputs_embeds.dtype) inputs_embeds = torch.cat((prompts, inputs_embeds), dim=1) return self.base_model(inputs_embeds=inputs_embeds, **kwargs)
0
hf_public_repos/peft/src/peft
hf_public_repos/peft/src/peft/tuners/__init__.py
# flake8: noqa # There's no way to ignore "F401 '...' imported but unused" warnings in this # module, but to preserve other warnings. So, don't check this module at all # coding=utf-8 # Copyright 2023-present the HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from .adaption_prompt import AdaptionPromptConfig, AdaptionPromptModel from .lora import LoraConfig, LoraModel from .ia3 import IA3Config, IA3Model from .adalora import AdaLoraConfig, AdaLoraModel from .p_tuning import PromptEncoder, PromptEncoderConfig, PromptEncoderReparameterizationType from .prefix_tuning import PrefixEncoder, PrefixTuningConfig from .prompt_tuning import PromptEmbedding, PromptTuningConfig, PromptTuningInit
0
hf_public_repos/peft/src/peft
hf_public_repos/peft/src/peft/tuners/adalora.py
import re import warnings from dataclasses import dataclass, field from typing import Optional import torch import torch.nn as nn import torch.nn.functional as F from transformers.pytorch_utils import Conv1D from ..import_utils import is_bnb_4bit_available, is_bnb_available from ..utils import ( TRANSFORMERS_MODELS_TO_ADALORA_TARGET_MODULES_MAPPING, PeftType, _freeze_adapter, _get_submodules, transpose, ) from .lora import ( LoraConfig, LoraLayer, LoraModel, mark_only_lora_as_trainable, ) if is_bnb_available(): import bitsandbytes as bnb @dataclass class AdaLoraConfig(LoraConfig): """ This is the configuration class to store the configuration of a [`~peft.AdaLora`]. Args: target_r (`int`): The target average rank of incremental matrix. init_r (`int`): The initial rank for each incremental matrix. tinit (`int`): The steps of initial fine-tuning warmup. tfinal (`int`): The step of final fine-tuning. deltaT (`int`): The time internval between two budget allocations. beta1 (`float`): The hyperparameter of EMA for sensitivity smoothing. beta2 (`float`): The hyperparameter of EMA for undertainty quantification. orth_reg_weight (`float`): The coefficient of orthogonal regularization. total_step (`int`): The total training steps that should be specified before training. rank_pattern (`list`): The allocated rank for each weight matrix by RankAllocator. """ target_r: int = field(default=8, metadata={"help": "Target Lora matrix dimension."}) init_r: int = field(default=12, metadata={"help": "Intial Lora matrix dimension."}) tinit: int = field(default=0, metadata={"help": "The steps of initial warmup."}) tfinal: int = field(default=0, metadata={"help": "The steps of final warmup."}) deltaT: int = field(default=1, metadata={"help": "Step interval of rank allocation."}) beta1: float = field(default=0.85, metadata={"help": "Hyperparameter of EMA."}) beta2: float = field(default=0.85, metadata={"help": "Hyperparameter of EMA."}) orth_reg_weight: float = field(default=0.5, metadata={"help": "The orthogonal regularization coefficient."}) total_step: Optional[int] = field(default=None, metadata={"help": "The total training steps."}) rank_pattern: Optional[dict] = field(default=None, metadata={"help": "The saved rank pattern."}) def __post_init__(self): self.peft_type = PeftType.ADALORA class AdaLoraModel(LoraModel): """ Creates AdaLoRA (Adaptive LoRA) model from a pretrained transformers model. Paper: https://openreview.net/pdf?id=lq62uWRJjiY Args: model ([`transformers.PreTrainedModel`]): The model to be adapted. config ([`AdaLoraConfig`]): The configuration of the AdaLora model. Returns: `torch.nn.Module`: The AdaLora model. Example:: >>> from transformers import AutoModelForSeq2SeqLM, LoraConfig >>> from peft import AdaLoraModel, AdaLoraConfig >>> config = AdaLoraConfig( peft_type="ADALORA", task_type="SEQ_2_SEQ_LM", r=8, lora_alpha=32, target_modules=["q", "v"], lora_dropout=0.01, ) >>> model = AutoModelForSeq2SeqLM.from_pretrained("t5-base") >>> model = AdaLoraModel(model, config, "default") **Attributes**: - **model** ([`transformers.PreTrainedModel`]) -- The model to be adapted. - **peft_config** ([`AdaLoraConfig`]): The configuration of the AdaLora model. """ def __init__(self, model, config, adapter_name): nn.Module.__init__(self) self.model = model self.peft_config = config self.add_adapter(adapter_name, self.peft_config[adapter_name]) def add_adapter(self, adapter_name, config=None): if config is not None: model_config = self.model.config.to_dict() if hasattr(self.model.config, "to_dict") else self.model.config config = self._prepare_adalora_config(config, model_config) self.peft_config[adapter_name] = config self._find_and_replace(adapter_name) if len(self.peft_config) > 1 and self.peft_config[adapter_name].bias != "none": raise ValueError( "AdaLoraModel supports only 1 adapter with bias. When using multiple adapters, set bias to 'none' for all adapters." ) traininable_mode_counter = 0 for config in self.peft_config.values(): if not config.inference_mode: traininable_mode_counter += 1 if traininable_mode_counter > 1: raise ValueError( "AdaLoraModel supports only 1 trainable adapter. " "When using multiple adapters, set inference_mode to True for all adapters except the one you want to train." ) mark_only_lora_as_trainable(self.model, self.peft_config[adapter_name].bias) if self.peft_config[adapter_name].inference_mode: _freeze_adapter(self.model, adapter_name) else: self.trainable_adapter_name = adapter_name self.rankallocator = RankAllocator(self.model, self.peft_config[adapter_name], self.trainable_adapter_name) def _find_and_replace(self, adapter_name): lora_config = self.peft_config[adapter_name] loaded_in_8bit = getattr(self.model, "is_loaded_in_8bit", False) loaded_in_4bit = getattr(self.model, "is_loaded_in_4bit", False) if (loaded_in_8bit or loaded_in_4bit) and not is_bnb_available(): raise ImportError( "To use Lora with 8-bit quantization, please install the `bitsandbytes` package. " "You can install it with `pip install bitsandbytes`." ) is_target_modules_in_base_model = False kwargs = { "r": lora_config.init_r, "lora_alpha": lora_config.lora_alpha, "lora_dropout": lora_config.lora_dropout, "fan_in_fan_out": lora_config.fan_in_fan_out, "init_lora_weights": lora_config.init_lora_weights, } key_list = [key for key, _ in self.model.named_modules()] for key in key_list: if isinstance(lora_config.target_modules, str): target_module_found = re.fullmatch(lora_config.target_modules, key) else: target_module_found = any(key.endswith(target_key) for target_key in lora_config.target_modules) if target_module_found: if not is_target_modules_in_base_model: is_target_modules_in_base_model = True parent, target, target_name = _get_submodules(self.model, key) bias = target.bias is not None if isinstance(target, LoraLayer): target.update_layer( adapter_name, lora_config.init_r, lora_config.lora_alpha, lora_config.lora_dropout, lora_config.init_lora_weights, ) else: if loaded_in_8bit and isinstance(target, bnb.nn.Linear8bitLt): kwargs.update( { "has_fp16_weights": target.state.has_fp16_weights, "memory_efficient_backward": target.state.memory_efficient_backward, "threshold": target.state.threshold, "index": target.index, } ) new_module = SVDLinear8bitLt( adapter_name, target.in_features, target.out_features, bias=bias, **kwargs ) elif loaded_in_4bit and is_bnb_4bit_available() and isinstance(target, bnb.nn.Linear4bit): fourbit_kwargs = kwargs.copy() fourbit_kwargs.update( { "compute_dtype": target.compute_dtype, "compress_statistics": target.weight.compress_statistics, "quant_type": target.weight.quant_type, } ) new_module = SVDLinear4bit( adapter_name, target.in_features, target.out_features, bias=bias, **fourbit_kwargs ) else: if isinstance(target, torch.nn.Linear): in_features, out_features = target.in_features, target.out_features if kwargs["fan_in_fan_out"]: warnings.warn( "fan_in_fan_out is set to True but the target module is `torch.nn.Linear`. " "Setting fan_in_fan_out to False." ) kwargs["fan_in_fan_out"] = lora_config.fan_in_fan_out = False elif isinstance(target, Conv1D): in_features, out_features = ( target.weight.ds_shape if hasattr(target.weight, "ds_shape") else target.weight.shape ) if not kwargs["fan_in_fan_out"]: warnings.warn( "fan_in_fan_out is set to False but the target module is `Conv1D`. " "Setting fan_in_fan_out to True." ) kwargs["fan_in_fan_out"] = lora_config.fan_in_fan_out = True else: raise ValueError( f"Target module {target} is not supported. " f"Currently, only `torch.nn.Linear` and `Conv1D` are supported." ) new_module = SVDLinear(adapter_name, in_features, out_features, bias=bias, **kwargs) self._replace_module(parent, target_name, new_module, target) if not is_target_modules_in_base_model: raise ValueError( f"Target modules {lora_config.target_modules} not found in the base model. " f"Please check the target modules and try again." ) def __getattr__(self, name: str): """Forward missing attributes to the wrapped module.""" try: return super().__getattr__(name) # defer to nn.Module's logic except AttributeError: return getattr(self.model, name) def forward(self, *args, **kwargs): outputs = self.model.forward(*args, **kwargs) if getattr(outputs, "loss", None) is not None: # Calculate the orthogonal regularization orth_reg_weight = self.peft_config[self.trainable_adapter_name].orth_reg_weight if orth_reg_weight <= 0: raise ValueError("orth_reg_weight should be greater than 0. ") regu_loss = 0 num_param = 0 for n, p in self.model.named_parameters(): if ("lora_A" in n or "lora_B" in n) and self.trainable_adapter_name in n: para_cov = p @ p.T if "lora_A" in n else p.T @ p I = torch.eye(*para_cov.size(), out=torch.empty_like(para_cov)) I.requires_grad = False num_param += 1 regu_loss += torch.norm(para_cov - I, p="fro") if num_param > 0: regu_loss = regu_loss / num_param else: regu_loss = 0 outputs.loss += orth_reg_weight * regu_loss return outputs def resize_modules_by_rank_pattern(self, rank_pattern, adapter_name): lora_config = self.peft_config[adapter_name] for name, rank_idx in rank_pattern.items(): if isinstance(rank_idx, list): rank = sum(rank_idx) elif isinstance(rank_idx, torch.Tensor): rank_idx = rank_idx.view(-1) rank = rank_idx.sum().item() else: raise ValueError("Unexcepted type of rank_idx") key = ".".join(name.split(".")[0:-2]) if adapter_name in name else ".".join(name.split(".")[0:-1]) _, target, _ = _get_submodules(self.model, key) lora_E_weights = target.lora_E[adapter_name][rank_idx] lora_A_weights = target.lora_A[adapter_name][rank_idx] lora_B_weights = target.lora_B[adapter_name][:, rank_idx] ranknum = target.ranknum[adapter_name] target.update_layer( adapter_name, rank, lora_config.lora_alpha, lora_config.lora_dropout, lora_config.init_lora_weights, ) with torch.no_grad(): if rank > 0: target.lora_E[adapter_name].copy_(lora_E_weights) target.lora_A[adapter_name].copy_(lora_A_weights) target.lora_B[adapter_name].copy_(lora_B_weights) # The scaling is exactly as the previous target.ranknum[adapter_name].copy_(ranknum) def resize_state_dict_by_rank_pattern(self, rank_pattern, state_dict, adapter_name): for name, rank_idx in rank_pattern.items(): rank = sum(rank_idx) prefix = ".".join(name.split(".")[0:-2]) if adapter_name in name else ".".join(name.split(".")[0:-1]) for layer in ["lora_E", "lora_A", "lora_B"]: key = f"base_model.model.{prefix}.{layer}.{adapter_name}" if layer != "lora_B": state_dict[key] = ( state_dict[key][rank_idx] if rank != state_dict[key].shape[0] else state_dict[key] ) else: state_dict[key] = ( state_dict[key][:, rank_idx] if rank != state_dict[key].shape[1] else state_dict[key] ) return state_dict def update_and_allocate(self, global_step): lora_config = self.peft_config[self.trainable_adapter_name] # Update the importance score and allocate the budget if global_step < lora_config.total_step - lora_config.tfinal: _, rank_pattern = self.rankallocator.update_and_allocate(self.model, global_step) if rank_pattern: lora_config.rank_pattern = rank_pattern # Finalize the budget allocation elif global_step == lora_config.total_step - lora_config.tfinal: _, rank_pattern = self.rankallocator.update_and_allocate(self.model, global_step, force_mask=True) # for some reason, this freezes the trainable parameters and nothing gets updates # self.resize_modules_by_rank_pattern(rank_pattern, self.trainable_adapter_name) lora_config.rank_pattern = rank_pattern self.rankallocator.reset_ipt() # Currently using inefficient way to mask the unimportant weights using the rank pattern # due to problem mentioned above elif global_step > lora_config.total_step - lora_config.tfinal: self.rankallocator.mask_using_rank_pattern(self.model, lora_config.rank_pattern) # Pass the function and do forward propagation else: return None @staticmethod def _prepare_adalora_config(peft_config, model_config): if peft_config.target_modules is None: if model_config["model_type"] not in TRANSFORMERS_MODELS_TO_ADALORA_TARGET_MODULES_MAPPING: raise ValueError("Please specify `target_modules` in `peft_config`") peft_config.target_modules = TRANSFORMERS_MODELS_TO_ADALORA_TARGET_MODULES_MAPPING[ model_config["model_type"] ] return peft_config class AdaLoraLayer(LoraLayer): def __init__( self, in_features: int, out_features: int, ): super().__init__(in_features, out_features) self.lora_E = nn.ParameterDict({}) self.lora_A = nn.ParameterDict({}) self.lora_B = nn.ParameterDict({}) self.ranknum = nn.ParameterDict({}) def update_layer(self, adapter_name, r, lora_alpha, lora_dropout, init_lora_weights): self.r[adapter_name] = r self.lora_alpha[adapter_name] = lora_alpha if lora_dropout > 0.0: lora_dropout_layer = nn.Dropout(p=lora_dropout) else: lora_dropout_layer = nn.Identity() self.lora_dropout.update(nn.ModuleDict({adapter_name: lora_dropout_layer})) # Actual trainable parameters # Right singular vectors self.lora_A.update(nn.ParameterDict({adapter_name: nn.Parameter(torch.zeros(r, self.in_features))})) # Singular values self.lora_E.update(nn.ParameterDict({adapter_name: nn.Parameter(torch.zeros(r, 1))})) # Left singular vectors self.lora_B.update(nn.ParameterDict({adapter_name: nn.Parameter(torch.zeros(self.out_features, r))})) # The current rank self.ranknum.update(nn.ParameterDict({adapter_name: nn.Parameter(torch.zeros(1), requires_grad=False)})) self.ranknum[adapter_name].data.fill_(float(r)) self.ranknum[adapter_name].requires_grad = False self.scaling[adapter_name] = lora_alpha if lora_alpha > 0 else float(r) if init_lora_weights: self.reset_lora_parameters(adapter_name) self.to(self.weight.device) def reset_lora_parameters(self, adapter_name): if adapter_name in self.lora_A.keys(): nn.init.zeros_(self.lora_E[adapter_name]) nn.init.normal_(self.lora_A[adapter_name], mean=0.0, std=0.02) nn.init.normal_(self.lora_B[adapter_name], mean=0.0, std=0.02) class SVDLinear(nn.Linear, AdaLoraLayer): # SVD-based adaptation by a dense layer def __init__( self, adapter_name: str, in_features: int, out_features: int, r: int = 0, lora_alpha: int = 1, lora_dropout: float = 0.0, fan_in_fan_out: bool = False, **kwargs, ): init_lora_weights = kwargs.pop("init_lora_weights", True) nn.Linear.__init__(self, in_features, out_features, **kwargs) AdaLoraLayer.