Datasets:
The dataset viewer is taking too long to fetch the data. Try to refresh this page.
Error code: ClientConnectionError
jpg
image | __key__
string | __url__
string |
---|---|---|
frame_1753694055466_000000
|
hf://datasets/starwit/overhead-traffic-anomalies@ad8a30934dc300c9c01a35c644ccab50504199ef/MononElmStreetNB/testdata/frames_shards/frames-000000.tar
|
|
frame_1753694055566_000001
|
hf://datasets/starwit/overhead-traffic-anomalies@ad8a30934dc300c9c01a35c644ccab50504199ef/MononElmStreetNB/testdata/frames_shards/frames-000000.tar
|
|
frame_1753694055666_000002
|
hf://datasets/starwit/overhead-traffic-anomalies@ad8a30934dc300c9c01a35c644ccab50504199ef/MononElmStreetNB/testdata/frames_shards/frames-000000.tar
|
|
frame_1753694055766_000003
|
hf://datasets/starwit/overhead-traffic-anomalies@ad8a30934dc300c9c01a35c644ccab50504199ef/MononElmStreetNB/testdata/frames_shards/frames-000000.tar
|
|
frame_1753694055867_000004
|
hf://datasets/starwit/overhead-traffic-anomalies@ad8a30934dc300c9c01a35c644ccab50504199ef/MononElmStreetNB/testdata/frames_shards/frames-000000.tar
|
|
frame_1753694055966_000005
|
hf://datasets/starwit/overhead-traffic-anomalies@ad8a30934dc300c9c01a35c644ccab50504199ef/MononElmStreetNB/testdata/frames_shards/frames-000000.tar
|
|
frame_1753694056069_000006
|
hf://datasets/starwit/overhead-traffic-anomalies@ad8a30934dc300c9c01a35c644ccab50504199ef/MononElmStreetNB/testdata/frames_shards/frames-000000.tar
|
|
frame_1753694056166_000007
|
hf://datasets/starwit/overhead-traffic-anomalies@ad8a30934dc300c9c01a35c644ccab50504199ef/MononElmStreetNB/testdata/frames_shards/frames-000000.tar
|
|
frame_1753694056267_000008
|
hf://datasets/starwit/overhead-traffic-anomalies@ad8a30934dc300c9c01a35c644ccab50504199ef/MononElmStreetNB/testdata/frames_shards/frames-000000.tar
|
|
frame_1753694056367_000009
|
hf://datasets/starwit/overhead-traffic-anomalies@ad8a30934dc300c9c01a35c644ccab50504199ef/MononElmStreetNB/testdata/frames_shards/frames-000000.tar
|
|
frame_1753694056468_000010
|
hf://datasets/starwit/overhead-traffic-anomalies@ad8a30934dc300c9c01a35c644ccab50504199ef/MononElmStreetNB/testdata/frames_shards/frames-000000.tar
|
|
frame_1753694056567_000011
|
hf://datasets/starwit/overhead-traffic-anomalies@ad8a30934dc300c9c01a35c644ccab50504199ef/MononElmStreetNB/testdata/frames_shards/frames-000000.tar
|
|
frame_1753694056669_000012
|
hf://datasets/starwit/overhead-traffic-anomalies@ad8a30934dc300c9c01a35c644ccab50504199ef/MononElmStreetNB/testdata/frames_shards/frames-000000.tar
|
|
frame_1753694056768_000013
|
hf://datasets/starwit/overhead-traffic-anomalies@ad8a30934dc300c9c01a35c644ccab50504199ef/MononElmStreetNB/testdata/frames_shards/frames-000000.tar
|
|
frame_1753694056868_000014
|
hf://datasets/starwit/overhead-traffic-anomalies@ad8a30934dc300c9c01a35c644ccab50504199ef/MononElmStreetNB/testdata/frames_shards/frames-000000.tar
|
|
frame_1753694056968_000015
|
hf://datasets/starwit/overhead-traffic-anomalies@ad8a30934dc300c9c01a35c644ccab50504199ef/MononElmStreetNB/testdata/frames_shards/frames-000000.tar
|
|
frame_1753694057069_000016
|
hf://datasets/starwit/overhead-traffic-anomalies@ad8a30934dc300c9c01a35c644ccab50504199ef/MononElmStreetNB/testdata/frames_shards/frames-000000.tar
