Datasets:
The dataset viewer is not available because its heuristics could not detect any supported data files. You can try uploading some data files, or configuring the data files location manually.
NovaSearch stella_en_1.5B_v5 Embeddings for MSMARCO V2.1 for TREC-RAG
This dataset contains the embeddings for the MSMARCO-V2.1 dataset which is used as the corpora for TREC RAG All embeddings are created using Stella EN 1.5B V5 and are intended to serve as a simple baseline for dense retrieval-based methods. Note, that the embeddings are not normalized so you will need to normalize them before usage.
Retrieval Performance
Retrieval performance for the TREC DL21-23, MSMARCOV2-Dev and Raggy Queries can be found below with BM25 as a baseline. For both systems, retrieval is at the segment level and Doc Score = Max (passage score). Retrieval is done via a dot product and happens in BF16.
NDCG @ 10
Dataset | BM25 | Stella-v5 |
---|---|---|
Deep Learning 2021 | 0.5778 | 0.7285 |
Deep Learning 2022 | 0.3576 | 0.5568 |
Deep Learning 2023 | 0.3356 | 0.4875 |
msmarcov2-dev | N/A | 0.3733 |
msmarcov2-dev2 | N/A | 0.3778 |
Raggy Queries | 0.4227 | 0.5883 |
TREC RAG (eval) | N/A | 0.6045 |
Recall @ 100
Dataset | BM25 | Stella-v5 |
---|---|---|
Deep Learning 2021 | 0.3811 | 0.42904 |
Deep Learning 2022 | 0.233 | 0.31683 |
Deep Learning 2023 | 0.3049 | 0.38541 |
msmarcov2-dev | 0.6683 | 0.88111 |
msmarcov2-dev2 | 0.6771 | 0.871 |
Raggy Queries | 0.2807 | 0.36869 |
TREC RAG (eval) | N/A | 0.28572 |
Recall @ 1000
Dataset | BM25 | Stella-v5 |
---|---|---|
Deep Learning 2021 | 0.7115 | 0.74472 |
Deep Learning 2022 | 0.479 | 0.57709 |
Deep Learning 2023 | 0.5852 | 0.64342 |
msmarcov2-dev | 0.8528 | 0.94629 |
msmarcov2-dev2 | 0.8577 | 0.94787 |
Raggy Queries | 0.5745 | 0.66394 |
TREC RAG (eval) | N/A | 0.68819 |
Loading the dataset
Loading the document embeddings
You can either load the dataset like this:
from datasets import load_dataset
docs = load_dataset("spacemanidol/msmarco-v2.1-stella_en_1.5B_v5", split="train")
Or you can also stream it without downloading it before:
from datasets import load_dataset
docs = load_dataset("spacemanidol/msmarco-v2.1-stella_en_1.5B_v5", split="train", streaming=True)
for doc in docs:
doc_id = j['docid']
url = doc['url']
text = doc['text']
emb = doc['embedding']
Note, The full dataset corpus is ~ 620GB so it will take a while to download and may not fit on some devices/
Search
A full search example (on the first 1,000 paragraphs):
from datasets import load_dataset
import torch
from transformers import AutoModel, AutoTokenizer
import numpy as np
top_k = 100
docs_stream = load_dataset("spacemanidol/msmarco-v2.1-stella_en_1.5B_v5",split="train", streaming=True)
docs = []
doc_embeddings = []
for doc in docs_stream:
docs.append(doc)
doc_embeddings.append(doc['embedding'])
if len(docs) >= top_k:
break
doc_embeddings = np.asarray(doc_embeddings)
vector_dim = 1024
vector_linear_directory = f"2_Dense_{vector_dim}"
model = AutoModel.from_pretrained('NovaSearch/stella_en_1.5B_v5', trust_remote_code=True)
tokenizer = AutoTokenizer.from_pretrained('NovaSearch/stella_en_1.5B_v5')
vector_linear = torch.nn.Linear(in_features=model.config.hidden_size, out_features=vector_dim)
vector_linear_dict = {
k.replace("linear.", ""): v for k, v in
torch.load(os.path.join(model_dir, f"{vector_linear_directory}/pytorch_model.bin")).items()
}
vector_linear.load_state_dict(vector_linear_dict)
model.eval() # ensure that model and vector linear are on the same device
query_prefix = 'Instruct: Given a web search query, retrieve relevant passages that answer the query.\nQuery: '
queries = ['how do you clean smoke off walls']
queries_with_prefix = ["{}{}".format(query_prefix, i) for i in queries]
query_tokens = tokenizer(queries_with_prefix, padding=True, truncation=True, return_tensors='pt', max_length=512)
# Compute token embeddings
with torch.no_grad():
attention_mask = *query_token["attention_mask"]
last_hidden_state = model(***query_token)[0]
last_hidden = last_hidden_state.masked_fill(~attention_mask[..., None].bool(), 0.0)
query_vectors = last_hidden.sum(dim=1) / attention_mask.sum(dim=1)[..., None]
query_vectors = normalize(vector_linear(query_vectors).cpu().numpy())
doc_embeddings = torch.nn.functional.normalize(doc_embeddings, p=2, dim=1)
# Compute dot score between query embedding and document embeddings
dot_scores = np.matmul(query_embeddings, doc_embeddings.transpose())[0]
top_k_hits = np.argpartition(dot_scores, -top_k)[-top_k:].tolist()
# Sort top_k_hits by dot score
top_k_hits.sort(key=lambda x: dot_scores[x], reverse=True)
# Print results
print("Query:", queries[0])
for doc_id in top_k_hits:
print(docs[doc_id]['doc_id'])
print(docs[doc_id]['text'])
print(docs[doc_id]['url'], "\n")
- Downloads last month
- 23