Dataset Viewer (First 5GB)
Auto-converted to Parquet
The dataset viewer is taking too long to fetch the data. Try to refresh this page.
Server-side error
Error code:   ClientConnectionError
jpg
image
__key__
string
__url__
string
frame_1753694055466_000000
hf://datasets/starwit/overhead-traffic-anomalies@ad8a30934dc300c9c01a35c644ccab50504199ef/MononElmStreetNB/testdata/frames_shards/frames-000000.tar
frame_1753694055566_000001
hf://datasets/starwit/overhead-traffic-anomalies@ad8a30934dc300c9c01a35c644ccab50504199ef/MononElmStreetNB/testdata/frames_shards/frames-000000.tar
frame_1753694055666_000002
hf://datasets/starwit/overhead-traffic-anomalies@ad8a30934dc300c9c01a35c644ccab50504199ef/MononElmStreetNB/testdata/frames_shards/frames-000000.tar
frame_1753694055766_000003
hf://datasets/starwit/overhead-traffic-anomalies@ad8a30934dc300c9c01a35c644ccab50504199ef/MononElmStreetNB/testdata/frames_shards/frames-000000.tar
frame_1753694055867_000004
hf://datasets/starwit/overhead-traffic-anomalies@ad8a30934dc300c9c01a35c644ccab50504199ef/MononElmStreetNB/testdata/frames_shards/frames-000000.tar
frame_1753694055966_000005
hf://datasets/starwit/overhead-traffic-anomalies@ad8a30934dc300c9c01a35c644ccab50504199ef/MononElmStreetNB/testdata/frames_shards/frames-000000.tar
frame_1753694056069_000006
hf://datasets/starwit/overhead-traffic-anomalies@ad8a30934dc300c9c01a35c644ccab50504199ef/MononElmStreetNB/testdata/frames_shards/frames-000000.tar
frame_1753694056166_000007
hf://datasets/starwit/overhead-traffic-anomalies@ad8a30934dc300c9c01a35c644ccab50504199ef/MononElmStreetNB/testdata/frames_shards/frames-000000.tar
frame_1753694056267_000008
hf://datasets/starwit/overhead-traffic-anomalies@ad8a30934dc300c9c01a35c644ccab50504199ef/MononElmStreetNB/testdata/frames_shards/frames-000000.tar
frame_1753694056367_000009
hf://datasets/starwit/overhead-traffic-anomalies@ad8a30934dc300c9c01a35c644ccab50504199ef/MononElmStreetNB/testdata/frames_shards/frames-000000.tar
frame_1753694056468_000010
hf://datasets/starwit/overhead-traffic-anomalies@ad8a30934dc300c9c01a35c644ccab50504199ef/MononElmStreetNB/testdata/frames_shards/frames-000000.tar
frame_1753694056567_000011
hf://datasets/starwit/overhead-traffic-anomalies@ad8a30934dc300c9c01a35c644ccab50504199ef/MononElmStreetNB/testdata/frames_shards/frames-000000.tar
frame_1753694056669_000012
hf://datasets/starwit/overhead-traffic-anomalies@ad8a30934dc300c9c01a35c644ccab50504199ef/MononElmStreetNB/testdata/frames_shards/frames-000000.tar
frame_1753694056768_000013
hf://datasets/starwit/overhead-traffic-anomalies@ad8a30934dc300c9c01a35c644ccab50504199ef/MononElmStreetNB/testdata/frames_shards/frames-000000.tar
frame_1753694056868_000014
hf://datasets/starwit/overhead-traffic-anomalies@ad8a30934dc300c9c01a35c644ccab50504199ef/MononElmStreetNB/testdata/frames_shards/frames-000000.tar
frame_1753694056968_000015
hf://datasets/starwit/overhead-traffic-anomalies@ad8a30934dc300c9c01a35c644ccab50504199ef/MononElmStreetNB/testdata/frames_shards/frames-000000.tar
