model_id
stringlengths
7
105
model_card
stringlengths
1
130k
model_labels
listlengths
2
80k
Matthijs/mobilevit-small
# MobileViT (small-sized model) MobileViT model pre-trained on ImageNet-1k at resolution 256x256. It was introduced in [MobileViT: Light-weight, General-purpose, and Mobile-friendly Vision Transformer](https://arxiv.org/abs/2110.02178) by Sachin Mehta and Mohammad Rastegari, and first released in [this repository](https://github.com/apple/ml-cvnets). The license used is [Apple sample code license](https://github.com/apple/ml-cvnets/blob/main/LICENSE). Disclaimer: The team releasing MobileViT did not write a model card for this model so this model card has been written by the Hugging Face team. ## Model description MobileViT is a light-weight, low latency convolutional neural network that combines MobileNetV2-style layers with a new block that replaces local processing in convolutions with global processing using transformers. As with ViT (Vision Transformer), the image data is converted into flattened patches before it is processed by the transformer layers. Afterwards, however, the patches are "unflattened" back into feature maps. This allows the MobileViT-block to be placed anywhere inside a CNN. MobileViT does not require any positional embeddings. ## Intended uses & limitations You can use the raw model for image classification. See the [model hub](https://huggingface.co/models?search=mobilevit) to look for fine-tuned versions on a task that interests you. ### How to use Here is how to use this model to classify an image of the COCO 2017 dataset into one of the 1,000 ImageNet classes: ```python from transformers import MobileViTFeatureExtractor, MobileViTForImageClassification from PIL import Image import requests url = 'http://images.cocodataset.org/val2017/000000039769.jpg' image = Image.open(requests.get(url, stream=True).raw) feature_extractor = MobileViTFeatureExtractor.from_pretrained('Matthijs/mobilevit-small') model = MobileViTForImageClassification.from_pretrained('Matthijs/mobilevit-small') inputs = feature_extractor(images=image, return_tensors="pt") outputs = model(**inputs) logits = outputs.logits # model predicts one of the 1000 ImageNet classes predicted_class_idx = logits.argmax(-1).item() print("Predicted class:", model.config.id2label[predicted_class_idx]) ``` Currently, both the feature extractor and model support PyTorch. ## Training data The MobileViT model was pretrained on [ImageNet-1k](https://huggingface.co/datasets/imagenet-1k), a dataset consisting of 1 million images and 1,000 classes. ## Training procedure ### Preprocessing Training requires only basic data augmentation, i.e. random resized cropping and horizontal flipping. To learn multi-scale representations without requiring fine-tuning, a multi-scale sampler was used during training, with image sizes randomly sampled from: (160, 160), (192, 192), (256, 256), (288, 288), (320, 320). At inference time, images are resized/rescaled to the same resolution (288x288), and center-cropped at 256x256. Pixels are normalized to the range [0, 1]. Images are expected to be in BGR pixel order, not RGB. ### Pretraining The MobileViT networks are trained from scratch for 300 epochs on ImageNet-1k on 8 NVIDIA GPUs with an effective batch size of 1024 and learning rate warmup for 3k steps, followed by cosine annealing. Also used were label smoothing cross-entropy loss and L2 weight decay. Training resolution varies from 160x160 to 320x320, using multi-scale sampling. ## Evaluation results | Model | ImageNet top-1 accuracy | ImageNet top-5 accuracy | # params | URL | |------------------|-------------------------|-------------------------|-----------|----------------------------------------------------| | MobileViT-XXS | 69.0 | 88.9 | 1.3 M | https://huggingface.co/Matthijs/mobilevit-xx-small | | MobileViT-XS | 74.8 | 92.3 | 2.3 M | https://huggingface.co/Matthijs/mobilevit-x-small | | **MobileViT-S** | **78.4** | **94.1** | **5.6 M** | https://huggingface.co/Matthijs/mobilevit-small | ### BibTeX entry and citation info ```bibtex @inproceedings{vision-transformer, title = {MobileViT: Light-weight, General-purpose, and Mobile-friendly Vision Transformer}, author = {Sachin Mehta and Mohammad Rastegari}, year = {2022}, URL = {https://arxiv.org/abs/2110.02178} } ```
[ "tench, tinca tinca", "goldfish, carassius auratus", "great white shark, white shark, man-eater, man-eating shark, carcharodon carcharias", "tiger shark, galeocerdo cuvieri", "hammerhead, hammerhead shark", "electric ray, crampfish, numbfish, torpedo", "stingray", "cock", "hen", "ostrich, struthio camelus", "brambling, fringilla montifringilla", "goldfinch, carduelis carduelis", "house finch, linnet, carpodacus mexicanus", "junco, snowbird", "indigo bunting, indigo finch, indigo bird, passerina cyanea", "robin, american robin, turdus migratorius", "bulbul", "jay", "magpie", "chickadee", "water ouzel, dipper", "kite", "bald eagle, american eagle, haliaeetus leucocephalus", "vulture", "great grey owl, great gray owl, strix nebulosa", "european fire salamander, salamandra salamandra", "common newt, triturus vulgaris", "eft", "spotted salamander, ambystoma maculatum", "axolotl, mud puppy, ambystoma mexicanum", "bullfrog, rana catesbeiana", "tree frog, tree-frog", "tailed frog, bell toad, ribbed toad, tailed toad, ascaphus trui", "loggerhead, loggerhead turtle, caretta caretta", "leatherback turtle, leatherback, leathery turtle, dermochelys coriacea", "mud turtle", "terrapin", "box turtle, box tortoise", "banded gecko", "common iguana, iguana, iguana iguana", "american chameleon, anole, anolis carolinensis", "whiptail, whiptail lizard", "agama", "frilled lizard, chlamydosaurus kingi", "alligator lizard", "gila monster, heloderma suspectum", "green lizard, lacerta viridis", "african chameleon, chamaeleo chamaeleon", "komodo dragon, komodo lizard, dragon lizard, giant lizard, varanus komodoensis", "african crocodile, nile crocodile, crocodylus niloticus", "american alligator, alligator mississipiensis", "triceratops", "thunder snake, worm snake, carphophis amoenus", "ringneck snake, ring-necked snake, ring snake", "hognose snake, puff adder, sand viper", "green snake, grass snake", "king snake, kingsnake", "garter snake, grass snake", "water snake", "vine snake", "night snake, hypsiglena torquata", "boa constrictor, constrictor constrictor", "rock python, rock snake, python sebae", "indian cobra, naja naja", "green mamba", "sea snake", "horned viper, cerastes, sand viper, horned asp, cerastes cornutus", "diamondback, diamondback rattlesnake, crotalus adamanteus", "sidewinder, horned rattlesnake, crotalus cerastes", "trilobite", "harvestman, daddy longlegs, phalangium opilio", "scorpion", "black and gold garden spider, argiope aurantia", "barn spider, araneus cavaticus", "garden spider, aranea diademata", "black widow, latrodectus mactans", "tarantula", "wolf spider, hunting spider", "tick", "centipede", "black grouse", "ptarmigan", "ruffed grouse, partridge, bonasa umbellus", "prairie chicken, prairie grouse, prairie fowl", "peacock", "quail", "partridge", "african grey, african gray, psittacus erithacus", "macaw", "sulphur-crested cockatoo, kakatoe galerita, cacatua galerita", "lorikeet", "coucal", "bee eater", "hornbill", "hummingbird", "jacamar", "toucan", "drake", "red-breasted merganser, mergus serrator", "goose", "black swan, cygnus atratus", "tusker", "echidna, spiny anteater, anteater", "platypus, duckbill, duckbilled platypus, duck-billed platypus, ornithorhynchus anatinus", "wallaby, brush kangaroo", "koala, koala bear, kangaroo bear, native bear, phascolarctos cinereus", "wombat", "jellyfish", "sea anemone, anemone", "brain coral", "flatworm, platyhelminth", "nematode, nematode worm, roundworm", "conch", "snail", "slug", "sea slug, nudibranch", "chiton, coat-of-mail shell, sea cradle, polyplacophore", "chambered nautilus, pearly nautilus, nautilus", "dungeness crab, cancer magister", "rock crab, cancer irroratus", "fiddler crab", "king crab, alaska crab, alaskan king crab, alaska king crab, paralithodes camtschatica", "american lobster, northern lobster, maine lobster, homarus americanus", "spiny lobster, langouste, rock lobster, crawfish, crayfish, sea crawfish", "crayfish, crawfish, crawdad, crawdaddy", "hermit crab", "isopod", "white stork, ciconia ciconia", "black stork, ciconia nigra", "spoonbill", "flamingo", "little blue heron, egretta caerulea", "american egret, great white heron, egretta albus", "bittern", "crane", "limpkin, aramus pictus", "european gallinule, porphyrio porphyrio", "american coot, marsh hen, mud hen, water hen, fulica americana", "bustard", "ruddy turnstone, arenaria interpres", "red-backed sandpiper, dunlin, erolia alpina", "redshank, tringa totanus", "dowitcher", "oystercatcher, oyster catcher", "pelican", "king penguin, aptenodytes patagonica", "albatross, mollymawk", "grey whale, gray whale, devilfish, eschrichtius gibbosus, eschrichtius robustus", "killer whale, killer, orca, grampus, sea wolf, orcinus orca", "dugong, dugong dugon", "sea lion", "chihuahua", "japanese spaniel", "maltese dog, maltese terrier, maltese", "pekinese, pekingese, peke", "shih-tzu", "blenheim spaniel", "papillon", "toy terrier", "rhodesian ridgeback", "afghan hound, afghan", "basset, basset hound", "beagle", "bloodhound, sleuthhound", "bluetick", "black-and-tan coonhound", "walker hound, walker foxhound", "english foxhound", "redbone", "borzoi, russian wolfhound", "irish wolfhound", "italian greyhound", "whippet", "ibizan hound, ibizan podenco", "norwegian elkhound, elkhound", "otterhound, otter hound", "saluki, gazelle hound", "scottish deerhound, deerhound", "weimaraner", "staffordshire bullterrier, staffordshire bull terrier", "american staffordshire terrier, staffordshire terrier, american pit bull terrier, pit bull terrier", "bedlington terrier", "border terrier", "kerry blue terrier", "irish terrier", "norfolk terrier", "norwich terrier", "yorkshire terrier", "wire-haired fox terrier", "lakeland terrier", "sealyham terrier, sealyham", "airedale, airedale terrier", "cairn, cairn terrier", "australian terrier", "dandie dinmont, dandie dinmont terrier", "boston bull, boston terrier", "miniature schnauzer", "giant schnauzer", "standard schnauzer", "scotch terrier, scottish terrier, scottie", "tibetan terrier, chrysanthemum dog", "silky terrier, sydney silky", "soft-coated wheaten terrier", "west highland white terrier", "lhasa, lhasa apso", "flat-coated retriever", "curly-coated retriever", "golden retriever", "labrador retriever", "chesapeake bay retriever", "german short-haired pointer", "vizsla, hungarian pointer", "english setter", "irish setter, red setter", "gordon setter", "brittany spaniel", "clumber, clumber spaniel", "english springer, english springer spaniel", "welsh springer spaniel", "cocker spaniel, english cocker spaniel, cocker", "sussex spaniel", "irish water spaniel", "kuvasz", "schipperke", "groenendael", "malinois", "briard", "kelpie", "komondor", "old english sheepdog, bobtail", "shetland sheepdog, shetland sheep dog, shetland", "collie", "border collie", "bouvier des flandres, bouviers des flandres", "rottweiler", "german shepherd, german shepherd dog, german police dog, alsatian", "doberman, doberman pinscher", "miniature pinscher", "greater swiss mountain dog", "bernese mountain dog", "appenzeller", "entlebucher", "boxer", "bull mastiff", "tibetan mastiff", "french bulldog", "great dane", "saint bernard, st bernard", "eskimo dog, husky", "malamute, malemute, alaskan malamute", "siberian husky", "dalmatian, coach dog, carriage dog", "affenpinscher, monkey pinscher, monkey dog", "basenji", "pug, pug-dog", "leonberg", "newfoundland, newfoundland dog", "great pyrenees", "samoyed, samoyede", "pomeranian", "chow, chow chow", "keeshond", "brabancon griffon", "pembroke, pembroke welsh corgi", "cardigan, cardigan welsh corgi", "toy poodle", "miniature poodle", "standard poodle", "mexican hairless", "timber wolf, grey wolf, gray wolf, canis lupus", "white wolf, arctic wolf, canis lupus tundrarum", "red wolf, maned wolf, canis rufus, canis niger", "coyote, prairie wolf, brush wolf, canis latrans", "dingo, warrigal, warragal, canis dingo", "dhole, cuon alpinus", "african hunting dog, hyena dog, cape hunting dog, lycaon pictus", "hyena, hyaena", "red fox, vulpes vulpes", "kit fox, vulpes macrotis", "arctic fox, white fox, alopex lagopus", "grey fox, gray fox, urocyon cinereoargenteus", "tabby, tabby cat", "tiger cat", "persian cat", "siamese cat, siamese", "egyptian cat", "cougar, puma, catamount, mountain lion, painter, panther, felis concolor", "lynx, catamount", "leopard, panthera pardus", "snow leopard, ounce, panthera uncia", "jaguar, panther, panthera onca, felis onca", "lion, king of beasts, panthera leo", "tiger, panthera tigris", "cheetah, chetah, acinonyx jubatus", "brown bear, bruin, ursus arctos", "american black bear, black bear, ursus americanus, euarctos americanus", "ice bear, polar bear, ursus maritimus, thalarctos maritimus", "sloth bear, melursus ursinus, ursus ursinus", "mongoose", "meerkat, mierkat", "tiger beetle", "ladybug, ladybeetle, lady beetle, ladybird, ladybird beetle", "ground beetle, carabid beetle", "long-horned beetle, longicorn, longicorn beetle", "leaf beetle, chrysomelid", "dung beetle", "rhinoceros beetle", "weevil", "fly", "bee", "ant, emmet, pismire", "grasshopper, hopper", "cricket", "walking stick, walkingstick, stick insect", "cockroach, roach", "mantis, mantid", "cicada, cicala", "leafhopper", "lacewing, lacewing fly", "dragonfly, darning needle, devil's darning needle, sewing needle, snake feeder, snake doctor, mosquito hawk, skeeter hawk", "damselfly", "admiral", "ringlet, ringlet butterfly", "monarch, monarch butterfly, milkweed butterfly, danaus plexippus", "cabbage butterfly", "sulphur butterfly, sulfur butterfly", "lycaenid, lycaenid butterfly", "starfish, sea star", "sea urchin", "sea cucumber, holothurian", "wood rabbit, cottontail, cottontail rabbit", "hare", "angora, angora rabbit", "hamster", "porcupine, hedgehog", "fox squirrel, eastern fox squirrel, sciurus niger", "marmot", "beaver", "guinea pig, cavia cobaya", "sorrel", "zebra", "hog, pig, grunter, squealer, sus scrofa", "wild boar, boar, sus scrofa", "warthog", "hippopotamus, hippo, river horse, hippopotamus amphibius", "ox", "water buffalo, water ox, asiatic buffalo, bubalus bubalis", "bison", "ram, tup", "bighorn, bighorn sheep, cimarron, rocky mountain bighorn, rocky mountain sheep, ovis canadensis", "ibex, capra ibex", "hartebeest", "impala, aepyceros melampus", "gazelle", "arabian camel, dromedary, camelus dromedarius", "llama", "weasel", "mink", "polecat, fitch, foulmart, foumart, mustela putorius", "black-footed ferret, ferret, mustela nigripes", "otter", "skunk, polecat, wood pussy", "badger", "armadillo", "three-toed sloth, ai, bradypus tridactylus", "orangutan, orang, orangutang, pongo pygmaeus", "gorilla, gorilla gorilla", "chimpanzee, chimp, pan troglodytes", "gibbon, hylobates lar", "siamang, hylobates syndactylus, symphalangus syndactylus", "guenon, guenon monkey", "patas, hussar monkey, erythrocebus patas", "baboon", "macaque", "langur", "colobus, colobus monkey", "proboscis monkey, nasalis larvatus", "marmoset", "capuchin, ringtail, cebus capucinus", "howler monkey, howler", "titi, titi monkey", "spider monkey, ateles geoffroyi", "squirrel monkey, saimiri sciureus", "madagascar cat, ring-tailed lemur, lemur catta", "indri, indris, indri indri, indri brevicaudatus", "indian elephant, elephas maximus", "african elephant, loxodonta africana", "lesser panda, red panda, panda, bear cat, cat bear, ailurus fulgens", "giant panda, panda, panda bear, coon bear, ailuropoda melanoleuca", "barracouta, snoek", "eel", "coho, cohoe, coho salmon, blue jack, silver salmon, oncorhynchus kisutch", "rock beauty, holocanthus tricolor", "anemone fish", "sturgeon", "gar, garfish, garpike, billfish, lepisosteus osseus", "lionfish", "puffer, pufferfish, blowfish, globefish", "abacus", "abaya", "academic gown, academic robe, judge's robe", "accordion, piano accordion, squeeze box", "acoustic guitar", "aircraft carrier, carrier, flattop, attack aircraft carrier", "airliner", "airship, dirigible", "altar", "ambulance", "amphibian, amphibious vehicle", "analog clock", "apiary, bee house", "apron", "ashcan, trash can, garbage can, wastebin, ash bin, ash-bin, ashbin, dustbin, trash barrel, trash bin", "assault rifle, assault gun", "backpack, back pack, knapsack, packsack, rucksack, haversack", "bakery, bakeshop, bakehouse", "balance beam, beam", "balloon", "ballpoint, ballpoint pen, ballpen, biro", "band aid", "banjo", "bannister, banister, balustrade, balusters, handrail", "barbell", "barber chair", "barbershop", "barn", "barometer", "barrel, cask", "barrow, garden cart, lawn cart, wheelbarrow", "baseball", "basketball", "bassinet", "bassoon", "bathing cap, swimming cap", "bath towel", "bathtub, bathing tub, bath, tub", "beach wagon, station wagon, wagon, estate car, beach waggon, station waggon, waggon", "beacon, lighthouse, beacon light, pharos", "beaker", "bearskin, busby, shako", "beer bottle", "beer glass", "bell cote, bell cot", "bib", "bicycle-built-for-two, tandem bicycle, tandem", "bikini, two-piece", "binder, ring-binder", "binoculars, field glasses, opera glasses", "birdhouse", "boathouse", "bobsled, bobsleigh, bob", "bolo tie, bolo, bola tie, bola", "bonnet, poke bonnet", "bookcase", "bookshop, bookstore, bookstall", "bottlecap", "bow", "bow tie, bow-tie, bowtie", "brass, memorial tablet, plaque", "brassiere, bra, bandeau", "breakwater, groin, groyne, mole, bulwark, seawall, jetty", "breastplate, aegis, egis", "broom", "bucket, pail", "buckle", "bulletproof vest", "bullet train, bullet", "butcher shop, meat market", "cab, hack, taxi, taxicab", "caldron, cauldron", "candle, taper, wax light", "cannon", "canoe", "can opener, tin opener", "cardigan", "car mirror", "carousel, carrousel, merry-go-round, roundabout, whirligig", "carpenter's kit, tool kit", "carton", "car wheel", "cash machine, cash dispenser, automated teller machine, automatic teller machine, automated teller, automatic teller, atm", "cassette", "cassette player", "castle", "catamaran", "cd player", "cello, violoncello", "cellular telephone, cellular phone, cellphone, cell, mobile phone", "chain", "chainlink fence", "chain mail, ring mail, mail, chain armor, chain armour, ring armor, ring armour", "chain saw, chainsaw", "chest", "chiffonier, commode", "chime, bell, gong", "china cabinet, china closet", "christmas stocking", "church, church building", "cinema, movie theater, movie theatre, movie house, picture palace", "cleaver, meat cleaver, chopper", "cliff dwelling", "cloak", "clog, geta, patten, sabot", "cocktail shaker", "coffee mug", "coffeepot", "coil, spiral, volute, whorl, helix", "combination lock", "computer keyboard, keypad", "confectionery, confectionary, candy store", "container ship, containership, container vessel", "convertible", "corkscrew, bottle screw", "cornet, horn, trumpet, trump", "cowboy boot", "cowboy hat, ten-gallon hat", "cradle", "crane", "crash helmet", "crate", "crib, cot", "crock pot", "croquet ball", "crutch", "cuirass", "dam, dike, dyke", "desk", "desktop computer", "dial telephone, dial phone", "diaper, nappy, napkin", "digital clock", "digital watch", "dining table, board", "dishrag, dishcloth", "dishwasher, dish washer, dishwashing machine", "disk brake, disc brake", "dock, dockage, docking facility", "dogsled, dog sled, dog sleigh", "dome", "doormat, welcome mat", "drilling platform, offshore rig", "drum, membranophone, tympan", "drumstick", "dumbbell", "dutch oven", "electric fan, blower", "electric guitar", "electric locomotive", "entertainment center", "envelope", "espresso maker", "face powder", "feather boa, boa", "file, file cabinet, filing cabinet", "fireboat", "fire engine, fire truck", "fire screen, fireguard", "flagpole, flagstaff", "flute, transverse flute", "folding chair", "football helmet", "forklift", "fountain", "fountain pen", "four-poster", "freight car", "french horn, horn", "frying pan, frypan, skillet", "fur coat", "garbage truck, dustcart", "gasmask, respirator, gas helmet", "gas pump, gasoline pump, petrol pump, island dispenser", "goblet", "go-kart", "golf ball", "golfcart, golf cart", "gondola", "gong, tam-tam", "gown", "grand piano, grand", "greenhouse, nursery, glasshouse", "grille, radiator grille", "grocery store, grocery, food market, market", "guillotine", "hair slide", "hair spray", "half track", "hammer", "hamper", "hand blower, blow dryer, blow drier, hair dryer, hair drier", "hand-held computer, hand-held microcomputer", "handkerchief, hankie, hanky, hankey", "hard disc, hard disk, fixed disk", "harmonica, mouth organ, harp, mouth harp", "harp", "harvester, reaper", "hatchet", "holster", "home theater, home theatre", "honeycomb", "hook, claw", "hoopskirt, crinoline", "horizontal bar, high bar", "horse cart, horse-cart", "hourglass", "ipod", "iron, smoothing iron", "jack-o'-lantern", "jean, blue jean, denim", "jeep, landrover", "jersey, t-shirt, tee shirt", "jigsaw puzzle", "jinrikisha, ricksha, rickshaw", "joystick", "kimono", "knee pad", "knot", "lab coat, laboratory coat", "ladle", "lampshade, lamp shade", "laptop, laptop computer", "lawn mower, mower", "lens cap, lens cover", "letter opener, paper knife, paperknife", "library", "lifeboat", "lighter, light, igniter, ignitor", "limousine, limo", "liner, ocean liner", "lipstick, lip rouge", "loafer", "lotion", "loudspeaker, speaker, speaker unit, loudspeaker system, speaker system", "loupe, jeweler's loupe", "lumbermill, sawmill", "magnetic compass", "mailbag, postbag", "mailbox, letter box", "maillot", "maillot, tank suit", "manhole cover", "maraca", "marimba, xylophone", "mask", "matchstick", "maypole", "maze, labyrinth", "measuring cup", "medicine chest, medicine cabinet", "megalith, megalithic structure", "microphone, mike", "microwave, microwave oven", "military uniform", "milk can", "minibus", "miniskirt, mini", "minivan", "missile", "mitten", "mixing bowl", "mobile home, manufactured home", "model t", "modem", "monastery", "monitor", "moped", "mortar", "mortarboard", "mosque", "mosquito net", "motor scooter, scooter", "mountain bike, all-terrain bike, off-roader", "mountain tent", "mouse, computer mouse", "mousetrap", "moving van", "muzzle", "nail", "neck brace", "necklace", "nipple", "notebook, notebook computer", "obelisk", "oboe, hautboy, hautbois", "ocarina, sweet potato", "odometer, hodometer, mileometer, milometer", "oil filter", "organ, pipe organ", "oscilloscope, scope, cathode-ray oscilloscope, cro", "overskirt", "oxcart", "oxygen mask", "packet", "paddle, boat paddle", "paddlewheel, paddle wheel", "padlock", "paintbrush", "pajama, pyjama, pj's, jammies", "palace", "panpipe, pandean pipe, syrinx", "paper towel", "parachute, chute", "parallel bars, bars", "park bench", "parking meter", "passenger car, coach, carriage", "patio, terrace", "pay-phone, pay-station", "pedestal, plinth, footstall", "pencil box, pencil case", "pencil sharpener", "perfume, essence", "petri dish", "photocopier", "pick, plectrum, plectron", "pickelhaube", "picket fence, paling", "pickup, pickup truck", "pier", "piggy bank, penny bank", "pill bottle", "pillow", "ping-pong ball", "pinwheel", "pirate, pirate ship", "pitcher, ewer", "plane, carpenter's plane, woodworking plane", "planetarium", "plastic bag", "plate rack", "plow, plough", "plunger, plumber's helper", "polaroid camera, polaroid land camera", "pole", "police van, police wagon, paddy wagon, patrol wagon, wagon, black maria", "poncho", "pool table, billiard table, snooker table", "pop bottle, soda bottle", "pot, flowerpot", "potter's wheel", "power drill", "prayer rug, prayer mat", "printer", "prison, prison house", "projectile, missile", "projector", "puck, hockey puck", "punching bag, punch bag, punching ball, punchball", "purse", "quill, quill pen", "quilt, comforter, comfort, puff", "racer, race car, racing car", "racket, racquet", "radiator", "radio, wireless", "radio telescope, radio reflector", "rain barrel", "recreational vehicle, rv, r.v.", "reel", "reflex camera", "refrigerator, icebox", "remote control, remote", "restaurant, eating house, eating place, eatery", "revolver, six-gun, six-shooter", "rifle", "rocking chair, rocker", "rotisserie", "rubber eraser, rubber, pencil eraser", "rugby ball", "rule, ruler", "running shoe", "safe", "safety pin", "saltshaker, salt shaker", "sandal", "sarong", "sax, saxophone", "scabbard", "scale, weighing machine", "school bus", "schooner", "scoreboard", "screen, crt screen", "screw", "screwdriver", "seat belt, seatbelt", "sewing machine", "shield, buckler", "shoe shop, shoe-shop, shoe store", "shoji", "shopping basket", "shopping cart", "shovel", "shower cap", "shower curtain", "ski", "ski mask", "sleeping bag", "slide rule, slipstick", "sliding door", "slot, one-armed bandit", "snorkel", "snowmobile", "snowplow, snowplough", "soap dispenser", "soccer ball", "sock", "solar dish, solar collector, solar furnace", "sombrero", "soup bowl", "space bar", "space heater", "space shuttle", "spatula", "speedboat", "spider web, spider's web", "spindle", "sports car, sport car", "spotlight, spot", "stage", "steam locomotive", "steel arch bridge", "steel drum", "stethoscope", "stole", "stone wall", "stopwatch, stop watch", "stove", "strainer", "streetcar, tram, tramcar, trolley, trolley car", "stretcher", "studio couch, day bed", "stupa, tope", "submarine, pigboat, sub, u-boat", "suit, suit of clothes", "sundial", "sunglass", "sunglasses, dark glasses, shades", "sunscreen, sunblock, sun blocker", "suspension bridge", "swab, swob, mop", "sweatshirt", "swimming trunks, bathing trunks", "swing", "switch, electric switch, electrical switch", "syringe", "table lamp", "tank, army tank, armored combat vehicle, armoured combat vehicle", "tape player", "teapot", "teddy, teddy bear", "television, television system", "tennis ball", "thatch, thatched roof", "theater curtain, theatre curtain", "thimble", "thresher, thrasher, threshing machine", "throne", "tile roof", "toaster", "tobacco shop, tobacconist shop, tobacconist", "toilet seat", "torch", "totem pole", "tow truck, tow car, wrecker", "toyshop", "tractor", "trailer truck, tractor trailer, trucking rig, rig, articulated lorry, semi", "tray", "trench coat", "tricycle, trike, velocipede", "trimaran", "tripod", "triumphal arch", "trolleybus, trolley coach, trackless trolley", "trombone", "tub, vat", "turnstile", "typewriter keyboard", "umbrella", "unicycle, monocycle", "upright, upright piano", "vacuum, vacuum cleaner", "vase", "vault", "velvet", "vending machine", "vestment", "viaduct", "violin, fiddle", "volleyball", "waffle iron", "wall clock", "wallet, billfold, notecase, pocketbook", "wardrobe, closet, press", "warplane, military plane", "washbasin, handbasin, washbowl, lavabo, wash-hand basin", "washer, automatic washer, washing machine", "water bottle", "water jug", "water tower", "whiskey jug", "whistle", "wig", "window screen", "window shade", "windsor tie", "wine bottle", "wing", "wok", "wooden spoon", "wool, woolen, woollen", "worm fence, snake fence, snake-rail fence, virginia fence", "wreck", "yawl", "yurt", "web site, website, internet site, site", "comic book", "crossword puzzle, crossword", "street sign", "traffic light, traffic signal, stoplight", "book jacket, dust cover, dust jacket, dust wrapper", "menu", "plate", "guacamole", "consomme", "hot pot, hotpot", "trifle", "ice cream, icecream", "ice lolly, lolly, lollipop, popsicle", "french loaf", "bagel, beigel", "pretzel", "cheeseburger", "hotdog, hot dog, red hot", "mashed potato", "head cabbage", "broccoli", "cauliflower", "zucchini, courgette", "spaghetti squash", "acorn squash", "butternut squash", "cucumber, cuke", "artichoke, globe artichoke", "bell pepper", "cardoon", "mushroom", "granny smith", "strawberry", "orange", "lemon", "fig", "pineapple, ananas", "banana", "jackfruit, jak, jack", "custard apple", "pomegranate", "hay", "carbonara", "chocolate sauce, chocolate syrup", "dough", "meat loaf, meatloaf", "pizza, pizza pie", "potpie", "burrito", "red wine", "espresso", "cup", "eggnog", "alp", "bubble", "cliff, drop, drop-off", "coral reef", "geyser", "lakeside, lakeshore", "promontory, headland, head, foreland", "sandbar, sand bar", "seashore, coast, seacoast, sea-coast", "valley, vale", "volcano", "ballplayer, baseball player", "groom, bridegroom", "scuba diver", "rapeseed", "daisy", "yellow lady's slipper, yellow lady-slipper, cypripedium calceolus, cypripedium parviflorum", "corn", "acorn", "hip, rose hip, rosehip", "buckeye, horse chestnut, conker", "coral fungus", "agaric", "gyromitra", "stinkhorn, carrion fungus", "earthstar", "hen-of-the-woods, hen of the woods, polyporus frondosus, grifola frondosa", "bolete", "ear, spike, capitulum", "toilet tissue, toilet paper, bathroom tissue" ]
karthiksv/vit-base-patch16-224-cifar10
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-base-patch16-224-cifar10 This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the cifar10 dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 1337 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Framework versions - Transformers 4.19.0.dev0 - Pytorch 1.10.1 - Datasets 2.1.0 - Tokenizers 0.12.1
[ "airplane", "automobile", "bird", "cat", "deer", "dog", "frog", "horse", "ship", "truck" ]
karthiksv/vit-base-patch16-224-in21k-finetuned-cifar10
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-base-patch16-224-in21k-finetuned-cifar10 This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the cifar10 dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 1337 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Framework versions - Transformers 4.19.0.dev0 - Pytorch 1.10.1 - Datasets 2.1.0 - Tokenizers 0.12.1
[ "airplane", "automobile", "bird", "cat", "deer", "dog", "frog", "horse", "ship", "truck" ]
matteopilotto/vit-base-patch16-224-in21k-snacks
# Vision Transformer fine-tuned on `Matthijs/snacks` dataset Vision Transformer (ViT) model pre-trained on ImageNet-21k and fine-tuned on [**Matthijs/snacks**](https://huggingface.co/datasets/Matthijs/snacks) for 5 epochs using various data augmentation transformations from `torchvision`. The model achieves a **94.97%** and **94.43%** accuracy on the validation and test set, respectively. ## Data augmentation pipeline The code block below shows the various transformations applied during pre-processing to augment the original dataset. The augmented images where generated on-the-fly with the `set_transform` method. ```python from transformers import ViTFeatureExtractor from torchvision.transforms import ( Compose, Normalize, Resize, RandomResizedCrop, RandomHorizontalFlip, RandomAdjustSharpness, ToTensor ) checkpoint = 'google/vit-base-patch16-224-in21k' feature_extractor = ViTFeatureExtractor.from_pretrained(checkpoint) # transformations on the training set train_aug_transforms = Compose([ RandomResizedCrop(size=feature_extractor.size), RandomHorizontalFlip(p=0.5), RandomAdjustSharpness(sharpness_factor=5, p=0.5), ToTensor(), Normalize(mean=feature_extractor.image_mean, std=feature_extractor.image_std), ]) # transformations on the validation/test set valid_aug_transforms = Compose([ Resize(size=(feature_extractor.size, feature_extractor.size)), ToTensor(), Normalize(mean=feature_extractor.image_mean, std=feature_extractor.image_std), ]) ```
[ "apple", "banana", "cake", "candy", "carrot", "cookie", "doughnut", "grape", "hot dog", "ice cream", "juice", "muffin", "orange", "pineapple", "popcorn", "pretzel", "salad", "strawberry", "waffle", "watermelon" ]
jadohu/BEiT-finetuned
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # BEiT-finetuned This model is a fine-tuned version of [microsoft/beit-base-patch16-224](https://huggingface.co/microsoft/beit-base-patch16-224) on the cifar10 dataset. It achieves the following results on the evaluation set: - Loss: 0.0256 - Accuracy: 0.9918 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.3296 | 1.0 | 351 | 0.0492 | 0.9862 | | 0.2353 | 2.0 | 702 | 0.0331 | 0.9894 | | 0.2127 | 3.0 | 1053 | 0.0256 | 0.9918 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.1 - Tokenizers 0.12.1
[ "airplane", "automobile", "bird", "cat", "deer", "dog", "frog", "horse", "ship", "truck" ]
microsoft/cvt-w24-384-22k
# Convolutional Vision Transformer (CvT) CvT-w24 model pre-trained on ImageNet-22k and fine-tuned on ImageNet-1k at resolution 384x384. It was introduced in the paper [CvT: Introducing Convolutions to Vision Transformers](https://arxiv.org/abs/2103.15808) by Wu et al. and first released in [this repository](https://github.com/microsoft/CvT). Disclaimer: The team releasing CvT did not write a model card for this model so this model card has been written by the Hugging Face team. ## Usage Here is how to use this model to classify an image of the COCO 2017 dataset into one of the 1,000 ImageNet classes: ```python from transformers import AutoFeatureExtractor, CvtForImageClassification from PIL import Image import requests url = 'http://images.cocodataset.org/val2017/000000039769.jpg' image = Image.open(requests.get(url, stream=True).raw) feature_extractor = AutoFeatureExtractor.from_pretrained('microsoft/cvt-w24-384-22k') model = CvtForImageClassification.from_pretrained('microsoft/cvt-w24-384-22k') inputs = feature_extractor(images=image, return_tensors="pt") outputs = model(**inputs) logits = outputs.logits # model predicts one of the 1000 ImageNet classes predicted_class_idx = logits.argmax(-1).item() print("Predicted class:", model.config.id2label[predicted_class_idx]) ```
[ "tench, tinca tinca", "goldfish, carassius auratus", "great white shark, white shark, man-eater, man-eating shark, carcharodon carcharias", "tiger shark, galeocerdo cuvieri", "hammerhead, hammerhead shark", "electric ray, crampfish, numbfish, torpedo", "stingray", "cock", "hen", "ostrich, struthio camelus", "brambling, fringilla montifringilla", "goldfinch, carduelis carduelis", "house finch, linnet, carpodacus mexicanus", "junco, snowbird", "indigo bunting, indigo finch, indigo bird, passerina cyanea", "robin, american robin, turdus migratorius", "bulbul", "jay", "magpie", "chickadee", "water ouzel, dipper", "kite", "bald eagle, american eagle, haliaeetus leucocephalus", "vulture", "great grey owl, great gray owl, strix nebulosa", "european fire salamander, salamandra salamandra", "common newt, triturus vulgaris", "eft", "spotted salamander, ambystoma maculatum", "axolotl, mud puppy, ambystoma mexicanum", "bullfrog, rana catesbeiana", "tree frog, tree-frog", "tailed frog, bell toad, ribbed toad, tailed toad, ascaphus trui", "loggerhead, loggerhead turtle, caretta caretta", "leatherback turtle, leatherback, leathery turtle, dermochelys coriacea", "mud turtle", "terrapin", "box turtle, box tortoise", "banded gecko", "common iguana, iguana, iguana iguana", "american chameleon, anole, anolis carolinensis", "whiptail, whiptail lizard", "agama", "frilled lizard, chlamydosaurus kingi", "alligator lizard", "gila monster, heloderma suspectum", "green lizard, lacerta viridis", "african chameleon, chamaeleo chamaeleon", "komodo dragon, komodo lizard, dragon lizard, giant lizard, varanus komodoensis", "african crocodile, nile crocodile, crocodylus niloticus", "american alligator, alligator mississipiensis", "triceratops", "thunder snake, worm snake, carphophis amoenus", "ringneck snake, ring-necked snake, ring snake", "hognose snake, puff adder, sand viper", "green snake, grass snake", "king snake, kingsnake", "garter snake, grass snake", "water snake", "vine snake", "night snake, hypsiglena torquata", "boa constrictor, constrictor constrictor", "rock python, rock snake, python sebae", "indian cobra, naja naja", "green mamba", "sea snake", "horned viper, cerastes, sand viper, horned asp, cerastes cornutus", "diamondback, diamondback rattlesnake, crotalus adamanteus", "sidewinder, horned rattlesnake, crotalus cerastes", "trilobite", "harvestman, daddy longlegs, phalangium opilio", "scorpion", "black and gold garden spider, argiope aurantia", "barn spider, araneus cavaticus", "garden spider, aranea diademata", "black widow, latrodectus mactans", "tarantula", "wolf spider, hunting spider", "tick", "centipede", "black grouse", "ptarmigan", "ruffed grouse, partridge, bonasa umbellus", "prairie chicken, prairie grouse, prairie fowl", "peacock", "quail", "partridge", "african grey, african gray, psittacus erithacus", "macaw", "sulphur-crested cockatoo, kakatoe galerita, cacatua galerita", "lorikeet", "coucal", "bee eater", "hornbill", "hummingbird", "jacamar", "toucan", "drake", "red-breasted merganser, mergus serrator", "goose", "black swan, cygnus atratus", "tusker", "echidna, spiny anteater, anteater", "platypus, duckbill, duckbilled platypus, duck-billed platypus, ornithorhynchus anatinus", "wallaby, brush kangaroo", "koala, koala bear, kangaroo bear, native bear, phascolarctos cinereus", "wombat", "jellyfish", "sea anemone, anemone", "brain coral", "flatworm, platyhelminth", "nematode, nematode worm, roundworm", "conch", "snail", "slug", "sea slug, nudibranch", "chiton, coat-of-mail shell, sea cradle, polyplacophore", "chambered nautilus, pearly nautilus, nautilus", "dungeness crab, cancer magister", "rock crab, cancer irroratus", "fiddler crab", "king crab, alaska crab, alaskan king crab, alaska king crab, paralithodes camtschatica", "american lobster, northern lobster, maine lobster, homarus americanus", "spiny lobster, langouste, rock lobster, crawfish, crayfish, sea crawfish", "crayfish, crawfish, crawdad, crawdaddy", "hermit crab", "isopod", "white stork, ciconia ciconia", "black stork, ciconia nigra", "spoonbill", "flamingo", "little blue heron, egretta caerulea", "american egret, great white heron, egretta albus", "bittern", "crane", "limpkin, aramus pictus", "european gallinule, porphyrio porphyrio", "american coot, marsh hen, mud hen, water hen, fulica americana", "bustard", "ruddy turnstone, arenaria interpres", "red-backed sandpiper, dunlin, erolia alpina", "redshank, tringa totanus", "dowitcher", "oystercatcher, oyster catcher", "pelican", "king penguin, aptenodytes patagonica", "albatross, mollymawk", "grey whale, gray whale, devilfish, eschrichtius gibbosus, eschrichtius robustus", "killer whale, killer, orca, grampus, sea wolf, orcinus orca", "dugong, dugong dugon", "sea lion", "chihuahua", "japanese spaniel", "maltese dog, maltese terrier, maltese", "pekinese, pekingese, peke", "shih-tzu", "blenheim spaniel", "papillon", "toy terrier", "rhodesian ridgeback", "afghan hound, afghan", "basset, basset hound", "beagle", "bloodhound, sleuthhound", "bluetick", "black-and-tan coonhound", "walker hound, walker foxhound", "english foxhound", "redbone", "borzoi, russian wolfhound", "irish wolfhound", "italian greyhound", "whippet", "ibizan hound, ibizan podenco", "norwegian elkhound, elkhound", "otterhound, otter hound", "saluki, gazelle hound", "scottish deerhound, deerhound", "weimaraner", "staffordshire bullterrier, staffordshire bull terrier", "american staffordshire terrier, staffordshire terrier, american pit bull terrier, pit bull terrier", "bedlington terrier", "border terrier", "kerry blue terrier", "irish terrier", "norfolk terrier", "norwich terrier", "yorkshire terrier", "wire-haired fox terrier", "lakeland terrier", "sealyham terrier, sealyham", "airedale, airedale terrier", "cairn, cairn terrier", "australian terrier", "dandie dinmont, dandie dinmont terrier", "boston bull, boston terrier", "miniature schnauzer", "giant schnauzer", "standard schnauzer", "scotch terrier, scottish terrier, scottie", "tibetan terrier, chrysanthemum dog", "silky terrier, sydney silky", "soft-coated wheaten terrier", "west highland white terrier", "lhasa, lhasa apso", "flat-coated retriever", "curly-coated retriever", "golden retriever", "labrador retriever", "chesapeake bay retriever", "german short-haired pointer", "vizsla, hungarian pointer", "english setter", "irish setter, red setter", "gordon setter", "brittany spaniel", "clumber, clumber spaniel", "english springer, english springer spaniel", "welsh springer spaniel", "cocker spaniel, english cocker spaniel, cocker", "sussex spaniel", "irish water spaniel", "kuvasz", "schipperke", "groenendael", "malinois", "briard", "kelpie", "komondor", "old english sheepdog, bobtail", "shetland sheepdog, shetland sheep dog, shetland", "collie", "border collie", "bouvier des flandres, bouviers des flandres", "rottweiler", "german shepherd, german shepherd dog, german police dog, alsatian", "doberman, doberman pinscher", "miniature pinscher", "greater swiss mountain dog", "bernese mountain dog", "appenzeller", "entlebucher", "boxer", "bull mastiff", "tibetan mastiff", "french bulldog", "great dane", "saint bernard, st bernard", "eskimo dog, husky", "malamute, malemute, alaskan malamute", "siberian husky", "dalmatian, coach dog, carriage dog", "affenpinscher, monkey pinscher, monkey dog", "basenji", "pug, pug-dog", "leonberg", "newfoundland, newfoundland dog", "great pyrenees", "samoyed, samoyede", "pomeranian", "chow, chow chow", "keeshond", "brabancon griffon", "pembroke, pembroke welsh corgi", "cardigan, cardigan welsh corgi", "toy poodle", "miniature poodle", "standard poodle", "mexican hairless", "timber wolf, grey wolf, gray wolf, canis lupus", "white wolf, arctic wolf, canis lupus tundrarum", "red wolf, maned wolf, canis rufus, canis niger", "coyote, prairie wolf, brush wolf, canis latrans", "dingo, warrigal, warragal, canis dingo", "dhole, cuon alpinus", "african hunting dog, hyena dog, cape hunting dog, lycaon pictus", "hyena, hyaena", "red fox, vulpes vulpes", "kit fox, vulpes macrotis", "arctic fox, white fox, alopex lagopus", "grey fox, gray fox, urocyon cinereoargenteus", "tabby, tabby cat", "tiger cat", "persian cat", "siamese cat, siamese", "egyptian cat", "cougar, puma, catamount, mountain lion, painter, panther, felis concolor", "lynx, catamount", "leopard, panthera pardus", "snow leopard, ounce, panthera uncia", "jaguar, panther, panthera onca, felis onca", "lion, king of beasts, panthera leo", "tiger, panthera tigris", "cheetah, chetah, acinonyx jubatus", "brown bear, bruin, ursus arctos", "american black bear, black bear, ursus americanus, euarctos americanus", "ice bear, polar bear, ursus maritimus, thalarctos maritimus", "sloth bear, melursus ursinus, ursus ursinus", "mongoose", "meerkat, mierkat", "tiger beetle", "ladybug, ladybeetle, lady beetle, ladybird, ladybird beetle", "ground beetle, carabid beetle", "long-horned beetle, longicorn, longicorn beetle", "leaf beetle, chrysomelid", "dung beetle", "rhinoceros beetle", "weevil", "fly", "bee", "ant, emmet, pismire", "grasshopper, hopper", "cricket", "walking stick, walkingstick, stick insect", "cockroach, roach", "mantis, mantid", "cicada, cicala", "leafhopper", "lacewing, lacewing fly", "dragonfly, darning needle, devil's darning needle, sewing needle, snake feeder, snake doctor, mosquito hawk, skeeter hawk", "damselfly", "admiral", "ringlet, ringlet butterfly", "monarch, monarch butterfly, milkweed butterfly, danaus plexippus", "cabbage butterfly", "sulphur butterfly, sulfur butterfly", "lycaenid, lycaenid butterfly", "starfish, sea star", "sea urchin", "sea cucumber, holothurian", "wood rabbit, cottontail, cottontail rabbit", "hare", "angora, angora rabbit", "hamster", "porcupine, hedgehog", "fox squirrel, eastern fox squirrel, sciurus niger", "marmot", "beaver", "guinea pig, cavia cobaya", "sorrel", "zebra", "hog, pig, grunter, squealer, sus scrofa", "wild boar, boar, sus scrofa", "warthog", "hippopotamus, hippo, river horse, hippopotamus amphibius", "ox", "water buffalo, water ox, asiatic buffalo, bubalus bubalis", "bison", "ram, tup", "bighorn, bighorn sheep, cimarron, rocky mountain bighorn, rocky mountain sheep, ovis canadensis", "ibex, capra ibex", "hartebeest", "impala, aepyceros melampus", "gazelle", "arabian camel, dromedary, camelus dromedarius", "llama", "weasel", "mink", "polecat, fitch, foulmart, foumart, mustela putorius", "black-footed ferret, ferret, mustela nigripes", "otter", "skunk, polecat, wood pussy", "badger", "armadillo", "three-toed sloth, ai, bradypus tridactylus", "orangutan, orang, orangutang, pongo pygmaeus", "gorilla, gorilla gorilla", "chimpanzee, chimp, pan troglodytes", "gibbon, hylobates lar", "siamang, hylobates syndactylus, symphalangus syndactylus", "guenon, guenon monkey", "patas, hussar monkey, erythrocebus patas", "baboon", "macaque", "langur", "colobus, colobus monkey", "proboscis monkey, nasalis larvatus", "marmoset", "capuchin, ringtail, cebus capucinus", "howler monkey, howler", "titi, titi monkey", "spider monkey, ateles geoffroyi", "squirrel monkey, saimiri sciureus", "madagascar cat, ring-tailed lemur, lemur catta", "indri, indris, indri indri, indri brevicaudatus", "indian elephant, elephas maximus", "african elephant, loxodonta africana", "lesser panda, red panda, panda, bear cat, cat bear, ailurus fulgens", "giant panda, panda, panda bear, coon bear, ailuropoda melanoleuca", "barracouta, snoek", "eel", "coho, cohoe, coho salmon, blue jack, silver salmon, oncorhynchus kisutch", "rock beauty, holocanthus tricolor", "anemone fish", "sturgeon", "gar, garfish, garpike, billfish, lepisosteus osseus", "lionfish", "puffer, pufferfish, blowfish, globefish", "abacus", "abaya", "academic gown, academic robe, judge's robe", "accordion, piano accordion, squeeze box", "acoustic guitar", "aircraft carrier, carrier, flattop, attack aircraft carrier", "airliner", "airship, dirigible", "altar", "ambulance", "amphibian, amphibious vehicle", "analog clock", "apiary, bee house", "apron", "ashcan, trash can, garbage can, wastebin, ash bin, ash-bin, ashbin, dustbin, trash barrel, trash bin", "assault rifle, assault gun", "backpack, back pack, knapsack, packsack, rucksack, haversack", "bakery, bakeshop, bakehouse", "balance beam, beam", "balloon", "ballpoint, ballpoint pen, ballpen, biro", "band aid", "banjo", "bannister, banister, balustrade, balusters, handrail", "barbell", "barber chair", "barbershop", "barn", "barometer", "barrel, cask", "barrow, garden cart, lawn cart, wheelbarrow", "baseball", "basketball", "bassinet", "bassoon", "bathing cap, swimming cap", "bath towel", "bathtub, bathing tub, bath, tub", "beach wagon, station wagon, wagon, estate car, beach waggon, station waggon, waggon", "beacon, lighthouse, beacon light, pharos", "beaker", "bearskin, busby, shako", "beer bottle", "beer glass", "bell cote, bell cot", "bib", "bicycle-built-for-two, tandem bicycle, tandem", "bikini, two-piece", "binder, ring-binder", "binoculars, field glasses, opera glasses", "birdhouse", "boathouse", "bobsled, bobsleigh, bob", "bolo tie, bolo, bola tie, bola", "bonnet, poke bonnet", "bookcase", "bookshop, bookstore, bookstall", "bottlecap", "bow", "bow tie, bow-tie, bowtie", "brass, memorial tablet, plaque", "brassiere, bra, bandeau", "breakwater, groin, groyne, mole, bulwark, seawall, jetty", "breastplate, aegis, egis", "broom", "bucket, pail", "buckle", "bulletproof vest", "bullet train, bullet", "butcher shop, meat market", "cab, hack, taxi, taxicab", "caldron, cauldron", "candle, taper, wax light", "cannon", "canoe", "can opener, tin opener", "cardigan", "car mirror", "carousel, carrousel, merry-go-round, roundabout, whirligig", "carpenter's kit, tool kit", "carton", "car wheel", "cash machine, cash dispenser, automated teller machine, automatic teller machine, automated teller, automatic teller, atm", "cassette", "cassette player", "castle", "catamaran", "cd player", "cello, violoncello", "cellular telephone, cellular phone, cellphone, cell, mobile phone", "chain", "chainlink fence", "chain mail, ring mail, mail, chain armor, chain armour, ring armor, ring armour", "chain saw, chainsaw", "chest", "chiffonier, commode", "chime, bell, gong", "china cabinet, china closet", "christmas stocking", "church, church building", "cinema, movie theater, movie theatre, movie house, picture palace", "cleaver, meat cleaver, chopper", "cliff dwelling", "cloak", "clog, geta, patten, sabot", "cocktail shaker", "coffee mug", "coffeepot", "coil, spiral, volute, whorl, helix", "combination lock", "computer keyboard, keypad", "confectionery, confectionary, candy store", "container ship, containership, container vessel", "convertible", "corkscrew, bottle screw", "cornet, horn, trumpet, trump", "cowboy boot", "cowboy hat, ten-gallon hat", "cradle", "crane", "crash helmet", "crate", "crib, cot", "crock pot", "croquet ball", "crutch", "cuirass", "dam, dike, dyke", "desk", "desktop computer", "dial telephone, dial phone", "diaper, nappy, napkin", "digital clock", "digital watch", "dining table, board", "dishrag, dishcloth", "dishwasher, dish washer, dishwashing machine", "disk brake, disc brake", "dock, dockage, docking facility", "dogsled, dog sled, dog sleigh", "dome", "doormat, welcome mat", "drilling platform, offshore rig", "drum, membranophone, tympan", "drumstick", "dumbbell", "dutch oven", "electric fan, blower", "electric guitar", "electric locomotive", "entertainment center", "envelope", "espresso maker", "face powder", "feather boa, boa", "file, file cabinet, filing cabinet", "fireboat", "fire engine, fire truck", "fire screen, fireguard", "flagpole, flagstaff", "flute, transverse flute", "folding chair", "football helmet", "forklift", "fountain", "fountain pen", "four-poster", "freight car", "french horn, horn", "frying pan, frypan, skillet", "fur coat", "garbage truck, dustcart", "gasmask, respirator, gas helmet", "gas pump, gasoline pump, petrol pump, island dispenser", "goblet", "go-kart", "golf ball", "golfcart, golf cart", "gondola", "gong, tam-tam", "gown", "grand piano, grand", "greenhouse, nursery, glasshouse", "grille, radiator grille", "grocery store, grocery, food market, market", "guillotine", "hair slide", "hair spray", "half track", "hammer", "hamper", "hand blower, blow dryer, blow drier, hair dryer, hair drier", "hand-held computer, hand-held microcomputer", "handkerchief, hankie, hanky, hankey", "hard disc, hard disk, fixed disk", "harmonica, mouth organ, harp, mouth harp", "harp", "harvester, reaper", "hatchet", "holster", "home theater, home theatre", "honeycomb", "hook, claw", "hoopskirt, crinoline", "horizontal bar, high bar", "horse cart, horse-cart", "hourglass", "ipod", "iron, smoothing iron", "jack-o'-lantern", "jean, blue jean, denim", "jeep, landrover", "jersey, t-shirt, tee shirt", "jigsaw puzzle", "jinrikisha, ricksha, rickshaw", "joystick", "kimono", "knee pad", "knot", "lab coat, laboratory coat", "ladle", "lampshade, lamp shade", "laptop, laptop computer", "lawn mower, mower", "lens cap, lens cover", "letter opener, paper knife, paperknife", "library", "lifeboat", "lighter, light, igniter, ignitor", "limousine, limo", "liner, ocean liner", "lipstick, lip rouge", "loafer", "lotion", "loudspeaker, speaker, speaker unit, loudspeaker system, speaker system", "loupe, jeweler's loupe", "lumbermill, sawmill", "magnetic compass", "mailbag, postbag", "mailbox, letter box", "maillot", "maillot, tank suit", "manhole cover", "maraca", "marimba, xylophone", "mask", "matchstick", "maypole", "maze, labyrinth", "measuring cup", "medicine chest, medicine cabinet", "megalith, megalithic structure", "microphone, mike", "microwave, microwave oven", "military uniform", "milk can", "minibus", "miniskirt, mini", "minivan", "missile", "mitten", "mixing bowl", "mobile home, manufactured home", "model t", "modem", "monastery", "monitor", "moped", "mortar", "mortarboard", "mosque", "mosquito net", "motor scooter, scooter", "mountain bike, all-terrain bike, off-roader", "mountain tent", "mouse, computer mouse", "mousetrap", "moving van", "muzzle", "nail", "neck brace", "necklace", "nipple", "notebook, notebook computer", "obelisk", "oboe, hautboy, hautbois", "ocarina, sweet potato", "odometer, hodometer, mileometer, milometer", "oil filter", "organ, pipe organ", "oscilloscope, scope, cathode-ray oscilloscope, cro", "overskirt", "oxcart", "oxygen mask", "packet", "paddle, boat paddle", "paddlewheel, paddle wheel", "padlock", "paintbrush", "pajama, pyjama, pj's, jammies", "palace", "panpipe, pandean pipe, syrinx", "paper towel", "parachute, chute", "parallel bars, bars", "park bench", "parking meter", "passenger car, coach, carriage", "patio, terrace", "pay-phone, pay-station", "pedestal, plinth, footstall", "pencil box, pencil case", "pencil sharpener", "perfume, essence", "petri dish", "photocopier", "pick, plectrum, plectron", "pickelhaube", "picket fence, paling", "pickup, pickup truck", "pier", "piggy bank, penny bank", "pill bottle", "pillow", "ping-pong ball", "pinwheel", "pirate, pirate ship", "pitcher, ewer", "plane, carpenter's plane, woodworking plane", "planetarium", "plastic bag", "plate rack", "plow, plough", "plunger, plumber's helper", "polaroid camera, polaroid land camera", "pole", "police van, police wagon, paddy wagon, patrol wagon, wagon, black maria", "poncho", "pool table, billiard table, snooker table", "pop bottle, soda bottle", "pot, flowerpot", "potter's wheel", "power drill", "prayer rug, prayer mat", "printer", "prison, prison house", "projectile, missile", "projector", "puck, hockey puck", "punching bag, punch bag, punching ball, punchball", "purse", "quill, quill pen", "quilt, comforter, comfort, puff", "racer, race car, racing car", "racket, racquet", "radiator", "radio, wireless", "radio telescope, radio reflector", "rain barrel", "recreational vehicle, rv, r.v.", "reel", "reflex camera", "refrigerator, icebox", "remote control, remote", "restaurant, eating house, eating place, eatery", "revolver, six-gun, six-shooter", "rifle", "rocking chair, rocker", "rotisserie", "rubber eraser, rubber, pencil eraser", "rugby ball", "rule, ruler", "running shoe", "safe", "safety pin", "saltshaker, salt shaker", "sandal", "sarong", "sax, saxophone", "scabbard", "scale, weighing machine", "school bus", "schooner", "scoreboard", "screen, crt screen", "screw", "screwdriver", "seat belt, seatbelt", "sewing machine", "shield, buckler", "shoe shop, shoe-shop, shoe store", "shoji", "shopping basket", "shopping cart", "shovel", "shower cap", "shower curtain", "ski", "ski mask", "sleeping bag", "slide rule, slipstick", "sliding door", "slot, one-armed bandit", "snorkel", "snowmobile", "snowplow, snowplough", "soap dispenser", "soccer ball", "sock", "solar dish, solar collector, solar furnace", "sombrero", "soup bowl", "space bar", "space heater", "space shuttle", "spatula", "speedboat", "spider web, spider's web", "spindle", "sports car, sport car", "spotlight, spot", "stage", "steam locomotive", "steel arch bridge", "steel drum", "stethoscope", "stole", "stone wall", "stopwatch, stop watch", "stove", "strainer", "streetcar, tram, tramcar, trolley, trolley car", "stretcher", "studio couch, day bed", "stupa, tope", "submarine, pigboat, sub, u-boat", "suit, suit of clothes", "sundial", "sunglass", "sunglasses, dark glasses, shades", "sunscreen, sunblock, sun blocker", "suspension bridge", "swab, swob, mop", "sweatshirt", "swimming trunks, bathing trunks", "swing", "switch, electric switch, electrical switch", "syringe", "table lamp", "tank, army tank, armored combat vehicle, armoured combat vehicle", "tape player", "teapot", "teddy, teddy bear", "television, television system", "tennis ball", "thatch, thatched roof", "theater curtain, theatre curtain", "thimble", "thresher, thrasher, threshing machine", "throne", "tile roof", "toaster", "tobacco shop, tobacconist shop, tobacconist", "toilet seat", "torch", "totem pole", "tow truck, tow car, wrecker", "toyshop", "tractor", "trailer truck, tractor trailer, trucking rig, rig, articulated lorry, semi", "tray", "trench coat", "tricycle, trike, velocipede", "trimaran", "tripod", "triumphal arch", "trolleybus, trolley coach, trackless trolley", "trombone", "tub, vat", "turnstile", "typewriter keyboard", "umbrella", "unicycle, monocycle", "upright, upright piano", "vacuum, vacuum cleaner", "vase", "vault", "velvet", "vending machine", "vestment", "viaduct", "violin, fiddle", "volleyball", "waffle iron", "wall clock", "wallet, billfold, notecase, pocketbook", "wardrobe, closet, press", "warplane, military plane", "washbasin, handbasin, washbowl, lavabo, wash-hand basin", "washer, automatic washer, washing machine", "water bottle", "water jug", "water tower", "whiskey jug", "whistle", "wig", "window screen", "window shade", "windsor tie", "wine bottle", "wing", "wok", "wooden spoon", "wool, woolen, woollen", "worm fence, snake fence, snake-rail fence, virginia fence", "wreck", "yawl", "yurt", "web site, website, internet site, site", "comic book", "crossword puzzle, crossword", "street sign", "traffic light, traffic signal, stoplight", "book jacket, dust cover, dust jacket, dust wrapper", "menu", "plate", "guacamole", "consomme", "hot pot, hotpot", "trifle", "ice cream, icecream", "ice lolly, lolly, lollipop, popsicle", "french loaf", "bagel, beigel", "pretzel", "cheeseburger", "hotdog, hot dog, red hot", "mashed potato", "head cabbage", "broccoli", "cauliflower", "zucchini, courgette", "spaghetti squash", "acorn squash", "butternut squash", "cucumber, cuke", "artichoke, globe artichoke", "bell pepper", "cardoon", "mushroom", "granny smith", "strawberry", "orange", "lemon", "fig", "pineapple, ananas", "banana", "jackfruit, jak, jack", "custard apple", "pomegranate", "hay", "carbonara", "chocolate sauce, chocolate syrup", "dough", "meat loaf, meatloaf", "pizza, pizza pie", "potpie", "burrito", "red wine", "espresso", "cup", "eggnog", "alp", "bubble", "cliff, drop, drop-off", "coral reef", "geyser", "lakeside, lakeshore", "promontory, headland, head, foreland", "sandbar, sand bar", "seashore, coast, seacoast, sea-coast", "valley, vale", "volcano", "ballplayer, baseball player", "groom, bridegroom", "scuba diver", "rapeseed", "daisy", "yellow lady's slipper, yellow lady-slipper, cypripedium calceolus, cypripedium parviflorum", "corn", "acorn", "hip, rose hip, rosehip", "buckeye, horse chestnut, conker", "coral fungus", "agaric", "gyromitra", "stinkhorn, carrion fungus", "earthstar", "hen-of-the-woods, hen of the woods, polyporus frondosus, grifola frondosa", "bolete", "ear, spike, capitulum", "toilet tissue, toilet paper, bathroom tissue" ]
Ahmed9275/Vit-Cifar100
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-base-beans-demo-v5 This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the Cifar100 dataset. It achieves the following results on the evaluation set: - Loss: 0.4420 - Accuracy: 0.8985 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 1.08 | 1.0 | 3125 | 0.6196 | 0.8262 | | 0.3816 | 2.0 | 6250 | 0.5322 | 0.8555 | | 0.1619 | 3.0 | 9375 | 0.4817 | 0.8765 | | 0.0443 | 4.0 | 12500 | 0.4420 | 0.8985 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.1 - Tokenizers 0.12.1
[ "apple", "aquarium_fish", "bowl", "boy", "bridge", "bus", "butterfly", "camel", "can", "castle", "caterpillar", "cattle", "baby", "chair", "chimpanzee", "clock", "cloud", "cockroach", "couch", "cra", "crocodile", "cup", "dinosaur", "bear", "dolphin", "elephant", "flatfish", "forest", "fox", "girl", "hamster", "house", "kangaroo", "keyboard", "beaver", "lamp", "lawn_mower", "leopard", "lion", "lizard", "lobster", "man", "maple_tree", "motorcycle", "mountain", "bed", "mouse", "mushroom", "oak_tree", "orange", "orchid", "otter", "palm_tree", "pear", "pickup_truck", "pine_tree", "bee", "plain", "plate", "poppy", "porcupine", "possum", "rabbit", "raccoon", "ray", "road", "rocket", "beetle", "rose", "sea", "seal", "shark", "shrew", "skunk", "skyscraper", "snail", "snake", "spider", "bicycle", "squirrel", "streetcar", "sunflower", "sweet_pepper", "table", "tank", "telephone", "television", "tiger", "tractor", "bottle", "train", "trout", "tulip", "turtle", "wardrobe", "whale", "willow_tree", "wolf", "woman", "worm" ]
eslamxm/vit-base-food101
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-base-food101-demo-v5 This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the food101 dataset. It achieves the following results on the evaluation set: - Loss: 0.5493 - Accuracy: 0.8539 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 1.657 | 1.0 | 4735 | 0.9732 | 0.7459 | | 0.9869 | 2.0 | 9470 | 0.7987 | 0.7884 | | 0.71 | 3.0 | 14205 | 0.6364 | 0.8311 | | 0.4961 | 4.0 | 18940 | 0.5595 | 0.8487 | ### Framework versions - Transformers 4.21.1 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
[ "apple_pie", "baby_back_ribs", "bruschetta", "waffles", "caesar_salad", "cannoli", "caprese_salad", "carrot_cake", "ceviche", "cheesecake", "cheese_plate", "chicken_curry", "chicken_quesadilla", "baklava", "chicken_wings", "chocolate_cake", "chocolate_mousse", "churros", "clam_chowder", "club_sandwich", "crab_cakes", "creme_brulee", "croque_madame", "cup_cakes", "beef_carpaccio", "deviled_eggs", "donuts", "dumplings", "edamame", "eggs_benedict", "escargots", "falafel", "filet_mignon", "fish_and_chips", "foie_gras", "beef_tartare", "french_fries", "french_onion_soup", "french_toast", "fried_calamari", "fried_rice", "frozen_yogurt", "garlic_bread", "gnocchi", "greek_salad", "grilled_cheese_sandwich", "beet_salad", "grilled_salmon", "guacamole", "gyoza", "hamburger", "hot_and_sour_soup", "hot_dog", "huevos_rancheros", "hummus", "ice_cream", "lasagna", "beignets", "lobster_bisque", "lobster_roll_sandwich", "macaroni_and_cheese", "macarons", "miso_soup", "mussels", "nachos", "omelette", "onion_rings", "oysters", "bibimbap", "pad_thai", "paella", "pancakes", "panna_cotta", "peking_duck", "pho", "pizza", "pork_chop", "poutine", "prime_rib", "bread_pudding", "pulled_pork_sandwich", "ramen", "ravioli", "red_velvet_cake", "risotto", "samosa", "sashimi", "scallops", "seaweed_salad", "shrimp_and_grits", "breakfast_burrito", "spaghetti_bolognese", "spaghetti_carbonara", "spring_rolls", "steak", "strawberry_shortcake", "sushi", "tacos", "takoyaki", "tiramisu", "tuna_tartare" ]
aricibo/swin-tiny-patch4-window7-224-finetuned-eurosat
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # swin-tiny-patch4-window7-224-finetuned-eurosat This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the image_folder dataset. It achieves the following results on the evaluation set: - Loss: 0.0657 - Accuracy: 0.9726 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.18 | 1.0 | 190 | 0.0844 | 0.9689 | | 0.1347 | 2.0 | 380 | 0.0657 | 0.9726 | | 0.1459 | 3.0 | 570 | 0.0657 | 0.9726 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.1 - Tokenizers 0.12.1
[ "annualcrop", "forest", "herbaceousvegetation", "highway", "industrial", "pasture", "permanentcrop", "residential", "river", "sealake" ]
AykeeSalazar/vc-bantai-vit-withoutAMBI
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vc-bantai-vit-withoutAMBI This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the image_folder dataset. It achieves the following results on the evaluation set: - eval_loss: 0.2578 - eval_accuracy: 0.9533 - eval_runtime: 31.6691 - eval_samples_per_second: 130.443 - eval_steps_per_second: 2.052 - epoch: 270.26 - step: 10000 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 256 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 500 ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
[ "public drinking", "public smoking", "non-violation" ]
nickmuchi/swin-tiny-patch4-window7-224-finetuned-eurosat
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # swin-tiny-patch4-window7-224-finetuned-eurosat This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the image_folder dataset. It achieves the following results on the evaluation set: - Loss: 0.0536 - Accuracy: 0.9848 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.2602 | 1.0 | 190 | 0.1310 | 0.9563 | | 0.1975 | 2.0 | 380 | 0.1063 | 0.9637 | | 0.142 | 3.0 | 570 | 0.0642 | 0.9767 | | 0.1235 | 4.0 | 760 | 0.0560 | 0.9837 | | 0.1019 | 5.0 | 950 | 0.0536 | 0.9848 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
[ "annualcrop", "forest", "herbaceousvegetation", "highway", "industrial", "pasture", "permanentcrop", "residential", "river", "sealake" ]
Vemi/orchid219_ft_vit-large-patch16-224-in21k-finetuned-eurosat
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # orchid219_ft_vit-large-patch16-224-in21k-finetuned-eurosat This model is a fine-tuned version of [gary109/orchid219_ft_vit-large-patch16-224-in21k](https://huggingface.co/gary109/orchid219_ft_vit-large-patch16-224-in21k) on the image_folder dataset. It achieves the following results on the evaluation set: - Loss: 0.9545 - Accuracy: 0.9231 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 10 - eval_batch_size: 10 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 40 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 3.5728 | 0.96 | 17 | 2.1936 | 0.8718 | | 1.6005 | 1.96 | 34 | 1.2044 | 0.9359 | | 0.9764 | 2.96 | 51 | 0.9545 | 0.9231 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
[ "n0000", "n0001", "n0002", "n0003", "n0004", "n0005", "n0006", "n0007", "n0008", "n0009", "n0010", "n0011", "n0012", "n0013", "n0014", "n0015", "n0016", "n0017", "n0018", "n0019", "n0020", "n0021", "n0022", "n0023", "n0024", "n0025", "n0026", "n0027", "n0028", "n0029", "n0030", "n0031", "n0032", "n0033", "n0034", "n0035", "n0036", "n0037", "n0038", "n0039", "n0040", "n0041", "n0042", "n0043", "n0044", "n0045", "n0046", "n0047", "n0048", "n0049", "n0050", "n0051" ]
Annabelleabbott/swin-tiny-patch4-window7-224-finetuned-eurosat
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # swin-tiny-patch4-window7-224-finetuned-eurosat This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the image_folder dataset. It achieves the following results on the evaluation set: - Loss: 0.0767 - Accuracy: 0.9726 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.2548 | 1.0 | 190 | 0.1162 | 0.9652 | | 0.1544 | 2.0 | 380 | 0.0894 | 0.9719 | | 0.1182 | 3.0 | 570 | 0.0767 | 0.9726 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
[ "annualcrop", "forest", "herbaceousvegetation", "highway", "industrial", "pasture", "permanentcrop", "residential", "river", "sealake" ]
schoenml/swin-tiny-patch4-window7-224-finetuned-eurosat
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # swin-tiny-patch4-window7-224-finetuned-eurosat This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the image_folder dataset. It achieves the following results on the evaluation set: - eval_loss: 0.1551 - eval_accuracy: 0.9474 - eval_runtime: 13.1569 - eval_samples_per_second: 205.216 - eval_steps_per_second: 6.46 - epoch: 1.0 - step: 190 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
[ "annualcrop", "forest", "herbaceousvegetation", "highway", "industrial", "pasture", "permanentcrop", "residential", "river", "sealake" ]
mehnaazasad/swin-tiny-patch4-window7-224-finetuned-eurosat
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # swin-tiny-patch4-window7-224-finetuned-eurosat This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the image_folder dataset. It achieves the following results on the evaluation set: - Loss: 0.0703 - Accuracy: 0.9770 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.2369 | 1.0 | 190 | 0.1683 | 0.9433 | | 0.1812 | 2.0 | 380 | 0.0972 | 0.9670 | | 0.1246 | 3.0 | 570 | 0.0703 | 0.9770 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
[ "annualcrop", "forest", "herbaceousvegetation", "highway", "industrial", "pasture", "permanentcrop", "residential", "river", "sealake" ]
GRANTHE2761/swin-tiny-patch4-window7-224-finetuned-eurosat
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # swin-tiny-patch4-window7-224-finetuned-eurosat This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the image_folder dataset. It achieves the following results on the evaluation set: - Loss: 0.0866 - Accuracy: 0.9689 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 256 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.3046 | 1.0 | 95 | 0.1547 | 0.9452 | | 0.191 | 2.0 | 190 | 0.1161 | 0.9559 | | 0.1701 | 3.0 | 285 | 0.0866 | 0.9689 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0 - Datasets 2.2.2 - Tokenizers 0.12.1
[ "annualcrop", "forest", "herbaceousvegetation", "highway", "industrial", "pasture", "permanentcrop", "residential", "river", "sealake" ]
mbyanfei/swin-tiny-patch4-window7-224-finetuned-eurosat
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # swin-tiny-patch4-window7-224-finetuned-eurosat This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the image_folder dataset. It achieves the following results on the evaluation set: - Loss: 0.0508 - Accuracy: 0.9881 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.2241 | 1.0 | 1518 | 0.0886 | 0.9719 | | 0.082 | 2.0 | 3036 | 0.0705 | 0.9815 | | 0.101 | 3.0 | 4554 | 0.0508 | 0.9881 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
[ "annualcrop", "forest", "herbaceousvegetation", "highway", "industrial", "pasture", "permanentcrop", "residential", "river", "sealake" ]
eugenecamus/resnet-50-base-beans-demo
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # resnet-50-base-beans-demo This model is a fine-tuned version of [microsoft/resnet-50](https://huggingface.co/microsoft/resnet-50) on the beans dataset. It achieves the following results on the evaluation set: - Loss: 0.2188 - Accuracy: 0.9023 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.002 - train_batch_size: 8 - eval_batch_size: 8 - seed: 1337 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 1.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.5679 | 1.0 | 130 | 0.2188 | 0.9023 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu102 - Datasets 2.2.1 - Tokenizers 0.12.1
[ "angular_leaf_spot", "bean_rust", "healthy" ]
Jazzweller/swin-tiny-patch4-window7-224-finetuned-eurosat
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # swin-tiny-patch4-window7-224-finetuned-eurosat This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the image_folder dataset. It achieves the following results on the evaluation set: - Loss: 0.7828 - Accuracy: 0.2857 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 200 - eval_batch_size: 200 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 800 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 1 | 0.7828 | 0.2857 | | No log | 2.0 | 2 | 0.8606 | 0.1429 | | No log | 3.0 | 3 | 0.8619 | 0.2857 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
[ "down", "up" ]
apple/mobilevit-small
# MobileViT (small-sized model) MobileViT model pre-trained on ImageNet-1k at resolution 256x256. It was introduced in [MobileViT: Light-weight, General-purpose, and Mobile-friendly Vision Transformer](https://arxiv.org/abs/2110.02178) by Sachin Mehta and Mohammad Rastegari, and first released in [this repository](https://github.com/apple/ml-cvnets). The license used is [Apple sample code license](https://github.com/apple/ml-cvnets/blob/main/LICENSE). Disclaimer: The team releasing MobileViT did not write a model card for this model so this model card has been written by the Hugging Face team. ## Model description MobileViT is a light-weight, low latency convolutional neural network that combines MobileNetV2-style layers with a new block that replaces local processing in convolutions with global processing using transformers. As with ViT (Vision Transformer), the image data is converted into flattened patches before it is processed by the transformer layers. Afterwards, the patches are "unflattened" back into feature maps. This allows the MobileViT-block to be placed anywhere inside a CNN. MobileViT does not require any positional embeddings. ## Intended uses & limitations You can use the raw model for image classification. See the [model hub](https://huggingface.co/models?search=mobilevit) to look for fine-tuned versions on a task that interests you. ### How to use Here is how to use this model to classify an image of the COCO 2017 dataset into one of the 1,000 ImageNet classes: ```python from transformers import MobileViTFeatureExtractor, MobileViTForImageClassification from PIL import Image import requests url = "http://images.cocodataset.org/val2017/000000039769.jpg" image = Image.open(requests.get(url, stream=True).raw) feature_extractor = MobileViTFeatureExtractor.from_pretrained("apple/mobilevit-small") model = MobileViTForImageClassification.from_pretrained("apple/mobilevit-small") inputs = feature_extractor(images=image, return_tensors="pt") outputs = model(**inputs) logits = outputs.logits # model predicts one of the 1000 ImageNet classes predicted_class_idx = logits.argmax(-1).item() print("Predicted class:", model.config.id2label[predicted_class_idx]) ``` Currently, both the feature extractor and model support PyTorch. ## Training data The MobileViT model was pretrained on [ImageNet-1k](https://huggingface.co/datasets/imagenet-1k), a dataset consisting of 1 million images and 1,000 classes. ## Training procedure ### Preprocessing Training requires only basic data augmentation, i.e. random resized cropping and horizontal flipping. To learn multi-scale representations without requiring fine-tuning, a multi-scale sampler was used during training, with image sizes randomly sampled from: (160, 160), (192, 192), (256, 256), (288, 288), (320, 320). At inference time, images are resized/rescaled to the same resolution (288x288), and center-cropped at 256x256. Pixels are normalized to the range [0, 1]. Images are expected to be in BGR pixel order, not RGB. ### Pretraining The MobileViT networks are trained from scratch for 300 epochs on ImageNet-1k on 8 NVIDIA GPUs with an effective batch size of 1024 and learning rate warmup for 3k steps, followed by cosine annealing. Also used were label smoothing cross-entropy loss and L2 weight decay. Training resolution varies from 160x160 to 320x320, using multi-scale sampling. ## Evaluation results | Model | ImageNet top-1 accuracy | ImageNet top-5 accuracy | # params | URL | |------------------|-------------------------|-------------------------|-----------|-------------------------------------------------| | MobileViT-XXS | 69.0 | 88.9 | 1.3 M | https://huggingface.co/apple/mobilevit-xx-small | | MobileViT-XS | 74.8 | 92.3 | 2.3 M | https://huggingface.co/apple/mobilevit-x-small | | **MobileViT-S** | **78.4** | **94.1** | **5.6 M** | https://huggingface.co/apple/mobilevit-small | ### BibTeX entry and citation info ```bibtex @inproceedings{vision-transformer, title = {MobileViT: Light-weight, General-purpose, and Mobile-friendly Vision Transformer}, author = {Sachin Mehta and Mohammad Rastegari}, year = {2022}, URL = {https://arxiv.org/abs/2110.02178} } ```
[ "tench, tinca tinca", "goldfish, carassius auratus", "great white shark, white shark, man-eater, man-eating shark, carcharodon carcharias", "tiger shark, galeocerdo cuvieri", "hammerhead, hammerhead shark", "electric ray, crampfish, numbfish, torpedo", "stingray", "cock", "hen", "ostrich, struthio camelus", "brambling, fringilla montifringilla", "goldfinch, carduelis carduelis", "house finch, linnet, carpodacus mexicanus", "junco, snowbird", "indigo bunting, indigo finch, indigo bird, passerina cyanea", "robin, american robin, turdus migratorius", "bulbul", "jay", "magpie", "chickadee", "water ouzel, dipper", "kite", "bald eagle, american eagle, haliaeetus leucocephalus", "vulture", "great grey owl, great gray owl, strix nebulosa", "european fire salamander, salamandra salamandra", "common newt, triturus vulgaris", "eft", "spotted salamander, ambystoma maculatum", "axolotl, mud puppy, ambystoma mexicanum", "bullfrog, rana catesbeiana", "tree frog, tree-frog", "tailed frog, bell toad, ribbed toad, tailed toad, ascaphus trui", "loggerhead, loggerhead turtle, caretta caretta", "leatherback turtle, leatherback, leathery turtle, dermochelys coriacea", "mud turtle", "terrapin", "box turtle, box tortoise", "banded gecko", "common iguana, iguana, iguana iguana", "american chameleon, anole, anolis carolinensis", "whiptail, whiptail lizard", "agama", "frilled lizard, chlamydosaurus kingi", "alligator lizard", "gila monster, heloderma suspectum", "green lizard, lacerta viridis", "african chameleon, chamaeleo chamaeleon", "komodo dragon, komodo lizard, dragon lizard, giant lizard, varanus komodoensis", "african crocodile, nile crocodile, crocodylus niloticus", "american alligator, alligator mississipiensis", "triceratops", "thunder snake, worm snake, carphophis amoenus", "ringneck snake, ring-necked snake, ring snake", "hognose snake, puff adder, sand viper", "green snake, grass snake", "king snake, kingsnake", "garter snake, grass snake", "water snake", "vine snake", "night snake, hypsiglena torquata", "boa constrictor, constrictor constrictor", "rock python, rock snake, python sebae", "indian cobra, naja naja", "green mamba", "sea snake", "horned viper, cerastes, sand viper, horned asp, cerastes cornutus", "diamondback, diamondback rattlesnake, crotalus adamanteus", "sidewinder, horned rattlesnake, crotalus cerastes", "trilobite", "harvestman, daddy longlegs, phalangium opilio", "scorpion", "black and gold garden spider, argiope aurantia", "barn spider, araneus cavaticus", "garden spider, aranea diademata", "black widow, latrodectus mactans", "tarantula", "wolf spider, hunting spider", "tick", "centipede", "black grouse", "ptarmigan", "ruffed grouse, partridge, bonasa umbellus", "prairie chicken, prairie grouse, prairie fowl", "peacock", "quail", "partridge", "african grey, african gray, psittacus erithacus", "macaw", "sulphur-crested cockatoo, kakatoe galerita, cacatua galerita", "lorikeet", "coucal", "bee eater", "hornbill", "hummingbird", "jacamar", "toucan", "drake", "red-breasted merganser, mergus serrator", "goose", "black swan, cygnus atratus", "tusker", "echidna, spiny anteater, anteater", "platypus, duckbill, duckbilled platypus, duck-billed platypus, ornithorhynchus anatinus", "wallaby, brush kangaroo", "koala, koala bear, kangaroo bear, native bear, phascolarctos cinereus", "wombat", "jellyfish", "sea anemone, anemone", "brain coral", "flatworm, platyhelminth", "nematode, nematode worm, roundworm", "conch", "snail", "slug", "sea slug, nudibranch", "chiton, coat-of-mail shell, sea cradle, polyplacophore", "chambered nautilus, pearly nautilus, nautilus", "dungeness crab, cancer magister", "rock crab, cancer irroratus", "fiddler crab", "king crab, alaska crab, alaskan king crab, alaska king crab, paralithodes camtschatica", "american lobster, northern lobster, maine lobster, homarus americanus", "spiny lobster, langouste, rock lobster, crawfish, crayfish, sea crawfish", "crayfish, crawfish, crawdad, crawdaddy", "hermit crab", "isopod", "white stork, ciconia ciconia", "black stork, ciconia nigra", "spoonbill", "flamingo", "little blue heron, egretta caerulea", "american egret, great white heron, egretta albus", "bittern", "crane", "limpkin, aramus pictus", "european gallinule, porphyrio porphyrio", "american coot, marsh hen, mud hen, water hen, fulica americana", "bustard", "ruddy turnstone, arenaria interpres", "red-backed sandpiper, dunlin, erolia alpina", "redshank, tringa totanus", "dowitcher", "oystercatcher, oyster catcher", "pelican", "king penguin, aptenodytes patagonica", "albatross, mollymawk", "grey whale, gray whale, devilfish, eschrichtius gibbosus, eschrichtius robustus", "killer whale, killer, orca, grampus, sea wolf, orcinus orca", "dugong, dugong dugon", "sea lion", "chihuahua", "japanese spaniel", "maltese dog, maltese terrier, maltese", "pekinese, pekingese, peke", "shih-tzu", "blenheim spaniel", "papillon", "toy terrier", "rhodesian ridgeback", "afghan hound, afghan", "basset, basset hound", "beagle", "bloodhound, sleuthhound", "bluetick", "black-and-tan coonhound", "walker hound, walker foxhound", "english foxhound", "redbone", "borzoi, russian wolfhound", "irish wolfhound", "italian greyhound", "whippet", "ibizan hound, ibizan podenco", "norwegian elkhound, elkhound", "otterhound, otter hound", "saluki, gazelle hound", "scottish deerhound, deerhound", "weimaraner", "staffordshire bullterrier, staffordshire bull terrier", "american staffordshire terrier, staffordshire terrier, american pit bull terrier, pit bull terrier", "bedlington terrier", "border terrier", "kerry blue terrier", "irish terrier", "norfolk terrier", "norwich terrier", "yorkshire terrier", "wire-haired fox terrier", "lakeland terrier", "sealyham terrier, sealyham", "airedale, airedale terrier", "cairn, cairn terrier", "australian terrier", "dandie dinmont, dandie dinmont terrier", "boston bull, boston terrier", "miniature schnauzer", "giant schnauzer", "standard schnauzer", "scotch terrier, scottish terrier, scottie", "tibetan terrier, chrysanthemum dog", "silky terrier, sydney silky", "soft-coated wheaten terrier", "west highland white terrier", "lhasa, lhasa apso", "flat-coated retriever", "curly-coated retriever", "golden retriever", "labrador retriever", "chesapeake bay retriever", "german short-haired pointer", "vizsla, hungarian pointer", "english setter", "irish setter, red setter", "gordon setter", "brittany spaniel", "clumber, clumber spaniel", "english springer, english springer spaniel", "welsh springer spaniel", "cocker spaniel, english cocker spaniel, cocker", "sussex spaniel", "irish water spaniel", "kuvasz", "schipperke", "groenendael", "malinois", "briard", "kelpie", "komondor", "old english sheepdog, bobtail", "shetland sheepdog, shetland sheep dog, shetland", "collie", "border collie", "bouvier des flandres, bouviers des flandres", "rottweiler", "german shepherd, german shepherd dog, german police dog, alsatian", "doberman, doberman pinscher", "miniature pinscher", "greater swiss mountain dog", "bernese mountain dog", "appenzeller", "entlebucher", "boxer", "bull mastiff", "tibetan mastiff", "french bulldog", "great dane", "saint bernard, st bernard", "eskimo dog, husky", "malamute, malemute, alaskan malamute", "siberian husky", "dalmatian, coach dog, carriage dog", "affenpinscher, monkey pinscher, monkey dog", "basenji", "pug, pug-dog", "leonberg", "newfoundland, newfoundland dog", "great pyrenees", "samoyed, samoyede", "pomeranian", "chow, chow chow", "keeshond", "brabancon griffon", "pembroke, pembroke welsh corgi", "cardigan, cardigan welsh corgi", "toy poodle", "miniature poodle", "standard poodle", "mexican hairless", "timber wolf, grey wolf, gray wolf, canis lupus", "white wolf, arctic wolf, canis lupus tundrarum", "red wolf, maned wolf, canis rufus, canis niger", "coyote, prairie wolf, brush wolf, canis latrans", "dingo, warrigal, warragal, canis dingo", "dhole, cuon alpinus", "african hunting dog, hyena dog, cape hunting dog, lycaon pictus", "hyena, hyaena", "red fox, vulpes vulpes", "kit fox, vulpes macrotis", "arctic fox, white fox, alopex lagopus", "grey fox, gray fox, urocyon cinereoargenteus", "tabby, tabby cat", "tiger cat", "persian cat", "siamese cat, siamese", "egyptian cat", "cougar, puma, catamount, mountain lion, painter, panther, felis concolor", "lynx, catamount", "leopard, panthera pardus", "snow leopard, ounce, panthera uncia", "jaguar, panther, panthera onca, felis onca", "lion, king of beasts, panthera leo", "tiger, panthera tigris", "cheetah, chetah, acinonyx jubatus", "brown bear, bruin, ursus arctos", "american black bear, black bear, ursus americanus, euarctos americanus", "ice bear, polar bear, ursus maritimus, thalarctos maritimus", "sloth bear, melursus ursinus, ursus ursinus", "mongoose", "meerkat, mierkat", "tiger beetle", "ladybug, ladybeetle, lady beetle, ladybird, ladybird beetle", "ground beetle, carabid beetle", "long-horned beetle, longicorn, longicorn beetle", "leaf beetle, chrysomelid", "dung beetle", "rhinoceros beetle", "weevil", "fly", "bee", "ant, emmet, pismire", "grasshopper, hopper", "cricket", "walking stick, walkingstick, stick insect", "cockroach, roach", "mantis, mantid", "cicada, cicala", "leafhopper", "lacewing, lacewing fly", "dragonfly, darning needle, devil's darning needle, sewing needle, snake feeder, snake doctor, mosquito hawk, skeeter hawk", "damselfly", "admiral", "ringlet, ringlet butterfly", "monarch, monarch butterfly, milkweed butterfly, danaus plexippus", "cabbage butterfly", "sulphur butterfly, sulfur butterfly", "lycaenid, lycaenid butterfly", "starfish, sea star", "sea urchin", "sea cucumber, holothurian", "wood rabbit, cottontail, cottontail rabbit", "hare", "angora, angora rabbit", "hamster", "porcupine, hedgehog", "fox squirrel, eastern fox squirrel, sciurus niger", "marmot", "beaver", "guinea pig, cavia cobaya", "sorrel", "zebra", "hog, pig, grunter, squealer, sus scrofa", "wild boar, boar, sus scrofa", "warthog", "hippopotamus, hippo, river horse, hippopotamus amphibius", "ox", "water buffalo, water ox, asiatic buffalo, bubalus bubalis", "bison", "ram, tup", "bighorn, bighorn sheep, cimarron, rocky mountain bighorn, rocky mountain sheep, ovis canadensis", "ibex, capra ibex", "hartebeest", "impala, aepyceros melampus", "gazelle", "arabian camel, dromedary, camelus dromedarius", "llama", "weasel", "mink", "polecat, fitch, foulmart, foumart, mustela putorius", "black-footed ferret, ferret, mustela nigripes", "otter", "skunk, polecat, wood pussy", "badger", "armadillo", "three-toed sloth, ai, bradypus tridactylus", "orangutan, orang, orangutang, pongo pygmaeus", "gorilla, gorilla gorilla", "chimpanzee, chimp, pan troglodytes", "gibbon, hylobates lar", "siamang, hylobates syndactylus, symphalangus syndactylus", "guenon, guenon monkey", "patas, hussar monkey, erythrocebus patas", "baboon", "macaque", "langur", "colobus, colobus monkey", "proboscis monkey, nasalis larvatus", "marmoset", "capuchin, ringtail, cebus capucinus", "howler monkey, howler", "titi, titi monkey", "spider monkey, ateles geoffroyi", "squirrel monkey, saimiri sciureus", "madagascar cat, ring-tailed lemur, lemur catta", "indri, indris, indri indri, indri brevicaudatus", "indian elephant, elephas maximus", "african elephant, loxodonta africana", "lesser panda, red panda, panda, bear cat, cat bear, ailurus fulgens", "giant panda, panda, panda bear, coon bear, ailuropoda melanoleuca", "barracouta, snoek", "eel", "coho, cohoe, coho salmon, blue jack, silver salmon, oncorhynchus kisutch", "rock beauty, holocanthus tricolor", "anemone fish", "sturgeon", "gar, garfish, garpike, billfish, lepisosteus osseus", "lionfish", "puffer, pufferfish, blowfish, globefish", "abacus", "abaya", "academic gown, academic robe, judge's robe", "accordion, piano accordion, squeeze box", "acoustic guitar", "aircraft carrier, carrier, flattop, attack aircraft carrier", "airliner", "airship, dirigible", "altar", "ambulance", "amphibian, amphibious vehicle", "analog clock", "apiary, bee house", "apron", "ashcan, trash can, garbage can, wastebin, ash bin, ash-bin, ashbin, dustbin, trash barrel, trash bin", "assault rifle, assault gun", "backpack, back pack, knapsack, packsack, rucksack, haversack", "bakery, bakeshop, bakehouse", "balance beam, beam", "balloon", "ballpoint, ballpoint pen, ballpen, biro", "band aid", "banjo", "bannister, banister, balustrade, balusters, handrail", "barbell", "barber chair", "barbershop", "barn", "barometer", "barrel, cask", "barrow, garden cart, lawn cart, wheelbarrow", "baseball", "basketball", "bassinet", "bassoon", "bathing cap, swimming cap", "bath towel", "bathtub, bathing tub, bath, tub", "beach wagon, station wagon, wagon, estate car, beach waggon, station waggon, waggon", "beacon, lighthouse, beacon light, pharos", "beaker", "bearskin, busby, shako", "beer bottle", "beer glass", "bell cote, bell cot", "bib", "bicycle-built-for-two, tandem bicycle, tandem", "bikini, two-piece", "binder, ring-binder", "binoculars, field glasses, opera glasses", "birdhouse", "boathouse", "bobsled, bobsleigh, bob", "bolo tie, bolo, bola tie, bola", "bonnet, poke bonnet", "bookcase", "bookshop, bookstore, bookstall", "bottlecap", "bow", "bow tie, bow-tie, bowtie", "brass, memorial tablet, plaque", "brassiere, bra, bandeau", "breakwater, groin, groyne, mole, bulwark, seawall, jetty", "breastplate, aegis, egis", "broom", "bucket, pail", "buckle", "bulletproof vest", "bullet train, bullet", "butcher shop, meat market", "cab, hack, taxi, taxicab", "caldron, cauldron", "candle, taper, wax light", "cannon", "canoe", "can opener, tin opener", "cardigan", "car mirror", "carousel, carrousel, merry-go-round, roundabout, whirligig", "carpenter's kit, tool kit", "carton", "car wheel", "cash machine, cash dispenser, automated teller machine, automatic teller machine, automated teller, automatic teller, atm", "cassette", "cassette player", "castle", "catamaran", "cd player", "cello, violoncello", "cellular telephone, cellular phone, cellphone, cell, mobile phone", "chain", "chainlink fence", "chain mail, ring mail, mail, chain armor, chain armour, ring armor, ring armour", "chain saw, chainsaw", "chest", "chiffonier, commode", "chime, bell, gong", "china cabinet, china closet", "christmas stocking", "church, church building", "cinema, movie theater, movie theatre, movie house, picture palace", "cleaver, meat cleaver, chopper", "cliff dwelling", "cloak", "clog, geta, patten, sabot", "cocktail shaker", "coffee mug", "coffeepot", "coil, spiral, volute, whorl, helix", "combination lock", "computer keyboard, keypad", "confectionery, confectionary, candy store", "container ship, containership, container vessel", "convertible", "corkscrew, bottle screw", "cornet, horn, trumpet, trump", "cowboy boot", "cowboy hat, ten-gallon hat", "cradle", "crane", "crash helmet", "crate", "crib, cot", "crock pot", "croquet ball", "crutch", "cuirass", "dam, dike, dyke", "desk", "desktop computer", "dial telephone, dial phone", "diaper, nappy, napkin", "digital clock", "digital watch", "dining table, board", "dishrag, dishcloth", "dishwasher, dish washer, dishwashing machine", "disk brake, disc brake", "dock, dockage, docking facility", "dogsled, dog sled, dog sleigh", "dome", "doormat, welcome mat", "drilling platform, offshore rig", "drum, membranophone, tympan", "drumstick", "dumbbell", "dutch oven", "electric fan, blower", "electric guitar", "electric locomotive", "entertainment center", "envelope", "espresso maker", "face powder", "feather boa, boa", "file, file cabinet, filing cabinet", "fireboat", "fire engine, fire truck", "fire screen, fireguard", "flagpole, flagstaff", "flute, transverse flute", "folding chair", "football helmet", "forklift", "fountain", "fountain pen", "four-poster", "freight car", "french horn, horn", "frying pan, frypan, skillet", "fur coat", "garbage truck, dustcart", "gasmask, respirator, gas helmet", "gas pump, gasoline pump, petrol pump, island dispenser", "goblet", "go-kart", "golf ball", "golfcart, golf cart", "gondola", "gong, tam-tam", "gown", "grand piano, grand", "greenhouse, nursery, glasshouse", "grille, radiator grille", "grocery store, grocery, food market, market", "guillotine", "hair slide", "hair spray", "half track", "hammer", "hamper", "hand blower, blow dryer, blow drier, hair dryer, hair drier", "hand-held computer, hand-held microcomputer", "handkerchief, hankie, hanky, hankey", "hard disc, hard disk, fixed disk", "harmonica, mouth organ, harp, mouth harp", "harp", "harvester, reaper", "hatchet", "holster", "home theater, home theatre", "honeycomb", "hook, claw", "hoopskirt, crinoline", "horizontal bar, high bar", "horse cart, horse-cart", "hourglass", "ipod", "iron, smoothing iron", "jack-o'-lantern", "jean, blue jean, denim", "jeep, landrover", "jersey, t-shirt, tee shirt", "jigsaw puzzle", "jinrikisha, ricksha, rickshaw", "joystick", "kimono", "knee pad", "knot", "lab coat, laboratory coat", "ladle", "lampshade, lamp shade", "laptop, laptop computer", "lawn mower, mower", "lens cap, lens cover", "letter opener, paper knife, paperknife", "library", "lifeboat", "lighter, light, igniter, ignitor", "limousine, limo", "liner, ocean liner", "lipstick, lip rouge", "loafer", "lotion", "loudspeaker, speaker, speaker unit, loudspeaker system, speaker system", "loupe, jeweler's loupe", "lumbermill, sawmill", "magnetic compass", "mailbag, postbag", "mailbox, letter box", "maillot", "maillot, tank suit", "manhole cover", "maraca", "marimba, xylophone", "mask", "matchstick", "maypole", "maze, labyrinth", "measuring cup", "medicine chest, medicine cabinet", "megalith, megalithic structure", "microphone, mike", "microwave, microwave oven", "military uniform", "milk can", "minibus", "miniskirt, mini", "minivan", "missile", "mitten", "mixing bowl", "mobile home, manufactured home", "model t", "modem", "monastery", "monitor", "moped", "mortar", "mortarboard", "mosque", "mosquito net", "motor scooter, scooter", "mountain bike, all-terrain bike, off-roader", "mountain tent", "mouse, computer mouse", "mousetrap", "moving van", "muzzle", "nail", "neck brace", "necklace", "nipple", "notebook, notebook computer", "obelisk", "oboe, hautboy, hautbois", "ocarina, sweet potato", "odometer, hodometer, mileometer, milometer", "oil filter", "organ, pipe organ", "oscilloscope, scope, cathode-ray oscilloscope, cro", "overskirt", "oxcart", "oxygen mask", "packet", "paddle, boat paddle", "paddlewheel, paddle wheel", "padlock", "paintbrush", "pajama, pyjama, pj's, jammies", "palace", "panpipe, pandean pipe, syrinx", "paper towel", "parachute, chute", "parallel bars, bars", "park bench", "parking meter", "passenger car, coach, carriage", "patio, terrace", "pay-phone, pay-station", "pedestal, plinth, footstall", "pencil box, pencil case", "pencil sharpener", "perfume, essence", "petri dish", "photocopier", "pick, plectrum, plectron", "pickelhaube", "picket fence, paling", "pickup, pickup truck", "pier", "piggy bank, penny bank", "pill bottle", "pillow", "ping-pong ball", "pinwheel", "pirate, pirate ship", "pitcher, ewer", "plane, carpenter's plane, woodworking plane", "planetarium", "plastic bag", "plate rack", "plow, plough", "plunger, plumber's helper", "polaroid camera, polaroid land camera", "pole", "police van, police wagon, paddy wagon, patrol wagon, wagon, black maria", "poncho", "pool table, billiard table, snooker table", "pop bottle, soda bottle", "pot, flowerpot", "potter's wheel", "power drill", "prayer rug, prayer mat", "printer", "prison, prison house", "projectile, missile", "projector", "puck, hockey puck", "punching bag, punch bag, punching ball, punchball", "purse", "quill, quill pen", "quilt, comforter, comfort, puff", "racer, race car, racing car", "racket, racquet", "radiator", "radio, wireless", "radio telescope, radio reflector", "rain barrel", "recreational vehicle, rv, r.v.", "reel", "reflex camera", "refrigerator, icebox", "remote control, remote", "restaurant, eating house, eating place, eatery", "revolver, six-gun, six-shooter", "rifle", "rocking chair, rocker", "rotisserie", "rubber eraser, rubber, pencil eraser", "rugby ball", "rule, ruler", "running shoe", "safe", "safety pin", "saltshaker, salt shaker", "sandal", "sarong", "sax, saxophone", "scabbard", "scale, weighing machine", "school bus", "schooner", "scoreboard", "screen, crt screen", "screw", "screwdriver", "seat belt, seatbelt", "sewing machine", "shield, buckler", "shoe shop, shoe-shop, shoe store", "shoji", "shopping basket", "shopping cart", "shovel", "shower cap", "shower curtain", "ski", "ski mask", "sleeping bag", "slide rule, slipstick", "sliding door", "slot, one-armed bandit", "snorkel", "snowmobile", "snowplow, snowplough", "soap dispenser", "soccer ball", "sock", "solar dish, solar collector, solar furnace", "sombrero", "soup bowl", "space bar", "space heater", "space shuttle", "spatula", "speedboat", "spider web, spider's web", "spindle", "sports car, sport car", "spotlight, spot", "stage", "steam locomotive", "steel arch bridge", "steel drum", "stethoscope", "stole", "stone wall", "stopwatch, stop watch", "stove", "strainer", "streetcar, tram, tramcar, trolley, trolley car", "stretcher", "studio couch, day bed", "stupa, tope", "submarine, pigboat, sub, u-boat", "suit, suit of clothes", "sundial", "sunglass", "sunglasses, dark glasses, shades", "sunscreen, sunblock, sun blocker", "suspension bridge", "swab, swob, mop", "sweatshirt", "swimming trunks, bathing trunks", "swing", "switch, electric switch, electrical switch", "syringe", "table lamp", "tank, army tank, armored combat vehicle, armoured combat vehicle", "tape player", "teapot", "teddy, teddy bear", "television, television system", "tennis ball", "thatch, thatched roof", "theater curtain, theatre curtain", "thimble", "thresher, thrasher, threshing machine", "throne", "tile roof", "toaster", "tobacco shop, tobacconist shop, tobacconist", "toilet seat", "torch", "totem pole", "tow truck, tow car, wrecker", "toyshop", "tractor", "trailer truck, tractor trailer, trucking rig, rig, articulated lorry, semi", "tray", "trench coat", "tricycle, trike, velocipede", "trimaran", "tripod", "triumphal arch", "trolleybus, trolley coach, trackless trolley", "trombone", "tub, vat", "turnstile", "typewriter keyboard", "umbrella", "unicycle, monocycle", "upright, upright piano", "vacuum, vacuum cleaner", "vase", "vault", "velvet", "vending machine", "vestment", "viaduct", "violin, fiddle", "volleyball", "waffle iron", "wall clock", "wallet, billfold, notecase, pocketbook", "wardrobe, closet, press", "warplane, military plane", "washbasin, handbasin, washbowl, lavabo, wash-hand basin", "washer, automatic washer, washing machine", "water bottle", "water jug", "water tower", "whiskey jug", "whistle", "wig", "window screen", "window shade", "windsor tie", "wine bottle", "wing", "wok", "wooden spoon", "wool, woolen, woollen", "worm fence, snake fence, snake-rail fence, virginia fence", "wreck", "yawl", "yurt", "web site, website, internet site, site", "comic book", "crossword puzzle, crossword", "street sign", "traffic light, traffic signal, stoplight", "book jacket, dust cover, dust jacket, dust wrapper", "menu", "plate", "guacamole", "consomme", "hot pot, hotpot", "trifle", "ice cream, icecream", "ice lolly, lolly, lollipop, popsicle", "french loaf", "bagel, beigel", "pretzel", "cheeseburger", "hotdog, hot dog, red hot", "mashed potato", "head cabbage", "broccoli", "cauliflower", "zucchini, courgette", "spaghetti squash", "acorn squash", "butternut squash", "cucumber, cuke", "artichoke, globe artichoke", "bell pepper", "cardoon", "mushroom", "granny smith", "strawberry", "orange", "lemon", "fig", "pineapple, ananas", "banana", "jackfruit, jak, jack", "custard apple", "pomegranate", "hay", "carbonara", "chocolate sauce, chocolate syrup", "dough", "meat loaf, meatloaf", "pizza, pizza pie", "potpie", "burrito", "red wine", "espresso", "cup", "eggnog", "alp", "bubble", "cliff, drop, drop-off", "coral reef", "geyser", "lakeside, lakeshore", "promontory, headland, head, foreland", "sandbar, sand bar", "seashore, coast, seacoast, sea-coast", "valley, vale", "volcano", "ballplayer, baseball player", "groom, bridegroom", "scuba diver", "rapeseed", "daisy", "yellow lady's slipper, yellow lady-slipper, cypripedium calceolus, cypripedium parviflorum", "corn", "acorn", "hip, rose hip, rosehip", "buckeye, horse chestnut, conker", "coral fungus", "agaric", "gyromitra", "stinkhorn, carrion fungus", "earthstar", "hen-of-the-woods, hen of the woods, polyporus frondosus, grifola frondosa", "bolete", "ear, spike, capitulum", "toilet tissue, toilet paper, bathroom tissue" ]
apple/mobilevit-x-small
# MobileViT (extra small-sized model) MobileViT model pre-trained on ImageNet-1k at resolution 256x256. It was introduced in [MobileViT: Light-weight, General-purpose, and Mobile-friendly Vision Transformer](https://arxiv.org/abs/2110.02178) by Sachin Mehta and Mohammad Rastegari, and first released in [this repository](https://github.com/apple/ml-cvnets). The license used is [Apple sample code license](https://github.com/apple/ml-cvnets/blob/main/LICENSE). Disclaimer: The team releasing MobileViT did not write a model card for this model so this model card has been written by the Hugging Face team. ## Model description MobileViT is a light-weight, low latency convolutional neural network that combines MobileNetV2-style layers with a new block that replaces local processing in convolutions with global processing using transformers. As with ViT (Vision Transformer), the image data is converted into flattened patches before it is processed by the transformer layers. Afterwards, the patches are "unflattened" back into feature maps. This allows the MobileViT-block to be placed anywhere inside a CNN. MobileViT does not require any positional embeddings. ## Intended uses & limitations You can use the raw model for image classification. See the [model hub](https://huggingface.co/models?search=mobilevit) to look for fine-tuned versions on a task that interests you. ### How to use Here is how to use this model to classify an image of the COCO 2017 dataset into one of the 1,000 ImageNet classes: ```python from transformers import MobileViTFeatureExtractor, MobileViTForImageClassification from PIL import Image import requests url = "http://images.cocodataset.org/val2017/000000039769.jpg" image = Image.open(requests.get(url, stream=True).raw) feature_extractor = MobileViTFeatureExtractor.from_pretrained("apple/mobilevit-x-small") model = MobileViTForImageClassification.from_pretrained("apple/mobilevit-x-small") inputs = feature_extractor(images=image, return_tensors="pt") outputs = model(**inputs) logits = outputs.logits # model predicts one of the 1000 ImageNet classes predicted_class_idx = logits.argmax(-1).item() print("Predicted class:", model.config.id2label[predicted_class_idx]) ``` Currently, both the feature extractor and model support PyTorch. ## Training data The MobileViT model was pretrained on [ImageNet-1k](https://huggingface.co/datasets/imagenet-1k), a dataset consisting of 1 million images and 1,000 classes. ## Training procedure ### Preprocessing Training requires only basic data augmentation, i.e. random resized cropping and horizontal flipping. To learn multi-scale representations without requiring fine-tuning, a multi-scale sampler was used during training, with image sizes randomly sampled from: (160, 160), (192, 192), (256, 256), (288, 288), (320, 320). At inference time, images are resized/rescaled to the same resolution (288x288), and center-cropped at 256x256. Pixels are normalized to the range [0, 1]. Images are expected to be in BGR pixel order, not RGB. ### Pretraining The MobileViT networks are trained from scratch for 300 epochs on ImageNet-1k on 8 NVIDIA GPUs with an effective batch size of 1024 and learning rate warmup for 3k steps, followed by cosine annealing. Also used were label smoothing cross-entropy loss and L2 weight decay. Training resolution varies from 160x160 to 320x320, using multi-scale sampling. ## Evaluation results | Model | ImageNet top-1 accuracy | ImageNet top-5 accuracy | # params | URL | |------------------|-------------------------|-------------------------|-----------|-------------------------------------------------| | MobileViT-XXS | 69.0 | 88.9 | 1.3 M | https://huggingface.co/apple/mobilevit-xx-small | | **MobileViT-XS** | **74.8** | **92.3** | **2.3 M** | https://huggingface.co/apple/mobilevit-x-small | | MobileViT-S | 78.4 | 94.1 | 5.6 M | https://huggingface.co/apple/mobilevit-small | ### BibTeX entry and citation info ```bibtex @inproceedings{vision-transformer, title = {MobileViT: Light-weight, General-purpose, and Mobile-friendly Vision Transformer}, author = {Sachin Mehta and Mohammad Rastegari}, year = {2022}, URL = {https://arxiv.org/abs/2110.02178} } ```
[ "tench, tinca tinca", "goldfish, carassius auratus", "great white shark, white shark, man-eater, man-eating shark, carcharodon carcharias", "tiger shark, galeocerdo cuvieri", "hammerhead, hammerhead shark", "electric ray, crampfish, numbfish, torpedo", "stingray", "cock", "hen", "ostrich, struthio camelus", "brambling, fringilla montifringilla", "goldfinch, carduelis carduelis", "house finch, linnet, carpodacus mexicanus", "junco, snowbird", "indigo bunting, indigo finch, indigo bird, passerina cyanea", "robin, american robin, turdus migratorius", "bulbul", "jay", "magpie", "chickadee", "water ouzel, dipper", "kite", "bald eagle, american eagle, haliaeetus leucocephalus", "vulture", "great grey owl, great gray owl, strix nebulosa", "european fire salamander, salamandra salamandra", "common newt, triturus vulgaris", "eft", "spotted salamander, ambystoma maculatum", "axolotl, mud puppy, ambystoma mexicanum", "bullfrog, rana catesbeiana", "tree frog, tree-frog", "tailed frog, bell toad, ribbed toad, tailed toad, ascaphus trui", "loggerhead, loggerhead turtle, caretta caretta", "leatherback turtle, leatherback, leathery turtle, dermochelys coriacea", "mud turtle", "terrapin", "box turtle, box tortoise", "banded gecko", "common iguana, iguana, iguana iguana", "american chameleon, anole, anolis carolinensis", "whiptail, whiptail lizard", "agama", "frilled lizard, chlamydosaurus kingi", "alligator lizard", "gila monster, heloderma suspectum", "green lizard, lacerta viridis", "african chameleon, chamaeleo chamaeleon", "komodo dragon, komodo lizard, dragon lizard, giant lizard, varanus komodoensis", "african crocodile, nile crocodile, crocodylus niloticus", "american alligator, alligator mississipiensis", "triceratops", "thunder snake, worm snake, carphophis amoenus", "ringneck snake, ring-necked snake, ring snake", "hognose snake, puff adder, sand viper", "green snake, grass snake", "king snake, kingsnake", "garter snake, grass snake", "water snake", "vine snake", "night snake, hypsiglena torquata", "boa constrictor, constrictor constrictor", "rock python, rock snake, python sebae", "indian cobra, naja naja", "green mamba", "sea snake", "horned viper, cerastes, sand viper, horned asp, cerastes cornutus", "diamondback, diamondback rattlesnake, crotalus adamanteus", "sidewinder, horned rattlesnake, crotalus cerastes", "trilobite", "harvestman, daddy longlegs, phalangium opilio", "scorpion", "black and gold garden spider, argiope aurantia", "barn spider, araneus cavaticus", "garden spider, aranea diademata", "black widow, latrodectus mactans", "tarantula", "wolf spider, hunting spider", "tick", "centipede", "black grouse", "ptarmigan", "ruffed grouse, partridge, bonasa umbellus", "prairie chicken, prairie grouse, prairie fowl", "peacock", "quail", "partridge", "african grey, african gray, psittacus erithacus", "macaw", "sulphur-crested cockatoo, kakatoe galerita, cacatua galerita", "lorikeet", "coucal", "bee eater", "hornbill", "hummingbird", "jacamar", "toucan", "drake", "red-breasted merganser, mergus serrator", "goose", "black swan, cygnus atratus", "tusker", "echidna, spiny anteater, anteater", "platypus, duckbill, duckbilled platypus, duck-billed platypus, ornithorhynchus anatinus", "wallaby, brush kangaroo", "koala, koala bear, kangaroo bear, native bear, phascolarctos cinereus", "wombat", "jellyfish", "sea anemone, anemone", "brain coral", "flatworm, platyhelminth", "nematode, nematode worm, roundworm", "conch", "snail", "slug", "sea slug, nudibranch", "chiton, coat-of-mail shell, sea cradle, polyplacophore", "chambered nautilus, pearly nautilus, nautilus", "dungeness crab, cancer magister", "rock crab, cancer irroratus", "fiddler crab", "king crab, alaska crab, alaskan king crab, alaska king crab, paralithodes camtschatica", "american lobster, northern lobster, maine lobster, homarus americanus", "spiny lobster, langouste, rock lobster, crawfish, crayfish, sea crawfish", "crayfish, crawfish, crawdad, crawdaddy", "hermit crab", "isopod", "white stork, ciconia ciconia", "black stork, ciconia nigra", "spoonbill", "flamingo", "little blue heron, egretta caerulea", "american egret, great white heron, egretta albus", "bittern", "crane", "limpkin, aramus pictus", "european gallinule, porphyrio porphyrio", "american coot, marsh hen, mud hen, water hen, fulica americana", "bustard", "ruddy turnstone, arenaria interpres", "red-backed sandpiper, dunlin, erolia alpina", "redshank, tringa totanus", "dowitcher", "oystercatcher, oyster catcher", "pelican", "king penguin, aptenodytes patagonica", "albatross, mollymawk", "grey whale, gray whale, devilfish, eschrichtius gibbosus, eschrichtius robustus", "killer whale, killer, orca, grampus, sea wolf, orcinus orca", "dugong, dugong dugon", "sea lion", "chihuahua", "japanese spaniel", "maltese dog, maltese terrier, maltese", "pekinese, pekingese, peke", "shih-tzu", "blenheim spaniel", "papillon", "toy terrier", "rhodesian ridgeback", "afghan hound, afghan", "basset, basset hound", "beagle", "bloodhound, sleuthhound", "bluetick", "black-and-tan coonhound", "walker hound, walker foxhound", "english foxhound", "redbone", "borzoi, russian wolfhound", "irish wolfhound", "italian greyhound", "whippet", "ibizan hound, ibizan podenco", "norwegian elkhound, elkhound", "otterhound, otter hound", "saluki, gazelle hound", "scottish deerhound, deerhound", "weimaraner", "staffordshire bullterrier, staffordshire bull terrier", "american staffordshire terrier, staffordshire terrier, american pit bull terrier, pit bull terrier", "bedlington terrier", "border terrier", "kerry blue terrier", "irish terrier", "norfolk terrier", "norwich terrier", "yorkshire terrier", "wire-haired fox terrier", "lakeland terrier", "sealyham terrier, sealyham", "airedale, airedale terrier", "cairn, cairn terrier", "australian terrier", "dandie dinmont, dandie dinmont terrier", "boston bull, boston terrier", "miniature schnauzer", "giant schnauzer", "standard schnauzer", "scotch terrier, scottish terrier, scottie", "tibetan terrier, chrysanthemum dog", "silky terrier, sydney silky", "soft-coated wheaten terrier", "west highland white terrier", "lhasa, lhasa apso", "flat-coated retriever", "curly-coated retriever", "golden retriever", "labrador retriever", "chesapeake bay retriever", "german short-haired pointer", "vizsla, hungarian pointer", "english setter", "irish setter, red setter", "gordon setter", "brittany spaniel", "clumber, clumber spaniel", "english springer, english springer spaniel", "welsh springer spaniel", "cocker spaniel, english cocker spaniel, cocker", "sussex spaniel", "irish water spaniel", "kuvasz", "schipperke", "groenendael", "malinois", "briard", "kelpie", "komondor", "old english sheepdog, bobtail", "shetland sheepdog, shetland sheep dog, shetland", "collie", "border collie", "bouvier des flandres, bouviers des flandres", "rottweiler", "german shepherd, german shepherd dog, german police dog, alsatian", "doberman, doberman pinscher", "miniature pinscher", "greater swiss mountain dog", "bernese mountain dog", "appenzeller", "entlebucher", "boxer", "bull mastiff", "tibetan mastiff", "french bulldog", "great dane", "saint bernard, st bernard", "eskimo dog, husky", "malamute, malemute, alaskan malamute", "siberian husky", "dalmatian, coach dog, carriage dog", "affenpinscher, monkey pinscher, monkey dog", "basenji", "pug, pug-dog", "leonberg", "newfoundland, newfoundland dog", "great pyrenees", "samoyed, samoyede", "pomeranian", "chow, chow chow", "keeshond", "brabancon griffon", "pembroke, pembroke welsh corgi", "cardigan, cardigan welsh corgi", "toy poodle", "miniature poodle", "standard poodle", "mexican hairless", "timber wolf, grey wolf, gray wolf, canis lupus", "white wolf, arctic wolf, canis lupus tundrarum", "red wolf, maned wolf, canis rufus, canis niger", "coyote, prairie wolf, brush wolf, canis latrans", "dingo, warrigal, warragal, canis dingo", "dhole, cuon alpinus", "african hunting dog, hyena dog, cape hunting dog, lycaon pictus", "hyena, hyaena", "red fox, vulpes vulpes", "kit fox, vulpes macrotis", "arctic fox, white fox, alopex lagopus", "grey fox, gray fox, urocyon cinereoargenteus", "tabby, tabby cat", "tiger cat", "persian cat", "siamese cat, siamese", "egyptian cat", "cougar, puma, catamount, mountain lion, painter, panther, felis concolor", "lynx, catamount", "leopard, panthera pardus", "snow leopard, ounce, panthera uncia", "jaguar, panther, panthera onca, felis onca", "lion, king of beasts, panthera leo", "tiger, panthera tigris", "cheetah, chetah, acinonyx jubatus", "brown bear, bruin, ursus arctos", "american black bear, black bear, ursus americanus, euarctos americanus", "ice bear, polar bear, ursus maritimus, thalarctos maritimus", "sloth bear, melursus ursinus, ursus ursinus", "mongoose", "meerkat, mierkat", "tiger beetle", "ladybug, ladybeetle, lady beetle, ladybird, ladybird beetle", "ground beetle, carabid beetle", "long-horned beetle, longicorn, longicorn beetle", "leaf beetle, chrysomelid", "dung beetle", "rhinoceros beetle", "weevil", "fly", "bee", "ant, emmet, pismire", "grasshopper, hopper", "cricket", "walking stick, walkingstick, stick insect", "cockroach, roach", "mantis, mantid", "cicada, cicala", "leafhopper", "lacewing, lacewing fly", "dragonfly, darning needle, devil's darning needle, sewing needle, snake feeder, snake doctor, mosquito hawk, skeeter hawk", "damselfly", "admiral", "ringlet, ringlet butterfly", "monarch, monarch butterfly, milkweed butterfly, danaus plexippus", "cabbage butterfly", "sulphur butterfly, sulfur butterfly", "lycaenid, lycaenid butterfly", "starfish, sea star", "sea urchin", "sea cucumber, holothurian", "wood rabbit, cottontail, cottontail rabbit", "hare", "angora, angora rabbit", "hamster", "porcupine, hedgehog", "fox squirrel, eastern fox squirrel, sciurus niger", "marmot", "beaver", "guinea pig, cavia cobaya", "sorrel", "zebra", "hog, pig, grunter, squealer, sus scrofa", "wild boar, boar, sus scrofa", "warthog", "hippopotamus, hippo, river horse, hippopotamus amphibius", "ox", "water buffalo, water ox, asiatic buffalo, bubalus bubalis", "bison", "ram, tup", "bighorn, bighorn sheep, cimarron, rocky mountain bighorn, rocky mountain sheep, ovis canadensis", "ibex, capra ibex", "hartebeest", "impala, aepyceros melampus", "gazelle", "arabian camel, dromedary, camelus dromedarius", "llama", "weasel", "mink", "polecat, fitch, foulmart, foumart, mustela putorius", "black-footed ferret, ferret, mustela nigripes", "otter", "skunk, polecat, wood pussy", "badger", "armadillo", "three-toed sloth, ai, bradypus tridactylus", "orangutan, orang, orangutang, pongo pygmaeus", "gorilla, gorilla gorilla", "chimpanzee, chimp, pan troglodytes", "gibbon, hylobates lar", "siamang, hylobates syndactylus, symphalangus syndactylus", "guenon, guenon monkey", "patas, hussar monkey, erythrocebus patas", "baboon", "macaque", "langur", "colobus, colobus monkey", "proboscis monkey, nasalis larvatus", "marmoset", "capuchin, ringtail, cebus capucinus", "howler monkey, howler", "titi, titi monkey", "spider monkey, ateles geoffroyi", "squirrel monkey, saimiri sciureus", "madagascar cat, ring-tailed lemur, lemur catta", "indri, indris, indri indri, indri brevicaudatus", "indian elephant, elephas maximus", "african elephant, loxodonta africana", "lesser panda, red panda, panda, bear cat, cat bear, ailurus fulgens", "giant panda, panda, panda bear, coon bear, ailuropoda melanoleuca", "barracouta, snoek", "eel", "coho, cohoe, coho salmon, blue jack, silver salmon, oncorhynchus kisutch", "rock beauty, holocanthus tricolor", "anemone fish", "sturgeon", "gar, garfish, garpike, billfish, lepisosteus osseus", "lionfish", "puffer, pufferfish, blowfish, globefish", "abacus", "abaya", "academic gown, academic robe, judge's robe", "accordion, piano accordion, squeeze box", "acoustic guitar", "aircraft carrier, carrier, flattop, attack aircraft carrier", "airliner", "airship, dirigible", "altar", "ambulance", "amphibian, amphibious vehicle", "analog clock", "apiary, bee house", "apron", "ashcan, trash can, garbage can, wastebin, ash bin, ash-bin, ashbin, dustbin, trash barrel, trash bin", "assault rifle, assault gun", "backpack, back pack, knapsack, packsack, rucksack, haversack", "bakery, bakeshop, bakehouse", "balance beam, beam", "balloon", "ballpoint, ballpoint pen, ballpen, biro", "band aid", "banjo", "bannister, banister, balustrade, balusters, handrail", "barbell", "barber chair", "barbershop", "barn", "barometer", "barrel, cask", "barrow, garden cart, lawn cart, wheelbarrow", "baseball", "basketball", "bassinet", "bassoon", "bathing cap, swimming cap", "bath towel", "bathtub, bathing tub, bath, tub", "beach wagon, station wagon, wagon, estate car, beach waggon, station waggon, waggon", "beacon, lighthouse, beacon light, pharos", "beaker", "bearskin, busby, shako", "beer bottle", "beer glass", "bell cote, bell cot", "bib", "bicycle-built-for-two, tandem bicycle, tandem", "bikini, two-piece", "binder, ring-binder", "binoculars, field glasses, opera glasses", "birdhouse", "boathouse", "bobsled, bobsleigh, bob", "bolo tie, bolo, bola tie, bola", "bonnet, poke bonnet", "bookcase", "bookshop, bookstore, bookstall", "bottlecap", "bow", "bow tie, bow-tie, bowtie", "brass, memorial tablet, plaque", "brassiere, bra, bandeau", "breakwater, groin, groyne, mole, bulwark, seawall, jetty", "breastplate, aegis, egis", "broom", "bucket, pail", "buckle", "bulletproof vest", "bullet train, bullet", "butcher shop, meat market", "cab, hack, taxi, taxicab", "caldron, cauldron", "candle, taper, wax light", "cannon", "canoe", "can opener, tin opener", "cardigan", "car mirror", "carousel, carrousel, merry-go-round, roundabout, whirligig", "carpenter's kit, tool kit", "carton", "car wheel", "cash machine, cash dispenser, automated teller machine, automatic teller machine, automated teller, automatic teller, atm", "cassette", "cassette player", "castle", "catamaran", "cd player", "cello, violoncello", "cellular telephone, cellular phone, cellphone, cell, mobile phone", "chain", "chainlink fence", "chain mail, ring mail, mail, chain armor, chain armour, ring armor, ring armour", "chain saw, chainsaw", "chest", "chiffonier, commode", "chime, bell, gong", "china cabinet, china closet", "christmas stocking", "church, church building", "cinema, movie theater, movie theatre, movie house, picture palace", "cleaver, meat cleaver, chopper", "cliff dwelling", "cloak", "clog, geta, patten, sabot", "cocktail shaker", "coffee mug", "coffeepot", "coil, spiral, volute, whorl, helix", "combination lock", "computer keyboard, keypad", "confectionery, confectionary, candy store", "container ship, containership, container vessel", "convertible", "corkscrew, bottle screw", "cornet, horn, trumpet, trump", "cowboy boot", "cowboy hat, ten-gallon hat", "cradle", "crane", "crash helmet", "crate", "crib, cot", "crock pot", "croquet ball", "crutch", "cuirass", "dam, dike, dyke", "desk", "desktop computer", "dial telephone, dial phone", "diaper, nappy, napkin", "digital clock", "digital watch", "dining table, board", "dishrag, dishcloth", "dishwasher, dish washer, dishwashing machine", "disk brake, disc brake", "dock, dockage, docking facility", "dogsled, dog sled, dog sleigh", "dome", "doormat, welcome mat", "drilling platform, offshore rig", "drum, membranophone, tympan", "drumstick", "dumbbell", "dutch oven", "electric fan, blower", "electric guitar", "electric locomotive", "entertainment center", "envelope", "espresso maker", "face powder", "feather boa, boa", "file, file cabinet, filing cabinet", "fireboat", "fire engine, fire truck", "fire screen, fireguard", "flagpole, flagstaff", "flute, transverse flute", "folding chair", "football helmet", "forklift", "fountain", "fountain pen", "four-poster", "freight car", "french horn, horn", "frying pan, frypan, skillet", "fur coat", "garbage truck, dustcart", "gasmask, respirator, gas helmet", "gas pump, gasoline pump, petrol pump, island dispenser", "goblet", "go-kart", "golf ball", "golfcart, golf cart", "gondola", "gong, tam-tam", "gown", "grand piano, grand", "greenhouse, nursery, glasshouse", "grille, radiator grille", "grocery store, grocery, food market, market", "guillotine", "hair slide", "hair spray", "half track", "hammer", "hamper", "hand blower, blow dryer, blow drier, hair dryer, hair drier", "hand-held computer, hand-held microcomputer", "handkerchief, hankie, hanky, hankey", "hard disc, hard disk, fixed disk", "harmonica, mouth organ, harp, mouth harp", "harp", "harvester, reaper", "hatchet", "holster", "home theater, home theatre", "honeycomb", "hook, claw", "hoopskirt, crinoline", "horizontal bar, high bar", "horse cart, horse-cart", "hourglass", "ipod", "iron, smoothing iron", "jack-o'-lantern", "jean, blue jean, denim", "jeep, landrover", "jersey, t-shirt, tee shirt", "jigsaw puzzle", "jinrikisha, ricksha, rickshaw", "joystick", "kimono", "knee pad", "knot", "lab coat, laboratory coat", "ladle", "lampshade, lamp shade", "laptop, laptop computer", "lawn mower, mower", "lens cap, lens cover", "letter opener, paper knife, paperknife", "library", "lifeboat", "lighter, light, igniter, ignitor", "limousine, limo", "liner, ocean liner", "lipstick, lip rouge", "loafer", "lotion", "loudspeaker, speaker, speaker unit, loudspeaker system, speaker system", "loupe, jeweler's loupe", "lumbermill, sawmill", "magnetic compass", "mailbag, postbag", "mailbox, letter box", "maillot", "maillot, tank suit", "manhole cover", "maraca", "marimba, xylophone", "mask", "matchstick", "maypole", "maze, labyrinth", "measuring cup", "medicine chest, medicine cabinet", "megalith, megalithic structure", "microphone, mike", "microwave, microwave oven", "military uniform", "milk can", "minibus", "miniskirt, mini", "minivan", "missile", "mitten", "mixing bowl", "mobile home, manufactured home", "model t", "modem", "monastery", "monitor", "moped", "mortar", "mortarboard", "mosque", "mosquito net", "motor scooter, scooter", "mountain bike, all-terrain bike, off-roader", "mountain tent", "mouse, computer mouse", "mousetrap", "moving van", "muzzle", "nail", "neck brace", "necklace", "nipple", "notebook, notebook computer", "obelisk", "oboe, hautboy, hautbois", "ocarina, sweet potato", "odometer, hodometer, mileometer, milometer", "oil filter", "organ, pipe organ", "oscilloscope, scope, cathode-ray oscilloscope, cro", "overskirt", "oxcart", "oxygen mask", "packet", "paddle, boat paddle", "paddlewheel, paddle wheel", "padlock", "paintbrush", "pajama, pyjama, pj's, jammies", "palace", "panpipe, pandean pipe, syrinx", "paper towel", "parachute, chute", "parallel bars, bars", "park bench", "parking meter", "passenger car, coach, carriage", "patio, terrace", "pay-phone, pay-station", "pedestal, plinth, footstall", "pencil box, pencil case", "pencil sharpener", "perfume, essence", "petri dish", "photocopier", "pick, plectrum, plectron", "pickelhaube", "picket fence, paling", "pickup, pickup truck", "pier", "piggy bank, penny bank", "pill bottle", "pillow", "ping-pong ball", "pinwheel", "pirate, pirate ship", "pitcher, ewer", "plane, carpenter's plane, woodworking plane", "planetarium", "plastic bag", "plate rack", "plow, plough", "plunger, plumber's helper", "polaroid camera, polaroid land camera", "pole", "police van, police wagon, paddy wagon, patrol wagon, wagon, black maria", "poncho", "pool table, billiard table, snooker table", "pop bottle, soda bottle", "pot, flowerpot", "potter's wheel", "power drill", "prayer rug, prayer mat", "printer", "prison, prison house", "projectile, missile", "projector", "puck, hockey puck", "punching bag, punch bag, punching ball, punchball", "purse", "quill, quill pen", "quilt, comforter, comfort, puff", "racer, race car, racing car", "racket, racquet", "radiator", "radio, wireless", "radio telescope, radio reflector", "rain barrel", "recreational vehicle, rv, r.v.", "reel", "reflex camera", "refrigerator, icebox", "remote control, remote", "restaurant, eating house, eating place, eatery", "revolver, six-gun, six-shooter", "rifle", "rocking chair, rocker", "rotisserie", "rubber eraser, rubber, pencil eraser", "rugby ball", "rule, ruler", "running shoe", "safe", "safety pin", "saltshaker, salt shaker", "sandal", "sarong", "sax, saxophone", "scabbard", "scale, weighing machine", "school bus", "schooner", "scoreboard", "screen, crt screen", "screw", "screwdriver", "seat belt, seatbelt", "sewing machine", "shield, buckler", "shoe shop, shoe-shop, shoe store", "shoji", "shopping basket", "shopping cart", "shovel", "shower cap", "shower curtain", "ski", "ski mask", "sleeping bag", "slide rule, slipstick", "sliding door", "slot, one-armed bandit", "snorkel", "snowmobile", "snowplow, snowplough", "soap dispenser", "soccer ball", "sock", "solar dish, solar collector, solar furnace", "sombrero", "soup bowl", "space bar", "space heater", "space shuttle", "spatula", "speedboat", "spider web, spider's web", "spindle", "sports car, sport car", "spotlight, spot", "stage", "steam locomotive", "steel arch bridge", "steel drum", "stethoscope", "stole", "stone wall", "stopwatch, stop watch", "stove", "strainer", "streetcar, tram, tramcar, trolley, trolley car", "stretcher", "studio couch, day bed", "stupa, tope", "submarine, pigboat, sub, u-boat", "suit, suit of clothes", "sundial", "sunglass", "sunglasses, dark glasses, shades", "sunscreen, sunblock, sun blocker", "suspension bridge", "swab, swob, mop", "sweatshirt", "swimming trunks, bathing trunks", "swing", "switch, electric switch, electrical switch", "syringe", "table lamp", "tank, army tank, armored combat vehicle, armoured combat vehicle", "tape player", "teapot", "teddy, teddy bear", "television, television system", "tennis ball", "thatch, thatched roof", "theater curtain, theatre curtain", "thimble", "thresher, thrasher, threshing machine", "throne", "tile roof", "toaster", "tobacco shop, tobacconist shop, tobacconist", "toilet seat", "torch", "totem pole", "tow truck, tow car, wrecker", "toyshop", "tractor", "trailer truck, tractor trailer, trucking rig, rig, articulated lorry, semi", "tray", "trench coat", "tricycle, trike, velocipede", "trimaran", "tripod", "triumphal arch", "trolleybus, trolley coach, trackless trolley", "trombone", "tub, vat", "turnstile", "typewriter keyboard", "umbrella", "unicycle, monocycle", "upright, upright piano", "vacuum, vacuum cleaner", "vase", "vault", "velvet", "vending machine", "vestment", "viaduct", "violin, fiddle", "volleyball", "waffle iron", "wall clock", "wallet, billfold, notecase, pocketbook", "wardrobe, closet, press", "warplane, military plane", "washbasin, handbasin, washbowl, lavabo, wash-hand basin", "washer, automatic washer, washing machine", "water bottle", "water jug", "water tower", "whiskey jug", "whistle", "wig", "window screen", "window shade", "windsor tie", "wine bottle", "wing", "wok", "wooden spoon", "wool, woolen, woollen", "worm fence, snake fence, snake-rail fence, virginia fence", "wreck", "yawl", "yurt", "web site, website, internet site, site", "comic book", "crossword puzzle, crossword", "street sign", "traffic light, traffic signal, stoplight", "book jacket, dust cover, dust jacket, dust wrapper", "menu", "plate", "guacamole", "consomme", "hot pot, hotpot", "trifle", "ice cream, icecream", "ice lolly, lolly, lollipop, popsicle", "french loaf", "bagel, beigel", "pretzel", "cheeseburger", "hotdog, hot dog, red hot", "mashed potato", "head cabbage", "broccoli", "cauliflower", "zucchini, courgette", "spaghetti squash", "acorn squash", "butternut squash", "cucumber, cuke", "artichoke, globe artichoke", "bell pepper", "cardoon", "mushroom", "granny smith", "strawberry", "orange", "lemon", "fig", "pineapple, ananas", "banana", "jackfruit, jak, jack", "custard apple", "pomegranate", "hay", "carbonara", "chocolate sauce, chocolate syrup", "dough", "meat loaf, meatloaf", "pizza, pizza pie", "potpie", "burrito", "red wine", "espresso", "cup", "eggnog", "alp", "bubble", "cliff, drop, drop-off", "coral reef", "geyser", "lakeside, lakeshore", "promontory, headland, head, foreland", "sandbar, sand bar", "seashore, coast, seacoast, sea-coast", "valley, vale", "volcano", "ballplayer, baseball player", "groom, bridegroom", "scuba diver", "rapeseed", "daisy", "yellow lady's slipper, yellow lady-slipper, cypripedium calceolus, cypripedium parviflorum", "corn", "acorn", "hip, rose hip, rosehip", "buckeye, horse chestnut, conker", "coral fungus", "agaric", "gyromitra", "stinkhorn, carrion fungus", "earthstar", "hen-of-the-woods, hen of the woods, polyporus frondosus, grifola frondosa", "bolete", "ear, spike, capitulum", "toilet tissue, toilet paper, bathroom tissue" ]
apple/mobilevit-xx-small