|
|
frame_1753694057169_000017
|
hf://datasets/starwit/overhead-traffic-anomalies@ad8a30934dc300c9c01a35c644ccab50504199ef/MononElmStreetNB/testdata/frames_shards/frames-000000.tar
|
|
frame_1753694057268_000018
|
hf://datasets/starwit/overhead-traffic-anomalies@ad8a30934dc300c9c01a35c644ccab50504199ef/MononElmStreetNB/testdata/frames_shards/frames-000000.tar
|
|
frame_1753694057368_000019
|
hf://datasets/starwit/overhead-traffic-anomalies@ad8a30934dc300c9c01a35c644ccab50504199ef/MononElmStreetNB/testdata/frames_shards/frames-000000.tar
|
|
frame_1753694057469_000020
|
hf://datasets/starwit/overhead-traffic-anomalies@ad8a30934dc300c9c01a35c644ccab50504199ef/MononElmStreetNB/testdata/frames_shards/frames-000000.tar
|
|
frame_1753694057569_000021
|
hf://datasets/starwit/overhead-traffic-anomalies@ad8a30934dc300c9c01a35c644ccab50504199ef/MononElmStreetNB/testdata/frames_shards/frames-000000.tar
|
|
frame_1753694057670_000022
|
hf://datasets/starwit/overhead-traffic-anomalies@ad8a30934dc300c9c01a35c644ccab50504199ef/MononElmStreetNB/testdata/frames_shards/frames-000000.tar
|
|
frame_1753694057769_000023
|
hf://datasets/starwit/overhead-traffic-anomalies@ad8a30934dc300c9c01a35c644ccab50504199ef/MononElmStreetNB/testdata/frames_shards/frames-000000.tar
|
|
frame_1753694057872_000024
|
hf://datasets/starwit/overhead-traffic-anomalies@ad8a30934dc300c9c01a35c644ccab50504199ef/MononElmStreetNB/testdata/frames_shards/frames-000000.tar
|
|
frame_1753694057970_000025
|
hf://datasets/starwit/overhead-traffic-anomalies@ad8a30934dc300c9c01a35c644ccab50504199ef/MononElmStreetNB/testdata/frames_shards/frames-000000.tar
|
|
frame_1753694058071_000026
|
hf://datasets/starwit/overhead-traffic-anomalies@ad8a30934dc300c9c01a35c644ccab50504199ef/MononElmStreetNB/testdata/frames_shards/frames-000000.tar
|
|
frame_1753694058170_000027
|
hf://datasets/starwit/overhead-traffic-anomalies@ad8a30934dc300c9c01a35c644ccab50504199ef/MononElmStreetNB/testdata/frames_shards/frames-000000.tar
|
|
frame_1753694058271_000028
|
hf://datasets/starwit/overhead-traffic-anomalies@ad8a30934dc300c9c01a35c644ccab50504199ef/MononElmStreetNB/testdata/frames_shards/frames-000000.tar
|
|
frame_1753694058371_000029
|
hf://datasets/starwit/overhead-traffic-anomalies@ad8a30934dc300c9c01a35c644ccab50504199ef/MononElmStreetNB/testdata/frames_shards/frames-000000.tar
|
|
frame_1753694058472_000030
|
hf://datasets/starwit/overhead-traffic-anomalies@ad8a30934dc300c9c01a35c644ccab50504199ef/MononElmStreetNB/testdata/frames_shards/frames-000000.tar
|
|
frame_1753694058572_000031
|
hf://datasets/starwit/overhead-traffic-anomalies@ad8a30934dc300c9c01a35c644ccab50504199ef/MononElmStreetNB/testdata/frames_shards/frames-000000.tar
|
|
frame_1753694058672_000032
|
hf://datasets/starwit/overhead-traffic-anomalies@ad8a30934dc300c9c01a35c644ccab50504199ef/MononElmStreetNB/testdata/frames_shards/frames-000000.tar
|
|
frame_1753694058771_000033
|
hf://datasets/starwit/overhead-traffic-anomalies@ad8a30934dc300c9c01a35c644ccab50504199ef/MononElmStreetNB/testdata/frames_shards/frames-000000.tar
|
|
frame_1753694058872_000034
|
