Datasets:

License:
RongWei-at commited on
Commit
b16a3b9
·
verified ·
1 Parent(s): 4878ab0

Add files using upload-large-folder tool

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. kujiale_0042/Materials/OmniUe4Function.mdl +3 -1413
  2. kujiale_0042/Materials/OmniUe4Translucent.mdl +3 -233
  3. kujiale_0042/Materials/WorldGridMaterial.mdl +3 -77
  4. kujiale_0042/Meshes/bathroom_product_0000.usd +0 -0
  5. kujiale_0042/Meshes/bathroom_product_0002.usd +0 -0
  6. kujiale_0042/Meshes/bathroom_product_0004.usd +0 -0
  7. kujiale_0042/Meshes/book_0000.usd +0 -0
  8. kujiale_0042/Meshes/book_0001.usd +0 -0
  9. kujiale_0042/Meshes/book_0002.usd +0 -0
  10. kujiale_0042/Meshes/book_0003.usd +0 -0
  11. kujiale_0042/Meshes/book_0004.usd +0 -0
  12. kujiale_0042/Meshes/book_0005.usd +0 -0
  13. kujiale_0042/Meshes/book_0006.usd +0 -0
  14. kujiale_0042/Meshes/book_0007.usd +0 -0
  15. kujiale_0042/Meshes/book_0008.usd +0 -0
  16. kujiale_0042/Meshes/book_0009.usd +0 -0
  17. kujiale_0042/Meshes/book_0010.usd +0 -0
  18. kujiale_0042/Meshes/book_0011.usd +0 -0
  19. kujiale_0042/Meshes/book_0012.usd +0 -0
  20. kujiale_0042/Meshes/book_0013.usd +0 -0
  21. kujiale_0042/Meshes/book_0014.usd +0 -0
  22. kujiale_0042/Meshes/book_0015.usd +0 -0
  23. kujiale_0042/Meshes/book_0016.usd +0 -0
  24. kujiale_0042/Meshes/book_0017.usd +0 -0
  25. kujiale_0042/Meshes/book_0018.usd +0 -0
  26. kujiale_0042/Meshes/book_0019.usd +0 -0
  27. kujiale_0042/Meshes/ceiling_0006.usd +0 -0
  28. kujiale_0042/Meshes/ceiling_0007.usd +0 -0
  29. kujiale_0042/Meshes/ceiling_0008.usd +0 -0
  30. kujiale_0042/Meshes/ceiling_0009.usd +0 -0
  31. kujiale_0042/Meshes/ceiling_0010.usd +0 -0
  32. kujiale_0042/Meshes/ceiling_0011.usd +0 -0
  33. kujiale_0042/Meshes/cup_0000.usd +0 -0
  34. kujiale_0042/Meshes/curtain_0003.usd +0 -0
  35. kujiale_0042/Meshes/doorsill_0000.usd +0 -0
  36. kujiale_0042/Meshes/doorsill_0001.usd +0 -0
  37. kujiale_0042/Meshes/doorsill_0002.usd +0 -0
  38. kujiale_0042/Meshes/doorsill_0003.usd +0 -0
  39. kujiale_0042/Meshes/doorsill_0004.usd +0 -0
  40. kujiale_0042/Meshes/floor_0000.usd +0 -0
  41. kujiale_0042/Meshes/floor_0001.usd +0 -0
  42. kujiale_0042/Meshes/floor_0002.usd +0 -0
  43. kujiale_0042/Meshes/floor_0003.usd +0 -0
  44. kujiale_0042/Meshes/floor_0004.usd +0 -0
  45. kujiale_0042/Meshes/floor_0005.usd +0 -0
  46. kujiale_0042/Meshes/mirror_0000.usd +0 -0
  47. kujiale_0042/Meshes/ornament_0003.usd +0 -0
  48. kujiale_0042/Meshes/painting_0000.usd +0 -0
  49. kujiale_0042/Meshes/painting_0001.usd +0 -0
  50. kujiale_0042/Meshes/painting_0002.usd +0 -0
kujiale_0042/Materials/OmniUe4Function.mdl CHANGED
@@ -1,1413 +1,3 @@
1
- /***************************************************************************************************
2
- * Copyright 2020 NVIDIA Corporation. All rights reserved.
3
- *
4
- * Redistribution and use in source and binary forms, with or without
5
- * modification, are permitted provided that the following conditions
6
- * are met:
7
- * * Redistributions of source code must retain the above copyright
8
- * notice, this list of conditions and the following disclaimer.
9
- * * Redistributions in binary form must reproduce the above copyright
10
- * notice, this list of conditions and the following disclaimer in the
11
- * documentation and/or other materials provided with the distribution.
12
- * * Neither the name of NVIDIA CORPORATION nor the names of its
13
- * contributors may be used to endorse or promote products derived
14
- * from this software without specific prior written permission.
15
- *
16
- * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
17
- * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18
- * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
19
- * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
20
- * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
21
- * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22
- * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
23
- * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
24
- * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25
- * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26
- * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
- **************************************************************************************************/
28
-
29
- //* 1.0.1 - using absolute import paths when importing standard modules
30
-
31
- mdl 1.6;
32
-
33
- import ::df::*;
34
- import ::state::*;
35
- import ::math::*;
36
- import ::tex::*;
37
- import ::anno::*;
38
-
39
-
40
- export float3 convert_to_left_hand(float3 vec3, uniform bool up_z = true, uniform bool is_position = true)
41
- [[
42
- anno::description("convert from RH to LH"),
43
- anno::noinline()
44
- ]]
45
- {
46
- float4x4 ZupConversion = float4x4(
47
- 1.0f, 0.0f, 0.0f, 0.0f,
48
- 0.0f, -1.0f, 0.0f, 0.0f,
49
- 0.0f, 0.0f, 1.0f, 0.0f,
50
- 0.0f, 0.0f, 0.0f, 1.0f
51
- );
52
-
53
- float4x4 YupConversion = float4x4(
54
- 1.0f, 0.0f, 0.0f, 0.0f,
55
- 0.0f, 0.0f, 1.0f, 0.0f,
56
- 0.0f, 1.0f, 0.0f, 0.0f,
57
- 0.0f, 0.0f, 0.0f, 1.0f
58
- );
59
-
60
- float4 vec4 = float4(vec3.x, vec3.y, vec3.z, is_position ? 1.0f : 0.0f);
61
-
62
- vec4 = vec4 * (up_z ? ZupConversion : YupConversion);
63
-
64
- return float3(vec4.x, vec4.y, vec4.z);
65
- }
66
-
67
- export float3 transform_vector_from_tangent_to_world(float3 vector,
68
- uniform bool up_z = true,
69
- float3 tangent_u = state::texture_tangent_u(0),
70
- float3 tangent_v = state::texture_tangent_v(0))
71
- [[
72
- anno::description("Transform vector from tangent space to world space"),
73
- anno::noinline()
74
- ]]
75
- {
76
- /* flip_tangent_v */
77
- return convert_to_left_hand(
78
- tangent_u * vector.x - tangent_v * vector.y + state::normal() * vector.z,
79
- up_z, false);
80
- }
81
-
82
- export float3 transform_vector_from_world_to_tangent(float3 vector,
83
- uniform bool up_z = true,
84
- float3 tangent_u = state::texture_tangent_u(0),
85
- float3 tangent_v = state::texture_tangent_v(0))
86
- [[
87
- anno::description("Transform vector from world space to tangent space"),
88
- anno::noinline()
89
- ]]
90
- {
91
- float3 vecRH = convert_to_left_hand(vector, up_z, false);
92
- /* flip_tangent_v */
93
- return vecRH.x * float3(tangent_u.x, -tangent_v.x, state::normal().x) +
94
- vecRH.y * float3(tangent_u.y, -tangent_v.y, state::normal().y) +
95
- vecRH.z * float3(tangent_u.z, -tangent_v.z, state::normal().z);
96
- }
97
-
98
- export float4 unpack_normal_map(
99
- float4 texture_sample = float4(0.0, 0.0, 1.0, 1.0)
100
- )
101
- [[
102
- anno::description("Unpack a normal stored in a normal map"),
103
- anno::noinline()
104
- ]]
105
- {
106
- float2 normal_xy = float2(texture_sample.x, texture_sample.y);
107
-
108
- normal_xy = normal_xy * float2(2.0,2.0) - float2(1.0,1.0);
109
- float normal_z = math::sqrt( math::saturate( 1.0 - math::dot( normal_xy, normal_xy ) ) );
110
- return float4( normal_xy.x, normal_xy.y, normal_z, 1.0 );
111
- }
112
-
113
- // for get color value from normal.
114
- export float4 pack_normal_map(
115
- float4 texture_sample = float4(0.0, 0.0, 1.0, 1.0)
116
- )
117
- [[
118
- anno::description("Pack to color from a normal")
119
- ]]
120
- {
121
- float2 return_xy = float2(texture_sample.x, texture_sample.y);
122
-
123
- return_xy = (return_xy + float2(1.0,1.0)) / float2(2.0,2.0);
124
-
125
- return float4( return_xy.x, return_xy.y, 0.0, 1.0 );
126
- }
127
-
128
- export float4 greyscale_texture_lookup(
129
- float4 texture_sample = float4(0.0, 0.0, 0.0, 1.0)
130
- )
131
- [[
132
- anno::description("Sampling a greyscale texture"),
133
- anno::noinline()
134
- ]]
135
- {
136
- return float4(texture_sample.x, texture_sample.x, texture_sample.x, texture_sample.x);
137
- }
138
-
139
- export float3 pixel_normal_world_space(uniform bool up_z = true)
140
- [[
141
- anno::description("Pixel normal in world space"),
142
- anno::noinline()
143
- ]]
144
- {
145
- return convert_to_left_hand(state::transform_normal(state::coordinate_internal,state::coordinate_world,state::normal()), up_z, false);
146
- }
147
-
148
- export float3 vertex_normal_world_space(uniform bool up_z = true)
149
- [[
150
- anno::description("Vertex normal in world space"),
151
- anno::noinline()
152
- ]]
153
- {
154
- return convert_to_left_hand(state::transform_normal(state::coordinate_internal,state::coordinate_world,state::normal()), up_z, false);
155
- }
156
-
157
- export float3 landscape_normal_world_space(uniform bool up_z = true)
158
- [[
159
- anno::description("Landscape normal in world space")
160
- ]]
161
- {
162
- float3 normalFromNormalmap = math::floor((::vertex_normal_world_space(up_z) * 0.5 + 0.5) * 255.0) / 255.0 * 2.0 - 1.0;
163
-
164
- float2 normalXY = float2(normalFromNormalmap.x, normalFromNormalmap.y);
165
- return float3(normalXY.x, normalXY.y, math::sqrt(math::saturate(1.0 - math::dot(normalXY, normalXY))));
166
- }
167
-
168
- // Different implementation specific between mdl and hlsl for smoothstep
169
- export float smoothstep(float a, float b, float l)
170
- {
171
- if (a < b)
172
- {
173
- return math::smoothstep(a, b, l);
174
- }
175
- else if (a > b)
176
- {
177
- return 1.0 - math::smoothstep(b, a, l);
178
- }
179
- else
180
- {
181
- return l <= a ? 0.0 : 1.0;
182
- }
183
- }
184
-
185
- export float2 smoothstep(float2 a, float2 b, float2 l)
186
- {
187
- return float2(smoothstep(a.x, b.x, l.x), smoothstep(a.y, b.y, l.y));
188
- }
189
-
190
- export float3 smoothstep(float3 a, float3 b, float3 l)
191
- {
192
- return float3(smoothstep(a.x, b.x, l.x), smoothstep(a.y, b.y, l.y), smoothstep(a.z, b.z, l.z));
193
- }
194
-
195
- export float4 smoothstep(float4 a, float4 b, float4 l)
196
- {
197
- return float4(smoothstep(a.x, b.x, l.x), smoothstep(a.y, b.y, l.y), smoothstep(a.z, b.z, l.z), smoothstep(a.w, b.w, l.w));
198
- }
199
-
200
- export float2 smoothstep(float2 a, float2 b, float l)
201
- {
202
- return float2(smoothstep(a.x, b.x, l), smoothstep(a.y, b.y, l));
203
- }
204
-
205
- export float3 smoothstep(float3 a, float3 b, float l)
206
- {
207
- return float3(smoothstep(a.x, b.x, l), smoothstep(a.y, b.y, l), smoothstep(a.z, b.z, l));
208
- }
209
-
210
- export float4 smoothstep(float4 a, float4 b, float l)
211
- {
212
- return float4(smoothstep(a.x, b.x, l), smoothstep(a.y, b.y, l), smoothstep(a.z, b.z, l), smoothstep(a.w, b.w, l));
213
- }
214
-