frame_1753694057069_000016
hf://datasets/starwit/overhead-traffic-anomalies@ad8a30934dc300c9c01a35c644ccab50504199ef/MononElmStreetNB/testdata/frames_shards/frames-000000.tar
frame_1753694057169_000017
hf://datasets/starwit/overhead-traffic-anomalies@ad8a30934dc300c9c01a35c644ccab50504199ef/MononElmStreetNB/testdata/frames_shards/frames-000000.tar
frame_1753694057268_000018
hf://datasets/starwit/overhead-traffic-anomalies@ad8a30934dc300c9c01a35c644ccab50504199ef/MononElmStreetNB/testdata/frames_shards/frames-000000.tar
frame_1753694057368_000019
hf://datasets/starwit/overhead-traffic-anomalies@ad8a30934dc300c9c01a35c644ccab50504199ef/MononElmStreetNB/testdata/frames_shards/frames-000000.tar
frame_1753694057469_000020
hf://datasets/starwit/overhead-traffic-anomalies@ad8a30934dc300c9c01a35c644ccab50504199ef/MononElmStreetNB/testdata/frames_shards/frames-000000.tar
frame_1753694057569_000021
hf://datasets/starwit/overhead-traffic-anomalies@ad8a30934dc300c9c01a35c644ccab50504199ef/MononElmStreetNB/testdata/frames_shards/frames-000000.tar
frame_1753694057670_000022
hf://datasets/starwit/overhead-traffic-anomalies@ad8a30934dc300c9c01a35c644ccab50504199ef/MononElmStreetNB/testdata/frames_shards/frames-000000.tar
frame_1753694057769_000023
hf://datasets/starwit/overhead-traffic-anomalies@ad8a30934dc300c9c01a35c644ccab50504199ef/MononElmStreetNB/testdata/frames_shards/frames-000000.tar
frame_1753694057872_000024
hf://datasets/starwit/overhead-traffic-anomalies@ad8a30934dc300c9c01a35c644ccab50504199ef/MononElmStreetNB/testdata/frames_shards/frames-000000.tar
frame_1753694057970_000025
hf://datasets/starwit/overhead-traffic-anomalies@ad8a30934dc300c9c01a35c644ccab50504199ef/MononElmStreetNB/testdata/frames_shards/frames-000000.tar
frame_1753694058071_000026
hf://datasets/starwit/overhead-traffic-anomalies@ad8a30934dc300c9c01a35c644ccab50504199ef/MononElmStreetNB/testdata/frames_shards/frames-000000.tar
frame_1753694058170_000027
hf://datasets/starwit/overhead-traffic-anomalies@ad8a30934dc300c9c01a35c644ccab50504199ef/MononElmStreetNB/testdata/frames_shards/frames-000000.tar
frame_1753694058271_000028
hf://datasets/starwit/overhead-traffic-anomalies@ad8a30934dc300c9c01a35c644ccab50504199ef/MononElmStreetNB/testdata/frames_shards/frames-000000.tar
frame_1753694058371_000029
hf://datasets/starwit/overhead-traffic-anomalies@ad8a30934dc300c9c01a35c644ccab50504199ef/MononElmStreetNB/testdata/frames_shards/frames-000000.tar
frame_1753694058472_000030
hf://datasets/starwit/overhead-traffic-anomalies@ad8a30934dc300c9c01a35c644ccab50504199ef/MononElmStreetNB/testdata/frames_shards/frames-000000.tar
frame_1753694058572_000031
hf://datasets/starwit/overhead-traffic-anomalies@ad8a30934dc300c9c01a35c644ccab50504199ef/MononElmStreetNB/testdata/frames_shards/frames-000000.tar
frame_1753694058672_000032