# MobileViT (extra extra small-sized model) MobileViT model pre-trained on ImageNet-1k at resolution 256x256. It was introduced in [MobileViT: Light-weight, General-purpose, and Mobile-friendly Vision Transformer](https://arxiv.org/abs/2110.02178) by Sachin Mehta and Mohammad Rastegari, and first released in [this repository](https://github.com/apple/ml-cvnets). The license used is [Apple sample code license](https://github.com/apple/ml-cvnets/blob/main/LICENSE). Disclaimer: The team releasing MobileViT did not write a model card for this model so this model card has been written by the Hugging Face team. ## Model description MobileViT is a light-weight, low latency convolutional neural network that combines MobileNetV2-style layers with a new block that replaces local processing in convolutions with global processing using transformers. As with ViT (Vision Transformer), the image data is converted into flattened patches before it is processed by the transformer layers. Afterwards, the patches are "unflattened" back into feature maps. This allows the MobileViT-block to be placed anywhere inside a CNN. MobileViT does not require any positional embeddings. ## Intended uses & limitations You can use the raw model for image classification. See the [model hub](https://huggingface.co/models?search=mobilevit) to look for fine-tuned versions on a task that interests you. ### How to use Here is how to use this model to classify an image of the COCO 2017 dataset into one of the 1,000 ImageNet classes: ```python from transformers import MobileViTFeatureExtractor, MobileViTForImageClassification from PIL import Image import requests url = "http://images.cocodataset.org/val2017/000000039769.jpg" image = Image.open(requests.get(url, stream=True).raw) feature_extractor = MobileViTFeatureExtractor.from_pretrained("apple/mobilevit-xx-small") model = MobileViTForImageClassification.from_pretrained("apple/mobilevit-xx-small") inputs = feature_extractor(images=image, return_tensors="pt") outputs = model(**inputs) logits = outputs.logits # model predicts one of the 1000 ImageNet classes predicted_class_idx = logits.argmax(-1).item() print("Predicted class:", model.config.id2label[predicted_class_idx]) ``` Currently, both the feature extractor and model support PyTorch. ## Training data The MobileViT model was pretrained on [ImageNet-1k](https://huggingface.co/datasets/imagenet-1k), a dataset consisting of 1 million images and 1,000 classes. ## Training procedure ### Preprocessing Training requires only basic data augmentation, i.e. random resized cropping and horizontal flipping. To learn multi-scale representations without requiring fine-tuning, a multi-scale sampler was used during training, with image sizes randomly sampled from: (160, 160), (192, 192), (256, 256), (288, 288), (320, 320). At inference time, images are resized/rescaled to the same resolution (288x288), and center-cropped at 256x256. Pixels are normalized to the range [0, 1]. Images are expected to be in BGR pixel order, not RGB. ### Pretraining The MobileViT networks are trained from scratch for 300 epochs on ImageNet-1k on 8 NVIDIA GPUs with an effective batch size of 1024 and learning rate warmup for 3k steps, followed by cosine annealing. Also used were label smoothing cross-entropy loss and L2 weight decay. Training resolution varies from 160x160 to 320x320, using multi-scale sampling. ## Evaluation results | Model | ImageNet top-1 accuracy | ImageNet top-5 accuracy | # params | URL | |-------------------|-------------------------|-------------------------|-----------|-------------------------------------------------| | **MobileViT-XXS** | **69.0** | **88.9** | **1.3 M** | https://huggingface.co/apple/mobilevit-xx-small | | MobileViT-XS | 74.8 | 92.3 | 2.3 M | https://huggingface.co/apple/mobilevit-x-small | | MobileViT-S | 78.4 | 94.1 | 5.6 M | https://huggingface.co/apple/mobilevit-small | ### BibTeX entry and citation info ```bibtex @inproceedings{vision-transformer, title = {MobileViT: Light-weight, General-purpose, and Mobile-friendly Vision Transformer}, author = {Sachin Mehta and Mohammad Rastegari}, year = {2022}, URL = {https://arxiv.org/abs/2110.02178} } ```
[ "tench, tinca tinca", "goldfish, carassius auratus", "great white shark, white shark, man-eater, man-eating shark, carcharodon carcharias", "tiger shark, galeocerdo cuvieri", "hammerhead, hammerhead shark", "electric ray, crampfish, numbfish, torpedo", "stingray", "cock", "hen", "ostrich, struthio camelus", "brambling, fringilla montifringilla", "goldfinch, carduelis carduelis", "house finch, linnet, carpodacus mexicanus", "junco, snowbird", "indigo bunting, indigo finch, indigo bird, passerina cyanea", "robin, american robin, turdus migratorius", "bulbul", "jay", "magpie", "chickadee", "water ouzel, dipper", "kite", "bald eagle, american eagle, haliaeetus leucocephalus", "vulture", "great grey owl, great gray owl, strix nebulosa", "european fire salamander, salamandra salamandra", "common newt, triturus vulgaris", "eft", "spotted salamander, ambystoma maculatum", "axolotl, mud puppy, ambystoma mexicanum", "bullfrog, rana catesbeiana", "tree frog, tree-frog", "tailed frog, bell toad, ribbed toad, tailed toad, ascaphus trui", "loggerhead, loggerhead turtle, caretta caretta", "leatherback turtle, leatherback, leathery turtle, dermochelys coriacea", "mud turtle", "terrapin", "box turtle, box tortoise", "banded gecko", "common iguana, iguana, iguana iguana", "american chameleon, anole, anolis carolinensis", "whiptail, whiptail lizard", "agama", "frilled lizard, chlamydosaurus kingi", "alligator lizard", "gila monster, heloderma suspectum", "green lizard, lacerta viridis", "african chameleon, chamaeleo chamaeleon", "komodo dragon, komodo lizard, dragon lizard, giant lizard, varanus komodoensis", "african crocodile, nile crocodile, crocodylus niloticus", "american alligator, alligator mississipiensis", "triceratops", "thunder snake, worm snake, carphophis amoenus", "ringneck snake, ring-necked snake, ring snake", "hognose snake, puff adder, sand viper", "green snake, grass snake", "king snake, kingsnake", "garter snake, grass snake", "water snake", "vine snake", "night snake, hypsiglena torquata", "boa constrictor, constrictor constrictor", "rock python, rock snake, python sebae", "indian cobra, naja naja", "green mamba", "sea snake", "horned viper, cerastes, sand viper, horned asp, cerastes cornutus", "diamondback, diamondback rattlesnake, crotalus adamanteus", "sidewinder, horned rattlesnake, crotalus cerastes", "trilobite", "harvestman, daddy longlegs, phalangium opilio", "scorpion", "black and gold garden spider, argiope aurantia", "barn spider, araneus cavaticus", "garden spider, aranea diademata", "black widow, latrodectus mactans", "tarantula", "wolf spider, hunting spider", "tick", "centipede", "black grouse", "ptarmigan", "ruffed grouse, partridge, bonasa umbellus", "prairie chicken, prairie grouse, prairie fowl", "peacock", "quail", "partridge", "african grey, african gray, psittacus erithacus", "macaw", "sulphur-crested cockatoo, kakatoe galerita, cacatua galerita", "lorikeet", "coucal", "bee eater", "hornbill", "hummingbird", "jacamar", "toucan", "drake", "red-breasted merganser, mergus serrator", "goose", "black swan, cygnus atratus", "tusker", "echidna, spiny anteater, anteater", "platypus, duckbill, duckbilled platypus, duck-billed platypus, ornithorhynchus anatinus", "wallaby, brush kangaroo", "koala, koala bear, kangaroo bear, native bear, phascolarctos cinereus", "wombat", "jellyfish", "sea anemone, anemone", "brain coral", "flatworm, platyhelminth", "nematode, nematode worm, roundworm", "conch", "snail", "slug", "sea slug, nudibranch", "chiton, coat-of-mail shell, sea cradle, polyplacophore", "chambered nautilus, pearly nautilus, nautilus", "dungeness crab, cancer magister", "rock crab, cancer irroratus", "fiddler crab", "king crab, alaska crab, alaskan king crab, alaska king crab, paralithodes camtschatica", "american lobster, northern lobster, maine lobster, homarus americanus", "spiny lobster, langouste, rock lobster, crawfish, crayfish, sea crawfish", "crayfish, crawfish, crawdad, crawdaddy", "hermit crab", "isopod", "white stork, ciconia ciconia", "black stork, ciconia nigra", "spoonbill", "flamingo", "little blue heron, egretta caerulea", "american egret, great white heron, egretta albus", "bittern", "crane", "limpkin, aramus pictus", "european gallinule, porphyrio porphyrio", "american coot, marsh hen, mud hen, water hen, fulica americana", "bustard", "ruddy turnstone, arenaria interpres", "red-backed sandpiper, dunlin, erolia alpina", "redshank, tringa totanus", "dowitcher", "oystercatcher, oyster catcher", "pelican", "king penguin, aptenodytes patagonica", "albatross, mollymawk", "grey whale, gray whale, devilfish, eschrichtius gibbosus, eschrichtius robustus", "killer whale, killer, orca, grampus, sea wolf, orcinus orca", "dugong, dugong dugon", "sea lion", "chihuahua", "japanese spaniel", "maltese dog, maltese terrier, maltese", "pekinese, pekingese, peke", "shih-tzu", "blenheim spaniel", "papillon", "toy terrier", "rhodesian ridgeback", "afghan hound, afghan", "basset, basset hound", "beagle", "bloodhound, sleuthhound", "bluetick", "black-and-tan coonhound", "walker hound, walker foxhound", "english foxhound", "redbone", "borzoi, russian wolfhound", "irish wolfhound", "italian greyhound", "whippet", "ibizan hound, ibizan podenco", "norwegian elkhound, elkhound", "otterhound, otter hound", "saluki, gazelle hound", "scottish deerhound, deerhound", "weimaraner", "staffordshire bullterrier, staffordshire bull terrier", "american staffordshire terrier, staffordshire terrier, american pit bull terrier, pit bull terrier", "bedlington terrier", "border terrier", "kerry blue terrier", "irish terrier", "norfolk terrier", "norwich terrier", "yorkshire terrier", "wire-haired fox terrier", "lakeland terrier", "sealyham terrier, sealyham", "airedale, airedale terrier", "cairn, cairn terrier", "australian terrier", "dandie dinmont, dandie dinmont terrier", "boston bull, boston terrier", "miniature schnauzer", "giant schnauzer", "standard schnauzer", "scotch terrier, scottish terrier, scottie", "tibetan terrier, chrysanthemum dog", "silky terrier, sydney silky", "soft-coated wheaten terrier", "west highland white terrier", "lhasa, lhasa apso", "flat-coated retriever", "curly-coated retriever", "golden retriever", "labrador retriever", "chesapeake bay retriever", "german short-haired pointer", "vizsla, hungarian pointer", "english setter", "irish setter, red setter", "gordon setter", "brittany spaniel", "clumber, clumber spaniel", "english springer, english springer spaniel", "welsh springer spaniel", "cocker spaniel, english cocker spaniel, cocker", "sussex spaniel", "irish water spaniel", "kuvasz", "schipperke", "groenendael", "malinois", "briard", "kelpie", "komondor", "old english sheepdog, bobtail", "shetland sheepdog, shetland sheep dog, shetland", "collie", "border collie", "bouvier des flandres, bouviers des flandres", "rottweiler", "german shepherd, german shepherd dog, german police dog, alsatian", "doberman, doberman pinscher", "miniature pinscher", "greater swiss mountain dog", "bernese mountain dog", "appenzeller", "entlebucher", "boxer", "bull mastiff", "tibetan mastiff", "french bulldog", "great dane", "saint bernard, st bernard", "eskimo dog, husky", "malamute, malemute, alaskan malamute", "siberian husky", "dalmatian, coach dog, carriage dog", "affenpinscher, monkey pinscher, monkey dog", "basenji", "pug, pug-dog", "leonberg", "newfoundland, newfoundland dog", "great pyrenees", "samoyed, samoyede", "pomeranian", "chow, chow chow", "keeshond", "brabancon griffon", "pembroke, pembroke welsh corgi", "cardigan, cardigan welsh corgi", "toy poodle", "miniature poodle", "standard poodle", "mexican hairless", "timber wolf, grey wolf, gray wolf, canis lupus", "white wolf, arctic wolf, canis lupus tundrarum", "red wolf, maned wolf, canis rufus, canis niger", "coyote, prairie wolf, brush wolf, canis latrans", "dingo, warrigal, warragal, canis dingo", "dhole, cuon alpinus", "african hunting dog, hyena dog, cape hunting dog, lycaon pictus", "hyena, hyaena", "red fox, vulpes vulpes", "kit fox, vulpes macrotis", "arctic fox, white fox, alopex lagopus", "grey fox, gray fox, urocyon cinereoargenteus", "tabby, tabby cat", "tiger cat", "persian cat", "siamese cat, siamese", "egyptian cat", "cougar, puma, catamount, mountain lion, painter, panther, felis concolor", "lynx, catamount", "leopard, panthera pardus", "snow leopard, ounce, panthera uncia", "jaguar, panther, panthera onca, felis onca", "lion, king of beasts, panthera leo", "tiger, panthera tigris", "cheetah, chetah, acinonyx jubatus", "brown bear, bruin, ursus arctos", "american black bear, black bear, ursus americanus, euarctos americanus", "ice bear, polar bear, ursus maritimus, thalarctos maritimus", "sloth bear, melursus ursinus, ursus ursinus", "mongoose", "meerkat, mierkat", "tiger beetle", "ladybug, ladybeetle, lady beetle, ladybird, ladybird beetle", "ground beetle, carabid beetle", "long-horned beetle, longicorn, longicorn beetle", "leaf beetle, chrysomelid", "dung beetle", "rhinoceros beetle", "weevil", "fly", "bee", "ant, emmet, pismire", "grasshopper, hopper", "cricket", "walking stick, walkingstick, stick insect", "cockroach, roach", "mantis, mantid", "cicada, cicala", "leafhopper", "lacewing, lacewing fly", "dragonfly, darning needle, devil's darning needle, sewing needle, snake feeder, snake doctor, mosquito hawk, skeeter hawk", "damselfly", "admiral", "ringlet, ringlet butterfly", "monarch, monarch butterfly, milkweed butterfly, danaus plexippus", "cabbage butterfly", "sulphur butterfly, sulfur butterfly", "lycaenid, lycaenid butterfly", "starfish, sea star", "sea urchin", "sea cucumber, holothurian", "wood rabbit, cottontail, cottontail rabbit", "hare", "angora, angora rabbit", "hamster", "porcupine, hedgehog", "fox squirrel, eastern fox squirrel, sciurus niger", "marmot", "beaver", "guinea pig, cavia cobaya", "sorrel", "zebra", "hog, pig, grunter, squealer, sus scrofa", "wild boar, boar, sus scrofa", "warthog", "hippopotamus, hippo, river horse, hippopotamus amphibius", "ox", "water buffalo, water ox, asiatic buffalo, bubalus bubalis", "bison", "ram, tup", "bighorn, bighorn sheep, cimarron, rocky mountain bighorn, rocky mountain sheep, ovis canadensis", "ibex, capra ibex", "hartebeest", "impala, aepyceros melampus", "gazelle", "arabian camel, dromedary, camelus dromedarius", "llama", "weasel", "mink", "polecat, fitch, foulmart, foumart, mustela putorius", "black-footed ferret, ferret, mustela nigripes", "otter", "skunk, polecat, wood pussy", "badger", "armadillo", "three-toed sloth, ai, bradypus tridactylus", "orangutan, orang, orangutang, pongo pygmaeus", "gorilla, gorilla gorilla", "chimpanzee, chimp, pan troglodytes", "gibbon, hylobates lar", "siamang, hylobates syndactylus, symphalangus syndactylus", "guenon, guenon monkey", "patas, hussar monkey, erythrocebus patas", "baboon", "macaque", "langur", "colobus, colobus monkey", "proboscis monkey, nasalis larvatus", "marmoset", "capuchin, ringtail, cebus capucinus", "howler monkey, howler", "titi, titi monkey", "spider monkey, ateles geoffroyi", "squirrel monkey, saimiri sciureus", "madagascar cat, ring-tailed lemur, lemur catta", "indri, indris, indri indri, indri brevicaudatus", "indian elephant, elephas maximus", "african elephant, loxodonta africana", "lesser panda, red panda, panda, bear cat, cat bear, ailurus fulgens", "giant panda, panda, panda bear, coon bear, ailuropoda melanoleuca", "barracouta, snoek", "eel", "coho, cohoe, coho salmon, blue jack, silver salmon, oncorhynchus kisutch", "rock beauty, holocanthus tricolor", "anemone fish", "sturgeon", "gar, garfish, garpike, billfish, lepisosteus osseus", "lionfish", "puffer, pufferfish, blowfish, globefish", "abacus", "abaya", "academic gown, academic robe, judge's robe", "accordion, piano accordion, squeeze box", "acoustic guitar", "aircraft carrier, carrier, flattop, attack aircraft carrier", "airliner", "airship, dirigible", "altar", "ambulance", "amphibian, amphibious vehicle", "analog clock", "apiary, bee house", "apron", "ashcan, trash can, garbage can, wastebin, ash bin, ash-bin, ashbin, dustbin, trash barrel, trash bin", "assault rifle, assault gun", "backpack, back pack, knapsack, packsack, rucksack, haversack", "bakery, bakeshop, bakehouse", "balance beam, beam", "balloon", "ballpoint, ballpoint pen, ballpen, biro", "band aid", "banjo", "bannister, banister, balustrade, balusters, handrail", "barbell", "barber chair", "barbershop", "barn", "barometer", "barrel, cask", "barrow, garden cart, lawn cart, wheelbarrow", "baseball", "basketball", "bassinet", "bassoon", "bathing cap, swimming cap", "bath towel", "bathtub, bathing tub, bath, tub", "beach wagon, station wagon, wagon, estate car, beach waggon, station waggon, waggon", "beacon, lighthouse, beacon light, pharos", "beaker", "bearskin, busby, shako", "beer bottle", "beer glass", "bell cote, bell cot", "bib", "bicycle-built-for-two, tandem bicycle, tandem", "bikini, two-piece", "binder, ring-binder", "binoculars, field glasses, opera glasses", "birdhouse", "boathouse", "bobsled, bobsleigh, bob", "bolo tie, bolo, bola tie, bola", "bonnet, poke bonnet", "bookcase", "bookshop, bookstore, bookstall", "bottlecap", "bow", "bow tie, bow-tie, bowtie", "brass, memorial tablet, plaque", "brassiere, bra, bandeau", "breakwater, groin, groyne, mole, bulwark, seawall, jetty", "breastplate, aegis, egis", "broom", "bucket, pail", "buckle", "bulletproof vest", "bullet train, bullet", "butcher shop, meat market", "cab, hack, taxi, taxicab", "caldron, cauldron", "candle, taper, wax light", "cannon", "canoe", "can opener, tin opener", "cardigan", "car mirror", "carousel, carrousel, merry-go-round, roundabout, whirligig", "carpenter's kit, tool kit", "carton", "car wheel", "cash machine, cash dispenser, automated teller machine, automatic teller machine, automated teller, automatic teller, atm", "cassette", "cassette player", "castle", "catamaran", "cd player", "cello, violoncello", "cellular telephone, cellular phone, cellphone, cell, mobile phone", "chain", "chainlink fence", "chain mail, ring mail, mail, chain armor, chain armour, ring armor, ring armour", "chain saw, chainsaw", "chest", "chiffonier, commode", "chime, bell, gong", "china cabinet, china closet", "christmas stocking", "church, church building", "cinema, movie theater, movie theatre, movie house, picture palace", "cleaver, meat cleaver, chopper", "cliff dwelling", "cloak", "clog, geta, patten, sabot", "cocktail shaker", "coffee mug", "coffeepot", "coil, spiral, volute, whorl, helix", "combination lock", "computer keyboard, keypad", "confectionery, confectionary, candy store", "container ship, containership, container vessel", "convertible", "corkscrew, bottle screw", "cornet, horn, trumpet, trump", "cowboy boot", "cowboy hat, ten-gallon hat", "cradle", "crane", "crash helmet", "crate", "crib, cot", "crock pot", "croquet ball", "crutch", "cuirass", "dam, dike, dyke", "desk", "desktop computer", "dial telephone, dial phone", "diaper, nappy, napkin", "digital clock", "digital watch", "dining table, board", "dishrag, dishcloth", "dishwasher, dish washer, dishwashing machine", "disk brake, disc brake", "dock, dockage, docking facility", "dogsled, dog sled, dog sleigh", "dome", "doormat, welcome mat", "drilling platform, offshore rig", "drum, membranophone, tympan", "drumstick", "dumbbell", "dutch oven", "electric fan, blower", "electric guitar", "electric locomotive", "entertainment center", "envelope", "espresso maker", "face powder", "feather boa, boa", "file, file cabinet, filing cabinet", "fireboat", "fire engine, fire truck", "fire screen, fireguard", "flagpole, flagstaff", "flute, transverse flute", "folding chair", "football helmet", "forklift", "fountain", "fountain pen", "four-poster", "freight car", "french horn, horn", "frying pan, frypan, skillet", "fur coat", "garbage truck, dustcart", "gasmask, respirator, gas helmet", "gas pump, gasoline pump, petrol pump, island dispenser", "goblet", "go-kart", "golf ball", "golfcart, golf cart", "gondola", "gong, tam-tam", "gown", "grand piano, grand", "greenhouse, nursery, glasshouse", "grille, radiator grille", "grocery store, grocery, food market, market", "guillotine", "hair slide", "hair spray", "half track", "hammer", "hamper", "hand blower, blow dryer, blow drier, hair dryer, hair drier", "hand-held computer, hand-held microcomputer", "handkerchief, hankie, hanky, hankey", "hard disc, hard disk, fixed disk", "harmonica, mouth organ, harp, mouth harp", "harp", "harvester, reaper", "hatchet", "holster", "home theater, home theatre", "honeycomb", "hook, claw", "hoopskirt, crinoline", "horizontal bar, high bar", "horse cart, horse-cart", "hourglass", "ipod", "iron, smoothing iron", "jack-o'-lantern", "jean, blue jean, denim", "jeep, landrover", "jersey, t-shirt, tee shirt", "jigsaw puzzle", "jinrikisha, ricksha, rickshaw", "joystick", "kimono", "knee pad", "knot", "lab coat, laboratory coat", "ladle", "lampshade, lamp shade", "laptop, laptop computer", "lawn mower, mower", "lens cap, lens cover", "letter opener, paper knife, paperknife", "library", "lifeboat", "lighter, light, igniter, ignitor", "limousine, limo", "liner, ocean liner", "lipstick, lip rouge", "loafer", "lotion", "loudspeaker, speaker, speaker unit, loudspeaker system, speaker system", "loupe, jeweler's loupe", "lumbermill, sawmill", "magnetic compass", "mailbag, postbag", "mailbox, letter box", "maillot", "maillot, tank suit", "manhole cover", "maraca", "marimba, xylophone", "mask", "matchstick", "maypole", "maze, labyrinth", "measuring cup", "medicine chest, medicine cabinet", "megalith, megalithic structure", "microphone, mike", "microwave, microwave oven", "military uniform", "milk can", "minibus", "miniskirt, mini", "minivan", "missile", "mitten", "mixing bowl", "mobile home, manufactured home", "model t", "modem", "monastery", "monitor", "moped", "mortar", "mortarboard", "mosque", "mosquito net", "motor scooter, scooter", "mountain bike, all-terrain bike, off-roader", "mountain tent", "mouse, computer mouse", "mousetrap", "moving van", "muzzle", "nail", "neck brace", "necklace", "nipple", "notebook, notebook computer", "obelisk", "oboe, hautboy, hautbois", "ocarina, sweet potato", "odometer, hodometer, mileometer, milometer", "oil filter", "organ, pipe organ", "oscilloscope, scope, cathode-ray oscilloscope, cro", "overskirt", "oxcart", "oxygen mask", "packet", "paddle, boat paddle", "paddlewheel, paddle wheel", "padlock", "paintbrush", "pajama, pyjama, pj's, jammies", "palace", "panpipe, pandean pipe, syrinx", "paper towel", "parachute, chute", "parallel bars, bars", "park bench", "parking meter", "passenger car, coach, carriage", "patio, terrace", "pay-phone, pay-station", "pedestal, plinth, footstall", "pencil box, pencil case", "pencil sharpener", "perfume, essence", "petri dish", "photocopier", "pick, plectrum, plectron", "pickelhaube", "picket fence, paling", "pickup, pickup truck", "pier", "piggy bank, penny bank", "pill bottle", "pillow", "ping-pong ball", "pinwheel", "pirate, pirate ship", "pitcher, ewer", "plane, carpenter's plane, woodworking plane", "planetarium", "plastic bag", "plate rack", "plow, plough", "plunger, plumber's helper", "polaroid camera, polaroid land camera", "pole", "police van, police wagon, paddy wagon, patrol wagon, wagon, black maria", "poncho", "pool table, billiard table, snooker table", "pop bottle, soda bottle", "pot, flowerpot", "potter's wheel", "power drill", "prayer rug, prayer mat", "printer", "prison, prison house", "projectile, missile", "projector", "puck, hockey puck", "punching bag, punch bag, punching ball, punchball", "purse", "quill, quill pen", "quilt, comforter, comfort, puff", "racer, race car, racing car", "racket, racquet", "radiator", "radio, wireless", "radio telescope, radio reflector", "rain barrel", "recreational vehicle, rv, r.v.", "reel", "reflex camera", "refrigerator, icebox", "remote control, remote", "restaurant, eating house, eating place, eatery", "revolver, six-gun, six-shooter", "rifle", "rocking chair, rocker", "rotisserie", "rubber eraser, rubber, pencil eraser", "rugby ball", "rule, ruler", "running shoe", "safe", "safety pin", "saltshaker, salt shaker", "sandal", "sarong", "sax, saxophone", "scabbard", "scale, weighing machine", "school bus", "schooner", "scoreboard", "screen, crt screen", "screw", "screwdriver", "seat belt, seatbelt", "sewing machine", "shield, buckler", "shoe shop, shoe-shop, shoe store", "shoji", "shopping basket", "shopping cart", "shovel", "shower cap", "shower curtain", "ski", "ski mask", "sleeping bag", "slide rule, slipstick", "sliding door", "slot, one-armed bandit", "snorkel", "snowmobile", "snowplow, snowplough", "soap dispenser", "soccer ball", "sock", "solar dish, solar collector, solar furnace", "sombrero", "soup bowl", "space bar", "space heater", "space shuttle", "spatula", "speedboat", "spider web, spider's web", "spindle", "sports car, sport car", "spotlight, spot", "stage", "steam locomotive", "steel arch bridge", "steel drum", "stethoscope", "stole", "stone wall", "stopwatch, stop watch", "stove", "strainer", "streetcar, tram, tramcar, trolley, trolley car", "stretcher", "studio couch, day bed", "stupa, tope", "submarine, pigboat, sub, u-boat", "suit, suit of clothes", "sundial", "sunglass", "sunglasses, dark glasses, shades", "sunscreen, sunblock, sun blocker", "suspension bridge", "swab, swob, mop", "sweatshirt", "swimming trunks, bathing trunks", "swing", "switch, electric switch, electrical switch", "syringe", "table lamp", "tank, army tank, armored combat vehicle, armoured combat vehicle", "tape player", "teapot", "teddy, teddy bear", "television, television system", "tennis ball", "thatch, thatched roof", "theater curtain, theatre curtain", "thimble", "thresher, thrasher, threshing machine", "throne", "tile roof", "toaster", "tobacco shop, tobacconist shop, tobacconist", "toilet seat", "torch", "totem pole", "tow truck, tow car, wrecker", "toyshop", "tractor", "trailer truck, tractor trailer, trucking rig, rig, articulated lorry, semi", "tray", "trench coat", "tricycle, trike, velocipede", "trimaran", "tripod", "triumphal arch", "trolleybus, trolley coach, trackless trolley", "trombone", "tub, vat", "turnstile", "typewriter keyboard", "umbrella", "unicycle, monocycle", "upright, upright piano", "vacuum, vacuum cleaner", "vase", "vault", "velvet", "vending machine", "vestment", "viaduct", "violin, fiddle", "volleyball", "waffle iron", "wall clock", "wallet, billfold, notecase, pocketbook", "wardrobe, closet, press", "warplane, military plane", "washbasin, handbasin, washbowl, lavabo, wash-hand basin", "washer, automatic washer, washing machine", "water bottle", "water jug", "water tower", "whiskey jug", "whistle", "wig", "window screen", "window shade", "windsor tie", "wine bottle", "wing", "wok", "wooden spoon", "wool, woolen, woollen", "worm fence, snake fence, snake-rail fence, virginia fence", "wreck", "yawl", "yurt", "web site, website, internet site, site", "comic book", "crossword puzzle, crossword", "street sign", "traffic light, traffic signal, stoplight", "book jacket, dust cover, dust jacket, dust wrapper", "menu", "plate", "guacamole", "consomme", "hot pot, hotpot", "trifle", "ice cream, icecream", "ice lolly, lolly, lollipop, popsicle", "french loaf", "bagel, beigel", "pretzel", "cheeseburger", "hotdog, hot dog, red hot", "mashed potato", "head cabbage", "broccoli", "cauliflower", "zucchini, courgette", "spaghetti squash", "acorn squash", "butternut squash", "cucumber, cuke", "artichoke, globe artichoke", "bell pepper", "cardoon", "mushroom", "granny smith", "strawberry", "orange", "lemon", "fig", "pineapple, ananas", "banana", "jackfruit, jak, jack", "custard apple", "pomegranate", "hay", "carbonara", "chocolate sauce, chocolate syrup", "dough", "meat loaf, meatloaf", "pizza, pizza pie", "potpie", "burrito", "red wine", "espresso", "cup", "eggnog", "alp", "bubble", "cliff, drop, drop-off", "coral reef", "geyser", "lakeside, lakeshore", "promontory, headland, head, foreland", "sandbar, sand bar", "seashore, coast, seacoast, sea-coast", "valley, vale", "volcano", "ballplayer, baseball player", "groom, bridegroom", "scuba diver", "rapeseed", "daisy", "yellow lady's slipper, yellow lady-slipper, cypripedium calceolus, cypripedium parviflorum", "corn", "acorn", "hip, rose hip, rosehip", "buckeye, horse chestnut, conker", "coral fungus", "agaric", "gyromitra", "stinkhorn, carrion fungus", "earthstar", "hen-of-the-woods, hen of the woods, polyporus frondosus, grifola frondosa", "bolete", "ear, spike, capitulum", "toilet tissue, toilet paper, bathroom tissue" ]
facebook/levit-384
# LeViT LeViT-384 model pre-trained on ImageNet-1k at resolution 224x224. It was introduced in the paper [LeViT: a Vision Transformer in ConvNet's Clothing for Faster Inference ](https://arxiv.org/abs/2104.01136) by Graham et al. and first released in [this repository](https://github.com/facebookresearch/LeViT). Disclaimer: The team releasing LeViT did not write a model card for this model so this model card has been written by the Hugging Face team. ## Usage Here is how to use this model to classify an image of the COCO 2017 dataset into one of the 1,000 ImageNet classes: ```python from transformers import LevitFeatureExtractor, LevitForImageClassificationWithTeacher from PIL import Image import requests url = 'http://images.cocodataset.org/val2017/000000039769.jpg' image = Image.open(requests.get(url, stream=True).raw) feature_extractor = LevitFeatureExtractor.from_pretrained('facebook/levit-384') model = LevitForImageClassificationWithTeacher.from_pretrained('facebook/levit-384') inputs = feature_extractor(images=image, return_tensors="pt") outputs = model(**inputs) logits = outputs.logits # model predicts one of the 1000 ImageNet classes predicted_class_idx = logits.argmax(-1).item() print("Predicted class:", model.config.id2label[predicted_class_idx]) ```
[ "tench, tinca tinca", "goldfish, carassius auratus", "great white shark, white shark, man-eater, man-eating shark, carcharodon carcharias", "tiger shark, galeocerdo cuvieri", "hammerhead, hammerhead shark", "electric ray, crampfish, numbfish, torpedo", "stingray", "cock", "hen", "ostrich, struthio camelus", "brambling, fringilla montifringilla", "goldfinch, carduelis carduelis", "house finch, linnet, carpodacus mexicanus", "junco, snowbird", "indigo bunting, indigo finch, indigo bird, passerina cyanea", "robin, american robin, turdus migratorius", "bulbul", "jay", "magpie", "chickadee", "water ouzel, dipper", "kite", "bald eagle, american eagle, haliaeetus leucocephalus", "vulture", "great grey owl, great gray owl, strix nebulosa", "european fire salamander, salamandra salamandra", "common newt, triturus vulgaris", "eft", "spotted salamander, ambystoma maculatum", "axolotl, mud puppy, ambystoma mexicanum", "bullfrog, rana catesbeiana", "tree frog, tree-frog", "tailed frog, bell toad, ribbed toad, tailed toad, ascaphus trui", "loggerhead, loggerhead turtle, caretta caretta", "leatherback turtle, leatherback, leathery turtle, dermochelys coriacea", "mud turtle", "terrapin", "box turtle, box tortoise", "banded gecko", "common iguana, iguana, iguana iguana", "american chameleon, anole, anolis carolinensis", "whiptail, whiptail lizard", "agama", "frilled lizard, chlamydosaurus kingi", "alligator lizard", "gila monster, heloderma suspectum", "green lizard, lacerta viridis", "african chameleon, chamaeleo chamaeleon", "komodo dragon, komodo lizard, dragon lizard, giant lizard, varanus komodoensis", "african crocodile, nile crocodile, crocodylus niloticus", "american alligator, alligator mississipiensis", "triceratops", "thunder snake, worm snake, carphophis amoenus", "ringneck snake, ring-necked snake, ring snake", "hognose snake, puff adder, sand viper", "green snake, grass snake", "king snake, kingsnake", "garter snake, grass snake", "water snake", "vine snake", "night snake, hypsiglena torquata", "boa constrictor, constrictor constrictor", "rock python, rock snake, python sebae", "indian cobra, naja naja", "green mamba", "sea snake", "horned viper, cerastes, sand viper, horned asp, cerastes cornutus", "diamondback, diamondback rattlesnake, crotalus adamanteus", "sidewinder, horned rattlesnake, crotalus cerastes", "trilobite", "harvestman, daddy longlegs, phalangium opilio", "scorpion", "black and gold garden spider, argiope aurantia", "barn spider, araneus cavaticus", "garden spider, aranea diademata", "black widow, latrodectus mactans", "tarantula", "wolf spider, hunting spider", "tick", "centipede", "black grouse", "ptarmigan", "ruffed grouse, partridge, bonasa umbellus", "prairie chicken, prairie grouse, prairie fowl", "peacock", "quail", "partridge", "african grey, african gray, psittacus erithacus", "macaw", "sulphur-crested cockatoo, kakatoe galerita, cacatua galerita", "lorikeet", "coucal", "bee eater", "hornbill", "hummingbird", "jacamar", "toucan", "drake", "red-breasted merganser, mergus serrator", "goose", "black swan, cygnus atratus", "tusker", "echidna, spiny anteater, anteater", "platypus, duckbill, duckbilled platypus, duck-billed platypus, ornithorhynchus anatinus", "wallaby, brush kangaroo", "koala, koala bear, kangaroo bear, native bear, phascolarctos cinereus", "wombat", "jellyfish", "sea anemone, anemone", "brain coral", "flatworm, platyhelminth", "nematode, nematode worm, roundworm", "conch", "snail", "slug", "sea slug, nudibranch", "chiton, coat-of-mail shell, sea cradle, polyplacophore", "chambered nautilus, pearly nautilus, nautilus", "dungeness crab, cancer magister", "rock crab, cancer irroratus", "fiddler crab", "king crab, alaska crab, alaskan king crab, alaska king crab, paralithodes camtschatica", "american lobster, northern lobster, maine lobster, homarus americanus", "spiny lobster, langouste, rock lobster, crawfish, crayfish, sea crawfish", "crayfish, crawfish, crawdad, crawdaddy", "hermit crab", "isopod", "white stork, ciconia ciconia", "black stork, ciconia nigra", "spoonbill", "flamingo", "little blue heron, egretta caerulea", "american egret, great white heron, egretta albus", "bittern", "crane", "limpkin, aramus pictus", "european gallinule, porphyrio porphyrio", "american coot, marsh hen, mud hen, water hen, fulica americana", "bustard", "ruddy turnstone, arenaria interpres", "red-backed sandpiper, dunlin, erolia alpina", "redshank, tringa totanus", "dowitcher", "oystercatcher, oyster catcher", "pelican", "king penguin, aptenodytes patagonica", "albatross, mollymawk", "grey whale, gray whale, devilfish, eschrichtius gibbosus, eschrichtius robustus", "killer whale, killer, orca, grampus, sea wolf, orcinus orca", "dugong, dugong dugon", "sea lion", "chihuahua", "japanese spaniel", "maltese dog, maltese terrier, maltese", "pekinese, pekingese, peke", "shih-tzu", "blenheim spaniel", "papillon", "toy terrier", "rhodesian ridgeback", "afghan hound, afghan", "basset, basset hound", "beagle", "bloodhound, sleuthhound", "bluetick", "black-and-tan coonhound", "walker hound, walker foxhound", "english foxhound", "redbone", "borzoi, russian wolfhound", "irish wolfhound", "italian greyhound", "whippet", "ibizan hound, ibizan podenco", "norwegian elkhound, elkhound", "otterhound, otter hound", "saluki, gazelle hound", "scottish deerhound, deerhound", "weimaraner", "staffordshire bullterrier, staffordshire bull terrier", "american staffordshire terrier, staffordshire terrier, american pit bull terrier, pit bull terrier", "bedlington terrier", "border terrier", "kerry blue terrier", "irish terrier", "norfolk terrier", "norwich terrier", "yorkshire terrier", "wire-haired fox terrier", "lakeland terrier", "sealyham terrier, sealyham", "airedale, airedale terrier", "cairn, cairn terrier", "australian terrier", "dandie dinmont, dandie dinmont terrier", "boston bull, boston terrier", "miniature schnauzer", "giant schnauzer", "standard schnauzer", "scotch terrier, scottish terrier, scottie", "tibetan terrier, chrysanthemum dog", "silky terrier, sydney silky", "soft-coated wheaten terrier", "west highland white terrier", "lhasa, lhasa apso", "flat-coated retriever", "curly-coated retriever", "golden retriever", "labrador retriever", "chesapeake bay retriever", "german short-haired pointer", "vizsla, hungarian pointer", "english setter", "irish setter, red setter", "gordon setter", "brittany spaniel", "clumber, clumber spaniel", "english springer, english springer spaniel", "welsh springer spaniel", "cocker spaniel, english cocker spaniel, cocker", "sussex spaniel", "irish water spaniel", "kuvasz", "schipperke", "groenendael", "malinois", "briard", "kelpie", "komondor", "old english sheepdog, bobtail", "shetland sheepdog, shetland sheep dog, shetland", "collie", "border collie", "bouvier des flandres, bouviers des flandres", "rottweiler", "german shepherd, german shepherd dog, german police dog, alsatian", "doberman, doberman pinscher", "miniature pinscher", "greater swiss mountain dog", "bernese mountain dog", "appenzeller", "entlebucher", "boxer", "bull mastiff", "tibetan mastiff", "french bulldog", "great dane", "saint bernard, st bernard", "eskimo dog, husky", "malamute, malemute, alaskan malamute", "siberian husky", "dalmatian, coach dog, carriage dog", "affenpinscher, monkey pinscher, monkey dog", "basenji", "pug, pug-dog", "leonberg", "newfoundland, newfoundland dog", "great pyrenees", "samoyed, samoyede", "pomeranian", "chow, chow chow", "keeshond", "brabancon griffon", "pembroke, pembroke welsh corgi", "cardigan, cardigan welsh corgi", "toy poodle", "miniature poodle", "standard poodle", "mexican hairless", "timber wolf, grey wolf, gray wolf, canis lupus", "white wolf, arctic wolf, canis lupus tundrarum", "red wolf, maned wolf, canis rufus, canis niger", "coyote, prairie wolf, brush wolf, canis latrans", "dingo, warrigal, warragal, canis dingo", "dhole, cuon alpinus", "african hunting dog, hyena dog, cape hunting dog, lycaon pictus", "hyena, hyaena", "red fox, vulpes vulpes", "kit fox, vulpes macrotis", "arctic fox, white fox, alopex lagopus", "grey fox, gray fox, urocyon cinereoargenteus", "tabby, tabby cat", "tiger cat", "persian cat", "siamese cat, siamese", "egyptian cat", "cougar, puma, catamount, mountain lion, painter, panther, felis concolor", "lynx, catamount", "leopard, panthera pardus", "snow leopard, ounce, panthera uncia", "jaguar, panther, panthera onca, felis onca", "lion, king of beasts, panthera leo", "tiger, panthera tigris", "cheetah, chetah, acinonyx jubatus", "brown bear, bruin, ursus arctos", "american black bear, black bear, ursus americanus, euarctos americanus", "ice bear, polar bear, ursus maritimus, thalarctos maritimus", "sloth bear, melursus ursinus, ursus ursinus", "mongoose", "meerkat, mierkat", "tiger beetle", "ladybug, ladybeetle, lady beetle, ladybird, ladybird beetle", "ground beetle, carabid beetle", "long-horned beetle, longicorn, longicorn beetle", "leaf beetle, chrysomelid", "dung beetle", "rhinoceros beetle", "weevil", "fly", "bee", "ant, emmet, pismire", "grasshopper, hopper", "cricket", "walking stick, walkingstick, stick insect", "cockroach, roach", "mantis, mantid", "cicada, cicala", "leafhopper", "lacewing, lacewing fly", "dragonfly, darning needle, devil's darning needle, sewing needle, snake feeder, snake doctor, mosquito hawk, skeeter hawk", "damselfly", "admiral", "ringlet, ringlet butterfly", "monarch, monarch butterfly, milkweed butterfly, danaus plexippus", "cabbage butterfly", "sulphur butterfly, sulfur butterfly", "lycaenid, lycaenid butterfly", "starfish, sea star", "sea urchin", "sea cucumber, holothurian", "wood rabbit, cottontail, cottontail rabbit", "hare", "angora, angora rabbit", "hamster", "porcupine, hedgehog", "fox squirrel, eastern fox squirrel, sciurus niger", "marmot", "beaver", "guinea pig, cavia cobaya", "sorrel", "zebra", "hog, pig, grunter, squealer, sus scrofa", "wild boar, boar, sus scrofa", "warthog", "hippopotamus, hippo, river horse, hippopotamus amphibius", "ox", "water buffalo, water ox, asiatic buffalo, bubalus bubalis", "bison", "ram, tup", "bighorn, bighorn sheep, cimarron, rocky mountain bighorn, rocky mountain sheep, ovis canadensis", "ibex, capra ibex", "hartebeest", "impala, aepyceros melampus", "gazelle", "arabian camel, dromedary, camelus dromedarius", "llama", "weasel", "mink", "polecat, fitch, foulmart, foumart, mustela putorius", "black-footed ferret, ferret, mustela nigripes", "otter", "skunk, polecat, wood pussy", "badger", "armadillo", "three-toed sloth, ai, bradypus tridactylus", "orangutan, orang, orangutang, pongo pygmaeus", "gorilla, gorilla gorilla", "chimpanzee, chimp, pan troglodytes", "gibbon, hylobates lar", "siamang, hylobates syndactylus, symphalangus syndactylus", "guenon, guenon monkey", "patas, hussar monkey, erythrocebus patas", "baboon", "macaque", "langur", "colobus, colobus monkey", "proboscis monkey, nasalis larvatus", "marmoset", "capuchin, ringtail, cebus capucinus", "howler monkey, howler", "titi, titi monkey", "spider monkey, ateles geoffroyi", "squirrel monkey, saimiri sciureus", "madagascar cat, ring-tailed lemur, lemur catta", "indri, indris, indri indri, indri brevicaudatus", "indian elephant, elephas maximus", "african elephant, loxodonta africana", "lesser panda, red panda, panda, bear cat, cat bear, ailurus fulgens", "giant panda, panda, panda bear, coon bear, ailuropoda melanoleuca", "barracouta, snoek", "eel", "coho, cohoe, coho salmon, blue jack, silver salmon, oncorhynchus kisutch", "rock beauty, holocanthus tricolor", "anemone fish", "sturgeon", "gar, garfish, garpike, billfish, lepisosteus osseus", "lionfish", "puffer, pufferfish, blowfish, globefish", "abacus", "abaya", "academic gown, academic robe, judge's robe", "accordion, piano accordion, squeeze box", "acoustic guitar", "aircraft carrier, carrier, flattop, attack aircraft carrier", "airliner", "airship, dirigible", "altar", "ambulance", "amphibian, amphibious vehicle", "analog clock", "apiary, bee house", "apron", "ashcan, trash can, garbage can, wastebin, ash bin, ash-bin, ashbin, dustbin, trash barrel, trash bin", "assault rifle, assault gun", "backpack, back pack, knapsack, packsack, rucksack, haversack", "bakery, bakeshop, bakehouse", "balance beam, beam", "balloon", "ballpoint, ballpoint pen, ballpen, biro", "band aid", "banjo", "bannister, banister, balustrade, balusters, handrail", "barbell", "barber chair", "barbershop", "barn", "barometer", "barrel, cask", "barrow, garden cart, lawn cart, wheelbarrow", "baseball", "basketball", "bassinet", "bassoon", "bathing cap, swimming cap", "bath towel", "bathtub, bathing tub, bath, tub", "beach wagon, station wagon, wagon, estate car, beach waggon, station waggon, waggon", "beacon, lighthouse, beacon light, pharos", "beaker", "bearskin, busby, shako", "beer bottle", "beer glass", "bell cote, bell cot", "bib", "bicycle-built-for-two, tandem bicycle, tandem", "bikini, two-piece", "binder, ring-binder", "binoculars, field glasses, opera glasses", "birdhouse", "boathouse", "bobsled, bobsleigh, bob", "bolo tie, bolo, bola tie, bola", "bonnet, poke bonnet", "bookcase", "bookshop, bookstore, bookstall", "bottlecap", "bow", "bow tie, bow-tie, bowtie", "brass, memorial tablet, plaque", "brassiere, bra, bandeau", "breakwater, groin, groyne, mole, bulwark, seawall, jetty", "breastplate, aegis, egis", "broom", "bucket, pail", "buckle", "bulletproof vest", "bullet train, bullet", "butcher shop, meat market", "cab, hack, taxi, taxicab", "caldron, cauldron", "candle, taper, wax light", "cannon", "canoe", "can opener, tin opener", "cardigan", "car mirror", "carousel, carrousel, merry-go-round, roundabout, whirligig", "carpenter's kit, tool kit", "carton", "car wheel", "cash machine, cash dispenser, automated teller machine, automatic teller machine, automated teller, automatic teller, atm", "cassette", "cassette player", "castle", "catamaran", "cd player", "cello, violoncello", "cellular telephone, cellular phone, cellphone, cell, mobile phone", "chain", "chainlink fence", "chain mail, ring mail, mail, chain armor, chain armour, ring armor, ring armour", "chain saw, chainsaw", "chest", "chiffonier, commode", "chime, bell, gong", "china cabinet, china closet", "christmas stocking", "church, church building", "cinema, movie theater, movie theatre, movie house, picture palace", "cleaver, meat cleaver, chopper", "cliff dwelling", "cloak", "clog, geta, patten, sabot", "cocktail shaker", "coffee mug", "coffeepot", "coil, spiral, volute, whorl, helix", "combination lock", "computer keyboard, keypad", "confectionery, confectionary, candy store", "container ship, containership, container vessel", "convertible", "corkscrew, bottle screw", "cornet, horn, trumpet, trump", "cowboy boot", "cowboy hat, ten-gallon hat", "cradle", "crane", "crash helmet", "crate", "crib, cot", "crock pot", "croquet ball", "crutch", "cuirass", "dam, dike, dyke", "desk", "desktop computer", "dial telephone, dial phone", "diaper, nappy, napkin", "digital clock", "digital watch", "dining table, board", "dishrag, dishcloth", "dishwasher, dish washer, dishwashing machine", "disk brake, disc brake", "dock, dockage, docking facility", "dogsled, dog sled, dog sleigh", "dome", "doormat, welcome mat", "drilling platform, offshore rig", "drum, membranophone, tympan", "drumstick", "dumbbell", "dutch oven", "electric fan, blower", "electric guitar", "electric locomotive", "entertainment center", "envelope", "espresso maker", "face powder", "feather boa, boa", "file, file cabinet, filing cabinet", "fireboat", "fire engine, fire truck", "fire screen, fireguard", "flagpole, flagstaff", "flute, transverse flute", "folding chair", "football helmet", "forklift", "fountain", "fountain pen", "four-poster", "freight car", "french horn, horn", "frying pan, frypan, skillet", "fur coat", "garbage truck, dustcart", "gasmask, respirator, gas helmet", "gas pump, gasoline pump, petrol pump, island dispenser", "goblet", "go-kart", "golf ball", "golfcart, golf cart", "gondola", "gong, tam-tam", "gown", "grand piano, grand", "greenhouse, nursery, glasshouse", "grille, radiator grille", "grocery store, grocery, food market, market", "guillotine", "hair slide", "hair spray", "half track", "hammer", "hamper", "hand blower, blow dryer, blow drier, hair dryer, hair drier", "hand-held computer, hand-held microcomputer", "handkerchief, hankie, hanky, hankey", "hard disc, hard disk, fixed disk", "harmonica, mouth organ, harp, mouth harp", "harp", "harvester, reaper", "hatchet", "holster", "home theater, home theatre", "honeycomb", "hook, claw", "hoopskirt, crinoline", "horizontal bar, high bar", "horse cart, horse-cart", "hourglass", "ipod", "iron, smoothing iron", "jack-o'-lantern", "jean, blue jean, denim", "jeep, landrover", "jersey, t-shirt, tee shirt", "jigsaw puzzle", "jinrikisha, ricksha, rickshaw", "joystick", "kimono", "knee pad", "knot", "lab coat, laboratory coat", "ladle", "lampshade, lamp shade", "laptop, laptop computer", "lawn mower, mower", "lens cap, lens cover", "letter opener, paper knife, paperknife", "library", "lifeboat", "lighter, light, igniter, ignitor", "limousine, limo", "liner, ocean liner", "lipstick, lip rouge", "loafer", "lotion", "loudspeaker, speaker, speaker unit, loudspeaker system, speaker system", "loupe, jeweler's loupe", "lumbermill, sawmill", "magnetic compass", "mailbag, postbag", "mailbox, letter box", "maillot", "maillot, tank suit", "manhole cover", "maraca", "marimba, xylophone", "mask", "matchstick", "maypole", "maze, labyrinth", "measuring cup", "medicine chest, medicine cabinet", "megalith, megalithic structure", "microphone, mike", "microwave, microwave oven", "military uniform", "milk can", "minibus", "miniskirt, mini", "minivan", "missile", "mitten", "mixing bowl", "mobile home, manufactured home", "model t", "modem", "monastery", "monitor", "moped", "mortar", "mortarboard", "mosque", "mosquito net", "motor scooter, scooter", "mountain bike, all-terrain bike, off-roader", "mountain tent", "mouse, computer mouse", "mousetrap", "moving van", "muzzle", "nail", "neck brace", "necklace", "nipple", "notebook, notebook computer", "obelisk", "oboe, hautboy, hautbois", "ocarina, sweet potato", "odometer, hodometer, mileometer, milometer", "oil filter", "organ, pipe organ", "oscilloscope, scope, cathode-ray oscilloscope, cro", "overskirt", "oxcart", "oxygen mask", "packet", "paddle, boat paddle", "paddlewheel, paddle wheel", "padlock", "paintbrush", "pajama, pyjama, pj's, jammies", "palace", "panpipe, pandean pipe, syrinx", "paper towel", "parachute, chute", "parallel bars, bars", "park bench", "parking meter", "passenger car, coach, carriage", "patio, terrace", "pay-phone, pay-station", "pedestal, plinth, footstall", "pencil box, pencil case", "pencil sharpener", "perfume, essence", "petri dish", "photocopier", "pick, plectrum, plectron", "pickelhaube", "picket fence, paling", "pickup, pickup truck", "pier", "piggy bank, penny bank", "pill bottle", "pillow", "ping-pong ball", "pinwheel", "pirate, pirate ship", "pitcher, ewer", "plane, carpenter's plane, woodworking plane", "planetarium", "plastic bag", "plate rack", "plow, plough", "plunger, plumber's helper", "polaroid camera, polaroid land camera", "pole", "police van, police wagon, paddy wagon, patrol wagon, wagon, black maria", "poncho", "pool table, billiard table, snooker table", "pop bottle, soda bottle", "pot, flowerpot", "potter's wheel", "power drill", "prayer rug, prayer mat", "printer", "prison, prison house", "projectile, missile", "projector", "puck, hockey puck", "punching bag, punch bag, punching ball, punchball", "purse", "quill, quill pen", "quilt, comforter, comfort, puff", "racer, race car, racing car", "racket, racquet", "radiator", "radio, wireless", "radio telescope, radio reflector", "rain barrel", "recreational vehicle, rv, r.v.", "reel", "reflex camera", "refrigerator, icebox", "remote control, remote", "restaurant, eating house, eating place, eatery", "revolver, six-gun, six-shooter", "rifle", "rocking chair, rocker", "rotisserie", "rubber eraser, rubber, pencil eraser", "rugby ball", "rule, ruler", "running shoe", "safe", "safety pin", "saltshaker, salt shaker", "sandal", "sarong", "sax, saxophone", "scabbard", "scale, weighing machine", "school bus", "schooner", "scoreboard", "screen, crt screen", "screw", "screwdriver", "seat belt, seatbelt", "sewing machine", "shield, buckler", "shoe shop, shoe-shop, shoe store", "shoji", "shopping basket", "shopping cart", "shovel", "shower cap", "shower curtain", "ski", "ski mask", "sleeping bag", "slide rule, slipstick", "sliding door", "slot, one-armed bandit", "snorkel", "snowmobile", "snowplow, snowplough", "soap dispenser", "soccer ball", "sock", "solar dish, solar collector, solar furnace", "sombrero", "soup bowl", "space bar", "space heater", "space shuttle", "spatula", "speedboat", "spider web, spider's web", "spindle", "sports car, sport car", "spotlight, spot", "stage", "steam locomotive", "steel arch bridge", "steel drum", "stethoscope", "stole", "stone wall", "stopwatch, stop watch", "stove", "strainer", "streetcar, tram, tramcar, trolley, trolley car", "stretcher", "studio couch, day bed", "stupa, tope", "submarine, pigboat, sub, u-boat", "suit, suit of clothes", "sundial", "sunglass", "sunglasses, dark glasses, shades", "sunscreen, sunblock, sun blocker", "suspension bridge", "swab, swob, mop", "sweatshirt", "swimming trunks, bathing trunks", "swing", "switch, electric switch, electrical switch", "syringe", "table lamp", "tank, army tank, armored combat vehicle, armoured combat vehicle", "tape player", "teapot", "teddy, teddy bear", "television, television system", "tennis ball", "thatch, thatched roof", "theater curtain, theatre curtain", "thimble", "thresher, thrasher, threshing machine", "throne", "tile roof", "toaster", "tobacco shop, tobacconist shop, tobacconist", "toilet seat", "torch", "totem pole", "tow truck, tow car, wrecker", "toyshop", "tractor", "trailer truck, tractor trailer, trucking rig, rig, articulated lorry, semi", "tray", "trench coat", "tricycle, trike, velocipede", "trimaran", "tripod", "triumphal arch", "trolleybus, trolley coach, trackless trolley", "trombone", "tub, vat", "turnstile", "typewriter keyboard", "umbrella", "unicycle, monocycle", "upright, upright piano", "vacuum, vacuum cleaner", "vase", "vault", "velvet", "vending machine", "vestment", "viaduct", "violin, fiddle", "volleyball", "waffle iron", "wall clock", "wallet, billfold, notecase, pocketbook", "wardrobe, closet, press", "warplane, military plane", "washbasin, handbasin, washbowl, lavabo, wash-hand basin", "washer, automatic washer, washing machine", "water bottle", "water jug", "water tower", "whiskey jug", "whistle", "wig", "window screen", "window shade", "windsor tie", "wine bottle", "wing", "wok", "wooden spoon", "wool, woolen, woollen", "worm fence, snake fence, snake-rail fence, virginia fence", "wreck", "yawl", "yurt", "web site, website, internet site, site", "comic book", "crossword puzzle, crossword", "street sign", "traffic light, traffic signal, stoplight", "book jacket, dust cover, dust jacket, dust wrapper", "menu", "plate", "guacamole", "consomme", "hot pot, hotpot", "trifle", "ice cream, icecream", "ice lolly, lolly, lollipop, popsicle", "french loaf", "bagel, beigel", "pretzel", "cheeseburger", "hotdog, hot dog, red hot", "mashed potato", "head cabbage", "broccoli", "cauliflower", "zucchini, courgette", "spaghetti squash", "acorn squash", "butternut squash", "cucumber, cuke", "artichoke, globe artichoke", "bell pepper", "cardoon", "mushroom", "granny smith", "strawberry", "orange", "lemon", "fig", "pineapple, ananas", "banana", "jackfruit, jak, jack", "custard apple", "pomegranate", "hay", "carbonara", "chocolate sauce, chocolate syrup", "dough", "meat loaf, meatloaf", "pizza, pizza pie", "potpie", "burrito", "red wine", "espresso", "cup", "eggnog", "alp", "bubble", "cliff, drop, drop-off", "coral reef", "geyser", "lakeside, lakeshore", "promontory, headland, head, foreland", "sandbar, sand bar", "seashore, coast, seacoast, sea-coast", "valley, vale", "volcano", "ballplayer, baseball player", "groom, bridegroom", "scuba diver", "rapeseed", "daisy", "yellow lady's slipper, yellow lady-slipper, cypripedium calceolus, cypripedium parviflorum", "corn", "acorn", "hip, rose hip, rosehip", "buckeye, horse chestnut, conker", "coral fungus", "agaric", "gyromitra", "stinkhorn, carrion fungus", "earthstar", "hen-of-the-woods, hen of the woods, polyporus frondosus, grifola frondosa", "bolete", "ear, spike, capitulum", "toilet tissue, toilet paper, bathroom tissue" ]
facebook/levit-256
# LeViT LeViT-256 model pre-trained on ImageNet-1k at resolution 224x224. It was introduced in the paper [LeViT: a Vision Transformer in ConvNet's Clothing for Faster Inference ](https://arxiv.org/abs/2104.01136) by Graham et al. and first released in [this repository](https://github.com/facebookresearch/LeViT). Disclaimer: The team releasing LeViT did not write a model card for this model so this model card has been written by the Hugging Face team. ## Usage Here is how to use this model to classify an image of the COCO 2017 dataset into one of the 1,000 ImageNet classes: ```python from transformers import LevitFeatureExtractor, LevitForImageClassificationWithTeacher from PIL import Image import requests url = 'http://images.cocodataset.org/val2017/000000039769.jpg' image = Image.open(requests.get(url, stream=True).raw) feature_extractor = LevitFeatureExtractor.from_pretrained('facebook/levit-256') model = LevitForImageClassificationWithTeacher.from_pretrained('facebook/levit-256') inputs = feature_extractor(images=image, return_tensors="pt") outputs = model(**inputs) logits = outputs.logits # model predicts one of the 1000 ImageNet classes predicted_class_idx = logits.argmax(-1).item() print("Predicted class:", model.config.id2label[predicted_class_idx]) ```
[ "tench, tinca tinca", "goldfish, carassius auratus", "great white shark, white shark, man-eater, man-eating shark, carcharodon carcharias", "tiger shark, galeocerdo cuvieri", "hammerhead, hammerhead shark", "electric ray, crampfish, numbfish, torpedo", "stingray", "cock", "hen", "ostrich, struthio camelus", "brambling, fringilla montifringilla", "goldfinch, carduelis carduelis", "house finch, linnet, carpodacus mexicanus", "junco, snowbird", "indigo bunting, indigo finch, indigo bird, passerina cyanea", "robin, american robin, turdus migratorius", "bulbul", "jay", "magpie", "chickadee", "water ouzel, dipper", "kite", "bald eagle, american eagle, haliaeetus leucocephalus", "vulture", "great grey owl, great gray owl, strix nebulosa", "european fire salamander, salamandra salamandra", "common newt, triturus vulgaris", "eft", "spotted salamander, ambystoma maculatum", "axolotl, mud puppy, ambystoma mexicanum", "bullfrog, rana catesbeiana", "tree frog, tree-frog", "tailed frog, bell toad, ribbed toad, tailed toad, ascaphus trui", "loggerhead, loggerhead turtle, caretta caretta", "leatherback turtle, leatherback, leathery turtle, dermochelys coriacea", "mud turtle", "terrapin", "box turtle, box tortoise", "banded gecko", "common iguana, iguana, iguana iguana", "american chameleon, anole, anolis carolinensis", "whiptail, whiptail lizard", "agama", "frilled lizard, chlamydosaurus kingi", "alligator lizard", "gila monster, heloderma suspectum", "green lizard, lacerta viridis", "african chameleon, chamaeleo chamaeleon", "komodo dragon, komodo lizard, dragon lizard, giant lizard, varanus komodoensis", "african crocodile, nile crocodile, crocodylus niloticus", "american alligator, alligator mississipiensis", "triceratops", "thunder snake, worm snake, carphophis amoenus", "ringneck snake, ring-necked snake, ring snake", "hognose snake, puff adder, sand viper", "green snake, grass snake", "king snake, kingsnake", "garter snake, grass snake", "water snake", "vine snake", "night snake, hypsiglena torquata", "boa constrictor, constrictor constrictor", "rock python, rock snake, python sebae", "indian cobra, naja naja", "green mamba", "sea snake", "horned viper, cerastes, sand viper, horned asp, cerastes cornutus", "diamondback, diamondback rattlesnake, crotalus adamanteus", "sidewinder, horned rattlesnake, crotalus cerastes", "trilobite", "harvestman, daddy longlegs, phalangium opilio", "scorpion", "black and gold garden spider, argiope aurantia", "barn spider, araneus cavaticus", "garden spider, aranea diademata", "black widow, latrodectus mactans", "tarantula", "wolf spider, hunting spider", "tick", "centipede", "black grouse", "ptarmigan", "ruffed grouse, partridge, bonasa umbellus", "prairie chicken, prairie grouse, prairie fowl", "peacock", "quail", "partridge", "african grey, african gray, psittacus erithacus", "macaw", "sulphur-crested cockatoo, kakatoe galerita, cacatua galerita", "lorikeet", "coucal", "bee eater", "hornbill", "hummingbird", "jacamar", "toucan", "drake", "red-breasted merganser, mergus serrator", "goose", "black swan, cygnus atratus", "tusker", "echidna, spiny anteater, anteater", "platypus, duckbill, duckbilled platypus, duck-billed platypus, ornithorhynchus anatinus", "wallaby, brush kangaroo", "koala, koala bear, kangaroo bear, native bear, phascolarctos cinereus", "wombat", "jellyfish", "sea anemone, anemone", "brain coral", "flatworm, platyhelminth", "nematode, nematode worm, roundworm", "conch", "snail", "slug", "sea slug, nudibranch", "chiton, coat-of-mail shell, sea cradle, polyplacophore", "chambered nautilus, pearly nautilus, nautilus", "dungeness crab, cancer magister", "rock crab, cancer irroratus", "fiddler crab", "king crab, alaska crab, alaskan king crab, alaska king crab, paralithodes camtschatica", "american lobster, northern lobster, maine lobster, homarus americanus", "spiny lobster, langouste, rock lobster, crawfish, crayfish, sea crawfish", "crayfish, crawfish, crawdad, crawdaddy", "hermit crab", "isopod", "white stork, ciconia ciconia", "black stork, ciconia nigra", "spoonbill", "flamingo", "little blue heron, egretta caerulea", "american egret, great white heron, egretta albus", "bittern", "crane", "limpkin, aramus pictus", "european gallinule, porphyrio porphyrio", "american coot, marsh hen, mud hen, water hen, fulica americana", "bustard", "ruddy turnstone, arenaria interpres", "red-backed sandpiper, dunlin, erolia alpina", "redshank, tringa totanus", "dowitcher", "oystercatcher, oyster catcher", "pelican", "king penguin, aptenodytes patagonica", "albatross, mollymawk", "grey whale, gray whale, devilfish, eschrichtius gibbosus, eschrichtius robustus", "killer whale, killer, orca, grampus, sea wolf, orcinus orca", "dugong, dugong dugon", "sea lion", "chihuahua", "japanese spaniel", "maltese dog, maltese terrier, maltese", "pekinese, pekingese, peke", "shih-tzu", "blenheim spaniel", "papillon", "toy terrier", "rhodesian ridgeback", "afghan hound, afghan", "basset, basset hound", "beagle", "bloodhound, sleuthhound", "bluetick", "black-and-tan coonhound", "walker hound, walker foxhound", "english foxhound", "redbone", "borzoi, russian wolfhound", "irish wolfhound", "italian greyhound", "whippet", "ibizan hound, ibizan podenco", "norwegian elkhound, elkhound", "otterhound, otter hound", "saluki, gazelle hound", "scottish deerhound, deerhound", "weimaraner", "staffordshire bullterrier, staffordshire bull terrier", "american staffordshire terrier, staffordshire terrier, american pit bull terrier, pit bull terrier", "bedlington terrier", "border terrier", "kerry blue terrier", "irish terrier", "norfolk terrier", "norwich terrier", "yorkshire terrier", "wire-haired fox terrier", "lakeland terrier", "sealyham terrier, sealyham", "airedale, airedale terrier", "cairn, cairn terrier", "australian terrier", "dandie dinmont, dandie dinmont terrier", "boston bull, boston terrier", "miniature schnauzer", "giant schnauzer", "standard schnauzer", "scotch terrier, scottish terrier, scottie", "tibetan terrier, chrysanthemum dog", "silky terrier, sydney silky", "soft-coated wheaten terrier", "west highland white terrier", "lhasa, lhasa apso", "flat-coated retriever", "curly-coated retriever", "golden retriever", "labrador retriever", "chesapeake bay retriever", "german short-haired pointer", "vizsla, hungarian pointer", "english setter", "irish setter, red setter", "gordon setter", "brittany spaniel", "clumber, clumber spaniel", "english springer, english springer spaniel", "welsh springer spaniel", "cocker spaniel, english cocker spaniel, cocker", "sussex spaniel", "irish water spaniel", "kuvasz", "schipperke", "groenendael", "malinois", "briard", "kelpie", "komondor", "old english sheepdog, bobtail", "shetland sheepdog, shetland sheep dog, shetland", "collie", "border collie", "bouvier des flandres, bouviers des flandres", "rottweiler", "german shepherd, german shepherd dog, german police dog, alsatian", "doberman, doberman pinscher", "miniature pinscher", "greater swiss mountain dog", "bernese mountain dog", "appenzeller", "entlebucher", "boxer", "bull mastiff", "tibetan mastiff", "french bulldog", "great dane", "saint bernard, st bernard", "eskimo dog, husky", "malamute, malemute, alaskan malamute", "siberian husky", "dalmatian, coach dog, carriage dog", "affenpinscher, monkey pinscher, monkey dog", "basenji", "pug, pug-dog", "leonberg", "newfoundland, newfoundland dog", "great pyrenees", "samoyed, samoyede", "pomeranian", "chow, chow chow", "keeshond", "brabancon griffon", "pembroke, pembroke welsh corgi", "cardigan, cardigan welsh corgi", "toy poodle", "miniature poodle", "standard poodle", "mexican hairless", "timber wolf, grey wolf, gray wolf, canis lupus", "white wolf, arctic wolf, canis lupus tundrarum", "red wolf, maned wolf, canis rufus, canis niger", "coyote, prairie wolf, brush wolf, canis latrans", "dingo, warrigal, warragal, canis dingo", "dhole, cuon alpinus", "african hunting dog, hyena dog, cape hunting dog, lycaon pictus", "hyena, hyaena", "red fox, vulpes vulpes", "kit fox, vulpes macrotis", "arctic fox, white fox, alopex lagopus", "grey fox, gray fox, urocyon cinereoargenteus", "tabby, tabby cat", "tiger cat", "persian cat", "siamese cat, siamese", "egyptian cat", "cougar, puma, catamount, mountain lion, painter, panther, felis concolor", "lynx, catamount", "leopard, panthera pardus", "snow leopard, ounce, panthera uncia", "jaguar, panther, panthera onca, felis onca", "lion, king of beasts, panthera leo", "tiger, panthera tigris", "cheetah, chetah, acinonyx jubatus", "brown bear, bruin, ursus arctos", "american black bear, black bear, ursus americanus, euarctos americanus", "ice bear, polar bear, ursus maritimus, thalarctos maritimus", "sloth bear, melursus ursinus, ursus ursinus", "mongoose", "meerkat, mierkat", "tiger beetle", "ladybug, ladybeetle, lady beetle, ladybird, ladybird beetle", "ground beetle, carabid beetle", "long-horned beetle, longicorn, longicorn beetle", "leaf beetle, chrysomelid", "dung beetle", "rhinoceros beetle", "weevil", "fly", "bee", "ant, emmet, pismire", "grasshopper, hopper", "cricket", "walking stick, walkingstick, stick insect", "cockroach, roach", "mantis, mantid", "cicada, cicala", "leafhopper", "lacewing, lacewing fly", "dragonfly, darning needle, devil's darning needle, sewing needle, snake feeder, snake doctor, mosquito hawk, skeeter hawk", "damselfly", "admiral", "ringlet, ringlet butterfly", "monarch, monarch butterfly, milkweed butterfly, danaus plexippus", "cabbage butterfly", "sulphur butterfly, sulfur butterfly", "lycaenid, lycaenid butterfly", "starfish, sea star", "sea urchin", "sea cucumber, holothurian", "wood rabbit, cottontail, cottontail rabbit", "hare", "angora, angora rabbit", "hamster", "porcupine, hedgehog", "fox squirrel, eastern fox squirrel, sciurus niger", "marmot", "beaver", "guinea pig, cavia cobaya", "sorrel", "zebra", "hog, pig, grunter, squealer, sus scrofa", "wild boar, boar, sus scrofa", "warthog", "hippopotamus, hippo, river horse, hippopotamus amphibius", "ox", "water buffalo, water ox, asiatic buffalo, bubalus bubalis", "bison", "ram, tup", "bighorn, bighorn sheep, cimarron, rocky mountain bighorn, rocky mountain sheep, ovis canadensis", "ibex, capra ibex", "hartebeest", "impala, aepyceros melampus", "gazelle", "arabian camel, dromedary, camelus dromedarius", "llama", "weasel", "mink", "polecat, fitch, foulmart, foumart, mustela putorius", "black-footed ferret, ferret, mustela nigripes", "otter", "skunk, polecat, wood pussy", "badger", "armadillo", "three-toed sloth, ai, bradypus tridactylus", "orangutan, orang, orangutang, pongo pygmaeus", "gorilla, gorilla gorilla", "chimpanzee, chimp, pan troglodytes", "gibbon, hylobates lar", "siamang, hylobates syndactylus, symphalangus syndactylus", "guenon, guenon monkey", "patas, hussar monkey, erythrocebus patas", "baboon", "macaque", "langur", "colobus, colobus monkey", "proboscis monkey, nasalis larvatus", "marmoset", "capuchin, ringtail, cebus capucinus", "howler monkey, howler", "titi, titi monkey", "spider monkey, ateles geoffroyi", "squirrel monkey, saimiri sciureus", "madagascar cat, ring-tailed lemur, lemur catta", "indri, indris, indri indri, indri brevicaudatus", "indian elephant, elephas maximus", "african elephant, loxodonta africana", "lesser panda, red panda, panda, bear cat, cat bear, ailurus fulgens", "giant panda, panda, panda bear, coon bear, ailuropoda melanoleuca", "barracouta, snoek", "eel", "coho, cohoe, coho salmon, blue jack, silver salmon, oncorhynchus kisutch", "rock beauty, holocanthus tricolor", "anemone fish", "sturgeon", "gar, garfish, garpike, billfish, lepisosteus osseus", "lionfish", "puffer, pufferfish, blowfish, globefish", "abacus", "abaya", "academic gown, academic robe, judge's robe", "accordion, piano accordion, squeeze box", "acoustic guitar", "aircraft carrier, carrier, flattop, attack aircraft carrier", "airliner", "airship, dirigible", "altar", "ambulance", "amphibian, amphibious vehicle", "analog clock", "apiary, bee house", "apron", "ashcan, trash can, garbage can, wastebin, ash bin, ash-bin, ashbin, dustbin, trash barrel, trash bin", "assault rifle, assault gun", "backpack, back pack, knapsack, packsack, rucksack, haversack", "bakery, bakeshop, bakehouse", "balance beam, beam", "balloon", "ballpoint, ballpoint pen, ballpen, biro", "band aid", "banjo", "bannister, banister, balustrade, balusters, handrail", "barbell", "barber chair", "barbershop", "barn", "barometer", "barrel, cask", "barrow, garden cart, lawn cart, wheelbarrow", "baseball", "basketball", "bassinet", "bassoon", "bathing cap, swimming cap", "bath towel", "bathtub, bathing tub, bath, tub", "beach wagon, station wagon, wagon, estate car, beach waggon, station waggon, waggon", "beacon, lighthouse, beacon light, pharos", "beaker", "bearskin, busby, shako", "beer bottle", "beer glass", "bell cote, bell cot", "bib", "bicycle-built-for-two, tandem bicycle, tandem", "bikini, two-piece", "binder, ring-binder", "binoculars, field glasses, opera glasses", "birdhouse", "boathouse", "bobsled, bobsleigh, bob", "bolo tie, bolo, bola tie, bola", "bonnet, poke bonnet", "bookcase", "bookshop, bookstore, bookstall", "bottlecap", "bow", "bow tie, bow-tie, bowtie", "brass, memorial tablet, plaque", "brassiere, bra, bandeau", "breakwater, groin, groyne, mole, bulwark, seawall, jetty", "breastplate, aegis, egis", "broom", "bucket, pail", "buckle", "bulletproof vest", "bullet train, bullet", "butcher shop, meat market", "cab, hack, taxi, taxicab", "caldron, cauldron", "candle, taper, wax light", "cannon", "canoe", "can opener, tin opener", "cardigan", "car mirror", "carousel, carrousel, merry-go-round, roundabout, whirligig", "carpenter's kit, tool kit", "carton", "car wheel", "cash machine, cash dispenser, automated teller machine, automatic teller machine, automated teller, automatic teller, atm", "cassette", "cassette player", "castle", "catamaran", "cd player", "cello, violoncello", "cellular telephone, cellular phone, cellphone, cell, mobile phone", "chain", "chainlink fence", "chain mail, ring mail, mail, chain armor, chain armour, ring armor, ring armour", "chain saw, chainsaw", "chest", "chiffonier, commode", "chime, bell, gong", "china cabinet, china closet", "christmas stocking", "church, church building", "cinema, movie theater, movie theatre, movie house, picture palace", "cleaver, meat cleaver, chopper", "cliff dwelling", "cloak", "clog, geta, patten, sabot", "cocktail shaker", "coffee mug", "coffeepot", "coil, spiral, volute, whorl, helix", "combination lock", "computer keyboard, keypad", "confectionery, confectionary, candy store", "container ship, containership, container vessel", "convertible", "corkscrew, bottle screw", "cornet, horn, trumpet, trump", "cowboy boot", "cowboy hat, ten-gallon hat", "cradle", "crane", "crash helmet", "crate", "crib, cot", "crock pot", "croquet ball", "crutch", "cuirass", "dam, dike, dyke", "desk", "desktop computer", "dial telephone, dial phone", "diaper, nappy, napkin", "digital clock", "digital watch", "dining table, board", "dishrag, dishcloth", "dishwasher, dish washer, dishwashing machine", "disk brake, disc brake", "dock, dockage, docking facility", "dogsled, dog sled, dog sleigh", "dome", "doormat, welcome mat", "drilling platform, offshore rig", "drum, membranophone, tympan", "drumstick", "dumbbell", "dutch oven", "electric fan, blower", "electric guitar", "electric locomotive", "entertainment center", "envelope", "espresso maker", "face powder", "feather boa, boa", "file, file cabinet, filing cabinet", "fireboat", "fire engine, fire truck", "fire screen, fireguard", "flagpole, flagstaff", "flute, transverse flute", "folding chair", "football helmet", "forklift", "fountain", "fountain pen", "four-poster", "freight car", "french horn, horn", "frying pan, frypan, skillet", "fur coat", "garbage truck, dustcart", "gasmask, respirator, gas helmet", "gas pump, gasoline pump, petrol pump, island dispenser", "goblet", "go-kart", "golf ball", "golfcart, golf cart", "gondola", "gong, tam-tam", "gown", "grand piano, grand", "greenhouse, nursery, glasshouse", "grille, radiator grille", "grocery store, grocery, food market, market", "guillotine", "hair slide", "hair spray", "half track", "hammer", "hamper", "hand blower, blow dryer, blow drier, hair dryer, hair drier", "hand-held computer, hand-held microcomputer", "handkerchief, hankie, hanky, hankey", "hard disc, hard disk, fixed disk", "harmonica, mouth organ, harp, mouth harp", "harp", "harvester, reaper", "hatchet", "holster", "home theater, home theatre", "honeycomb", "hook, claw", "hoopskirt, crinoline", "horizontal bar, high bar", "horse cart, horse-cart", "hourglass", "ipod", "iron, smoothing iron", "jack-o'-lantern", "jean, blue jean, denim", "jeep, landrover", "jersey, t-shirt, tee shirt", "jigsaw puzzle", "jinrikisha, ricksha, rickshaw", "joystick", "kimono", "knee pad", "knot", "lab coat, laboratory coat", "ladle", "lampshade, lamp shade", "laptop, laptop computer", "lawn mower, mower", "lens cap, lens cover", "letter opener, paper knife, paperknife", "library", "lifeboat", "lighter, light, igniter, ignitor", "limousine, limo", "liner, ocean liner", "lipstick, lip rouge", "loafer", "lotion", "loudspeaker, speaker, speaker unit, loudspeaker system, speaker system", "loupe, jeweler's loupe", "lumbermill, sawmill", "magnetic compass", "mailbag, postbag", "mailbox, letter box", "maillot", "maillot, tank suit", "manhole cover", "maraca", "marimba, xylophone", "mask", "matchstick", "maypole", "maze, labyrinth", "measuring cup", "medicine chest, medicine cabinet", "megalith, megalithic structure", "microphone, mike", "microwave, microwave oven", "military uniform", "milk can", "minibus", "miniskirt, mini", "minivan", "missile", "mitten", "mixing bowl", "mobile home, manufactured home", "model t", "modem", "monastery", "monitor", "moped", "mortar", "mortarboard", "mosque", "mosquito net", "motor scooter, scooter", "mountain bike, all-terrain bike, off-roader", "mountain tent", "mouse, computer mouse", "mousetrap", "moving van", "muzzle", "nail", "neck brace", "necklace", "nipple", "notebook, notebook computer", "obelisk", "oboe, hautboy, hautbois", "ocarina, sweet potato", "odometer, hodometer, mileometer, milometer", "oil filter", "organ, pipe organ", "oscilloscope, scope, cathode-ray oscilloscope, cro", "overskirt", "oxcart", "oxygen mask", "packet", "paddle, boat paddle", "paddlewheel, paddle wheel", "padlock", "paintbrush", "pajama, pyjama, pj's, jammies", "palace", "panpipe, pandean pipe, syrinx", "paper towel", "parachute, chute", "parallel bars, bars", "park bench", "parking meter", "passenger car, coach, carriage", "patio, terrace", "pay-phone, pay-station", "pedestal, plinth, footstall", "pencil box, pencil case", "pencil sharpener", "perfume, essence", "petri dish", "photocopier", "pick, plectrum, plectron", "pickelhaube", "picket fence, paling", "pickup, pickup truck", "pier", "piggy bank, penny bank", "pill bottle", "pillow", "ping-pong ball", "pinwheel", "pirate, pirate ship", "pitcher, ewer", "plane, carpenter's plane, woodworking plane", "planetarium", "plastic bag", "plate rack", "plow, plough", "plunger, plumber's helper", "polaroid camera, polaroid land camera", "pole", "police van, police wagon, paddy wagon, patrol wagon, wagon, black maria", "poncho", "pool table, billiard table, snooker table", "pop bottle, soda bottle", "pot, flowerpot", "potter's wheel", "power drill", "prayer rug, prayer mat", "printer", "prison, prison house", "projectile, missile", "projector", "puck, hockey puck", "punching bag, punch bag, punching ball, punchball", "purse", "quill, quill pen", "quilt, comforter, comfort, puff", "racer, race car, racing car", "racket, racquet", "radiator", "radio, wireless", "radio telescope, radio reflector", "rain barrel", "recreational vehicle, rv, r.v.", "reel", "reflex camera", "refrigerator, icebox", "remote control, remote", "restaurant, eating house, eating place, eatery", "revolver, six-gun, six-shooter", "rifle", "rocking chair, rocker", "rotisserie", "rubber eraser, rubber, pencil eraser", "rugby ball", "rule, ruler", "running shoe", "safe", "safety pin", "saltshaker, salt shaker", "sandal", "sarong", "sax, saxophone", "scabbard", "scale, weighing machine", "school bus", "schooner", "scoreboard", "screen, crt screen", "screw", "screwdriver", "seat belt, seatbelt", "sewing machine", "shield, buckler", "shoe shop, shoe-shop, shoe store", "shoji", "shopping basket", "shopping cart", "shovel", "shower cap", "shower curtain", "ski", "ski mask", "sleeping bag", "slide rule, slipstick", "sliding door", "slot, one-armed bandit", "snorkel", "snowmobile", "snowplow, snowplough", "soap dispenser", "soccer ball", "sock", "solar dish, solar collector, solar furnace", "sombrero", "soup bowl", "space bar", "space heater", "space shuttle", "spatula", "speedboat", "spider web, spider's web", "spindle", "sports car, sport car", "spotlight, spot", "stage", "steam locomotive", "steel arch bridge", "steel drum", "stethoscope", "stole", "stone wall", "stopwatch, stop watch", "stove", "strainer", "streetcar, tram, tramcar, trolley, trolley car", "stretcher", "studio couch, day bed", "stupa, tope", "submarine, pigboat, sub, u-boat", "suit, suit of clothes", "sundial", "sunglass", "sunglasses, dark glasses, shades", "sunscreen, sunblock, sun blocker", "suspension bridge", "swab, swob, mop", "sweatshirt", "swimming trunks, bathing trunks", "swing", "switch, electric switch, electrical switch", "syringe", "table lamp", "tank, army tank, armored combat vehicle, armoured combat vehicle", "tape player", "teapot", "teddy, teddy bear", "television, television system", "tennis ball", "thatch, thatched roof", "theater curtain, theatre curtain", "thimble", "thresher, thrasher, threshing machine", "throne", "tile roof", "toaster", "tobacco shop, tobacconist shop, tobacconist", "toilet seat", "torch", "totem pole", "tow truck, tow car, wrecker", "toyshop", "tractor", "trailer truck, tractor trailer, trucking rig, rig, articulated lorry, semi", "tray", "trench coat", "tricycle, trike, velocipede", "trimaran", "tripod", "triumphal arch", "trolleybus, trolley coach, trackless trolley", "trombone", "tub, vat", "turnstile", "typewriter keyboard", "umbrella", "unicycle, monocycle", "upright, upright piano", "vacuum, vacuum cleaner", "vase", "vault", "velvet", "vending machine", "vestment", "viaduct", "violin, fiddle", "volleyball", "waffle iron", "wall clock", "wallet, billfold, notecase, pocketbook", "wardrobe, closet, press", "warplane, military plane", "washbasin, handbasin, washbowl, lavabo, wash-hand basin", "washer, automatic washer, washing machine", "water bottle", "water jug", "water tower", "whiskey jug", "whistle", "wig", "window screen", "window shade", "windsor tie", "wine bottle", "wing", "wok", "wooden spoon", "wool, woolen, woollen", "worm fence, snake fence, snake-rail fence, virginia fence", "wreck", "yawl", "yurt", "web site, website, internet site, site", "comic book", "crossword puzzle, crossword", "street sign", "traffic light, traffic signal, stoplight", "book jacket, dust cover, dust jacket, dust wrapper", "menu", "plate", "guacamole", "consomme", "hot pot, hotpot", "trifle", "ice cream, icecream", "ice lolly, lolly, lollipop, popsicle", "french loaf", "bagel, beigel", "pretzel", "cheeseburger", "hotdog, hot dog, red hot", "mashed potato", "head cabbage", "broccoli", "cauliflower", "zucchini, courgette", "spaghetti squash", "acorn squash", "butternut squash", "cucumber, cuke", "artichoke, globe artichoke", "bell pepper", "cardoon", "mushroom", "granny smith", "strawberry", "orange", "lemon", "fig", "pineapple, ananas", "banana", "jackfruit, jak, jack", "custard apple", "pomegranate", "hay", "carbonara", "chocolate sauce, chocolate syrup", "dough", "meat loaf, meatloaf", "pizza, pizza pie", "potpie", "burrito", "red wine", "espresso", "cup", "eggnog", "alp", "bubble", "cliff, drop, drop-off", "coral reef", "geyser", "lakeside, lakeshore", "promontory, headland, head, foreland", "sandbar, sand bar", "seashore, coast, seacoast, sea-coast", "valley, vale", "volcano", "ballplayer, baseball player", "groom, bridegroom", "scuba diver", "rapeseed", "daisy", "yellow lady's slipper, yellow lady-slipper, cypripedium calceolus, cypripedium parviflorum", "corn", "acorn", "hip, rose hip, rosehip", "buckeye, horse chestnut, conker", "coral fungus", "agaric", "gyromitra", "stinkhorn, carrion fungus", "earthstar", "hen-of-the-woods, hen of the woods, polyporus frondosus, grifola frondosa", "bolete", "ear, spike, capitulum", "toilet tissue, toilet paper, bathroom tissue" ]
facebook/levit-192
# LeViT LeViT-192 model pre-trained on ImageNet-1k at resolution 224x224. It was introduced in the paper [LeViT: a Vision Transformer in ConvNet's Clothing for Faster Inference ](https://arxiv.org/abs/2104.01136) by Graham et al. and first released in [this repository](https://github.com/facebookresearch/LeViT). Disclaimer: The team releasing LeViT did not write a model card for this model so this model card has been written by the Hugging Face team. ## Usage Here is how to use this model to classify an image of the COCO 2017 dataset into one of the 1,000 ImageNet classes: ```python from transformers import LevitFeatureExtractor, LevitForImageClassificationWithTeacher from PIL import Image import requests url = 'http://images.cocodataset.org/val2017/000000039769.jpg' image = Image.open(requests.get(url, stream=True).raw) feature_extractor = LevitFeatureExtractor.from_pretrained('facebook/levit-192') model = LevitForImageClassificationWithTeacher.from_pretrained('facebook/levit-192') inputs = feature_extractor(images=image, return_tensors="pt") outputs = model(**inputs) logits = outputs.logits # model predicts one of the 1000 ImageNet classes predicted_class_idx = logits.argmax(-1).item() print("Predicted class:", model.config.id2label[predicted_class_idx]) ```
[ "tench, tinca tinca", "goldfish, carassius auratus", "great white shark, white shark, man-eater, man-eating shark, carcharodon carcharias", "tiger shark, galeocerdo cuvieri", "hammerhead, hammerhead shark", "electric ray, crampfish, numbfish, torpedo", "stingray", "cock", "hen", "ostrich, struthio camelus", "brambling, fringilla montifringilla", "goldfinch, carduelis carduelis", "house finch, linnet, carpodacus mexicanus", "junco, snowbird", "indigo bunting, indigo finch, indigo bird, passerina cyanea", "robin, american robin, turdus migratorius", "bulbul", "jay", "magpie", "chickadee", "water ouzel, dipper", "kite", "bald eagle, american eagle, haliaeetus leucocephalus", "vulture", "great grey owl, great gray owl, strix nebulosa", "european fire salamander, salamandra salamandra", "common newt, triturus vulgaris", "eft", "spotted salamander, ambystoma maculatum", "axolotl, mud puppy, ambystoma mexicanum", "bullfrog, rana catesbeiana", "tree frog, tree-frog", "tailed frog, bell toad, ribbed toad, tailed toad, ascaphus trui", "loggerhead, loggerhead turtle, caretta caretta", "leatherback turtle, leatherback, leathery turtle, dermochelys coriacea", "mud turtle", "terrapin", "box turtle, box tortoise", "banded gecko", "common iguana, iguana, iguana iguana", "american chameleon, anole, anolis carolinensis", "whiptail, whiptail lizard", "agama", "frilled lizard, chlamydosaurus kingi", "alligator lizard", "gila monster, heloderma suspectum", "green lizard, lacerta viridis", "african chameleon, chamaeleo chamaeleon", "komodo dragon, komodo lizard, dragon lizard, giant lizard, varanus komodoensis", "african crocodile, nile crocodile, crocodylus niloticus", "american alligator, alligator mississipiensis", "triceratops", "thunder snake, worm snake, carphophis amoenus", "ringneck snake, ring-necked snake, ring snake", "hognose snake, puff adder, sand viper", "green snake, grass snake", "king snake, kingsnake", "garter snake, grass snake", "water snake", "vine snake", "night snake, hypsiglena torquata", "boa constrictor, constrictor constrictor", "rock python, rock snake, python sebae", "indian cobra, naja naja", "green mamba", "sea snake", "horned viper, cerastes, sand viper, horned asp, cerastes cornutus", "diamondback, diamondback rattlesnake, crotalus adamanteus", "sidewinder, horned rattlesnake, crotalus cerastes", "trilobite", "harvestman, daddy longlegs, phalangium opilio", "scorpion", "black and gold garden spider, argiope aurantia", "barn spider, araneus cavaticus", "garden spider, aranea diademata", "black widow, latrodectus mactans", "tarantula", "wolf spider, hunting spider", "tick", "centipede", "black grouse", "ptarmigan", "ruffed grouse, partridge, bonasa umbellus", "prairie chicken, prairie grouse, prairie fowl", "peacock", "quail", "partridge", "african grey, african gray, psittacus erithacus", "macaw", "sulphur-crested cockatoo, kakatoe galerita, cacatua galerita", "lorikeet", "coucal", "bee eater", "hornbill", "hummingbird", "jacamar", "toucan", "drake", "red-breasted merganser, mergus serrator", "goose", "black swan, cygnus atratus", "tusker", "echidna, spiny anteater, anteater", "platypus, duckbill, duckbilled platypus, duck-billed platypus, ornithorhynchus anatinus", "wallaby, brush kangaroo", "koala, koala bear, kangaroo bear, native bear, phascolarctos cinereus", "wombat", "jellyfish", "sea anemone, anemone", "brain coral", "flatworm, platyhelminth", "nematode, nematode worm, roundworm", "conch", "snail", "slug", "sea slug, nudibranch", "chiton, coat-of-mail shell, sea cradle, polyplacophore", "chambered nautilus, pearly nautilus, nautilus", "dungeness crab, cancer magister", "rock crab, cancer irroratus", "fiddler crab", "king crab, alaska crab, alaskan king crab, alaska king crab, paralithodes camtschatica", "american lobster, northern lobster, maine lobster, homarus americanus", "spiny lobster, langouste, rock lobster, crawfish, crayfish, sea crawfish", "crayfish, crawfish, crawdad, crawdaddy", "hermit crab", "isopod", "white stork, ciconia ciconia", "black stork, ciconia nigra", "spoonbill", "flamingo", "little blue heron, egretta caerulea", "american egret, great white heron, egretta albus", "bittern", "crane", "limpkin, aramus pictus", "european gallinule, porphyrio porphyrio", "american coot, marsh hen, mud hen, water hen, fulica americana", "bustard", "ruddy turnstone, arenaria interpres", "red-backed sandpiper, dunlin, erolia alpina", "redshank, tringa totanus", "dowitcher", "oystercatcher, oyster catcher", "pelican", "king penguin, aptenodytes patagonica", "albatross, mollymawk", "grey whale, gray whale, devilfish, eschrichtius gibbosus, eschrichtius robustus", "killer whale, killer, orca, grampus, sea wolf, orcinus orca", "dugong, dugong dugon", "sea lion", "chihuahua", "japanese spaniel", "maltese dog, maltese terrier, maltese", "pekinese, pekingese, peke", "shih-tzu", "blenheim spaniel", "papillon", "toy terrier", "rhodesian ridgeback", "afghan hound, afghan", "basset, basset hound", "beagle", "bloodhound, sleuthhound", "bluetick", "black-and-tan coonhound", "walker hound, walker foxhound", "english foxhound", "redbone", "borzoi, russian wolfhound", "irish wolfhound", "italian greyhound", "whippet", "ibizan hound, ibizan podenco", "norwegian elkhound, elkhound", "otterhound, otter hound", "saluki, gazelle hound", "scottish deerhound, deerhound", "weimaraner", "staffordshire bullterrier, staffordshire bull terrier", "american staffordshire terrier, staffordshire terrier, american pit bull terrier, pit bull terrier", "bedlington terrier", "border terrier", "kerry blue terrier", "irish terrier", "norfolk terrier", "norwich terrier", "yorkshire terrier", "wire-haired fox terrier", "lakeland terrier", "sealyham terrier, sealyham", "airedale, airedale terrier", "cairn, cairn terrier", "australian terrier", "dandie dinmont, dandie dinmont terrier", "boston bull, boston terrier", "miniature schnauzer", "giant schnauzer", "standard schnauzer", "scotch terrier, scottish terrier, scottie", "tibetan terrier, chrysanthemum dog", "silky terrier, sydney silky", "soft-coated wheaten terrier", "west highland white terrier", "lhasa, lhasa apso", "flat-coated retriever", "curly-coated retriever", "golden retriever", "labrador retriever", "chesapeake bay retriever", "german short-haired pointer", "vizsla, hungarian pointer", "english setter", "irish setter, red setter", "gordon setter", "brittany spaniel", "clumber, clumber spaniel", "english springer, english springer spaniel", "welsh springer spaniel", "cocker spaniel, english cocker spaniel, cocker", "sussex spaniel", "irish water spaniel", "kuvasz", "schipperke", "groenendael", "malinois", "briard", "kelpie", "komondor", "old english sheepdog, bobtail", "shetland sheepdog, shetland sheep dog, shetland", "collie", "border collie", "bouvier des flandres, bouviers des flandres", "rottweiler", "german shepherd, german shepherd dog, german police dog, alsatian", "doberman, doberman pinscher", "miniature pinscher", "greater swiss mountain dog", "bernese mountain dog", "appenzeller", "entlebucher", "boxer", "bull mastiff", "tibetan mastiff", "french bulldog", "great dane", "saint bernard, st bernard", "eskimo dog, husky", "malamute, malemute, alaskan malamute", "siberian husky", "dalmatian, coach dog, carriage dog", "affenpinscher, monkey pinscher, monkey dog", "basenji", "pug, pug-dog", "leonberg", "newfoundland, newfoundland dog", "great pyrenees", "samoyed, samoyede", "pomeranian", "chow, chow chow", "keeshond", "brabancon griffon", "pembroke, pembroke welsh corgi", "cardigan, cardigan welsh corgi", "toy poodle", "miniature poodle", "standard poodle", "mexican hairless", "timber wolf, grey wolf, gray wolf, canis lupus", "white wolf, arctic wolf, canis lupus tundrarum", "red wolf, maned wolf, canis rufus, canis niger", "coyote, prairie wolf, brush wolf, canis latrans", "dingo, warrigal, warragal, canis dingo", "dhole, cuon alpinus", "african hunting dog, hyena dog, cape hunting dog, lycaon pictus", "hyena, hyaena", "red fox, vulpes vulpes", "kit fox, vulpes macrotis", "arctic fox, white fox, alopex lagopus", "grey fox, gray fox, urocyon cinereoargenteus", "tabby, tabby cat", "tiger cat", "persian cat", "siamese cat, siamese", "egyptian cat", "cougar, puma, catamount, mountain lion, painter, panther, felis concolor", "lynx, catamount", "leopard, panthera pardus", "snow leopard, ounce, panthera uncia", "jaguar, panther, panthera onca, felis onca", "lion, king of beasts, panthera leo", "tiger, panthera tigris", "cheetah, chetah, acinonyx jubatus", "brown bear, bruin, ursus arctos", "american black bear, black bear, ursus americanus, euarctos americanus", "ice bear, polar bear, ursus maritimus, thalarctos maritimus", "sloth bear, melursus ursinus, ursus ursinus", "mongoose", "meerkat, mierkat", "tiger beetle", "ladybug, ladybeetle, lady beetle, ladybird, ladybird beetle", "ground beetle, carabid beetle", "long-horned beetle, longicorn, longicorn beetle", "leaf beetle, chrysomelid", "dung beetle", "rhinoceros beetle", "weevil", "fly", "bee", "ant, emmet, pismire", "grasshopper, hopper", "cricket", "walking stick, walkingstick, stick insect", "cockroach, roach", "mantis, mantid", "cicada, cicala", "leafhopper", "lacewing, lacewing fly", "dragonfly, darning needle, devil's darning needle, sewing needle, snake feeder, snake doctor, mosquito hawk, skeeter hawk", "damselfly", "admiral", "ringlet, ringlet butterfly", "monarch, monarch butterfly, milkweed butterfly, danaus plexippus", "cabbage butterfly", "sulphur butterfly, sulfur butterfly", "lycaenid, lycaenid butterfly", "starfish, sea star", "sea urchin", "sea cucumber, holothurian", "wood rabbit, cottontail, cottontail rabbit", "hare", "angora, angora rabbit", "hamster", "porcupine, hedgehog", "fox squirrel, eastern fox squirrel, sciurus niger", "marmot", "beaver", "guinea pig, cavia cobaya", "sorrel", "zebra", "hog, pig, grunter, squealer, sus scrofa", "wild boar, boar, sus scrofa", "warthog", "hippopotamus, hippo, river horse, hippopotamus amphibius", "ox", "water buffalo, water ox, asiatic buffalo, bubalus bubalis", "bison", "ram, tup", "bighorn, bighorn sheep, cimarron, rocky mountain bighorn, rocky mountain sheep, ovis canadensis", "ibex, capra ibex", "hartebeest", "impala, aepyceros melampus", "gazelle", "arabian camel, dromedary, camelus dromedarius", "llama", "weasel", "mink", "polecat, fitch, foulmart, foumart, mustela putorius", "black-footed ferret, ferret, mustela nigripes", "otter", "skunk, polecat, wood pussy", "badger", "armadillo", "three-toed sloth, ai, bradypus tridactylus", "orangutan, orang, orangutang, pongo pygmaeus", "gorilla, gorilla gorilla", "chimpanzee, chimp, pan troglodytes", "gibbon, hylobates lar", "siamang, hylobates syndactylus, symphalangus syndactylus", "guenon, guenon monkey", "patas, hussar monkey, erythrocebus patas", "baboon", "macaque", "langur", "colobus, colobus monkey", "proboscis monkey, nasalis larvatus", "marmoset", "capuchin, ringtail, cebus capucinus", "howler monkey, howler", "titi, titi monkey", "spider monkey, ateles geoffroyi", "squirrel monkey, saimiri sciureus", "madagascar cat, ring-tailed lemur, lemur catta", "indri, indris, indri indri, indri brevicaudatus", "indian elephant, elephas maximus", "african elephant, loxodonta africana", "lesser panda, red panda, panda, bear cat, cat bear, ailurus fulgens", "giant panda, panda, panda bear, coon bear, ailuropoda melanoleuca", "barracouta, snoek", "eel", "coho, cohoe, coho salmon, blue jack, silver salmon, oncorhynchus kisutch", "rock beauty, holocanthus tricolor", "anemone fish", "sturgeon", "gar, garfish, garpike, billfish, lepisosteus osseus", "lionfish", "puffer, pufferfish, blowfish, globefish", "abacus", "abaya", "academic gown, academic robe, judge's robe", "accordion, piano accordion, squeeze box", "acoustic guitar", "aircraft carrier, carrier, flattop, attack aircraft carrier", "airliner", "airship, dirigible", "altar", "ambulance", "amphibian, amphibious vehicle", "analog clock", "apiary, bee house", "apron", "ashcan, trash can, garbage can, wastebin, ash bin, ash-bin, ashbin, dustbin, trash barrel, trash bin", "assault rifle, assault gun", "backpack, back pack, knapsack, packsack, rucksack, haversack", "bakery, bakeshop, bakehouse", "balance beam, beam", "balloon", "ballpoint, ballpoint pen, ballpen, biro", "band aid", "banjo", "bannister, banister, balustrade, balusters, handrail", "barbell", "barber chair", "barbershop", "barn", "barometer", "barrel, cask", "barrow, garden cart, lawn cart, wheelbarrow", "baseball", "basketball", "bassinet", "bassoon", "bathing cap, swimming cap", "bath towel", "bathtub, bathing tub, bath, tub", "beach wagon, station wagon, wagon, estate car, beach waggon, station waggon, waggon", "beacon, lighthouse, beacon light, pharos", "beaker", "bearskin, busby, shako", "beer bottle", "beer glass", "bell cote, bell cot", "bib", "bicycle-built-for-two, tandem bicycle, tandem", "bikini, two-piece", "binder, ring-binder", "binoculars, field glasses, opera glasses", "birdhouse", "boathouse", "bobsled, bobsleigh, bob", "bolo tie, bolo, bola tie, bola", "bonnet, poke bonnet", "bookcase", "bookshop, bookstore, bookstall", "bottlecap", "bow", "bow tie, bow-tie, bowtie", "brass, memorial tablet, plaque", "brassiere, bra, bandeau", "breakwater, groin, groyne, mole, bulwark, seawall, jetty", "breastplate, aegis, egis", "broom", "bucket, pail", "buckle", "bulletproof vest", "bullet train, bullet", "butcher shop, meat market", "cab, hack, taxi, taxicab", "caldron, cauldron", "candle, taper, wax light", "cannon", "canoe", "can opener, tin opener", "cardigan", "car mirror", "carousel, carrousel, merry-go-round, roundabout, whirligig", "carpenter's kit, tool kit", "carton", "car wheel", "cash machine, cash dispenser, automated teller machine, automatic teller machine, automated teller, automatic teller, atm", "cassette", "cassette player", "castle", "catamaran", "cd player", "cello, violoncello", "cellular telephone, cellular phone, cellphone, cell, mobile phone", "chain", "chainlink fence", "chain mail, ring mail, mail, chain armor, chain armour, ring armor, ring armour", "chain saw, chainsaw", "chest", "chiffonier, commode", "chime, bell, gong", "china cabinet, china closet", "christmas stocking", "church, church building", "cinema, movie theater, movie theatre, movie house, picture palace", "cleaver, meat cleaver, chopper", "cliff dwelling", "cloak", "clog, geta, patten, sabot", "cocktail shaker", "coffee mug", "coffeepot", "coil, spiral, volute, whorl, helix", "combination lock", "computer keyboard, keypad", "confectionery, confectionary, candy store", "container ship, containership, container vessel", "convertible", "corkscrew, bottle screw", "cornet, horn, trumpet, trump", "cowboy boot", "cowboy hat, ten-gallon hat", "cradle", "crane", "crash helmet", "crate", "crib, cot", "crock pot", "croquet ball", "crutch", "cuirass", "dam, dike, dyke", "desk", "desktop computer", "dial telephone, dial phone", "diaper, nappy, napkin", "digital clock", "digital watch", "dining table, board", "dishrag, dishcloth", "dishwasher, dish washer, dishwashing machine", "disk brake, disc brake", "dock, dockage, docking facility", "dogsled, dog sled, dog sleigh", "dome", "doormat, welcome mat", "drilling platform, offshore rig", "drum, membranophone, tympan", "drumstick", "dumbbell", "dutch oven", "electric fan, blower", "electric guitar", "electric locomotive", "entertainment center", "envelope", "espresso maker", "face powder", "feather boa, boa", "file, file cabinet, filing cabinet", "fireboat", "fire engine, fire truck", "fire screen, fireguard", "flagpole, flagstaff", "flute, transverse flute", "folding chair", "football helmet", "forklift", "fountain", "fountain pen", "four-poster", "freight car", "french horn, horn", "frying pan, frypan, skillet", "fur coat", "garbage truck, dustcart", "gasmask, respirator, gas helmet", "gas pump, gasoline pump, petrol pump, island dispenser", "goblet", "go-kart", "golf ball", "golfcart, golf cart", "gondola", "gong, tam-tam", "gown", "grand piano, grand", "greenhouse, nursery, glasshouse", "grille, radiator grille", "grocery store, grocery, food market, market", "guillotine", "hair slide", "hair spray", "half track", "hammer", "hamper", "hand blower, blow dryer, blow drier, hair dryer, hair drier", "hand-held computer, hand-held microcomputer", "handkerchief, hankie, hanky, hankey", "hard disc, hard disk, fixed disk", "harmonica, mouth organ, harp, mouth harp", "harp", "harvester, reaper", "hatchet", "holster", "home theater, home theatre", "honeycomb", "hook, claw", "hoopskirt, crinoline", "horizontal bar, high bar", "horse cart, horse-cart", "hourglass", "ipod", "iron, smoothing iron", "jack-o'-lantern", "jean, blue jean, denim", "jeep, landrover", "jersey, t-shirt, tee shirt", "jigsaw puzzle", "jinrikisha, ricksha, rickshaw", "joystick", "kimono", "knee pad", "knot", "lab coat, laboratory coat", "ladle", "lampshade, lamp shade", "laptop, laptop computer", "lawn mower, mower", "lens cap, lens cover", "letter opener, paper knife, paperknife", "library", "lifeboat", "lighter, light, igniter, ignitor", "limousine, limo", "liner, ocean liner", "lipstick, lip rouge", "loafer", "lotion", "loudspeaker, speaker, speaker unit, loudspeaker system, speaker system", "loupe, jeweler's loupe", "lumbermill, sawmill", "magnetic compass", "mailbag, postbag", "mailbox, letter box", "maillot", "maillot, tank suit", "manhole cover", "maraca", "marimba, xylophone", "mask", "matchstick", "maypole", "maze, labyrinth", "measuring cup", "medicine chest, medicine cabinet", "megalith, megalithic structure", "microphone, mike", "microwave, microwave oven", "military uniform", "milk can", "minibus", "miniskirt, mini", "minivan", "missile", "mitten", "mixing bowl", "mobile home, manufactured home", "model t", "modem", "monastery", "monitor", "moped", "mortar", "mortarboard", "mosque", "mosquito net", "motor scooter, scooter", "mountain bike, all-terrain bike, off-roader", "mountain tent", "mouse, computer mouse", "mousetrap", "moving van", "muzzle", "nail", "neck brace", "necklace", "nipple", "notebook, notebook computer", "obelisk", "oboe, hautboy, hautbois", "ocarina, sweet potato", "odometer, hodometer, mileometer, milometer", "oil filter", "organ, pipe organ", "oscilloscope, scope, cathode-ray oscilloscope, cro", "overskirt", "oxcart", "oxygen mask", "packet", "paddle, boat paddle", "paddlewheel, paddle wheel", "padlock", "paintbrush", "pajama, pyjama, pj's, jammies", "palace", "panpipe, pandean pipe, syrinx", "paper towel", "parachute, chute", "parallel bars, bars", "park bench", "parking meter", "passenger car, coach, carriage", "patio, terrace", "pay-phone, pay-station", "pedestal, plinth, footstall", "pencil box, pencil case", "pencil sharpener", "perfume, essence", "petri dish", "photocopier", "pick, plectrum, plectron", "pickelhaube", "picket fence, paling", "pickup, pickup truck", "pier", "piggy bank, penny bank", "pill bottle", "pillow", "ping-pong ball", "pinwheel", "pirate, pirate ship", "pitcher, ewer", "plane, carpenter's plane, woodworking plane", "planetarium", "plastic bag", "plate rack", "plow, plough", "plunger, plumber's helper", "polaroid camera, polaroid land camera", "pole", "police van, police wagon, paddy wagon, patrol wagon, wagon, black maria", "poncho", "pool table, billiard table, snooker table", "pop bottle, soda bottle", "pot, flowerpot", "potter's wheel", "power drill", "prayer rug, prayer mat", "printer", "prison, prison house", "projectile, missile", "projector", "puck, hockey puck", "punching bag, punch bag, punching ball, punchball", "purse", "quill, quill pen", "quilt, comforter, comfort, puff", "racer, race car, racing car", "racket, racquet", "radiator", "radio, wireless", "radio telescope, radio reflector", "rain barrel", "recreational vehicle, rv, r.v.", "reel", "reflex camera", "refrigerator, icebox", "remote control, remote", "restaurant, eating house, eating place, eatery", "revolver, six-gun, six-shooter", "rifle", "rocking chair, rocker", "rotisserie", "rubber eraser, rubber, pencil eraser", "rugby ball", "rule, ruler", "running shoe", "safe", "safety pin", "saltshaker, salt shaker", "sandal", "sarong", "sax, saxophone", "scabbard", "scale, weighing machine", "school bus", "schooner", "scoreboard", "screen, crt screen", "screw", "screwdriver", "seat belt, seatbelt", "sewing machine", "shield, buckler", "shoe shop, shoe-shop, shoe store", "shoji", "shopping basket", "shopping cart", "shovel", "shower cap", "shower curtain", "ski", "ski mask", "sleeping bag", "slide rule, slipstick", "sliding door", "slot, one-armed bandit", "snorkel", "snowmobile", "snowplow, snowplough", "soap dispenser", "soccer ball", "sock", "solar dish, solar collector, solar furnace", "sombrero", "soup bowl", "space bar", "space heater", "space shuttle", "spatula", "speedboat", "spider web, spider's web", "spindle", "sports car, sport car", "spotlight, spot", "stage", "steam locomotive", "steel arch bridge", "steel drum", "stethoscope", "stole", "stone wall", "stopwatch, stop watch", "stove", "strainer", "streetcar, tram, tramcar, trolley, trolley car", "stretcher", "studio couch, day bed", "stupa, tope", "submarine, pigboat, sub, u-boat", "suit, suit of clothes", "sundial", "sunglass", "sunglasses, dark glasses, shades", "sunscreen, sunblock, sun blocker", "suspension bridge", "swab, swob, mop", "sweatshirt", "swimming trunks, bathing trunks", "swing", "switch, electric switch, electrical switch", "syringe", "table lamp", "tank, army tank, armored combat vehicle, armoured combat vehicle", "tape player", "teapot", "teddy, teddy bear", "television, television system", "tennis ball", "thatch, thatched roof", "theater curtain, theatre curtain", "thimble", "thresher, thrasher, threshing machine", "throne", "tile roof", "toaster", "tobacco shop, tobacconist shop, tobacconist", "toilet seat", "torch", "totem pole", "tow truck, tow car, wrecker", "toyshop", "tractor", "trailer truck, tractor trailer, trucking rig, rig, articulated lorry, semi", "tray", "trench coat", "tricycle, trike, velocipede", "trimaran", "tripod", "triumphal arch", "trolleybus, trolley coach, trackless trolley", "trombone", "tub, vat", "turnstile", "typewriter keyboard", "umbrella", "unicycle, monocycle", "upright, upright piano", "vacuum, vacuum cleaner", "vase", "vault", "velvet", "vending machine", "vestment", "viaduct", "violin, fiddle", "volleyball", "waffle iron", "wall clock", "wallet, billfold, notecase, pocketbook", "wardrobe, closet, press", "warplane, military plane", "washbasin, handbasin, washbowl, lavabo, wash-hand basin", "washer, automatic washer, washing machine", "water bottle", "water jug", "water tower", "whiskey jug", "whistle", "wig", "window screen", "window shade", "windsor tie", "wine bottle", "wing", "wok", "wooden spoon", "wool, woolen, woollen", "worm fence, snake fence, snake-rail fence, virginia fence", "wreck", "yawl", "yurt", "web site, website, internet site, site", "comic book", "crossword puzzle, crossword", "street sign", "traffic light, traffic signal, stoplight", "book jacket, dust cover, dust jacket, dust wrapper", "menu", "plate", "guacamole", "consomme", "hot pot, hotpot", "trifle", "ice cream, icecream", "ice lolly, lolly, lollipop, popsicle", "french loaf", "bagel, beigel", "pretzel", "cheeseburger", "hotdog, hot dog, red hot", "mashed potato", "head cabbage", "broccoli", "cauliflower", "zucchini, courgette", "spaghetti squash", "acorn squash", "butternut squash", "cucumber, cuke", "artichoke, globe artichoke", "bell pepper", "cardoon", "mushroom", "granny smith", "strawberry", "orange", "lemon", "fig", "pineapple, ananas", "banana", "jackfruit, jak, jack", "custard apple", "pomegranate", "hay", "carbonara", "chocolate sauce, chocolate syrup", "dough", "meat loaf, meatloaf", "pizza, pizza pie", "potpie", "burrito", "red wine", "espresso", "cup", "eggnog", "alp", "bubble", "cliff, drop, drop-off", "coral reef", "geyser", "lakeside, lakeshore", "promontory, headland, head, foreland", "sandbar, sand bar", "seashore, coast, seacoast, sea-coast", "valley, vale", "volcano", "ballplayer, baseball player", "groom, bridegroom", "scuba diver", "rapeseed", "daisy", "yellow lady's slipper, yellow lady-slipper, cypripedium calceolus, cypripedium parviflorum", "corn", "acorn", "hip, rose hip, rosehip", "buckeye, horse chestnut, conker", "coral fungus", "agaric", "gyromitra", "stinkhorn, carrion fungus", "earthstar", "hen-of-the-woods, hen of the woods, polyporus frondosus, grifola frondosa", "bolete", "ear, spike, capitulum", "toilet tissue, toilet paper, bathroom tissue" ]
facebook/levit-128
# LeViT LeViT-128 model pre-trained on ImageNet-1k at resolution 224x224. It was introduced in the paper [LeViT: a Vision Transformer in ConvNet's Clothing for Faster Inference ](https://arxiv.org/abs/2104.01136) by Graham et al. and first released in [this repository](https://github.com/facebookresearch/LeViT). Disclaimer: The team releasing LeViT did not write a model card for this model so this model card has been written by the Hugging Face team. ## Usage Here is how to use this model to classify an image of the COCO 2017 dataset into one of the 1,000 ImageNet classes: ```python from transformers import LevitFeatureExtractor, LevitForImageClassificationWithTeacher from PIL import Image import requests url = 'http://images.cocodataset.org/val2017/000000039769.jpg' image = Image.open(requests.get(url, stream=True).raw) feature_extractor = LevitFeatureExtractor.from_pretrained('facebook/levit-128') model = LevitForImageClassificationWithTeacher.from_pretrained('facebook/levit-128') inputs = feature_extractor(images=image, return_tensors="pt") outputs = model(**inputs) logits = outputs.logits # model predicts one of the 1000 ImageNet classes predicted_class_idx = logits.argmax(-1).item() print("Predicted class:", model.config.id2label[predicted_class_idx]) ```
[ "tench, tinca tinca", "goldfish, carassius auratus", "great white shark, white shark, man-eater, man-eating shark, carcharodon carcharias", "tiger shark, galeocerdo cuvieri", "hammerhead, hammerhead shark", "electric ray, crampfish, numbfish, torpedo", "stingray", "cock", "hen", "ostrich, struthio camelus", "brambling, fringilla montifringilla", "goldfinch, carduelis carduelis", "house finch, linnet, carpodacus mexicanus", "junco, snowbird", "indigo bunting, indigo finch, indigo bird, passerina cyanea", "robin, american robin, turdus migratorius", "bulbul", "jay", "magpie", "chickadee", "water ouzel, dipper", "kite", "bald eagle, american eagle, haliaeetus leucocephalus", "vulture", "great grey owl, great gray owl, strix nebulosa", "european fire salamander, salamandra salamandra", "common newt, triturus vulgaris", "eft", "spotted salamander, ambystoma maculatum", "axolotl, mud puppy, ambystoma mexicanum", "bullfrog, rana catesbeiana", "tree frog, tree-frog", "tailed frog, bell toad, ribbed toad, tailed toad, ascaphus trui", "loggerhead, loggerhead turtle, caretta caretta", "leatherback turtle, leatherback, leathery turtle, dermochelys coriacea", "mud turtle", "terrapin", "box turtle, box tortoise", "banded gecko", "common iguana, iguana, iguana iguana", "american chameleon, anole, anolis carolinensis", "whiptail, whiptail lizard", "agama", "frilled lizard, chlamydosaurus kingi", "alligator lizard", "gila monster, heloderma suspectum", "green lizard, lacerta viridis", "african chameleon, chamaeleo chamaeleon", "komodo dragon, komodo lizard, dragon lizard, giant lizard, varanus komodoensis", "african crocodile, nile crocodile, crocodylus niloticus", "american alligator, alligator mississipiensis", "triceratops", "thunder snake, worm snake, carphophis amoenus", "ringneck snake, ring-necked snake, ring snake", "hognose snake, puff adder, sand viper", "green snake, grass snake", "king snake, kingsnake", "garter snake, grass snake", "water snake", "vine snake", "night snake, hypsiglena torquata", "boa constrictor, constrictor constrictor", "rock python, rock snake, python sebae", "indian cobra, naja naja", "green mamba", "sea snake", "horned viper, cerastes, sand viper, horned asp, cerastes cornutus", "diamondback, diamondback rattlesnake, crotalus adamanteus", "sidewinder, horned rattlesnake, crotalus cerastes", "trilobite", "harvestman, daddy longlegs, phalangium opilio", "scorpion", "black and gold garden spider, argiope aurantia", "barn spider, araneus cavaticus", "garden spider, aranea diademata", "black widow, latrodectus mactans", "tarantula", "wolf spider, hunting spider", "tick", "centipede", "black grouse", "ptarmigan", "ruffed grouse, partridge, bonasa umbellus", "prairie chicken, prairie grouse, prairie fowl", "peacock", "quail", "partridge", "african grey, african gray, psittacus erithacus", "macaw", "sulphur-crested cockatoo, kakatoe galerita, cacatua galerita", "lorikeet", "coucal", "bee eater", "hornbill", "hummingbird", "jacamar", "toucan", "drake", "red-breasted merganser, mergus serrator", "goose", "black swan, cygnus atratus", "tusker", "echidna, spiny anteater, anteater", "platypus, duckbill, duckbilled platypus, duck-billed platypus, ornithorhynchus anatinus", "wallaby, brush kangaroo", "koala, koala bear, kangaroo bear, native bear, phascolarctos cinereus", "wombat", "jellyfish", "sea anemone, anemone", "brain coral", "flatworm, platyhelminth", "nematode, nematode worm, roundworm", "conch", "snail", "slug", "sea slug, nudibranch", "chiton, coat-of-mail shell, sea cradle, polyplacophore", "chambered nautilus, pearly nautilus, nautilus", "dungeness crab, cancer magister", "rock crab, cancer irroratus", "fiddler crab", "king crab, alaska crab, alaskan king crab, alaska king crab, paralithodes camtschatica", "american lobster, northern lobster, maine lobster, homarus americanus", "spiny lobster, langouste, rock lobster, crawfish, crayfish, sea crawfish", "crayfish, crawfish, crawdad, crawdaddy", "hermit crab", "isopod", "white stork, ciconia ciconia", "black stork, ciconia nigra", "spoonbill", "flamingo", "little blue heron, egretta caerulea", "american egret, great white heron, egretta albus", "bittern", "crane", "limpkin, aramus pictus", "european gallinule, porphyrio porphyrio", "american coot, marsh hen, mud hen, water hen, fulica americana", "bustard", "ruddy turnstone, arenaria interpres", "red-backed sandpiper, dunlin, erolia alpina", "redshank, tringa totanus", "dowitcher", "oystercatcher, oyster catcher", "pelican", "king penguin, aptenodytes patagonica", "albatross, mollymawk", "grey whale, gray whale, devilfish, eschrichtius gibbosus, eschrichtius robustus", "killer whale, killer, orca, grampus, sea wolf, orcinus orca", "dugong, dugong dugon", "sea lion", "chihuahua", "japanese spaniel", "maltese dog, maltese terrier, maltese", "pekinese, pekingese, peke", "shih-tzu", "blenheim spaniel", "papillon", "toy terrier", "rhodesian ridgeback", "afghan hound, afghan", "basset, basset hound", "beagle", "bloodhound, sleuthhound", "bluetick", "black-and-tan coonhound", "walker hound, walker foxhound", "english foxhound", "redbone", "borzoi, russian wolfhound", "irish wolfhound", "italian greyhound", "whippet", "ibizan hound, ibizan podenco", "norwegian elkhound, elkhound", "otterhound, otter hound", "saluki, gazelle hound", "scottish deerhound, deerhound", "weimaraner", "staffordshire bullterrier, staffordshire bull terrier", "american staffordshire terrier, staffordshire terrier, american pit bull terrier, pit bull terrier", "bedlington terrier", "border terrier", "kerry blue terrier", "irish terrier", "norfolk terrier", "norwich terrier", "yorkshire terrier", "wire-haired fox terrier", "lakeland terrier", "sealyham terrier, sealyham", "airedale, airedale terrier", "cairn, cairn terrier", "australian terrier", "dandie dinmont, dandie dinmont terrier", "boston bull, boston terrier", "miniature schnauzer", "giant schnauzer", "standard schnauzer", "scotch terrier, scottish terrier, scottie", "tibetan terrier, chrysanthemum dog", "silky terrier, sydney silky", "soft-coated wheaten terrier", "west highland white terrier", "lhasa, lhasa apso", "flat-coated retriever", "curly-coated retriever", "golden retriever", "labrador retriever", "chesapeake bay retriever", "german short-haired pointer", "vizsla, hungarian pointer", "english setter", "irish setter, red setter", "gordon setter", "brittany spaniel", "clumber, clumber spaniel", "english springer, english springer spaniel", "welsh springer spaniel", "cocker spaniel, english cocker spaniel, cocker", "sussex spaniel", "irish water spaniel", "kuvasz", "schipperke", "groenendael", "malinois", "briard", "kelpie", "komondor", "old english sheepdog, bobtail", "shetland sheepdog, shetland sheep dog, shetland", "collie", "border collie", "bouvier des flandres, bouviers des flandres", "rottweiler", "german shepherd, german shepherd dog, german police dog, alsatian", "doberman, doberman pinscher", "miniature pinscher", "greater swiss mountain dog", "bernese mountain dog", "appenzeller", "entlebucher", "boxer", "bull mastiff", "tibetan mastiff", "french bulldog", "great dane", "saint bernard, st bernard", "eskimo dog, husky", "malamute, malemute, alaskan malamute", "siberian husky", "dalmatian, coach dog, carriage dog", "affenpinscher, monkey pinscher, monkey dog", "basenji", "pug, pug-dog", "leonberg", "newfoundland, newfoundland dog", "great pyrenees", "samoyed, samoyede", "pomeranian", "chow, chow chow", "keeshond", "brabancon griffon", "pembroke, pembroke welsh corgi", "cardigan, cardigan welsh corgi", "toy poodle", "miniature poodle", "standard poodle", "mexican hairless", "timber wolf, grey wolf, gray wolf, canis lupus", "white wolf, arctic wolf, canis lupus tundrarum", "red wolf, maned wolf, canis rufus, canis niger", "coyote, prairie wolf, brush wolf, canis latrans", "dingo, warrigal, warragal, canis dingo", "dhole, cuon alpinus", "african hunting dog, hyena dog, cape hunting dog, lycaon pictus", "hyena, hyaena", "red fox, vulpes vulpes", "kit fox, vulpes macrotis", "arctic fox, white fox, alopex lagopus", "grey fox, gray fox, urocyon cinereoargenteus", "tabby, tabby cat", "tiger cat", "persian cat", "siamese cat, siamese", "egyptian cat", "cougar, puma, catamount, mountain lion, painter, panther, felis concolor", "lynx, catamount", "leopard, panthera pardus", "snow leopard, ounce, panthera uncia", "jaguar, panther, panthera onca, felis onca", "lion, king of beasts, panthera leo", "tiger, panthera tigris", "cheetah, chetah, acinonyx jubatus", "brown bear, bruin, ursus arctos", "american black bear, black bear, ursus americanus, euarctos americanus", "ice bear, polar bear, ursus maritimus, thalarctos maritimus", "sloth bear, melursus ursinus, ursus ursinus", "mongoose", "meerkat, mierkat", "tiger beetle", "ladybug, ladybeetle, lady beetle, ladybird, ladybird beetle", "ground beetle, carabid beetle", "long-horned beetle, longicorn, longicorn beetle", "leaf beetle, chrysomelid", "dung beetle", "rhinoceros beetle", "weevil", "fly", "bee", "ant, emmet, pismire", "grasshopper, hopper", "cricket", "walking stick, walkingstick, stick insect", "cockroach, roach", "mantis, mantid", "cicada, cicala", "leafhopper", "lacewing, lacewing fly", "dragonfly, darning needle, devil's darning needle, sewing needle, snake feeder, snake doctor, mosquito hawk, skeeter hawk", "damselfly", "admiral", "ringlet, ringlet butterfly", "monarch, monarch butterfly, milkweed butterfly, danaus plexippus", "cabbage butterfly", "sulphur butterfly, sulfur butterfly", "lycaenid, lycaenid butterfly", "starfish, sea star", "sea urchin", "sea cucumber, holothurian", "wood rabbit, cottontail, cottontail rabbit", "hare", "angora, angora rabbit", "hamster", "porcupine, hedgehog", "fox squirrel, eastern fox squirrel, sciurus niger", "marmot", "beaver", "guinea pig, cavia cobaya", "sorrel", "zebra", "hog, pig, grunter, squealer, sus scrofa", "wild boar, boar, sus scrofa", "warthog", "hippopotamus, hippo, river horse, hippopotamus amphibius", "ox", "water buffalo, water ox, asiatic buffalo, bubalus bubalis", "bison", "ram, tup", "bighorn, bighorn sheep, cimarron, rocky mountain bighorn, rocky mountain sheep, ovis canadensis", "ibex, capra ibex", "hartebeest", "impala, aepyceros melampus", "gazelle", "arabian camel, dromedary, camelus dromedarius", "llama", "weasel", "mink", "polecat, fitch, foulmart, foumart, mustela putorius", "black-footed ferret, ferret, mustela nigripes", "otter", "skunk, polecat, wood pussy", "badger", "armadillo", "three-toed sloth, ai, bradypus tridactylus", "orangutan, orang, orangutang, pongo pygmaeus", "gorilla, gorilla gorilla", "chimpanzee, chimp, pan troglodytes", "gibbon, hylobates lar", "siamang, hylobates syndactylus, symphalangus syndactylus", "guenon, guenon monkey", "patas, hussar monkey, erythrocebus patas", "baboon", "macaque", "langur", "colobus, colobus monkey", "proboscis monkey, nasalis larvatus", "marmoset", "capuchin, ringtail, cebus capucinus", "howler monkey, howler", "titi, titi monkey", "spider monkey, ateles geoffroyi", "squirrel monkey, saimiri sciureus", "madagascar cat, ring-tailed lemur, lemur catta", "indri, indris, indri indri, indri brevicaudatus", "indian elephant, elephas maximus", "african elephant, loxodonta africana", "lesser panda, red panda, panda, bear cat, cat bear, ailurus fulgens", "giant panda, panda, panda bear, coon bear, ailuropoda melanoleuca", "barracouta, snoek", "eel", "coho, cohoe, coho salmon, blue jack, silver salmon, oncorhynchus kisutch", "rock beauty, holocanthus tricolor", "anemone fish", "sturgeon", "gar, garfish, garpike, billfish, lepisosteus osseus", "lionfish", "puffer, pufferfish, blowfish, globefish", "abacus", "abaya", "academic gown, academic robe, judge's robe", "accordion, piano accordion, squeeze box", "acoustic guitar", "aircraft carrier, carrier, flattop, attack aircraft carrier", "airliner", "airship, dirigible", "altar", "ambulance", "amphibian, amphibious vehicle", "analog clock", "apiary, bee house", "apron", "ashcan, trash can, garbage can, wastebin, ash bin, ash-bin, ashbin, dustbin, trash barrel, trash bin", "assault rifle, assault gun", "backpack, back pack, knapsack, packsack, rucksack, haversack", "bakery, bakeshop, bakehouse", "balance beam, beam", "balloon", "ballpoint, ballpoint pen, ballpen, biro", "band aid", "banjo", "bannister, banister, balustrade, balusters, handrail", "barbell", "barber chair", "barbershop", "barn", "barometer", "barrel, cask", "barrow, garden cart, lawn cart, wheelbarrow", "baseball", "basketball", "bassinet", "bassoon", "bathing cap, swimming cap", "bath towel", "bathtub, bathing tub, bath, tub", "beach wagon, station wagon, wagon, estate car, beach waggon, station waggon, waggon", "beacon, lighthouse, beacon light, pharos", "beaker", "bearskin, busby, shako", "beer bottle", "beer glass", "bell cote, bell cot", "bib", "bicycle-built-for-two, tandem bicycle, tandem", "bikini, two-piece", "binder, ring-binder", "binoculars, field glasses, opera glasses", "birdhouse", "boathouse", "bobsled, bobsleigh, bob", "bolo tie, bolo, bola tie, bola", "bonnet, poke bonnet", "bookcase", "bookshop, bookstore, bookstall", "bottlecap", "bow", "bow tie, bow-tie, bowtie", "brass, memorial tablet, plaque", "brassiere, bra, bandeau", "breakwater, groin, groyne, mole, bulwark, seawall, jetty", "breastplate, aegis, egis", "broom", "bucket, pail", "buckle", "bulletproof vest", "bullet train, bullet", "butcher shop, meat market", "cab, hack, taxi, taxicab", "caldron, cauldron", "candle, taper, wax light", "cannon", "canoe", "can opener, tin opener", "cardigan", "car mirror", "carousel, carrousel, merry-go-round, roundabout, whirligig", "carpenter's kit, tool kit", "carton", "car wheel", "cash machine, cash dispenser, automated teller machine, automatic teller machine, automated teller, automatic teller, atm", "cassette", "cassette player", "castle", "catamaran", "cd player", "cello, violoncello", "cellular telephone, cellular phone, cellphone, cell, mobile phone", "chain", "chainlink fence", "chain mail, ring mail, mail, chain armor, chain armour, ring armor, ring armour", "chain saw, chainsaw", "chest", "chiffonier, commode", "chime, bell, gong", "china cabinet, china closet", "christmas stocking", "church, church building", "cinema, movie theater, movie theatre, movie house, picture palace", "cleaver, meat cleaver, chopper", "cliff dwelling", "cloak", "clog, geta, patten, sabot", "cocktail shaker", "coffee mug", "coffeepot", "coil, spiral, volute, whorl, helix", "combination lock", "computer keyboard, keypad", "confectionery, confectionary, candy store", "container ship, containership, container vessel", "convertible", "corkscrew, bottle screw", "cornet, horn, trumpet, trump", "cowboy boot", "cowboy hat, ten-gallon hat", "cradle", "crane", "crash helmet", "crate", "crib, cot", "crock pot", "croquet ball", "crutch", "cuirass", "dam, dike, dyke", "desk", "desktop computer", "dial telephone, dial phone", "diaper, nappy, napkin", "digital clock", "digital watch", "dining table, board", "dishrag, dishcloth", "dishwasher, dish washer, dishwashing machine", "disk brake, disc brake", "dock, dockage, docking facility", "dogsled, dog sled, dog sleigh", "dome", "doormat, welcome mat", "drilling platform, offshore rig", "drum, membranophone, tympan", "drumstick", "dumbbell", "dutch oven", "electric fan, blower", "electric guitar", "electric locomotive", "entertainment center", "envelope", "espresso maker", "face powder", "feather boa, boa", "file, file cabinet, filing cabinet", "fireboat", "fire engine, fire truck", "fire screen, fireguard", "flagpole, flagstaff", "flute, transverse flute", "folding chair", "football helmet", "forklift", "fountain", "fountain pen", "four-poster", "freight car", "french horn, horn", "frying pan, frypan, skillet", "fur coat", "garbage truck, dustcart", "gasmask, respirator, gas helmet", "gas pump, gasoline pump, petrol pump, island dispenser", "goblet", "go-kart", "golf ball", "golfcart, golf cart", "gondola", "gong, tam-tam", "gown", "grand piano, grand", "greenhouse, nursery, glasshouse", "grille, radiator grille", "grocery store, grocery, food market, market", "guillotine", "hair slide", "hair spray", "half track", "hammer", "hamper", "hand blower, blow dryer, blow drier, hair dryer, hair drier", "hand-held computer, hand-held microcomputer", "handkerchief, hankie, hanky, hankey", "hard disc, hard disk, fixed disk", "harmonica, mouth organ, harp, mouth harp", "harp", "harvester, reaper", "hatchet", "holster", "home theater, home theatre", "honeycomb", "hook, claw", "hoopskirt, crinoline", "horizontal bar, high bar", "horse cart, horse-cart", "hourglass", "ipod", "iron, smoothing iron", "jack-o'-lantern", "jean, blue jean, denim", "jeep, landrover", "jersey, t-shirt, tee shirt", "jigsaw puzzle", "jinrikisha, ricksha, rickshaw", "joystick", "kimono", "knee pad", "knot", "lab coat, laboratory coat", "ladle", "lampshade, lamp shade", "laptop, laptop computer", "lawn mower, mower", "lens cap, lens cover", "letter opener, paper knife, paperknife", "library", "lifeboat", "lighter, light, igniter, ignitor", "limousine, limo", "liner, ocean liner", "lipstick, lip rouge", "loafer", "lotion", "loudspeaker, speaker, speaker unit, loudspeaker system, speaker system", "loupe, jeweler's loupe", "lumbermill, sawmill", "magnetic compass", "mailbag, postbag", "mailbox, letter box", "maillot", "maillot, tank suit", "manhole cover", "maraca", "marimba, xylophone", "mask", "matchstick", "maypole", "maze, labyrinth", "measuring cup", "medicine chest, medicine cabinet", "megalith, megalithic structure", "microphone, mike", "microwave, microwave oven", "military uniform", "milk can", "minibus", "miniskirt, mini", "minivan", "missile", "mitten", "mixing bowl", "mobile home, manufactured home", "model t", "modem", "monastery", "monitor", "moped", "mortar", "mortarboard", "mosque", "mosquito net", "motor scooter, scooter", "mountain bike, all-terrain bike, off-roader", "mountain tent", "mouse, computer mouse", "mousetrap", "moving van", "muzzle", "nail", "neck brace", "necklace", "nipple", "notebook, notebook computer", "obelisk", "oboe, hautboy, hautbois", "ocarina, sweet potato", "odometer, hodometer, mileometer, milometer", "oil filter", "organ, pipe organ", "oscilloscope, scope, cathode-ray oscilloscope, cro", "overskirt", "oxcart", "oxygen mask", "packet", "paddle, boat paddle", "paddlewheel, paddle wheel", "padlock", "paintbrush", "pajama, pyjama, pj's, jammies", "palace", "panpipe, pandean pipe, syrinx", "paper towel", "parachute, chute", "parallel bars, bars", "park bench", "parking meter", "passenger car, coach, carriage", "patio, terrace", "pay-phone, pay-station", "pedestal, plinth, footstall", "pencil box, pencil case", "pencil sharpener", "perfume, essence", "petri dish", "photocopier", "pick, plectrum, plectron", "pickelhaube", "picket fence, paling", "pickup, pickup truck", "pier", "piggy bank, penny bank", "pill bottle", "pillow", "ping-pong ball", "pinwheel", "pirate, pirate ship", "pitcher, ewer", "plane, carpenter's plane, woodworking plane", "planetarium", "plastic bag", "plate rack", "plow, plough", "plunger, plumber's helper", "polaroid camera, polaroid land camera", "pole", "police van, police wagon, paddy wagon, patrol wagon, wagon, black maria", "poncho", "pool table, billiard table, snooker table", "pop bottle, soda bottle", "pot, flowerpot", "potter's wheel", "power drill", "prayer rug, prayer mat", "printer", "prison, prison house", "projectile, missile", "projector", "puck, hockey puck", "punching bag, punch bag, punching ball, punchball", "purse", "quill, quill pen", "quilt, comforter, comfort, puff", "racer, race car, racing car", "racket, racquet", "radiator", "radio, wireless", "radio telescope, radio reflector", "rain barrel", "recreational vehicle, rv, r.v.", "reel", "reflex camera", "refrigerator, icebox", "remote control, remote", "restaurant, eating house, eating place, eatery", "revolver, six-gun, six-shooter", "rifle", "rocking chair, rocker", "rotisserie", "rubber eraser, rubber, pencil eraser", "rugby ball", "rule, ruler", "running shoe", "safe", "safety pin", "saltshaker, salt shaker", "sandal", "sarong", "sax, saxophone", "scabbard", "scale, weighing machine", "school bus", "schooner", "scoreboard", "screen, crt screen", "screw", "screwdriver", "seat belt, seatbelt", "sewing machine", "shield, buckler", "shoe shop, shoe-shop, shoe store", "shoji", "shopping basket", "shopping cart", "shovel", "shower cap", "shower curtain", "ski", "ski mask", "sleeping bag", "slide rule, slipstick", "sliding door", "slot, one-armed bandit", "snorkel", "snowmobile", "snowplow, snowplough", "soap dispenser", "soccer ball", "sock", "solar dish, solar collector, solar furnace", "sombrero", "soup bowl", "space bar", "space heater", "space shuttle", "spatula", "speedboat", "spider web, spider's web", "spindle", "sports car, sport car", "spotlight, spot", "stage", "steam locomotive", "steel arch bridge", "steel drum", "stethoscope", "stole", "stone wall", "stopwatch, stop watch", "stove", "strainer", "streetcar, tram, tramcar, trolley, trolley car", "stretcher", "studio couch, day bed", "stupa, tope", "submarine, pigboat, sub, u-boat", "suit, suit of clothes", "sundial", "sunglass", "sunglasses, dark glasses, shades", "sunscreen, sunblock, sun blocker", "suspension bridge", "swab, swob, mop", "sweatshirt", "swimming trunks, bathing trunks", "swing", "switch, electric switch, electrical switch", "syringe", "table lamp", "tank, army tank, armored combat vehicle, armoured combat vehicle", "tape player", "teapot", "teddy, teddy bear", "television, television system", "tennis ball", "thatch, thatched roof", "theater curtain, theatre curtain", "thimble", "thresher, thrasher, threshing machine", "throne", "tile roof", "toaster", "tobacco shop, tobacconist shop, tobacconist", "toilet seat", "torch", "totem pole", "tow truck, tow car, wrecker", "toyshop", "tractor", "trailer truck, tractor trailer, trucking rig, rig, articulated lorry, semi", "tray", "trench coat", "tricycle, trike, velocipede", "trimaran", "tripod", "triumphal arch", "trolleybus, trolley coach, trackless trolley", "trombone", "tub, vat", "turnstile", "typewriter keyboard", "umbrella", "unicycle, monocycle", "upright, upright piano", "vacuum, vacuum cleaner", "vase", "vault", "velvet", "vending machine", "vestment", "viaduct", "violin, fiddle", "volleyball", "waffle iron", "wall clock", "wallet, billfold, notecase, pocketbook", "wardrobe, closet, press", "warplane, military plane", "washbasin, handbasin, washbowl, lavabo, wash-hand basin", "washer, automatic washer, washing machine", "water bottle", "water jug", "water tower", "whiskey jug", "whistle", "wig", "window screen", "window shade", "windsor tie", "wine bottle", "wing", "wok", "wooden spoon", "wool, woolen, woollen", "worm fence, snake fence, snake-rail fence, virginia fence", "wreck", "yawl", "yurt", "web site, website, internet site, site", "comic book", "crossword puzzle, crossword", "street sign", "traffic light, traffic signal, stoplight", "book jacket, dust cover, dust jacket, dust wrapper", "menu", "plate", "guacamole", "consomme", "hot pot, hotpot", "trifle", "ice cream, icecream", "ice lolly, lolly, lollipop, popsicle", "french loaf", "bagel, beigel", "pretzel", "cheeseburger", "hotdog, hot dog, red hot", "mashed potato", "head cabbage", "broccoli", "cauliflower", "zucchini, courgette", "spaghetti squash", "acorn squash", "butternut squash", "cucumber, cuke", "artichoke, globe artichoke", "bell pepper", "cardoon", "mushroom", "granny smith", "strawberry", "orange", "lemon", "fig", "pineapple, ananas", "banana", "jackfruit, jak, jack", "custard apple", "pomegranate", "hay", "carbonara", "chocolate sauce, chocolate syrup", "dough", "meat loaf, meatloaf", "pizza, pizza pie", "potpie", "burrito", "red wine", "espresso", "cup", "eggnog", "alp", "bubble", "cliff, drop, drop-off", "coral reef", "geyser", "lakeside, lakeshore", "promontory, headland, head, foreland", "sandbar, sand bar", "seashore, coast, seacoast, sea-coast", "valley, vale", "volcano", "ballplayer, baseball player", "groom, bridegroom", "scuba diver", "rapeseed", "daisy", "yellow lady's slipper, yellow lady-slipper, cypripedium calceolus, cypripedium parviflorum", "corn", "acorn", "hip, rose hip, rosehip", "buckeye, horse chestnut, conker", "coral fungus", "agaric", "gyromitra", "stinkhorn, carrion fungus", "earthstar", "hen-of-the-woods, hen of the woods, polyporus frondosus, grifola frondosa", "bolete", "ear, spike, capitulum", "toilet tissue, toilet paper, bathroom tissue" ]
facebook/levit-128S