__init__(self, in_features=in_features, out_features=out_features) # Freezing the pre-trained weight matrix self.weight.requires_grad = False self.fan_in_fan_out = fan_in_fan_out if fan_in_fan_out: self.weight.data = self.weight.data.T nn.Linear.reset_parameters(self) self.update_layer(adapter_name, r, lora_alpha, lora_dropout, init_lora_weights) self.active_adapter = adapter_name def merge(self): if self.active_adapter not in self.lora_A.keys(): return if self.merged: warnings.warn("Already merged. Nothing to do.") return if self.r[self.active_adapter] > 0: self.weight.data += ( transpose( self.lora_B[self.active_adapter] @ (self.lora_A[self.active_adapter] * self.lora_E[self.active_adapter]), self.fan_in_fan_out, ) * self.scaling[self.active_adapter] / (self.ranknum[self.active_adapter] + 1e-5) ) self.merged = True def unmerge(self): if self.active_adapter not in self.lora_A.keys(): return if not self.merged: warnings.warn("Already unmerged. Nothing to do.") return if self.r[self.active_adapter] > 0: self.weight.data -= ( transpose( self.lora_B[self.active_adapter] @ (self.lora_A[self.active_adapter] * self.lora_E[self.active_adapter]) ) * self.scaling[self.active_adapter] / (self.ranknum[self.active_adapter] + 1e-5) ) self.merged = False def forward(self, x: torch.Tensor): if self.active_adapter not in self.lora_A.keys(): return F.linear(x, transpose(self.weight, self.fan_in_fan_out), bias=self.bias) if self.disable_adapters: if self.r[self.active_adapter] > 0 and self.merged: self.unmerge() result = F.linear(x, transpose(self.weight, self.fan_in_fan_out), bias=self.bias) elif self.r[self.active_adapter] > 0 and not self.merged: result = F.linear(x, transpose(self.weight, self.fan_in_fan_out), bias=self.bias) result += ( ( self.lora_dropout[self.active_adapter](x) @ (self.lora_A[self.active_adapter] * self.lora_E[self.active_adapter]).T @ self.lora_B[self.active_adapter].T ) * self.scaling[self.active_adapter] / (self.ranknum[self.active_adapter] + 1e-5) ) else: result = F.linear(x, transpose(self.weight, self.fan_in_fan_out), bias=self.bias) return result if is_bnb_available(): class SVDLinear8bitLt(bnb.nn.Linear8bitLt, AdaLoraLayer): # Low-rank matrix for SVD-based adaptation def __init__( self, adapter_name, in_features, out_features, r: int = 0, lora_alpha: int = 1, lora_dropout: float = 0.0, **kwargs, ): bnb.nn.Linear8bitLt.__init__( self, in_features, out_features, bias=kwargs.get("bias", True), has_fp16_weights=kwargs.get("has_fp16_weights", True), memory_efficient_backward=kwargs.get("memory_efficient_backward", False), threshold=kwargs.get("threshold", 0.0), index=kwargs.get("index", None), ) AdaLoraLayer.__init__(self, in_features=in_features, out_features=out_features) # Freezing the pre-trained weight matrix self.weight.requires_grad = False init_lora_weights = kwargs.pop("init_lora_weights", True) self.update_layer(adapter_name, r, lora_alpha, lora_dropout, init_lora_weights) self.active_adapter = adapter_name def forward(self, x: torch.Tensor): result = super().forward(x) if self.disable_adapters or self.active_adapter not in self.lora_A.keys(): return result elif self.r[self.active_adapter] > 0: if not torch.is_autocast_enabled(): expected_dtype = result.dtype if x.dtype != torch.float32: x = x.float() output = ( ( self.lora_dropout[self.active_adapter](x) @ (self.lora_A[self.active_adapter] * self.lora_E[self.active_adapter]).T @ self.lora_B[self.active_adapter].T ).to(expected_dtype) * self.scaling[self.active_adapter] / (self.ranknum[self.active_adapter] + 1e-5) ) else: output = ( ( self.lora_dropout[self.active_adapter](x) @ (self.lora_A[self.active_adapter] * self.lora_E[self.active_adapter]).T @ self.lora_B[self.active_adapter].T ) * self.scaling[self.active_adapter] / (self.ranknum[self.active_adapter] + 1e-5) ) result = result + output return result if is_bnb_4bit_available(): class SVDLinear4bit(bnb.nn.Linear4bit, AdaLoraLayer): # Low-rank matrix for SVD-based adaptation def __init__( self, adapter_name, in_features, out_features, r: int = 0, lora_alpha: int = 1, lora_dropout: float = 0.0, **kwargs, ): bnb.nn.Linear4bit.__init__( self, in_features, out_features, bias=kwargs.get("bias", True), compute_dtype=kwargs.get("compute_dtype", torch.float32), compress_statistics=kwargs.get("compress_statistics", True), quant_type=kwargs.get("quant_type", "nf4"), ) AdaLoraLayer.__init__(self, in_features=in_features, out_features=out_features) # Freezing the pre-trained weight matrix self.weight.requires_grad = False init_lora_weights = kwargs.pop("init_lora_weights", True) self.update_layer(adapter_name, r, lora_alpha, lora_dropout, init_lora_weights) self.active_adapter = adapter_name def forward(self, x: torch.Tensor): result = super().forward(x) if self.disable_adapters or self.active_adapter not in self.lora_A.keys(): return result elif self.r[self.active_adapter] > 0: if not torch.is_autocast_enabled(): expected_dtype = result.dtype if x.dtype != torch.float32: x = x.float() output = ( ( self.lora_dropout[self.active_adapter](x) @ (self.lora_A[self.active_adapter] * self.lora_E[self.active_adapter]).T @ self.lora_B[self.active_adapter].T ).to(expected_dtype) * self.scaling[self.active_adapter] / (self.ranknum[self.active_adapter] + 1e-5) ) else: output = ( ( self.lora_dropout[self.active_adapter](x) @ (self.lora_A[self.active_adapter] * self.lora_E[self.active_adapter]).T @ self.lora_B[self.active_adapter].T ) * self.scaling[self.active_adapter] / (self.ranknum[self.active_adapter] + 1e-5) ) result = result + output return result class RankAllocator(object): """ The RankAllocator for AdaLoraModel. Paper: https://openreview.net/pdf?id=lq62uWRJjiY Args: config ([`AdaLoraConfig`]): The configuration of the AdaLora model. model: the model that we apply AdaLoRA to. """ def __init__(self, model, peft_config, adapter_name): self.peft_config = peft_config self.adapter_name = adapter_name self.beta1 = peft_config.beta1 self.beta2 = peft_config.beta2 assert self.beta1 > 0 and self.beta1 < 1 assert self.beta2 > 0 and self.beta2 < 1 self.reset_ipt() self._set_budget_scheduler(model) def set_total_step(self, total_step): self.peft_config.total_step = total_step def reset_ipt(self): self.ipt = {} self.exp_avg_ipt = {} self.exp_avg_unc = {} def _set_budget_scheduler(self, model): self.init_bgt = 0 self.name_set = set() for n, p in model.named_parameters(): if f"lora_A.{self.adapter_name}" in n: self.init_bgt += p.size(0) self.name_set.add(n.replace("lora_A", "%s")) self.name_set = sorted(self.name_set) # The total final rank budget self.target_bgt = self.peft_config.target_r * len(self.name_set) def budget_schedule(self, step: int): tinit = self.peft_config.tinit tfinal = self.peft_config.tfinal total_step = self.peft_config.total_step # Initial warmup if step <= tinit: budget = self.init_bgt mask_ind = False # Final fine-tuning elif step > total_step - tfinal: budget = self.target_bgt mask_ind = True else: # Budget decreasing with a cubic scheduler mul_coeff = 1 - (step - tinit) / (total_step - tfinal - tinit) budget = int((self.init_bgt - self.target_bgt) * (mul_coeff**3) + self.target_bgt) mask_ind = True if step % self.peft_config.deltaT == 0 else False return budget, mask_ind def update_ipt(self, model): # Update the sensitivity and uncertainty for every weight for n, p in model.named_parameters(): if "lora_" in n and self.adapter_name in n: if n not in self.ipt: self.ipt[n] = torch.zeros_like(p) self.exp_avg_ipt[n] = torch.zeros_like(p) self.exp_avg_unc[n] = torch.zeros_like(p) with torch.no_grad(): self.ipt[n] = (p * p.grad).abs().detach() # Sensitivity smoothing self.exp_avg_ipt[n] = self.beta1 * self.exp_avg_ipt[n] + (1 - self.beta1) * self.ipt[n] # Uncertainty quantification self.exp_avg_unc[n] = ( self.beta2 * self.exp_avg_unc[n] + (1 - self.beta2) * (self.ipt[n] - self.exp_avg_ipt[n]).abs() ) def _element_score(self, n): return self.exp_avg_ipt[n] * self.exp_avg_unc[n] def _combine_ipt(self, ipt_E, ipt_AB): ipt_AB = ipt_AB.sum(dim=1, keepdim=False) sum_ipt = ipt_E.view(-1) + ipt_AB.view(-1) return sum_ipt def mask_to_budget(self, model, budget): value_ipt = {} vector_ipt = {} triplet_ipt = {} # Get the importance score for A, E, B for n, p in model.named_parameters(): if f"lora_A.{self.adapter_name}" in n: entry_ipt = self._element_score(n) comb_ipt = torch.mean(entry_ipt, dim=1, keepdim=True) name_m = n.replace("lora_A", "%s") if name_m not in vector_ipt: vector_ipt[name_m] = [comb_ipt] else: vector_ipt[name_m].append(comb_ipt) if f"lora_B.{self.adapter_name}" in n: entry_ipt = self._element_score(n) comb_ipt = torch.mean(entry_ipt, dim=0, keepdim=False).view(-1, 1) name_m = n.replace("lora_B", "%s") if name_m not in vector_ipt: vector_ipt[name_m] = [comb_ipt] else: vector_ipt[name_m].append(comb_ipt) if f"lora_E.{self.adapter_name}" in n: entry_ipt = self._element_score(n) name_m = n.replace("lora_E", "%s") value_ipt[name_m] = entry_ipt all_score = [] # Calculate the score for each triplet for name_m in vector_ipt: ipt_E = value_ipt[name_m] ipt_AB = torch.cat(vector_ipt[name_m], dim=1) sum_ipt = self._combine_ipt(ipt_E, ipt_AB) name_E = name_m % "lora_E" triplet_ipt[name_E] = sum_ipt.view(-1, 1) all_score.append(sum_ipt.view(-1)) # Get the threshold by ranking ipt mask_threshold = torch.kthvalue( torch.cat(all_score), k=self.init_bgt - budget, )[0].item() rank_pattern = {} # Mask the unimportant triplets with torch.no_grad(): for n, p in model.named_parameters(): if f"lora_E.{self.adapter_name}" in n: p.masked_fill_(triplet_ipt[n] <= mask_threshold, 0.0) rank_pattern[n] = (~(triplet_ipt[n] <= mask_threshold)).view(-1).tolist() return rank_pattern def update_and_allocate(self, model, global_step, force_mask=False): # # Update the importance score and allocate the budget if global_step < self.peft_config.total_step - self.peft_config.tfinal: self.update_ipt(model) budget, mask_ind = self.budget_schedule(global_step) # Allocate the budget according to importance scores if mask_ind or force_mask: rank_pattern = self.mask_to_budget(model, budget) else: rank_pattern = None return budget, rank_pattern def mask_using_rank_pattern(self, model, rank_pattern): # Mask the unimportant triplets is_adapter_name_truncated = False if self.adapter_name not in next(iter(rank_pattern.keys())): is_adapter_name_truncated = True with torch.no_grad(): for n, p in model.named_parameters(): if f"lora_E.{self.adapter_name}" in n: key = n if not is_adapter_name_truncated else n.replace(f".{self.adapter_name}", "") mask = torch.Tensor(rank_pattern[key]).unsqueeze(-1).to(p.device) p.masked_fill_(~mask.bool(), 0.0)
0
hf_public_repos/peft/src/peft
hf_public_repos/peft/src/peft/tuners/p_tuning.py
# coding=utf-8 # Copyright 2023-present the HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import enum import warnings from dataclasses import dataclass, field from typing import Union import torch from ..utils import PeftType, PromptLearningConfig class PromptEncoderReparameterizationType(str, enum.Enum): MLP = "MLP" LSTM = "LSTM" @dataclass class PromptEncoderConfig(PromptLearningConfig): """ This is the configuration class to store the configuration of a [`PromptEncoder`]. Args: encoder_reparameterization_type (Union[[`PromptEncoderReparameterizationType`], `str`]): The type of reparameterization to use. encoder_hidden_size (`int`): The hidden size of the prompt encoder. encoder_num_layers (`int`): The number of layers of the prompt encoder. encoder_dropout (`float`): The dropout probability of the prompt encoder. """ encoder_reparameterization_type: Union[str, PromptEncoderReparameterizationType] = field( default=PromptEncoderReparameterizationType.MLP, metadata={"help": "How to reparameterize the prompt encoder"}, ) encoder_hidden_size: int = field( default=None, metadata={"help": "The hidden size of the prompt encoder"}, ) encoder_num_layers: int = field( default=2, metadata={"help": "The number of layers of the prompt encoder"}, ) encoder_dropout: float = field( default=0.0, metadata={"help": "The dropout of the prompt encoder"}, ) def __post_init__(self): self.peft_type = PeftType.P_TUNING # Based on https://github.com/NVIDIA/NeMo/blob/main/nemo/collections/nlp/modules/common/prompt_encoder.py # with some refactor class PromptEncoder(torch.nn.Module): """ The prompt encoder network that is used to generate the virtual token embeddings for p-tuning. Args: config ([`PromptEncoderConfig`]): The configuration of the prompt encoder. Example: ```py >>> from peft import PromptEncoder, PromptEncoderConfig >>> config = PromptEncoderConfig( ... peft_type="P_TUNING", ... task_type="SEQ_2_SEQ_LM", ... num_virtual_tokens=20, ... token_dim=768, ... num_transformer_submodules=1, ... num_attention_heads=12, ... num_layers=12, ... encoder_reparameterization_type="MLP", ... encoder_hidden_size=768, ... ) >>> prompt_encoder = PromptEncoder(config) ``` **Attributes**: - **embedding** (`torch.nn.Embedding`) -- The embedding layer of the prompt encoder. - **mlp_head** (`torch.nn.Sequential`) -- The MLP head of the prompt encoder if `inference_mode=False`. - **lstm_head** (`torch.nn.LSTM`) -- The LSTM head of the prompt encoder if `inference_mode=False` and `encoder_reparameterization_type="LSTM"`. - **token_dim** (`int`) -- The hidden embedding dimension of the base transformer model. - **input_size** (`int`) -- The input size of the prompt encoder. - **output_size** (`int`) -- The output size of the prompt encoder. - **hidden_size** (`int`) -- The hidden size of the prompt encoder. - **total_virtual_tokens** (`int`): The total number of virtual tokens of the prompt encoder. - **encoder_type** (Union[[`PromptEncoderReparameterizationType`], `str`]): The encoder type of the prompt encoder. Input shape: (`batch_size`, `total_virtual_tokens`) Output shape: (`batch_size`, `total_virtual_tokens`, `token_dim`) """ def __init__(self, config): super().__init__() self.token_dim = config.token_dim self.input_size = self.token_dim self.output_size = self.token_dim self.hidden_size = config.encoder_hidden_size self.total_virtual_tokens = config.num_virtual_tokens * config.num_transformer_submodules self.encoder_type = config.encoder_reparameterization_type # embedding self.embedding = torch.nn.Embedding(self.total_virtual_tokens, self.token_dim) if not config.inference_mode: if self.encoder_type == PromptEncoderReparameterizationType.LSTM: lstm_dropout = config.encoder_dropout num_layers = config.encoder_num_layers # LSTM self.lstm_head = torch.nn.LSTM( input_size=self.input_size, hidden_size=self.hidden_size, num_layers=num_layers, dropout=lstm_dropout, bidirectional=True, batch_first=True, ) self.mlp_head = torch.nn.Sequential( torch.nn.Linear(self.hidden_size * 2, self.hidden_size * 2), torch.nn.ReLU(), torch.nn.Linear(self.hidden_size * 2, self.output_size), ) elif self.encoder_type == PromptEncoderReparameterizationType.MLP: encoder_num_layers_default = PromptEncoderConfig.encoder_num_layers if config.encoder_num_layers != encoder_num_layers_default: warnings.warn( f"for {self.encoder_type}, the argument `encoder_num_layers` is ignored. " f"Exactly {encoder_num_layers_default} MLP layers are used." ) layers = [ torch.nn.Linear(self.input_size, self.hidden_size), torch.nn.ReLU(), torch.nn.Linear(self.hidden_size, self.hidden_size), torch.nn.ReLU(), torch.nn.Linear(self.hidden_size, self.output_size), ] self.mlp_head = torch.nn.Sequential(*layers) else: raise ValueError("Prompt encoder type not recognized. Please use one of MLP (recommended) or LSTM.") def forward(self, indices): input_embeds = self.embedding(indices) if self.encoder_type == PromptEncoderReparameterizationType.LSTM: output_embeds = self.mlp_head(self.lstm_head(input_embeds)[0]) elif self.encoder_type == PromptEncoderReparameterizationType.MLP: output_embeds = self.mlp_head(input_embeds) else: raise ValueError("Prompt encoder type not recognized. Please use one of MLP (recommended) or LSTM.") return output_embeds
0
hf_public_repos/peft/src/peft
hf_public_repos/peft/src/peft/tuners/prompt_tuning.py