hf://datasets/starwit/overhead-traffic-anomalies@ad8a30934dc300c9c01a35c644ccab50504199ef/MononElmStreetNB/testdata/frames_shards/frames-000000.tar
frame_1753694058771_000033
hf://datasets/starwit/overhead-traffic-anomalies@ad8a30934dc300c9c01a35c644ccab50504199ef/MononElmStreetNB/testdata/frames_shards/frames-000000.tar
frame_1753694058872_000034
hf://datasets/starwit/overhead-traffic-anomalies@ad8a30934dc300c9c01a35c644ccab50504199ef/MononElmStreetNB/testdata/frames_shards/frames-000000.tar
frame_1753694058972_000035
hf://datasets/starwit/overhead-traffic-anomalies@ad8a30934dc300c9c01a35c644ccab50504199ef/MononElmStreetNB/testdata/frames_shards/frames-000000.tar
frame_1753694059072_000036
hf://datasets/starwit/overhead-traffic-anomalies@ad8a30934dc300c9c01a35c644ccab50504199ef/MononElmStreetNB/testdata/frames_shards/frames-000000.tar
frame_1753694059173_000037
hf://datasets/starwit/overhead-traffic-anomalies@ad8a30934dc300c9c01a35c644ccab50504199ef/MononElmStreetNB/testdata/frames_shards/frames-000000.tar
frame_1753694059273_000038
hf://datasets/starwit/overhead-traffic-anomalies@ad8a30934dc300c9c01a35c644ccab50504199ef/MononElmStreetNB/testdata/frames_shards/frames-000000.tar
frame_1753694059374_000039
hf://datasets/starwit/overhead-traffic-anomalies@ad8a30934dc300c9c01a35c644ccab50504199ef/MononElmStreetNB/testdata/frames_shards/frames-000000.tar
frame_1753694059473_000040
hf://datasets/starwit/overhead-traffic-anomalies@ad8a30934dc300c9c01a35c644ccab50504199ef/MononElmStreetNB/testdata/frames_shards/frames-000000.tar
frame_1753694059574_000041
hf://datasets/starwit/overhead-traffic-anomalies@ad8a30934dc300c9c01a35c644ccab50504199ef/MononElmStreetNB/testdata/frames_shards/frames-000000.tar
frame_1753694059675_000042
hf://datasets/starwit/overhead-traffic-anomalies@ad8a30934dc300c9c01a35c644ccab50504199ef/MononElmStreetNB/testdata/frames_shards/frames-000000.tar
frame_1753694059773_000043
hf://datasets/starwit/overhead-traffic-anomalies@ad8a30934dc300c9c01a35c644ccab50504199ef/MononElmStreetNB/testdata/frames_shards/frames-000000.tar
frame_1753694059873_000044
hf://datasets/starwit/overhead-traffic-anomalies@ad8a30934dc300c9c01a35c644ccab50504199ef/MononElmStreetNB/testdata/frames_shards/frames-000000.tar
frame_1753694059975_000045
hf://datasets/starwit/overhead-traffic-anomalies@ad8a30934dc300c9c01a35c644ccab50504199ef/MononElmStreetNB/testdata/frames_shards/frames-000000.tar
frame_1753694060076_000046
hf://datasets/starwit/overhead-traffic-anomalies@ad8a30934dc300c9c01a35c644ccab50504199ef/MononElmStreetNB/testdata/frames_shards/frames-000000.tar
frame_1753694060175_000047
hf://datasets/starwit/overhead-traffic-anomalies@ad8a30934dc300c9c01a35c644ccab50504199ef/MononElmStreetNB/testdata/frames_shards/frames-000000.tar
frame_1753694060278_000048
hf://datasets/starwit/overhead-traffic-anomalies@ad8a30934dc300c9c01a35c644ccab50504199ef/MononElmStreetNB/testdata/frames_shards/frames-000000.tar
frame_1753694060379_000049