# LeViT LeViT-128S model pre-trained on ImageNet-1k at resolution 224x224. It was introduced in the paper [LeViT: a Vision Transformer in ConvNet's Clothing for Faster Inference ](https://arxiv.org/abs/2104.01136) by Graham et al. and first released in [this repository](https://github.com/facebookresearch/LeViT). Disclaimer: The team releasing LeViT did not write a model card for this model so this model card has been written by the Hugging Face team. ## Usage Here is how to use this model to classify an image of the COCO 2017 dataset into one of the 1,000 ImageNet classes: ```python from transformers import LevitFeatureExtractor, LevitForImageClassificationWithTeacher from PIL import Image import requests url = 'http://images.cocodataset.org/val2017/000000039769.jpg' image = Image.open(requests.get(url, stream=True).raw) feature_extractor = LevitFeatureExtractor.from_pretrained('facebook/levit-128S') model = LevitForImageClassificationWithTeacher.from_pretrained('facebook/levit-128S') inputs = feature_extractor(images=image, return_tensors="pt") outputs = model(**inputs) logits = outputs.logits # model predicts one of the 1000 ImageNet classes predicted_class_idx = logits.argmax(-1).item() print("Predicted class:", model.config.id2label[predicted_class_idx]) ```
[ "tench, tinca tinca", "goldfish, carassius auratus", "great white shark, white shark, man-eater, man-eating shark, carcharodon carcharias", "tiger shark, galeocerdo cuvieri", "hammerhead, hammerhead shark", "electric ray, crampfish, numbfish, torpedo", "stingray", "cock", "hen", "ostrich, struthio camelus", "brambling, fringilla montifringilla", "goldfinch, carduelis carduelis", "house finch, linnet, carpodacus mexicanus", "junco, snowbird", "indigo bunting, indigo finch, indigo bird, passerina cyanea", "robin, american robin, turdus migratorius", "bulbul", "jay", "magpie", "chickadee", "water ouzel, dipper", "kite", "bald eagle, american eagle, haliaeetus leucocephalus", "vulture", "great grey owl, great gray owl, strix nebulosa", "european fire salamander, salamandra salamandra", "common newt, triturus vulgaris", "eft", "spotted salamander, ambystoma maculatum", "axolotl, mud puppy, ambystoma mexicanum", "bullfrog, rana catesbeiana", "tree frog, tree-frog", "tailed frog, bell toad, ribbed toad, tailed toad, ascaphus trui", "loggerhead, loggerhead turtle, caretta caretta", "leatherback turtle, leatherback, leathery turtle, dermochelys coriacea", "mud turtle", "terrapin", "box turtle, box tortoise", "banded gecko", "common iguana, iguana, iguana iguana", "american chameleon, anole, anolis carolinensis", "whiptail, whiptail lizard", "agama", "frilled lizard, chlamydosaurus kingi", "alligator lizard", "gila monster, heloderma suspectum", "green lizard, lacerta viridis", "african chameleon, chamaeleo chamaeleon", "komodo dragon, komodo lizard, dragon lizard, giant lizard, varanus komodoensis", "african crocodile, nile crocodile, crocodylus niloticus", "american alligator, alligator mississipiensis", "triceratops", "thunder snake, worm snake, carphophis amoenus", "ringneck snake, ring-necked snake, ring snake", "hognose snake, puff adder, sand viper", "green snake, grass snake", "king snake, kingsnake", "garter snake, grass snake", "water snake", "vine snake", "night snake, hypsiglena torquata", "boa constrictor, constrictor constrictor", "rock python, rock snake, python sebae", "indian cobra, naja naja", "green mamba", "sea snake", "horned viper, cerastes, sand viper, horned asp, cerastes cornutus", "diamondback, diamondback rattlesnake, crotalus adamanteus", "sidewinder, horned rattlesnake, crotalus cerastes", "trilobite", "harvestman, daddy longlegs, phalangium opilio", "scorpion", "black and gold garden spider, argiope aurantia", "barn spider, araneus cavaticus", "garden spider, aranea diademata", "black widow, latrodectus mactans", "tarantula", "wolf spider, hunting spider", "tick", "centipede", "black grouse", "ptarmigan", "ruffed grouse, partridge, bonasa umbellus", "prairie chicken, prairie grouse, prairie fowl", "peacock", "quail", "partridge", "african grey, african gray, psittacus erithacus", "macaw", "sulphur-crested cockatoo, kakatoe galerita, cacatua galerita", "lorikeet", "coucal", "bee eater", "hornbill", "hummingbird", "jacamar", "toucan", "drake", "red-breasted merganser, mergus serrator", "goose", "black swan, cygnus atratus", "tusker", "echidna, spiny anteater, anteater", "platypus, duckbill, duckbilled platypus, duck-billed platypus, ornithorhynchus anatinus", "wallaby, brush kangaroo", "koala, koala bear, kangaroo bear, native bear, phascolarctos cinereus", "wombat", "jellyfish", "sea anemone, anemone", "brain coral", "flatworm, platyhelminth", "nematode, nematode worm, roundworm", "conch", "snail", "slug", "sea slug, nudibranch", "chiton, coat-of-mail shell, sea cradle, polyplacophore", "chambered nautilus, pearly nautilus, nautilus", "dungeness crab, cancer magister", "rock crab, cancer irroratus", "fiddler crab", "king crab, alaska crab, alaskan king crab, alaska king crab, paralithodes camtschatica", "american lobster, northern lobster, maine lobster, homarus americanus", "spiny lobster, langouste, rock lobster, crawfish, crayfish, sea crawfish", "crayfish, crawfish, crawdad, crawdaddy", "hermit crab", "isopod", "white stork, ciconia ciconia", "black stork, ciconia nigra", "spoonbill", "flamingo", "little blue heron, egretta caerulea", "american egret, great white heron, egretta albus", "bittern", "crane", "limpkin, aramus pictus", "european gallinule, porphyrio porphyrio", "american coot, marsh hen, mud hen, water hen, fulica americana", "bustard", "ruddy turnstone, arenaria interpres", "red-backed sandpiper, dunlin, erolia alpina", "redshank, tringa totanus", "dowitcher", "oystercatcher, oyster catcher", "pelican", "king penguin, aptenodytes patagonica", "albatross, mollymawk", "grey whale, gray whale, devilfish, eschrichtius gibbosus, eschrichtius robustus", "killer whale, killer, orca, grampus, sea wolf, orcinus orca", "dugong, dugong dugon", "sea lion", "chihuahua", "japanese spaniel", "maltese dog, maltese terrier, maltese", "pekinese, pekingese, peke", "shih-tzu", "blenheim spaniel", "papillon", "toy terrier", "rhodesian ridgeback", "afghan hound, afghan", "basset, basset hound", "beagle", "bloodhound, sleuthhound", "bluetick", "black-and-tan coonhound", "walker hound, walker foxhound", "english foxhound", "redbone", "borzoi, russian wolfhound", "irish wolfhound", "italian greyhound", "whippet", "ibizan hound, ibizan podenco", "norwegian elkhound, elkhound", "otterhound, otter hound", "saluki, gazelle hound", "scottish deerhound, deerhound", "weimaraner", "staffordshire bullterrier, staffordshire bull terrier", "american staffordshire terrier, staffordshire terrier, american pit bull terrier, pit bull terrier", "bedlington terrier", "border terrier", "kerry blue terrier", "irish terrier", "norfolk terrier", "norwich terrier", "yorkshire terrier", "wire-haired fox terrier", "lakeland terrier", "sealyham terrier, sealyham", "airedale, airedale terrier", "cairn, cairn terrier", "australian terrier", "dandie dinmont, dandie dinmont terrier", "boston bull, boston terrier", "miniature schnauzer", "giant schnauzer", "standard schnauzer", "scotch terrier, scottish terrier, scottie", "tibetan terrier, chrysanthemum dog", "silky terrier, sydney silky", "soft-coated wheaten terrier", "west highland white terrier", "lhasa, lhasa apso", "flat-coated retriever", "curly-coated retriever", "golden retriever", "labrador retriever", "chesapeake bay retriever", "german short-haired pointer", "vizsla, hungarian pointer", "english setter", "irish setter, red setter", "gordon setter", "brittany spaniel", "clumber, clumber spaniel", "english springer, english springer spaniel", "welsh springer spaniel", "cocker spaniel, english cocker spaniel, cocker", "sussex spaniel", "irish water spaniel", "kuvasz", "schipperke", "groenendael", "malinois", "briard", "kelpie", "komondor", "old english sheepdog, bobtail", "shetland sheepdog, shetland sheep dog, shetland", "collie", "border collie", "bouvier des flandres, bouviers des flandres", "rottweiler", "german shepherd, german shepherd dog, german police dog, alsatian", "doberman, doberman pinscher", "miniature pinscher", "greater swiss mountain dog", "bernese mountain dog", "appenzeller", "entlebucher", "boxer", "bull mastiff", "tibetan mastiff", "french bulldog", "great dane", "saint bernard, st bernard", "eskimo dog, husky", "malamute, malemute, alaskan malamute", "siberian husky", "dalmatian, coach dog, carriage dog", "affenpinscher, monkey pinscher, monkey dog", "basenji", "pug, pug-dog", "leonberg", "newfoundland, newfoundland dog", "great pyrenees", "samoyed, samoyede", "pomeranian", "chow, chow chow", "keeshond", "brabancon griffon", "pembroke, pembroke welsh corgi", "cardigan, cardigan welsh corgi", "toy poodle", "miniature poodle", "standard poodle", "mexican hairless", "timber wolf, grey wolf, gray wolf, canis lupus", "white wolf, arctic wolf, canis lupus tundrarum", "red wolf, maned wolf, canis rufus, canis niger", "coyote, prairie wolf, brush wolf, canis latrans", "dingo, warrigal, warragal, canis dingo", "dhole, cuon alpinus", "african hunting dog, hyena dog, cape hunting dog, lycaon pictus", "hyena, hyaena", "red fox, vulpes vulpes", "kit fox, vulpes macrotis", "arctic fox, white fox, alopex lagopus", "grey fox, gray fox, urocyon cinereoargenteus", "tabby, tabby cat", "tiger cat", "persian cat", "siamese cat, siamese", "egyptian cat", "cougar, puma, catamount, mountain lion, painter, panther, felis concolor", "lynx, catamount", "leopard, panthera pardus", "snow leopard, ounce, panthera uncia", "jaguar, panther, panthera onca, felis onca", "lion, king of beasts, panthera leo", "tiger, panthera tigris", "cheetah, chetah, acinonyx jubatus", "brown bear, bruin, ursus arctos", "american black bear, black bear, ursus americanus, euarctos americanus", "ice bear, polar bear, ursus maritimus, thalarctos maritimus", "sloth bear, melursus ursinus, ursus ursinus", "mongoose", "meerkat, mierkat", "tiger beetle", "ladybug, ladybeetle, lady beetle, ladybird, ladybird beetle", "ground beetle, carabid beetle", "long-horned beetle, longicorn, longicorn beetle", "leaf beetle, chrysomelid", "dung beetle", "rhinoceros beetle", "weevil", "fly", "bee", "ant, emmet, pismire", "grasshopper, hopper", "cricket", "walking stick, walkingstick, stick insect", "cockroach, roach", "mantis, mantid", "cicada, cicala", "leafhopper", "lacewing, lacewing fly", "dragonfly, darning needle, devil's darning needle, sewing needle, snake feeder, snake doctor, mosquito hawk, skeeter hawk", "damselfly", "admiral", "ringlet, ringlet butterfly", "monarch, monarch butterfly, milkweed butterfly, danaus plexippus", "cabbage butterfly", "sulphur butterfly, sulfur butterfly", "lycaenid, lycaenid butterfly", "starfish, sea star", "sea urchin", "sea cucumber, holothurian", "wood rabbit, cottontail, cottontail rabbit", "hare", "angora, angora rabbit", "hamster", "porcupine, hedgehog", "fox squirrel, eastern fox squirrel, sciurus niger", "marmot", "beaver", "guinea pig, cavia cobaya", "sorrel", "zebra", "hog, pig, grunter, squealer, sus scrofa", "wild boar, boar, sus scrofa", "warthog", "hippopotamus, hippo, river horse, hippopotamus amphibius", "ox", "water buffalo, water ox, asiatic buffalo, bubalus bubalis", "bison", "ram, tup", "bighorn, bighorn sheep, cimarron, rocky mountain bighorn, rocky mountain sheep, ovis canadensis", "ibex, capra ibex", "hartebeest", "impala, aepyceros melampus", "gazelle", "arabian camel, dromedary, camelus dromedarius", "llama", "weasel", "mink", "polecat, fitch, foulmart, foumart, mustela putorius", "black-footed ferret, ferret, mustela nigripes", "otter", "skunk, polecat, wood pussy", "badger", "armadillo", "three-toed sloth, ai, bradypus tridactylus", "orangutan, orang, orangutang, pongo pygmaeus", "gorilla, gorilla gorilla", "chimpanzee, chimp, pan troglodytes", "gibbon, hylobates lar", "siamang, hylobates syndactylus, symphalangus syndactylus", "guenon, guenon monkey", "patas, hussar monkey, erythrocebus patas", "baboon", "macaque", "langur", "colobus, colobus monkey", "proboscis monkey, nasalis larvatus", "marmoset", "capuchin, ringtail, cebus capucinus", "howler monkey, howler", "titi, titi monkey", "spider monkey, ateles geoffroyi", "squirrel monkey, saimiri sciureus", "madagascar cat, ring-tailed lemur, lemur catta", "indri, indris, indri indri, indri brevicaudatus", "indian elephant, elephas maximus", "african elephant, loxodonta africana", "lesser panda, red panda, panda, bear cat, cat bear, ailurus fulgens", "giant panda, panda, panda bear, coon bear, ailuropoda melanoleuca", "barracouta, snoek", "eel", "coho, cohoe, coho salmon, blue jack, silver salmon, oncorhynchus kisutch", "rock beauty, holocanthus tricolor", "anemone fish", "sturgeon", "gar, garfish, garpike, billfish, lepisosteus osseus", "lionfish", "puffer, pufferfish, blowfish, globefish", "abacus", "abaya", "academic gown, academic robe, judge's robe", "accordion, piano accordion, squeeze box", "acoustic guitar", "aircraft carrier, carrier, flattop, attack aircraft carrier", "airliner", "airship, dirigible", "altar", "ambulance", "amphibian, amphibious vehicle", "analog clock", "apiary, bee house", "apron", "ashcan, trash can, garbage can, wastebin, ash bin, ash-bin, ashbin, dustbin, trash barrel, trash bin", "assault rifle, assault gun", "backpack, back pack, knapsack, packsack, rucksack, haversack", "bakery, bakeshop, bakehouse", "balance beam, beam", "balloon", "ballpoint, ballpoint pen, ballpen, biro", "band aid", "banjo", "bannister, banister, balustrade, balusters, handrail", "barbell", "barber chair", "barbershop", "barn", "barometer", "barrel, cask", "barrow, garden cart, lawn cart, wheelbarrow", "baseball", "basketball", "bassinet", "bassoon", "bathing cap, swimming cap", "bath towel", "bathtub, bathing tub, bath, tub", "beach wagon, station wagon, wagon, estate car, beach waggon, station waggon, waggon", "beacon, lighthouse, beacon light, pharos", "beaker", "bearskin, busby, shako", "beer bottle", "beer glass", "bell cote, bell cot", "bib", "bicycle-built-for-two, tandem bicycle, tandem", "bikini, two-piece", "binder, ring-binder", "binoculars, field glasses, opera glasses", "birdhouse", "boathouse", "bobsled, bobsleigh, bob", "bolo tie, bolo, bola tie, bola", "bonnet, poke bonnet", "bookcase", "bookshop, bookstore, bookstall", "bottlecap", "bow", "bow tie, bow-tie, bowtie", "brass, memorial tablet, plaque", "brassiere, bra, bandeau", "breakwater, groin, groyne, mole, bulwark, seawall, jetty", "breastplate, aegis, egis", "broom", "bucket, pail", "buckle", "bulletproof vest", "bullet train, bullet", "butcher shop, meat market", "cab, hack, taxi, taxicab", "caldron, cauldron", "candle, taper, wax light", "cannon", "canoe", "can opener, tin opener", "cardigan", "car mirror", "carousel, carrousel, merry-go-round, roundabout, whirligig", "carpenter's kit, tool kit", "carton", "car wheel", "cash machine, cash dispenser, automated teller machine, automatic teller machine, automated teller, automatic teller, atm", "cassette", "cassette player", "castle", "catamaran", "cd player", "cello, violoncello", "cellular telephone, cellular phone, cellphone, cell, mobile phone", "chain", "chainlink fence", "chain mail, ring mail, mail, chain armor, chain armour, ring armor, ring armour", "chain saw, chainsaw", "chest", "chiffonier, commode", "chime, bell, gong", "china cabinet, china closet", "christmas stocking", "church, church building", "cinema, movie theater, movie theatre, movie house, picture palace", "cleaver, meat cleaver, chopper", "cliff dwelling", "cloak", "clog, geta, patten, sabot", "cocktail shaker", "coffee mug", "coffeepot", "coil, spiral, volute, whorl, helix", "combination lock", "computer keyboard, keypad", "confectionery, confectionary, candy store", "container ship, containership, container vessel", "convertible", "corkscrew, bottle screw", "cornet, horn, trumpet, trump", "cowboy boot", "cowboy hat, ten-gallon hat", "cradle", "crane", "crash helmet", "crate", "crib, cot", "crock pot", "croquet ball", "crutch", "cuirass", "dam, dike, dyke", "desk", "desktop computer", "dial telephone, dial phone", "diaper, nappy, napkin", "digital clock", "digital watch", "dining table, board", "dishrag, dishcloth", "dishwasher, dish washer, dishwashing machine", "disk brake, disc brake", "dock, dockage, docking facility", "dogsled, dog sled, dog sleigh", "dome", "doormat, welcome mat", "drilling platform, offshore rig", "drum, membranophone, tympan", "drumstick", "dumbbell", "dutch oven", "electric fan, blower", "electric guitar", "electric locomotive", "entertainment center", "envelope", "espresso maker", "face powder", "feather boa, boa", "file, file cabinet, filing cabinet", "fireboat", "fire engine, fire truck", "fire screen, fireguard", "flagpole, flagstaff", "flute, transverse flute", "folding chair", "football helmet", "forklift", "fountain", "fountain pen", "four-poster", "freight car", "french horn, horn", "frying pan, frypan, skillet", "fur coat", "garbage truck, dustcart", "gasmask, respirator, gas helmet", "gas pump, gasoline pump, petrol pump, island dispenser", "goblet", "go-kart", "golf ball", "golfcart, golf cart", "gondola", "gong, tam-tam", "gown", "grand piano, grand", "greenhouse, nursery, glasshouse", "grille, radiator grille", "grocery store, grocery, food market, market", "guillotine", "hair slide", "hair spray", "half track", "hammer", "hamper", "hand blower, blow dryer, blow drier, hair dryer, hair drier", "hand-held computer, hand-held microcomputer", "handkerchief, hankie, hanky, hankey", "hard disc, hard disk, fixed disk", "harmonica, mouth organ, harp, mouth harp", "harp", "harvester, reaper", "hatchet", "holster", "home theater, home theatre", "honeycomb", "hook, claw", "hoopskirt, crinoline", "horizontal bar, high bar", "horse cart, horse-cart", "hourglass", "ipod", "iron, smoothing iron", "jack-o'-lantern", "jean, blue jean, denim", "jeep, landrover", "jersey, t-shirt, tee shirt", "jigsaw puzzle", "jinrikisha, ricksha, rickshaw", "joystick", "kimono", "knee pad", "knot", "lab coat, laboratory coat", "ladle", "lampshade, lamp shade", "laptop, laptop computer", "lawn mower, mower", "lens cap, lens cover", "letter opener, paper knife, paperknife", "library", "lifeboat", "lighter, light, igniter, ignitor", "limousine, limo", "liner, ocean liner", "lipstick, lip rouge", "loafer", "lotion", "loudspeaker, speaker, speaker unit, loudspeaker system, speaker system", "loupe, jeweler's loupe", "lumbermill, sawmill", "magnetic compass", "mailbag, postbag", "mailbox, letter box", "maillot", "maillot, tank suit", "manhole cover", "maraca", "marimba, xylophone", "mask", "matchstick", "maypole", "maze, labyrinth", "measuring cup", "medicine chest, medicine cabinet", "megalith, megalithic structure", "microphone, mike", "microwave, microwave oven", "military uniform", "milk can", "minibus", "miniskirt, mini", "minivan", "missile", "mitten", "mixing bowl", "mobile home, manufactured home", "model t", "modem", "monastery", "monitor", "moped", "mortar", "mortarboard", "mosque", "mosquito net", "motor scooter, scooter", "mountain bike, all-terrain bike, off-roader", "mountain tent", "mouse, computer mouse", "mousetrap", "moving van", "muzzle", "nail", "neck brace", "necklace", "nipple", "notebook, notebook computer", "obelisk", "oboe, hautboy, hautbois", "ocarina, sweet potato", "odometer, hodometer, mileometer, milometer", "oil filter", "organ, pipe organ", "oscilloscope, scope, cathode-ray oscilloscope, cro", "overskirt", "oxcart", "oxygen mask", "packet", "paddle, boat paddle", "paddlewheel, paddle wheel", "padlock", "paintbrush", "pajama, pyjama, pj's, jammies", "palace", "panpipe, pandean pipe, syrinx", "paper towel", "parachute, chute", "parallel bars, bars", "park bench", "parking meter", "passenger car, coach, carriage", "patio, terrace", "pay-phone, pay-station", "pedestal, plinth, footstall", "pencil box, pencil case", "pencil sharpener", "perfume, essence", "petri dish", "photocopier", "pick, plectrum, plectron", "pickelhaube", "picket fence, paling", "pickup, pickup truck", "pier", "piggy bank, penny bank", "pill bottle", "pillow", "ping-pong ball", "pinwheel", "pirate, pirate ship", "pitcher, ewer", "plane, carpenter's plane, woodworking plane", "planetarium", "plastic bag", "plate rack", "plow, plough", "plunger, plumber's helper", "polaroid camera, polaroid land camera", "pole", "police van, police wagon, paddy wagon, patrol wagon, wagon, black maria", "poncho", "pool table, billiard table, snooker table", "pop bottle, soda bottle", "pot, flowerpot", "potter's wheel", "power drill", "prayer rug, prayer mat", "printer", "prison, prison house", "projectile, missile", "projector", "puck, hockey puck", "punching bag, punch bag, punching ball, punchball", "purse", "quill, quill pen", "quilt, comforter, comfort, puff", "racer, race car, racing car", "racket, racquet", "radiator", "radio, wireless", "radio telescope, radio reflector", "rain barrel", "recreational vehicle, rv, r.v.", "reel", "reflex camera", "refrigerator, icebox", "remote control, remote", "restaurant, eating house, eating place, eatery", "revolver, six-gun, six-shooter", "rifle", "rocking chair, rocker", "rotisserie", "rubber eraser, rubber, pencil eraser", "rugby ball", "rule, ruler", "running shoe", "safe", "safety pin", "saltshaker, salt shaker", "sandal", "sarong", "sax, saxophone", "scabbard", "scale, weighing machine", "school bus", "schooner", "scoreboard", "screen, crt screen", "screw", "screwdriver", "seat belt, seatbelt", "sewing machine", "shield, buckler", "shoe shop, shoe-shop, shoe store", "shoji", "shopping basket", "shopping cart", "shovel", "shower cap", "shower curtain", "ski", "ski mask", "sleeping bag", "slide rule, slipstick", "sliding door", "slot, one-armed bandit", "snorkel", "snowmobile", "snowplow, snowplough", "soap dispenser", "soccer ball", "sock", "solar dish, solar collector, solar furnace", "sombrero", "soup bowl", "space bar", "space heater", "space shuttle", "spatula", "speedboat", "spider web, spider's web", "spindle", "sports car, sport car", "spotlight, spot", "stage", "steam locomotive", "steel arch bridge", "steel drum", "stethoscope", "stole", "stone wall", "stopwatch, stop watch", "stove", "strainer", "streetcar, tram, tramcar, trolley, trolley car", "stretcher", "studio couch, day bed", "stupa, tope", "submarine, pigboat, sub, u-boat", "suit, suit of clothes", "sundial", "sunglass", "sunglasses, dark glasses, shades", "sunscreen, sunblock, sun blocker", "suspension bridge", "swab, swob, mop", "sweatshirt", "swimming trunks, bathing trunks", "swing", "switch, electric switch, electrical switch", "syringe", "table lamp", "tank, army tank, armored combat vehicle, armoured combat vehicle", "tape player", "teapot", "teddy, teddy bear", "television, television system", "tennis ball", "thatch, thatched roof", "theater curtain, theatre curtain", "thimble", "thresher, thrasher, threshing machine", "throne", "tile roof", "toaster", "tobacco shop, tobacconist shop, tobacconist", "toilet seat", "torch", "totem pole", "tow truck, tow car, wrecker", "toyshop", "tractor", "trailer truck, tractor trailer, trucking rig, rig, articulated lorry, semi", "tray", "trench coat", "tricycle, trike, velocipede", "trimaran", "tripod", "triumphal arch", "trolleybus, trolley coach, trackless trolley", "trombone", "tub, vat", "turnstile", "typewriter keyboard", "umbrella", "unicycle, monocycle", "upright, upright piano", "vacuum, vacuum cleaner", "vase", "vault", "velvet", "vending machine", "vestment", "viaduct", "violin, fiddle", "volleyball", "waffle iron", "wall clock", "wallet, billfold, notecase, pocketbook", "wardrobe, closet, press", "warplane, military plane", "washbasin, handbasin, washbowl, lavabo, wash-hand basin", "washer, automatic washer, washing machine", "water bottle", "water jug", "water tower", "whiskey jug", "whistle", "wig", "window screen", "window shade", "windsor tie", "wine bottle", "wing", "wok", "wooden spoon", "wool, woolen, woollen", "worm fence, snake fence, snake-rail fence, virginia fence", "wreck", "yawl", "yurt", "web site, website, internet site, site", "comic book", "crossword puzzle, crossword", "street sign", "traffic light, traffic signal, stoplight", "book jacket, dust cover, dust jacket, dust wrapper", "menu", "plate", "guacamole", "consomme", "hot pot, hotpot", "trifle", "ice cream, icecream", "ice lolly, lolly, lollipop, popsicle", "french loaf", "bagel, beigel", "pretzel", "cheeseburger", "hotdog, hot dog, red hot", "mashed potato", "head cabbage", "broccoli", "cauliflower", "zucchini, courgette", "spaghetti squash", "acorn squash", "butternut squash", "cucumber, cuke", "artichoke, globe artichoke", "bell pepper", "cardoon", "mushroom", "granny smith", "strawberry", "orange", "lemon", "fig", "pineapple, ananas", "banana", "jackfruit, jak, jack", "custard apple", "pomegranate", "hay", "carbonara", "chocolate sauce, chocolate syrup", "dough", "meat loaf, meatloaf", "pizza, pizza pie", "potpie", "burrito", "red wine", "espresso", "cup", "eggnog", "alp", "bubble", "cliff, drop, drop-off", "coral reef", "geyser", "lakeside, lakeshore", "promontory, headland, head, foreland", "sandbar, sand bar", "seashore, coast, seacoast, sea-coast", "valley, vale", "volcano", "ballplayer, baseball player", "groom, bridegroom", "scuba diver", "rapeseed", "daisy", "yellow lady's slipper, yellow lady-slipper, cypripedium calceolus, cypripedium parviflorum", "corn", "acorn", "hip, rose hip, rosehip", "buckeye, horse chestnut, conker", "coral fungus", "agaric", "gyromitra", "stinkhorn, carrion fungus", "earthstar", "hen-of-the-woods, hen of the woods, polyporus frondosus, grifola frondosa", "bolete", "ear, spike, capitulum", "toilet tissue, toilet paper, bathroom tissue" ]
q2-jlbar/swin-tiny-patch4-window7-224-finetuned-eurosat
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # swin-tiny-patch4-window7-224-finetuned-eurosat This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the image_folder dataset. It achieves the following results on the evaluation set: - Loss: 0.1199 - Accuracy: 0.9619 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 512 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.3627 | 0.99 | 47 | 0.1988 | 0.9389 | | 0.2202 | 1.99 | 94 | 0.1280 | 0.9604 | | 0.1948 | 2.99 | 141 | 0.1199 | 0.9619 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0 - Datasets 2.2.2 - Tokenizers 0.12.1
[ "annualcrop", "forest", "herbaceousvegetation", "highway", "industrial", "pasture", "permanentcrop", "residential", "river", "sealake" ]
amehta633/cifar-10-vgg-pretrained
[ "plane", "car", "bird", "cat", "deer", "dog", "frog", "horse", "ship", "truck" ]
aspis/swin-base-finetuned-snacks
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # swin-base-finetuned-snacks This model is a fine-tuned version of [microsoft/swin-base-patch4-window7-224](https://huggingface.co/microsoft/swin-base-patch4-window7-224) on the snacks dataset. It achieves the following results on the evaluation set: - Loss: 0.2404 - Accuracy: 0.9455 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.0044 | 1.0 | 38 | 0.2981 | 0.9309 | | 0.0023 | 2.0 | 76 | 0.2287 | 0.9445 | | 0.0012 | 3.0 | 114 | 0.2404 | 0.9455 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
[ "apple", "banana", "juice", "muffin", "orange", "pineapple", "popcorn", "pretzel", "salad", "strawberry", "waffle", "watermelon", "cake", "candy", "carrot", "cookie", "doughnut", "grape", "hot dog", "ice cream" ]
aspis/swin-finetuned-food101
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # swin-finetuned-food101 This model is a fine-tuned version of [microsoft/swin-base-patch4-window7-224](https://huggingface.co/microsoft/swin-base-patch4-window7-224) on the food101 dataset. It achieves the following results on the evaluation set: - Loss: 0.2772 - Accuracy: 0.9210 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.5077 | 1.0 | 1183 | 0.3851 | 0.8893 | | 0.3523 | 2.0 | 2366 | 0.3124 | 0.9088 | | 0.1158 | 3.0 | 3549 | 0.2772 | 0.9210 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
[ "apple_pie", "baby_back_ribs", "bruschetta", "waffles", "caesar_salad", "cannoli", "caprese_salad", "carrot_cake", "ceviche", "cheesecake", "cheese_plate", "chicken_curry", "chicken_quesadilla", "baklava", "chicken_wings", "chocolate_cake", "chocolate_mousse", "churros", "clam_chowder", "club_sandwich", "crab_cakes", "creme_brulee", "croque_madame", "cup_cakes", "beef_carpaccio", "deviled_eggs", "donuts", "dumplings", "edamame", "eggs_benedict", "escargots", "falafel", "filet_mignon", "fish_and_chips", "foie_gras", "beef_tartare", "french_fries", "french_onion_soup", "french_toast", "fried_calamari", "fried_rice", "frozen_yogurt", "garlic_bread", "gnocchi", "greek_salad", "grilled_cheese_sandwich", "beet_salad", "grilled_salmon", "guacamole", "gyoza", "hamburger", "hot_and_sour_soup", "hot_dog", "huevos_rancheros", "hummus", "ice_cream", "lasagna", "beignets", "lobster_bisque", "lobster_roll_sandwich", "macaroni_and_cheese", "macarons", "miso_soup", "mussels", "nachos", "omelette", "onion_rings", "oysters", "bibimbap", "pad_thai", "paella", "pancakes", "panna_cotta", "peking_duck", "pho", "pizza", "pork_chop", "poutine", "prime_rib", "bread_pudding", "pulled_pork_sandwich", "ramen", "ravioli", "red_velvet_cake", "risotto", "samosa", "sashimi", "scallops", "seaweed_salad", "shrimp_and_grits", "breakfast_burrito", "spaghetti_bolognese", "spaghetti_carbonara", "spring_rolls", "steak", "strawberry_shortcake", "sushi", "tacos", "takoyaki", "tiramisu", "tuna_tartare" ]
edumunozsala/vit_base-224-in21k-ft-cifar10
# Model vit_base-224-in21k-ft-cifar10 ## **A finetuned model for Image classification in Spanish** This model was trained using Amazon SageMaker and the Hugging Face Deep Learning container, The base model is **Vision Transformer (base-sized model)** which is a transformer encoder model (BERT-like) pretrained on a large collection of images in a supervised fashion, namely ImageNet-21k, at a resolution of 224x224 pixels.[Link to base model](https://huggingface.co/google/vit-base-patch16-224-in21k) ## Base model citation ### BibTeX entry and citation info ```bibtex @misc{wu2020visual, title={Visual Transformers: Token-based Image Representation and Processing for Computer Vision}, author={Bichen Wu and Chenfeng Xu and Xiaoliang Dai and Alvin Wan and Peizhao Zhang and Zhicheng Yan and Masayoshi Tomizuka and Joseph Gonzalez and Kurt Keutzer and Peter Vajda}, year={2020}, eprint={2006.03677}, archivePrefix={arXiv}, primaryClass={cs.CV} } ``` ## Dataset [Link to dataset description](http://www.cs.toronto.edu/~kriz/cifar.html) The CIFAR-10 and CIFAR-100 are labeled subsets of the 80 million tiny images dataset. They were collected by Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton The CIFAR-10 dataset consists of 60000 32x32 colour images in 10 classes, with 6000 images per class. There are 50000 training images and 10000 test images. The dataset is divided into five training batches and one test batch, each with 10000 images. The test batch contains exactly 1000 randomly-selected images from each class. The training batches contain the remaining images in random order, but some training batches may contain more images from one class than another. Between them, the training batches contain exactly 5000 images from each class. Sizes of datasets: - Train dataset: 50,000 - Test dataset: 10,000 ## Intended uses & limitations This model is intented for Image Classification. ## Hyperparameters { "epochs": "5", "train_batch_size": "32", "eval_batch_size": "8", "fp16": "true", "learning_rate": "1e-05", } ## Test results - Accuracy = 0.97 ## Model in action ### Usage for Image Classification ```python from transformers import ViTFeatureExtractor, ViTModel from PIL import Image import requests url = 'http://images.cocodataset.org/val2017/000000039769.jpg' image = Image.open(requests.get(url, stream=True).raw) feature_extractor = ViTFeatureExtractor.from_pretrained('google/vit-base-patch16-224-in21k') model = ViTModel.from_pretrained('edumunozsala/vit_base-224-in21k-ft-cifar10') inputs = feature_extractor(images=image, return_tensors="pt") outputs = model(**inputs) last_hidden_states = outputs.last_hidden_state ``` Created by [Eduardo Muñoz/@edumunozsala](https://github.com/edumunozsala)
[ "airplane", "automobile", "bird", "cat", "deer", "dog", "frog", "horse", "ship", "truck" ]
edumunozsala/vit_base-224-in21k-ft-cifar100
# Model vit_base-224-in21k-ft-cifar100 ## **A finetuned model for Image classification in Spanish** This model was trained using Amazon SageMaker and the Hugging Face Deep Learning container, The base model is **Vision Transformer (base-sized model)** which is a transformer encoder model (BERT-like) pretrained on a large collection of images in a supervised fashion, namely ImageNet-21k, at a resolution of 224x224 pixels.[Link to base model](https://huggingface.co/google/vit-base-patch16-224-in21k) ## Base model citation ### BibTeX entry and citation info ```bibtex @misc{wu2020visual, title={Visual Transformers: Token-based Image Representation and Processing for Computer Vision}, author={Bichen Wu and Chenfeng Xu and Xiaoliang Dai and Alvin Wan and Peizhao Zhang and Zhicheng Yan and Masayoshi Tomizuka and Joseph Gonzalez and Kurt Keutzer and Peter Vajda}, year={2020}, eprint={2006.03677}, archivePrefix={arXiv}, primaryClass={cs.CV} } ``` ## Dataset [Link to dataset description](http://www.cs.toronto.edu/~kriz/cifar.html) The CIFAR-10 and CIFAR-100 are labeled subsets of the 80 million tiny images dataset. They were collected by Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton The CIFAR-10 dataset consists of 60000 32x32 colour images in 10 classes, with 6000 images per class. There are 50000 training images and 10000 test images. This dataset,CIFAR100, is just like the CIFAR-10, except it has 100 classes containing 600 images each. There are 500 training images and 100 testing images per class. The 100 classes in the CIFAR-100 are grouped into 20 superclasses. Each image comes with a "fine" label (the class to which it belongs) and a "coarse" label (the superclass to which it belongs). Sizes of datasets: - Train dataset: 50,000 - Test dataset: 10,000 ## Intended uses & limitations This model is intented for Image Classification. ## Hyperparameters { "epochs": "5", "train_batch_size": "32", "eval_batch_size": "8", "fp16": "true", "learning_rate": "1e-05", } ## Test results - Accuracy = 0.9148 ## Model in action ### Usage for Image Classification ```python from transformers import ViTFeatureExtractor, ViTModel from PIL import Image import requests url = 'http://images.cocodataset.org/val2017/000000039769.jpg' image = Image.open(requests.get(url, stream=True).raw) feature_extractor = ViTFeatureExtractor.from_pretrained('google/vit-base-patch16-224-in21k') model = ViTModel.from_pretrained('edumunozsala/vit_base-224-in21k-ft-cifar100') inputs = feature_extractor(images=image, return_tensors="pt") outputs = model(**inputs) last_hidden_states = outputs.last_hidden_state ``` Created by [Eduardo Muñoz/@edumunozsala](https://github.com/edumunozsala)
[ "apple", "aquarium_fish", "baby", "bear", "beaver", "bed", "bee", "beetle", "bicycle", "bottle", "bowl", "boy", "bridge", "bus", "butterfly", "camel", "can", "castle", "caterpillar", "cattle", "chair", "chimpanzee", "clock", "cloud", "cockroach", "couch", "cra", "crocodile", "cup", "dinosaur", "dolphin", "elephant", "flatfish", "forest", "fox", "girl", "hamster", "house", "kangaroo", "keyboard", "lamp", "lawn_mower", "leopard", "lion", "lizard", "lobster", "man", "maple_tree", "motorcycle", "mountain", "mouse", "mushroom", "oak_tree", "orange", "orchid", "otter", "palm_tree", "pear", "pickup_truck", "pine_tree", "plain", "plate", "poppy", "porcupine", "possum", "rabbit", "raccoon", "ray", "road", "rocket", "rose", "sea", "seal", "shark", "shrew", "skunk", "skyscraper", "snail", "snake", "spider", "squirrel", "streetcar", "sunflower", "sweet_pepper", "table", "tank", "telephone", "television", "tiger", "tractor", "train", "trout", "tulip", "turtle", "wardrobe", "whale", "willow_tree", "wolf", "woman", "worm" ]
shivarama23/swin-tiny-patch4-window7-224-finetuned-image_quality
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # swin-tiny-patch4-window7-224-finetuned-image_quality This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the image_folder dataset. It achieves the following results on the evaluation set: - Loss: 0.5242 - Accuracy: 0.9091 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 1 | 0.6762 | 0.6364 | | No log | 2.0 | 2 | 0.6309 | 0.7273 | | No log | 3.0 | 3 | 0.6095 | 0.6364 | | No log | 4.0 | 4 | 0.5775 | 0.6364 | | No log | 5.0 | 5 | 0.5443 | 0.8182 | | No log | 6.0 | 6 | 0.5242 | 0.9091 | | No log | 7.0 | 7 | 0.5149 | 0.8182 | | No log | 8.0 | 8 | 0.5094 | 0.8182 | | No log | 9.0 | 9 | 0.5038 | 0.8182 | | 0.4095 | 10.0 | 10 | 0.4992 | 0.8182 | ### Framework versions - Transformers 4.19.4 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
[ "bad", "good" ]
amyeroberts/swin-tiny-patch4-window7-224-finetuned-eurosat
<!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # amyeroberts/swin-tiny-patch4-window7-224-finetuned-eurosat This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.4117 - Validation Loss: 0.0491 - Validation Accuracy: 0.9822 - Epoch: 2 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 5e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Validation Accuracy | Epoch | |:----------:|:---------------:|:-------------------:|:-----:| | 0.6595 | 0.1077 | 0.9622 | 0 | | 0.4503 | 0.0813 | 0.9707 | 1 | | 0.4117 | 0.0491 | 0.9822 | 2 | ### Framework versions - Transformers 4.21.0.dev0 - TensorFlow 2.9.1 - Datasets 2.3.3.dev0 - Tokenizers 0.11.0
[ "annualcrop", "forest", "herbaceousvegetation", "highway", "industrial", "pasture", "permanentcrop", "residential", "river", "sealake" ]
microsoft/swinv2-tiny-patch4-window8-256
# Swin Transformer v2 (tiny-sized model) Swin Transformer v2 model pre-trained on ImageNet-1k at resolution 256x256. It was introduced in the paper [Swin Transformer V2: Scaling Up Capacity and Resolution](https://arxiv.org/abs/2111.09883) by Liu et al. and first released in [this repository](https://github.com/microsoft/Swin-Transformer). Disclaimer: The team releasing Swin Transformer v2 did not write a model card for this model so this model card has been written by the Hugging Face team. ## Model description The Swin Transformer is a type of Vision Transformer. It builds hierarchical feature maps by merging image patches (shown in gray) in deeper layers and has linear computation complexity to input image size due to computation of self-attention only within each local window (shown in red). It can thus serve as a general-purpose backbone for both image classification and dense recognition tasks. In contrast, previous vision Transformers produce feature maps of a single low resolution and have quadratic computation complexity to input image size due to computation of self-attention globally. Swin Transformer v2 adds 3 main improvements: 1) a residual-post-norm method combined with cosine attention to improve training stability; 2) a log-spaced continuous position bias method to effectively transfer models pre-trained using low-resolution images to downstream tasks with high-resolution inputs; 3) a self-supervised pre-training method, SimMIM, to reduce the needs of vast labeled images. ![model image](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/swin_transformer_architecture.png) [Source](https://paperswithcode.com/method/swin-transformer) ## Intended uses & limitations You can use the raw model for image classification. See the [model hub](https://huggingface.co/models?search=swinv2) to look for fine-tuned versions on a task that interests you. ### How to use Here is how to use this model to classify an image of the COCO 2017 dataset into one of the 1,000 ImageNet classes: ```python from transformers import AutoImageProcessor, AutoModelForImageClassification from PIL import Image import requests url = "http://images.cocodataset.org/val2017/000000039769.jpg" image = Image.open(requests.get(url, stream=True).raw) processor = AutoImageProcessor.from_pretrained("microsoft/swinv2-tiny-patch4-window8-256") model = AutoModelForImageClassification.from_pretrained("microsoft/swinv2-tiny-patch4-window8-256") inputs = processor(images=image, return_tensors="pt") outputs = model(**inputs) logits = outputs.logits # model predicts one of the 1000 ImageNet classes predicted_class_idx = logits.argmax(-1).item() print("Predicted class:", model.config.id2label[predicted_class_idx]) ``` For more code examples, we refer to the [documentation](https://huggingface.co/transformers/model_doc/swinv2.html#). ### BibTeX entry and citation info ```bibtex @article{DBLP:journals/corr/abs-2111-09883, author = {Ze Liu and Han Hu and Yutong Lin and Zhuliang Yao and Zhenda Xie and Yixuan Wei and Jia Ning and Yue Cao and Zheng Zhang and Li Dong and Furu Wei and Baining Guo}, title = {Swin Transformer {V2:} Scaling Up Capacity and Resolution}, journal = {CoRR}, volume = {abs/2111.09883}, year = {2021}, url = {https://arxiv.org/abs/2111.09883}, eprinttype = {arXiv}, eprint = {2111.09883}, timestamp = {Thu, 02 Dec 2021 15:54:22 +0100}, biburl = {https://dblp.org/rec/journals/corr/abs-2111-09883.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ```
[ "tench, tinca tinca", "goldfish, carassius auratus", "great white shark, white shark, man-eater, man-eating shark, carcharodon carcharias", "tiger shark, galeocerdo cuvieri", "hammerhead, hammerhead shark", "electric ray, crampfish, numbfish, torpedo", "stingray", "cock", "hen", "ostrich, struthio camelus", "brambling, fringilla montifringilla", "goldfinch, carduelis carduelis", "house finch, linnet, carpodacus mexicanus", "junco, snowbird", "indigo bunting, indigo finch, indigo bird, passerina cyanea", "robin, american robin, turdus migratorius", "bulbul", "jay", "magpie", "chickadee", "water ouzel, dipper", "kite", "bald eagle, american eagle, haliaeetus leucocephalus", "vulture", "great grey owl, great gray owl, strix nebulosa", "european fire salamander, salamandra salamandra", "common newt, triturus vulgaris", "eft", "spotted salamander, ambystoma maculatum", "axolotl, mud puppy, ambystoma mexicanum", "bullfrog, rana catesbeiana", "tree frog, tree-frog", "tailed frog, bell toad, ribbed toad, tailed toad, ascaphus trui", "loggerhead, loggerhead turtle, caretta caretta", "leatherback turtle, leatherback, leathery turtle, dermochelys coriacea", "mud turtle", "terrapin", "box turtle, box tortoise", "banded gecko", "common iguana, iguana, iguana iguana", "american chameleon, anole, anolis carolinensis", "whiptail, whiptail lizard", "agama", "frilled lizard, chlamydosaurus kingi", "alligator lizard", "gila monster, heloderma suspectum", "green lizard, lacerta viridis", "african chameleon, chamaeleo chamaeleon", "komodo dragon, komodo lizard, dragon lizard, giant lizard, varanus komodoensis", "african crocodile, nile crocodile, crocodylus niloticus", "american alligator, alligator mississipiensis", "triceratops", "thunder snake, worm snake, carphophis amoenus", "ringneck snake, ring-necked snake, ring snake", "hognose snake, puff adder, sand viper", "green snake, grass snake", "king snake, kingsnake", "garter snake, grass snake", "water snake", "vine snake", "night snake, hypsiglena torquata", "boa constrictor, constrictor constrictor", "rock python, rock snake, python sebae", "indian cobra, naja naja", "green mamba", "sea snake", "horned viper, cerastes, sand viper, horned asp, cerastes cornutus", "diamondback, diamondback rattlesnake, crotalus adamanteus", "sidewinder, horned rattlesnake, crotalus cerastes", "trilobite", "harvestman, daddy longlegs, phalangium opilio", "scorpion", "black and gold garden spider, argiope aurantia", "barn spider, araneus cavaticus", "garden spider, aranea diademata", "black widow, latrodectus mactans", "tarantula", "wolf spider, hunting spider", "tick", "centipede", "black grouse", "ptarmigan", "ruffed grouse, partridge, bonasa umbellus", "prairie chicken, prairie grouse, prairie fowl", "peacock", "quail", "partridge", "african grey, african gray, psittacus erithacus", "macaw", "sulphur-crested cockatoo, kakatoe galerita, cacatua galerita", "lorikeet", "coucal", "bee eater", "hornbill", "hummingbird", "jacamar", "toucan", "drake", "red-breasted merganser, mergus serrator", "goose", "black swan, cygnus atratus", "tusker", "echidna, spiny anteater, anteater", "platypus, duckbill, duckbilled platypus, duck-billed platypus, ornithorhynchus anatinus", "wallaby, brush kangaroo", "koala, koala bear, kangaroo bear, native bear, phascolarctos cinereus", "wombat", "jellyfish", "sea anemone, anemone", "brain coral", "flatworm, platyhelminth", "nematode, nematode worm, roundworm", "conch", "snail", "slug", "sea slug, nudibranch", "chiton, coat-of-mail shell, sea cradle, polyplacophore", "chambered nautilus, pearly nautilus, nautilus", "dungeness crab, cancer magister", "rock crab, cancer irroratus", "fiddler crab", "king crab, alaska crab, alaskan king crab, alaska king crab, paralithodes camtschatica", "american lobster, northern lobster, maine lobster, homarus americanus", "spiny lobster, langouste, rock lobster, crawfish, crayfish, sea crawfish", "crayfish, crawfish, crawdad, crawdaddy", "hermit crab", "isopod", "white stork, ciconia ciconia", "black stork, ciconia nigra", "spoonbill", "flamingo", "little blue heron, egretta caerulea", "american egret, great white heron, egretta albus", "bittern", "crane", "limpkin, aramus pictus", "european gallinule, porphyrio porphyrio", "american coot, marsh hen, mud hen, water hen, fulica americana", "bustard", "ruddy turnstone, arenaria interpres", "red-backed sandpiper, dunlin, erolia alpina", "redshank, tringa totanus", "dowitcher", "oystercatcher, oyster catcher", "pelican", "king penguin, aptenodytes patagonica", "albatross, mollymawk", "grey whale, gray whale, devilfish, eschrichtius gibbosus, eschrichtius robustus", "killer whale, killer, orca, grampus, sea wolf, orcinus orca", "dugong, dugong dugon", "sea lion", "chihuahua", "japanese spaniel", "maltese dog, maltese terrier, maltese", "pekinese, pekingese, peke", "shih-tzu", "blenheim spaniel", "papillon", "toy terrier", "rhodesian ridgeback", "afghan hound, afghan", "basset, basset hound", "beagle", "bloodhound, sleuthhound", "bluetick", "black-and-tan coonhound", "walker hound, walker foxhound", "english foxhound", "redbone", "borzoi, russian wolfhound", "irish wolfhound", "italian greyhound", "whippet", "ibizan hound, ibizan podenco", "norwegian elkhound, elkhound", "otterhound, otter hound", "saluki, gazelle hound", "scottish deerhound, deerhound", "weimaraner", "staffordshire bullterrier, staffordshire bull terrier", "american staffordshire terrier, staffordshire terrier, american pit bull terrier, pit bull terrier", "bedlington terrier", "border terrier", "kerry blue terrier", "irish terrier", "norfolk terrier", "norwich terrier", "yorkshire terrier", "wire-haired fox terrier", "lakeland terrier", "sealyham terrier, sealyham", "airedale, airedale terrier", "cairn, cairn terrier", "australian terrier", "dandie dinmont, dandie dinmont terrier", "boston bull, boston terrier", "miniature schnauzer", "giant schnauzer", "standard schnauzer", "scotch terrier, scottish terrier, scottie", "tibetan terrier, chrysanthemum dog", "silky terrier, sydney silky", "soft-coated wheaten terrier", "west highland white terrier", "lhasa, lhasa apso", "flat-coated retriever", "curly-coated retriever", "golden retriever", "labrador retriever", "chesapeake bay retriever", "german short-haired pointer", "vizsla, hungarian pointer", "english setter", "irish setter, red setter", "gordon setter", "brittany spaniel", "clumber, clumber spaniel", "english springer, english springer spaniel", "welsh springer spaniel", "cocker spaniel, english cocker spaniel, cocker", "sussex spaniel", "irish water spaniel", "kuvasz", "schipperke", "groenendael", "malinois", "briard", "kelpie", "komondor", "old english sheepdog, bobtail", "shetland sheepdog, shetland sheep dog, shetland", "collie", "border collie", "bouvier des flandres, bouviers des flandres", "rottweiler", "german shepherd, german shepherd dog, german police dog, alsatian", "doberman, doberman pinscher", "miniature pinscher", "greater swiss mountain dog", "bernese mountain dog", "appenzeller", "entlebucher", "boxer", "bull mastiff", "tibetan mastiff", "french bulldog", "great dane", "saint bernard, st bernard", "eskimo dog, husky", "malamute, malemute, alaskan malamute", "siberian husky", "dalmatian, coach dog, carriage dog", "affenpinscher, monkey pinscher, monkey dog", "basenji", "pug, pug-dog", "leonberg", "newfoundland, newfoundland dog", "great pyrenees", "samoyed, samoyede", "pomeranian", "chow, chow chow", "keeshond", "brabancon griffon", "pembroke, pembroke welsh corgi", "cardigan, cardigan welsh corgi", "toy poodle", "miniature poodle", "standard poodle", "mexican hairless", "timber wolf, grey wolf, gray wolf, canis lupus", "white wolf, arctic wolf, canis lupus tundrarum", "red wolf, maned wolf, canis rufus, canis niger", "coyote, prairie wolf, brush wolf, canis latrans", "dingo, warrigal, warragal, canis dingo", "dhole, cuon alpinus", "african hunting dog, hyena dog, cape hunting dog, lycaon pictus", "hyena, hyaena", "red fox, vulpes vulpes", "kit fox, vulpes macrotis", "arctic fox, white fox, alopex lagopus", "grey fox, gray fox, urocyon cinereoargenteus", "tabby, tabby cat", "tiger cat", "persian cat", "siamese cat, siamese", "egyptian cat", "cougar, puma, catamount, mountain lion, painter, panther, felis concolor", "lynx, catamount", "leopard, panthera pardus", "snow leopard, ounce, panthera uncia", "jaguar, panther, panthera onca, felis onca", "lion, king of beasts, panthera leo", "tiger, panthera tigris", "cheetah, chetah, acinonyx jubatus", "brown bear, bruin, ursus arctos", "american black bear, black bear, ursus americanus, euarctos americanus", "ice bear, polar bear, ursus maritimus, thalarctos maritimus", "sloth bear, melursus ursinus, ursus ursinus", "mongoose", "meerkat, mierkat", "tiger beetle", "ladybug, ladybeetle, lady beetle, ladybird, ladybird beetle", "ground beetle, carabid beetle", "long-horned beetle, longicorn, longicorn beetle", "leaf beetle, chrysomelid", "dung beetle", "rhinoceros beetle", "weevil", "fly", "bee", "ant, emmet, pismire", "grasshopper, hopper", "cricket", "walking stick, walkingstick, stick insect", "cockroach, roach", "mantis, mantid", "cicada, cicala", "leafhopper", "lacewing, lacewing fly", "dragonfly, darning needle, devil's darning needle, sewing needle, snake feeder, snake doctor, mosquito hawk, skeeter hawk", "damselfly", "admiral", "ringlet, ringlet butterfly", "monarch, monarch butterfly, milkweed butterfly, danaus plexippus", "cabbage butterfly", "sulphur butterfly, sulfur butterfly", "lycaenid, lycaenid butterfly", "starfish, sea star", "sea urchin", "sea cucumber, holothurian", "wood rabbit, cottontail, cottontail rabbit", "hare", "angora, angora rabbit", "hamster", "porcupine, hedgehog", "fox squirrel, eastern fox squirrel, sciurus niger", "marmot", "beaver", "guinea pig, cavia cobaya", "sorrel", "zebra", "hog, pig, grunter, squealer, sus scrofa", "wild boar, boar, sus scrofa", "warthog", "hippopotamus, hippo, river horse, hippopotamus amphibius", "ox", "water buffalo, water ox, asiatic buffalo, bubalus bubalis", "bison", "ram, tup", "bighorn, bighorn sheep, cimarron, rocky mountain bighorn, rocky mountain sheep, ovis canadensis", "ibex, capra ibex", "hartebeest", "impala, aepyceros melampus", "gazelle", "arabian camel, dromedary, camelus dromedarius", "llama", "weasel", "mink", "polecat, fitch, foulmart, foumart, mustela putorius", "black-footed ferret, ferret, mustela nigripes", "otter", "skunk, polecat, wood pussy", "badger", "armadillo", "three-toed sloth, ai, bradypus tridactylus", "orangutan, orang, orangutang, pongo pygmaeus", "gorilla, gorilla gorilla", "chimpanzee, chimp, pan troglodytes", "gibbon, hylobates lar", "siamang, hylobates syndactylus, symphalangus syndactylus", "guenon, guenon monkey", "patas, hussar monkey, erythrocebus patas", "baboon", "macaque", "langur", "colobus, colobus monkey", "proboscis monkey, nasalis larvatus", "marmoset", "capuchin, ringtail, cebus capucinus", "howler monkey, howler", "titi, titi monkey", "spider monkey, ateles geoffroyi", "squirrel monkey, saimiri sciureus", "madagascar cat, ring-tailed lemur, lemur catta", "indri, indris, indri indri, indri brevicaudatus", "indian elephant, elephas maximus", "african elephant, loxodonta africana", "lesser panda, red panda, panda, bear cat, cat bear, ailurus fulgens", "giant panda, panda, panda bear, coon bear, ailuropoda melanoleuca", "barracouta, snoek", "eel", "coho, cohoe, coho salmon, blue jack, silver salmon, oncorhynchus kisutch", "rock beauty, holocanthus tricolor", "anemone fish", "sturgeon", "gar, garfish, garpike, billfish, lepisosteus osseus", "lionfish", "puffer, pufferfish, blowfish, globefish", "abacus", "abaya", "academic gown, academic robe, judge's robe", "accordion, piano accordion, squeeze box", "acoustic guitar", "aircraft carrier, carrier, flattop, attack aircraft carrier", "airliner", "airship, dirigible", "altar", "ambulance", "amphibian, amphibious vehicle", "analog clock", "apiary, bee house", "apron", "ashcan, trash can, garbage can, wastebin, ash bin, ash-bin, ashbin, dustbin, trash barrel, trash bin", "assault rifle, assault gun", "backpack, back pack, knapsack, packsack, rucksack, haversack", "bakery, bakeshop, bakehouse", "balance beam, beam", "balloon", "ballpoint, ballpoint pen, ballpen, biro", "band aid", "banjo", "bannister, banister, balustrade, balusters, handrail", "barbell", "barber chair", "barbershop", "barn", "barometer", "barrel, cask", "barrow, garden cart, lawn cart, wheelbarrow", "baseball", "basketball", "bassinet", "bassoon", "bathing cap, swimming cap", "bath towel", "bathtub, bathing tub, bath, tub", "beach wagon, station wagon, wagon, estate car, beach waggon, station waggon, waggon", "beacon, lighthouse, beacon light, pharos", "beaker", "bearskin, busby, shako", "beer bottle", "beer glass", "bell cote, bell cot", "bib", "bicycle-built-for-two, tandem bicycle, tandem", "bikini, two-piece", "binder, ring-binder", "binoculars, field glasses, opera glasses", "birdhouse", "boathouse", "bobsled, bobsleigh, bob", "bolo tie, bolo, bola tie, bola", "bonnet, poke bonnet", "bookcase", "bookshop, bookstore, bookstall", "bottlecap", "bow", "bow tie, bow-tie, bowtie", "brass, memorial tablet, plaque", "brassiere, bra, bandeau", "breakwater, groin, groyne, mole, bulwark, seawall, jetty", "breastplate, aegis, egis", "broom", "bucket, pail", "buckle", "bulletproof vest", "bullet train, bullet", "butcher shop, meat market", "cab, hack, taxi, taxicab", "caldron, cauldron", "candle, taper, wax light", "cannon", "canoe", "can opener, tin opener", "cardigan", "car mirror", "carousel, carrousel, merry-go-round, roundabout, whirligig", "carpenter's kit, tool kit", "carton", "car wheel", "cash machine, cash dispenser, automated teller machine, automatic teller machine, automated teller, automatic teller, atm", "cassette", "cassette player", "castle", "catamaran", "cd player", "cello, violoncello", "cellular telephone, cellular phone, cellphone, cell, mobile phone", "chain", "chainlink fence", "chain mail, ring mail, mail, chain armor, chain armour, ring armor, ring armour", "chain saw, chainsaw", "chest", "chiffonier, commode", "chime, bell, gong", "china cabinet, china closet", "christmas stocking", "church, church building", "cinema, movie theater, movie theatre, movie house, picture palace", "cleaver, meat cleaver, chopper", "cliff dwelling", "cloak", "clog, geta, patten, sabot", "cocktail shaker", "coffee mug", "coffeepot", "coil, spiral, volute, whorl, helix", "combination lock", "computer keyboard, keypad", "confectionery, confectionary, candy store", "container ship, containership, container vessel", "convertible", "corkscrew, bottle screw", "cornet, horn, trumpet, trump", "cowboy boot", "cowboy hat, ten-gallon hat", "cradle", "crane", "crash helmet", "crate", "crib, cot", "crock pot", "croquet ball", "crutch", "cuirass", "dam, dike, dyke", "desk", "desktop computer", "dial telephone, dial phone", "diaper, nappy, napkin", "digital clock", "digital watch", "dining table, board", "dishrag, dishcloth", "dishwasher, dish washer, dishwashing machine", "disk brake, disc brake", "dock, dockage, docking facility", "dogsled, dog sled, dog sleigh", "dome", "doormat, welcome mat", "drilling platform, offshore rig", "drum, membranophone, tympan", "drumstick", "dumbbell", "dutch oven", "electric fan, blower", "electric guitar", "electric locomotive", "entertainment center", "envelope", "espresso maker", "face powder", "feather boa, boa", "file, file cabinet, filing cabinet", "fireboat", "fire engine, fire truck", "fire screen, fireguard", "flagpole, flagstaff", "flute, transverse flute", "folding chair", "football helmet", "forklift", "fountain", "fountain pen", "four-poster", "freight car", "french horn, horn", "frying pan, frypan, skillet", "fur coat", "garbage truck, dustcart", "gasmask, respirator, gas helmet", "gas pump, gasoline pump, petrol pump, island dispenser", "goblet", "go-kart", "golf ball", "golfcart, golf cart", "gondola", "gong, tam-tam", "gown", "grand piano, grand", "greenhouse, nursery, glasshouse", "grille, radiator grille", "grocery store, grocery, food market, market", "guillotine", "hair slide", "hair spray", "half track", "hammer", "hamper", "hand blower, blow dryer, blow drier, hair dryer, hair drier", "hand-held computer, hand-held microcomputer", "handkerchief, hankie, hanky, hankey", "hard disc, hard disk, fixed disk", "harmonica, mouth organ, harp, mouth harp", "harp", "harvester, reaper", "hatchet", "holster", "home theater, home theatre", "honeycomb", "hook, claw", "hoopskirt, crinoline", "horizontal bar, high bar", "horse cart, horse-cart", "hourglass", "ipod", "iron, smoothing iron", "jack-o'-lantern", "jean, blue jean, denim", "jeep, landrover", "jersey, t-shirt, tee shirt", "jigsaw puzzle", "jinrikisha, ricksha, rickshaw", "joystick", "kimono", "knee pad", "knot", "lab coat, laboratory coat", "ladle", "lampshade, lamp shade", "laptop, laptop computer", "lawn mower, mower", "lens cap, lens cover", "letter opener, paper knife, paperknife", "library", "lifeboat", "lighter, light, igniter, ignitor", "limousine, limo", "liner, ocean liner", "lipstick, lip rouge", "loafer", "lotion", "loudspeaker, speaker, speaker unit, loudspeaker system, speaker system", "loupe, jeweler's loupe", "lumbermill, sawmill", "magnetic compass", "mailbag, postbag", "mailbox, letter box", "maillot", "maillot, tank suit", "manhole cover", "maraca", "marimba, xylophone", "mask", "matchstick", "maypole", "maze, labyrinth", "measuring cup", "medicine chest, medicine cabinet", "megalith, megalithic structure", "microphone, mike", "microwave, microwave oven", "military uniform", "milk can", "minibus", "miniskirt, mini", "minivan", "missile", "mitten", "mixing bowl", "mobile home, manufactured home", "model t", "modem", "monastery", "monitor", "moped", "mortar", "mortarboard", "mosque", "mosquito net", "motor scooter, scooter", "mountain bike, all-terrain bike, off-roader", "mountain tent", "mouse, computer mouse", "mousetrap", "moving van", "muzzle", "nail", "neck brace", "necklace", "nipple", "notebook, notebook computer", "obelisk", "oboe, hautboy, hautbois", "ocarina, sweet potato", "odometer, hodometer, mileometer, milometer", "oil filter", "organ, pipe organ", "oscilloscope, scope, cathode-ray oscilloscope, cro", "overskirt", "oxcart", "oxygen mask", "packet", "paddle, boat paddle", "paddlewheel, paddle wheel", "padlock", "paintbrush", "pajama, pyjama, pj's, jammies", "palace", "panpipe, pandean pipe, syrinx", "paper towel", "parachute, chute", "parallel bars, bars", "park bench", "parking meter", "passenger car, coach, carriage", "patio, terrace", "pay-phone, pay-station", "pedestal, plinth, footstall", "pencil box, pencil case", "pencil sharpener", "perfume, essence", "petri dish", "photocopier", "pick, plectrum, plectron", "pickelhaube", "picket fence, paling", "pickup, pickup truck", "pier", "piggy bank, penny bank", "pill bottle", "pillow", "ping-pong ball", "pinwheel", "pirate, pirate ship", "pitcher, ewer", "plane, carpenter's plane, woodworking plane", "planetarium", "plastic bag", "plate rack", "plow, plough", "plunger, plumber's helper", "polaroid camera, polaroid land camera", "pole", "police van, police wagon, paddy wagon, patrol wagon, wagon, black maria", "poncho", "pool table, billiard table, snooker table", "pop bottle, soda bottle", "pot, flowerpot", "potter's wheel", "power drill", "prayer rug, prayer mat", "printer", "prison, prison house", "projectile, missile", "projector", "puck, hockey puck", "punching bag, punch bag, punching ball, punchball", "purse", "quill, quill pen", "quilt, comforter, comfort, puff", "racer, race car, racing car", "racket, racquet", "radiator", "radio, wireless", "radio telescope, radio reflector", "rain barrel", "recreational vehicle, rv, r.v.", "reel", "reflex camera", "refrigerator, icebox", "remote control, remote", "restaurant, eating house, eating place, eatery", "revolver, six-gun, six-shooter", "rifle", "rocking chair, rocker", "rotisserie", "rubber eraser, rubber, pencil eraser", "rugby ball", "rule, ruler", "running shoe", "safe", "safety pin", "saltshaker, salt shaker", "sandal", "sarong", "sax, saxophone", "scabbard", "scale, weighing machine", "school bus", "schooner", "scoreboard", "screen, crt screen", "screw", "screwdriver", "seat belt, seatbelt", "sewing machine", "shield, buckler", "shoe shop, shoe-shop, shoe store", "shoji", "shopping basket", "shopping cart", "shovel", "shower cap", "shower curtain", "ski", "ski mask", "sleeping bag", "slide rule, slipstick", "sliding door", "slot, one-armed bandit", "snorkel", "snowmobile", "snowplow, snowplough", "soap dispenser", "soccer ball", "sock", "solar dish, solar collector, solar furnace", "sombrero", "soup bowl", "space bar", "space heater", "space shuttle", "spatula", "speedboat", "spider web, spider's web", "spindle", "sports car, sport car", "spotlight, spot", "stage", "steam locomotive", "steel arch bridge", "steel drum", "stethoscope", "stole", "stone wall", "stopwatch, stop watch", "stove", "strainer", "streetcar, tram, tramcar, trolley, trolley car", "stretcher", "studio couch, day bed", "stupa, tope", "submarine, pigboat, sub, u-boat", "suit, suit of clothes", "sundial", "sunglass", "sunglasses, dark glasses, shades", "sunscreen, sunblock, sun blocker", "suspension bridge", "swab, swob, mop", "sweatshirt", "swimming trunks, bathing trunks", "swing", "switch, electric switch, electrical switch", "syringe", "table lamp", "tank, army tank, armored combat vehicle, armoured combat vehicle", "tape player", "teapot", "teddy, teddy bear", "television, television system", "tennis ball", "thatch, thatched roof", "theater curtain, theatre curtain", "thimble", "thresher, thrasher, threshing machine", "throne", "tile roof", "toaster", "tobacco shop, tobacconist shop, tobacconist", "toilet seat", "torch", "totem pole", "tow truck, tow car, wrecker", "toyshop", "tractor", "trailer truck, tractor trailer, trucking rig, rig, articulated lorry, semi", "tray", "trench coat", "tricycle, trike, velocipede", "trimaran", "tripod", "triumphal arch", "trolleybus, trolley coach, trackless trolley", "trombone", "tub, vat", "turnstile", "typewriter keyboard", "umbrella", "unicycle, monocycle", "upright, upright piano", "vacuum, vacuum cleaner", "vase", "vault", "velvet", "vending machine", "vestment", "viaduct", "violin, fiddle", "volleyball", "waffle iron", "wall clock", "wallet, billfold, notecase, pocketbook", "wardrobe, closet, press", "warplane, military plane", "washbasin, handbasin, washbowl, lavabo, wash-hand basin", "washer, automatic washer, washing machine", "water bottle", "water jug", "water tower", "whiskey jug", "whistle", "wig", "window screen", "window shade", "windsor tie", "wine bottle", "wing", "wok", "wooden spoon", "wool, woolen, woollen", "worm fence, snake fence, snake-rail fence, virginia fence", "wreck", "yawl", "yurt", "web site, website, internet site, site", "comic book", "crossword puzzle, crossword", "street sign", "traffic light, traffic signal, stoplight", "book jacket, dust cover, dust jacket, dust wrapper", "menu", "plate", "guacamole", "consomme", "hot pot, hotpot", "trifle", "ice cream, icecream", "ice lolly, lolly, lollipop, popsicle", "french loaf", "bagel, beigel", "pretzel", "cheeseburger", "hotdog, hot dog, red hot", "mashed potato", "head cabbage", "broccoli", "cauliflower", "zucchini, courgette", "spaghetti squash", "acorn squash", "butternut squash", "cucumber, cuke", "artichoke, globe artichoke", "bell pepper", "cardoon", "mushroom", "granny smith", "strawberry", "orange", "lemon", "fig", "pineapple, ananas", "banana", "jackfruit, jak, jack", "custard apple", "pomegranate", "hay", "carbonara", "chocolate sauce, chocolate syrup", "dough", "meat loaf, meatloaf", "pizza, pizza pie", "potpie", "burrito", "red wine", "espresso", "cup", "eggnog", "alp", "bubble", "cliff, drop, drop-off", "coral reef", "geyser", "lakeside, lakeshore", "promontory, headland, head, foreland", "sandbar, sand bar", "seashore, coast, seacoast, sea-coast", "valley, vale", "volcano", "ballplayer, baseball player", "groom, bridegroom", "scuba diver", "rapeseed", "daisy", "yellow lady's slipper, yellow lady-slipper, cypripedium calceolus, cypripedium parviflorum", "corn", "acorn", "hip, rose hip, rosehip", "buckeye, horse chestnut, conker", "coral fungus", "agaric", "gyromitra", "stinkhorn, carrion fungus", "earthstar", "hen-of-the-woods, hen of the woods, polyporus frondosus, grifola frondosa", "bolete", "ear, spike, capitulum", "toilet tissue, toilet paper, bathroom tissue" ]
microsoft/swinv2-tiny-patch4-window16-256
# Swin Transformer v2 (tiny-sized model) Swin Transformer v2 model pre-trained on ImageNet-1k at resolution 256x256. It was introduced in the paper [Swin Transformer V2: Scaling Up Capacity and Resolution](https://arxiv.org/abs/2111.09883) by Liu et al. and first released in [this repository](https://github.com/microsoft/Swin-Transformer). Disclaimer: The team releasing Swin Transformer v2 did not write a model card for this model so this model card has been written by the Hugging Face team. ## Model description The Swin Transformer is a type of Vision Transformer. It builds hierarchical feature maps by merging image patches (shown in gray) in deeper layers and has linear computation complexity to input image size due to computation of self-attention only within each local window (shown in red). It can thus serve as a general-purpose backbone for both image classification and dense recognition tasks. In contrast, previous vision Transformers produce feature maps of a single low resolution and have quadratic computation complexity to input image size due to computation of self-attention globally. Swin Transformer v2 adds 3 main improvements: 1) a residual-post-norm method combined with cosine attention to improve training stability; 2) a log-spaced continuous position bias method to effectively transfer models pre-trained using low-resolution images to downstream tasks with high-resolution inputs; 3) a self-supervised pre-training method, SimMIM, to reduce the needs of vast labeled images. ![model image](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/swin_transformer_architecture.png) [Source](https://paperswithcode.com/method/swin-transformer) ## Intended uses & limitations You can use the raw model for image classification. See the [model hub](https://huggingface.co/models?search=swinv2) to look for fine-tuned versions on a task that interests you. ### How to use Here is how to use this model to classify an image of the COCO 2017 dataset into one of the 1,000 ImageNet classes: ```python from transformers import AutoImageProcessor, AutoModelForImageClassification from PIL import Image import requests url = "http://images.cocodataset.org/val2017/000000039769.jpg" image = Image.open(requests.get(url, stream=True).raw) processor = AutoImageProcessor.from_pretrained("microsoft/swinv2-tiny-patch4-window16-256") model = AutoModelForImageClassification.from_pretrained("microsoft/swinv2-tiny-patch4-window16-256") inputs = processor(images=image, return_tensors="pt") outputs = model(**inputs) logits = outputs.logits # model predicts one of the 1000 ImageNet classes predicted_class_idx = logits.argmax(-1).item() print("Predicted class:", model.config.id2label[predicted_class_idx]) ``` For more code examples, we refer to the [documentation](https://huggingface.co/transformers/model_doc/swinv2.html#). ### BibTeX entry and citation info ```bibtex @article{DBLP:journals/corr/abs-2111-09883, author = {Ze Liu and Han Hu and Yutong Lin and Zhuliang Yao and Zhenda Xie and Yixuan Wei and Jia Ning and Yue Cao and Zheng Zhang and Li Dong and Furu Wei and Baining Guo}, title = {Swin Transformer {V2:} Scaling Up Capacity and Resolution}, journal = {CoRR}, volume = {abs/2111.09883}, year = {2021}, url = {https://arxiv.org/abs/2111.09883}, eprinttype = {arXiv}, eprint = {2111.09883}, timestamp = {Thu, 02 Dec 2021 15:54:22 +0100}, biburl = {https://dblp.org/rec/journals/corr/abs-2111-09883.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ```
[ "tench, tinca tinca", "goldfish, carassius auratus", "great white shark, white shark, man-eater, man-eating shark, carcharodon carcharias", "tiger shark, galeocerdo cuvieri", "hammerhead, hammerhead shark", "electric ray, crampfish, numbfish, torpedo", "stingray", "cock", "hen", "ostrich, struthio camelus", "brambling, fringilla montifringilla", "goldfinch, carduelis carduelis", "house finch, linnet, carpodacus mexicanus", "junco, snowbird", "indigo bunting, indigo finch, indigo bird, passerina cyanea", "robin, american robin, turdus migratorius", "bulbul", "jay", "magpie", "chickadee", "water ouzel, dipper", "kite", "bald eagle, american eagle, haliaeetus leucocephalus", "vulture", "great grey owl, great gray owl, strix nebulosa", "european fire salamander, salamandra salamandra", "common newt, triturus vulgaris", "eft", "spotted salamander, ambystoma maculatum", "axolotl, mud puppy, ambystoma mexicanum", "bullfrog, rana catesbeiana", "tree frog, tree-frog", "tailed frog, bell toad, ribbed toad, tailed toad, ascaphus trui", "loggerhead, loggerhead turtle, caretta caretta", "leatherback turtle, leatherback, leathery turtle, dermochelys coriacea", "mud turtle", "terrapin", "box turtle, box tortoise", "banded gecko", "common iguana, iguana, iguana iguana", "american chameleon, anole, anolis carolinensis", "whiptail, whiptail lizard", "agama", "frilled lizard, chlamydosaurus kingi", "alligator lizard", "gila monster, heloderma suspectum", "green lizard, lacerta viridis", "african chameleon, chamaeleo chamaeleon", "komodo dragon, komodo lizard, dragon lizard, giant lizard, varanus komodoensis", "african crocodile, nile crocodile, crocodylus niloticus", "american alligator, alligator mississipiensis", "triceratops", "thunder snake, worm snake, carphophis amoenus", "ringneck snake, ring-necked snake, ring snake", "hognose snake, puff adder, sand viper", "green snake, grass snake", "king snake, kingsnake", "garter snake, grass snake", "water snake", "vine snake", "night snake, hypsiglena torquata", "boa constrictor, constrictor constrictor", "rock python, rock snake, python sebae", "indian cobra, naja naja", "green mamba", "sea snake", "horned viper, cerastes, sand viper, horned asp, cerastes cornutus", "diamondback, diamondback rattlesnake, crotalus adamanteus", "sidewinder, horned rattlesnake, crotalus cerastes", "trilobite", "harvestman, daddy longlegs, phalangium opilio", "scorpion", "black and gold garden spider, argiope aurantia", "barn spider, araneus cavaticus", "garden spider, aranea diademata", "black widow, latrodectus mactans", "tarantula", "wolf spider, hunting spider", "tick", "centipede", "black grouse", "ptarmigan", "ruffed grouse, partridge, bonasa umbellus", "prairie chicken, prairie grouse, prairie fowl", "peacock", "quail", "partridge", "african grey, african gray, psittacus erithacus", "macaw", "sulphur-crested cockatoo, kakatoe galerita, cacatua galerita", "lorikeet", "coucal", "bee eater", "hornbill", "hummingbird", "jacamar", "toucan", "drake", "red-breasted merganser, mergus serrator", "goose", "black swan, cygnus atratus", "tusker", "echidna, spiny anteater, anteater", "platypus, duckbill, duckbilled platypus, duck-billed platypus, ornithorhynchus anatinus", "wallaby, brush kangaroo", "koala, koala bear, kangaroo bear, native bear, phascolarctos cinereus", "wombat", "jellyfish", "sea anemone, anemone", "brain coral", "flatworm, platyhelminth", "nematode, nematode worm, roundworm", "conch", "snail", "slug", "sea slug, nudibranch", "chiton, coat-of-mail shell, sea cradle, polyplacophore", "chambered nautilus, pearly nautilus, nautilus", "dungeness crab, cancer magister", "rock crab, cancer irroratus", "fiddler crab", "king crab, alaska crab, alaskan king crab, alaska king crab, paralithodes camtschatica", "american lobster, northern lobster, maine lobster, homarus americanus", "spiny lobster, langouste, rock lobster, crawfish, crayfish, sea crawfish", "crayfish, crawfish, crawdad, crawdaddy", "hermit crab", "isopod", "white stork, ciconia ciconia", "black stork, ciconia nigra", "spoonbill", "flamingo", "little blue heron, egretta caerulea", "american egret, great white heron, egretta albus", "bittern", "crane", "limpkin, aramus pictus", "european gallinule, porphyrio porphyrio", "american coot, marsh hen, mud hen, water hen, fulica americana", "bustard", "ruddy turnstone, arenaria interpres", "red-backed sandpiper, dunlin, erolia alpina", "redshank, tringa totanus", "dowitcher", "oystercatcher, oyster catcher", "pelican", "king penguin, aptenodytes patagonica", "albatross, mollymawk", "grey whale, gray whale, devilfish, eschrichtius gibbosus, eschrichtius robustus", "killer whale, killer, orca, grampus, sea wolf, orcinus orca", "dugong, dugong dugon", "sea lion", "chihuahua", "japanese spaniel", "maltese dog, maltese terrier, maltese", "pekinese, pekingese, peke", "shih-tzu", "blenheim spaniel", "papillon", "toy terrier", "rhodesian ridgeback", "afghan hound, afghan", "basset, basset hound", "beagle", "bloodhound, sleuthhound", "bluetick", "black-and-tan coonhound", "walker hound, walker foxhound", "english foxhound", "redbone", "borzoi, russian wolfhound", "irish wolfhound", "italian greyhound", "whippet", "ibizan hound, ibizan podenco", "norwegian elkhound, elkhound", "otterhound, otter hound", "saluki, gazelle hound", "scottish deerhound, deerhound", "weimaraner", "staffordshire bullterrier, staffordshire bull terrier", "american staffordshire terrier, staffordshire terrier, american pit bull terrier, pit bull terrier", "bedlington terrier", "border terrier", "kerry blue terrier", "irish terrier", "norfolk terrier", "norwich terrier", "yorkshire terrier", "wire-haired fox terrier", "lakeland terrier", "sealyham terrier, sealyham", "airedale, airedale terrier", "cairn, cairn terrier", "australian terrier", "dandie dinmont, dandie dinmont terrier", "boston bull, boston terrier", "miniature schnauzer", "giant schnauzer", "standard schnauzer", "scotch terrier, scottish terrier, scottie", "tibetan terrier, chrysanthemum dog", "silky terrier, sydney silky", "soft-coated wheaten terrier", "west highland white terrier", "lhasa, lhasa apso", "flat-coated retriever", "curly-coated retriever", "golden retriever", "labrador retriever", "chesapeake bay retriever", "german short-haired pointer", "vizsla, hungarian pointer", "english setter", "irish setter, red setter", "gordon setter", "brittany spaniel", "clumber, clumber spaniel", "english springer, english springer spaniel", "welsh springer spaniel", "cocker spaniel, english cocker spaniel, cocker", "sussex spaniel", "irish water spaniel", "kuvasz", "schipperke", "groenendael", "malinois", "briard", "kelpie", "komondor", "old english sheepdog, bobtail", "shetland sheepdog, shetland sheep dog, shetland", "collie", "border collie", "bouvier des flandres, bouviers des flandres", "rottweiler", "german shepherd, german shepherd dog, german police dog, alsatian", "doberman, doberman pinscher", "miniature pinscher", "greater swiss mountain dog", "bernese mountain dog", "appenzeller", "entlebucher", "boxer", "bull mastiff", "tibetan mastiff", "french bulldog", "great dane", "saint bernard, st bernard", "eskimo dog, husky", "malamute, malemute, alaskan malamute", "siberian husky", "dalmatian, coach dog, carriage dog", "affenpinscher, monkey pinscher, monkey dog", "basenji", "pug, pug-dog", "leonberg", "newfoundland, newfoundland dog", "great pyrenees", "samoyed, samoyede", "pomeranian", "chow, chow chow", "keeshond", "brabancon griffon", "pembroke, pembroke welsh corgi", "cardigan, cardigan welsh corgi", "toy poodle", "miniature poodle", "standard poodle", "mexican hairless", "timber wolf, grey wolf, gray wolf, canis lupus", "white wolf, arctic wolf, canis lupus tundrarum", "red wolf, maned wolf, canis rufus, canis niger", "coyote, prairie wolf, brush wolf, canis latrans", "dingo, warrigal, warragal, canis dingo", "dhole, cuon alpinus", "african hunting dog, hyena dog, cape hunting dog, lycaon pictus", "hyena, hyaena", "red fox, vulpes vulpes", "kit fox, vulpes macrotis", "arctic fox, white fox, alopex lagopus", "grey fox, gray fox, urocyon cinereoargenteus", "tabby, tabby cat", "tiger cat", "persian cat", "siamese cat, siamese", "egyptian cat", "cougar, puma, catamount, mountain lion, painter, panther, felis concolor", "lynx, catamount", "leopard, panthera pardus", "snow leopard, ounce, panthera uncia", "jaguar, panther, panthera onca, felis onca", "lion, king of beasts, panthera leo", "tiger, panthera tigris", "cheetah, chetah, acinonyx jubatus", "brown bear, bruin, ursus arctos", "american black bear, black bear, ursus americanus, euarctos americanus", "ice bear, polar bear, ursus maritimus, thalarctos maritimus", "sloth bear, melursus ursinus, ursus ursinus", "mongoose", "meerkat, mierkat", "tiger beetle", "ladybug, ladybeetle, lady beetle, ladybird, ladybird beetle", "ground beetle, carabid beetle", "long-horned beetle, longicorn, longicorn beetle", "leaf beetle, chrysomelid", "dung beetle", "rhinoceros beetle", "weevil", "fly", "bee", "ant, emmet, pismire", "grasshopper, hopper", "cricket", "walking stick, walkingstick, stick insect", "cockroach, roach", "mantis, mantid", "cicada, cicala", "leafhopper", "lacewing, lacewing fly", "dragonfly, darning needle, devil's darning needle, sewing needle, snake feeder, snake doctor, mosquito hawk, skeeter hawk", "damselfly", "admiral", "ringlet, ringlet butterfly", "monarch, monarch butterfly, milkweed butterfly, danaus plexippus", "cabbage butterfly", "sulphur butterfly, sulfur butterfly", "lycaenid, lycaenid butterfly", "starfish, sea star", "sea urchin", "sea cucumber, holothurian", "wood rabbit, cottontail, cottontail rabbit", "hare", "angora, angora rabbit", "hamster", "porcupine, hedgehog", "fox squirrel, eastern fox squirrel, sciurus niger", "marmot", "beaver", "guinea pig, cavia cobaya", "sorrel", "zebra", "hog, pig, grunter, squealer, sus scrofa", "wild boar, boar, sus scrofa", "warthog", "hippopotamus, hippo, river horse, hippopotamus amphibius", "ox", "water buffalo, water ox, asiatic buffalo, bubalus bubalis", "bison", "ram, tup", "bighorn, bighorn sheep, cimarron, rocky mountain bighorn, rocky mountain sheep, ovis canadensis", "ibex, capra ibex", "hartebeest", "impala, aepyceros melampus", "gazelle", "arabian camel, dromedary, camelus dromedarius", "llama", "weasel", "mink", "polecat, fitch, foulmart, foumart, mustela putorius", "black-footed ferret, ferret, mustela nigripes", "otter", "skunk, polecat, wood pussy", "badger", "armadillo", "three-toed sloth, ai, bradypus tridactylus", "orangutan, orang, orangutang, pongo pygmaeus", "gorilla, gorilla gorilla", "chimpanzee, chimp, pan troglodytes", "gibbon, hylobates lar", "siamang, hylobates syndactylus, symphalangus syndactylus", "guenon, guenon monkey", "patas, hussar monkey, erythrocebus patas", "baboon", "macaque", "langur", "colobus, colobus monkey", "proboscis monkey, nasalis larvatus", "marmoset", "capuchin, ringtail, cebus capucinus", "howler monkey, howler", "titi, titi monkey", "spider monkey, ateles geoffroyi", "squirrel monkey, saimiri sciureus", "madagascar cat, ring-tailed lemur, lemur catta", "indri, indris, indri indri, indri brevicaudatus", "indian elephant, elephas maximus", "african elephant, loxodonta africana", "lesser panda, red panda, panda, bear cat, cat bear, ailurus fulgens", "giant panda, panda, panda bear, coon bear, ailuropoda melanoleuca", "barracouta, snoek", "eel", "coho, cohoe, coho salmon, blue jack, silver salmon, oncorhynchus kisutch", "rock beauty, holocanthus tricolor", "anemone fish", "sturgeon", "gar, garfish, garpike, billfish, lepisosteus osseus", "lionfish", "puffer, pufferfish, blowfish, globefish", "abacus", "abaya", "academic gown, academic robe, judge's robe", "accordion, piano accordion, squeeze box", "acoustic guitar", "aircraft carrier, carrier, flattop, attack aircraft carrier", "airliner", "airship, dirigible", "altar", "ambulance", "amphibian, amphibious vehicle", "analog clock", "apiary, bee house", "apron", "ashcan, trash can, garbage can, wastebin, ash bin, ash-bin, ashbin, dustbin, trash barrel, trash bin", "assault rifle, assault gun", "backpack, back pack, knapsack, packsack, rucksack, haversack", "bakery, bakeshop, bakehouse", "balance beam, beam", "balloon", "ballpoint, ballpoint pen, ballpen, biro", "band aid", "banjo", "bannister, banister, balustrade, balusters, handrail", "barbell", "barber chair", "barbershop", "barn", "barometer", "barrel, cask", "barrow, garden cart, lawn cart, wheelbarrow", "baseball", "basketball", "bassinet", "bassoon", "bathing cap, swimming cap", "bath towel", "bathtub, bathing tub, bath, tub", "beach wagon, station wagon, wagon, estate car, beach waggon, station waggon, waggon", "beacon, lighthouse, beacon light, pharos", "beaker", "bearskin, busby, shako", "beer bottle", "beer glass", "bell cote, bell cot", "bib", "bicycle-built-for-two, tandem bicycle, tandem", "bikini, two-piece", "binder, ring-binder", "binoculars, field glasses, opera glasses", "birdhouse", "boathouse", "bobsled, bobsleigh, bob", "bolo tie, bolo, bola tie, bola", "bonnet, poke bonnet", "bookcase", "bookshop, bookstore, bookstall", "bottlecap", "bow", "bow tie, bow-tie, bowtie", "brass, memorial tablet, plaque", "brassiere, bra, bandeau", "breakwater, groin, groyne, mole, bulwark, seawall, jetty", "breastplate, aegis, egis", "broom", "bucket, pail", "buckle", "bulletproof vest", "bullet train, bullet", "butcher shop, meat market", "cab, hack, taxi, taxicab", "caldron, cauldron", "candle, taper, wax light", "cannon", "canoe", "can opener, tin opener", "cardigan", "car mirror", "carousel, carrousel, merry-go-round, roundabout, whirligig", "carpenter's kit, tool kit", "carton", "car wheel", "cash machine, cash dispenser, automated teller machine, automatic teller machine, automated teller, automatic teller, atm", "cassette", "cassette player", "castle", "catamaran", "cd player", "cello, violoncello", "cellular telephone, cellular phone, cellphone, cell, mobile phone", "chain", "chainlink fence", "chain mail, ring mail, mail, chain armor, chain armour, ring armor, ring armour", "chain saw, chainsaw", "chest", "chiffonier, commode", "chime, bell, gong", "china cabinet, china closet", "christmas stocking", "church, church building", "cinema, movie theater, movie theatre, movie house, picture palace", "cleaver, meat cleaver, chopper", "cliff dwelling", "cloak", "clog, geta, patten, sabot", "cocktail shaker", "coffee mug", "coffeepot", "coil, spiral, volute, whorl, helix", "combination lock", "computer keyboard, keypad", "confectionery, confectionary, candy store", "container ship, containership, container vessel", "convertible", "corkscrew, bottle screw", "cornet, horn, trumpet, trump", "cowboy boot", "cowboy hat, ten-gallon hat", "cradle", "crane", "crash helmet", "crate", "crib, cot", "crock pot", "croquet ball", "crutch", "cuirass", "dam, dike, dyke", "desk", "desktop computer", "dial telephone, dial phone", "diaper, nappy, napkin", "digital clock", "digital watch", "dining table, board", "dishrag, dishcloth", "dishwasher, dish washer, dishwashing machine", "disk brake, disc brake", "dock, dockage, docking facility", "dogsled, dog sled, dog sleigh", "dome", "doormat, welcome mat", "drilling platform, offshore rig", "drum, membranophone, tympan", "drumstick", "dumbbell", "dutch oven", "electric fan, blower", "electric guitar", "electric locomotive", "entertainment center", "envelope", "espresso maker", "face powder", "feather boa, boa", "file, file cabinet, filing cabinet", "fireboat", "fire engine, fire truck", "fire screen, fireguard", "flagpole, flagstaff", "flute, transverse flute", "folding chair", "football helmet", "forklift", "fountain", "fountain pen", "four-poster", "freight car", "french horn, horn", "frying pan, frypan, skillet", "fur coat", "garbage truck, dustcart", "gasmask, respirator, gas helmet", "gas pump, gasoline pump, petrol pump, island dispenser", "goblet", "go-kart", "golf ball", "golfcart, golf cart", "gondola", "gong, tam-tam", "gown", "grand piano, grand", "greenhouse, nursery, glasshouse", "grille, radiator grille", "grocery store, grocery, food market, market", "guillotine", "hair slide", "hair spray", "half track", "hammer", "hamper", "hand blower, blow dryer, blow drier, hair dryer, hair drier", "hand-held computer, hand-held microcomputer", "handkerchief, hankie, hanky, hankey", "hard disc, hard disk, fixed disk", "harmonica, mouth organ, harp, mouth harp", "harp", "harvester, reaper", "hatchet", "holster", "home theater, home theatre", "honeycomb", "hook, claw", "hoopskirt, crinoline", "horizontal bar, high bar", "horse cart, horse-cart", "hourglass", "ipod", "iron, smoothing iron", "jack-o'-lantern", "jean, blue jean, denim", "jeep, landrover", "jersey, t-shirt, tee shirt", "jigsaw puzzle", "jinrikisha, ricksha, rickshaw", "joystick", "kimono", "knee pad", "knot", "lab coat, laboratory coat", "ladle", "lampshade, lamp shade", "laptop, laptop computer", "lawn mower, mower", "lens cap, lens cover", "letter opener, paper knife, paperknife", "library", "lifeboat", "lighter, light, igniter, ignitor", "limousine, limo", "liner, ocean liner", "lipstick, lip rouge", "loafer", "lotion", "loudspeaker, speaker, speaker unit, loudspeaker system, speaker system", "loupe, jeweler's loupe", "lumbermill, sawmill", "magnetic compass", "mailbag, postbag", "mailbox, letter box", "maillot", "maillot, tank suit", "manhole cover", "maraca", "marimba, xylophone", "mask", "matchstick", "maypole", "maze, labyrinth", "measuring cup", "medicine chest, medicine cabinet", "megalith, megalithic structure", "microphone, mike", "microwave, microwave oven", "military uniform", "milk can", "minibus", "miniskirt, mini", "minivan", "missile", "mitten", "mixing bowl", "mobile home, manufactured home", "model t", "modem", "monastery", "monitor", "moped", "mortar", "mortarboard", "mosque", "mosquito net", "motor scooter, scooter", "mountain bike, all-terrain bike, off-roader", "mountain tent", "mouse, computer mouse", "mousetrap", "moving van", "muzzle", "nail", "neck brace", "necklace", "nipple", "notebook, notebook computer", "obelisk", "oboe, hautboy, hautbois", "ocarina, sweet potato", "odometer, hodometer, mileometer, milometer", "oil filter", "organ, pipe organ", "oscilloscope, scope, cathode-ray oscilloscope, cro", "overskirt", "oxcart", "oxygen mask", "packet", "paddle, boat paddle", "paddlewheel, paddle wheel", "padlock", "paintbrush", "pajama, pyjama, pj's, jammies", "palace", "panpipe, pandean pipe, syrinx", "paper towel", "parachute, chute", "parallel bars, bars", "park bench", "parking meter", "passenger car, coach, carriage", "patio, terrace", "pay-phone, pay-station", "pedestal, plinth, footstall", "pencil box, pencil case", "pencil sharpener", "perfume, essence", "petri dish", "photocopier", "pick, plectrum, plectron", "pickelhaube", "picket fence, paling", "pickup, pickup truck", "pier", "piggy bank, penny bank", "pill bottle", "pillow", "ping-pong ball", "pinwheel", "pirate, pirate ship", "pitcher, ewer", "plane, carpenter's plane, woodworking plane", "planetarium", "plastic bag", "plate rack", "plow, plough", "plunger, plumber's helper", "polaroid camera, polaroid land camera", "pole", "police van, police wagon, paddy wagon, patrol wagon, wagon, black maria", "poncho", "pool table, billiard table, snooker table", "pop bottle, soda bottle", "pot, flowerpot", "potter's wheel", "power drill", "prayer rug, prayer mat", "printer", "prison, prison house", "projectile, missile", "projector", "puck, hockey puck", "punching bag, punch bag, punching ball, punchball", "purse", "quill, quill pen", "quilt, comforter, comfort, puff", "racer, race car, racing car", "racket, racquet", "radiator", "radio, wireless", "radio telescope, radio reflector", "rain barrel", "recreational vehicle, rv, r.v.", "reel", "reflex camera", "refrigerator, icebox", "remote control, remote", "restaurant, eating house, eating place, eatery", "revolver, six-gun, six-shooter", "rifle", "rocking chair, rocker", "rotisserie", "rubber eraser, rubber, pencil eraser", "rugby ball", "rule, ruler", "running shoe", "safe", "safety pin", "saltshaker, salt shaker", "sandal", "sarong", "sax, saxophone", "scabbard", "scale, weighing machine", "school bus", "schooner", "scoreboard", "screen, crt screen", "screw", "screwdriver", "seat belt, seatbelt", "sewing machine", "shield, buckler", "shoe shop, shoe-shop, shoe store", "shoji", "shopping basket", "shopping cart", "shovel", "shower cap", "shower curtain", "ski", "ski mask", "sleeping bag", "slide rule, slipstick", "sliding door", "slot, one-armed bandit", "snorkel", "snowmobile", "snowplow, snowplough", "soap dispenser", "soccer ball", "sock", "solar dish, solar collector, solar furnace", "sombrero", "soup bowl", "space bar", "space heater", "space shuttle", "spatula", "speedboat", "spider web, spider's web", "spindle", "sports car, sport car", "spotlight, spot", "stage", "steam locomotive", "steel arch bridge", "steel drum", "stethoscope", "stole", "stone wall", "stopwatch, stop watch", "stove", "strainer", "streetcar, tram, tramcar, trolley, trolley car", "stretcher", "studio couch, day bed", "stupa, tope", "submarine, pigboat, sub, u-boat", "suit, suit of clothes", "sundial", "sunglass", "sunglasses, dark glasses, shades", "sunscreen, sunblock, sun blocker", "suspension bridge", "swab, swob, mop", "sweatshirt", "swimming trunks, bathing trunks", "swing", "switch, electric switch, electrical switch", "syringe", "table lamp", "tank, army tank, armored combat vehicle, armoured combat vehicle", "tape player", "teapot", "teddy, teddy bear", "television, television system", "tennis ball", "thatch, thatched roof", "theater curtain, theatre curtain", "thimble", "thresher, thrasher, threshing machine", "throne", "tile roof", "toaster", "tobacco shop, tobacconist shop, tobacconist", "toilet seat", "torch", "totem pole", "tow truck, tow car, wrecker", "toyshop", "tractor", "trailer truck, tractor trailer, trucking rig, rig, articulated lorry, semi", "tray", "trench coat", "tricycle, trike, velocipede", "trimaran", "tripod", "triumphal arch", "trolleybus, trolley coach, trackless trolley", "trombone", "tub, vat", "turnstile", "typewriter keyboard", "umbrella", "unicycle, monocycle", "upright, upright piano", "vacuum, vacuum cleaner", "vase", "vault", "velvet", "vending machine", "vestment", "viaduct", "violin, fiddle", "volleyball", "waffle iron", "wall clock", "wallet, billfold, notecase, pocketbook", "wardrobe, closet, press", "warplane, military plane", "washbasin, handbasin, washbowl, lavabo, wash-hand basin", "washer, automatic washer, washing machine", "water bottle", "water jug", "water tower", "whiskey jug", "whistle", "wig", "window screen", "window shade", "windsor tie", "wine bottle", "wing", "wok", "wooden spoon", "wool, woolen, woollen", "worm fence, snake fence, snake-rail fence, virginia fence", "wreck", "yawl", "yurt", "web site, website, internet site, site", "comic book", "crossword puzzle, crossword", "street sign", "traffic light, traffic signal, stoplight", "book jacket, dust cover, dust jacket, dust wrapper", "menu", "plate", "guacamole", "consomme", "hot pot, hotpot", "trifle", "ice cream, icecream", "ice lolly, lolly, lollipop, popsicle", "french loaf", "bagel, beigel", "pretzel", "cheeseburger", "hotdog, hot dog, red hot", "mashed potato", "head cabbage", "broccoli", "cauliflower", "zucchini, courgette", "spaghetti squash", "acorn squash", "butternut squash", "cucumber, cuke", "artichoke, globe artichoke", "bell pepper", "cardoon", "mushroom", "granny smith", "strawberry", "orange", "lemon", "fig", "pineapple, ananas", "banana", "jackfruit, jak, jack", "custard apple", "pomegranate", "hay", "carbonara", "chocolate sauce, chocolate syrup", "dough", "meat loaf, meatloaf", "pizza, pizza pie", "potpie", "burrito", "red wine", "espresso", "cup", "eggnog", "alp", "bubble", "cliff, drop, drop-off", "coral reef", "geyser", "lakeside, lakeshore", "promontory, headland, head, foreland", "sandbar, sand bar", "seashore, coast, seacoast, sea-coast", "valley, vale", "volcano", "ballplayer, baseball player", "groom, bridegroom", "scuba diver", "rapeseed", "daisy", "yellow lady's slipper, yellow lady-slipper, cypripedium calceolus, cypripedium parviflorum", "corn", "acorn", "hip, rose hip, rosehip", "buckeye, horse chestnut, conker", "coral fungus", "agaric", "gyromitra", "stinkhorn, carrion fungus", "earthstar", "hen-of-the-woods, hen of the woods, polyporus frondosus, grifola frondosa", "bolete", "ear, spike, capitulum", "toilet tissue, toilet paper, bathroom tissue" ]
saiharsha/vit-base-beans
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-base-beans This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the beans dataset. It achieves the following results on the evaluation set: - Loss: 0.1824 - Accuracy: 0.9699 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 1337 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.672 | 1.0 | 44 | 0.5672 | 0.9398 | | 0.411 | 2.0 | 88 | 0.3027 | 0.9699 | | 0.2542 | 3.0 | 132 | 0.2078 | 0.9699 | | 0.1886 | 4.0 | 176 | 0.1882 | 0.9699 | | 0.1931 | 5.0 | 220 | 0.1824 | 0.9699 | ### Framework versions - Transformers 4.20.0.dev0 - Pytorch 1.11.0+cu102 - Datasets 2.2.2 - Tokenizers 0.12.1
[ "angular_leaf_spot", "bean_rust", "healthy" ]
flyswot/test2
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # test2 This model is a fine-tuned version of [flyswot/convnext-tiny-224_flyswot](https://huggingface.co/flyswot/convnext-tiny-224_flyswot) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 0.1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | No log | 0.1 | 23 | 0.1128 | 0.9787 | ### Framework versions - Transformers 4.19.4 - Pytorch 1.11.0+cu113 - Datasets 2.3.0 - Tokenizers 0.12.1
[ "container", "control shot", "cover", "edge + spine", "flysheet", "other", "page + folio", "scroll" ]
microsoft/swinv2-small-patch4-window8-256
# Swin Transformer v2 (small-sized model) Swin Transformer v2 model pre-trained on ImageNet-1k at resolution 256x256. It was introduced in the paper [Swin Transformer V2: Scaling Up Capacity and Resolution](https://arxiv.org/abs/2111.09883) by Liu et al. and first released in [this repository](https://github.com/microsoft/Swin-Transformer). Disclaimer: The team releasing Swin Transformer v2 did not write a model card for this model so this model card has been written by the Hugging Face team. ## Model description The Swin Transformer is a type of Vision Transformer. It builds hierarchical feature maps by merging image patches (shown in gray) in deeper layers and has linear computation complexity to input image size due to computation of self-attention only within each local window (shown in red). It can thus serve as a general-purpose backbone for both image classification and dense recognition tasks. In contrast, previous vision Transformers produce feature maps of a single low resolution and have quadratic computation complexity to input image size due to computation of self-attention globally. Swin Transformer v2 adds 3 main improvements: 1) a residual-post-norm method combined with cosine attention to improve training stability; 2) a log-spaced continuous position bias method to effectively transfer models pre-trained using low-resolution images to downstream tasks with high-resolution inputs; 3) a self-supervised pre-training method, SimMIM, to reduce the needs of vast labeled images. ![model image](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/swin_transformer_architecture.png) [Source](https://paperswithcode.com/method/swin-transformer) ## Intended uses & limitations You can use the raw model for image classification. See the [model hub](https://huggingface.co/models?search=swinv2) to look for fine-tuned versions on a task that interests you. ### How to use Here is how to use this model to classify an image of the COCO 2017 dataset into one of the 1,000 ImageNet classes: ```python from transformers import AutoImageProcessor, AutoModelForImageClassification from PIL import Image import requests url = "http://images.cocodataset.org/val2017/000000039769.jpg" image = Image.open(requests.get(url, stream=True).raw) processor = AutoImageProcessor.from_pretrained("microsoft/swinv2-small-patch4-window8-256") model = AutoModelForImageClassification.from_pretrained("microsoft/swinv2-small-patch4-window8-256") inputs = processor(images=image, return_tensors="pt") outputs = model(**inputs) logits = outputs.logits # model predicts one of the 1000 ImageNet classes predicted_class_idx = logits.argmax(-1).item() print("Predicted class:", model.config.id2label[predicted_class_idx]) ``` For more code examples, we refer to the [documentation](https://huggingface.co/transformers/model_doc/swinv2.html#). ### BibTeX entry and citation info ```bibtex @article{DBLP:journals/corr/abs-2111-09883, author = {Ze Liu and Han Hu and Yutong Lin and Zhuliang Yao and Zhenda Xie and Yixuan Wei and Jia Ning and Yue Cao and Zheng Zhang and Li Dong and Furu Wei and Baining Guo}, title = {Swin Transformer {V2:} Scaling Up Capacity and Resolution}, journal = {CoRR}, volume = {abs/2111.09883}, year = {2021}, url = {https://arxiv.org/abs/2111.09883}, eprinttype = {arXiv}, eprint = {2111.09883}, timestamp = {Thu, 02 Dec 2021 15:54:22 +0100}, biburl = {https://dblp.org/rec/journals/corr/abs-2111-09883.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ```
[ "tench, tinca tinca", "goldfish, carassius auratus", "great white shark, white shark, man-eater, man-eating shark, carcharodon carcharias", "tiger shark, galeocerdo cuvieri", "hammerhead, hammerhead shark", "electric ray, crampfish, numbfish, torpedo", "stingray", "cock", "hen", "ostrich, struthio camelus", "brambling, fringilla montifringilla", "goldfinch, carduelis carduelis", "house finch, linnet, carpodacus mexicanus", "junco, snowbird", "indigo bunting, indigo finch, indigo bird, passerina cyanea", "robin, american robin, turdus migratorius", "bulbul", "jay", "magpie", "chickadee", "water ouzel, dipper", "kite", "bald eagle, american eagle, haliaeetus leucocephalus", "vulture", "great grey owl, great gray owl, strix nebulosa", "european fire salamander, salamandra salamandra", "common newt, triturus vulgaris", "eft", "spotted salamander, ambystoma maculatum", "axolotl, mud puppy, ambystoma mexicanum", "bullfrog, rana catesbeiana", "tree frog, tree-frog", "tailed frog, bell toad, ribbed toad, tailed toad, ascaphus trui", "loggerhead, loggerhead turtle, caretta caretta", "leatherback turtle, leatherback, leathery turtle, dermochelys coriacea", "mud turtle", "terrapin", "box turtle, box tortoise", "banded gecko", "common iguana, iguana, iguana iguana", "american chameleon, anole, anolis carolinensis", "whiptail, whiptail lizard", "agama", "frilled lizard, chlamydosaurus kingi", "alligator lizard", "gila monster, heloderma suspectum", "green lizard, lacerta viridis", "african chameleon, chamaeleo chamaeleon", "komodo dragon, komodo lizard, dragon lizard, giant lizard, varanus komodoensis", "african crocodile, nile crocodile, crocodylus niloticus", "american alligator, alligator mississipiensis", "triceratops", "thunder snake, worm snake, carphophis amoenus", "ringneck snake, ring-necked snake, ring snake", "hognose snake, puff adder, sand viper", "green snake, grass snake", "king snake, kingsnake", "garter snake, grass snake", "water snake", "vine snake", "night snake, hypsiglena torquata", "boa constrictor, constrictor constrictor", "rock python, rock snake, python sebae", "indian cobra, naja naja", "green mamba", "sea snake", "horned viper, cerastes, sand viper, horned asp, cerastes cornutus", "diamondback, diamondback rattlesnake, crotalus adamanteus", "sidewinder, horned rattlesnake, crotalus cerastes", "trilobite", "harvestman, daddy longlegs, phalangium opilio", "scorpion", "black and gold garden spider, argiope aurantia", "barn spider, araneus cavaticus", "garden spider, aranea diademata", "black widow, latrodectus mactans", "tarantula", "wolf spider, hunting spider", "tick", "centipede", "black grouse", "ptarmigan", "ruffed grouse, partridge, bonasa umbellus", "prairie chicken, prairie grouse, prairie fowl", "peacock", "quail", "partridge", "african grey, african gray, psittacus erithacus", "macaw", "sulphur-crested cockatoo, kakatoe galerita, cacatua galerita", "lorikeet", "coucal", "bee eater", "hornbill", "hummingbird", "jacamar", "toucan", "drake", "red-breasted merganser, mergus serrator", "goose", "black swan, cygnus atratus", "tusker", "echidna, spiny anteater, anteater", "platypus, duckbill, duckbilled platypus, duck-billed platypus, ornithorhynchus anatinus", "wallaby, brush kangaroo", "koala, koala bear, kangaroo bear, native bear, phascolarctos cinereus", "wombat", "jellyfish", "sea anemone, anemone", "brain coral", "flatworm, platyhelminth", "nematode, nematode worm, roundworm", "conch", "snail", "slug", "sea slug, nudibranch", "chiton, coat-of-mail shell, sea cradle, polyplacophore", "chambered nautilus, pearly nautilus, nautilus", "dungeness crab, cancer magister", "rock crab, cancer irroratus", "fiddler crab", "king crab, alaska crab, alaskan king crab, alaska king crab, paralithodes camtschatica", "american lobster, northern lobster, maine lobster, homarus americanus", "spiny lobster, langouste, rock lobster, crawfish, crayfish, sea crawfish", "crayfish, crawfish, crawdad, crawdaddy", "hermit crab", "isopod", "white stork, ciconia ciconia", "black stork, ciconia nigra", "spoonbill", "flamingo", "little blue heron, egretta caerulea", "american egret, great white heron, egretta albus", "bittern", "crane", "limpkin, aramus pictus", "european gallinule, porphyrio porphyrio", "american coot, marsh hen, mud hen, water hen, fulica americana", "bustard", "ruddy turnstone, arenaria interpres", "red-backed sandpiper, dunlin, erolia alpina", "redshank, tringa totanus", "dowitcher", "oystercatcher, oyster catcher", "pelican", "king penguin, aptenodytes patagonica", "albatross, mollymawk", "grey whale, gray whale, devilfish, eschrichtius gibbosus, eschrichtius robustus", "killer whale, killer, orca, grampus, sea wolf, orcinus orca", "dugong, dugong dugon", "sea lion", "chihuahua", "japanese spaniel", "maltese dog, maltese terrier, maltese", "pekinese, pekingese, peke", "shih-tzu", "blenheim spaniel", "papillon", "toy terrier", "rhodesian ridgeback", "afghan hound, afghan", "basset, basset hound", "beagle", "bloodhound, sleuthhound", "bluetick", "black-and-tan coonhound", "walker hound, walker foxhound", "english foxhound", "redbone", "borzoi, russian wolfhound", "irish wolfhound", "italian greyhound", "whippet", "ibizan hound, ibizan podenco", "norwegian elkhound, elkhound", "otterhound, otter hound", "saluki, gazelle hound", "scottish deerhound, deerhound", "weimaraner", "staffordshire bullterrier, staffordshire bull terrier", "american staffordshire terrier, staffordshire terrier, american pit bull terrier, pit bull terrier", "bedlington terrier", "border terrier", "kerry blue terrier", "irish terrier", "norfolk terrier", "norwich terrier", "yorkshire terrier", "wire-haired fox terrier", "lakeland terrier", "sealyham terrier, sealyham", "airedale, airedale terrier", "cairn, cairn terrier", "australian terrier", "dandie dinmont, dandie dinmont terrier", "boston bull, boston terrier", "miniature schnauzer", "giant schnauzer", "standard schnauzer", "scotch terrier, scottish terrier, scottie", "tibetan terrier, chrysanthemum dog", "silky terrier, sydney silky", "soft-coated wheaten terrier", "west highland white terrier", "lhasa, lhasa apso", "flat-coated retriever", "curly-coated retriever", "golden retriever", "labrador retriever", "chesapeake bay retriever", "german short-haired pointer", "vizsla, hungarian pointer", "english setter", "irish setter, red setter", "gordon setter", "brittany spaniel", "clumber, clumber spaniel", "english springer, english springer spaniel", "welsh springer spaniel", "cocker spaniel, english cocker spaniel, cocker", "sussex spaniel", "irish water spaniel", "kuvasz", "schipperke", "groenendael", "malinois", "briard", "kelpie", "komondor", "old english sheepdog, bobtail", "shetland sheepdog, shetland sheep dog, shetland", "collie", "border collie", "bouvier des flandres, bouviers des flandres", "rottweiler", "german shepherd, german shepherd dog, german police dog, alsatian", "doberman, doberman pinscher", "miniature pinscher", "greater swiss mountain dog", "bernese mountain dog", "appenzeller", "entlebucher", "boxer", "bull mastiff", "tibetan mastiff", "french bulldog", "great dane", "saint bernard, st bernard", "eskimo dog, husky", "malamute, malemute, alaskan malamute", "siberian husky", "dalmatian, coach dog, carriage dog", "affenpinscher, monkey pinscher, monkey dog", "basenji", "pug, pug-dog", "leonberg", "newfoundland, newfoundland dog", "great pyrenees", "samoyed, samoyede", "pomeranian", "chow, chow chow", "keeshond", "brabancon griffon", "pembroke, pembroke welsh corgi", "cardigan, cardigan welsh corgi", "toy poodle", "miniature poodle", "standard poodle", "mexican hairless", "timber wolf, grey wolf, gray wolf, canis lupus", "white wolf, arctic wolf, canis lupus tundrarum", "red wolf, maned wolf, canis rufus, canis niger", "coyote, prairie wolf, brush wolf, canis latrans", "dingo, warrigal, warragal, canis dingo", "dhole, cuon alpinus", "african hunting dog, hyena dog, cape hunting dog, lycaon pictus", "hyena, hyaena", "red fox, vulpes vulpes", "kit fox, vulpes macrotis", "arctic fox, white fox, alopex lagopus", "grey fox, gray fox, urocyon cinereoargenteus", "tabby, tabby cat", "tiger cat", "persian cat", "siamese cat, siamese", "egyptian cat", "cougar, puma, catamount, mountain lion, painter, panther, felis concolor", "lynx, catamount", "leopard, panthera pardus", "snow leopard, ounce, panthera uncia", "jaguar, panther, panthera onca, felis onca", "lion, king of beasts, panthera leo", "tiger, panthera tigris", "cheetah, chetah, acinonyx jubatus", "brown bear, bruin, ursus arctos", "american black bear, black bear, ursus americanus, euarctos americanus", "ice bear, polar bear, ursus maritimus, thalarctos maritimus", "sloth bear, melursus ursinus, ursus ursinus", "mongoose", "meerkat, mierkat", "tiger beetle", "ladybug, ladybeetle, lady beetle, ladybird, ladybird beetle", "ground beetle, carabid beetle", "long-horned beetle, longicorn, longicorn beetle", "leaf beetle, chrysomelid", "dung beetle", "rhinoceros beetle", "weevil", "fly", "bee", "ant, emmet, pismire", "grasshopper, hopper", "cricket", "walking stick, walkingstick, stick insect", "cockroach, roach", "mantis, mantid", "cicada, cicala", "leafhopper", "lacewing, lacewing fly", "dragonfly, darning needle, devil's darning needle, sewing needle, snake feeder, snake doctor, mosquito hawk, skeeter hawk", "damselfly", "admiral", "ringlet, ringlet butterfly", "monarch, monarch butterfly, milkweed butterfly, danaus plexippus", "cabbage butterfly", "sulphur butterfly, sulfur butterfly", "lycaenid, lycaenid butterfly", "starfish, sea star", "sea urchin", "sea cucumber, holothurian", "wood rabbit, cottontail, cottontail rabbit", "hare", "angora, angora rabbit", "hamster", "porcupine, hedgehog", "fox squirrel, eastern fox squirrel, sciurus niger", "marmot", "beaver", "guinea pig, cavia cobaya", "sorrel", "zebra", "hog, pig, grunter, squealer, sus scrofa", "wild boar, boar, sus scrofa", "warthog", "hippopotamus, hippo, river horse, hippopotamus amphibius", "ox", "water buffalo, water ox, asiatic buffalo, bubalus bubalis", "bison", "ram, tup", "bighorn, bighorn sheep, cimarron, rocky mountain bighorn, rocky mountain sheep, ovis canadensis", "ibex, capra ibex", "hartebeest", "impala, aepyceros melampus", "gazelle", "arabian camel, dromedary, camelus dromedarius", "llama", "weasel", "mink", "polecat, fitch, foulmart, foumart, mustela putorius", "black-footed ferret, ferret, mustela nigripes", "otter", "skunk, polecat, wood pussy", "badger", "armadillo", "three-toed sloth, ai, bradypus tridactylus", "orangutan, orang, orangutang, pongo pygmaeus", "gorilla, gorilla gorilla", "chimpanzee, chimp, pan troglodytes", "gibbon, hylobates lar", "siamang, hylobates syndactylus, symphalangus syndactylus", "guenon, guenon monkey", "patas, hussar monkey, erythrocebus patas", "baboon", "macaque", "langur", "colobus, colobus monkey", "proboscis monkey, nasalis larvatus", "marmoset", "capuchin, ringtail, cebus capucinus", "howler monkey, howler", "titi, titi monkey", "spider monkey, ateles geoffroyi", "squirrel monkey, saimiri sciureus", "madagascar cat, ring-tailed lemur, lemur catta", "indri, indris, indri indri, indri brevicaudatus", "indian elephant, elephas maximus", "african elephant, loxodonta africana", "lesser panda, red panda, panda, bear cat, cat bear, ailurus fulgens", "giant panda, panda, panda bear, coon bear, ailuropoda melanoleuca", "barracouta, snoek", "eel", "coho, cohoe, coho salmon, blue jack, silver salmon, oncorhynchus kisutch", "rock beauty, holocanthus tricolor", "anemone fish", "sturgeon", "gar, garfish, garpike, billfish, lepisosteus osseus", "lionfish", "puffer, pufferfish, blowfish, globefish", "abacus", "abaya", "academic gown, academic robe, judge's robe", "accordion, piano accordion, squeeze box", "acoustic guitar", "aircraft carrier, carrier, flattop, attack aircraft carrier", "airliner", "airship, dirigible", "altar", "ambulance", "amphibian, amphibious vehicle", "analog clock", "apiary, bee house", "apron", "ashcan, trash can, garbage can, wastebin, ash bin, ash-bin, ashbin, dustbin, trash barrel, trash bin", "assault rifle, assault gun", "backpack, back pack, knapsack, packsack, rucksack, haversack", "bakery, bakeshop, bakehouse", "balance beam, beam", "balloon", "ballpoint, ballpoint pen, ballpen, biro", "band aid", "banjo", "bannister, banister, balustrade, balusters, handrail", "barbell", "barber chair", "barbershop", "barn", "barometer", "barrel, cask", "barrow, garden cart, lawn cart, wheelbarrow", "baseball", "basketball", "bassinet", "bassoon", "bathing cap, swimming cap", "bath towel", "bathtub, bathing tub, bath, tub", "beach wagon, station wagon, wagon, estate car, beach waggon, station waggon, waggon", "beacon, lighthouse, beacon light, pharos", "beaker", "bearskin, busby, shako", "beer bottle", "beer glass", "bell cote, bell cot", "bib", "bicycle-built-for-two, tandem bicycle, tandem", "bikini, two-piece", "binder, ring-binder", "binoculars, field glasses, opera glasses", "birdhouse", "boathouse", "bobsled, bobsleigh, bob", "bolo tie, bolo, bola tie, bola", "bonnet, poke bonnet", "bookcase", "bookshop, bookstore, bookstall", "bottlecap", "bow", "bow tie, bow-tie, bowtie", "brass, memorial tablet, plaque", "brassiere, bra, bandeau", "breakwater, groin, groyne, mole, bulwark, seawall, jetty", "breastplate, aegis, egis", "broom", "bucket, pail", "buckle", "bulletproof vest", "bullet train, bullet", "butcher shop, meat market", "cab, hack, taxi, taxicab", "caldron, cauldron", "candle, taper, wax light", "cannon", "canoe", "can opener, tin opener", "cardigan", "car mirror", "carousel, carrousel, merry-go-round, roundabout, whirligig", "carpenter's kit, tool kit", "carton", "car wheel", "cash machine, cash dispenser, automated teller machine, automatic teller machine, automated teller, automatic teller, atm", "cassette", "cassette player", "castle", "catamaran", "cd player", "cello, violoncello", "cellular telephone, cellular phone, cellphone, cell, mobile phone", "chain", "chainlink fence", "chain mail, ring mail, mail, chain armor, chain armour, ring armor, ring armour", "chain saw, chainsaw", "chest", "chiffonier, commode", "chime, bell, gong", "china cabinet, china closet", "christmas stocking", "church, church building", "cinema, movie theater, movie theatre, movie house, picture palace", "cleaver, meat cleaver, chopper", "cliff dwelling", "cloak", "clog, geta, patten, sabot", "cocktail shaker", "coffee mug", "coffeepot", "coil, spiral, volute, whorl, helix", "combination lock", "computer keyboard, keypad", "confectionery, confectionary, candy store", "container ship, containership, container vessel", "convertible", "corkscrew, bottle screw", "cornet, horn, trumpet, trump", "cowboy boot", "cowboy hat, ten-gallon hat", "cradle", "crane", "crash helmet", "crate", "crib, cot", "crock pot", "croquet ball", "crutch", "cuirass", "dam, dike, dyke", "desk", "desktop computer", "dial telephone, dial phone", "diaper, nappy, napkin", "digital clock", "digital watch", "dining table, board", "dishrag, dishcloth", "dishwasher, dish washer, dishwashing machine", "disk brake, disc brake", "dock, dockage, docking facility", "dogsled, dog sled, dog sleigh", "dome", "doormat, welcome mat", "drilling platform, offshore rig", "drum, membranophone, tympan", "drumstick", "dumbbell", "dutch oven", "electric fan, blower", "electric guitar", "electric locomotive", "entertainment center", "envelope", "espresso maker", "face powder", "feather boa, boa", "file, file cabinet, filing cabinet", "fireboat", "fire engine, fire truck", "fire screen, fireguard", "flagpole, flagstaff", "flute, transverse flute", "folding chair", "football helmet", "forklift", "fountain", "fountain pen", "four-poster", "freight car", "french horn, horn", "frying pan, frypan, skillet", "fur coat", "garbage truck, dustcart", "gasmask, respirator, gas helmet", "gas pump, gasoline pump, petrol pump, island dispenser", "goblet", "go-kart", "golf ball", "golfcart, golf cart", "gondola", "gong, tam-tam", "gown", "grand piano, grand", "greenhouse, nursery, glasshouse", "grille, radiator grille", "grocery store, grocery, food market, market", "guillotine", "hair slide", "hair spray", "half track", "hammer", "hamper", "hand blower, blow dryer, blow drier, hair dryer, hair drier", "hand-held computer, hand-held microcomputer", "handkerchief, hankie, hanky, hankey", "hard disc, hard disk, fixed disk", "harmonica, mouth organ, harp, mouth harp", "harp", "harvester, reaper", "hatchet", "holster", "home theater, home theatre", "honeycomb", "hook, claw", "hoopskirt, crinoline", "horizontal bar, high bar", "horse cart, horse-cart", "hourglass", "ipod", "iron, smoothing iron", "jack-o'-lantern", "jean, blue jean, denim", "jeep, landrover", "jersey, t-shirt, tee shirt", "jigsaw puzzle", "jinrikisha, ricksha, rickshaw", "joystick", "kimono", "knee pad", "knot", "lab coat, laboratory coat", "ladle", "lampshade, lamp shade", "laptop, laptop computer", "lawn mower, mower", "lens cap, lens cover", "letter opener, paper knife, paperknife", "library", "lifeboat", "lighter, light, igniter, ignitor", "limousine, limo", "liner, ocean liner", "lipstick, lip rouge", "loafer", "lotion", "loudspeaker, speaker, speaker unit, loudspeaker system, speaker system", "loupe, jeweler's loupe", "lumbermill, sawmill", "magnetic compass", "mailbag, postbag", "mailbox, letter box", "maillot", "maillot, tank suit", "manhole cover", "maraca", "marimba, xylophone", "mask", "matchstick", "maypole", "maze, labyrinth", "measuring cup", "medicine chest, medicine cabinet", "megalith, megalithic structure", "microphone, mike", "microwave, microwave oven", "military uniform", "milk can", "minibus", "miniskirt, mini", "minivan", "missile", "mitten", "mixing bowl", "mobile home, manufactured home", "model t", "modem", "monastery", "monitor", "moped", "mortar", "mortarboard", "mosque", "mosquito net", "motor scooter, scooter", "mountain bike, all-terrain bike, off-roader", "mountain tent", "mouse, computer mouse", "mousetrap", "moving van", "muzzle", "nail", "neck brace", "necklace", "nipple", "notebook, notebook computer", "obelisk", "oboe, hautboy, hautbois", "ocarina, sweet potato", "odometer, hodometer, mileometer, milometer", "oil filter", "organ, pipe organ", "oscilloscope, scope, cathode-ray oscilloscope, cro", "overskirt", "oxcart", "oxygen mask", "packet", "paddle, boat paddle", "paddlewheel, paddle wheel", "padlock", "paintbrush", "pajama, pyjama, pj's, jammies", "palace", "panpipe, pandean pipe, syrinx", "paper towel", "parachute, chute", "parallel bars, bars", "park bench", "parking meter", "passenger car, coach, carriage", "patio, terrace", "pay-phone, pay-station", "pedestal, plinth, footstall", "pencil box, pencil case", "pencil sharpener", "perfume, essence", "petri dish", "photocopier", "pick, plectrum, plectron", "pickelhaube", "picket fence, paling", "pickup, pickup truck", "pier", "piggy bank, penny bank", "pill bottle", "pillow", "ping-pong ball", "pinwheel", "pirate, pirate ship", "pitcher, ewer", "plane, carpenter's plane, woodworking plane", "planetarium", "plastic bag", "plate rack", "plow, plough", "plunger, plumber's helper", "polaroid camera, polaroid land camera", "pole", "police van, police wagon, paddy wagon, patrol wagon, wagon, black maria", "poncho", "pool table, billiard table, snooker table", "pop bottle, soda bottle", "pot, flowerpot", "potter's wheel", "power drill", "prayer rug, prayer mat", "printer", "prison, prison house", "projectile, missile", "projector", "puck, hockey puck", "punching bag, punch bag, punching ball, punchball", "purse", "quill, quill pen", "quilt, comforter, comfort, puff", "racer, race car, racing car", "racket, racquet", "radiator", "radio, wireless", "radio telescope, radio reflector", "rain barrel", "recreational vehicle, rv, r.v.", "reel", "reflex camera", "refrigerator, icebox", "remote control, remote", "restaurant, eating house, eating place, eatery", "revolver, six-gun, six-shooter", "rifle", "rocking chair, rocker", "rotisserie", "rubber eraser, rubber, pencil eraser", "rugby ball", "rule, ruler", "running shoe", "safe", "safety pin", "saltshaker, salt shaker", "sandal", "sarong", "sax, saxophone", "scabbard", "scale, weighing machine", "school bus", "schooner", "scoreboard", "screen, crt screen", "screw", "screwdriver", "seat belt, seatbelt", "sewing machine", "shield, buckler", "shoe shop, shoe-shop, shoe store", "shoji", "shopping basket", "shopping cart", "shovel", "shower cap", "shower curtain", "ski", "ski mask", "sleeping bag", "slide rule, slipstick", "sliding door", "slot, one-armed bandit", "snorkel", "snowmobile", "snowplow, snowplough", "soap dispenser", "soccer ball", "sock", "solar dish, solar collector, solar furnace", "sombrero", "soup bowl", "space bar", "space heater", "space shuttle", "spatula", "speedboat", "spider web, spider's web", "spindle", "sports car, sport car", "spotlight, spot", "stage", "steam locomotive", "steel arch bridge", "steel drum", "stethoscope", "stole", "stone wall", "stopwatch, stop watch", "stove", "strainer", "streetcar, tram, tramcar, trolley, trolley car", "stretcher", "studio couch, day bed", "stupa, tope", "submarine, pigboat, sub, u-boat", "suit, suit of clothes", "sundial", "sunglass", "sunglasses, dark glasses, shades", "sunscreen, sunblock, sun blocker", "suspension bridge", "swab, swob, mop", "sweatshirt", "swimming trunks, bathing trunks", "swing", "switch, electric switch, electrical switch", "syringe", "table lamp", "tank, army tank, armored combat vehicle, armoured combat vehicle", "tape player", "teapot", "teddy, teddy bear", "television, television system", "tennis ball", "thatch, thatched roof", "theater curtain, theatre curtain", "thimble", "thresher, thrasher, threshing machine", "throne", "tile roof", "toaster", "tobacco shop, tobacconist shop, tobacconist", "toilet seat", "torch", "totem pole", "tow truck, tow car, wrecker", "toyshop", "tractor", "trailer truck, tractor trailer, trucking rig, rig, articulated lorry, semi", "tray", "trench coat", "tricycle, trike, velocipede", "trimaran", "tripod", "triumphal arch", "trolleybus, trolley coach, trackless trolley", "trombone", "tub, vat", "turnstile", "typewriter keyboard", "umbrella", "unicycle, monocycle", "upright, upright piano", "vacuum, vacuum cleaner", "vase", "vault", "velvet", "vending machine", "vestment", "viaduct", "violin, fiddle", "volleyball", "waffle iron", "wall clock", "wallet, billfold, notecase, pocketbook", "wardrobe, closet, press", "warplane, military plane", "washbasin, handbasin, washbowl, lavabo, wash-hand basin", "washer, automatic washer, washing machine", "water bottle", "water jug", "water tower", "whiskey jug", "whistle", "wig", "window screen", "window shade", "windsor tie", "wine bottle", "wing", "wok", "wooden spoon", "wool, woolen, woollen", "worm fence, snake fence, snake-rail fence, virginia fence", "wreck", "yawl", "yurt", "web site, website, internet site, site", "comic book", "crossword puzzle, crossword", "street sign", "traffic light, traffic signal, stoplight", "book jacket, dust cover, dust jacket, dust wrapper", "menu", "plate", "guacamole", "consomme", "hot pot, hotpot", "trifle", "ice cream, icecream", "ice lolly, lolly, lollipop, popsicle", "french loaf", "bagel, beigel", "pretzel", "cheeseburger", "hotdog, hot dog, red hot", "mashed potato", "head cabbage", "broccoli", "cauliflower", "zucchini, courgette", "spaghetti squash", "acorn squash", "butternut squash", "cucumber, cuke", "artichoke, globe artichoke", "bell pepper", "cardoon", "mushroom", "granny smith", "strawberry", "orange", "lemon", "fig", "pineapple, ananas", "banana", "jackfruit, jak, jack", "custard apple", "pomegranate", "hay", "carbonara", "chocolate sauce, chocolate syrup", "dough", "meat loaf, meatloaf", "pizza, pizza pie", "potpie", "burrito", "red wine", "espresso", "cup", "eggnog", "alp", "bubble", "cliff, drop, drop-off", "coral reef", "geyser", "lakeside, lakeshore", "promontory, headland, head, foreland", "sandbar, sand bar", "seashore, coast, seacoast, sea-coast", "valley, vale", "volcano", "ballplayer, baseball player", "groom, bridegroom", "scuba diver", "rapeseed", "daisy", "yellow lady's slipper, yellow lady-slipper, cypripedium calceolus, cypripedium parviflorum", "corn", "acorn", "hip, rose hip, rosehip", "buckeye, horse chestnut, conker", "coral fungus", "agaric", "gyromitra", "stinkhorn, carrion fungus", "earthstar", "hen-of-the-woods, hen of the woods, polyporus frondosus, grifola frondosa", "bolete", "ear, spike, capitulum", "toilet tissue, toilet paper, bathroom tissue" ]
microsoft/swinv2-small-patch4-window16-256
# Swin Transformer v2 (small-sized model) Swin Transformer v2 model pre-trained on ImageNet-1k at resolution 256x256. It was introduced in the paper [Swin Transformer V2: Scaling Up Capacity and Resolution](https://arxiv.org/abs/2111.09883) by Liu et al. and first released in [this repository](https://github.com/microsoft/Swin-Transformer). Disclaimer: The team releasing Swin Transformer v2 did not write a model card for this model so this model card has been written by the Hugging Face team. ## Model description The Swin Transformer is a type of Vision Transformer. It builds hierarchical feature maps by merging image patches (shown in gray) in deeper layers and has linear computation complexity to input image size due to computation of self-attention only within each local window (shown in red). It can thus serve as a general-purpose backbone for both image classification and dense recognition tasks. In contrast, previous vision Transformers produce feature maps of a single low resolution and have quadratic computation complexity to input image size due to computation of self-attention globally. Swin Transformer v2 adds 3 main improvements: 1) a residual-post-norm method combined with cosine attention to improve training stability; 2) a log-spaced continuous position bias method to effectively transfer models pre-trained using low-resolution images to downstream tasks with high-resolution inputs; 3) a self-supervised pre-training method, SimMIM, to reduce the needs of vast labeled images. ![model image](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/swin_transformer_architecture.png) [Source](https://paperswithcode.com/method/swin-transformer) ## Intended uses & limitations You can use the raw model for image classification. See the [model hub](https://huggingface.co/models?search=swinv2) to look for fine-tuned versions on a task that interests you. ### How to use Here is how to use this model to classify an image of the COCO 2017 dataset into one of the 1,000 ImageNet classes: ```python from transformers import AutoImageProcessor, AutoModelForImageClassification from PIL import Image import requests url = "http://images.cocodataset.org/val2017/000000039769.jpg" image = Image.open(requests.get(url, stream=True).raw) processor = AutoImageProcessor.from_pretrained("microsoft/swinv2-small-patch4-window16-256") model = AutoModelForImageClassification.from_pretrained("microsoft/swinv2-small-patch4-window16-256") inputs = processor(images=image, return_tensors="pt") outputs = model(**inputs) logits = outputs.logits # model predicts one of the 1000 ImageNet classes predicted_class_idx = logits.argmax(-1).item() print("Predicted class:", model.config.id2label[predicted_class_idx]) ``` For more code examples, we refer to the [documentation](https://huggingface.co/transformers/model_doc/swinv2.html#). ### BibTeX entry and citation info ```bibtex @article{DBLP:journals/corr/abs-2111-09883, author = {Ze Liu and Han Hu and Yutong Lin and Zhuliang Yao and Zhenda Xie and Yixuan Wei and Jia Ning and Yue Cao and Zheng Zhang and Li Dong and Furu Wei and Baining Guo}, title = {Swin Transformer {V2:} Scaling Up Capacity and Resolution}, journal = {CoRR}, volume = {abs/2111.09883}, year = {2021}, url = {https://arxiv.org/abs/2111.09883}, eprinttype = {arXiv}, eprint = {2111.09883}, timestamp = {Thu, 02 Dec 2021 15:54:22 +0100}, biburl = {https://dblp.org/rec/journals/corr/abs-2111-09883.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ```
[ "tench, tinca tinca", "goldfish, carassius auratus", "great white shark, white shark, man-eater, man-eating shark, carcharodon carcharias", "tiger shark, galeocerdo cuvieri", "hammerhead, hammerhead shark", "electric ray, crampfish, numbfish, torpedo", "stingray", "cock", "hen", "ostrich, struthio camelus", "brambling, fringilla montifringilla", "goldfinch, carduelis carduelis", "house finch, linnet, carpodacus mexicanus", "junco, snowbird", "indigo bunting, indigo finch, indigo bird, passerina cyanea", "robin, american robin, turdus migratorius", "bulbul", "jay", "magpie", "chickadee", "water ouzel, dipper", "kite", "bald eagle, american eagle, haliaeetus leucocephalus", "vulture", "great grey owl, great gray owl, strix nebulosa", "european fire salamander, salamandra salamandra", "common newt, triturus vulgaris", "eft", "spotted salamander, ambystoma maculatum", "axolotl, mud puppy, ambystoma mexicanum", "bullfrog, rana catesbeiana", "tree frog, tree-frog", "tailed frog, bell toad, ribbed toad, tailed toad, ascaphus trui", "loggerhead, loggerhead turtle, caretta caretta", "leatherback turtle, leatherback, leathery turtle, dermochelys coriacea", "mud turtle", "terrapin", "box turtle, box tortoise", "banded gecko", "common iguana, iguana, iguana iguana", "american chameleon, anole, anolis carolinensis", "whiptail, whiptail lizard", "agama", "frilled lizard, chlamydosaurus kingi", "alligator lizard", "gila monster, heloderma suspectum", "green lizard, lacerta viridis", "african chameleon, chamaeleo chamaeleon", "komodo dragon, komodo lizard, dragon lizard, giant lizard, varanus komodoensis", "african crocodile, nile crocodile, crocodylus niloticus", "american alligator, alligator mississipiensis", "triceratops", "thunder snake, worm snake, carphophis amoenus", "ringneck snake, ring-necked snake, ring snake", "hognose snake, puff adder, sand viper", "green snake, grass snake", "king snake, kingsnake", "garter snake, grass snake", "water snake", "vine snake", "night snake, hypsiglena torquata", "boa constrictor, constrictor constrictor", "rock python, rock snake, python sebae", "indian cobra, naja naja", "green mamba", "sea snake", "horned viper, cerastes, sand viper, horned asp, cerastes cornutus", "diamondback, diamondback rattlesnake, crotalus adamanteus", "sidewinder, horned rattlesnake, crotalus cerastes", "trilobite", "harvestman, daddy longlegs, phalangium opilio", "scorpion", "black and gold garden spider, argiope aurantia", "barn spider, araneus cavaticus", "garden spider, aranea diademata", "black widow, latrodectus mactans", "tarantula", "wolf spider, hunting spider", "tick", "centipede", "black grouse", "ptarmigan", "ruffed grouse, partridge, bonasa umbellus", "prairie chicken, prairie grouse, prairie fowl", "peacock", "quail", "partridge", "african grey, african gray, psittacus erithacus", "macaw", "sulphur-crested cockatoo, kakatoe galerita, cacatua galerita", "lorikeet", "coucal", "bee eater", "hornbill", "hummingbird", "jacamar", "toucan", "drake", "red-breasted merganser, mergus serrator", "goose", "black swan, cygnus atratus", "tusker", "echidna, spiny anteater, anteater", "platypus, duckbill, duckbilled platypus, duck-billed platypus, ornithorhynchus anatinus", "wallaby, brush kangaroo", "koala, koala bear, kangaroo bear, native bear, phascolarctos cinereus", "wombat", "jellyfish", "sea anemone, anemone", "brain coral", "flatworm, platyhelminth", "nematode, nematode worm, roundworm", "conch", "snail", "slug", "sea slug, nudibranch", "chiton, coat-of-mail shell, sea cradle, polyplacophore", "chambered nautilus, pearly nautilus, nautilus", "dungeness crab, cancer magister", "rock crab, cancer irroratus", "fiddler crab", "king crab, alaska crab, alaskan king crab, alaska king crab, paralithodes camtschatica", "american lobster, northern lobster, maine lobster, homarus americanus", "spiny lobster, langouste, rock lobster, crawfish, crayfish, sea crawfish", "crayfish, crawfish, crawdad, crawdaddy", "hermit crab", "isopod", "white stork, ciconia ciconia", "black stork, ciconia nigra", "spoonbill", "flamingo", "little blue heron, egretta caerulea", "american egret, great white heron, egretta albus", "bittern", "crane", "limpkin, aramus pictus", "european gallinule, porphyrio porphyrio", "american coot, marsh hen, mud hen, water hen, fulica americana", "bustard", "ruddy turnstone, arenaria interpres", "red-backed sandpiper, dunlin, erolia alpina", "redshank, tringa totanus", "dowitcher", "oystercatcher, oyster catcher", "pelican", "king penguin, aptenodytes patagonica", "albatross, mollymawk", "grey whale, gray whale, devilfish, eschrichtius gibbosus, eschrichtius robustus", "killer whale, killer, orca, grampus, sea wolf, orcinus orca", "dugong, dugong dugon", "sea lion", "chihuahua", "japanese spaniel", "maltese dog, maltese terrier, maltese", "pekinese, pekingese, peke", "shih-tzu", "blenheim spaniel", "papillon", "toy terrier", "rhodesian ridgeback", "afghan hound, afghan", "basset, basset hound", "beagle", "bloodhound, sleuthhound", "bluetick", "black-and-tan coonhound", "walker hound, walker foxhound", "english foxhound", "redbone", "borzoi, russian wolfhound", "irish wolfhound", "italian greyhound", "whippet", "ibizan hound, ibizan podenco", "norwegian elkhound, elkhound", "otterhound, otter hound", "saluki, gazelle hound", "scottish deerhound, deerhound", "weimaraner", "staffordshire bullterrier, staffordshire bull terrier", "american staffordshire terrier, staffordshire terrier, american pit bull terrier, pit bull terrier", "bedlington terrier", "border terrier", "kerry blue terrier", "irish terrier", "norfolk terrier", "norwich terrier", "yorkshire terrier", "wire-haired fox terrier", "lakeland terrier", "sealyham terrier, sealyham", "airedale, airedale terrier", "cairn, cairn terrier", "australian terrier", "dandie dinmont, dandie dinmont terrier", "boston bull, boston terrier", "miniature schnauzer", "giant schnauzer", "standard schnauzer", "scotch terrier, scottish terrier, scottie", "tibetan terrier, chrysanthemum dog", "silky terrier, sydney silky", "soft-coated wheaten terrier", "west highland white terrier", "lhasa, lhasa apso", "flat-coated retriever", "curly-coated retriever", "golden retriever", "labrador retriever", "chesapeake bay retriever", "german short-haired pointer", "vizsla, hungarian pointer", "english setter", "irish setter, red setter", "gordon setter", "brittany spaniel", "clumber, clumber spaniel", "english springer, english springer spaniel", "welsh springer spaniel", "cocker spaniel, english cocker spaniel, cocker", "sussex spaniel", "irish water spaniel", "kuvasz", "schipperke", "groenendael", "malinois", "briard", "kelpie", "komondor", "old english sheepdog, bobtail", "shetland sheepdog, shetland sheep dog, shetland", "collie", "border collie", "bouvier des flandres, bouviers des flandres", "rottweiler", "german shepherd, german shepherd dog, german police dog, alsatian", "doberman, doberman pinscher", "miniature pinscher", "greater swiss mountain dog", "bernese mountain dog", "appenzeller", "entlebucher", "boxer", "bull mastiff", "tibetan mastiff", "french bulldog", "great dane", "saint bernard, st bernard", "eskimo dog, husky", "malamute, malemute, alaskan malamute", "siberian husky", "dalmatian, coach dog, carriage dog", "affenpinscher, monkey pinscher, monkey dog", "basenji", "pug, pug-dog", "leonberg", "newfoundland, newfoundland dog", "great pyrenees", "samoyed, samoyede", "pomeranian", "chow, chow chow", "keeshond", "brabancon griffon", "pembroke, pembroke welsh corgi", "cardigan, cardigan welsh corgi", "toy poodle", "miniature poodle", "standard poodle", "mexican hairless", "timber wolf, grey wolf, gray wolf, canis lupus", "white wolf, arctic wolf, canis lupus tundrarum", "red wolf, maned wolf, canis rufus, canis niger", "coyote, prairie wolf, brush wolf, canis latrans", "dingo, warrigal, warragal, canis dingo", "dhole, cuon alpinus", "african hunting dog, hyena dog, cape hunting dog, lycaon pictus", "hyena, hyaena", "red fox, vulpes vulpes", "kit fox, vulpes macrotis", "arctic fox, white fox, alopex lagopus", "grey fox, gray fox, urocyon cinereoargenteus", "tabby, tabby cat", "tiger cat", "persian cat", "siamese cat, siamese", "egyptian cat", "cougar, puma, catamount, mountain lion, painter, panther, felis concolor", "lynx, catamount", "leopard, panthera pardus", "snow leopard, ounce, panthera uncia", "jaguar, panther, panthera onca, felis onca", "lion, king of beasts, panthera leo", "tiger, panthera tigris", "cheetah, chetah, acinonyx jubatus", "brown bear, bruin, ursus arctos", "american black bear, black bear, ursus americanus, euarctos americanus", "ice bear, polar bear, ursus maritimus, thalarctos maritimus", "sloth bear, melursus ursinus, ursus ursinus", "mongoose", "meerkat, mierkat", "tiger beetle", "ladybug, ladybeetle, lady beetle, ladybird, ladybird beetle", "ground beetle, carabid beetle", "long-horned beetle, longicorn, longicorn beetle", "leaf beetle, chrysomelid", "dung beetle", "rhinoceros beetle", "weevil", "fly", "bee", "ant, emmet, pismire", "grasshopper, hopper", "cricket", "walking stick, walkingstick, stick insect", "cockroach, roach", "mantis, mantid", "cicada, cicala", "leafhopper", "lacewing, lacewing fly", "dragonfly, darning needle, devil's darning needle, sewing needle, snake feeder, snake doctor, mosquito hawk, skeeter hawk", "damselfly", "admiral", "ringlet, ringlet butterfly", "monarch, monarch butterfly, milkweed butterfly, danaus plexippus", "cabbage butterfly", "sulphur butterfly, sulfur butterfly", "lycaenid, lycaenid butterfly", "starfish, sea star", "sea urchin", "sea cucumber, holothurian", "wood rabbit, cottontail, cottontail rabbit", "hare", "angora, angora rabbit", "hamster", "porcupine, hedgehog", "fox squirrel, eastern fox squirrel, sciurus niger", "marmot", "beaver", "guinea pig, cavia cobaya", "sorrel", "zebra", "hog, pig, grunter, squealer, sus scrofa", "wild boar, boar, sus scrofa", "warthog", "hippopotamus, hippo, river horse, hippopotamus amphibius", "ox", "water buffalo, water ox, asiatic buffalo, bubalus bubalis", "bison", "ram, tup", "bighorn, bighorn sheep, cimarron, rocky mountain bighorn, rocky mountain sheep, ovis canadensis", "ibex, capra ibex", "hartebeest", "impala, aepyceros melampus", "gazelle", "arabian camel, dromedary, camelus dromedarius", "llama", "weasel", "mink", "polecat, fitch, foulmart, foumart, mustela putorius", "black-footed ferret, ferret, mustela nigripes", "otter", "skunk, polecat, wood pussy", "badger", "armadillo", "three-toed sloth, ai, bradypus tridactylus", "orangutan, orang, orangutang, pongo pygmaeus", "gorilla, gorilla gorilla", "chimpanzee, chimp, pan troglodytes", "gibbon, hylobates lar", "siamang, hylobates syndactylus, symphalangus syndactylus", "guenon, guenon monkey", "patas, hussar monkey, erythrocebus patas", "baboon", "macaque", "langur", "colobus, colobus monkey", "proboscis monkey, nasalis larvatus", "marmoset", "capuchin, ringtail, cebus capucinus", "howler monkey, howler", "titi, titi monkey", "spider monkey, ateles geoffroyi", "squirrel monkey, saimiri sciureus", "madagascar cat, ring-tailed lemur, lemur catta", "indri, indris, indri indri, indri brevicaudatus", "indian elephant, elephas maximus", "african elephant, loxodonta africana", "lesser panda, red panda, panda, bear cat, cat bear, ailurus fulgens", "giant panda, panda, panda bear, coon bear, ailuropoda melanoleuca", "barracouta, snoek", "eel", "coho, cohoe, coho salmon, blue jack, silver salmon, oncorhynchus kisutch", "rock beauty, holocanthus tricolor", "anemone fish", "sturgeon", "gar, garfish, garpike, billfish, lepisosteus osseus", "lionfish", "puffer, pufferfish, blowfish, globefish", "abacus", "abaya", "academic gown, academic robe, judge's robe", "accordion, piano accordion, squeeze box", "acoustic guitar", "aircraft carrier, carrier, flattop, attack aircraft carrier", "airliner", "airship, dirigible", "altar", "ambulance", "amphibian, amphibious vehicle", "analog clock", "apiary, bee house", "apron", "ashcan, trash can, garbage can, wastebin, ash bin, ash-bin, ashbin, dustbin, trash barrel, trash bin", "assault rifle, assault gun", "backpack, back pack, knapsack, packsack, rucksack, haversack", "bakery, bakeshop, bakehouse", "balance beam, beam", "balloon", "ballpoint, ballpoint pen, ballpen, biro", "band aid", "banjo", "bannister, banister, balustrade, balusters, handrail", "barbell", "barber chair", "barbershop", "barn", "barometer", "barrel, cask", "barrow, garden cart, lawn cart, wheelbarrow", "baseball", "basketball", "bassinet", "bassoon", "bathing cap, swimming cap", "bath towel", "bathtub, bathing tub, bath, tub", "beach wagon, station wagon, wagon, estate car, beach waggon, station waggon, waggon", "beacon, lighthouse, beacon light, pharos", "beaker", "bearskin, busby, shako", "beer bottle", "beer glass", "bell cote, bell cot", "bib", "bicycle-built-for-two, tandem bicycle, tandem", "bikini, two-piece", "binder, ring-binder", "binoculars, field glasses, opera glasses", "birdhouse", "boathouse", "bobsled, bobsleigh, bob", "bolo tie, bolo, bola tie, bola", "bonnet, poke bonnet", "bookcase", "bookshop, bookstore, bookstall", "bottlecap", "bow", "bow tie, bow-tie, bowtie", "brass, memorial tablet, plaque", "brassiere, bra, bandeau", "breakwater, groin, groyne, mole, bulwark, seawall, jetty", "breastplate, aegis, egis", "broom", "bucket, pail", "buckle", "bulletproof vest", "bullet train, bullet", "butcher shop, meat market", "cab, hack, taxi, taxicab", "caldron, cauldron", "candle, taper, wax light", "cannon", "canoe", "can opener, tin opener", "cardigan", "car mirror", "carousel, carrousel, merry-go-round, roundabout, whirligig", "carpenter's kit, tool kit", "carton", "car wheel", "cash machine, cash dispenser, automated teller machine, automatic teller machine, automated teller, automatic teller, atm", "cassette", "cassette player", "castle", "catamaran", "cd player", "cello, violoncello", "cellular telephone, cellular phone, cellphone, cell, mobile phone", "chain", "chainlink fence", "chain mail, ring mail, mail, chain armor, chain armour, ring armor, ring armour", "chain saw, chainsaw", "chest", "chiffonier, commode", "chime, bell, gong", "china cabinet, china closet", "christmas stocking", "church, church building", "cinema, movie theater, movie theatre, movie house, picture palace", "cleaver, meat cleaver, chopper", "cliff dwelling", "cloak", "clog, geta, patten, sabot", "cocktail shaker", "coffee mug", "coffeepot", "coil, spiral, volute, whorl, helix", "combination lock", "computer keyboard, keypad", "confectionery, confectionary, candy store", "container ship, containership, container vessel", "convertible", "corkscrew, bottle screw", "cornet, horn, trumpet, trump", "cowboy boot", "cowboy hat, ten-gallon hat", "cradle", "crane", "crash helmet", "crate", "crib, cot", "crock pot", "croquet ball", "crutch", "cuirass", "dam, dike, dyke", "desk", "desktop computer", "dial telephone, dial phone", "diaper, nappy, napkin", "digital clock", "digital watch", "dining table, board", "dishrag, dishcloth", "dishwasher, dish washer, dishwashing machine", "disk brake, disc brake", "dock, dockage, docking facility", "dogsled, dog sled, dog sleigh", "dome", "doormat, welcome mat", "drilling platform, offshore rig", "drum, membranophone, tympan", "drumstick", "dumbbell", "dutch oven", "electric fan, blower", "electric guitar", "electric locomotive", "entertainment center", "envelope", "espresso maker", "face powder", "feather boa, boa", "file, file cabinet, filing cabinet", "fireboat", "fire engine, fire truck", "fire screen, fireguard", "flagpole, flagstaff", "flute, transverse flute", "folding chair", "football helmet", "forklift", "fountain", "fountain pen", "four-poster", "freight car", "french horn, horn", "frying pan, frypan, skillet", "fur coat", "garbage truck, dustcart", "gasmask, respirator, gas helmet", "gas pump, gasoline pump, petrol pump, island dispenser", "goblet", "go-kart", "golf ball", "golfcart, golf cart", "gondola", "gong, tam-tam", "gown", "grand piano, grand", "greenhouse, nursery, glasshouse", "grille, radiator grille", "grocery store, grocery, food market, market", "guillotine", "hair slide", "hair spray", "half track", "hammer", "hamper", "hand blower, blow dryer, blow drier, hair dryer, hair drier", "hand-held computer, hand-held microcomputer", "handkerchief, hankie, hanky, hankey", "hard disc, hard disk, fixed disk", "harmonica, mouth organ, harp, mouth harp", "harp", "harvester, reaper", "hatchet", "holster", "home theater, home theatre", "honeycomb", "hook, claw", "hoopskirt, crinoline", "horizontal bar, high bar", "horse cart, horse-cart", "hourglass", "ipod", "iron, smoothing iron", "jack-o'-lantern", "jean, blue jean, denim", "jeep, landrover", "jersey, t-shirt, tee shirt", "jigsaw puzzle", "jinrikisha, ricksha, rickshaw", "joystick", "kimono", "knee pad", "knot", "lab coat, laboratory coat", "ladle", "lampshade, lamp shade", "laptop, laptop computer", "lawn mower, mower", "lens cap, lens cover", "letter opener, paper knife, paperknife", "library", "lifeboat", "lighter, light, igniter, ignitor", "limousine, limo", "liner, ocean liner", "lipstick, lip rouge", "loafer", "lotion", "loudspeaker, speaker, speaker unit, loudspeaker system, speaker system", "loupe, jeweler's loupe", "lumbermill, sawmill", "magnetic compass", "mailbag, postbag", "mailbox, letter box", "maillot", "maillot, tank suit", "manhole cover", "maraca", "marimba, xylophone", "mask", "matchstick", "maypole", "maze, labyrinth", "measuring cup", "medicine chest, medicine cabinet", "megalith, megalithic structure", "microphone, mike", "microwave, microwave oven", "military uniform", "milk can", "minibus", "miniskirt, mini", "minivan", "missile", "mitten", "mixing bowl", "mobile home, manufactured home", "model t", "modem", "monastery", "monitor", "moped", "mortar", "mortarboard", "mosque", "mosquito net", "motor scooter, scooter", "mountain bike, all-terrain bike, off-roader", "mountain tent", "mouse, computer mouse", "mousetrap", "moving van", "muzzle", "nail", "neck brace", "necklace", "nipple", "notebook, notebook computer", "obelisk", "oboe, hautboy, hautbois", "ocarina, sweet potato", "odometer, hodometer, mileometer, milometer", "oil filter", "organ, pipe organ", "oscilloscope, scope, cathode-ray oscilloscope, cro", "overskirt", "oxcart", "oxygen mask", "packet", "paddle, boat paddle", "paddlewheel, paddle wheel", "padlock", "paintbrush", "pajama, pyjama, pj's, jammies", "palace", "panpipe, pandean pipe, syrinx", "paper towel", "parachute, chute", "parallel bars, bars", "park bench", "parking meter", "passenger car, coach, carriage", "patio, terrace", "pay-phone, pay-station", "pedestal, plinth, footstall", "pencil box, pencil case", "pencil sharpener", "perfume, essence", "petri dish", "photocopier", "pick, plectrum, plectron", "pickelhaube", "picket fence, paling", "pickup, pickup truck", "pier", "piggy bank, penny bank", "pill bottle", "pillow", "ping-pong ball", "pinwheel", "pirate, pirate ship", "pitcher, ewer", "plane, carpenter's plane, woodworking plane", "planetarium", "plastic bag", "plate rack", "plow, plough", "plunger, plumber's helper", "polaroid camera, polaroid land camera", "pole", "police van, police wagon, paddy wagon, patrol wagon, wagon, black maria", "poncho", "pool table, billiard table, snooker table", "pop bottle, soda bottle", "pot, flowerpot", "potter's wheel", "power drill", "prayer rug, prayer mat", "printer", "prison, prison house", "projectile, missile", "projector", "puck, hockey puck", "punching bag, punch bag, punching ball, punchball", "purse", "quill, quill pen", "quilt, comforter, comfort, puff", "racer, race car, racing car", "racket, racquet", "radiator", "radio, wireless", "radio telescope, radio reflector", "rain barrel", "recreational vehicle, rv, r.v.", "reel", "reflex camera", "refrigerator, icebox", "remote control, remote", "restaurant, eating house, eating place, eatery", "revolver, six-gun, six-shooter", "rifle", "rocking chair, rocker", "rotisserie", "rubber eraser, rubber, pencil eraser", "rugby ball", "rule, ruler", "running shoe", "safe", "safety pin", "saltshaker, salt shaker", "sandal", "sarong", "sax, saxophone", "scabbard", "scale, weighing machine", "school bus", "schooner", "scoreboard", "screen, crt screen", "screw", "screwdriver", "seat belt, seatbelt", "sewing machine", "shield, buckler", "shoe shop, shoe-shop, shoe store", "shoji", "shopping basket", "shopping cart", "shovel", "shower cap", "shower curtain", "ski", "ski mask", "sleeping bag", "slide rule, slipstick", "sliding door", "slot, one-armed bandit", "snorkel", "snowmobile", "snowplow, snowplough", "soap dispenser", "soccer ball", "sock", "solar dish, solar collector, solar furnace", "sombrero", "soup bowl", "space bar", "space heater", "space shuttle", "spatula", "speedboat", "spider web, spider's web", "spindle", "sports car, sport car", "spotlight, spot", "stage", "steam locomotive", "steel arch bridge", "steel drum", "stethoscope", "stole", "stone wall", "stopwatch, stop watch", "stove", "strainer", "streetcar, tram, tramcar, trolley, trolley car", "stretcher", "studio couch, day bed", "stupa, tope", "submarine, pigboat, sub, u-boat", "suit, suit of clothes", "sundial", "sunglass", "sunglasses, dark glasses, shades", "sunscreen, sunblock, sun blocker", "suspension bridge", "swab, swob, mop", "sweatshirt", "swimming trunks, bathing trunks", "swing", "switch, electric switch, electrical switch", "syringe", "table lamp", "tank, army tank, armored combat vehicle, armoured combat vehicle", "tape player", "teapot", "teddy, teddy bear", "television, television system", "tennis ball", "thatch, thatched roof", "theater curtain, theatre curtain", "thimble", "thresher, thrasher, threshing machine", "throne", "tile roof", "toaster", "tobacco shop, tobacconist shop, tobacconist", "toilet seat", "torch", "totem pole", "tow truck, tow car, wrecker", "toyshop", "tractor", "trailer truck, tractor trailer, trucking rig, rig, articulated lorry, semi", "tray", "trench coat", "tricycle, trike, velocipede", "trimaran", "tripod", "triumphal arch", "trolleybus, trolley coach, trackless trolley", "trombone", "tub, vat", "turnstile", "typewriter keyboard", "umbrella", "unicycle, monocycle", "upright, upright piano", "vacuum, vacuum cleaner", "vase", "vault", "velvet", "vending machine", "vestment", "viaduct", "violin, fiddle", "volleyball", "waffle iron", "wall clock", "wallet, billfold, notecase, pocketbook", "wardrobe, closet, press", "warplane, military plane", "washbasin, handbasin, washbowl, lavabo, wash-hand basin", "washer, automatic washer, washing machine", "water bottle", "water jug", "water tower", "whiskey jug", "whistle", "wig", "window screen", "window shade", "windsor tie", "wine bottle", "wing", "wok", "wooden spoon", "wool, woolen, woollen", "worm fence, snake fence, snake-rail fence, virginia fence", "wreck", "yawl", "yurt", "web site, website, internet site, site", "comic book", "crossword puzzle, crossword", "street sign", "traffic light, traffic signal, stoplight", "book jacket, dust cover, dust jacket, dust wrapper", "menu", "plate", "guacamole", "consomme", "hot pot, hotpot", "trifle", "ice cream, icecream", "ice lolly, lolly, lollipop, popsicle", "french loaf", "bagel, beigel", "pretzel", "cheeseburger", "hotdog, hot dog, red hot", "mashed potato", "head cabbage", "broccoli", "cauliflower", "zucchini, courgette", "spaghetti squash", "acorn squash", "butternut squash", "cucumber, cuke", "artichoke, globe artichoke", "bell pepper", "cardoon", "mushroom", "granny smith", "strawberry", "orange", "lemon", "fig", "pineapple, ananas", "banana", "jackfruit, jak, jack", "custard apple", "pomegranate", "hay", "carbonara", "chocolate sauce, chocolate syrup", "dough", "meat loaf, meatloaf", "pizza, pizza pie", "potpie", "burrito", "red wine", "espresso", "cup", "eggnog", "alp", "bubble", "cliff, drop, drop-off", "coral reef", "geyser", "lakeside, lakeshore", "promontory, headland, head, foreland", "sandbar, sand bar", "seashore, coast, seacoast, sea-coast", "valley, vale", "volcano", "ballplayer, baseball player", "groom, bridegroom", "scuba diver", "rapeseed", "daisy", "yellow lady's slipper, yellow lady-slipper, cypripedium calceolus, cypripedium parviflorum", "corn", "acorn", "hip, rose hip, rosehip", "buckeye, horse chestnut, conker", "coral fungus", "agaric", "gyromitra", "stinkhorn, carrion fungus", "earthstar", "hen-of-the-woods, hen of the woods, polyporus frondosus, grifola frondosa", "bolete", "ear, spike, capitulum", "toilet tissue, toilet paper, bathroom tissue" ]