hf://datasets/starwit/overhead-traffic-anomalies@ad8a30934dc300c9c01a35c644ccab50504199ef/MononElmStreetNB/testdata/frames_shards/frames-000000.tar
|
|
frame_1753694058972_000035
|
hf://datasets/starwit/overhead-traffic-anomalies@ad8a30934dc300c9c01a35c644ccab50504199ef/MononElmStreetNB/testdata/frames_shards/frames-000000.tar
|
|
frame_1753694059072_000036
|
hf://datasets/starwit/overhead-traffic-anomalies@ad8a30934dc300c9c01a35c644ccab50504199ef/MononElmStreetNB/testdata/frames_shards/frames-000000.tar
|
|
frame_1753694059173_000037
|
hf://datasets/starwit/overhead-traffic-anomalies@ad8a30934dc300c9c01a35c644ccab50504199ef/MononElmStreetNB/testdata/frames_shards/frames-000000.tar
|
|
frame_1753694059273_000038
|
hf://datasets/starwit/overhead-traffic-anomalies@ad8a30934dc300c9c01a35c644ccab50504199ef/MononElmStreetNB/testdata/frames_shards/frames-000000.tar
|
|
frame_1753694059374_000039
|
hf://datasets/starwit/overhead-traffic-anomalies@ad8a30934dc300c9c01a35c644ccab50504199ef/MononElmStreetNB/testdata/frames_shards/frames-000000.tar
|
|
frame_1753694059473_000040
|
hf://datasets/starwit/overhead-traffic-anomalies@ad8a30934dc300c9c01a35c644ccab50504199ef/MononElmStreetNB/testdata/frames_shards/frames-000000.tar
|
|
frame_1753694059574_000041
|
hf://datasets/starwit/overhead-traffic-anomalies@ad8a30934dc300c9c01a35c644ccab50504199ef/MononElmStreetNB/testdata/frames_shards/frames-000000.tar
|
|
frame_1753694059675_000042
|
hf://datasets/starwit/overhead-traffic-anomalies@ad8a30934dc300c9c01a35c644ccab50504199ef/MononElmStreetNB/testdata/frames_shards/frames-000000.tar
|
|
frame_1753694059773_000043
|
hf://datasets/starwit/overhead-traffic-anomalies@ad8a30934dc300c9c01a35c644ccab50504199ef/MononElmStreetNB/testdata/frames_shards/frames-000000.tar
|
|
frame_1753694059873_000044
|
hf://datasets/starwit/overhead-traffic-anomalies@ad8a30934dc300c9c01a35c644ccab50504199ef/MononElmStreetNB/testdata/frames_shards/frames-000000.tar
|
|
frame_1753694059975_000045
|
hf://datasets/starwit/overhead-traffic-anomalies@ad8a30934dc300c9c01a35c644ccab50504199ef/MononElmStreetNB/testdata/frames_shards/frames-000000.tar
|
|
frame_1753694060076_000046
|
hf://datasets/starwit/overhead-traffic-anomalies@ad8a30934dc300c9c01a35c644ccab50504199ef/MononElmStreetNB/testdata/frames_shards/frames-000000.tar
|
|
frame_1753694060175_000047
|
hf://datasets/starwit/overhead-traffic-anomalies@ad8a30934dc300c9c01a35c644ccab50504199ef/MononElmStreetNB/testdata/frames_shards/frames-000000.tar
|
|
frame_1753694060278_000048
|
hf://datasets/starwit/overhead-traffic-anomalies@ad8a30934dc300c9c01a35c644ccab50504199ef/MononElmStreetNB/testdata/frames_shards/frames-000000.tar
|
|
frame_1753694060379_000049
|
hf://datasets/starwit/overhead-traffic-anomalies@ad8a30934dc300c9c01a35c644ccab50504199ef/MononElmStreetNB/testdata/frames_shards/frames-000000.tar
|
|
frame_1753694060475_000050
|
hf://datasets/starwit/overhead-traffic-anomalies@ad8a30934dc300c9c01a35c644ccab50504199ef/MononElmStreetNB/testdata/frames_shards/frames-000000.tar
|
|
frame_1753694060576_000051
|
hf://datasets/starwit/overhead-traffic-anomalies@ad8a30934dc300c9c01a35c644ccab50504199ef/MononElmStreetNB/testdata/frames_shards/frames-000000.tar
|
|
frame_1753694060676_000052
|