# coding=utf-8 # Copyright 2023-present the HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import enum import math from dataclasses import dataclass, field from typing import Optional, Union import torch from ..utils import PeftType, PromptLearningConfig class PromptTuningInit(str, enum.Enum): TEXT = "TEXT" RANDOM = "RANDOM" @dataclass class PromptTuningConfig(PromptLearningConfig): """ This is the configuration class to store the configuration of a [`PromptEmbedding`]. Args: prompt_tuning_init (Union[[`PromptTuningInit`], `str`]): The initialization of the prompt embedding. prompt_tuning_init_text (`str`, *optional*): The text to initialize the prompt embedding. Only used if `prompt_tuning_init` is `TEXT`. tokenizer_name_or_path (`str`, *optional*): The name or path of the tokenizer. Only used if `prompt_tuning_init` is `TEXT`. """ prompt_tuning_init: Union[PromptTuningInit, str] = field( default=PromptTuningInit.RANDOM, metadata={"help": "How to initialize the prompt tuning parameters"}, ) prompt_tuning_init_text: Optional[str] = field( default=None, metadata={ "help": "The text to use for prompt tuning initialization. Only used if prompt_tuning_init is `TEXT`" }, ) tokenizer_name_or_path: Optional[str] = field( default=None, metadata={ "help": "The tokenizer to use for prompt tuning initialization. Only used if prompt_tuning_init is `TEXT`" }, ) def __post_init__(self): self.peft_type = PeftType.PROMPT_TUNING class PromptEmbedding(torch.nn.Module): """ The model to encode virtual tokens into prompt embeddings. Args: config ([`PromptTuningConfig`]): The configuration of the prompt embedding. word_embeddings (`torch.nn.Module`): The word embeddings of the base transformer model. **Attributes**: - **embedding** (`torch.nn.Embedding`) -- The embedding layer of the prompt embedding. Example: ```py >>> from peft import PromptEmbedding, PromptTuningConfig >>> config = PromptTuningConfig( ... peft_type="PROMPT_TUNING", ... task_type="SEQ_2_SEQ_LM", ... num_virtual_tokens=20, ... token_dim=768, ... num_transformer_submodules=1, ... num_attention_heads=12, ... num_layers=12, ... prompt_tuning_init="TEXT", ... prompt_tuning_init_text="Predict if sentiment of this review is positive, negative or neutral", ... tokenizer_name_or_path="t5-base", ... ) >>> # t5_model.shared is the word embeddings of the base model >>> prompt_embedding = PromptEmbedding(config, t5_model.shared) ``` Input Shape: (`batch_size`, `total_virtual_tokens`) Output Shape: (`batch_size`, `total_virtual_tokens`, `token_dim`) """ def __init__(self, config, word_embeddings): super().__init__() total_virtual_tokens = config.num_virtual_tokens * config.num_transformer_submodules self.embedding = torch.nn.Embedding(total_virtual_tokens, config.token_dim) if config.prompt_tuning_init == PromptTuningInit.TEXT: from transformers import AutoTokenizer tokenizer = AutoTokenizer.from_pretrained(config.tokenizer_name_or_path) init_text = config.prompt_tuning_init_text init_token_ids = tokenizer(init_text)["input_ids"] # Trim or iterate until num_text_tokens matches total_virtual_tokens num_text_tokens = len(init_token_ids) if num_text_tokens > total_virtual_tokens: init_token_ids = init_token_ids[:total_virtual_tokens] elif num_text_tokens < total_virtual_tokens: num_reps = math.ceil(total_virtual_tokens / num_text_tokens) init_token_ids = init_token_ids * num_reps init_token_ids = init_token_ids[:total_virtual_tokens] word_embedding_weights = word_embeddings(torch.LongTensor(init_token_ids)).detach().clone() word_embedding_weights = word_embedding_weights.to(torch.float32) self.embedding.weight = torch.nn.Parameter(word_embedding_weights) def forward(self, indices): # Just get embeddings prompt_embeddings = self.embedding(indices) return prompt_embeddings
0
hf_public_repos/peft/src/peft
hf_public_repos/peft/src/peft/tuners/prefix_tuning.py
# coding=utf-8 # Copyright 2023-present the HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from dataclasses import dataclass, field import torch from ..utils import PeftType, PromptLearningConfig @dataclass class PrefixTuningConfig(PromptLearningConfig): """ This is the configuration class to store the configuration of a [`PrefixEncoder`]. Args: encoder_hidden_size (`int`): The hidden size of the prompt encoder. prefix_projection (`bool`): Whether to project the prefix embeddings. """ encoder_hidden_size: int = field( default=None, metadata={"help": "The hidden size of the encoder"}, ) prefix_projection: bool = field( default=False, metadata={"help": "Whether to project the prefix tokens"}, ) def __post_init__(self): self.peft_type = PeftType.PREFIX_TUNING # Based on https://github.com/THUDM/P-tuning-v2/blob/main/model/prefix_encoder.py # with some refactor class PrefixEncoder(torch.nn.Module): r""" The `torch.nn` model to encode the prefix. Args: config ([`PrefixTuningConfig`]): The configuration of the prefix encoder. Example: ```py >>> from peft import PrefixEncoder, PrefixTuningConfig >>> config = PrefixTuningConfig( ... peft_type="PREFIX_TUNING", ... task_type="SEQ_2_SEQ_LM", ... num_virtual_tokens=20, ... token_dim=768, ... num_transformer_submodules=1, ... num_attention_heads=12, ... num_layers=12, ... encoder_hidden_size=768, ... ) >>> prefix_encoder = PrefixEncoder(config) ``` **Attributes**: - **embedding** (`torch.nn.Embedding`) -- The embedding layer of the prefix encoder. - **transform** (`torch.nn.Sequential`) -- The two-layer MLP to transform the prefix embeddings if `prefix_projection` is `True`. - **prefix_projection** (`bool`) -- Whether to project the prefix embeddings. Input shape: (`batch_size`, `num_virtual_tokens`) Output shape: (`batch_size`, `num_virtual_tokens`, `2*layers*hidden`) """ def __init__(self, config): super().__init__() self.prefix_projection = config.prefix_projection token_dim = config.token_dim num_layers = config.num_layers encoder_hidden_size = config.encoder_hidden_size num_virtual_tokens = config.num_virtual_tokens if self.prefix_projection and not config.inference_mode: # Use a two-layer MLP to encode the prefix self.embedding = torch.nn.Embedding(num_virtual_tokens, token_dim) self.transform = torch.nn.Sequential( torch.nn.Linear(token_dim, encoder_hidden_size), torch.nn.Tanh(), torch.nn.Linear(encoder_hidden_size, num_layers * 2 * token_dim), ) else: self.embedding = torch.nn.Embedding(num_virtual_tokens, num_layers * 2 * token_dim) def forward(self, prefix: torch.Tensor): if self.prefix_projection: prefix_tokens = self.embedding(prefix) past_key_values = self.transform(prefix_tokens) else: past_key_values = self.embedding(prefix) return past_key_values
0
hf_public_repos/peft/src/peft
hf_public_repos/peft/src/peft/tuners/adaption_prompt.py
# coding=utf-8 # Copyright 2023-present the HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import math from collections import namedtuple from dataclasses import dataclass, field from typing import Dict, List import torch import torch.nn as nn import torch.nn.functional as F from peft.utils.config import PeftConfig, PeftType from peft.utils.other import _freeze_adapter, _get_submodules def llama_rotate_half(x: torch.Tensor) -> torch.Tensor: """ Rotate half the hidden dims of the input. This function was duplicated verbatim from: https://github.com/huggingface/transformers/blob/1de8ce9ee1191ba761a593ac15d9ccbf5851bfc5/src/transformers/models/llama/modeling_llama.py#L126 This was done to eliminate the Llama transformers implementation as a dependency of this file. Note that some other functions were also adapted from the transformers implementation but were modified. """ x1 = x[..., : x.shape[-1] // 2] x2 = x[..., x.shape[-1] // 2 :] return torch.cat((-x2, x1), dim=-1) def llama_apply_rotary_pos_emb(q, cos, sin, position_ids): """ Apply rotary position embedding to query states in the Llama model. This function was adapted from: https://github.com/huggingface/transformers/blob/1de8ce9ee1191ba761a593ac15d9ccbf5851bfc5/src/transformers/models/llama/modeling_llama.py#L133 It was modified to remove unnecessary processing of key states. """ gather_indices = position_ids[:, None, :, None] # [bs, 1, seq_len, 1] gather_indices = gather_indices.repeat(1, cos.shape[1], 1, cos.shape[3]) cos = torch.gather(cos.repeat(gather_indices.shape[0], 1, 1, 1), 2, gather_indices) sin = torch.gather(sin.repeat(gather_indices.shape[0], 1, 1, 1), 2, gather_indices) q_embed = (q * cos) + (llama_rotate_half(q) * sin) return q_embed def llama_compute_query_states(model: nn.Module, **kwargs) -> torch.Tensor: """ Compute query states for Llama models specifically. They need to be recomputed as the forward() method of the original LlamaModel in the transformers library does not return them. See the related discussion in the PR: https://github.com/huggingface/peft/pull/268 """ hidden_states = kwargs.get("hidden_states") position_ids = kwargs.get("position_ids") past_key_value = kwargs.get("past_key_value") bsz, q_len, _ = hidden_states.size() query_states = model.q_proj(hidden_states).view(bsz, q_len, model.num_heads, model.head_dim).transpose(1, 2) value_states = model.v_proj(hidden_states).view(bsz, q_len, model.num_heads, model.head_dim).transpose(1, 2) seq_len = q_len if past_key_value is not None: seq_len += past_key_value[0].shape[-2] cos, sin = model.rotary_emb(value_states, seq_len=seq_len) return llama_apply_rotary_pos_emb(query_states, cos, sin, position_ids) # Contains the config that is specific to a transformers model type. ModelTypeConfig = namedtuple( "ModelTypeConfig", ["compute_query_states", "target_modules", "k_proj_layer", "v_proj_layer", "o_proj_layer"] ) # Mapping of transformers model types to their specific configuration. TRANSFORMERS_MODEL_CONFIG = { "llama": ModelTypeConfig( compute_query_states=llama_compute_query_states, target_modules="self_attn", k_proj_layer="k_proj", v_proj_layer="v_proj", o_proj_layer="o_proj", ), } def is_adaption_prompt_trainable(params: str) -> bool: """Return True if module is trainable under adaption prompt fine-tuning.""" return params.split(".")[-1].startswith("adaption_") @dataclass class AdaptionPromptConfig(PeftConfig): """Stores the configuration of an [`AdaptionPromptModel`].""" target_modules: str = field( default=None, metadata={"help": "Name of the attention submodules to insert adaption prompts into."} ) adapter_len: int = field(default=None, metadata={"help": "Number of adapter tokens to insert"}) adapter_layers: int = field(default=None, metadata={"help": "Number of adapter layers (from the top)"}) def __post_init__(self): self.peft_type = PeftType.ADAPTION_PROMPT def prepare_config( peft_config: AdaptionPromptConfig, model, ) -> AdaptionPromptConfig: """Prepare the config based on the llama model type.""" if model.config.model_type not in TRANSFORMERS_MODEL_CONFIG: raise ValueError("Unsupported model type for adaption prompt: '{model.config.model_type}'.") model_config = TRANSFORMERS_MODEL_CONFIG[model.config.model_type] if peft_config.target_modules is None: peft_config.target_modules = model_config.target_modules return peft_config class AdaptionPromptModel(nn.Module): """ Implements adaption prompts as described in https://arxiv.org/pdf/2303.16199.pdf. The top L attention modules are replaced with AdaptedAttention modules that wrap the original ones, but insert trainable prompts with gates (for zero init). Notes on the multi-adapter pattern: - We store the states of different adapters by keeping a dictionary of AdaptedAttention modules indexed by adapter name. - Every time we switch adapters, we remove the modules of the currently active adapter from the model, store them in the dictionary, and replace them with the modules of the new adapter. - To avoid duplicated and potentially inconsistent state, the currently active adapter is always removed from the dictionary. - Disabling the adapter would also result in the modules being removed from the model. """ def __init__(self, model, configs: Dict, adapter_name: str): super().__init__() self.model = model # Store adapter configs by name. self._configs: Dict[str, AdaptionPromptConfig] = {} # Store lists of the parents of the affected attention modules by adapter name. # We keep references to the parents so we can swap the adapters in-and-out of the model. self._parents: Dict[str, List[nn.Module]] = {} # Store lists of cached AdaptedAttention modules by name. self._cached_adapters: Dict[str, List] = {} # The name of the currently active adapter. self._active_adapter = None # Whether the adapter is enabled. self._enabled = True self.forward = self.model.forward self.add_adapter(adapter_name, configs[adapter_name]) self._mark_only_adaption_prompts_as_trainable() def add_adapter(self, adapter_name: str, config: AdaptionPromptConfig) -> None: """Add an adapter with the given name and config.""" config = prepare_config(config, self.model) if adapter_name in self._configs: raise ValueError(f"Adapter with name '{adapter_name}' already exists.") parents = [] for name, _ in self.model.named_modules(): if name.endswith(config.target_modules): par, _, _ = _get_submodules(self.model, name) parents.append(par) if len(parents) < config.adapter_layers: raise ValueError( f"Config specifies more adapter layers '{config.adapter_layers}'" f" than the model has '{len(parents)}'." ) # Note that if the target modules are not in Sequential, ModuleList, or # some other PyTorch ordered container, the behavior is undefined as we # assume here that the order of the modules is the same as the order of # the transformer decoder layers. parents = parents[-config.adapter_layers :] self._parents[adapter_name] = parents # It is only None during initialization. # If it is disabled, we don't have to remove the modules. if self._active_adapter is not None and self._enabled: self._remove_adapted_attentions(self._active_adapter) self._active_adapter = adapter_name self._configs[adapter_name] = config self._create_adapted_attentions(config, parents) if not self._enabled: self._remove_adapted_attentions(self._active_adapter) if config.inference_mode: _freeze_adapter(self.model, adapter_name) def set_adapter(self, adapter_name: str) -> None: """Set the model to use the adapter with the given name.""" if self._active_adapter == adapter_name: return if adapter_name not in self._configs: raise ValueError(f"Adapter with name '{adapter_name}' does not exist.") if self._enabled: self._remove_adapted_attentions(self._active_adapter) self._set_adapted_attentions(adapter_name) self._active_adapter = adapter_name def enable_adapter_layers(self): """Enable adapter layers by swapping in cached AdaptedAttention modules.""" self._enabled = True self._set_adapted_attentions(self._active_adapter) def disable_adapter_layers(self): """Disable adapter layers by swapping out AdaptedAttention modules.""" self._enabled = False self._remove_adapted_attentions(self._active_adapter) def _create_adapted_attentions(self, config: AdaptionPromptConfig, parents: List[nn.Module]) -> None: """Wrap LlamaAttention modules with newly created AdaptedAttention modules.""" for par in parents: attn = AdaptedAttention( model_type=self.model.config.model_type, adapter_len=config.adapter_len, model=getattr(par, config.target_modules), ) setattr(par, config.target_modules, attn) def _set_adapted_attentions(self, adapter_name: str) -> None: """Replace LlamaAttention modules with cached AdaptedAttention modules.""" cached = self._cached_adapters[adapter_name] del self._cached_adapters[adapter_name] config = self._configs[adapter_name] for i, par in enumerate(self._parents[adapter_name]): setattr(par, config.target_modules, cached[i]) def _remove_adapted_attentions(self, adapter_name: str) -> None: """Remove AdaptedAttention modules from the model and store them in the cache.""" config = self._configs[adapter_name] adapted_attentions = [] for par in self._parents[adapter_name]: attn = getattr(par, config.target_modules) adapted_attentions.append(attn) setattr(par, config.target_modules, attn.model) self._cached_adapters[adapter_name] = adapted_attentions def _mark_only_adaption_prompts_as_trainable(self) -> None: """Freeze all parameters of the model except the adaption prompts.""" for n, p in self.model.named_parameters(): if not is_adaption_prompt_trainable(n): p.requires_grad = False def __getattr__(self, name: str): """Forward missing attributes to the wrapped module.""" try: return super().__getattr__(name) # defer to nn.Module's logic except AttributeError: # This is necessary as e.g. causal models have various methods that we # don't want to re-implement here. return getattr(self.model, name) class AdaptedAttention(nn.Module): """This module wraps a LLamaAttention module and injects adaption prompts.""" def __init__(self, model_type: str, adapter_len: int, model): """ Initialize object. Args: model_type: The transformer model type. This is used to retrieve the right method to compute query states. adapter_len: The length of the adaption prompt to insert. model: The original transformer attention module that is being wrapped. """ assert not isinstance(model, AdaptedAttention) super().