215
- export float2 smoothstep(float a, float b, float2 l)
216
- {
217
- return float2(smoothstep(a, b, l.x), smoothstep(a, b, l.y));
218
- }
219
-
220
- export float3 smoothstep(float a, float b, float3 l)
221
- {
222
- return float3(smoothstep(a, b, l.x), smoothstep(a, b, l.y), smoothstep(a, b, l.z));
223
- }
224
-
225
- export float4 smoothstep(float a, float b, float4 l)
226
- {
227
- return float4(smoothstep(a, b, l.x), smoothstep(a, b, l.y), smoothstep(a, b, l.z), smoothstep(a, b, l.w));
228
- }
229
-
230
- //------------------ Random from UE4 -----------------------
231
- float length2(float3 v)
232
- {
233
- return math::dot(v, v);
234
- }
235
-
236
- float3 GetPerlinNoiseGradientTextureAt(uniform texture_2d PerlinNoiseGradientTexture, float3 v)
237
- {
238
- const float2 ZShear = float2(17.0f, 89.0f);
239
-
240
- float2 OffsetA = v.z * ZShear;
241
- float2 TexA = (float2(v.x, v.y) + OffsetA + 0.5f) / 128.0f;
242
- float4 PerlinNoise = tex::lookup_float4(PerlinNoiseGradientTexture,float2(TexA.x,1.0-TexA.y),tex::wrap_repeat,tex::wrap_repeat);
243
- return float3(PerlinNoise.x, PerlinNoise.y, PerlinNoise.z) * 2.0 - 1.0;
244
- }
245
-
246
- float3 SkewSimplex(float3 In)
247
- {
248
- return In + math::dot(In, float3(1.0 / 3.0f) );
249
- }
250
- float3 UnSkewSimplex(float3 In)
251
- {
252
- return In - math::dot(In, float3(1.0 / 6.0f) );
253
- }
254
-
255
- // 3D random number generator inspired by PCGs (permuted congruential generator)
256
- // Using a **simple** Feistel cipher in place of the usual xor shift permutation step
257
- // @param v = 3D integer coordinate
258
- // @return three elements w/ 16 random bits each (0-0xffff).
259
- // ~8 ALU operations for result.x (7 mad, 1 >>)
260
- // ~10 ALU operations for result.xy (8 mad, 2 >>)
261
- // ~12 ALU operations for result.xyz (9 mad, 3 >>)
262
-
263
- //TODO: uint3
264
- int3 Rand3DPCG16(int3 p)
265
- {
266
- // taking a signed int then reinterpreting as unsigned gives good behavior for negatives
267
- //TODO: uint3
268
- int3 v = int3(p);
269
-
270
- // Linear congruential step. These LCG constants are from Numerical Recipies
271
- // For additional #'s, PCG would do multiple LCG steps and scramble each on output
272
- // So v here is the RNG state
273
- v = v * 1664525 + 1013904223;
274
-
275
- // PCG uses xorshift for the final shuffle, but it is expensive (and cheap
276
- // versions of xorshift have visible artifacts). Instead, use simple MAD Feistel steps
277
- //
278
- // Feistel ciphers divide the state into separate parts (usually by bits)
279
- // then apply a series of permutation steps one part at a time. The permutations
280
- // use a reversible operation (usually ^) to part being updated with the result of
281
- // a permutation function on the other parts and the key.
282
- //
283
- // In this case, I'm using v.x, v.y and v.z as the parts, using + instead of ^ for
284
- // the combination function, and just multiplying the other two parts (no key) for
285
- // the permutation function.
286
- //
287
- // That gives a simple mad per round.
288
- v.x += v.y*v.z;
289
- v.y += v.z*v.x;
290
- v.z += v.x*v.y;
291
- v.x += v.y*v.z;
292
- v.y += v.z*v.x;
293
- v.z += v.x*v.y;
294
-
295
- // only top 16 bits are well shuffled
296
- return v >> 16;
297
- }
298
-
299
- // Wraps noise for tiling texture creation
300
- // @param v = unwrapped texture parameter
301
- // @param bTiling = true to tile, false to not tile
302
- // @param RepeatSize = number of units before repeating
303
- // @return either original or wrapped coord
304
- float3 NoiseTileWrap(float3 v, bool bTiling, float RepeatSize)
305
- {
306
- return bTiling ? (math::frac(v / RepeatSize) * RepeatSize) : v;
307
- }
308
-
309
- // Evaluate polynomial to get smooth transitions for Perlin noise
310
- // only needed by Perlin functions in this file
311
- // scalar(per component): 2 add, 5 mul
312
- float4 PerlinRamp(float4 t)
313
- {
314
- return t * t * t * (t * (t * 6 - 15) + 10);
315
- }
316
-
317
- // Blum-Blum-Shub-inspired pseudo random number generator
318
- // http://www.umbc.edu/~olano/papers/mNoise.pdf
319
- // real BBS uses ((s*s) mod M) with bignums and M as the product of two huge Blum primes
320
- // instead, we use a single prime M just small enough not to overflow
321
- // note that the above paper used 61, which fits in a half, but is unusably bad
322
- // @param Integer valued floating point seed
323
- // @return random number in range [0,1)
324
- // ~8 ALU operations (5 *, 3 frac)
325
- float RandBBSfloat(float seed)
326
- {
327
- float BBS_PRIME24 = 4093.0;
328
- float s = math::frac(seed / BBS_PRIME24);
329
- s = math::frac(s * s * BBS_PRIME24);
330
- s = math::frac(s * s * BBS_PRIME24);
331
- return s;
332
- }
333
-
334
- // Modified noise gradient term
335
- // @param seed - random seed for integer lattice position
336
- // @param offset - [-1,1] offset of evaluation point from lattice point
337
- // @return gradient direction (xyz) and contribution (w) from this lattice point
338
- float4 MGradient(int seed, float3 offset)
339
- {
340
- //TODO uint
341
- int rand = Rand3DPCG16(int3(seed,0,0)).x;
342
- int3 MGradientMask = int3(0x8000, 0x4000, 0x2000);
343
- float3 MGradientScale = float3(1.0 / 0x4000, 1.0 / 0x2000, 1.0 / 0x1000);
344
- float3 direction = float3(int3(rand, rand, rand) & MGradientMask) * MGradientScale - 1;
345
- return float4(direction.x, direction.y, direction.z, math::dot(direction, offset));
346
- }
347
-
348
- // compute Perlin and related noise corner seed values
349
- // @param v = 3D noise argument, use float3(x,y,0) for 2D or float3(x,0,0) for 1D
350
- // @param bTiling = true to return seed values for a repeating noise pattern
351
- // @param RepeatSize = integer units before tiling in each dimension
352
- // @param seed000-seed111 = hash function seeds for the eight corners
353
- // @return fractional part of v
354
- struct SeedValue
355
- {
356
- float3 fv = float3(0);
357
- float seed000 = 0;
358
- float seed001 = 0;
359
- float seed010 = 0;
360
- float seed011 = 0;
361
- float seed100 = 0;
362
- float seed101 = 0;
363
- float seed110 = 0;
364
- float seed111 = 0;
365
- };
366
-
367
- SeedValue NoiseSeeds(float3 v, bool bTiling, float RepeatSize)
368
- {
369
- SeedValue seeds;
370
- seeds.fv = math::frac(v);
371
- float3 iv = math::floor(v);
372
-
373
- const float3 primes = float3(19, 47, 101);
374
-
375
- if (bTiling)
376
- { // can't algebraically combine with primes
377
- seeds.seed000 = math::dot(primes, NoiseTileWrap(iv, true, RepeatSize));
378
- seeds.seed100 = math::dot(primes, NoiseTileWrap(iv + float3(1, 0, 0), true, RepeatSize));
379
- seeds.seed010 = math::dot(primes, NoiseTileWrap(iv + float3(0, 1, 0), true, RepeatSize));
380
- seeds.seed110 = math::dot(primes, NoiseTileWrap(iv + float3(1, 1, 0), true, RepeatSize));
381
- seeds.seed001 = math::dot(primes, NoiseTileWrap(iv + float3(0, 0, 1), true, RepeatSize));
382
- seeds.seed101 = math::dot(primes, NoiseTileWrap(iv + float3(1, 0, 1), true, RepeatSize));
383
- seeds.seed011 = math::dot(primes, NoiseTileWrap(iv + float3(0, 1, 1), true, RepeatSize));
384
- seeds.seed111 = math::dot(primes, NoiseTileWrap(iv + float3(1, 1, 1), true, RepeatSize));
385
- }
386
- else
387
- { // get to combine offsets with multiplication by primes in this case
388
- seeds.seed000 = math::dot(iv, primes);
389
- seeds.seed100 = seeds.seed000 + primes.x;
390
- seeds.seed010 = seeds.seed000 + primes.y;
391
- seeds.seed110 = seeds.seed100 + primes.y;
392
- seeds.seed001 = seeds.seed000 + primes.z;
393
- seeds.seed101 = seeds.seed100 + primes.z;
394
- seeds.seed011 = seeds.seed010 + primes.z;
395
- seeds.seed111 = seeds.seed110 + primes.z;
396
- }
397
-
398
- return seeds;
399
- }
400
-
401
- struct SimplexWeights
402
- {
403
- float4 Result = float4(0);
404
- float3 PosA = float3(0);
405
- float3 PosB = float3(0);
406
- float3 PosC = float3(0);
407
- float3 PosD = float3(0);
408
- };
409
-
410
- // Computed weights and sample positions for simplex interpolation
411
- // @return float4(a,b,c, d) Barycentric coordinate defined as Filtered = Tex(PosA) * a + Tex(PosB) * b + Tex(PosC) * c + Tex(PosD) * d
412
- SimplexWeights ComputeSimplexWeights3D(float3 OrthogonalPos)
413
- {
414
- SimplexWeights weights;
415
- float3 OrthogonalPosFloor = math::floor(OrthogonalPos);
416
-
417
- weights.PosA = OrthogonalPosFloor;
418
- weights.PosB = weights.PosA + float3(1, 1, 1);
419
-
420
- OrthogonalPos -= OrthogonalPosFloor;
421
-
422
- float Largest = math::max(OrthogonalPos.x, math::max(OrthogonalPos.y, OrthogonalPos.z));
423
- float Smallest = math::min(OrthogonalPos.x, math::min(OrthogonalPos.y, OrthogonalPos.z));
424
-
425
- weights.PosC = weights.PosA + float3(Largest == OrthogonalPos.x, Largest == OrthogonalPos.y, Largest == OrthogonalPos.z);
426
- weights.PosD = weights.PosA + float3(Smallest != OrthogonalPos.x, Smallest != OrthogonalPos.y, Smallest != OrthogonalPos.z);
427
-
428
- float RG = OrthogonalPos.x - OrthogonalPos.y;
429
- float RB = OrthogonalPos.x - OrthogonalPos.z;
430
- float GB = OrthogonalPos.y - OrthogonalPos.z;
431
-
432
- weights.Result.z =
433
- math::min(math::max(0, RG), math::max(0, RB)) // X
434
- + math::min(math::max(0, -RG), math::max(0, GB)) // Y
435
- + math::min(math::max(0, -RB), math::max(0, -GB)); // Z
436
-
437
- weights.Result.w =
438
- math::min(math::max(0, -RG), math::max(0, -RB)) // X
439
- + math::min(math::max(0, RG), math::max(0, -GB)) // Y
440
- + math::min(math::max(0, RB), math::max(0, GB)); // Z
441
-
442
- weights.Result.y = Smallest;
443
- weights.Result.x = 1.0f - weights.Result.y - weights.Result.z - weights.Result.w;
444
-
445
- return weights;
446
- }
447
-
448
- // filtered 3D gradient simple noise (few texture lookups, high quality)
449
- // @param v >0
450
- // @return random number in the range -1 .. 1
451
- float SimplexNoise3D_TEX(uniform texture_2d PerlinNoiseGradientTexture, float3 EvalPos)
452
- {
453
- float3 OrthogonalPos = SkewSimplex(EvalPos);
454
-
455
- SimplexWeights Weights = ComputeSimplexWeights3D(OrthogonalPos);
456
-
457
- // can be optimized to 1 or 2 texture lookups (4 or 8 channel encoded in 32 bit)
458
- float3 A = GetPerlinNoiseGradientTextureAt(PerlinNoiseGradientTexture, Weights.PosA);
459
- float3 B = GetPerlinNoiseGradientTextureAt(PerlinNoiseGradientTexture, Weights.PosB);
460
- float3 C = GetPerlinNoiseGradientTextureAt(PerlinNoiseGradientTexture, Weights.PosC);