hf://datasets/starwit/overhead-traffic-anomalies@ad8a30934dc300c9c01a35c644ccab50504199ef/MononElmStreetNB/testdata/frames_shards/frames-000000.tar
|
|
frame_1753694060775_000053
|
hf://datasets/starwit/overhead-traffic-anomalies@ad8a30934dc300c9c01a35c644ccab50504199ef/MononElmStreetNB/testdata/frames_shards/frames-000000.tar
|
|
frame_1753694060879_000054
|
hf://datasets/starwit/overhead-traffic-anomalies@ad8a30934dc300c9c01a35c644ccab50504199ef/MononElmStreetNB/testdata/frames_shards/frames-000000.tar
|
|
frame_1753694060976_000055
|
hf://datasets/starwit/overhead-traffic-anomalies@ad8a30934dc300c9c01a35c644ccab50504199ef/MononElmStreetNB/testdata/frames_shards/frames-000000.tar
|
|
frame_1753694061076_000056
|
hf://datasets/starwit/overhead-traffic-anomalies@ad8a30934dc300c9c01a35c644ccab50504199ef/MononElmStreetNB/testdata/frames_shards/frames-000000.tar
|
|
frame_1753694061178_000057
|
hf://datasets/starwit/overhead-traffic-anomalies@ad8a30934dc300c9c01a35c644ccab50504199ef/MononElmStreetNB/testdata/frames_shards/frames-000000.tar
|
|
frame_1753694061277_000058
|
hf://datasets/starwit/overhead-traffic-anomalies@ad8a30934dc300c9c01a35c644ccab50504199ef/MononElmStreetNB/testdata/frames_shards/frames-000000.tar
|
|
frame_1753694061377_000059
|
hf://datasets/starwit/overhead-traffic-anomalies@ad8a30934dc300c9c01a35c644ccab50504199ef/MononElmStreetNB/testdata/frames_shards/frames-000000.tar
|
|
frame_1753694061478_000060
|
hf://datasets/starwit/overhead-traffic-anomalies@ad8a30934dc300c9c01a35c644ccab50504199ef/MononElmStreetNB/testdata/frames_shards/frames-000000.tar
|
|
frame_1753694061579_000061
|
hf://datasets/starwit/overhead-traffic-anomalies@ad8a30934dc300c9c01a35c644ccab50504199ef/MononElmStreetNB/testdata/frames_shards/frames-000000.tar
|
|
frame_1753694061679_000062
|
hf://datasets/starwit/overhead-traffic-anomalies@ad8a30934dc300c9c01a35c644ccab50504199ef/MononElmStreetNB/testdata/frames_shards/frames-000000.tar
|
|
frame_1753694061778_000063
|
hf://datasets/starwit/overhead-traffic-anomalies@ad8a30934dc300c9c01a35c644ccab50504199ef/MononElmStreetNB/testdata/frames_shards/frames-000000.tar
|
|
frame_1753694061878_000064
|
hf://datasets/starwit/overhead-traffic-anomalies@ad8a30934dc300c9c01a35c644ccab50504199ef/MononElmStreetNB/testdata/frames_shards/frames-000000.tar
|
|
frame_1753694061979_000065
|
hf://datasets/starwit/overhead-traffic-anomalies@ad8a30934dc300c9c01a35c644ccab50504199ef/MononElmStreetNB/testdata/frames_shards/frames-000000.tar
|
|
frame_1753694062080_000066
|
hf://datasets/starwit/overhead-traffic-anomalies@ad8a30934dc300c9c01a35c644ccab50504199ef/MononElmStreetNB/testdata/frames_shards/frames-000000.tar
|
|
frame_1753694062179_000067
|
hf://datasets/starwit/overhead-traffic-anomalies@ad8a30934dc300c9c01a35c644ccab50504199ef/MononElmStreetNB/testdata/frames_shards/frames-000000.tar
|
|
frame_1753694062283_000068
|
hf://datasets/starwit/overhead-traffic-anomalies@ad8a30934dc300c9c01a35c644ccab50504199ef/MononElmStreetNB/testdata/frames_shards/frames-000000.tar
|
|
frame_1753694062379_000069
|
hf://datasets/starwit/overhead-traffic-anomalies@ad8a30934dc300c9c01a35c644ccab50504199ef/MononElmStreetNB/testdata/frames_shards/frames-000000.tar