__init__() self.model_type = model_type self.model = model self.adapter_len = adapter_len # Assume all parameters of the attention model we are wrapping are on the same device. device = next(model.parameters()).device # Don't think this was specified in the paper, but we follow the official repo which used an Embedding # which initializes the tokens with standard normal values. # https://github.com/ZrrSkywalker/LLaMA-Adapter/blob/41c3546fe1997ab8a65809dc8d8f9252b19d9faf/llama/model.py#L234 # (bsz, adapter_len, hidden_size) target_dtype = ( model.q_proj.weight.dtype if model.q_proj.weight.dtype not in [torch.int8, torch.uint8] else torch.float32 ) self.adaption_prompt = nn.Parameter( torch.empty(1, adapter_len, self.model.hidden_size, device=device, dtype=target_dtype).normal_() ) # Initialize the gate to 0 as this is "zero-init". self.adaption_gate = nn.Parameter(torch.zeros(1, device=device, dtype=target_dtype)) def forward(self, **kwargs): """ Forward pass for the adapter which wraps the original LlamaAttention module. "Official" paper implementation: https://github.com/ZrrSkywalker/LLaMA-Adapter/blob/41c3546fe1997ab8a65809dc8d8f9252b19d9faf/llama/model.py#L141 Args: kwargs: See the original LlamaAttention module. """ if kwargs.get("output_attention", False): raise NotImplementedError("output_attention is not currently supported.") output, _, past_key_value = self.model(**kwargs) bsz = output.shape[0] q_len = output.shape[1] embed_dim = output.shape[2] k_proj_layer = TRANSFORMERS_MODEL_CONFIG[self.model_type].k_proj_layer v_proj_layer = TRANSFORMERS_MODEL_CONFIG[self.model_type].v_proj_layer o_proj_layer = TRANSFORMERS_MODEL_CONFIG[self.model_type].o_proj_layer if k_proj_layer == v_proj_layer: _, key, value = getattr(self.model, k_proj_layer)(self.adaption_prompt).split(embed_dim, dim=2) else: key = getattr(self.model, k_proj_layer)(self.adaption_prompt) value = getattr(self.model, v_proj_layer)(self.adaption_prompt) # (bsz, num_heads, adapter_len, head_dim) adapter_k = ( key.view(1, self.adapter_len, self.model.num_heads, self.model.head_dim) .repeat(bsz, 1, 1, 1) .transpose(1, 2) ) # (bsz, num_heads, adapter_len, head_dim) adapter_v = ( value.view(1, self.adapter_len, self.model.num_heads, self.model.head_dim) .repeat(bsz, 1, 1, 1) .transpose(1, 2) ) # Recompute query states. compute_query_states = TRANSFORMERS_MODEL_CONFIG[self.model_type].compute_query_states # (bsz, num_heads, q_len, head_dim) query_states = compute_query_states(model=self.model, **kwargs) previous_dtype = query_states.dtype # (bsz, num_heads, q_len, adapter_len) scores = torch.matmul(query_states, adapter_k.transpose(2, 3).to(previous_dtype)) / math.sqrt( self.model.head_dim ) # Upcast attention to fp32 # (bsz, num_heads, q_len, adapter_len) scores = self.adaption_gate * F.softmax(scores, dim=-1, dtype=torch.float32).to(previous_dtype) # (bsz, q_len, num_heads * head_dim) adapter_output = torch.matmul(scores, adapter_v).transpose(1, 2).reshape(bsz, q_len, -1) # (bsz, q_len, hidden_size) if o_proj_layer is not None: adapter_output = getattr(self.model, o_proj_layer)(adapter_output) # Add adaption prompt output to original output. output = output + adapter_output # Restore original dtype. output = output.to(previous_dtype) return output, None, past_key_value
0
hf_public_repos/peft/src/peft
hf_public_repos/peft/src/peft/tuners/lora.py
# coding=utf-8 # Copyright 2023-present the HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import math import re import warnings from dataclasses import asdict, dataclass, field, replace from enum import Enum from typing import List, Optional, Tuple, Union import torch import torch.nn as nn import torch.nn.functional as F from transformers.pytorch_utils import Conv1D from ..import_utils import is_bnb_4bit_available, is_bnb_available from ..utils import ( CLAMP_QUANTILE, COMMON_LAYERS_PATTERN, TRANSFORMERS_MODELS_TO_LORA_TARGET_MODULES_MAPPING, ModulesToSaveWrapper, PeftConfig, PeftType, _freeze_adapter, _get_submodules, transpose, ) if is_bnb_available(): import bitsandbytes as bnb @dataclass class LoraConfig(PeftConfig): """ This is the configuration class to store the configuration of a [`LoraModel`]. Args: r (`int`): Lora attention dimension. target_modules (`Union[List[str],str]`): The names of the modules to apply Lora to. lora_alpha (`int`): The alpha parameter for Lora scaling. lora_dropout (`float`): The dropout probability for Lora layers. fan_in_fan_out (`bool`): Set this to True if the layer to replace stores weight like (fan_in, fan_out). For example, gpt-2 uses `Conv1D` which stores weights like (fan_in, fan_out) and hence this should be set to `True`.: bias (`str`): Bias type for Lora. Can be 'none', 'all' or 'lora_only'. If 'all' or 'lora_only', the corresponding biases will be updated during training. Be aware that this means that, even when disabling the adapters, the model will not produce the same output as the base model would have without adaptation. modules_to_save (`List[str]`):List of modules apart from LoRA layers to be set as trainable and saved in the final checkpoint. layers_to_transform (`Union[List[int],int]`): The layer indexes to transform, if this argument is specified, it will apply the LoRA transformations on the layer indexes that are specified in this list. If a single integer is passed, it will apply the LoRA transformations on the layer at this index. layers_pattern (`str`): The layer pattern name, used only if `layers_to_transform` is different from `None` and if the layer pattern is not in the common layers pattern. """ r: int = field(default=8, metadata={"help": "Lora attention dimension"}) target_modules: Optional[Union[List[str], str]] = field( default=None, metadata={ "help": "List of module names or regex expression of the module names to replace with Lora." "For example, ['q', 'v'] or '.*decoder.*(SelfAttention|EncDecAttention).*(q|v)$' " }, ) lora_alpha: int = field(default=8, metadata={"help": "Lora alpha"}) lora_dropout: float = field(default=0.0, metadata={"help": "Lora dropout"}) fan_in_fan_out: bool = field( default=False, metadata={"help": "Set this to True if the layer to replace stores weight like (fan_in, fan_out)"}, ) bias: str = field(default="none", metadata={"help": "Bias type for Lora. Can be 'none', 'all' or 'lora_only'"}) modules_to_save: Optional[List[str]] = field( default=None, metadata={ "help": "List of modules apart from LoRA layers to be set as trainable and saved in the final checkpoint. " "For example, in Sequence Classification or Token Classification tasks, " "the final layer `classifier/score` are randomly initialized and as such need to be trainable and saved." }, ) init_lora_weights: bool = field( default=True, metadata={ "help": ( "Whether to initialize the weights of the Lora layers with their default initialization. Don't change " "this setting, except if you know exactly what you're doing." ), }, ) layers_to_transform: Optional[Union[List, int]] = field( default=None, metadata={ "help": "The layer indexes to transform, is this argument is specified, PEFT will transform only the layers indexes that are specified inside this list. If a single integer is passed, PEFT will transform only the layer at this index." }, ) layers_pattern: Optional[str] = field( default=None, metadata={ "help": "The layer pattern name, used only if `layers_to_transform` is different to None and if the layer pattern is not in the common layers pattern." }, ) def __post_init__(self): self.peft_type = PeftType.LORA class LoraModel(torch.nn.Module): """ Creates Low Rank Adapter (Lora) model from a pretrained transformers model. Args: model ([`~transformers.PreTrainedModel`]): The model to be adapted. config ([`LoraConfig`]): The configuration of the Lora model. Returns: `torch.nn.Module`: The Lora model. Example: ```py >>> from transformers import AutoModelForSeq2SeqLM >>> from peft import LoraModel, LoraConfig >>> config = LoraConfig( ... task_type="SEQ_2_SEQ_LM", ... r=8, ... lora_alpha=32, ... target_modules=["q", "v"], ... lora_dropout=0.01, ... ) >>> model = AutoModelForSeq2SeqLM.from_pretrained("t5-base") >>> lora_model = LoraModel(model, config, "default") ``` ```py >>> import transformers >>> from peft import LoraConfig, PeftModel, get_peft_model, prepare_model_for_int8_training >>> target_modules = ["q_proj", "k_proj", "v_proj", "out_proj", "fc_in", "fc_out", "wte"] >>> config = LoraConfig( ... r=4, lora_alpha=16, target_modules=target_modules, lora_dropout=0.1, bias="none", task_type="CAUSAL_LM" ... ) >>> model = transformers.GPTJForCausalLM.from_pretrained( ... "kakaobrain/kogpt", ... revision="KoGPT6B-ryan1.5b-float16", # or float32 version: revision=KoGPT6B-ryan1.5b ... pad_token_id=tokenizer.eos_token_id, ... use_cache=False, ... device_map={"": rank}, ... torch_dtype=torch.float16, ... load_in_8bit=True, ... ) >>> model = prepare_model_for_int8_training(model) >>> lora_model = get_peft_model(model, config) ``` **Attributes**: - **model** ([`~transformers.PreTrainedModel`]) -- The model to be adapted. - **peft_config** ([`LoraConfig`]): The configuration of the Lora model. """ def __init__(self, model, config, adapter_name): super().__init__() self.model = model self.forward = self.model.forward self.peft_config = config self.add_adapter(adapter_name, self.peft_config[adapter_name]) # transformers models have a .config attribute, whose presence is assumed later on if not hasattr(self, "config"): self.config = {"model_type": "custom"} def add_adapter(self, adapter_name, config=None): if config is not None: model_config = getattr(self.model, "config", {"model_type": "custom"}) if hasattr(model_config, "to_dict"): model_config = model_config.to_dict() config = self._prepare_lora_config(config, model_config) self.peft_config[adapter_name] = config self._find_and_replace(adapter_name) if len(self.peft_config) > 1 and self.peft_config[adapter_name].bias != "none": raise ValueError( "LoraModel supports only 1 adapter with bias. When using multiple adapters, set bias to 'none' for all adapters." ) mark_only_lora_as_trainable(self.model, self.peft_config[adapter_name].bias) if self.peft_config[adapter_name].inference_mode: _freeze_adapter(self.model, adapter_name) def _check_quantization_dependency(self): loaded_in_4bit = getattr(self.model, "is_loaded_in_4bit", False) loaded_in_8bit = getattr(self.model, "is_loaded_in_8bit", False) if (loaded_in_4bit or loaded_in_8bit) and not is_bnb_available(): raise ImportError( "To use Lora with 8-bit or 4-bit quantization, please install the `bitsandbytes` package. " "You can install it with `pip install bitsandbytes`." ) def _check_target_module_exists(self, lora_config, key): if isinstance(lora_config.target_modules, str): target_module_found = re.fullmatch(lora_config.target_modules, key) else: target_module_found = any(key.endswith(target_key) for target_key in lora_config.target_modules) is_using_layer_indexes = getattr(lora_config, "layers_to_transform", None) is not None layer_indexing_pattern = getattr(lora_config, "layers_pattern", None) if is_using_layer_indexes and target_module_found: layers_pattern = COMMON_LAYERS_PATTERN if layer_indexing_pattern is None else layer_indexing_pattern layers_pattern = [layers_pattern] if isinstance(layers_pattern, str) else layers_pattern for pattern in layers_pattern: layer_index = re.match(f".*.{pattern}\.(\d+)\.*", key) if layer_index is not None: layer_index = int(layer_index.group(1)) if isinstance(lora_config.layers_to_transform, int): target_module_found = layer_index == lora_config.layers_to_transform else: target_module_found = layer_index in lora_config.layers_to_transform break else: target_module_found = False return target_module_found def _create_new_module(self, lora_config, adapter_name, target): bias = hasattr(target, "bias") and target.bias is not None kwargs = { "r": lora_config.r, "lora_alpha": lora_config.lora_alpha, "lora_dropout": lora_config.lora_dropout, "fan_in_fan_out": lora_config.fan_in_fan_out, "init_lora_weights": lora_config.init_lora_weights, } loaded_in_4bit = getattr(self.model, "is_loaded_in_4bit", False) loaded_in_8bit = getattr(self.model, "is_loaded_in_8bit", False) if loaded_in_8bit and isinstance(target, bnb.nn.Linear8bitLt): eightbit_kwargs = kwargs.copy() eightbit_kwargs.update( { "has_fp16_weights": target.state.has_fp16_weights, "memory_efficient_backward": target.state.memory_efficient_backward, "threshold": target.state.threshold, "index": target.index, } ) new_module = Linear8bitLt( adapter_name, target.in_features, target.out_features, bias=bias, **eightbit_kwargs ) elif loaded_in_4bit and is_bnb_4bit_available() and isinstance(target, bnb.nn.Linear4bit): fourbit_kwargs = kwargs.copy() fourbit_kwargs.update( { "compute_dtype": target.compute_dtype, "compress_statistics": target.weight.compress_statistics, "quant_type": target.weight.quant_type, } ) new_module = Linear4bit(adapter_name, target.in_features, target.out_features, bias=bias, **fourbit_kwargs) elif isinstance(target, torch.nn.Embedding): embedding_kwargs = kwargs.copy() embedding_kwargs.pop("fan_in_fan_out", None) in_features, out_features = target.num_embeddings, target.embedding_dim new_module = Embedding(adapter_name, in_features, out_features, **embedding_kwargs) elif isinstance(target, torch.nn.Conv2d): out_channels, in_channels = target.weight.size()[:2] kernel_size = target.weight.size()[2:] stride = target.stride padding = target.padding new_module = Conv2d(adapter_name, in_channels, out_channels, kernel_size, stride, padding, **kwargs) else: if isinstance(target, torch.nn.Linear): in_features, out_features = target.in_features, target.out_features if kwargs["fan_in_fan_out"]: warnings.warn( "fan_in_fan_out is set to True but the target module is `torch.nn.Linear`. " "Setting fan_in_fan_out to False." ) kwargs["fan_in_fan_out"] = lora_config.fan_in_fan_out = False elif isinstance(target, Conv1D): in_features, out_features = ( target.weight.ds_shape if hasattr(target.weight, "ds_shape") else target.weight.shape ) kwargs["is_target_conv_1d_layer"] = True if not kwargs["fan_in_fan_out"]: warnings.warn( "fan_in_fan_out is set to False but the target module is `Conv1D`. " "Setting fan_in_fan_out to True." ) kwargs["fan_in_fan_out"] = lora_config.fan_in_fan_out = True else: raise ValueError( f"Target module {target} is not supported. " f"Currently, only `torch.nn.Linear` and `Conv1D` are supported." ) new_module = Linear(adapter_name, in_features, out_features, bias=bias, **kwargs) return new_module def _find_and_replace(self, adapter_name): lora_config = self.peft_config[adapter_name] self._check_quantization_dependency() is_target_modules_in_base_model = False key_list = [key for key, _ in self.model.named_modules()] for key in key_list: if not self._check_target_module_exists(lora_config, key): continue is_target_modules_in_base_model = True parent, target, target_name = _get_submodules(self.model, key) if isinstance(target, LoraLayer) and isinstance(target, torch.nn.Conv2d): target.update_layer_conv2d( adapter_name, lora_config.r, lora_config.lora_alpha, lora_config.lora_dropout, lora_config.init_lora_weights, ) elif isinstance(target, LoraLayer) and isinstance(target, torch.nn.Embedding): target.update_layer_embedding( adapter_name, lora_config.r, lora_config.lora_alpha, lora_config.lora_dropout, lora_config.init_lora_weights, ) elif isinstance(target, LoraLayer): target.update_layer( adapter_name, lora_config.r, lora_config.lora_alpha, lora_config.lora_dropout, lora_config.init_lora_weights, ) else: new_module = self._create_new_module(lora_config, adapter_name, target) self._replace_module(parent, target_name, new_module, target) if not is_target_modules_in_base_model: raise ValueError( f"Target modules {lora_config.target_modules} not found in the base model. " f"Please check the target modules and try again." ) def _replace_module(self, parent_module, child_name, new_module, old_module): setattr(parent_module, child_name, new_module) new_module.weight = old_module.weight if hasattr(old_module, "bias"): if old_module.bias is not None: new_module.bias = old_module.bias if getattr(old_module, "state", None) is not None: new_module.state = old_module.state new_module.to(old_module.weight.device) # dispatch to correct device for name, module in new_module.named_modules(): if "lora_" in name: module.to(old_module.weight.device) if "ranknum" in name: module.to(old_module.weight.device) def __getattr__(self, name: str): """Forward missing attributes to the wrapped module.""" try: return super().