microsoft/swinv2-base-patch4-window8-256
# Swin Transformer v2 (base-sized model) Swin Transformer v2 model pre-trained on ImageNet-1k at resolution 256x256. It was introduced in the paper [Swin Transformer V2: Scaling Up Capacity and Resolution](https://arxiv.org/abs/2111.09883) by Liu et al. and first released in [this repository](https://github.com/microsoft/Swin-Transformer). Disclaimer: The team releasing Swin Transformer v2 did not write a model card for this model so this model card has been written by the Hugging Face team. ## Model description The Swin Transformer is a type of Vision Transformer. It builds hierarchical feature maps by merging image patches (shown in gray) in deeper layers and has linear computation complexity to input image size due to computation of self-attention only within each local window (shown in red). It can thus serve as a general-purpose backbone for both image classification and dense recognition tasks. In contrast, previous vision Transformers produce feature maps of a single low resolution and have quadratic computation complexity to input image size due to computation of self-attention globally. Swin Transformer v2 adds 3 main improvements: 1) a residual-post-norm method combined with cosine attention to improve training stability; 2) a log-spaced continuous position bias method to effectively transfer models pre-trained using low-resolution images to downstream tasks with high-resolution inputs; 3) a self-supervised pre-training method, SimMIM, to reduce the needs of vast labeled images. ![model image](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/swin_transformer_architecture.png) [Source](https://paperswithcode.com/method/swin-transformer) ## Intended uses & limitations You can use the raw model for image classification. See the [model hub](https://huggingface.co/models?search=swinv2) to look for fine-tuned versions on a task that interests you. ### How to use Here is how to use this model to classify an image of the COCO 2017 dataset into one of the 1,000 ImageNet classes: ```python from transformers import AutoImageProcessor, AutoModelForImageClassification from PIL import Image import requests url = "http://images.cocodataset.org/val2017/000000039769.jpg" image = Image.open(requests.get(url, stream=True).raw) processor = AutoImageProcessor.from_pretrained("microsoft/swinv2-base-patch4-window8-256") model = AutoModelForImageClassification.from_pretrained("microsoft/swinv2-base-patch4-window8-256") inputs = processor(images=image, return_tensors="pt") outputs = model(**inputs) logits = outputs.logits # model predicts one of the 1000 ImageNet classes predicted_class_idx = logits.argmax(-1).item() print("Predicted class:", model.config.id2label[predicted_class_idx]) ``` For more code examples, we refer to the [documentation](https://huggingface.co/transformers/model_doc/swinv2.html#). ### BibTeX entry and citation info ```bibtex @article{DBLP:journals/corr/abs-2111-09883, author = {Ze Liu and Han Hu and Yutong Lin and Zhuliang Yao and Zhenda Xie and Yixuan Wei and Jia Ning and Yue Cao and Zheng Zhang and Li Dong and Furu Wei and Baining Guo}, title = {Swin Transformer {V2:} Scaling Up Capacity and Resolution}, journal = {CoRR}, volume = {abs/2111.09883}, year = {2021}, url = {https://arxiv.org/abs/2111.09883}, eprinttype = {arXiv}, eprint = {2111.09883}, timestamp = {Thu, 02 Dec 2021 15:54:22 +0100}, biburl = {https://dblp.org/rec/journals/corr/abs-2111-09883.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ```
[ "tench, tinca tinca", "goldfish, carassius auratus", "great white shark, white shark, man-eater, man-eating shark, carcharodon carcharias", "tiger shark, galeocerdo cuvieri", "hammerhead, hammerhead shark", "electric ray, crampfish, numbfish, torpedo", "stingray", "cock", "hen", "ostrich, struthio camelus", "brambling, fringilla montifringilla", "goldfinch, carduelis carduelis", "house finch, linnet, carpodacus mexicanus", "junco, snowbird", "indigo bunting, indigo finch, indigo bird, passerina cyanea", "robin, american robin, turdus migratorius", "bulbul", "jay", "magpie", "chickadee", "water ouzel, dipper", "kite", "bald eagle, american eagle, haliaeetus leucocephalus", "vulture", "great grey owl, great gray owl, strix nebulosa", "european fire salamander, salamandra salamandra", "common newt, triturus vulgaris", "eft", "spotted salamander, ambystoma maculatum", "axolotl, mud puppy, ambystoma mexicanum", "bullfrog, rana catesbeiana", "tree frog, tree-frog", "tailed frog, bell toad, ribbed toad, tailed toad, ascaphus trui", "loggerhead, loggerhead turtle, caretta caretta", "leatherback turtle, leatherback, leathery turtle, dermochelys coriacea", "mud turtle", "terrapin", "box turtle, box tortoise", "banded gecko", "common iguana, iguana, iguana iguana", "american chameleon, anole, anolis carolinensis", "whiptail, whiptail lizard", "agama", "frilled lizard, chlamydosaurus kingi", "alligator lizard", "gila monster, heloderma suspectum", "green lizard, lacerta viridis", "african chameleon, chamaeleo chamaeleon", "komodo dragon, komodo lizard, dragon lizard, giant lizard, varanus komodoensis", "african crocodile, nile crocodile, crocodylus niloticus", "american alligator, alligator mississipiensis", "triceratops", "thunder snake, worm snake, carphophis amoenus", "ringneck snake, ring-necked snake, ring snake", "hognose snake, puff adder, sand viper", "green snake, grass snake", "king snake, kingsnake", "garter snake, grass snake", "water snake", "vine snake", "night snake, hypsiglena torquata", "boa constrictor, constrictor constrictor", "rock python, rock snake, python sebae", "indian cobra, naja naja", "green mamba", "sea snake", "horned viper, cerastes, sand viper, horned asp, cerastes cornutus", "diamondback, diamondback rattlesnake, crotalus adamanteus", "sidewinder, horned rattlesnake, crotalus cerastes", "trilobite", "harvestman, daddy longlegs, phalangium opilio", "scorpion", "black and gold garden spider, argiope aurantia", "barn spider, araneus cavaticus", "garden spider, aranea diademata", "black widow, latrodectus mactans", "tarantula", "wolf spider, hunting spider", "tick", "centipede", "black grouse", "ptarmigan", "ruffed grouse, partridge, bonasa umbellus", "prairie chicken, prairie grouse, prairie fowl", "peacock", "quail", "partridge", "african grey, african gray, psittacus erithacus", "macaw", "sulphur-crested cockatoo, kakatoe galerita, cacatua galerita", "lorikeet", "coucal", "bee eater", "hornbill", "hummingbird", "jacamar", "toucan", "drake", "red-breasted merganser, mergus serrator", "goose", "black swan, cygnus atratus", "tusker", "echidna, spiny anteater, anteater", "platypus, duckbill, duckbilled platypus, duck-billed platypus, ornithorhynchus anatinus", "wallaby, brush kangaroo", "koala, koala bear, kangaroo bear, native bear, phascolarctos cinereus", "wombat", "jellyfish", "sea anemone, anemone", "brain coral", "flatworm, platyhelminth", "nematode, nematode worm, roundworm", "conch", "snail", "slug", "sea slug, nudibranch", "chiton, coat-of-mail shell, sea cradle, polyplacophore", "chambered nautilus, pearly nautilus, nautilus", "dungeness crab, cancer magister", "rock crab, cancer irroratus", "fiddler crab", "king crab, alaska crab, alaskan king crab, alaska king crab, paralithodes camtschatica", "american lobster, northern lobster, maine lobster, homarus americanus", "spiny lobster, langouste, rock lobster, crawfish, crayfish, sea crawfish", "crayfish, crawfish, crawdad, crawdaddy", "hermit crab", "isopod", "white stork, ciconia ciconia", "black stork, ciconia nigra", "spoonbill", "flamingo", "little blue heron, egretta caerulea", "american egret, great white heron, egretta albus", "bittern", "crane", "limpkin, aramus pictus", "european gallinule, porphyrio porphyrio", "american coot, marsh hen, mud hen, water hen, fulica americana", "bustard", "ruddy turnstone, arenaria interpres", "red-backed sandpiper, dunlin, erolia alpina", "redshank, tringa totanus", "dowitcher", "oystercatcher, oyster catcher", "pelican", "king penguin, aptenodytes patagonica", "albatross, mollymawk", "grey whale, gray whale, devilfish, eschrichtius gibbosus, eschrichtius robustus", "killer whale, killer, orca, grampus, sea wolf, orcinus orca", "dugong, dugong dugon", "sea lion", "chihuahua", "japanese spaniel", "maltese dog, maltese terrier, maltese", "pekinese, pekingese, peke", "shih-tzu", "blenheim spaniel", "papillon", "toy terrier", "rhodesian ridgeback", "afghan hound, afghan", "basset, basset hound", "beagle", "bloodhound, sleuthhound", "bluetick", "black-and-tan coonhound", "walker hound, walker foxhound", "english foxhound", "redbone", "borzoi, russian wolfhound", "irish wolfhound", "italian greyhound", "whippet", "ibizan hound, ibizan podenco", "norwegian elkhound, elkhound", "otterhound, otter hound", "saluki, gazelle hound", "scottish deerhound, deerhound", "weimaraner", "staffordshire bullterrier, staffordshire bull terrier", "american staffordshire terrier, staffordshire terrier, american pit bull terrier, pit bull terrier", "bedlington terrier", "border terrier", "kerry blue terrier", "irish terrier", "norfolk terrier", "norwich terrier", "yorkshire terrier", "wire-haired fox terrier", "lakeland terrier", "sealyham terrier, sealyham", "airedale, airedale terrier", "cairn, cairn terrier", "australian terrier", "dandie dinmont, dandie dinmont terrier", "boston bull, boston terrier", "miniature schnauzer", "giant schnauzer", "standard schnauzer", "scotch terrier, scottish terrier, scottie", "tibetan terrier, chrysanthemum dog", "silky terrier, sydney silky", "soft-coated wheaten terrier", "west highland white terrier", "lhasa, lhasa apso", "flat-coated retriever", "curly-coated retriever", "golden retriever", "labrador retriever", "chesapeake bay retriever", "german short-haired pointer", "vizsla, hungarian pointer", "english setter", "irish setter, red setter", "gordon setter", "brittany spaniel", "clumber, clumber spaniel", "english springer, english springer spaniel", "welsh springer spaniel", "cocker spaniel, english cocker spaniel, cocker", "sussex spaniel", "irish water spaniel", "kuvasz", "schipperke", "groenendael", "malinois", "briard", "kelpie", "komondor", "old english sheepdog, bobtail", "shetland sheepdog, shetland sheep dog, shetland", "collie", "border collie", "bouvier des flandres, bouviers des flandres", "rottweiler", "german shepherd, german shepherd dog, german police dog, alsatian", "doberman, doberman pinscher", "miniature pinscher", "greater swiss mountain dog", "bernese mountain dog", "appenzeller", "entlebucher", "boxer", "bull mastiff", "tibetan mastiff", "french bulldog", "great dane", "saint bernard, st bernard", "eskimo dog, husky", "malamute, malemute, alaskan malamute", "siberian husky", "dalmatian, coach dog, carriage dog", "affenpinscher, monkey pinscher, monkey dog", "basenji", "pug, pug-dog", "leonberg", "newfoundland, newfoundland dog", "great pyrenees", "samoyed, samoyede", "pomeranian", "chow, chow chow", "keeshond", "brabancon griffon", "pembroke, pembroke welsh corgi", "cardigan, cardigan welsh corgi", "toy poodle", "miniature poodle", "standard poodle", "mexican hairless", "timber wolf, grey wolf, gray wolf, canis lupus", "white wolf, arctic wolf, canis lupus tundrarum", "red wolf, maned wolf, canis rufus, canis niger", "coyote, prairie wolf, brush wolf, canis latrans", "dingo, warrigal, warragal, canis dingo", "dhole, cuon alpinus", "african hunting dog, hyena dog, cape hunting dog, lycaon pictus", "hyena, hyaena", "red fox, vulpes vulpes", "kit fox, vulpes macrotis", "arctic fox, white fox, alopex lagopus", "grey fox, gray fox, urocyon cinereoargenteus", "tabby, tabby cat", "tiger cat", "persian cat", "siamese cat, siamese", "egyptian cat", "cougar, puma, catamount, mountain lion, painter, panther, felis concolor", "lynx, catamount", "leopard, panthera pardus", "snow leopard, ounce, panthera uncia", "jaguar, panther, panthera onca, felis onca", "lion, king of beasts, panthera leo", "tiger, panthera tigris", "cheetah, chetah, acinonyx jubatus", "brown bear, bruin, ursus arctos", "american black bear, black bear, ursus americanus, euarctos americanus", "ice bear, polar bear, ursus maritimus, thalarctos maritimus", "sloth bear, melursus ursinus, ursus ursinus", "mongoose", "meerkat, mierkat", "tiger beetle", "ladybug, ladybeetle, lady beetle, ladybird, ladybird beetle", "ground beetle, carabid beetle", "long-horned beetle, longicorn, longicorn beetle", "leaf beetle, chrysomelid", "dung beetle", "rhinoceros beetle", "weevil", "fly", "bee", "ant, emmet, pismire", "grasshopper, hopper", "cricket", "walking stick, walkingstick, stick insect", "cockroach, roach", "mantis, mantid", "cicada, cicala", "leafhopper", "lacewing, lacewing fly", "dragonfly, darning needle, devil's darning needle, sewing needle, snake feeder, snake doctor, mosquito hawk, skeeter hawk", "damselfly", "admiral", "ringlet, ringlet butterfly", "monarch, monarch butterfly, milkweed butterfly, danaus plexippus", "cabbage butterfly", "sulphur butterfly, sulfur butterfly", "lycaenid, lycaenid butterfly", "starfish, sea star", "sea urchin", "sea cucumber, holothurian", "wood rabbit, cottontail, cottontail rabbit", "hare", "angora, angora rabbit", "hamster", "porcupine, hedgehog", "fox squirrel, eastern fox squirrel, sciurus niger", "marmot", "beaver", "guinea pig, cavia cobaya", "sorrel", "zebra", "hog, pig, grunter, squealer, sus scrofa", "wild boar, boar, sus scrofa", "warthog", "hippopotamus, hippo, river horse, hippopotamus amphibius", "ox", "water buffalo, water ox, asiatic buffalo, bubalus bubalis", "bison", "ram, tup", "bighorn, bighorn sheep, cimarron, rocky mountain bighorn, rocky mountain sheep, ovis canadensis", "ibex, capra ibex", "hartebeest", "impala, aepyceros melampus", "gazelle", "arabian camel, dromedary, camelus dromedarius", "llama", "weasel", "mink", "polecat, fitch, foulmart, foumart, mustela putorius", "black-footed ferret, ferret, mustela nigripes", "otter", "skunk, polecat, wood pussy", "badger", "armadillo", "three-toed sloth, ai, bradypus tridactylus", "orangutan, orang, orangutang, pongo pygmaeus", "gorilla, gorilla gorilla", "chimpanzee, chimp, pan troglodytes", "gibbon, hylobates lar", "siamang, hylobates syndactylus, symphalangus syndactylus", "guenon, guenon monkey", "patas, hussar monkey, erythrocebus patas", "baboon", "macaque", "langur", "colobus, colobus monkey", "proboscis monkey, nasalis larvatus", "marmoset", "capuchin, ringtail, cebus capucinus", "howler monkey, howler", "titi, titi monkey", "spider monkey, ateles geoffroyi", "squirrel monkey, saimiri sciureus", "madagascar cat, ring-tailed lemur, lemur catta", "indri, indris, indri indri, indri brevicaudatus", "indian elephant, elephas maximus", "african elephant, loxodonta africana", "lesser panda, red panda, panda, bear cat, cat bear, ailurus fulgens", "giant panda, panda, panda bear, coon bear, ailuropoda melanoleuca", "barracouta, snoek", "eel", "coho, cohoe, coho salmon, blue jack, silver salmon, oncorhynchus kisutch", "rock beauty, holocanthus tricolor", "anemone fish", "sturgeon", "gar, garfish, garpike, billfish, lepisosteus osseus", "lionfish", "puffer, pufferfish, blowfish, globefish", "abacus", "abaya", "academic gown, academic robe, judge's robe", "accordion, piano accordion, squeeze box", "acoustic guitar", "aircraft carrier, carrier, flattop, attack aircraft carrier", "airliner", "airship, dirigible", "altar", "ambulance", "amphibian, amphibious vehicle", "analog clock", "apiary, bee house", "apron", "ashcan, trash can, garbage can, wastebin, ash bin, ash-bin, ashbin, dustbin, trash barrel, trash bin", "assault rifle, assault gun", "backpack, back pack, knapsack, packsack, rucksack, haversack", "bakery, bakeshop, bakehouse", "balance beam, beam", "balloon", "ballpoint, ballpoint pen, ballpen, biro", "band aid", "banjo", "bannister, banister, balustrade, balusters, handrail", "barbell", "barber chair", "barbershop", "barn", "barometer", "barrel, cask", "barrow, garden cart, lawn cart, wheelbarrow", "baseball", "basketball", "bassinet", "bassoon", "bathing cap, swimming cap", "bath towel", "bathtub, bathing tub, bath, tub", "beach wagon, station wagon, wagon, estate car, beach waggon, station waggon, waggon", "beacon, lighthouse, beacon light, pharos", "beaker", "bearskin, busby, shako", "beer bottle", "beer glass", "bell cote, bell cot", "bib", "bicycle-built-for-two, tandem bicycle, tandem", "bikini, two-piece", "binder, ring-binder", "binoculars, field glasses, opera glasses", "birdhouse", "boathouse", "bobsled, bobsleigh, bob", "bolo tie, bolo, bola tie, bola", "bonnet, poke bonnet", "bookcase", "bookshop, bookstore, bookstall", "bottlecap", "bow", "bow tie, bow-tie, bowtie", "brass, memorial tablet, plaque", "brassiere, bra, bandeau", "breakwater, groin, groyne, mole, bulwark, seawall, jetty", "breastplate, aegis, egis", "broom", "bucket, pail", "buckle", "bulletproof vest", "bullet train, bullet", "butcher shop, meat market", "cab, hack, taxi, taxicab", "caldron, cauldron", "candle, taper, wax light", "cannon", "canoe", "can opener, tin opener", "cardigan", "car mirror", "carousel, carrousel, merry-go-round, roundabout, whirligig", "carpenter's kit, tool kit", "carton", "car wheel", "cash machine, cash dispenser, automated teller machine, automatic teller machine, automated teller, automatic teller, atm", "cassette", "cassette player", "castle", "catamaran", "cd player", "cello, violoncello", "cellular telephone, cellular phone, cellphone, cell, mobile phone", "chain", "chainlink fence", "chain mail, ring mail, mail, chain armor, chain armour, ring armor, ring armour", "chain saw, chainsaw", "chest", "chiffonier, commode", "chime, bell, gong", "china cabinet, china closet", "christmas stocking", "church, church building", "cinema, movie theater, movie theatre, movie house, picture palace", "cleaver, meat cleaver, chopper", "cliff dwelling", "cloak", "clog, geta, patten, sabot", "cocktail shaker", "coffee mug", "coffeepot", "coil, spiral, volute, whorl, helix", "combination lock", "computer keyboard, keypad", "confectionery, confectionary, candy store", "container ship, containership, container vessel", "convertible", "corkscrew, bottle screw", "cornet, horn, trumpet, trump", "cowboy boot", "cowboy hat, ten-gallon hat", "cradle", "crane", "crash helmet", "crate", "crib, cot", "crock pot", "croquet ball", "crutch", "cuirass", "dam, dike, dyke", "desk", "desktop computer", "dial telephone, dial phone", "diaper, nappy, napkin", "digital clock", "digital watch", "dining table, board", "dishrag, dishcloth", "dishwasher, dish washer, dishwashing machine", "disk brake, disc brake", "dock, dockage, docking facility", "dogsled, dog sled, dog sleigh", "dome", "doormat, welcome mat", "drilling platform, offshore rig", "drum, membranophone, tympan", "drumstick", "dumbbell", "dutch oven", "electric fan, blower", "electric guitar", "electric locomotive", "entertainment center", "envelope", "espresso maker", "face powder", "feather boa, boa", "file, file cabinet, filing cabinet", "fireboat", "fire engine, fire truck", "fire screen, fireguard", "flagpole, flagstaff", "flute, transverse flute", "folding chair", "football helmet", "forklift", "fountain", "fountain pen", "four-poster", "freight car", "french horn, horn", "frying pan, frypan, skillet", "fur coat", "garbage truck, dustcart", "gasmask, respirator, gas helmet", "gas pump, gasoline pump, petrol pump, island dispenser", "goblet", "go-kart", "golf ball", "golfcart, golf cart", "gondola", "gong, tam-tam", "gown", "grand piano, grand", "greenhouse, nursery, glasshouse", "grille, radiator grille", "grocery store, grocery, food market, market", "guillotine", "hair slide", "hair spray", "half track", "hammer", "hamper", "hand blower, blow dryer, blow drier, hair dryer, hair drier", "hand-held computer, hand-held microcomputer", "handkerchief, hankie, hanky, hankey", "hard disc, hard disk, fixed disk", "harmonica, mouth organ, harp, mouth harp", "harp", "harvester, reaper", "hatchet", "holster", "home theater, home theatre", "honeycomb", "hook, claw", "hoopskirt, crinoline", "horizontal bar, high bar", "horse cart, horse-cart", "hourglass", "ipod", "iron, smoothing iron", "jack-o'-lantern", "jean, blue jean, denim", "jeep, landrover", "jersey, t-shirt, tee shirt", "jigsaw puzzle", "jinrikisha, ricksha, rickshaw", "joystick", "kimono", "knee pad", "knot", "lab coat, laboratory coat", "ladle", "lampshade, lamp shade", "laptop, laptop computer", "lawn mower, mower", "lens cap, lens cover", "letter opener, paper knife, paperknife", "library", "lifeboat", "lighter, light, igniter, ignitor", "limousine, limo", "liner, ocean liner", "lipstick, lip rouge", "loafer", "lotion", "loudspeaker, speaker, speaker unit, loudspeaker system, speaker system", "loupe, jeweler's loupe", "lumbermill, sawmill", "magnetic compass", "mailbag, postbag", "mailbox, letter box", "maillot", "maillot, tank suit", "manhole cover", "maraca", "marimba, xylophone", "mask", "matchstick", "maypole", "maze, labyrinth", "measuring cup", "medicine chest, medicine cabinet", "megalith, megalithic structure", "microphone, mike", "microwave, microwave oven", "military uniform", "milk can", "minibus", "miniskirt, mini", "minivan", "missile", "mitten", "mixing bowl", "mobile home, manufactured home", "model t", "modem", "monastery", "monitor", "moped", "mortar", "mortarboard", "mosque", "mosquito net", "motor scooter, scooter", "mountain bike, all-terrain bike, off-roader", "mountain tent", "mouse, computer mouse", "mousetrap", "moving van", "muzzle", "nail", "neck brace", "necklace", "nipple", "notebook, notebook computer", "obelisk", "oboe, hautboy, hautbois", "ocarina, sweet potato", "odometer, hodometer, mileometer, milometer", "oil filter", "organ, pipe organ", "oscilloscope, scope, cathode-ray oscilloscope, cro", "overskirt", "oxcart", "oxygen mask", "packet", "paddle, boat paddle", "paddlewheel, paddle wheel", "padlock", "paintbrush", "pajama, pyjama, pj's, jammies", "palace", "panpipe, pandean pipe, syrinx", "paper towel", "parachute, chute", "parallel bars, bars", "park bench", "parking meter", "passenger car, coach, carriage", "patio, terrace", "pay-phone, pay-station", "pedestal, plinth, footstall", "pencil box, pencil case", "pencil sharpener", "perfume, essence", "petri dish", "photocopier", "pick, plectrum, plectron", "pickelhaube", "picket fence, paling", "pickup, pickup truck", "pier", "piggy bank, penny bank", "pill bottle", "pillow", "ping-pong ball", "pinwheel", "pirate, pirate ship", "pitcher, ewer", "plane, carpenter's plane, woodworking plane", "planetarium", "plastic bag", "plate rack", "plow, plough", "plunger, plumber's helper", "polaroid camera, polaroid land camera", "pole", "police van, police wagon, paddy wagon, patrol wagon, wagon, black maria", "poncho", "pool table, billiard table, snooker table", "pop bottle, soda bottle", "pot, flowerpot", "potter's wheel", "power drill", "prayer rug, prayer mat", "printer", "prison, prison house", "projectile, missile", "projector", "puck, hockey puck", "punching bag, punch bag, punching ball, punchball", "purse", "quill, quill pen", "quilt, comforter, comfort, puff", "racer, race car, racing car", "racket, racquet", "radiator", "radio, wireless", "radio telescope, radio reflector", "rain barrel", "recreational vehicle, rv, r.v.", "reel", "reflex camera", "refrigerator, icebox", "remote control, remote", "restaurant, eating house, eating place, eatery", "revolver, six-gun, six-shooter", "rifle", "rocking chair, rocker", "rotisserie", "rubber eraser, rubber, pencil eraser", "rugby ball", "rule, ruler", "running shoe", "safe", "safety pin", "saltshaker, salt shaker", "sandal", "sarong", "sax, saxophone", "scabbard", "scale, weighing machine", "school bus", "schooner", "scoreboard", "screen, crt screen", "screw", "screwdriver", "seat belt, seatbelt", "sewing machine", "shield, buckler", "shoe shop, shoe-shop, shoe store", "shoji", "shopping basket", "shopping cart", "shovel", "shower cap", "shower curtain", "ski", "ski mask", "sleeping bag", "slide rule, slipstick", "sliding door", "slot, one-armed bandit", "snorkel", "snowmobile", "snowplow, snowplough", "soap dispenser", "soccer ball", "sock", "solar dish, solar collector, solar furnace", "sombrero", "soup bowl", "space bar", "space heater", "space shuttle", "spatula", "speedboat", "spider web, spider's web", "spindle", "sports car, sport car", "spotlight, spot", "stage", "steam locomotive", "steel arch bridge", "steel drum", "stethoscope", "stole", "stone wall", "stopwatch, stop watch", "stove", "strainer", "streetcar, tram, tramcar, trolley, trolley car", "stretcher", "studio couch, day bed", "stupa, tope", "submarine, pigboat, sub, u-boat", "suit, suit of clothes", "sundial", "sunglass", "sunglasses, dark glasses, shades", "sunscreen, sunblock, sun blocker", "suspension bridge", "swab, swob, mop", "sweatshirt", "swimming trunks, bathing trunks", "swing", "switch, electric switch, electrical switch", "syringe", "table lamp", "tank, army tank, armored combat vehicle, armoured combat vehicle", "tape player", "teapot", "teddy, teddy bear", "television, television system", "tennis ball", "thatch, thatched roof", "theater curtain, theatre curtain", "thimble", "thresher, thrasher, threshing machine", "throne", "tile roof", "toaster", "tobacco shop, tobacconist shop, tobacconist", "toilet seat", "torch", "totem pole", "tow truck, tow car, wrecker", "toyshop", "tractor", "trailer truck, tractor trailer, trucking rig, rig, articulated lorry, semi", "tray", "trench coat", "tricycle, trike, velocipede", "trimaran", "tripod", "triumphal arch", "trolleybus, trolley coach, trackless trolley", "trombone", "tub, vat", "turnstile", "typewriter keyboard", "umbrella", "unicycle, monocycle", "upright, upright piano", "vacuum, vacuum cleaner", "vase", "vault", "velvet", "vending machine", "vestment", "viaduct", "violin, fiddle", "volleyball", "waffle iron", "wall clock", "wallet, billfold, notecase, pocketbook", "wardrobe, closet, press", "warplane, military plane", "washbasin, handbasin, washbowl, lavabo, wash-hand basin", "washer, automatic washer, washing machine", "water bottle", "water jug", "water tower", "whiskey jug", "whistle", "wig", "window screen", "window shade", "windsor tie", "wine bottle", "wing", "wok", "wooden spoon", "wool, woolen, woollen", "worm fence, snake fence, snake-rail fence, virginia fence", "wreck", "yawl", "yurt", "web site, website, internet site, site", "comic book", "crossword puzzle, crossword", "street sign", "traffic light, traffic signal, stoplight", "book jacket, dust cover, dust jacket, dust wrapper", "menu", "plate", "guacamole", "consomme", "hot pot, hotpot", "trifle", "ice cream, icecream", "ice lolly, lolly, lollipop, popsicle", "french loaf", "bagel, beigel", "pretzel", "cheeseburger", "hotdog, hot dog, red hot", "mashed potato", "head cabbage", "broccoli", "cauliflower", "zucchini, courgette", "spaghetti squash", "acorn squash", "butternut squash", "cucumber, cuke", "artichoke, globe artichoke", "bell pepper", "cardoon", "mushroom", "granny smith", "strawberry", "orange", "lemon", "fig", "pineapple, ananas", "banana", "jackfruit, jak, jack", "custard apple", "pomegranate", "hay", "carbonara", "chocolate sauce, chocolate syrup", "dough", "meat loaf, meatloaf", "pizza, pizza pie", "potpie", "burrito", "red wine", "espresso", "cup", "eggnog", "alp", "bubble", "cliff, drop, drop-off", "coral reef", "geyser", "lakeside, lakeshore", "promontory, headland, head, foreland", "sandbar, sand bar", "seashore, coast, seacoast, sea-coast", "valley, vale", "volcano", "ballplayer, baseball player", "groom, bridegroom", "scuba diver", "rapeseed", "daisy", "yellow lady's slipper, yellow lady-slipper, cypripedium calceolus, cypripedium parviflorum", "corn", "acorn", "hip, rose hip, rosehip", "buckeye, horse chestnut, conker", "coral fungus", "agaric", "gyromitra", "stinkhorn, carrion fungus", "earthstar", "hen-of-the-woods, hen of the woods, polyporus frondosus, grifola frondosa", "bolete", "ear, spike, capitulum", "toilet tissue, toilet paper, bathroom tissue" ]
microsoft/swinv2-base-patch4-window16-256
# Swin Transformer v2 (base-sized model) Swin Transformer v2 model pre-trained on ImageNet-1k at resolution 256x256. It was introduced in the paper [Swin Transformer V2: Scaling Up Capacity and Resolution](https://arxiv.org/abs/2111.09883) by Liu et al. and first released in [this repository](https://github.com/microsoft/Swin-Transformer). Disclaimer: The team releasing Swin Transformer v2 did not write a model card for this model so this model card has been written by the Hugging Face team. ## Model description The Swin Transformer is a type of Vision Transformer. It builds hierarchical feature maps by merging image patches (shown in gray) in deeper layers and has linear computation complexity to input image size due to computation of self-attention only within each local window (shown in red). It can thus serve as a general-purpose backbone for both image classification and dense recognition tasks. In contrast, previous vision Transformers produce feature maps of a single low resolution and have quadratic computation complexity to input image size due to computation of self-attention globally. Swin Transformer v2 adds 3 main improvements: 1) a residual-post-norm method combined with cosine attention to improve training stability; 2) a log-spaced continuous position bias method to effectively transfer models pre-trained using low-resolution images to downstream tasks with high-resolution inputs; 3) a self-supervised pre-training method, SimMIM, to reduce the needs of vast labeled images. ![model image](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/swin_transformer_architecture.png) [Source](https://paperswithcode.com/method/swin-transformer) ## Intended uses & limitations You can use the raw model for image classification. See the [model hub](https://huggingface.co/models?search=swinv2) to look for fine-tuned versions on a task that interests you. ### How to use Here is how to use this model to classify an image of the COCO 2017 dataset into one of the 1,000 ImageNet classes: ```python from transformers import AutoImageProcessor, AutoModelForImageClassification from PIL import Image import requests url = "http://images.cocodataset.org/val2017/000000039769.jpg" image = Image.open(requests.get(url, stream=True).raw) processor = AutoImageProcessor.from_pretrained("microsoft/swinv2-base-patch4-window16-256") model = AutoModelForImageClassification.from_pretrained("microsoft/swinv2-base-patch4-window16-256") inputs = processor(images=image, return_tensors="pt") outputs = model(**inputs) logits = outputs.logits # model predicts one of the 1000 ImageNet classes predicted_class_idx = logits.argmax(-1).item() print("Predicted class:", model.config.id2label[predicted_class_idx]) ``` For more code examples, we refer to the [documentation](https://huggingface.co/transformers/model_doc/swinv2.html#). ### BibTeX entry and citation info ```bibtex @article{DBLP:journals/corr/abs-2111-09883, author = {Ze Liu and Han Hu and Yutong Lin and Zhuliang Yao and Zhenda Xie and Yixuan Wei and Jia Ning and Yue Cao and Zheng Zhang and Li Dong and Furu Wei and Baining Guo}, title = {Swin Transformer {V2:} Scaling Up Capacity and Resolution}, journal = {CoRR}, volume = {abs/2111.09883}, year = {2021}, url = {https://arxiv.org/abs/2111.09883}, eprinttype = {arXiv}, eprint = {2111.09883}, timestamp = {Thu, 02 Dec 2021 15:54:22 +0100}, biburl = {https://dblp.org/rec/journals/corr/abs-2111-09883.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ```
[ "tench, tinca tinca", "goldfish, carassius auratus", "great white shark, white shark, man-eater, man-eating shark, carcharodon carcharias", "tiger shark, galeocerdo cuvieri", "hammerhead, hammerhead shark", "electric ray, crampfish, numbfish, torpedo", "stingray", "cock", "hen", "ostrich, struthio camelus", "brambling, fringilla montifringilla", "goldfinch, carduelis carduelis", "house finch, linnet, carpodacus mexicanus", "junco, snowbird", "indigo bunting, indigo finch, indigo bird, passerina cyanea", "robin, american robin, turdus migratorius", "bulbul", "jay", "magpie", "chickadee", "water ouzel, dipper", "kite", "bald eagle, american eagle, haliaeetus leucocephalus", "vulture", "great grey owl, great gray owl, strix nebulosa", "european fire salamander, salamandra salamandra", "common newt, triturus vulgaris", "eft", "spotted salamander, ambystoma maculatum", "axolotl, mud puppy, ambystoma mexicanum", "bullfrog, rana catesbeiana", "tree frog, tree-frog", "tailed frog, bell toad, ribbed toad, tailed toad, ascaphus trui", "loggerhead, loggerhead turtle, caretta caretta", "leatherback turtle, leatherback, leathery turtle, dermochelys coriacea", "mud turtle", "terrapin", "box turtle, box tortoise", "banded gecko", "common iguana, iguana, iguana iguana", "american chameleon, anole, anolis carolinensis", "whiptail, whiptail lizard", "agama", "frilled lizard, chlamydosaurus kingi", "alligator lizard", "gila monster, heloderma suspectum", "green lizard, lacerta viridis", "african chameleon, chamaeleo chamaeleon", "komodo dragon, komodo lizard, dragon lizard, giant lizard, varanus komodoensis", "african crocodile, nile crocodile, crocodylus niloticus", "american alligator, alligator mississipiensis", "triceratops", "thunder snake, worm snake, carphophis amoenus", "ringneck snake, ring-necked snake, ring snake", "hognose snake, puff adder, sand viper", "green snake, grass snake", "king snake, kingsnake", "garter snake, grass snake", "water snake", "vine snake", "night snake, hypsiglena torquata", "boa constrictor, constrictor constrictor", "rock python, rock snake, python sebae", "indian cobra, naja naja", "green mamba", "sea snake", "horned viper, cerastes, sand viper, horned asp, cerastes cornutus", "diamondback, diamondback rattlesnake, crotalus adamanteus", "sidewinder, horned rattlesnake, crotalus cerastes", "trilobite", "harvestman, daddy longlegs, phalangium opilio", "scorpion", "black and gold garden spider, argiope aurantia", "barn spider, araneus cavaticus", "garden spider, aranea diademata", "black widow, latrodectus mactans", "tarantula", "wolf spider, hunting spider", "tick", "centipede", "black grouse", "ptarmigan", "ruffed grouse, partridge, bonasa umbellus", "prairie chicken, prairie grouse, prairie fowl", "peacock", "quail", "partridge", "african grey, african gray, psittacus erithacus", "macaw", "sulphur-crested cockatoo, kakatoe galerita, cacatua galerita", "lorikeet", "coucal", "bee eater", "hornbill", "hummingbird", "jacamar", "toucan", "drake", "red-breasted merganser, mergus serrator", "goose", "black swan, cygnus atratus", "tusker", "echidna, spiny anteater, anteater", "platypus, duckbill, duckbilled platypus, duck-billed platypus, ornithorhynchus anatinus", "wallaby, brush kangaroo", "koala, koala bear, kangaroo bear, native bear, phascolarctos cinereus", "wombat", "jellyfish", "sea anemone, anemone", "brain coral", "flatworm, platyhelminth", "nematode, nematode worm, roundworm", "conch", "snail", "slug", "sea slug, nudibranch", "chiton, coat-of-mail shell, sea cradle, polyplacophore", "chambered nautilus, pearly nautilus, nautilus", "dungeness crab, cancer magister", "rock crab, cancer irroratus", "fiddler crab", "king crab, alaska crab, alaskan king crab, alaska king crab, paralithodes camtschatica", "american lobster, northern lobster, maine lobster, homarus americanus", "spiny lobster, langouste, rock lobster, crawfish, crayfish, sea crawfish", "crayfish, crawfish, crawdad, crawdaddy", "hermit crab", "isopod", "white stork, ciconia ciconia", "black stork, ciconia nigra", "spoonbill", "flamingo", "little blue heron, egretta caerulea", "american egret, great white heron, egretta albus", "bittern", "crane", "limpkin, aramus pictus", "european gallinule, porphyrio porphyrio", "american coot, marsh hen, mud hen, water hen, fulica americana", "bustard", "ruddy turnstone, arenaria interpres", "red-backed sandpiper, dunlin, erolia alpina", "redshank, tringa totanus", "dowitcher", "oystercatcher, oyster catcher", "pelican", "king penguin, aptenodytes patagonica", "albatross, mollymawk", "grey whale, gray whale, devilfish, eschrichtius gibbosus, eschrichtius robustus", "killer whale, killer, orca, grampus, sea wolf, orcinus orca", "dugong, dugong dugon", "sea lion", "chihuahua", "japanese spaniel", "maltese dog, maltese terrier, maltese", "pekinese, pekingese, peke", "shih-tzu", "blenheim spaniel", "papillon", "toy terrier", "rhodesian ridgeback", "afghan hound, afghan", "basset, basset hound", "beagle", "bloodhound, sleuthhound", "bluetick", "black-and-tan coonhound", "walker hound, walker foxhound", "english foxhound", "redbone", "borzoi, russian wolfhound", "irish wolfhound", "italian greyhound", "whippet", "ibizan hound, ibizan podenco", "norwegian elkhound, elkhound", "otterhound, otter hound", "saluki, gazelle hound", "scottish deerhound, deerhound", "weimaraner", "staffordshire bullterrier, staffordshire bull terrier", "american staffordshire terrier, staffordshire terrier, american pit bull terrier, pit bull terrier", "bedlington terrier", "border terrier", "kerry blue terrier", "irish terrier", "norfolk terrier", "norwich terrier", "yorkshire terrier", "wire-haired fox terrier", "lakeland terrier", "sealyham terrier, sealyham", "airedale, airedale terrier", "cairn, cairn terrier", "australian terrier", "dandie dinmont, dandie dinmont terrier", "boston bull, boston terrier", "miniature schnauzer", "giant schnauzer", "standard schnauzer", "scotch terrier, scottish terrier, scottie", "tibetan terrier, chrysanthemum dog", "silky terrier, sydney silky", "soft-coated wheaten terrier", "west highland white terrier", "lhasa, lhasa apso", "flat-coated retriever", "curly-coated retriever", "golden retriever", "labrador retriever", "chesapeake bay retriever", "german short-haired pointer", "vizsla, hungarian pointer", "english setter", "irish setter, red setter", "gordon setter", "brittany spaniel", "clumber, clumber spaniel", "english springer, english springer spaniel", "welsh springer spaniel", "cocker spaniel, english cocker spaniel, cocker", "sussex spaniel", "irish water spaniel", "kuvasz", "schipperke", "groenendael", "malinois", "briard", "kelpie", "komondor", "old english sheepdog, bobtail", "shetland sheepdog, shetland sheep dog, shetland", "collie", "border collie", "bouvier des flandres, bouviers des flandres", "rottweiler", "german shepherd, german shepherd dog, german police dog, alsatian", "doberman, doberman pinscher", "miniature pinscher", "greater swiss mountain dog", "bernese mountain dog", "appenzeller", "entlebucher", "boxer", "bull mastiff", "tibetan mastiff", "french bulldog", "great dane", "saint bernard, st bernard", "eskimo dog, husky", "malamute, malemute, alaskan malamute", "siberian husky", "dalmatian, coach dog, carriage dog", "affenpinscher, monkey pinscher, monkey dog", "basenji", "pug, pug-dog", "leonberg", "newfoundland, newfoundland dog", "great pyrenees", "samoyed, samoyede", "pomeranian", "chow, chow chow", "keeshond", "brabancon griffon", "pembroke, pembroke welsh corgi", "cardigan, cardigan welsh corgi", "toy poodle", "miniature poodle", "standard poodle", "mexican hairless", "timber wolf, grey wolf, gray wolf, canis lupus", "white wolf, arctic wolf, canis lupus tundrarum", "red wolf, maned wolf, canis rufus, canis niger", "coyote, prairie wolf, brush wolf, canis latrans", "dingo, warrigal, warragal, canis dingo", "dhole, cuon alpinus", "african hunting dog, hyena dog, cape hunting dog, lycaon pictus", "hyena, hyaena", "red fox, vulpes vulpes", "kit fox, vulpes macrotis", "arctic fox, white fox, alopex lagopus", "grey fox, gray fox, urocyon cinereoargenteus", "tabby, tabby cat", "tiger cat", "persian cat", "siamese cat, siamese", "egyptian cat", "cougar, puma, catamount, mountain lion, painter, panther, felis concolor", "lynx, catamount", "leopard, panthera pardus", "snow leopard, ounce, panthera uncia", "jaguar, panther, panthera onca, felis onca", "lion, king of beasts, panthera leo", "tiger, panthera tigris", "cheetah, chetah, acinonyx jubatus", "brown bear, bruin, ursus arctos", "american black bear, black bear, ursus americanus, euarctos americanus", "ice bear, polar bear, ursus maritimus, thalarctos maritimus", "sloth bear, melursus ursinus, ursus ursinus", "mongoose", "meerkat, mierkat", "tiger beetle", "ladybug, ladybeetle, lady beetle, ladybird, ladybird beetle", "ground beetle, carabid beetle", "long-horned beetle, longicorn, longicorn beetle", "leaf beetle, chrysomelid", "dung beetle", "rhinoceros beetle", "weevil", "fly", "bee", "ant, emmet, pismire", "grasshopper, hopper", "cricket", "walking stick, walkingstick, stick insect", "cockroach, roach", "mantis, mantid", "cicada, cicala", "leafhopper", "lacewing, lacewing fly", "dragonfly, darning needle, devil's darning needle, sewing needle, snake feeder, snake doctor, mosquito hawk, skeeter hawk", "damselfly", "admiral", "ringlet, ringlet butterfly", "monarch, monarch butterfly, milkweed butterfly, danaus plexippus", "cabbage butterfly", "sulphur butterfly, sulfur butterfly", "lycaenid, lycaenid butterfly", "starfish, sea star", "sea urchin", "sea cucumber, holothurian", "wood rabbit, cottontail, cottontail rabbit", "hare", "angora, angora rabbit", "hamster", "porcupine, hedgehog", "fox squirrel, eastern fox squirrel, sciurus niger", "marmot", "beaver", "guinea pig, cavia cobaya", "sorrel", "zebra", "hog, pig, grunter, squealer, sus scrofa", "wild boar, boar, sus scrofa", "warthog", "hippopotamus, hippo, river horse, hippopotamus amphibius", "ox", "water buffalo, water ox, asiatic buffalo, bubalus bubalis", "bison", "ram, tup", "bighorn, bighorn sheep, cimarron, rocky mountain bighorn, rocky mountain sheep, ovis canadensis", "ibex, capra ibex", "hartebeest", "impala, aepyceros melampus", "gazelle", "arabian camel, dromedary, camelus dromedarius", "llama", "weasel", "mink", "polecat, fitch, foulmart, foumart, mustela putorius", "black-footed ferret, ferret, mustela nigripes", "otter", "skunk, polecat, wood pussy", "badger", "armadillo", "three-toed sloth, ai, bradypus tridactylus", "orangutan, orang, orangutang, pongo pygmaeus", "gorilla, gorilla gorilla", "chimpanzee, chimp, pan troglodytes", "gibbon, hylobates lar", "siamang, hylobates syndactylus, symphalangus syndactylus", "guenon, guenon monkey", "patas, hussar monkey, erythrocebus patas", "baboon", "macaque", "langur", "colobus, colobus monkey", "proboscis monkey, nasalis larvatus", "marmoset", "capuchin, ringtail, cebus capucinus", "howler monkey, howler", "titi, titi monkey", "spider monkey, ateles geoffroyi", "squirrel monkey, saimiri sciureus", "madagascar cat, ring-tailed lemur, lemur catta", "indri, indris, indri indri, indri brevicaudatus", "indian elephant, elephas maximus", "african elephant, loxodonta africana", "lesser panda, red panda, panda, bear cat, cat bear, ailurus fulgens", "giant panda, panda, panda bear, coon bear, ailuropoda melanoleuca", "barracouta, snoek", "eel", "coho, cohoe, coho salmon, blue jack, silver salmon, oncorhynchus kisutch", "rock beauty, holocanthus tricolor", "anemone fish", "sturgeon", "gar, garfish, garpike, billfish, lepisosteus osseus", "lionfish", "puffer, pufferfish, blowfish, globefish", "abacus", "abaya", "academic gown, academic robe, judge's robe", "accordion, piano accordion, squeeze box", "acoustic guitar", "aircraft carrier, carrier, flattop, attack aircraft carrier", "airliner", "airship, dirigible", "altar", "ambulance", "amphibian, amphibious vehicle", "analog clock", "apiary, bee house", "apron", "ashcan, trash can, garbage can, wastebin, ash bin, ash-bin, ashbin, dustbin, trash barrel, trash bin", "assault rifle, assault gun", "backpack, back pack, knapsack, packsack, rucksack, haversack", "bakery, bakeshop, bakehouse", "balance beam, beam", "balloon", "ballpoint, ballpoint pen, ballpen, biro", "band aid", "banjo", "bannister, banister, balustrade, balusters, handrail", "barbell", "barber chair", "barbershop", "barn", "barometer", "barrel, cask", "barrow, garden cart, lawn cart, wheelbarrow", "baseball", "basketball", "bassinet", "bassoon", "bathing cap, swimming cap", "bath towel", "bathtub, bathing tub, bath, tub", "beach wagon, station wagon, wagon, estate car, beach waggon, station waggon, waggon", "beacon, lighthouse, beacon light, pharos", "beaker", "bearskin, busby, shako", "beer bottle", "beer glass", "bell cote, bell cot", "bib", "bicycle-built-for-two, tandem bicycle, tandem", "bikini, two-piece", "binder, ring-binder", "binoculars, field glasses, opera glasses", "birdhouse", "boathouse", "bobsled, bobsleigh, bob", "bolo tie, bolo, bola tie, bola", "bonnet, poke bonnet", "bookcase", "bookshop, bookstore, bookstall", "bottlecap", "bow", "bow tie, bow-tie, bowtie", "brass, memorial tablet, plaque", "brassiere, bra, bandeau", "breakwater, groin, groyne, mole, bulwark, seawall, jetty", "breastplate, aegis, egis", "broom", "bucket, pail", "buckle", "bulletproof vest", "bullet train, bullet", "butcher shop, meat market", "cab, hack, taxi, taxicab", "caldron, cauldron", "candle, taper, wax light", "cannon", "canoe", "can opener, tin opener", "cardigan", "car mirror", "carousel, carrousel, merry-go-round, roundabout, whirligig", "carpenter's kit, tool kit", "carton", "car wheel", "cash machine, cash dispenser, automated teller machine, automatic teller machine, automated teller, automatic teller, atm", "cassette", "cassette player", "castle", "catamaran", "cd player", "cello, violoncello", "cellular telephone, cellular phone, cellphone, cell, mobile phone", "chain", "chainlink fence", "chain mail, ring mail, mail, chain armor, chain armour, ring armor, ring armour", "chain saw, chainsaw", "chest", "chiffonier, commode", "chime, bell, gong", "china cabinet, china closet", "christmas stocking", "church, church building", "cinema, movie theater, movie theatre, movie house, picture palace", "cleaver, meat cleaver, chopper", "cliff dwelling", "cloak", "clog, geta, patten, sabot", "cocktail shaker", "coffee mug", "coffeepot", "coil, spiral, volute, whorl, helix", "combination lock", "computer keyboard, keypad", "confectionery, confectionary, candy store", "container ship, containership, container vessel", "convertible", "corkscrew, bottle screw", "cornet, horn, trumpet, trump", "cowboy boot", "cowboy hat, ten-gallon hat", "cradle", "crane", "crash helmet", "crate", "crib, cot", "crock pot", "croquet ball", "crutch", "cuirass", "dam, dike, dyke", "desk", "desktop computer", "dial telephone, dial phone", "diaper, nappy, napkin", "digital clock", "digital watch", "dining table, board", "dishrag, dishcloth", "dishwasher, dish washer, dishwashing machine", "disk brake, disc brake", "dock, dockage, docking facility", "dogsled, dog sled, dog sleigh", "dome", "doormat, welcome mat", "drilling platform, offshore rig", "drum, membranophone, tympan", "drumstick", "dumbbell", "dutch oven", "electric fan, blower", "electric guitar", "electric locomotive", "entertainment center", "envelope", "espresso maker", "face powder", "feather boa, boa", "file, file cabinet, filing cabinet", "fireboat", "fire engine, fire truck", "fire screen, fireguard", "flagpole, flagstaff", "flute, transverse flute", "folding chair", "football helmet", "forklift", "fountain", "fountain pen", "four-poster", "freight car", "french horn, horn", "frying pan, frypan, skillet", "fur coat", "garbage truck, dustcart", "gasmask, respirator, gas helmet", "gas pump, gasoline pump, petrol pump, island dispenser", "goblet", "go-kart", "golf ball", "golfcart, golf cart", "gondola", "gong, tam-tam", "gown", "grand piano, grand", "greenhouse, nursery, glasshouse", "grille, radiator grille", "grocery store, grocery, food market, market", "guillotine", "hair slide", "hair spray", "half track", "hammer", "hamper", "hand blower, blow dryer, blow drier, hair dryer, hair drier", "hand-held computer, hand-held microcomputer", "handkerchief, hankie, hanky, hankey", "hard disc, hard disk, fixed disk", "harmonica, mouth organ, harp, mouth harp", "harp", "harvester, reaper", "hatchet", "holster", "home theater, home theatre", "honeycomb", "hook, claw", "hoopskirt, crinoline", "horizontal bar, high bar", "horse cart, horse-cart", "hourglass", "ipod", "iron, smoothing iron", "jack-o'-lantern", "jean, blue jean, denim", "jeep, landrover", "jersey, t-shirt, tee shirt", "jigsaw puzzle", "jinrikisha, ricksha, rickshaw", "joystick", "kimono", "knee pad", "knot", "lab coat, laboratory coat", "ladle", "lampshade, lamp shade", "laptop, laptop computer", "lawn mower, mower", "lens cap, lens cover", "letter opener, paper knife, paperknife", "library", "lifeboat", "lighter, light, igniter, ignitor", "limousine, limo", "liner, ocean liner", "lipstick, lip rouge", "loafer", "lotion", "loudspeaker, speaker, speaker unit, loudspeaker system, speaker system", "loupe, jeweler's loupe", "lumbermill, sawmill", "magnetic compass", "mailbag, postbag", "mailbox, letter box", "maillot", "maillot, tank suit", "manhole cover", "maraca", "marimba, xylophone", "mask", "matchstick", "maypole", "maze, labyrinth", "measuring cup", "medicine chest, medicine cabinet", "megalith, megalithic structure", "microphone, mike", "microwave, microwave oven", "military uniform", "milk can", "minibus", "miniskirt, mini", "minivan", "missile", "mitten", "mixing bowl", "mobile home, manufactured home", "model t", "modem", "monastery", "monitor", "moped", "mortar", "mortarboard", "mosque", "mosquito net", "motor scooter, scooter", "mountain bike, all-terrain bike, off-roader", "mountain tent", "mouse, computer mouse", "mousetrap", "moving van", "muzzle", "nail", "neck brace", "necklace", "nipple", "notebook, notebook computer", "obelisk", "oboe, hautboy, hautbois", "ocarina, sweet potato", "odometer, hodometer, mileometer, milometer", "oil filter", "organ, pipe organ", "oscilloscope, scope, cathode-ray oscilloscope, cro", "overskirt", "oxcart", "oxygen mask", "packet", "paddle, boat paddle", "paddlewheel, paddle wheel", "padlock", "paintbrush", "pajama, pyjama, pj's, jammies", "palace", "panpipe, pandean pipe, syrinx", "paper towel", "parachute, chute", "parallel bars, bars", "park bench", "parking meter", "passenger car, coach, carriage", "patio, terrace", "pay-phone, pay-station", "pedestal, plinth, footstall", "pencil box, pencil case", "pencil sharpener", "perfume, essence", "petri dish", "photocopier", "pick, plectrum, plectron", "pickelhaube", "picket fence, paling", "pickup, pickup truck", "pier", "piggy bank, penny bank", "pill bottle", "pillow", "ping-pong ball", "pinwheel", "pirate, pirate ship", "pitcher, ewer", "plane, carpenter's plane, woodworking plane", "planetarium", "plastic bag", "plate rack", "plow, plough", "plunger, plumber's helper", "polaroid camera, polaroid land camera", "pole", "police van, police wagon, paddy wagon, patrol wagon, wagon, black maria", "poncho", "pool table, billiard table, snooker table", "pop bottle, soda bottle", "pot, flowerpot", "potter's wheel", "power drill", "prayer rug, prayer mat", "printer", "prison, prison house", "projectile, missile", "projector", "puck, hockey puck", "punching bag, punch bag, punching ball, punchball", "purse", "quill, quill pen", "quilt, comforter, comfort, puff", "racer, race car, racing car", "racket, racquet", "radiator", "radio, wireless", "radio telescope, radio reflector", "rain barrel", "recreational vehicle, rv, r.v.", "reel", "reflex camera", "refrigerator, icebox", "remote control, remote", "restaurant, eating house, eating place, eatery", "revolver, six-gun, six-shooter", "rifle", "rocking chair, rocker", "rotisserie", "rubber eraser, rubber, pencil eraser", "rugby ball", "rule, ruler", "running shoe", "safe", "safety pin", "saltshaker, salt shaker", "sandal", "sarong", "sax, saxophone", "scabbard", "scale, weighing machine", "school bus", "schooner", "scoreboard", "screen, crt screen", "screw", "screwdriver", "seat belt, seatbelt", "sewing machine", "shield, buckler", "shoe shop, shoe-shop, shoe store", "shoji", "shopping basket", "shopping cart", "shovel", "shower cap", "shower curtain", "ski", "ski mask", "sleeping bag", "slide rule, slipstick", "sliding door", "slot, one-armed bandit", "snorkel", "snowmobile", "snowplow, snowplough", "soap dispenser", "soccer ball", "sock", "solar dish, solar collector, solar furnace", "sombrero", "soup bowl", "space bar", "space heater", "space shuttle", "spatula", "speedboat", "spider web, spider's web", "spindle", "sports car, sport car", "spotlight, spot", "stage", "steam locomotive", "steel arch bridge", "steel drum", "stethoscope", "stole", "stone wall", "stopwatch, stop watch", "stove", "strainer", "streetcar, tram, tramcar, trolley, trolley car", "stretcher", "studio couch, day bed", "stupa, tope", "submarine, pigboat, sub, u-boat", "suit, suit of clothes", "sundial", "sunglass", "sunglasses, dark glasses, shades", "sunscreen, sunblock, sun blocker", "suspension bridge", "swab, swob, mop", "sweatshirt", "swimming trunks, bathing trunks", "swing", "switch, electric switch, electrical switch", "syringe", "table lamp", "tank, army tank, armored combat vehicle, armoured combat vehicle", "tape player", "teapot", "teddy, teddy bear", "television, television system", "tennis ball", "thatch, thatched roof", "theater curtain, theatre curtain", "thimble", "thresher, thrasher, threshing machine", "throne", "tile roof", "toaster", "tobacco shop, tobacconist shop, tobacconist", "toilet seat", "torch", "totem pole", "tow truck, tow car, wrecker", "toyshop", "tractor", "trailer truck, tractor trailer, trucking rig, rig, articulated lorry, semi", "tray", "trench coat", "tricycle, trike, velocipede", "trimaran", "tripod", "triumphal arch", "trolleybus, trolley coach, trackless trolley", "trombone", "tub, vat", "turnstile", "typewriter keyboard", "umbrella", "unicycle, monocycle", "upright, upright piano", "vacuum, vacuum cleaner", "vase", "vault", "velvet", "vending machine", "vestment", "viaduct", "violin, fiddle", "volleyball", "waffle iron", "wall clock", "wallet, billfold, notecase, pocketbook", "wardrobe, closet, press", "warplane, military plane", "washbasin, handbasin, washbowl, lavabo, wash-hand basin", "washer, automatic washer, washing machine", "water bottle", "water jug", "water tower", "whiskey jug", "whistle", "wig", "window screen", "window shade", "windsor tie", "wine bottle", "wing", "wok", "wooden spoon", "wool, woolen, woollen", "worm fence, snake fence, snake-rail fence, virginia fence", "wreck", "yawl", "yurt", "web site, website, internet site, site", "comic book", "crossword puzzle, crossword", "street sign", "traffic light, traffic signal, stoplight", "book jacket, dust cover, dust jacket, dust wrapper", "menu", "plate", "guacamole", "consomme", "hot pot, hotpot", "trifle", "ice cream, icecream", "ice lolly, lolly, lollipop, popsicle", "french loaf", "bagel, beigel", "pretzel", "cheeseburger", "hotdog, hot dog, red hot", "mashed potato", "head cabbage", "broccoli", "cauliflower", "zucchini, courgette", "spaghetti squash", "acorn squash", "butternut squash", "cucumber, cuke", "artichoke, globe artichoke", "bell pepper", "cardoon", "mushroom", "granny smith", "strawberry", "orange", "lemon", "fig", "pineapple, ananas", "banana", "jackfruit, jak, jack", "custard apple", "pomegranate", "hay", "carbonara", "chocolate sauce, chocolate syrup", "dough", "meat loaf, meatloaf", "pizza, pizza pie", "potpie", "burrito", "red wine", "espresso", "cup", "eggnog", "alp", "bubble", "cliff, drop, drop-off", "coral reef", "geyser", "lakeside, lakeshore", "promontory, headland, head, foreland", "sandbar, sand bar", "seashore, coast, seacoast, sea-coast", "valley, vale", "volcano", "ballplayer, baseball player", "groom, bridegroom", "scuba diver", "rapeseed", "daisy", "yellow lady's slipper, yellow lady-slipper, cypripedium calceolus, cypripedium parviflorum", "corn", "acorn", "hip, rose hip, rosehip", "buckeye, horse chestnut, conker", "coral fungus", "agaric", "gyromitra", "stinkhorn, carrion fungus", "earthstar", "hen-of-the-woods, hen of the woods, polyporus frondosus, grifola frondosa", "bolete", "ear, spike, capitulum", "toilet tissue, toilet paper, bathroom tissue" ]
microsoft/swinv2-base-patch4-window12-192-22k
# Swin Transformer v2 (tiny-sized model) Swin Transformer v2 model pre-trained on ImageNet-21k at resolution 192x192. It was introduced in the paper [Swin Transformer V2: Scaling Up Capacity and Resolution](https://arxiv.org/abs/2111.09883) by Liu et al. and first released in [this repository](https://github.com/microsoft/Swin-Transformer). Disclaimer: The team releasing Swin Transformer v2 did not write a model card for this model so this model card has been written by the Hugging Face team. ## Model description The Swin Transformer is a type of Vision Transformer. It builds hierarchical feature maps by merging image patches (shown in gray) in deeper layers and has linear computation complexity to input image size due to computation of self-attention only within each local window (shown in red). It can thus serve as a general-purpose backbone for both image classification and dense recognition tasks. In contrast, previous vision Transformers produce feature maps of a single low resolution and have quadratic computation complexity to input image size due to computation of self-attention globally. Swin Transformer v2 adds 3 main improvements: 1) a residual-post-norm method combined with cosine attention to improve training stability; 2) a log-spaced continuous position bias method to effectively transfer models pre-trained using low-resolution images to downstream tasks with high-resolution inputs; 3) a self-supervised pre-training method, SimMIM, to reduce the needs of vast labeled images. ![model image](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/swin_transformer_architecture.png) [Source](https://paperswithcode.com/method/swin-transformer) ## Intended uses & limitations You can use the raw model for image classification. See the [model hub](https://huggingface.co/models?search=swinv2) to look for fine-tuned versions on a task that interests you. ### How to use Here is how to use this model to classify an image of the COCO 2017 dataset into one of the 21k ImageNet classes: ```python from transformers import AutoImageProcessor, AutoModelForImageClassification from PIL import Image import requests url = "http://images.cocodataset.org/val2017/000000039769.jpg" image = Image.open(requests.get(url, stream=True).raw) processor = AutoImageProcessor.from_pretrained("microsoft/swinv2-base-patch4-window12-192-22k") model = AutoModelForImageClassification.from_pretrained("microsoft/swinv2-base-patch4-window12-192-22k") inputs = processor(images=image, return_tensors="pt") outputs = model(**inputs) logits = outputs.logits # model predicts one of the 21k ImageNet classes predicted_class_idx = logits.argmax(-1).item() print("Predicted class:", model.config.id2label[predicted_class_idx]) ``` For more code examples, we refer to the [documentation](https://huggingface.co/transformers/model_doc/swinv2.html#). ### BibTeX entry and citation info ```bibtex @article{DBLP:journals/corr/abs-2111-09883, author = {Ze Liu and Han Hu and Yutong Lin and Zhuliang Yao and Zhenda Xie and Yixuan Wei and Jia Ning and Yue Cao and Zheng Zhang and Li Dong and Furu Wei and Baining Guo}, title = {Swin Transformer {V2:} Scaling Up Capacity and Resolution}, journal = {CoRR}, volume = {abs/2111.09883}, year = {2021}, url = {https://arxiv.org/abs/2111.09883}, eprinttype = {arXiv}, eprint = {2111.09883}, timestamp = {Thu, 02 Dec 2021 15:54:22 +0100}, biburl = {https://dblp.org/rec/journals/corr/abs-2111-09883.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ```
[ "label_0", "label_1", "label_2", "label_3", "label_4", "label_5", "label_6", "label_7", "label_8", "label_9", "label_10", "label_11", "label_12", "label_13", "label_14", "label_15", "label_16", "label_17", "label_18", "label_19", "label_20", "label_21", "label_22", "label_23", "label_24", "label_25", "label_26", "label_27", "label_28", "label_29", "label_30", "label_31", "label_32", "label_33", "label_34", "label_35", "label_36", "label_37", "label_38", "label_39", "label_40", "label_41", "label_42", "label_43", "label_44", "label_45", "label_46", "label_47", "label_48", "label_49", "label_50", "label_51", "label_52", "label_53", "label_54", "label_55", "label_56", "label_57", "label_58", "label_59", "label_60", "label_61", "label_62", "label_63", "label_64", "label_65", "label_66", "label_67", "label_68", "label_69", "label_70", "label_71", "label_72", "label_73", "label_74", "label_75", "label_76", "label_77", "label_78", "label_79", "label_80", "label_81", "label_82", "label_83", "label_84", "label_85", "label_86", "label_87", "label_88", "label_89", "label_90", "label_91", "label_92", "label_93", "label_94", "label_95", "label_96", "label_97", "label_98", "label_99", "label_100", "label_101", "label_102", "label_103", "label_104", "label_105", "label_106", "label_107", "label_108", "label_109", "label_110", "label_111", "label_112", "label_113", "label_114", "label_115", "label_116", "label_117", "label_118", "label_119", "label_120", "label_121", "label_122", "label_123", "label_124", "label_125", "label_126", "label_127", "label_128", "label_129", "label_130", "label_131", "label_132", "label_133", "label_134", "label_135", "label_136", "label_137", "label_138", "label_139", "label_140", "label_141", "label_142", "label_143", "label_144", "label_145", "label_146", "label_147", "label_148", "label_149", "label_150", "label_151", "label_152", "label_153", "label_154", "label_155", "label_156", "label_157", "label_158", "label_159", "label_160", "label_161", "label_162", "label_163", "label_164", "label_165", "label_166", "label_167", "label_168", "label_169", "label_170", "label_171", "label_172", "label_173", "label_174", "label_175", "label_176", "label_177", "label_178", "label_179", "label_180", "label_181", "label_182", "label_183", "label_184", "label_185", "label_186", "label_187", "label_188", "label_189", "label_190", "label_191", "label_192", "label_193", "label_194", "label_195", "label_196", "label_197", "label_198", "label_199", "label_200", "label_201", "label_202", "label_203", "label_204", "label_205", "label_206", "label_207", "label_208", "label_209", "label_210", "label_211", "label_212", "label_213", "label_214", "label_215", "label_216", "label_217", "label_218", "label_219", "label_220", "label_221", "label_222", "label_223", "label_224", "label_225", "label_226", "label_227", "label_228", "label_229", "label_230", "label_231", "label_232", "label_233", "label_234", "label_235", "label_236", "label_237", "label_238", "label_239", "label_240", "label_241", "label_242", "label_243", "label_244", "label_245", "label_246", "label_247", "label_248", "label_249", "label_250", "label_251", "label_252", "label_253", "label_254", "label_255", "label_256", "label_257", "label_258", "label_259", "label_260", "label_261", "label_262", "label_263", "label_264", "label_265", "label_266", "label_267", "label_268", "label_269", "label_270", "label_271", "label_272", "label_273", "label_274", "label_275", "label_276", "label_277", "label_278", "label_279", "label_280", "label_281", "label_282", "label_283", "label_284", "label_285", "label_286", "label_287", "label_288", "label_289", "label_290", "label_291", "label_292", "label_293", "label_294", "label_295", "label_296", "label_297", "label_298", "label_299", "label_300", "label_301", "label_302", "label_303", "label_304", "label_305", "label_306", "label_307", "label_308", "label_309", "label_310", "label_311", "label_312", "label_313", "label_314", "label_315", "label_316", "label_317", "label_318", "label_319", "label_320", "label_321", "label_322", "label_323", "label_324", "label_325", "label_326", "label_327", "label_328", "label_329", "label_330", "label_331", "label_332", "label_333", "label_334", "label_335", "label_336", "label_337", "label_338", "label_339", "label_340", "label_341", "label_342", "label_343", "label_344", "label_345", "label_346", "label_347", "label_348", "label_349", "label_350", "label_351", "label_352", "label_353", "label_354", "label_355", "label_356", "label_357", "label_358", "label_359", "label_360", "label_361", "label_362", "label_363", "label_364", "label_365", "label_366", "label_367", "label_368", "label_369", "label_370", "label_371", "label_372", "label_373", "label_374", "label_375", "label_376", "label_377", "label_378", "label_379", "label_380", "label_381", "label_382", "label_383", "label_384", "label_385", "label_386", "label_387", "label_388", "label_389", "label_390", "label_391", "label_392", "label_393", "label_394", "label_395", "label_396", "label_397", "label_398", "label_399", "label_400", "label_401", "label_402", "label_403", "label_404", "label_405", "label_406", "label_407", "label_408", "label_409", "label_410", "label_411", "label_412", "label_413", "label_414", "label_415", "label_416", "label_417", "label_418", "label_419", "label_420", "label_421", "label_422", "label_423", "label_424", "label_425", "label_426", "label_427", "label_428", "label_429", "label_430", "label_431", "label_432", "label_433", "label_434", "label_435", "label_436", "label_437", "label_438", "label_439", "label_440", "label_441", "label_442", "label_443", "label_444", "label_445", "label_446", "label_447", "label_448", "label_449", "label_450", "label_451", "label_452", "label_453", "label_454", "label_455", "label_456", "label_457", "label_458", "label_459", "label_460", "label_461", "label_462", "label_463", "label_464", "label_465", "label_466", "label_467", "label_468", "label_469", "label_470", "label_471", "label_472", "label_473", "label_474", "label_475", "label_476", "label_477", "label_478", "label_479", "label_480", "label_481", "label_482", "label_483", "label_484", "label_485", "label_486", "label_487", "label_488", "label_489", "label_490", "label_491", "label_492", "label_493", "label_494", "label_495", "label_496", "label_497", "label_498", "label_499", "label_500", "label_501", "label_502", "label_503", "label_504", "label_505", "label_506", "label_507", "label_508", "label_509", "label_510", "label_511", "label_512", "label_513", "label_514", "label_515", "label_516", "label_517", "label_518", "label_519", "label_520", "label_521", "label_522", "label_523", "label_524", "label_525", "label_526", "label_527", "label_528", "label_529", "label_530", "label_531", "label_532", "label_533", "label_534", "label_535", "label_536", "label_537", "label_538", "label_539", "label_540", "label_541", "label_542", "label_543", "label_544", "label_545", "label_546", "label_547", "label_548", "label_549", "label_550", "label_551", "label_552", "label_553", "label_554", "label_555", "label_556", "label_557", "label_558", "label_559", "label_560", "label_561", "label_562", "label_563", "label_564", "label_565", "label_566", "label_567", "label_568", "label_569", "label_570", "label_571", "label_572", "label_573", "label_574", "label_575", "label_576", "label_577", "label_578", "label_579", "label_580", "label_581", "label_582", "label_583", "label_584", "label_585", "label_586", "label_587", "label_588", "label_589", "label_590", "label_591", "label_592", "label_593", "label_594", "label_595", "label_596", "label_597", "label_598", "label_599", "label_600", "label_601", "label_602", "label_603", "label_604", "label_605", "label_606", "label_607", "label_608", "label_609", "label_610", "label_611", "label_612", "label_613", "label_614", "label_615", "label_616", "label_617", "label_618", "label_619", "label_620", "label_621", "label_622", "label_623", "label_624", "label_625", "label_626", "label_627", "label_628", "label_629", "label_630", "label_631", "label_632", "label_633", "label_634", "label_635", "label_636", "label_637", "label_638", "label_639", "label_640", "label_641", "label_642", "label_643", "label_644", "label_645", "label_646", "label_647", "label_648", "label_649", "label_650", "label_651", "label_652", "label_653", "label_654", "label_655", "label_656", "label_657", "label_658", "label_659", "label_660", "label_661", "label_662", "label_663", "label_664", "label_665", "label_666", "label_667", "label_668", "label_669", "label_670", "label_671", "label_672", "label_673", "label_674", "label_675", "label_676", "label_677", "label_678", "label_679", "label_680", "label_681", "label_682", "label_683", "label_684", "label_685", "label_686", "label_687", "label_688", "label_689", "label_690", "label_691", "label_692", "label_693", "label_694", "label_695", "label_696", "label_697", "label_698", "label_699", "label_700", "label_701", "label_702", "label_703", "label_704", "label_705", "label_706", "label_707", "label_708", "label_709", "label_710", "label_711", "label_712", "label_713", "label_714", "label_715", "label_716", "label_717", "label_718", "label_719", "label_720", "label_721", "label_722", "label_723", "label_724", "label_725", "label_726", "label_727", "label_728", "label_729", "label_730", "label_731", "label_732", "label_733", "label_734", "label_735", "label_736", "label_737", "label_738", "label_739", "label_740", "label_741", "label_742", "label_743", "label_744", "label_745", "label_746", "label_747", "label_748", "label_749", "label_750", "label_751", "label_752", "label_753", "label_754", "label_755", "label_756", "label_757", "label_758", "label_759", "label_760", "label_761", "label_762", "label_763", "label_764", "label_765", "label_766", "label_767", "label_768", "label_769", "label_770", "label_771", "label_772", "label_773", "label_774", "label_775", "label_776", "label_777", "label_778", "label_779", "label_780", "label_781", "label_782", "label_783", "label_784", "label_785", "label_786", "label_787", "label_788", "label_789", "label_790", "label_791", "label_792", "label_793", "label_794", "label_795", "label_796", "label_797", "label_798", "label_799", "label_800", "label_801", "label_802", "label_803", "label_804", "label_805", "label_806", "label_807", "label_808", "label_809", "label_810", "label_811", "label_812", "label_813", "label_814", "label_815", "label_816", "label_817", "label_818", "label_819", "label_820", "label_821", "label_822", "label_823", "label_824", "label_825", "label_826", "label_827", "label_828", "label_829", "label_830", "label_831", "label_832", "label_833", "label_834", "label_835", "label_836", "label_837", "label_838", "label_839", "label_840", "label_841", "label_842", "label_843", "label_844", "label_845", "label_846", "label_847", "label_848", "label_849", "label_850", "label_851", "label_852", "label_853", "label_854", "label_855", "label_856", "label_857", "label_858", "label_859", "label_860", "label_861", "label_862", "label_863", "label_864", "label_865", "label_866", "label_867", "label_868", "label_869", "label_870", "label_871", "label_872", "label_873", "label_874", "label_875", "label_876", "label_877", "label_878", "label_879", "label_880", "label_881", "label_882", "label_883", "label_884", "label_885", "label_886", "label_887", "label_888", "label_889", "label_890", "label_891", "label_892", "label_893", "label_894", "label_895", "label_896", "label_897", "label_898", "label_899", "label_900", "label_901", "label_902", "label_903", "label_904", "label_905", "label_906", "label_907", "label_908", "label_909", "label_910", "label_911", "label_912", "label_913", "label_914", "label_915", "label_916", "label_917", "label_918", "label_919", "label_920", "label_921", "label_922", "label_923", "label_924", "label_925", "label_926", "label_927", "label_928", "label_929", "label_930", "label_931", "label_932", "label_933", "label_934", "label_935", "label_936", "label_937", "label_938", "label_939", "label_940", "label_941", "label_942", "label_943", "label_944", "label_945", "label_946", "label_947", "label_948", "label_949", "label_950", "label_951", "label_952", "label_953", "label_954", "label_955", "label_956", "label_957", "label_958", "label_959", "label_960", "label_961", "label_962", "label_963", "label_964", "label_965", "label_966", "label_967", "label_968", "label_969", "label_970", "label_971", "label_972", "label_973", "label_974", "label_975", "label_976", "label_977", "label_978", "label_979", "label_980", "label_981", "label_982", "label_983", "label_984", "label_985", "label_986", "label_987", "label_988", "label_989", "label_990", "label_991", "label_992", "label_993", "label_994", "label_995", "label_996", "label_997", "label_998", "label_999", "label_1000", "label_1001", "label_1002", "label_1003", "label_1004", "label_1005", "label_1006", "label_1007", "label_1008", "label_1009", "label_1010", "label_1011", "label_1012", "label_1013", "label_1014", "label_1015", "label_1016", "label_1017", "label_1018", "label_1019", "label_1020", "label_1021", "label_1022", "label_1023", "label_1024", "label_1025", "label_1026", "label_1027", "label_1028", "label_1029", "label_1030", "label_1031", "label_1032", "label_1033", "label_1034", "label_1035", "label_1036", "label_1037", "label_1038", "label_1039", "label_1040", "label_1041", "label_1042", "label_1043", "label_1044", "label_1045", "label_1046", "label_1047", "label_1048", "label_1049", "label_1050", "label_1051", "label_1052", "label_1053", "label_1054", "label_1055", "label_1056", "label_1057", "label_1058", "label_1059", "label_1060", "label_1061", "label_1062", "label_1063", "label_1064", "label_1065", "label_1066", "label_1067", "label_1068", "label_1069", "label_1070", "label_1071", "label_1072", "label_1073", "label_1074", "label_1075", "label_1076", "label_1077", "label_1078", "label_1079", "label_1080", "label_1081", "label_1082", "label_1083", "label_1084", "label_1085", "label_1086", "label_1087", "label_1088", "label_1089", "label_1090", "label_1091", "label_1092", "label_1093", "label_1094", "label_1095", "label_1096", "label_1097", "label_1098", "label_1099", "label_1100", "label_1101", "label_1102", "label_1103", "label_1104", "label_1105", "label_1106", "label_1107", "label_1108", "label_1109", "label_1110", "label_1111", "label_1112", "label_1113", "label_1114", "label_1115", "label_1116", "label_1117", "label_1118", "label_1119", "label_1120", "label_1121", "label_1122", "label_1123", "label_1124", "label_1125", "label_1126", "label_1127", "label_1128", "label_1129", "label_1130", "label_1131", "label_1132", "label_1133", "label_1134", "label_1135", "label_1136", "label_1137", "label_1138", "label_1139", "label_1140", "label_1141", "label_1142", "label_1143", "label_1144", "label_1145", "label_1146", "label_1147", "label_1148", "label_1149", "label_1150", "label_1151", "label_1152", "label_1153", "label_1154", "label_1155", "label_1156", "label_1157", "label_1158", "label_1159", "label_1160", "label_1161", "label_1162", "label_1163", "label_1164", "label_1165", "label_1166", "label_1167", "label_1168", "label_1169", "label_1170", "label_1171", "label_1172", "label_1173", "label_1174", "label_1175", "label_1176", "label_1177", "label_1178", "label_1179", "label_1180", "label_1181", "label_1182", "label_1183", "label_1184", "label_1185", "label_1186", "label_1187", "label_1188", "label_1189", "label_1190", "label_1191", "label_1192", "label_1193", "label_1194", "label_1195", "label_1196", "label_1197", "label_1198", "label_1199", "label_1200", "label_1201", "label_1202", "label_1203", "label_1204", "label_1205", "label_1206", "label_1207", "label_1208", "label_1209", "label_1210", "label_1211", "label_1212", "label_1213", "label_1214", "label_1215", "label_1216", "label_1217", "label_1218", "label_1219", "label_1220", "label_1221", "label_1222", "label_1223", "label_1224", "label_1225", "label_1226", "label_1227", "label_1228", "label_1229", "label_1230", "label_1231", "label_1232", "label_1233", "label_1234", "label_1235", "label_1236", "label_1237", "label_1238", "label_1239", "label_1240", "label_1241", "label_1242", "label_1243", "label_1244", "label_1245", "label_1246", "label_1247", "label_1248", "label_1249", "label_1250", "label_1251", "label_1252", "label_1253", "label_1254", "label_1255", "label_1256", "label_1257", "label_1258", "label_1259", "label_1260", "label_1261", "label_1262", "label_1263", "label_1264", "label_1265", "label_1266", "label_1267", "label_1268", "label_1269", "label_1270", "label_1271", "label_1272", "label_1273", "label_1274", "label_1275", "label_1276", "label_1277", "label_1278", "label_1279", "label_1280", "label_1281", "label_1282", "label_1283", "label_1284", "label_1285", "label_1286", "label_1287", "label_1288", "label_1289", "label_1290", "label_1291", "label_1292", "label_1293", "label_1294", "label_1295", "label_1296", "label_1297", "label_1298", "label_1299", "label_1300", "label_1301", "label_1302", "label_1303", "label_1304", "label_1305", "label_1306", "label_1307", "label_1308", "label_1309", "label_1310", "label_1311", "label_1312", "label_1313", "label_1314", "label_1315", "label_1316", "label_1317", "label_1318", "label_1319", "label_1320", "label_1321", "label_1322", "label_1323", "label_1324", "label_1325", "label_1326", "label_1327", "label_1328", "label_1329", "label_1330", "label_1331", "label_1332", "label_1333", "label_1334", "label_1335", "label_1336", "label_1337", "label_1338", "label_1339", "label_1340", "label_1341", "label_1342", "label_1343", "label_1344", "label_1345", "label_1346", "label_1347", "label_1348", "label_1349", "label_1350", "label_1351", "label_1352", "label_1353", "label_1354", "label_1355", "label_1356", "label_1357", "label_1358", "label_1359", "label_1360", "label_1361", "label_1362", "label_1363", "label_1364", "label_1365", "label_1366", "label_1367", "label_1368", "label_1369", "label_1370", "label_1371", "label_1372", "label_1373", "label_1374", "label_1375", "label_1376", "label_1377", "label_1378", "label_1379", "label_1380", "label_1381", "label_1382", "label_1383", "label_1384", "label_1385", "label_1386", "label_1387", "label_1388", "label_1389", "label_1390", "label_1391", "label_1392", "label_1393", "label_1394", "label_1395", "label_1396", "label_1397", "label_1398", "label_1399", "label_1400", "label_1401", "label_1402", "label_1403", "label_1404", "label_1405", "label_1406", "label_1407", "label_1408", "label_1409", "label_1410", "label_1411", "label_1412", "label_1413", "label_1414", "label_1415", "label_1416", "label_1417", "label_1418", "label_1419", "label_1420", "label_1421", "label_1422", "label_1423", "label_1424", "label_1425", "label_1426", "label_1427", "label_1428", "label_1429", "label_1430", "label_1431", "label_1432", "label_1433", "label_1434", "label_1435", "label_1436", "label_1437", "label_1438", "label_1439", "label_1440", "label_1441", "label_1442", "label_1443", "label_1444", "label_1445", "label_1446", "label_1447", "label_1448", "label_1449", "label_1450", "label_1451", "label_1452", "label_1453", "label_1454", "label_1455", "label_1456", "label_1457", "label_1458", "label_1459", "label_1460", "label_1461", "label_1462", "label_1463", "label_1464", "label_1465", "label_1466", "label_1467", "label_1468", "label_1469", "label_1470", "label_1471", "label_1472", "label_1473", "label_1474", "label_1475", "label_1476", "label_1477", "label_1478", "label_1479", "label_1480", "label_1481", "label_1482", "label_1483", "label_1484", "label_1485", "label_1486", "label_1487", "label_1488", "label_1489", "label_1490", "label_1491", "label_1492", "label_1493", "label_1494", "label_1495", "label_1496", "label_1497", "label_1498", "label_1499", "label_1500", "label_1501", "label_1502", "label_1503", "label_1504", "label_1505", "label_1506", "label_1507", "label_1508", "label_1509", "label_1510", "label_1511", "label_1512", "label_1513", "label_1514", "label_1515", "label_1516", "label_1517", "label_1518", "label_1519", "label_1520", "label_1521", "label_1522", "label_1523", "label_1524", "label_1525", "label_1526", "label_1527", "label_1528", "label_1529", "label_1530", "label_1531", "label_1532", "label_1533", "label_1534", "label_1535", "label_1536", "label_1537", "label_1538", "label_1539", "label_1540", "label_1541", "label_1542", "label_1543", "label_1544", "label_1545", "label_1546", "label_1547", "label_1548", "label_1549", "label_1550", "label_1551", "label_1552", "label_1553", "label_1554", "label_1555", "label_1556", "label_1557", "label_1558", "label_1559", "label_1560", "label_1561", "label_1562", "label_1563", "label_1564", "label_1565", "label_1566", "label_1567", "label_1568", "label_1569", "label_1570", "label_1571", "label_1572", "label_1573", "label_1574", "label_1575", "label_1576", "label_1577", "label_1578", "label_1579", "label_1580", "label_1581", "label_1582", "label_1583", "label_1584", "label_1585", "label_1586", "label_1587", "label_1588", "label_1589", "label_1590", "label_1591", "label_1592", "label_1593", "label_1594", "label_1595", "label_1596", "label_1597", "label_1598", "label_1599", "label_1600", "label_1601", "label_1602", "label_1603", "label_1604", "label_1605", "label_1606", "label_1607", "label_1608", "label_1609", "label_1610", "label_1611", "label_1612", "label_1613", "label_1614", "label_1615", "label_1616", "label_1617", "label_1618", "label_1619", "label_1620", "label_1621", "label_1622", "label_1623", "label_1624", "label_1625", "label_1626", "label_1627", "label_1628", "label_1629", "label_1630", "label_1631", "label_1632", "label_1633", "label_1634", "label_1635", "label_1636", "label_1637", "label_1638", "label_1639", "label_1640", "label_1641", "label_1642", "label_1643", "label_1644", "label_1645", "label_1646", "label_1647", "label_1648", "label_1649", "label_1650", "label_1651", "label_1652", "label_1653", "label_1654", "label_1655", "label_1656", "label_1657", "label_1658", "label_1659", "label_1660", "label_1661", "label_1662", "label_1663", "label_1664", "label_1665", "label_1666", "label_1667", "label_1668", "label_1669", "label_1670", "label_1671", "label_1672", "label_1673", "label_1674", "label_1675", "label_1676", "label_1677", "label_1678", "label_1679", "label_1680", "label_1681", "label_1682", "label_1683", "label_1684", "label_1685", "label_1686", "label_1687", "label_1688", "label_1689", "label_1690", "label_1691", "label_1692", "label_1693", "label_1694", "label_1695", "label_1696", "label_1697", "label_1698", "label_1699", "label_1700", "label_1701", "label_1702", "label_1703", "label_1704", "label_1705", "label_1706", "label_1707", "label_1708", "label_1709", "label_1710", "label_1711", "label_1712", "label_1713", "label_1714", "label_1715", "label_1716", "label_1717", "label_1718", "label_1719", "label_1720", "label_1721", "label_1722", "label_1723", "label_1724", "label_1725", "label_1726", "label_1727", "label_1728", "label_1729", "label_1730", "label_1731", "label_1732", "label_1733", "label_1734", "label_1735", "label_1736", "label_1737", "label_1738", "label_1739", "label_1740", "label_1741", "label_1742", "label_1743", "label_1744", "label_1745", "label_1746", "label_1747", "label_1748", "label_1749", "label_1750", "label_1751", "label_1752", "label_1753", "label_1754", "label_1755", "label_1756", "label_1757", "label_1758", "label_1759", "label_1760", "label_1761", "label_1762", "label_1763", "label_1764", "label_1765", "label_1766", "label_1767", "label_1768", "label_1769", "label_1770", "label_1771", "label_1772", "label_1773", "label_1774", "label_1775", "label_1776", "label_1777", "label_1778", "label_1779", "label_1780", "label_1781", "label_1782", "label_1783", "label_1784", "label_1785", "label_1786", "label_1787", "label_1788", "label_1789", "label_1790", "label_1791", "label_1792", "label_1793", "label_1794", "label_1795", "label_1796", "label_1797", "label_1798", "label_1799", "label_1800", "label_1801", "label_1802", "label_1803", "label_1804", "label_1805", "label_1806", "label_1807", "label_1808", "label_1809", "label_1810", "label_1811", "label_1812", "label_1813", "label_1814", "label_1815", "label_1816", "label_1817", "label_1818", "label_1819", "label_1820", "label_1821", "label_1822", "label_1823", "label_1824", "label_1825", "label_1826", "label_1827", "label_1828", "label_1829", "label_1830", "label_1831", "label_1832", "label_1833", "label_1834", "label_1835", "label_1836", "label_1837", "label_1838", "label_1839", "label_1840", "label_1841", "label_1842", "label_1843", "label_1844", "label_1845", "label_1846", "label_1847", "label_1848", "label_1849", "label_1850", "label_1851", "label_1852", "label_1853", "label_1854", "label_1855", "label_1856", "label_1857", "label_1858", "label_1859", "label_1860", "label_1861", "label_1862", "label_1863", "label_1864", "label_1865", "label_1866", "label_1867", "label_1868", "label_1869", "label_1870", "label_1871", "label_1872", "label_1873", "label_1874", "label_1875", "label_1876", "label_1877", "label_1878", "label_1879", "label_1880", "label_1881", "label_1882", "label_1883", "label_1884", "label_1885", "label_1886", "label_1887", "label_1888", "label_1889", "label_1890", "label_1891", "label_1892", "label_1893", "label_1894", "label_1895", "label_1896", "label_1897", "label_1898", "label_1899", "label_1900", "label_1901", "label_1902", "label_1903", "label_1904", "label_1905", "label_1906", "label_1907", "label_1908", "label_1909", "label_1910", "label_1911", "label_1912", "label_1913", "label_1914", "label_1915", "label_1916", "label_1917", "label_1918", "label_1919", "label_1920", "label_1921", "label_1922", "label_1923", "label_1924", "label_1925", "label_1926", "label_1927", "label_1928", "label_1929", "label_1930", "label_1931", "label_1932", "label_1933", "label_1934", "label_1935", "label_1936", "label_1937", "label_1938", "label_1939", "label_1940", "label_1941", "label_1942", "label_1943", "label_1944", "label_1945", "label_1946", "label_1947", "label_1948", "label_1949", "label_1950", "label_1951", "label_1952", "label_1953", "label_1954", "label_1955", "label_1956", "label_1957", "label_1958", "label_1959", "label_1960", "label_1961", "label_1962", "label_1963", "label_1964", "label_1965", "label_1966", "label_1967", "label_1968", "label_1969", "label_1970", "label_1971", "label_1972", "label_1973", "label_1974", "label_1975", "label_1976", "label_1977", "label_1978", "label_1979", "label_1980", "label_1981", "label_1982", "label_1983", "label_1984", "label_1985", "label_1986", "label_1987", "label_1988", "label_1989", "label_1990", "label_1991", "label_1992", "label_1993", "label_1994", "label_1995", "label_1996", "label_1997", "label_1998", "label_1999", "label_2000", "label_2001", "label_2002", "label_2003", "label_2004", "label_2005", "label_2006", "label_2007", "label_2008", "label_2009", "label_2010", "label_2011", "label_2012", "label_2013", "label_2014", "label_2015", "label_2016", "label_2017", "label_2018", "label_2019", "label_2020", "label_2021", "label_2022", "label_2023", "label_2024", "label_2025", "label_2026", "label_2027", "label_2028", "label_2029", "label_2030", "label_2031", "label_2032", "label_2033", "label_2034", "label_2035", "label_2036", "label_2037", "label_2038", "label_2039", "label_2040", "label_2041", "label_2042", "label_2043", "label_2044", "label_2045", "label_2046", "label_2047", "label_2048", "label_2049", "label_2050", "label_2051", "label_2052", "label_2053", "label_2054", "label_2055", "label_2056", "label_2057", "label_2058", "label_2059", "label_2060", "label_2061", "label_2062", "label_2063", "label_2064", "label_2065", "label_2066", "label_2067", "label_2068", "label_2069", "label_2070", "label_2071", "label_2072", "label_2073", "label_2074", "label_2075", "label_2076", "label_2077", "label_2078", "label_2079", "label_2080", "label_2081", "label_2082", "label_2083", "label_2084", "label_2085", "label_2086", "label_2087", "label_2088", "label_2089", "label_2090", "label_2091", "label_2092", "label_2093", "label_2094", "label_2095", "label_2096", "label_2097", "label_2098", "label_2099", "label_2100", "label_2101", "label_2102", "label_2103", "label_2104", "label_2105", "label_2106", "label_2107", "label_2108", "label_2109", "label_2110", "label_2111", "label_2112", "label_2113", "label_2114", "label_2115", "label_2116", "label_2117", "label_2118", "label_2119", "label_2120", "label_2121", "label_2122", "label_2123", "label_2124", "label_2125", "label_2126", "label_2127", "label_2128", "label_2129", "label_2130", "label_2131", "label_2132", "label_2133", "label_2134", "label_2135", "label_2136", "label_2137", "label_2138", "label_2139", "label_2140", "label_2141", "label_2142", "label_2143", "label_2144", "label_2145", "label_2146", "label_2147", "label_2148", "label_2149", "label_2150", "label_2151", "label_2152", "label_2153", "label_2154", "label_2155", "label_2156", "label_2157", "label_2158", "label_2159", "label_2160", "label_2161", "label_2162", "label_2163", "label_2164", "label_2165", "label_2166", "label_2167", "label_2168", "label_2169", "label_2170", "label_2171", "label_2172", "label_2173", "label_2174", "label_2175", "label_2176", "label_2177", "label_2178", "label_2179", "label_2180", "label_2181", "label_2182", "label_2183", "label_2184", "label_2185", "label_2186", "label_2187", "label_2188", "label_2189", "label_2190", "label_2191", "label_2192", "label_2193", "label_2194", "label_2195", "label_2196", "label_2197", "label_2198", "label_2199", "label_2200", "label_2201", "label_2202", "label_2203", "label_2204", "label_2205", "label_2206", "label_2207", "label_2208", "label_2209", "label_2210", "label_2211", "label_2212", "label_2213", "label_2214", "label_2215", "label_2216", "label_2217", "label_2218", "label_2219", "label_2220", "label_2221", "label_2222", "label_2223", "label_2224", "label_2225", "label_2226", "label_2227", "label_2228", "label_2229", "label_2230", "label_2231", "label_2232", "label_2233", "label_2234", "label_2235", "label_2236", "label_2237", "label_2238", "label_2239", "label_2240", "label_2241", "label_2242", "label_2243", "label_2244", "label_2245", "label_2246", "label_2247", "label_2248", "label_2249", "label_2250", "label_2251", "label_2252", "label_2253", "label_2254", "label_2255", "label_2256", "label_2257", "label_2258", "label_2259", "label_2260", "label_2261", "label_2262", "label_2263", "label_2264", "label_2265", "label_2266", "label_2267", "label_2268", "label_2269", "label_2270", "label_2271", "label_2272", "label_2273", "label_2274", "label_2275", "label_2276", "label_2277", "label_2278", "label_2279", "label_2280", "label_2281", "label_2282", "label_2283", "label_2284", "label_2285", "label_2286", "label_2287", "label_2288", "label_2289", "label_2290", "label_2291", "label_2292", "label_2293", "label_2294", "label_2295", "label_2296", "label_2297", "label_2298", "label_2299", "label_2300", "label_2301", "label_2302", "label_2303", "label_2304", "label_2305", "label_2306", "label_2307", "label_2308", "label_2309", "label_2310", "label_2311", "label_2312", "label_2313", "label_2314", "label_2315", "label_2316", "label_2317", "label_2318", "label_2319", "label_2320", "label_2321", "label_2322", "label_2323", "label_2324", "label_2325", "label_2326", "label_2327", "label_2328", "label_2329", "label_2330", "label_2331", "label_2332", "label_2333", "label_2334", "label_2335", "label_2336", "label_2337", "label_2338", "label_2339", "label_2340", "label_2341", "label_2342", "label_2343", "label_2344", "label_2345", "label_2346", "label_2347", "label_2348", "label_2349", "label_2350", "label_2351", "label_2352", "label_2353", "label_2354", "label_2355", "label_2356", "label_2357", "label_2358", "label_2359", "label_2360", "label_2361", "label_2362", "label_2363", "label_2364", "label_2365", "label_2366", "label_2367", "label_2368", "label_2369", "label_2370", "label_2371", "label_2372", "label_2373", "label_2374", "label_2375", "label_2376", "label_2377", "label_2378", "label_2379", "label_2380", "label_2381", "label_2382", "label_2383", "label_2384", "label_2385", "label_2386", "label_2387", "label_2388", "label_2389", "label_2390", "label_2391", "label_2392", "label_2393", "label_2394", "label_2395", "label_2396", "label_2397", "label_2398", "label_2399", "label_2400", "label_2401", "label_2402", "label_2403", "label_2404", "label_2405", "label_2406", "label_2407", "label_2408", "label_2409", "label_2410", "label_2411", "label_2412", "label_2413", "label_2414", "label_2415", "label_2416", "label_2417", "label_2418", "label_2419", "label_2420", "label_2421", "label_2422", "label_2423", "label_2424", "label_2425", "label_2426", "label_2427", "label_2428", "label_2429", "label_2430", "label_2431", "label_2432", "label_2433", "label_2434", "label_2435", "label_2436", "label_2437", "label_2438", "label_2439", "label_2440", "label_2441", "label_2442", "label_2443", "label_2444", "label_2445", "label_2446", "label_2447", "label_2448", "label_2449", "label_2450", "label_2451", "label_2452", "label_2453", "label_2454", "label_2455", "label_2456", "label_2457", "label_2458", "label_2459", "label_2460", "label_2461", "label_2462", "label_2463", "label_2464", "label_2465", "label_2466", "label_2467", "label_2468", "label_2469", "label_2470", "label_2471", "label_2472", "label_2473", "label_2474", "label_2475", "label_2476", "label_2477", "label_2478", "label_2479", "label_2480", "label_2481", "label_2482", "label_2483", "label_2484", "label_2485", "label_2486", "label_2487", "label_2488", "label_2489", "label_2490", "label_2491", "label_2492", "label_2493", "label_2494", "label_2495", "label_2496", "label_2497", "label_2498", "label_2499", "label_2500", "label_2501", "label_2502", "label_2503", "label_2504", "label_2505", "label_2506", "label_2507", "label_2508", "label_2509", "label_2510", "label_2511", "label_2512", "label_2513", "label_2514", "label_2515", "label_2516", "label_2517", "label_2518", "label_2519", "label_2520", "label_2521", "label_2522", "label_2523", "label_2524", "label_2525", "label_2526", "label_2527", "label_2528", "label_2529", "label_2530", "label_2531", "label_2532", "label_2533", "label_2534", "label_2535", "label_2536", "label_2537", "label_2538", "label_2539", "label_2540", "label_2541", "label_2542", "label_2543", "label_2544", "label_2545", "label_2546", "label_2547", "label_2548", "label_2549", "label_2550", "label_2551", "label_2552", "label_2553", "label_2554", "label_2555", "label_2556", "label_2557", "label_2558", "label_2559", "label_2560", "label_2561", "label_2562", "label_2563", "label_2564", "label_2565", "label_2566", "label_2567", "label_2568", "label_2569", "label_2570", "label_2571", "label_2572", "label_2573", "label_2574", "label_2575", "label_2576", "label_2577", "label_2578", "label_2579", "label_2580", "label_2581", "label_2582", "label_2583", "label_2584", "label_2585", "label_2586", "label_2587", "label_2588", "label_2589", "label_2590", "label_2591", "label_2592", "label_2593", "label_2594", "label_2595", "label_2596", "label_2597", "label_2598", "label_2599", "label_2600", "label_2601", "label_2602", "label_2603", "label_2604", "label_2605", "label_2606", "label_2607", "label_2608", "label_2609", "label_2610", "label_2611", "label_2612", "label_2613", "label_2614", "label_2615", "label_2616", "label_2617", "label_2618", "label_2619", "label_2620", "label_2621", "label_2622", "label_2623", "label_2624", "label_2625", "label_2626", "label_2627", "label_2628", "label_2629", "label_2630", "label_2631", "label_2632", "label_2633", "label_2634", "label_2635", "label_2636", "label_2637", "label_2638", "label_2639", "label_2640", "label_2641", "label_2642", "label_2643", "label_2644", "label_2645", "label_2646", "label_2647", "label_2648", "label_2649", "label_2650", "label_2651", "label_2652", "label_2653", "label_2654", "label_2655", "label_2656", "label_2657", "label_2658", "label_2659", "label_2660", "label_2661", "label_2662", "label_2663", "label_2664", "label_2665", "label_2666", "label_2667", "label_2668", "label_2669", "label_2670", "label_2671", "label_2672", "label_2673", "label_2674", "label_2675", "label_2676", "label_2677", "label_2678", "label_2679", "label_2680", "label_2681", "label_2682", "label_2683", "label_2684", "label_2685", "label_2686", "label_2687", "label_2688", "label_2689", "label_2690", "label_2691", "label_2692", "label_2693", "label_2694", "label_2695", "label_2696", "label_2697", "label_2698", "label_2699", "label_2700", "label_2701", "label_2702", "label_2703", "label_2704", "label_2705", "label_2706", "label_2707", "label_2708", "label_2709", "label_2710", "label_2711", "label_2712", "label_2713", "label_2714", "label_2715", "label_2716", "label_2717", "label_2718", "label_2719", "label_2720", "label_2721", "label_2722", "label_2723", "label_2724", "label_2725", "label_2726", "label_2727", "label_2728", "label_2729", "label_2730", "label_2731", "label_2732", "label_2733", "label_2734", "label_2735", "label_2736", "label_2737", "label_2738", "label_2739", "label_2740", "label_2741", "label_2742", "label_2743", "label_2744", "label_2745", "label_2746", "label_2747", "label_2748", "label_2749", "label_2750", "label_2751", "label_2752", "label_2753", "label_2754", "label_2755", "label_2756", "label_2757", "label_2758", "label_2759", "label_2760", "label_2761", "label_2762", "label_2763", "label_2764", "label_2765", "label_2766", "label_2767", "label_2768", "label_2769", "label_2770", "label_2771", "label_2772", "label_2773", "label_2774", "label_2775", "label_2776", "label_2777", "label_2778", "label_2779", "label_2780", "label_2781", "label_2782", "label_2783", "label_2784", "label_2785", "label_2786", "label_2787", "label_2788", "label_2789", "label_2790", "label_2791", "label_2792", "label_2793", "label_2794", "label_2795", "label_2796", "label_2797", "label_2798", "label_2799", "label_2800", "label_2801", "label_2802", "label_2803", "label_2804", "label_2805", "label_2806", "label_2807", "label_2808", "label_2809", "label_2810", "label_2811", "label_2812", "label_2813", "label_2814", "label_2815", "label_2816", "label_2817", "label_2818", "label_2819", "label_2820", "label_2821", "label_2822", "label_2823", "label_2824", "label_2825", "label_2826", "label_2827", "label_2828", "label_2829", "label_2830", "label_2831", "label_2832", "label_2833", "label_2834", "label_2835", "label_2836", "label_2837", "label_2838", "label_2839", "label_2840", "label_2841", "label_2842", "label_2843", "label_2844", "label_2845", "label_2846", "label_2847", "label_2848", "label_2849", "label_2850", "label_2851", "label_2852", "label_2853", "label_2854", "label_2855", "label_2856", "label_2857", "label_2858", "label_2859", "label_2860", "label_2861", "label_2862", "label_2863", "label_2864", "label_2865", "label_2866", "label_2867", "label_2868", "label_2869", "label_2870", "label_2871", "label_2872", "label_2873", "label_2874", "label_2875", "label_2876", "label_2877", "label_2878", "label_2879", "label_2880", "label_2881", "label_2882", "label_2883", "label_2884", "label_2885", "label_2886", "label_2887", "label_2888", "label_2889", "label_2890", "label_2891", "label_2892", "label_2893", "label_2894", "label_2895", "label_2896", "label_2897", "label_2898", "label_2899", "label_2900", "label_2901", "label_2902", "label_2903", "label_2904", "label_2905", "label_2906", "label_2907", "label_2908", "label_2909", "label_2910", "label_2911", "label_2912", "label_2913", "label_2914", "label_2915", "label_2916", "label_2917", "label_2918", "label_2919", "label_2920", "label_2921", "label_2922", "label_2923", "label_2924", "label_2925", "label_2926", "label_2927", "label_2928", "label_2929", "label_2930", "label_2931", "label_2932", "label_2933", "label_2934", "label_2935", "label_2936", "label_2937", "label_2938", "label_2939", "label_2940", "label_2941", "label_2942", "label_2943", "label_2944", "label_2945", "label_2946", "label_2947", "label_2948", "label_2949", "label_2950", "label_2951", "label_2952", "label_2953", "label_2954", "label_2955", "label_2956", "label_2957", "label_2958", "label_2959", "label_2960", "label_2961", "label_2962", "label_2963", "label_2964", "label_2965", "label_2966", "label_2967", "label_2968", "label_2969", "label_2970", "label_2971", "label_2972", "label_2973", "label_2974", "label_2975", "label_2976", "label_2977", "label_2978", "label_2979", "label_2980", "label_2981", "label_2982", "label_2983", "label_2984", "label_2985", "label_2986", "label_2987", "label_2988", "label_2989", "label_2990", "label_2991", "label_2992", "label_2993", "label_2994", "label_2995", "label_2996", "label_2997", "label_2998", "label_2999", "label_3000", "label_3001", "label_3002", "label_3003", "label_3004", "label_3005", "label_3006", "label_3007", "label_3008", "label_3009", "label_3010", "label_3011", "label_3012", "label_3013", "label_3014", "label_3015", "label_3016", "label_3017", "label_3018", "label_3019", "label_3020", "label_3021", "label_3022", "label_3023", "label_3024", "label_3025", "label_3026", "label_3027", "label_3028", "label_3029", "label_3030", "label_3031", "label_3032", "label_3033", "label_3034", "label_3035", "label_3036", "label_3037", "label_3038", "label_3039", "label_3040", "label_3041", "label_3042", "label_3043", "label_3044", "label_3045", "label_3046", "label_3047", "label_3048", "label_3049", "label_3050", "label_3051", "label_3052", "label_3053", "label_3054", "label_3055", "label_3056", "label_3057", "label_3058", "label_3059", "label_3060", "label_3061", "label_3062", "label_3063", "label_3064", "label_3065", "label_3066", "label_3067", "label_3068", "label_3069", "label_3070", "label_3071", "label_3072", "label_3073", "label_3074", "label_3075", "label_3076", "label_3077", "label_3078", "label_3079", "label_3080", "label_3081", "label_3082", "label_3083", "label_3084", "label_3085", "label_3086", "label_3087", "label_3088", "label_3089", "label_3090", "label_3091", "label_3092", "label_3093", "label_3094", "label_3095", "label_3096", "label_3097", "label_3098", "label_3099", "label_3100", "label_3101", "label_3102", "label_3103", "label_3104", "label_3105", "label_3106", "label_3107", "label_3108", "label_3109", "label_3110", "label_3111", "label_3112", "label_3113", "label_3114", "label_3115", "label_3116", "label_3117", "label_3118", "label_3119", "label_3120", "label_3121", "label_3122", "label_3123", "label_3124", "label_3125", "label_3126", "label_3127", "label_3128", "label_3129", "label_3130", "label_3131", "label_3132", "label_3133", "label_3134", "label_3135", "label_3136", "label_3137", "label_3138", "label_3139", "label_3140", "label_3141", "label_3142", "label_3143", "label_3144", "label_3145", "label_3146", "label_3147", "label_3148", "label_3149", "label_3150", "label_3151", "label_3152", "label_3153", "label_3154", "label_3155", "label_3156", "label_3157", "label_3158", "label_3159", "label_3160", "label_3161", "label_3162", "label_3163", "label_3164", "label_3165", "label_3166", "label_3167", "label_3168", "label_3169", "label_3170", "label_3171", "label_3172", "label_3173", "label_3174", "label_3175", "label_3176", "label_3177", "label_3178", "label_3179", "label_3180", "label_3181", "label_3182", "label_3183", "label_3184", "label_3185", "label_3186", "label_3187", "label_3188", "label_3189", "label_3190", "label_3191", "label_3192", "label_3193", "label_3194", "label_3195", "label_3196", "label_3197", "label_3198", "label_3199", "label_3200", "label_3201", "label_3202", "label_3203", "label_3204", "label_3205", "label_3206", "label_3207", "label_3208", "label_3209", "label_3210", "label_3211", "label_3212", "label_3213", "label_3214", "label_3215", "label_3216", "label_3217", "label_3218", "label_3219", "label_3220", "label_3221", "label_3222", "label_3223", "label_3224", "label_3225", "label_3226", "label_3227", "label_3228", "label_3229", "label_3230", "label_3231", "label_3232", "label_3233", "label_3234", "label_3235", "label_3236", "label_3237", "label_3238", "label_3239", "label_3240", "label_3241", "label_3242", "label_3243", "label_3244", "label_3245", "label_3246", "label_3247", "label_3248", "label_3249", "label_3250", "label_3251", "label_3252", "label_3253", "label_3254", "label_3255", "label_3256", "label_3257", "label_3258", "label_3259", "label_3260", "label_3261", "label_3262", "label_3263", "label_3264", "label_3265", "label_3266", "label_3267", "label_3268", "label_3269", "label_3270", "label_3271", "label_3272", "label_3273", "label_3274", "label_3275", "label_3276", "label_3277", "label_3278", "label_3279", "label_3280", "label_3281", "label_3282", "label_3283", "label_3284", "label_3285", "label_3286", "label_3287", "label_3288", "label_3289", "label_3290", "label_3291", "label_3292", "label_3293", "label_3294", "label_3295", "label_3296", "label_3297", "label_3298", "label_3299", "label_3300", "label_3301", "label_3302", "label_3303", "label_3304", "label_3305", "label_3306", "label_3307", "label_3308", "label_3309", "label_3310", "label_3311", "label_3312", "label_3313", "label_3314", "label_3315", "label_3316", "label_3317", "label_3318", "label_3319", "label_3320", "label_3321", "label_3322", "label_3323", "label_3324", "label_3325", "label_3326", "label_3327", "label_3328", "label_3329", "label_3330", "label_3331", "label_3332", "label_3333", "label_3334", "label_3335", "label_3336", "label_3337", "label_3338", "label_3339", "label_3340", "label_3341", "label_3342", "label_3343", "label_3344", "label_3345", "label_3346", "label_3347", "label_3348", "label_3349", "label_3350", "label_3351", "label_3352", "label_3353", "label_3354", "label_3355", "label_3356", "label_3357", "label_3358", "label_3359", "label_3360", "label_3361", "label_3362", "label_3363", "label_3364", "label_3365", "label_3366", "label_3367", "label_3368", "label_3369", "label_3370", "label_3371", "label_3372", "label_3373", "label_3374", "label_3375", "label_3376", "label_3377", "label_3378", "label_3379", "label_3380", "label_3381", "label_3382", "label_3383", "label_3384", "label_3385", "label_3386", "label_3387", "label_3388", "label_3389", "label_3390", "label_3391", "label_3392", "label_3393", "label_3394", "label_3395", "label_3396", "label_3397", "label_3398", "label_3399", "label_3400", "label_3401", "label_3402", "label_3403", "label_3404", "label_3405", "label_3406", "label_3407", "label_3408", "label_3409", "label_3410", "label_3411", "label_3412", "label_3413", "label_3414", "label_3415", "label_3416", "label_3417", "label_3418", "label_3419", "label_3420", "label_3421", "label_3422", "label_3423", "label_3424", "label_3425", "label_3426", "label_3427", "label_3428", "label_3429", "label_3430", "label_3431", "label_3432", "label_3433", "label_3434", "label_3435", "label_3436", "label_3437", "label_3438", "label_3439", "label_3440", "label_3441", "label_3442", "label_3443", "label_3444", "label_3445", "label_3446", "label_3447", "label_3448", "label_3449", "label_3450", "label_3451", "label_3452", "label_3453", "label_3454", "label_3455", "label_3456", "label_3457", "label_3458", "label_3459", "label_3460", "label_3461", "label_3462", "label_3463", "label_3464", "label_3465", "label_3466", "label_3467", "label_3468", "label_3469", "label_3470", "label_3471", "label_3472", "label_3473", "label_3474", "label_3475", "label_3476", "label_3477", "label_3478", "label_3479", "label_3480", "label_3481", "label_3482", "label_3483", "label_3484", "label_3485", "label_3486", "label_3487", "label_3488", "label_3489", "label_3490", "label_3491", "label_3492", "label_3493", "label_3494", "label_3495", "label_3496", "label_3497", "label_3498", "label_3499", "label_3500", "label_3501", "label_3502", "label_3503", "label_3504", "label_3505", "label_3506", "label_3507", "label_3508", "label_3509", "label_3510", "label_3511", "label_3512", "label_3513", "label_3514", "label_3515", "label_3516", "label_3517", "label_3518", "label_3519", "label_3520", "label_3521", "label_3522", "label_3523", "label_3524", "label_3525", "label_3526", "label_3527", "label_3528", "label_3529", "label_3530", "label_3531", "label_3532", "label_3533", "label_3534", "label_3535", "label_3536", "label_3537", "label_3538", "label_3539", "label_3540", "label_3541", "label_3542", "label_3543", "label_3544", "label_3545", "label_3546", "label_3547", "label_3548", "label_3549", "label_3550", "label_3551", "label_3552", "label_3553", "label_3554", "label_3555", "label_3556", "label_3557", "label_3558", "label_3559", "label_3560", "label_3561", "label_3562", "label_3563", "label_3564", "label_3565", "label_3566", "label_3567", "label_3568", "label_3569", "label_3570", "label_3571", "label_3572", "label_3573", "label_3574", "label_3575", "label_3576", "label_3577", "label_3578", "label_3579", "label_3580", "label_3581", "label_3582", "label_3583", "label_3584", "label_3585", "label_3586", "label_3587", "label_3588", "label_3589", "label_3590", "label_3591", "label_3592", "label_3593", "label_3594", "label_3595", "label_3596", "label_3597", "label_3598", "label_3599", "label_3600", "label_3601", "label_3602", "label_3603", "label_3604", "label_3605", "label_3606", "label_3607", "label_3608", "label_3609", "label_3610", "label_3611", "label_3612", "label_3613", "label_3614", "label_3615", "label_3616", "label_3617", "label_3618", "label_3619", "label_3620", "label_3621", "label_3622", "label_3623", "label_3624", "label_3625", "label_3626", "label_3627", "label_3628", "label_3629", "label_3630", "label_3631", "label_3632", "label_3633", "label_3634", "label_3635", "label_3636", "label_3637", "label_3638", "label_3639", "label_3640", "label_3641", "label_3642", "label_3643", "label_3644", "label_3645", "label_3646", "label_3647", "label_3648", "label_3649", "label_3650", "label_3651", "label_3652", "label_3653", "label_3654", "label_3655", "label_3656", "label_3657", "label_3658", "label_3659", "label_3660", "label_3661", "label_3662", "label_3663", "label_3664", "label_3665", "label_3666", "label_3667", "label_3668", "label_3669", "label_3670", "label_3671", "label_3672", "label_3673", "label_3674", "label_3675", "label_3676", "label_3677", "label_3678", "label_3679", "label_3680", "label_3681", "label_3682", "label_3683", "label_3684", "label_3685", "label_3686", "label_3687", "label_3688", "label_3689", "label_3690", "label_3691", "label_3692", "label_3693", "label_3694", "label_3695", "label_3696", "label_3697", "label_3698", "label_3699", "label_3700", "label_3701", "label_3702", "label_3703", "label_3704", "label_3705", "label_3706", "label_3707", "label_3708", "label_3709", "label_3710", "label_3711", "label_3712", "label_3713", "label_3714", "label_3715", "label_3716", "label_3717", "label_3718", "label_3719", "label_3720", "label_3721", "label_3722", "label_3723", "label_3724", "label_3725", "label_3726", "label_3727", "label_3728", "label_3729", "label_3730", "label_3731", "label_3732", "label_3733", "label_3734", "label_3735", "label_3736", "label_3737", "label_3738", "label_3739", "label_3740", "label_3741", "label_3742", "label_3743", "label_3744", "label_3745", "label_3746", "label_3747", "label_3748", "label_3749", "label_3750", "label_3751", "label_3752", "label_3753", "label_3754", "label_3755", "label_3756", "label_3757", "label_3758", "label_3759", "label_3760", "label_3761", "label_3762", "label_3763", "label_3764", "label_3765", "label_3766", "label_3767", "label_3768", "label_3769", "label_3770", "label_3771", "label_3772", "label_3773", "label_3774", "label_3775", "label_3776", "label_3777", "label_3778", "label_3779", "label_3780", "label_3781", "label_3782", "label_3783", "label_3784", "label_3785", "label_3786", "label_3787", "label_3788", "label_3789", "label_3790", "label_3791", "label_3792", "label_3793", "label_3794", "label_3795", "label_3796", "label_3797", "label_3798", "label_3799", "label_3800", "label_3801", "label_3802", "label_3803", "label_3804", "label_3805", "label_3806", "label_3807", "label_3808", "label_3809", "label_3810", "label_3811", "label_3812", "label_3813", "label_3814", "label_3815", "label_3816", "label_3817", "label_3818", "label_3819", "label_3820", "label_3821", "label_3822", "label_3823", "label_3824", "label_3825", "label_3826", "label_3827", "label_3828", "label_3829", "label_3830", "label_3831", "label_3832", "label_3833", "label_3834", "label_3835", "label_3836", "label_3837", "label_3838", "label_3839", "label_3840", "label_3841", "label_3842", "label_3843", "label_3844", "label_3845", "label_3846", "label_3847", "label_3848", "label_3849", "label_3850", "label_3851", "label_3852", "label_3853", "label_3854", "label_3855", "label_3856", "label_3857", "label_3858", "label_3859", "label_3860", "label_3861", "label_3862", "label_3863", "label_3864", "label_3865", "label_3866", "label_3867", "label_3868", "label_3869", "label_3870", "label_3871", "label_3872", "label_3873", "label_3874", "label_3875", "label_3876", "label_3877", "label_3878", "label_3879", "label_3880", "label_3881", "label_3882", "label_3883", "label_3884", "label_3885", "label_3886", "label_3887", "label_3888", "label_3889", "label_3890", "label_3891", "label_3892", "label_3893", "label_3894", "label_3895", "label_3896", "label_3897", "label_3898", "label_3899", "label_3900", "label_3901", "label_3902", "label_3903", "label_3904", "label_3905", "label_3906", "label_3907", "label_3908", "label_3909", "label_3910", "label_3911", "label_3912", "label_3913", "label_3914", "label_3915", "label_3916", "label_3917", "label_3918", "label_3919", "label_3920", "label_3921", "label_3922", "label_3923", "label_3924", "label_3925", "label_3926", "label_3927", "label_3928", "label_3929", "label_3930", "label_3931", "label_3932", "label_3933", "label_3934", "label_3935", "label_3936", "label_3937", "label_3938", "label_3939", "label_3940", "label_3941", "label_3942", "label_3943", "label_3944", "label_3945", "label_3946", "label_3947", "label_3948", "label_3949", "label_3950", "label_3951", "label_3952", "label_3953", "label_3954", "label_3955", "label_3956", "label_3957", "label_3958", "label_3959", "label_3960", "label_3961", "label_3962", "label_3963", "label_3964", "label_3965", "label_3966", "label_3967", "label_3968", "label_3969", "label_3970", "label_3971", "label_3972", "label_3973", "label_3974", "label_3975", "label_3976", "label_3977", "label_3978", "label_3979", "label_3980", "label_3981", "label_3982", "label_3983", "label_3984", "label_3985", "label_3986", "label_3987", "label_3988", "label_3989", "label_3990", "label_3991", "label_3992", "label_3993", "label_3994", "label_3995", "label_3996", "label_3997", "label_3998", "label_3999", "label_4000", "label_4001", "label_4002", "label_4003", "label_4004", "label_4005", "label_4006", "label_4007", "label_4008", "label_4009", "label_4010", "label_4011", "label_4012", "label_4013", "label_4014", "label_4015", "label_4016", "label_4017", "label_4018", "label_4019", "label_4020", "label_4021", "label_4022", "label_4023", "label_4024", "label_4025", "label_4026", "label_4027", "label_4028", "label_4029", "label_4030", "label_4031", "label_4032", "label_4033", "label_4034", "label_4035", "label_4036", "label_4037", "label_4038", "label_4039", "label_4040", "label_4041", "label_4042", "label_4043", "label_4044", "label_4045", "label_4046", "label_4047", "label_4048", "label_4049", "label_4050", "label_4051", "label_4052", "label_4053", "label_4054", "label_4055", "label_4056", "label_4057", "label_4058", "label_4059", "label_4060", "label_4061", "label_4062", "label_4063", "label_4064", "label_4065", "label_4066", "label_4067", "label_4068", "label_4069", "label_4070", "label_4071", "label_4072", "label_4073", "label_4074", "label_4075", "label_4076", "label_4077", "label_4078", "label_4079", "label_4080", "label_4081", "label_4082", "label_4083", "label_4084", "label_4085", "label_4086", "label_4087", "label_4088", "label_4089", "label_4090", "label_4091", "label_4092", "label_4093", "label_4094", "label_4095", "label_4096", "label_4097", "label_4098", "label_4099", "label_4100", "label_4101", "label_4102", "label_4103", "label_4104", "label_4105", "label_4106", "label_4107", "label_4108", "label_4109", "label_4110", "label_4111", "label_4112", "label_4113", "label_4114", "label_4115", "label_4116", "label_4117", "label_4118", "label_4119", "label_4120", "label_4121", "label_4122", "label_4123", "label_4124", "label_4125", "label_4126", "label_4127", "label_4128", "label_4129", "label_4130", "label_4131", "label_4132", "label_4133", "label_4134", "label_4135", "label_4136", "label_4137", "label_4138", "label_4139", "label_4140", "label_4141", "label_4142", "label_4143", "label_4144", "label_4145", "label_4146", "label_4147", "label_4148", "label_4149", "label_4150", "label_4151", "label_4152", "label_4153", "label_4154", "label_4155", "label_4156", "label_4157", "label_4158", "label_4159", "label_4160", "label_4161", "label_4162", "label_4163", "label_4164", "label_4165", "label_4166", "label_4167", "label_4168", "label_4169", "label_4170", "label_4171", "label_4172", "label_4173", "label_4174", "label_4175", "label_4176", "label_4177", "label_4178", "label_4179", "label_4180", "label_4181", "label_4182", "label_4183", "label_4184", "label_4185", "label_4186", "label_4187", "label_4188", "label_4189", "label_4190", "label_4191", "label_4192", "label_4193", "label_4194", "label_4195", "label_4196", "label_4197", "label_4198", "label_4199", "label_4200", "label_4201", "label_4202", "label_4203", "label_4204", "label_4205", "label_4206", "label_4207", "label_4208", "label_4209", "label_4210", "label_4211", "label_4212", "label_4213", "label_4214", "label_4215", "label_4216", "label_4217", "label_4218", "label_4219", "label_4220", "label_4221", "label_4222", "label_4223", "label_4224", "label_4225", "label_4226", "label_4227", "label_4228", "label_4229", "label_4230", "label_4231", "label_4232", "label_4233", "label_4234", "label_4235", "label_4236", "label_4237", "label_4238", "label_4239", "label_4240", "label_4241", "label_4242", "label_4243", "label_4244", "label_4245", "label_4246", "label_4247", "label_4248", "label_4249", "label_4250", "label_4251", "label_4252", "label_4253", "label_4254", "label_4255", "label_4256", "label_4257", "label_4258", "label_4259", "label_4260", "label_4261", "label_4262", "label_4263", "label_4264", "label_4265", "label_4266", "label_4267", "label_4268", "label_4269", "label_4270", "label_4271", "label_4272", "label_4273", "label_4274", "label_4275", "label_4276", "label_4277", "label_4278", "label_4279", "label_4280", "label_4281", "label_4282", "label_4283", "label_4284", "label_4285", "label_4286", "label_4287", "label_4288", "label_4289", "label_4290", "label_4291", "label_4292", "label_4293", "label_4294", "label_4295", "label_4296", "label_4297", "label_4298", "label_4299", "label_4300", "label_4301", "label_4302", "label_4303", "label_4304", "label_4305", "label_4306", "label_4307", "label_4308", "label_4309", "label_4310", "label_4311", "label_4312", "label_4313", "label_4314", "label_4315", "label_4316", "label_4317", "label_4318", "label_4319", "label_4320", "label_4321", "label_4322", "label_4323", "label_4324", "label_4325", "label_4326", "label_4327", "label_4328", "label_4329", "label_4330", "label_4331", "label_4332", "label_4333", "label_4334", "label_4335", "label_4336", "label_4337", "label_4338", "label_4339", "label_4340", "label_4341", "label_4342", "label_4343", "label_4344", "label_4345", "label_4346", "label_4347", "label_4348", "label_4349", "label_4350", "label_4351", "label_4352", "label_4353", "label_4354", "label_4355", "label_4356", "label_4357", "label_4358", "label_4359", "label_4360", "label_4361", "label_4362", "label_4363", "label_4364", "label_4365", "label_4366", "label_4367", "label_4368", "label_4369", "label_4370", "label_4371", "label_4372", "label_4373", "label_4374", "label_4375", "label_4376", "label_4377", "label_4378", "label_4379", "label_4380", "label_4381", "label_4382", "label_4383", "label_4384", "label_4385", "label_4386", "label_4387", "label_4388", "label_4389", "label_4390", "label_4391", "label_4392", "label_4393", "label_4394", "label_4395", "label_4396", "label_4397", "label_4398", "label_4399", "label_4400", "label_4401", "label_4402", "label_4403", "label_4404", "label_4405", "label_4406", "label_4407", "label_4408", "label_4409", "label_4410", "label_4411", "label_4412", "label_4413", "label_4414", "label_4415", "label_4416", "label_4417", "label_4418", "label_4419", "label_4420", "label_4421", "label_4422", "label_4423", "label_4424", "label_4425", "label_4426", "label_4427", "label_4428", "label_4429", "label_4430", "label_4431", "label_4432", "label_4433", "label_4434", "label_4435", "label_4436", "label_4437", "label_4438", "label_4439", "label_4440", "label_4441", "label_4442", "label_4443", "label_4444", "label_4445", "label_4446", "label_4447", "label_4448", "label_4449", "label_4450", "label_4451", "label_4452", "label_4453", "label_4454", "label_4455", "label_4456", "label_4457", "label_4458", "label_4459", "label_4460", "label_4461", "label_4462", "label_4463", "label_4464", "label_4465", "label_4466", "label_4467", "label_4468", "label_4469", "label_4470", "label_4471", "label_4472", "label_4473", "label_4474", "label_4475", "label_4476", "label_4477", "label_4478", "label_4479", "label_4480", "label_4481", "label_4482", "label_4483", "label_4484", "label_4485", "label_4486", "label_4487", "label_4488", "label_4489", "label_4490", "label_4491", "label_4492", "label_4493", "label_4494", "label_4495", "label_4496", "label_4497", "label_4498", "label_4499", "label_4500", "label_4501", "label_4502", "label_4503", "label_4504", "label_4505", "label_4506", "label_4507", "label_4508", "label_4509", "label_4510", "label_4511", "label_4512", "label_4513", "label_4514", "label_4515", "label_4516", "label_4517", "label_4518", "label_4519", "label_4520", "label_4521", "label_4522", "label_4523", "label_4524", "label_4525", "label_4526", "label_4527", "label_4528", "label_4529", "label_4530", "label_4531", "label_4532", "label_4533", "label_4534", "label_4535", "label_4536", "label_4537", "label_4538", "label_4539", "label_4540", "label_4541", "label_4542", "label_4543", "label_4544", "label_4545", "label_4546", "label_4547", "label_4548", "label_4549", "label_4550", "label_4551", "label_4552", "label_4553", "label_4554", "label_4555", "label_4556", "label_4557", "label_4558", "label_4559", "label_4560", "label_4561", "label_4562", "label_4563", "label_4564", "label_4565", "label_4566", "label_4567", "label_4568", "label_4569", "label_4570", "label_4571", "label_4572", "label_4573", "label_4574", "label_4575", "label_4576", "label_4577", "label_4578", "label_4579", "label_4580", "label_4581", "label_4582", "label_4583", "label_4584", "label_4585", "label_4586", "label_4587", "label_4588", "label_4589", "label_4590", "label_4591", "label_4592", "label_4593", "label_4594", "label_4595", "label_4596", "label_4597", "label_4598", "label_4599", "label_4600", "label_4601", "label_4602", "label_4603", "label_4604", "label_4605", "label_4606", "label_4607", "label_4608", "label_4609", "label_4610", "label_4611", "label_4612", "label_4613", "label_4614", "label_4615", "label_4616", "label_4617", "label_4618", "label_4619", "label_4620", "label_4621", "label_4622", "label_4623", "label_4624", "label_4625", "label_4626", "label_4627", "label_4628", "label_4629", "label_4630", "label_4631", "label_4632", "label_4633", "label_4634", "label_4635", "label_4636", "label