461
- float3 D = GetPerlinNoiseGradientTextureAt(PerlinNoiseGradientTexture, Weights.PosD);
462
-
463
- Weights.PosA = UnSkewSimplex(Weights.PosA);
464
- Weights.PosB = UnSkewSimplex(Weights.PosB);
465
- Weights.PosC = UnSkewSimplex(Weights.PosC);
466
- Weights.PosD = UnSkewSimplex(Weights.PosD);
467
-
468
- float DistanceWeight;
469
-
470
- DistanceWeight = math::saturate(0.6f - length2(EvalPos - Weights.PosA)); DistanceWeight *= DistanceWeight; DistanceWeight *= DistanceWeight;
471
- float a = math::dot(A, EvalPos - Weights.PosA) * DistanceWeight;
472
- DistanceWeight = math::saturate(0.6f - length2(EvalPos - Weights.PosB)); DistanceWeight *= DistanceWeight; DistanceWeight *= DistanceWeight;
473
- float b = math::dot(B, EvalPos - Weights.PosB) * DistanceWeight;
474
- DistanceWeight = math::saturate(0.6f - length2(EvalPos - Weights.PosC)); DistanceWeight *= DistanceWeight; DistanceWeight *= DistanceWeight;
475
- float c = math::dot(C, EvalPos - Weights.PosC) * DistanceWeight;
476
- DistanceWeight = math::saturate(0.6f - length2(EvalPos - Weights.PosD)); DistanceWeight *= DistanceWeight; DistanceWeight *= DistanceWeight;
477
- float d = math::dot(D, EvalPos - Weights.PosD) * DistanceWeight;
478
-
479
- return 32 * (a + b + c + d);
480
- }
481
-
482
- // filtered 3D noise, can be optimized
483
- // @param v = 3D noise argument, use float3(x,y,0) for 2D or float3(x,0,0) for 1D
484
- // @param bTiling = repeat noise pattern
485
- // @param RepeatSize = integer units before tiling in each dimension
486
- // @return random number in the range -1 .. 1
487
- float GradientNoise3D_TEX(uniform texture_2d PerlinNoiseGradientTexture, float3 v, bool bTiling, float RepeatSize)
488
- {
489
- bTiling = true;
490
- float3 fv = math::frac(v);
491
- float3 iv0 = NoiseTileWrap(math::floor(v), bTiling, RepeatSize);
492
- float3 iv1 = NoiseTileWrap(iv0 + 1, bTiling, RepeatSize);
493
-
494
- const int2 ZShear = int2(17, 89);
495
-
496
- float2 OffsetA = iv0.z * ZShear;
497
- float2 OffsetB = OffsetA + ZShear; // non-tiling, use relative offset
498
- if (bTiling) // tiling, have to compute from wrapped coordinates
499
- {
500
- OffsetB = iv1.z * ZShear;
501
- }
502
-
503
- // Texture size scale factor
504
- float ts = 1 / 128.0f;
505
-
506
- // texture coordinates for iv0.xy, as offset for both z slices
507
- float2 TexA0 = (float2(iv0.x, iv0.y) + OffsetA + 0.5f) * ts;
508
- float2 TexB0 = (float2(iv0.x, iv0.y) + OffsetB + 0.5f) * ts;
509
-
510
- // texture coordinates for iv1.xy, as offset for both z slices
511
- float2 TexA1 = TexA0 + ts; // for non-tiling, can compute relative to existing coordinates
512
- float2 TexB1 = TexB0 + ts;
513
- if (bTiling) // for tiling, need to compute from wrapped coordinates
514
- {
515
- TexA1 = (float2(iv1.x, iv1.y) + OffsetA + 0.5f) * ts;
516
- TexB1 = (float2(iv1.x, iv1.y) + OffsetB + 0.5f) * ts;
517
- }
518
-
519
-
520
- // can be optimized to 1 or 2 texture lookups (4 or 8 channel encoded in 8, 16 or 32 bit)
521
- float4 PerlinNoise = tex::lookup_float4(PerlinNoiseGradientTexture,float2(TexA0.x,1.0-TexA0.y),tex::wrap_repeat,tex::wrap_repeat);
522
- float3 PerlinNoiseColor = float3(PerlinNoise.x, PerlinNoise.y, PerlinNoise.z);
523
- float3 A = PerlinNoiseColor * 2 - 1;
524
- PerlinNoise = tex::lookup_float4(PerlinNoiseGradientTexture,float2(TexA1.x,1.0-TexA0.y),tex::wrap_repeat,tex::wrap_repeat);
525
- PerlinNoiseColor = float3(PerlinNoise.x, PerlinNoise.y, PerlinNoise.z);
526
- float3 B = PerlinNoiseColor * 2 - 1;
527
- PerlinNoise = tex::lookup_float4(PerlinNoiseGradientTexture,float2(TexA0.x,1.0-TexA1.y),tex::wrap_repeat,tex::wrap_repeat);
528
- PerlinNoiseColor = float3(PerlinNoise.x, PerlinNoise.y, PerlinNoise.z);
529
- float3 C = PerlinNoiseColor * 2 - 1;
530
- PerlinNoise = tex::lookup_float4(PerlinNoiseGradientTexture,float2(TexA1.x,1.0-TexA1.y),tex::wrap_repeat,tex::wrap_repeat);
531
- PerlinNoiseColor = float3(PerlinNoise.x, PerlinNoise.y, PerlinNoise.z);
532
- float3 D = PerlinNoiseColor * 2 - 1;
533
- PerlinNoise = tex::lookup_float4(PerlinNoiseGradientTexture,float2(TexB0.x,1.0-TexB0.y),tex::wrap_repeat,tex::wrap_repeat);
534
- PerlinNoiseColor = float3(PerlinNoise.x, PerlinNoise.y, PerlinNoise.z);
535
- float3 E = PerlinNoiseColor * 2 - 1;
536
- PerlinNoise = tex::lookup_float4(PerlinNoiseGradientTexture,float2(TexB1.x,1.0-TexB0.y),tex::wrap_repeat,tex::wrap_repeat);
537
- PerlinNoiseColor = float3(PerlinNoise.x, PerlinNoise.y, PerlinNoise.z);
538
- float3 F = PerlinNoiseColor * 2 - 1;
539
- PerlinNoise = tex::lookup_float4(PerlinNoiseGradientTexture,float2(TexB0.x,1.0-TexB1.y),tex::wrap_repeat,tex::wrap_repeat);
540
- PerlinNoiseColor = float3(PerlinNoise.x, PerlinNoise.y, PerlinNoise.z);
541
- float3 G = PerlinNoiseColor * 2 - 1;
542
- PerlinNoise = tex::lookup_float4(PerlinNoiseGradientTexture,float2(TexB1.x,1.0-TexB1.y),tex::wrap_repeat,tex::wrap_repeat);
543
- PerlinNoiseColor = float3(PerlinNoise.x, PerlinNoise.y, PerlinNoise.z);
544
- float3 H = PerlinNoiseColor * 2 - 1;
545
-
546
- float a = math::dot(A, fv - float3(0, 0, 0));
547
- float b = math::dot(B, fv - float3(1, 0, 0));
548
- float c = math::dot(C, fv - float3(0, 1, 0));
549
- float d = math::dot(D, fv - float3(1, 1, 0));
550
- float e = math::dot(E, fv - float3(0, 0, 1));
551
- float f = math::dot(F, fv - float3(1, 0, 1));
552
- float g = math::dot(G, fv - float3(0, 1, 1));
553
- float h = math::dot(H, fv - float3(1, 1, 1));
554
-
555
- float4 Weights = PerlinRamp(math::frac(float4(fv.x, fv.y, fv.z, 0)));
556
-
557
- float i = math::lerp(math::lerp(a, b, Weights.x), math::lerp(c, d, Weights.x), Weights.y);
558
- float j = math::lerp(math::lerp(e, f, Weights.x), math::lerp(g, h, Weights.x), Weights.y);
559
-
560
- return math::lerp(i, j, Weights.z);
561
- }
562
-
563
- // @return random number in the range -1 .. 1
564
- // scalar: 6 frac, 31 mul/mad, 15 add,
565
- float FastGradientPerlinNoise3D_TEX(uniform texture_3d PerlinNoise3DTexture, float3 xyz)
566
- {
567
- // needs to be the same value when creating the PerlinNoise3D texture
568
- float Extent = 16;
569
-
570
- // last texel replicated and needed for filtering
571
- // scalar: 3 frac, 6 mul
572
- xyz = math::frac(xyz / (Extent - 1)) * (Extent - 1);
573
-
574
- // scalar: 3 frac
575
- float3 uvw = math::frac(xyz);
576
- // = floor(xyz);
577
- // scalar: 3 add
578
- float3 p0 = xyz - uvw;
579
- // float3 f = math::pow(uvw, 2) * 3.0f - math::pow(uvw, 3) * 2.0f; // original perlin hermite (ok when used without bump mapping)
580
- // scalar: 2*3 add 5*3 mul
581
- float4 pr = PerlinRamp(float4(uvw.x, uvw.y, uvw.z, 0));
582
- float3 f = float3(pr.x, pr.y, pr.z); // new, better with continues second derivative for bump mapping
583
- // scalar: 3 add
584
- float3 p = p0 + f;
585
- // scalar: 3 mad
586
- // TODO: need reverse???
587
- float4 NoiseSample = tex::lookup_float4(PerlinNoise3DTexture, p / Extent + 0.5f / Extent); // +0.5f to get rid of bilinear offset
588
-
589
- // reconstruct from 8bit (using mad with 2 constants and dot4 was same instruction count)
590
- // scalar: 4 mad, 3 mul, 3 add
591
- float3 n = float3(NoiseSample.x, NoiseSample.y, NoiseSample.z) * 255.0f / 127.0f - 1.0f;
592
- float d = NoiseSample.w * 255.f - 127;
593
- return math::dot(xyz, n) - d;
594
- }
595
-
596
- // Perlin-style "Modified Noise"
597
- // http://www.umbc.edu/~olano/papers/index.html#mNoise
598
- // @param v = 3D noise argument, use float3(x,y,0) for 2D or float3(x,0,0) for 1D
599
- // @param bTiling = repeat noise pattern
600
- // @param RepeatSize = integer units before tiling in each dimension
601
- // @return random number in the range -1 .. 1
602
- float GradientNoise3D_ALU(float3 v, bool bTiling, float RepeatSize)
603
- {
604
- SeedValue seeds = NoiseSeeds(v, bTiling, RepeatSize);
605
-
606
- float rand000 = MGradient(int(seeds.seed000), seeds.fv - float3(0, 0, 0)).w;
607
- float rand100 = MGradient(int(seeds.seed100), seeds.fv - float3(1, 0, 0)).w;
608
- float rand010 = MGradient(int(seeds.seed010), seeds.fv - float3(0, 1, 0)).w;
609
- float rand110 = MGradient(int(seeds.seed110), seeds.fv - float3(1, 1, 0)).w;
610
- float rand001 = MGradient(int(seeds.seed001), seeds.fv - float3(0, 0, 1)).w;
611
- float rand101 = MGradient(int(seeds.seed101), seeds.fv - float3(1, 0, 1)).w;
612
- float rand011 = MGradient(int(seeds.seed011), seeds.fv - float3(0, 1, 1)).w;
613
- float rand111 = MGradient(int(seeds.seed111), seeds.fv - float3(1, 1, 1)).w;
614
-
615
- float4 Weights = PerlinRamp(float4(seeds.fv.x, seeds.fv.y, seeds.fv.z, 0));
616
-
617
- float i = math::lerp(math::lerp(rand000, rand100, Weights.x), math::lerp(rand010, rand110, Weights.x), Weights.y);
618
- float j = math::lerp(math::lerp(rand001, rand101, Weights.x), math::lerp(rand011, rand111, Weights.x), Weights.y);
619
- return math::lerp(i, j, Weights.z);
620
- }
621
-
622
- // 3D value noise - used to be incorrectly called Perlin noise
623
- // @param v = 3D noise argument, use float3(x,y,0) for 2D or float3(x,0,0) for 1D
624
- // @param bTiling = repeat noise pattern
625
- // @param RepeatSize = integer units before tiling in each dimension
626
- // @return random number in the range -1 .. 1
627
- float ValueNoise3D_ALU(float3 v, bool bTiling, float RepeatSize)
628
- {
629
- SeedValue seeds = NoiseSeeds(v, bTiling, RepeatSize);
630
-
631
- float rand000 = RandBBSfloat(seeds.seed000) * 2 - 1;
632
- float rand100 = RandBBSfloat(seeds.seed100) * 2 - 1;
633
- float rand010 = RandBBSfloat(seeds.seed010) * 2 - 1;
634
- float rand110 = RandBBSfloat(seeds.seed110) * 2 - 1;
635
- float rand001 = RandBBSfloat(seeds.seed001) * 2 - 1;
636
- float rand101 = RandBBSfloat(seeds.seed101) * 2 - 1;
637
- float rand011 = RandBBSfloat(seeds.seed011) * 2 - 1;
638
- float rand111 = RandBBSfloat(seeds.seed111) * 2 - 1;
639
-
640
- float4 Weights = PerlinRamp(float4(seeds.fv.x, seeds.fv.y, seeds.fv.z, 0));
641
-
642
- float i = math::lerp(math::lerp(rand000, rand100, Weights.x), math::lerp(rand010, rand110, Weights.x), Weights.y);
643
- float j = math::lerp(math::lerp(rand001, rand101, Weights.x), math::lerp(rand011, rand111, Weights.x), Weights.y);
644
- return math::lerp(i, j, Weights.z);
645
- }
646
-
647
- // 3D jitter offset within a voronoi noise cell
648
- // @param pos - integer lattice corner
649
- // @return random offsets vector
650
- float3 VoronoiCornerSample(float3 pos, int Quality)