__getattr__(name) # defer to nn.Module's logic except AttributeError: return getattr(self.model, name) def get_peft_config_as_dict(self, inference: bool = False): config_dict = {} for key, value in self.peft_config.items(): config = {k: v.value if isinstance(v, Enum) else v for k, v in asdict(value).items()} if inference: config["inference_mode"] = True config_dict[key] = config return config def _set_adapter_layers(self, enabled=True): for module in self.model.modules(): if isinstance(module, LoraLayer): module.disable_adapters = False if enabled else True elif isinstance(module, ModulesToSaveWrapper): module.disable_adapters = False if enabled else True def enable_adapter_layers(self): self._set_adapter_layers(enabled=True) def _get_active_adapter(self) -> str: active_adapter = None for module in self.model.modules(): if isinstance(module, LoraLayer): active_adapter = module.active_adapter if active_adapter is None: raise ValueError( "Something went wrong, no active adapter could be found, please report the issue on GitHub" ) return active_adapter def disable_adapter_layers(self): active_adapter = self._get_active_adapter() val = self.peft_config[active_adapter].bias if val != "none": msg = ( f"Careful, disabling adapter layers with bias configured to be '{val}' does not produce the same " "output as the the base model would without adaption." ) warnings.warn(msg) self._set_adapter_layers(enabled=False) def set_adapter(self, adapter_name): for module in self.model.modules(): if isinstance(module, LoraLayer): if module.merged: warnings.warn("Adapter cannot be set when the model is merged. Unmerging the model first.") module.unmerge() module.active_adapter = adapter_name def merge_adapter(self): """ This method merges the LoRa layers into the base model. """ for module in self.model.modules(): if isinstance(module, LoraLayer): module.merge() def unmerge_adapter(self): """ This method unmerges the LoRa layers from the base model. """ for module in self.model.modules(): if isinstance(module, LoraLayer): module.unmerge() @staticmethod def _prepare_lora_config(peft_config, model_config): if peft_config.target_modules is None: if model_config["model_type"] not in TRANSFORMERS_MODELS_TO_LORA_TARGET_MODULES_MAPPING: raise ValueError("Please specify `target_modules` in `peft_config`") peft_config.target_modules = TRANSFORMERS_MODELS_TO_LORA_TARGET_MODULES_MAPPING[model_config["model_type"]] return peft_config def _unload_and_optionally_merge(self, merge=True): if getattr(self.model, "is_loaded_in_8bit", False) or getattr(self.model, "is_loaded_in_4bit", False): raise ValueError("Cannot merge LORA layers when the model is loaded in 8-bit mode") key_list = [key for key, _ in self.model.named_modules() if "lora" not in key] for key in key_list: try: parent, target, target_name = _get_submodules(self.model, key) except AttributeError: continue if isinstance(target, LoraLayer): if isinstance(target, nn.Embedding): new_module = torch.nn.Embedding(target.in_features, target.out_features) elif isinstance(target, nn.Conv2d): new_module = torch.nn.Conv2d( target.in_channels, target.out_channels, kernel_size=target.kernel_size, stride=target.stride, padding=target.padding, dilation=target.dilation, ) else: bias = target.bias is not None if getattr(target, "is_target_conv_1d_layer", False): new_module = Conv1D(target.out_features, target.in_features) else: new_module = torch.nn.Linear(target.in_features, target.out_features, bias=bias) if merge: target.merge() self._replace_module(parent, target_name, new_module, target) # save any additional trainable modules part of `modules_to_save` if isinstance(target, ModulesToSaveWrapper): setattr(parent, target_name, target.modules_to_save[target.active_adapter]) return self.model def add_weighted_adapter(self, adapters, weights, adapter_name, combination_type="svd"): """ This method adds a new adapter by merging the given adapters with the given weights. Args: adapters (list): List of adapter names to be merged. weights (list): List of weights for each adapter. adapter_name (str): Name of the new adapter. combination_type (str): Type of merging. Can be one of [`svd`, `linear`] """ if adapter_name in list(self.peft_config.keys()): return for adapter in adapters: if adapter not in list(self.peft_config.keys()): raise ValueError(f"Adapter {adapter} does not exist") # if there is only one adapter, we can only use linear merging combination_type = "linear" if len(adapters) == 1 else combination_type # new rank is the max of all ranks of the adapters unique_ranks = list({self.peft_config[adapter].r for adapter in adapters}) if combination_type == "linear": if len(unique_ranks) != 1: raise ValueError("All adapters must have the same r value when using `linear` combination_type") new_rank = unique_ranks[0] elif combination_type == "svd": new_rank = max(unique_ranks) else: raise ValueError(f"Invalid combination_type: {combination_type}") self.peft_config[adapter_name] = replace(self.peft_config[adapters[0]], r=new_rank, lora_alpha=new_rank) self._find_and_replace(adapter_name) mark_only_lora_as_trainable(self.model, self.peft_config[adapter_name].bias) _freeze_adapter(self.model, adapter_name) key_list = [key for key, _ in self.model.named_modules() if "lora" not in key] for key in key_list: _, target, _ = _get_submodules(self.model, key) if isinstance(target, LoraLayer): if adapter_name in target.lora_A: target_lora_A = target.lora_A[adapter_name].weight target_lora_B = target.lora_B[adapter_name].weight elif adapter_name in target.lora_embedding_A: target_lora_A = target.lora_embedding_A[adapter_name] target_lora_B = target.lora_embedding_B[adapter_name] target_lora_A.data = target_lora_A.data * 0.0 target_lora_B.data = target_lora_B.data * 0.0 if combination_type == "linear": for adapter, weight in zip(adapters, weights): if adapter in target.lora_A: current_adapter_lora_A = target.lora_A[adapter].weight current_adapter_lora_B = target.lora_B[adapter].weight elif adapter in target.lora_embedding_A: current_adapter_lora_A = target.lora_embedding_A[adapter] current_adapter_lora_B = target.lora_embedding_B[adapter] target_lora_A.data += current_adapter_lora_A.data * weight * target.scaling[adapter] target_lora_B.data += current_adapter_lora_B.data elif combination_type == "svd": target_lora_A.data, target_lora_B.data = self._svd_weighted_adapter( adapters, weights, new_rank, target, target_lora_A, target_lora_B ) def _svd_weighted_adapter(self, adapters, weights, new_rank, target, target_lora_A, target_lora_B): delta_weight = weights[0] * target.get_delta_weight(adapters[0]) for adapter, weight in zip(adapters[1:], weights[1:]): delta_weight += weight * target.get_delta_weight(adapter) conv2d = isinstance(target, Conv2d) if conv2d: conv2d_1x1 = target.weight.size()[2:4] == (1, 1) if not conv2d_1x1: delta_weight = delta_weight.flatten(start_dim=1) else: delta_weight = delta_weight.squeeze() if target.fan_in_fan_out: delta_weight = delta_weight.T # based on https://github.com/kohya-ss/sd-scripts/blob/main/networks/svd_merge_lora.py#L114-L131 U, S, Vh = torch.linalg.svd(delta_weight) U = U[:, :new_rank] S = S[:new_rank] U = U @ torch.diag(S) Vh = Vh[:new_rank, :] dist = torch.cat([U.flatten(), Vh.flatten()]) hi_val = torch.quantile(dist, CLAMP_QUANTILE) low_val = -hi_val U = U.clamp(low_val, hi_val) Vh = Vh.clamp(low_val, hi_val) if conv2d: U = U.reshape(target_lora_B.data.shape) Vh = Vh.reshape(target_lora_A.data.shape) return Vh, U def delete_adapter(self, adapter_name): """ Deletes an existing adapter. Args: adapter_name (str): Name of the adapter to be deleted. """ if adapter_name not in list(self.peft_config.keys()): raise ValueError(f"Adapter {adapter_name} does not exist") del self.peft_config[adapter_name] key_list = [key for key, _ in self.model.named_modules() if "lora" not in key] for key in key_list: _, target, _ = _get_submodules(self.model, key) if isinstance(target, LoraLayer): for attr in [ "r", "lora_alpha", "scaling", "lora_A", "lora_B", "lora_embedding_A", "lora_embedding_B", "lora_dropout", ]: if adapter_name in getattr(target, attr): getattr(target, attr).pop(adapter_name) if target.active_adapter == adapter_name: resetting_active_adapter = list(self.peft_config.keys())[0] warnings.warn( f"Adapter {adapter_name} was active which is now deleted. Setting active adapter to {resetting_active_adapter}. " ) target.active_adapter = resetting_active_adapter def merge_and_unload(self): r""" This method merges the LoRa layers into the base model. This is needed if someone wants to use the base model as a standalone model. Example: ```py >>> from transformers import AutoModelForCausalLM >>> from peft import PeftModel >>> base_model = AutoModelForCausalLM.from_pretrained("tiiuae/falcon-40b") >>> peft_model_id = "smangrul/falcon-40B-int4-peft-lora-sfttrainer-sample" >>> model = PeftModel.from_pretrained(base_model, peft_model_id) >>> merged_model = model.merge_and_unload() ``` """ return self._unload_and_optionally_merge() def unload(self): """ Gets back the base model by removing all the lora modules without merging. This gives back the original base model. """ return self._unload_and_optionally_merge(merge=False) # Below code is based on https://github.com/microsoft/LoRA/blob/main/loralib/layers.py # and modified to work with PyTorch FSDP # ------------------------------------------------------------------------------------------ # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License (MIT). See LICENSE in the repo root for license information. # ------------------------------------------------------------------------------------------ # had to adapt it for `lora_only` to work def mark_only_lora_as_trainable(model: nn.Module, bias: str = "none") -> None: for n, p in model.named_parameters(): if "lora_" not in n: p.requires_grad = False if bias == "none": return elif bias == "all": for n, p in model.named_parameters(): if "bias" in n: p.requires_grad = True elif bias == "lora_only": for m in model.modules(): if isinstance(m, LoraLayer) and hasattr(m, "bias") and m.bias is not None: m.bias.requires_grad = True else: raise NotImplementedError class LoraLayer: def __init__(self, in_features: int, out_features: int, **kwargs): self.r = {} self.lora_alpha = {} self.scaling = {} self.lora_dropout = nn.ModuleDict({}) self.lora_A = nn.ModuleDict({}) self.lora_B = nn.ModuleDict({}) # For Embedding layer self.lora_embedding_A = nn.ParameterDict({}) self.lora_embedding_B = nn.ParameterDict({}) # Mark the weight as unmerged self.merged = False self.disable_adapters = False self.in_features = in_features self.out_features = out_features self.kwargs = kwargs def update_layer(self, adapter_name, r, lora_alpha, lora_dropout, init_lora_weights): self.r[adapter_name] = r self.lora_alpha[adapter_name] = lora_alpha if lora_dropout > 0.0: lora_dropout_layer = nn.Dropout(p=lora_dropout) else: lora_dropout_layer = nn.Identity() self.lora_dropout.update(nn.ModuleDict({adapter_name: lora_dropout_layer})) # Actual trainable parameters if r > 0: self.lora_A.update(nn.ModuleDict({adapter_name: nn.Linear(self.in_features, r, bias=False)})) self.lora_B.update(nn.ModuleDict({adapter_name: nn.Linear(r, self.out_features, bias=False)})) self.scaling[adapter_name] = lora_alpha / r if init_lora_weights: self.reset_lora_parameters(adapter_name) self.to(self.weight.device) def update_layer_conv2d(self, adapter_name, r, lora_alpha, lora_dropout, init_lora_weights): self.r[adapter_name] = r self.lora_alpha[adapter_name] = lora_alpha if lora_dropout > 0.0: lora_dropout_layer = nn.Dropout(p=lora_dropout) else: lora_dropout_layer = nn.Identity() self.lora_dropout.update(nn.ModuleDict({adapter_name: lora_dropout_layer})) # Actual trainable parameters if r > 0: kernel_size = self.kwargs["kernel_size"] stride = self.kwargs["stride"] padding = self.kwargs["padding"] self.lora_A.update( nn.ModuleDict({adapter_name: nn.Conv2d(self.in_features, r, kernel_size, stride, padding, bias=False)}) ) self.lora_B.update( nn.ModuleDict({adapter_name: nn.Conv2d(r, self.out_features, (1, 1), (1, 1), bias=False)}) ) self.scaling[adapter_name] = lora_alpha / r if init_lora_weights: self.reset_lora_parameters(adapter_name) self.to(self.weight.device) def update_layer_embedding(self, adapter_name, r, lora_alpha, lora_dropout, init_lora_weights): self.r[adapter_name] = r self.lora_alpha[adapter_name] = lora_alpha if lora_dropout > 0.0: lora_dropout_layer = nn.Dropout(p=lora_dropout) else: lora_dropout_layer = nn.Identity() self.lora_dropout.update(nn.ModuleDict({adapter_name: lora_dropout_layer})) # Actual trainable parameters if r > 0: weight_A = torch.randn((r, self.in_features), dtype=self.weight.dtype, device=self.weight.device) weight_B = torch.randn((self.out_features, r), dtype=self.weight.dtype, device=self.weight.device) self.lora_embedding_A.update(nn.ParameterDict({adapter_name: nn.Parameter(weight_A)})) self.lora_embedding_B.update(nn.ParameterDict({adapter_name: nn.Parameter(weight_B)})) self.scaling[adapter_name] = lora_alpha / r if init_lora_weights: self.reset_lora_parameters(adapter_name) self.to(self.weight.device) def reset_lora_parameters(self, adapter_name): if adapter_name in self.lora_A.keys(): # initialize A the same way as the default for nn.Linear and B to zero nn.init.kaiming_uniform_(self.lora_A[adapter_name].weight, a=math.sqrt(5)) nn.init.zeros_(self.lora_B[adapter_name].weight) if adapter_name in self.lora_embedding_A.keys(): # initialize a the same way as the default for nn.linear and b to zero nn.init.zeros_(self.lora_embedding_A[adapter_name]) nn.init.normal_(self.lora_embedding_B[adapter_name]) class Linear(nn.Linear, LoraLayer): # Lora implemented in a dense layer def __init__( self, adapter_name: str, in_features: int, out_features: int, r: int = 0, lora_alpha: int = 1, lora_dropout: float = 0.0, fan_in_fan_out: bool = False, # Set this to True if the layer to replace stores weight like (fan_in, fan_out) is_target_conv_1d_layer: bool = False, **kwargs, ): init_lora_weights = kwargs.pop("init_lora_weights", True) nn.Linear.__init__(self, in_features, out_features, **kwargs) LoraLayer.__init__(self, in_features=in_features, out_features=out_features) # Freezing the pre-trained weight matrix self.weight.requires_grad = False self.fan_in_fan_out = fan_in_fan_out if fan_in_fan_out: self.weight.data = self.weight.data.T nn.Linear.reset_parameters(self) self.update_layer(adapter_name, r, lora_alpha, lora_dropout, init_lora_weights) self.active_adapter = adapter_name self.is_target_conv_1d_layer = is_target_conv_1d_layer def merge(self): if self.active_adapter not in self.lora_A.keys(): return if self.merged: warnings.warn("Already merged. Nothing to do.") return if self.r[self.active_adapter] > 0: self.weight.data += self.get_delta_weight(self.active_adapter) self.merged = True def unmerge(self): if self.active_adapter not in self.lora_A.keys(): return if not self.merged: warnings.warn("Already unmerged. Nothing to do.") return if self.r[self.active_adapter] > 0: self.weight.data -= self.get_delta_weight(self.active_adapter) self.merged = False def get_delta_weight(self, adapter): return ( transpose( self.lora_B[adapter].weight @ self.lora_A[adapter].weight, self.fan_in_fan_out, ) * self.scaling[adapter] ) def forward(self, x: torch.Tensor): previous_dtype = x.dtype if self.active_adapter not in self.lora_A.keys(): return F.linear(x, transpose(self.weight, self.fan_in_fan_out), bias=self.bias) if self.disable_adapters: if self.r[self.active_adapter] > 0 and self.merged: self.unmerge() result = F.linear(x, transpose(self.weight, self.fan_in_fan_out), bias=self.bias) elif self.r[self.active_adapter] > 0 and not self.merged: result = F.linear(x, transpose(self.weight, self.fan_in_fan_out), bias=self.bias) x = x.to(self.lora_A[self.active_adapter].weight.dtype) result += ( self.lora_B[self.active_adapter]( self.lora_A[self.active_adapter](self.lora_dropout[self.active_adapter](x)) ) * self.scaling[self.active_adapter] ) else: result = F.linear(x, transpose(self.weight, self.fan_in_fan_out), bias=self.bias) result = result.to(previous_dtype) return result class Embedding(nn.Embedding, LoraLayer): # LoRA implemented in a Embedding layer def __init__( self, adapter_name: str, num_embeddings: int, embedding_dim: int, r: int = 0, lora_alpha: int = 1, lora_dropout: float = 0.0, **kwargs, ): init_lora_weights = kwargs.pop("init_lora_weights", True) nn.Embedding.__init__(self, num_embeddings, embedding_dim, **kwargs) LoraLayer.