|
|
frame_1753694062480_000070
|
hf://datasets/starwit/overhead-traffic-anomalies@ad8a30934dc300c9c01a35c644ccab50504199ef/MononElmStreetNB/testdata/frames_shards/frames-000000.tar
|
|
frame_1753694062580_000071
|
hf://datasets/starwit/overhead-traffic-anomalies@ad8a30934dc300c9c01a35c644ccab50504199ef/MononElmStreetNB/testdata/frames_shards/frames-000000.tar
|
|
frame_1753694062680_000072
|
hf://datasets/starwit/overhead-traffic-anomalies@ad8a30934dc300c9c01a35c644ccab50504199ef/MononElmStreetNB/testdata/frames_shards/frames-000000.tar
|
|
frame_1753694062780_000073
|
hf://datasets/starwit/overhead-traffic-anomalies@ad8a30934dc300c9c01a35c644ccab50504199ef/MononElmStreetNB/testdata/frames_shards/frames-000000.tar
|
|
frame_1753694062880_000074
|
hf://datasets/starwit/overhead-traffic-anomalies@ad8a30934dc300c9c01a35c644ccab50504199ef/MononElmStreetNB/testdata/frames_shards/frames-000000.tar
|
|
frame_1753694062980_000075
|
hf://datasets/starwit/overhead-traffic-anomalies@ad8a30934dc300c9c01a35c644ccab50504199ef/MononElmStreetNB/testdata/frames_shards/frames-000000.tar
|
|
frame_1753694063080_000076
|
hf://datasets/starwit/overhead-traffic-anomalies@ad8a30934dc300c9c01a35c644ccab50504199ef/MononElmStreetNB/testdata/frames_shards/frames-000000.tar
|
|
frame_1753694063180_000077
|
hf://datasets/starwit/overhead-traffic-anomalies@ad8a30934dc300c9c01a35c644ccab50504199ef/MononElmStreetNB/testdata/frames_shards/frames-000000.tar
|
|
frame_1753694063281_000078
|
hf://datasets/starwit/overhead-traffic-anomalies@ad8a30934dc300c9c01a35c644ccab50504199ef/MononElmStreetNB/testdata/frames_shards/frames-000000.tar
|
|
frame_1753694063381_000079
|
hf://datasets/starwit/overhead-traffic-anomalies@ad8a30934dc300c9c01a35c644ccab50504199ef/MononElmStreetNB/testdata/frames_shards/frames-000000.tar
|
|
frame_1753694063481_000080
|
hf://datasets/starwit/overhead-traffic-anomalies@ad8a30934dc300c9c01a35c644ccab50504199ef/MononElmStreetNB/testdata/frames_shards/frames-000000.tar
|
|
frame_1753694063582_000081
|
hf://datasets/starwit/overhead-traffic-anomalies@ad8a30934dc300c9c01a35c644ccab50504199ef/MononElmStreetNB/testdata/frames_shards/frames-000000.tar
|
|
frame_1753694063682_000082
|
hf://datasets/starwit/overhead-traffic-anomalies@ad8a30934dc300c9c01a35c644ccab50504199ef/MononElmStreetNB/testdata/frames_shards/frames-000000.tar
|
|
frame_1753694063781_000083
|
hf://datasets/starwit/overhead-traffic-anomalies@ad8a30934dc300c9c01a35c644ccab50504199ef/MononElmStreetNB/testdata/frames_shards/frames-000000.tar
|
|
frame_1753694063882_000084
|
hf://datasets/starwit/overhead-traffic-anomalies@ad8a30934dc300c9c01a35c644ccab50504199ef/MononElmStreetNB/testdata/frames_shards/frames-000000.tar
|
|
frame_1753694063982_000085
|
hf://datasets/starwit/overhead-traffic-anomalies@ad8a30934dc300c9c01a35c644ccab50504199ef/MononElmStreetNB/testdata/frames_shards/frames-000000.tar
|
|
frame_1753694064082_000086
|
hf://datasets/starwit/overhead-traffic-anomalies@ad8a30934dc300c9c01a35c644ccab50504199ef/MononElmStreetNB/testdata/frames_shards/frames-000000.tar
|
|
frame_1753694064183_000087
|
hf://datasets/starwit/overhead-traffic-anomalies@ad8a30934dc300c9c01a35c644ccab50504199ef/MononElmStreetNB/testdata/frames_shards/frames-000000.tar