651
- {
652
- // random values in [-0.5, 0.5]
653
- float3 noise = float3(Rand3DPCG16(int3(pos))) / 0xffff - 0.5;
654
-
655
- // quality level 1 or 2: searches a 2x2x2 neighborhood with points distributed on a sphere
656
- // scale factor to guarantee jittered points will be found within a 2x2x2 search
657
- if (Quality <= 2)
658
- {
659
- return math::normalize(noise) * 0.2588;
660
- }
661
-
662
- // quality level 3: searches a 3x3x3 neighborhood with points distributed on a sphere
663
- // scale factor to guarantee jittered points will be found within a 3x3x3 search
664
- if (Quality == 3)
665
- {
666
- return math::normalize(noise) * 0.3090;
667
- }
668
-
669
- // quality level 4: jitter to anywhere in the cell, needs 4x4x4 search
670
- return noise;
671
- }
672
-
673
- // compare previous best with a new candidate
674
- // not producing point locations makes it easier for compiler to eliminate calculations when they're not needed
675
- // @param minval = location and distance of best candidate seed point before the new one
676
- // @param candidate = candidate seed point
677
- // @param offset = 3D offset to new candidate seed point
678
- // @param bDistanceOnly = if true, only set maxval.w with distance, otherwise maxval.w is distance and maxval.xyz is position
679
- // @return position (if bDistanceOnly is false) and distance to closest seed point so far
680
- float4 VoronoiCompare(float4 minval, float3 candidate, float3 offset, bool bDistanceOnly)
681
- {
682
- if (bDistanceOnly)
683
- {
684
- return float4(0, 0, 0, math::min(minval.w, math::dot(offset, offset)));
685
- }
686
- else
687
- {
688
- float newdist = math::dot(offset, offset);
689
- return newdist > minval.w ? minval : float4(candidate.x, candidate.y, candidate.z, newdist);
690
- }
691
- }
692
-
693
- // 220 instruction Worley noise
694
- float4 VoronoiNoise3D_ALU(float3 v, int Quality, bool bTiling, float RepeatSize, bool bDistanceOnly)
695
- {
696
- float3 fv = math::frac(v), fv2 = math::frac(v + 0.5);
697
- float3 iv = math::floor(v), iv2 = math::floor(v + 0.5);
698
-
699
- // with initial minimum distance = infinity (or at least bigger than 4), first min is optimized away
700
- float4 mindist = float4(0,0,0,100);
701
- float3 p, offset;
702
-
703
- // quality level 3: do a 3x3x3 search
704
- if (Quality == 3)
705
- {
706
- int offset_x;
707
- int offset_y;
708
- int offset_z;
709
- for (offset_x = -1; offset_x <= 1; ++offset_x)
710
- {
711
- for (offset_y = -1; offset_y <= 1; ++offset_y)
712
- {
713
- for (offset_z = -1; offset_z <= 1; ++offset_z)
714
- {
715
- offset = float3(offset_x, offset_y, offset_z);
716
- p = offset + VoronoiCornerSample(NoiseTileWrap(iv2 + offset, bTiling, RepeatSize), Quality);
717
- mindist = VoronoiCompare(mindist, iv2 + p, fv2 - p, bDistanceOnly);
718
- }
719
- }
720
- }
721
- }
722
-
723
- // everybody else searches a base 2x2x2 neighborhood
724
- else
725
- {
726
- int offset_x;
727
- int offset_y;
728
- int offset_z;
729
- for (offset_x = 0; offset_x <= 1; ++offset_x)
730
- {
731
- for (offset_y = 0; offset_y <= 1; ++offset_y)
732
- {
733
- for (offset_z = 0; offset_z <= 1; ++offset_z)
734
- {
735
- offset = float3(offset_x, offset_y, offset_z);
736
- p = offset + VoronoiCornerSample(NoiseTileWrap(iv + offset, bTiling, RepeatSize), Quality);
737
- mindist = VoronoiCompare(mindist, iv + p, fv - p, bDistanceOnly);
738
-
739
- // quality level 2, do extra set of points, offset by half a cell
740
- if (Quality == 2)
741
- {
742
- // 467 is just an offset to a different area in the random number field to avoid similar neighbor artifacts
743
- p = offset + VoronoiCornerSample(NoiseTileWrap(iv2 + offset, bTiling, RepeatSize) + 467, Quality);
744
- mindist = VoronoiCompare(mindist, iv2 + p, fv2 - p, bDistanceOnly);
745
- }
746
- }
747
- }
748
- }
749
- }
750
-
751
- // quality level 4: add extra sets of four cells in each direction
752
- if (Quality >= 4)
753
- {
754
- int offset_x;
755
- int offset_y;
756
- int offset_z;
757
- for (offset_x = -1; offset_x <= 2; offset_x += 3)
758
- {
759
- for (offset_y = 0; offset_y <= 1; ++offset_y)
760
- {
761
- for (offset_z = 0; offset_z <= 1; ++offset_z)
762
- {
763
- offset = float3(offset_x, offset_y, offset_z);
764
- // along x axis
765
- p = offset + VoronoiCornerSample(NoiseTileWrap(iv + offset, bTiling, RepeatSize), Quality);
766
- mindist = VoronoiCompare(mindist, iv + p, fv - p, bDistanceOnly);
767
-
768
- // along y axis
769
- p = float3(offset.y, offset.z, offset.x) + VoronoiCornerSample(NoiseTileWrap(iv + float3(offset.y, offset.z, offset.x), bTiling, RepeatSize), Quality);
770
- mindist = VoronoiCompare(mindist, iv + p, fv - p, bDistanceOnly);
771
-
772
- // along z axis
773
- p = float3(offset.z, offset.x, offset.y) + VoronoiCornerSample(NoiseTileWrap(iv + float3(offset.z, offset.x, offset.y), bTiling, RepeatSize), Quality);
774
- mindist = VoronoiCompare(mindist, iv + p, fv - p, bDistanceOnly);
775
- }
776
- }
777
- }
778
- }
779
-
780
- // transform squared distance to real distance
781
- return float4(mindist.x, mindist.y, mindist.z, math::sqrt(mindist.w));
782
- }
783
-
784
- // Coordinates for corners of a Simplex tetrahedron
785
- // Based on McEwan et al., Efficient computation of noise in GLSL, JGT 2011
786
- // @param v = 3D noise argument
787
- // @return 4 corner locations
788
- float4x3 SimplexCorners(float3 v)
789
- {
790
- // find base corner by skewing to tetrahedral space and back
791
- float3 tet = math::floor(v + v.x/3 + v.y/3 + v.z/3);
792
- float3 base = tet - tet.x/6 - tet.y/6 - tet.z/6;
793
- float3 f = v - base;
794
-
795
- // Find offsets to other corners (McEwan did this in tetrahedral space,
796
- // but since skew is along x=y=z axis, this works in Euclidean space too.)
797
- float3 g = math::step(float3(f.y,f.z,f.x), float3(f.x,f.y,f.z)), h = 1 - float3(g.z, g.x, g.y);
798
- float3 a1 = math::min(g, h) - 1.0 / 6.0, a2 = math::max(g, h) - 1.0 / 3.0;
799
-
800
- // four corners
801
- return float4x3(base, base + a1, base + a2, base + 0.5);
802
- }
803
-
804
- // Improved smoothing function for simplex noise
805
- // @param f = fractional distance to four tetrahedral corners
806
- // @return weight for each corner
807
- float4 SimplexSmooth(float4x3 f)
808
- {
809
- const float scale = 1024. / 375.; // scale factor to make noise -1..1
810
- float4 d = float4(math::dot(f[0], f[0]), math::dot(f[1], f[1]), math::dot(f[2], f[2]), math::dot(f[3], f[3]));
811
- float4 s = math::saturate(2 * d);
812
- return (1 * scale + s*(-3 * scale + s*(3 * scale - s*scale)));
813
- }
814
-
815
- // Derivative of simplex noise smoothing function
816
- // @param f = fractional distanc eto four tetrahedral corners
817
- // @return derivative of smoothing function for each corner by x, y and z
818
- float3x4 SimplexDSmooth(float4x3 f)
819
- {
820
- const float scale = 1024. / 375.; // scale factor to make noise -1..1
821
- float4 d = float4(math::dot(f[0], f[0]), math::dot(f[1], f[1]), math::dot(f[2], f[2]), math::dot(f[3], f[3]));
822
- float4 s = math::saturate(2 * d);
823
- s = -12 * scale + s*(24 * scale - s * 12 * scale);
824
-
825
- return float3x4(
826
- s * float4(f[0][0], f[1][0], f[2][0], f[3][0]),
827
- s * float4(f[0][1], f[1][1], f[2][1], f[3][1]),
828
- s * float4(f[0][2], f[1][2], f[2][2], f[3][2]));
829
- }
830
-
831
- // Simplex noise and its Jacobian derivative
832
- // @param v = 3D noise argument
833
- // @param bTiling = whether to repeat noise pattern
834
- // @param RepeatSize = integer units before tiling in each dimension, must be a multiple of 3
835
- // @return float3x3 Jacobian in J[*].xyz, vector noise in J[*].w
836
- // J[0].w, J[1].w, J[2].w is a Perlin-style simplex noise with vector output, e.g. (Nx, Ny, Nz)
837
- // J[i].x is X derivative of the i'th component of the noise so J[2].x is dNz/dx
838
- // You can use this to compute the noise, gradient, curl, or divergence:
839
- // float3x4 J = JacobianSimplex_ALU(...);
840
- // float3 VNoise = float3(J[0].w, J[1].w, J[2].w); // 3D noise
841
- // float3 Grad = J[0].xyz; // gradient of J[0].w
842
- // float3 Curl = float3(J[1][2]-J[2][1], J[2][0]-J[0][2], J[0][1]-J[1][2]);
843
- // float Div = J[0][0]+J[1][1]+J[2][2];
844
- // All of these are confirmed to compile out all unneeded terms.
845
- // So Grad of X doesn't compute Y or Z components, and VNoise doesn't do any of the derivative computation.
846
- float3x4 JacobianSimplex_ALU(float3 v, bool bTiling, float RepeatSize)
847
- {
848
- int3 MGradientMask = int3(0x8000, 0x4000, 0x2000);
849
- float3 MGradientScale = float3(1. / 0x4000, 1. / 0x2000, 1. / 0x1000);
850
-
851
- // corners of tetrahedron
852
- float4x3 T = SimplexCorners(v);
853
- // TODO: uint3
854
- int3 rand = int3(0);
855
- float4x3 gvec0 = float4x3(1.0);
856
- float4x3 gvec1 = float4x3(1.0);
857
- float4x3 gvec2 = float4x3(1.0);
858
- float4x3 fv = float4x3(1.0);
859
- float3x4 grad = float3x4(1.0);
860
-
861
- // processing of tetrahedral vertices, unrolled
862
- // to compute gradient at each corner
863
- fv[0] = v - T[0];
864
- rand = Rand3DPCG16(int3(math::floor(NoiseTileWrap(6 * T[0] + 0.5, bTiling, RepeatSize))));
865
- gvec0[0] = float3(int3(rand.x,rand.x,rand.x) & MGradientMask) * MGradientScale - 1;
866
- gvec1[0] = float3(int3(rand.y,rand.y,rand.y) & MGradientMask) * MGradientScale - 1;
867
- gvec2[0] = float3(int3(rand.z,rand.z,rand.z) & MGradientMask) * MGradientScale - 1;
868
- grad[0][0] = math::dot(gvec0[0], fv[0]);
869
- grad[1][0] = math::dot(gvec1[0], fv[0]);
870
- grad[2][0] = math::dot(gvec2[0], fv[0]);
871
-
872
- fv[1] = v - T[1];
873
- rand = Rand3DPCG16(int3(math::floor(NoiseTileWrap(6 * T[1] + 0.5, bTiling, RepeatSize))));
874
- gvec0[1] = float3(int3(rand.x,rand.x,rand.x) & MGradientMask) * MGradientScale - 1;
875
- gvec1[1] = float3(int3(rand.y,rand.y,rand.y) & MGradientMask) * MGradientScale - 1;
876
- gvec1[1] = float3(int3(rand.z,rand.z,rand.z) & MGradientMask) * MGradientScale - 1;
877
- grad[0][1] = math::dot(gvec0[1], fv[1]);
878
- grad[1][1] = math::dot(gvec1[1], fv[1]);
879
- grad[2][1] = math::dot(gvec2[1], fv[1]);
880
-
881
- fv[2] = v - T[2];
882
- rand = Rand3DPCG16(int3(math::floor(NoiseTileWrap(6 * T[2] + 0.5, bTiling, RepeatSize))));
883
- gvec0[2] = float3(int3(rand.x,rand.x,rand.x) & MGradientMask) * MGradientScale - 1;
884
- gvec1[2] = float3(int3(rand.y,rand.y,rand.y) & MGradientMask) * MGradientScale - 1;
885