__init__(self, in_features=num_embeddings, out_features=embedding_dim) self.weight.requires_grad = False nn.Embedding.reset_parameters(self) self.update_layer_embedding(adapter_name, r, lora_alpha, lora_dropout, init_lora_weights) self.active_adapter = adapter_name def unmerge(self): if not self.merged: warnings.warn("Already unmerged. Nothing to do.") return if self.r[self.active_adapter] > 0: self.weight.data -= self.get_delta_weight(self.active_adapter) self.merged = False def merge(self): if self.merged: warnings.warn("Already merged. Nothing to do.") return if self.r[self.active_adapter] > 0: self.weight.data += self.get_delta_weight(self.active_adapter) self.merged = True def get_delta_weight(self, adapter): return transpose(self.lora_embedding_B[adapter] @ self.lora_embedding_A[adapter], True) * self.scaling[adapter] def forward(self, x: torch.Tensor): if self.disable_adapters: if self.r[self.active_adapter] > 0 and self.merged: self.unmerge() return nn.Embedding.forward(self, x) elif self.r[self.active_adapter] > 0 and not self.merged: result = nn.Embedding.forward(self, x) if self.r[self.active_adapter] > 0: after_A = F.embedding( x, self.lora_embedding_A[self.active_adapter].T, self.padding_idx, self.max_norm, self.norm_type, self.scale_grad_by_freq, self.sparse, ) result += (after_A @ self.lora_embedding_B[self.active_adapter].T) * self.scaling[self.active_adapter] return result else: return nn.Embedding.forward(self, x) class Conv2d(nn.Conv2d, LoraLayer): # Lora implemented in a conv2d layer def __init__( self, adapter_name: str, in_channels: int, out_channels: int, kernel_size: Union[int, Tuple[int]], stride: Union[int, Tuple[int]] = 1, padding: Union[int, Tuple[int]] = 0, r: int = 0, lora_alpha: int = 1, lora_dropout: float = 0.0, **kwargs, ): init_lora_weights = kwargs.pop("init_lora_weights", True) nn.Conv2d.__init__(self, in_channels, out_channels, kernel_size, stride, padding) LoraLayer.__init__( self, in_features=in_channels, out_features=out_channels, kernel_size=kernel_size, stride=stride, padding=padding, ) # Freezing the pre-trained weight matrix self.weight.requires_grad = False nn.Conv2d.reset_parameters(self) self.update_layer_conv2d(adapter_name, r, lora_alpha, lora_dropout, init_lora_weights) self.active_adapter = adapter_name def merge(self): if self.active_adapter not in self.lora_A.keys(): return if self.merged: warnings.warn("Already merged. Nothing to do.") return if self.r[self.active_adapter] > 0: self.weight.data += self.get_delta_weight(self.active_adapter) self.merged = True def unmerge(self): if self.active_adapter not in self.lora_A.keys(): return if not self.merged: warnings.warn("Already unmerged. Nothing to do.") return if self.r[self.active_adapter] > 0: self.weight.data -= self.get_delta_weight(self.active_adapter) self.merged = False def get_delta_weight(self, adapter): # https://github.com/bmaltais/kohya_ss/blob/feb6728762a8f463d15ba936d189d4c3abfaa1ab/networks/lora.py#L117 if self.weight.size()[2:4] == (1, 1): # conv2d 1x1 return ( self.lora_B[adapter].weight.squeeze(3).squeeze(2) @ self.lora_A[adapter].weight.squeeze(3).squeeze(2) ).unsqueeze(2).unsqueeze(3) * self.scaling[adapter] else: # conv2d 3x3 return ( F.conv2d( self.lora_A[adapter].weight.permute(1, 0, 2, 3), self.lora_B[adapter].weight, ).permute(1, 0, 2, 3) * self.scaling[adapter] ) def forward(self, x: torch.Tensor): previous_dtype = x.dtype if self.active_adapter not in self.lora_A.keys(): return F.conv2d( x, self.weight, bias=self.bias, stride=self.stride, padding=self.padding, dilation=self.dilation, groups=self.groups, ) if self.disable_adapters: if self.r[self.active_adapter] > 0 and self.merged: self.unmerge() result = F.conv2d( x, self.weight, bias=self.bias, stride=self.stride, padding=self.padding, dilation=self.dilation, groups=self.groups, ) elif self.r[self.active_adapter] > 0 and not self.merged: result = F.conv2d( x, self.weight, bias=self.bias, stride=self.stride, padding=self.padding, dilation=self.dilation, groups=self.groups, ) x = x.to(self.lora_A[self.active_adapter].weight.dtype) result += ( self.lora_B[self.active_adapter]( self.lora_A[self.active_adapter](self.lora_dropout[self.active_adapter](x)) ) * self.scaling[self.active_adapter] ) else: result = F.conv2d( x, self.weight, bias=self.bias, stride=self.stride, padding=self.padding, dilation=self.dilation, groups=self.groups, ) result = result.to(previous_dtype) return result if is_bnb_available(): class Linear8bitLt(bnb.nn.Linear8bitLt, LoraLayer): # Lora implemented in a dense layer def __init__( self, adapter_name, in_features, out_features, r: int = 0, lora_alpha: int = 1, lora_dropout: float = 0.0, **kwargs, ): bnb.nn.Linear8bitLt.__init__( self, in_features, out_features, bias=kwargs.get("bias", True), has_fp16_weights=kwargs.get("has_fp16_weights", True), memory_efficient_backward=kwargs.get("memory_efficient_backward", False), threshold=kwargs.get("threshold", 0.0), index=kwargs.get("index", None), ) LoraLayer.__init__(self, in_features=in_features, out_features=out_features) # Freezing the pre-trained weight matrix self.weight.requires_grad = False init_lora_weights = kwargs.pop("init_lora_weights", True) self.update_layer(adapter_name, r, lora_alpha, lora_dropout, init_lora_weights) self.active_adapter = adapter_name def forward(self, x: torch.Tensor): result = super().forward(x) if self.disable_adapters or self.active_adapter not in self.lora_A.keys(): return result elif self.r[self.active_adapter] > 0: if not torch.is_autocast_enabled(): expected_dtype = result.dtype if x.dtype != torch.float32: x = x.float() output = ( self.lora_B[self.active_adapter]( self.lora_A[self.active_adapter](self.lora_dropout[self.active_adapter](x)) ).to(expected_dtype) * self.scaling[self.active_adapter] ) else: output = ( self.lora_B[self.active_adapter]( self.lora_A[self.active_adapter](self.lora_dropout[self.active_adapter](x)) ) * self.scaling[self.active_adapter] ) result += output return result if is_bnb_4bit_available(): class Linear4bit(bnb.nn.Linear4bit, LoraLayer): # Lora implemented in a dense layer def __init__( self, adapter_name, in_features, out_features, r: int = 0, lora_alpha: int = 1, lora_dropout: float = 0.0, **kwargs, ): bnb.nn.Linear4bit.__init__( self, in_features, out_features, bias=kwargs.get("bias", True), compute_dtype=kwargs.get("compute_dtype", torch.float32), compress_statistics=kwargs.get("compress_statistics", True), quant_type=kwargs.get("quant_type", "nf4"), ) LoraLayer.__init__(self, in_features=in_features, out_features=out_features) # Freezing the pre-trained weight matrix self.weight.requires_grad = False init_lora_weights = kwargs.pop("init_lora_weights", True) self.update_layer(adapter_name, r, lora_alpha, lora_dropout, init_lora_weights) self.active_adapter = adapter_name def forward(self, x: torch.Tensor): result = super().forward(x) if self.disable_adapters or self.active_adapter not in self.lora_A.keys(): return result elif self.r[self.active_adapter] > 0: result = result.clone() if not torch.is_autocast_enabled(): expected_dtype = result.dtype x = x.to(self.lora_A[self.active_adapter].weight.dtype) output = ( self.lora_B[self.active_adapter]( self.lora_A[self.active_adapter](self.lora_dropout[self.active_adapter](x)) ).to(expected_dtype) * self.scaling[self.active_adapter] ) else: output = ( self.lora_B[self.active_adapter]( self.lora_A[self.active_adapter](self.lora_dropout[self.active_adapter](x)) ) * self.scaling[self.active_adapter] ) result += output return result
0
hf_public_repos/peft/src/peft
hf_public_repos/peft/src/peft/tuners/ia3.py
# coding=utf-8 # Copyright 2023-present the HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re import warnings from dataclasses import asdict, dataclass, field from enum import Enum from typing import List, Optional, Union import torch import torch.nn as nn import torch.nn.functional as F from transformers.pytorch_utils import Conv1D from ..import_utils import is_bnb_available from ..utils import ( TRANSFORMERS_MODELS_TO_IA3_FEEDFORWARD_MODULES_MAPPING, TRANSFORMERS_MODELS_TO_IA3_TARGET_MODULES_MAPPING, ModulesToSaveWrapper, PeftConfig, PeftType, _freeze_adapter, _get_submodules, transpose, ) if is_bnb_available(): import bitsandbytes as bnb @dataclass class IA3Config(PeftConfig): """ This is the configuration class to store the configuration of a [`IA3Model`]. Args: target_modules (`Union[List[str],str]`): The names of the modules to apply (IA)^3 to. feedforward_modules (`Union[List[str],str]`): The names of the modules to be treated as feedforward modules as in the original paper. fan_in_fan_out (`bool`): Set this to True if the layer to replace stores weight like (fan_in, fan_out). For example, gpt-2 uses `Conv1D` which stores weights like (fan_in, fan_out) and hence this should be set to `True`.: modules_to_save (`List[str]`):List of modules apart from (IA)^3 layers to be set as trainable and saved in the final checkpoint. init_ia3_weights (`bool`): Whether to initialize the vectors in the (IA)^3 layers, defaults to `True`. """ target_modules: Optional[Union[List[str], str]] = field( default=None, metadata={ "help": "List of module names or regex expression of the module names to replace with ia3." "For example, ['q', 'v'] or '.*decoder.*(SelfAttention|EncDecAttention).*(q|v)$' " }, ) feedforward_modules: Optional[Union[List[str], str]] = field( default=None, metadata={ "help": "List of module names or a regex expression of module names which are feedforward" "For example, ['output.dense']" }, ) fan_in_fan_out: bool = field( default=False, metadata={"help": "Set this to True if the layer to replace stores weight like (fan_in, fan_out)"}, ) modules_to_save: Optional[List[str]] = field( default=None, metadata={ "help": "List of modules apart from (IA)^3 layers to be set as trainable and saved in the final checkpoint. " "For example, in Sequence Classification or Token Classification tasks, " "the final layer `classifier/score` are randomly initialized and as such need to be trainable and saved." }, ) init_ia3_weights: bool = field( default=True, metadata={"help": "Whether to initialize the vectors in the (IA)^3 layers."}, ) def __post_init__(self): self.peft_type = PeftType.IA3 class IA3Model(torch.nn.Module): """ Creates a Infused Adapter by Inhibiting and Amplifying Inner Activations ((IA)^3) model from a pretrained transformers model. The method is described in detail in https://arxiv.org/abs/2205.05638 Args: model ([`~transformers.PreTrainedModel`]): The model to be adapted. config ([`IA3Config`]): The configuration of the (IA)^3 model. Returns: `torch.nn.Module`: The (IA)^3 model. Example: ```py >>> from transformers import AutoModelForSeq2SeqLM, ia3Config >>> from peft import IA3Model, IA3Config >>> config = IA3Config( ... peft_type="IA3", ... task_type="SEQ_2_SEQ_LM", ... target_modules=["k", "v", "w0"], ... feedforward_modules=["w0"], ... ) >>> model = AutoModelForSeq2SeqLM.from_pretrained("t5-base") >>> ia3_model = IA3Model(config, model) ``` **Attributes**: - **model** ([`~transformers.PreTrainedModel`]) -- The model to be adapted. - **peft_config** ([`ia3Config`]): The configuration of the (IA)^3 model. """ def __init__(self, model, config, adapter_name): super().__init__() self.model = model self.forward = self.model.forward self.peft_config = config self.add_adapter(adapter_name, self.peft_config[adapter_name]) def add_adapter(self, adapter_name, config=None): if config is not None: model_config = self.model.config.to_dict() if hasattr(self.model.config, "to_dict") else self.model.config config = self._prepare_ia3_config(config, model_config) self.peft_config[adapter_name] = config self._find_and_replace(adapter_name) mark_only_ia3_as_trainable(self.model) if self.peft_config[adapter_name].inference_mode: _freeze_adapter(self.model, adapter_name) def _check_quantization_dependency(self): loaded_in_4bit = getattr(self.model, "is_loaded_in_4bit", False) if loaded_in_4bit: raise NotImplementedError( "4-bit quantization is not supported for IA3 yet, 8-bit quantization can be used instead." ) loaded_in_8bit = getattr(self.model, "is_loaded_in_8bit", False) if loaded_in_8bit and not is_bnb_available(): raise ImportError( "To use (IA)^3 with 8-bit quantization, please install the `bitsandbytes` package. " "You can install it with `pip install bitsandbytes`." ) def _create_new_module(self, ia3_config, adapter_name, target, is_feedforward): kwargs = { "fan_in_fan_out": ia3_config.fan_in_fan_out, "init_ia3_weights": ia3_config.init_ia3_weights, } bias = hasattr(target, "bias") and target.bias is not None loaded_in_8bit = getattr(self.model, "is_loaded_in_8bit", False) if loaded_in_8bit and isinstance(target, bnb.nn.Linear8bitLt): eightbit_kwargs = kwargs.copy() eightbit_kwargs.update( { "has_fp16_weights": target.state.has_fp16_weights, "memory_efficient_backward": target.state.memory_efficient_backward, "threshold": target.state.threshold, "index": target.index, } ) new_module = Linear8bitLt( adapter_name, target.in_features, target.out_features, is_feedforward, bias=bias, **eightbit_kwargs, ) else: # Create a new Linear module with (IA)^3 parameters for torch.nn.Linear # or Conv1D modules if isinstance(target, torch.nn.Linear): in_features, out_features = target.in_features, target.out_features if kwargs["fan_in_fan_out"]: warnings.warn( "fan_in_fan_out is set to True but the target module is `torch.nn.Linear`. " "Setting fan_in_fan_out to False." ) kwargs["fan_in_fan_out"] = ia3_config.fan_in_fan_out = False elif isinstance(target, Conv1D): in_features, out_features = ( target.weight.ds_shape if hasattr(target.weight, "ds_shape") else target.weight.shape ) if not kwargs["fan_in_fan_out"]: warnings.warn( "fan_in_fan_out is set to False but the target module is `Conv1D`. " "Setting fan_in_fan_out to True." ) kwargs["fan_in_fan_out"] = ia3_config.fan_in_fan_out = True else: raise ValueError( f"Target module {target} is not supported. " f"Currently, only `torch.nn.Linear` and `Conv1D` are supported." ) new_module = Linear( adapter_name, in_features, out_features, is_feedforward=is_feedforward, bias=bias, **kwargs ) return new_module def _check_target_module_exists(self, ia3_config, key): if isinstance(ia3_config.target_modules, str): target_module_found = re.fullmatch(ia3_config.target_modules, key) else: target_module_found = any( self._is_valid_match(key, target_key) for target_key in ia3_config.target_modules ) return target_module_found def _find_and_replace(self, adapter_name): ia3_config = self.peft_config[adapter_name] if not ia3_config.feedforward_modules: ia3_config.feedforward_modules = [] # convert to list if None self._check_quantization_dependency() is_target_modules_in_base_model = False key_list = [key for key, _ in self.model.named_modules()] for key in key_list: if not self._check_target_module_exists(ia3_config, key): continue # check if target module is in feedforward_modules if isinstance(ia3_config.feedforward_modules, str): is_feedforward = re.fullmatch(ia3_config.feedforward_modules, key) else: is_feedforward = any(key.endswith(target_key) for target_key in ia3_config.feedforward_modules) if not is_target_modules_in_base_model: is_target_modules_in_base_model = True parent, target, target_name = _get_submodules(self.model, key) if isinstance(target, IA3Layer): target.update_layer( adapter_name, ia3_config.init_ia3_weights, ) else: new_module = self._create_new_module(ia3_config, adapter_name, target, is_feedforward) self._replace_module(parent, target_name, new_module, target) if not is_target_modules_in_base_model: raise ValueError( f"Target modules {ia3_config.target_modules} not found in the base model. " f"Please check the target modules and try again." ) @staticmethod def _is_valid_match(key: str, target_key: str): """ Helper function to match module names target_key and key. Makes sure that either the key is exactly the target_key or the target_key is a submodule of key """ if key.endswith(target_key): if len(key) > len(target_key): return key.endswith("." + target_key) # must be a sub module return True return False def _replace_module(self, parent_module, child_name, new_module, old_module): setattr(parent_module, child_name, new_module) new_module.weight = old_module.weight if old_module.bias is not None: new_module.bias = old_module.bias if getattr(old_module, "state", None) is not None: new_module.state = old_module.state new_module.to(old_module.weight.device) # dispatch to correct device for name, module in new_module.named_modules(): if "ia3_" in name: module.to(old_module.weight.device) def __getattr__(self, name: str): """Forward missing attributes to the wrapped module.""" try: return super().