|
|
frame_1753694064282_000088
|
hf://datasets/starwit/overhead-traffic-anomalies@ad8a30934dc300c9c01a35c644ccab50504199ef/MononElmStreetNB/testdata/frames_shards/frames-000000.tar
|
|
frame_1753694064382_000089
|
hf://datasets/starwit/overhead-traffic-anomalies@ad8a30934dc300c9c01a35c644ccab50504199ef/MononElmStreetNB/testdata/frames_shards/frames-000000.tar
|
|
frame_1753694064484_000090
|
hf://datasets/starwit/overhead-traffic-anomalies@ad8a30934dc300c9c01a35c644ccab50504199ef/MononElmStreetNB/testdata/frames_shards/frames-000000.tar
|
|
frame_1753694064583_000091
|
hf://datasets/starwit/overhead-traffic-anomalies@ad8a30934dc300c9c01a35c644ccab50504199ef/MononElmStreetNB/testdata/frames_shards/frames-000000.tar
|
|
frame_1753694064683_000092
|
hf://datasets/starwit/overhead-traffic-anomalies@ad8a30934dc300c9c01a35c644ccab50504199ef/MononElmStreetNB/testdata/frames_shards/frames-000000.tar
|
|
frame_1753694064784_000093
|
hf://datasets/starwit/overhead-traffic-anomalies@ad8a30934dc300c9c01a35c644ccab50504199ef/MononElmStreetNB/testdata/frames_shards/frames-000000.tar
|
|
frame_1753694064884_000094
|
hf://datasets/starwit/overhead-traffic-anomalies@ad8a30934dc300c9c01a35c644ccab50504199ef/MononElmStreetNB/testdata/frames_shards/frames-000000.tar
|
|
frame_1753694064985_000095
|
hf://datasets/starwit/overhead-traffic-anomalies@ad8a30934dc300c9c01a35c644ccab50504199ef/MononElmStreetNB/testdata/frames_shards/frames-000000.tar
|
|
frame_1753694065084_000096
|
hf://datasets/starwit/overhead-traffic-anomalies@ad8a30934dc300c9c01a35c644ccab50504199ef/MononElmStreetNB/testdata/frames_shards/frames-000000.tar
|
|
frame_1753694065186_000097
|
hf://datasets/starwit/overhead-traffic-anomalies@ad8a30934dc300c9c01a35c644ccab50504199ef/MononElmStreetNB/testdata/frames_shards/frames-000000.tar
|
|
frame_1753694065285_000098
|
hf://datasets/starwit/overhead-traffic-anomalies@ad8a30934dc300c9c01a35c644ccab50504199ef/MononElmStreetNB/testdata/frames_shards/frames-000000.tar
|
|
frame_1753694065384_000099
|
hf://datasets/starwit/overhead-traffic-anomalies@ad8a30934dc300c9c01a35c644ccab50504199ef/MononElmStreetNB/testdata/frames_shards/frames-000000.tar
|
Overhead Traffic Anomalies (OTA)
This dataset contains traffic anomalies from static overhead cameras (intersections/roundabouts). It includes 32 anomaly categories with a relevance mapping for severity-aware evaluation. For each camera, we provide video frames with YOLOv8 detections, including 24 h of training footage and 48 h of test footage with 1027 anomaly annotations.
Created as part of the Master’s thesis by Hanna Lichtenberg (2025), in cooperation with Starwit Technologies GmbH. See the thesis for details and baseline NDCG@50 results. Feedback is welcome!
What’s inside
- Three camera scenes (each with
traindata
andtestdata
). - Frames (320×180) as WebDataset
.tar
shards (frames-xxxxx.tar
) plus a globalindex.csv
. - Object detections (YOLOv8) with tracking IDs and geo-coordinates in
object_detections.json
. - Anomaly annotations in
anomaly-labels.csv
(test split only). - Label dictionary in
event_labels.txt
and relevance mapping inrelevance_mapping.json
.