hf://datasets/starwit/overhead-traffic-anomalies@ad8a30934dc300c9c01a35c644ccab50504199ef/MononElmStreetNB/testdata/frames_shards/frames-000000.tar
frame_1753694060475_000050
hf://datasets/starwit/overhead-traffic-anomalies@ad8a30934dc300c9c01a35c644ccab50504199ef/MononElmStreetNB/testdata/frames_shards/frames-000000.tar
frame_1753694060576_000051
hf://datasets/starwit/overhead-traffic-anomalies@ad8a30934dc300c9c01a35c644ccab50504199ef/MononElmStreetNB/testdata/frames_shards/frames-000000.tar
frame_1753694060676_000052
hf://datasets/starwit/overhead-traffic-anomalies@ad8a30934dc300c9c01a35c644ccab50504199ef/MononElmStreetNB/testdata/frames_shards/frames-000000.tar
frame_1753694060775_000053
hf://datasets/starwit/overhead-traffic-anomalies@ad8a30934dc300c9c01a35c644ccab50504199ef/MononElmStreetNB/testdata/frames_shards/frames-000000.tar
frame_1753694060879_000054
hf://datasets/starwit/overhead-traffic-anomalies@ad8a30934dc300c9c01a35c644ccab50504199ef/MononElmStreetNB/testdata/frames_shards/frames-000000.tar
frame_1753694060976_000055
hf://datasets/starwit/overhead-traffic-anomalies@ad8a30934dc300c9c01a35c644ccab50504199ef/MononElmStreetNB/testdata/frames_shards/frames-000000.tar
frame_1753694061076_000056
hf://datasets/starwit/overhead-traffic-anomalies@ad8a30934dc300c9c01a35c644ccab50504199ef/MononElmStreetNB/testdata/frames_shards/frames-000000.tar
frame_1753694061178_000057
hf://datasets/starwit/overhead-traffic-anomalies@ad8a30934dc300c9c01a35c644ccab50504199ef/MononElmStreetNB/testdata/frames_shards/frames-000000.tar
frame_1753694061277_000058
hf://datasets/starwit/overhead-traffic-anomalies@ad8a30934dc300c9c01a35c644ccab50504199ef/MononElmStreetNB/testdata/frames_shards/frames-000000.tar
frame_1753694061377_000059
hf://datasets/starwit/overhead-traffic-anomalies@ad8a30934dc300c9c01a35c644ccab50504199ef/MononElmStreetNB/testdata/frames_shards/frames-000000.tar
frame_1753694061478_000060
hf://datasets/starwit/overhead-traffic-anomalies@ad8a30934dc300c9c01a35c644ccab50504199ef/MononElmStreetNB/testdata/frames_shards/frames-000000.tar
frame_1753694061579_000061
hf://datasets/starwit/overhead-traffic-anomalies@ad8a30934dc300c9c01a35c644ccab50504199ef/MononElmStreetNB/testdata/frames_shards/frames-000000.tar
frame_1753694061679_000062
hf://datasets/starwit/overhead-traffic-anomalies@ad8a30934dc300c9c01a35c644ccab50504199ef/MononElmStreetNB/testdata/frames_shards/frames-000000.tar
frame_1753694061778_000063
hf://datasets/starwit/overhead-traffic-anomalies@ad8a30934dc300c9c01a35c644ccab50504199ef/MononElmStreetNB/testdata/frames_shards/frames-000000.tar
frame_1753694061878_000064
hf://datasets/starwit/overhead-traffic-anomalies@ad8a30934dc300c9c01a35c644ccab50504199ef/MononElmStreetNB/testdata/frames_shards/frames-000000.tar
frame_1753694061979_000065
hf://datasets/starwit/overhead-traffic-anomalies@ad8a30934dc300c9c01a35c644ccab50504199ef/MononElmStreetNB/testdata/frames_shards/frames-000000.tar
frame_1753694062080_000066