_4637", "label_4638", "label_4639", "label_4640", "label_4641", "label_4642", "label_4643", "label_4644", "label_4645", "label_4646", "label_4647", "label_4648", "label_4649", "label_4650", "label_4651", "label_4652", "label_4653", "label_4654", "label_4655", "label_4656", "label_4657", "label_4658", "label_4659", "label_4660", "label_4661", "label_4662", "label_4663", "label_4664", "label_4665", "label_4666", "label_4667", "label_4668", "label_4669", "label_4670", "label_4671", "label_4672", "label_4673", "label_4674", "label_4675", "label_4676", "label_4677", "label_4678", "label_4679", "label_4680", "label_4681", "label_4682", "label_4683", "label_4684", "label_4685", "label_4686", "label_4687", "label_4688", "label_4689", "label_4690", "label_4691", "label_4692", "label_4693", "label_4694", "label_4695", "label_4696", "label_4697", "label_4698", "label_4699", "label_4700", "label_4701", "label_4702", "label_4703", "label_4704", "label_4705", "label_4706", "label_4707", "label_4708", "label_4709", "label_4710", "label_4711", "label_4712", "label_4713", "label_4714", "label_4715", "label_4716", "label_4717", "label_4718", "label_4719", "label_4720", "label_4721", "label_4722", "label_4723", "label_4724", "label_4725", "label_4726", "label_4727", "label_4728", "label_4729", "label_4730", "label_4731", "label_4732", "label_4733", "label_4734", "label_4735", "label_4736", "label_4737", "label_4738", "label_4739", "label_4740", "label_4741", "label_4742", "label_4743", "label_4744", "label_4745", "label_4746", "label_4747", "label_4748", "label_4749", "label_4750", "label_4751", "label_4752", "label_4753", "label_4754", "label_4755", "label_4756", "label_4757", "label_4758", "label_4759", "label_4760", "label_4761", "label_4762", "label_4763", "label_4764", "label_4765", "label_4766", "label_4767", "label_4768", "label_4769", "label_4770", "label_4771", "label_4772", "label_4773", "label_4774", "label_4775", "label_4776", "label_4777", "label_4778", "label_4779", "label_4780", "label_4781", "label_4782", "label_4783", "label_4784", "label_4785", "label_4786", "label_4787", "label_4788", "label_4789", "label_4790", "label_4791", "label_4792", "label_4793", "label_4794", "label_4795", "label_4796", "label_4797", "label_4798", "label_4799", "label_4800", "label_4801", "label_4802", "label_4803", "label_4804", "label_4805", "label_4806", "label_4807", "label_4808", "label_4809", "label_4810", "label_4811", "label_4812", "label_4813", "label_4814", "label_4815", "label_4816", "label_4817", "label_4818", "label_4819", "label_4820", "label_4821", "label_4822", "label_4823", "label_4824", "label_4825", "label_4826", "label_4827", "label_4828", "label_4829", "label_4830", "label_4831", "label_4832", "label_4833", "label_4834", "label_4835", "label_4836", "label_4837", "label_4838", "label_4839", "label_4840", "label_4841", "label_4842", "label_4843", "label_4844", "label_4845", "label_4846", "label_4847", "label_4848", "label_4849", "label_4850", "label_4851", "label_4852", "label_4853", "label_4854", "label_4855", "label_4856", "label_4857", "label_4858", "label_4859", "label_4860", "label_4861", "label_4862", "label_4863", "label_4864", "label_4865", "label_4866", "label_4867", "label_4868", "label_4869", "label_4870", "label_4871", "label_4872", "label_4873", "label_4874", "label_4875", "label_4876", "label_4877", "label_4878", "label_4879", "label_4880", "label_4881", "label_4882", "label_4883", "label_4884", "label_4885", "label_4886", "label_4887", "label_4888", "label_4889", "label_4890", "label_4891", "label_4892", "label_4893", "label_4894", "label_4895", "label_4896", "label_4897", "label_4898", "label_4899", "label_4900", "label_4901", "label_4902", "label_4903", "label_4904", "label_4905", "label_4906", "label_4907", "label_4908", "label_4909", "label_4910", "label_4911", "label_4912", "label_4913", "label_4914", "label_4915", "label_4916", "label_4917", "label_4918", "label_4919", "label_4920", "label_4921", "label_4922", "label_4923", "label_4924", "label_4925", "label_4926", "label_4927", "label_4928", "label_4929", "label_4930", "label_4931", "label_4932", "label_4933", "label_4934", "label_4935", "label_4936", "label_4937", "label_4938", "label_4939", "label_4940", "label_4941", "label_4942", "label_4943", "label_4944", "label_4945", "label_4946", "label_4947", "label_4948", "label_4949", "label_4950", "label_4951", "label_4952", "label_4953", "label_4954", "label_4955", "label_4956", "label_4957", "label_4958", "label_4959", "label_4960", "label_4961", "label_4962", "label_4963", "label_4964", "label_4965", "label_4966", "label_4967", "label_4968", "label_4969", "label_4970", "label_4971", "label_4972", "label_4973", "label_4974", "label_4975", "label_4976", "label_4977", "label_4978", "label_4979", "label_4980", "label_4981", "label_4982", "label_4983", "label_4984", "label_4985", "label_4986", "label_4987", "label_4988", "label_4989", "label_4990", "label_4991", "label_4992", "label_4993", "label_4994", "label_4995", "label_4996", "label_4997", "label_4998", "label_4999", "label_5000", "label_5001", "label_5002", "label_5003", "label_5004", "label_5005", "label_5006", "label_5007", "label_5008", "label_5009", "label_5010", "label_5011", "label_5012", "label_5013", "label_5014", "label_5015", "label_5016", "label_5017", "label_5018", "label_5019", "label_5020", "label_5021", "label_5022", "label_5023", "label_5024", "label_5025", "label_5026", "label_5027", "label_5028", "label_5029", "label_5030", "label_5031", "label_5032", "label_5033", "label_5034", "label_5035", "label_5036", "label_5037", "label_5038", "label_5039", "label_5040", "label_5041", "label_5042", "label_5043", "label_5044", "label_5045", "label_5046", "label_5047", "label_5048", "label_5049", "label_5050", "label_5051", "label_5052", "label_5053", "label_5054", "label_5055", "label_5056", "label_5057", "label_5058", "label_5059", "label_5060", "label_5061", "label_5062", "label_5063", "label_5064", "label_5065", "label_5066", "label_5067", "label_5068", "label_5069", "label_5070", "label_5071", "label_5072", "label_5073", "label_5074", "label_5075", "label_5076", "label_5077", "label_5078", "label_5079", "label_5080", "label_5081", "label_5082", "label_5083", "label_5084", "label_5085", "label_5086", "label_5087", "label_5088", "label_5089", "label_5090", "label_5091", "label_5092", "label_5093", "label_5094", "label_5095", "label_5096", "label_5097", "label_5098", "label_5099", "label_5100", "label_5101", "label_5102", "label_5103", "label_5104", "label_5105", "label_5106", "label_5107", "label_5108", "label_5109", "label_5110", "label_5111", "label_5112", "label_5113", "label_5114", "label_5115", "label_5116", "label_5117", "label_5118", "label_5119", "label_5120", "label_5121", "label_5122", "label_5123", "label_5124", "label_5125", "label_5126", "label_5127", "label_5128", "label_5129", "label_5130", "label_5131", "label_5132", "label_5133", "label_5134", "label_5135", "label_5136", "label_5137", "label_5138", "label_5139", "label_5140", "label_5141", "label_5142", "label_5143", "label_5144", "label_5145", "label_5146", "label_5147", "label_5148", "label_5149", "label_5150", "label_5151", "label_5152", "label_5153", "label_5154", "label_5155", "label_5156", "label_5157", "label_5158", "label_5159", "label_5160", "label_5161", "label_5162", "label_5163", "label_5164", "label_5165", "label_5166", "label_5167", "label_5168", "label_5169", "label_5170", "label_5171", "label_5172", "label_5173", "label_5174", "label_5175", "label_5176", "label_5177", "label_5178", "label_5179", "label_5180", "label_5181", "label_5182", "label_5183", "label_5184", "label_5185", "label_5186", "label_5187", "label_5188", "label_5189", "label_5190", "label_5191", "label_5192", "label_5193", "label_5194", "label_5195", "label_5196", "label_5197", "label_5198", "label_5199", "label_5200", "label_5201", "label_5202", "label_5203", "label_5204", "label_5205", "label_5206", "label_5207", "label_5208", "label_5209", "label_5210", "label_5211", "label_5212", "label_5213", "label_5214", "label_5215", "label_5216", "label_5217", "label_5218", "label_5219", "label_5220", "label_5221", "label_5222", "label_5223", "label_5224", "label_5225", "label_5226", "label_5227", "label_5228", "label_5229", "label_5230", "label_5231", "label_5232", "label_5233", "label_5234", "label_5235", "label_5236", "label_5237", "label_5238", "label_5239", "label_5240", "label_5241", "label_5242", "label_5243", "label_5244", "label_5245", "label_5246", "label_5247", "label_5248", "label_5249", "label_5250", "label_5251", "label_5252", "label_5253", "label_5254", "label_5255", "label_5256", "label_5257", "label_5258", "label_5259", "label_5260", "label_5261", "label_5262", "label_5263", "label_5264", "label_5265", "label_5266", "label_5267", "label_5268", "label_5269", "label_5270", "label_5271", "label_5272", "label_5273", "label_5274", "label_5275", "label_5276", "label_5277", "label_5278", "label_5279", "label_5280", "label_5281", "label_5282", "label_5283", "label_5284", "label_5285", "label_5286", "label_5287", "label_5288", "label_5289", "label_5290", "label_5291", "label_5292", "label_5293", "label_5294", "label_5295", "label_5296", "label_5297", "label_5298", "label_5299", "label_5300", "label_5301", "label_5302", "label_5303", "label_5304", "label_5305", "label_5306", "label_5307", "label_5308", "label_5309", "label_5310", "label_5311", "label_5312", "label_5313", "label_5314", "label_5315", "label_5316", "label_5317", "label_5318", "label_5319", "label_5320", "label_5321", "label_5322", "label_5323", "label_5324", "label_5325", "label_5326", "label_5327", "label_5328", "label_5329", "label_5330", "label_5331", "label_5332", "label_5333", "label_5334", "label_5335", "label_5336", "label_5337", "label_5338", "label_5339", "label_5340", "label_5341", "label_5342", "label_5343", "label_5344", "label_5345", "label_5346", "label_5347", "label_5348", "label_5349", "label_5350", "label_5351", "label_5352", "label_5353", "label_5354", "label_5355", "label_5356", "label_5357", "label_5358", "label_5359", "label_5360", "label_5361", "label_5362", "label_5363", "label_5364", "label_5365", "label_5366", "label_5367", "label_5368", "label_5369", "label_5370", "label_5371", "label_5372", "label_5373", "label_5374", "label_5375", "label_5376", "label_5377", "label_5378", "label_5379", "label_5380", "label_5381", "label_5382", "label_5383", "label_5384", "label_5385", "label_5386", "label_5387", "label_5388", "label_5389", "label_5390", "label_5391", "label_5392", "label_5393", "label_5394", "label_5395", "label_5396", "label_5397", "label_5398", "label_5399", "label_5400", "label_5401", "label_5402", "label_5403", "label_5404", "label_5405", "label_5406", "label_5407", "label_5408", "label_5409", "label_5410", "label_5411", "label_5412", "label_5413", "label_5414", "label_5415", "label_5416", "label_5417", "label_5418", "label_5419", "label_5420", "label_5421", "label_5422", "label_5423", "label_5424", "label_5425", "label_5426", "label_5427", "label_5428", "label_5429", "label_5430", "label_5431", "label_5432", "label_5433", "label_5434", "label_5435", "label_5436", "label_5437", "label_5438", "label_5439", "label_5440", "label_5441", "label_5442", "label_5443", "label_5444", "label_5445", "label_5446", "label_5447", "label_5448", "label_5449", "label_5450", "label_5451", "label_5452", "label_5453", "label_5454", "label_5455", "label_5456", "label_5457", "label_5458", "label_5459", "label_5460", "label_5461", "label_5462", "label_5463", "label_5464", "label_5465", "label_5466", "label_5467", "label_5468", "label_5469", "label_5470", "label_5471", "label_5472", "label_5473", "label_5474", "label_5475", "label_5476", "label_5477", "label_5478", "label_5479", "label_5480", "label_5481", "label_5482", "label_5483", "label_5484", "label_5485", "label_5486", "label_5487", "label_5488", "label_5489", "label_5490", "label_5491", "label_5492", "label_5493", "label_5494", "label_5495", "label_5496", "label_5497", "label_5498", "label_5499", "label_5500", "label_5501", "label_5502", "label_5503", "label_5504", "label_5505", "label_5506", "label_5507", "label_5508", "label_5509", "label_5510", "label_5511", "label_5512", "label_5513", "label_5514", "label_5515", "label_5516", "label_5517", "label_5518", "label_5519", "label_5520", "label_5521", "label_5522", "label_5523", "label_5524", "label_5525", "label_5526", "label_5527", "label_5528", "label_5529", "label_5530", "label_5531", "label_5532", "label_5533", "label_5534", "label_5535", "label_5536", "label_5537", "label_5538", "label_5539", "label_5540", "label_5541", "label_5542", "label_5543", "label_5544", "label_5545", "label_5546", "label_5547", "label_5548", "label_5549", "label_5550", "label_5551", "label_5552", "label_5553", "label_5554", "label_5555", "label_5556", "label_5557", "label_5558", "label_5559", "label_5560", "label_5561", "label_5562", "label_5563", "label_5564", "label_5565", "label_5566", "label_5567", "label_5568", "label_5569", "label_5570", "label_5571", "label_5572", "label_5573", "label_5574", "label_5575", "label_5576", "label_5577", "label_5578", "label_5579", "label_5580", "label_5581", "label_5582", "label_5583", "label_5584", "label_5585", "label_5586", "label_5587", "label_5588", "label_5589", "label_5590", "label_5591", "label_5592", "label_5593", "label_5594", "label_5595", "label_5596", "label_5597", "label_5598", "label_5599", "label_5600", "label_5601", "label_5602", "label_5603", "label_5604", "label_5605", "label_5606", "label_5607", "label_5608", "label_5609", "label_5610", "label_5611", "label_5612", "label_5613", "label_5614", "label_5615", "label_5616", "label_5617", "label_5618", "label_5619", "label_5620", "label_5621", "label_5622", "label_5623", "label_5624", "label_5625", "label_5626", "label_5627", "label_5628", "label_5629", "label_5630", "label_5631", "label_5632", "label_5633", "label_5634", "label_5635", "label_5636", "label_5637", "label_5638", "label_5639", "label_5640", "label_5641", "label_5642", "label_5643", "label_5644", "label_5645", "label_5646", "label_5647", "label_5648", "label_5649", "label_5650", "label_5651", "label_5652", "label_5653", "label_5654", "label_5655", "label_5656", "label_5657", "label_5658", "label_5659", "label_5660", "label_5661", "label_5662", "label_5663", "label_5664", "label_5665", "label_5666", "label_5667", "label_5668", "label_5669", "label_5670", "label_5671", "label_5672", "label_5673", "label_5674", "label_5675", "label_5676", "label_5677", "label_5678", "label_5679", "label_5680", "label_5681", "label_5682", "label_5683", "label_5684", "label_5685", "label_5686", "label_5687", "label_5688", "label_5689", "label_5690", "label_5691", "label_5692", "label_5693", "label_5694", "label_5695", "label_5696", "label_5697", "label_5698", "label_5699", "label_5700", "label_5701", "label_5702", "label_5703", "label_5704", "label_5705", "label_5706", "label_5707", "label_5708", "label_5709", "label_5710", "label_5711", "label_5712", "label_5713", "label_5714", "label_5715", "label_5716", "label_5717", "label_5718", "label_5719", "label_5720", "label_5721", "label_5722", "label_5723", "label_5724", "label_5725", "label_5726", "label_5727", "label_5728", "label_5729", "label_5730", "label_5731", "label_5732", "label_5733", "label_5734", "label_5735", "label_5736", "label_5737", "label_5738", "label_5739", "label_5740", "label_5741", "label_5742", "label_5743", "label_5744", "label_5745", "label_5746", "label_5747", "label_5748", "label_5749", "label_5750", "label_5751", "label_5752", "label_5753", "label_5754", "label_5755", "label_5756", "label_5757", "label_5758", "label_5759", "label_5760", "label_5761", "label_5762", "label_5763", "label_5764", "label_5765", "label_5766", "label_5767", "label_5768", "label_5769", "label_5770", "label_5771", "label_5772", "label_5773", "label_5774", "label_5775", "label_5776", "label_5777", "label_5778", "label_5779", "label_5780", "label_5781", "label_5782", "label_5783", "label_5784", "label_5785", "label_5786", "label_5787", "label_5788", "label_5789", "label_5790", "label_5791", "label_5792", "label_5793", "label_5794", "label_5795", "label_5796", "label_5797", "label_5798", "label_5799", "label_5800", "label_5801", "label_5802", "label_5803", "label_5804", "label_5805", "label_5806", "label_5807", "label_5808", "label_5809", "label_5810", "label_5811", "label_5812", "label_5813", "label_5814", "label_5815", "label_5816", "label_5817", "label_5818", "label_5819", "label_5820", "label_5821", "label_5822", "label_5823", "label_5824", "label_5825", "label_5826", "label_5827", "label_5828", "label_5829", "label_5830", "label_5831", "label_5832", "label_5833", "label_5834", "label_5835", "label_5836", "label_5837", "label_5838", "label_5839", "label_5840", "label_5841", "label_5842", "label_5843", "label_5844", "label_5845", "label_5846", "label_5847", "label_5848", "label_5849", "label_5850", "label_5851", "label_5852", "label_5853", "label_5854", "label_5855", "label_5856", "label_5857", "label_5858", "label_5859", "label_5860", "label_5861", "label_5862", "label_5863", "label_5864", "label_5865", "label_5866", "label_5867", "label_5868", "label_5869", "label_5870", "label_5871", "label_5872", "label_5873", "label_5874", "label_5875", "label_5876", "label_5877", "label_5878", "label_5879", "label_5880", "label_5881", "label_5882", "label_5883", "label_5884", "label_5885", "label_5886", "label_5887", "label_5888", "label_5889", "label_5890", "label_5891", "label_5892", "label_5893", "label_5894", "label_5895", "label_5896", "label_5897", "label_5898", "label_5899", "label_5900", "label_5901", "label_5902", "label_5903", "label_5904", "label_5905", "label_5906", "label_5907", "label_5908", "label_5909", "label_5910", "label_5911", "label_5912", "label_5913", "label_5914", "label_5915", "label_5916", "label_5917", "label_5918", "label_5919", "label_5920", "label_5921", "label_5922", "label_5923", "label_5924", "label_5925", "label_5926", "label_5927", "label_5928", "label_5929", "label_5930", "label_5931", "label_5932", "label_5933", "label_5934", "label_5935", "label_5936", "label_5937", "label_5938", "label_5939", "label_5940", "label_5941", "label_5942", "label_5943", "label_5944", "label_5945", "label_5946", "label_5947", "label_5948", "label_5949", "label_5950", "label_5951", "label_5952", "label_5953", "label_5954", "label_5955", "label_5956", "label_5957", "label_5958", "label_5959", "label_5960", "label_5961", "label_5962", "label_5963", "label_5964", "label_5965", "label_5966", "label_5967", "label_5968", "label_5969", "label_5970", "label_5971", "label_5972", "label_5973", "label_5974", "label_5975", "label_5976", "label_5977", "label_5978", "label_5979", "label_5980", "label_5981", "label_5982", "label_5983", "label_5984", "label_5985", "label_5986", "label_5987", "label_5988", "label_5989", "label_5990", "label_5991", "label_5992", "label_5993", "label_5994", "label_5995", "label_5996", "label_5997", "label_5998", "label_5999", "label_6000", "label_6001", "label_6002", "label_6003", "label_6004", "label_6005", "label_6006", "label_6007", "label_6008", "label_6009", "label_6010", "label_6011", "label_6012", "label_6013", "label_6014", "label_6015", "label_6016", "label_6017", "label_6018", "label_6019", "label_6020", "label_6021", "label_6022", "label_6023", "label_6024", "label_6025", "label_6026", "label_6027", "label_6028", "label_6029", "label_6030", "label_6031", "label_6032", "label_6033", "label_6034", "label_6035", "label_6036", "label_6037", "label_6038", "label_6039", "label_6040", "label_6041", "label_6042", "label_6043", "label_6044", "label_6045", "label_6046", "label_6047", "label_6048", "label_6049", "label_6050", "label_6051", "label_6052", "label_6053", "label_6054", "label_6055", "label_6056", "label_6057", "label_6058", "label_6059", "label_6060", "label_6061", "label_6062", "label_6063", "label_6064", "label_6065", "label_6066", "label_6067", "label_6068", "label_6069", "label_6070", "label_6071", "label_6072", "label_6073", "label_6074", "label_6075", "label_6076", "label_6077", "label_6078", "label_6079", "label_6080", "label_6081", "label_6082", "label_6083", "label_6084", "label_6085", "label_6086", "label_6087", "label_6088", "label_6089", "label_6090", "label_6091", "label_6092", "label_6093", "label_6094", "label_6095", "label_6096", "label_6097", "label_6098", "label_6099", "label_6100", "label_6101", "label_6102", "label_6103", "label_6104", "label_6105", "label_6106", "label_6107", "label_6108", "label_6109", "label_6110", "label_6111", "label_6112", "label_6113", "label_6114", "label_6115", "label_6116", "label_6117", "label_6118", "label_6119", "label_6120", "label_6121", "label_6122", "label_6123", "label_6124", "label_6125", "label_6126", "label_6127", "label_6128", "label_6129", "label_6130", "label_6131", "label_6132", "label_6133", "label_6134", "label_6135", "label_6136", "label_6137", "label_6138", "label_6139", "label_6140", "label_6141", "label_6142", "label_6143", "label_6144", "label_6145", "label_6146", "label_6147", "label_6148", "label_6149", "label_6150", "label_6151", "label_6152", "label_6153", "label_6154", "label_6155", "label_6156", "label_6157", "label_6158", "label_6159", "label_6160", "label_6161", "label_6162", "label_6163", "label_6164", "label_6165", "label_6166", "label_6167", "label_6168", "label_6169", "label_6170", "label_6171", "label_6172", "label_6173", "label_6174", "label_6175", "label_6176", "label_6177", "label_6178", "label_6179", "label_6180", "label_6181", "label_6182", "label_6183", "label_6184", "label_6185", "label_6186", "label_6187", "label_6188", "label_6189", "label_6190", "label_6191", "label_6192", "label_6193", "label_6194", "label_6195", "label_6196", "label_6197", "label_6198", "label_6199", "label_6200", "label_6201", "label_6202", "label_6203", "label_6204", "label_6205", "label_6206", "label_6207", "label_6208", "label_6209", "label_6210", "label_6211", "label_6212", "label_6213", "label_6214", "label_6215", "label_6216", "label_6217", "label_6218", "label_6219", "label_6220", "label_6221", "label_6222", "label_6223", "label_6224", "label_6225", "label_6226", "label_6227", "label_6228", "label_6229", "label_6230", "label_6231", "label_6232", "label_6233", "label_6234", "label_6235", "label_6236", "label_6237", "label_6238", "label_6239", "label_6240", "label_6241", "label_6242", "label_6243", "label_6244", "label_6245", "label_6246", "label_6247", "label_6248", "label_6249", "label_6250", "label_6251", "label_6252", "label_6253", "label_6254", "label_6255", "label_6256", "label_6257", "label_6258", "label_6259", "label_6260", "label_6261", "label_6262", "label_6263", "label_6264", "label_6265", "label_6266", "label_6267", "label_6268", "label_6269", "label_6270", "label_6271", "label_6272", "label_6273", "label_6274", "label_6275", "label_6276", "label_6277", "label_6278", "label_6279", "label_6280", "label_6281", "label_6282", "label_6283", "label_6284", "label_6285", "label_6286", "label_6287", "label_6288", "label_6289", "label_6290", "label_6291", "label_6292", "label_6293", "label_6294", "label_6295", "label_6296", "label_6297", "label_6298", "label_6299", "label_6300", "label_6301", "label_6302", "label_6303", "label_6304", "label_6305", "label_6306", "label_6307", "label_6308", "label_6309", "label_6310", "label_6311", "label_6312", "label_6313", "label_6314", "label_6315", "label_6316", "label_6317", "label_6318", "label_6319", "label_6320", "label_6321", "label_6322", "label_6323", "label_6324", "label_6325", "label_6326", "label_6327", "label_6328", "label_6329", "label_6330", "label_6331", "label_6332", "label_6333", "label_6334", "label_6335", "label_6336", "label_6337", "label_6338", "label_6339", "label_6340", "label_6341", "label_6342", "label_6343", "label_6344", "label_6345", "label_6346", "label_6347", "label_6348", "label_6349", "label_6350", "label_6351", "label_6352", "label_6353", "label_6354", "label_6355", "label_6356", "label_6357", "label_6358", "label_6359", "label_6360", "label_6361", "label_6362", "label_6363", "label_6364", "label_6365", "label_6366", "label_6367", "label_6368", "label_6369", "label_6370", "label_6371", "label_6372", "label_6373", "label_6374", "label_6375", "label_6376", "label_6377", "label_6378", "label_6379", "label_6380", "label_6381", "label_6382", "label_6383", "label_6384", "label_6385", "label_6386", "label_6387", "label_6388", "label_6389", "label_6390", "label_6391", "label_6392", "label_6393", "label_6394", "label_6395", "label_6396", "label_6397", "label_6398", "label_6399", "label_6400", "label_6401", "label_6402", "label_6403", "label_6404", "label_6405", "label_6406", "label_6407", "label_6408", "label_6409", "label_6410", "label_6411", "label_6412", "label_6413", "label_6414", "label_6415", "label_6416", "label_6417", "label_6418", "label_6419", "label_6420", "label_6421", "label_6422", "label_6423", "label_6424", "label_6425", "label_6426", "label_6427", "label_6428", "label_6429", "label_6430", "label_6431", "label_6432", "label_6433", "label_6434", "label_6435", "label_6436", "label_6437", "label_6438", "label_6439", "label_6440", "label_6441", "label_6442", "label_6443", "label_6444", "label_6445", "label_6446", "label_6447", "label_6448", "label_6449", "label_6450", "label_6451", "label_6452", "label_6453", "label_6454", "label_6455", "label_6456", "label_6457", "label_6458", "label_6459", "label_6460", "label_6461", "label_6462", "label_6463", "label_6464", "label_6465", "label_6466", "label_6467", "label_6468", "label_6469", "label_6470", "label_6471", "label_6472", "label_6473", "label_6474", "label_6475", "label_6476", "label_6477", "label_6478", "label_6479", "label_6480", "label_6481", "label_6482", "label_6483", "label_6484", "label_6485", "label_6486", "label_6487", "label_6488", "label_6489", "label_6490", "label_6491", "label_6492", "label_6493", "label_6494", "label_6495", "label_6496", "label_6497", "label_6498", "label_6499", "label_6500", "label_6501", "label_6502", "label_6503", "label_6504", "label_6505", "label_6506", "label_6507", "label_6508", "label_6509", "label_6510", "label_6511", "label_6512", "label_6513", "label_6514", "label_6515", "label_6516", "label_6517", "label_6518", "label_6519", "label_6520", "label_6521", "label_6522", "label_6523", "label_6524", "label_6525", "label_6526", "label_6527", "label_6528", "label_6529", "label_6530", "label_6531", "label_6532", "label_6533", "label_6534", "label_6535", "label_6536", "label_6537", "label_6538", "label_6539", "label_6540", "label_6541", "label_6542", "label_6543", "label_6544", "label_6545", "label_6546", "label_6547", "label_6548", "label_6549", "label_6550", "label_6551", "label_6552", "label_6553", "label_6554", "label_6555", "label_6556", "label_6557", "label_6558", "label_6559", "label_6560", "label_6561", "label_6562", "label_6563", "label_6564", "label_6565", "label_6566", "label_6567", "label_6568", "label_6569", "label_6570", "label_6571", "label_6572", "label_6573", "label_6574", "label_6575", "label_6576", "label_6577", "label_6578", "label_6579", "label_6580", "label_6581", "label_6582", "label_6583", "label_6584", "label_6585", "label_6586", "label_6587", "label_6588", "label_6589", "label_6590", "label_6591", "label_6592", "label_6593", "label_6594", "label_6595", "label_6596", "label_6597", "label_6598", "label_6599", "label_6600", "label_6601", "label_6602", "label_6603", "label_6604", "label_6605", "label_6606", "label_6607", "label_6608", "label_6609", "label_6610", "label_6611", "label_6612", "label_6613", "label_6614", "label_6615", "label_6616", "label_6617", "label_6618", "label_6619", "label_6620", "label_6621", "label_6622", "label_6623", "label_6624", "label_6625", "label_6626", "label_6627", "label_6628", "label_6629", "label_6630", "label_6631", "label_6632", "label_6633", "label_6634", "label_6635", "label_6636", "label_6637", "label_6638", "label_6639", "label_6640", "label_6641", "label_6642", "label_6643", "label_6644", "label_6645", "label_6646", "label_6647", "label_6648", "label_6649", "label_6650", "label_6651", "label_6652", "label_6653", "label_6654", "label_6655", "label_6656", "label_6657", "label_6658", "label_6659", "label_6660", "label_6661", "label_6662", "label_6663", "label_6664", "label_6665", "label_6666", "label_6667", "label_6668", "label_6669", "label_6670", "label_6671", "label_6672", "label_6673", "label_6674", "label_6675", "label_6676", "label_6677", "label_6678", "label_6679", "label_6680", "label_6681", "label_6682", "label_6683", "label_6684", "label_6685", "label_6686", "label_6687", "label_6688", "label_6689", "label_6690", "label_6691", "label_6692", "label_6693", "label_6694", "label_6695", "label_6696", "label_6697", "label_6698", "label_6699", "label_6700", "label_6701", "label_6702", "label_6703", "label_6704", "label_6705", "label_6706", "label_6707", "label_6708", "label_6709", "label_6710", "label_6711", "label_6712", "label_6713", "label_6714", "label_6715", "label_6716", "label_6717", "label_6718", "label_6719", "label_6720", "label_6721", "label_6722", "label_6723", "label_6724", "label_6725", "label_6726", "label_6727", "label_6728", "label_6729", "label_6730", "label_6731", "label_6732", "label_6733", "label_6734", "label_6735", "label_6736", "label_6737", "label_6738", "label_6739", "label_6740", "label_6741", "label_6742", "label_6743", "label_6744", "label_6745", "label_6746", "label_6747", "label_6748", "label_6749", "label_6750", "label_6751", "label_6752", "label_6753", "label_6754", "label_6755", "label_6756", "label_6757", "label_6758", "label_6759", "label_6760", "label_6761", "label_6762", "label_6763", "label_6764", "label_6765", "label_6766", "label_6767", "label_6768", "label_6769", "label_6770", "label_6771", "label_6772", "label_6773", "label_6774", "label_6775", "label_6776", "label_6777", "label_6778", "label_6779", "label_6780", "label_6781", "label_6782", "label_6783", "label_6784", "label_6785", "label_6786", "label_6787", "label_6788", "label_6789", "label_6790", "label_6791", "label_6792", "label_6793", "label_6794", "label_6795", "label_6796", "label_6797", "label_6798", "label_6799", "label_6800", "label_6801", "label_6802", "label_6803", "label_6804", "label_6805", "label_6806", "label_6807", "label_6808", "label_6809", "label_6810", "label_6811", "label_6812", "label_6813", "label_6814", "label_6815", "label_6816", "label_6817", "label_6818", "label_6819", "label_6820", "label_6821", "label_6822", "label_6823", "label_6824", "label_6825", "label_6826", "label_6827", "label_6828", "label_6829", "label_6830", "label_6831", "label_6832", "label_6833", "label_6834", "label_6835", "label_6836", "label_6837", "label_6838", "label_6839", "label_6840", "label_6841", "label_6842", "label_6843", "label_6844", "label_6845", "label_6846", "label_6847", "label_6848", "label_6849", "label_6850", "label_6851", "label_6852", "label_6853", "label_6854", "label_6855", "label_6856", "label_6857", "label_6858", "label_6859", "label_6860", "label_6861", "label_6862", "label_6863", "label_6864", "label_6865", "label_6866", "label_6867", "label_6868", "label_6869", "label_6870", "label_6871", "label_6872", "label_6873", "label_6874", "label_6875", "label_6876", "label_6877", "label_6878", "label_6879", "label_6880", "label_6881", "label_6882", "label_6883", "label_6884", "label_6885", "label_6886", "label_6887", "label_6888", "label_6889", "label_6890", "label_6891", "label_6892", "label_6893", "label_6894", "label_6895", "label_6896", "label_6897", "label_6898", "label_6899", "label_6900", "label_6901", "label_6902", "label_6903", "label_6904", "label_6905", "label_6906", "label_6907", "label_6908", "label_6909", "label_6910", "label_6911", "label_6912", "label_6913", "label_6914", "label_6915", "label_6916", "label_6917", "label_6918", "label_6919", "label_6920", "label_6921", "label_6922", "label_6923", "label_6924", "label_6925", "label_6926", "label_6927", "label_6928", "label_6929", "label_6930", "label_6931", "label_6932", "label_6933", "label_6934", "label_6935", "label_6936", "label_6937", "label_6938", "label_6939", "label_6940", "label_6941", "label_6942", "label_6943", "label_6944", "label_6945", "label_6946", "label_6947", "label_6948", "label_6949", "label_6950", "label_6951", "label_6952", "label_6953", "label_6954", "label_6955", "label_6956", "label_6957", "label_6958", "label_6959", "label_6960", "label_6961", "label_6962", "label_6963", "label_6964", "label_6965", "label_6966", "label_6967", "label_6968", "label_6969", "label_6970", "label_6971", "label_6972", "label_6973", "label_6974", "label_6975", "label_6976", "label_6977", "label_6978", "label_6979", "label_6980", "label_6981", "label_6982", "label_6983", "label_6984", "label_6985", "label_6986", "label_6987", "label_6988", "label_6989", "label_6990", "label_6991", "label_6992", "label_6993", "label_6994", "label_6995", "label_6996", "label_6997", "label_6998", "label_6999", "label_7000", "label_7001", "label_7002", "label_7003", "label_7004", "label_7005", "label_7006", "label_7007", "label_7008", "label_7009", "label_7010", "label_7011", "label_7012", "label_7013", "label_7014", "label_7015", "label_7016", "label_7017", "label_7018", "label_7019", "label_7020", "label_7021", "label_7022", "label_7023", "label_7024", "label_7025", "label_7026", "label_7027", "label_7028", "label_7029", "label_7030", "label_7031", "label_7032", "label_7033", "label_7034", "label_7035", "label_7036", "label_7037", "label_7038", "label_7039", "label_7040", "label_7041", "label_7042", "label_7043", "label_7044", "label_7045", "label_7046", "label_7047", "label_7048", "label_7049", "label_7050", "label_7051", "label_7052", "label_7053", "label_7054", "label_7055", "label_7056", "label_7057", "label_7058", "label_7059", "label_7060", "label_7061", "label_7062", "label_7063", "label_7064", "label_7065", "label_7066", "label_7067", "label_7068", "label_7069", "label_7070", "label_7071", "label_7072", "label_7073", "label_7074", "label_7075", "label_7076", "label_7077", "label_7078", "label_7079", "label_7080", "label_7081", "label_7082", "label_7083", "label_7084", "label_7085", "label_7086", "label_7087", "label_7088", "label_7089", "label_7090", "label_7091", "label_7092", "label_7093", "label_7094", "label_7095", "label_7096", "label_7097", "label_7098", "label_7099", "label_7100", "label_7101", "label_7102", "label_7103", "label_7104", "label_7105", "label_7106", "label_7107", "label_7108", "label_7109", "label_7110", "label_7111", "label_7112", "label_7113", "label_7114", "label_7115", "label_7116", "label_7117", "label_7118", "label_7119", "label_7120", "label_7121", "label_7122", "label_7123", "label_7124", "label_7125", "label_7126", "label_7127", "label_7128", "label_7129", "label_7130", "label_7131", "label_7132", "label_7133", "label_7134", "label_7135", "label_7136", "label_7137", "label_7138", "label_7139", "label_7140", "label_7141", "label_7142", "label_7143", "label_7144", "label_7145", "label_7146", "label_7147", "label_7148", "label_7149", "label_7150", "label_7151", "label_7152", "label_7153", "label_7154", "label_7155", "label_7156", "label_7157", "label_7158", "label_7159", "label_7160", "label_7161", "label_7162", "label_7163", "label_7164", "label_7165", "label_7166", "label_7167", "label_7168", "label_7169", "label_7170", "label_7171", "label_7172", "label_7173", "label_7174", "label_7175", "label_7176", "label_7177", "label_7178", "label_7179", "label_7180", "label_7181", "label_7182", "label_7183", "label_7184", "label_7185", "label_7186", "label_7187", "label_7188", "label_7189", "label_7190", "label_7191", "label_7192", "label_7193", "label_7194", "label_7195", "label_7196", "label_7197", "label_7198", "label_7199", "label_7200", "label_7201", "label_7202", "label_7203", "label_7204", "label_7205", "label_7206", "label_7207", "label_7208", "label_7209", "label_7210", "label_7211", "label_7212", "label_7213", "label_7214", "label_7215", "label_7216", "label_7217", "label_7218", "label_7219", "label_7220", "label_7221", "label_7222", "label_7223", "label_7224", "label_7225", "label_7226", "label_7227", "label_7228", "label_7229", "label_7230", "label_7231", "label_7232", "label_7233", "label_7234", "label_7235", "label_7236", "label_7237", "label_7238", "label_7239", "label_7240", "label_7241", "label_7242", "label_7243", "label_7244", "label_7245", "label_7246", "label_7247", "label_7248", "label_7249", "label_7250", "label_7251", "label_7252", "label_7253", "label_7254", "label_7255", "label_7256", "label_7257", "label_7258", "label_7259", "label_7260", "label_7261", "label_7262", "label_7263", "label_7264", "label_7265", "label_7266", "label_7267", "label_7268", "label_7269", "label_7270", "label_7271", "label_7272", "label_7273", "label_7274", "label_7275", "label_7276", "label_7277", "label_7278", "label_7279", "label_7280", "label_7281", "label_7282", "label_7283", "label_7284", "label_7285", "label_7286", "label_7287", "label_7288", "label_7289", "label_7290", "label_7291", "label_7292", "label_7293", "label_7294", "label_7295", "label_7296", "label_7297", "label_7298", "label_7299", "label_7300", "label_7301", "label_7302", "label_7303", "label_7304", "label_7305", "label_7306", "label_7307", "label_7308", "label_7309", "label_7310", "label_7311", "label_7312", "label_7313", "label_7314", "label_7315", "label_7316", "label_7317", "label_7318", "label_7319", "label_7320", "label_7321", "label_7322", "label_7323", "label_7324", "label_7325", "label_7326", "label_7327", "label_7328", "label_7329", "label_7330", "label_7331", "label_7332", "label_7333", "label_7334", "label_7335", "label_7336", "label_7337", "label_7338", "label_7339", "label_7340", "label_7341", "label_7342", "label_7343", "label_7344", "label_7345", "label_7346", "label_7347", "label_7348", "label_7349", "label_7350", "label_7351", "label_7352", "label_7353", "label_7354", "label_7355", "label_7356", "label_7357", "label_7358", "label_7359", "label_7360", "label_7361", "label_7362", "label_7363", "label_7364", "label_7365", "label_7366", "label_7367", "label_7368", "label_7369", "label_7370", "label_7371", "label_7372", "label_7373", "label_7374", "label_7375", "label_7376", "label_7377", "label_7378", "label_7379", "label_7380", "label_7381", "label_7382", "label_7383", "label_7384", "label_7385", "label_7386", "label_7387", "label_7388", "label_7389", "label_7390", "label_7391", "label_7392", "label_7393", "label_7394", "label_7395", "label_7396", "label_7397", "label_7398", "label_7399", "label_7400", "label_7401", "label_7402", "label_7403", "label_7404", "label_7405", "label_7406", "label_7407", "label_7408", "label_7409", "label_7410", "label_7411", "label_7412", "label_7413", "label_7414", "label_7415", "label_7416", "label_7417", "label_7418", "label_7419", "label_7420", "label_7421", "label_7422", "label_7423", "label_7424", "label_7425", "label_7426", "label_7427", "label_7428", "label_7429", "label_7430", "label_7431", "label_7432", "label_7433", "label_7434", "label_7435", "label_7436", "label_7437", "label_7438", "label_7439", "label_7440", "label_7441", "label_7442", "label_7443", "label_7444", "label_7445", "label_7446", "label_7447", "label_7448", "label_7449", "label_7450", "label_7451", "label_7452", "label_7453", "label_7454", "label_7455", "label_7456", "label_7457", "label_7458", "label_7459", "label_7460", "label_7461", "label_7462", "label_7463", "label_7464", "label_7465", "label_7466", "label_7467", "label_7468", "label_7469", "label_7470", "label_7471", "label_7472", "label_7473", "label_7474", "label_7475", "label_7476", "label_7477", "label_7478", "label_7479", "label_7480", "label_7481", "label_7482", "label_7483", "label_7484", "label_7485", "label_7486", "label_7487", "label_7488", "label_7489", "label_7490", "label_7491", "label_7492", "label_7493", "label_7494", "label_7495", "label_7496", "label_7497", "label_7498", "label_7499", "label_7500", "label_7501", "label_7502", "label_7503", "label_7504", "label_7505", "label_7506", "label_7507", "label_7508", "label_7509", "label_7510", "label_7511", "label_7512", "label_7513", "label_7514", "label_7515", "label_7516", "label_7517", "label_7518", "label_7519", "label_7520", "label_7521", "label_7522", "label_7523", "label_7524", "label_7525", "label_7526", "label_7527", "label_7528", "label_7529", "label_7530", "label_7531", "label_7532", "label_7533", "label_7534", "label_7535", "label_7536", "label_7537", "label_7538", "label_7539", "label_7540", "label_7541", "label_7542", "label_7543", "label_7544", "label_7545", "label_7546", "label_7547", "label_7548", "label_7549", "label_7550", "label_7551", "label_7552", "label_7553", "label_7554", "label_7555", "label_7556", "label_7557", "label_7558", "label_7559", "label_7560", "label_7561", "label_7562", "label_7563", "label_7564", "label_7565", "label_7566", "label_7567", "label_7568", "label_7569", "label_7570", "label_7571", "label_7572", "label_7573", "label_7574", "label_7575", "label_7576", "label_7577", "label_7578", "label_7579", "label_7580", "label_7581", "label_7582", "label_7583", "label_7584", "label_7585", "label_7586", "label_7587", "label_7588", "label_7589", "label_7590", "label_7591", "label_7592", "label_7593", "label_7594", "label_7595", "label_7596", "label_7597", "label_7598", "label_7599", "label_7600", "label_7601", "label_7602", "label_7603", "label_7604", "label_7605", "label_7606", "label_7607", "label_7608", "label_7609", "label_7610", "label_7611", "label_7612", "label_7613", "label_7614", "label_7615", "label_7616", "label_7617", "label_7618", "label_7619", "label_7620", "label_7621", "label_7622", "label_7623", "label_7624", "label_7625", "label_7626", "label_7627", "label_7628", "label_7629", "label_7630", "label_7631", "label_7632", "label_7633", "label_7634", "label_7635", "label_7636", "label_7637", "label_7638", "label_7639", "label_7640", "label_7641", "label_7642", "label_7643", "label_7644", "label_7645", "label_7646", "label_7647", "label_7648", "label_7649", "label_7650", "label_7651", "label_7652", "label_7653", "label_7654", "label_7655", "label_7656", "label_7657", "label_7658", "label_7659", "label_7660", "label_7661", "label_7662", "label_7663", "label_7664", "label_7665", "label_7666", "label_7667", "label_7668", "label_7669", "label_7670", "label_7671", "label_7672", "label_7673", "label_7674", "label_7675", "label_7676", "label_7677", "label_7678", "label_7679", "label_7680", "label_7681", "label_7682", "label_7683", "label_7684", "label_7685", "label_7686", "label_7687", "label_7688", "label_7689", "label_7690", "label_7691", "label_7692", "label_7693", "label_7694", "label_7695", "label_7696", "label_7697", "label_7698", "label_7699", "label_7700", "label_7701", "label_7702", "label_7703", "label_7704", "label_7705", "label_7706", "label_7707", "label_7708", "label_7709", "label_7710", "label_7711", "label_7712", "label_7713", "label_7714", "label_7715", "label_7716", "label_7717", "label_7718", "label_7719", "label_7720", "label_7721", "label_7722", "label_7723", "label_7724", "label_7725", "label_7726", "label_7727", "label_7728", "label_7729", "label_7730", "label_7731", "label_7732", "label_7733", "label_7734", "label_7735", "label_7736", "label_7737", "label_7738", "label_7739", "label_7740", "label_7741", "label_7742", "label_7743", "label_7744", "label_7745", "label_7746", "label_7747", "label_7748", "label_7749", "label_7750", "label_7751", "label_7752", "label_7753", "label_7754", "label_7755", "label_7756", "label_7757", "label_7758", "label_7759", "label_7760", "label_7761", "label_7762", "label_7763", "label_7764", "label_7765", "label_7766", "label_7767", "label_7768", "label_7769", "label_7770", "label_7771", "label_7772", "label_7773", "label_7774", "label_7775", "label_7776", "label_7777", "label_7778", "label_7779", "label_7780", "label_7781", "label_7782", "label_7783", "label_7784", "label_7785", "label_7786", "label_7787", "label_7788", "label_7789", "label_7790", "label_7791", "label_7792", "label_7793", "label_7794", "label_7795", "label_7796", "label_7797", "label_7798", "label_7799", "label_7800", "label_7801", "label_7802", "label_7803", "label_7804", "label_7805", "label_7806", "label_7807", "label_7808", "label_7809", "label_7810", "label_7811", "label_7812", "label_7813", "label_7814", "label_7815", "label_7816", "label_7817", "label_7818", "label_7819", "label_7820", "label_7821", "label_7822", "label_7823", "label_7824", "label_7825", "label_7826", "label_7827", "label_7828", "label_7829", "label_7830", "label_7831", "label_7832", "label_7833", "label_7834", "label_7835", "label_7836", "label_7837", "label_7838", "label_7839", "label_7840", "label_7841", "label_7842", "label_7843", "label_7844", "label_7845", "label_7846", "label_7847", "label_7848", "label_7849", "label_7850", "label_7851", "label_7852", "label_7853", "label_7854", "label_7855", "label_7856", "label_7857", "label_7858", "label_7859", "label_7860", "label_7861", "label_7862", "label_7863", "label_7864", "label_7865", "label_7866", "label_7867", "label_7868", "label_7869", "label_7870", "label_7871", "label_7872", "label_7873", "label_7874", "label_7875", "label_7876", "label_7877", "label_7878", "label_7879", "label_7880", "label_7881", "label_7882", "label_7883", "label_7884", "label_7885", "label_7886", "label_7887", "label_7888", "label_7889", "label_7890", "label_7891", "label_7892", "label_7893", "label_7894", "label_7895", "label_7896", "label_7897", "label_7898", "label_7899", "label_7900", "label_7901", "label_7902", "label_7903", "label_7904", "label_7905", "label_7906", "label_7907", "label_7908", "label_7909", "label_7910", "label_7911", "label_7912", "label_7913", "label_7914", "label_7915", "label_7916", "label_7917", "label_7918", "label_7919", "label_7920", "label_7921", "label_7922", "label_7923", "label_7924", "label_7925", "label_7926", "label_7927", "label_7928", "label_7929", "label_7930", "label_7931", "label_7932", "label_7933", "label_7934", "label_7935", "label_7936", "label_7937", "label_7938", "label_7939", "label_7940", "label_7941", "label_7942", "label_7943", "label_7944", "label_7945", "label_7946", "label_7947", "label_7948", "label_7949", "label_7950", "label_7951", "label_7952", "label_7953", "label_7954", "label_7955", "label_7956", "label_7957", "label_7958", "label_7959", "label_7960", "label_7961", "label_7962", "label_7963", "label_7964", "label_7965", "label_7966", "label_7967", "label_7968", "label_7969", "label_7970", "label_7971", "label_7972", "label_7973", "label_7974", "label_7975", "label_7976", "label_7977", "label_7978", "label_7979", "label_7980", "label_7981", "label_7982", "label_7983", "label_7984", "label_7985", "label_7986", "label_7987", "label_7988", "label_7989", "label_7990", "label_7991", "label_7992", "label_7993", "label_7994", "label_7995", "label_7996", "label_7997", "label_7998", "label_7999", "label_8000", "label_8001", "label_8002", "label_8003", "label_8004", "label_8005", "label_8006", "label_8007", "label_8008", "label_8009", "label_8010", "label_8011", "label_8012", "label_8013", "label_8014", "label_8015", "label_8016", "label_8017", "label_8018", "label_8019", "label_8020", "label_8021", "label_8022", "label_8023", "label_8024", "label_8025", "label_8026", "label_8027", "label_8028", "label_8029", "label_8030", "label_8031", "label_8032", "label_8033", "label_8034", "label_8035", "label_8036", "label_8037", "label_8038", "label_8039", "label_8040", "label_8041", "label_8042", "label_8043", "label_8044", "label_8045", "label_8046", "label_8047", "label_8048", "label_8049", "label_8050", "label_8051", "label_8052", "label_8053", "label_8054", "label_8055", "label_8056", "label_8057", "label_8058", "label_8059", "label_8060", "label_8061", "label_8062", "label_8063", "label_8064", "label_8065", "label_8066", "label_8067", "label_8068", "label_8069", "label_8070", "label_8071", "label_8072", "label_8073", "label_8074", "label_8075", "label_8076", "label_8077", "label_8078", "label_8079", "label_8080", "label_8081", "label_8082", "label_8083", "label_8084", "label_8085", "label_8086", "label_8087", "label_8088", "label_8089", "label_8090", "label_8091", "label_8092", "label_8093", "label_8094", "label_8095", "label_8096", "label_8097", "label_8098", "label_8099", "label_8100", "label_8101", "label_8102", "label_8103", "label_8104", "label_8105", "label_8106", "label_8107", "label_8108", "label_8109", "label_8110", "label_8111", "label_8112", "label_8113", "label_8114", "label_8115", "label_8116", "label_8117", "label_8118", "label_8119", "label_8120", "label_8121", "label_8122", "label_8123", "label_8124", "label_8125", "label_8126", "label_8127", "label_8128", "label_8129", "label_8130", "label_8131", "label_8132", "label_8133", "label_8134", "label_8135", "label_8136", "label_8137", "label_8138", "label_8139", "label_8140", "label_8141", "label_8142", "label_8143", "label_8144", "label_8145", "label_8146", "label_8147", "label_8148", "label_8149", "label_8150", "label_8151", "label_8152", "label_8153", "label_8154", "label_8155", "label_8156", "label_8157", "label_8158", "label_8159", "label_8160", "label_8161", "label_8162", "label_8163", "label_8164", "label_8165", "label_8166", "label_8167", "label_8168", "label_8169", "label_8170", "label_8171", "label_8172", "label_8173", "label_8174", "label_8175", "label_8176", "label_8177", "label_8178", "label_8179", "label_8180", "label_8181", "label_8182", "label_8183", "label_8184", "label_8185", "label_8186", "label_8187", "label_8188", "label_8189", "label_8190", "label_8191", "label_8192", "label_8193", "label_8194", "label_8195", "label_8196", "label_8197", "label_8198", "label_8199", "label_8200", "label_8201", "label_8202", "label_8203", "label_8204", "label_8205", "label_8206", "label_8207", "label_8208", "label_8209", "label_8210", "label_8211", "label_8212", "label_8213", "label_8214", "label_8215", "label_8216", "label_8217", "label_8218", "label_8219", "label_8220", "label_8221", "label_8222", "label_8223", "label_8224", "label_8225", "label_8226", "label_8227", "label_8228", "label_8229", "label_8230", "label_8231", "label_8232", "label_8233", "label_8234", "label_8235", "label_8236", "label_8237", "label_8238", "label_8239", "label_8240", "label_8241", "label_8242", "label_8243", "label_8244", "label_8245", "label_8246", "label_8247", "label_8248", "label_8249", "label_8250", "label_8251", "label_8252", "label_8253", "label_8254", "label_8255", "label_8256", "label_8257", "label_8258", "label_8259", "label_8260", "label_8261", "label_8262", "label_8263", "label_8264", "label_8265", "label_8266", "label_8267", "label_8268", "label_8269", "label_8270", "label_8271", "label_8272", "label_8273", "label_8274", "label_8275", "label_8276", "label_8277", "label_8278", "label_8279", "label_8280", "label_8281", "label_8282", "label_8283", "label_8284", "label_8285", "label_8286", "label_8287", "label_8288", "label_8289", "label_8290", "label_8291", "label_8292", "label_8293", "label_8294", "label_8295", "label_8296", "label_8297", "label_8298", "label_8299", "label_8300", "label_8301", "label_8302", "label_8303", "label_8304", "label_8305", "label_8306", "label_8307", "label_8308", "label_8309", "label_8310", "label_8311", "label_8312", "label_8313", "label_8314", "label_8315", "label_8316", "label_8317", "label_8318", "label_8319", "label_8320", "label_8321", "label_8322", "label_8323", "label_8324", "label_8325", "label_8326", "label_8327", "label_8328", "label_8329", "label_8330", "label_8331", "label_8332", "label_8333", "label_8334", "label_8335", "label_8336", "label_8337", "label_8338", "label_8339", "label_8340", "label_8341", "label_8342", "label_8343", "label_8344", "label_8345", "label_8346", "label_8347", "label_8348", "label_8349", "label_8350", "label_8351", "label_8352", "label_8353", "label_8354", "label_8355", "label_8356", "label_8357", "label_8358", "label_8359", "label_8360", "label_8361", "label_8362", "label_8363", "label_8364", "label_8365", "label_8366", "label_8367", "label_8368", "label_8369", "label_8370", "label_8371", "label_8372", "label_8373", "label_8374", "label_8375", "label_8376", "label_8377", "label_8378", "label_8379", "label_8380", "label_8381", "label_8382", "label_8383", "label_8384", "label_8385", "label_8386", "label_8387", "label_8388", "label_8389", "label_8390", "label_8391", "label_8392", "label_8393", "label_8394", "label_8395", "label_8396", "label_8397", "label_8398", "label_8399", "label_8400", "label_8401", "label_8402", "label_8403", "label_8404", "label_8405", "label_8406", "label_8407", "label_8408", "label_8409", "label_8410", "label_8411", "label_8412", "label_8413", "label_8414", "label_8415", "label_8416", "label_8417", "label_8418", "label_8419", "label_8420", "label_8421", "label_8422", "label_8423", "label_8424", "label_8425", "label_8426", "label_8427", "label_8428", "label_8429", "label_8430", "label_8431", "label_8432", "label_8433", "label_8434", "label_8435", "label_8436", "label_8437", "label_8438", "label_8439", "label_8440", "label_8441", "label_8442", "label_8443", "label_8444", "label_8445", "label_8446", "label_8447", "label_8448", "label_8449", "label_8450", "label_8451", "label_8452", "label_8453", "label_8454", "label_8455", "label_8456", "label_8457", "label_8458", "label_8459", "label_8460", "label_8461", "label_8462", "label_8463", "label_8464", "label_8465", "label_8466", "label_8467", "label_8468", "label_8469", "label_8470", "label_8471", "label_8472", "label_8473", "label_8474", "label_8475", "label_8476", "label_8477", "label_8478", "label_8479", "label_8480", "label_8481", "label_8482", "label_8483", "label_8484", "label_8485", "label_8486", "label_8487", "label_8488", "label_8489", "label_8490", "label_8491", "label_8492", "label_8493", "label_8494", "label_8495", "label_8496", "label_8497", "label_8498", "label_8499", "label_8500", "label_8501", "label_8502", "label_8503", "label_8504", "label_8505", "label_8506", "label_8507", "label_8508", "label_8509", "label_8510", "label_8511", "label_8512", "label_8513", "label_8514", "label_8515", "label_8516", "label_8517", "label_8518", "label_8519", "label_8520", "label_8521", "label_8522", "label_8523", "label_8524", "label_8525", "label_8526", "label_8527", "label_8528", "label_8529", "label_8530", "label_8531", "label_8532", "label_8533", "label_8534", "label_8535", "label_8536", "label_8537", "label_8538", "label_8539", "label_8540", "label_8541", "label_8542", "label_8543", "label_8544", "label_8545", "label_8546", "label_8547", "label_8548", "label_8549", "label_8550", "label_8551", "label_8552", "label_8553", "label_8554", "label_8555", "label_8556", "label_8557", "label_8558", "label_8559", "label_8560", "label_8561", "label_8562", "label_8563", "label_8564", "label_8565", "label_8566", "label_8567", "label_8568", "label_8569", "label_8570", "label_8571", "label_8572", "label_8573", "label_8574", "label_8575", "label_8576", "label_8577", "label_8578", "label_8579", "label_8580", "label_8581", "label_8582", "label_8583", "label_8584", "label_8585", "label_8586", "label_8587", "label_8588", "label_8589", "label_8590", "label_8591", "label_8592", "label_8593", "label_8594", "label_8595", "label_8596", "label_8597", "label_8598", "label_8599", "label_8600", "label_8601", "label_8602", "label_8603", "label_8604", "label_8605", "label_8606", "label_8607", "label_8608", "label_8609", "label_8610", "label_8611", "label_8612", "label_8613", "label_8614", "label_8615", "label_8616", "label_8617", "label_8618", "label_8619", "label_8620", "label_8621", "label_8622", "label_8623", "label_8624", "label_8625", "label_8626", "label_8627", "label_8628", "label_8629", "label_8630", "label_8631", "label_8632", "label_8633", "label_8634", "label_8635", "label_8636", "label_8637", "label_8638", "label_8639", "label_8640", "label_8641", "label_8642", "label_8643", "label_8644", "label_8645", "label_8646", "label_8647", "label_8648", "label_8649", "label_8650", "label_8651", "label_8652", "label_8653", "label_8654", "label_8655", "label_8656", "label_8657", "label_8658", "label_8659", "label_8660", "label_8661", "label_8662", "label_8663", "label_8664", "label_8665", "label_8666", "label_8667", "label_8668", "label_8669", "label_8670", "label_8671", "label_8672", "label_8673", "label_8674", "label_8675", "label_8676", "label_8677", "label_8678", "label_8679", "label_8680", "label_8681", "label_8682", "label_8683", "label_8684", "label_8685", "label_8686", "label_8687", "label_8688", "label_8689", "label_8690", "label_8691", "label_8692", "label_8693", "label_8694", "label_8695", "label_8696", "label_8697", "label_8698", "label_8699", "label_8700", "label_8701", "label_8702", "label_8703", "label_8704", "label_8705", "label_8706", "label_8707", "label_8708", "label_8709", "label_8710", "label_8711", "label_8712", "label_8713", "label_8714", "label_8715", "label_8716", "label_8717", "label_8718", "label_8719", "label_8720", "label_8721", "label_8722", "label_8723", "label_8724", "label_8725", "label_8726", "label_8727", "label_8728", "label_8729", "label_8730", "label_8731", "label_8732", "label_8733", "label_8734", "label_8735", "label_8736", "label_8737", "label_8738", "label_8739", "label_8740", "label_8741", "label_8742", "label_8743", "label_8744", "label_8745", "label_8746", "label_8747", "label_8748", "label_8749", "label_8750", "label_8751", "label_8752", "label_8753", "label_8754", "label_8755", "label_8756", "label_8757", "label_8758", "label_8759", "label_8760", "label_8761", "label_8762", "label_8763", "label_8764", "label_8765", "label_8766", "label_8767", "label_8768", "label_8769", "label_8770", "label_8771", "label_8772", "label_8773", "label_8774", "label_8775", "label_8776", "label_8777", "label_8778", "label_8779", "label_8780", "label_8781", "label_8782", "label_8783", "label_8784", "label_8785", "label_8786", "label_8787", "label_8788", "label_8789", "label_8790", "label_8791", "label_8792", "label_8793", "label_8794", "label_8795", "label_8796", "label_8797", "label_8798", "label_8799", "label_8800", "label_8801", "label_8802", "label_8803", "label_8804", "label_8805", "label_8806", "label_8807", "label_8808", "label_8809", "label_8810", "label_8811", "label_8812", "label_8813", "label_8814", "label_8815", "label_8816", "label_8817", "label_8818", "label_8819", "label_8820", "label_8821", "label_8822", "label_8823", "label_8824", "label_8825", "label_8826", "label_8827", "label_8828", "label_8829", "label_8830", "label_8831", "label_8832", "label_8833", "label_8834", "label_8835", "label_8836", "label_8837", "label_8838", "label_8839", "label_8840", "label_8841", "label_8842", "label_8843", "label_8844", "label_8845", "label_8846", "label_8847", "label_8848", "label_8849", "label_8850", "label_8851", "label_8852", "label_8853", "label_8854", "label_8855", "label_8856", "label_8857", "label_8858", "label_8859", "label_8860", "label_8861", "label_8862", "label_8863", "label_8864", "label_8865", "label_8866", "label_8867", "label_8868", "label_8869", "label_8870", "label_8871", "label_8872", "label_8873", "label_8874", "label_8875", "label_8876", "label_8877", "label_8878", "label_8879", "label_8880", "label_8881", "label_8882", "label_8883", "label_8884", "label_8885", "label_8886", "label_8887", "label_8888", "label_8889", "label_8890", "label_8891", "label_8892", "label_8893", "label_8894", "label_8895", "label_8896", "label_8897", "label_8898", "label_8899", "label_8900", "label_8901", "label_8902", "label_8903", "label_8904", "label_8905", "label_8906", "label_8907", "label_8908", "label_8909", "label_8910", "label_8911", "label_8912", "label_8913", "label_8914", "label_8915", "label_8916", "label_8917", "label_8918", "label_8919", "label_8920", "label_8921", "label_8922", "label_8923", "label_8924", "label_8925", "label_8926", "label_8927", "label_8928", "label_8929", "label_8930", "label_8931", "label_8932", "label_8933", "label_8934", "label_8935", "label_8936", "label_8937", "label_8938", "label_8939", "label_8940", "label_8941", "label_8942", "label_8943", "label_8944", "label_8945", "label_8946", "label_8947", "label_8948", "label_8949", "label_8950", "label_8951", "label_8952", "label_8953", "label_8954", "label_8955", "label_8956", "label_8957", "label_8958", "label_8959", "label_8960", "label_8961", "label_8962", "label_8963", "label_8964", "label_8965", "label_8966", "label_8967", "label_8968", "label_8969", "label_8970", "label_8971", "label_8972", "label_8973", "label_8974", "label_8975", "label_8976", "label_8977", "label_8978", "label_8979", "label_8980", "label_8981", "label_8982", "label_8983", "label_8984", "label_8985", "label_8986", "label_8987", "label_8988", "label_8989", "label_8990", "label_8991", "label_8992", "label_8993", "label_8994", "label_8995", "label_8996", "label_8997", "label_8998", "label_8999", "label_9000", "label_9001", "label_9002", "label_9003", "label_9004", "label_9005", "label_9006", "label_9007", "label_9008", "label_9009", "label_9010", "label_9011", "label_9012", "label_9013", "label_9014", "label_9015", "label_9016", "label_9017", "label_9018", "label_9019", "label_9020", "label_9021", "label_9022", "label_9023", "label_9024", "label_9025", "label_9026", "label_9027", "label_9028", "label_9029", "label_9030", "label_9031", "label_9032", "label_9033", "label_9034", "label_9035", "label_9036", "label_9037", "label_9038", "label_9039", "label_9040", "label_9041", "label_9042", "label_9043", "label_9044", "label_9045", "label_9046", "label_9047", "label_9048", "label_9049", "label_9050", "label_9051", "label_9052", "label_9053", "label_9054", "label_9055", "label_9056", "label_9057", "label_9058", "label_9059", "label_9060", "label_9061", "label_9062", "label_9063", "label_9064", "label_9065", "label_9066", "label_9067", "label_9068", "label_9069", "label_9070", "label_9071", "label_9072", "label_9073", "label_9074", "label_9075", "label_9076", "label_9077", "label_9078", "label_9079", "label_9080", "label_9081", "label_9082", "label_9083", "label_9084", "label_9085", "label_9086", "label_9087", "label_9088", "label_9089", "label_9090", "label_9091", "label_9092", "label_9093", "label_9094", "label_9095", "label_9096", "label_9097", "label_9098", "label_9099", "label_9100", "label_9101", "label_9102", "label_9103", "label_9104", "label_9105", "label_9106", "label_9107", "label_9108", "label_9109", "label_9110", "label_9111", "label_9112", "label_9113", "label_9114", "label_9115", "label_9116", "label_9117", "label_9118", "label_9119", "label_9120", "label_9121", "label_9122", "label_9123", "label_9124", "label_9125", "label_9126", "label_9127", "label_9128", "label_9129", "label_9130", "label_9131", "label_9132", "label_9133", "label_9134", "label_9135", "label_9136", "label_9137", "label_9138", "label_9139", "label_9140", "label_9141", "label_9142", "label_9143", "label_9144", "label_9145", "label_9146", "label_9147", "label_9148", "label_9149", "label_9150", "label_9151", "label_9152", "label_9153", "label_9154", "label_9155", "label_9156", "label_9157", "label_9158", "label_9159", "label_9160", "label_9161", "label_9162", "label_9163", "label_9164", "label_9165", "label_9166", "label_9167", "label_9168", "label_9169", "label_9170", "label_9171", "label_9172", "label_9173", "label_9174", "label_9175", "label_9176", "label_9177", "label_9178", "label_9179", "label_9180", "label_9181", "label_9182", "label_9183", "label_9184", "label_9185", "label_9186", "label_9187", "label_9188", "label_9189", "label_9190", "label_9191", "label_9192", "label_9193", "label_9194", "label_9195", "label_9196", "label_9197", "label_9198", "label_9199", "label_9200", "label_9201", "label_9202", "label_9203", "label_9204", "label_9205", "label_9206", "label_9207", "label_9208", "label_9209", "label_9210", "label_9211", "label_9212", "label_9213", "label_9214", "label_9215", "label_9216", "label_9217", "label_9218", "label_9219", "label_9220", "label_9221", "label_9222", "label_9223", "label_9224", "label_9225", "label_9226", "label_9227", "label_9228", "label_9229", "label_9230", "label_9231", "label_9232", "label_9233", "label_9234", "label_9235", "label_9236", "label_9237", "label_9238", "label_9239", "label_9240", "label_9241", "label_9242", "label_9243", "label_9244", "label_9245", "label_9246", "label_9247", "label_9248", "label_9249", "label_9250", "label_9251", "label_9252", "label_9253", "label_9254", "label_9255", "label_9256", "label_9257", "label_9258", "label_9259", "label_9260", "label_9261", "label_9262", "label_9263", "label_9264", "label_9265", "label_9266", "label_9267", "label_9268", "label_9269", "label_9270", "label_9271", "label_9272", "label_9273", "label_9274", "label_9275", "label_9276", "label_9277", "label_9278", "label_9279", "label_9280", "label_9281", "label_9282", "label_9283", "label_9284", "label_9285", "label_9286", "label_9287", "label_9288", "label_9289", "label_9290", "label_9291", "label_9292", "label_9293", "label_9294", "label_9295", "label_9296", "label_9297", "label_9298", "label_9299", "label_9300", "label_9301", "label_9302", "label_9303", "label_9304", "label_9305", "label_9306", "label_9307", "label_9308", "label_9309", "label_9310", "label_9311", "label_9312", "label_9313", "label_9314", "label_9315", "label_9316", "label_9317", "label_9318", "label_9319", "label_9320", "label_9321", "label_9322", "label_9323", "label_9324", "label_9325", "label_9326", "label_9327", "label_9328", "label_9329", "label_9330", "label_9331", "label_9332", "label_9333", "label_9334", "label_9335", "label_9336", "label_9337", "label_9338", "label_9339", "label_9340", "label_9341", "label_9342", "label_9343", "label_9344", "label_9345", "label_9346", "label_9347", "label_9348", "label_9349", "label_9350", "label_9351", "label_9352", "label_9353", "label_9354", "label_9355", "label_9356", "label_9357", "label_9358", "label_9359", "label_9360", "label_9361", "label_9362", "label_9363", "label_9364", "label_9365", "label_9366", "label_9367", "label_9368", "label_9369", "label_9370", "label_9371", "label_9372", "label_9373", "label_9374", "label_9375", "label_9376", "label_9377", "label_9378", "label_9379", "label_9380", "label_9381", "label_9382", "label_9383", "label_9384", "label_9385", "label_9386", "label_9387", "label_9388", "label_9389", "label_9390", "label_9391", "label_9392", "label_9393", "label_9394", "label_9395", "label_9396", "label_9397", "label_9398", "label_9399", "label_9400", "label_9401", "label_9402", "label_9403", "label_9404", "label_9405", "label_9406", "label_9407", "label_9408", "label_9409", "label_9410", "label_9411", "label_9412", "label_9413", "label_9414", "label_9415", "label_9416", "label_9417", "label_9418", "label_9419", "label_9420", "label_9421", "label_9422", "label_9423", "label_9424", "label_9425", "label_9426", "label_9427", "label_9428", "label_9429", "label_9430", "label_9431", "label_9432", "label_9433", "label_9434", "label_9435", "label_9436", "label_9437", "label_9438", "label_9439", "label_9440", "label_9441", "label_9442", "label_9443", "label_9444", "label_9445", "label_9446", "label_9447", "label_9448", "label_9449", "label_9450", "label_9451", "label_9452", "label_9453", "label_9454", "label_9455", "label_9456", "label_9457", "label_9458", "label_9459", "label_9460", "label_9461", "label_9462", "label_9463", "label_9464", "label_9465", "label_9466", "label_9467", "label_9468", "label_9469", "label_9470", "label_9471", "label_9472", "label_9473", "label_9474", "label_9475", "label_9476", "label_9477", "label_9478", "label_9479", "label_9480", "label_9481", "label_9482", "label_9483", "label_9484", "label_9485", "label_9486", "label_9487", "label_9488", "label_9489", "label_9490", "label_9491", "label_9492", "label_9493", "label_9494", "label_9495", "label_9496", "label_9497", "label_9498", "label_9499", "label_9500", "label_9501", "label_9502", "label_9503", "label_9504", "label_9505", "label_9506", "label_9507", "label_9508", "label_9509", "label_9510", "label_9511", "label_9512", "label_9513", "label_9514", "label_9515", "label_9516", "label_9517", "label_9518", "label_9519", "label_9520", "label_9521", "label_9522", "label_9523", "label_9524", "label_9525", "label_9526", "label_9527", "label_9528", "label_9529", "label_9530", "label_9531", "label_9532", "label_9533", "label_9534", "label_9535", "label_9536", "label_9537", "label_9538", "label_9539", "label_9540", "label_9541", "label_9542", "label_9543", "label_9544", "label_9545", "label_9546", "label_9547", "label_9548", "label_9549", "label_9550", "label_9551", "label_9552", "label_9553", "label_9554", "label_9555", "label_9556", "label_9557", "label_9558", "label_9559", "label_9560", "label_9561", "label_9562", "label_9563", "label_9564", "label_9565", "label_9566", "label_9567", "label_9568", "label_9569", "label_9570", "label_9571", "label_9572", "label_9573", "label_9574", "label_9575", "label_9576", "label_9577", "label_9578", "label_9579", "label_9580", "label_9581", "label_9582", "label_9583", "label_9584", "label_9585", "label_9586", "label_9587", "label_9588", "label_9589", "label_9590", "label_9591", "label_9592", "label_9593", "label_9594", "label_9595", "label_9596", "label_9597", "label_9598", "label_9599", "label_9600", "label_9601", "label_9602", "label_9603", "label_9604", "label_9605", "label_9606", "label_9607", "label_9608", "label_9609", "label_9610", "label_9611", "label_9612", "label_9613", "label_9614", "label_9615", "label_9616", "label_9617", "label_9618", "label_9619", "label_9620", "label_9621", "label_9622", "label_9623", "label_9624", "label_9625", "label_9626", "label_9627", "label_9628", "label_9629", "label_9630", "label_9631", "label_9632", "label_9633", "label_9634", "label_9635", "label_9636", "label_9637", "label_9638", "label_9639", "label_9640", "label_9641", "label_9642", "label_9643", "label_9644", "label_9645", "label_9646", "label_9647", "label_9648", "label_9649", "label_9650", "label_9651", "label_9652", "label_9653", "label_9654", "label_9655", "label_9656", "label_9657", "label_9658", "label_9659", "label_9660", "label_9661", "label_9662", "label_9663", "label_9664", "label_9665", "label_9666", "label_9667", "label_9668", "label_9669", "label_9670", "label_9671", "label_9672", "label_9673", "label_9674", "label_9675", "label_9676", "label_9677", "label_9678", "label_9679", "label_9680", "label_9681", "label_9682", "label_9683", "label_9684", "label_9685", "label_9686", "label_9687", "label_9688", "label_9689", "label_9690", "label_9691", "label_9692", "label_9693", "label_9694", "label_9695", "label_9696", "label_9697", "label_9698", "label_9699", "label_9700", "label_9701", "label_9702", "label_9703", "label_9704", "label_9705", "label_9706", "label_9707", "label_9708", "label_9709", "label_9710", "label_9711", "label_9712", "label_9713", "label_9714", "label_9715", "label_9716", "label_9717", "label_9718", "label_9719", "label_9720", "label_9721", "label_9722", "label_9723", "label_9724", "label_9725", "label_9726", "label_9727", "label_9728", "label_9729", "label_9730", "label_9731", "label_9732", "label_9733", "label_9734", "label_9735", "label_9736", "label_9737", "label_9738", "label_9739", "label_9740", "label_9741", "label_9742", "label_9743", "label_9744", "label_9745", "label_9746", "label_9747", "label_9748", "label_9749", "label_9750", "label_9751", "label_9752", "label_9753", "label_9754", "label_9755", "label_9756", "label_9757", "label_9758", "label_9759", "label_9760", "label_9761", "label_9762", "label_9763", "label_9764", "label_9765", "label_9766", "label_9767", "label_9768", "label_9769", "label_9770", "label_9771", "label_9772", "label_9773", "label_9774", "label_9775", "label_9776", "label_9777", "label_9778", "label_9779", "label_9780", "label_9781", "label_9782", "label_9783", "label_9784", "label_9785", "label_9786", "label_9787", "label_9788", "label_9789", "label_9790", "label_9791", "label_9792", "label_9793", "label_9794", "label_9795", "label_9796", "label_9797", "label_9798", "label_9799", "label_9800", "label_9801", "label_9802", "label_9803", "label_9804", "label_9805", "label_9806", "label_9807", "label_9808", "label_9809", "label_9810", "label_9811", "label_9812", "label_9813", "label_9814", "label_9815", "label_9816", "label_9817", "label_9818", "label_9819", "label_9820", "label_9821", "label_9822", "label_9823", "label_9824", "label_9825", "label_9826", "label_9827", "label_9828", "label_9829", "label_9830", "label_9831", "label_9832", "label_9833", "label_9834", "label_9835", "label_9836", "label_9837", "label_9838", "label_9839", "label_9840", "label_9841", "label_9842", "label_9843", "label_9844", "label_9845", "label_9846", "label_9847", "label_9848", "label_9849", "label_9850", "label_9851", "label_9852", "label_9853", "label_9854", "label_9855", "label_9856", "label_9857", "label_9858", "label_9859", "label_9860", "label_9861", "label_9862", "label_9863", "label_9864", "label_9865", "label_9866", "label_9867", "label_9868", "label_9869", "label_9870", "label_9871", "label_9872", "label_9873", "label_9874", "label_9875", "label_9876", "label_9877", "label_9878", "label_9879", "label_9880", "label_9881", "label_9882", "label_9883", "label_9884", "label_9885", "label_9886", "label_9887", "label_9888", "label_9889", "label_9890", "label_9891", "label_9892", "label_9893", "label_9894", "label_9895", "label_9896", "label_9897", "label_9898", "label_9899", "label_9900", "label_9901", "label_9902", "label_9903", "label_9904", "label_9905", "label_9906", "label_9907", "label_9908", "label_9909", "label_9910", "label_9911", "label_9912", "label_9913", "label_9914", "label_9915", "label_9916", "label_9917", "label_9918", "label_9919", "label_9920", "label_9921", "label_9922", "label_9923", "label_9924", "label_9925", "label_9926", "label_9927", "label_9928", "label_9929", "label_9930", "label_9931", "label_9932", "label_9933", "label_9934", "label_9935", "label_9936", "label_9937", "label_9938", "label_9939", "label_9940", "label_9941", "label_9942", "label_9943", "label_9944", "label_9945", "label_9946", "label_9947", "label_9948", "label_9949", "label_9950", "label_9951", "label_9952", "label_9953", "label_9954", "label_9955", "label_9956", "label_9957", "label_9958", "label_9959", "label_9960", "label_9961", "label_9962", "label_9963", "label_9964", "label_9965", "label_9966", "label_9967", "label_9968", "label_9969", "label_9970", "label_9971", "label_9972", "label_9973", "label_9974", "label_9975", "label_9976", "label_9977", "label_9978", "label_9979", "label_9980", "label_9981", "label_9982", "label_9983", "label_9984", "label_9985", "label_9986", "label_9987", "label_9988", "label_9989", "label_9990", "label_9991", "label_9992", "label_9993", "label_9994", "label_9995", "label_9996", "label_9997", "label_9998", "label_9999", "label_10000", "label_10001", "label_10002", "label_10003", "label_10004", "label_10005", "label_10006", "label_10007", "label_10008", "label_10009", "label_10010", "label_10011", "label_10012", "label_10013", "label_10014", "label_10015", "label_10016", "label_10017", "label_10018", "label_10019", "label_10020", "label_10021", "label_10022", "label_10023", "label_10024", "label_10025", "label_10026", "label_10027", "label_10028", "label_10029", "label_10030", "label_10031", "label_10032", "label_10033", "label_10034", "label_10035", "label_10036", "label_10037", "label_10038", "label_10039", "label_10040", "label_10041", "label_10042", "label_10043", "label_10044", "label_10045", "label_10046", "label_10047", "label_10048", "label_10049", "label_10050", "label_10051", "label_10052", "label_10053", "label_10054", "label_10055", "label_10056", "label_10057", "label_10058", "label_10059", "label_10060", "label_10061", "label_10062", "label_10063", "label_10064", "label_10065", "label_10066", "label_10067", "label_10068", "label_10069", "label_10070", "label_10071", "label_10072", "label_10073", "label_10074", "label_10075", "label_10076", "label_10077", "label_10078", "label_10079", "label_10080", "label_10081", "label_10082", "label_10083", "label_10084", "label_10085", "label_10086", "label_10087", "label_10088", "label_10089", "label_10090", "label_10091", "label_10092", "label_10093", "label_10094", "label_10095", "label_10096", "label_10097", "label_10098", "label_10099", "label_10100", "label_10101", "label_10102", "label_10103", "label_10104", "label_10105", "label_10106", "label_10107", "label_10108", "label_10109", "label_10110", "label_10111", "label_10112", "label_10113", "label_10114", "label_10115", "label_10116", "label_10117", "label_10118", "label_10119", "label_10120", "label_10121", "label_10122", "label_10123", "label_10124", "label_10125", "label_10126", "label_10127", "label_10128", "label_10129", "label_10130", "label_10131", "label_10132", "label_10133", "label_10134", "label_10135", "label_10136", "label_10137", "label_10138", "label_10139", "label_10140", "label_10141", "label_10142", "label_10143", "label_10144", "label_10145", "label_10146", "label_10147", "label_10148", "label_10149", "label_10150", "label_10151", "label_10152", "label_10153", "label_10154", "label_10155", "label_10156", "label_10157", "label_10158", "label_10159", "label_10160", "label_10161", "label_10162", "label_10163", "label_10164", "label_10165", "label_10166", "label_10167", "label_10168", "label_10169", "label_10170", "label_10171", "label_10172", "label_10173", "label_10174", "label_10175", "label_10176", "label_10177", "label_10178", "label_10179", "label_10180", "label_10181", "label_10182", "label_10183", "label_10184", "label_10185", "label_10186", "label_10187", "label_10188", "label_10189", "label_10190", "label_10191", "label_10192", "label_10193", "label_10194", "label_10195", "label_10196", "label_10197", "label_10198", "label_10199", "label_10200", "label_10201", "label_10202", "label_10203", "label_10204", "label_10205", "label_10206", "label_10207", "label_10208", "label_10209", "label_10210", "label_10211", "label_10212", "label_10213", "label_10214", "label_10215", "label_10216", "label_10217", "label_10218", "label_10219", "label_10220", "label_10221", "label_10222", "label_10223", "label_10224", "label_10225", "label_10226", "label_10227", "label_10228", "label_10229", "label_10230", "label_10231", "label_10232", "label_10233", "label_10234", "label_10235", "label_10236", "label_10237", "label_10238", "label_10239", "label_10240", "label_10241", "label_10242", "label_10243", "label_10244", "label_10245", "label_10246", "label_10247", "label_10248", "label_10249", "label_10250", "label_10251", "label_10252", "label_10253", "label_10254", "label_10255", "label_10256", "label_10257", "label_10258", "label_10259", "label_10260", "label_10261", "label_10262", "label_10263", "label_10264", "label_10265", "label_10266", "label_10267", "label_10268", "label_10269", "label_10270", "label_10271", "label_10272", "label_10273", "label_10274", "label_10275", "label_10276", "label_10277", "label_10278", "label_10279", "label_10280", "label_10281", "label_10282", "label_10283", "label_10284", "label_10285", "label_10286", "label_10287", "label_10288", "label_10289", "label_10290", "label_10291", "label_10292", "label_10293", "label_10294", "label_10295", "label_10296", "label_10297", "label_10298", "label_10299", "label_10300", "label_10301", "label_10302", "label_10303", "label_10304", "label_10305", "label_10306", "label_10307", "label_10308", "label_10309", "label_10310", "label_10311", "label_10312", "label_10313", "label_10314", "label_10315", "label_10316", "label_10317", "label_10318", "label_10319", "label_10320", "label_10321", "label_10322", "label_10323", "label_10324", "label_10325", "label_10326", "label_10327", "label_10328", "label_10329", "label_10330", "label_10331", "label_10332", "label_10333", "label_10334", "label_10335", "label_10336", "label_10337", "label_10338", "label_10339", "label_10340", "label_10341", "label_10342", "label_10343", "label_10344", "label_10345", "label_10346", "label_10347", "label_10348", "label_10349", "label_10350", "label_10351", "label_10352", "label_10353", "label_10354", "label_10355", "label_10356", "label_10357", "label_10358", "label_10359", "label_10360", "label_10361", "label_10362", "label_10363", "label_10364", "label_10365", "label_10366", "label_10367", "label_10368", "label_10369", "label_10370", "label_10371", "label_10372", "label_10373", "label_10374", "label_10375", "label_10376", "label_10377", "label_10378", "label_10379", "label_10380", "label_10381", "label_10382", "label_10383", "label_10384", "label_10385", "label_10386", "label_10387", "label_10388", "label_10389", "label_10390", "label_10391", "label_10392", "label_10393", "label_10394", "label_10395", "label_10396", "label_10397", "label_10398", "label_10399", "label_10400", "label_10401", "label_10402", "label_10403", "label_10404", "label_10405", "label_10406", "label_10407", "label_10408", "label_10409", "label_10410", "label_10411", "label_10412", "label_10413", "label_10414", "label_10415", "label_10416", "label_10417", "label_10418", "label_10419", "label_10420", "label_10421", "label_10422", "label_10423", "label_10424", "label_10425", "label_10426", "label_10427", "label_10428", "label_10429", "label_10430", "label_10431", "label_10432", "label_10433", "label_10434", "label_10435", "label_10436", "label_10437", "label_10438", "label_10439", "label_10440", "label_10441", "label_10442", "label_10443", "label_10444", "label_10445", "label_10446", "label_10447", "label_10448", "label_10449", "label_10450", "label_10451", "label_10452", "label_10453", "label_10454", "label_10455", "label_10456", "label_10457", "label_10458", "label_10459", "label_10460", "label_10461", "label_10462", "label_10463", "label_10464", "label_10465", "label_10466", "label_10467", "label_10468", "label_10469", "label_10470", "label_10471", "label_10472", "label_10473", "label_10474", "label_10475", "label_10476", "label_10477", "label_10478", "label_10479", "label_10480", "label_10481", "label_10482", "label_10483", "label_10484", "label_10485", "label_10486", "label_10487", "label_10488", "label_10489", "label_10490", "label_10491", "label_10492", "label_10493", "label_10494", "label_10495", "label_10496", "label_10497", "label_10498", "label_10499", "label_10500", "label_10501", "label_10502", "label_10503", "label_10504", "label_10505", "label_10506", "label_10507", "label_10508", "label_10509", "label_10510", "label_10511", "label_10512", "label_10513", "label_10514", "label_10515", "label_10516", "label_10517", "label_10518", "label_10519", "label_10520", "label_10521", "label_10522", "label_10523", "label_10524", "label_10525", "label_10526", "label_10527", "label_10528", "label_10529", "label_10530", "label_10531", "label_10532", "label_10533", "label_10534", "label_10535", "label_10536", "label_10537", "label_10538", "label_10539", "label_10540", "label_10541", "label_10542", "label_10543", "label_10544", "label_10545", "label_10546", "label_10547", "label_10548", "label_10549", "label_10550", "label_10551", "label_10552", "label_10553", "label_10554", "label_10555", "label_10556", "label_10557", "label_10558", "label_10559", "label_10560", "label_10561", "label_10562", "label_10563", "label_10564", "label_10565", "label_10566", "label_10567", "label_10568", "label_10569", "label_10570", "label_10571", "label_10572", "label_10573", "label_10574", "label_10575", "label_10576", "label_10577", "label_10578", "label_10579", "label_10580", "label_10581", "label_10582", "label_10583", "label_10584", "label_10585", "label_10586", "label_10587", "label_10588", "label_10589", "label_10590", "label_10591", "label_10592", "label_10593", "label_10594", "label_10595", "label_10596", "label_10597", "label_10598", "label_10599", "label_10600", "label_10601", "label_10602", "label_10603", "label_10604", "label_10605", "label_10606", "label_10607", "label_10608", "label_10609", "label_10610", "label_10611", "label_10612", "label_10613", "label_10614", "label_10615", "label_10616", "label_10617", "label_10618", "label_10619", "label_10620", "label_10621", "label_10622", "label_10623", "label_10624", "label_10625", "label_10626", "label_10627", "label_10628", "label_10629", "label_10630", "label_10631", "label_10632", "label_10633", "label_10634", "label_10635", "label_10636", "label_10637", "label_10638", "label_10639", "label_10640", "label_10641", "label_10642", "label_10643", "label_10644", "label_10645", "label_10646", "label_10647", "label_10648", "label_10649", "label_10650", "label_10651", "label_10652", "label_10653", "label_10654", "label_10655", "label_10656", "label_10657", "label_10658", "label_10659", "label_10660", "label_10661", "label_10662", "label_10663", "label_10664", "label_10665", "label_10666", "label_10667", "label_10668", "label_10669", "label_10670", "label_10671", "label_10672", "label_10673", "label_10674", "label_10675", "label_10676", "label_10677", "label_10678", "label_10679", "label_10680", "label_10681", "label_10682", "label_10683", "label_10684", "label_10685", "label_10686", "label_10687", "label_10688", "label_10689", "label_10690", "label_10691", "label_10692", "label_10693", "label_10694", "label_10695", "label_10696", "label_10697", "label_10698", "label_10699", "label_10700", "label_10701", "label_10702", "label_10703", "label_10704", "label_10705", "label_10706", "label_10707", "label_10708", "label_10709", "label_10710", "label_10711", "label_10712", "label_10713", "label_10714", "label_10715", "label_10716", "label_10717", "label_10718", "label_10719", "label_10720", "label_10721", "label_10722", "label_10723", "label_10724", "label_10725", "label_10726", "label_10727", "label_10728", "label_10729", "label_10730", "label_10731", "label_10732", "label_10733", "label_10734", "label_10735", "label_10736", "label_10737", "label_10738", "label_10739", "label_10740", "label_10741", "label_10742", "label_10743", "label_10744", "label_10745", "label_10746", "label_10747", "label_10748", "label_10749", "label_10750", "label_10751", "label_10752", "label_10753", "label_10754", "label_10755", "label_10756", "label_10757", "label_10758", "label_10759", "label_10760", "label_10761", "label_10762", "label_10763", "label_10764", "label_10765", "label_10766", "label_10767", "label_10768", "label_10769", "label_10770", "label_10771", "label_10772", "label_10773", "label_10774", "label_10775", "label_10776", "label_10777", "label_10778", "label_10779", "label_10780", "label_10781", "label_10782", "label_10783", "label_10784", "label_10785", "label_10786", "label_10787", "label_10788", "label_10789", "label_10790", "label_10791", "label_10792", "label_10793", "label_10794", "label_10795", "label_10796", "label_10797", "label_10798", "label_10799", "label_10800", "label_10801", "label_10802", "label_10803", "label_10804", "label_10805", "label_10806", "label_10807", "label_10808", "label_10809", "label_10810", "label_10811", "label_10812", "label_10813", "label_10814", "label_10815", "label_10816", "label_10817", "label_10818", "label_10819", "label_10820", "label_10821", "label_10822", "label_10823", "label_10824", "label_10825", "label_10826", "label_10827", "label_10828", "label_10829", "label_10830", "label_10831", "label_10832", "label_10833", "label_10834", "label_10835", "label_10836", "label_10837", "label_10838", "label_10839", "label_10840", "label_10841", "label_10842", "label_10843", "label_10844", "label_10845", "label_10846", "label_10847", "label_10848", "label_10849", "label_10850", "label_10851", "label_10852", "label_10853", "label_10854", "label_10855", "label_10856", "label_10857", "label_10858", "label_10859", "label_10860", "label_10861", "label_10862", "label_10863", "label_10864", "label_10865", "label_10866", "label_10867", "label_10868", "label_10869", "label_10870", "label_10871", "label_10872", "label_10873", "label_10874", "label_10875", "label_10876", "label_10877", "label_10878", "label_10879", "label_10880", "label_10881", "label_10882", "label_10883", "label_10884", "label_10885", "label_10886", "label_10887", "label_10888", "label_10889", "label_10890", "label_10891", "label_10892", "label_10893", "label_10894", "label_10895", "label_10896", "label_10897", "label_10898", "label_10899", "label_10900", "label_10901", "label_10902", "label_10903", "label_10904", "label_10905", "label_10906", "label_10907", "label_10908", "label_10909", "label_10910", "label_10911", "label_10912", "label_10913", "label_10914", "label_10915", "label_10916", "label_10917", "label_10918", "label_10919", "label_10920", "label_10921", "label_10922", "label_10923", "label_10924", "label_10925", "label_10926", "label_10927", "label_10928", "label_10929", "label_10930", "label_10931", "label_10932", "label_10933", "label_10934", "label_10935", "label_10936", "label_10937", "label_10938", "label_10939", "label_10940", "label_10941", "label_10942", "label_10943", "label_10944", "label_10945", "label_10946", "label_10947", "label_10948", "label_10949", "label_10950", "label_10951", "label_10952", "label_10953", "label_10954", "label_10955", "label_10956", "label_10957", "label_10958", "label_10959", "label_10960", "label_10961", "label_10962", "label_10963", "label_10964", "label_10965", "label_10966", "label_10967", "label_10968", "label_10969", "label_10970", "label_10971", "label_10972", "label_10973", "label_10974", "label_10975", "label_10976", "label_10977", "label_10978", "label_10979", "label_10980", "label_10981", "label_10982", "label_10983", "label_10984", "label_10985", "label_10986", "label_10987", "label_10988", "label_10989", "label_10990", "label_10991", "label_10992", "label_10993", "label_10994", "label_10995", "label_10996", "label_10997", "label_10998", "label_10999", "label_11000", "label_11001", "label_11002", "label_11003", "label_11004", "label_11005", "label_11006", "label_11007", "label_11008", "label_11009", "label_11010", "label_11011", "label_11012", "label_11013", "label_11014", "label_11015", "label_11016", "label_11017", "label_11018", "label_11019", "label_11020", "label_11021", "label_11022", "label_11023", "label_11024", "label_11025", "label_11026", "label_11027", "label_11028", "label_11029", "label_11030", "label_11031", "label_11032", "label_11033", "label_11034", "label_11035", "label_11036", "label_11037", "label_11038", "label_11039", "label_11040", "label_11041", "label_11042", "label_11043", "label_11044", "label_11045", "label_11046", "label_11047", "label_11048", "label_11049", "label_11050", "label_11051", "label_11052", "label_11053", "label_11054", "label_11055", "label_11056", "label_11057", "label_11058", "label_11059", "label_11060", "label_11061", "label_11062", "label_11063", "label_11064", "label_11065", "label_11066", "label_11067", "label_11068", "label_11069", "label_11070", "label_11071", "label_11072", "label_11073", "label_11074", "label_11075", "label_11076", "label_11077", "label_11078", "label_11079", "label_11080", "label_11081", "label_11082", "label_11083", "label_11084", "label_11085", "label_11086", "label_11087", "label_11088", "label_11089", "label_11090", "label_11091", "label_11092", "label_11093", "label_11094", "label_11095", "label_11096", "label_11097", "label_11098", "label_11099", "label_11100", "label_11101", "label_11102", "label_11103", "label_11104", "label_11105", "label_11106", "label_11107", "label_11108", "label_11109", "label_11110", "label_11111", "label_11112", "label_11113", "label_11114", "label_11115", "label_11116", "label_11117", "label_11118", "label_11119", "label_11120", "label_11121", "label_11122", "label_11123", "label_11124", "label_11125", "label_11126", "label_11127", "label_11128", "label_11129", "label_11130", "label_11131", "label_11132", "label_11133", "label_11134", "label_11135", "label_11136", "label_11137", "label_11138", "label_11139", "label_11140", "label_11141", "label_11142", "label_11143", "label_11144", "label_11145", "label_11146", "label_11147", "label_11148", "label_11149", "label_11150", "label_11151", "label_11152", "label_11153", "label_11154", "label_11155", "label_11156", "label_11157", "label_11158", "label_11159", "label_11160", "label_11161", "label_11162", "label_11163", "label_11164", "label_11165", "label_11166", "label_11167", "label_11168", "label_11169", "label_11170", "label_11171", "label_11172", "label_11173", "label_11174", "label_11175", "label_11176", "label_11177", "label_11178", "label_11179", "label_11180", "label_11181", "label_11182", "label_11183", "label_11184", "label_11185", "label_11186", "label_11187", "label_11188", "label_11189", "label_11190", "label_11191", "label_11192", "label_11193", "label_11194", "label_11195", "label_11196", "label_11197", "label_11198", "label_11199", "label_11200", "label_11201", "label_11202", "label_11203", "label_11204", "label_11205", "label_11206", "label_11207", "label_11208", "label_11209", "label_11210", "label_11211", "label_11212", "label_11213", "label_11214", "label_11215", "label_11216", "label_11217", "label_11218", "label_11219", "label_11220", "label_11221", "label_11222", "label_11223", "label_11224", "label_11225", "label_11226", "label_11227", "label_11228", "label_11229", "label_11230", "label_11231", "label_11232", "label_11233", "label_11234", "label_11235", "label_11236", "label_11237", "label_11238", "label_11239", "label_11240", "label_11241", "label_11242", "label_11243", "label_11244", "label_11245", "label_11246", "label_11247", "label_11248", "label_11249", "label_11250", "label_11251", "label_11252", "label_11253", "label_11254", "label_11255", "label_11256", "label_11257", "label_11258", "label_11259", "label_11260", "label_11261", "label_11262", "label_11263", "label_11264", "label_11265", "label_11266", "label_11267", "label_11268", "label_11269", "label_11270", "label_11271", "label_11272", "label_11273", "label_11274", "label_11275", "label_11276", "label_11277", "label_11278", "label_11279", "label_11280", "label_11281", "label_11282", "label_11283", "label_11284", "label_11285", "label_11286", "label_11287", "label_11288", "label_11289", "label_11290", "label_11291", "label_11292", "label_11293", "label_11294", "label_11295", "label_11296", "label_11297", "label_11298", "label_11299", "label_11300", "label_11301", "label_11302", "label_11303", "label_11304", "label_11305", "label_11306", "label_11307", "label_11308", "label_11309", "label_11310", "label_11311", "label_11312", "label_11313", "label_11314", "label_11315", "label_11316", "label_11317", "label_11318", "label_11319", "label_11320", "label_11321", "label_11322", "label_11323", "label_11324", "label_11325", "label_11326", "label_11327", "label_11328", "label_11329", "label_11330", "label_11331", "label_11332", "label_11333", "label_11334", "label_11335", "label_11336", "label_11337", "label_11338", "label_11339", "label_11340", "label_11341", "label_11342", "label_11343", "label_11344", "label_11345", "label_11346", "label_11347", "label_11348", "label_11349", "label_11350", "label_11351", "label_11352", "label_11353", "label_11354", "label_11355", "label_11356", "label_11357", "label_11358", "label_11359", "label_11360", "label_11361", "label_11362", "label_11363", "label_11364", "label_11365", "label_11366", "label_11367", "label_11368", "label_11369", "label_11370", "label_11371", "label_11372", "label_11373", "label_11374", "label_11375", "label_11376", "label_11377", "label_11378", "label_11379", "label_11380", "label_11381", "label_11382", "label_11383", "label_11384", "label_11385", "label_11386", "label_11387", "label_11388", "label_11389", "label_11390", "label_11391", "label_11392", "label_11393", "label_11394", "label_11395", "label_11396", "label_11397", "label_11398", "label_11399", "label_11400", "label_11401", "label_11402", "label_11403", "label_11404", "label_11405", "label_11406", "label_11407", "label_11408", "label_11409", "label_11410", "label_11411", "label_11412", "label_11413", "label_11414", "label_11415", "label_11416", "label_11417", "label_11418", "label_11419", "label_11420", "label_11421", "label_11422", "label_11423", "label_11424", "label_11425", "label_11426", "label_11427", "label_11428", "label_11429", "label_11430", "label_11431", "label_11432", "label_11433", "label_11434", "label_11435", "label_11436", "label_11437", "label_11438", "label_11439", "label_11440", "label_11441", "label_11442", "label_11443", "label_11444", "label_11445", "label_11446", "label_11447", "label_11448", "label_11449", "label_11450", "label_11451", "label_11452", "label_11453", "label_11454", "label_11455", "label_11456", "label_11457", "label_11458", "label_11459", "label_11460", "label_11461", "label_11462", "label_11463", "label_11464", "label_11465", "label_11466", "label_11467", "label_11468", "label_11469", "label_11470", "label_11471", "label_11472", "label_11473", "label_11474", "label_11475", "label_11476", "label_11477", "label_11478", "label_11479", "label_11480", "label_11481", "label_11482", "label_11483", "label_11484", "label_11485", "label_11486", "label_11487", "label_11488", "label_11489", "label_11490", "label_11491", "label_11492", "label_11493", "label_11494", "label_11495", "label_11496", "label_11497", "label_11498", "label_11499", "label_11500", "label_11501", "label_11502", "label_11503", "label_11504", "label_11505", "label_11506", "label_11507", "label_11508", "label_11509", "label_11510", "label_11511", "label_11512", "label_11513", "label_11514", "label_11515", "label_11516", "label_11517", "label_11518", "label_11519", "label_11520", "label_11521", "label_11522", "label_11523", "label_11524", "label_11525", "label_11526", "label_11527", "label_11528", "label_11529", "label_11530", "label_11531", "label_11532", "label_11533", "label_11534", "label_11535", "label_11536", "label_11537", "label_11538", "label_11539", "label_11540", "label_11541", "label_11542", "label_11543", "label_11544", "label_11545", "label_11546", "label_11547", "label_11548", "label_11549", "label_11550", "label_11551", "label_11552", "label_11553", "label_11554", "label_11555", "label_11556", "label_11557", "label_11558", "label_11559", "label_11560", "label_11561", "label_11562", "label_11563", "label_11564", "label_11565", "label_11566", "label_11567", "label_11568", "label_11569", "label_11570", "label_11571", "label_11572", "label_11573", "label_11574", "label_11575", "label_11576", "label_11577", "label_11578", "label_11579", "label_11580", "label_11581", "label_11582", "label_11583", "label_11584", "label_11585", "label_11586", "label_11587", "label_11588", "label_11589", "label_11590", "label_11591", "label_11592", "label_11593", "label_11594", "label_11595", "label_11596", "label_11597", "label_11598", "label_11599", "label_11600", "label_11601", "label_11602", "label_11603", "label_11604", "label_11605", "label_11606", "label_11607", "label_11608", "label_11609", "label_11610", "label_11611", "label_11612", "label_11613", "label_11614", "label_11615", "label_11616", "label_11617", "label_11618", "label_11619", "label_11620", "label_11621", "label_11622", "label_11623", "label_11624", "label_11625", "label_11626", "label_11627", "label_11628", "label_11629", "label_11630", "label_11631", "label_11632", "label_11633", "label_11634", "label_11635", "label_11636", "label_11637", "label_11638", "label_11639", "label_11640", "label_11641", "label_11642", "label_11643", "label_11644", "label_11645", "label_11646", "label_11647", "label_11648", "label_11649", "label_11650", "label_11651", "label_11652", "label_11653", "label_11654", "label_11655", "label_11656", "label_11657", "label_11658", "label_11659", "label_11660", "label_11661", "label_11662", "label_11663", "label_11664", "label_11665", "label_11666", "label_11667", "label_11668", "label_11669", "label_11670", "label_11671", "label_11672", "label_11673", "label_11674", "label_11675", "label_11676", "label_11677", "label_11678", "label_11679", "label_11680", "label_11681", "label_11682", "label_11683", "label_11684", "label_11685", "label_11686", "label_11687", "label_11688", "label_11689", "label_11690", "label_11691", "label_11692", "label_11693", "label_11694", "label_11695", "label_11696", "label_11697", "label_11698", "label_11699", "label_11700", "label_11701", "label_11702", "label_11703", "label_11704", "label_11705", "label_11706", "label_11707", "label_11708", "label_11709", "label_11710", "label_11711", "label_11712", "label_11713", "label_11714", "label_11715", "label_11716", "label_11717", "label_11718", "label_11719", "label_11720", "label_11721", "label_11722", "label_11723", "label_11724", "label_11725", "label_11726", "label_11727", "label_11728", "label_11729", "label_11730", "label_11731", "label_11732", "label_11733", "label_11734", "label_11735", "label_11736", "label_11737", "label_11738", "label_11739", "label_11740", "label_11741", "label_11742", "label_11743", "label_11744", "label_11745", "label_11746", "label_11747", "label_11748", "label_11749", "label_11750", "label_11751", "label_11752", "label_11753", "label_11754", "label_11755", "label_11756", "label_11757", "label_11758", "label_11759", "label_11760", "label_11761", "label_11762", "label_11763", "label_11764", "label_11765", "label_11766", "label_11767", "label_11768", "label_11769", "label_11770", "label_11771", "label_11772", "label_11773", "label_11774", "label_11775", "label_11776", "label_11777", "label_11778", "label_11779", "label_11780", "label_11781", "label_11782", "label_11783", "label_11784", "label_11785", "label_11786", "label_11787", "label_11788", "label_11789", "label_11790", "label_11791", "label_11792", "label_11793", "label_11794", "label_11795", "label_11796", "label_11797", "label_11798", "label_11799", "label_11800", "label_11801", "label_11802", "label_11803", "label_11804", "label_11805", "label_11806", "label_11807", "label_11808", "label_11809", "label_11810", "label_11811", "label_11812", "label_11813", "label_11814", "label_11815", "label_11816", "label_11817", "label_11818", "label_11819", "label_11820", "label_11821", "label_11822", "label_11823", "label_11824", "label_11825", "label_11826", "label_11827", "label_11828", "label_11829", "label_11830", "label_11831", "label_11832", "label_11833", "label_11834", "label_11835", "label_11836", "label_11837", "label_11838", "label_11839", "label_11840", "label_11841", "label_11842", "label_11843", "label_11844", "label_11845", "label_11846", "label_11847", "label_11848", "label_11849", "label_11850", "label_11851", "label_11852", "label_11853", "label_11854", "label_11855", "label_11856", "label_11857", "label_11858", "label_11859", "label_11860", "label_11861", "label_11862", "label_11863", "label_11864", "label_11865", "label_11866", "label_11867", "label_11868", "label_11869", "label_11870", "label_11871", "label_11872", "label_11873", "label_11874", "label_11875", "label_11876", "label_11877", "label_11878", "label_11879", "label_11880", "label_11881", "label_11882", "label_11883", "label_11884", "label_11885", "label_11886", "label_11887", "label_11888", "label_11889", "label_11890", "label_11891", "label_11892", "label_11893", "label_11894", "label_11895", "label_11896", "label_11897", "label_11898", "label_11899", "label_11900", "label_11901", "label_11902", "label_11903", "label_11904", "label_11905", "label_11906", "label_11907", "label_11908", "label_11909", "label_11910", "label_11911", "label_11912", "label_11913", "label_11914", "label_11915", "label_11916", "label_11917", "label_11918", "label_11919", "label_11920", "label_11921", "label_11922", "label_11923", "label_11924", "label_11925", "label_11926", "label_11927", "label_11928", "label_11929", "label_11930", "label_11931", "label_11932", "label_11933", "label_11934", "label_11935", "label_11936", "label_11937", "label_11938", "label_11939", "label_11940", "label_11941", "label_11942", "label_11943", "label_11944", "label_11945", "label_11946", "label_11947", "label_11948", "label_11949", "label_11950", "label_11951", "label_11952", "label_11953", "label_11954", "label_11955", "label_11956", "label_11957", "label_11958", "label_11959", "label_11960", "label_11961", "label_11962", "label_11963", "label_11964", "label_11965", "label_11966", "label_11967", "label_11968", "label_11969", "label_11970", "label_11971", "label_11972", "label_11973", "label_11974", "label_11975", "label_11976", "label_11977", "label_11978", "label_11979", "label_11980", "label_11981", "label_11982", "label_11983", "label_11984", "label_11985", "label_11986", "label_11987", "label_11988", "label_11989", "label_11990", "label_11991", "label_11992", "label_11993", "label_11994", "label_11995", "label_11996", "label_11997", "label_11998", "label_11999", "label_12000", "label_12001", "label_12002", "label_12003", "label_12004", "label_12005", "label_12006", "label_12007", "label_12008", "label_12009", "label_12010", "label_12011", "label_12012", "label_12013", "label_12014", "label_12015", "label_12016", "label_12017", "label_12018", "label_12019", "label_12020", "label_12021", "label_12022", "label_12023", "label_12024", "label_12025", "label_12026", "label_12027", "label_12028", "label_12029", "label_12030", "label_12031", "label_12032", "label_12033", "label_12034", "label_12035", "label_12036", "label_12037", "label_12038", "label_12039", "label_12040", "label_12041", "label_12042", "label_12043", "label_12044", "label_12045", "label_12046", "label_12047", "label_12048", "label_12049", "label_12050", "label_12051", "label_12052", "label_12053", "label_12054", "label_12055", "label_12056", "label_12057", "label_12058", "label_12059", "label_12060", "label_12061", "label_12062", "label_12063", "label_12064", "label_12065", "label_12066", "label_12067", "label_12068", "label_12069", "label_12070", "label_12071", "label_12072", "label_12073", "label_12074", "label_12075", "label_12076", "label_12077", "label_12078", "label_12079", "label_12080", "label_12081", "label_12082", "label_12083", "label_12084", "label_12085", "label_12086", "label_12087", "label_12088", "label_12089", "label_12090", "label_12091", "label_12092", "label_12093", "label_12094", "label_12095", "label_12096", "label_12097", "label_12098", "label_12099", "label_12100", "label_12101", "label_12102", "label_12103", "label_12104", "label_12105", "label_12106", "label_12107", "label_12108", "label_12109", "label_12110", "label_12111", "label_12112", "label_12113", "label_12114", "label_12115", "label_12116", "label_12117", "label_12118", "label_12119", "label_12120", "label_12121", "label_12122", "label_12123", "label_12124", "label_12125", "label_12126", "label_12127", "label_12128", "label_12129", "label_12130", "label_12131", "label_12132", "label_12133", "label_12134", "label_12135", "label_12136", "label_12137", "label_12138", "label_12139", "label_12140", "label_12141", "label_12142", "label_12143", "label_12144", "label_12145", "label_12146", "label_12147", "label_12148", "label_12149", "label_12150", "label_12151", "label_12152", "label_12153", "label_12154", "label_12155", "label_12156", "label_12157", "label_12158", "label_12159", "label_12160", "label_12161", "label_12162", "label_12163", "label_12164", "label_12165", "label_12166", "label_12167", "label_12168", "label_12169", "label_12170", "label_12171", "label_12172", "label_12173", "label_12174", "label_12175", "label_12176", "label_12177", "label_12178", "label_12179", "label_12180", "label_12181", "label_12182", "label_12183", "label_12184", "label_12185", "label_12186", "label_12187", "label_12188", "label_12189", "label_12190", "label_12191", "label_12192", "label_12193", "label_12194", "label_12195", "label_12196", "label_12197", "label_12198", "label_12199", "label_12200", "label_12201", "label_12202", "label_12203", "label_12204", "label_12205", "label_12206", "label_12207", "label_12208", "label_12209", "label_12210", "label_12211", "label_12212", "label_12213", "label_12214", "label_12215", "label_12216", "label_12217", "label_12218", "label_12219", "label_12220", "label_12221", "label_12222", "label_12223", "label_12224", "label_12225", "label_12226", "label_12227", "label_12228", "label_12229", "label_12230", "label_12231", "label_12232", "label_12233", "label_12234", "label_12235", "label_12236", "label_12237", "label_12238", "label_12239", "label_12240", "label_12241", "label_12242", "label_12243", "label_12244", "label_12245", "label_12246", "label_12247", "label_12248", "label_12249", "label_12250", "label_12251", "label_12252", "label_12253", "label_12254", "label_12255", "label_12256", "label_12257", "label_12258", "label_12259", "label_12260", "label_12261", "label_12262", "label_12263", "label_12264", "label_12265", "label_12266", "label_12267", "label_12268", "label_12269", "label_12270", "label_12271", "label_12272", "label_12273", "label_12274", "label_12275", "label_12276", "label_12277", "label_12278", "label_12279", "label_12280", "label_12281", "label_12282", "label_12283", "label_12284", "label_12285", "label_12286", "label_12287", "label_12288", "label_12289", "label_12290", "label_12291", "label_12292", "label_12293", "label_12294", "label_12295", "label_12296", "label_12297", "label_12298", "label_12299", "label_12300", "label_12301", "label_12302", "label_12303", "label_12304", "label_12305", "label_12306", "label_12307", "label_12308", "label_12309", "label_12310", "label_12311", "label_12312", "label_12313", "label_12314", "label_12315", "label_12316", "label_12317", "label_12318", "label_12319", "label_12320", "label_12321", "label_12322", "label_12323", "label_12324", "label_12325", "label_12326", "label_12327", "label_12328", "label_12329", "label_12330", "label_12331", "label_12332", "label_12333", "label_12334", "label_12335", "label_12336", "label_12337", "label_12338", "label_12339", "label_12340", "label_12341", "label_12342", "label_12343", "label_12344", "label_12345", "label_12346", "label_12347", "label_12348", "label_12349", "label_12350", "label_12351", "label_12352", "label_12353", "label_12354", "label_12355", "label_12356", "label_12357", "label_12358", "label_12359", "label_12360", "label_12361", "label_12362", "label_12363", "label_12364", "label_12365", "label_12366", "label_12367", "label_12368", "label_12369", "label_12370", "label_12371", "label_12372", "label_12373", "label_12374", "label_12375", "label_12376", "label_12377", "label_12378", "label_12379", "label_12380", "label_12381", "label_12382", "label_12383", "label_12384", "label_12385", "label_12386", "label_12387", "label_12388", "label_12389", "label_12390", "label_12391", "label_12392", "label_12393", "label_12394", "label_12395", "label_12396", "label_12397", "label_12398", "label_12399", "label_12400", "label_12401", "label_12402", "label_12403", "label_12404", "label_12405", "label_12406", "label_12407", "label_12408", "label_12409", "label_12410", "label_12411", "label_12412", "label_12413", "label_12414", "label_12415", "label_12416", "label_12417", "label_12418", "label_12419", "label_12420", "label_12421", "label_12422", "label_12423", "label_12424", "label_12425", "label_12426", "label_12427", "label_12428", "label_12429", "label_12430", "label_12431", "label_12432", "label_12433", "label_12434", "label_12435", "label_12436", "label_12437", "label_12438", "label_12439", "label_12440", "label_12441", "label_12442", "label_12443", "label_12444", "label_12445", "label_12446", "label_12447", "label_12448", "label_12449", "label_12450", "label_12451", "label_12452", "label_12453", "label_12454", "label_12455", "label_12456", "label_12457", "label_12458", "label_12459", "label_12460", "label_12461", "label_12462", "label_12463", "label_12464", "label_12465", "label_12466", "label_12467", "label_12468", "label_12469", "label_12470", "label_12471", "label_12472", "label_12473", "label_12474", "label_12475", "label_12476", "label_12477", "label_12478", "label_12479", "label_12480", "label_12481", "label_12482", "label_12483", "label_12484", "label_12485", "label_12486", "label_12487", "label_12488", "label_12489", "label_12490", "label_12491", "label_12492", "label_12493", "label_12494", "label_12495", "label_12496", "label_12497", "label_12498", "label_12499", "label_12500", "label_12501", "label_12502", "label_12503", "label_12504", "label_12505", "label_12506", "label_12507", "label_12508", "label_12509", "label_12510", "label_12511", "label_12512", "label_12513", "label_12514", "label_12515", "label_12516", "label_12517", "label_12518", "label_12519", "label_12520", "label_12521", "label_12522", "label_12523", "label_12524", "label_12525", "label_12526", "label_12527", "label_12528", "label_12529", "label_12530", "label_12531", "label_12532", "label_12533", "label_12534", "label_12535", "label_12536", "label_12537", "label_12538", "label_12539", "label_12540", "label_12541", "label_12542", "label_12543", "label_12544", "label_12545", "label_12546", "label_12547", "label_12548", "label_12549", "label_12550", "label_12551", "label_12552", "label_12553", "label_12554", "label_12555", "label_12556", "label_12557", "label_12558", "label_12559", "label_12560", "label_12561", "label_12562", "label_12563", "label_12564", "label_12565", "label_12566", "label_12567", "label_12568", "label_12569", "label_12570", "label_12571", "label_12572", "label_12573", "label_12574", "label_12575", "label_12576", "label_12577", "label_12578", "label_12579", "label_12580", "label_12581", "label_12582", "label_12583", "label_12584", "label_12585", "label_12586", "label_12587", "label_12588", "label_12589", "label_12590", "label_12591", "label_12592", "label_12593", "label_12594", "label_12595", "label_12596", "label_12597", "label_12598", "label_12599", "label_12600", "label_12601", "label_12602", "label_12603", "label_12604", "label_12605", "label_12606", "label_12607", "label_12608", "label_12609", "label_12610", "label_12611", "label_12612", "label_12613", "label_12614", "label_12615", "label_12616", "label_12617", "label_12618", "label_12619", "label_12620", "label_12621", "label_12622", "label_12623", "label_12624", "label_12625", "label_12626", "label_12627", "label_12628", "label_12629", "label_12630", "label_12631", "label_12632", "label_12633", "label_12634", "label_12635", "label_12636", "label_12637", "label_12638", "label_12639", "label_12640", "label_12641", "label_12642", "label_12643", "label_12644", "label_12645", "label_12646", "label_12647", "label_12648", "label_12649", "label_12650", "label_12651", "label_12652", "label_12653", "label_12654", "label_12655", "label_12656", "label_12657", "label_12658", "label_12659", "label_12660", "label_12661", "label_12662", "label_12663", "label_12664", "label_12665", "label_12666", "label_12667", "label_12668", "label_12669", "label_12670", "label_12671", "label_12672", "label_12673", "label_12674", "label_12675", "label_12676", "label_12677", "label_12678", "label_12679", "label_12680", "label_12681", "label_12682", "label_12683", "label_12684", "label_12685", "label_12686", "label_12687", "label_12688", "label_12689", "label_12690", "label_12691", "label_12692", "label_12693", "label_12694", "label_12695", "label_12696", "label_12697", "label_12698", "label_12699", "label_12700", "label_12701", "label_12702", "label_12703", "label_12704", "label_12705", "label_12706", "label_12707", "label_12708", "label_12709", "label_12710", "label_12711", "label_12712", "label_12713", "label_12714", "label_12715", "label_12716", "label_12717", "label_12718", "label_12719", "label_12720", "label_12721", "label_12722", "label_12723", "label_12724", "label_12725", "label_12726", "label_12727", "label_12728", "label_12729", "label_12730", "label_12731", "label_12732", "label_12733", "label_12734", "label_12735", "label_12736", "label_12737", "label_12738", "label_12739", "label_12740", "label_12741", "label_12742", "label_12743", "label_12744", "label_12745", "label_12746", "label_12747", "label_12748", "label_12749", "label_12750", "label_12751", "label_12752", "label_12753", "label_12754", "label_12755", "label_12756", "label_12757", "label_12758", "label_12759", "label_12760", "label_12761", "label_12762", "label_12763", "label_12764", "label_12765", "label_12766", "label_12767", "label_12768", "label_12769", "label_12770", "label_12771", "label_12772", "label_12773", "label_12774", "label_12775", "label_12776", "label_12777", "label_12778", "label_12779", "label_12780", "label_12781", "label_12782", "label_12783", "label_12784", "label_12785", "label_12786", "label_12787", "label_12788", "label_12789", "label_12790", "label_12791", "label_12792", "label_12793", "label_12794", "label_12795", "label_12796", "label_12797", "label_12798", "label_12799", "label_12800", "label_12801", "label_12802", "label_12803", "label_12804", "label_12805", "label_12806", "label_12807", "label_12808", "label_12809", "label_12810", "label_12811", "label_12812", "label_12813", "label_12814", "label_12815", "label_12816", "label_12817", "label_12818", "label_12819", "label_12820", "label_12821", "label_12822", "label_12823", "label_12824", "label_12825", "label_12826", "label_12827", "label_12828", "label_12829", "label_12830", "label_12831", "label_12832", "label_12833", "label_12834", "label_12835", "label_12836", "label_12837", "label_12838", "label_12839", "label_12840", "label_12841", "label_12842", "label_12843", "label_12844", "label_12845", "label_12846", "label_12847", "label_12848", "label_12849", "label_12850", "label_12851", "label_12852", "label_12853", "label_12854", "label_12855", "label_12856", "label_12857", "label_12858", "label_12859", "label_12860", "label_12861", "label_12862", "label_12863", "label_12864", "label_12865", "label_12866", "label_12867", "label_12868", "label_12869", "label_12870", "label_12871", "label_12872", "label_12873", "label_12874", "label_12875", "label_12876", "label_12877", "label_12878", "label_12879", "label_12880", "label_12881", "label_12882", "label_12883", "label_12884", "label_12885", "label_12886", "label_12887", "label_12888", "label_12889", "label_12890", "label_12891", "label_12892", "label_12893", "label_12894", "label_12895", "label_12896", "label_12897", "label_12898", "label_12899", "label_12900", "label_12901", "label_12902", "label_12903", "label_12904", "label_12905", "label_12906", "label_12907", "label_12908", "label_12909", "label_12910", "label_12911", "label_12912", "label_12913", "label_12914", "label_12915", "label_12916", "label_12917", "label_12918", "label_12919", "label_12920", "label_12921", "label_12922", "label_12923", "label_12924", "label_12925", "label_12926", "label_12927", "label_12928", "label_12929", "label_12930", "label_12931", "label_12932", "label_12933", "label_12934", "label_12935", "label_12936", "label_12937", "label_12938", "label_12939", "label_12940", "label_12941", "label_12942", "label_12943", "label_12944", "label_12945", "label_12946", "label_12947", "label_12948", "label_12949", "label_12950", "label_12951", "label_12952", "label_12953", "label_12954", "label_12955", "label_12956", "label_12957", "label_12958", "label_12959", "label_12960", "label_12961", "label_12962", "label_12963", "label_12964", "label_12965", "label_12966", "label_12967", "label_12968", "label_12969", "label_12970", "label_12971", "label_12972", "label_12973", "label_12974", "label_12975", "label_12976", "label_12977", "label_12978", "label_12979", "label_12980", "label_12981", "label_12982", "label_12983", "label_12984", "label_12985", "label_12986", "label_12987", "label_12988", "label_12989", "label_12990", "label_12991", "label_12992", "label_12993", "label_12994", "label_12995", "label_12996", "label_12997", "label_12998", "label_12999", "label_13000", "label_13001", "label_13002", "label_13003", "label_13004", "label_13005", "label_13006", "label_13007", "label_13008", "label_13009", "label_13010", "label_13011", "label_13012", "label_13013", "label_13014", "label_13015", "label_13016", "label_13017", "label_13018", "label_13019", "label_13020", "label_13021", "label_13022", "label_13023", "label_13024", "label_13025", "label_13026", "label_13027", "label_13028", "label_13029", "label_13030", "label_13031", "label_13032", "label_13033", "label_13034", "label_13035", "label_13036", "label_13037", "label_13038", "label_13039", "label_13040", "label_13041", "label_13042", "label_13043", "label_13044", "label_13045", "label_13046", "label_13047", "label_13048", "label_13049", "label_13050", "label_13051", "label_13052", "label_13053", "label_13054", "label_13055", "label_13056", "label_13057", "label_13058", "label_13059", "label_13060", "label_13061", "label_13062", "label_13063", "label_13064", "label_13065", "label_13066", "label_13067", "label_13068", "label_13069", "label_13070", "label_13071", "label_13072", "label_13073", "label_13074", "label_13075", "label_13076", "label_13077", "label_13078", "label_13079", "label_13080", "label_13081", "label_13082", "label_13083", "label_13084", "label_13085", "label_13086", "label_13087", "label_13088", "label_13089", "label_13090", "label_13091", "label_13092", "label_13093", "label_13094", "label_13095", "label_13096", "label_13097", "label_13098", "label_13099", "label_13100", "label_13101", "label_13102", "label_13103", "label_13104", "label_13105", "label_13106", "label_13107", "label_13108", "label_13109", "label_13110", "label_13111", "label_13112", "label_13113", "label_13114", "label_13115", "label_13116", "label_13117", "label_13118", "label_13119", "label_13120", "label_13121", "label_13122", "label_13123", "label_13124", "label_13125", "label_13126", "label_13127", "label_13128", "label_13129", "label_13130", "label_13131", "label_13132", "label_13133", "label_13134", "label_13135", "label_13136", "label_13137", "label_13138", "label_13139", "label_13140", "label_13141", "label_13142", "label_13143", "label_13144", "label_13145", "label_13146", "label_13147", "label_13148", "label_13149", "label_13150", "label_13151", "label_13152", "label_13153", "label_13154", "label_13155", "label_13156", "label_13157", "label_13158", "label_13159", "label_13160", "label_13161", "label_13162", "label_13163", "label_13164", "label_13165", "label_13166", "label_13167", "label_13168", "label_13169", "label_13170", "label_13171", "label_13172", "label_13173", "label_13174", "label_13175", "label_13176", "label_13177", "label_13178", "label_13179", "label_13180", "label_13181", "label_13182", "label_13183", "label_13184", "label_13185", "label_13186", "label_13187", "label_13188", "label_13189", "label_13190", "label_13191", "label_13192", "label_13193", "label_13194", "label_13195", "label_13196", "label_13197", "label_13198", "label_13199", "label_13200", "label_13201", "label_13202", "label_13203", "label_13204", "label_13205", "label_13206", "label_13207", "label_13208", "label_13209", "label_13210", "label_13211", "label_13212", "label_13213", "label_13214", "label_13215", "label_13216", "label_13217", "label_13218", "label_13219", "label_13220", "label_13221", "label_13222", "label_13223", "label_13224", "label_13225", "label_13226", "label_13227", "label_13228", "label_13229", "label_13230", "label_13231", "label_13232", "label_13233", "label_13234", "label_13235", "label_13236", "label_13237", "label_13238", "label_13239", "label_13240", "label_13241", "label_13242", "label_13243", "label_13244", "label_13245", "label_13246", "label_13247", "label_13248", "label_13249", "label_13250", "label_13251", "label_13252", "label_13253", "label_13254", "label_13255", "label_13256", "label_13257", "label_13258", "label_13259", "label_13260", "label_13261", "label_13262", "label_13263", "label_13264", "label_13265", "label_13266", "label_13267", "label_13268", "label_13269", "label_13270", "label_13271", "label_13272", "label_13273", "label_13274", "label_13275", "label_13276", "label_13277", "label_13278", "label_13279", "label_13280", "label_13281", "label_13282", "label_13283", "label_13284", "label_13285", "label_13286", "label_13287", "label_13288", "label_13289", "label_13290", "label_13291", "label_13292", "label_13293", "label_13294", "label_13295", "label_13296", "label_13297", "label_13298", "label_13299", "label_13300", "label_13301", "label_13302", "label_13303", "label_13304", "label_13305", "label_13306", "label_13307", "label_13308", "label_13309", "label_13310", "label_13311", "label_13312", "label_13313", "label_13314", "label_13315", "label_13316", "label_13317", "label_13318", "label_13319", "label_13320", "label_13321", "label_13322", "label_13323", "label_13324", "label_13325", "label_13326", "label_13327", "label_13328", "label_13329", "label_13330", "label_13331", "label_13332", "label_13333", "label_13334", "label_13335", "label_13336", "label_13337", "label_13338", "label_13339", "label_13340", "label_13341", "label_13342", "label_13343", "label_13344", "label_13345", "label_13346", "label_13347", "label_13348", "label_13349", "label_13350", "label_13351", "label_13352", "label_13353", "label_13354", "label_13355", "label_13356", "label_13357", "label_13358", "label_13359", "label_13360", "label_13361", "label_13362", "label_13363", "label_13364", "label_13365", "label_13366", "label_13367", "label_13368", "label_13369", "label_13370", "label_13371", "label_13372", "label_13373", "label_13374", "label_13375", "label_13376", "label_13377", "label_13378", "label_13379", "label_13380", "label_13381", "label_13382", "label_13383", "label_13384", "label_13385", "label_13386", "label_13387", "label_13388", "label_13389", "label_13390", "label_13391", "label_13392", "label_13393", "label_13394", "label_13395", "label_13396", "label_13397", "label_13398", "label_13399", "label_13400", "label_13401", "label_13402", "label_13403", "label_13404", "label_13405", "label_13406", "label_13407", "label_13408", "label_13409", "label_13410", "label_13411", "label_13412", "label_13413", "label_13414", "label_13415", "label_13416", "label_13417", "label_13418", "label_13419", "label_13420", "label_13421", "label_13422", "label_13423", "label_13424", "label_13425", "label_13426", "label_13427", "label_13428", "label_13429", "label_13430", "label_13431", "label_13432", "label_13433", "label_13434", "label_13435", "label_13436", "label_13437", "label_13438", "label_13439", "label_13440", "label_13441", "label_13442", "label_13443", "label_13444", "label_13445", "label_13446", "label_13447", "label_13448", "label_13449", "label_13450", "label_13451", "label_13452", "label_13453", "label_13454", "label_13455", "label_13456", "label_13457", "label_13458", "label_13459", "label_13460", "label_13461", "label_13462", "label_13463", "label_13464", "label_13465", "label_13466", "label_13467", "label_13468", "label_13469", "label_13470", "label_13471", "label_13472", "label_13473", "label_13474", "label_13475", "label_13476", "label_13477", "label_13478", "label_13479", "label_13480", "label_13481", "label_13482", "label_13483", "label_13484", "label_13485", "label_13486", "label_13487", "label_13488", "label_13489", "label_13490", "label_13491", "label_13492", "label_13493", "label_13494", "label_13495", "label_13496", "label_13497", "label_13498", "label_13499", "label_13500", "label_13501", "label_13502", "label_13503", "label_13504", "label_13505", "label_13506", "label_13507", "label_13508", "label_13509", "label_13510", "label_13511", "label_13512", "label_13513", "label_13514", "label_13515", "label_13516", "label_13517", "label_13518", "label_13519", "label_13520", "label_13521", "label_13522", "label_13523", "label_13524", "label_13525", "label_13526", "label_13527", "label_13528", "label_13529", "label_13530", "label_13531", "label_13532", "label_13533", "label_13534", "label_13535", "label_13536", "label_13537", "label_13538", "label_13539", "label_13540", "label_13541", "label_13542", "label_13543", "label_13544", "label_13545", "label_13546", "label_13547", "label_13548", "label_13549", "label_13550", "label_13551", "label_13552", "label_13553", "label_13554", "label_13555", "label_13556", "label_13557", "label_13558", "label_13559", "label_13560", "label_13561", "label_13562", "label_13563", "label_13564", "label_13565", "label_13566", "label_13567", "label_13568", "label_13569", "label_13570", "label_13571", "label_13572", "label_13573", "label_13574", "label_13575", "label_13576", "label_13577", "label_13578", "label_13579", "label_13580", "label_13581", "label_13582", "label_13583", "label_13584", "label_13585", "label_13586", "label_13587", "label_13588", "label_13589", "label_13590", "label_13591", "label_13592", "label_13593", "label_13594", "label_13595", "label_13596", "label_13597", "label_13598", "label_13599", "label_13600", "label_13601", "label_13602", "label_13603", "label_13604", "label_13605", "label_13606", "label_13607", "label_13608", "label_13609", "label_13610", "label_13611", "label_13612", "label_13613", "label_13614", "label_13615", "label_13616", "label_13617", "label_13618", "label_13619", "label_13620", "label_13621", "label_13622", "label_13623", "label_13624", "label_13625", "label_13626", "label_13627", "label_13628", "label_13629", "label_13630", "label_13631", "label_13632", "label_13633", "label_13634", "label_13635", "label_13636", "label_13637", "label_13638", "label_13639", "label_13640", "label_13641", "label_13642", "label_13643", "label_13644", "label_13645", "label_13646", "label_13647", "label_13648", "label_13649", "label_13650", "label_13651", "label_13652", "label_13653", "label_13654", "label_13655", "label_13656", "label_13657", "label_13658", "label_13659", "label_13660", "label_13661", "label_13662", "label_13663", "label_13664", "label_13665", "label_13666", "label_13667", "label_13668", "label_13669", "label_13670", "label_13671", "label_13672", "label_13673", "label_13674", "label_13675", "label_13676", "label_13677", "label_13678", "label_13679", "label_13680", "label_13681", "label_13682", "label_13683", "label_13684", "label_13685", "label_13686", "label_13687", "label_13688", "label_13689", "label_13690", "label_13691", "label_13692", "label_13693", "label_13694", "label_13695", "label_13696", "label_13697", "label_13698", "label_13699", "label_13700", "label_13701", "label_13702", "label_13703", "label_13704", "label_13705", "label_13706", "label_13707", "label_13708", "label_13709", "label_13710", "label_13711", "label_13712", "label_13713", "label_13714", "label_13715", "label_13716", "label_13717", "label_13718", "label_13719", "label_13720", "label_13721", "label_13722", "label_13723", "label_13724", "label_13725", "label_13726", "label_13727", "label_13728", "label_13729", "label_13730", "label_13731", "label_13732", "label_13733", "label_13734", "label_13735", "label_13736", "label_13737", "label_13738", "label_13739", "label_13740", "label_13741", "label_13742", "label_13743", "label_13744", "label_13745", "label_13746", "label_13747", "label_13748", "label_13749", "label_13750", "label_13751", "label_13752", "label_13753", "label_13754", "label_13755", "label_13756", "label_13757", "label_13758", "label_13759", "label_13760", "label_13761", "label_13762", "label_13763", "label_13764", "label_13765", "label_13766", "label_13767", "label_13768", "label_13769", "label_13770", "label_13771", "label_13772", "label_13773", "label_13774", "label_13775", "label_13776", "label_13777", "label_13778", "label_13779", "label_13780", "label_13781", "label_13782", "label_13783", "label_13784", "label_13785", "label_13786", "label_13787", "label_13788", "label_13789", "label_13790", "label_13791", "label_13792", "label_13793", "label_13794", "label_13795", "label_13796", "label_13797", "label_13798", "label_13799", "label_13800", "label_13801", "label_13802", "label_13803", "label_13804", "label_13805", "label_13806", "label_13807", "label_13808", "label_13809", "label_13810", "label_13811", "label_13812", "label_13813", "label_13814", "label_13815", "label_13816", "label_13817", "label_13818", "label_13819", "label_13820", "label_13821", "label_13822", "label_13823", "label_13824", "label_13825", "label_13826", "label_13827", "label_13828", "label_13829", "label_13830", "label_13831", "label_13832", "label_13833", "label_13834", "label_13835", "label_13836", "label_13837", "label_13838", "label_13839", "label_13840", "label_13841", "label_13842", "label_13843", "label_13844", "label_13845", "label_13846", "label_13847", "label_13848", "label_13849", "label_13850", "label_13851", "label_13852", "label_13853", "label_13854", "label_13855", "label_13856", "label_13857", "label_13858", "label_13859", "label_13860", "label_13861", "label_13862", "label_13863", "label_13864", "label_13865", "label_13866", "label_13867", "label_13868", "label_13869", "label_13870", "label_13871", "label_13872", "label_13873", "label_13874", "label_13875", "label_13876", "label_13877", "label_13878", "label_13879", "label_13880", "label_13881", "label_13882", "label_13883", "label_13884", "label_13885", "label_13886", "label_13887", "label_13888", "label_13889", "label_13890", "label_13891", "label_13892", "label_13893", "label_13894", "label_13895", "label_13896", "label_13897", "label_13898", "label_13899", "label_13900", "label_13901", "label_13902", "label_13903", "label_13904", "label_13905", "label_13906", "label_13907", "label_13908", "label_13909", "label_13910", "label_13911", "label_13912", "label_13913", "label_13914", "label_13915", "label_13916", "label_13917", "label_13918", "label_13919", "label_13920", "label_13921", "label_13922", "label_13923", "label_13924", "label_13925", "label_13926", "label_13927", "label_13928", "label_13929", "label_13930", "label_13931", "label_13932", "label_13933", "label_13934", "label_13935", "label_13936", "label_13937", "label_13938", "label_13939", "label_13940", "label_13941", "label_13942", "label_13943", "label_13944", "label_13945", "label_13946", "label_