- gvec2[2] = float3(int3(rand.z,rand.z,rand.z) & MGradientMask) * MGradientScale - 1;
886
- grad[0][2] = math::dot(gvec0[2], fv[2]);
887
- grad[1][2] = math::dot(gvec1[2], fv[2]);
888
- grad[2][2] = math::dot(gvec2[2], fv[2]);
889
-
890
- fv[3] = v - T[3];
891
- rand = Rand3DPCG16(int3(math::floor(NoiseTileWrap(6 * T[3] + 0.5, bTiling, RepeatSize))));
892
- gvec0[3] = float3(int3(rand.x,rand.x,rand.x) & MGradientMask) * MGradientScale - 1;
893
- gvec1[3] = float3(int3(rand.y,rand.y,rand.y) & MGradientMask) * MGradientScale - 1;
894
- gvec2[3] = float3(int3(rand.z,rand.z,rand.z) & MGradientMask) * MGradientScale - 1;
895
- grad[0][3] = math::dot(gvec0[3], fv[3]);
896
- grad[1][3] = math::dot(gvec1[3], fv[3]);
897
- grad[2][3] = math::dot(gvec2[3], fv[3]);
898
-
899
- // blend gradients
900
- float4 sv = SimplexSmooth(fv);
901
- float3x4 ds = SimplexDSmooth(fv);
902
-
903
- float3x4 jacobian = float3x4(1.0);
904
- float3 vec0 = gvec0*sv + grad[0]*ds; // NOTE: mdl is column major, convert from UE4 (row major)
905
- jacobian[0] = float4(vec0.x, vec0.y, vec0.z, math::dot(sv, grad[0]));
906
- float3 vec1 = gvec1*sv + grad[1]*ds;
907
- jacobian[1] = float4(vec1.x, vec1.y, vec1.z, math::dot(sv, grad[1]));
908
- float3 vec2 = gvec2*sv + grad[2]*ds;
909
- jacobian[2] = float4(vec2.x, vec2.y, vec2.z, math::dot(sv, grad[2]));
910
-
911
- return jacobian;
912
- }
913
-
914
- // While RepeatSize is a float here, the expectation is that it would be largely integer values coming in from the UI. The downstream logic assumes
915
- // floats for all called functions (NoiseTileWrap) and this prevents any float-to-int conversion errors from automatic type conversion.
916
- float Noise3D_Multiplexer(uniform texture_2d PerlinNoiseGradientTexture, uniform texture_3d PerlinNoise3DTexture, int Function, float3 Position, int Quality, bool bTiling, float RepeatSize)
917
- {
918
- // verified, HLSL compiled out the switch if Function is a constant
919
- switch(Function)
920
- {
921
- case 0:
922
- return SimplexNoise3D_TEX(PerlinNoiseGradientTexture, Position);
923
- case 1:
924
- return GradientNoise3D_TEX(PerlinNoiseGradientTexture, Position, bTiling, RepeatSize);
925
- case 2:
926
- return FastGradientPerlinNoise3D_TEX(PerlinNoise3DTexture, Position);
927
- case 3:
928
- return GradientNoise3D_ALU(Position, bTiling, RepeatSize);
929
- case 4:
930
- return ValueNoise3D_ALU(Position, bTiling, RepeatSize);
931
- case 5:
932
- return VoronoiNoise3D_ALU(Position, Quality, bTiling, RepeatSize, true).w * 2.0 - 1.0;
933
- }
934
- return 0;
935
- }
936
- //----------------------------------------------------------
937
-
938
- export float noise(uniform texture_2d PerlinNoiseGradientTexture, uniform texture_3d PerlinNoise3DTexture, float3 Position, float Scale, float Quality, float Function, float Turbulence, float Levels, float OutputMin, float OutputMax, float LevelScale, float FilterWidth, float Tiling, float RepeatSize)
939
- [[
940
- anno::description("Noise"),
941
- anno::noinline()
942
- ]]
943
- {
944
- Position *= Scale;
945
- FilterWidth *= Scale;
946
-
947
- float Out = 0.0f;
948
- float OutScale = 1.0f;
949
- float InvLevelScale = 1.0f / LevelScale;
950
-
951
- int iFunction(Function);
952
- int iQuality(Quality);
953
- int iLevels(Levels);
954
- bool bTurbulence(Turbulence);
955
- bool bTiling(Tiling);
956
-
957
- for(int i = 0; i < iLevels; ++i)
958
- {
959
- // fade out noise level that are too high frequent (not done through dynamic branching as it usually requires gradient instructions)
960
- OutScale *= math::saturate(1.0 - FilterWidth);
961
-
962
- if(bTurbulence)
963
- {
964
- Out += math::abs(Noise3D_Multiplexer(PerlinNoiseGradientTexture, PerlinNoise3DTexture, iFunction, Position, iQuality, bTiling, RepeatSize)) * OutScale;
965
- }
966
- else
967
- {
968
- Out += Noise3D_Multiplexer(PerlinNoiseGradientTexture, PerlinNoise3DTexture, iFunction, Position, iQuality, bTiling, RepeatSize) * OutScale;
969
- }
970
-
971
- Position *= LevelScale;
972
- RepeatSize *= LevelScale;
973
- OutScale *= InvLevelScale;
974
- FilterWidth *= LevelScale;
975
- }
976
-
977
- if(!bTurbulence)
978
- {
979
- // bring -1..1 to 0..1 range
980
- Out = Out * 0.5f + 0.5f;
981
- }
982
-
983
- // Out is in 0..1 range
984
- return math::lerp(OutputMin, OutputMax, Out);
985
- }
986
-
987
- // Material node for noise functions returning a vector value
988
- // @param LevelScale usually 2 but higher values allow efficient use of few levels
989
- // @return in user defined range (OutputMin..OutputMax)
990
- export float4 vector4_noise(float3 Position, float Quality, float Function, float Tiling, float TileSize)
991
- [[
992
- anno::description("Vector Noise"),
993
- anno::noinline()
994
- ]]
995
- {
996
- float4 result = float4(0,0,0,1);
997
- float3 ret = float3(0);
998
- int iQuality = int(Quality);
999
- int iFunction = int(Function);
1000
- bool bTiling = Tiling > 0.0;
1001
-
1002
- float3x4 Jacobian = JacobianSimplex_ALU(Position, bTiling, TileSize); // compiled out if not used
1003
-
1004
- // verified, HLSL compiled out the switch if Function is a constant
1005
- switch (iFunction)
1006
- {
1007
- case 0: // Cellnoise
1008
- ret = float3(Rand3DPCG16(int3(math::floor(NoiseTileWrap(Position, bTiling, TileSize))))) / 0xffff;
1009
- result = float4(ret.x, ret.y, ret.z, 1);
1010
- break;
1011
- case 1: // Color noise
1012
- ret = float3(Jacobian[0].w, Jacobian[1].w, Jacobian[2].w);
1013
- result = float4(ret.x, ret.y, ret.z, 1);
1014
- break;
1015
- case 2: // Gradient
1016
- result = Jacobian[0];
1017
- break;
1018
- case 3: // Curl
1019
- ret = float3(Jacobian[2][1] - Jacobian[1][2], Jacobian[0][2] - Jacobian[2][0], Jacobian[1][0] - Jacobian[0][1]);
1020
- result = float4(ret.x, ret.y, ret.z, 1);
1021
- break;
1022
- case 4: // Voronoi
1023
- result = VoronoiNoise3D_ALU(Position, iQuality, bTiling, TileSize, false);
1024
- break;
1025
- }
1026
- return result;
1027
- }
1028
-
1029
- export float3 vector3_noise(float3 Position, float Quality, float Function, float Tiling, float TileSize)
1030
- [[
1031
- anno::description("Vector Noise float3 version"),
1032
- anno::noinline()
1033
- ]]
1034
- {
1035
- float4 noise = vector4_noise(Position, Quality, Function, Tiling, TileSize);
1036
- return float3(noise.x, noise.y, noise.z);
1037
- }
1038
-
1039
-
1040
- // workaround for ue4 fresnel (without supporting for camera vector) : replacing it with 0.0, means facing to the view
1041
- export float fresnel(float exponent [[anno::unused()]], float base_reflect_fraction [[anno::unused()]], float3 normal [[anno::unused()]])
1042
- [[
1043
- anno::description("Fresnel"),
1044
- anno::noinline()
1045
- ]]
1046
- {
1047
- return 0.0;
1048
- }
1049
-
1050
- export float fresnel_function(float3 normal_vector [[anno::unused()]], float3 camera_vector [[anno::unused()]],
1051
- bool invert_fresnel [[anno::unused()]], float power [[anno::unused()]],
1052
- bool use_cheap_contrast [[anno::unused()]], float cheap_contrast_dark [[anno::unused()]], float cheap_contrast_bright [[anno::unused()]],
1053
- bool clamp_fresnel_dot_product [[anno::unused()]])
1054
- [[
1055
- anno::description("Fresnel Function"),
1056
- anno::noinline()
1057
- ]]
1058
- {
1059
- return 0.0;
1060
- }
1061
-
1062
- export float3 camera_vector(uniform bool up_z = true)
1063
- [[
1064
- anno::description("Camera Vector"),
1065
- anno::noinline()
1066
- ]]
1067
- {
1068
- // assume camera postion is 0,0,0
1069
- return math::normalize(float3(0) - convert_to_left_hand(state::transform_point(state::coordinate_internal,state::coordinate_world,state::position()), up_z));
1070
- }
1071
-
1072
- export float pixel_depth()
1073
- [[
1074
- anno::description("Pixel Depth"),
1075
- anno::noinline()
1076
- ]]
1077
- {
1078
- return 256.0f;
1079
- }
1080
-
1081
- export float scene_depth()
1082
- [[
1083
- anno::description("Scene Depth")
1084
- ]]
1085
- {
1086
- return 65500.0f;
1087
- }
1088
-
1089
- export float3 scene_color()
1090
- [[
1091
- anno::description("Scene Color")
1092
- ]]
1093
- {
1094
- return float3(1.0f);
1095
- }
1096
-
1097
- export float4 vertex_color()
1098
- [[
1099
- anno::description("Vertex Color"),
1100
- anno::noinline()
1101
- ]]
1102
- {
1103
- return float4(1.0f);
1104
- }
1105
-
1106
- export float4 vertex_color_from_coordinate(int VertexColorCoordinateIndex)
1107
- [[
1108
- anno::description("Vertex Color for float2 PrimVar"),
1109
- anno::noinline()
1110
- ]]
1111
- {
1112
- // Kit only supports 4 uv sets, 2 uvs are available to vertex color. if vertex color index is invalid, output the constant WHITE color intead
1113
- return (VertexColorCoordinateIndex > 2) ? float4(1.0f) : float4(state::texture_coordinate(VertexColorCoordinateIndex).x, state::texture_coordinate(VertexColorCoordinateIndex).y, state::texture_coordinate(VertexColorCoordinateIndex+1).x, state::texture_coordinate(VertexColorCoordinateIndex+1).y);
1114
- }
1115
-
1116
- export float3 camera_position()
1117
- [[
1118
- anno::description("Camera Position"),
1119
- anno::noinline()
1120
- ]]
1121
- {
1122
- return float3(1000.0f, 0, 0);
1123
- }
1124
-
1125
- export float3 rotate_about_axis(float4 NormalizedRotationAxisAndAngle, float3 PositionOnAxis, float3 Position)
1126
- [[
1127
- anno::description("Rotates Position about the given axis by the given angle")
1128
- ]]
1129
- {
1130
- // Project Position onto the rotation axis and find the closest point on the axis to Position
1131
- float3 NormalizedRotationAxis = float3(NormalizedRotationAxisAndAngle.x,NormalizedRotationAxisAndAngle.y,NormalizedRotationAxisAndAngle.z);
1132
- float3 ClosestPointOnAxis = PositionOnAxis + NormalizedRotationAxis * math::dot(NormalizedRotationAxis, Position - PositionOnAxis);
1133
- // Construct orthogonal axes in the plane of the rotation
1134
- float3 UAxis = Position - ClosestPointOnAxis;
1135
- float3 VAxis = math::cross(NormalizedRotationAxis, UAxis);
1136
- float[2] SinCosAngle = math::sincos(NormalizedRotationAxisAndAngle.w);
1137
- // Rotate using the orthogonal axes
1138
- float3 R = UAxis * SinCosAngle[1] + VAxis * SinCosAngle[0];
1139
- // Reconstruct the rotated world space position
1140
- float3 RotatedPosition = ClosestPointOnAxis + R;
1141
- // Convert from position to a position offset
1142
- return RotatedPosition - Position;
1143
- }
1144
-
1145
- export float2 rotate_scale_offset_texcoords(float2 InTexCoords, float4 InRotationScale, float2 InOffset)
