HannaLicht commited on
Commit
8bcd253
·
verified ·
1 Parent(s): e4618cd

Update quick start

Browse files
Files changed (1) hide show
  1. README.md +25 -1
README.md CHANGED
@@ -13,7 +13,7 @@ task_categories:
13
 
14
  This dataset contains traffic anomalies from **static overhead cameras** (intersections/roundabouts). It includes **32 anomaly categories** with a **relevance mapping** for severity-aware evaluation. For each camera, we provide video frames with YOLOv8 detections, including 24 h of training footage and 48 h of test footage with **1027 anomaly annotations**.
15
 
16
- *Created as part of the Master’s thesis by Hanna Lichtenberg (2025), in cooperation with Starwit Technologies GmbH. See the thesis for details and baseline NDCG@50 results.*
17
 
18
  ## What’s inside
19
 
@@ -82,6 +82,30 @@ This dataset contains traffic anomalies from **static overhead cameras** (inters
82
 
83
  ## Quick start
84
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
85
  You can align frames, detections, and labels using `index.csv` timestamps and `object_id`s.
86
 
87
  ```python
 
13
 
14
  This dataset contains traffic anomalies from **static overhead cameras** (intersections/roundabouts). It includes **32 anomaly categories** with a **relevance mapping** for severity-aware evaluation. For each camera, we provide video frames with YOLOv8 detections, including 24 h of training footage and 48 h of test footage with **1027 anomaly annotations**.
15
 
16
+ *Created as part of the Master’s thesis by Hanna Lichtenberg (2025), in cooperation with Starwit Technologies GmbH. See the thesis for details and baseline NDCG@50 results. Feedback is welcome!*
17
 
18
  ## What’s inside
19
 
 
82
 
83
  ## Quick start
84
 
85
+ Some download possibilities.
86
+
87
+ ```python
88
+ # Full dataset (all scenes + train/test + mappings)
89
+ from huggingface_hub import snapshot_download
90
+
91
+ snapshot_download(
92
+ "HannaLicht/overhead-traffic-anomalies",
93
+ repo_type="dataset",
94
+ local_dir="OTA"
95
+ )
96
+
97
+ # Only test data (with anomaly labels)
98
+ snapshot_download(
99
+ "HannaLicht/overhead-traffic-anomalies",
100
+ repo_type="dataset",
101
+ allow_patterns=[
102
+ "MononElmStreetNB/testdata/**", "RangelineS116thSt/testdata/**",
103
+ "RangelineSMedicalDr/testdata/**", "event_labels.txt", "relevance_mapping.json",
104
+ ],
105
+ local_dir="OTA-test-only"
106
+ )
107
+ ```
108
+
109
  You can align frames, detections, and labels using `index.csv` timestamps and `object_id`s.
110
 
111
  ```python