hf://datasets/starwit/overhead-traffic-anomalies@ad8a30934dc300c9c01a35c644ccab50504199ef/MononElmStreetNB/testdata/frames_shards/frames-000000.tar
frame_1753694062179_000067
hf://datasets/starwit/overhead-traffic-anomalies@ad8a30934dc300c9c01a35c644ccab50504199ef/MononElmStreetNB/testdata/frames_shards/frames-000000.tar
frame_1753694062283_000068
hf://datasets/starwit/overhead-traffic-anomalies@ad8a30934dc300c9c01a35c644ccab50504199ef/MononElmStreetNB/testdata/frames_shards/frames-000000.tar
frame_1753694062379_000069
hf://datasets/starwit/overhead-traffic-anomalies@ad8a30934dc300c9c01a35c644ccab50504199ef/MononElmStreetNB/testdata/frames_shards/frames-000000.tar
frame_1753694062480_000070
hf://datasets/starwit/overhead-traffic-anomalies@ad8a30934dc300c9c01a35c644ccab50504199ef/MononElmStreetNB/testdata/frames_shards/frames-000000.tar
frame_1753694062580_000071
hf://datasets/starwit/overhead-traffic-anomalies@ad8a30934dc300c9c01a35c644ccab50504199ef/MononElmStreetNB/testdata/frames_shards/frames-000000.tar
frame_1753694062680_000072
hf://datasets/starwit/overhead-traffic-anomalies@ad8a30934dc300c9c01a35c644ccab50504199ef/MononElmStreetNB/testdata/frames_shards/frames-000000.tar
frame_1753694062780_000073
hf://datasets/starwit/overhead-traffic-anomalies@ad8a30934dc300c9c01a35c644ccab50504199ef/MononElmStreetNB/testdata/frames_shards/frames-000000.tar
frame_1753694062880_000074
hf://datasets/starwit/overhead-traffic-anomalies@ad8a30934dc300c9c01a35c644ccab50504199ef/MononElmStreetNB/testdata/frames_shards/frames-000000.tar
frame_1753694062980_000075
hf://datasets/starwit/overhead-traffic-anomalies@ad8a30934dc300c9c01a35c644ccab50504199ef/MononElmStreetNB/testdata/frames_shards/frames-000000.tar
frame_1753694063080_000076
hf://datasets/starwit/overhead-traffic-anomalies@ad8a30934dc300c9c01a35c644ccab50504199ef/MononElmStreetNB/testdata/frames_shards/frames-000000.tar
frame_1753694063180_000077
hf://datasets/starwit/overhead-traffic-anomalies@ad8a30934dc300c9c01a35c644ccab50504199ef/MononElmStreetNB/testdata/frames_shards/frames-000000.tar
frame_1753694063281_000078
hf://datasets/starwit/overhead-traffic-anomalies@ad8a30934dc300c9c01a35c644ccab50504199ef/MononElmStreetNB/testdata/frames_shards/frames-000000.tar
frame_1753694063381_000079
hf://datasets/starwit/overhead-traffic-anomalies@ad8a30934dc300c9c01a35c644ccab50504199ef/MononElmStreetNB/testdata/frames_shards/frames-000000.tar
frame_1753694063481_000080
hf://datasets/starwit/overhead-traffic-anomalies@ad8a30934dc300c9c01a35c644ccab50504199ef/MononElmStreetNB/testdata/frames_shards/frames-000000.tar
frame_1753694063582_000081
hf://datasets/starwit/overhead-traffic-anomalies@ad8a30934dc300c9c01a35c644ccab50504199ef/MononElmStreetNB/testdata/frames_shards/frames-000000.tar
frame_1753694063682_000082
hf://datasets/starwit/overhead-traffic-anomalies@ad8a30934dc300c9c01a35c644ccab50504199ef/MononElmStreetNB/testdata/frames_shards/frames-000000.tar
frame_1753694063781_000083