13947", "label_13948", "label_13949", "label_13950", "label_13951", "label_13952", "label_13953", "label_13954", "label_13955", "label_13956", "label_13957", "label_13958", "label_13959", "label_13960", "label_13961", "label_13962", "label_13963", "label_13964", "label_13965", "label_13966", "label_13967", "label_13968", "label_13969", "label_13970", "label_13971", "label_13972", "label_13973", "label_13974", "label_13975", "label_13976", "label_13977", "label_13978", "label_13979", "label_13980", "label_13981", "label_13982", "label_13983", "label_13984", "label_13985", "label_13986", "label_13987", "label_13988", "label_13989", "label_13990", "label_13991", "label_13992", "label_13993", "label_13994", "label_13995", "label_13996", "label_13997", "label_13998", "label_13999", "label_14000", "label_14001", "label_14002", "label_14003", "label_14004", "label_14005", "label_14006", "label_14007", "label_14008", "label_14009", "label_14010", "label_14011", "label_14012", "label_14013", "label_14014", "label_14015", "label_14016", "label_14017", "label_14018", "label_14019", "label_14020", "label_14021", "label_14022", "label_14023", "label_14024", "label_14025", "label_14026", "label_14027", "label_14028", "label_14029", "label_14030", "label_14031", "label_14032", "label_14033", "label_14034", "label_14035", "label_14036", "label_14037", "label_14038", "label_14039", "label_14040", "label_14041", "label_14042", "label_14043", "label_14044", "label_14045", "label_14046", "label_14047", "label_14048", "label_14049", "label_14050", "label_14051", "label_14052", "label_14053", "label_14054", "label_14055", "label_14056", "label_14057", "label_14058", "label_14059", "label_14060", "label_14061", "label_14062", "label_14063", "label_14064", "label_14065", "label_14066", "label_14067", "label_14068", "label_14069", "label_14070", "label_14071", "label_14072", "label_14073", "label_14074", "label_14075", "label_14076", "label_14077", "label_14078", "label_14079", "label_14080", "label_14081", "label_14082", "label_14083", "label_14084", "label_14085", "label_14086", "label_14087", "label_14088", "label_14089", "label_14090", "label_14091", "label_14092", "label_14093", "label_14094", "label_14095", "label_14096", "label_14097", "label_14098", "label_14099", "label_14100", "label_14101", "label_14102", "label_14103", "label_14104", "label_14105", "label_14106", "label_14107", "label_14108", "label_14109", "label_14110", "label_14111", "label_14112", "label_14113", "label_14114", "label_14115", "label_14116", "label_14117", "label_14118", "label_14119", "label_14120", "label_14121", "label_14122", "label_14123", "label_14124", "label_14125", "label_14126", "label_14127", "label_14128", "label_14129", "label_14130", "label_14131", "label_14132", "label_14133", "label_14134", "label_14135", "label_14136", "label_14137", "label_14138", "label_14139", "label_14140", "label_14141", "label_14142", "label_14143", "label_14144", "label_14145", "label_14146", "label_14147", "label_14148", "label_14149", "label_14150", "label_14151", "label_14152", "label_14153", "label_14154", "label_14155", "label_14156", "label_14157", "label_14158", "label_14159", "label_14160", "label_14161", "label_14162", "label_14163", "label_14164", "label_14165", "label_14166", "label_14167", "label_14168", "label_14169", "label_14170", "label_14171", "label_14172", "label_14173", "label_14174", "label_14175", "label_14176", "label_14177", "label_14178", "label_14179", "label_14180", "label_14181", "label_14182", "label_14183", "label_14184", "label_14185", "label_14186", "label_14187", "label_14188", "label_14189", "label_14190", "label_14191", "label_14192", "label_14193", "label_14194", "label_14195", "label_14196", "label_14197", "label_14198", "label_14199", "label_14200", "label_14201", "label_14202", "label_14203", "label_14204", "label_14205", "label_14206", "label_14207", "label_14208", "label_14209", "label_14210", "label_14211", "label_14212", "label_14213", "label_14214", "label_14215", "label_14216", "label_14217", "label_14218", "label_14219", "label_14220", "label_14221", "label_14222", "label_14223", "label_14224", "label_14225", "label_14226", "label_14227", "label_14228", "label_14229", "label_14230", "label_14231", "label_14232", "label_14233", "label_14234", "label_14235", "label_14236", "label_14237", "label_14238", "label_14239", "label_14240", "label_14241", "label_14242", "label_14243", "label_14244", "label_14245", "label_14246", "label_14247", "label_14248", "label_14249", "label_14250", "label_14251", "label_14252", "label_14253", "label_14254", "label_14255", "label_14256", "label_14257", "label_14258", "label_14259", "label_14260", "label_14261", "label_14262", "label_14263", "label_14264", "label_14265", "label_14266", "label_14267", "label_14268", "label_14269", "label_14270", "label_14271", "label_14272", "label_14273", "label_14274", "label_14275", "label_14276", "label_14277", "label_14278", "label_14279", "label_14280", "label_14281", "label_14282", "label_14283", "label_14284", "label_14285", "label_14286", "label_14287", "label_14288", "label_14289", "label_14290", "label_14291", "label_14292", "label_14293", "label_14294", "label_14295", "label_14296", "label_14297", "label_14298", "label_14299", "label_14300", "label_14301", "label_14302", "label_14303", "label_14304", "label_14305", "label_14306", "label_14307", "label_14308", "label_14309", "label_14310", "label_14311", "label_14312", "label_14313", "label_14314", "label_14315", "label_14316", "label_14317", "label_14318", "label_14319", "label_14320", "label_14321", "label_14322", "label_14323", "label_14324", "label_14325", "label_14326", "label_14327", "label_14328", "label_14329", "label_14330", "label_14331", "label_14332", "label_14333", "label_14334", "label_14335", "label_14336", "label_14337", "label_14338", "label_14339", "label_14340", "label_14341", "label_14342", "label_14343", "label_14344", "label_14345", "label_14346", "label_14347", "label_14348", "label_14349", "label_14350", "label_14351", "label_14352", "label_14353", "label_14354", "label_14355", "label_14356", "label_14357", "label_14358", "label_14359", "label_14360", "label_14361", "label_14362", "label_14363", "label_14364", "label_14365", "label_14366", "label_14367", "label_14368", "label_14369", "label_14370", "label_14371", "label_14372", "label_14373", "label_14374", "label_14375", "label_14376", "label_14377", "label_14378", "label_14379", "label_14380", "label_14381", "label_14382", "label_14383", "label_14384", "label_14385", "label_14386", "label_14387", "label_14388", "label_14389", "label_14390", "label_14391", "label_14392", "label_14393", "label_14394", "label_14395", "label_14396", "label_14397", "label_14398", "label_14399", "label_14400", "label_14401", "label_14402", "label_14403", "label_14404", "label_14405", "label_14406", "label_14407", "label_14408", "label_14409", "label_14410", "label_14411", "label_14412", "label_14413", "label_14414", "label_14415", "label_14416", "label_14417", "label_14418", "label_14419", "label_14420", "label_14421", "label_14422", "label_14423", "label_14424", "label_14425", "label_14426", "label_14427", "label_14428", "label_14429", "label_14430", "label_14431", "label_14432", "label_14433", "label_14434", "label_14435", "label_14436", "label_14437", "label_14438", "label_14439", "label_14440", "label_14441", "label_14442", "label_14443", "label_14444", "label_14445", "label_14446", "label_14447", "label_14448", "label_14449", "label_14450", "label_14451", "label_14452", "label_14453", "label_14454", "label_14455", "label_14456", "label_14457", "label_14458", "label_14459", "label_14460", "label_14461", "label_14462", "label_14463", "label_14464", "label_14465", "label_14466", "label_14467", "label_14468", "label_14469", "label_14470", "label_14471", "label_14472", "label_14473", "label_14474", "label_14475", "label_14476", "label_14477", "label_14478", "label_14479", "label_14480", "label_14481", "label_14482", "label_14483", "label_14484", "label_14485", "label_14486", "label_14487", "label_14488", "label_14489", "label_14490", "label_14491", "label_14492", "label_14493", "label_14494", "label_14495", "label_14496", "label_14497", "label_14498", "label_14499", "label_14500", "label_14501", "label_14502", "label_14503", "label_14504", "label_14505", "label_14506", "label_14507", "label_14508", "label_14509", "label_14510", "label_14511", "label_14512", "label_14513", "label_14514", "label_14515", "label_14516", "label_14517", "label_14518", "label_14519", "label_14520", "label_14521", "label_14522", "label_14523", "label_14524", "label_14525", "label_14526", "label_14527", "label_14528", "label_14529", "label_14530", "label_14531", "label_14532", "label_14533", "label_14534", "label_14535", "label_14536", "label_14537", "label_14538", "label_14539", "label_14540", "label_14541", "label_14542", "label_14543", "label_14544", "label_14545", "label_14546", "label_14547", "label_14548", "label_14549", "label_14550", "label_14551", "label_14552", "label_14553", "label_14554", "label_14555", "label_14556", "label_14557", "label_14558", "label_14559", "label_14560", "label_14561", "label_14562", "label_14563", "label_14564", "label_14565", "label_14566", "label_14567", "label_14568", "label_14569", "label_14570", "label_14571", "label_14572", "label_14573", "label_14574", "label_14575", "label_14576", "label_14577", "label_14578", "label_14579", "label_14580", "label_14581", "label_14582", "label_14583", "label_14584", "label_14585", "label_14586", "label_14587", "label_14588", "label_14589", "label_14590", "label_14591", "label_14592", "label_14593", "label_14594", "label_14595", "label_14596", "label_14597", "label_14598", "label_14599", "label_14600", "label_14601", "label_14602", "label_14603", "label_14604", "label_14605", "label_14606", "label_14607", "label_14608", "label_14609", "label_14610", "label_14611", "label_14612", "label_14613", "label_14614", "label_14615", "label_14616", "label_14617", "label_14618", "label_14619", "label_14620", "label_14621", "label_14622", "label_14623", "label_14624", "label_14625", "label_14626", "label_14627", "label_14628", "label_14629", "label_14630", "label_14631", "label_14632", "label_14633", "label_14634", "label_14635", "label_14636", "label_14637", "label_14638", "label_14639", "label_14640", "label_14641", "label_14642", "label_14643", "label_14644", "label_14645", "label_14646", "label_14647", "label_14648", "label_14649", "label_14650", "label_14651", "label_14652", "label_14653", "label_14654", "label_14655", "label_14656", "label_14657", "label_14658", "label_14659", "label_14660", "label_14661", "label_14662", "label_14663", "label_14664", "label_14665", "label_14666", "label_14667", "label_14668", "label_14669", "label_14670", "label_14671", "label_14672", "label_14673", "label_14674", "label_14675", "label_14676", "label_14677", "label_14678", "label_14679", "label_14680", "label_14681", "label_14682", "label_14683", "label_14684", "label_14685", "label_14686", "label_14687", "label_14688", "label_14689", "label_14690", "label_14691", "label_14692", "label_14693", "label_14694", "label_14695", "label_14696", "label_14697", "label_14698", "label_14699", "label_14700", "label_14701", "label_14702", "label_14703", "label_14704", "label_14705", "label_14706", "label_14707", "label_14708", "label_14709", "label_14710", "label_14711", "label_14712", "label_14713", "label_14714", "label_14715", "label_14716", "label_14717", "label_14718", "label_14719", "label_14720", "label_14721", "label_14722", "label_14723", "label_14724", "label_14725", "label_14726", "label_14727", "label_14728", "label_14729", "label_14730", "label_14731", "label_14732", "label_14733", "label_14734", "label_14735", "label_14736", "label_14737", "label_14738", "label_14739", "label_14740", "label_14741", "label_14742", "label_14743", "label_14744", "label_14745", "label_14746", "label_14747", "label_14748", "label_14749", "label_14750", "label_14751", "label_14752", "label_14753", "label_14754", "label_14755", "label_14756", "label_14757", "label_14758", "label_14759", "label_14760", "label_14761", "label_14762", "label_14763", "label_14764", "label_14765", "label_14766", "label_14767", "label_14768", "label_14769", "label_14770", "label_14771", "label_14772", "label_14773", "label_14774", "label_14775", "label_14776", "label_14777", "label_14778", "label_14779", "label_14780", "label_14781", "label_14782", "label_14783", "label_14784", "label_14785", "label_14786", "label_14787", "label_14788", "label_14789", "label_14790", "label_14791", "label_14792", "label_14793", "label_14794", "label_14795", "label_14796", "label_14797", "label_14798", "label_14799", "label_14800", "label_14801", "label_14802", "label_14803", "label_14804", "label_14805", "label_14806", "label_14807", "label_14808", "label_14809", "label_14810", "label_14811", "label_14812", "label_14813", "label_14814", "label_14815", "label_14816", "label_14817", "label_14818", "label_14819", "label_14820", "label_14821", "label_14822", "label_14823", "label_14824", "label_14825", "label_14826", "label_14827", "label_14828", "label_14829", "label_14830", "label_14831", "label_14832", "label_14833", "label_14834", "label_14835", "label_14836", "label_14837", "label_14838", "label_14839", "label_14840", "label_14841", "label_14842", "label_14843", "label_14844", "label_14845", "label_14846", "label_14847", "label_14848", "label_14849", "label_14850", "label_14851", "label_14852", "label_14853", "label_14854", "label_14855", "label_14856", "label_14857", "label_14858", "label_14859", "label_14860", "label_14861", "label_14862", "label_14863", "label_14864", "label_14865", "label_14866", "label_14867", "label_14868", "label_14869", "label_14870", "label_14871", "label_14872", "label_14873", "label_14874", "label_14875", "label_14876", "label_14877", "label_14878", "label_14879", "label_14880", "label_14881", "label_14882", "label_14883", "label_14884", "label_14885", "label_14886", "label_14887", "label_14888", "label_14889", "label_14890", "label_14891", "label_14892", "label_14893", "label_14894", "label_14895", "label_14896", "label_14897", "label_14898", "label_14899", "label_14900", "label_14901", "label_14902", "label_14903", "label_14904", "label_14905", "label_14906", "label_14907", "label_14908", "label_14909", "label_14910", "label_14911", "label_14912", "label_14913", "label_14914", "label_14915", "label_14916", "label_14917", "label_14918", "label_14919", "label_14920", "label_14921", "label_14922", "label_14923", "label_14924", "label_14925", "label_14926", "label_14927", "label_14928", "label_14929", "label_14930", "label_14931", "label_14932", "label_14933", "label_14934", "label_14935", "label_14936", "label_14937", "label_14938", "label_14939", "label_14940", "label_14941", "label_14942", "label_14943", "label_14944", "label_14945", "label_14946", "label_14947", "label_14948", "label_14949", "label_14950", "label_14951", "label_14952", "label_14953", "label_14954", "label_14955", "label_14956", "label_14957", "label_14958", "label_14959", "label_14960", "label_14961", "label_14962", "label_14963", "label_14964", "label_14965", "label_14966", "label_14967", "label_14968", "label_14969", "label_14970", "label_14971", "label_14972", "label_14973", "label_14974", "label_14975", "label_14976", "label_14977", "label_14978", "label_14979", "label_14980", "label_14981", "label_14982", "label_14983", "label_14984", "label_14985", "label_14986", "label_14987", "label_14988", "label_14989", "label_14990", "label_14991", "label_14992", "label_14993", "label_14994", "label_14995", "label_14996", "label_14997", "label_14998", "label_14999", "label_15000", "label_15001", "label_15002", "label_15003", "label_15004", "label_15005", "label_15006", "label_15007", "label_15008", "label_15009", "label_15010", "label_15011", "label_15012", "label_15013", "label_15014", "label_15015", "label_15016", "label_15017", "label_15018", "label_15019", "label_15020", "label_15021", "label_15022", "label_15023", "label_15024", "label_15025", "label_15026", "label_15027", "label_15028", "label_15029", "label_15030", "label_15031", "label_15032", "label_15033", "label_15034", "label_15035", "label_15036", "label_15037", "label_15038", "label_15039", "label_15040", "label_15041", "label_15042", "label_15043", "label_15044", "label_15045", "label_15046", "label_15047", "label_15048", "label_15049", "label_15050", "label_15051", "label_15052", "label_15053", "label_15054", "label_15055", "label_15056", "label_15057", "label_15058", "label_15059", "label_15060", "label_15061", "label_15062", "label_15063", "label_15064", "label_15065", "label_15066", "label_15067", "label_15068", "label_15069", "label_15070", "label_15071", "label_15072", "label_15073", "label_15074", "label_15075", "label_15076", "label_15077", "label_15078", "label_15079", "label_15080", "label_15081", "label_15082", "label_15083", "label_15084", "label_15085", "label_15086", "label_15087", "label_15088", "label_15089", "label_15090", "label_15091", "label_15092", "label_15093", "label_15094", "label_15095", "label_15096", "label_15097", "label_15098", "label_15099", "label_15100", "label_15101", "label_15102", "label_15103", "label_15104", "label_15105", "label_15106", "label_15107", "label_15108", "label_15109", "label_15110", "label_15111", "label_15112", "label_15113", "label_15114", "label_15115", "label_15116", "label_15117", "label_15118", "label_15119", "label_15120", "label_15121", "label_15122", "label_15123", "label_15124", "label_15125", "label_15126", "label_15127", "label_15128", "label_15129", "label_15130", "label_15131", "label_15132", "label_15133", "label_15134", "label_15135", "label_15136", "label_15137", "label_15138", "label_15139", "label_15140", "label_15141", "label_15142", "label_15143", "label_15144", "label_15145", "label_15146", "label_15147", "label_15148", "label_15149", "label_15150", "label_15151", "label_15152", "label_15153", "label_15154", "label_15155", "label_15156", "label_15157", "label_15158", "label_15159", "label_15160", "label_15161", "label_15162", "label_15163", "label_15164", "label_15165", "label_15166", "label_15167", "label_15168", "label_15169", "label_15170", "label_15171", "label_15172", "label_15173", "label_15174", "label_15175", "label_15176", "label_15177", "label_15178", "label_15179", "label_15180", "label_15181", "label_15182", "label_15183", "label_15184", "label_15185", "label_15186", "label_15187", "label_15188", "label_15189", "label_15190", "label_15191", "label_15192", "label_15193", "label_15194", "label_15195", "label_15196", "label_15197", "label_15198", "label_15199", "label_15200", "label_15201", "label_15202", "label_15203", "label_15204", "label_15205", "label_15206", "label_15207", "label_15208", "label_15209", "label_15210", "label_15211", "label_15212", "label_15213", "label_15214", "label_15215", "label_15216", "label_15217", "label_15218", "label_15219", "label_15220", "label_15221", "label_15222", "label_15223", "label_15224", "label_15225", "label_15226", "label_15227", "label_15228", "label_15229", "label_15230", "label_15231", "label_15232", "label_15233", "label_15234", "label_15235", "label_15236", "label_15237", "label_15238", "label_15239", "label_15240", "label_15241", "label_15242", "label_15243", "label_15244", "label_15245", "label_15246", "label_15247", "label_15248", "label_15249", "label_15250", "label_15251", "label_15252", "label_15253", "label_15254", "label_15255", "label_15256", "label_15257", "label_15258", "label_15259", "label_15260", "label_15261", "label_15262", "label_15263", "label_15264", "label_15265", "label_15266", "label_15267", "label_15268", "label_15269", "label_15270", "label_15271", "label_15272", "label_15273", "label_15274", "label_15275", "label_15276", "label_15277", "label_15278", "label_15279", "label_15280", "label_15281", "label_15282", "label_15283", "label_15284", "label_15285", "label_15286", "label_15287", "label_15288", "label_15289", "label_15290", "label_15291", "label_15292", "label_15293", "label_15294", "label_15295", "label_15296", "label_15297", "label_15298", "label_15299", "label_15300", "label_15301", "label_15302", "label_15303", "label_15304", "label_15305", "label_15306", "label_15307", "label_15308", "label_15309", "label_15310", "label_15311", "label_15312", "label_15313", "label_15314", "label_15315", "label_15316", "label_15317", "label_15318", "label_15319", "label_15320", "label_15321", "label_15322", "label_15323", "label_15324", "label_15325", "label_15326", "label_15327", "label_15328", "label_15329", "label_15330", "label_15331", "label_15332", "label_15333", "label_15334", "label_15335", "label_15336", "label_15337", "label_15338", "label_15339", "label_15340", "label_15341", "label_15342", "label_15343", "label_15344", "label_15345", "label_15346", "label_15347", "label_15348", "label_15349", "label_15350", "label_15351", "label_15352", "label_15353", "label_15354", "label_15355", "label_15356", "label_15357", "label_15358", "label_15359", "label_15360", "label_15361", "label_15362", "label_15363", "label_15364", "label_15365", "label_15366", "label_15367", "label_15368", "label_15369", "label_15370", "label_15371", "label_15372", "label_15373", "label_15374", "label_15375", "label_15376", "label_15377", "label_15378", "label_15379", "label_15380", "label_15381", "label_15382", "label_15383", "label_15384", "label_15385", "label_15386", "label_15387", "label_15388", "label_15389", "label_15390", "label_15391", "label_15392", "label_15393", "label_15394", "label_15395", "label_15396", "label_15397", "label_15398", "label_15399", "label_15400", "label_15401", "label_15402", "label_15403", "label_15404", "label_15405", "label_15406", "label_15407", "label_15408", "label_15409", "label_15410", "label_15411", "label_15412", "label_15413", "label_15414", "label_15415", "label_15416", "label_15417", "label_15418", "label_15419", "label_15420", "label_15421", "label_15422", "label_15423", "label_15424", "label_15425", "label_15426", "label_15427", "label_15428", "label_15429", "label_15430", "label_15431", "label_15432", "label_15433", "label_15434", "label_15435", "label_15436", "label_15437", "label_15438", "label_15439", "label_15440", "label_15441", "label_15442", "label_15443", "label_15444", "label_15445", "label_15446", "label_15447", "label_15448", "label_15449", "label_15450", "label_15451", "label_15452", "label_15453", "label_15454", "label_15455", "label_15456", "label_15457", "label_15458", "label_15459", "label_15460", "label_15461", "label_15462", "label_15463", "label_15464", "label_15465", "label_15466", "label_15467", "label_15468", "label_15469", "label_15470", "label_15471", "label_15472", "label_15473", "label_15474", "label_15475", "label_15476", "label_15477", "label_15478", "label_15479", "label_15480", "label_15481", "label_15482", "label_15483", "label_15484", "label_15485", "label_15486", "label_15487", "label_15488", "label_15489", "label_15490", "label_15491", "label_15492", "label_15493", "label_15494", "label_15495", "label_15496", "label_15497", "label_15498", "label_15499", "label_15500", "label_15501", "label_15502", "label_15503", "label_15504", "label_15505", "label_15506", "label_15507", "label_15508", "label_15509", "label_15510", "label_15511", "label_15512", "label_15513", "label_15514", "label_15515", "label_15516", "label_15517", "label_15518", "label_15519", "label_15520", "label_15521", "label_15522", "label_15523", "label_15524", "label_15525", "label_15526", "label_15527", "label_15528", "label_15529", "label_15530", "label_15531", "label_15532", "label_15533", "label_15534", "label_15535", "label_15536", "label_15537", "label_15538", "label_15539", "label_15540", "label_15541", "label_15542", "label_15543", "label_15544", "label_15545", "label_15546", "label_15547", "label_15548", "label_15549", "label_15550", "label_15551", "label_15552", "label_15553", "label_15554", "label_15555", "label_15556", "label_15557", "label_15558", "label_15559", "label_15560", "label_15561", "label_15562", "label_15563", "label_15564", "label_15565", "label_15566", "label_15567", "label_15568", "label_15569", "label_15570", "label_15571", "label_15572", "label_15573", "label_15574", "label_15575", "label_15576", "label_15577", "label_15578", "label_15579", "label_15580", "label_15581", "label_15582", "label_15583", "label_15584", "label_15585", "label_15586", "label_15587", "label_15588", "label_15589", "label_15590", "label_15591", "label_15592", "label_15593", "label_15594", "label_15595", "label_15596", "label_15597", "label_15598", "label_15599", "label_15600", "label_15601", "label_15602", "label_15603", "label_15604", "label_15605", "label_15606", "label_15607", "label_15608", "label_15609", "label_15610", "label_15611", "label_15612", "label_15613", "label_15614", "label_15615", "label_15616", "label_15617", "label_15618", "label_15619", "label_15620", "label_15621", "label_15622", "label_15623", "label_15624", "label_15625", "label_15626", "label_15627", "label_15628", "label_15629", "label_15630", "label_15631", "label_15632", "label_15633", "label_15634", "label_15635", "label_15636", "label_15637", "label_15638", "label_15639", "label_15640", "label_15641", "label_15642", "label_15643", "label_15644", "label_15645", "label_15646", "label_15647", "label_15648", "label_15649", "label_15650", "label_15651", "label_15652", "label_15653", "label_15654", "label_15655", "label_15656", "label_15657", "label_15658", "label_15659", "label_15660", "label_15661", "label_15662", "label_15663", "label_15664", "label_15665", "label_15666", "label_15667", "label_15668", "label_15669", "label_15670", "label_15671", "label_15672", "label_15673", "label_15674", "label_15675", "label_15676", "label_15677", "label_15678", "label_15679", "label_15680", "label_15681", "label_15682", "label_15683", "label_15684", "label_15685", "label_15686", "label_15687", "label_15688", "label_15689", "label_15690", "label_15691", "label_15692", "label_15693", "label_15694", "label_15695", "label_15696", "label_15697", "label_15698", "label_15699", "label_15700", "label_15701", "label_15702", "label_15703", "label_15704", "label_15705", "label_15706", "label_15707", "label_15708", "label_15709", "label_15710", "label_15711", "label_15712", "label_15713", "label_15714", "label_15715", "label_15716", "label_15717", "label_15718", "label_15719", "label_15720", "label_15721", "label_15722", "label_15723", "label_15724", "label_15725", "label_15726", "label_15727", "label_15728", "label_15729", "label_15730", "label_15731", "label_15732", "label_15733", "label_15734", "label_15735", "label_15736", "label_15737", "label_15738", "label_15739", "label_15740", "label_15741", "label_15742", "label_15743", "label_15744", "label_15745", "label_15746", "label_15747", "label_15748", "label_15749", "label_15750", "label_15751", "label_15752", "label_15753", "label_15754", "label_15755", "label_15756", "label_15757", "label_15758", "label_15759", "label_15760", "label_15761", "label_15762", "label_15763", "label_15764", "label_15765", "label_15766", "label_15767", "label_15768", "label_15769", "label_15770", "label_15771", "label_15772", "label_15773", "label_15774", "label_15775", "label_15776", "label_15777", "label_15778", "label_15779", "label_15780", "label_15781", "label_15782", "label_15783", "label_15784", "label_15785", "label_15786", "label_15787", "label_15788", "label_15789", "label_15790", "label_15791", "label_15792", "label_15793", "label_15794", "label_15795", "label_15796", "label_15797", "label_15798", "label_15799", "label_15800", "label_15801", "label_15802", "label_15803", "label_15804", "label_15805", "label_15806", "label_15807", "label_15808", "label_15809", "label_15810", "label_15811", "label_15812", "label_15813", "label_15814", "label_15815", "label_15816", "label_15817", "label_15818", "label_15819", "label_15820", "label_15821", "label_15822", "label_15823", "label_15824", "label_15825", "label_15826", "label_15827", "label_15828", "label_15829", "label_15830", "label_15831", "label_15832", "label_15833", "label_15834", "label_15835", "label_15836", "label_15837", "label_15838", "label_15839", "label_15840", "label_15841", "label_15842", "label_15843", "label_15844", "label_15845", "label_15846", "label_15847", "label_15848", "label_15849", "label_15850", "label_15851", "label_15852", "label_15853", "label_15854", "label_15855", "label_15856", "label_15857", "label_15858", "label_15859", "label_15860", "label_15861", "label_15862", "label_15863", "label_15864", "label_15865", "label_15866", "label_15867", "label_15868", "label_15869", "label_15870", "label_15871", "label_15872", "label_15873", "label_15874", "label_15875", "label_15876", "label_15877", "label_15878", "label_15879", "label_15880", "label_15881", "label_15882", "label_15883", "label_15884", "label_15885", "label_15886", "label_15887", "label_15888", "label_15889", "label_15890", "label_15891", "label_15892", "label_15893", "label_15894", "label_15895", "label_15896", "label_15897", "label_15898", "label_15899", "label_15900", "label_15901", "label_15902", "label_15903", "label_15904", "label_15905", "label_15906", "label_15907", "label_15908", "label_15909", "label_15910", "label_15911", "label_15912", "label_15913", "label_15914", "label_15915", "label_15916", "label_15917", "label_15918", "label_15919", "label_15920", "label_15921", "label_15922", "label_15923", "label_15924", "label_15925", "label_15926", "label_15927", "label_15928", "label_15929", "label_15930", "label_15931", "label_15932", "label_15933", "label_15934", "label_15935", "label_15936", "label_15937", "label_15938", "label_15939", "label_15940", "label_15941", "label_15942", "label_15943", "label_15944", "label_15945", "label_15946", "label_15947", "label_15948", "label_15949", "label_15950", "label_15951", "label_15952", "label_15953", "label_15954", "label_15955", "label_15956", "label_15957", "label_15958", "label_15959", "label_15960", "label_15961", "label_15962", "label_15963", "label_15964", "label_15965", "label_15966", "label_15967", "label_15968", "label_15969", "label_15970", "label_15971", "label_15972", "label_15973", "label_15974", "label_15975", "label_15976", "label_15977", "label_15978", "label_15979", "label_15980", "label_15981", "label_15982", "label_15983", "label_15984", "label_15985", "label_15986", "label_15987", "label_15988", "label_15989", "label_15990", "label_15991", "label_15992", "label_15993", "label_15994", "label_15995", "label_15996", "label_15997", "label_15998", "label_15999", "label_16000", "label_16001", "label_16002", "label_16003", "label_16004", "label_16005", "label_16006", "label_16007", "label_16008", "label_16009", "label_16010", "label_16011", "label_16012", "label_16013", "label_16014", "label_16015", "label_16016", "label_16017", "label_16018", "label_16019", "label_16020", "label_16021", "label_16022", "label_16023", "label_16024", "label_16025", "label_16026", "label_16027", "label_16028", "label_16029", "label_16030", "label_16031", "label_16032", "label_16033", "label_16034", "label_16035", "label_16036", "label_16037", "label_16038", "label_16039", "label_16040", "label_16041", "label_16042", "label_16043", "label_16044", "label_16045", "label_16046", "label_16047", "label_16048", "label_16049", "label_16050", "label_16051", "label_16052", "label_16053", "label_16054", "label_16055", "label_16056", "label_16057", "label_16058", "label_16059", "label_16060", "label_16061", "label_16062", "label_16063", "label_16064", "label_16065", "label_16066", "label_16067", "label_16068", "label_16069", "label_16070", "label_16071", "label_16072", "label_16073", "label_16074", "label_16075", "label_16076", "label_16077", "label_16078", "label_16079", "label_16080", "label_16081", "label_16082", "label_16083", "label_16084", "label_16085", "label_16086", "label_16087", "label_16088", "label_16089", "label_16090", "label_16091", "label_16092", "label_16093", "label_16094", "label_16095", "label_16096", "label_16097", "label_16098", "label_16099", "label_16100", "label_16101", "label_16102", "label_16103", "label_16104", "label_16105", "label_16106", "label_16107", "label_16108", "label_16109", "label_16110", "label_16111", "label_16112", "label_16113", "label_16114", "label_16115", "label_16116", "label_16117", "label_16118", "label_16119", "label_16120", "label_16121", "label_16122", "label_16123", "label_16124", "label_16125", "label_16126", "label_16127", "label_16128", "label_16129", "label_16130", "label_16131", "label_16132", "label_16133", "label_16134", "label_16135", "label_16136", "label_16137", "label_16138", "label_16139", "label_16140", "label_16141", "label_16142", "label_16143", "label_16144", "label_16145", "label_16146", "label_16147", "label_16148", "label_16149", "label_16150", "label_16151", "label_16152", "label_16153", "label_16154", "label_16155", "label_16156", "label_16157", "label_16158", "label_16159", "label_16160", "label_16161", "label_16162", "label_16163", "label_16164", "label_16165", "label_16166", "label_16167", "label_16168", "label_16169", "label_16170", "label_16171", "label_16172", "label_16173", "label_16174", "label_16175", "label_16176", "label_16177", "label_16178", "label_16179", "label_16180", "label_16181", "label_16182", "label_16183", "label_16184", "label_16185", "label_16186", "label_16187", "label_16188", "label_16189", "label_16190", "label_16191", "label_16192", "label_16193", "label_16194", "label_16195", "label_16196", "label_16197", "label_16198", "label_16199", "label_16200", "label_16201", "label_16202", "label_16203", "label_16204", "label_16205", "label_16206", "label_16207", "label_16208", "label_16209", "label_16210", "label_16211", "label_16212", "label_16213", "label_16214", "label_16215", "label_16216", "label_16217", "label_16218", "label_16219", "label_16220", "label_16221", "label_16222", "label_16223", "label_16224", "label_16225", "label_16226", "label_16227", "label_16228", "label_16229", "label_16230", "label_16231", "label_16232", "label_16233", "label_16234", "label_16235", "label_16236", "label_16237", "label_16238", "label_16239", "label_16240", "label_16241", "label_16242", "label_16243", "label_16244", "label_16245", "label_16246", "label_16247", "label_16248", "label_16249", "label_16250", "label_16251", "label_16252", "label_16253", "label_16254", "label_16255", "label_16256", "label_16257", "label_16258", "label_16259", "label_16260", "label_16261", "label_16262", "label_16263", "label_16264", "label_16265", "label_16266", "label_16267", "label_16268", "label_16269", "label_16270", "label_16271", "label_16272", "label_16273", "label_16274", "label_16275", "label_16276", "label_16277", "label_16278", "label_16279", "label_16280", "label_16281", "label_16282", "label_16283", "label_16284", "label_16285", "label_16286", "label_16287", "label_16288", "label_16289", "label_16290", "label_16291", "label_16292", "label_16293", "label_16294", "label_16295", "label_16296", "label_16297", "label_16298", "label_16299", "label_16300", "label_16301", "label_16302", "label_16303", "label_16304", "label_16305", "label_16306", "label_16307", "label_16308", "label_16309", "label_16310", "label_16311", "label_16312", "label_16313", "label_16314", "label_16315", "label_16316", "label_16317", "label_16318", "label_16319", "label_16320", "label_16321", "label_16322", "label_16323", "label_16324", "label_16325", "label_16326", "label_16327", "label_16328", "label_16329", "label_16330", "label_16331", "label_16332", "label_16333", "label_16334", "label_16335", "label_16336", "label_16337", "label_16338", "label_16339", "label_16340", "label_16341", "label_16342", "label_16343", "label_16344", "label_16345", "label_16346", "label_16347", "label_16348", "label_16349", "label_16350", "label_16351", "label_16352", "label_16353", "label_16354", "label_16355", "label_16356", "label_16357", "label_16358", "label_16359", "label_16360", "label_16361", "label_16362", "label_16363", "label_16364", "label_16365", "label_16366", "label_16367", "label_16368", "label_16369", "label_16370", "label_16371", "label_16372", "label_16373", "label_16374", "label_16375", "label_16376", "label_16377", "label_16378", "label_16379", "label_16380", "label_16381", "label_16382", "label_16383", "label_16384", "label_16385", "label_16386", "label_16387", "label_16388", "label_16389", "label_16390", "label_16391", "label_16392", "label_16393", "label_16394", "label_16395", "label_16396", "label_16397", "label_16398", "label_16399", "label_16400", "label_16401", "label_16402", "label_16403", "label_16404", "label_16405", "label_16406", "label_16407", "label_16408", "label_16409", "label_16410", "label_16411", "label_16412", "label_16413", "label_16414", "label_16415", "label_16416", "label_16417", "label_16418", "label_16419", "label_16420", "label_16421", "label_16422", "label_16423", "label_16424", "label_16425", "label_16426", "label_16427", "label_16428", "label_16429", "label_16430", "label_16431", "label_16432", "label_16433", "label_16434", "label_16435", "label_16436", "label_16437", "label_16438", "label_16439", "label_16440", "label_16441", "label_16442", "label_16443", "label_16444", "label_16445", "label_16446", "label_16447", "label_16448", "label_16449", "label_16450", "label_16451", "label_16452", "label_16453", "label_16454", "label_16455", "label_16456", "label_16457", "label_16458", "label_16459", "label_16460", "label_16461", "label_16462", "label_16463", "label_16464", "label_16465", "label_16466", "label_16467", "label_16468", "label_16469", "label_16470", "label_16471", "label_16472", "label_16473", "label_16474", "label_16475", "label_16476", "label_16477", "label_16478", "label_16479", "label_16480", "label_16481", "label_16482", "label_16483", "label_16484", "label_16485", "label_16486", "label_16487", "label_16488", "label_16489", "label_16490", "label_16491", "label_16492", "label_16493", "label_16494", "label_16495", "label_16496", "label_16497", "label_16498", "label_16499", "label_16500", "label_16501", "label_16502", "label_16503", "label_16504", "label_16505", "label_16506", "label_16507", "label_16508", "label_16509", "label_16510", "label_16511", "label_16512", "label_16513", "label_16514", "label_16515", "label_16516", "label_16517", "label_16518", "label_16519", "label_16520", "label_16521", "label_16522", "label_16523", "label_16524", "label_16525", "label_16526", "label_16527", "label_16528", "label_16529", "label_16530", "label_16531", "label_16532", "label_16533", "label_16534", "label_16535", "label_16536", "label_16537", "label_16538", "label_16539", "label_16540", "label_16541", "label_16542", "label_16543", "label_16544", "label_16545", "label_16546", "label_16547", "label_16548", "label_16549", "label_16550", "label_16551", "label_16552", "label_16553", "label_16554", "label_16555", "label_16556", "label_16557", "label_16558", "label_16559", "label_16560", "label_16561", "label_16562", "label_16563", "label_16564", "label_16565", "label_16566", "label_16567", "label_16568", "label_16569", "label_16570", "label_16571", "label_16572", "label_16573", "label_16574", "label_16575", "label_16576", "label_16577", "label_16578", "label_16579", "label_16580", "label_16581", "label_16582", "label_16583", "label_16584", "label_16585", "label_16586", "label_16587", "label_16588", "label_16589", "label_16590", "label_16591", "label_16592", "label_16593", "label_16594", "label_16595", "label_16596", "label_16597", "label_16598", "label_16599", "label_16600", "label_16601", "label_16602", "label_16603", "label_16604", "label_16605", "label_16606", "label_16607", "label_16608", "label_16609", "label_16610", "label_16611", "label_16612", "label_16613", "label_16614", "label_16615", "label_16616", "label_16617", "label_16618", "label_16619", "label_16620", "label_16621", "label_16622", "label_16623", "label_16624", "label_16625", "label_16626", "label_16627", "label_16628", "label_16629", "label_16630", "label_16631", "label_16632", "label_16633", "label_16634", "label_16635", "label_16636", "label_16637", "label_16638", "label_16639", "label_16640", "label_16641", "label_16642", "label_16643", "label_16644", "label_16645", "label_16646", "label_16647", "label_16648", "label_16649", "label_16650", "label_16651", "label_16652", "label_16653", "label_16654", "label_16655", "label_16656", "label_16657", "label_16658", "label_16659", "label_16660", "label_16661", "label_16662", "label_16663", "label_16664", "label_16665", "label_16666", "label_16667", "label_16668", "label_16669", "label_16670", "label_16671", "label_16672", "label_16673", "label_16674", "label_16675", "label_16676", "label_16677", "label_16678", "label_16679", "label_16680", "label_16681", "label_16682", "label_16683", "label_16684", "label_16685", "label_16686", "label_16687", "label_16688", "label_16689", "label_16690", "label_16691", "label_16692", "label_16693", "label_16694", "label_16695", "label_16696", "label_16697", "label_16698", "label_16699", "label_16700", "label_16701", "label_16702", "label_16703", "label_16704", "label_16705", "label_16706", "label_16707", "label_16708", "label_16709", "label_16710", "label_16711", "label_16712", "label_16713", "label_16714", "label_16715", "label_16716", "label_16717", "label_16718", "label_16719", "label_16720", "label_16721", "label_16722", "label_16723", "label_16724", "label_16725", "label_16726", "label_16727", "label_16728", "label_16729", "label_16730", "label_16731", "label_16732", "label_16733", "label_16734", "label_16735", "label_16736", "label_16737", "label_16738", "label_16739", "label_16740", "label_16741", "label_16742", "label_16743", "label_16744", "label_16745", "label_16746", "label_16747", "label_16748", "label_16749", "label_16750", "label_16751", "label_16752", "label_16753", "label_16754", "label_16755", "label_16756", "label_16757", "label_16758", "label_16759", "label_16760", "label_16761", "label_16762", "label_16763", "label_16764", "label_16765", "label_16766", "label_16767", "label_16768", "label_16769", "label_16770", "label_16771", "label_16772", "label_16773", "label_16774", "label_16775", "label_16776", "label_16777", "label_16778", "label_16779", "label_16780", "label_16781", "label_16782", "label_16783", "label_16784", "label_16785", "label_16786", "label_16787", "label_16788", "label_16789", "label_16790", "label_16791", "label_16792", "label_16793", "label_16794", "label_16795", "label_16796", "label_16797", "label_16798", "label_16799", "label_16800", "label_16801", "label_16802", "label_16803", "label_16804", "label_16805", "label_16806", "label_16807", "label_16808", "label_16809", "label_16810", "label_16811", "label_16812", "label_16813", "label_16814", "label_16815", "label_16816", "label_16817", "label_16818", "label_16819", "label_16820", "label_16821", "label_16822", "label_16823", "label_16824", "label_16825", "label_16826", "label_16827", "label_16828", "label_16829", "label_16830", "label_16831", "label_16832", "label_16833", "label_16834", "label_16835", "label_16836", "label_16837", "label_16838", "label_16839", "label_16840", "label_16841", "label_16842", "label_16843", "label_16844", "label_16845", "label_16846", "label_16847", "label_16848", "label_16849", "label_16850", "label_16851", "label_16852", "label_16853", "label_16854", "label_16855", "label_16856", "label_16857", "label_16858", "label_16859", "label_16860", "label_16861", "label_16862", "label_16863", "label_16864", "label_16865", "label_16866", "label_16867", "label_16868", "label_16869", "label_16870", "label_16871", "label_16872", "label_16873", "label_16874", "label_16875", "label_16876", "label_16877", "label_16878", "label_16879", "label_16880", "label_16881", "label_16882", "label_16883", "label_16884", "label_16885", "label_16886", "label_16887", "label_16888", "label_16889", "label_16890", "label_16891", "label_16892", "label_16893", "label_16894", "label_16895", "label_16896", "label_16897", "label_16898", "label_16899", "label_16900", "label_16901", "label_16902", "label_16903", "label_16904", "label_16905", "label_16906", "label_16907", "label_16908", "label_16909", "label_16910", "label_16911", "label_16912", "label_16913", "label_16914", "label_16915", "label_16916", "label_16917", "label_16918", "label_16919", "label_16920", "label_16921", "label_16922", "label_16923", "label_16924", "label_16925", "label_16926", "label_16927", "label_16928", "label_16929", "label_16930", "label_16931", "label_16932", "label_16933", "label_16934", "label_16935", "label_16936", "label_16937", "label_16938", "label_16939", "label_16940", "label_16941", "label_16942", "label_16943", "label_16944", "label_16945", "label_16946", "label_16947", "label_16948", "label_16949", "label_16950", "label_16951", "label_16952", "label_16953", "label_16954", "label_16955", "label_16956", "label_16957", "label_16958", "label_16959", "label_16960", "label_16961", "label_16962", "label_16963", "label_16964", "label_16965", "label_16966", "label_16967", "label_16968", "label_16969", "label_16970", "label_16971", "label_16972", "label_16973", "label_16974", "label_16975", "label_16976", "label_16977", "label_16978", "label_16979", "label_16980", "label_16981", "label_16982", "label_16983", "label_16984", "label_16985", "label_16986", "label_16987", "label_16988", "label_16989", "label_16990", "label_16991", "label_16992", "label_16993", "label_16994", "label_16995", "label_16996", "label_16997", "label_16998", "label_16999", "label_17000", "label_17001", "label_17002", "label_17003", "label_17004", "label_17005", "label_17006", "label_17007", "label_17008", "label_17009", "label_17010", "label_17011", "label_17012", "label_17013", "label_17014", "label_17015", "label_17016", "label_17017", "label_17018", "label_17019", "label_17020", "label_17021", "label_17022", "label_17023", "label_17024", "label_17025", "label_17026", "label_17027", "label_17028", "label_17029", "label_17030", "label_17031", "label_17032", "label_17033", "label_17034", "label_17035", "label_17036", "label_17037", "label_17038", "label_17039", "label_17040", "label_17041", "label_17042", "label_17043", "label_17044", "label_17045", "label_17046", "label_17047", "label_17048", "label_17049", "label_17050", "label_17051", "label_17052", "label_17053", "label_17054", "label_17055", "label_17056", "label_17057", "label_17058", "label_17059", "label_17060", "label_17061", "label_17062", "label_17063", "label_17064", "label_17065", "label_17066", "label_17067", "label_17068", "label_17069", "label_17070", "label_17071", "label_17072", "label_17073", "label_17074", "label_17075", "label_17076", "label_17077", "label_17078", "label_17079", "label_17080", "label_17081", "label_17082", "label_17083", "label_17084", "label_17085", "label_17086", "label_17087", "label_17088", "label_17089", "label_17090", "label_17091", "label_17092", "label_17093", "label_17094", "label_17095", "label_17096", "label_17097", "label_17098", "label_17099", "label_17100", "label_17101", "label_17102", "label_17103", "label_17104", "label_17105", "label_17106", "label_17107", "label_17108", "label_17109", "label_17110", "label_17111", "label_17112", "label_17113", "label_17114", "label_17115", "label_17116", "label_17117", "label_17118", "label_17119", "label_17120", "label_17121", "label_17122", "label_17123", "label_17124", "label_17125", "label_17126", "label_17127", "label_17128", "label_17129", "label_17130", "label_17131", "label_17132", "label_17133", "label_17134", "label_17135", "label_17136", "label_17137", "label_17138", "label_17139", "label_17140", "label_17141", "label_17142", "label_17143", "label_17144", "label_17145", "label_17146", "label_17147", "label_17148", "label_17149", "label_17150", "label_17151", "label_17152", "label_17153", "label_17154", "label_17155", "label_17156", "label_17157", "label_17158", "label_17159", "label_17160", "label_17161", "label_17162", "label_17163", "label_17164", "label_17165", "label_17166", "label_17167", "label_17168", "label_17169", "label_17170", "label_17171", "label_17172", "label_17173", "label_17174", "label_17175", "label_17176", "label_17177", "label_17178", "label_17179", "label_17180", "label_17181", "label_17182", "label_17183", "label_17184", "label_17185", "label_17186", "label_17187", "label_17188", "label_17189", "label_17190", "label_17191", "label_17192", "label_17193", "label_17194", "label_17195", "label_17196", "label_17197", "label_17198", "label_17199", "label_17200", "label_17201", "label_17202", "label_17203", "label_17204", "label_17205", "label_17206", "label_17207", "label_17208", "label_17209", "label_17210", "label_17211", "label_17212", "label_17213", "label_17214", "label_17215", "label_17216", "label_17217", "label_17218", "label_17219", "label_17220", "label_17221", "label_17222", "label_17223", "label_17224", "label_17225", "label_17226", "label_17227", "label_17228", "label_17229", "label_17230", "label_17231", "label_17232", "label_17233", "label_17234", "label_17235", "label_17236", "label_17237", "label_17238", "label_17239", "label_17240", "label_17241", "label_17242", "label_17243", "label_17244", "label_17245", "label_17246", "label_17247", "label_17248", "label_17249", "label_17250", "label_17251", "label_17252", "label_17253", "label_17254", "label_17255", "label_17256", "label_17257", "label_17258", "label_17259", "label_17260", "label_17261", "label_17262", "label_17263", "label_17264", "label_17265", "label_17266", "label_17267", "label_17268", "label_17269", "label_17270", "label_17271", "label_17272", "label_17273", "label_17274", "label_17275", "label_17276", "label_17277", "label_17278", "label_17279", "label_17280", "label_17281", "label_17282", "label_17283", "label_17284", "label_17285", "label_17286", "label_17287", "label_17288", "label_17289", "label_17290", "label_17291", "label_17292", "label_17293", "label_17294", "label_17295", "label_17296", "label_17297", "label_17298", "label_17299", "label_17300", "label_17301", "label_17302", "label_17303", "label_17304", "label_17305", "label_17306", "label_17307", "label_17308", "label_17309", "label_17310", "label_17311", "label_17312", "label_17313", "label_17314", "label_17315", "label_17316", "label_17317", "label_17318", "label_17319", "label_17320", "label_17321", "label_17322", "label_17323", "label_17324", "label_17325", "label_17326", "label_17327", "label_17328", "label_17329", "label_17330", "label_17331", "label_17332", "label_17333", "label_17334", "label_17335", "label_17336", "label_17337", "label_17338", "label_17339", "label_17340", "label_17341", "label_17342", "label_17343", "label_17344", "label_17345", "label_17346", "label_17347", "label_17348", "label_17349", "label_17350", "label_17351", "label_17352", "label_17353", "label_17354", "label_17355", "label_17356", "label_17357", "label_17358", "label_17359", "label_17360", "label_17361", "label_17362", "label_17363", "label_17364", "label_17365", "label_17366", "label_17367", "label_17368", "label_17369", "label_17370", "label_17371", "label_17372", "label_17373", "label_17374", "label_17375", "label_17376", "label_17377", "label_17378", "label_17379", "label_17380", "label_17381", "label_17382", "label_17383", "label_17384", "label_17385", "label_17386", "label_17387", "label_17388", "label_17389", "label_17390", "label_17391", "label_17392", "label_17393", "label_17394", "label_17395", "label_17396", "label_17397", "label_17398", "label_17399", "label_17400", "label_17401", "label_17402", "label_17403", "label_17404", "label_17405", "label_17406", "label_17407", "label_17408", "label_17409", "label_17410", "label_17411", "label_17412", "label_17413", "label_17414", "label_17415", "label_17416", "label_17417", "label_17418", "label_17419", "label_17420", "label_17421", "label_17422", "label_17423", "label_17424", "label_17425", "label_17426", "label_17427", "label_17428", "label_17429", "label_17430", "label_17431", "label_17432", "label_17433", "label_17434", "label_17435", "label_17436", "label_17437", "label_17438", "label_17439", "label_17440", "label_17441", "label_17442", "label_17443", "label_17444", "label_17445", "label_17446", "label_17447", "label_17448", "label_17449", "label_17450", "label_17451", "label_17452", "label_17453", "label_17454", "label_17455", "label_17456", "label_17457", "label_17458", "label_17459", "label_17460", "label_17461", "label_17462", "label_17463", "label_17464", "label_17465", "label_17466", "label_17467", "label_17468", "label_17469", "label_17470", "label_17471", "label_17472", "label_17473", "label_17474", "label_17475", "label_17476", "label_17477", "label_17478", "label_17479", "label_17480", "label_17481", "label_17482", "label_17483", "label_17484", "label_17485", "label_17486", "label_17487", "label_17488", "label_17489", "label_17490", "label_17491", "label_17492", "label_17493", "label_17494", "label_17495", "label_17496", "label_17497", "label_17498", "label_17499", "label_17500", "label_17501", "label_17502", "label_17503", "label_17504", "label_17505", "label_17506", "label_17507", "label_17508", "label_17509", "label_17510", "label_17511", "label_17512", "label_17513", "label_17514", "label_17515", "label_17516", "label_17517", "label_17518", "label_17519", "label_17520", "label_17521", "label_17522", "label_17523", "label_17524", "label_17525", "label_17526", "label_17527", "label_17528", "label_17529", "label_17530", "label_17531", "label_17532", "label_17533", "label_17534", "label_17535", "label_17536", "label_17537", "label_17538", "label_17539", "label_17540", "label_17541", "label_17542", "label_17543", "label_17544", "label_17545", "label_17546", "label_17547", "label_17548", "label_17549", "label_17550", "label_17551", "label_17552", "label_17553", "label_17554", "label_17555", "label_17556", "label_17557", "label_17558", "label_17559", "label_17560", "label_17561", "label_17562", "label_17563", "label_17564", "label_17565", "label_17566", "label_17567", "label_17568", "label_17569", "label_17570", "label_17571", "label_17572", "label_17573", "label_17574", "label_17575", "label_17576", "label_17577", "label_17578", "label_17579", "label_17580", "label_17581", "label_17582", "label_17583", "label_17584", "label_17585", "label_17586", "label_17587", "label_17588", "label_17589", "label_17590", "label_17591", "label_17592", "label_17593", "label_17594", "label_17595", "label_17596", "label_17597", "label_17598", "label_17599", "label_17600", "label_17601", "label_17602", "label_17603", "label_17604", "label_17605", "label_17606", "label_17607", "label_17608", "label_17609", "label_17610", "label_17611", "label_17612", "label_17613", "label_17614", "label_17615", "label_17616", "label_17617", "label_17618", "label_17619", "label_17620", "label_17621", "label_17622", "label_17623", "label_17624", "label_17625", "label_17626", "label_17627", "label_17628", "label_17629", "label_17630", "label_17631", "label_17632", "label_17633", "label_17634", "label_17635", "label_17636", "label_17637", "label_17638", "label_17639", "label_17640", "label_17641", "label_17642", "label_17643", "label_17644", "label_17645", "label_17646", "label_17647", "label_17648", "label_17649", "label_17650", "label_17651", "label_17652", "label_17653", "label_17654", "label_17655", "label_17656", "label_17657", "label_17658", "label_17659", "label_17660", "label_17661", "label_17662", "label_17663", "label_17664", "label_17665", "label_17666", "label_17667", "label_17668", "label_17669", "label_17670", "label_17671", "label_17672", "label_17673", "label_17674", "label_17675", "label_17676", "label_17677", "label_17678", "label_17679", "label_17680", "label_17681", "label_17682", "label_17683", "label_17684", "label_17685", "label_17686", "label_17687", "label_17688", "label_17689", "label_17690", "label_17691", "label_17692", "label_17693", "label_17694", "label_17695", "label_17696", "label_17697", "label_17698", "label_17699", "label_17700", "label_17701", "label_17702", "label_17703", "label_17704", "label_17705", "label_17706", "label_17707", "label_17708", "label_17709", "label_17710", "label_17711", "label_17712", "label_17713", "label_17714", "label_17715", "label_17716", "label_17717", "label_17718", "label_17719", "label_17720", "label_17721", "label_17722", "label_17723", "label_17724", "label_17725", "label_17726", "label_17727", "label_17728", "label_17729", "label_17730", "label_17731", "label_17732", "label_17733", "label_17734", "label_17735", "label_17736", "label_17737", "label_17738", "label_17739", "label_17740", "label_17741", "label_17742", "label_17743", "label_17744", "label_17745", "label_17746", "label_17747", "label_17748", "label_17749", "label_17750", "label_17751", "label_17752", "label_17753", "label_17754", "label_17755", "label_17756", "label_17757", "label_17758", "label_17759", "label_17760", "label_17761", "label_17762", "label_17763", "label_17764", "label_17765", "label_17766", "label_17767", "label_17768", "label_17769", "label_17770", "label_17771", "label_17772", "label_17773", "label_17774", "label_17775", "label_17776", "label_17777", "label_17778", "label_17779", "label_17780", "label_17781", "label_17782", "label_17783", "label_17784", "label_17785", "label_17786", "label_17787", "label_17788", "label_17789", "label_17790", "label_17791", "label_17792", "label_17793", "label_17794", "label_17795", "label_17796", "label_17797", "label_17798", "label_17799", "label_17800", "label_17801", "label_17802", "label_17803", "label_17804", "label_17805", "label_17806", "label_17807", "label_17808", "label_17809", "label_17810", "label_17811", "label_17812", "label_17813", "label_17814", "label_17815", "label_17816", "label_17817", "label_17818", "label_17819", "label_17820", "label_17821", "label_17822", "label_17823", "label_17824", "label_17825", "label_17826", "label_17827", "label_17828", "label_17829", "label_17830", "label_17831", "label_17832", "label_17833", "label_17834", "label_17835", "label_17836", "label_17837", "label_17838", "label_17839", "label_17840", "label_17841", "label_17842", "label_17843", "label_17844", "label_17845", "label_17846", "label_17847", "label_17848", "label_17849", "label_17850", "label_17851", "label_17852", "label_17853", "label_17854", "label_17855", "label_17856", "label_17857", "label_17858", "label_17859", "label_17860", "label_17861", "label_17862", "label_17863", "label_17864", "label_17865", "label_17866", "label_17867", "label_17868", "label_17869", "label_17870", "label_17871", "label_17872", "label_17873", "label_17874", "label_17875", "label_17876", "label_17877", "label_17878", "label_17879", "label_17880", "label_17881", "label_17882", "label_17883", "label_17884", "label_17885", "label_17886", "label_17887", "label_17888", "label_17889", "label_17890", "label_17891", "label_17892", "label_17893", "label_17894", "label_17895", "label_17896", "label_17897", "label_17898", "label_17899", "label_17900", "label_17901", "label_17902", "label_17903", "label_17904", "label_17905", "label_17906", "label_17907", "label_17908", "label_17909", "label_17910", "label_17911", "label_17912", "label_17913", "label_17914", "label_17915", "label_17916", "label_17917", "label_17918", "label_17919", "label_17920", "label_17921", "label_17922", "label_17923", "label_17924", "label_17925", "label_17926", "label_17927", "label_17928", "label_17929", "label_17930", "label_17931", "label_17932", "label_17933", "label_17934", "label_17935", "label_17936", "label_17937", "label_17938", "label_17939", "label_17940", "label_17941", "label_17942", "label_17943", "label_17944", "label_17945", "label_17946", "label_17947", "label_17948", "label_17949", "label_17950", "label_17951", "label_17952", "label_17953", "label_17954", "label_17955", "label_17956", "label_17957", "label_17958", "label_17959", "label_17960", "label_17961", "label_17962", "label_17963", "label_17964", "label_17965", "label_17966", "label_17967", "label_17968", "label_17969", "label_17970", "label_17971", "label_17972", "label_17973", "label_17974", "label_17975", "label_17976", "label_17977", "label_17978", "label_17979", "label_17980", "label_17981", "label_17982", "label_17983", "label_17984", "label_17985", "label_17986", "label_17987", "label_17988", "label_17989", "label_17990", "label_17991", "label_17992", "label_17993", "label_17994", "label_17995", "label_17996", "label_17997", "label_17998", "label_17999", "label_18000", "label_18001", "label_18002", "label_18003", "label_18004", "label_18005", "label_18006", "label_18007", "label_18008", "label_18009", "label_18010", "label_18011", "label_18012", "label_18013", "label_18014", "label_18015", "label_18016", "label_18017", "label_18018", "label_18019", "label_18020", "label_18021", "label_18022", "label_18023", "label_18024", "label_18025", "label_18026", "label_18027", "label_18028", "label_18029", "label_18030", "label_18031", "label_18032", "label_18033", "label_18034", "label_18035", "label_18036", "label_18037", "label_18038", "label_18039", "label_18040", "label_18041", "label_18042", "label_18043", "label_18044", "label_18045", "label_18046", "label_18047", "label_18048", "label_18049", "label_18050", "label_18051", "label_18052", "label_18053", "label_18054", "label_18055", "label_18056", "label_18057", "label_18058", "label_18059", "label_18060", "label_18061", "label_18062", "label_18063", "label_18064", "label_18065", "label_18066", "label_18067", "label_18068", "label_18069", "label_18070", "label_18071", "label_18072", "label_18073", "label_18074", "label_18075", "label_18076", "label_18077", "label_18078", "label_18079", "label_18080", "label_18081", "label_18082", "label_18083", "label_18084", "label_18085", "label_18086", "label_18087", "label_18088", "label_18089", "label_18090", "label_18091", "label_18092", "label_18093", "label_18094", "label_18095", "label_18096", "label_18097", "label_18098", "label_18099", "label_18100", "label_18101", "label_18102", "label_18103", "label_18104", "label_18105", "label_18106", "label_18107", "label_18108", "label_18109", "label_18110", "label_18111", "label_18112", "label_18113", "label_18114", "label_18115", "label_18116", "label_18117", "label_18118", "label_18119", "label_18120", "label_18121", "label_18122", "label_18123", "label_18124", "label_18125", "label_18126", "label_18127", "label_18128", "label_18129", "label_18130", "label_18131", "label_18132", "label_18133", "label_18134", "label_18135", "label_18136", "label_18137", "label_18138", "label_18139", "label_18140", "label_18141", "label_18142", "label_18143", "label_18144", "label_18145", "label_18146", "label_18147", "label_18148", "label_18149", "label_18150", "label_18151", "label_18152", "label_18153", "label_18154", "label_18155", "label_18156", "label_18157", "label_18158", "label_18159", "label_18160", "label_18161", "label_18162", "label_18163", "label_18164", "label_18165", "label_18166", "label_18167", "label_18168", "label_18169", "label_18170", "label_18171", "label_18172", "label_18173", "label_18174", "label_18175", "label_18176", "label_18177", "label_18178", "label_18179", "label_18180", "label_18181", "label_18182", "label_18183", "label_18184", "label_18185", "label_18186", "label_18187", "label_18188", "label_18189", "label_18190", "label_18191", "label_18192", "label_18193", "label_18194", "label_18195", "label_18196", "label_18197", "label_18198", "label_18199", "label_18200", "label_18201", "label_18202", "label_18203", "label_18204", "label_18205", "label_18206", "label_18207", "label_18208", "label_18209", "label_18210", "label_18211", "label_18212", "label_18213", "label_18214", "label_18215", "label_18216", "label_18217", "label_18218", "label_18219", "label_18220", "label_18221", "label_18222", "label_18223", "label_18224", "label_18225", "label_18226", "label_18227", "label_18228", "label_18229", "label_18230", "label_18231", "label_18232", "label_18233", "label_18234", "label_18235", "label_18236", "label_18237", "label_18238", "label_18239", "label_18240", "label_18241", "label_18242", "label_18243", "label_18244", "label_18245", "label_18246", "label_18247", "label_18248", "label_18249", "label_18250", "label_18251", "label_18252", "label_18253", "label_18254", "label_18255", "label_18256", "label_18257", "label_18258", "label_18259", "label_18260", "label_18261", "label_18262", "label_18263", "label_18264", "label_18265", "label_18266", "label_18267", "label_18268", "label_18269", "label_18270", "label_18271", "label_18272", "label_18273", "label_18274", "label_18275", "label_18276", "label_18277", "label_18278", "label_18279", "label_18280", "label_18281", "label_18282", "label_18283", "label_18284", "label_18285", "label_18286", "label_18287", "label_18288", "label_18289", "label_18290", "label_18291", "label_18292", "label_18293", "label_18294", "label_18295", "label_18296", "label_18297", "label_18298", "label_18299", "label_18300", "label_18301", "label_18302", "label_18303", "label_18304", "label_18305", "label_18306", "label_18307", "label_18308", "label_18309", "label_18310", "label_18311", "label_18312", "label_18313", "label_18314", "label_18315", "label_18316", "label_18317", "label_18318", "label_18319", "label_18320", "label_18321", "label_18322", "label_18323", "label_18324", "label_18325", "label_18326", "label_18327", "label_18328", "label_18329", "label_18330", "label_18331", "label_18332", "label_18333", "label_18334", "label_18335", "label_18336", "label_18337", "label_18338", "label_18339", "label_18340", "label_18341", "label_18342", "label_18343", "label_18344", "label_18345", "label_18346", "label_18347", "label_18348", "label_18349", "label_18350", "label_18351", "label_18352", "label_18353", "label_18354", "label_18355", "label_18356", "label_18357", "label_18358", "label_18359", "label_18360", "label_18361", "label_18362", "label_18363", "label_18364", "label_18365", "label_18366", "label_18367", "label_18368", "label_18369", "label_18370", "label_18371", "label_18372", "label_18373", "label_18374", "label_18375", "label_18376", "label_18377", "label_18378", "label_18379", "label_18380", "label_18381", "label_18382", "label_18383", "label_18384", "label_18385", "label_18386", "label_18387", "label_18388", "label_18389", "label_18390", "label_18391", "label_18392", "label_18393", "label_18394", "label_18395", "label_18396", "label_18397", "label_18398", "label_18399", "label_18400", "label_18401", "label_18402", "label_18403", "label_18404", "label_18405", "label_18406", "label_18407", "label_18408", "label_18409", "label_18410", "label_18411", "label_18412", "label_18413", "label_18414", "label_18415", "label_18416", "label_18417", "label_18418", "label_18419", "label_18420", "label_18421", "label_18422", "label_18423", "label_18424", "label_18425", "label_18426", "label_18427", "label_18428", "label_18429", "label_18430", "label_18431", "label_18432", "label_18433", "label_18434", "label_18435", "label_18436", "label_18437", "label_18438", "label_18439", "label_18440", "label_18441", "label_18442", "label_18443", "label_18444", "label_18445", "label_18446", "label_18447", "label_18448", "label_18449", "label_18450", "label_18451", "label_18452", "label_18453", "label_18454", "label_18455", "label_18456", "label_18457", "label_18458", "label_18459", "label_18460", "label_18461", "label_18462", "label_18463", "label_18464", "label_18465", "label_18466", "label_18467", "label_18468", "label_18469", "label_18470", "label_18471", "label_18472", "label_18473", "label_18474", "label_18475", "label_18476", "label_18477", "label_18478", "label_18479", "label_18480", "label_18481", "label_18482", "label_18483", "label_18484", "label_18485", "label_18486", "label_18487", "label_18488", "label_18489", "label_18490", "label_18491", "label_18492", "label_18493", "label_18494", "label_18495", "label_18496", "label_18497", "label_18498", "label_18499", "label_18500", "label_18501", "label_18502", "label_18503", "label_18504", "label_18505", "label_18506", "label_18507", "label_18508", "label_18509", "label_18510", "label_18511", "label_18512", "label_18513", "label_18514", "label_18515", "label_18516", "label_18517", "label_18518", "label_18519", "label_18520", "label_18521", "label_18522", "label_18523", "label_18524", "label_18525", "label_18526", "label_18527", "label_18528", "label_18529", "label_18530", "label_18531", "label_18532", "label_18533", "label_18534", "label_18535", "label_18536", "label_18537", "label_18538", "label_18539", "label_18540", "label_18541", "label_18542", "label_18543", "label_18544", "label_18545", "label_18546", "label_18547", "label_18548", "label_18549", "label_18550", "label_18551", "label_18552", "label_18553", "label_18554", "label_18555", "label_18556", "label_18557", "label_18558", "label_18559", "label_18560", "label_18561", "label_18562", "label_18563", "label_18564", "label_18565", "label_18566", "label_18567", "label_18568", "label_18569", "label_18570", "label_18571", "label_18572", "label_18573", "label_18574", "label_18575", "label_18576", "label_18577", "label_18578", "label_18579", "label_18580", "label_18581", "label_18582", "label_18583", "label_18584", "label_18585", "label_18586", "label_18587", "label_18588", "label_18589", "label_18590", "label_18591", "label_18592", "label_18593", "label_18594", "label_18595", "label_18596", "label_18597", "label_18598", "label_18599", "label_18600", "label_18601", "label_18602", "label_18603", "label_18604", "label_18605", "label_18606", "label_18607", "label_18608", "label_18609", "label_18610", "label_18611", "label_18612", "label_18613", "label_18614", "label_18615", "label_18616", "label_18617", "label_18618", "label_18619", "label_18620", "label_18621", "label_18622", "label_18623", "label_18624", "label_18625", "label_18626", "label_18627", "label_18628", "label_18629", "label_18630", "label_18631", "label_18632", "label_18633", "label_18634", "label_18635", "label_18636", "label_18637", "label_18638", "label_18639", "label_18640", "label_18641", "label_18642", "label_18643", "label_18644", "label_18645", "label_18646", "label_18647", "label_18648", "label_18649", "label_18650", "label_18651", "label_18652", "label_18653", "label_18654", "label_18655", "label_18656", "label_18657", "label_18658", "label_18659", "label_18660", "label_18661", "label_18662", "label_18663", "label_18664", "label_18665", "label_18666", "label_18667", "label_18668", "label_18669", "label_18670", "label_18671", "label_18672", "label_18673", "label_18674", "label_18675", "label_18676", "label_18677", "label_18678", "label_18679", "label_18680", "label_18681", "label_18682", "label_18683", "label_18684", "label_18685", "label_18686", "label_18687", "label_18688", "label_18689", "label_18690", "label_18691", "label_18692", "label_18693", "label_18694", "label_18695", "label_18696", "label_18697", "label_18698", "label_18699", "label_18700", "label_18701", "label_18702", "label_18703", "label_18704", "label_18705", "label_18706", "label_18707", "label_18708", "label_18709", "label_18710", "label_18711", "label_18712", "label_18713", "label_18714", "label_18715", "label_18716", "label_18717", "label_18718", "label_18719", "label_18720", "label_18721", "label_18722", "label_18723", "label_18724", "label_18725", "label_18726", "label_18727", "label_18728", "label_18729", "label_18730", "label_18731", "label_18732", "label_18733", "label_18734", "label_18735", "label_18736", "label_18737", "label_18738", "label_18739", "label_18740", "label_18741", "label_18742", "label_18743", "label_18744", "label_18745", "label_18746", "label_18747", "label_18748", "label_18749", "label_18750", "label_18751", "label_18752", "label_18753", "label_18754", "label_18755", "label_18756", "label_18757", "label_18758", "label_18759", "label_18760", "label_18761", "label_18762", "label_18763", "label_18764", "label_18765", "label_18766", "label_18767", "label_18768", "label_18769", "label_18770", "label_18771", "label_18772", "label_18773", "label_18774", "label_18775", "label_18776", "label_18777", "label_18778", "label_18779", "label_18780", "label_18781", "label_18782", "label_18783", "label_18784", "label_18785", "label_18786", "label_18787", "label_18788", "label_18789", "label_18790", "label_18791", "label_18792", "label_18793", "label_18794", "label_18795", "label_18796", "label_18797", "label_18798", "label_18799", "label_18800", "label_18801", "label_18802", "label_18803", "label_18804", "label_18805", "label_18806", "label_18807", "label_18808", "label_18809", "label_18810", "label_18811", "label_18812", "label_18813", "label_18814", "label_18815", "label_18816", "label_18817", "label_18818", "label_18819", "label_18820", "label_18821", "label_18822", "label_18823", "label_18824", "label_18825", "label_18826", "label_18827", "label_18828", "label_18829", "label_18830", "label_18831", "label_18832", "label_18833", "label_18834", "label_18835", "label_18836", "label_18837", "label_18838", "label_18839", "label_18840", "label_18841", "label_18842", "label_18843", "label_18844", "label_18845", "label_18846", "label_18847", "label_18848", "label_18849", "label_18850", "label_18851", "label_18852", "label_18853", "label_18854", "label_18855", "label_18856", "label_18857", "label_18858", "label_18859", "label_18860", "label_18861", "label_18862", "label_18863", "label_18864", "label_18865", "label_18866", "label_18867", "label_18868", "label_18869", "label_18870", "label_18871", "label_18872", "label_18873", "label_18874", "label_18875", "label_18876", "label_18877", "label_18878", "label_18879", "label_18880", "label_18881", "label_18882", "label_18883", "label_18884", "label_18885", "label_18886", "label_18887", "label_18888", "label_18889", "label_18890", "label_18891", "label_18892", "label_18893", "label_18894", "label_18895", "label_18896", "label_18897", "label_18898", "label_18899", "label_18900", "label_18901", "label_18902", "label_18903", "label_18904", "label_18905", "label_18906", "label_18907", "label_18908", "label_18909", "label_18910", "label_18911", "label_18912", "label_18913", "label_18914", "label_18915", "label_18916", "label_18917", "label_18918", "label_18919", "label_18920", "label_18921", "label_18922", "label_18923", "label_18924", "label_18925", "label_18926", "label_18927", "label_18928", "label_18929", "label_18930", "label_18931", "label_18932", "label_18933", "label_18934", "label_18935", "label_18936", "label_18937", "label_18938", "label_18939", "label_18940", "label_18941", "label_18942", "label_18943", "label_18944", "label_18945", "label_18946", "label_18947", "label_18948", "label_18949", "label_18950", "label_18951", "label_18952", "label_18953", "label_18954", "label_18955", "label_18956", "label_18957", "label_18958", "label_18959", "label_18960", "label_18961", "label_18962", "label_18963", "label_18964", "label_18965", "label_18966", "label_18967", "label_18968", "label_18969", "label_18970", "label_18971", "label_18972", "label_18973", "label_18974", "label_18975", "label_18976", "label_18977", "label_18978", "label_18979", "label_18980", "label_18981", "label_18982", "label_18983", "label_18984", "label_18985", "label_18986", "label_18987", "label_18988", "label_18989", "label_18990", "label_18991", "label_18992", "label_18993", "label_18994", "label_18995", "label_18996", "label_18997", "label_18998", "label_18999", "label_19000", "label_19001", "label_19002", "label_19003", "label_19004", "label_19005", "label_19006", "label_19007", "label_19008", "label_19009", "label_19010", "label_19011", "label_19012", "label_19013", "label_19014", "label_19015", "label_19016", "label_19017", "label_19018", "label_19019", "label_19020", "label_19021", "label_19022", "label_19023", "label_19024", "label_19025", "label_19026", "label_19027", "label_19028", "label_19029", "label_19030", "label_19031", "label_19032", "label_19033", "label_19034", "label_19035", "label_19036", "label_19037", "label_19038", "label_19039", "label_19040", "label_19041", "label_19042", "label_19043", "label_19044", "label_19045", "label_19046", "label_19047", "label_19048", "label_19049", "label_19050", "label_19051", "label_19052", "label_19053", "label_19054", "label_19055", "label_19056", "label_19057", "label_19058", "label_19059", "label_19060", "label_19061", "label_19062", "label_19063", "label_19064", "label_19065", "label_19066", "label_19067", "label_19068", "label_19069", "label_19070", "label_19071", "label_19072", "label_19073", "label_19074", "label_19075", "label_19076", "label_19077", "label_19078", "label_19079", "label_19080", "label_19081", "label_19082", "label_19083", "label_19084", "label_19085", "label_19086", "label_19087", "label_19088", "label_19089", "label_19090", "label_19091", "label_19092", "label_19093", "label_19094", "label_19095", "label_19096", "label_19097", "label_19098", "label_19099", "label_19100", "label_19101", "label_19102", "label_19103", "label_19104", "label_19105", "label_19106", "label_19107", "label_19108", "label_19109", "label_19110", "label_19111", "label_19112", "label_19113", "label_19114", "label_19115", "label_19116", "label_19117", "label_19118", "label_19119", "label_19120", "label_19121", "label_19122", "label_19123", "label_19124", "label_19125", "label_19126", "label_19127", "label_19128", "label_19129", "label_19130", "label_19131", "label_19132", "label_19133", "label_19134", "label_19135", "label_19136", "label_19137", "label_19138", "label_19139", "label_19140", "label_19141", "label_19142", "label_19143", "label_19144", "label_19145", "label_19146", "label_19147", "label_19148", "label_19149", "label_19150", "label_19151", "label_19152", "label_19153", "label_19154", "label_19155", "label_19156", "label_19157", "label_19158", "label_19159", "label_19160", "label_19161", "label_19162", "label_19163", "label_19164", "label_19165", "label_19166", "label_19167", "label_19168", "label_19169", "label_19170", "label_19171", "label_19172", "label_19173", "label_19174", "label_19175", "label_19176", "label_19177", "label_19178", "label_19179", "label_19180", "label_19181", "label_19182", "label_19183", "label_19184", "label_19185", "label_19186", "label_19187", "label_19188", "label_19189", "label_19190", "label_19191", "label_19192", "label_19193", "label_19194", "label_19195", "label_19196", "label_19197", "label_19198", "label_19199", "label_19200", "label_19201", "label_19202", "label_19203", "label_19204", "label_19205", "label_19206", "label_19207", "label_19208", "label_19209", "label_19210", "label_19211", "label_19212", "label_19213", "label_19214", "label_19215", "label_19216", "label_19217", "label_19218", "label_19219", "label_19220", "label_19221", "label_19222", "label_19223", "label_19224", "label_19225", "label_19226", "label_19227", "label_19228", "label_19229", "label_19230", "label_19231", "label_19232", "label_19233", "label_19234", "label_19235", "label_19236", "label_19237", "label_19238", "label_19239", "label_19240", "label_19241", "label_19242", "label_19243", "label_19244", "label_19245", "label_19246", "label_19247", "label_19248", "label_19249", "label_19250", "label_19251", "label_19252", "label_19253", "label_19254", "label_19255", "label_19256", "label_19257", "label_19258", "label_19259", "label_19260", "label_19261", "label_19262", "label_19263", "label_19264", "label_19265", "label_19266", "label_19267", "label_19268", "label_19269", "label_19270", "label_19271", "label_19272", "label_19273", "label_19274", "label_19275", "label_19276", "label_19277", "label_19278", "label_19279", "label_19280", "label_19281", "label_19282", "label_19283", "label_19284", "label_19285", "label_19286", "label_19287", "label_19288", "label_19289", "label_19290", "label_19291", "label_19292", "label_19293", "label_19294", "label_19295", "label_19296", "label_19297", "label_19298", "label_19299", "label_19300", "label_19301", "label_19302", "label_19303", "label_19304", "label_19305", "label_19306", "label_19307", "label_19308", "label_19309", "label_19310", "label_19311", "label_19312", "label_19313", "label_19314", "label_19315", "label_19316", "label_19317", "label_19318", "label_19319", "label_19320", "label_19321", "label_19322", "label_19323", "label_19324", "label_19325", "label_19326", "label_19327", "label_19328", "label_19329", "label_19330", "label_19331", "label_19332", "label_19333", "label_19334", "label_19335", "label_19336", "label_19337", "label_19338", "label_19339", "label_19340", "label_19341", "label_19342", "label_19343", "label_19344", "label_19345", "label_19346", "label_19347", "label_19348", "label_19349", "label_19350", "label_19351", "label_19352", "label_19353", "label_19354", "label_19355", "label_19356", "label_19357", "label_19358", "label_19359", "label_19360", "label_19361", "label_19362", "label_19363", "label_19364", "label_19365", "label_19366", "label_19367", "label_19368", "label_19369", "label_19370", "label_19371", "label_19372", "label_19373", "label_19374", "label_19375", "label_19376", "label_19377", "label_19378", "label_19379", "label_19380", "label_19381", "label_19382", "label_19383", "label_19384", "label_19385", "label_19386", "label_19387", "label_19388", "label_19389", "label_19390", "label_19391", "label_19392", "label_19393", "label_19394", "label_19395", "label_19396", "label_19397", "label_19398", "label_19399", "label_19400", "label_19401", "label_19402", "label_19403", "label_19404", "label_19405", "label_19406", "label_19407", "label_19408", "label_19409", "label_19410", "label_19411", "label_19412", "label_19413", "label_19414", "label_19415", "label_19416", "label_19417", "label_19418", "label_19419", "label_19420", "label_19421", "label_19422", "label_19423", "label_19424", "label_19425", "label_19426", "label_19427", "label_19428", "label_19429", "label_19430", "label_19431", "label_19432", "label_19433", "label_19434", "label_19435", "label_19436", "label_19437", "label_19438", "label_19439", "label_19440", "label_19441", "label_19442", "label_19443", "label_19444", "label_19445", "label_19446", "label_19447", "label_19448", "label_19449", "label_19450", "label_19451", "label_19452", "label_19453", "label_19454", "label_19455", "label_19456", "label_19457", "label_19458", "label_19459", "label_19460", "label_19461", "label_19462", "label_19463", "label_19464", "label_19465", "label_19466", "label_19467", "label_19468", "label_19469", "label_19470", "label_19471", "label_19472", "label_19473", "label_19474", "label_19475", "label_19476", "label_19477", "label_19478", "label_19479", "label_19480", "label_19481", "label_19482", "label_19483", "label_19484", "label_19485", "label_19486", "label_19487", "label_19488", "label_19489", "label_19490", "label_19491", "label_19492", "label_19493", "label_19494", "label_19495", "label_19496", "label_19497", "label_19498", "label_19499", "label_19500", "label_19501", "label_19502", "label_19503", "label_19504", "label_19505", "label_19506", "label_19507", "label_19508", "label_19509", "label_19510", "label_19511", "label_19512", "label_19513", "label_19514", "label_19515", "label_19516", "label_19517", "label_19518", "label_19519", "label_19520", "label_19521", "label_19522", "label_19523", "label_19524", "label_19525", "label_19526", "label_19527", "label_19528", "label_19529", "label_19530", "label_19531", "label_19532", "label_19533", "label_19534", "label_19535", "label_19536", "label_19537", "label_19538", "label_19539", "label_19540", "label_19541", "label_19542", "label_19543", "label_19544", "label_19545", "label_19546", "label_19547", "label_19548", "label_19549", "label_19550", "label_19551", "label_19552", "label_19553", "label_19554", "label_19555", "label_19556", "label_19557", "label_19558", "label_19559", "label_19560", "label_19561", "label_19562", "label_19563", "label_19564", "label_19565", "label_19566", "label_19567", "label_19568", "label_19569", "label_19570", "label_19571", "label_19572", "label_19573", "label_19574", "label_19575", "label_19576", "label_19577", "label_19578", "label_19579", "label_19580", "label_19581", "label_19582", "label_19583", "label_19584", "label_19585", "label_19586", "label_19587", "label_19588", "label_19589", "label_19590", "label_19591", "label_19592", "label_19593", "label_19594", "label_19595", "label_19596", "label_19597", "label_19598", "label_19599", "label_19600", "label_19601", "label_19602", "label_19603", "label_19604", "label_19605", "label_19606", "label_19607", "label_19608", "label_19609", "label_19610", "label_19611", "label_19612", "label_19613", "label_19614", "label_19615", "label_19616", "label_19617", "label_19618", "label_19619", "label_19620", "label_19621", "label_19622", "label_19623", "label_19624", "label_19625", "label_19626", "label_19627", "label_19628", "label_19629", "label_19630", "label_19631", "label_19632", "label_19633", "label_19634", "label_19635", "label_19636", "label_19637", "label_19638", "label_19639", "label_19640", "label_19641", "label_19642", "label_19643", "label_19644", "label_19645", "label_19646", "label_19647", "label_19648", "label_19649", "label_19650", "label_19651", "label_19652", "label_19653", "label_19654", "label_19655", "label_19656", "label_19657", "label_19658", "label_19659", "label_19660", "label_19661", "label_19662", "label_19663", "label_19664", "label_19665", "label_19666", "label_19667", "label_19668", "label_19669", "label_19670", "label_19671", "label_19672", "label_19673", "label_19674", "label_19675", "label_19676", "label_19677", "label_19678", "label_19679", "label_19680", "label_19681", "label_19682", "label_19683", "label_19684", "label_19685", "label_19686", "label_19687", "label_19688", "label_19689", "label_19690", "label_19691", "label_19692", "label_19693", "label_19694", "label_19695", "label_19696", "label_19697", "label_19698", "label_19699", "label_19700", "label_19701", "label_19702", "label_19703", "label_19704", "label_19705", "label_19706", "label_19707", "label_19708", "label_19709", "label_19710", "label_19711", "label_19712", "label_19713", "label_19714", "label_19715", "label_19716", "label_19717", "label_19718", "label_19719", "label_19720", "label_19721", "label_19722", "label_19723", "label_19724", "label_19725", "label_19726", "label_19727", "label_19728", "label_19729", "label_19730", "label_19731", "label_19732", "label_19733", "label_19734", "label_19735", "label_19736", "label_19737", "label_19738", "label_19739", "label_19740", "label_19741", "label_19742", "label_19743", "label_19744", "label_19745", "label_19746", "label_19747", "label_19748", "label_19749", "label_19750", "label_19751", "label_19752", "label_19753", "label_19754", "label_19755", "label_19756", "label_19757", "label_19758", "label_19759", "label_19760", "label_19761", "label_19762", "label_19763", "label_19764", "label_19765", "label_19766", "label_19767", "label_19768", "label_19769", "label_19770", "label_19771", "label_19772", "label_19773", "label_19774", "label_19775", "label_19776", "label_19777", "label_19778", "label_19779", "label_19780", "label_19781", "label_19782", "label_19783", "label_19784", "label_19785", "label_19786", "label_19787", "label_19788", "label_19789", "label_19790", "label_19791", "label_19792", "label_19793", "label_19794", "label_19795", "label_19796", "label_19797", "label_19798", "label_19799", "label_19800", "label_19801", "label_19802", "label_19803", "label_19804", "label_19805", "label_19806", "label_19807", "label_19808", "label_19809", "label_19810", "label_19811", "label_19812", "label_19813", "label_19814", "label_19815", "label_19816", "label_19817", "label_19818", "label_19819", "label_19820", "label_19821", "label_19822", "label_19823", "label_19824", "label_19825", "label_19826", "label_19827", "label_19828", "label_19829", "label_19830", "label_19831", "label_19832", "label_19833", "label_19834", "label_19835", "label_19836", "label_19837", "label_19838", "label_19839", "label_19840", "label_19841", "label_19842", "label_19843", "label_19844", "label_19845", "label_19846", "label_19847", "label_19848", "label_19849", "label_19850", "label_19851", "label_19852", "label_19853", "label_19854", "label_19855", "label_19856", "label_19857", "label_19858", "label_19859", "label_19860", "label_19861", "label_19862", "label_19863", "label_19864", "label_19865", "label_19866", "label_19867", "label_19868", "label_19869", "label_19870", "label_19871", "label_19872", "label_19873", "label_19874", "label_19875", "label_19876", "label_19877", "label_19878", "label_19879", "label_19880", "label_19881", "label_19882", "label_19883", "label_19884", "label_19885", "label_19886", "label_19887", "label_19888", "label_19889", "label_19890", "label_19891", "label_19892", "label_19893", "label_19894", "label_19895", "label_19896", "label_19897", "label_19898", "label_19899", "label_19900", "label_19901", "label_19902", "label_19903", "label_19904", "label_19905", "label_19906", "label_19907", "label_19908", "label_19909", "label_19910", "label_19911", "label_19912", "label_19913", "label_19914", "label_19915", "label_19916", "label_19917", "label_19918", "label_19919", "label_19920", "label_19921", "label_19922", "label_19923", "label_19924", "label_19925", "label_19926", "label_19927", "label_19928", "label_19929", "label_19930", "label_19931", "label_19932", "label_19933", "label_19934", "label_19935", "label_19936", "label_19937", "label_19938", "label_19939", "label_19940", "label_19941", "label_19942", "label_19943", "label_19944", "label_19945", "label_19946", "label_19947", "label_19948", "label_19949", "label_19950", "label_19951", "label_19952", "label_19953", "label_19954", "label_19955", "label_19956", "label_19957", "label_19958", "label_19959", "label_19960", "label_19961", "label_19962", "label_19963", "label_19964", "label_19965", "label_19966", "label_19967", "label_19968", "label_19969", "label_19970", "label_19971", "label_19972", "label_19973", "label_19974", "label_19975", "label_19976", "label_19977", "label_19978", "label_19979", "label_19980", "label_19981", "label_19982", "label_19983", "label_19984", "label_19985", "label_19986", "label_19987", "label_19988", "label_19989", "label_19990", "label_19991", "label_19992", "label_19993", "label_19994", "label_19995", "label_19996", "label_19997", "label_19998", "label_19999", "label_20000", "label_20001", "label_20002", "label_20003", "label_20004", "label_20005", "label_20006", "label_20007", "label_20008", "label_20009", "label_20010", "label_20011", "label_20012", "label_20013", "label_20014", "label_20015", "label_20016", "label_20017", "label_20018", "label_20019", "label_20020", "label_20021", "label_20022", "label_20023", "label_20024", "label_20025", "label_20026", "label_20027", "label_20028", "label_20029", "label_20030", "label_20031", "label_20032", "label_20033", "label_20034", "label_20035", "label_20036", "label_20037", "label_20038", "label_20039", "label_20040", "label_20041", "label_20042", "label_20043", "label_20044", "label_20045", "label_20046", "label_20047", "label_20048", "label_20049", "label_20050", "label_20051", "label_20052", "label_20053", "label_20054", "label_20055", "label_20056", "label_20057", "label_20058", "label_20059", "label_20060", "label_20061", "label_20062", "label_20063", "label_20064", "label_20065", "label_20066", "label_20067", "label_20068", "label_20069", "label_20070", "label_20071", "label_20072", "label_20073", "label_20074", "label_20075", "label_20076", "label_20077", "label_20078", "label_20079", "label_20080", "label_20081", "label_20082", "label_20083", "label_20084", "label_20085", "label_20086", "label_20087", "label_20088", "label_20089", "label_20090", "label_20091", "label_20092", "label_20093", "label_20094", "label_20095", "label_20096", "label_20097", "label_20098", "label_20099", "label_20100", "label_20101", "label_20102", "label_20103", "label_20104", "label_20105", "label_20106", "label_20107", "label_20108", "label_20109", "label_20110", "label_20111", "label_20112", "label_20113", "label_20114", "label_20115", "label_20116", "label_20117", "label_20118", "label_20119", "label_20120", "label_20121", "label_20122", "label_20123", "label_20124", "label_20125", "label_20126", "label_20127", "label_20128", "label_20129", "label_20130", "label_20131", "label_20132", "label_20133", "label_20134", "label_20135", "label_20136", "label_20137", "label_20138", "label_20139", "label_20140", "label_20141", "label_20142", "label_20143", "label_20144", "label_20145", "label_20146", "label_20147", "label_20148", "label_20149", "label_20150", "label_20151", "label_20152", "label_20153", "label_20154", "label_20155", "label_20156", "label_20157", "label_20158", "label_20159", "label_20160", "label_20161", "label_20162", "label_20163", "label_20164", "label_20165", "label_20166", "label_20167", "label_20168", "label_20169", "label_20170", "label_20171", "label_20172", "label_20173", "label_20174", "label_20175", "label_20176", "label_20177", "label_20178", "label_20179", "label_20180", "label_20181", "label_20182", "label_20183", "label_20184", "label_20185", "label_20186", "label_20187", "label_20188", "label_20189", "label_20190", "label_20191", "label_20192", "label_20193", "label_20194", "label_20195", "label_20196", "label_20197", "label_20198", "label_20199", "label_20200", "label_20201", "label_20202", "label_20203", "label_20204", "label_20205", "label_20206", "label_20207", "label_20208", "label_20209", "label_20210", "label_20211", "label_20212", "label_20213", "label_20214", "label_20215", "label_20216", "label_20217", "label_20218", "label_20219", "label_20220", "label_20221", "label_20222", "label_20223", "label_20224", "label_20225", "label_20226", "label_20227", "label_20228", "label_20229", "label_20230", "label_20231", "label_20232", "label_20233", "label_20234", "label_20235", "label_20236", "label_20237", "label_20238", "label_20239", "label_20240", "label_20241", "label_20242", "label_20243", "label_20244", "label_20245", "label_20246", "label_20247", "label_20248", "label_20249", "label_20250", "label_20251", "label_20252", "label_20253", "label_20254", "label_20255", "label_20256", "label_20257", "label_20258", "label_20259", "label_20260", "label_20261", "label_20262", "label_20263", "label_20264", "label_20265", "label_20266", "label_20267", "label_20268", "label_20269", "label_20270", "label_20271", "label_20272", "label_20273", "label_20274", "label_20275", "label_20276", "label_20277", "label_20278", "label_20279", "label_20280", "label_20281", "label_20282", "label_20283", "label_20284", "label_20285", "label_20286", "label_20287", "label_20288", "label_20289", "label_20290", "label_20291", "label_20292", "label_20293", "label_20294", "label_20295", "label_20296", "label_20297", "label_20298", "label_20299", "label_20300", "label_20301", "label_20302", "label_20303", "label_20304", "label_20305", "label_20306", "label_20307", "label_20308", "label_20309", "label_20310", "label_20311", "label_20312", "label_20313", "label_20314", "label_20315", "label_20316", "label_20317", "label_20318", "label_20319", "label_20320", "label_20321", "label_20322", "label_20323", "label_20324", "label_20325", "label_20326", "label_20327", "label_20328", "label_20329", "label_20330", "label_20331", "label_20332", "label_20333", "label_20334", "label_20335", "label_20336", "label_20337", "label_20338", "label_20339", "label_20340", "label_20341", "label_20342", "label_20343", "label_20344", "label_20345", "label_20346", "label_20347", "label_20348", "label_20349", "label_20350", "label_20351", "label_20352", "label_20353", "label_20354", "label_20355", "label_20356", "label_20357", "label_20358", "label_20359", "label_20360", "label_20361", "label_20362", "label_20363", "label_20364", "label_20365", "label_20366", "label_20367", "label_20368", "label_20369", "label_20370", "label_20371", "label_20372", "label_20373", "label_20374", "label_20375", "label_20376", "label_20377", "label_20378", "label_20379", "label_20380", "label_20381", "label_20382", "label_20383", "label_20384", "label_20385", "label_20386", "label_20387", "label_20388", "label_20389", "label_20390", "label_20391", "label_20392", "label_20393", "label_20394", "label_20395", "label_20396", "label_20397", "label_20398", "label_20399", "label_20400", "label_20401", "label_20402", "label_20403", "label_20404", "label_20405", "label_20406", "label_20407", "label_20408", "label_20409", "label_20410", "label_20411", "label_20412", "label_20413", "label_20414", "label_20415", "label_20416", "label_20417", "label_20418", "label_20419", "label_20420", "label_20421", "label_20422", "label_20423", "label_20424", "label_20425", "label_20426", "label_20427", "label_20428", "label_20429", "label_20430", "label_20431", "label_20432", "label_20433", "label_20434", "label_20435", "label_20436", "label_20437", "label_20438", "label_20439", "label_20440", "label_20441", "label_20442", "label_20443", "label_20444", "label_20445", "label_20446", "label_20447", "label_20448", "label_20449", "label_20450", "label_20451", "label_20452", "label_20453", "label_20454", "label_20455", "label_20456", "label_20457", "label_20458", "label_20459", "label_20460", "label_20461", "label_20462", "label_20463", "label_20464", "label_20465", "label_20466", "label_20467", "label_20468", "label_20469", "label_20470", "label_20471", "label_20472", "label_20473", "label_20474", "label_20475", "label_20476", "label_20477", "label_20478", "label_20479", "label_20480", "label_20481", "label_20482", "label_20483", "label_20484", "label_20485", "label_20486", "label_20487", "label_20488", "label_20489", "label_20490", "label_20491", "label_20492", "label_20493", "label_20494", "label_20495", "label_20496", "label_20497", "label_20498", "label_20499", "label_20500", "label_20501", "label_20502", "label_20503", "label_20504", "label_20505", "label_20506", "label_20507", "label_20508", "label_20509", "label_20510", "label_20511", "label_20512", "label_20513", "label_20514", "label_20515", "label_20516", "label_20517", "label_20518", "label_20519", "label_20520", "label_20521", "label_20522", "label_20523", "label_20524", "label_20525", "label_20526", "label_20527", "label_20528", "label_20529", "label_20530", "label_20531", "label_20532", "label_20533", "label_20534", "label_20535", "label_20536", "label_20537", "label_20538", "label_20539", "label_20540", "label_20541", "label_20542", "label_20543", "label_20544", "label_20545", "label_20546", "label_20547", "label_20548", "label_20549", "label_20550", "label_20551", "label_20552", "label_20553", "label_20554", "label_20555", "label_20556", "label_20557", "label_20558", "label_20559", "label_20560", "label_20561", "label_20562", "label_20563", "label_20564", "label_20565", "label_20566", "label_20567", "label_20568", "label_20569", "label_20570", "label_20571", "label_20572", "label_20573", "label_20574", "label_20575", "label_20576", "label_20577", "label_20578", "label_20579", "label_20580", "label_20581", "label_20582", "label_20583", "label_20584", "label_20585", "label_20586", "label_20587", "label_20588", "label_20589", "label_20590", "label_20591", "label_20592", "label_20593", "label_20594", "label_20595", "label_20596", "label_20597", "label_20598", "label_20599", "label_20600", "label_20601", "label_20602", "label_20603", "label_20604", "label_20605", "label_20606", "label_20607", "label_20608", "label_20609", "label_20610", "label_20611", "label_20612", "label_20613", "label_20614", "label_20615", "label_20616", "label_20617", "label_20618", "label_20619", "label_20620", "label_20621", "label_20622", "label_20623", "label_20624", "label_20625", "label_20626", "label_20627", "label_20628", "label_20629", "label_20630", "label_20631", "label_20632", "label_20633", "label_20634", "label_20635", "label_20636", "label_20637", "label_20638", "label_20639", "label_20640", "label_20641", "label_20642", "label_20643", "label_20644", "label_20645", "label_20646", "label_20647", "label_20648", "label_20649", "label_20650", "label_20651", "label_20652", "label_20653", "label_20654", "label_20655", "label_20656", "label_20657", "label_20658", "label_20659", "label_20660", "label_20661", "label_20662", "label_20663", "label_20664", "label_20665", "label_20666", "label_20667", "label_20668", "label_20669", "label_20670", "label_20671", "label_20672", "label_20673", "label_20674", "label_20675", "label_20676", "label_20677", "label_20678", "label_20679", "label_20680", "label_20681", "label_20682", "label_20683", "label_20684", "label_20685", "label_20686", "label_20687", "label_20688", "label_20689", "label_20690", "label_20691", "label_20692", "label_20693", "label_20694", "label_20695", "label_20696", "label_20697", "label_20698", "label_20699", "label_20700", "label_20701", "label_20702", "label_20703", "label_20704", "label_20705", "label_20706", "label_20707", "label_20708", "label_20709", "label_20710", "label_20711", "label_20712", "label_20713", "label_20714", "label_20715", "label_20716", "label_20717", "label_20718", "label_20719", "label_20720", "label_20721", "label_20722", "label_20723", "label_20724", "label_20725", "label_20726", "label_20727", "label_20728", "label_20729", "label_20730", "label_20731", "label_20732", "label_20733", "label_20734", "label_20735", "label_20736", "label_20737", "label_20738", "label_20739", "label_20740", "label_20741", "label_20742", "label_20743", "label_20744", "label_20745", "label_20746", "label_20747", "label_20748", "label_20749", "label_20750", "label_20751", "label_20752", "label_20753", "label_20754", "label_20755", "label_20756", "label_20757", "label_20758", "label_20759", "label_20760", "label_20761", "label_20762", "label_20763", "label_20764", "label_20765", "label_20766", "label_20767", "label_20768", "label_20769", "label_20770", "label_20771", "label_20772", "label_20773", "label_20774", "label_20775", "label_20776", "label_20777", "label_20778", "label_20779", "label_20780", "label_20781", "label_20782", "label_20783", "label_20784", "label_20785", "label_20786", "label_20787", "label_20788", "label_20789", "label_20790", "label_20791", "label_20792", "label_20793", "label_20794", "label_20795", "label_20796", "label_20797", "label_20798", "label_20799", "label_20800", "label_20801", "label_20802", "label_20803", "label_20804", "label_20805", "label_20806", "label_20807", "label_20808", "label_20809", "label_20810", "label_20811", "label_20812", "label_20813", "label_20814", "label_20815", "label_20816", "label_20817", "label_20818", "label_20819", "label_20820", "label_20821", "label_20822", "label_20823", "label_20824", "label_20825", "label_20826", "label_20827", "label_20828", "label_20829", "label_20830", "label_20831", "label_20832", "label_20833", "label_20834", "label_20835", "label_20836", "label_20837", "label_20838", "label_20839", "label_20840", "label_20841", "label_20842", "label_20843", "label_20844", "label_20845", "label_20846", "label_20847", "label_20848", "label_20849", "label_20850", "label_20851", "label_20852", "label_20853", "label_20854", "label_20855", "label_20856", "label_20857", "label_20858", "label_20859", "label_20860", "label_20861", "label_20862", "label_20863", "label_20864", "label_20865", "label_20866", "label_20867", "label_20868", "label_20869", "label_20870", "label_20871", "label_20872", "label_20873", "label_20874", "label_20875", "label_20876", "label_20877", "label_20878", "label_20879", "label_20880", "label_20881", "label_20882", "label_20883", "label_20884", "label_20885", "label_20886", "label_20887", "label_20888", "label_20889", "label_20890", "label_20891", "label_20892", "label_20893", "label_20894", "label_20895", "label_20896", "label_20897", "label_20898", "label_20899", "label_20900", "label_20901", "label_20902", "label_20903", "label_20904", "label_20905", "label_20906", "label_20907", "label_20908", "label_20909", "label_20910", "label_20911", "label_20912", "label_20913", "label_20914", "label_20915", "label_20916", "label_20917", "label_20918", "label_20919", "label_20920", "label_20921", "label_20922", "label_20923", "label_20924", "label_20925", "label_20926", "label_20927", "label_20928", "label_20929", "label_20930", "label_20931", "label_20932", "label_20933", "label_20934", "label_20935", "label_20936", "label_20937", "label_20938", "label_20939", "label_20940", "label_20941", "label_20942", "label_20943", "label_20944", "label_20945", "label_20946", "label_20947", "label_20948", "label_20949", "label_20950", "label_20951", "label_20952", "label_20953", "label_20954", "label_20955", "label_20956", "label_20957", "label_20958", "label_20959", "label_20960", "label_20961", "label_20962", "label_20963", "label_20964", "label_20965", "label_20966", "label_20967", "label_20968", "label_20969", "label_20970", "label_20971", "label_20972", "label_20973", "label_20974", "label_20975", "label_20976", "label_20977", "label_20978", "label_20979", "label_20980", "label_20981", "label_20982", "label_20983", "label_20984", "label_20985", "label_20986", "label_20987", "label_20988", "label_20989", "label_20990", "label_20991", "label_20992", "label_20993", "label_20994", "label_20995", "label_20996", "label_20997", "label_20998", "label_20999", "label_21000", "label_21001", "label_21002", "label_21003", "label_21004", "label_21005", "label_21006", "label_21007", "label_21008", "label_21009", "label_21010", "label_21011", "label_21012", "label_21013", "label_21014", "label_21015", "label_21016", "label_21017", "label_21018", "label_21019", "label_21020", "label_21021", "label_21022", "label_21023", "label_21024", "label_21025", "label_21026", "label_21027", "label_21028", "label_21029", "label_21030", "label_21031", "label_21032", "label_21033", "label_21034", "label_21035", "label_21036", "label_21037", "label_21038", "label_21039", "label_21040", "label_21041", "label_21042", "label_21043", "label_21044", "label_21045", "label_21046", "label_21047", "label_21048", "label_21049", "label_21050", "label_21051", "label_21052", "label_21053", "label_21054", "label_21055", "label_21056", "label_21057", "label_21058", "label_21059", "label_21060", "label_21061", "label_21062", "label_21063", "label_21064", "label_21065", "label_21066", "label_21067", "label_21068", "label_21069", "label_21070", "label_21071", "label_21072", "label_21073", "label_21074", "label_21075", "label_21076", "label_21077", "label_21078", "label_21079", "label_21080", "label_21081", "label_21082", "label_21083", "label_21084", "label_21085", "label_21086", "label_21087", "label_21088", "label_21089", "label_21090", "label_21091", "label_21092", "label_21093", "label_21094", "label_21095", "label_21096", "label_21097", "label_21098", "label_21099", "label_21100", "label_21101", "label_21102", "label_21103", "label_21104", "label_21105", "label_21106", "label_21107", "label_21108", "label_21109", "label_21110", "label_21111", "label_21112", "label_21113", "label_21114", "label_21115", "label_21116", "label_21117", "label_21118", "label_21119", "label_21120", "label_21121", "label_21122", "label_21123", "label_21124", "label_21125", "label_21126", "label_21127", "label_21128", "label_21129", "label_21130", "label_21131", "label_21132", "label_21133", "label_21134", "label_21135", "label_21136", "label_21137", "label_21138", "label_21139", "label_21140", "label_21141", "label_21142", "label_21143", "label_21144", "label_21145", "label_21146", "label_21147", "label_21148", "label_21149", "label_21150", "label_21151", "label_21152", "label_21153", "label_21154", "label_21155", "label_21156", "label_21157", "label_21158", "label_21159", "label_21160", "label_21161", "label_21162", "label_21163", "label_21164", "label_21165", "label_21166", "label_21167", "label_21168", "label_21169", "label_21170", "label_21171", "label_21172", "label_21173", "label_21174", "label_21175", "label_21176", "label_21177", "label_21178", "label_21179", "label_21180", "label_21181", "label_21182", "label_21183", "label_21184", "label_21185", "label_21186", "label_21187", "label_21188", "label_21189", "label_21190", "label_21191", "label_21192", "label_21193", "label_21194", "label_21195", "label_21196", "label_21197", "label_21198", "label_21199", "label_21200", "label_21201", "label_21202", "label_21203", "label_21204", "label_21205", "label_21206", "label_21207", "label_21208", "label_21209", "label_21210", "label_21211", "label_21212", "label_21213", "label_21214", "label_21215", "label_21216", "label_21217", "label_21218", "label_21219", "label_21220", "label_21221", "label_21222", "label_21223", "label_21224", "label_21225", "label_21226", "label_21227", "label_21228", "label_21229", "label_21230", "label_21231", "label_21232", "label_21233", "label_21234", "label_21235", "label_21236", "label_21237", "label_21238", "label_21239", "label_21240", "label_21241", "label_21242", "label_21243", "label_21244", "label_21245", "label_21246", "label_21247", "label_21248", "label_21249", "label_21250", "label_21251", "label_21252", "label_21253", "label_21254", "label_21255", "label_21256", "label_21257", "label_21258", "label_21259", "label_21260", "label_21261", "label_21262", "label_21263", "label_21264", "label_21265", "label_21266", "label_21267", "label_21268", "label_21269", "label_21270", "label_21271", "label_21272", "label_21273", "label_21274", "label_21275", "label_21276", "label_21277", "label_21278", "label_21279", "label_21280", "label_21281", "label_21282", "label_21283", "label_21284", "label_21285", "label_21286", "label_21287", "label_21288", "label_21289", "label_21290", "label_21291", "label_21292", "label_21293", "label_21294", "label_21295", "label_21296", "label_21297", "label_21298", "label_21299", "label_21300", "label_21301", "label_21302", "label_21303", "label_21304", "label_21305", "label_21306", "label_21307", "label_21308", "label_21309", "label_21310", "label_21311", "label_21312", "label_21313", "label_21314", "label_21315", "label_21316", "label_21317", "label_21318", "label_21319", "label_21320", "label_21321", "label_21322", "label_21323", "label_21324", "label_21325", "label_21326", "label_21327", "label_21328", "label_21329", "label_21330", "label_21331", "label_21332", "label_21333", "label_21334", "label_21335", "label_21336", "label_21337", "label_21338", "label_21339", "label_21340", "label_21341", "label_21342", "label_21343", "label_21344", "label_21345", "label_21346", "label_21347", "label_21348", "label_21349", "label_21350", "label_21351", "label_21352", "label_21353", "label_21354", "label_21355", "label_21356", "label_21357", "label_21358", "label_21359", "label_21360", "label_21361", "label_21362", "label_21363", "label_21364", "label_21365", "label_21366", "label_21367", "label_21368", "label_21369", "label_21370", "label_21371", "label_21372", "label_21373", "label_21374", "label_21375", "label_21376", "label_21377", "label_21378", "label_21379", "label_21380", "label_21381", "label_21382", "label_21383", "label_21384", "label_21385", "label_21386", "label_21387", "label_21388", "label_21389", "label_21390", "label_21391", "label_21392", "label_21393", "label_21394", "label_21395", "label_21396", "label_21397", "label_21398", "label_21399", "label_21400", "label_21401", "label_21402", "label_21403", "label_21404", "label_21405", "label_21406", "label_21407", "label_21408", "label_21409", "label_21410", "label_21411", "label_21412", "label_21413", "label_21414", "label_21415", "label_21416", "label_21417", "label_21418", "label_21419", "label_21420", "label_21421", "label_21422", "label_21423", "label_21424", "label_21425", "label_21426", "label_21427", "label_21428", "label_21429", "label_21430", "label_21431", "label_21432", "label_21433", "label_21434", "label_21435", "label_21436", "label_21437", "label_21438", "label_21439", "label_21440", "label_21441", "label_21442", "label_21443", "label_21444", "label_21445", "label_21446", "label_21447", "label_21448", "label_21449", "label_21450", "label_21451", "label_21452", "label_21453", "label_21454", "label_21455", "label_21456", "label_21457", "label_21458", "label_21459", "label_21460", "label_21461", "label_21462", "label_21463", "label_21464", "label_21465", "label_21466", "label_21467", "label_21468", "label_21469", "label_21470", "label_21471", "label_21472", "label_21473", "label_21474", "label_21475", "label_21476", "label_21477", "label_21478", "label_21479", "label_21480", "label_21481", "label_21482", "label_21483", "label_21484", "label_21485", "label_21486", "label_21487", "label_21488", "label_21489", "label_21490", "label_21491", "label_21492", "label_21493", "label_21494", "label_21495", "label_21496", "label_21497", "label_21498", "label_21499", "label_21500", "label_21501", "label_21502", "label_21503", "label_21504", "label_21505", "label_21506", "label_21507", "label_21508", "label_21509", "label_21510", "label_21511", "label_21512", "label_21513", "label_21514", "label_21515", "label_21516", "label_21517", "label_21518", "label_21519", "label_21520", "label_21521", "label_21522", "label_21523", "label_21524", "label_21525", "label_21526", "label_21527", "label_21528", "label_21529", "label_21530", "label_21531", "label_21532", "label_21533", "label_21534", "label_21535", "label_21536", "label_21537", "label_21538", "label_21539", "label_21540", "label_21541", "label_21542", "label_21543", "label_21544", "label_21545", "label_21546", "label_21547", "label_21548", "label_21549", "label_21550", "label_21551", "label_21552", "label_21553", "label_21554", "label_21555", "label_21556", "label_21557", "label_21558", "label_21559", "label_21560", "label_21561", "label_21562", "label_21563", "label_21564", "label_21565", "label_21566", "label_21567", "label_21568", "label_21569", "label_21570", "label_21571", "label_21572", "label_21573", "label_21574", "label_21575", "label_21576", "label_21577", "label_21578", "label_21579", "label_21580", "label_21581", "label_21582", "label_21583", "label_21584", "label_21585", "label_21586", "label_21587", "label_21588", "label_21589", "label_21590", "label_21591", "label_21592", "label_21593", "label_21594", "label_21595", "label_21596", "label_21597", "label_21598", "label_21599", "label_21600", "label_21601", "label_21602", "label_21603", "label_21604", "label_21605", "label_21606", "label_21607", "label_21608", "label_21609", "label_21610", "label_21611", "label_21612", "label_21613", "label_21614", "label_21615", "label_21616", "label_21617", "label_21618", "label_21619", "label_21620", "label_21621", "label_21622", "label_21623", "label_21624", "label_21625", "label_21626", "label_21627", "label_21628", "label_21629", "label_21630", "label_21631", "label_21632", "label_21633", "label_21634", "label_21635", "label_21636", "label_21637", "label_21638", "label_21639", "label_21640", "label_21641", "label_21642", "label_21643", "label_21644", "label_21645", "label_21646", "label_21647", "label_21648", "label_21649", "label_21650", "label_21651", "label_21652", "label_21653", "label_21654", "label_21655", "label_21656", "label_21657", "label_21658", "label_21659", "label_21660", "label_21661", "label_21662", "label_21663", "label_21664", "label_21665", "label_21666", "label_21667", "label_21668", "label_21669", "label_21670", "label_21671", "label_21672", "label_21673", "label_21674", "label_21675", "label_21676", "label_21677", "label_21678", "label_21679", "label_21680", "label_21681", "label_21682", "label_21683", "label_21684", "label_21685", "label_21686", "label_21687", "label_21688", "label_21689", "label_21690", "label_21691", "label_21692", "label_21693", "label_21694", "label_21695", "label_21696", "label_21697", "label_21698", "label_21699", "label_21700", "label_21701", "label_21702", "label_21703", "label_21704", "label_21705", "label_21706", "label_21707", "label_21708", "label_21709", "label_21710", "label_21711", "label_21712", "label_21713", "label_21714", "label_21715", "label_21716", "label_21717", "label_21718", "label_21719", "label_21720", "label_21721", "label_21722", "label_21723", "label_21724", "label_21725", "label_21726", "label_21727", "label_21728", "label_21729", "label_21730", "label_21731", "label_21732", "label_21733", "label_21734", "label_21735", "label_21736", "label_21737", "label_21738", "label_21739", "label_21740", "label_21741", "label_21742", "label_21743", "label_21744", "label_21745", "label_21746", "label_21747", "label_21748", "label_21749", "label_21750", "label_21751", "label_21752", "label_21753", "label_21754", "label_21755", "label_21756", "label_21757", "label_21758", "label_21759", "label_21760", "label_21761", "label_21762", "label_21763", "label_21764", "label_21765", "label_21766", "label_21767", "label_21768", "label_21769", "label_21770", "label_21771", "label_21772", "label_21773", "label_21774", "label_21775", "label_21776", "label_21777", "label_21778", "label_21779", "label_21780", "label_21781", "label_21782", "label_21783", "label_21784", "label_21785", "label_21786", "label_21787", "label_21788", "label_21789", "label_21790", "label_21791", "label_21792", "label_21793", "label_21794", "label_21795", "label_21796", "label_21797", "label_21798", "label_21799", "label_21800", "label_21801", "label_21802", "label_21803", "label_21804", "label_21805", "label_21806", "label_21807", "label_21808", "label_21809", "label_21810", "label_21811", "label_21812", "label_21813", "label_21814", "label_21815", "label_21816", "label_21817", "label_21818", "label_21819", "label_21820", "label_21821", "label_21822", "label_21823", "label_21824", "label_21825", "label_21826", "label_21827", "label_21828", "label_21829", "label_21830", "label_21831", "label_21832", "label_21833", "label_21834", "label_21835", "label_21836", "label_21837", "label_21838", "label_21839", "label_21840" ]
microsoft/swinv2-large-patch4-window12-192-22k