1146
- [[
1147
- anno::description("Returns a float2 texture coordinate after 2x2 transform and offset applied")
1148
- ]]
1149
- {
1150
- return float2(math::dot(InTexCoords, float2(InRotationScale.x, InRotationScale.y)), math::dot(InTexCoords, float2(InRotationScale.z, InRotationScale.w))) + InOffset;
1151
- }
1152
-
1153
- export float3 reflection_custom_world_normal(float3 WorldNormal, bool bNormalizeInputNormal, uniform bool up_z = true)
1154
- [[
1155
- anno::description("Reflection vector about the specified world space normal")
1156
- ]]
1157
- {
1158
- if (bNormalizeInputNormal)
1159
- {
1160
- WorldNormal = math::normalize(WorldNormal);
1161
- }
1162
-
1163
- return -camera_vector(up_z) + WorldNormal * math::dot(WorldNormal, camera_vector(up_z)) * 2.0;
1164
- }
1165
-
1166
- export float3 reflection_vector(uniform bool up_z = true)
1167
- [[
1168
- anno::description("Reflection Vector"),
1169
- anno::noinline()
1170
- ]]
1171
- {
1172
- float3 normal = convert_to_left_hand(state::transform_normal(state::coordinate_internal,state::coordinate_world,state::normal()), up_z, false);
1173
- return reflection_custom_world_normal(normal, false, up_z);
1174
- }
1175
-
1176
- export float dither_temporalAA(float AlphaThreshold = 0.5f, float Random = 1.0f [[anno::unused()]])
1177
- [[
1178
- anno::description("Dither TemporalAA"),
1179
- anno::noinline()
1180
- ]]
1181
- {
1182
- return AlphaThreshold;
1183
- }
1184
-
1185
- export float3 black_body( float Temp )
1186
- [[
1187
- anno::description("Black Body"),
1188
- anno::noinline()
1189
- ]]
1190
- {
1191
- float u = ( 0.860117757f + 1.54118254e-4f * Temp + 1.28641212e-7f * Temp*Temp ) / ( 1.0f + 8.42420235e-4f * Temp + 7.08145163e-7f * Temp*Temp );
1192
- float v = ( 0.317398726f + 4.22806245e-5f * Temp + 4.20481691e-8f * Temp*Temp ) / ( 1.0f - 2.89741816e-5f * Temp + 1.61456053e-7f * Temp*Temp );
1193
-
1194
- float x = 3*u / ( 2*u - 8*v + 4 );
1195
- float y = 2*v / ( 2*u - 8*v + 4 );
1196
- float z = 1 - x - y;
1197
-
1198
- float Y = 1;
1199
- float X = Y/y * x;
1200
- float Z = Y/y * z;
1201
-
1202
- float3x3 XYZtoRGB = float3x3(
1203
- float3(3.2404542, -1.5371385, -0.4985314),
1204
- float3(-0.9692660, 1.8760108, 0.0415560),
1205
- float3(0.0556434, -0.2040259, 1.0572252)
1206
- );
1207
-
1208
- return XYZtoRGB * float3( X, Y, Z ) * math::pow( 0.0004 * Temp, 4 );
1209
- }
1210
-
1211
- export float per_instance_random(uniform texture_2d PerlinNoiseGradientTexture, int NumberInstances)
1212
- [[
1213
- anno::description("Per Instance Random"),
1214
- anno::noinline()
1215
- ]]
1216
- {
1217
- float weight = state::object_id() / float(NumberInstances);
1218
- return NumberInstances == 0 ? 0.0 : tex::lookup_float4(PerlinNoiseGradientTexture, float2(weight, 1.0 - weight), tex::wrap_repeat, tex::wrap_repeat).x;
1219
- }
1220
-
1221
- //------------------ Hair from UE4 -----------------------
1222
- float3 hair_absorption_to_color(float3 A)
1223
- {
1224
- const float B = 0.3f;
1225
- float b2 = B * B;
1226
- float b3 = B * b2;
1227
- float b4 = b2 * b2;
1228
- float b5 = B * b4;
1229
- float D = (5.969f - 0.215f * B + 2.532f * b2 - 10.73f * b3 + 5.574f * b4 + 0.245f * b5);
1230
- return math::exp(-math::sqrt(A) * D);
1231
- }
1232
-
1233
- float3 hair_color_to_absorption(float3 C)
1234
- {
1235
- const float B = 0.3f;
1236
- float b2 = B * B;
1237
- float b3 = B * b2;
1238
- float b4 = b2 * b2;
1239
- float b5 = B * b4;
1240
- float D = (5.969f - 0.215f * B + 2.532f * b2 - 10.73f * b3 + 5.574f * b4 + 0.245f * b5);
1241
- return math::pow(math::log(C) / D, 2.0f);
1242
- }
1243
-
1244
- export float3 get_hair_color_from_melanin(float InMelanin, float InRedness, float3 InDyeColor)
1245
- [[
1246
- anno::description("Hair Color")
1247
- ]]
1248
- {
1249
- InMelanin = math::saturate(InMelanin);
1250
- InRedness = math::saturate(InRedness);
1251
- float Melanin = -math::log(math::max(1 - InMelanin, 0.0001f));
1252
- float Eumelanin = Melanin * (1 - InRedness);
1253
- float Pheomelanin = Melanin * InRedness;
1254
-
1255
- float3 DyeAbsorption = hair_color_to_absorption(math::saturate(InDyeColor));
1256
- float3 Absorption = Eumelanin * float3(0.506f, 0.841f, 1.653f) + Pheomelanin * float3(0.343f, 0.733f, 1.924f);
1257
-
1258
- return hair_absorption_to_color(Absorption + DyeAbsorption);
1259
- }
1260
-
1261
- export float3 local_object_bounds_min()
1262
- [[
1263
- anno::description("Local Object Bounds Min"),
1264
- anno::noinline()
1265
- ]]
1266
- {
1267
- return float3(0.0);
1268
- }
1269
-
1270
- export float3 local_object_bounds_max()
1271
- [[
1272
- anno::description("Local Object Bounds Max"),
1273
- anno::noinline()
1274
- ]]
1275
- {
1276
- return float3(100.0);
1277
- }
1278
-
1279
- export float3 object_bounds()
1280
- [[
1281
- anno::description("Object Bounds"),
1282
- anno::noinline()
1283
- ]]
1284
- {
1285
- return float3(100.0);
1286
- }
1287
-
1288
- export float object_radius()
1289
- [[
1290
- anno::description("Object Radius"),
1291
- anno::noinline()
1292
- ]]
1293
- {
1294
- return 100.0f;
1295
- }
1296
-
1297
- export float3 object_world_position(uniform bool up_z = true)
1298
- [[
1299
- anno::description("Object World Position"),
1300
- anno::noinline()
1301
- ]]
1302
- {
1303
- return convert_to_left_hand(state::transform_point(state::coordinate_internal,state::coordinate_world,state::position()), up_z)*state::meters_per_scene_unit()*100.0;
1304
- }
1305
-
1306
- export float3 object_orientation()
1307
- [[
1308
- anno::description("Object Orientation"),
1309
- anno::noinline()
1310
- ]]
1311
- {
1312
- return float3(0);
1313
- }
1314
-
1315
- export float rcp(float x)
1316
- [[
1317
- anno::description("hlsl rcp"),
1318
- anno::noinline()
1319
- ]]
1320
- {
1321
- return 1.0f / x;
1322
- }
1323
-
1324
- export float2 rcp(float2 x)
1325
- [[
1326
- anno::description("hlsl rcp"),
1327
- anno::noinline()
1328
- ]]
1329
- {
1330
- return 1.0f / x;
1331
- }
1332
-
1333
- export float3 rcp(float3 x)
1334
- [[
1335
- anno::description("hlsl rcp"),
1336
- anno::noinline()
1337
- ]]
1338
- {
1339
- return 1.0f / x;
1340
- }
1341
-
1342
- export float4 rcp(float4 x)
1343
- [[
1344
- anno::description("hlsl rcp"),
1345
- anno::noinline()
1346
- ]]
1347
- {
1348
- return 1.0f / x;
1349
- }
1350
-
1351
- export int BitFieldExtractI32(int Data, int Size, int Offset)
1352
- [[
1353
- anno::description("BitFieldExtractI32 int"),
1354
- anno::noinline()
1355
- ]]
1356
- {
1357
- Size &= 3;
1358
- Offset &= 3;
1359
-
1360
- if (Size == 0)
1361
- return 0;
1362
- else if (Offset + Size < 32)
1363
- return (Data << (32 - Size - Offset)) >> (32 - Size);
1364
- else
1365
- return Data >> Offset;
1366
- }
1367
-
1368
- export int BitFieldExtractI32(float Data, float Size, float Offset)
1369
- [[
1370
- anno::description("BitFieldExtractI32 float"),
1371
- anno::noinline()
1372
- ]]
1373
- {
1374
- return BitFieldExtractI32(int(Data), int(Size), int(Offset));
1375
- }
1376
-
1377
- export int BitFieldExtractU32(float Data, float Size, float Offset)
1378
- [[
1379
- anno::description("BitFieldExtractU32 float"),
1380
- anno::noinline()
1381
- ]]
1382
- {
1383
- return BitFieldExtractI32(Data, Size, Offset);
1384
- }
1385
-
1386
- export int BitFieldExtractU32(int Data, int Size, int Offset)
1387
- [[
1388
- anno::description("BitFieldExtractU32 int"),
1389
- anno::noinline()
1390
- ]]
1391
- {
1392
- return BitFieldExtractI32(Data, Size, Offset);
1393
- }
1394
-
1395
- export float3 EyeAdaptationInverseLookup(float3 LightValue, float Alpha)
1396
- [[
1397
- anno::description("EyeAdaptationInverseLookup"),
1398
- anno::noinline()
1399
- ]]
1400
- {
1401
- float Adaptation = 1.0f;
1402
-
1403
- // When Alpha=0.0, we want to multiply by 1.0. when Alpha = 1.0, we want to multiply by 1/Adaptation.
1404
- // So the lerped value is:
1405
- // LerpLogScale = Lerp(log(1),log(1/Adaptaiton),T)
1406
- // Which is simplified as:
1407
- // LerpLogScale = Lerp(0,-log(Adaptation),T)
1408
- // LerpLogScale = -T * logAdaptation;
1409
-
1410
- float LerpLogScale = -Alpha * math::log(Adaptation);
1411
- float Scale = math::exp(LerpLogScale);
1412
- return LightValue * Scale;
1413
- }
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:edd3067b28e9e123c8140a132c6cc33a8c555def0a7b22b50e174e5f26532ff3
3
+ size 50693
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
kujiale_0042/Materials/OmniUe4Translucent.mdl CHANGED
@@ -1,233 +1,3 @@
1
- /***************************************************************************************************
2
- * Copyright 2020 NVIDIA Corporation. All rights reserved.
3
- *
4
- * Redistribution and use in source and binary forms, with or without
5
- * modification, are permitted provided that the following conditions
6
- * are met:
7
- * * Redistributions of source code must retain the above copyright
8
- * notice, this list of conditions and the following disclaimer.
9
- * * Redistributions in binary form must reproduce the above copyright
10
- * notice, this list of conditions and the following disclaimer in the
11
- * documentation and/or other materials provided with the distribution.
12
- * * Neither the name of NVIDIA CORPORATION nor the names of its
13
- * contributors may be used to endorse or promote products derived
14
- * from this software without specific prior written permission.
15
- *
16
- * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
17
- * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18
- * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
19
- * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
20
- * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
21
- * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22
- * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
23
- * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
24
- * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25
- * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26
- * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
- **************************************************************************************************/
28
-
29
- //* 1.0.0 - first version
30
- //* 1.0.1 - Emissive color affected by opacity
31
- // - Support opacity mask
32
- //* 1.0.2 - Unlit translucent
33
- //* 1.0.3 - specular bsdf instead of microfacet ggx smith bsdf
34
- //* 1.0.4 - using absolute import paths when importing standard modules