hf://datasets/starwit/overhead-traffic-anomalies@ad8a30934dc300c9c01a35c644ccab50504199ef/MononElmStreetNB/testdata/frames_shards/frames-000000.tar
frame_1753694063882_000084
hf://datasets/starwit/overhead-traffic-anomalies@ad8a30934dc300c9c01a35c644ccab50504199ef/MononElmStreetNB/testdata/frames_shards/frames-000000.tar
frame_1753694063982_000085
hf://datasets/starwit/overhead-traffic-anomalies@ad8a30934dc300c9c01a35c644ccab50504199ef/MononElmStreetNB/testdata/frames_shards/frames-000000.tar
frame_1753694064082_000086
hf://datasets/starwit/overhead-traffic-anomalies@ad8a30934dc300c9c01a35c644ccab50504199ef/MononElmStreetNB/testdata/frames_shards/frames-000000.tar
frame_1753694064183_000087
hf://datasets/starwit/overhead-traffic-anomalies@ad8a30934dc300c9c01a35c644ccab50504199ef/MononElmStreetNB/testdata/frames_shards/frames-000000.tar
frame_1753694064282_000088
hf://datasets/starwit/overhead-traffic-anomalies@ad8a30934dc300c9c01a35c644ccab50504199ef/MononElmStreetNB/testdata/frames_shards/frames-000000.tar
frame_1753694064382_000089
hf://datasets/starwit/overhead-traffic-anomalies@ad8a30934dc300c9c01a35c644ccab50504199ef/MononElmStreetNB/testdata/frames_shards/frames-000000.tar
frame_1753694064484_000090
hf://datasets/starwit/overhead-traffic-anomalies@ad8a30934dc300c9c01a35c644ccab50504199ef/MononElmStreetNB/testdata/frames_shards/frames-000000.tar
frame_1753694064583_000091
hf://datasets/starwit/overhead-traffic-anomalies@ad8a30934dc300c9c01a35c644ccab50504199ef/MononElmStreetNB/testdata/frames_shards/frames-000000.tar
frame_1753694064683_000092
hf://datasets/starwit/overhead-traffic-anomalies@ad8a30934dc300c9c01a35c644ccab50504199ef/MononElmStreetNB/testdata/frames_shards/frames-000000.tar
frame_1753694064784_000093
hf://datasets/starwit/overhead-traffic-anomalies@ad8a30934dc300c9c01a35c644ccab50504199ef/MononElmStreetNB/testdata/frames_shards/frames-000000.tar
frame_1753694064884_000094
hf://datasets/starwit/overhead-traffic-anomalies@ad8a30934dc300c9c01a35c644ccab50504199ef/MononElmStreetNB/testdata/frames_shards/frames-000000.tar
frame_1753694064985_000095
hf://datasets/starwit/overhead-traffic-anomalies@ad8a30934dc300c9c01a35c644ccab50504199ef/MononElmStreetNB/testdata/frames_shards/frames-000000.tar
frame_1753694065084_000096
hf://datasets/starwit/overhead-traffic-anomalies@ad8a30934dc300c9c01a35c644ccab50504199ef/MononElmStreetNB/testdata/frames_shards/frames-000000.tar
frame_1753694065186_000097
hf://datasets/starwit/overhead-traffic-anomalies@ad8a30934dc300c9c01a35c644ccab50504199ef/MononElmStreetNB/testdata/frames_shards/frames-000000.tar
frame_1753694065285_000098
hf://datasets/starwit/overhead-traffic-anomalies@ad8a30934dc300c9c01a35c644ccab50504199ef/MononElmStreetNB/testdata/frames_shards/frames-000000.tar
frame_1753694065384_000099
hf://datasets/starwit/overhead-traffic-anomalies@ad8a30934dc300c9c01a35c644ccab50504199ef/MononElmStreetNB/testdata/frames_shards/frames-000000.tar
End of preview.