# Swin Transformer v2 (large-sized model) Swin Transformer v2 model pre-trained on ImageNet-21k at resolution 192x192. It was introduced in the paper [Swin Transformer V2: Scaling Up Capacity and Resolution](https://arxiv.org/abs/2111.09883) by Liu et al. and first released in [this repository](https://github.com/microsoft/Swin-Transformer). Disclaimer: The team releasing Swin Transformer v2 did not write a model card for this model so this model card has been written by the Hugging Face team. ## Model description The Swin Transformer is a type of Vision Transformer. It builds hierarchical feature maps by merging image patches (shown in gray) in deeper layers and has linear computation complexity to input image size due to computation of self-attention only within each local window (shown in red). It can thus serve as a general-purpose backbone for both image classification and dense recognition tasks. In contrast, previous vision Transformers produce feature maps of a single low resolution and have quadratic computation complexity to input image size due to computation of self-attention globally. Swin Transformer v2 adds 3 main improvements: 1) a residual-post-norm method combined with cosine attention to improve training stability; 2) a log-spaced continuous position bias method to effectively transfer models pre-trained using low-resolution images to downstream tasks with high-resolution inputs; 3) a self-supervised pre-training method, SimMIM, to reduce the needs of vast labeled images. ![model image](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/swin_transformer_architecture.png) [Source](https://paperswithcode.com/method/swin-transformer) ## Intended uses & limitations You can use the raw model for image classification. See the [model hub](https://huggingface.co/models?search=swinv2) to look for fine-tuned versions on a task that interests you. ### How to use Here is how to use this model to classify an image of the COCO 2017 dataset into one of the 21k ImageNet classes: ```python from transformers import AutoImageProcessor, AutoModelForImageClassification from PIL import Image import requests url = "http://images.cocodataset.org/val2017/000000039769.jpg" image = Image.open(requests.get(url, stream=True).raw) processor = AutoImageProcessor.from_pretrained("microsoft/swinv2-large-patch4-window12-192-22k") model = AutoModelForImageClassification.from_pretrained("microsoft/swinv2-large-patch4-window12-192-22k") inputs = processor(images=image, return_tensors="pt") outputs = model(**inputs) logits = outputs.logits # model predicts one of the 21k ImageNet classes predicted_class_idx = logits.argmax(-1).item() print("Predicted class:", model.config.id2label[predicted_class_idx]) ``` For more code examples, we refer to the [documentation](https://huggingface.co/transformers/model_doc/swinv2.html#). ### BibTeX entry and citation info ```bibtex @article{DBLP:journals/corr/abs-2111-09883, author = {Ze Liu and Han Hu and Yutong Lin and Zhuliang Yao and Zhenda Xie and Yixuan Wei and Jia Ning and Yue Cao and Zheng Zhang and Li Dong and Furu Wei and Baining Guo}, title = {Swin Transformer {V2:} Scaling Up Capacity and Resolution}, journal = {CoRR}, volume = {abs/2111.09883}, year = {2021}, url = {https://arxiv.org/abs/2111.09883}, eprinttype = {arXiv}, eprint = {2111.09883}, timestamp = {Thu, 02 Dec 2021 15:54:22 +0100}, biburl = {https://dblp.org/rec/journals/corr/abs-2111-09883.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ```
[ "label_0", "label_1", "label_2", "label_3", "label_4", "label_5", "label_6", "label_7", "label_8", "label_9", "label_10", "label_11", "label_12", "label_13", "label_14", "label_15", "label_16", "label_17", "label_18", "label_19", "label_20", "label_21", "label_22", "label_23", "label_24", "label_25", "label_26", "label_27", "label_28", "label_29", "label_30", "label_31", "label_32", "label_33", "label_34", "label_35", "label_36", "label_37", "label_38", "label_39", "label_40", "label_41", "label_42", "label_43", "label_44", "label_45", "label_46", "label_47", "label_48", "label_49", "label_50", "label_51", "label_52", "label_53", "label_54", "label_55", "label_56", "label_57", "label_58", "label_59", "label_60", "label_61", "label_62", "label_63", "label_64", "label_65", "label_66", "label_67", "label_68", "label_69", "label_70", "label_71", "label_72", "label_73", "label_74", "label_75", "label_76", "label_77", "label_78", "label_79", "label_80", "label_81", "label_82", "label_83", "label_84", "label_85", "label_86", "label_87", "label_88", "label_89", "label_90", "label_91", "label_92", "label_93", "label_94", "label_95", "label_96", "label_97", "label_98", "label_99", "label_100", "label_101", "label_102", "label_103", "label_104", "label_105", "label_106", "label_107", "label_108", "label_109", "label_110", "label_111", "label_112", "label_113", "label_114", "label_115", "label_116", "label_117", "label_118", "label_119", "label_120", "label_121", "label_122", "label_123", "label_124", "label_125", "label_126", "label_127", "label_128", "label_129", "label_130", "label_131", "label_132", "label_133", "label_134", "label_135", "label_136", "label_137", "label_138", "label_139", "label_140", "label_141", "label_142", "label_143", "label_144", "label_145", "label_146", "label_147", "label_148", "label_149", "label_150", "label_151", "label_152", "label_153", "label_154", "label_155", "label_156", "label_157", "label_158", "label_159", "label_160", "label_161", "label_162", "label_163", "label_164", "label_165", "label_166", "label_167", "label_168", "label_169", "label_170", "label_171", "label_172", "label_173", "label_174", "label_175", "label_176", "label_177", "label_178", "label_179", "label_180", "label_181", "label_182", "label_183", "label_184", "label_185", "label_186", "label_187", "label_188", "label_189", "label_190", "label_191", "label_192", "label_193", "label_194", "label_195", "label_196", "label_197", "label_198", "label_199", "label_200", "label_201", "label_202", "label_203", "label_204", "label_205", "label_206", "label_207", "label_208", "label_209", "label_210", "label_211", "label_212", "label_213", "label_214", "label_215", "label_216", "label_217", "label_218", "label_219", "label_220", "label_221", "label_222", "label_223", "label_224", "label_225", "label_226", "label_227", "label_228", "label_229", "label_230", "label_231", "label_232", "label_233", "label_234", "label_235", "label_236", "label_237", "label_238", "label_239", "label_240", "label_241", "label_242", "label_243", "label_244", "label_245", "label_246", "label_247", "label_248", "label_249", "label_250", "label_251", "label_252", "label_253", "label_254", "label_255", "label_256", "label_257", "label_258", "label_259", "label_260", "label_261", "label_262", "label_263", "label_264", "label_265", "label_266", "label_267", "label_268", "label_269", "label_270", "label_271", "label_272", "label_273", "label_274", "label_275", "label_276", "label_277", "label_278", "label_279", "label_280", "label_281", "label_282", "label_283", "label_284", "label_285", "label_286", "label_287", "label_288", "label_289", "label_290", "label_291", "label_292", "label_293", "label_294", "label_295", "label_296", "label_297", "label_298", "label_299", "label_300", "label_301", "label_302", "label_303", "label_304", "label_305", "label_306", "label_307", "label_308", "label_309", "label_310", "label_311", "label_312", "label_313", "label_314", "label_315", "label_316", "label_317", "label_318", "label_319", "label_320", "label_321", "label_322", "label_323", "label_324", "label_325", "label_326", "label_327", "label_328", "label_329", "label_330", "label_331", "label_332", "label_333", "label_334", "label_335", "label_336", "label_337", "label_338", "label_339", "label_340", "label_341", "label_342", "label_343", "label_344", "label_345", "label_346", "label_347", "label_348", "label_349", "label_350", "label_351", "label_352", "label_353", "label_354", "label_355", "label_356", "label_357", "label_358", "label_359", "label_360", "label_361", "label_362", "label_363", "label_364", "label_365", "label_366", "label_367", "label_368", "label_369", "label_370", "label_371", "label_372", "label_373", "label_374", "label_375", "label_376", "label_377", "label_378", "label_379", "label_380", "label_381", "label_382", "label_383", "label_384", "label_385", "label_386", "label_387", "label_388", "label_389", "label_390", "label_391", "label_392", "label_393", "label_394", "label_395", "label_396", "label_397", "label_398", "label_399", "label_400", "label_401", "label_402", "label_403", "label_404", "label_405", "label_406", "label_407", "label_408", "label_409", "label_410", "label_411", "label_412", "label_413", "label_414", "label_415", "label_416", "label_417", "label_418", "label_419", "label_420", "label_421", "label_422", "label_423", "label_424", "label_425", "label_426", "label_427", "label_428", "label_429", "label_430", "label_431", "label_432", "label_433", "label_434", "label_435", "label_436", "label_437", "label_438", "label_439", "label_440", "label_441", "label_442", "label_443", "label_444", "label_445", "label_446", "label_447", "label_448", "label_449", "label_450", "label_451", "label_452", "label_453", "label_454", "label_455", "label_456", "label_457", "label_458", "label_459", "label_460", "label_461", "label_462", "label_463", "label_464", "label_465", "label_466", "label_467", "label_468", "label_469", "label_470", "label_471", "label_472", "label_473", "label_474", "label_475", "label_476", "label_477", "label_478", "label_479", "label_480", "label_481", "label_482", "label_483", "label_484", "label_485", "label_486", "label_487", "label_488", "label_489", "label_490", "label_491", "label_492", "label_493", "label_494", "label_495", "label_496", "label_497", "label_498", "label_499", "label_500", "label_501", "label_502", "label_503", "label_504", "label_505", "label_506", "label_507", "label_508", "label_509", "label_510", "label_511", "label_512", "label_513", "label_514", "label_515", "label_516", "label_517", "label_518", "label_519", "label_520", "label_521", "label_522", "label_523", "label_524", "label_525", "label_526", "label_527", "label_528", "label_529", "label_530", "label_531", "label_532", "label_533", "label_534", "label_535", "label_536", "label_537", "label_538", "label_539", "label_540", "label_541", "label_542", "label_543", "label_544", "label_545", "label_546", "label_547", "label_548", "label_549", "label_550", "label_551", "label_552", "label_553", "label_554", "label_555", "label_556", "label_557", "label_558", "label_559", "label_560", "label_561", "label_562", "label_563", "label_564", "label_565", "label_566", "label_567", "label_568", "label_569", "label_570", "label_571", "label_572", "label_573", "label_574", "label_575", "label_576", "label_577", "label_578", "label_579", "label_580", "label_581", "label_582", "label_583", "label_584", "label_585", "label_586", "label_587", "label_588", "label_589", "label_590", "label_591", "label_592", "label_593", "label_594", "label_595", "label_596", "label_597", "label_598", "label_599", "label_600", "label_601", "label_602", "label_603", "label_604", "label_605", "label_606", "label_607", "label_608", "label_609", "label_610", "label_611", "label_612", "label_613", "label_614", "label_615", "label_616", "label_617", "label_618", "label_619", "label_620", "label_621", "label_622", "label_623", "label_624", "label_625", "label_626", "label_627", "label_628", "label_629", "label_630", "label_631", "label_632", "label_633", "label_634", "label_635", "label_636", "label_637", "label_638", "label_639", "label_640", "label_641", "label_642", "label_643", "label_644", "label_645", "label_646", "label_647", "label_648", "label_649", "label_650", "label_651", "label_652", "label_653", "label_654", "label_655", "label_656", "label_657", "label_658", "label_659", "label_660", "label_661", "label_662", "label_663", "label_664", "label_665", "label_666", "label_667", "label_668", "label_669", "label_670", "label_671", "label_672", "label_673", "label_674", "label_675", "label_676", "label_677", "label_678", "label_679", "label_680", "label_681", "label_682", "label_683", "label_684", "label_685", "label_686", "label_687", "label_688", "label_689", "label_690", "label_691", "label_692", "label_693", "label_694", "label_695", "label_696", "label_697", "label_698", "label_699", "label_700", "label_701", "label_702", "label_703", "label_704", "label_705", "label_706", "label_707", "label_708", "label_709", "label_710", "label_711", "label_712", "label_713", "label_714", "label_715", "label_716", "label_717", "label_718", "label_719", "label_720", "label_721", "label_722", "label_723", "label_724", "label_725", "label_726", "label_727", "label_728", "label_729", "label_730", "label_731", "label_732", "label_733", "label_734", "label_735", "label_736", "label_737", "label_738", "label_739", "label_740", "label_741", "label_742", "label_743", "label_744", "label_745", "label_746", "label_747", "label_748", "label_749", "label_750", "label_751", "label_752", "label_753", "label_754", "label_755", "label_756", "label_757", "label_758", "label_759", "label_760", "label_761", "label_762", "label_763", "label_764", "label_765", "label_766", "label_767", "label_768", "label_769", "label_770", "label_771", "label_772", "label_773", "label_774", "label_775", "label_776", "label_777", "label_778", "label_779", "label_780", "label_781", "label_782", "label_783", "label_784", "label_785", "label_786", "label_787", "label_788", "label_789", "label_790", "label_791", "label_792", "label_793", "label_794", "label_795", "label_796", "label_797", "label_798", "label_799", "label_800", "label_801", "label_802", "label_803", "label_804", "label_805", "label_806", "label_807", "label_808", "label_809", "label_810", "label_811", "label_812", "label_813", "label_814", "label_815", "label_816", "label_817", "label_818", "label_819", "label_820", "label_821", "label_822", "label_823", "label_824", "label_825", "label_826", "label_827", "label_828", "label_829", "label_830", "label_831", "label_832", "label_833", "label_834", "label_835", "label_836", "label_837", "label_838", "label_839", "label_840", "label_841", "label_842", "label_843", "label_844", "label_845", "label_846", "label_847", "label_848", "label_849", "label_850", "label_851", "label_852", "label_853", "label_854", "label_855", "label_856", "label_857", "label_858", "label_859", "label_860", "label_861", "label_862", "label_863", "label_864", "label_865", "label_866", "label_867", "label_868", "label_869", "label_870", "label_871", "label_872", "label_873", "label_874", "label_875", "label_876", "label_877", "label_878", "label_879", "label_880", "label_881", "label_882", "label_883", "label_884", "label_885", "label_886", "label_887", "label_888", "label_889", "label_890", "label_891", "label_892", "label_893", "label_894", "label_895", "label_896", "label_897", "label_898", "label_899", "label_900", "label_901", "label_902", "label_903", "label_904", "label_905", "label_906", "label_907", "label_908", "label_909", "label_910", "label_911", "label_912", "label_913", "label_914", "label_915", "label_916", "label_917", "label_918", "label_919", "label_920", "label_921", "label_922", "label_923", "label_924", "label_925", "label_926", "label_927", "label_928", "label_929", "label_930", "label_931", "label_932", "label_933", "label_934", "label_935", "label_936", "label_937", "label_938", "label_939", "label_940", "label_941", "label_942", "label_943", "label_944", "label_945", "label_946", "label_947", "label_948", "label_949", "label_950", "label_951", "label_952", "label_953", "label_954", "label_955", "label_956", "label_957", "label_958", "label_959", "label_960", "label_961", "label_962", "label_963", "label_964", "label_965", "label_966", "label_967", "label_968", "label_969", "label_970", "label_971", "label_972", "label_973", "label_974", "label_975", "label_976", "label_977", "label_978", "label_979", "label_980", "label_981", "label_982", "label_983", "label_984", "label_985", "label_986", "label_987", "label_988", "label_989", "label_990", "label_991", "label_992", "label_993", "label_994", "label_995", "label_996", "label_997", "label_998", "label_999", "label_1000", "label_1001", "label_1002", "label_1003", "label_1004", "label_1005", "label_1006", "label_1007", "label_1008", "label_1009", "label_1010", "label_1011", "label_1012", "label_1013", "label_1014", "label_1015", "label_1016", "label_1017", "label_1018", "label_1019", "label_1020", "label_1021", "label_1022", "label_1023", "label_1024", "label_1025", "label_1026", "label_1027", "label_1028", "label_1029", "label_1030", "label_1031", "label_1032", "label_1033", "label_1034", "label_1035", "label_1036", "label_1037", "label_1038", "label_1039", "label_1040", "label_1041", "label_1042", "label_1043", "label_1044", "label_1045", "label_1046", "label_1047", "label_1048", "label_1049", "label_1050", "label_1051", "label_1052", "label_1053", "label_1054", "label_1055", "label_1056", "label_1057", "label_1058", "label_1059", "label_1060", "label_1061", "label_1062", "label_1063", "label_1064", "label_1065", "label_1066", "label_1067", "label_1068", "label_1069", "label_1070", "label_1071", "label_1072", "label_1073", "label_1074", "label_1075", "label_1076", "label_1077", "label_1078", "label_1079", "label_1080", "label_1081", "label_1082", "label_1083", "label_1084", "label_1085", "label_1086", "label_1087", "label_1088", "label_1089", "label_1090", "label_1091", "label_1092", "label_1093", "label_1094", "label_1095", "label_1096", "label_1097", "label_1098", "label_1099", "label_1100", "label_1101", "label_1102", "label_1103", "label_1104", "label_1105", "label_1106", "label_1107", "label_1108", "label_1109", "label_1110", "label_1111", "label_1112", "label_1113", "label_1114", "label_1115", "label_1116", "label_1117", "label_1118", "label_1119", "label_1120", "label_1121", "label_1122", "label_1123", "label_1124", "label_1125", "label_1126", "label_1127", "label_1128", "label_1129", "label_1130", "label_1131", "label_1132", "label_1133", "label_1134", "label_1135", "label_1136", "label_1137", "label_1138", "label_1139", "label_1140", "label_1141", "label_1142", "label_1143", "label_1144", "label_1145", "label_1146", "label_1147", "label_1148", "label_1149", "label_1150", "label_1151", "label_1152", "label_1153", "label_1154", "label_1155", "label_1156", "label_1157", "label_1158", "label_1159", "label_1160", "label_1161", "label_1162", "label_1163", "label_1164", "label_1165", "label_1166", "label_1167", "label_1168", "label_1169", "label_1170", "label_1171", "label_1172", "label_1173", "label_1174", "label_1175", "label_1176", "label_1177", "label_1178", "label_1179", "label_1180", "label_1181", "label_1182", "label_1183", "label_1184", "label_1185", "label_1186", "label_1187", "label_1188", "label_1189", "label_1190", "label_1191", "label_1192", "label_1193", "label_1194", "label_1195", "label_1196", "label_1197", "label_1198", "label_1199", "label_1200", "label_1201", "label_1202", "label_1203", "label_1204", "label_1205", "label_1206", "label_1207", "label_1208", "label_1209", "label_1210", "label_1211", "label_1212", "label_1213", "label_1214", "label_1215", "label_1216", "label_1217", "label_1218", "label_1219", "label_1220", "label_1221", "label_1222", "label_1223", "label_1224", "label_1225", "label_1226", "label_1227", "label_1228", "label_1229", "label_1230", "label_1231", "label_1232", "label_1233", "label_1234", "label_1235", "label_1236", "label_1237", "label_1238", "label_1239", "label_1240", "label_1241", "label_1242", "label_1243", "label_1244", "label_1245", "label_1246", "label_1247", "label_1248", "label_1249", "label_1250", "label_1251", "label_1252", "label_1253", "label_1254", "label_1255", "label_1256", "label_1257", "label_1258", "label_1259", "label_1260", "label_1261", "label_1262", "label_1263", "label_1264", "label_1265", "label_1266", "label_1267", "label_1268", "label_1269", "label_1270", "label_1271", "label_1272", "label_1273", "label_1274", "label_1275", "label_1276", "label_1277", "label_1278", "label_1279", "label_1280", "label_1281", "label_1282", "label_1283", "label_1284", "label_1285", "label_1286", "label_1287", "label_1288", "label_1289", "label_1290", "label_1291", "label_1292", "label_1293", "label_1294", "label_1295", "label_1296", "label_1297", "label_1298", "label_1299", "label_1300", "label_1301", "label_1302", "label_1303", "label_1304", "label_1305", "label_1306", "label_1307", "label_1308", "label_1309", "label_1310", "label_1311", "label_1312", "label_1313", "label_1314", "label_1315", "label_1316", "label_1317", "label_1318", "label_1319", "label_1320", "label_1321", "label_1322", "label_1323", "label_1324", "label_1325", "label_1326", "label_1327", "label_1328", "label_1329", "label_1330", "label_1331", "label_1332", "label_1333", "label_1334", "label_1335", "label_1336", "label_1337", "label_1338", "label_1339", "label_1340", "label_1341", "label_1342", "label_1343", "label_1344", "label_1345", "label_1346", "label_1347", "label_1348", "label_1349", "label_1350", "label_1351", "label_1352", "label_1353", "label_1354", "label_1355", "label_1356", "label_1357", "label_1358", "label_1359", "label_1360", "label_1361", "label_1362", "label_1363", "label_1364", "label_1365", "label_1366", "label_1367", "label_1368", "label_1369", "label_1370", "label_1371", "label_1372", "label_1373", "label_1374", "label_1375", "label_1376", "label_1377", "label_1378", "label_1379", "label_1380", "label_1381", "label_1382", "label_1383", "label_1384", "label_1385", "label_1386", "label_1387", "label_1388", "label_1389", "label_1390", "label_1391", "label_1392", "label_1393", "label_1394", "label_1395", "label_1396", "label_1397", "label_1398", "label_1399", "label_1400", "label_1401", "label_1402", "label_1403", "label_1404", "label_1405", "label_1406", "label_1407", "label_1408", "label_1409", "label_1410", "label_1411", "label_1412", "label_1413", "label_1414", "label_1415", "label_1416", "label_1417", "label_1418", "label_1419", "label_1420", "label_1421", "label_1422", "label_1423", "label_1424", "label_1425", "label_1426", "label_1427", "label_1428", "label_1429", "label_1430", "label_1431", "label_1432", "label_1433", "label_1434", "label_1435", "label_1436", "label_1437", "label_1438", "label_1439", "label_1440", "label_1441", "label_1442", "label_1443", "label_1444", "label_1445", "label_1446", "label_1447", "label_1448", "label_1449", "label_1450", "label_1451", "label_1452", "label_1453", "label_1454", "label_1455", "label_1456", "label_1457", "label_1458", "label_1459", "label_1460", "label_1461", "label_1462", "label_1463", "label_1464", "label_1465", "label_1466", "label_1467", "label_1468", "label_1469", "label_1470", "label_1471", "label_1472", "label_1473", "label_1474", "label_1475", "label_1476", "label_1477", "label_1478", "label_1479", "label_1480", "label_1481", "label_1482", "label_1483", "label_1484", "label_1485", "label_1486", "label_1487", "label_1488", "label_1489", "label_1490", "label_1491", "label_1492", "label_1493", "label_1494", "label_1495", "label_1496", "label_1497", "label_1498", "label_1499", "label_1500", "label_1501", "label_1502", "label_1503", "label_1504", "label_1505", "label_1506", "label_1507", "label_1508", "label_1509", "label_1510", "label_1511", "label_1512", "label_1513", "label_1514", "label_1515", "label_1516", "label_1517", "label_1518", "label_1519", "label_1520", "label_1521", "label_1522", "label_1523", "label_1524", "label_1525", "label_1526", "label_1527", "label_1528", "label_1529", "label_1530", "label_1531", "label_1532", "label_1533", "label_1534", "label_1535", "label_1536", "label_1537", "label_1538", "label_1539", "label_1540", "label_1541", "label_1542", "label_1543", "label_1544", "label_1545", "label_1546", "label_1547", "label_1548", "label_1549", "label_1550", "label_1551", "label_1552", "label_1553", "label_1554", "label_1555", "label_1556", "label_1557", "label_1558", "label_1559", "label_1560", "label_1561", "label_1562", "label_1563", "label_1564", "label_1565", "label_1566", "label_1567", "label_1568", "label_1569", "label_1570", "label_1571", "label_1572", "label_1573", "label_1574", "label_1575", "label_1576", "label_1577", "label_1578", "label_1579", "label_1580", "label_1581", "label_1582", "label_1583", "label_1584", "label_1585", "label_1586", "label_1587", "label_1588", "label_1589", "label_1590", "label_1591", "label_1592", "label_1593", "label_1594", "label_1595", "label_1596", "label_1597", "label_1598", "label_1599", "label_1600", "label_1601", "label_1602", "label_1603", "label_1604", "label_1605", "label_1606", "label_1607", "label_1608", "label_1609", "label_1610", "label_1611", "label_1612", "label_1613", "label_1614", "label_1615", "label_1616", "label_1617", "label_1618", "label_1619", "label_1620", "label_1621", "label_1622", "label_1623", "label_1624", "label_1625", "label_1626", "label_1627", "label_1628", "label_1629", "label_1630", "label_1631", "label_1632", "label_1633", "label_1634", "label_1635", "label_1636", "label_1637", "label_1638", "label_1639", "label_1640", "label_1641", "label_1642", "label_1643", "label_1644", "label_1645", "label_1646", "label_1647", "label_1648", "label_1649", "label_1650", "label_1651", "label_1652", "label_1653", "label_1654", "label_1655", "label_1656", "label_1657", "label_1658", "label_1659", "label_1660", "label_1661", "label_1662", "label_1663", "label_1664", "label_1665", "label_1666", "label_1667", "label_1668", "label_1669", "label_1670", "label_1671", "label_1672", "label_1673", "label_1674", "label_1675", "label_1676", "label_1677", "label_1678", "label_1679", "label_1680", "label_1681", "label_1682", "label_1683", "label_1684", "label_1685", "label_1686", "label_1687", "label_1688", "label_1689", "label_1690", "label_1691", "label_1692", "label_1693", "label_1694", "label_1695", "label_1696", "label_1697", "label_1698", "label_1699", "label_1700", "label_1701", "label_1702", "label_1703", "label_1704", "label_1705", "label_1706", "label_1707", "label_1708", "label_1709", "label_1710", "label_1711", "label_1712", "label_1713", "label_1714", "label_1715", "label_1716", "label_1717", "label_1718", "label_1719", "label_1720", "label_1721", "label_1722", "label_1723", "label_1724", "label_1725", "label_1726", "label_1727", "label_1728", "label_1729", "label_1730", "label_1731", "label_1732", "label_1733", "label_1734", "label_1735", "label_1736", "label_1737", "label_1738", "label_1739", "label_1740", "label_1741", "label_1742", "label_1743", "label_1744", "label_1745", "label_1746", "label_1747", "label_1748", "label_1749", "label_1750", "label_1751", "label_1752", "label_1753", "label_1754", "label_1755", "label_1756", "label_1757", "label_1758", "label_1759", "label_1760", "label_1761", "label_1762", "label_1763", "label_1764", "label_1765", "label_1766", "label_1767", "label_1768", "label_1769", "label_1770", "label_1771", "label_1772", "label_1773", "label_1774", "label_1775", "label_1776", "label_1777", "label_1778", "label_1779", "label_1780", "label_1781", "label_1782", "label_1783", "label_1784", "label_1785", "label_1786", "label_1787", "label_1788", "label_1789", "label_1790", "label_1791", "label_1792", "label_1793", "label_1794", "label_1795", "label_1796", "label_1797", "label_1798", "label_1799", "label_1800", "label_1801", "label_1802", "label_1803", "label_1804", "label_1805", "label_1806", "label_1807", "label_1808", "label_1809", "label_1810", "label_1811", "label_1812", "label_1813", "label_1814", "label_1815", "label_1816", "label_1817", "label_1818", "label_1819", "label_1820", "label_1821", "label_1822", "label_1823", "label_1824", "label_1825", "label_1826", "label_1827", "label_1828", "label_1829", "label_1830", "label_1831", "label_1832", "label_1833", "label_1834", "label_1835", "label_1836", "label_1837", "label_1838", "label_1839", "label_1840", "label_1841", "label_1842", "label_1843", "label_1844", "label_1845", "label_1846", "label_1847", "label_1848", "label_1849", "label_1850", "label_1851", "label_1852", "label_1853", "label_1854", "label_1855", "label_1856", "label_1857", "label_1858", "label_1859", "label_1860", "label_1861", "label_1862", "label_1863", "label_1864", "label_1865", "label_1866", "label_1867", "label_1868", "label_1869", "label_1870", "label_1871", "label_1872", "label_1873", "label_1874", "label_1875", "label_1876", "label_1877", "label_1878", "label_1879", "label_1880", "label_1881", "label_1882", "label_1883", "label_1884", "label_1885", "label_1886", "label_1887", "label_1888", "label_1889", "label_1890", "label_1891", "label_1892", "label_1893", "label_1894", "label_1895", "label_1896", "label_1897", "label_1898", "label_1899", "label_1900", "label_1901", "label_1902", "label_1903", "label_1904", "label_1905", "label_1906", "label_1907", "label_1908", "label_1909", "label_1910", "label_1911", "label_1912", "label_1913", "label_1914", "label_1915", "label_1916", "label_1917", "label_1918", "label_1919", "label_1920", "label_1921", "label_1922", "label_1923", "label_1924", "label_1925", "label_1926", "label_1927", "label_1928", "label_1929", "label_1930", "label_1931", "label_1932", "label_1933", "label_1934", "label_1935", "label_1936", "label_1937", "label_1938", "label_1939", "label_1940", "label_1941", "label_1942", "label_1943", "label_1944", "label_1945", "label_1946", "label_1947", "label_1948", "label_1949", "label_1950", "label_1951", "label_1952", "label_1953", "label_1954", "label_1955", "label_1956", "label_1957", "label_1958", "label_1959", "label_1960", "label_1961", "label_1962", "label_1963", "label_1964", "label_1965", "label_1966", "label_1967", "label_1968", "label_1969", "label_1970", "label_1971", "label_1972", "label_1973", "label_1974", "label_1975", "label_1976", "label_1977", "label_1978", "label_1979", "label_1980", "label_1981", "label_1982", "label_1983", "label_1984", "label_1985", "label_1986", "label_1987", "label_1988", "label_1989", "label_1990", "label_1991", "label_1992", "label_1993", "label_1994", "label_1995", "label_1996", "label_1997", "label_1998", "label_1999", "label_2000", "label_2001", "label_2002", "label_2003", "label_2004", "label_2005", "label_2006", "label_2007", "label_2008", "label_2009", "label_2010", "label_2011", "label_2012", "label_2013", "label_2014", "label_2015", "label_2016", "label_2017", "label_2018", "label_2019", "label_2020", "label_2021", "label_2022", "label_2023", "label_2024", "label_2025", "label_2026", "label_2027", "label_2028", "label_2029", "label_2030", "label_2031", "label_2032", "label_2033", "label_2034", "label_2035", "label_2036", "label_2037", "label_2038", "label_2039", "label_2040", "label_2041", "label_2042", "label_2043", "label_2044", "label_2045", "label_2046", "label_2047", "label_2048", "label_2049", "label_2050", "label_2051", "label_2052", "label_2053", "label_2054", "label_2055", "label_2056", "label_2057", "label_2058", "label_2059", "label_2060", "label_2061", "label_2062", "label_2063", "label_2064", "label_2065", "label_2066", "label_2067", "label_2068", "label_2069", "label_2070", "label_2071", "label_2072", "label_2073", "label_2074", "label_2075", "label_2076", "label_2077", "label_2078", "label_2079", "label_2080", "label_2081", "label_2082", "label_2083", "label_2084", "label_2085", "label_2086", "label_2087", "label_2088", "label_2089", "label_2090", "label_2091", "label_2092", "label_2093", "label_2094", "label_2095", "label_2096", "label_2097", "label_2098", "label_2099", "label_2100", "label_2101", "label_2102", "label_2103", "label_2104", "label_2105", "label_2106", "label_2107", "label_2108", "label_2109", "label_2110", "label_2111", "label_2112", "label_2113", "label_2114", "label_2115", "label_2116", "label_2117", "label_2118", "label_2119", "label_2120", "label_2121", "label_2122", "label_2123", "label_2124", "label_2125", "label_2126", "label_2127", "label_2128", "label_2129", "label_2130", "label_2131", "label_2132", "label_2133", "label_2134", "label_2135", "label_2136", "label_2137", "label_2138", "label_2139", "label_2140", "label_2141", "label_2142", "label_2143", "label_2144", "label_2145", "label_2146", "label_2147", "label_2148", "label_2149", "label_2150", "label_2151", "label_2152", "label_2153", "label_2154", "label_2155", "label_2156", "label_2157", "label_2158", "label_2159", "label_2160", "label_2161", "label_2162", "label_2163", "label_2164", "label_2165", "label_2166", "label_2167", "label_2168", "label_2169", "label_2170", "label_2171", "label_2172", "label_2173", "label_2174", "label_2175", "label_2176", "label_2177", "label_2178", "label_2179", "label_2180", "label_2181", "label_2182", "label_2183", "label_2184", "label_2185", "label_2186", "label_2187", "label_2188", "label_2189", "label_2190", "label_2191", "label_2192", "label_2193", "label_2194", "label_2195", "label_2196", "label_2197", "label_2198", "label_2199", "label_2200", "label_2201", "label_2202", "label_2203", "label_2204", "label_2205", "label_2206", "label_2207", "label_2208", "label_2209", "label_2210", "label_2211", "label_2212", "label_2213", "label_2214", "label_2215", "label_2216", "label_2217", "label_2218", "label_2219", "label_2220", "label_2221", "label_2222", "label_2223", "label_2224", "label_2225", "label_2226", "label_2227", "label_2228", "label_2229", "label_2230", "label_2231", "label_2232", "label_2233", "label_2234", "label_2235", "label_2236", "label_2237", "label_2238", "label_2239", "label_2240", "label_2241", "label_2242", "label_2243", "label_2244", "label_2245", "label_2246", "label_2247", "label_2248", "label_2249", "label_2250", "label_2251", "label_2252", "label_2253", "label_2254", "label_2255", "label_2256", "label_2257", "label_2258", "label_2259", "label_2260", "label_2261", "label_2262", "label_2263", "label_2264", "label_2265", "label_2266", "label_2267", "label_2268", "label_2269", "label_2270", "label_2271", "label_2272", "label_2273", "label_2274", "label_2275", "label_2276", "label_2277", "label_2278", "label_2279", "label_2280", "label_2281", "label_2282", "label_2283", "label_2284", "label_2285", "label_2286", "label_2287", "label_2288", "label_2289", "label_2290", "label_2291", "label_2292", "label_2293", "label_2294", "label_2295", "label_2296", "label_2297", "label_2298", "label_2299", "label_2300", "label_2301", "label_2302", "label_2303", "label_2304", "label_2305", "label_2306", "label_2307", "label_2308", "label_2309", "label_2310", "label_2311", "label_2312", "label_2313", "label_2314", "label_2315", "label_2316", "label_2317", "label_2318", "label_2319", "label_2320", "label_2321", "label_2322", "label_2323", "label_2324", "label_2325", "label_2326", "label_2327", "label_2328", "label_2329", "label_2330", "label_2331", "label_2332", "label_2333", "label_2334", "label_2335", "label_2336", "label_2337", "label_2338", "label_2339", "label_2340", "label_2341", "label_2342", "label_2343", "label_2344", "label_2345", "label_2346", "label_2347", "label_2348", "label_2349", "label_2350", "label_2351", "label_2352", "label_2353", "label_2354", "label_2355", "label_2356", "label_2357", "label_2358", "label_2359", "label_2360", "label_2361", "label_2362", "label_2363", "label_2364", "label_2365", "label_2366", "label_2367", "label_2368", "label_2369", "label_2370", "label_2371", "label_2372", "label_2373", "label_2374", "label_2375", "label_2376", "label_2377", "label_2378", "label_2379", "label_2380", "label_2381", "label_2382", "label_2383", "label_2384", "label_2385", "label_2386", "label_2387", "label_2388", "label_2389", "label_2390", "label_2391", "label_2392", "label_2393", "label_2394", "label_2395", "label_2396", "label_2397", "label_2398", "label_2399", "label_2400", "label_2401", "label_2402", "label_2403", "label_2404", "label_2405", "label_2406", "label_2407", "label_2408", "label_2409", "label_2410", "label_2411", "label_2412", "label_2413", "label_2414", "label_2415", "label_2416", "label_2417", "label_2418", "label_2419", "label_2420", "label_2421", "label_2422", "label_2423", "label_2424", "label_2425", "label_2426", "label_2427", "label_2428", "label_2429", "label_2430", "label_2431", "label_2432", "label_2433", "label_2434", "label_2435", "label_2436", "label_2437", "label_2438", "label_2439", "label_2440", "label_2441", "label_2442", "label_2443", "label_2444", "label_2445", "label_2446", "label_2447", "label_2448", "label_2449", "label_2450", "label_2451", "label_2452", "label_2453", "label_2454", "label_2455", "label_2456", "label_2457", "label_2458", "label_2459", "label_2460", "label_2461", "label_2462", "label_2463", "label_2464", "label_2465", "label_2466", "label_2467", "label_2468", "label_2469", "label_2470", "label_2471", "label_2472", "label_2473", "label_2474", "label_2475", "label_2476", "label_2477", "label_2478", "label_2479", "label_2480", "label_2481", "label_2482", "label_2483", "label_2484", "label_2485", "label_2486", "label_2487", "label_2488", "label_2489", "label_2490", "label_2491", "label_2492", "label_2493", "label_2494", "label_2495", "label_2496", "label_2497", "label_2498", "label_2499", "label_2500", "label_2501", "label_2502", "label_2503", "label_2504", "label_2505", "label_2506", "label_2507", "label_2508", "label_2509", "label_2510", "label_2511", "label_2512", "label_2513", "label_2514", "label_2515", "label_2516", "label_2517", "label_2518", "label_2519", "label_2520", "label_2521", "label_2522", "label_2523", "label_2524", "label_2525", "label_2526", "label_2527", "label_2528", "label_2529", "label_2530", "label_2531", "label_2532", "label_2533", "label_2534", "label_2535", "label_2536", "label_2537", "label_2538", "label_2539", "label_2540", "label_2541", "label_2542", "label_2543", "label_2544", "label_2545", "label_2546", "label_2547", "label_2548", "label_2549", "label_2550", "label_2551", "label_2552", "label_2553", "label_2554", "label_2555", "label_2556", "label_2557", "label_2558", "label_2559", "label_2560", "label_2561", "label_2562", "label_2563", "label_2564", "label_2565", "label_2566", "label_2567", "label_2568", "label_2569", "label_2570", "label_2571", "label_2572", "label_2573", "label_2574", "label_2575", "label_2576", "label_2577", "label_2578", "label_2579", "label_2580", "label_2581", "label_2582", "label_2583", "label_2584", "label_2585", "label_2586", "label_2587", "label_2588", "label_2589", "label_2590", "label_2591", "label_2592", "label_2593", "label_2594", "label_2595", "label_2596", "label_2597", "label_2598", "label_2599", "label_2600", "label_2601", "label_2602", "label_2603", "label_2604", "label_2605", "label_2606", "label_2607", "label_2608", "label_2609", "label_2610", "label_2611", "label_2612", "label_2613", "label_2614", "label_2615", "label_2616", "label_2617", "label_2618", "label_2619", "label_2620", "label_2621", "label_2622", "label_2623", "label_2624", "label_2625", "label_2626", "label_2627", "label_2628", "label_2629", "label_2630", "label_2631", "label_2632", "label_2633", "label_2634", "label_2635", "label_2636", "label_2637", "label_2638", "label_2639", "label_2640", "label_2641", "label_2642", "label_2643", "label_2644", "label_2645", "label_2646", "label_2647", "label_2648", "label_2649", "label_2650", "label_2651", "label_2652", "label_2653", "label_2654", "label_2655", "label_2656", "label_2657", "label_2658", "label_2659", "label_2660", "label_2661", "label_2662", "label_2663", "label_2664", "label_2665", "label_2666", "label_2667", "label_2668", "label_2669", "label_2670", "label_2671", "label_2672", "label_2673", "label_2674", "label_2675", "label_2676", "label_2677", "label_2678", "label_2679", "label_2680", "label_2681", "label_2682", "label_2683", "label_2684", "label_2685", "label_2686", "label_2687", "label_2688", "label_2689", "label_2690", "label_2691", "label_2692", "label_2693", "label_2694", "label_2695", "label_2696", "label_2697", "label_2698", "label_2699", "label_2700", "label_2701", "label_2702", "label_2703", "label_2704", "label_2705", "label_2706", "label_2707", "label_2708", "label_2709", "label_2710", "label_2711", "label_2712", "label_2713", "label_2714", "label_2715", "label_2716", "label_2717", "label_2718", "label_2719", "label_2720", "label_2721", "label_2722", "label_2723", "label_2724", "label_2725", "label_2726", "label_2727", "label_2728", "label_2729", "label_2730", "label_2731", "label_2732", "label_2733", "label_2734", "label_2735", "label_2736", "label_2737", "label_2738", "label_2739", "label_2740", "label_2741", "label_2742", "label_2743", "label_2744", "label_2745", "label_2746", "label_2747", "label_2748", "label_2749", "label_2750", "label_2751", "label_2752", "label_2753", "label_2754", "label_2755", "label_2756", "label_2757", "label_2758", "label_2759", "label_2760", "label_2761", "label_2762", "label_2763", "label_2764", "label_2765", "label_2766", "label_2767", "label_2768", "label_2769", "label_2770", "label_2771", "label_2772", "label_2773", "label_2774", "label_2775", "label_2776", "label_2777", "label_2778", "label_2779", "label_2780", "label_2781", "label_2782", "label_2783", "label_2784", "label_2785", "label_2786", "label_2787", "label_2788", "label_2789", "label_2790", "label_2791", "label_2792", "label_2793", "label_2794", "label_2795", "label_2796", "label_2797", "label_2798", "label_2799", "label_2800", "label_2801", "label_2802", "label_2803", "label_2804", "label_2805", "label_2806", "label_2807", "label_2808", "label_2809", "label_2810", "label_2811", "label_2812", "label_2813", "label_2814", "label_2815", "label_2816", "label_2817", "label_2818", "label_2819", "label_2820", "label_2821", "label_2822", "label_2823", "label_2824", "label_2825", "label_2826", "label_2827", "label_2828", "label_2829", "label_2830", "label_2831", "label_2832", "label_2833", "label_2834", "label_2835", "label_2836", "label_2837", "label_2838", "label_2839", "label_2840", "label_2841", "label_2842", "label_2843", "label_2844", "label_2845", "label_2846", "label_2847", "label_2848", "label_2849", "label_2850", "label_2851", "label_2852", "label_2853", "label_2854", "label_2855", "label_2856", "label_2857", "label_2858", "label_2859", "label_2860", "label_2861", "label_2862", "label_2863", "label_2864", "label_2865", "label_2866", "label_2867", "label_2868", "label_2869", "label_2870", "label_2871", "label_2872", "label_2873", "label_2874", "label_2875", "label_2876", "label_2877", "label_2878", "label_2879", "label_2880", "label_2881", "label_2882", "label_2883", "label_2884", "label_2885", "label_2886", "label_2887", "label_2888", "label_2889", "label_2890", "label_2891", "label_2892", "label_2893", "label_2894", "label_2895", "label_2896", "label_2897", "label_2898", "label_2899", "label_2900", "label_2901", "label_2902", "label_2903", "label_2904", "label_2905", "label_2906", "label_2907", "label_2908", "label_2909", "label_2910", "label_2911", "label_2912", "label_2913", "label_2914", "label_2915", "label_2916", "label_2917", "label_2918", "label_2919", "label_2920", "label_2921", "label_2922", "label_2923", "label_2924", "label_2925", "label_2926", "label_2927", "label_2928", "label_2929", "label_2930", "label_2931", "label_2932", "label_2933", "label_2934", "label_2935", "label_2936", "label_2937", "label_2938", "label_2939", "label_2940", "label_2941", "label_2942", "label_2943", "label_2944", "label_2945", "label_2946", "label_2947", "label_2948", "label_2949", "label_2950", "label_2951", "label_2952", "label_2953", "label_2954", "label_2955", "label_2956", "label_2957", "label_2958", "label_2959", "label_2960", "label_2961", "label_2962", "label_2963", "label_2964", "label_2965", "label_2966", "label_2967", "label_2968", "label_2969", "label_2970", "label_2971", "label_2972", "label_2973", "label_2974", "label_2975", "label_2976", "label_2977", "label_2978", "label_2979", "label_2980", "label_2981", "label_2982", "label_2983", "label_2984", "label_2985", "label_2986", "label_2987", "label_2988", "label_2989", "label_2990", "label_2991", "label_2992", "label_2993", "label_2994", "label_2995", "label_2996", "label_2997", "label_2998", "label_2999", "label_3000", "label_3001", "label_3002", "label_3003", "label_3004", "label_3005", "label_3006", "label_3007", "label_3008", "label_3009", "label_3010", "label_3011", "label_3012", "label_3013", "label_3014", "label_3015", "label_3016", "label_3017", "label_3018", "label_3019", "label_3020", "label_3021", "label_3022", "label_3023", "label_3024", "label_3025", "label_3026", "label_3027", "label_3028", "label_3029", "label_3030", "label_3031", "label_3032", "label_3033", "label_3034", "label_3035", "label_3036", "label_3037", "label_3038", "label_3039", "label_3040", "label_3041", "label_3042", "label_3043", "label_3044", "label_3045", "label_3046", "label_3047", "label_3048", "label_3049", "label_3050", "label_3051", "label_3052", "label_3053", "label_3054", "label_3055", "label_3056", "label_3057", "label_3058", "label_3059", "label_3060", "label_3061", "label_3062", "label_3063", "label_3064", "label_3065", "label_3066", "label_3067", "label_3068", "label_3069", "label_3070", "label_3071", "label_3072", "label_3073", "label_3074", "label_3075", "label_3076", "label_3077", "label_3078", "label_3079", "label_3080", "label_3081", "label_3082", "label_3083", "label_3084", "label_3085", "label_3086", "label_3087", "label_3088", "label_3089", "label_3090", "label_3091", "label_3092", "label_3093", "label_3094", "label_3095", "label_3096", "label_3097", "label_3098", "label_3099", "label_3100", "label_3101", "label_3102", "label_3103", "label_3104", "label_3105", "label_3106", "label_3107", "label_3108", "label_3109", "label_3110", "label_3111", "label_3112", "label_3113", "label_3114", "label_3115", "label_3116", "label_3117", "label_3118", "label_3119", "label_3120", "label_3121", "label_3122", "label_3123", "label_3124", "label_3125", "label_3126", "label_3127", "label_3128", "label_3129", "label_3130", "label_3131", "label_3132", "label_3133", "label_3134", "label_3135", "label_3136", "label_3137", "label_3138", "label_3139", "label_3140", "label_3141", "label_3142", "label_3143", "label_3144", "label_3145", "label_3146", "label_3147", "label_3148", "label_3149", "label_3150", "label_3151", "label_3152", "label_3153", "label_3154", "label_3155", "label_3156", "label_3157", "label_3158", "label_3159", "label_3160", "label_3161", "label_3162", "label_3163", "label_3164", "label_3165", "label_3166", "label_3167", "label_3168", "label_3169", "label_3170", "label_3171", "label_3172", "label_3173", "label_3174", "label_3175", "label_3176", "label_3177", "label_3178", "label_3179", "label_3180", "label_3181", "label_3182", "label_3183", "label_3184", "label_3185", "label_3186", "label_3187", "label_3188", "label_3189", "label_3190", "label_3191", "label_3192", "label_3193", "label_3194", "label_3195", "label_3196", "label_3197", "label_3198", "label_3199", "label_3200", "label_3201", "label_3202", "label_3203", "label_3204", "label_3205", "label_3206", "label_3207", "label_3208", "label_3209", "label_3210", "label_3211", "label_3212", "label_3213", "label_3214", "label_3215", "label_3216", "label_3217", "label_3218", "label_3219", "label_3220", "label_3221", "label_3222", "label_3223", "label_3224", "label_3225", "label_3226", "label_3227", "label_3228", "label_3229", "label_3230", "label_3231", "label_3232", "label_3233", "label_3234", "label_3235", "label_3236", "label_3237", "label_3238", "label_3239", "label_3240", "label_3241", "label_3242", "label_3243", "label_3244", "label_3245", "label_3246", "label_3247", "label_3248", "label_3249", "label_3250", "label_3251", "label_3252", "label_3253", "label_3254", "label_3255", "label_3256", "label_3257", "label_3258", "label_3259", "label_3260", "label_3261", "label_3262", "label_3263", "label_3264", "label_3265", "label_3266", "label_3267", "label_3268", "label_3269", "label_3270", "label_3271", "label_3272", "label_3273", "label_3274", "label_3275", "label_3276", "label_3277", "label_3278", "label_3279", "label_3280", "label_3281", "label_3282", "label_3283", "label_3284", "label_3285", "label_3286", "label_3287", "label_3288", "label_3289", "label_3290", "label_3291", "label_3292", "label_3293", "label_3294", "label_3295", "label_3296", "label_3297", "label_3298", "label_3299", "label_3300", "label_3301", "label_3302", "label_3303", "label_3304", "label_3305", "label_3306", "label_3307", "label_3308", "label_3309", "label_3310", "label_3311", "label_3312", "label_3313", "label_3314", "label_3315", "label_3316", "label_3317", "label_3318", "label_3319", "label_3320", "label_3321", "label_3322", "label_3323", "label_3324", "label_3325", "label_3326", "label_3327", "label_3328", "label_3329", "label_3330", "label_3331", "label_3332", "label_3333", "label_3334", "label_3335", "label_3336", "label_3337", "label_3338", "label_3339", "label_3340", "label_3341", "label_3342", "label_3343", "label_3344", "label_3345", "label_3346", "label_3347", "label_3348", "label_3349", "label_3350", "label_3351", "label_3352", "label_3353", "label_3354", "label_3355", "label_3356", "label_3357", "label_3358", "label_3359", "label_3360", "label_3361", "label_3362", "label_3363", "label_3364", "label_3365", "label_3366", "label_3367", "label_3368", "label_3369", "label_3370", "label_3371", "label_3372", "label_3373", "label_3374", "label_3375", "label_3376", "label_3377", "label_3378", "label_3379", "label_3380", "label_3381", "label_3382", "label_3383", "label_3384", "label_3385", "label_3386", "label_3387", "label_3388", "label_3389", "label_3390", "label_3391", "label_3392", "label_3393", "label_3394", "label_3395", "label_3396", "label_3397", "label_3398", "label_3399", "label_3400", "label_3401", "label_3402", "label_3403", "label_3404", "label_3405", "label_3406", "label_3407", "label_3408", "label_3409", "label_3410", "label_3411", "label_3412", "label_3413", "label_3414", "label_3415", "label_3416", "label_3417", "label_3418", "label_3419", "label_3420", "label_3421", "label_3422", "label_3423", "label_3424", "label_3425", "label_3426", "label_3427", "label_3428", "label_3429", "label_3430", "label_3431", "label_3432", "label_3433", "label_3434", "label_3435", "label_3436", "label_3437", "label_3438", "label_3439", "label_3440", "label_3441", "label_3442", "label_3443", "label_3444", "label_3445", "label_3446", "label_3447", "label_3448", "label_3449", "label_3450", "label_3451", "label_3452", "label_3453", "label_3454", "label_3455", "label_3456", "label_3457", "label_3458", "label_3459", "label_3460", "label_3461", "label_3462", "label_3463", "label_3464", "label_3465", "label_3466", "label_3467", "label_3468", "label_3469", "label_3470", "label_3471", "label_3472", "label_3473", "label_3474", "label_3475", "label_3476", "label_3477", "label_3478", "label_3479", "label_3480", "label_3481", "label_3482", "label_3483", "label_3484", "label_3485", "label_3486", "label_3487", "label_3488", "label_3489", "label_3490", "label_3491", "label_3492", "label_3493", "label_3494", "label_3495", "label_3496", "label_3497", "label_3498", "label_3499", "label_3500", "label_3501", "label_3502", "label_3503", "label_3504", "label_3505", "label_3506", "label_3507", "label_3508", "label_3509", "label_3510", "label_3511", "label_3512", "label_3513", "label_3514", "label_3515", "label_3516", "label_3517", "label_3518", "label_3519", "label_3520", "label_3521", "label_3522", "label_3523", "label_3524", "label_3525", "label_3526", "label_3527", "label_3528", "label_3529", "label_3530", "label_3531", "label_3532", "label_3533", "label_3534", "label_3535", "label_3536", "label_3537", "label_3538", "label_3539", "label_3540", "label_3541", "label_3542", "label_3543", "label_3544", "label_3545", "label_3546", "label_3547", "label_3548", "label_3549", "label_3550", "label_3551", "label_3552", "label_3553", "label_3554", "label_3555", "label_3556", "label_3557", "label_3558", "label_3559", "label_3560", "label_3561", "label_3562", "label_3563", "label_3564", "label_3565", "label_3566", "label_3567", "label_3568", "label_3569", "label_3570", "label_3571", "label_3572", "label_3573", "label_3574", "label_3575", "label_3576", "label_3577", "label_3578", "label_3579", "label_3580", "label_3581", "label_3582", "label_3583", "label_3584", "label_3585", "label_3586", "label_3587", "label_3588", "label_3589", "label_3590", "label_3591", "label_3592", "label_3593", "label_3594", "label_3595", "label_3596", "label_3597", "label_3598", "label_3599", "label_3600", "label_3601", "label_3602", "label_3603", "label_3604", "label_3605", "label_3606", "label_3607", "label_3608", "label_3609", "label_3610", "label_3611", "label_3612", "label_3613", "label_3614", "label_3615", "label_3616", "label_3617", "label_3618", "label_3619", "label_3620", "label_3621", "label_3622", "label_3623", "label_3624", "label_3625", "label_3626", "label_3627", "label_3628", "label_3629", "label_3630", "label_3631", "label_3632", "label_3633", "label_3634", "label_3635", "label_3636", "label_3637", "label_3638", "label_3639", "label_3640", "label_3641", "label_3642", "label_3643", "label_3644", "label_3645", "label_3646", "label_3647", "label_3648", "label_3649", "label_3650", "label_3651", "label_3652", "label_3653", "label_3654", "label_3655", "label_3656", "label_3657", "label_3658", "label_3659", "label_3660", "label_3661", "label_3662", "label_3663", "label_3664", "label_3665", "label_3666", "label_3667", "label_3668", "label_3669", "label_3670", "label_3671", "label_3672", "label_3673", "label_3674", "label_3675", "label_3676", "label_3677", "label_3678", "label_3679", "label_3680", "label_3681", "label_3682", "label_3683", "label_3684", "label_3685", "label_3686", "label_3687", "label_3688", "label_3689", "label_3690", "label_3691", "label_3692", "label_3693", "label_3694", "label_3695", "label_3696", "label_3697", "label_3698", "label_3699", "label_3700", "label_3701", "label_3702", "label_3703", "label_3704", "label_3705", "label_3706", "label_3707", "label_3708", "label_3709", "label_3710", "label_3711", "label_3712", "label_3713", "label_3714", "label_3715", "label_3716", "label_3717", "label_3718", "label_3719", "label_3720", "label_3721", "label_3722", "label_3723", "label_3724", "label_3725", "label_3726", "label_3727", "label_3728", "label_3729", "label_3730", "label_3731", "label_3732", "label_3733", "label_3734", "label_3735", "label_3736", "label_3737", "label_3738", "label_3739", "label_3740", "label_3741", "label_3742", "label_3743", "label_3744", "label_3745", "label_3746", "label_3747", "label_3748", "label_3749", "label_3750", "label_3751", "label_3752", "label_3753", "label_3754", "label_3755", "label_3756", "label_3757", "label_3758", "label_3759", "label_3760", "label_3761", "label_3762", "label_3763", "label_3764", "label_3765", "label_3766", "label_3767", "label_3768", "label_3769", "label_3770", "label_3771", "label_3772", "label_3773", "label_3774", "label_3775", "label_3776", "label_3777", "label_3778", "label_3779", "label_3780", "label_3781", "label_3782", "label_3783", "label_3784", "label_3785", "label_3786", "label_3787", "label_3788", "label_3789", "label_3790", "label_3791", "label_3792", "label_3793", "label_3794", "label_3795", "label_3796", "label_3797", "label_3798", "label_3799", "label_3800", "label_3801", "label_3802", "label_3803", "label_3804", "label_3805", "label_3806", "label_3807", "label_3808", "label_3809", "label_3810", "label_3811", "label_3812", "label_3813", "label_3814", "label_3815", "label_3816", "label_3817", "label_3818", "label_3819", "label_3820", "label_3821", "label_3822", "label_3823", "label_3824", "label_3825", "label_3826", "label_3827", "label_3828", "label_3829", "label_3830", "label_3831", "label_3832", "label_3833", "label_3834", "label_3835", "label_3836", "label_3837", "label_3838", "label_3839", "label_3840", "label_3841", "label_3842", "label_3843", "label_3844", "label_3845", "label_3846", "label_3847", "label_3848", "label_3849", "label_3850", "label_3851", "label_3852", "label_3853", "label_3854", "label_3855", "label_3856", "label_3857", "label_3858", "label_3859", "label_3860", "label_3861", "label_3862", "label_3863", "label_3864", "label_3865", "label_3866", "label_3867", "label_3868", "label_3869", "label_3870", "label_3871", "label_3872", "label_3873", "label_3874", "label_3875", "label_3876", "label_3877", "label_3878", "label_3879", "label_3880", "label_3881", "label_3882", "label_3883", "label_3884", "label_3885", "label_3886", "label_3887", "label_3888", "label_3889", "label_3890", "label_3891", "label_3892", "label_3893", "label_3894", "label_3895", "label_3896", "label_3897", "label_3898", "label_3899", "label_3900", "label_3901", "label_3902", "label_3903", "label_3904", "label_3905", "label_3906", "label_3907", "label_3908", "label_3909", "label_3910", "label_3911", "label_3912", "label_3913", "label_3914", "label_3915", "label_3916", "label_3917", "label_3918", "label_3919", "label_3920", "label_3921", "label_3922", "label_3923", "label_3924", "label_3925", "label_3926", "label_3927", "label_3928", "label_3929", "label_3930", "label_3931", "label_3932", "label_3933", "label_3934", "label_3935", "label_3936", "label_3937", "label_3938", "label_3939", "label_3940", "label_3941", "label_3942", "label_3943", "label_3944", "label_3945", "label_3946", "label_3947", "label_3948", "label_3949", "label_3950", "label_3951", "label_3952", "label_3953", "label_3954", "label_3955", "label_3956", "label_3957", "label_3958", "label_3959", "label_3960", "label_3961", "label_3962", "label_3963", "label_3964", "label_3965", "label_3966", "label_3967", "label_3968", "label_3969", "label_3970", "label_3971", "label_3972", "label_3973", "label_3974", "label_3975", "label_3976", "label_3977", "label_3978", "label_3979", "label_3980", "label_3981", "label_3982", "label_3983", "label_3984", "label_3985", "label_3986", "label_3987", "label_3988", "label_3989", "label_3990", "label_3991", "label_3992", "label_3993", "label_3994", "label_3995", "label_3996", "label_3997", "label_3998", "label_3999", "label_4000", "label_4001", "label_4002", "label_4003", "label_4004", "label_4005", "label_4006", "label_4007", "label_4008", "label_4009", "label_4010", "label_4011", "label_4012", "label_4013", "label_4014", "label_4015", "label_4016", "label_4017", "label_4018", "label_4019", "label_4020", "label_4021", "label_4022", "label_4023", "label_4024", "label_4025", "label_4026", "label_4027", "label_4028", "label_4029", "label_4030", "label_4031", "label_4032", "label_4033", "label_4034", "label_4035", "label_4036", "label_4037", "label_4038", "label_4039", "label_4040", "label_4041", "label_4042", "label_4043", "label_4044", "label_4045", "label_4046", "label_4047", "label_4048", "label_4049", "label_4050", "label_4051", "label_4052", "label_4053", "label_4054", "label_4055", "label_4056", "label_4057", "label_4058", "label_4059", "label_4060", "label_4061", "label_4062", "label_4063", "label_4064", "label_4065", "label_4066", "label_4067", "label_4068", "label_4069", "label_4070", "label_4071", "label_4072", "label_4073", "label_4074", "label_4075", "label_4076", "label_4077", "label_4078", "label_4079", "label_4080", "label_4081", "label_4082", "label_4083", "label_4084", "label_4085", "label_4086", "label_4087", "label_4088", "label_4089", "label_4090", "label_4091", "label_4092", "label_4093", "label_4094", "label_4095", "label_4096", "label_4097", "label_4098", "label_4099", "label_4100", "label_4101", "label_4102", "label_4103", "label_4104", "label_4105", "label_4106", "label_4107", "label_4108", "label_4109", "label_4110", "label_4111", "label_4112", "label_4113", "label_4114", "label_4115", "label_4116", "label_4117", "label_4118", "label_4119", "label_4120", "label_4121", "label_4122", "label_4123", "label_4124", "label_4125", "label_4126", "label_4127", "label_4128", "label_4129", "label_4130", "label_4131", "label_4132", "label_4133", "label_4134", "label_4135", "label_4136", "label_4137", "label_4138", "label_4139", "label_4140", "label_4141", "label_4142", "label_4143", "label_4144", "label_4145", "label_4146", "label_4147", "label_4148", "label_4149", "label_4150", "label_4151", "label_4152", "label_4153", "label_4154", "label_4155", "label_4156", "label_4157", "label_4158", "label_4159", "label_4160", "label_4161", "label_4162", "label_4163", "label_4164", "label_4165", "label_4166", "label_4167", "label_4168", "label_4169", "label_4170", "label_4171", "label_4172", "label_4173", "label_4174", "label_4175", "label_4176", "label_4177", "label_4178", "label_4179", "label_4180", "label_4181", "label_4182", "label_4183", "label_4184", "label_4185", "label_4186", "label_4187", "label_4188", "label_4189", "label_4190", "label_4191", "label_4192", "label_4193", "label_4194", "label_4195", "label_4196", "label_4197", "label_4198", "label_4199", "label_4200", "label_4201", "label_4202", "label_4203", "label_4204", "label_4205", "label_4206", "label_4207", "label_4208", "label_4209", "label_4210", "label_4211", "label_4212", "label_4213", "label_4214", "label_4215", "label_4216", "label_4217", "label_4218", "label_4219", "label_4220", "label_4221", "label_4222", "label_4223", "label_4224", "label_4225", "label_4226", "label_4227", "label_4228", "label_4229", "label_4230", "label_4231", "label_4232", "label_4233", "label_4234", "label_4235", "label_4236", "label_4237", "label_4238", "label_4239", "label_4240", "label_4241", "label_4242", "label_4243", "label_4244", "label_4245", "label_4246", "label_4247", "label_4248", "label_4249", "label_4250", "label_4251", "label_4252", "label_4253", "label_4254", "label_4255", "label_4256", "label_4257", "label_4258", "label_4259", "label_4260", "label_4261", "label_4262", "label_4263", "label_4264", "label_4265", "label_4266", "label_4267", "label_4268", "label_4269", "label_4270", "label_4271", "label_4272", "label_4273", "label_4274", "label_4275", "label_4276", "label_4277", "label_4278", "label_4279", "label_4280", "label_4281", "label_4282", "label_4283", "label_4284", "label_4285", "label_4286", "label_4287", "label_4288", "label_4289", "label_4290", "label_4291", "label_4292", "label_4293", "label_4294", "label_4295", "label_4296", "label_4297", "label_4298", "label_4299", "label_4300", "label_4301", "label_4302", "label_4303", "label_4304", "label_4305", "label_4306", "label_4307", "label_4308", "label_4309", "label_4310", "label_4311", "label_4312", "label_4313", "label_4314", "label_4315", "label_4316", "label_4317", "label_4318", "label_4319", "label_4320", "label_4321", "label_4322", "label_4323", "label_4324", "label_4325", "label_4326", "label_4327", "label_4328", "label_4329", "label_4330", "label_4331", "label_4332", "label_4333", "label_4334", "label_4335", "label_4336", "label_4337", "label_4338", "label_4339", "label_4340", "label_4341", "label_4342", "label_4343", "label_4344", "label_4345", "label_4346", "label_4347", "label_4348", "label_4349", "label_4350", "label_4351", "label_4352", "label_4353", "label_4354", "label_4355", "label_4356", "label_4357", "label_4358", "label_4359", "label_4360", "label_4361", "label_4362", "label_4363", "label_4364", "label_4365", "label_4366", "label_4367", "label_4368", "label_4369", "label_4370", "label_4371", "label_4372", "label_4373", "label_4374", "label_4375", "label_4376", "label_4377", "label_4378", "label_4379", "label_4380", "label_4381", "label_4382", "label_4383", "label_4384", "label_4385", "label_4386", "label_4387", "label_4388", "label_4389", "label_4390", "label_4391", "label_4392", "label_4393", "label_4394", "label_4395", "label_4396", "label_4397", "label_4398", "label_4399", "label_4400", "label_4401", "label_4402", "label_4403", "label_4404", "label_4405", "label_4406", "label_4407", "label_4408", "label_4409", "label_4410", "label_4411", "label_4412", "label_4413", "label_4414", "label_4415", "label_4416", "label_4417", "label_4418", "label_4419", "label_4420", "label_4421", "label_4422", "label_4423", "label_4424", "label_4425", "label_4426", "label_4427", "label_4428", "label_4429", "label_4430", "label_4431", "label_4432", "label_4433", "label_4434", "label_4435", "label_4436", "label_4437", "label_4438", "label_4439", "label_4440", "label_4441", "label_4442", "label_4443", "label_4444", "label_4445", "label_4446", "label_4447", "label_4448", "label_4449", "label_4450", "label_4451", "label_4452", "label_4453", "label_4454", "label_4455", "label_4456", "label_4457", "label_4458", "label_4459", "label_4460", "label_4461", "label_4462", "label_4463", "label_4464", "label_4465", "label_4466", "label_4467", "label_4468", "label_4469", "label_4470", "label_4471", "label_4472", "label_4473", "label_4474", "label_4475", "label_4476", "label_4477", "label_4478", "label_4479", "label_4480", "label_4481", "label_4482", "label_4483", "label_4484", "label_4485", "label_4486", "label_4487", "label_4488", "label_4489", "label_4490", "label_4491", "label_4492", "label_4493", "label_4494", "label_4495", "label_4496", "label_4497", "label_4498", "label_4499", "label_4500", "label_4501", "label_4502", "label_4503", "label_4504", "label_4505", "label_4506", "label_4507", "label_4508", "label_4509", "label_4510", "label_4511", "label_4512", "label_4513", "label_4514", "label_4515", "label_4516", "label_4517", "label_4518", "label_4519", "label_4520", "label_4521", "label_4522", "label_4523", "label_4524", "label_4525", "label_4526", "label_4527", "label_4528", "label_4529", "label_4530", "label_4531", "label_4532", "label_4533", "label_4534", "label_4535", "label_4536", "label_4537", "label_4538", "label_4539", "label_4540", "label_4541", "label_4542", "label_4543", "label_4544", "label_4545", "label_4546", "label_4547", "label_4548", "label_4549", "label_4550", "label_4551", "label_4552", "label_4553", "label_4554", "label_4555", "label_4556", "label_4557", "label_4558", "label_4559", "label_4560", "label_4561", "label_4562", "label_4563", "label_4564", "label_4565", "label_4566", "label_4567", "label_4568", "label_4569", "label_4570", "label_4571", "label_4572", "label_4573", "label_4574", "label_4575", "label_4576", "label_4577", "label_4578", "label_4579", "label_4580", "label_4581", "label_4582", "label_4583", "label_4584", "label_4585", "label_4586", "label_4587", "label_4588", "label_4589", "label_4590", "label_4591", "label_4592", "label_4593", "label_4594", "label_4595", "label_4596", "label_4597", "label_4598", "label_4599", "label_4600", "label_4601", "label_4602", "label_4603", "label_4604", "label_4605", "label_4606", "label_4607", "label_4608", "label_4609", "label_4610", "label_4611", "label_4612", "label_4613", "label_4614", "label_4615", "label_4616", "label_4617", "label_4618", "label_4619", "label_4620", "label_4621", "label_4622", "label_4623", "label_4624", "label_4625", "label_4626", "label_4627", "label_4628", "label_4629", "label_4630", "label_4631", "label_4632", "label_4633", "label_4634", "label_4635", "label_4636", "label_4637", "label_4638", "label_4639", "label_4640", "label_4641", "label_4642", "label_4643", "label_4644", "label_4645", "label_4646", "label_4647", "label_4648", "label_4649", "label_4650", "label_4651", "label_4652", "label_4653", "label_4654", "label_4655", "label_4656", "label_4657", "label_4658", "label_4659", "label_4660", "label_4661", "label_4662", "label_4663", "label_4664", "label_4665", "label_4666", "label_4667", "label_4668", "label_4669", "label_4670", "label_4671", "label_4672", "label_4673", "label_4674", "label_4675", "label_4676", "label_4677", "label_4678", "label_4679", "label_4680", "label_4681", "label_4682", "label_4683", "label_4684", "label_4685", "label_4686", "label_4687", "label_4688", "label_4689", "label_4690", "label_4691", "label_4692", "label_4693", "label_4694", "label_4695", "label_4696", "label_4697", "label_4698", "label_4699", "label_4700", "label_4701", "label_4702", "label_4703", "label_4704", "label_4705", "label_4706", "label_4707", "label_4708", "label_4709", "label_4710", "label_4711", "label_4712", "label_4713", "label_4714", "label_4715", "label_4716", "label_4717", "label_4718", "label_4719", "label_4720", "label_4721", "label_4722", "label_4723", "label_4724", "label_4725", "label_4726", "label_4727", "label_4728", "label_4729", "label_4730", "label_4731", "label_4732", "label_4733", "label_4734", "label_4735", "label_4736", "label_4737", "label_4738", "label_4739", "label_4740", "label_4741", "label_4742", "label_4743", "label_4744", "label_4745", "label_4746", "label_4747", "label_4748", "label_4749", "label_4750", "label_4751", "label_4752", "label_4753", "label_4754", "label_4755", "label_4756", "label_4757", "label_4758", "label_4759", "label_4760", "label_4761", "label_4762", "label_4763", "label_4764", "label_4765", "label_4766", "label_4767", "label_4768", "label_4769", "label_4770", "label_4771", "label_4772", "label_4773", "label_4774", "label_4775", "label_4776", "label_4777", "label_4778", "label_4779", "label_4780", "label_4781", "label_4782", "label_4783", "label_4784", "label_4785", "label_4786", "label_4787", "label_4788", "label_4789", "label_4790", "label_4791", "label_4792", "label_4793", "label_4794", "label_4795", "label_4796", "label_4797", "label_4798", "label_4799", "label_4800", "label_4801", "label_4802", "label_4803", "label_4804", "label_4805", "label_4806", "label_4807", "label_4808", "label_4809", "label_4810", "label_4811", "label_4812", "label_4813", "label_4814", "label_4815", "label_4816", "label_4817", "label_4818", "label_4819", "label_4820", "label_4821", "label_4822", "label_4823", "label_4824", "label_4825", "label_4826", "label_4827", "label_4828", "label_4829", "label_4830", "label_4831", "label_4832", "label_4833", "label_4834", "label_4835", "label_4836", "label_4837", "label_4838", "label_4839", "label_4840", "label_4841", "label_4842", "label_4843", "label_4844", "label_4845", "label_4846", "label_4847", "label_4848", "label_4849", "label_4850", "label_4851", "label_4852", "label_4853", "label_4854", "label_4855", "label_4856", "label_4857", "label_4858", "label_4859", "label_4860", "label_4861", "label_4862", "label_4863", "label_4864", "label_4865", "label_4866", "label_4867", "label_4868", "label_4869", "label_4870", "label_4871", "label_4872", "label_4873", "label_4874", "label_4875", "label_4876", "label_4877", "label_4878", "label_4879", "label_4880", "label_4881", "label_4882", "label_4883", "label_4884", "label_4885", "label_4886", "label_4887", "label_4888", "label_4889", "label_4890", "label_4891", "label_4892", "label_4893", "label_4894", "label_4895", "label_4896", "label_4897", "label_4898", "label_4899", "label_4900", "label_4901", "label_4902", "label_4903", "label_4904", "label_4905", "label_4906", "label_4907", "label_4908", "label_4909", "label_4910", "label_4911", "label_4912", "label_4913", "label_4914", "label_4915", "label_4916", "label_4917", "label_4918", "label_4919", "label_4920", "label_4921", "label_4922", "label_4923", "label_4924", "label_4925", "label_4926", "label_4927", "label_4928", "label_4929", "label_4930", "label_4931", "label_4932", "label_4933", "label_4934", "label_4935", "label_4936", "label_4937", "label_4938", "label_4939", "label_4940", "label_4941", "label_4942", "label_4943", "label_4944", "label_4945", "label_4946", "label_4947", "label_4948", "label_4949", "label_4950", "label_4951", "label_4952", "label_4953", "label_4954", "label_4955", "label_4956", "label_4957", "label_4958", "label_4959", "label_4960", "label_4961", "label_4962", "label_4963", "label_4964", "label_4965", "label_4966", "label_4967", "label_4968", "label_4969", "label_4970", "label_4971", "label_4972", "label_4973", "label_4974", "label_4975", "label_4976", "label_4977", "label_4978", "label_4979", "label_4980", "label_4981", "label_4982", "label_4983", "label_4984", "label_4985", "label_4986", "label_4987", "label_4988", "label_4989", "label_4990", "label_4991", "label_4992", "label_4993", "label_4994", "label_4995", "label_4996", "label_4997", "label_4998", "label_4999", "label_5000", "label_5001", "label_5002", "label_5003", "label_5004", "label_5005", "label_5006", "label_5007", "label_5008", "label_5009", "label_5010", "label_5011", "label_5012", "label_5013", "label_5014", "label_5015", "label_5016", "label_5017", "label_5018", "label_5019", "label_5020", "label_5021", "label_5022", "label_5023", "label_5024", "label_5025", "label_5026", "label_5027", "label_5028", "label_5029", "label_5030", "label_5031", "label_5032", "label_5033", "label_5034", "label_5035", "label_5036", "label_5037", "label_5038", "label_5039", "label_5040", "label_5041", "label_5042", "label_5043", "label_5044", "label_5045", "label_5046", "label_5047", "label_5048", "label_5049", "label_5050", "label_5051", "label_5052", "label_5053", "label_5054", "label_5055", "label_5056", "label_5057", "label_5058", "label_5059", "label_5060", "label_5061", "label_5062", "label_5063", "label_5064", "label_5065", "label_5066", "label_5067", "label_5068", "label_5069", "label_5070", "label_5071", "label_5072", "label_5073", "label_5074", "label_5075", "label_5076", "label_5077", "label_5078", "label_5079", "label_5080", "label_5081", "label_5082", "label_5083", "label_5084", "label_5085", "label_5086", "label_5087", "label_5088", "label_5089", "label_5090", "label_5091", "label_5092", "label_5093", "label_5094", "label_5095", "label_5096", "label_5097", "label_5098", "label_5099", "label_5100", "label_5101", "label_5102", "label_5103", "label_5104", "label_5105", "label_5106", "label_5107", "label_5108", "label_5109", "label_5110", "label_5111", "label_5112", "label_5113", "label_5114", "label_5115", "label_5116", "label_5117", "label_5118", "label_5119", "label_5120", "label_5121", "label_5122", "label_5123", "label_5124", "label_5125", "label_5126", "label_5127", "label_5128", "label_5129", "label_5130", "label_5131", "label_5132", "label_5133", "label_5134", "label_5135", "label_5136", "label_5137", "label_5138", "label_5139", "label_5140", "label_5141", "label_5142", "label_5143", "label_5144", "label_5145", "label_5146", "label_5147", "label_5148", "label_5149", "label_5150", "label_5151", "label_5152", "label_5153", "label_5154", "label_5155", "label_5156", "label_5157", "label_5158", "label_5159", "label_5160", "label_5161", "label_5162", "label_5163", "label_5164", "label_5165", "label_5166", "label_5167", "label_5168", "label_5169", "label_5170", "label_5171", "label_5172", "label_5173", "label_5174", "label_5175", "label_5176", "label_5177", "label_5178", "label_5179", "label_5180", "label_5181", "label_5182", "label_5183", "label_5184", "label_5185", "label_5186", "label_5187", "label_5188", "label_5189", "label_5190", "label_5191", "label_5192", "label_5193", "label_5194", "label_5195", "label_5196", "label_5197", "label_5198", "label_5199", "label_5200", "label_5201", "label_5202", "label_5203", "label_5204", "label_5205", "label_5206", "label_5207", "label_5208", "label_5209", "label_5210", "label_5211", "label_5212", "label_5213", "label_5214", "label_5215", "label_5216", "label_5217", "label_5218", "label_5219", "label_5220", "label_5221", "label_5222", "label_5223", "label_5224", "label_5225", "label_5226", "label_5227", "label_5228", "label_5229", "label_5230", "label_5231", "label_5232", "label_5233", "label_5234", "label_5235", "label_5236", "label_5237", "label_5238", "label_5239", "label_5240", "label_5241", "label_5242", "label_5243", "label_5244", "label_5245", "label_5246", "label_5247", "label_5248", "label_5249", "label_5250", "label_5251", "label_5252", "label_5253", "label_5254", "label_5255", "label_5256", "label_5257", "label_5258", "label_5259", "label_5260", "label_5261", "label_5262", "label_5263", "label_5264", "label_5265", "label_5266", "label_5267", "label_5268", "label_5269", "label_5270", "label_5271", "label_5272", "label_5273", "label_5274", "label_5275", "label_5276", "label_5277", "label_5278", "label_5279", "label_5280", "label_5281", "label_5282", "label_5283", "label_5284", "label_5285", "label_5286", "label_5287", "label_5288", "label_5289", "label_5290", "label_5291", "label_5292", "label_5293", "label_5294", "label_5295", "label_5296", "label_5297", "label_5298", "label_5299", "label_5300", "label_5301", "label_5302", "label_5303", "label_5304", "label_5305", "label_5306", "label_5307", "label_5308", "label_5309", "label_5310", "label_5311", "label_5312", "label_5313", "label_5314", "label_5315", "label_5316", "label_5317", "label_5318", "label_5319", "label_5320", "label_5321", "label_5322", "label_5323", "label_5324", "label_5325", "label_5326", "label_5327", "label_5328", "label_5329", "label_5330", "label_5331", "label_5332", "label_5333", "label_5334", "label_5335", "label_5336", "label_5337", "label_5338", "label_5339", "label_5340", "label_5341", "label_5342", "label_5343", "label_5344", "label_5345", "label_5346", "label_5347", "label_5348", "label_5349", "label_5350", "label_5351", "label_5352", "label_5353", "label_5354", "label_5355", "label_5356", "label_5357", "label_5358", "label_5359", "label_5360", "label_5361", "label_5362", "label_5363", "label_5364", "label_5365", "label_5366", "label_5367", "label_5368", "label_5369", "label_5370", "label_5371", "label_5372", "label_5373", "label_5374", "label_5375", "label_5376", "label_5377", "label_5378", "label_5379", "label_5380", "label_5381", "label_5382", "label_5383", "label_5384", "label_5385", "label_5386", "label_5387", "label_5388", "label_5389", "label_5390", "label_5391", "label_5392", "label_5393", "label_5394", "label_5395", "label_5396", "label_5397", "label_5398", "label_5399", "label_5400", "label_5401", "label_5402", "label_5403", "label_5404", "label_5405", "label_5406", "label_5407", "label_5408", "label_5409", "label_5410", "label_5411", "label_5412", "label_5413", "label_5414", "label_5415", "label_5416", "label_5417", "label_5418", "label_5419", "label_5420", "label_5421", "label_5422", "label_5423", "label_5424", "label_5425", "label_5426", "label_5427", "label_5428", "label_5429", "label_5430", "label_5431", "label_5432", "label_5433", "label_5434", "label_5435", "label_5436", "label_5437", "label_5438", "label_5439", "label_5440", "label_5441", "label_5442", "label_5443", "label_5444", "label_5445", "label_5446", "label_5447", "label_5448", "label_5449", "label_5450", "label_5451", "label_5452", "label_5453", "label_5454", "label_5455", "label_5456", "label_5457", "label_5458", "label_5459", "label_5460", "label_5461", "label_5462", "label_5463", "label_5464", "label_5465", "label_5466", "label_5467", "label_5468", "label_5469", "label_5470", "label_5471", "label_5472", "label_5473", "label_5474", "label_5475", "label_5476", "label_5477", "label_5478", "label_5479", "label_5480", "label_5481", "label_5482", "label_5483", "label_5484", "label_5485", "label_5486", "label_5487", "label_5488", "label_5489", "label_5490", "label_5491", "label_5492", "label_5493", "label_5494", "label_5495", "label_5496", "label_5497", "label_5498", "label_5499", "label_5500", "label_5501", "label_5502", "label_5503", "label_5504", "label_5505", "label_5506", "label_5507", "label_5508", "label_5509", "label_5510", "label_5511", "label_5512", "label_5513", "label_5514", "label_5515", "label_5516", "label_5517", "label_5518", "label_5519", "label_5520", "label_5521", "label_5522", "label_5523", "label_5524", "label_5525", "label_5526", "label_5527", "label_5528", "label_5529", "label_5530", "label_5531", "label_5532", "label_5533", "label_5534", "label_5535", "label_5536", "label_5537", "label_5538", "label_5539", "label_5540", "label_5541", "label_5542", "label_5543", "label_5544", "label_5545", "label_5546", "label_5547", "label_5548", "label_5549", "label_5550", "label_5551", "label_5552", "label_5553", "label_5554", "label_5555", "label_5556", "label_5557", "label_5558", "label_5559", "label_5560", "label_5561", "label_5562", "label_5563", "label_5564", "label_5565", "label_5566", "label_5567", "label_5568", "label_5569", "label_5570", "label_5571", "label_5572", "label_5573", "label_5574", "label_5575", "label_5576", "label_5577", "label_5578", "label_5579", "label_5580", "label_5581", "label_5582", "label_5583", "label_5584", "label_5585", "label_5586", "label_5587", "label_5588", "label_5589", "label_5590", "label_5591", "label_5592", "label_5593", "label_5594", "label_5595", "label_5596", "label_5597", "label_5598", "label_5599", "label_5600", "label_5601", "label_5602", "label_5603", "label_5604", "label_5605", "label_5606", "label_5607", "label_5608", "label_5609", "label_5610", "label_5611", "label_5612", "label_5613", "label_5614", "label_5615", "label_5616", "label_5617", "label_5618", "label_5619", "label_5620", "label_5621", "label_5622", "label_5623", "label_5624", "label_5625", "label_5626", "label_5627", "label_5628", "label_5629", "label_5630", "label_5631", "label_5632", "label_5633", "label_5634", "label_5635", "label_5636", "label_5637", "label_5638", "label_5639", "label_5640", "label_5641", "label_5642", "label_5643", "label_5644", "label_5645", "label_5646", "label_5647", "label_5648", "label_5649", "label_5650", "label_5651", "label_5652", "label_5653", "label_5654", "label_5655", "label_5656", "label_5657", "label_5658", "label_5659", "label_5660", "label_5661", "label_5662", "label_5663", "label_5664", "label_5665", "label_5666", "label_5667", "label_5668", "label_5669", "label_5670", "label_5671", "label_5672", "label_5673", "label_5674", "label_5675", "label_5676", "label_5677", "label_5678", "label_5679", "label_5680", "label_5681", "label_5682", "label_5683", "label_5684", "label_5685", "label_5686", "label_5687", "label_5688", "label_5689", "label_5690", "label_5691", "label_5692", "label_5693", "label_5694", "label_5695", "label_5696", "label_5697", "label_5698", "label_5699", "label_5700", "label_5701", "label_5702", "label_5703", "label_5704", "label_5705", "label_5706", "label_5707", "label_5708", "label_5709", "label_5710", "label_5711", "label_5712", "label_5713", "label_5714", "label_5715", "label_5716", "label_5717", "label_5718", "label_5719", "label_5720", "label_5721", "label_5722", "label_5723", "label_5724", "label_5725", "label_5726", "label_5727", "label_5728", "label_5729", "label_5730", "label_5731", "label_5732", "label_5733", "label_5734", "label_5735", "label_5736", "label_5737", "label_5738", "label_5739", "label_5740", "label_5741", "label_5742", "label_5743", "label_5744", "label_5745", "label_5746", "label_5747", "label_5748", "label_5749", "label_5750", "label_5751", "label_5752", "label_5753", "label_5754", "label_5755", "label_5756", "label_5757", "label_5758", "label_5759", "label_5760", "label_5761", "label_5762", "label_5763", "label_5764", "label_5765", "label_5766", "label_5767", "label_5768", "label_5769", "label_5770", "label_5771", "label_5772", "label_5773", "label_5774", "label_5775", "label_5776", "label_5777", "label_5778", "label_5779", "label_5780", "label_5781", "label_5782", "label_5783", "label_5784", "label_5785", "label_5786", "label_5787", "label_5788", "label_5789", "label_5790", "label_5791", "label_5792", "label_5793", "label_5794", "label_5795", "label_5796", "label_5797", "label_5798", "label_5799", "label_5800", "label_5801", "label_5802", "label_5803", "label_5804", "label_5805", "label_5806", "label_5807", "label_5808", "label_5809", "label_5810", "label_5811", "label_5812", "label_5813", "label_5814", "label_5815", "label_5816", "label_5817", "label_5818", "label_5819", "label_5820", "label_5821", "label_5822", "label_5823", "label_5824", "label_5825", "label_5826", "label_5827", "label_5828", "label_5829", "label_5830", "label_5831", "label_5832", "label_5833", "label_5834", "label_5835", "label_5836", "label_5837", "label_5838", "label_5839", "label_5840", "label_5841", "label_5842", "label_5843", "label_5844", "label_5845", "label_5846", "label_5847", "label_5848", "label_5849", "label_5850", "label_5851", "label_5852", "label_5853", "label_5854", "label_5855", "label_5856", "label_5857", "label_5858", "label_5859", "label_5860", "label_5861", "label_5862", "label_5863", "label_5864", "label_5865", "label_5866", "label_5867", "label_5868", "label_5869", "label_5870", "label_5871", "label_5872", "label_5873", "label_5874", "label_5875", "label_5876", "label_5877", "label_5878", "label_5879", "label_5880", "label_5881", "label_5882", "label_5883", "label_5884", "label_5885", "label_5886", "label_5887", "label_5888", "label_5889", "label_5890", "label_5891", "label_5892", "label_5893", "label_5894", "label_5895", "label_5896", "label_5897", "label_5898", "label_5899", "label_5900", "label_5901", "label_5902", "label_5903", "label_5904", "label_5905", "label_5906", "label_5907", "label_5908", "label_5909", "label_5910", "label_5911", "label_5912", "label_5913", "label_5914", "label_5915", "label_5916", "label_5917", "label_5918", "label_5919", "label_5920", "label_5921", "label_5922", "label_5923", "label_5924", "label_5925", "label_5926", "label_5927", "label_5928", "label_5929", "label_5930", "label_5931", "label_5932", "label_5933", "label_5934", "label_5935", "label_5936", "label_5937", "label_5938", "label_5939", "label_5940", "label_5941", "label_5942", "label_5943", "label_5944", "label_5945", "label_5946", "label_5947", "label_5948", "label_5949", "label_5950", "label_5951", "label_5952", "label_5953", "label_5954", "label_5955", "label_5956", "label_5957", "label_5958", "label_5959", "label_5960", "label_5961", "label_5962", "label_5963", "label_5964", "label_5965", "label_5966", "label_5967", "label_5968", "label_5969", "label_5970", "label_5971", "label_5972", "label_5973", "label_5974", "label_5975", "label_5976", "label_5977", "label_5978", "label_5979", "label_5980", "label_5981", "label_5982", "label_5983", "label_5984", "label_5985", "label_5986", "label_5987", "label_5988", "label_5989", "label_5990", "label_5991", "label_5992", "label_5993", "label_5994", "label_5995", "label_5996", "label_5997", "label_5998", "label_5999", "label_6000", "label_6001", "label_6002", "label_6003", "label_6004", "label_6005", "label_6006", "label_6007", "label_6008", "label_6009", "label_6010", "label_6011", "label_6012", "label_6013", "label_6014", "label_6015", "label_6016", "label_6017", "label_6018", "label_6019", "label_6020", "label_6021", "label_6022", "label_6023", "label_6024", "label_6025", "label_6026", "label_6027", "label_6028", "label_6029", "label_6030", "label_6031", "label_6032", "label_6033", "label_6034", "label_6035", "label_6036", "label_6037", "label_6038", "label_6039", "label_6040", "label_6041", "label_6042", "label_6043", "label_6044", "label_6045", "label_6046", "label_6047", "label_6048", "label_6049", "label_6050", "label_6051", "label_6052", "label_6053", "label_6054", "label_6055", "label_6056", "label_6057", "label_6058", "label_6059", "label_6060", "label_6061", "label_6062", "label_6063", "label_6064", "label_6065", "label_6066", "label_6067", "label_6068", "label_6069", "label_6070", "label_6071", "label_6072", "label_6073", "label_6074", "label_6075", "label_6076", "label_6077", "label_6078", "label_6079", "label_6080", "label_6081", "label_6082", "label_6083", "label_6084", "label_6085", "label_6086", "label_6087", "label_6088", "label_6089", "label_6090", "label_6091", "label_6092", "label_6093", "label_6094", "label_6095", "label_6096", "label_6097", "label_6098", "label_6099", "label_6100", "label_6101", "label_6102", "label_6103", "label_6104", "label_6105", "label_6106", "label_6107", "label_6108", "label_6109", "label_6110", "label_6111", "label_6112", "label_6113", "label_6114", "label_6115", "label_6116", "label_6117", "label_6118", "label_6119", "label_6120", "label_6121", "label_6122", "label_6123", "label_6124", "label_6125", "label_6126", "label_6127", "label_6128", "label_6129", "label_6130", "label_6131", "label_6132", "label_6133", "label_6134", "label_6135", "label_6136", "label_6137", "label_6138", "label_6139", "label_6140", "label_6141", "label_6142", "label_6143", "label_6144", "label_6145", "label_6146", "label_6147", "label_6148", "label_6149", "label_6150", "label_6151", "label_6152", "label_6153", "label_6154", "label_6155", "label_6156", "label_6157", "label_6158", "label_6159", "label_6160", "label_6161", "label_6162", "label_6163", "label_6164", "label_6165", "label_6166", "label_6167", "label_6168", "label_6169", "label_6170", "label_6171", "label_6172", "label_6173", "label_6174", "label_6175", "label_6176", "label_6177", "label_6178", "label_6179", "label_6180", "label_6181", "label_6182", "label_6183", "label_6184", "label_6185", "label_6186", "label_6187", "label_6188", "label_6189", "label_6190", "label_6191", "label_6192", "label_6193", "label_6194", "label_6195", "label_6196", "label_6197", "label_6198", "label_6199", "label_6200", "label_6201", "label_6202", "label_6203", "label_6204", "label_6205", "label_6206", "label_6207", "label_6208", "label_6209", "label_6210", "label_6211", "label_6212", "label_6213", "label_6214", "label_6215", "label_6216", "label_6217", "label_6218", "label_6219", "label_6220", "label_6221", "label_6222", "label_6223", "label_6224", "label_6225", "label_6226", "label_6227", "label_6228", "label_6229", "label_6230", "label_6231", "label_6232", "label_6233", "label_6234", "label_6235", "label_6236", "label_6237", "label_6238", "label_6239", "label_6240", "label_6241", "label_6242", "label_6243", "label_6244", "label_6245", "label_6246", "label_6247", "label_6248", "label_6249", "label_6250", "label_6251", "label_6252", "label_6253", "label_6254", "label_6255", "label_6256", "label_6257", "label_6258", "label_6259", "label_6260", "label_6261", "label_6262", "label_6263", "label_6264", "label_6265", "label_6266", "label_6267", "label_6268", "label_6269", "label_6270", "label_6271", "label_6272", "label_6273", "label_6274", "label_6275", "label_6276", "label_6277", "label_6278", "label_6279", "label_6280", "label_6281", "label_6282", "label_6283", "label_6284", "label_6285", "label_6286", "label_6287", "label_6288", "label_6289", "label_6290", "label_6291", "label_6292", "label_6293", "label_6294", "label_6295", "label_6296", "label_6297", "label_6298", "label_6299", "label_6300", "label_6301", "label_6302", "label_6303", "label_6304", "label_6305", "label_6306", "label_6307", "label_6308", "label_6309", "label_6310", "label_6311", "label_6312", "label_6313", "label_6314", "label_6315", "label_6316", "label_6317", "label_6318", "label_6319", "label_6320", "label_6321", "label_6322", "label_6323", "label_6324", "label_6325", "label_6326", "label_6327", "label_6328", "label_6329", "label_6330", "label_6331", "label_6332", "label_6333", "label_6334", "label_6335", "label_6336", "label_6337", "label_6338", "label_6339", "label_6340", "label_6341", "label_6342", "label_6343", "label_6344", "label_6345", "label_6346", "label_6347", "label_6348", "label_6349", "label_6350", "label_6351", "label_6352", "label_6353", "label_6354", "label_6355", "label_6356", "label_6357", "label_6358", "label_6359", "label_6360", "label_6361", "label_6362", "label_6363", "label_6364", "label_6365", "label_6366", "label_6367", "label_6368", "label_6369", "label_6370", "label_6371", "label_6372", "label_6373", "label_6374", "label_6375", "label_6376", "label_6377", "label_6378", "label_6379", "label_6380", "label_6381", "label_6382", "label_6383", "label_6384", "label_6385", "label_6386", "label_6387", "label_6388", "label_6389", "label_6390", "label_6391", "label_6392", "label_6393", "label_6394", "label_6395", "label_6396", "label_6397", "label_6398", "label_6399", "label_6400", "label_6401", "label_6402", "label_6403", "label_6404", "label_6405", "label_6406", "label_6407", "label_6408", "label_6409", "label_6410", "label_6411", "label_6412", "label_6413", "label_6414", "label_6415", "label_6416", "label_6417", "label_6418", "label_6419", "label_6420", "label_6421", "label_6422", "label_6423", "label_6424", "label_6425", "label_6426", "label_6427", "label_6428", "label_6429", "label_6430", "label_6431", "label_6432", "label_6433", "label_6434", "label_6435", "label_6436", "label_6437", "label_6438", "label_6439", "label_6440", "label_6441", "label_6442", "label_6443", "label_6444", "label_6445", "label_6446", "label_6447", "label_6448", "label_6449", "label_6450", "label_6451", "label_6452", "label_6453", "label_6454", "label_6455", "label_6456", "label_6457", "label_6458", "label_6459", "label_6460", "label_6461", "label_6462", "label_6463", "label_6464", "label_6465", "label_6466", "label_6467", "label_6468", "label_6469", "label_6470", "label_6471", "label_6472", "label_6473", "label_6474", "label_6475", "label_6476", "label_6477", "label_6478", "label_6479", "label_6480", "label_6481", "label_6482", "label_6483", "label_6484", "label_6485", "label_6486", "label_6487", "label_6488", "label_6489", "label_6490", "label_6491", "label_6492", "label_6493", "label_6494", "label_6495", "label_6496", "label_6497", "label_6498", "label_6499", "label_6500", "label_6501", "label_6502", "label_6503", "label_6504", "label_6505", "label_6506", "label_6507", "label_6508", "label_6509", "label_6510", "label_6511", "label_6512", "label_6513", "label_6514", "label_6515", "label_6516", "label_6517", "label_6518", "label_6519", "label_6520", "label_6521", "label_6522", "label_6523", "label_6524", "label_6525", "label_6526", "label_6527", "label_6528", "label_6529", "label_6530", "label_6531", "label_6532", "label_6533", "label_6534", "label_6535", "label_6536", "label_6537", "label_6538", "label_6539", "label_6540", "label_6541", "label_6542", "label_6543", "label_6544", "label_6545", "label_6546", "label_6547", "label_6548", "label_6549", "label_6550", "label_6551", "label_6552", "label_6553", "label_6554", "label_6555", "label_6556", "label_6557", "label_6558", "label_6559", "label_6560", "label_6561", "label_6562", "label_6563", "label_6564", "label_6565", "label_6566", "label_6567", "label_6568", "label_6569", "label_6570", "label_6571", "label_6572", "label_6573", "label_6574", "label_6575", "label_6576", "label_6577", "label_6578", "label_6579", "label_6580", "label_6581", "label_6582", "label_6583", "label_6584", "label_6585", "label_6586", "label_6587", "label_6588", "label_6589", "label_6590", "label_6591", "label_6592", "label_6593", "label_6594", "label_6595", "label_6596", "label_6597", "label_6598", "label_6599", "label_6600", "label_6601", "label_6602", "label_6603", "label_6604", "label_6605", "label_6606", "label_6607", "label_6608", "label_6609", "label_6610", "label_6611", "label_6612", "label_6613", "label_6614", "label_6615", "label_6616", "label_6617", "label_6618", "label_6619", "label_6620", "label_6621", "label_6622", "label_6623", "label_6624", "label_6625", "label_6626", "label_6627", "label_6628", "label_6629", "label_6630", "label_6631", "label_6632", "label_6633", "label_6634", "label_6635", "label_6636", "label_6637", "label_6638", "label_6639", "label_6640", "label_6641", "label_6642", "label_6643", "label_6644", "label_6645", "label_6646", "label_6647", "label_6648", "label_6649", "label_6650", "label_6651", "label_6652", "label_6653", "label_6654", "label_6655", "label_6656", "label_6657", "label_6658", "label_6659", "label_6660", "label_6661", "label_6662", "label_6663", "label_6664", "label_6665", "label_6666", "label_6667", "label_6668", "label_6669", "label_6670", "label_6671", "label_6672", "label_6673", "label_6674", "label_6675", "label_6676", "label_6677", "label_6678", "label_6679", "label_6680", "label_6681", "label_6682", "label_6683", "label_6684", "label_6685", "label_6686", "label_6687", "label_6688", "label_6689", "label_6690", "label_6691", "label_6692", "label_6693", "label_6694", "label_6695", "label_6696", "label_6697", "label_6698", "label_6699", "label_6700", "label_6701", "label_6702", "label_6703", "label_6704", "label_6705", "label_6706", "label_6707", "label_6708", "label_6709", "label_6710", "label_6711", "label_6712", "label_6713", "label_6714", "label_6715", "label_6716", "label_6717", "label_6718", "label_6719", "label_6720", "label_6721", "label_6722", "label_6723", "label_6724", "label_6725", "label_6726", "label_6727", "label_6728", "label_6729", "label_6730", "label_6731", "label_6732", "label_6733", "label_6734", "label_6735", "label_6736", "label_6737", "label_6738", "label_6739", "label_6740", "label_6741", "label_6742", "label_6743", "label_6744", "label_6745", "label_6746", "label_6747", "label_6748", "label_6749", "label_6750", "label_6751", "label_6752", "label_6753", "label_6754", "label_6755", "label_6756", "label_6757", "label_6758", "label_6759", "label_6760", "label_6761", "label_6762", "label_6763", "label_6764", "label_6765", "label_6766", "label_6767", "label_6768", "label_6769", "label_6770", "label_6771", "label_6772", "label_6773", "label_6774", "label_6775", "label_6776", "label_6777", "label_6778", "label_6779", "label_6780", "label_6781", "label_6782", "label_6783", "label_6784", "label_6785", "label_6786", "label_6787", "label_6788", "label_6789", "label_6790", "label_6791", "label_6792", "label_6793", "label_6794", "label_6795", "label_6796", "label_6797", "label_6798", "label_6799", "label_6800", "label_6801", "label_6802", "label_6803", "label_6804", "label_6805", "label_6806", "label_6807", "label_6808", "label_6809", "label_6810", "label_6811", "label_6812", "label_6813", "label_6814", "label_6815", "label_6816", "label_6817", "label_6818", "label_6819", "label_6820", "label_6821", "label_6822", "label_6823", "label_6824", "label_6825", "label_6826", "label_6827", "label_6828", "label_6829", "label_6830", "label_6831", "label_6832", "label_6833", "label_6834", "label_6835", "label_6836", "label_6837", "label_6838", "label_6839", "label_6840", "label_6841", "label_6842", "label_6843", "label_6844", "label_6845", "label_6846", "label_6847", "label_6848", "label_6849", "label_6850", "label_6851", "label_6852", "label_6853", "label_6854", "label_6855", "label_6856", "label_6857", "label_6858", "label_6859", "label_6860", "label_6861", "label_6862", "label_6863", "label_6864", "label_6865", "label_6866", "label_6867", "label_6868", "label_6869", "label_6870", "label_6871", "label_6872", "label_6873", "label_6874", "label_6875", "label_6876", "label_6877", "label_6878", "label_6879", "label_6880", "label_6881", "label_6882", "label_6883", "label_6884", "label_6885", "label_6886", "label_6887", "label_6888", "label_6889", "label_6890", "label_6891", "label_6892", "label_6893", "label_6894", "label_6895", "label_6896", "label_6897", "label_6898", "label_6899", "label_6900", "label_6901", "label_6902", "label_6903", "label_6904", "label_6905", "label_6906", "label_6907", "label_6908", "label_6909", "label_6910", "label_6911", "label_6912", "label_6913", "label_6914", "label_6915", "label_6916", "label_6917", "label_6918", "label_6919", "label_6920", "label_6921", "label_6922", "label_6923", "label_6924", "label_6925", "label_6926", "label_6927", "label_6928", "label_6929", "label_6930", "label_6931", "label_6932", "label_6933", "label_6934", "label_6935", "label_6936", "label_6937", "label_6938", "label_6939", "label_6940", "label_6941", "label_6942", "label_6943", "label_6944", "label_6945", "label_6946", "label_6947", "label_6948", "label_6949", "label_6950", "label_6951", "label_6952", "label_6953", "label_6954", "label_6955", "label_6956", "label_6957", "label_6958", "label_6959", "label_6960", "label_6961", "label_6962", "label_6963", "label_6964", "label_6965", "label_6966", "label_6967", "label_6968", "label_6969", "label_6970", "label_6971", "label_6972", "label_6973", "label_6974", "label_6975", "label_6976", "label_6977", "label_6978", "label_6979", "label_6980", "label_6981", "label_6982", "label_6983", "label_6984", "label_6985", "label_6986", "label_6987", "label_6988", "label_6989", "label_6990", "label_6991", "label_6992", "label_6993", "label_6994", "label_6995", "label_6996", "label_6997", "label_6998", "label_6999", "label_7000", "label_7001", "label_7002", "label_7003", "label_7004", "label_7005", "label_7006", "label_7007", "label_7008", "label_7009", "label_7010", "label_7011", "label_7012", "label_7013", "label_7014", "label_7015", "label_7016", "label_7017", "label_7018", "label_7019", "label_7020", "label_7021", "label_7022", "label_7023", "label_7024", "label_7025", "label_7026", "label_7027", "label_7028", "label_7029", "label_7030", "label_7031", "label_7032", "label_7033", "label_7034", "label_7035", "label_7036", "label_7037", "label_7038", "label_7039", "label_7040", "label_7041", "label_7042", "label_7043", "label_7044", "label_7045", "label_7046", "label_7047", "label_7048", "label_7049", "label_7050", "label_7051", "label_7052", "label_7053", "label_7054", "label_7055", "label_7056", "label_7057", "label_7058", "label_7059", "label_7060", "label_7061", "label_7062", "label_7063", "label_7064", "label_7065", "label_7066", "label_7067", "label_7068", "label_7069", "label_7070", "label_7071", "label_7072", "label_7073", "label_7074", "label_7075", "label_7076", "label_7077", "label_7078", "label_7079", "label_7080", "label_7081", "label_7082", "label_7083", "label_7084", "label_7085", "label_7086", "label_7087", "label_7088", "label_7089", "label_7090", "label_7091", "label_7092", "label_7093", "label_7094", "label_7095", "label_7096", "label_7097", "label_7098", "label_7099", "label_7100", "label_7101", "label_7102", "label_7103", "label_7104", "label_7105", "label_7106", "label_7107", "label_7108", "label_7109", "label_7110", "label_7111", "label_7112", "label_7113", "label_7114", "label_7115", "label_7116", "label_7117", "label_7118", "label_7119", "label_7120", "label_7121", "label_7122", "label_7123", "label_7124", "label_7125", "label_7126", "label_7127", "label_7128", "label_7129", "label_7130", "label_7131", "label_7132", "label_7133", "label_7134", "label_7135", "label_7136", "label_7137", "label_7138", "label_7139", "label_7140", "label_7141", "label_7142", "label_7143", "label_7144", "label_7145", "label_7146", "label_7147", "label_7148", "label_7149", "label_7150", "label_7151", "label_7152", "label_7153", "label_7154", "label_7155", "label_7156", "label_7157", "label_7158", "label_7159", "label_7160", "label_7161", "label_7162", "label_7163", "label_7164", "label_7165", "label_7166", "label_7167", "label_7168", "label_7169", "label_7170", "label_7171", "label_7172", "label_7173", "label_7174", "label_7175", "label_7176", "label_7177", "label_7178", "label_7179", "label_7180", "label_7181", "label_7182", "label_7183", "label_7184", "label_7185", "label_7186", "label_7187", "label_7188", "label_7189", "label_7190", "label_7191", "label_7192", "label_7193", "label_7194", "label_7195", "label_7196", "label_7197", "label_7198", "label_7199", "label_7200", "label_7201", "label_7202", "label_7203", "label_7204", "label_7205", "label_7206", "label_7207", "label_7208", "label_7209", "label_7210", "label_7211", "label_7212", "label_7213", "label_7214", "label_7215", "label_7216", "label_7217", "label_7218", "label_7219", "label_7220", "label_7221", "label_7222", "label_7223", "label_7224", "label_7225", "label_7226", "label_7227", "label_7228", "label_7229", "label_7230", "label_7231", "label_7232", "label_7233", "label_7234", "label_7235", "label_7236", "label_7237", "label_7238", "label_7239", "label_7240", "label_7241", "label_7242", "label_7243", "label_7244", "label_7245", "label_7246", "label_7247", "label_7248", "label_7249", "label_7250", "label_7251", "label_7252", "label_7253", "label_7254", "label_7255", "label_7256", "label_7257", "label_7258", "label_7259", "label_7260", "label_7261", "label_7262", "label_7263", "label_7264", "label_7265", "label_7266", "label_7267", "label_7268", "label_7269", "label_7270", "label_7271", "label_7272", "label_7273", "label_7274", "label_7275", "label_7276", "label_7277", "label_7278", "label_7279", "label_7280", "label_7281", "label_7282", "label_7283", "label_7284", "label_7285", "label_7286", "label_7287", "label_7288", "label_7289", "label_7290", "label_7291", "label_7292", "label_7293", "label_7294", "label_7295", "label_7296", "label_7297", "label_7298", "label_7299", "label_7300", "label_7301", "label_7302", "label_7303", "label_7304", "label_7305", "label_7306", "label_7307", "label_7308", "label_7309", "label_7310", "label_7311", "label_7312", "label_7313", "label_7314", "label_7315", "label_7316", "label_7317", "label_7318", "label_7319", "label_7320", "label_7321", "label_7322", "label_7323", "label_7324", "label_7325", "label_7326", "label_7327", "label_7328", "label_7329", "label_7330", "label_7331", "label_7332", "label_7333", "label_7334", "label_7335", "label_7336", "label_7337", "label_7338", "label_7339", "label_7340", "label_7341", "label_7342", "label_7343", "label_7344", "label_7345", "label_7346", "label_7347", "label_7348", "label_7349", "label_7350", "label_7351", "label_7352", "label_7353", "label_7354", "label_7355", "label_7356", "label_7357", "label_7358", "label_7359", "label_7360", "label_7361", "label_7362", "label_7363", "label_7364", "label_7365", "label_7366", "label_7367", "label_7368", "label_7369", "label_7370", "label_7371", "label_7372", "label_7373", "label_7374", "label_7375", "label_7376", "label_7377", "label_7378", "label_7379", "label_7380", "label_7381", "label_7382", "label_7383", "label_7384", "label_7385", "label_7386", "label_7387", "label_7388", "label_7389", "label_7390", "label_7391", "label_7392", "label_7393", "label_7394", "label_7395", "label_7396", "label_7397", "label_7398", "label_7399", "label_7400", "label_7401", "label_7402", "label_7403", "label_7404", "label_7405", "label_7406", "label_7407", "label_7408", "label_7409", "label_7410", "label_7411", "label_7412", "label_7413", "label_7414", "label_7415", "label_7416", "label_7417", "label_7418", "label_7419", "label_7420", "label_7421", "label_7422", "label_7423", "label_7424", "label_7425", "label_7426", "label_7427", "label_7428", "label_7429", "label_7430", "label_7431", "label_7432", "label_7433", "label_7434", "label_7435", "label_7436", "label_7437", "label_7438", "label_7439", "label_7440", "label_7441", "label_7442", "label_7443", "label_7444", "label_7445", "label_7446", "label_7447", "label_7448", "label_7449", "label_7450", "label_7451", "label_7452", "label_7453", "label_7454", "label_7455", "label_7456", "label_7457", "label_7458", "label_7459", "label_7460", "label_7461", "label_7462", "label_7463", "label_7464", "label_7465", "label_7466", "label_7467", "label_7468", "label_7469", "label_7470", "label_7471", "label_7472", "label_7473", "label_7474", "label_7475", "label_7476", "label_7477", "label_7478", "label_7479", "label_7480", "label_7481", "label_7482", "label_7483", "label_7484", "label_7485", "label_7486", "label_7487", "label_7488", "label_7489", "label_7490", "label_7491", "label_7492", "label_7493", "label_7494", "label_7495", "label_7496", "label_7497", "label_7498", "label_7499", "label_7500", "label_7501", "label_7502", "label_7503", "label_7504", "label_7505", "label_7506", "label_7507", "label_7508", "label_7509", "label_7510", "label_7511", "label_7512", "label_7513", "label_7514", "label_7515", "label_7516", "label_7517", "label_7518", "label_7519", "label_7520", "label_7521", "label_7522", "label_7523", "label_7524", "label_7525", "label_7526", "label_7527", "label_7528", "label_7529", "label_7530", "label_7531", "label_7532", "label_7533", "label_7534", "label_7535", "label_7536", "label_7537", "label_7538", "label_7539", "label_7540", "label_7541", "label_7542", "label_7543", "label_7544", "label_7545", "label_7546", "label_7547", "label_7548", "label_7549", "label_7550", "label_7551", "label_7552", "label_7553", "label_7554", "label_7555", "label_7556", "label_7557", "label_7558", "label_7559", "label_7560", "label_7561", "label_7562", "label_7563", "label_7564", "label_7565", "label_7566", "label_7567", "label_7568", "label_7569", "label_7570", "label_7571", "label_7572", "label_7573", "label_7574", "label_7575", "label_7576", "label_7577", "label_7578", "label_7579", "label_7580", "label_7581", "label_7582", "label_7583", "label_7584", "label_7585", "label_7586", "label_7587", "label_7588", "label_7589", "label_7590", "label_7591", "label_7592", "label_7593", "label_7594", "label_7595", "label_7596", "label_7597", "label_7598", "label_7599", "label_7600", "label_7601", "label_7602", "label_7603", "label_7604", "label_7605", "label_7606", "label_7607", "label_7608", "label_7609", "label_7610", "label_7611", "label_7612", "label_7613", "label_7614", "label_7615", "label_7616", "label_7617", "label_7618", "label_7619", "label_7620", "label_7621", "label_7622", "label_7623", "label_7624", "label_7625", "label_7626", "label_7627", "label_7628", "label_7629", "label_7630", "label_7631", "label_7632", "label_7633", "label_7634", "label_7635", "label_7636", "label_7637", "label_7638", "label_7639", "label_7640", "label_7641", "label_7642", "label_7643", "label_7644", "label_7645", "label_7646", "label_7647", "label_7648", "label_7649", "label_7650", "label_7651", "label_7652", "label_7653", "label_7654", "label_7655", "label_7656", "label_7657", "label_7658", "label_7659", "label_7660", "label_7661", "label_7662", "label_7663", "label_7664", "label_7665", "label_7666", "label_7667", "label_7668", "label_7669", "label_7670", "label_7671", "label_7672", "label_7673", "label_7674", "label_7675", "label_7676", "label_7677", "label_7678", "label_7679", "label_7680", "label_7681", "label_7682", "label_7683", "label_7684", "label_7685", "label_7686", "label_7687", "label_7688", "label_7689", "label_7690", "label_7691", "label_7692", "label_7693", "label_7694", "label_7695", "label_7696", "label_7697", "label_7698", "label_7699", "label_7700", "label_7701", "label_7702", "label_7703", "label_7704", "label_7705", "label_7706", "label_7707", "label_7708", "label_7709", "label_7710", "label_7711", "label_7712", "label_7713", "label_7714", "label_7715", "label_7716", "label_7717", "label_7718", "label_7719", "label_7720", "label_7721", "label_7722", "label_7723", "label_7724", "label_7725", "label_7726", "label_7727", "label_7728", "label_7729", "label_7730", "label_7731", "label_7732", "label_7733", "label_7734", "label_7735", "label_7736", "label_7737", "label_7738", "label_7739", "label_7740", "label_7741", "label_7742", "label_7743", "label_7744", "label_7745", "label_7746", "label_7747", "label_7748", "label_7749", "label_7750", "label_7751", "label_7752", "label_7753", "label_7754", "label_7755", "label_7756", "label_7757", "label_7758", "label_7759", "label_7760", "label_7761", "label_7762", "label_7763", "label_7764", "label_7765", "label_7766", "label_7767", "label_7768", "label_7769", "label_7770", "label_7771", "label_7772", "label_7773", "label_7774", "label_7775", "label_7776", "label_7777", "label_7778", "label_7779", "label_7780", "label_7781", "label_7782", "label_7783", "label_7784", "label_7785", "label_7786", "label_7787", "label_7788", "label_7789", "label_7790", "label_7791", "label_7792", "label_7793", "label_7794", "label_7795", "label_7796", "label_7797", "label_7798", "label_7799", "label_7800", "label_7801", "label_7802", "label_7803", "label_7804", "label_7805", "label_7806", "label_7807", "label_7808", "label_7809", "label_7810", "label_7811", "label_7812", "label_7813", "label_7814", "label_7815", "label_7816", "label_7817", "label_7818", "label_7819", "label_7820", "label_7821", "label_7822", "label_7823", "label_7824", "label_7825", "label_7826", "label_7827", "label_7828", "label_7829", "label_7830", "label_7831", "label_7832", "label_7833", "label_7834", "label_7835", "label_7836", "label_7837", "label_7838", "label_7839", "label_7840", "label_7841", "label_7842", "label_7843", "label_7844", "label_7845", "label_7846", "label_7847", "label_7848", "label_7849", "label_7850", "label_7851", "label_7852", "label_7853", "label_7854", "label_7855", "label_7856", "label_7857", "label_7858", "label_7859", "label_7860", "label_7861", "label_7862", "label_7863", "label_7864", "label_7865", "label_7866", "label_7867", "label_7868", "label_7869", "label_7870", "label_7871", "label_7872", "label_7873", "label_7874", "label_7875", "label_7876", "label_7877", "label_7878", "label_7879", "label_7880", "label_7881", "label_7882", "label_7883", "label_7884", "label_7885", "label_7886", "label_7887", "label_7888", "label_7889", "label_7890", "label_7891", "label_7892", "label_7893", "label_7894", "label_7895", "label_7896", "label_7897", "label_7898", "label_7899", "label_7900", "label_7901", "label_7902", "label_7903", "label_7904", "label_7905", "label_7906", "label_7907", "label_7908", "label_7909", "label_7910", "label_7911", "label_7912", "label_7913", "label_7914", "label_7915", "label_7916", "label_7917", "label_7918", "label_7919", "label_7920", "label_7921", "label_7922", "label_7923", "label_7924", "label_7925", "label_7926", "label_7927", "label_7928", "label_7929", "label_7930", "label_7931", "label_7932", "label_7933", "label_7934", "label_7935", "label_7936", "label_7937", "label_7938", "label_7939", "label_7940", "label_7941", "label_7942", "label_7943", "label_7944", "label_7945", "label_7946", "label_7947", "label_7948", "label_7949", "label_7950", "label_7951", "label_7952", "label_7953", "label_7954", "label_7955", "label_7956", "label_7957", "label_7958", "label_7959", "label_7960", "label_7961", "label_7962", "label_7963", "label_7964", "label_7965", "label_7966", "label_7967", "label_7968", "label_7969", "label_7970", "label_7971", "label_7972", "label_7973", "label_7974", "label_7975", "label_7976", "label_7977", "label_7978", "label_7979", "label_7980", "label_7981", "label_7982", "label_7983", "label_7984", "label_7985", "label_7986", "label_7987", "label_7988", "label_7989", "label_7990", "label_7991", "label_7992", "label_7993", "label_7994", "label_7995", "label_7996", "label_7997", "label_7998", "label_7999", "label_8000", "label_8001", "label_8002", "label_8003", "label_8004", "label_8005", "label_8006", "label_8007", "label_8008", "label_8009", "label_8010", "label_8011", "label_8012", "label_8013", "label_8014", "label_8015", "label_8016", "label_8017", "label_8018", "label_8019", "label_8020", "label_8021", "label_8022", "label_8023", "label_8024", "label_8025", "label_8026", "label_8027", "label_8028", "label_8029", "label_8030", "label_8031", "label_8032", "label_8033", "label_8034", "label_8035", "label_8036", "label_8037", "label_8038", "label_8039", "label_8040", "label_8041", "label_8042", "label_8043", "label_8044", "label_8045", "label_8046", "label_8047", "label_8048", "label_8049", "label_8050", "label_8051", "label_8052", "label_8053", "label_8054", "label_8055", "label_8056", "label_8057", "label_8058", "label_8059", "label_8060", "label_8061", "label_8062", "label_8063", "label_8064", "label_8065", "label_8066", "label_8067", "label_8068", "label_8069", "label_8070", "label_8071", "label_8072", "label_8073", "label_8074", "label_8075", "label_8076", "label_8077", "label_8078", "label_8079", "label_8080", "label_8081", "label_8082", "label_8083", "label_8084", "label_8085", "label_8086", "label_8087", "label_8088", "label_8089", "label_8090", "label_8091", "label_8092", "label_8093", "label_8094", "label_8095", "label_8096", "label_8097", "label_8098", "label_8099", "label_8100", "label_8101", "label_8102", "label_8103", "label_8104", "label_8105", "label_8106", "label_8107", "label_8108", "label_8109", "label_8110", "label_8111", "label_8112", "label_8113", "label_8114", "label_8115", "label_8116", "label_8117", "label_8118", "label_8119", "label_8120", "label_8121", "label_8122", "label_8123", "label_8124", "label_8125", "label_8126", "label_8127", "label_8128", "label_8129", "label_8130", "label_8131", "label_8132", "label_8133", "label_8134", "label_8135", "label_8136", "label_8137", "label_8138", "label_8139", "label_8140", "label_8141", "label_8142", "label_8143", "label_8144", "label_8145", "label_8146", "label_8147", "label_8148", "label_8149", "label_8150", "label_8151", "label_8152", "label_8153", "label_8154", "label_8155", "label_8156", "label_8157", "label_8158", "label_8159", "label_8160", "label_8161", "label_8162", "label_8163", "label_8164", "label_8165", "label_8166", "label_8167", "label_8168", "label_8169", "label_8170", "label_8171", "label_8172", "label_8173", "label_8174", "label_8175", "label_8176", "label_8177", "label_8178", "label_8179", "label_8180", "label_8181", "label_8182", "label_8183", "label_8184", "label_8185", "label_8186", "label_8187", "label_8188", "label_8189", "label_8190", "label_8191", "label_8192", "label_8193", "label_8194", "label_8195", "label_8196", "label_8197", "label_8198", "label_8199", "label_8200", "label_8201", "label_8202", "label_8203", "label_8204", "label_8205", "label_8206", "label_8207", "label_8208", "label_8209", "label_8210", "label_8211", "label_8212", "label_8213", "label_8214", "label_8215", "label_8216", "label_8217", "label_8218", "label_8219", "label_8220", "label_8221", "label_8222", "label_8223", "label_8224", "label_8225", "label_8226", "label_8227", "label_8228", "label_8229", "label_8230", "label_8231", "label_8232", "label_8233", "label_8234", "label_8235", "label_8236", "label_8237", "label_8238", "label_8239", "label_8240", "label_8241", "label_8242", "label_8243", "label_8244", "label_8245", "label_8246", "label_8247", "label_8248", "label_8249", "label_8250", "label_8251", "label_8252", "label_8253", "label_8254", "label_8255", "label_8256", "label_8257", "label_8258", "label_8259", "label_8260", "label_8261", "label_8262", "label_8263", "label_8264", "label_8265", "label_8266", "label_8267", "label_8268", "label_8269", "label_8270", "label_8271", "label_8272", "label_8273", "label_8274", "label_8275", "label_8276", "label_8277", "label_8278", "label_8279", "label_8280", "label_8281", "label_8282", "label_8283", "label_8284", "label_8285", "label_8286", "label_8287", "label_8288", "label_8289", "label_8290", "label_8291", "label_8292", "label_8293", "label_8294", "label_8295", "label_8296", "label_8297", "label_8298", "label_8299", "label_8300", "label_8301", "label_8302", "label_8303", "label_8304", "label_8305", "label_8306", "label_8307", "label_8308", "label_8309", "label_8310", "label_8311", "label_8312", "label_8313", "label_8314", "label_8315", "label_8316", "label_8317", "label_8318", "label_8319", "label_8320", "label_8321", "label_8322", "label_8323", "label_8324", "label_8325", "label_8326", "label_8327", "label_8328", "label_8329", "label_8330", "label_8331", "label_8332", "label_8333", "label_8334", "label_8335", "label_8336", "label_8337", "label_8338", "label_8339", "label_8340", "label_8341", "label_8342", "label_8343", "label_8344", "label_8345", "label_8346", "label_8347", "label_8348", "label_8349", "label_8350", "label_8351", "label_8352", "label_8353", "label_8354", "label_8355", "label_8356", "label_8357", "label_8358", "label_8359", "label_8360", "label_8361", "label_8362", "label_8363", "label_8364", "label_8365", "label_8366", "label_8367", "label_8368", "label_8369", "label_8370", "label_8371", "label_8372", "label_8373", "label_8374", "label_8375", "label_8376", "label_8377", "label_8378", "label_8379", "label_8380", "label_8381", "label_8382", "label_8383", "label_8384", "label_8385", "label_8386", "label_8387", "label_8388", "label_8389", "label_8390", "label_8391", "label_8392", "label_8393", "label_8394", "label_8395", "label_8396", "label_8397", "label_8398", "label_8399", "label_8400", "label_8401", "label_8402", "label_8403", "label_8404", "label_8405", "label_8406", "label_8407", "label_8408", "label_8409", "label_8410", "label_8411", "label_8412", "label_8413", "label_8414", "label_8415", "label_8416", "label_8417", "label_8418", "label_8419", "label_8420", "label_8421", "label_8422", "label_8423", "label_8424", "label_8425", "label_8426", "label_8427", "label_8428", "label_8429", "label_8430", "label_8431", "label_8432", "label_8433", "label_8434", "label_8435", "label_8436", "label_8437", "label_8438", "label_8439", "label_8440", "label_8441", "label_8442", "label_8443", "label_8444", "label_8445", "label_8446", "label_8447", "label_8448", "label_8449", "label_8450", "label_8451", "label_8452", "label_8453", "label_8454", "label_8455", "label_8456", "label_8457", "label_8458", "label_8459", "label_8460", "label_8461", "label_8462", "label_8463", "label_8464", "label_8465", "label_8466", "label_8467", "label_8468", "label_8469", "label_8470", "label_8471", "label_8472", "label_8473", "label_8474", "label_8475", "label_8476", "label_8477", "label_8478", "label_8479", "label_8480", "label_8481", "label_8482", "label_8483", "label_8484", "label_8485", "label_8486", "label_8487", "label_8488", "label_8489", "label_8490", "label_8491", "label_8492", "label_8493", "label_8494", "label_8495", "label_8496", "label_8497", "label_8498", "label_8499", "label_8500", "label_8501", "label_8502", "label_8503", "label_8504", "label_8505", "label_8506", "label_8507", "label_8508", "label_8509", "label_8510", "label_8511", "label_8512", "label_8513", "label_8514", "label_8515", "label_8516", "label_8517", "label_8518", "label_8519", "label_8520", "label_8521", "label_8522", "label_8523", "label_8524", "label_8525", "label_8526", "label_8527", "label_8528", "label_8529", "label_8530", "label_8531", "label_8532", "label_8533", "label_8534", "label_8535", "label_8536", "label_8537", "label_8538", "label_8539", "label_8540", "label_8541", "label_8542", "label_8543", "label_8544", "label_8545", "label_8546", "label_8547", "label_8548", "label_8549", "label_8550", "label_8551", "label_8552", "label_8553", "label_8554", "label_8555", "label_8556", "label_8557", "label_8558", "label_8559", "label_8560", "label_8561", "label_8562", "label_8563", "label_8564", "label_8565", "label_8566", "label_8567", "label_8568", "label_8569", "label_8570", "label_8571", "label_8572", "label_8573", "label_8574", "label_8575", "label_8576", "label_8577", "label_8578", "label_8579", "label_8580", "label_8581", "label_8582", "label_8583", "label_8584", "label_8585", "label_8586", "label_8587", "label_8588", "label_8589", "label_8590", "label_8591", "label_8592", "label_8593", "label_8594", "label_8595", "label_8596", "label_8597", "label_8598", "label_8599", "label_8600", "label_8601", "label_8602", "label_8603", "label_8604", "label_8605", "label_8606", "label_8607", "label_8608", "label_8609", "label_8610", "label_8611", "label_8612", "label_8613", "label_8614", "label_8615", "label_8616", "label_8617", "label_8618", "label_8619", "label_8620", "label_8621", "label_8622", "label_8623", "label_8624", "label_8625", "label_8626", "label_8627", "label_8628", "label_8629", "label_8630", "label_8631", "label_8632", "label_8633", "label_8634", "label_8635", "label_8636", "label_8637", "label_8638", "label_8639", "label_8640", "label_8641", "label_8642", "label_8643", "label_8644", "label_8645", "label_8646", "label_8647", "label_8648", "label_8649", "label_8650", "label_8651", "label_8652", "label_8653", "label_8654", "label_8655", "label_8656", "label_8657", "label_8658", "label_8659", "label_8660", "label_8661", "label_8662", "label_8663", "label_8664", "label_8665", "label_8666", "label_8667", "label_8668", "label_8669", "label_8670", "label_8671", "label_8672", "label_8673", "label_8674", "label_8675", "label_8676", "label_8677", "label_8678", "label_8679", "label_8680", "label_8681", "label_8682", "label_8683", "label_8684", "label_8685", "label_8686", "label_8687", "label_8688", "label_8689", "label_8690", "label_8691", "label_8692", "label_8693", "label_8694", "label_8695", "label_8696", "label_8697", "label_8698", "label_8699", "label_8700", "label_8701", "label_8702", "label_8703", "label_8704", "label_8705", "label_8706", "label_8707", "label_8708", "label_8709", "label_8710", "label_8711", "label_8712", "label_8713", "label_8714", "label_8715", "label_8716", "label_8717", "label_8718", "label_8719", "label_8720", "label_8721", "label_8722", "label_8723", "label_8724", "label_8725", "label_8726", "label_8727", "label_8728", "label_8729", "label_8730", "label_8731", "label_8732", "label_8733", "label_8734", "label_8735", "label_8736", "label_8737", "label_8738", "label_8739", "label_8740", "label_8741", "label_8742", "label_8743", "label_8744", "label_8745", "label_8746", "label_8747", "label_8748", "label_8749", "label_8750", "label_8751", "label_8752", "label_8753", "label_8754", "label_8755", "label_8756", "label_8757", "label_8758", "label_8759", "label_8760", "label_8761", "label_8762", "label_8763", "label_8764", "label_8765", "label_8766", "label_8767", "label_8768", "label_8769", "label_8770", "label_8771", "label_8772", "label_8773", "label_8774", "label_8775", "label_8776", "label_8777", "label_8778", "label_8779", "label_8780", "label_8781", "label_8782", "label_8783", "label_8784", "label_8785", "label_8786", "label_8787", "label_8788", "label_8789", "label_8790", "label_8791", "label_8792", "label_8793", "label_8794", "label_8795", "label_8796", "label_8797", "label_8798", "label_8799", "label_8800", "label_8801", "label_8802", "label_8803", "label_8804", "label_8805", "label_8806", "label_8807", "label_8808", "label_8809", "label_8810", "label_8811", "label_8812", "label_8813", "label_8814", "label_8815", "label_8816", "label_8817", "label_8818", "label_8819", "label_8820", "label_8821", "label_8822", "label_8823", "label_8824", "label_8825", "label_8826", "label_8827", "label_8828", "label_8829", "label_8830", "label_8831", "label_8832", "label_8833", "label_8834", "label_8835", "label_8836", "label_8837", "label_8838", "label_8839", "label_8840", "label_8841", "label_8842", "label_8843", "label_8844", "label_8845", "label_8846", "label_8847", "label_8848", "label_8849", "label_8850", "label_8851", "label_8852", "label_8853", "label_8854", "label_8855", "label_8856", "label_8857", "label_8858", "label_8859", "label_8860", "label_8861", "label_8862", "label_8863", "label_8864", "label_8865", "label_8866", "label_8867", "label_8868", "label_8869", "label_8870", "label_8871", "label_8872", "label_8873", "label_8874", "label_8875", "label_8876", "label_8877", "label_8878", "label_8879", "label_8880", "label_8881", "label_8882", "label_8883", "label_8884", "label_8885", "label_8886", "label_8887", "label_8888", "label_8889", "label_8890", "label_8891", "label_8892", "label_8893", "label_8894", "label_8895", "label_8896", "label_8897", "label_8898", "label_8899", "label_8900", "label_8901", "label_8902", "label_8903", "label_8904", "label_8905", "label_8906", "label_8907", "label_8908", "label_8909", "label_8910", "label_8911", "label_8912", "label_8913", "label_8914", "label_8915", "label_8916", "label_8917", "label_8918", "label_8919", "label_8920", "label_8921", "label_8922", "label_8923", "label_8924", "label_8925", "label_8926", "label_8927", "label_8928", "label_8929", "label_8930", "label_8931", "label_8932", "label_8933", "label_8934", "label_8935", "label_8936", "label_8937", "label_8938", "label_8939", "label_8940", "label_8941", "label_8942", "label_8943", "label_8944", "label_8945", "label_8946", "label_8947", "label_8948", "label_8949", "label_8950", "label_8951", "label_8952", "label_8953", "label_8954", "label_8955", "label_8956", "label_8957", "label_8958", "label_8959", "label_8960", "label_8961", "label_8962", "label_8963", "label_8964", "label_8965", "label_8966", "label_8967", "label_8968", "label_8969", "label_8970", "label_8971", "label_8972", "label_8973", "label_8974", "label_8975", "label_8976", "label_8977", "label_8978", "label_8979", "label_8980", "label_8981", "label_8982", "label_8983", "label_8984", "label_8985", "label_8986", "label_8987", "label_8988", "label_8989", "label_8990", "label_8991", "label_8992", "label_8993", "label_8994", "label_8995", "label_8996", "label_8997", "label_8998", "label_8999", "label_9000", "label_9001", "label_9002", "label_9003", "label_9004", "label_9005", "label_9006", "label_9007", "label_9008", "label_9009", "label_9010", "label_9011", "label_9012", "label_9013", "label_9014", "label_9015", "label_9016", "label_9017", "label_9018", "label_9019", "label_9020", "label_9021", "label_9022", "label_9023", "label_9024", "label_9025", "label_9026", "label_9027", "label_9028", "label_9029", "label_9030", "label_9031", "label_9032", "label_9033", "label_9034", "label_9035", "label_9036", "label_9037", "label_9038", "label_9039", "label_9040", "label_9041", "label_9042", "label_9043", "label_9044", "label_9045", "label_9046", "label_9047", "label_9048", "label_9049", "label_9050", "label_9051", "label_9052", "label_9053", "label_9054", "label_9055", "label_9056", "label_9057", "label_9058", "label_9059", "label_9060", "label_9061", "label_9062", "label_9063", "label_9064", "label_9065", "label_9066", "label_9067", "label_9068", "label_9069", "label_9070", "label_9071", "label_9072", "label_9073", "label_9074", "label_9075", "label_9076", "label_9077", "label_9078", "label_9079", "label_9080", "label_9081", "label_9082", "label_9083", "label_9084", "label_9085", "label_9086", "label_9087", "label_9088", "label_9089", "label_9090", "label_9091", "label_9092", "label_9093", "label_9094", "label_9095", "label_9096", "label_9097", "label_9098", "label_9099", "label_9100", "label_9101", "label_9102", "label_9103", "label_9104", "label_9105", "label_9106", "label_9107", "label_9108", "label_9109", "label_9110", "label_9111", "label_9112", "label_9113", "label_9114", "label_9115", "label_9116", "label_9117", "label_9118", "label_9119", "label_9120", "label_9121", "label_9122", "label_9123", "label_9124", "label_9125", "label_9126", "label_9127", "label_9128", "label_9129", "label_9130", "label_9131", "label_9132", "label_9133", "label_9134", "label_9135", "label_9136", "label_9137", "label_9138", "label_9139", "label_9140", "label_9141", "label_9142", "label_9143", "label_9144", "label_9145", "label_9146", "label_9147", "label_9148", "label_9149", "label_9150", "label_9151", "label_9152", "label_9153", "label_9154", "label_9155", "label_9156", "label_9157", "label_9158", "label_9159", "label_9160", "label_9161", "label_9162", "label_9163", "label_9164", "label_9165", "label_9166", "label_9167", "label_9168", "label_9169", "label_9170", "label_9171", "label_9172", "label_9173", "label_9174", "label_9175", "label_9176", "label_9177", "label_9178", "label_9179", "label_9180", "label_9181", "label_9182", "label_9183", "label_9184", "label_9185", "label_9186", "label_9187", "label_9188", "label_9189", "label_9190", "label_9191", "label_9192", "label_9193", "label_9194", "label_9195", "label_9196", "label_9197", "label_9198", "label_9199", "label_9200", "label_9201", "label_9202", "label_9203", "label_9204", "label_9205", "label_9206", "label_9207", "label_9208", "label_9209", "label_9210", "label_9211", "label_9212", "label_9213", "label_9214", "label_9215", "label_9216", "label_9217", "label_9218", "label_9219", "label_9220", "label_9221", "label_9222", "label_9223", "label_9224", "label_9225", "label_9226", "label_9227", "label_9228", "label_9229", "label_9230", "label_9231", "label_9232", "label_9233", "label_9234", "label_9235", "label_9236", "label_9237", "label_9238", "label_9239", "label_9240", "label_9241", "label_9242", "label_9243", "label_9244", "label_9245", "label_9246", "label_9247", "label_9248", "label_9249", "label_9250", "label_9251", "label_9252", "label_9253", "label_9254", "label_9255", "label_9256", "label_9257", "label_9258", "label_9259", "label_9260", "label_9261", "label_9262", "label_9263", "label_9264", "label_9265", "label_9266", "label_9267", "label_9268", "label_9269", "label_9270", "label_9271", "label_9272", "label_9273", "label_9274", "label_9275", "label_9276", "label_9277", "label_9278", "label_9279", "label_9280", "label_9281", "label_9282", "label_9283", "label_9284", "label_9285", "label_9286", "label_9287", "label_9288", "label_9289", "label_9290", "label_9291", "label_9292", "label_9293", "label_9294", "label_9295", "label_9296", "label_9297", "label_9298", "label_9299", "label_9300", "label_9301", "label_9302", "label_9303", "label_9304", "label_9305", "label_9306", "label_9307", "label_9308", "label_9309", "label_9310", "label_9311", "label_9312", "label_9313", "label_9314", "label_9315", "label_9316", "label_9317", "label_9318", "label_9319", "label_9320", "label_9321", "label_9322", "label_9323", "label_9324", "label_9325", "label_9326", "label_9327", "label_9328", "label_9329", "label_9330", "label_9331", "label_9332", "label_9333", "label_9334", "label_9335", "label_9336", "label_9337", "label_9338", "label_9339", "label_9340", "label_9341", "label_9342", "label_9343", "label_9344", "label_9345", "label_9346", "label_9347", "label_9348", "label_9349", "label_9350", "label_9351", "label_9352", "label_9353", "label_9354", "label_9355", "label_9356", "label_9357", "label_9358", "label_9359", "label_9360", "label_9361", "label_9362", "label_9363", "label_9364", "label_9365", "label_9366", "label_9367", "label_9368", "label_9369", "label_9370", "label_9371", "label_9372", "label_9373", "label_9374", "label_9375", "label_9376", "label_9377", "label_9378", "label_9379", "label_9380", "label_9381", "label_9382", "label_9383", "label_9384", "label_9385", "label_9386", "label_9387", "label_9388", "label_9389", "label_9390", "label_9391", "label_9392", "label_9393", "label_9394", "label_9395", "label_9396", "label_9397", "label_9398", "label_9399", "label_9400", "label_9401", "label_9402", "label_9403", "label_9404", "label_9405", "label_9406", "label_9407", "label_9408", "label_9409", "label_9410", "label_9411", "label_9412", "label_9413", "label_9414", "label_9415", "label_9416", "label_9417", "label_9418", "label_9419", "label_9420", "label_9421", "label_9422", "label_9423", "label_9424", "label_9425", "label_9426", "label_9427", "label_9428", "label_9429", "label_9430", "label_9431", "label_9432", "label_9433", "label_9434", "label_9435", "label_9436", "label_9437", "label_9438", "label_9439", "label_9440", "label_9441", "label_9442", "label_9443", "label_9444", "label_9445", "label_9446", "label_9447", "label_9448", "label_9449", "label_9450", "label_9451", "label_9452", "label_9453", "label_9454", "label_9455", "label_9456", "label_9457", "label_9458", "label_9459", "label_9460", "label_9461", "label_9462", "label_9463", "label_9464", "label_9465", "label_9466", "label_9467", "label_9468", "label_9469", "label_9470", "label_9471", "label_9472", "label_9473", "label_9474", "label_9475", "label_9476", "label_9477", "label_9478", "label_9479", "label_9480", "label_9481", "label_9482", "label_9483", "label_9484", "label_9485", "label_9486", "label_9487", "label_9488", "label_9489", "label_9490", "label_9491", "label_9492", "label_9493", "label_9494", "label_9495", "label_9496", "label_9497", "label_9498", "label_9499", "label_9500", "label_9501", "label_9502", "label_9503", "label_9504", "label_9505", "label_9506", "label_9507", "label_9508", "label_9509", "label_9510", "label_9511", "label_9512", "label_9513", "label_9514", "label_9515", "label_9516", "label_9517", "label_9518", "label_9519", "label_9520", "label_9521", "label_9522", "label_9523", "label_9524", "label_9525", "label_9526", "label_9527", "label_9528", "label_9529", "label_9530", "label_9531", "label_9532", "label_9533", "label_9534", "label_9535", "label_9536", "label_9537", "label_9538", "label_9539", "label_9540", "label_9541", "label_9542", "label_9543", "label_9544", "label_9545", "label_9546", "label_9547", "label_9548", "label_9549", "label_9550", "label_9551", "label_9552", "label_9553", "label_9554", "label_9555", "label_9556", "label_9557", "label_9558", "label_9559", "label_9560", "label_9561", "label_9562", "label_9563", "label_9564", "label_9565", "label_9566", "label_9567", "label_9568", "label_9569", "label_9570", "label_9571", "label_9572", "label_9573", "label_9574", "label_9575", "label_9576", "label_9577", "label_9578", "label_9579", "label_9580", "label_9581", "label_9582", "label_9583", "label_9584", "label_9585", "label_9586", "label_9587", "label_9588", "label_9589", "label_9590", "label_9591", "label_9592", "label_9593", "label_9594", "label_9595", "label_9596", "label_9597", "label_9598", "label_9599", "label_9600", "label_9601", "label_9602", "label_9603", "label_9604", "label_9605", "label_9606", "label_9607", "label_9608", "label_9609", "label_9610", "label_9611", "label_9612", "label_9613", "label_9614", "label_9615", "label_9616", "label_9617", "label_9618", "label_9619", "label_9620", "label_9621", "label_9622", "label_9623", "label_9624", "label_9625", "label_9626", "label_9627", "label_9628", "label_9629", "label_9630", "label_9631", "label_9632", "label_9633", "label_9634", "label_9635", "label_9636", "label_9637", "label_9638", "label_9639", "label_9640", "label_9641", "label_9642", "label_9643", "label_9644", "label_9645", "label_9646", "label_9647", "label_9648", "label_9649", "label_9650", "label_9651", "label_9652", "label_9653", "label_9654", "label_9655", "label_9656", "label_9657", "label_9658", "label_9659", "label_9660", "label_9661", "label_9662", "label_9663", "label_9664", "label_9665", "label_9666", "label_9667", "label_9668", "label_9669", "label_9670", "label_9671", "label_9672", "label_9673", "label_9674", "label_9675", "label_9676", "label_9677", "label_9678", "label_9679", "label_9680", "label_9681", "label_9682", "label_9683", "label_9684", "label_9685", "label_9686", "label_9687", "label_9688", "label_9689", "label_9690", "label_9691", "label_9692", "label_9693", "label_9694", "label_9695", "label_9696", "label_9697", "label_9698", "label_9699", "label_9700", "label_9701", "label_9702", "label_9703", "label_9704", "label_9705", "label_9706", "label_9707", "label_9708", "label_9709", "label_9710", "label_9711", "label_9712", "label_9713", "label_9714", "label_9715", "label_9716", "label_9717", "label_9718", "label_9719", "label_9720", "label_9721", "label_9722", "label_9723", "label_9724", "label_9725", "label_9726", "label_9727", "label_9728", "label_9729", "label_9730", "label_9731", "label_9732", "label_9733", "label_9734", "label_9735", "label_9736", "label_9737", "label_9738", "label_9739", "label_9740", "label_9741", "label_9742", "label_9743", "label_9744", "label_9745", "label_9746", "label_9747", "label_9748", "label_9749", "label_9750", "label_9751", "label_9752", "label_9753", "label_9754", "label_9755", "label_9756", "label_9757", "label_9758", "label_9759", "label_9760", "label_9761", "label_9762", "label_9763", "label_9764", "label_9765", "label_9766", "label_9767", "label_9768", "label_9769", "label_9770", "label_9771", "label_9772", "label_9773", "label_9774", "label_9775", "label_9776", "label_9777", "label_9778", "label_9779", "label_9780", "label_9781", "label_9782", "label_9783", "label_9784", "label_9785", "label_9786", "label_9787", "label_9788", "label_9789", "label_9790", "label_9791", "label_9792", "label_9793", "label_9794", "label_9795", "label_9796", "label_9797", "label_9798", "label_9799", "label_9800", "label_9801", "label_9802", "label_9803", "label_9804", "label_9805", "label_9806", "label_9807", "label_9808", "label_9809", "label_9810", "label_9811", "label_9812", "label_9813", "label_9814", "label_9815", "label_9816", "label_9817", "label_9818", "label_9819", "label_9820", "label_9821", "label_9822", "label_9823", "label_9824", "label_9825", "label_9826", "label_9827", "label_9828", "label_9829", "label_9830", "label_9831", "label_9832", "label_9833", "label_9834", "label_9835", "label_9836", "label_9837", "label_9838", "label_9839", "label_9840", "label_9841", "label_9842", "label_9843", "label_9844", "label_9845", "label_9846", "label_9847", "label_9848", "label_9849", "label_9850", "label_9851", "label_9852", "label_9853", "label_9854", "label_9855", "label_9856", "label_9857", "label_9858", "label_9859", "label_9860", "label_9861", "label_9862", "label_9863", "label_9864", "label_9865", "label_9866", "label_9867", "label_9868", "label_9869", "label_9870", "label_9871", "label_9872", "label_9873", "label_9874", "label_9875", "label_9876", "label_9877", "label_9878", "label_9879", "label_9880", "label_9881", "label_9882", "label_9883", "label_9884", "label_9885", "label_9886", "label_9887", "label_9888", "label_9889", "label_9890", "label_9891", "label_9892", "label_9893", "label_9894", "label_9895", "label_9896", "label_9897", "label_9898", "label_9899", "label_9900", "label_9901", "label_9902", "label_9903", "label_9904", "label_9905", "label_9906", "label_9907", "label_9908", "label_9909", "label_9910", "label_9911", "label_9912", "label_9913", "label_9914", "label_9915", "label_9916", "label_9917", "label_9918", "label_9919", "label_9920", "label_9921", "label_9922", "label_9923", "label_9924", "label_9925", "label_9926", "label_9927", "label_9928", "label_9929", "label_9930", "label_9931", "label_9932", "label_9933", "label_9934", "label_9935", "label_9936", "label_9937", "label_9938", "label_9939", "label_9940", "label_9941", "label_9942", "label_9943", "label_9944", "label_9945", "label_9946", "label_9947", "label_9948", "label_9949", "label_9950", "label_9951", "label_9952", "label_9953", "label_9954", "label_9955", "label_9956", "label_9957", "label_9958", "label_9959", "label_9960", "label_9961", "label_9962", "label_9963", "label_9964", "label_9965", "label_9966", "label_9967", "label_9968", "label_9969", "label_9970", "label_9971", "label_9972", "label_9973", "label_9974", "label_9975", "label_9976", "label_9977", "label_9978", "label_9979", "label_9980", "label_9981", "label_9982", "label_9983", "label_9984", "label_9985", "label_9986", "label_9987", "label_9988", "label_9989", "label_9990", "label_9991", "label_9992", "label_9993", "label_9994", "label_9995", "label_9996", "label_9997", "label_9998", "label_9999", "label_10000", "label_10001", "label_10002", "label_10003", "label_10004", "label_10005", "label_10006", "label_10007", "label_10008", "label_10009", "label_10010", "label_10011", "label_10012", "label_10013", "label_10014", "label_10015", "label_10016", "label_10017", "label_10018", "label_10019", "label_10020", "label_10021", "label_10022", "label_10023", "label_10024", "label_10025", "label_10026", "label_10027", "label_10028", "label_10029", "label_10030", "label_10031", "label_10032", "label_10033", "label_10034", "label_10035", "label_10036", "label_10037", "label_10038", "label_10039", "label_10040", "label_10041", "label_10042", "label_10043", "label_10044", "label_10045", "label_10046", "label_10047", "label_10048", "label_10049", "label_10050", "label_10051", "label_10052", "label_10053", "label_10054", "label_10055", "label_10056", "label_10057", "label_10058", "label_10059", "label_10060", "label_10061", "label_10062", "label_10063", "label_10064", "label_10065", "label_10066", "label_10067", "label_10068", "label_10069", "label_10070", "label_10071", "label_10072", "label_10073", "label_10074", "label_10075", "label_10076", "label_10077", "label_10078", "label_10079", "label_10080", "label_10081", "label_10082", "label_10083", "label_10084", "label_10085", "label_10086", "label_10087", "label_10088", "label_10089", "label_10090", "label_10091", "label_10092", "label_10093", "label_10094", "label_10095", "label_10096", "label_10097", "label_10098", "label_10099", "label_10100", "label_10101", "label_10102", "label_10103", "label_10104", "label_10105", "label_10106", "label_10107", "label_10108", "label_10109", "label_10110", "label_10111", "label_10112", "label_10113", "label_10114", "label_10115", "label_10116", "label_10117", "label_10118", "label_10119", "label_10120", "label_10121", "label_10122", "label_10123", "label_10124", "label_10125", "label_10126", "label_10127", "label_10128", "label_10129", "label_10130", "label_10131", "label_10132", "label_10133", "label_10134", "label_10135", "label_10136", "label_10137", "label_10138", "label_10139", "label_10140", "label_10141", "label_10142", "label_10143", "label_10144", "label_10145", "label_10146", "label_10147", "label_10148", "label_10149", "label_10150", "label_10151", "label_10152", "label_10153", "label_10154", "label_10155", "label_10156", "label_10157", "label_10158", "label_10159", "label_10160", "label_10161", "label_10162", "label_10163", "label_10164", "label_10165", "label_10166", "label_10167", "label_10168", "label_10169", "label_10170", "label_10171", "label_10172", "label_10173", "label_10174", "label_10175", "label_10176", "label_10177", "label_10178", "label_10179", "label_10180", "label_10181", "label_10182", "label_10183", "label_10184", "label_10185", "label_10186", "label_10187", "label_10188", "label_10189", "label_10190", "label_10191", "label_10192", "label_10193", "label_10194", "label_10195", "label_10196", "label_10197", "label_10198", "label_10199", "label_10200", "label_10201", "label_10202", "label_10203", "label_10204", "label_10205", "label_10206", "label_10207", "label_10208", "label_10209", "label_10210", "label_10211", "label_10212", "label_10213", "label_10214", "label_10215", "label_10216", "label_10217", "label_10218", "label_10219", "label_10220", "label_10221", "label_10222", "label_10223", "label_10224", "label_10225", "label_10226", "label_10227", "label_10228", "label_10229", "label_10230", "label_10231", "label_10232", "label_10233", "label_10234", "label_10235", "label_10236", "label_10237", "label_10238", "label_10239", "label_10240", "label_10241", "label_10242", "label_10243", "label_10244", "label_10245", "label_10246", "label_10247", "label_10248", "label_10249", "label_10250", "label_10251", "label_10252", "label_10253", "label_10254", "label_10255", "label_10256", "label_10257", "label_10258", "label_10259", "label_10260", "label_10261", "label_10262", "label_10263", "label_10264", "label_10265", "label_10266", "label_10267", "label_10268", "label_10269", "label_10270", "label_10271", "label_10272", "label_10273", "label_10274", "label_10275", "label_10276", "label_10277", "label_10278", "label_10279", "label_10280", "label_10281", "label_10282", "label_10283", "label_10284", "label_10285", "label_10286", "label_10287", "label_10288", "label_10289", "label_10290", "label_10291", "label_10292", "label_10293", "label_10294", "label_10295", "label_10296", "label_10297", "label_10298", "label_10299", "label_10300", "label_10301", "label_10302", "label_10303", "label_10304", "label_10305", "label_10306", "label_10307", "label_10308", "label_10309", "label_10310", "label_10311", "label_10312", "label_10313", "label_10314", "label_10315", "label_10316", "label_10317", "label_10318", "label_10319", "label_10320", "label_10321", "label_10322", "label_10323", "label_10324", "label_10325", "label_10326", "label_10327", "label_10328", "label_10329", "label_10330", "label_10331", "label_10332", "label_10333", "label_10334", "label_10335", "label_10336", "label_10337", "label_10338", "label_10339", "label_10340", "label_10341", "label_10342", "label_10343", "label_10344", "label_10345", "label_10346", "label_10347", "label_10348", "label_10349", "label_10350", "label_10351", "label_10352", "label_10353", "label_10354", "label_10355", "label_10356", "label_10357", "label_10358", "label_10359", "label_10360", "label_10361", "label_10362", "label_10363", "label_10364", "label_10365", "label_10366", "label_10367", "label_10368", "label_10369", "label_10370", "label_10371", "label_10372", "label_10373", "label_10374", "label_10375", "label_10376", "label_10377", "label_10378", "label_10379", "label_10380", "label_10381", "label_10382", "label_10383", "label_10384", "label_10385", "label_10386", "label_10387", "label_10388", "label_10389", "label_10390", "label_10391", "label_10392", "label_10393", "label_10394", "label_10395", "label_10396", "label_10397", "label_10398", "label_10399", "label_10400", "label_10401", "label_10402", "label_10403", "label_10404", "label_10405", "label_10406", "label_10407", "label_10408", "label_10409", "label_10410", "label_10411", "label_10412", "label_10413", "label_10414", "label_10415", "label_10416", "label_10417", "label_10418", "label_10419", "label_10420", "label_10421", "label_10422", "label_10423", "label_10424", "label_10425", "label_10426", "label_10427", "label_10428", "label_10429", "label_10430", "label_10431", "label_10432", "label_10433", "label_10434", "label_10435", "label_10436", "label_10437", "label_10438", "label_10439", "label_10440", "label_10441", "label_10442", "label_10443", "label_10444", "label_10445", "label_10446", "label_10447", "label_10448", "label_10449", "label_10450", "label_10451", "label_10452", "label_10453", "label_10454", "label_10455", "label_10456", "label_10457", "label_10458", "label_10459", "label_10460", "label_10461", "label_10462", "label_10463", "label_10464", "label_10465", "label_10466", "label_10467", "label_10468", "label_10469", "label_10470", "label_10471", "label_10472", "label_10473", "label_10474", "label_10475", "label_10476", "label_10477", "label_10478", "label_10479", "label_10480", "label_10481", "label_10482", "label_10483", "label_10484", "label_10485", "label_10486", "label_10487", "label_10488", "label_10489", "label_10490", "label_10491", "label_10492", "label_10493", "label_10494", "label_10495", "label_10496", "label_10497", "label_10498", "label_10499", "label_10500", "label_10501", "label_10502", "label_10503", "label_10504", "label_10505", "label_10506", "label_10507", "label_10508", "label_10509", "label_10510", "label_10511", "label_10512", "label_10513", "label_10514", "label_10