35
-
36
- mdl 1.3;
37
-
38
- import ::df::*;
39
- import ::state::*;
40
- import ::math::*;
41
- import ::tex::*;
42
- import ::anno::*;
43
-
44
- float emissive_multiplier()
45
- [[
46
- anno::description("the multiplier to convert UE4 emissive to raw data"),
47
- anno::noinline()
48
- ]]
49
- {
50
- return 20.0f * 128.0f;
51
- }
52
-
53
- color get_translucent_tint(color base_color, float opacity)
54
- [[
55
- anno::description("base color of UE4 translucent"),
56
- anno::noinline()
57
- ]]
58
- {
59
- return math::lerp(color(1.0), base_color, opacity);
60
- }
61
-
62
- // Just for UE4 distilling
63
- float get_translucent_opacity(float opacity)
64
- [[
65
- anno::noinline()
66
- ]]
67
- {
68
- return opacity;
69
- }
70
-
71
- color get_emissive_intensity(color emissive, float opacity)
72
- [[
73
- anno::description("emissive color of UE4 translucent"),
74
- anno::noinline()
75
- ]]
76
- {
77
- return emissive * opacity;
78
- }
79
-
80
- float3 tangent_space_normal(
81
- float3 normal = float3(0.0,0.0,1.0),
82
- float3 tangent_u = state::texture_tangent_u(0),
83
- float3 tangent_v = state::texture_tangent_v(0)
84
- )
85
- [[
86
- anno::description("Interprets the vector in tangent space"),
87
- anno::noinline()
88
- ]]
89
- {
90
- return math::normalize(
91
- tangent_u * normal.x -
92
- tangent_v * normal.y + /* flip_tangent_v */
93
- state::normal() * (normal.z));
94
- }
95
-
96
- float3 world_space_normal(
97
- float3 normal = float3(0.0,0.0,1.0),
98
- float3 tangent_u = state::texture_tangent_u(0),
99
- float3 tangent_v = state::texture_tangent_v(0)
100
- )
101
- [[
102
- anno::description("Interprets the vector in world space"),
103
- anno::noinline()
104
- ]]
105
- {
106
- return tangent_space_normal(
107
- math::normalize(
108
- normal.x * float3(tangent_u.x, tangent_v.x, state::normal().x) -
109
- normal.y * float3(tangent_u.y, tangent_v.y, state::normal().y) +
110
- normal.z * float3(tangent_u.z, tangent_v.z, state::normal().z)),
111
- tangent_u,
112
- tangent_v
113
- );
114
- }
115
-
116
- export material OmniUe4Translucent(
117
- float3 base_color = float3(0.0, 0.0, 0.0),
118
- float metallic = 0.0,
119
- float roughness = 0.5,
120
- float specular = 0.5,
121
- float3 normal = float3(0.0,0.0,1.0),
122
- uniform bool enable_opacity = true,
123
- float opacity = 1.0,
124
- float opacity_mask = 1.0,
125
- float3 emissive_color = float3(0.0, 0.0, 0.0),
126
- float3 displacement = float3(0.0),
127
- uniform float refraction = 1.0,
128
- uniform bool two_sided = false,
129
- uniform bool is_tangent_space_normal = true,
130
- uniform bool is_unlit = false
131
- )
132
- [[
133
- anno::display_name("Omni UE4 Translucent"),
134
- anno::description("Omni UE4 Translucent, supports UE4 Translucent shading model"),
135
- anno::version( 1, 0, 0),
136
- anno::author("NVIDIA CORPORATION"),
137
- anno::key_words(string[]("omni", "UE4", "omniverse", "translucent"))
138
- ]]
139
- = let {
140
- color final_base_color = math::saturate(base_color);
141
- float final_metallic = math::min(math::max(metallic, 0.0f), 0.99f);
142
- float final_roughness = math::saturate(roughness);
143
- float final_specular = math::saturate(specular);
144
- color final_emissive_color = math::max(emissive_color, 0.0f) * emissive_multiplier(); /*factor for converting ue4 emissive to raw value*/
145
- float final_opacity = math::saturate(opacity);
146
- float3 final_normal = math::normalize(normal);
147
-
148
-
149
- // - compute final roughness by squaring the "roughness" parameter
150
- float alpha = final_roughness * final_roughness;
151
- // reduce the reflectivity at grazing angles to avoid "dark edges" for high roughness due to the layering
152
- float grazing_refl = math::max((1.0 - final_roughness), 0.0);
153
-
154
- float3 the_normal = is_unlit ? state::normal() :
155
- (is_tangent_space_normal ?
156
- tangent_space_normal(
157
- normal: final_normal,
158
- tangent_u: state::texture_tangent_u(0),
159
- tangent_v: state::texture_tangent_v(0)
160
- ) : world_space_normal(
161
- normal: final_normal,
162
- tangent_u: state::texture_tangent_u(0),
163
- tangent_v: state::texture_tangent_v(0)
164
- ));
165
-
166
- // for the dielectric component we layer the glossy component on top of the diffuse one,
167
- // the glossy layer has no color tint
168
-
169
- bsdf dielectric_component = df::custom_curve_layer(
170
- weight: final_specular,
171
- normal_reflectivity: 0.08,
172
- grazing_reflectivity: grazing_refl,
173
- layer: df::microfacet_ggx_smith_bsdf(roughness_u: alpha),
174
- base: df::diffuse_reflection_bsdf(tint: final_base_color));
175
-
176
- // the metallic component doesn't have a diffuse component, it's only glossy
177
- // base_color is applied to tint it
178
- bsdf metallic_component = df::microfacet_ggx_smith_bsdf(tint: final_base_color, roughness_u: alpha);
179
-
180
- // final BSDF is a linear blend between dielectric and metallic component
181
- bsdf dielectric_metal_mix =
182
- df::normalized_mix(
183
- components:
184
- df::bsdf_component[](
185
- df::bsdf_component(
186
- component: metallic_component,
187
- weight: final_metallic),
188
- df::bsdf_component(
189
- component: dielectric_component,
190
- weight: 1.0-final_metallic)
191
- )
192
- );
193
-
194
- bsdf frosted_bsdf = df::specular_bsdf(
195
- tint: color(1),
196
- mode: df::scatter_reflect_transmit
197
- );
198
-
199
- bsdf final_mix_bsdf =
200
- is_unlit ? df::specular_bsdf(
201
- tint: get_translucent_tint(base_color: final_base_color, opacity: final_opacity),
202
- mode: df::scatter_reflect_transmit
203
- )
204
- : df::normalized_mix(
205
- components:
206
- df::bsdf_component[](
207
- df::bsdf_component(
208
- component: dielectric_metal_mix,
209
- weight: get_translucent_opacity(final_opacity)),
210
- df::bsdf_component(
211
- component: frosted_bsdf,
212
- weight: 1.0-get_translucent_opacity(final_opacity))
213
- )
214
- );
215
- }
216
- in material(
217
- thin_walled: two_sided, // Graphene?
218
- ior: color(refraction), //refraction
219
- surface: material_surface(
220
- scattering: final_mix_bsdf,
221
- emission:
222
- material_emission (
223
- emission: df::diffuse_edf (),
224
- intensity: get_emissive_intensity(emissive: final_emissive_color, opacity: final_opacity)
225
- )
226
- ),
227
-
228
- geometry: material_geometry(
229
- displacement: displacement,
230
- normal: the_normal,
231
- cutout_opacity: enable_opacity ? opacity_mask : 1.0
232
- )
233
- );
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f8f8398c2f421a2176827f7012a80f65a03c0bd2067d768e2094a4350f67a0af
3
+ size 8535
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
kujiale_0042/Materials/WorldGridMaterial.mdl CHANGED
@@ -1,77 +1,3 @@
1
- mdl 1.6;
2
-
3
- import ::math::*;
4
- import ::state::*;
5
- import ::tex::*;
6
- import ::anno::*;
7
- import ::scene::*;
8
- using .::OmniUe4Function import *;
9
- using .::OmniUe4Base import *;
10
-
11
- export annotation sampler_color();
12
- export annotation sampler_normal();
13
- export annotation sampler_grayscale();
14
- export annotation sampler_alpha();
15
- export annotation sampler_masks();
16
- export annotation sampler_distancefield();
17
- export annotation dither_masked_off();
18
- export annotation world_space_normal();
19
-
20
- export material WorldGridMaterial(
21
- int MaxTexCoordIndex = 3
22
- [[
23
- anno::hidden()
24
- ]])
25
- =
26
- let {
27
- float3 WorldPositionOffset_mdl = float3(0.0,0.0,0.0);
28
- float2 CustomizedUV0_mdl = float2(state::texture_coordinate(math::min(0,MaxTexCoordIndex)).x,1.0-state::texture_coordinate(math::min(0,MaxTexCoordIndex)).y);
29
-
30
- float2 Local0 = (CustomizedUV0_mdl / 2.0);
31
- float2 Local1 = (Local0 / 0.05);
32
- float4 Local2 = ::unpack_normal_map(tex::lookup_float4(texture_2d("./Textures/T_Default_Material_Grid_N.png",::tex::gamma_linear),float2(Local1.x,1.0-Local1.y),tex::wrap_repeat,tex::wrap_repeat));
33
- float3 Local3 = (float3(Local2.x,Local2.y,Local2.z) * float3(0.3,0.3,1.0));
34
-
35
- float3 Normal_mdl = Local3;
36
-
37
- float2 Local4 = (CustomizedUV0_mdl * 20.0);
38
- float4 Local5 = tex::lookup_float4(texture_2d("./Textures/T_Default_Material_Grid_M.png",::tex::gamma_linear),float2(Local4.x,1.0-Local4.y),tex::wrap_repeat,tex::wrap_repeat);
39
- float Local6 = math::lerp(0.4,1.0,Local5.x);
40
- float Local7 = (1.0 - Local6);
41
- float2 Local8 = (Local0 / 0.1);
42
- float4 Local9 = tex::lookup_float4(texture_2d("./Textures/T_Default_Material_Grid_M.png",::tex::gamma_linear),float2(Local8.x,1.0-Local8.y),tex::wrap_repeat,tex::wrap_repeat);
43
- float Local10 = math::lerp(Local9.y,1.0,0.0);
44
- float Local11 = math::lerp(Local6,Local7,Local10);
45
- float4 Local12 = tex::lookup_float4(texture_2d("./Textures/T_Default_Material_Grid_M.png",::tex::gamma_linear),float2(Local0.x,1.0-Local0.y),tex::wrap_repeat,tex::wrap_repeat);
46
- float Local13 = math::lerp(Local9.y,0.0,0.0);
47
- float Local14 = (Local12.y + Local13);
48
- float Local15 = math::lerp(Local14,0.5,0.5);
49
- float Local16 = math::lerp(0.295,0.66,Local15);
50
- float Local17 = (Local16 * 0.5);
51
- float Local18 = (Local11 * Local17);
52
- float Local19 = math::lerp(0.0,0.5,Local12.y);
53
- float Local20 = math::lerp(0.7,1.0,Local9.y);
54
- float Local21 = math::lerp(Local20,1.0,0.0);
55
- float Local22 = (Local21 * 1.0);
56
- float Local23 = (Local19 + Local22);
57
- float Local24 = math::min(math::max(Local23,0.0),1.0);
58
-
59
- float3 EmissiveColor_mdl = float3(0.0,0.0,0.0);
60
- float OpacityMask_mdl = 1.0;
61
- float3 BaseColor_mdl = float3(Local18,Local18,Local18);
62
- float Metallic_mdl = 0.0;
63
- float Specular_mdl = 0.5;
64
- float Roughness_mdl = Local24;
65
- float SurfaceThickness_mdl = 0.01;
66
-
67
- } in
68
- ::OmniUe4Base(
69
- base_color: BaseColor_mdl,
70
- metallic: Metallic_mdl,
71
- roughness: Roughness_mdl,
72
- specular: Specular_mdl,
73
- normal: Normal_mdl,
74
- opacity: OpacityMask_mdl,
75
- emissive_color: EmissiveColor_mdl,
76
- displacement: WorldPositionOffset_mdl,
77
- two_sided: false);
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d9a289a30070c90a3500f832985c683c133587bfdcab00ccf3a2af35d8fa25fe
3
+ size 3108
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
kujiale_0042/Meshes/bathroom_product_0000.usd CHANGED
Binary files a/kujiale_0042/Meshes/bathroom_product_0000.usd and b/kujiale_0042/Meshes/bathroom_product_0000.usd differ
 