__getattr__(name) # defer to nn.Module's logic except AttributeError: return getattr(self.model, name) def get_peft_config_as_dict(self, inference: bool = False): config_dict = {} for key, value in self.peft_config.items(): config = {k: v.value if isinstance(v, Enum) else v for k, v in asdict(value).items()} if inference: config["inference_mode"] = True config_dict[key] = config return config def _set_adapter_layers(self, enabled=True): for module in self.model.modules(): if isinstance(module, IA3Layer): module.disable_adapters = False if enabled else True elif isinstance(module, ModulesToSaveWrapper): module.disable_adapters = False if enabled else True def enable_adapter_layers(self): self._set_adapter_layers(enabled=True) def disable_adapter_layers(self): self._set_adapter_layers(enabled=False) def set_adapter(self, adapter_name): for module in self.model.modules(): if isinstance(module, IA3Layer): if module.merged: warnings.warn("Adapter cannot be set when the model is merged. Unmerging the model first.") module.unmerge() module.active_adapter = adapter_name @staticmethod def _prepare_ia3_config(peft_config, model_config): if peft_config.target_modules is None: if model_config["model_type"] not in TRANSFORMERS_MODELS_TO_IA3_TARGET_MODULES_MAPPING: raise ValueError("Please specify `target_modules` in `peft_config`") peft_config.target_modules = TRANSFORMERS_MODELS_TO_IA3_TARGET_MODULES_MAPPING[model_config["model_type"]] if peft_config.feedforward_modules is None: if model_config["model_type"] not in TRANSFORMERS_MODELS_TO_IA3_FEEDFORWARD_MODULES_MAPPING: raise ValueError("Please specify `feedforward_modules` in `peft_config`") peft_config.feedforward_modules = TRANSFORMERS_MODELS_TO_IA3_FEEDFORWARD_MODULES_MAPPING[ model_config["model_type"] ] return peft_config def merge_and_unload(self): r""" This method merges the (IA)^3 layers into the base model. This is needed if someone wants to use the base model as a standalone model. """ if getattr(self.config, "model_type", None) == "gpt2": raise ValueError("GPT2 models are not supported for merging ia3 layers") if getattr(self.model, "is_loaded_in_8bit", False): raise ValueError("Cannot merge ia3 layers when the model is loaded in 8-bit mode") key_list = [key for key, _ in self.model.named_modules() if "ia3" not in key] for key in key_list: try: parent, target, target_name = _get_submodules(self.model, key) except AttributeError: continue if isinstance(target, IA3Layer): bias = target.bias is not None new_module = torch.nn.Linear(target.in_features, target.out_features, bias=bias) target.merge() self._replace_module(parent, target_name, new_module, target) # save any additional trainable modules part of `modules_to_save` if isinstance(target, ModulesToSaveWrapper): setattr(parent, target_name, target.modules_to_save[target.active_adapter]) return self.model # Below code is based on https://github.com/microsoft/lora/blob/main/loralib/layers.py # and modified to work with PyTorch FSDP # ------------------------------------------------------------------------------------------ # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License (MIT). See LICENSE in the repo root for license information. # ------------------------------------------------------------------------------------------ def mark_only_ia3_as_trainable(model: nn.Module) -> None: for n, p in model.named_parameters(): if "ia3_" not in n: p.requires_grad = False class IA3Layer: def __init__( self, in_features: int, out_features: int, is_feedforward: bool, ): self.scaling = {} self.ia3_l = nn.ParameterDict({}) # Mark the weight as unmerged self.merged = False self.disable_adapters = False self.in_features = in_features self.out_features = out_features self.is_feedforward = is_feedforward def update_layer(self, adapter_name, init_ia3_weights): # Actual trainable parameters if self.is_feedforward: weight = torch.randn((1, self.in_features)) else: weight = torch.randn((self.out_features, 1)) self.ia3_l.update(nn.ParameterDict({adapter_name: nn.Parameter(weight)})) if init_ia3_weights: self.reset_ia3_parameters(adapter_name) self.to(self.weight.device) def reset_ia3_parameters(self, adapter_name): if adapter_name in self.ia3_l.keys(): # initialize learned vector with torch.ones nn.init.constant_(self.ia3_l[adapter_name], 1.0) class Linear(nn.Linear, IA3Layer): # (IA)^3 implemented in a dense layer def __init__( self, adapter_name: str, in_features: int, out_features: int, fan_in_fan_out: bool = False, # Set this to True if the layer to replace stores weight like (fan_in, fan_out) is_feedforward: bool = False, # Set to True if the layer is treated as a feedforward layer **kwargs, ): init_ia3_weights = kwargs.pop("init_ia3_weights", True) nn.Linear.__init__(self, in_features, out_features, **kwargs) IA3Layer.__init__(self, in_features=in_features, out_features=out_features, is_feedforward=is_feedforward) # Freezing the pre-trained weight matrix self.weight.requires_grad = False self.fan_in_fan_out = fan_in_fan_out if fan_in_fan_out: self.weight.data = self.weight.data.T nn.Linear.reset_parameters(self) self.update_layer(adapter_name, init_ia3_weights) self.active_adapter = adapter_name self.is_feedforward = is_feedforward def merge(self): if self.active_adapter not in self.ia3_l.keys(): return if self.merged: warnings.warn("Already merged. Nothing to do.") return self.weight = transpose(self.weight, self.fan_in_fan_out) self.weight.data = torch.mul(self.weight.data, self.ia3_l[self.active_adapter].data) self.weight = transpose(self.weight, self.fan_in_fan_out) self.merged = True def unmerge(self): if self.active_adapter not in self.ia3_l.keys(): return if not self.merged: warnings.warn("Already unmerged. Nothing to do.") return warnings.warn("Unmerge result can be inaccurate for (IA)^3.") self.weight = transpose(self.weight, self.fan_in_fan_out) # divide by (IA)^3 vector. Add tolerace to avoid division by zero self.weight.data = torch.div(self.weight.data, self.ia3_l[self.active_adapter].data + 1e-8) self.weight = transpose(self.weight, self.fan_in_fan_out) self.merged = False def forward(self, x: torch.Tensor): previous_dtype = x.dtype if self.active_adapter not in self.ia3_l.keys(): return F.linear(x, transpose(self.weight, self.fan_in_fan_out), bias=self.bias) if self.disable_adapters: if self.merged: self.unmerge() result = F.linear(x, transpose(self.weight, self.fan_in_fan_out), bias=self.bias) elif not self.merged: if self.is_feedforward: x = x.to(self.ia3_l[self.active_adapter].dtype) interm = x * self.ia3_l[self.active_adapter].flatten() result = F.linear( interm.to(self.weight.dtype), transpose(self.weight, self.fan_in_fan_out), bias=self.bias, ) else: result = F.linear(x, transpose(self.weight, self.fan_in_fan_out), bias=self.bias) result = result.to(self.ia3_l[self.active_adapter].dtype) * self.ia3_l[self.active_adapter].flatten() else: result = F.linear(x, transpose(self.weight, self.fan_in_fan_out), bias=self.bias) result = result.to(previous_dtype) return result if is_bnb_available(): class Linear8bitLt(bnb.nn.Linear8bitLt, IA3Layer): # (IA)^3 implemented in a dense layer def __init__( self, adapter_name, in_features, out_features, is_feedforward, **kwargs, ): bnb.nn.Linear8bitLt.__init__( self, in_features, out_features, bias=kwargs.get("bias", True), has_fp16_weights=kwargs.get("has_fp16_weights", True), memory_efficient_backward=kwargs.get("memory_efficient_backward", False), threshold=kwargs.get("threshold", 0.0), index=kwargs.get("index", None), ) IA3Layer.__init__(self, in_features=in_features, out_features=out_features, is_feedforward=is_feedforward) # Freezing the pre-trained weight matrix self.weight.requires_grad = False init_ia3_weights = kwargs.pop("init_ia3_weights", True) self.update_layer(adapter_name, init_ia3_weights) self.active_adapter = adapter_name self.is_feedforward = is_feedforward def forward(self, x: torch.Tensor): if self.disable_adapters or self.active_adapter not in self.ia3_l.keys(): return super().forward(x) else: if not torch.is_autocast_enabled(): if x.dtype != torch.float32: x = x.float() if self.is_feedforward: result = super().forward(x * self.ia3_l[self.active_adapter].flatten()) else: result = super().forward(x) expected_dtype = result.dtype result = (result * self.ia3_l[self.active_adapter].flatten()).to(expected_dtype) else: if self.is_feedforward: result = super().forward(x * self.ia3_l[self.active_adapter].flatten()) else: result = result * self.ia3_l[self.active_adapter].flatten() return result
0
hf_public_repos/peft/src/peft
hf_public_repos/peft/src/peft/utils/save_and_load.py
# coding=utf-8 # Copyright 2023-present the HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from .config import PeftType, PromptLearningConfig def get_peft_model_state_dict(model, state_dict=None, adapter_name="default"): """ Get the state dict of the Peft model. Args: model ([`PeftModel`]): The Peft model. When using torch.nn.DistributedDataParallel, DeepSpeed or FSDP, the model should be the underlying model/unwrapped model (i.e. model.module). state_dict (`dict`, *optional*, defaults to `None`): The state dict of the model. If not provided, the state dict of the model will be used. """ config = model.peft_config[adapter_name] if state_dict is None: state_dict = model.state_dict() if config.peft_type in (PeftType.LORA, PeftType.ADALORA): # to_return = lora_state_dict(model, bias=model.peft_config.bias) # adapted from `https://github.com/microsoft/LoRA/blob/main/loralib/utils.py` # to be used directly with the state dict which is necessary when using DeepSpeed or FSDP bias = config.bias if bias == "none": to_return = {k: state_dict[k] for k in state_dict if "lora_" in k} elif bias == "all": to_return = {k: state_dict[k] for k in state_dict if "lora_" in k or "bias" in k} elif bias == "lora_only": to_return = {} for k in state_dict: if "lora_" in k: to_return[k] = state_dict[k] bias_name = k.split("lora_")[0] + "bias" if bias_name in state_dict: to_return[bias_name] = state_dict[bias_name] else: raise NotImplementedError to_return = {k: v for k, v in to_return.items() if (("lora_" in k and adapter_name in k) or ("bias" in k))} if config.peft_type == PeftType.ADALORA: rank_pattern = config.rank_pattern if rank_pattern is not None: rank_pattern = {k.replace(f".{adapter_name}", ""): v for k, v in rank_pattern.items()} config.rank_pattern = rank_pattern to_return = model.resize_state_dict_by_rank_pattern(rank_pattern, to_return, adapter_name) elif config.peft_type == PeftType.ADAPTION_PROMPT: to_return = {k: state_dict[k] for k in state_dict if k.split(".")[-1].startswith("adaption_")} elif isinstance(config, PromptLearningConfig): to_return = {} if config.inference_mode: prompt_embeddings = model.prompt_encoder[adapter_name].embedding.weight else: prompt_embeddings = model.get_prompt_embedding_to_save(adapter_name) to_return["prompt_embeddings"] = prompt_embeddings elif config.peft_type == PeftType.IA3: to_return = {k: state_dict[k] for k in state_dict if "ia3_" in k} else: raise NotImplementedError if model.modules_to_save is not None: for key, value in state_dict.items(): if any(f"{module_name}.modules_to_save.{adapter_name}" in key for module_name in model.modules_to_save): to_return[key.replace("modules_to_save.", "")] = value to_return = {k.replace(f".{adapter_name}", ""): v for k, v in to_return.items()} return to_return def set_peft_model_state_dict(model, peft_model_state_dict, adapter_name="default"): """ Set the state dict of the Peft model. Args: model ([`PeftModel`]): The Peft model. peft_model_state_dict (`dict`): The state dict of the Peft model. """ config = model.peft_config[adapter_name] state_dict = {} if model.modules_to_save is not None: for key, value in peft_model_state_dict.items(): if any(module_name in key for module_name in model.modules_to_save): for module_name in model.modules_to_save: if module_name in key: key = key.replace(module_name, f"{module_name}.modules_to_save.{adapter_name}") break state_dict[key] = value else: state_dict = peft_model_state_dict if config.peft_type in (PeftType.LORA, PeftType.ADALORA, PeftType.IA3): peft_model_state_dict = {} parameter_prefix = "ia3_" if config.peft_type == PeftType.IA3 else "lora_" for k, v in state_dict.items(): if parameter_prefix in k: suffix = k.split(parameter_prefix)[1] if "." in suffix: suffix_to_replace = ".".join(suffix.split(".")[1:]) k = k.replace(suffix_to_replace, f"{adapter_name}.{suffix_to_replace}") else: k = f"{k}.{adapter_name}" peft_model_state_dict[k] = v else: peft_model_state_dict[k] = v if config.peft_type == PeftType.ADALORA: rank_pattern = config.rank_pattern if rank_pattern is not None: model.resize_modules_by_rank_pattern(rank_pattern, adapter_name) elif isinstance(config, PromptLearningConfig) or config.peft_type == PeftType.ADAPTION_PROMPT: peft_model_state_dict = state_dict else: raise NotImplementedError load_result = model.load_state_dict(peft_model_state_dict, strict=False) if isinstance(config, PromptLearningConfig): model.prompt_encoder[adapter_name].embedding.load_state_dict( {"weight": peft_model_state_dict["prompt_embeddings"]}, strict=True ) return load_result
0
hf_public_repos/peft/src/peft
hf_public_repos/peft/src/peft/utils/__init__.py
# flake8: noqa # There's no way to ignore "F401 '...' imported but unused" warnings in this # module, but to preserve other warnings. So, don't check this module at all # coding=utf-8 # Copyright 2023-present the HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from .config import PeftConfig, PeftType, PromptLearningConfig, TaskType from .other import ( TRANSFORMERS_MODELS_TO_PREFIX_TUNING_POSTPROCESS_MAPPING, TRANSFORMERS_MODELS_TO_LORA_TARGET_MODULES_MAPPING, TRANSFORMERS_MODELS_TO_ADALORA_TARGET_MODULES_MAPPING, TRANSFORMERS_MODELS_TO_IA3_TARGET_MODULES_MAPPING, TRANSFORMERS_MODELS_TO_IA3_FEEDFORWARD_MODULES_MAPPING, COMMON_LAYERS_PATTERN, CONFIG_NAME, WEIGHTS_NAME, SAFETENSORS_WEIGHTS_NAME, CLAMP_QUANTILE, _set_trainable, add_library_to_model_card, bloom_model_postprocess_past_key_value, prepare_model_for_int8_training, prepare_model_for_kbit_training, shift_tokens_right, transpose, _get_submodules, _set_adapter, _freeze_adapter, ModulesToSaveWrapper, _prepare_prompt_learning_config, ) from .hub_utils import hub_file_exists from .save_and_load import get_peft_model_state_dict, set_peft_model_state_dict
0
hf_public_repos/peft/src/peft
hf_public_repos/peft/src/peft/utils/config.py