Overhead Traffic Anomalies (OTA)

This dataset contains traffic anomalies from static overhead cameras (intersections/roundabouts). It includes 32 anomaly categories with a relevance mapping for severity-aware evaluation. For each camera, we provide video frames with YOLOv8 detections, including 24 h of training footage and 48 h of test footage with 1027 anomaly annotations.

Created as part of the Master’s thesis by Hanna Lichtenberg (2025), in cooperation with Starwit Technologies GmbH. See the thesis for details and baseline NDCG@50 results. Feedback is welcome!

What’s inside

  • Three camera scenes (each with traindata and testdata).
  • Frames (320×180) as WebDataset .tar shards (frames-xxxxx.tar) plus a global index.csv.
  • Object detections (YOLOv8) with tracking IDs and geo-coordinates in object_detections.json.
  • Anomaly annotations in anomaly-labels.csv (test split only).
  • Label dictionary in event_labels.txt and relevance mapping in relevance_mapping.json.

Anomaly labels

  • label ∈ {-1, 0, 1, …, 32}
    • -1 = marks detection/tracking artifacts so they don’t bias evaluation (e.g., spurious box, ID switch)
    • 1…32 = anomaly categories (see event_labels.txt)
    • unlabeled trajectories are treated as normal (label 0)
  • Relevance degrees (0–4) for severity-aware evaluation in relevance_mapping.json. The category→relevance mapping is subjective and may be adapted to match different application priorities.
    • 0: FP/uninteresting
    • 1: rather uninteresting anomaly
    • 2: relevant anomaly
    • 3: high relevance
    • 4: critical relevance (dangerous behavior)

Example anomaly categories

  • Wrong-way driving (IDs: 22, 23) — vehicle travels against permitted direction
  • Fast driving (ID: 11) — reckless speeding relative to scene context
  • Traffic tie-up (ID: 16) — blockage or standstill due to congestion/obstruction
  • Cutting off another vehicle (IDs: 18, 19) — failing to yield / forcing an agent to brake
  • Broken-down vehicle (ID: 25) — stationary/disabled vehicle on a public road.
  • Getting off the road (IDs: 28, 29) — getting off the roadway / parking on sidewalk

Wrong-way driving
Wrong-way driving (23)
Cutting off (almost collision)
Cutting off (almost collision) (19)
Parking on sidewalk
Parking on sidewalk (29)
Broken-down vehicle
Broken-down vehicle moved by people (25)

File formats

  • Frames: WebDataset shards frames-*.tar with JPEGs named frame_<timestamp_ms>_<running_index>.jpg.

  • index.csv: maps each frame to its timestamp and shard, enabling alignment.

  • object_detections.json (per scene/split): array of per-timestamp records with timestamp (UNIX ms), frame_index, frame_key (JPEG filename), shard (tar file), and a detections list. Each detection has class_id (YOLOv8), object_id (stable track ID), longitude/latitude, boundingbox normalized to [0,1], and confidence. The object_id persists across frames, enabling trajectory-level analyses.

  • anomaly-labels.csv (test only): CSV with columns object_id,start_timestamp,end_timestamp,label. Contains labels for true anomalies (1–32) and input errors (−1).

Intended use

  • Tasks: anomaly detection; severity-aware ranking; robustness to detection/tracking noise.
  • Metrics: NDCG (severity-aware ranking); AU-PR, AU-ROC.

Quick start

Some download possibilities.

# Full dataset (all scenes + train/test + mappings)
from huggingface_hub import snapshot_download

snapshot_download(
    "HannaLicht/overhead-traffic-anomalies",
    repo_type="dataset",
    local_dir="OTA"
)

# Only test data (with anomaly labels)
snapshot_download(
    "HannaLicht/overhead-traffic-anomalies",
    repo_type="dataset",
    allow_patterns=[
        "MononElmStreetNB/testdata/**", "RangelineS116thSt/testdata/**",
        "RangelineSMedicalDr/testdata/**", "event_labels.txt", "relevance_mapping.json",
    ],
    local_dir="OTA-test-only"
)

You can align frames, detections, and labels using index.csv timestamps and object_ids.

import pandas as pd

# Example: load test annotations for a scene
root = "MononElmStreetNB/testdata"
labels = pd.read_csv(f"{root}/anomaly-labels.csv")  # object_id, start_timestamp, end_timestamp, label
index_df = pd.read_csv(f"{root}/index.csv")         # frame_key, timestamp, shard

# Get all frames within an anomaly interval (timestamps are UNIX ms)
def frames_for_interval(ts_start, ts_end, index_df):
    return index_df[(index_df["timestamp_utc_ms"] >= ts_start) & (index_df["timestamp_utc_ms"] <= ts_end)]

rows = frames_for_interval(labels.iloc[0].start_timestamp, labels.iloc[0].end_timestamp, index_df)
print(rows.head())

If you prefer streaming frames from .tar shards, consider the webdataset library.

License & Attribution

Data © 2025 Starwit Technologies GmbH & Hanna Lichtenberg - Licensed under CC BY NC SA 4.0.

Please cite:

H. Lichtenberg, Anomaly Detection in Traffic Applications: A Probabilistic Forecasting Approach Based on Object Tracking, Master’s thesis, 2025.

Acknowledgments:
Created in cooperation with Starwit Technologies GmbH.
Detections use YOLOv8; geo-mapping via the Starwit Awareness Engine.

Downloads last month
53