kujiale_0042/Meshes/bathroom_product_0002.usd CHANGED
Binary files a/kujiale_0042/Meshes/bathroom_product_0002.usd and b/kujiale_0042/Meshes/bathroom_product_0002.usd differ
 
kujiale_0042/Meshes/bathroom_product_0004.usd CHANGED
Binary files a/kujiale_0042/Meshes/bathroom_product_0004.usd and b/kujiale_0042/Meshes/bathroom_product_0004.usd differ
 
kujiale_0042/Meshes/book_0000.usd CHANGED
Binary files a/kujiale_0042/Meshes/book_0000.usd and b/kujiale_0042/Meshes/book_0000.usd differ
 
kujiale_0042/Meshes/book_0001.usd CHANGED
Binary files a/kujiale_0042/Meshes/book_0001.usd and b/kujiale_0042/Meshes/book_0001.usd differ
 
kujiale_0042/Meshes/book_0002.usd CHANGED
Binary files a/kujiale_0042/Meshes/book_0002.usd and b/kujiale_0042/Meshes/book_0002.usd differ
 
kujiale_0042/Meshes/book_0003.usd CHANGED
Binary files a/kujiale_0042/Meshes/book_0003.usd and b/kujiale_0042/Meshes/book_0003.usd differ
 
kujiale_0042/Meshes/book_0004.usd CHANGED
Binary files a/kujiale_0042/Meshes/book_0004.usd and b/kujiale_0042/Meshes/book_0004.usd differ
 
kujiale_0042/Meshes/book_0005.usd CHANGED
Binary files a/kujiale_0042/Meshes/book_0005.usd and b/kujiale_0042/Meshes/book_0005.usd differ
 
kujiale_0042/Meshes/book_0006.usd CHANGED
Binary files a/kujiale_0042/Meshes/book_0006.usd and b/kujiale_0042/Meshes/book_0006.usd differ
 
kujiale_0042/Meshes/book_0007.usd CHANGED
Binary files a/kujiale_0042/Meshes/book_0007.usd and b/kujiale_0042/Meshes/book_0007.usd differ
 
kujiale_0042/Meshes/book_0008.usd CHANGED
Binary files a/kujiale_0042/Meshes/book_0008.usd and b/kujiale_0042/Meshes/book_0008.usd differ
 
kujiale_0042/Meshes/book_0009.usd CHANGED
Binary files a/kujiale_0042/Meshes/book_0009.usd and b/kujiale_0042/Meshes/book_0009.usd differ
 
kujiale_0042/Meshes/book_0010.usd CHANGED
Binary files a/kujiale_0042/Meshes/book_0010.usd and b/kujiale_0042/Meshes/book_0010.usd differ
 
kujiale_0042/Meshes/book_0011.usd CHANGED
Binary files a/kujiale_0042/Meshes/book_0011.usd and b/kujiale_0042/Meshes/book_0011.usd differ
 
kujiale_0042/Meshes/book_0012.usd CHANGED
Binary files a/kujiale_0042/Meshes/book_0012.usd and b/kujiale_0042/Meshes/book_0012.usd differ
 
kujiale_0042/Meshes/book_0013.usd CHANGED
Binary files a/kujiale_0042/Meshes/book_0013.usd and b/kujiale_0042/Meshes/book_0013.usd differ
 
kujiale_0042/Meshes/book_0014.usd CHANGED
Binary files a/kujiale_0042/Meshes/book_0014.usd and b/kujiale_0042/Meshes/book_0014.usd differ
 
kujiale_0042/Meshes/book_0015.usd CHANGED
Binary files a/kujiale_0042/Meshes/book_0015.usd and b/kujiale_0042/Meshes/book_0015.usd differ
 
kujiale_0042/Meshes/book_0016.usd CHANGED
Binary files a/kujiale_0042/Meshes/book_0016.usd and b/kujiale_0042/Meshes/book_0016.usd differ
 
kujiale_0042/Meshes/book_0017.usd CHANGED
Binary files a/kujiale_0042/Meshes/book_0017.usd and b/kujiale_0042/Meshes/book_0017.usd differ
 
kujiale_0042/Meshes/book_0018.usd CHANGED
Binary files a/kujiale_0042/Meshes/book_0018.usd and b/kujiale_0042/Meshes/book_0018.usd differ
 
kujiale_0042/Meshes/book_0019.usd CHANGED
Binary files a/kujiale_0042/Meshes/book_0019.usd and b/kujiale_0042/Meshes/book_0019.usd differ
 
kujiale_0042/Meshes/ceiling_0006.usd CHANGED
Binary files a/kujiale_0042/Meshes/ceiling_0006.usd and b/kujiale_0042/Meshes/ceiling_0006.usd differ
 
kujiale_0042/Meshes/ceiling_0007.usd CHANGED
Binary files a/kujiale_0042/Meshes/ceiling_0007.usd and b/kujiale_0042/Meshes/ceiling_0007.usd differ
 
kujiale_0042/Meshes/ceiling_0008.usd CHANGED
Binary files a/kujiale_0042/Meshes/ceiling_0008.usd and b/kujiale_0042/Meshes/ceiling_0008.usd differ
 
kujiale_0042/Meshes/ceiling_0009.usd CHANGED
Binary files a/kujiale_0042/Meshes/ceiling_0009.usd and b/kujiale_0042/Meshes/ceiling_0009.usd differ
 
kujiale_0042/Meshes/ceiling_0010.usd CHANGED
Binary files a/kujiale_0042/Meshes/ceiling_0010.usd and b/kujiale_0042/Meshes/ceiling_0010.usd differ
 
kujiale_0042/Meshes/ceiling_0011.usd CHANGED
Binary files a/kujiale_0042/Meshes/ceiling_0011.usd and b/kujiale_0042/Meshes/ceiling_0011.usd differ
 
kujiale_0042/Meshes/cup_0000.usd CHANGED
Binary files a/kujiale_0042/Meshes/cup_0000.usd and b/kujiale_0042/Meshes/cup_0000.usd differ
 
kujiale_0042/Meshes/curtain_0003.usd CHANGED
Binary files a/kujiale_0042/Meshes/curtain_0003.usd and b/kujiale_0042/Meshes/curtain_0003.usd differ
 
kujiale_0042/Meshes/doorsill_0000.usd CHANGED
Binary files a/kujiale_0042/Meshes/doorsill_0000.usd and b/kujiale_0042/Meshes/doorsill_0000.usd differ
 
kujiale_0042/Meshes/doorsill_0001.usd CHANGED
Binary files a/kujiale_0042/Meshes/doorsill_0001.usd and b/kujiale_0042/Meshes/doorsill_0001.usd differ
 
kujiale_0042/Meshes/doorsill_0002.usd CHANGED
Binary files a/kujiale_0042/Meshes/doorsill_0002.usd and b/kujiale_0042/Meshes/doorsill_0002.usd differ
 
kujiale_0042/Meshes/doorsill_0003.usd CHANGED
Binary files a/kujiale_0042/Meshes/doorsill_0003.usd and b/kujiale_0042/Meshes/doorsill_0003.usd differ
 
kujiale_0042/Meshes/doorsill_0004.usd CHANGED
Binary files a/kujiale_0042/Meshes/doorsill_0004.usd and b/kujiale_0042/Meshes/doorsill_0004.usd differ
 
kujiale_0042/Meshes/floor_0000.usd CHANGED
Binary files a/kujiale_0042/Meshes/floor_0000.usd and b/kujiale_0042/Meshes/floor_0000.usd differ
 
kujiale_0042/Meshes/floor_0001.usd CHANGED
Binary files a/kujiale_0042/Meshes/floor_0001.usd and b/kujiale_0042/Meshes/floor_0001.usd differ
 
kujiale_0042/Meshes/floor_0002.usd CHANGED
Binary files a/kujiale_0042/Meshes/floor_0002.usd and b/kujiale_0042/Meshes/floor_0002.usd differ
 
kujiale_0042/Meshes/floor_0003.usd CHANGED
Binary files a/kujiale_0042/Meshes/floor_0003.usd and b/kujiale_0042/Meshes/floor_0003.usd differ
 
kujiale_0042/Meshes/floor_0004.usd CHANGED
Binary files a/kujiale_0042/Meshes/floor_0004.usd and b/kujiale_0042/Meshes/floor_0004.usd differ
 
kujiale_0042/Meshes/floor_0005.usd CHANGED
Binary files a/kujiale_0042/Meshes/floor_0005.usd and b/kujiale_0042/Meshes/floor_0005.usd differ
 
kujiale_0042/Meshes/mirror_0000.usd CHANGED
Binary files a/kujiale_0042/Meshes/mirror_0000.usd and b/kujiale_0042/Meshes/mirror_0000.usd differ
 
kujiale_0042/Meshes/ornament_0003.usd CHANGED
Binary files a/kujiale_0042/Meshes/ornament_0003.usd and b/kujiale_0042/Meshes/ornament_0003.usd differ
 
kujiale_0042/Meshes/painting_0000.usd CHANGED
Binary files a/kujiale_0042/Meshes/painting_0000.usd and b/kujiale_0042/Meshes/painting_0000.usd differ
 
kujiale_0042/Meshes/painting_0001.usd CHANGED
Binary files a/kujiale_0042/Meshes/painting_0001.usd and b/kujiale_0042/Meshes/painting_0001.usd differ
 
kujiale_0042/Meshes/painting_0002.usd CHANGED
Binary files a/kujiale_0042/Meshes/painting_0002.usd and b/kujiale_0042/Meshes/painting_0002.usd differ