# coding=utf-8 # Copyright 2023-present the HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import enum import inspect import json import os from dataclasses import asdict, dataclass, field from typing import Optional, Union from huggingface_hub import hf_hub_download from transformers.utils import PushToHubMixin from .other import CONFIG_NAME class PeftType(str, enum.Enum): PROMPT_TUNING = "PROMPT_TUNING" P_TUNING = "P_TUNING" PREFIX_TUNING = "PREFIX_TUNING" LORA = "LORA" ADALORA = "ADALORA" ADAPTION_PROMPT = "ADAPTION_PROMPT" IA3 = "IA3" class TaskType(str, enum.Enum): SEQ_CLS = "SEQ_CLS" SEQ_2_SEQ_LM = "SEQ_2_SEQ_LM" CAUSAL_LM = "CAUSAL_LM" TOKEN_CLS = "TOKEN_CLS" QUESTION_ANS = "QUESTION_ANS" FEATURE_EXTRACTION = "FEATURE_EXTRACTION" @dataclass class PeftConfigMixin(PushToHubMixin): r""" This is the base configuration class for PEFT adapter models. It contains all the methods that are common to all PEFT adapter models. This class inherits from [`~transformers.utils.PushToHubMixin`] which contains the methods to push your model to the Hub. The method `save_pretrained` will save the configuration of your adapter model in a directory. The method `from_pretrained` will load the configuration of your adapter model from a directory. Args: peft_type (Union[[`~peft.utils.config.PeftType`], `str`]): The type of Peft method to use. """ peft_type: Optional[PeftType] = field(default=None, metadata={"help": "The type of PEFT model."}) auto_mapping: Optional[dict] = field( default=None, metadata={"help": "An auto mapping dict to help retrieve the base model class if needed."} ) def to_dict(self): return asdict(self) def save_pretrained(self, save_directory, **kwargs): r""" This method saves the configuration of your adapter model in a directory. Args: save_directory (`str`): The directory where the configuration will be saved. kwargs (additional keyword arguments, *optional*): Additional keyword arguments passed along to the [`~transformers.utils.PushToHubMixin.push_to_hub`] method. """ if os.path.isfile(save_directory): raise AssertionError(f"Provided path ({save_directory}) should be a directory, not a file") os.makedirs(save_directory, exist_ok=True) auto_mapping_dict = kwargs.pop("auto_mapping_dict", None) output_dict = asdict(self) output_path = os.path.join(save_directory, CONFIG_NAME) # Add auto mapping details for custom models. if auto_mapping_dict is not None: output_dict["auto_mapping"] = auto_mapping_dict # save it with open(output_path, "w") as writer: writer.write(json.dumps(output_dict, indent=2, sort_keys=True)) @classmethod def from_pretrained(cls, pretrained_model_name_or_path, subfolder=None, **kwargs): r""" This method loads the configuration of your adapter model from a directory. Args: pretrained_model_name_or_path (`str`): The directory or the Hub repository id where the configuration is saved. kwargs (additional keyword arguments, *optional*): Additional keyword arguments passed along to the child class initialization. """ path = ( os.path.join(pretrained_model_name_or_path, subfolder) if subfolder is not None else pretrained_model_name_or_path ) hf_hub_download_kwargs, class_kwargs, _ = cls._split_kwargs(kwargs) if os.path.isfile(os.path.join(path, CONFIG_NAME)): config_file = os.path.join(path, CONFIG_NAME) else: try: config_file = hf_hub_download( pretrained_model_name_or_path, CONFIG_NAME, subfolder=subfolder, **hf_hub_download_kwargs ) except Exception: raise ValueError(f"Can't find '{CONFIG_NAME}' at '{pretrained_model_name_or_path}'") loaded_attributes = cls.from_json_file(config_file) config = cls(**class_kwargs) for key, value in loaded_attributes.items(): if hasattr(config, key): setattr(config, key, value) return config @classmethod def from_json_file(cls, path_json_file, **kwargs): r""" Loads a configuration file from a json file. Args: path_json_file (`str`): The path to the json file. """ with open(path_json_file, "r") as file: json_object = json.load(file) return json_object @classmethod def _split_kwargs(cls, kwargs): hf_hub_download_kwargs = {} class_kwargs = {} other_kwargs = {} for key, value in kwargs.items(): if key in inspect.signature(hf_hub_download).parameters: hf_hub_download_kwargs[key] = value elif key in list(cls.__annotations__): class_kwargs[key] = value else: other_kwargs[key] = value return hf_hub_download_kwargs, class_kwargs, other_kwargs @classmethod def _get_peft_type( cls, model_id, **hf_hub_download_kwargs, ): subfolder = hf_hub_download_kwargs.get("subfolder", None) path = os.path.join(model_id, subfolder) if subfolder is not None else model_id if os.path.isfile(os.path.join(path, CONFIG_NAME)): config_file = os.path.join(path, CONFIG_NAME) else: try: config_file = hf_hub_download( model_id, CONFIG_NAME, **hf_hub_download_kwargs, ) except Exception: raise ValueError(f"Can't find '{CONFIG_NAME}' at '{model_id}'") loaded_attributes = cls.from_json_file(config_file) return loaded_attributes["peft_type"] @dataclass class PeftConfig(PeftConfigMixin): """ This is the base configuration class to store the configuration of a [`PeftModel`]. Args: peft_type (Union[[`~peft.utils.config.PeftType`], `str`]): The type of Peft method to use. task_type (Union[[`~peft.utils.config.TaskType`], `str`]): The type of task to perform. inference_mode (`bool`, defaults to `False`): Whether to use the Peft model in inference mode. """ base_model_name_or_path: str = field(default=None, metadata={"help": "The name of the base model to use."}) revision: str = field(default=None, metadata={"help": "The specific model version to use."}) peft_type: Union[str, PeftType] = field(default=None, metadata={"help": "Peft type"}) task_type: Union[str, TaskType] = field(default=None, metadata={"help": "Task type"}) inference_mode: bool = field(default=False, metadata={"help": "Whether to use inference mode"}) @dataclass class PromptLearningConfig(PeftConfig): """ This is the base configuration class to store the configuration of [`PrefixTuning`], [`PromptEncoder`], or [`PromptTuning`]. Args: num_virtual_tokens (`int`): The number of virtual tokens to use. token_dim (`int`): The hidden embedding dimension of the base transformer model. num_transformer_submodules (`int`): The number of transformer submodules in the base transformer model. num_attention_heads (`int`): The number of attention heads in the base transformer model. num_layers (`int`): The number of layers in the base transformer model. """ num_virtual_tokens: int = field(default=None, metadata={"help": "Number of virtual tokens"}) token_dim: int = field( default=None, metadata={"help": "The hidden embedding dimension of the base transformer model"} ) num_transformer_submodules: Optional[int] = field( default=None, metadata={"help": "Number of transformer submodules"} ) num_attention_heads: Optional[int] = field(default=None, metadata={"help": "Number of attention heads"}) num_layers: Optional[int] = field(default=None, metadata={"help": "Number of transformer layers"})
0
hf_public_repos/peft/src/peft
hf_public_repos/peft/src/peft/utils/other.py
# coding=utf-8 # Copyright 2023-present the HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import copy import os import warnings import torch # Add or edit model card to have `library_name: peft` def add_library_to_model_card(output_dir): if os.path.exists(os.path.join(output_dir, "README.md")): with open(os.path.join(output_dir, "README.md"), "r") as f: lines = f.readlines() # check if the first line is `---` if len(lines) > 0 and lines[0].startswith("---"): for i, line in enumerate(lines[1:]): # check if line starts with `library_name`, if yes, update it if line.startswith("library_name"): lines[i + 1] = "library_name: peft\n" break elif line.startswith("---"): # insert `library_name: peft` before the last `---` lines.insert(i + 1, "library_name: peft\n") break else: lines = ["---\n", "library_name: peft\n", "---\n"] + lines else: lines = ["---\n", "library_name: peft\n", "---\n"] # write the lines back to README.md with open(os.path.join(output_dir, "README.md"), "w") as f: f.writelines(lines) # needed for prefix-tuning of bloom model def bloom_model_postprocess_past_key_value(past_key_values): past_key_values = torch.cat(past_key_values) total_layers, batch_size, num_attention_heads, num_virtual_tokens, head_dim = past_key_values.shape keys = past_key_values[: total_layers // 2] keys = keys.transpose(2, 3).reshape( total_layers // 2, batch_size * num_attention_heads, head_dim, num_virtual_tokens ) values = past_key_values[total_layers // 2 :] values = values.reshape(total_layers // 2, batch_size * num_attention_heads, num_virtual_tokens, head_dim) return tuple(zip(keys, values)) def prepare_model_for_kbit_training(model, use_gradient_checkpointing=True): r""" This method wraps the entire protocol for preparing a model before running a training. This includes: 1- Cast the layernorm in fp32 2- making output embedding layer require grads 3- Add the upcasting of the lm head to fp32 Args: model, (`transformers.PreTrainedModel`): The loaded model from `transformers` """ loaded_in_kbit = getattr(model, "is_loaded_in_8bit", False) or getattr(model, "is_loaded_in_4bit", False) for name, param in model.named_parameters(): # freeze base model's layers param.requires_grad = False # cast all non INT8 parameters to fp32 for param in model.parameters(): if (param.dtype == torch.float16) or (param.dtype == torch.bfloat16): param.data = param.data.to(torch.float32) if loaded_in_kbit and use_gradient_checkpointing: # For backward compatibility if hasattr(model, "enable_input_require_grads"): model.enable_input_require_grads() else: def make_inputs_require_grad(module, input, output): output.requires_grad_(True) model.get_input_embeddings().register_forward_hook(make_inputs_require_grad) # enable gradient checkpointing for memory efficiency model.gradient_checkpointing_enable() return model # For backward compatibility def prepare_model_for_int8_training(*args, **kwargs): warnings.warn( "prepare_model_for_int8_training is deprecated and will be removed in a future version. Use prepare_model_for_kbit_training instead.", FutureWarning, ) return prepare_model_for_kbit_training(*args, **kwargs) # copied from transformers.models.bart.modeling_bart def shift_tokens_right(input_ids: torch.Tensor, pad_token_id: int, decoder_start_token_id: int): """ Shift input ids one token to the right. Args: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): input ids pad_token_id (`int`): The id of the `padding` token. decoder_start_token_id (`int`): The id of the `start` token. """ shifted_input_ids = input_ids.new_zeros(input_ids.shape) shifted_input_ids[:, 1:] = input_ids[:, :-1].clone() shifted_input_ids[:, 0] = decoder_start_token_id if pad_token_id is None: raise ValueError("self.model.config.pad_token_id has to be defined.") # replace possible -100 values in labels by `pad_token_id` shifted_input_ids.masked_fill_(shifted_input_ids == -100, pad_token_id) return shifted_input_ids class ModulesToSaveWrapper(torch.nn.Module): def __init__(self, module_to_save, adapter_name): super().__init__() self.original_module = module_to_save self.modules_to_save = torch.nn.ModuleDict({}) self.update(adapter_name) self.active_adapter = adapter_name self.disable_adapters = False def update(self, adapter_name): self.modules_to_save.update(torch.nn.ModuleDict({adapter_name: copy.deepcopy(self.original_module)})) def forward(self, *args, **kwargs): if self.disable_adapters or (self.active_adapter not in self.modules_to_save): return self.original_module(*args, **kwargs) return self.modules_to_save[self.active_adapter](*args, **kwargs) def _get_submodules(model, key): parent = model.get_submodule(".".join(key.split(".")[:-1])) target_name = key.split(".")[-1] target = model.get_submodule(key) return parent, target, target_name def _freeze_adapter(model, adapter_name): for n, p in model.named_parameters(): if adapter_name in n: p.requires_grad = False def _set_trainable(model, adapter_name): key_list = [key for key, _ in model.named_modules()] for key in key_list: target_module_found = any(key.endswith(target_key) for target_key in model.modules_to_save) if target_module_found: parent, target, target_name = _get_submodules(model, key) if isinstance(target, ModulesToSaveWrapper): target.update(adapter_name) else: for param in target.parameters(): param.requires_grad = True setattr(parent, target_name, ModulesToSaveWrapper(target, adapter_name)) def _set_adapter(model, adapter_name): for module in model.modules(): if isinstance(module, ModulesToSaveWrapper): module.active_adapter = adapter_name def _prepare_prompt_learning_config(peft_config, model_config): if peft_config.num_layers is None: if "num_hidden_layers" in model_config: num_layers = model_config["num_hidden_layers"] elif "num_layers" in model_config: num_layers = model_config["num_layers"] elif "n_layer" in model_config: num_layers = model_config["n_layer"] else: raise ValueError("Please specify `num_layers` in `peft_config`") peft_config.num_layers = num_layers if peft_config.token_dim is None: if "hidden_size" in model_config: token_dim = model_config["hidden_size"] elif "n_embd" in model_config: token_dim = model_config["n_embd"] elif "d_model" in model_config: token_dim = model_config["d_model"] else: raise ValueError("Please specify `token_dim` in `peft_config`") peft_config.token_dim = token_dim if peft_config.num_attention_heads is None: if "num_attention_heads" in model_config: num_attention_heads = model_config["num_attention_heads"] elif "n_head" in model_config: num_attention_heads = model_config["n_head"] elif "num_heads" in model_config: num_attention_heads = model_config["num_heads"] elif "encoder_attention_heads" in model_config: num_attention_heads = model_config["encoder_attention_heads"] else: raise ValueError("Please specify `num_attention_heads` in `peft_config`") peft_config.num_attention_heads = num_attention_heads if getattr(peft_config, "encoder_hidden_size", None) is None: setattr(peft_config, "encoder_hidden_size", peft_config.token_dim) return peft_config def fsdp_auto_wrap_policy(model): import functools import os from accelerate import FullyShardedDataParallelPlugin from torch.distributed.fsdp.wrap import _or_policy, lambda_auto_wrap_policy, transformer_auto_wrap_policy from ..tuners import PrefixEncoder, PromptEmbedding, PromptEncoder def lambda_policy_fn(module): if ( len(list(module.named_children())) == 0 and getattr(module, "weight", None) is not None and module.weight.requires_grad ): return True return False lambda_policy = functools.partial(lambda_auto_wrap_policy, lambda_fn=lambda_policy_fn) transformer_wrap_policy = functools.partial( transformer_auto_wrap_policy, transformer_layer_cls=( PrefixEncoder, PromptEncoder, PromptEmbedding, FullyShardedDataParallelPlugin.get_module_class_from_name( model, os.environ.get("FSDP_TRANSFORMER_CLS_TO_WRAP", "") ), ), ) auto_wrap_policy = functools.partial(_or_policy, policies=[lambda_policy, transformer_wrap_policy]) return auto_wrap_policy def transpose(weight, fan_in_fan_out): return weight.T if fan_in_fan_out else weight TRANSFORMERS_MODELS_TO_LORA_TARGET_MODULES_MAPPING = { "t5": ["q", "v"], "mt5": ["q", "v"], "bart": ["q_proj", "v_proj"], "gpt2": ["c_attn"], "bloom": ["query_key_value"], "blip-2": ["q", "v", "q_proj", "v_proj"], "opt": ["q_proj", "v_proj"], "gptj": ["q_proj", "v_proj"], "gpt_neox": ["query_key_value"], "gpt_neo": ["q_proj", "v_proj"], "bert": ["query", "value"], "roberta": ["query", "value"], "xlm-roberta": ["query", "value"], "electra": ["query", "value"], "deberta-v2": ["query_proj", "value_proj"], "deberta": ["in_proj"], "layoutlm": ["query", "value"], "llama": ["q_proj", "v_proj"], "chatglm": ["query_key_value"], "gpt_bigcode": ["c_attn"], "mpt": ["Wqkv"], "RefinedWebModel": ["query_key_value"], "RefinedWeb": ["query_key_value"], "falcon": ["query_key_value"], "btlm": ["c_proj", "c_attn"], } TRANSFORMERS_MODELS_TO_IA3_TARGET_MODULES_MAPPING = { "t5": ["k", "v", "wo"], "mt5": ["k", "v", "wi_1"], "gpt2": ["c_attn", "mlp.c_proj"], "bloom": ["query_key_value", "mlp.dense_4h_to_h"], "roberta": ["key", "value", "output.dense"], "opt": ["q_proj", "k_proj", "fc2"], "gptj": ["q_proj", "v_proj", "fc_out"], "gpt_neox": ["query_key_value", "dense_4h_to_h"], "gpt_neo": ["q_proj", "v_proj", "c_proj"], "bart": ["q_proj", "v_proj", "fc2"], "gpt_bigcode": ["c_attn", "mlp.c_proj"], "llama": ["k_proj", "v_proj", "down_proj"], "bert": ["key", "value", "output.dense"], "deberta-v2": ["key_proj", "value_proj", "output.dense"], "deberta": ["in_proj", "output.dense"], "RefinedWebModel": ["query_key_value"], "RefinedWeb": ["query_key_value"], "falcon": ["query_key_value"], } TRANSFORMERS_MODELS_TO_IA3_FEEDFORWARD_MODULES_MAPPING = { "t5": ["wo"], "mt5": [], "gpt2": ["mlp.c_proj"], "bloom": ["mlp.dense_4h_to_h"], "roberta": ["output.dense"], "opt": ["fc2"], "gptj": ["fc_out"], "gpt_neox": ["dense_4h_to_h"], "gpt_neo": ["c_proj"], "bart": ["fc2"], "gpt_bigcode": ["mlp.c_proj"], "llama": ["down_proj"], "bert": ["output.dense"], "deberta-v2": ["output.dense"], "deberta": ["output.dense"], "RefinedWeb": ["query_key_value"], "RefinedWebModel": ["query_key_value"], "falcon": ["query_key_value"], } COMMON_LAYERS_PATTERN = ["layers", "h", "block", "blocks", "layer"] TRANSFORMERS_MODELS_TO_ADALORA_TARGET_MODULES_MAPPING = { "t5": ["q", "k", "v", "o", "wi", "wo"], "mt5": ["q", "k", "v", "o", "wi_0", "wi_1", "wo"], "bart": ["q_proj", "k_proj", "v_proj", "out_proj", "fc1", "fc2"], # "gpt2": ["c_attn"], # "bloom": ["query_key_value"], "opt": ["q_proj", "k_proj", "v_proj", "out_proj", "fc1", "fc2"], # "gptj": ["q_proj", "v_proj"], # "gpt_neox": ["query_key_value"], # "gpt_neo": ["q_proj", "v_proj"], # "bert": ["query", "value"], "roberta": ["query", "key", "value", "dense"], # "xlm-roberta": ["query", "value"], # "electra": ["query", "value"], "deberta-v2": ["query_proj", "key_proj", "value_proj", "dense"], # "deberta": ["in_proj"], # "layoutlm": ["query", "value"], } TRANSFORMERS_MODELS_TO_PREFIX_TUNING_POSTPROCESS_MAPPING = { "bloom": bloom_model_postprocess_past_key_value, } WEIGHTS_NAME = "adapter_model.bin" SAFETENSORS_WEIGHTS_NAME = "adapter_model.safetensors" CONFIG_NAME = "adapter_config.json" CLAMP_QUANTILE = 0.99
0