Anomaly labels
label ∈ {-1, 0, 1, …, 32}
-1
= marks detection/tracking artifacts so they don’t bias evaluation (e.g., spurious box, ID switch)1…32
= anomaly categories (seeevent_labels.txt
)- unlabeled trajectories are treated as normal (label
0
)
- Relevance degrees (0–4) for severity-aware evaluation in
relevance_mapping.json
. The category→relevance mapping is subjective and may be adapted to match different application priorities.0
: FP/uninteresting1
: rather uninteresting anomaly2
: relevant anomaly3
: high relevance4
: critical relevance (dangerous behavior)
Example anomaly categories
- Wrong-way driving (IDs: 22, 23) — vehicle travels against permitted direction
- Fast driving (ID: 11) — reckless speeding relative to scene context
- Traffic tie-up (ID: 16) — blockage or standstill due to congestion/obstruction
- Cutting off another vehicle (IDs: 18, 19) — failing to yield / forcing an agent to brake
- Broken-down vehicle (ID: 25) — stationary/disabled vehicle on a public road.
- Getting off the road (IDs: 28, 29) — getting off the roadway / parking on sidewalk




File formats
Frames: WebDataset shards
frames-*.tar
with JPEGs namedframe_<timestamp_ms>_<running_index>.jpg
.index.csv: maps each frame to its
timestamp
andshard
, enabling alignment.object_detections.json (per scene/split): array of per-timestamp records with
timestamp
(UNIX ms),frame_index
,frame_key
(JPEG filename),shard
(tar file), and adetections
list. Each detection hasclass_id
(YOLOv8),object_id
(stable track ID),longitude
/latitude
,boundingbox
normalized to[0,1]
, andconfidence
. Theobject_id
persists across frames, enabling trajectory-level analyses.anomaly-labels.csv (test only): CSV with columns
object_id,start_timestamp,end_timestamp,label
. Contains labels for true anomalies (1–32) and input errors (−1).
Intended use
- Tasks: anomaly detection; severity-aware ranking; robustness to detection/tracking noise.
- Metrics: NDCG (severity-aware ranking); AU-PR, AU-ROC.
Quick start
Some download possibilities.
# Full dataset (all scenes + train/test + mappings)
from huggingface_hub import snapshot_download
snapshot_download(
"HannaLicht/overhead-traffic-anomalies",
repo_type="dataset",
local_dir="OTA"
)
# Only test data (with anomaly labels)
snapshot_download(
"HannaLicht/overhead-traffic-anomalies",
repo_type="dataset",
allow_patterns=[
"MononElmStreetNB/testdata/**", "RangelineS116thSt/testdata/**",
"RangelineSMedicalDr/testdata/**", "event_labels.txt", "relevance_mapping.json",
],
local_dir="OTA-test-only"
)
You can align frames, detections, and labels using index.csv
timestamps and object_id
s.
import pandas as pd
# Example: load test annotations for a scene
root = "MononElmStreetNB/testdata"
labels = pd.read_csv(f"{root}/anomaly-labels.csv") # object_id, start_timestamp, end_timestamp, label
index_df = pd.read_csv(f"{root}/index.csv") # frame_key, timestamp, shard
# Get all frames within an anomaly interval (timestamps are UNIX ms)
def frames_for_interval(ts_start, ts_end, index_df):
return index_df[(index_df["timestamp_utc_ms"] >= ts_start) & (index_df["timestamp_utc_ms"] <= ts_end)]
rows = frames_for_interval(labels.iloc[0].start_timestamp, labels.iloc[0].end_timestamp, index_df)
print(rows.head())
If you prefer streaming frames from .tar
shards, consider the webdataset library.
License & Attribution
Data © 2025 Starwit Technologies GmbH & Hanna Lichtenberg - Licensed under CC BY NC SA 4.0.
Please cite:
H. Lichtenberg, Anomaly Detection in Traffic Applications: A Probabilistic Forecasting Approach Based on Object Tracking, Master’s thesis, 2025.
Acknowledgments:
Created in cooperation with Starwit Technologies GmbH.
Detections use YOLOv8; geo-mapping via the Starwit Awareness Engine.
- Downloads last month
- 53