Dataset Viewer

The dataset viewer is not available because its heuristics could not detect any supported data files. You can try uploading some data files, or configuring the data files location manually.

NovaSearch stella_en_1.5B_v5 Embeddings for MSMARCO V2.1 for TREC-RAG

This dataset contains the embeddings for the MSMARCO-V2.1 dataset which is used as the corpora for TREC RAG All embeddings are created using Stella EN 1.5B V5 and are intended to serve as a simple baseline for dense retrieval-based methods. Note, that the embeddings are not normalized so you will need to normalize them before usage.

Retrieval Performance

Retrieval performance for the TREC DL21-23, MSMARCOV2-Dev and Raggy Queries can be found below with BM25 as a baseline. For both systems, retrieval is at the segment level and Doc Score = Max (passage score). Retrieval is done via a dot product and happens in BF16.

NDCG @ 10

Dataset BM25 Stella-v5
Deep Learning 2021 0.5778 0.7285
Deep Learning 2022 0.3576 0.5568
Deep Learning 2023 0.3356 0.4875
msmarcov2-dev N/A 0.3733
msmarcov2-dev2 N/A 0.3778
Raggy Queries 0.4227 0.5883
TREC RAG (eval) N/A 0.6045

Recall @ 100

Dataset BM25 Stella-v5
Deep Learning 2021 0.3811 0.42904
Deep Learning 2022 0.233 0.31683
Deep Learning 2023 0.3049 0.38541
msmarcov2-dev 0.6683 0.88111
msmarcov2-dev2 0.6771 0.871
Raggy Queries 0.2807 0.36869
TREC RAG (eval) N/A 0.28572

Recall @ 1000

Dataset BM25 Stella-v5
Deep Learning 2021 0.7115 0.74472
Deep Learning 2022 0.479 0.57709
Deep Learning 2023 0.5852 0.64342
msmarcov2-dev 0.8528 0.94629
msmarcov2-dev2 0.8577 0.94787
Raggy Queries 0.5745 0.66394
TREC RAG (eval) N/A 0.68819

Loading the dataset

Loading the document embeddings

You can either load the dataset like this:

from datasets import load_dataset
docs = load_dataset("spacemanidol/msmarco-v2.1-stella_en_1.5B_v5", split="train")

Or you can also stream it without downloading it before:

from datasets import load_dataset
docs = load_dataset("spacemanidol/msmarco-v2.1-stella_en_1.5B_v5",  split="train", streaming=True)
for doc in docs:
    doc_id = j['docid']
    url = doc['url']
    text = doc['text']
    emb = doc['embedding']

Note, The full dataset corpus is ~ 620GB so it will take a while to download and may not fit on some devices/

Search

A full search example (on the first 1,000 paragraphs):

from datasets import load_dataset
import torch
from transformers import AutoModel, AutoTokenizer
import numpy as np


top_k = 100
docs_stream = load_dataset("spacemanidol/msmarco-v2.1-stella_en_1.5B_v5",split="train", streaming=True)

docs = []
doc_embeddings = []

for doc in docs_stream:
    docs.append(doc)
    doc_embeddings.append(doc['embedding'])
    if len(docs) >= top_k:
        break

doc_embeddings = np.asarray(doc_embeddings)


vector_dim = 1024
vector_linear_directory = f"2_Dense_{vector_dim}"
model = AutoModel.from_pretrained('NovaSearch/stella_en_1.5B_v5', trust_remote_code=True)
tokenizer = AutoTokenizer.from_pretrained('NovaSearch/stella_en_1.5B_v5')
vector_linear = torch.nn.Linear(in_features=model.config.hidden_size, out_features=vector_dim)
vector_linear_dict = {
    k.replace("linear.", ""): v for k, v in
    torch.load(os.path.join(model_dir, f"{vector_linear_directory}/pytorch_model.bin")).items()
}
vector_linear.load_state_dict(vector_linear_dict)
model.eval() # ensure that model and vector linear are on the same device

query_prefix = 'Instruct: Given a web search query, retrieve relevant passages that answer the query.\nQuery: '
queries  = ['how do you clean smoke off walls']
queries_with_prefix = ["{}{}".format(query_prefix, i) for i in queries]
query_tokens = tokenizer(queries_with_prefix, padding=True, truncation=True, return_tensors='pt', max_length=512)

# Compute token embeddings
with torch.no_grad():
    attention_mask = *query_token["attention_mask"]
    last_hidden_state = model(***query_token)[0]
    last_hidden = last_hidden_state.masked_fill(~attention_mask[..., None].bool(), 0.0)
    query_vectors = last_hidden.sum(dim=1) / attention_mask.sum(dim=1)[..., None]
    query_vectors = normalize(vector_linear(query_vectors).cpu().numpy())


doc_embeddings = torch.nn.functional.normalize(doc_embeddings, p=2, dim=1)

# Compute dot score between query embedding and document embeddings
dot_scores = np.matmul(query_embeddings, doc_embeddings.transpose())[0]
top_k_hits = np.argpartition(dot_scores, -top_k)[-top_k:].tolist()

# Sort top_k_hits by dot score
top_k_hits.sort(key=lambda x: dot_scores[x], reverse=True)

# Print results
print("Query:", queries[0])
for doc_id in top_k_hits:
    print(docs[doc_id]['doc_id'])
    print(docs[doc_id]['text'])
    print(docs[doc_id]['url'], "\n")
Downloads last month
23