515", "label_10516", "label_10517", "label_10518", "label_10519", "label_10520", "label_10521", "label_10522", "label_10523", "label_10524", "label_10525", "label_10526", "label_10527", "label_10528", "label_10529", "label_10530", "label_10531", "label_10532", "label_10533", "label_10534", "label_10535", "label_10536", "label_10537", "label_10538", "label_10539", "label_10540", "label_10541", "label_10542", "label_10543", "label_10544", "label_10545", "label_10546", "label_10547", "label_10548", "label_10549", "label_10550", "label_10551", "label_10552", "label_10553", "label_10554", "label_10555", "label_10556", "label_10557", "label_10558", "label_10559", "label_10560", "label_10561", "label_10562", "label_10563", "label_10564", "label_10565", "label_10566", "label_10567", "label_10568", "label_10569", "label_10570", "label_10571", "label_10572", "label_10573", "label_10574", "label_10575", "label_10576", "label_10577", "label_10578", "label_10579", "label_10580", "label_10581", "label_10582", "label_10583", "label_10584", "label_10585", "label_10586", "label_10587", "label_10588", "label_10589", "label_10590", "label_10591", "label_10592", "label_10593", "label_10594", "label_10595", "label_10596", "label_10597", "label_10598", "label_10599", "label_10600", "label_10601", "label_10602", "label_10603", "label_10604", "label_10605", "label_10606", "label_10607", "label_10608", "label_10609", "label_10610", "label_10611", "label_10612", "label_10613", "label_10614", "label_10615", "label_10616", "label_10617", "label_10618", "label_10619", "label_10620", "label_10621", "label_10622", "label_10623", "label_10624", "label_10625", "label_10626", "label_10627", "label_10628", "label_10629", "label_10630", "label_10631", "label_10632", "label_10633", "label_10634", "label_10635", "label_10636", "label_10637", "label_10638", "label_10639", "label_10640", "label_10641", "label_10642", "label_10643", "label_10644", "label_10645", "label_10646", "label_10647", "label_10648", "label_10649", "label_10650", "label_10651", "label_10652", "label_10653", "label_10654", "label_10655", "label_10656", "label_10657", "label_10658", "label_10659", "label_10660", "label_10661", "label_10662", "label_10663", "label_10664", "label_10665", "label_10666", "label_10667", "label_10668", "label_10669", "label_10670", "label_10671", "label_10672", "label_10673", "label_10674", "label_10675", "label_10676", "label_10677", "label_10678", "label_10679", "label_10680", "label_10681", "label_10682", "label_10683", "label_10684", "label_10685", "label_10686", "label_10687", "label_10688", "label_10689", "label_10690", "label_10691", "label_10692", "label_10693", "label_10694", "label_10695", "label_10696", "label_10697", "label_10698", "label_10699", "label_10700", "label_10701", "label_10702", "label_10703", "label_10704", "label_10705", "label_10706", "label_10707", "label_10708", "label_10709", "label_10710", "label_10711", "label_10712", "label_10713", "label_10714", "label_10715", "label_10716", "label_10717", "label_10718", "label_10719", "label_10720", "label_10721", "label_10722", "label_10723", "label_10724", "label_10725", "label_10726", "label_10727", "label_10728", "label_10729", "label_10730", "label_10731", "label_10732", "label_10733", "label_10734", "label_10735", "label_10736", "label_10737", "label_10738", "label_10739", "label_10740", "label_10741", "label_10742", "label_10743", "label_10744", "label_10745", "label_10746", "label_10747", "label_10748", "label_10749", "label_10750", "label_10751", "label_10752", "label_10753", "label_10754", "label_10755", "label_10756", "label_10757", "label_10758", "label_10759", "label_10760", "label_10761", "label_10762", "label_10763", "label_10764", "label_10765", "label_10766", "label_10767", "label_10768", "label_10769", "label_10770", "label_10771", "label_10772", "label_10773", "label_10774", "label_10775", "label_10776", "label_10777", "label_10778", "label_10779", "label_10780", "label_10781", "label_10782", "label_10783", "label_10784", "label_10785", "label_10786", "label_10787", "label_10788", "label_10789", "label_10790", "label_10791", "label_10792", "label_10793", "label_10794", "label_10795", "label_10796", "label_10797", "label_10798", "label_10799", "label_10800", "label_10801", "label_10802", "label_10803", "label_10804", "label_10805", "label_10806", "label_10807", "label_10808", "label_10809", "label_10810", "label_10811", "label_10812", "label_10813", "label_10814", "label_10815", "label_10816", "label_10817", "label_10818", "label_10819", "label_10820", "label_10821", "label_10822", "label_10823", "label_10824", "label_10825", "label_10826", "label_10827", "label_10828", "label_10829", "label_10830", "label_10831", "label_10832", "label_10833", "label_10834", "label_10835", "label_10836", "label_10837", "label_10838", "label_10839", "label_10840", "label_10841", "label_10842", "label_10843", "label_10844", "label_10845", "label_10846", "label_10847", "label_10848", "label_10849", "label_10850", "label_10851", "label_10852", "label_10853", "label_10854", "label_10855", "label_10856", "label_10857", "label_10858", "label_10859", "label_10860", "label_10861", "label_10862", "label_10863", "label_10864", "label_10865", "label_10866", "label_10867", "label_10868", "label_10869", "label_10870", "label_10871", "label_10872", "label_10873", "label_10874", "label_10875", "label_10876", "label_10877", "label_10878", "label_10879", "label_10880", "label_10881", "label_10882", "label_10883", "label_10884", "label_10885", "label_10886", "label_10887", "label_10888", "label_10889", "label_10890", "label_10891", "label_10892", "label_10893", "label_10894", "label_10895", "label_10896", "label_10897", "label_10898", "label_10899", "label_10900", "label_10901", "label_10902", "label_10903", "label_10904", "label_10905", "label_10906", "label_10907", "label_10908", "label_10909", "label_10910", "label_10911", "label_10912", "label_10913", "label_10914", "label_10915", "label_10916", "label_10917", "label_10918", "label_10919", "label_10920", "label_10921", "label_10922", "label_10923", "label_10924", "label_10925", "label_10926", "label_10927", "label_10928", "label_10929", "label_10930", "label_10931", "label_10932", "label_10933", "label_10934", "label_10935", "label_10936", "label_10937", "label_10938", "label_10939", "label_10940", "label_10941", "label_10942", "label_10943", "label_10944", "label_10945", "label_10946", "label_10947", "label_10948", "label_10949", "label_10950", "label_10951", "label_10952", "label_10953", "label_10954", "label_10955", "label_10956", "label_10957", "label_10958", "label_10959", "label_10960", "label_10961", "label_10962", "label_10963", "label_10964", "label_10965", "label_10966", "label_10967", "label_10968", "label_10969", "label_10970", "label_10971", "label_10972", "label_10973", "label_10974", "label_10975", "label_10976", "label_10977", "label_10978", "label_10979", "label_10980", "label_10981", "label_10982", "label_10983", "label_10984", "label_10985", "label_10986", "label_10987", "label_10988", "label_10989", "label_10990", "label_10991", "label_10992", "label_10993", "label_10994", "label_10995", "label_10996", "label_10997", "label_10998", "label_10999", "label_11000", "label_11001", "label_11002", "label_11003", "label_11004", "label_11005", "label_11006", "label_11007", "label_11008", "label_11009", "label_11010", "label_11011", "label_11012", "label_11013", "label_11014", "label_11015", "label_11016", "label_11017", "label_11018", "label_11019", "label_11020", "label_11021", "label_11022", "label_11023", "label_11024", "label_11025", "label_11026", "label_11027", "label_11028", "label_11029", "label_11030", "label_11031", "label_11032", "label_11033", "label_11034", "label_11035", "label_11036", "label_11037", "label_11038", "label_11039", "label_11040", "label_11041", "label_11042", "label_11043", "label_11044", "label_11045", "label_11046", "label_11047", "label_11048", "label_11049", "label_11050", "label_11051", "label_11052", "label_11053", "label_11054", "label_11055", "label_11056", "label_11057", "label_11058", "label_11059", "label_11060", "label_11061", "label_11062", "label_11063", "label_11064", "label_11065", "label_11066", "label_11067", "label_11068", "label_11069", "label_11070", "label_11071", "label_11072", "label_11073", "label_11074", "label_11075", "label_11076", "label_11077", "label_11078", "label_11079", "label_11080", "label_11081", "label_11082", "label_11083", "label_11084", "label_11085", "label_11086", "label_11087", "label_11088", "label_11089", "label_11090", "label_11091", "label_11092", "label_11093", "label_11094", "label_11095", "label_11096", "label_11097", "label_11098", "label_11099", "label_11100", "label_11101", "label_11102", "label_11103", "label_11104", "label_11105", "label_11106", "label_11107", "label_11108", "label_11109", "label_11110", "label_11111", "label_11112", "label_11113", "label_11114", "label_11115", "label_11116", "label_11117", "label_11118", "label_11119", "label_11120", "label_11121", "label_11122", "label_11123", "label_11124", "label_11125", "label_11126", "label_11127", "label_11128", "label_11129", "label_11130", "label_11131", "label_11132", "label_11133", "label_11134", "label_11135", "label_11136", "label_11137", "label_11138", "label_11139", "label_11140", "label_11141", "label_11142", "label_11143", "label_11144", "label_11145", "label_11146", "label_11147", "label_11148", "label_11149", "label_11150", "label_11151", "label_11152", "label_11153", "label_11154", "label_11155", "label_11156", "label_11157", "label_11158", "label_11159", "label_11160", "label_11161", "label_11162", "label_11163", "label_11164", "label_11165", "label_11166", "label_11167", "label_11168", "label_11169", "label_11170", "label_11171", "label_11172", "label_11173", "label_11174", "label_11175", "label_11176", "label_11177", "label_11178", "label_11179", "label_11180", "label_11181", "label_11182", "label_11183", "label_11184", "label_11185", "label_11186", "label_11187", "label_11188", "label_11189", "label_11190", "label_11191", "label_11192", "label_11193", "label_11194", "label_11195", "label_11196", "label_11197", "label_11198", "label_11199", "label_11200", "label_11201", "label_11202", "label_11203", "label_11204", "label_11205", "label_11206", "label_11207", "label_11208", "label_11209", "label_11210", "label_11211", "label_11212", "label_11213", "label_11214", "label_11215", "label_11216", "label_11217", "label_11218", "label_11219", "label_11220", "label_11221", "label_11222", "label_11223", "label_11224", "label_11225", "label_11226", "label_11227", "label_11228", "label_11229", "label_11230", "label_11231", "label_11232", "label_11233", "label_11234", "label_11235", "label_11236", "label_11237", "label_11238", "label_11239", "label_11240", "label_11241", "label_11242", "label_11243", "label_11244", "label_11245", "label_11246", "label_11247", "label_11248", "label_11249", "label_11250", "label_11251", "label_11252", "label_11253", "label_11254", "label_11255", "label_11256", "label_11257", "label_11258", "label_11259", "label_11260", "label_11261", "label_11262", "label_11263", "label_11264", "label_11265", "label_11266", "label_11267", "label_11268", "label_11269", "label_11270", "label_11271", "label_11272", "label_11273", "label_11274", "label_11275", "label_11276", "label_11277", "label_11278", "label_11279", "label_11280", "label_11281", "label_11282", "label_11283", "label_11284", "label_11285", "label_11286", "label_11287", "label_11288", "label_11289", "label_11290", "label_11291", "label_11292", "label_11293", "label_11294", "label_11295", "label_11296", "label_11297", "label_11298", "label_11299", "label_11300", "label_11301", "label_11302", "label_11303", "label_11304", "label_11305", "label_11306", "label_11307", "label_11308", "label_11309", "label_11310", "label_11311", "label_11312", "label_11313", "label_11314", "label_11315", "label_11316", "label_11317", "label_11318", "label_11319", "label_11320", "label_11321", "label_11322", "label_11323", "label_11324", "label_11325", "label_11326", "label_11327", "label_11328", "label_11329", "label_11330", "label_11331", "label_11332", "label_11333", "label_11334", "label_11335", "label_11336", "label_11337", "label_11338", "label_11339", "label_11340", "label_11341", "label_11342", "label_11343", "label_11344", "label_11345", "label_11346", "label_11347", "label_11348", "label_11349", "label_11350", "label_11351", "label_11352", "label_11353", "label_11354", "label_11355", "label_11356", "label_11357", "label_11358", "label_11359", "label_11360", "label_11361", "label_11362", "label_11363", "label_11364", "label_11365", "label_11366", "label_11367", "label_11368", "label_11369", "label_11370", "label_11371", "label_11372", "label_11373", "label_11374", "label_11375", "label_11376", "label_11377", "label_11378", "label_11379", "label_11380", "label_11381", "label_11382", "label_11383", "label_11384", "label_11385", "label_11386", "label_11387", "label_11388", "label_11389", "label_11390", "label_11391", "label_11392", "label_11393", "label_11394", "label_11395", "label_11396", "label_11397", "label_11398", "label_11399", "label_11400", "label_11401", "label_11402", "label_11403", "label_11404", "label_11405", "label_11406", "label_11407", "label_11408", "label_11409", "label_11410", "label_11411", "label_11412", "label_11413", "label_11414", "label_11415", "label_11416", "label_11417", "label_11418", "label_11419", "label_11420", "label_11421", "label_11422", "label_11423", "label_11424", "label_11425", "label_11426", "label_11427", "label_11428", "label_11429", "label_11430", "label_11431", "label_11432", "label_11433", "label_11434", "label_11435", "label_11436", "label_11437", "label_11438", "label_11439", "label_11440", "label_11441", "label_11442", "label_11443", "label_11444", "label_11445", "label_11446", "label_11447", "label_11448", "label_11449", "label_11450", "label_11451", "label_11452", "label_11453", "label_11454", "label_11455", "label_11456", "label_11457", "label_11458", "label_11459", "label_11460", "label_11461", "label_11462", "label_11463", "label_11464", "label_11465", "label_11466", "label_11467", "label_11468", "label_11469", "label_11470", "label_11471", "label_11472", "label_11473", "label_11474", "label_11475", "label_11476", "label_11477", "label_11478", "label_11479", "label_11480", "label_11481", "label_11482", "label_11483", "label_11484", "label_11485", "label_11486", "label_11487", "label_11488", "label_11489", "label_11490", "label_11491", "label_11492", "label_11493", "label_11494", "label_11495", "label_11496", "label_11497", "label_11498", "label_11499", "label_11500", "label_11501", "label_11502", "label_11503", "label_11504", "label_11505", "label_11506", "label_11507", "label_11508", "label_11509", "label_11510", "label_11511", "label_11512", "label_11513", "label_11514", "label_11515", "label_11516", "label_11517", "label_11518", "label_11519", "label_11520", "label_11521", "label_11522", "label_11523", "label_11524", "label_11525", "label_11526", "label_11527", "label_11528", "label_11529", "label_11530", "label_11531", "label_11532", "label_11533", "label_11534", "label_11535", "label_11536", "label_11537", "label_11538", "label_11539", "label_11540", "label_11541", "label_11542", "label_11543", "label_11544", "label_11545", "label_11546", "label_11547", "label_11548", "label_11549", "label_11550", "label_11551", "label_11552", "label_11553", "label_11554", "label_11555", "label_11556", "label_11557", "label_11558", "label_11559", "label_11560", "label_11561", "label_11562", "label_11563", "label_11564", "label_11565", "label_11566", "label_11567", "label_11568", "label_11569", "label_11570", "label_11571", "label_11572", "label_11573", "label_11574", "label_11575", "label_11576", "label_11577", "label_11578", "label_11579", "label_11580", "label_11581", "label_11582", "label_11583", "label_11584", "label_11585", "label_11586", "label_11587", "label_11588", "label_11589", "label_11590", "label_11591", "label_11592", "label_11593", "label_11594", "label_11595", "label_11596", "label_11597", "label_11598", "label_11599", "label_11600", "label_11601", "label_11602", "label_11603", "label_11604", "label_11605", "label_11606", "label_11607", "label_11608", "label_11609", "label_11610", "label_11611", "label_11612", "label_11613", "label_11614", "label_11615", "label_11616", "label_11617", "label_11618", "label_11619", "label_11620", "label_11621", "label_11622", "label_11623", "label_11624", "label_11625", "label_11626", "label_11627", "label_11628", "label_11629", "label_11630", "label_11631", "label_11632", "label_11633", "label_11634", "label_11635", "label_11636", "label_11637", "label_11638", "label_11639", "label_11640", "label_11641", "label_11642", "label_11643", "label_11644", "label_11645", "label_11646", "label_11647", "label_11648", "label_11649", "label_11650", "label_11651", "label_11652", "label_11653", "label_11654", "label_11655", "label_11656", "label_11657", "label_11658", "label_11659", "label_11660", "label_11661", "label_11662", "label_11663", "label_11664", "label_11665", "label_11666", "label_11667", "label_11668", "label_11669", "label_11670", "label_11671", "label_11672", "label_11673", "label_11674", "label_11675", "label_11676", "label_11677", "label_11678", "label_11679", "label_11680", "label_11681", "label_11682", "label_11683", "label_11684", "label_11685", "label_11686", "label_11687", "label_11688", "label_11689", "label_11690", "label_11691", "label_11692", "label_11693", "label_11694", "label_11695", "label_11696", "label_11697", "label_11698", "label_11699", "label_11700", "label_11701", "label_11702", "label_11703", "label_11704", "label_11705", "label_11706", "label_11707", "label_11708", "label_11709", "label_11710", "label_11711", "label_11712", "label_11713", "label_11714", "label_11715", "label_11716", "label_11717", "label_11718", "label_11719", "label_11720", "label_11721", "label_11722", "label_11723", "label_11724", "label_11725", "label_11726", "label_11727", "label_11728", "label_11729", "label_11730", "label_11731", "label_11732", "label_11733", "label_11734", "label_11735", "label_11736", "label_11737", "label_11738", "label_11739", "label_11740", "label_11741", "label_11742", "label_11743", "label_11744", "label_11745", "label_11746", "label_11747", "label_11748", "label_11749", "label_11750", "label_11751", "label_11752", "label_11753", "label_11754", "label_11755", "label_11756", "label_11757", "label_11758", "label_11759", "label_11760", "label_11761", "label_11762", "label_11763", "label_11764", "label_11765", "label_11766", "label_11767", "label_11768", "label_11769", "label_11770", "label_11771", "label_11772", "label_11773", "label_11774", "label_11775", "label_11776", "label_11777", "label_11778", "label_11779", "label_11780", "label_11781", "label_11782", "label_11783", "label_11784", "label_11785", "label_11786", "label_11787", "label_11788", "label_11789", "label_11790", "label_11791", "label_11792", "label_11793", "label_11794", "label_11795", "label_11796", "label_11797", "label_11798", "label_11799", "label_11800", "label_11801", "label_11802", "label_11803", "label_11804", "label_11805", "label_11806", "label_11807", "label_11808", "label_11809", "label_11810", "label_11811", "label_11812", "label_11813", "label_11814", "label_11815", "label_11816", "label_11817", "label_11818", "label_11819", "label_11820", "label_11821", "label_11822", "label_11823", "label_11824", "label_11825", "label_11826", "label_11827", "label_11828", "label_11829", "label_11830", "label_11831", "label_11832", "label_11833", "label_11834", "label_11835", "label_11836", "label_11837", "label_11838", "label_11839", "label_11840", "label_11841", "label_11842", "label_11843", "label_11844", "label_11845", "label_11846", "label_11847", "label_11848", "label_11849", "label_11850", "label_11851", "label_11852", "label_11853", "label_11854", "label_11855", "label_11856", "label_11857", "label_11858", "label_11859", "label_11860", "label_11861", "label_11862", "label_11863", "label_11864", "label_11865", "label_11866", "label_11867", "label_11868", "label_11869", "label_11870", "label_11871", "label_11872", "label_11873", "label_11874", "label_11875", "label_11876", "label_11877", "label_11878", "label_11879", "label_11880", "label_11881", "label_11882", "label_11883", "label_11884", "label_11885", "label_11886", "label_11887", "label_11888", "label_11889", "label_11890", "label_11891", "label_11892", "label_11893", "label_11894", "label_11895", "label_11896", "label_11897", "label_11898", "label_11899", "label_11900", "label_11901", "label_11902", "label_11903", "label_11904", "label_11905", "label_11906", "label_11907", "label_11908", "label_11909", "label_11910", "label_11911", "label_11912", "label_11913", "label_11914", "label_11915", "label_11916", "label_11917", "label_11918", "label_11919", "label_11920", "label_11921", "label_11922", "label_11923", "label_11924", "label_11925", "label_11926", "label_11927", "label_11928", "label_11929", "label_11930", "label_11931", "label_11932", "label_11933", "label_11934", "label_11935", "label_11936", "label_11937", "label_11938", "label_11939", "label_11940", "label_11941", "label_11942", "label_11943", "label_11944", "label_11945", "label_11946", "label_11947", "label_11948", "label_11949", "label_11950", "label_11951", "label_11952", "label_11953", "label_11954", "label_11955", "label_11956", "label_11957", "label_11958", "label_11959", "label_11960", "label_11961", "label_11962", "label_11963", "label_11964", "label_11965", "label_11966", "label_11967", "label_11968", "label_11969", "label_11970", "label_11971", "label_11972", "label_11973", "label_11974", "label_11975", "label_11976", "label_11977", "label_11978", "label_11979", "label_11980", "label_11981", "label_11982", "label_11983", "label_11984", "label_11985", "label_11986", "label_11987", "label_11988", "label_11989", "label_11990", "label_11991", "label_11992", "label_11993", "label_11994", "label_11995", "label_11996", "label_11997", "label_11998", "label_11999", "label_12000", "label_12001", "label_12002", "label_12003", "label_12004", "label_12005", "label_12006", "label_12007", "label_12008", "label_12009", "label_12010", "label_12011", "label_12012", "label_12013", "label_12014", "label_12015", "label_12016", "label_12017", "label_12018", "label_12019", "label_12020", "label_12021", "label_12022", "label_12023", "label_12024", "label_12025", "label_12026", "label_12027", "label_12028", "label_12029", "label_12030", "label_12031", "label_12032", "label_12033", "label_12034", "label_12035", "label_12036", "label_12037", "label_12038", "label_12039", "label_12040", "label_12041", "label_12042", "label_12043", "label_12044", "label_12045", "label_12046", "label_12047", "label_12048", "label_12049", "label_12050", "label_12051", "label_12052", "label_12053", "label_12054", "label_12055", "label_12056", "label_12057", "label_12058", "label_12059", "label_12060", "label_12061", "label_12062", "label_12063", "label_12064", "label_12065", "label_12066", "label_12067", "label_12068", "label_12069", "label_12070", "label_12071", "label_12072", "label_12073", "label_12074", "label_12075", "label_12076", "label_12077", "label_12078", "label_12079", "label_12080", "label_12081", "label_12082", "label_12083", "label_12084", "label_12085", "label_12086", "label_12087", "label_12088", "label_12089", "label_12090", "label_12091", "label_12092", "label_12093", "label_12094", "label_12095", "label_12096", "label_12097", "label_12098", "label_12099", "label_12100", "label_12101", "label_12102", "label_12103", "label_12104", "label_12105", "label_12106", "label_12107", "label_12108", "label_12109", "label_12110", "label_12111", "label_12112", "label_12113", "label_12114", "label_12115", "label_12116", "label_12117", "label_12118", "label_12119", "label_12120", "label_12121", "label_12122", "label_12123", "label_12124", "label_12125", "label_12126", "label_12127", "label_12128", "label_12129", "label_12130", "label_12131", "label_12132", "label_12133", "label_12134", "label_12135", "label_12136", "label_12137", "label_12138", "label_12139", "label_12140", "label_12141", "label_12142", "label_12143", "label_12144", "label_12145", "label_12146", "label_12147", "label_12148", "label_12149", "label_12150", "label_12151", "label_12152", "label_12153", "label_12154", "label_12155", "label_12156", "label_12157", "label_12158", "label_12159", "label_12160", "label_12161", "label_12162", "label_12163", "label_12164", "label_12165", "label_12166", "label_12167", "label_12168", "label_12169", "label_12170", "label_12171", "label_12172", "label_12173", "label_12174", "label_12175", "label_12176", "label_12177", "label_12178", "label_12179", "label_12180", "label_12181", "label_12182", "label_12183", "label_12184", "label_12185", "label_12186", "label_12187", "label_12188", "label_12189", "label_12190", "label_12191", "label_12192", "label_12193", "label_12194", "label_12195", "label_12196", "label_12197", "label_12198", "label_12199", "label_12200", "label_12201", "label_12202", "label_12203", "label_12204", "label_12205", "label_12206", "label_12207", "label_12208", "label_12209", "label_12210", "label_12211", "label_12212", "label_12213", "label_12214", "label_12215", "label_12216", "label_12217", "label_12218", "label_12219", "label_12220", "label_12221", "label_12222", "label_12223", "label_12224", "label_12225", "label_12226", "label_12227", "label_12228", "label_12229", "label_12230", "label_12231", "label_12232", "label_12233", "label_12234", "label_12235", "label_12236", "label_12237", "label_12238", "label_12239", "label_12240", "label_12241", "label_12242", "label_12243", "label_12244", "label_12245", "label_12246", "label_12247", "label_12248", "label_12249", "label_12250", "label_12251", "label_12252", "label_12253", "label_12254", "label_12255", "label_12256", "label_12257", "label_12258", "label_12259", "label_12260", "label_12261", "label_12262", "label_12263", "label_12264", "label_12265", "label_12266", "label_12267", "label_12268", "label_12269", "label_12270", "label_12271", "label_12272", "label_12273", "label_12274", "label_12275", "label_12276", "label_12277", "label_12278", "label_12279", "label_12280", "label_12281", "label_12282", "label_12283", "label_12284", "label_12285", "label_12286", "label_12287", "label_12288", "label_12289", "label_12290", "label_12291", "label_12292", "label_12293", "label_12294", "label_12295", "label_12296", "label_12297", "label_12298", "label_12299", "label_12300", "label_12301", "label_12302", "label_12303", "label_12304", "label_12305", "label_12306", "label_12307", "label_12308", "label_12309", "label_12310", "label_12311", "label_12312", "label_12313", "label_12314", "label_12315", "label_12316", "label_12317", "label_12318", "label_12319", "label_12320", "label_12321", "label_12322", "label_12323", "label_12324", "label_12325", "label_12326", "label_12327", "label_12328", "label_12329", "label_12330", "label_12331", "label_12332", "label_12333", "label_12334", "label_12335", "label_12336", "label_12337", "label_12338", "label_12339", "label_12340", "label_12341", "label_12342", "label_12343", "label_12344", "label_12345", "label_12346", "label_12347", "label_12348", "label_12349", "label_12350", "label_12351", "label_12352", "label_12353", "label_12354", "label_12355", "label_12356", "label_12357", "label_12358", "label_12359", "label_12360", "label_12361", "label_12362", "label_12363", "label_12364", "label_12365", "label_12366", "label_12367", "label_12368", "label_12369", "label_12370", "label_12371", "label_12372", "label_12373", "label_12374", "label_12375", "label_12376", "label_12377", "label_12378", "label_12379", "label_12380", "label_12381", "label_12382", "label_12383", "label_12384", "label_12385", "label_12386", "label_12387", "label_12388", "label_12389", "label_12390", "label_12391", "label_12392", "label_12393", "label_12394", "label_12395", "label_12396", "label_12397", "label_12398", "label_12399", "label_12400", "label_12401", "label_12402", "label_12403", "label_12404", "label_12405", "label_12406", "label_12407", "label_12408", "label_12409", "label_12410", "label_12411", "label_12412", "label_12413", "label_12414", "label_12415", "label_12416", "label_12417", "label_12418", "label_12419", "label_12420", "label_12421", "label_12422", "label_12423", "label_12424", "label_12425", "label_12426", "label_12427", "label_12428", "label_12429", "label_12430", "label_12431", "label_12432", "label_12433", "label_12434", "label_12435", "label_12436", "label_12437", "label_12438", "label_12439", "label_12440", "label_12441", "label_12442", "label_12443", "label_12444", "label_12445", "label_12446", "label_12447", "label_12448", "label_12449", "label_12450", "label_12451", "label_12452", "label_12453", "label_12454", "label_12455", "label_12456", "label_12457", "label_12458", "label_12459", "label_12460", "label_12461", "label_12462", "label_12463", "label_12464", "label_12465", "label_12466", "label_12467", "label_12468", "label_12469", "label_12470", "label_12471", "label_12472", "label_12473", "label_12474", "label_12475", "label_12476", "label_12477", "label_12478", "label_12479", "label_12480", "label_12481", "label_12482", "label_12483", "label_12484", "label_12485", "label_12486", "label_12487", "label_12488", "label_12489", "label_12490", "label_12491", "label_12492", "label_12493", "label_12494", "label_12495", "label_12496", "label_12497", "label_12498", "label_12499", "label_12500", "label_12501", "label_12502", "label_12503", "label_12504", "label_12505", "label_12506", "label_12507", "label_12508", "label_12509", "label_12510", "label_12511", "label_12512", "label_12513", "label_12514", "label_12515", "label_12516", "label_12517", "label_12518", "label_12519", "label_12520", "label_12521", "label_12522", "label_12523", "label_12524", "label_12525", "label_12526", "label_12527", "label_12528", "label_12529", "label_12530", "label_12531", "label_12532", "label_12533", "label_12534", "label_12535", "label_12536", "label_12537", "label_12538", "label_12539", "label_12540", "label_12541", "label_12542", "label_12543", "label_12544", "label_12545", "label_12546", "label_12547", "label_12548", "label_12549", "label_12550", "label_12551", "label_12552", "label_12553", "label_12554", "label_12555", "label_12556", "label_12557", "label_12558", "label_12559", "label_12560", "label_12561", "label_12562", "label_12563", "label_12564", "label_12565", "label_12566", "label_12567", "label_12568", "label_12569", "label_12570", "label_12571", "label_12572", "label_12573", "label_12574", "label_12575", "label_12576", "label_12577", "label_12578", "label_12579", "label_12580", "label_12581", "label_12582", "label_12583", "label_12584", "label_12585", "label_12586", "label_12587", "label_12588", "label_12589", "label_12590", "label_12591", "label_12592", "label_12593", "label_12594", "label_12595", "label_12596", "label_12597", "label_12598", "label_12599", "label_12600", "label_12601", "label_12602", "label_12603", "label_12604", "label_12605", "label_12606", "label_12607", "label_12608", "label_12609", "label_12610", "label_12611", "label_12612", "label_12613", "label_12614", "label_12615", "label_12616", "label_12617", "label_12618", "label_12619", "label_12620", "label_12621", "label_12622", "label_12623", "label_12624", "label_12625", "label_12626", "label_12627", "label_12628", "label_12629", "label_12630", "label_12631", "label_12632", "label_12633", "label_12634", "label_12635", "label_12636", "label_12637", "label_12638", "label_12639", "label_12640", "label_12641", "label_12642", "label_12643", "label_12644", "label_12645", "label_12646", "label_12647", "label_12648", "label_12649", "label_12650", "label_12651", "label_12652", "label_12653", "label_12654", "label_12655", "label_12656", "label_12657", "label_12658", "label_12659", "label_12660", "label_12661", "label_12662", "label_12663", "label_12664", "label_12665", "label_12666", "label_12667", "label_12668", "label_12669", "label_12670", "label_12671", "label_12672", "label_12673", "label_12674", "label_12675", "label_12676", "label_12677", "label_12678", "label_12679", "label_12680", "label_12681", "label_12682", "label_12683", "label_12684", "label_12685", "label_12686", "label_12687", "label_12688", "label_12689", "label_12690", "label_12691", "label_12692", "label_12693", "label_12694", "label_12695", "label_12696", "label_12697", "label_12698", "label_12699", "label_12700", "label_12701", "label_12702", "label_12703", "label_12704", "label_12705", "label_12706", "label_12707", "label_12708", "label_12709", "label_12710", "label_12711", "label_12712", "label_12713", "label_12714", "label_12715", "label_12716", "label_12717", "label_12718", "label_12719", "label_12720", "label_12721", "label_12722", "label_12723", "label_12724", "label_12725", "label_12726", "label_12727", "label_12728", "label_12729", "label_12730", "label_12731", "label_12732", "label_12733", "label_12734", "label_12735", "label_12736", "label_12737", "label_12738", "label_12739", "label_12740", "label_12741", "label_12742", "label_12743", "label_12744", "label_12745", "label_12746", "label_12747", "label_12748", "label_12749", "label_12750", "label_12751", "label_12752", "label_12753", "label_12754", "label_12755", "label_12756", "label_12757", "label_12758", "label_12759", "label_12760", "label_12761", "label_12762", "label_12763", "label_12764", "label_12765", "label_12766", "label_12767", "label_12768", "label_12769", "label_12770", "label_12771", "label_12772", "label_12773", "label_12774", "label_12775", "label_12776", "label_12777", "label_12778", "label_12779", "label_12780", "label_12781", "label_12782", "label_12783", "label_12784", "label_12785", "label_12786", "label_12787", "label_12788", "label_12789", "label_12790", "label_12791", "label_12792", "label_12793", "label_12794", "label_12795", "label_12796", "label_12797", "label_12798", "label_12799", "label_12800", "label_12801", "label_12802", "label_12803", "label_12804", "label_12805", "label_12806", "label_12807", "label_12808", "label_12809", "label_12810", "label_12811", "label_12812", "label_12813", "label_12814", "label_12815", "label_12816", "label_12817", "label_12818", "label_12819", "label_12820", "label_12821", "label_12822", "label_12823", "label_12824", "label_12825", "label_12826", "label_12827", "label_12828", "label_12829", "label_12830", "label_12831", "label_12832", "label_12833", "label_12834", "label_12835", "label_12836", "label_12837", "label_12838", "label_12839", "label_12840", "label_12841", "label_12842", "label_12843", "label_12844", "label_12845", "label_12846", "label_12847", "label_12848", "label_12849", "label_12850", "label_12851", "label_12852", "label_12853", "label_12854", "label_12855", "label_12856", "label_12857", "label_12858", "label_12859", "label_12860", "label_12861", "label_12862", "label_12863", "label_12864", "label_12865", "label_12866", "label_12867", "label_12868", "label_12869", "label_12870", "label_12871", "label_12872", "label_12873", "label_12874", "label_12875", "label_12876", "label_12877", "label_12878", "label_12879", "label_12880", "label_12881", "label_12882", "label_12883", "label_12884", "label_12885", "label_12886", "label_12887", "label_12888", "label_12889", "label_12890", "label_12891", "label_12892", "label_12893", "label_12894", "label_12895", "label_12896", "label_12897", "label_12898", "label_12899", "label_12900", "label_12901", "label_12902", "label_12903", "label_12904", "label_12905", "label_12906", "label_12907", "label_12908", "label_12909", "label_12910", "label_12911", "label_12912", "label_12913", "label_12914", "label_12915", "label_12916", "label_12917", "label_12918", "label_12919", "label_12920", "label_12921", "label_12922", "label_12923", "label_12924", "label_12925", "label_12926", "label_12927", "label_12928", "label_12929", "label_12930", "label_12931", "label_12932", "label_12933", "label_12934", "label_12935", "label_12936", "label_12937", "label_12938", "label_12939", "label_12940", "label_12941", "label_12942", "label_12943", "label_12944", "label_12945", "label_12946", "label_12947", "label_12948", "label_12949", "label_12950", "label_12951", "label_12952", "label_12953", "label_12954", "label_12955", "label_12956", "label_12957", "label_12958", "label_12959", "label_12960", "label_12961", "label_12962", "label_12963", "label_12964", "label_12965", "label_12966", "label_12967", "label_12968", "label_12969", "label_12970", "label_12971", "label_12972", "label_12973", "label_12974", "label_12975", "label_12976", "label_12977", "label_12978", "label_12979", "label_12980", "label_12981", "label_12982", "label_12983", "label_12984", "label_12985", "label_12986", "label_12987", "label_12988", "label_12989", "label_12990", "label_12991", "label_12992", "label_12993", "label_12994", "label_12995", "label_12996", "label_12997", "label_12998", "label_12999", "label_13000", "label_13001", "label_13002", "label_13003", "label_13004", "label_13005", "label_13006", "label_13007", "label_13008", "label_13009", "label_13010", "label_13011", "label_13012", "label_13013", "label_13014", "label_13015", "label_13016", "label_13017", "label_13018", "label_13019", "label_13020", "label_13021", "label_13022", "label_13023", "label_13024", "label_13025", "label_13026", "label_13027", "label_13028", "label_13029", "label_13030", "label_13031", "label_13032", "label_13033", "label_13034", "label_13035", "label_13036", "label_13037", "label_13038", "label_13039", "label_13040", "label_13041", "label_13042", "label_13043", "label_13044", "label_13045", "label_13046", "label_13047", "label_13048", "label_13049", "label_13050", "label_13051", "label_13052", "label_13053", "label_13054", "label_13055", "label_13056", "label_13057", "label_13058", "label_13059", "label_13060", "label_13061", "label_13062", "label_13063", "label_13064", "label_13065", "label_13066", "label_13067", "label_13068", "label_13069", "label_13070", "label_13071", "label_13072", "label_13073", "label_13074", "label_13075", "label_13076", "label_13077", "label_13078", "label_13079", "label_13080", "label_13081", "label_13082", "label_13083", "label_13084", "label_13085", "label_13086", "label_13087", "label_13088", "label_13089", "label_13090", "label_13091", "label_13092", "label_13093", "label_13094", "label_13095", "label_13096", "label_13097", "label_13098", "label_13099", "label_13100", "label_13101", "label_13102", "label_13103", "label_13104", "label_13105", "label_13106", "label_13107", "label_13108", "label_13109", "label_13110", "label_13111", "label_13112", "label_13113", "label_13114", "label_13115", "label_13116", "label_13117", "label_13118", "label_13119", "label_13120", "label_13121", "label_13122", "label_13123", "label_13124", "label_13125", "label_13126", "label_13127", "label_13128", "label_13129", "label_13130", "label_13131", "label_13132", "label_13133", "label_13134", "label_13135", "label_13136", "label_13137", "label_13138", "label_13139", "label_13140", "label_13141", "label_13142", "label_13143", "label_13144", "label_13145", "label_13146", "label_13147", "label_13148", "label_13149", "label_13150", "label_13151", "label_13152", "label_13153", "label_13154", "label_13155", "label_13156", "label_13157", "label_13158", "label_13159", "label_13160", "label_13161", "label_13162", "label_13163", "label_13164", "label_13165", "label_13166", "label_13167", "label_13168", "label_13169", "label_13170", "label_13171", "label_13172", "label_13173", "label_13174", "label_13175", "label_13176", "label_13177", "label_13178", "label_13179", "label_13180", "label_13181", "label_13182", "label_13183", "label_13184", "label_13185", "label_13186", "label_13187", "label_13188", "label_13189", "label_13190", "label_13191", "label_13192", "label_13193", "label_13194", "label_13195", "label_13196", "label_13197", "label_13198", "label_13199", "label_13200", "label_13201", "label_13202", "label_13203", "label_13204", "label_13205", "label_13206", "label_13207", "label_13208", "label_13209", "label_13210", "label_13211", "label_13212", "label_13213", "label_13214", "label_13215", "label_13216", "label_13217", "label_13218", "label_13219", "label_13220", "label_13221", "label_13222", "label_13223", "label_13224", "label_13225", "label_13226", "label_13227", "label_13228", "label_13229", "label_13230", "label_13231", "label_13232", "label_13233", "label_13234", "label_13235", "label_13236", "label_13237", "label_13238", "label_13239", "label_13240", "label_13241", "label_13242", "label_13243", "label_13244", "label_13245", "label_13246", "label_13247", "label_13248", "label_13249", "label_13250", "label_13251", "label_13252", "label_13253", "label_13254", "label_13255", "label_13256", "label_13257", "label_13258", "label_13259", "label_13260", "label_13261", "label_13262", "label_13263", "label_13264", "label_13265", "label_13266", "label_13267", "label_13268", "label_13269", "label_13270", "label_13271", "label_13272", "label_13273", "label_13274", "label_13275", "label_13276", "label_13277", "label_13278", "label_13279", "label_13280", "label_13281", "label_13282", "label_13283", "label_13284", "label_13285", "label_13286", "label_13287", "label_13288", "label_13289", "label_13290", "label_13291", "label_13292", "label_13293", "label_13294", "label_13295", "label_13296", "label_13297", "label_13298", "label_13299", "label_13300", "label_13301", "label_13302", "label_13303", "label_13304", "label_13305", "label_13306", "label_13307", "label_13308", "label_13309", "label_13310", "label_13311", "label_13312", "label_13313", "label_13314", "label_13315", "label_13316", "label_13317", "label_13318", "label_13319", "label_13320", "label_13321", "label_13322", "label_13323", "label_13324", "label_13325", "label_13326", "label_13327", "label_13328", "label_13329", "label_13330", "label_13331", "label_13332", "label_13333", "label_13334", "label_13335", "label_13336", "label_13337", "label_13338", "label_13339", "label_13340", "label_13341", "label_13342", "label_13343", "label_13344", "label_13345", "label_13346", "label_13347", "label_13348", "label_13349", "label_13350", "label_13351", "label_13352", "label_13353", "label_13354", "label_13355", "label_13356", "label_13357", "label_13358", "label_13359", "label_13360", "label_13361", "label_13362", "label_13363", "label_13364", "label_13365", "label_13366", "label_13367", "label_13368", "label_13369", "label_13370", "label_13371", "label_13372", "label_13373", "label_13374", "label_13375", "label_13376", "label_13377", "label_13378", "label_13379", "label_13380", "label_13381", "label_13382", "label_13383", "label_13384", "label_13385", "label_13386", "label_13387", "label_13388", "label_13389", "label_13390", "label_13391", "label_13392", "label_13393", "label_13394", "label_13395", "label_13396", "label_13397", "label_13398", "label_13399", "label_13400", "label_13401", "label_13402", "label_13403", "label_13404", "label_13405", "label_13406", "label_13407", "label_13408", "label_13409", "label_13410", "label_13411", "label_13412", "label_13413", "label_13414", "label_13415", "label_13416", "label_13417", "label_13418", "label_13419", "label_13420", "label_13421", "label_13422", "label_13423", "label_13424", "label_13425", "label_13426", "label_13427", "label_13428", "label_13429", "label_13430", "label_13431", "label_13432", "label_13433", "label_13434", "label_13435", "label_13436", "label_13437", "label_13438", "label_13439", "label_13440", "label_13441", "label_13442", "label_13443", "label_13444", "label_13445", "label_13446", "label_13447", "label_13448", "label_13449", "label_13450", "label_13451", "label_13452", "label_13453", "label_13454", "label_13455", "label_13456", "label_13457", "label_13458", "label_13459", "label_13460", "label_13461", "label_13462", "label_13463", "label_13464", "label_13465", "label_13466", "label_13467", "label_13468", "label_13469", "label_13470", "label_13471", "label_13472", "label_13473", "label_13474", "label_13475", "label_13476", "label_13477", "label_13478", "label_13479", "label_13480", "label_13481", "label_13482", "label_13483", "label_13484", "label_13485", "label_13486", "label_13487", "label_13488", "label_13489", "label_13490", "label_13491", "label_13492", "label_13493", "label_13494", "label_13495", "label_13496", "label_13497", "label_13498", "label_13499", "label_13500", "label_13501", "label_13502", "label_13503", "label_13504", "label_13505", "label_13506", "label_13507", "label_13508", "label_13509", "label_13510", "label_13511", "label_13512", "label_13513", "label_13514", "label_13515", "label_13516", "label_13517", "label_13518", "label_13519", "label_13520", "label_13521", "label_13522", "label_13523", "label_13524", "label_13525", "label_13526", "label_13527", "label_13528", "label_13529", "label_13530", "label_13531", "label_13532", "label_13533", "label_13534", "label_13535", "label_13536", "label_13537", "label_13538", "label_13539", "label_13540", "label_13541", "label_13542", "label_13543", "label_13544", "label_13545", "label_13546", "label_13547", "label_13548", "label_13549", "label_13550", "label_13551", "label_13552", "label_13553", "label_13554", "label_13555", "label_13556", "label_13557", "label_13558", "label_13559", "label_13560", "label_13561", "label_13562", "label_13563", "label_13564", "label_13565", "label_13566", "label_13567", "label_13568", "label_13569", "label_13570", "label_13571", "label_13572", "label_13573", "label_13574", "label_13575", "label_13576", "label_13577", "label_13578", "label_13579", "label_13580", "label_13581", "label_13582", "label_13583", "label_13584", "label_13585", "label_13586", "label_13587", "label_13588", "label_13589", "label_13590", "label_13591", "label_13592", "label_13593", "label_13594", "label_13595", "label_13596", "label_13597", "label_13598", "label_13599", "label_13600", "label_13601", "label_13602", "label_13603", "label_13604", "label_13605", "label_13606", "label_13607", "label_13608", "label_13609", "label_13610", "label_13611", "label_13612", "label_13613", "label_13614", "label_13615", "label_13616", "label_13617", "label_13618", "label_13619", "label_13620", "label_13621", "label_13622", "label_13623", "label_13624", "label_13625", "label_13626", "label_13627", "label_13628", "label_13629", "label_13630", "label_13631", "label_13632", "label_13633", "label_13634", "label_13635", "label_13636", "label_13637", "label_13638", "label_13639", "label_13640", "label_13641", "label_13642", "label_13643", "label_13644", "label_13645", "label_13646", "label_13647", "label_13648", "label_13649", "label_13650", "label_13651", "label_13652", "label_13653", "label_13654", "label_13655", "label_13656", "label_13657", "label_13658", "label_13659", "label_13660", "label_13661", "label_13662", "label_13663", "label_13664", "label_13665", "label_13666", "label_13667", "label_13668", "label_13669", "label_13670", "label_13671", "label_13672", "label_13673", "label_13674", "label_13675", "label_13676", "label_13677", "label_13678", "label_13679", "label_13680", "label_13681", "label_13682", "label_13683", "label_13684", "label_13685", "label_13686", "label_13687", "label_13688", "label_13689", "label_13690", "label_13691", "label_13692", "label_13693", "label_13694", "label_13695", "label_13696", "label_13697", "label_13698", "label_13699", "label_13700", "label_13701", "label_13702", "label_13703", "label_13704", "label_13705", "label_13706", "label_13707", "label_13708", "label_13709", "label_13710", "label_13711", "label_13712", "label_13713", "label_13714", "label_13715", "label_13716", "label_13717", "label_13718", "label_13719", "label_13720", "label_13721", "label_13722", "label_13723", "label_13724", "label_13725", "label_13726", "label_13727", "label_13728", "label_13729", "label_13730", "label_13731", "label_13732", "label_13733", "label_13734", "label_13735", "label_13736", "label_13737", "label_13738", "label_13739", "label_13740", "label_13741", "label_13742", "label_13743", "label_13744", "label_13745", "label_13746", "label_13747", "label_13748", "label_13749", "label_13750", "label_13751", "label_13752", "label_13753", "label_13754", "label_13755", "label_13756", "label_13757", "label_13758", "label_13759", "label_13760", "label_13761", "label_13762", "label_13763", "label_13764", "label_13765", "label_13766", "label_13767", "label_13768", "label_13769", "label_13770", "label_13771", "label_13772", "label_13773", "label_13774", "label_13775", "label_13776", "label_13777", "label_13778", "label_13779", "label_13780", "label_13781", "label_13782", "label_13783", "label_13784", "label_13785", "label_13786", "label_13787", "label_13788", "label_13789", "label_13790", "label_13791", "label_13792", "label_13793", "label_13794", "label_13795", "label_13796", "label_13797", "label_13798", "label_13799", "label_13800", "label_13801", "label_13802", "label_13803", "label_13804", "label_13805", "label_13806", "label_13807", "label_13808", "label_13809", "label_13810", "label_13811", "label_13812", "label_13813", "label_13814", "label_13815", "label_13816", "label_13817", "label_13818", "label_13819", "label_13820", "label_13821", "label_13822", "label_13823", "label_13824", "label_13825", "label_13826", "label_13827", "label_13828", "label_13829", "label_13830", "label_13831", "label_13832", "label_13833", "label_13834", "label_13835", "label_13836", "label_13837", "label_13838", "label_13839", "label_13840", "label_13841", "label_13842", "label_13843", "label_13844", "label_13845", "label_13846", "label_13847", "label_13848", "label_13849", "label_13850", "label_13851", "label_13852", "label_13853", "label_13854", "label_13855", "label_13856", "label_13857", "label_13858", "label_13859", "label_13860", "label_13861", "label_13862", "label_13863", "label_13864", "label_13865", "label_13866", "label_13867", "label_13868", "label_13869", "label_13870", "label_13871", "label_13872", "label_13873", "label_13874", "label_13875", "label_13876", "label_13877", "label_13878", "label_13879", "label_13880", "label_13881", "label_13882", "label_13883", "label_13884", "label_13885", "label_13886", "label_13887", "label_13888", "label_13889", "label_13890", "label_13891", "label_13892", "label_13893", "label_13894", "label_13895", "label_13896", "label_13897", "label_13898", "label_13899", "label_13900", "label_13901", "label_13902", "label_13903", "label_13904", "label_13905", "label_13906", "label_13907", "label_13908", "label_13909", "label_13910", "label_13911", "label_13912", "label_13913", "label_13914", "label_13915", "label_13916", "label_13917", "label_13918", "label_13919", "label_13920", "label_13921", "label_13922", "label_13923", "label_13924", "label_13925", "label_13926", "label_13927", "label_13928", "label_13929", "label_13930", "label_13931", "label_13932", "label_13933", "label_13934", "label_13935", "label_13936", "label_13937", "label_13938", "label_13939", "label_13940", "label_13941", "label_13942", "label_13943", "label_13944", "label_13945", "label_13946", "label_13947", "label_13948", "label_13949", "label_13950", "label_13951", "label_13952", "label_13953", "label_13954", "label_13955", "label_13956", "label_13957", "label_13958", "label_13959", "label_13960", "label_13961", "label_13962", "label_13963", "label_13964", "label_13965", "label_13966", "label_13967", "label_13968", "label_13969", "label_13970", "label_13971", "label_13972", "label_13973", "label_13974", "label_13975", "label_13976", "label_13977", "label_13978", "label_13979", "label_13980", "label_13981", "label_13982", "label_13983", "label_13984", "label_13985", "label_13986", "label_13987", "label_13988", "label_13989", "label_13990", "label_13991", "label_13992", "label_13993", "label_13994", "label_13995", "label_13996", "label_13997", "label_13998", "label_13999", "label_14000", "label_14001", "label_14002", "label_14003", "label_14004", "label_14005", "label_14006", "label_14007", "label_14008", "label_14009", "label_14010", "label_14011", "label_14012", "label_14013", "label_14014", "label_14015", "label_14016", "label_14017", "label_14018", "label_14019", "label_14020", "label_14021", "label_14022", "label_14023", "label_14024", "label_14025", "label_14026", "label_14027", "label_14028", "label_14029", "label_14030", "label_14031", "label_14032", "label_14033", "label_14034", "label_14035", "label_14036", "label_14037", "label_14038", "label_14039", "label_14040", "label_14041", "label_14042", "label_14043", "label_14044", "label_14045", "label_14046", "label_14047", "label_14048", "label_14049", "label_14050", "label_14051", "label_14052", "label_14053", "label_14054", "label_14055", "label_14056", "label_14057", "label_14058", "label_14059", "label_14060", "label_14061", "label_14062", "label_14063", "label_14064", "label_14065", "label_14066", "label_14067", "label_14068", "label_14069", "label_14070", "label_14071", "label_14072", "label_14073", "label_14074", "label_14075", "label_14076", "label_14077", "label_14078", "label_14079", "label_14080", "label_14081", "label_14082", "label_14083", "label_14084", "label_14085", "label_14086", "label_14087", "label_14088", "label_14089", "label_14090", "label_14091", "label_14092", "label_14093", "label_14094", "label_14095", "label_14096", "label_14097", "label_14098", "label_14099", "label_14100", "label_14101", "label_14102", "label_14103", "label_14104", "label_14105", "label_14106", "label_14107", "label_14108", "label_14109", "label_14110", "label_14111", "label_14112", "label_14113", "label_14114", "label_14115", "label_14116", "label_14117", "label_14118", "label_14119", "label_14120", "label_14121", "label_14122", "label_14123", "label_14124", "label_14125", "label_14126", "label_14127", "label_14128", "label_14129", "label_14130", "label_14131", "label_14132", "label_14133", "label_14134", "label_14135", "label_14136", "label_14137", "label_14138", "label_14139", "label_14140", "label_14141", "label_14142", "label_14143", "label_14144", "label_14145", "label_14146", "label_14147", "label_14148", "label_14149", "label_14150", "label_14151", "label_14152", "label_14153", "label_14154", "label_14155", "label_14156", "label_14157", "label_14158", "label_14159", "label_14160", "label_14161", "label_14162", "label_14163", "label_14164", "label_14165", "label_14166", "label_14167", "label_14168", "label_14169", "label_14170", "label_14171", "label_14172", "label_14173", "label_14174", "label_14175", "label_14176", "label_14177", "label_14178", "label_14179", "label_14180", "label_14181", "label_14182", "label_14183", "label_14184", "label_14185", "label_14186", "label_14187", "label_14188", "label_14189", "label_14190", "label_14191", "label_14192", "label_14193", "label_14194", "label_14195", "label_14196", "label_14197", "label_14198", "label_14199", "label_14200", "label_14201", "label_14202", "label_14203", "label_14204", "label_14205", "label_14206", "label_14207", "label_14208", "label_14209", "label_14210", "label_14211", "label_14212", "label_14213", "label_14214", "label_14215", "label_14216", "label_14217", "label_14218", "label_14219", "label_14220", "label_14221", "label_14222", "label_14223", "label_14224", "label_14225", "label_14226", "label_14227", "label_14228", "label_14229", "label_14230", "label_14231", "label_14232", "label_14233", "label_14234", "label_14235", "label_14236", "label_14237", "label_14238", "label_14239", "label_14240", "label_14241", "label_14242", "label_14243", "label_14244", "label_14245", "label_14246", "label_14247", "label_14248", "label_14249", "label_14250", "label_14251", "label_14252", "label_14253", "label_14254", "label_14255", "label_14256", "label_14257", "label_14258", "label_14259", "label_14260", "label_14261", "label_14262", "label_14263", "label_14264", "label_14265", "label_14266", "label_14267", "label_14268", "label_14269", "label_14270", "label_14271", "label_14272", "label_14273", "label_14274", "label_14275", "label_14276", "label_14277", "label_14278", "label_14279", "label_14280", "label_14281", "label_14282", "label_14283", "label_14284", "label_14285", "label_14286", "label_14287", "label_14288", "label_14289", "label_14290", "label_14291", "label_14292", "label_14293", "label_14294", "label_14295", "label_14296", "label_14297", "label_14298", "label_14299", "label_14300", "label_14301", "label_14302", "label_14303", "label_14304", "label_14305", "label_14306", "label_14307", "label_14308", "label_14309", "label_14310", "label_14311", "label_14312", "label_14313", "label_14314", "label_14315", "label_14316", "label_14317", "label_14318", "label_14319", "label_14320", "label_14321", "label_14322", "label_14323", "label_14324", "label_14325", "label_14326", "label_14327", "label_14328", "label_14329", "label_14330", "label_14331", "label_14332", "label_14333", "label_14334", "label_14335", "label_14336", "label_14337", "label_14338", "label_14339", "label_14340", "label_14341", "label_14342", "label_14343", "label_14344", "label_14345", "label_14346", "label_14347", "label_14348", "label_14349", "label_14350", "label_14351", "label_14352", "label_14353", "label_14354", "label_14355", "label_14356", "label_14357", "label_14358", "label_14359", "label_14360", "label_14361", "label_14362", "label_14363", "label_14364", "label_14365", "label_14366", "label_14367", "label_14368", "label_14369", "label_14370", "label_14371", "label_14372", "label_14373", "label_14374", "label_14375", "label_14376", "label_14377", "label_14378", "label_14379", "label_14380", "label_14381", "label_14382", "label_14383", "label_14384", "label_14385", "label_14386", "label_14387", "label_14388", "label_14389", "label_14390", "label_14391", "label_14392", "label_14393", "label_14394", "label_14395", "label_14396", "label_14397", "label_14398", "label_14399", "label_14400", "label_14401", "label_14402", "label_14403", "label_14404", "label_14405", "label_14406", "label_14407", "label_14408", "label_14409", "label_14410", "label_14411", "label_14412", "label_14413", "label_14414", "label_14415", "label_14416", "label_14417", "label_14418", "label_14419", "label_14420", "label_14421", "label_14422", "label_14423", "label_14424", "label_14425", "label_14426", "label_14427", "label_14428", "label_14429", "label_14430", "label_14431", "label_14432", "label_14433", "label_14434", "label_14435", "label_14436", "label_14437", "label_14438", "label_14439", "label_14440", "label_14441", "label_14442", "label_14443", "label_14444", "label_14445", "label_14446", "label_14447", "label_14448", "label_14449", "label_14450", "label_14451", "label_14452", "label_14453", "label_14454", "label_14455", "label_14456", "label_14457", "label_14458", "label_14459", "label_14460", "label_14461", "label_14462", "label_14463", "label_14464", "label_14465", "label_14466", "label_14467", "label_14468", "label_14469", "label_14470", "label_14471", "label_14472", "label_14473", "label_14474", "label_14475", "label_14476", "label_14477", "label_14478", "label_14479", "label_14480", "label_14481", "label_14482", "label_14483", "label_14484", "label_14485", "label_14486", "label_14487", "label_14488", "label_14489", "label_14490", "label_14491", "label_14492", "label_14493", "label_14494", "label_14495", "label_14496", "label_14497", "label_14498", "label_14499", "label_14500", "label_14501", "label_14502", "label_14503", "label_14504", "label_14505", "label_14506", "label_14507", "label_14508", "label_14509", "label_14510", "label_14511", "label_14512", "label_14513", "label_14514", "label_14515", "label_14516", "label_14517", "label_14518", "label_14519", "label_14520", "label_14521", "label_14522", "label_14523", "label_14524", "label_14525", "label_14526", "label_14527", "label_14528", "label_14529", "label_14530", "label_14531", "label_14532", "label_14533", "label_14534", "label_14535", "label_14536", "label_14537", "label_14538", "label_14539", "label_14540", "label_14541", "label_14542", "label_14543", "label_14544", "label_14545", "label_14546", "label_14547", "label_14548", "label_14549", "label_14550", "label_14551", "label_14552", "label_14553", "label_14554", "label_14555", "label_14556", "label_14557", "label_14558", "label_14559", "label_14560", "label_14561", "label_14562", "label_14563", "label_14564", "label_14565", "label_14566", "label_14567", "label_14568", "label_14569", "label_14570", "label_14571", "label_14572", "label_14573", "label_14574", "label_14575", "label_14576", "label_14577", "label_14578", "label_14579", "label_14580", "label_14581", "label_14582", "label_14583", "label_14584", "label_14585", "label_14586", "label_14587", "label_14588", "label_14589", "label_14590", "label_14591", "label_14592", "label_14593", "label_14594", "label_14595", "label_14596", "label_14597", "label_14598", "label_14599", "label_14600", "label_14601", "label_14602", "label_14603", "label_14604", "label_14605", "label_14606", "label_14607", "label_14608", "label_14609", "label_14610", "label_14611", "label_14612", "label_14613", "label_14614", "label_14615", "label_14616", "label_14617", "label_14618", "label_14619", "label_14620", "label_14621", "label_14622", "label_14623", "label_14624", "label_14625", "label_14626", "label_14627", "label_14628", "label_14629", "label_14630", "label_14631", "label_14632", "label_14633", "label_14634", "label_14635", "label_14636", "label_14637", "label_14638", "label_14639", "label_14640", "label_14641", "label_14642", "label_14643", "label_14644", "label_14645", "label_14646", "label_14647", "label_14648", "label_14649", "label_14650", "label_14651", "label_14652", "label_14653", "label_14654", "label_14655", "label_14656", "label_14657", "label_14658", "label_14659", "label_14660", "label_14661", "label_14662", "label_14663", "label_14664", "label_14665", "label_14666", "label_14667", "label_14668", "label_14669", "label_14670", "label_14671", "label_14672", "label_14673", "label_14674", "label_14675", "label_14676", "label_14677", "label_14678", "label_14679", "label_14680", "label_14681", "label_14682", "label_14683", "label_14684", "label_14685", "label_14686", "label_14687", "label_14688", "label_14689", "label_14690", "label_14691", "label_14692", "label_14693", "label_14694", "label_14695", "label_14696", "label_14697", "label_14698", "label_14699", "label_14700", "label_14701", "label_14702", "label_14703", "label_14704", "label_14705", "label_14706", "label_14707", "label_14708", "label_14709", "label_14710", "label_14711", "label_14712", "label_14713", "label_14714", "label_14715", "label_14716", "label_14717", "label_14718", "label_14719", "label_14720", "label_14721", "label_14722", "label_14723", "label_14724", "label_14725", "label_14726", "label_14727", "label_14728", "label_14729", "label_14730", "label_14731", "label_14732", "label_14733", "label_14734", "label_14735", "label_14736", "label_14737", "label_14738", "label_14739", "label_14740", "label_14741", "label_14742", "label_14743", "label_14744", "label_14745", "label_14746", "label_14747", "label_14748", "label_14749", "label_14750", "label_14751", "label_14752", "label_14753", "label_14754", "label_14755", "label_14756", "label_14757", "label_14758", "label_14759", "label_14760", "label_14761", "label_14762", "label_14763", "label_14764", "label_14765", "label_14766", "label_14767", "label_14768", "label_14769", "label_14770", "label_14771", "label_14772", "label_14773", "label_14774", "label_14775", "label_14776", "label_14777", "label_14778", "label_14779", "label_14780", "label_14781", "label_14782", "label_14783", "label_14784", "label_14785", "label_14786", "label_14787", "label_14788", "label_14789", "label_14790", "label_14791", "label_14792", "label_14793", "label_14794", "label_14795", "label_14796", "label_14797", "label_14798", "label_14799", "label_14800", "label_14801", "label_14802", "label_14803", "label_14804", "label_14805", "label_14806", "label_14807", "label_14808", "label_14809", "label_14810", "label_14811", "label_14812", "label_14813", "label_14814", "label_14815", "label_14816", "label_14817", "label_14818", "label_14819", "label_14820", "label_14821", "label_14822", "label_14823", "label_14824", "label_14825", "label_14826", "label_14827", "label_14828", "label_14829", "label_14830", "label_14831", "label_14832", "label_14833", "label_14834", "label_14835", "label_14836", "label_14837", "label_14838", "label_14839", "label_14840", "label_14841", "label_14842", "label_14843", "label_14844", "label_14845", "label_14846", "label_14847", "label_14848", "label_14849", "label_14850", "label_14851", "label_14852", "label_14853", "label_14854", "label_14855", "label_14856", "label_14857", "label_14858", "label_14859", "label_14860", "label_14861", "label_14862", "label_14863", "label_14864", "label_14865", "label_14866", "label_14867", "label_14868", "label_14869", "label_14870", "label_14871", "label_14872", "label_14873", "label_14874", "label_14875", "label_14876", "label_14877", "label_14878", "label_14879", "label_14880", "label_14881", "label_14882", "label_14883", "label_14884", "label_14885", "label_14886", "label_14887", "label_14888", "label_14889", "label_14890", "label_14891", "label_14892", "label_14893", "label_14894", "label_14895", "label_14896", "label_14897", "label_14898", "label_14899", "label_14900", "label_14901", "label_14902", "label_14903", "label_14904", "label_14905", "label_14906", "label_14907", "label_14908", "label_14909", "label_14910", "label_14911", "label_14912", "label_14913", "label_14914", "label_14915", "label_14916", "label_14917", "label_14918", "label_14919", "label_14920", "label_14921", "label_14922", "label_14923", "label_14924", "label_14925", "label_14926", "label_14927", "label_14928", "label_14929", "label_14930", "label_14931", "label_14932", "label_14933", "label_14934", "label_14935", "label_14936", "label_14937", "label_14938", "label_14939", "label_14940", "label_14941", "label_14942", "label_14943", "label_14944", "label_14945", "label_14946", "label_14947", "label_14948", "label_14949", "label_14950", "label_14951", "label_14952", "label_14953", "label_14954", "label_14955", "label_14956", "label_14957", "label_14958", "label_14959", "label_14960", "label_14961", "label_14962", "label_14963", "label_14964", "label_14965", "label_14966", "label_14967", "label_14968", "label_14969", "label_14970", "label_14971", "label_14972", "label_14973", "label_14974", "label_14975", "label_14976", "label_14977", "label_14978", "label_14979", "label_14980", "label_14981", "label_14982", "label_14983", "label_14984", "label_14985", "label_14986", "label_14987", "label_14988", "label_14989", "label_14990", "label_14991", "label_14992", "label_14993", "label_14994", "label_14995", "label_14996", "label_14997", "label_14998", "label_14999", "label_15000", "label_15001", "label_15002", "label_15003", "label_15004", "label_15005", "label_15006", "label_15007", "label_15008", "label_15009", "label_15010", "label_15011", "label_15012", "label_15013", "label_15014", "label_15015", "label_15016", "label_15017", "label_15018", "label_15019", "label_15020", "label_15021", "label_15022", "label_15023", "label_15024", "label_15025", "label_15026", "label_15027", "label_15028", "label_15029", "label_15030", "label_15031", "label_15032", "label_15033", "label_15034", "label_15035", "label_15036", "label_15037", "label_15038", "label_15039", "label_15040", "label_15041", "label_15042", "label_15043", "label_15044", "label_15045", "label_15046", "label_15047", "label_15048", "label_15049", "label_15050", "label_15051", "label_15052", "label_15053", "label_15054", "label_15055", "label_15056", "label_15057", "label_15058", "label_15059", "label_15060", "label_15061", "label_15062", "label_15063", "label_15064", "label_15065", "label_15066", "label_15067", "label_15068", "label_15069", "label_15070", "label_15071", "label_15072", "label_15073", "label_15074", "label_15075", "label_15076", "label_15077", "label_15078", "label_15079", "label_15080", "label_15081", "label_15082", "label_15083", "label_15084", "label_15085", "label_15086", "label_15087", "label_15088", "label_15089", "label_15090", "label_15091", "label_15092", "label_15093", "label_15094", "label_15095", "label_15096", "label_15097", "label_15098", "label_15099", "label_15100", "label_15101", "label_15102", "label_15103", "label_15104", "label_15105", "label_15106", "label_15107", "label_15108", "label_15109", "label_15110", "label_15111", "label_15112", "label_15113", "label_15114", "label_15115", "label_15116", "label_15117", "label_15118", "label_15119", "label_15120", "label_15121", "label_15122", "label_15123", "label_15124", "label_15125", "label_15126", "label_15127", "label_15128", "label_15129", "label_15130", "label_15131", "label_15132", "label_15133", "label_15134", "label_15135", "label_15136", "label_15137", "label_15138", "label_15139", "label_15140", "label_15141", "label_15142", "label_15143", "label_15144", "label_15145", "label_15146", "label_15147", "label_15148", "label_15149", "label_15150", "label_15151", "label_15152", "label_15153", "label_15154", "label_15155", "label_15156", "label_15157", "label_15158", "label_15159", "label_15160", "label_15161", "label_15162", "label_15163", "label_15164", "label_15165", "label_15166", "label_15167", "label_15168", "label_15169", "label_15170", "label_15171", "label_15172", "label_15173", "label_15174", "label_15175", "label_15176", "label_15177", "label_15178", "label_15179", "label_15180", "label_15181", "label_15182", "label_15183", "label_15184", "label_15185", "label_15186", "label_15187", "label_15188", "label_15189", "label_15190", "label_15191", "label_15192", "label_15193", "label_15194", "label_15195", "label_15196", "label_15197", "label_15198", "label_15199", "label_15200", "label_15201", "label_15202", "label_15203", "label_15204", "label_15205", "label_15206", "label_15207", "label_15208", "label_15209", "label_15210", "label_15211", "label_15212", "label_15213", "label_15214", "label_15215", "label_15216", "label_15217", "label_15218", "label_15219", "label_15220", "label_15221", "label_15222", "label_15223", "label_15224", "label_15225", "label_15226", "label_15227", "label_15228", "label_15229", "label_15230", "label_15231", "label_15232", "label_15233", "label_15234", "label_15235", "label_15236", "label_15237", "label_15238", "label_15239", "label_15240", "label_15241", "label_15242", "label_15243", "label_15244", "label_15245", "label_15246", "label_15247", "label_15248", "label_15249", "label_15250", "label_15251", "label_15252", "label_15253", "label_15254", "label_15255", "label_15256", "label_15257", "label_15258", "label_15259", "label_15260", "label_15261", "label_15262", "label_15263", "label_15264", "label_15265", "label_15266", "label_15267", "label_15268", "label_15269", "label_15270", "label_15271", "label_15272", "label_15273", "label_15274", "label_15275", "label_15276", "label_15277", "label_15278", "label_15279", "label_15280", "label_15281", "label_15282", "label_15283", "label_15284", "label_15285", "label_15286", "label_15287", "label_15288", "label_15289", "label_15290", "label_15291", "label_15292", "label_15293", "label_15294", "label_15295", "label_15296", "label_15297", "label_15298", "label_15299", "label_15300", "label_15301", "label_15302", "label_15303", "label_15304", "label_15305", "label_15306", "label_15307", "label_15308", "label_15309", "label_15310", "label_15311", "label_15312", "label_15313", "label_15314", "label_15315", "label_15316", "label_15317", "label_15318", "label_15319", "label_15320", "label_15321", "label_15322", "label_15323", "label_15324", "label_15325", "label_15326", "label_15327", "label_15328", "label_15329", "label_15330", "label_15331", "label_15332", "label_15333", "label_15334", "label_15335", "label_15336", "label_15337", "label_15338", "label_15339", "label_15340", "label_15341", "label_15342", "label_15343", "label_15344", "label_15345", "label_15346", "label_15347", "label_15348", "label_15349", "label_15350", "label_15351", "label_15352", "label_15353", "label_15354", "label_15355", "label_15356", "label_15357", "label_15358", "label_15359", "label_15360", "label_15361", "label_15362", "label_15363", "label_15364", "label_15365", "label_15366", "label_15367", "label_15368", "label_15369", "label_15370", "label_15371", "label_15372", "label_15373", "label_15374", "label_15375", "label_15376", "label_15377", "label_15378", "label_15379", "label_15380", "label_15381", "label_15382", "label_15383", "label_15384", "label_15385", "label_15386", "label_15387", "label_15388", "label_15389", "label_15390", "label_15391", "label_15392", "label_15393", "label_15394", "label_15395", "label_15396", "label_15397", "label_15398", "label_15399", "label_15400", "label_15401", "label_15402", "label_15403", "label_15404", "label_15405", "label_15406", "label_15407", "label_15408", "label_15409", "label_15410", "label_15411", "label_15412", "label_15413", "label_15414", "label_15415", "label_15416", "label_15417", "label_15418", "label_15419", "label_15420", "label_15421", "label_15422", "label_15423", "label_15424", "label_15425", "label_15426", "label_15427", "label_15428", "label_15429", "label_15430", "label_15431", "label_15432", "label_15433", "label_15434", "label_15435", "label_15436", "label_15437", "label_15438", "label_15439", "label_15440", "label_15441", "label_15442", "label_15443", "label_15444", "label_15445", "label_15446", "label_15447", "label_15448", "label_15449", "label_15450", "label_15451", "label_15452", "label_15453", "label_15454", "label_15455", "label_15456", "label_15457", "label_15458", "label_15459", "label_15460", "label_15461", "label_15462", "label_15463", "label_15464", "label_15465", "label_15466", "label_15467", "label_15468", "label_15469", "label_15470", "label_15471", "label_15472", "label_15473", "label_15474", "label_15475", "label_15476", "label_15477", "label_15478", "label_15479", "label_15480", "label_15481", "label_15482", "label_15483", "label_15484", "label_15485", "label_15486", "label_15487", "label_15488", "label_15489", "label_15490", "label_15491", "label_15492", "label_15493", "label_15494", "label_15495", "label_15496", "label_15497", "label_15498", "label_15499", "label_15500", "label_15501", "label_15502", "label_15503", "label_15504", "label_15505", "label_15506", "label_15507", "label_15508", "label_15509", "label_15510", "label_15511", "label_15512", "label_15513", "label_15514", "label_15515", "label_15516", "label_15517", "label_15518", "label_15519", "label_15520", "label_15521", "label_15522", "label_15523", "label_15524", "label_15525", "label_15526", "label_15527", "label_15528", "label_15529", "label_15530", "label_15531", "label_15532", "label_15533", "label_15534", "label_15535", "label_15536", "label_15537", "label_15538", "label_15539", "label_15540", "label_15541", "label_15542", "label_15543", "label_15544", "label_15545", "label_15546", "label_15547", "label_15548", "label_15549", "label_15550", "label_15551", "label_15552", "label_15553", "label_15554", "label_15555", "label_15556", "label_15557", "label_15558", "label_15559", "label_15560", "label_15561", "label_15562", "label_15563", "label_15564", "label_15565", "label_15566", "label_15567", "label_15568", "label_15569", "label_15570", "label_15571", "label_15572", "label_15573", "label_15574", "label_15575", "label_15576", "label_15577", "label_15578", "label_15579", "label_15580", "label_15581", "label_15582", "label_15583", "label_15584", "label_15585", "label_15586", "label_15587", "label_15588", "label_15589", "label_15590", "label_15591", "label_15592", "label_15593", "label_15594", "label_15595", "label_15596", "label_15597", "label_15598", "label_15599", "label_15600", "label_15601", "label_15602", "label_15603", "label_15604", "label_15605", "label_15606", "label_15607", "label_15608", "label_15609", "label_15610", "label_15611", "label_15612", "label_15613", "label_15614", "label_15615", "label_15616", "label_15617", "label_15618", "label_15619", "label_15620", "label_15621", "label_15622", "label_15623", "label_15624", "label_15625", "label_15626", "label_15627", "label_15628", "label_15629", "label_15630", "label_15631", "label_15632", "label_15633", "label_15634", "label_15635", "label_15636", "label_15637", "label_15638", "label_15639", "label_15640", "label_15641", "label_15642", "label_15643", "label_15644", "label_15645", "label_15646", "label_15647", "label_15648", "label_15649", "label_15650", "label_15651", "label_15652", "label_15653", "label_15654", "label_15655", "label_15656", "label_15657", "label_15658", "label_15659", "label_15660", "label_15661", "label_15662", "label_15663", "label_15664", "label_15665", "label_15666", "label_15667", "label_15668", "label_15669", "label_15670", "label_15671", "label_15672", "label_15673", "label_15674", "label_15675", "label_15676", "label_15677", "label_15678", "label_15679", "label_15680", "label_15681", "label_15682", "label_15683", "label_15684", "label_15685", "label_15686", "label_15687", "label_15688", "label_15689", "label_15690", "label_15691", "label_15692", "label_15693", "label_15694", "label_15695", "label_15696", "label_15697", "label_15698", "label_15699", "label_15700", "label_15701", "label_15702", "label_15703", "label_15704", "label_15705", "label_15706", "label_15707", "label_15708", "label_15709", "label_15710", "label_15711", "label_15712", "label_15713", "label_15714", "label_15715", "label_15716", "label_15717", "label_15718", "label_15719", "label_15720", "label_15721", "label_15722", "label_15723", "label_15724", "label_15725", "label_15726", "label_15727", "label_15728", "label_15729", "label_15730", "label_15731", "label_15732", "label_15733", "label_15734", "label_15735", "label_15736", "label_15737", "label_15738", "label_15739", "label_15740", "label_15741", "label_15742", "label_15743", "label_15744", "label_15745", "label_15746", "label_15747", "label_15748", "label_15749", "label_15750", "label_15751", "label_15752", "label_15753", "label_15754", "label_15755", "label_15756", "label_15757", "label_15758", "label_15759", "label_15760", "label_15761", "label_15762", "label_15763", "label_15764", "label_15765", "label_15766", "label_15767", "label_15768", "label_15769", "label_15770", "label_15771", "label_15772", "label_15773", "label_15774", "label_15775", "label_15776", "label_15777", "label_15778", "label_15779", "label_15780", "label_15781", "label_15782", "label_15783", "label_15784", "label_15785", "label_15786", "label_15787", "label_15788", "label_15789", "label_15790", "label_15791", "label_15792", "label_15793", "label_15794", "label_15795", "label_15796", "label_15797", "label_15798", "label_15799", "label_15800", "label_15801", "label_15802", "label_15803", "label_15804", "label_15805", "label_15806", "label_15807", "label_15808", "label_15809", "label_15810", "label_15811", "label_15812", "label_15813", "label_15814", "label_15815", "label_15816", "label_15817", "label_15818", "label_15819", "label_15820", "label_15821", "label_15822", "label_15823", "label_15824", "label_15825", "label_15826", "label_15827", "label_15828", "label_15829", "label_15830", "label_15831", "label_15832", "label_15833", "label_15834", "label_15835", "label_15836", "label_15837", "label_15838", "label_15839", "label_15840", "label_15841", "label_15842", "label_15843", "label_15844", "label_15845", "label_15846", "label_15847", "label_15848", "label_15849", "label_15850", "label_15851", "label_15852", "label_15853", "label_15854", "label_15855", "label_15856", "label_15857", "label_15858", "label_15859", "label_15860", "label_15861", "label_15862", "label_15863", "label_15864", "label_15865", "label_15866", "label_15867", "label_15868", "label_15869", "label_15870", "label_15871", "label_15872", "label_15873", "label_15874", "label_15875", "label_15876", "label_15877", "label_15878", "label_15879", "label_15880", "label_15881", "label_15882", "label_15883", "label_15884", "label_15885", "label_15886", "label_15887", "label_15888", "label_15889", "label_15890", "label_15891", "label_15892", "label_15893", "label_15894", "label_15895", "label_15896", "label_15897", "label_15898", "label_15899", "label_15900", "label_15901", "label_15902", "label_15903", "label_15904", "label_15905", "label_15906", "label_15907", "label_15908", "label_15909", "label_15910", "label_15911", "label_15912", "label_15913", "label_15914", "label_15915", "label_15916", "label_15917", "label_15918", "label_15919", "label_15920", "label_15921", "label_15922", "label_15923", "label_15924", "label_15925", "label_15926", "label_15927", "label_15928", "label_15929", "label_15930", "label_15931", "label_15932", "label_15933", "label_15934", "label_15935", "label_15936", "label_15937", "label_15938", "label_15939", "label_15940", "label_15941", "label_15942", "label_15943", "label_15944", "label_15945", "label_15946", "label_15947", "label_15948", "label_15949", "label_15950", "label_15951", "label_15952", "label_15953", "label_15954", "label_15955", "label_15956", "label_15957", "label_15958", "label_15959", "label_15960", "label_15961", "label_15962", "label_15963", "label_15964", "label_15965", "label_15966", "label_15967", "label_15968", "label_15969", "label_15970", "label_15971", "label_15972", "label_15973", "label_15974", "label_15975", "label_15976", "label_15977", "label_15978", "label_15979", "label_15980", "label_15981", "label_15982", "label_15983", "label_15984", "label_15985", "label_15986", "label_15987", "label_15988", "label_15989", "label_15990", "label_15991", "label_15992", "label_15993", "label_15994", "label_15995", "label_15996", "label_15997", "label_15998", "label_15999", "label_16000", "label_16001", "label_16002", "label_16003", "label_16004", "label_16005", "label_16006", "label_16007", "label_16008", "label_16009", "label_16010", "label_16011", "label_16012", "label_16013", "label_16014", "label_16015", "label_16016", "label_16017", "label_16018", "label_16019", "label_16020", "label_16021", "label_16022", "label_16023", "label_16024", "label_16025", "label_16026", "label_16027", "label_16028", "label_16029", "label_16030", "label_16031", "label_16032", "label_16033", "label_16034", "label_16035", "label_16036", "label_16037", "label_16038", "label_16039", "label_16040", "label_16041", "label_16042", "label_16043", "label_16044", "label_16045", "label_16046", "label_16047", "label_16048", "label_16049", "label_16050", "label_16051", "label_16052", "label_16053", "label_16054", "label_16055", "label_16056", "label_16057", "label_16058", "label_16059", "label_16060", "label_16061", "label_16062", "label_16063", "label_16064", "label_16065", "label_16066", "label_16067", "label_16068", "label_16069", "label_16070", "label_16071", "label_16072", "label_16073", "label_16074", "label_16075", "label_16076", "label_16077", "label_16078", "label_16079", "label_16080", "label_16081", "label_16082", "label_16083", "label_16084", "label_16085", "label_16086", "label_16087", "label_16088", "label_16089", "label_16090", "label_16091", "label_16092", "label_16093", "label_16094", "label_16095", "label_16096", "label_16097", "label_16098", "label_16099", "label_16100", "label_16101", "label_16102", "label_16103", "label_16104", "label_16105", "label_16106", "label_16107", "label_16108", "label_16109", "label_16110", "label_16111", "label_16112", "label_16113", "label_16114", "label_16115", "label_16116", "label_16117", "label_16118", "label_16119", "label_16120", "label_16121", "label_16122", "label_16123", "label_16124", "label_16125", "label_16126", "label_16127", "label_16128", "label_16129", "label_16130", "label_16131", "label_16132", "label_16133", "label_16134", "label_16135", "label_16136", "label_16137", "label_16138", "label_16139", "label_16140", "label_16141", "label_16142", "label_16143", "label_16144", "label_16145", "label_16146", "label_16147", "label_16148", "label_16149", "label_16150", "label_16151", "label_16152", "label_16153", "label_16154", "label_16155", "label_16156", "label_16157", "label_16158", "label_16159", "label_16160", "label_16161", "label_16162", "label_16163", "label_16164", "label_16165", "label_16166", "label_16167", "label_16168", "label_16169", "label_16170", "label_16171", "label_16172", "label_16173", "label_16174", "label_16175", "label_16176", "label_16177", "label_16178", "label_16179", "label_16180", "label_16181", "label_16182", "label_16183", "label_16184", "label_16185", "label_16186", "label_16187", "label_16188", "label_16189", "label_16190", "label_16191", "label_16192", "label_16193", "label_16194", "label_16195", "label_16196", "label_16197", "label_16198", "label_16199", "label_16200", "label_16201", "label_16202", "label_16203", "label_16204", "label_16205", "label_16206", "label_16207", "label_16208", "label_16209", "label_16210", "label_16211", "label_16212", "label_16213", "label_16214", "label_16215", "label_16216", "label_16217", "label_16218", "label_16219", "label_16220", "label_16221", "label_16222", "label_16223", "label_16224", "label_16225", "label_16226", "label_16227", "label_16228", "label_16229", "label_16230", "label_16231", "label_16232", "label_16233", "label_16234", "label_16235", "label_16236", "label_16237", "label_16238", "label_16239", "label_16240", "label_16241", "label_16242", "label_16243", "label_16244", "label_16245", "label_16246", "label_16247", "label_16248", "label_16249", "label_16250", "label_16251", "label_16252", "label_16253", "label_16254", "label_16255", "label_16256", "label_16257", "label_16258", "label_16259", "label_16260", "label_16261", "label_16262", "label_16263", "label_16264", "label_16265", "label_16266", "label_16267", "label_16268", "label_16269", "label_16270", "label_16271", "label_16272", "label_16273", "label_16274", "label_16275", "label_16276", "label_16277", "label_16278", "label_16279", "label_16280", "label_16281", "label_16282", "label_16283", "label_16284", "label_16285", "label_16286", "label_16287", "label_16288", "label_16289", "label_16290", "label_16291", "label_16292", "label_16293", "label_16294", "label_16295", "label_16296", "label_16297", "label_16298", "label_16299", "label_16300", "label_16301", "label_16302", "label_16303", "label_16304", "label_16305", "label_16306", "label_16307", "label_16308", "label_16309", "label_16310", "label_16311", "label_16312", "label_16313", "label_16314", "label_16315", "label_16316", "label_16317", "label_16318", "label_16319", "label_16320", "label_16321", "label_16322", "label_16323", "label_16324", "label_16325", "label_16326", "label_16327", "label_16328", "label_16329", "label_16330", "label_16331", "label_16332", "label_16333", "label_16334", "label_16335", "label_16336", "label_16337", "label_16338", "label_16339", "label_16340", "label_16341", "label_16342", "label_16343", "label_16344", "label_16345", "label_16346", "label_16347", "label_16348", "label_16349", "label_16350", "label_16351", "label_16352", "label_16353", "label_16354", "label_16355", "label_16356", "label_16357", "label_16358", "label_16359", "label_16360", "label_16361", "label_16362", "label_16363", "label_16364", "label_16365", "label_16366", "label_16367", "label_16368", "label_16369", "label_16370", "label_16371", "label_16372", "label_16373", "label_16374", "label_16375", "label_16376", "label_16377", "label_16378", "label_16379", "label_16380", "label_16381", "label_16382", "label_16383", "label_16384", "label_16385", "label_16386", "label_16387", "label_16388", "label_16389", "label_16390", "label_16391", "label_16392", "label_16393", "label_16394", "label_16395", "label_16396", "label_16397", "label_16398", "label_16399", "label_16400", "label_16401", "label_16402", "label_16403", "label_16404", "label_16405", "label_16406", "label_16407", "label_16408", "label_16409", "label_16410", "label_16411", "label_16412", "label_16413", "label_16414", "label_16415", "label_16416", "label_16417", "label_16418", "label_16419", "label_16420", "label_16421", "label_16422", "label_16423", "label_16424", "label_16425", "label_16426", "label_16427", "label_16428", "label_16429", "label_16430", "label_16431", "label_16432", "label_16433", "label_16434", "label_16435", "label_16436", "label_16437", "label_16438", "label_16439", "label_16440", "label_16441", "label_16442", "label_16443", "label_16444", "label_16445", "label_16446", "label_16447", "label_16448", "label_16449", "label_16450", "label_16451", "label_16452", "label_16453", "label_16454", "label_16455", "label_16456", "label_16457", "label_16458", "label_16459", "label_16460", "label_16461", "label_16462", "label_16463", "label_16464", "label_16465", "label_16466", "label_16467", "label_16468", "label_16469", "label_16470", "label_16471", "label_16472", "label_16473", "label_16474", "label_16475", "label_16476", "label_16477", "label_16478", "label_16479", "label_16480", "label_16481", "label_16482", "label_16483", "label_16484", "label_16485", "label_16486", "label_16487", "label_16488", "label_16489", "label_16490", "label_16491", "label_16492", "label_16493", "label_16494", "label_16495", "label_16496", "label_16497", "label_16498", "label_16499", "label_16500", "label_16501", "label_16502", "label_16503", "label_16504", "label_16505", "label_16506", "label_16507", "label_16508", "label_16509", "label_16510", "label_16511", "label_16512", "label_16513", "label_16514", "label_16515", "label_16516", "label_16517", "label_16518", "label_16519", "label_16520", "label_16521", "label_16522", "label_16523", "label_16524", "label_16525", "label_16526", "label_16527", "label_16528", "label_16529", "label_16530", "label_16531", "label_16532", "label_16533", "label_16534", "label_16535", "label_16536", "label_16537", "label_16538", "label_16539", "label_16540", "label_16541", "label_16542", "label_16543", "label_16544", "label_16545", "label_16546", "label_16547", "label_16548", "label_16549", "label_16550", "label_16551", "label_16552", "label_16553", "label_16554", "label_16555", "label_16556", "label_16557", "label_16558", "label_16559", "label_16560", "label_16561", "label_16562", "label_16563", "label_16564", "label_16565", "label_16566", "label_16567", "label_16568", "label_16569", "label_16570", "label_16571", "label_16572", "label_16573", "label_16574", "label_16575", "label_16576", "label_16577", "label_16578", "label_16579", "label_16580", "label_16581", "label_16582", "label_16583", "label_16584", "label_16585", "label_16586", "label_16587", "label_16588", "label_16589", "label_16590", "label_16591", "label_16592", "label_16593", "label_16594", "label_16595", "label_16596", "label_16597", "label_16598", "label_16599", "label_16600", "label_16601", "label_16602", "label_16603", "label_16604", "label_16605", "label_16606", "label_16607", "label_16608", "label_16609", "label_16610", "label_16611", "label_16612", "label_16613", "label_16614", "label_16615", "label_16616", "label_16617", "label_16618", "label_16619", "label_16620", "label_16621", "label_16622", "label_16623", "label_16624", "label_16625", "label_16626", "label_16627", "label_16628", "label_16629", "label_16630", "label_16631", "label_16632", "label_16633", "label_16634", "label_16635", "label_16636", "label_16637", "label_16638", "label_16639", "label_16640", "label_16641", "label_16642", "label_16643", "label_16644", "label_16645", "label_16646", "label_16647", "label_16648", "label_16649", "label_16650", "label_16651", "label_16652", "label_16653", "label_16654", "label_16655", "label_16656", "label_16657", "label_16658", "label_16659", "label_16660", "label_16661", "label_16662", "label_16663", "label_16664", "label_16665", "label_16666", "label_16667", "label_16668", "label_16669", "label_16670", "label_16671", "label_16672", "label_16673", "label_16674", "label_16675", "label_16676", "label_16677", "label_16678", "label_16679", "label_16680", "label_16681", "label_16682", "label_16683", "label_16684", "label_16685", "label_16686", "label_16687", "label_16688", "label_16689", "label_16690", "label_16691", "label_16692", "label_16693", "label_16694", "label_16695", "label_16696", "label_16697", "label_16698", "label_16699", "label_16700", "label_16701", "label_16702", "label_16703", "label_16704", "label_16705", "label_16706", "label_16707", "label_16708", "label_16709", "label_16710", "label_16711", "label_16712", "label_16713", "label_16714", "label_16715", "label_16716", "label_16717", "label_16718", "label_16719", "label_16720", "label_16721", "label_16722", "label_16723", "label_16724", "label_16725", "label_16726", "label_16727", "label_16728", "label_16729", "label_16730", "label_16731", "label_16732", "label_16733", "label_16734", "label_16735", "label_16736", "label_16737", "label_16738", "label_16739", "label_16740", "label_16741", "label_16742", "label_16743", "label_16744", "label_16745", "label_16746", "label_16747", "label_16748", "label_16749", "label_16750", "label_16751", "label_16752", "label_16753", "label_16754", "label_16755", "label_16756", "label_16757", "label_16758", "label_16759", "label_16760", "label_16761", "label_16762", "label_16763", "label_16764", "label_16765", "label_16766", "label_16767", "label_16768", "label_16769", "label_16770", "label_16771", "label_16772", "label_16773", "label_16774", "label_16775", "label_16776", "label_16777", "label_16778", "label_16779", "label_16780", "label_16781", "label_16782", "label_16783", "label_16784", "label_16785", "label_16786", "label_16787", "label_16788", "label_16789", "label_16790", "label_16791", "label_16792", "label_16793", "label_16794", "label_16795", "label_16796", "label_16797", "label_16798", "label_16799", "label_16800", "label_16801", "label_16802", "label_16803", "label_16804", "label_16805", "label_16806", "label_16807", "label_16808", "label_16809", "label_16810", "label_16811", "label_16812", "label_16813", "label_16814", "label_16815", "label_16816", "label_16817", "label_16818", "label_16819", "label_16820", "label_16821", "label_16822", "label_16823", "label_16824", "label_16825", "label_16826", "label_16827", "label_16828", "label_16829", "label_16830", "label_16831", "label_16832", "label_16833", "label_16834", "label_16835", "label_16836", "label_16837", "label_16838", "label_16839", "label_16840", "label_16841", "label_16842", "label_16843", "label_16844", "label_16845", "label_16846", "label_16847", "label_16848", "label_16849", "label_16850", "label_16851", "label_16852", "label_16853", "label_16854", "label_16855", "label_16856", "label_16857", "label_16858", "label_16859", "label_16860", "label_16861", "label_16862", "label_16863", "label_16864", "label_16865", "label_16866", "label_16867", "label_16868", "label_16869", "label_16870", "label_16871", "label_16872", "label_16873", "label_16874", "label_16875", "label_16876", "label_16877", "label_16878", "label_16879", "label_16880", "label_16881", "label_16882", "label_16883", "label_16884", "label_16885", "label_16886", "label_16887", "label_16888", "label_16889", "label_16890", "label_16891", "label_16892", "label_16893", "label_16894", "label_16895", "label_16896", "label_16897", "label_16898", "label_16899", "label_16900", "label_16901", "label_16902", "label_16903", "label_16904", "label_16905", "label_16906", "label_16907", "label_16908", "label_16909", "label_16910", "label_16911", "label_16912", "label_16913", "label_16914", "label_16915", "label_16916", "label_16917", "label_16918", "label_16919", "label_16920", "label_16921", "label_16922", "label_16923", "label_16924", "label_16925", "label_16926", "label_16927", "label_16928", "label_16929", "label_16930", "label_16931", "label_16932", "label_16933", "label_16934", "label_16935", "label_16936", "label_16937", "label_16938", "label_16939", "label_16940", "label_16941", "label_16942", "label_16943", "label_16944", "label_16945", "label_16946", "label_16947", "label_16948", "label_16949", "label_16950", "label_16951", "label_16952", "label_16953", "label_16954", "label_16955", "label_16956", "label_16957", "label_16958", "label_16959", "label_16960", "label_16961", "label_16962", "label_16963", "label_16964", "label_16965", "label_16966", "label_16967", "label_16968", "label_16969", "label_16970", "label_16971", "label_16972", "label_16973", "label_16974", "label_16975", "label_16976", "label_16977", "label_16978", "label_16979", "label_16980", "label_16981", "label_16982", "label_16983", "label_16984", "label_16985", "label_16986", "label_16987", "label_16988", "label_16989", "label_16990", "label_16991", "label_16992", "label_16993", "label_16994", "label_16995", "label_16996", "label_16997", "label_16998", "label_16999", "label_17000", "label_17001", "label_17002", "label_17003", "label_17004", "label_17005", "label_17006", "label_17007", "label_17008", "label_17009", "label_17010", "label_17011", "label_17012", "label_17013", "label_17014", "label_17015", "label_17016", "label_17017", "label_17018", "label_17019", "label_17020", "label_17021", "label_17022", "label_17023", "label_17024", "label_17025", "label_17026", "label_17027", "label_17028", "label_17029", "label_17030", "label_17031", "label_17032", "label_17033", "label_17034", "label_17035", "label_17036", "label_17037", "label_17038", "label_17039", "label_17040", "label_17041", "label_17042", "label_17043", "label_17044", "label_17045", "label_17046", "label_17047", "label_17048", "label_17049", "label_17050", "label_17051", "label_17052", "label_17053", "label_17054", "label_17055", "label_17056", "label_17057", "label_17058", "label_17059", "label_17060", "label_17061", "label_17062", "label_17063", "label_17064", "label_17065", "label_17066", "label_17067", "label_17068", "label_17069", "label_17070", "label_17071", "label_17072", "label_17073", "label_17074", "label_17075", "label_17076", "label_17077", "label_17078", "label_17079", "label_17080", "label_17081", "label_17082", "label_17083", "label_17084", "label_17085", "label_17086", "label_17087", "label_17088", "label_17089", "label_17090", "label_17091", "label_17092", "label_17093", "label_17094", "label_17095", "label_17096", "label_17097", "label_17098", "label_17099", "label_17100", "label_17101", "label_17102", "label_17103", "label_17104", "label_17105", "label_17106", "label_17107", "label_17108", "label_17109", "label_17110", "label_17111", "label_17112", "label_17113", "label_17114", "label_17115", "label_17116", "label_17117", "label_17118", "label_17119", "label_17120", "label_17121", "label_17122", "label_17123", "label_17124", "label_17125", "label_17126", "label_17127", "label_17128", "label_17129", "label_17130", "label_17131", "label_17132", "label_17133", "label_17134", "label_17135", "label_17136", "label_17137", "label_17138", "label_17139", "label_17140", "label_17141", "label_17142", "label_17143", "label_17144", "label_17145", "label_17146", "label_17147", "label_17148", "label_17149", "label_17150", "label_17151", "label_17152", "label_17153", "label_17154", "label_17155", "label_17156", "label_17157", "label_17158", "label_17159", "label_17160", "label_17161", "label_17162", "label_17163", "label_17164", "label_17165", "label_17166", "label_17167", "label_17168", "label_17169", "label_17170", "label_17171", "label_17172", "label_17173", "label_17174", "label_17175", "label_17176", "label_17177", "label_17178", "label_17179", "label_17180", "label_17181", "label_17182", "label_17183", "label_17184", "label_17185", "label_17186", "label_17187", "label_17188", "label_17189", "label_17190", "label_17191", "label_17192", "label_17193", "label_17194", "label_17195", "label_17196", "label_17197", "label_17198", "label_17199", "label_17200", "label_17201", "label_17202", "label_17203", "label_17204", "label_17205", "label_17206", "label_17207", "label_17208", "label_17209", "label_17210", "label_17211", "label_17212", "label_17213", "label_17214", "label_17215", "label_17216", "label_17217", "label_17218", "label_17219", "label_17220", "label_17221", "label_17222", "label_17223", "label_17224", "label_17225", "label_17226", "label_17227", "label_17228", "label_17229", "label_17230", "label_17231", "label_17232", "label_17233", "label_17234", "label_17235", "label_17236", "label_17237", "label_17238", "label_17239", "label_17240", "label_17241", "label_17242", "label_17243", "label_17244", "label_17245", "label_17246", "label_17247", "label_17248", "label_17249", "label_17250", "label_17251", "label_17252", "label_17253", "label_17254", "label_17255", "label_17256", "label_17257", "label_17258", "label_17259", "label_17260", "label_17261", "label_17262", "label_17263", "label_17264", "label_17265", "label_17266", "label_17267", "label_17268", "label_17269", "label_17270", "label_17271", "label_17272", "label_17273", "label_17274", "label_17275", "label_17276", "label_17277", "label_17278", "label_17279", "label_17280", "label_17281", "label_17282", "label_17283", "label_17284", "label_17285", "label_17286", "label_17287", "label_17288", "label_17289", "label_17290", "label_17291", "label_17292", "label_17293", "label_17294", "label_17295", "label_17296", "label_17297", "label_17298", "label_17299", "label_17300", "label_17301", "label_17302", "label_17303", "label_17304", "label_17305", "label_17306", "label_17307", "label_17308", "label_17309", "label_17310", "label_17311", "label_17312", "label_17313", "label_17314", "label_17315", "label_17316", "label_17317", "label_17318", "label_17319", "label_17320", "label_17321", "label_17322", "label_17323", "label_17324", "label_17325", "label_17326", "label_17327", "label_17328", "label_17329", "label_17330", "label_17331", "label_17332", "label_17333", "label_17334", "label_17335", "label_17336", "label_17337", "label_17338", "label_17339", "label_17340", "label_17341", "label_17342", "label_17343", "label_17344", "label_17345", "label_17346", "label_17347", "label_17348", "label_17349", "label_17350", "label_17351", "label_17352", "label_17353", "label_17354", "label_17355", "label_17356", "label_17357", "label_17358", "label_17359", "label_17360", "label_17361", "label_17362", "label_17363", "label_17364", "label_17365", "label_17366", "label_17367", "label_17368", "label_17369", "label_17370", "label_17371", "label_17372", "label_17373", "label_17374", "label_17375", "label_17376", "label_17377", "label_17378", "label_17379", "label_17380", "label_17381", "label_17382", "label_17383", "label_17384", "label_17385", "label_17386", "label_17387", "label_17388", "label_17389", "label_17390", "label_17391", "label_17392", "label_17393", "label_17394", "label_17395", "label_17396", "label_17397", "label_17398", "label_17399", "label_17400", "label_17401", "label_17402", "label_17403", "label_17404", "label_17405", "label_17406", "label_17407", "label_17408", "label_17409", "label_17410", "label_17411", "label_17412", "label_17413", "label_17414", "label_17415", "label_17416", "label_17417", "label_17418", "label_17419", "label_17420", "label_17421", "label_17422", "label_17423", "label_17424", "label_17425", "label_17426", "label_17427", "label_17428", "label_17429", "label_17430", "label_17431", "label_17432", "label_17433", "label_17434", "label_17435", "label_17436", "label_17437", "label_17438", "label_17439", "label_17440", "label_17441", "label_17442", "label_17443", "label_17444", "label_17445", "label_17446", "label_17447", "label_17448", "label_17449", "label_17450", "label_17451", "label_17452", "label_17453", "label_17454", "label_17455", "label_17456", "label_17457", "label_17458", "label_17459", "label_17460", "label_17461", "label_17462", "label_17463", "label_17464", "label_17465", "label_17466", "label_17467", "label_17468", "label_17469", "label_17470", "label_17471", "label_17472", "label_17473", "label_17474", "label_17475", "label_17476", "label_17477", "label_17478", "label_17479", "label_17480", "label_17481", "label_17482", "label_17483", "label_17484", "label_17485", "label_17486", "label_17487", "label_17488", "label_17489", "label_17490", "label_17491", "label_17492", "label_17493", "label_17494", "label_17495", "label_17496", "label_17497", "label_17498", "label_17499", "label_17500", "label_17501", "label_17502", "label_17503", "label_17504", "label_17505", "label_17506", "label_17507", "label_17508", "label_17509", "label_17510", "label_17511", "label_17512", "label_17513", "label_17514", "label_17515", "label_17516", "label_17517", "label_17518", "label_17519", "label_17520", "label_17521", "label_17522", "label_17523", "label_17524", "label_17525", "label_17526", "label_17527", "label_17528", "label_17529", "label_17530", "label_17531", "label_17532", "label_17533", "label_17534", "label_17535", "label_17536", "label_17537", "label_17538", "label_17539", "label_17540", "label_17541", "label_17542", "label_17543", "label_17544", "label_17545", "label_17546", "label_17547", "label_17548", "label_17549", "label_17550", "label_17551", "label_17552", "label_17553", "label_17554", "label_17555", "label_17556", "label_17557", "label_17558", "label_17559", "label_17560", "label_17561", "label_17562", "label_17563", "label_17564", "label_17565", "label_17566", "label_17567", "label_17568", "label_17569", "label_17570", "label_17571", "label_17572", "label_17573", "label_17574", "label_17575", "label_17576", "label_17577", "label_17578", "label_17579", "label_17580", "label_17581", "label_17582", "label_17583", "label_17584", "label_17585", "label_17586", "label_17587", "label_17588", "label_17589", "label_17590", "label_17591", "label_17592", "label_17593", "label_17594", "label_17595", "label_17596", "label_17597", "label_17598", "label_17599", "label_17600", "label_17601", "label_17602", "label_17603", "label_17604", "label_17605", "label_17606", "label_17607", "label_17608", "label_17609", "label_17610", "label_17611", "label_17612", "label_17613", "label_17614", "label_17615", "label_17616", "label_17617", "label_17618", "label_17619", "label_17620", "label_17621", "label_17622", "label_17623", "label_17624", "label_17625", "label_17626", "label_17627", "label_17628", "label_17629", "label_17630", "label_17631", "label_17632", "label_17633", "label_17634", "label_17635", "label_17636", "label_17637", "label_17638", "label_17639", "label_17640", "label_17641", "label_17642", "label_17643", "label_17644", "label_17645", "label_17646", "label_17647", "label_17648", "label_17649", "label_17650", "label_17651", "label_17652", "label_17653", "label_17654", "label_17655", "label_17656", "label_17657", "label_17658", "label_17659", "label_17660", "label_17661", "label_17662", "label_17663", "label_17664", "label_17665", "label_17666", "label_17667", "label_17668", "label_17669", "label_17670", "label_17671", "label_17672", "label_17673", "label_17674", "label_17675", "label_17676", "label_17677", "label_17678", "label_17679", "label_17680", "label_17681", "label_17682", "label_17683", "label_17684", "label_17685", "label_17686", "label_17687", "label_17688", "label_17689", "label_17690", "label_17691", "label_17692", "label_17693", "label_17694", "label_17695", "label_17696", "label_17697", "label_17698", "label_17699", "label_17700", "label_17701", "label_17702", "label_17703", "label_17704", "label_17705", "label_17706", "label_17707", "label_17708", "label_17709", "label_17710", "label_17711", "label_17712", "label_17713", "label_17714", "label_17715", "label_17716", "label_17717", "label_17718", "label_17719", "label_17720", "label_17721", "label_17722", "label_17723", "label_17724", "label_17725", "label_17726", "label_17727", "label_17728", "label_17729", "label_17730", "label_17731", "label_17732", "label_17733", "label_17734", "label_17735", "label_17736", "label_17737", "label_17738", "label_17739", "label_17740", "label_17741", "label_17742", "label_17743", "label_17744", "label_17745", "label_17746", "label_17747", "label_17748", "label_17749", "label_17750", "label_17751", "label_17752", "label_17753", "label_17754", "label_17755", "label_17756", "label_17757", "label_17758", "label_17759", "label_17760", "label_17761", "label_17762", "label_17763", "label_17764", "label_17765", "label_17766", "label_17767", "label_17768", "label_17769", "label_17770", "label_17771", "label_17772", "label_17773", "label_17774", "label_17775", "label_17776", "label_17777", "label_17778", "label_17779", "label_17780", "label_17781", "label_17782", "label_17783", "label_17784", "label_17785", "label_17786", "label_17787", "label_17788", "label_17789", "label_17790", "label_17791", "label_17792", "label_17793", "label_17794", "label_17795", "label_17796", "label_17797", "label_17798", "label_17799", "label_17800", "label_17801", "label_17802", "label_17803", "label_17804", "label_17805", "label_17806", "label_17807", "label_17808", "label_17809", "label_17810", "label_17811", "label_17812", "label_17813", "label_17814", "label_17815", "label_17816", "label_17817", "label_17818", "label_17819", "label_17820", "label_17821", "label_17822", "label_17823", "label_17824", "label_17825", "label_17826", "label_17827", "label_17828", "label_17829", "label_17830", "label_17831", "label_17832", "label_17833", "label_17834", "label_17835", "label_17836", "label_17837", "label_17838", "label_17839", "label_17840", "label_17841", "label_17842", "label_17843", "label_17844", "label_17845", "label_17846", "label_17847", "label_17848", "label_17849", "label_17850", "label_17851", "label_17852", "label_17853", "label_17854", "label_17855", "label_17856", "label_17857", "label_17858", "label_17859", "label_17860", "label_17861", "label_17862", "label_17863", "label_17864", "label_17865", "label_17866", "label_17867", "label_17868", "label_17869", "label_17870", "label_17871", "label_17872", "label_17873", "label_17874", "label_17875", "label_17876", "label_17877", "label_17878", "label_17879", "label_17880", "label_17881", "label_17882", "label_17883", "label_17884", "label_17885", "label_17886", "label_17887", "label_17888", "label_17889", "label_17890", "label_17891", "label_17892", "label_17893", "label_17894", "label_17895", "label_17896", "label_17897", "label_17898", "label_17899", "label_17900", "label_17901", "label_17902", "label_17903", "label_17904", "label_17905", "label_17906", "label_17907", "label_17908", "label_17909", "label_17910", "label_17911", "label_17912", "label_17913", "label_17914", "label_17915", "label_17916", "label_17917", "label_17918", "label_17919", "label_17920", "label_17921", "label_17922", "label_17923", "label_17924", "label_17925", "label_17926", "label_17927", "label_17928", "label_17929", "label_17930", "label_17931", "label_17932", "label_17933", "label_17934", "label_17935", "label_17936", "label_17937", "label_17938", "label_17939", "label_17940", "label_17941", "label_17942", "label_17943", "label_17944", "label_17945", "label_17946", "label_17947", "label_17948", "label_17949", "label_17950", "label_17951", "label_17952", "label_17953", "label_17954", "label_17955", "label_17956", "label_17957", "label_17958", "label_17959", "label_17960", "label_17961", "label_17962", "label_17963", "label_17964", "label_17965", "label_17966", "label_17967", "label_17968", "label_17969", "label_17970", "label_17971", "label_17972", "label_17973", "label_17974", "label_17975", "label_17976", "label_17977", "label_17978", "label_17979", "label_17980", "label_17981", "label_17982", "label_17983", "label_17984", "label_17985", "label_17986", "label_17987", "label_17988", "label_17989", "label_17990", "label_17991", "label_17992", "label_17993", "label_17994", "label_17995", "label_17996", "label_17997", "label_17998", "label_17999", "label_18000", "label_18001", "label_18002", "label_18003", "label_18004", "label_18005", "label_18006", "label_18007", "label_18008", "label_18009", "label_18010", "label_18011", "label_18012", "label_18013", "label_18014", "label_18015", "label_18016", "label_18017", "label_18018", "label_18019", "label_18020", "label_18021", "label_18022", "label_18023", "label_18024", "label_18025", "label_18026", "label_18027", "label_18028", "label_18029", "label_18030", "label_18031", "label_18032", "label_18033", "label_18034", "label_18035", "label_18036", "label_18037", "label_18038", "label_18039", "label_18040", "label_18041", "label_18042", "label_18043", "label_18044", "label_18045", "label_18046", "label_18047", "label_18048", "label_18049", "label_18050", "label_18051", "label_18052", "label_18053", "label_18054", "label_18055", "label_18056", "label_18057", "label_18058", "label_18059", "label_18060", "label_18061", "label_18062", "label_18063", "label_18064", "label_18065", "label_18066", "label_18067", "label_18068", "label_18069", "label_18070", "label_18071", "label_18072", "label_18073", "label_18074", "label_18075", "label_18076", "label_18077", "label_18078", "label_18079", "label_18080", "label_18081", "label_18082", "label_18083", "label_18084", "label_18085", "label_18086", "label_18087", "label_18088", "label_18089", "label_18090", "label_18091", "label_18092", "label_18093", "label_18094", "label_18095", "label_18096", "label_18097", "label_18098", "label_18099", "label_18100", "label_18101", "label_18102", "label_18103", "label_18104", "label_18105", "label_18106", "label_18107", "label_18108", "label_18109", "label_18110", "label_18111", "label_18112", "label_18113", "label_18114", "label_18115", "label_18116", "label_18117", "label_18118", "label_18119", "label_18120", "label_18121", "label_18122", "label_18123", "label_18124", "label_18125", "label_18126", "label_18127", "label_18128", "label_18129", "label_18130", "label_18131", "label_18132", "label_18133", "label_18134", "label_18135", "label_18136", "label_18137", "label_18138", "label_18139", "label_18140", "label_18141", "label_18142", "label_18143", "label_18144", "label_18145", "label_18146", "label_18147", "label_18148", "label_18149", "label_18150", "label_18151", "label_18152", "label_18153", "label_18154", "label_18155", "label_18156", "label_18157", "label_18158", "label_18159", "label_18160", "label_18161", "label_18162", "label_18163", "label_18164", "label_18165", "label_18166", "label_18167", "label_18168", "label_18169", "label_18170", "label_18171", "label_18172", "label_18173", "label_18174", "label_18175", "label_18176", "label_18177", "label_18178", "label_18179", "label_18180", "label_18181", "label_18182", "label_18183", "label_18184", "label_18185", "label_18186", "label_18187", "label_18188", "label_18189", "label_18190", "label_18191", "label_18192", "label_18193", "label_18194", "label_18195", "label_18196", "label_18197", "label_18198", "label_18199", "label_18200", "label_18201", "label_18202", "label_18203", "label_18204", "label_18205", "label_18206", "label_18207", "label_18208", "label_18209", "label_18210", "label_18211", "label_18212", "label_18213", "label_18214", "label_18215", "label_18216", "label_18217", "label_18218", "label_18219", "label_18220", "label_18221", "label_18222", "label_18223", "label_18224", "label_18225", "label_18226", "label_18227", "label_18228", "label_18229", "label_18230", "label_18231", "label_18232", "label_18233", "label_18234", "label_18235", "label_18236", "label_18237", "label_18238", "label_18239", "label_18240", "label_18241", "label_18242", "label_18243", "label_18244", "label_18245", "label_18246", "label_18247", "label_18248", "label_18249", "label_18250", "label_18251", "label_18252", "label_18253", "label_18254", "label_18255", "label_18256", "label_18257", "label_18258", "label_18259", "label_18260", "label_18261", "label_18262", "label_18263", "label_18264", "label_18265", "label_18266", "label_18267", "label_18268", "label_18269", "label_18270", "label_18271", "label_18272", "label_18273", "label_18274", "label_18275", "label_18276", "label_18277", "label_18278", "label_18279", "label_18280", "label_18281", "label_18282", "label_18283", "label_18284", "label_18285", "label_18286", "label_18287", "label_18288", "label_18289", "label_18290", "label_18291", "label_18292", "label_18293", "label_18294", "label_18295", "label_18296", "label_18297", "label_18298", "label_18299", "label_18300", "label_18301", "label_18302", "label_18303", "label_18304", "label_18305", "label_18306", "label_18307", "label_18308", "label_18309", "label_18310", "label_18311", "label_18312", "label_18313", "label_18314", "label_18315", "label_18316", "label_18317", "label_18318", "label_18319", "label_18320", "label_18321", "label_18322", "label_18323", "label_18324", "label_18325", "label_18326", "label_18327", "label_18328", "label_18329", "label_18330", "label_18331", "label_18332", "label_18333", "label_18334", "label_18335", "label_18336", "label_18337", "label_18338", "label_18339", "label_18340", "label_18341", "label_18342", "label_18343", "label_18344", "label_18345", "label_18346", "label_18347", "label_18348", "label_18349", "label_18350", "label_18351", "label_18352", "label_18353", "label_18354", "label_18355", "label_18356", "label_18357", "label_18358", "label_18359", "label_18360", "label_18361", "label_18362", "label_18363", "label_18364", "label_18365", "label_18366", "label_18367", "label_18368", "label_18369", "label_18370", "label_18371", "label_18372", "label_18373", "label_18374", "label_18375", "label_18376", "label_18377", "label_18378", "label_18379", "label_18380", "label_18381", "label_18382", "label_18383", "label_18384", "label_18385", "label_18386", "label_18387", "label_18388", "label_18389", "label_18390", "label_18391", "label_18392", "label_18393", "label_18394", "label_18395", "label_18396", "label_18397", "label_18398", "label_18399", "label_18400", "label_18401", "label_18402", "label_18403", "label_18404", "label_18405", "label_18406", "label_18407", "label_18408", "label_18409", "label_18410", "label_18411", "label_18412", "label_18413", "label_18414", "label_18415", "label_18416", "label_18417", "label_18418", "label_18419", "label_18420", "label_18421", "label_18422", "label_18423", "label_18424", "label_18425", "label_18426", "label_18427", "label_18428", "label_18429", "label_18430", "label_18431", "label_18432", "label_18433", "label_18434", "label_18435", "label_18436", "label_18437", "label_18438", "label_18439", "label_18440", "label_18441", "label_18442", "label_18443", "label_18444", "label_18445", "label_18446", "label_18447", "label_18448", "label_18449", "label_18450", "label_18451", "label_18452", "label_18453", "label_18454", "label_18455", "label_18456", "label_18457", "label_18458", "label_18459", "label_18460", "label_18461", "label_18462", "label_18463", "label_18464", "label_18465", "label_18466", "label_18467", "label_18468", "label_18469", "label_18470", "label_18471", "label_18472", "label_18473", "label_18474", "label_18475", "label_18476", "label_18477", "label_18478", "label_18479", "label_18480", "label_18481", "label_18482", "label_18483", "label_18484", "label_18485", "label_18486", "label_18487", "label_18488", "label_18489", "label_18490", "label_18491", "label_18492", "label_18493", "label_18494", "label_18495", "label_18496", "label_18497", "label_18498", "label_18499", "label_18500", "label_18501", "label_18502", "label_18503", "label_18504", "label_18505", "label_18506", "label_18507", "label_18508", "label_18509", "label_18510", "label_18511", "label_18512", "label_18513", "label_18514", "label_18515", "label_18516", "label_18517", "label_18518", "label_18519", "label_18520", "label_18521", "label_18522", "label_18523", "label_18524", "label_18525", "label_18526", "label_18527", "label_18528", "label_18529", "label_18530", "label_18531", "label_18532", "label_18533", "label_18534", "label_18535", "label_18536", "label_18537", "label_18538", "label_18539", "label_18540", "label_18541", "label_18542", "label_18543", "label_18544", "label_18545", "label_18546", "label_18547", "label_18548", "label_18549", "label_18550", "label_18551", "label_18552", "label_18553", "label_18554", "label_18555", "label_18556", "label_18557", "label_18558", "label_18559", "label_18560", "label_18561", "label_18562", "label_18563", "label_18564", "label_18565", "label_18566", "label_18567", "label_18568", "label_18569", "label_18570", "label_18571", "label_18572", "label_18573", "label_18574", "label_18575", "label_18576", "label_18577", "label_18578", "label_18579", "label_18580", "label_18581", "label_18582", "label_18583", "label_18584", "label_18585", "label_18586", "label_18587", "label_18588", "label_18589", "label_18590", "label_18591", "label_18592", "label_18593", "label_18594", "label_18595", "label_18596", "label_18597", "label_18598", "label_18599", "label_18600", "label_18601", "label_18602", "label_18603", "label_18604", "label_18605", "label_18606", "label_18607", "label_18608", "label_18609", "label_18610", "label_18611", "label_18612", "label_18613", "label_18614", "label_18615", "label_18616", "label_18617", "label_18618", "label_18619", "label_18620", "label_18621", "label_18622", "label_18623", "label_18624", "label_18625", "label_18626", "label_18627", "label_18628", "label_18629", "label_18630", "label_18631", "label_18632", "label_18633", "label_18634", "label_18635", "label_18636", "label_18637", "label_18638", "label_18639", "label_18640", "label_18641", "label_18642", "label_18643", "label_18644", "label_18645", "label_18646", "label_18647", "label_18648", "label_18649", "label_18650", "label_18651", "label_18652", "label_18653", "label_18654", "label_18655", "label_18656", "label_18657", "label_18658", "label_18659", "label_18660", "label_18661", "label_18662", "label_18663", "label_18664", "label_18665", "label_18666", "label_18667", "label_18668", "label_18669", "label_18670", "label_18671", "label_18672", "label_18673", "label_18674", "label_18675", "label_18676", "label_18677", "label_18678", "label_18679", "label_18680", "label_18681", "label_18682", "label_18683", "label_18684", "label_18685", "label_18686", "label_18687", "label_18688", "label_18689", "label_18690", "label_18691", "label_18692", "label_18693", "label_18694", "label_18695", "label_18696", "label_18697", "label_18698", "label_18699", "label_18700", "label_18701", "label_18702", "label_18703", "label_18704", "label_18705", "label_18706", "label_18707", "label_18708", "label_18709", "label_18710", "label_18711", "label_18712", "label_18713", "label_18714", "label_18715", "label_18716", "label_18717", "label_18718", "label_18719", "label_18720", "label_18721", "label_18722", "label_18723", "label_18724", "label_18725", "label_18726", "label_18727", "label_18728", "label_18729", "label_18730", "label_18731", "label_18732", "label_18733", "label_18734", "label_18735", "label_18736", "label_18737", "label_18738", "label_18739", "label_18740", "label_18741", "label_18742", "label_18743", "label_18744", "label_18745", "label_18746", "label_18747", "label_18748", "label_18749", "label_18750", "label_18751", "label_18752", "label_18753", "label_18754", "label_18755", "label_18756", "label_18757", "label_18758", "label_18759", "label_18760", "label_18761", "label_18762", "label_18763", "label_18764", "label_18765", "label_18766", "label_18767", "label_18768", "label_18769", "label_18770", "label_18771", "label_18772", "label_18773", "label_18774", "label_18775", "label_18776", "label_18777", "label_18778", "label_18779", "label_18780", "label_18781", "label_18782", "label_18783", "label_18784", "label_18785", "label_18786", "label_18787", "label_18788", "label_18789", "label_18790", "label_18791", "label_18792", "label_18793", "label_18794", "label_18795", "label_18796", "label_18797", "label_18798", "label_18799", "label_18800", "label_18801", "label_18802", "label_18803", "label_18804", "label_18805", "label_18806", "label_18807", "label_18808", "label_18809", "label_18810", "label_18811", "label_18812", "label_18813", "label_18814", "label_18815", "label_18816", "label_18817", "label_18818", "label_18819", "label_18820", "label_18821", "label_18822", "label_18823", "label_18824", "label_18825", "label_18826", "label_18827", "label_18828", "label_18829", "label_18830", "label_18831", "label_18832", "label_18833", "label_18834", "label_18835", "label_18836", "label_18837", "label_18838", "label_18839", "label_18840", "label_18841", "label_18842", "label_18843", "label_18844", "label_18845", "label_18846", "label_18847", "label_18848", "label_18849", "label_18850", "label_18851", "label_18852", "label_18853", "label_18854", "label_18855", "label_18856", "label_18857", "label_18858", "label_18859", "label_18860", "label_18861", "label_18862", "label_18863", "label_18864", "label_18865", "label_18866", "label_18867", "label_18868", "label_18869", "label_18870", "label_18871", "label_18872", "label_18873", "label_18874", "label_18875", "label_18876", "label_18877", "label_18878", "label_18879", "label_18880", "label_18881", "label_18882", "label_18883", "label_18884", "label_18885", "label_18886", "label_18887", "label_18888", "label_18889", "label_18890", "label_18891", "label_18892", "label_18893", "label_18894", "label_18895", "label_18896", "label_18897", "label_18898", "label_18899", "label_18900", "label_18901", "label_18902", "label_18903", "label_18904", "label_18905", "label_18906", "label_18907", "label_18908", "label_18909", "label_18910", "label_18911", "label_18912", "label_18913", "label_18914", "label_18915", "label_18916", "label_18917", "label_18918", "label_18919", "label_18920", "label_18921", "label_18922", "label_18923", "label_18924", "label_18925", "label_18926", "label_18927", "label_18928", "label_18929", "label_18930", "label_18931", "label_18932", "label_18933", "label_18934", "label_18935", "label_18936", "label_18937", "label_18938", "label_18939", "label_18940", "label_18941", "label_18942", "label_18943", "label_18944", "label_18945", "label_18946", "label_18947", "label_18948", "label_18949", "label_18950", "label_18951", "label_18952", "label_18953", "label_18954", "label_18955", "label_18956", "label_18957", "label_18958", "label_18959", "label_18960", "label_18961", "label_18962", "label_18963", "label_18964", "label_18965", "label_18966", "label_18967", "label_18968", "label_18969", "label_18970", "label_18971", "label_18972", "label_18973", "label_18974", "label_18975", "label_18976", "label_18977", "label_18978", "label_18979", "label_18980", "label_18981", "label_18982", "label_18983", "label_18984", "label_18985", "label_18986", "label_18987", "label_18988", "label_18989", "label_18990", "label_18991", "label_18992", "label_18993", "label_18994", "label_18995", "label_18996", "label_18997", "label_18998", "label_18999", "label_19000", "label_19001", "label_19002", "label_19003", "label_19004", "label_19005", "label_19006", "label_19007", "label_19008", "label_19009", "label_19010", "label_19011", "label_19012", "label_19013", "label_19014", "label_19015", "label_19016", "label_19017", "label_19018", "label_19019", "label_19020", "label_19021", "label_19022", "label_19023", "label_19024", "label_19025", "label_19026", "label_19027", "label_19028", "label_19029", "label_19030", "label_19031", "label_19032", "label_19033", "label_19034", "label_19035", "label_19036", "label_19037", "label_19038", "label_19039", "label_19040", "label_19041", "label_19042", "label_19043", "label_19044", "label_19045", "label_19046", "label_19047", "label_19048", "label_19049", "label_19050", "label_19051", "label_19052", "label_19053", "label_19054", "label_19055", "label_19056", "label_19057", "label_19058", "label_19059", "label_19060", "label_19061", "label_19062", "label_19063", "label_19064", "label_19065", "label_19066", "label_19067", "label_19068", "label_19069", "label_19070", "label_19071", "label_19072", "label_19073", "label_19074", "label_19075", "label_19076", "label_19077", "label_19078", "label_19079", "label_19080", "label_19081", "label_19082", "label_19083", "label_19084", "label_19085", "label_19086", "label_19087", "label_19088", "label_19089", "label_19090", "label_19091", "label_19092", "label_19093", "label_19094", "label_19095", "label_19096", "label_19097", "label_19098", "label_19099", "label_19100", "label_19101", "label_19102", "label_19103", "label_19104", "label_19105", "label_19106", "label_19107", "label_19108", "label_19109", "label_19110", "label_19111", "label_19112", "label_19113", "label_19114", "label_19115", "label_19116", "label_19117", "label_19118", "label_19119", "label_19120", "label_19121", "label_19122", "label_19123", "label_19124", "label_19125", "label_19126", "label_19127", "label_19128", "label_19129", "label_19130", "label_19131", "label_19132", "label_19133", "label_19134", "label_19135", "label_19136", "label_19137", "label_19138", "label_19139", "label_19140", "label_19141", "label_19142", "label_19143", "label_19144", "label_19145", "label_19146", "label_19147", "label_19148", "label_19149", "label_19150", "label_19151", "label_19152", "label_19153", "label_19154", "label_19155", "label_19156", "label_19157", "label_19158", "label_19159", "label_19160", "label_19161", "label_19162", "label_19163", "label_19164", "label_19165", "label_19166", "label_19167", "label_19168", "label_19169", "label_19170", "label_19171", "label_19172", "label_19173", "label_19174", "label_19175", "label_19176", "label_19177", "label_19178", "label_19179", "label_19180", "label_19181", "label_19182", "label_19183", "label_19184", "label_19185", "label_19186", "label_19187", "label_19188", "label_19189", "label_19190", "label_19191", "label_19192", "label_19193", "label_19194", "label_19195", "label_19196", "label_19197", "label_19198", "label_19199", "label_19200", "label_19201", "label_19202", "label_19203", "label_19204", "label_19205", "label_19206", "label_19207", "label_19208", "label_19209", "label_19210", "label_19211", "label_19212", "label_19213", "label_19214", "label_19215", "label_19216", "label_19217", "label_19218", "label_19219", "label_19220", "label_19221", "label_19222", "label_19223", "label_19224", "label_19225", "label_19226", "label_19227", "label_19228", "label_19229", "label_19230", "label_19231", "label_19232", "label_19233", "label_19234", "label_19235", "label_19236", "label_19237", "label_19238", "label_19239", "label_19240", "label_19241", "label_19242", "label_19243", "label_19244", "label_19245", "label_19246", "label_19247", "label_19248", "label_19249", "label_19250", "label_19251", "label_19252", "label_19253", "label_19254", "label_19255", "label_19256", "label_19257", "label_19258", "label_19259", "label_19260", "label_19261", "label_19262", "label_19263", "label_19264", "label_19265", "label_19266", "label_19267", "label_19268", "label_19269", "label_19270", "label_19271", "label_19272", "label_19273", "label_19274", "label_19275", "label_19276", "label_19277", "label_19278", "label_19279", "label_19280", "label_19281", "label_19282", "label_19283", "label_19284", "label_19285", "label_19286", "label_19287", "label_19288", "label_19289", "label_19290", "label_19291", "label_19292", "label_19293", "label_19294", "label_19295", "label_19296", "label_19297", "label_19298", "label_19299", "label_19300", "label_19301", "label_19302", "label_19303", "label_19304", "label_19305", "label_19306", "label_19307", "label_19308", "label_19309", "label_19310", "label_19311", "label_19312", "label_19313", "label_19314", "label_19315", "label_19316", "label_19317", "label_19318", "label_19319", "label_19320", "label_19321", "label_19322", "label_19323", "label_19324", "label_19325", "label_19326", "label_19327", "label_19328", "label_19329", "label_19330", "label_19331", "label_19332", "label_19333", "label_19334", "label_19335", "label_19336", "label_19337", "label_19338", "label_19339", "label_19340", "label_19341", "label_19342", "label_19343", "label_19344", "label_19345", "label_19346", "label_19347", "label_19348", "label_19349", "label_19350", "label_19351", "label_19352", "label_19353", "label_19354", "label_19355", "label_19356", "label_19357", "label_19358", "label_19359", "label_19360", "label_19361", "label_19362", "label_19363", "label_19364", "label_19365", "label_19366", "label_19367", "label_19368", "label_19369", "label_19370", "label_19371", "label_19372", "label_19373", "label_19374", "label_19375", "label_19376", "label_19377", "label_19378", "label_19379", "label_19380", "label_19381", "label_19382", "label_19383", "label_19384", "label_19385", "label_19386", "label_19387", "label_19388", "label_19389", "label_19390", "label_19391", "label_19392", "label_19393", "label_19394", "label_19395", "label_19396", "label_19397", "label_19398", "label_19399", "label_19400", "label_19401", "label_19402", "label_19403", "label_19404", "label_19405", "label_19406", "label_19407", "label_19408", "label_19409", "label_19410", "label_19411", "label_19412", "label_19413", "label_19414", "label_19415", "label_19416", "label_19417", "label_19418", "label_19419", "label_19420", "label_19421", "label_19422", "label_19423", "label_19424", "label_19425", "label_19426", "label_19427", "label_19428", "label_19429", "label_19430", "label_19431", "label_19432", "label_19433", "label_19434", "label_19435", "label_19436", "label_19437", "label_19438", "label_19439", "label_19440", "label_19441", "label_19442", "label_19443", "label_19444", "label_19445", "label_19446", "label_19447", "label_19448", "label_19449", "label_19450", "label_19451", "label_19452", "label_19453", "label_19454", "label_19455", "label_19456", "label_19457", "label_19458", "label_19459", "label_19460", "label_19461", "label_19462", "label_19463", "label_19464", "label_19465", "label_19466", "label_19467", "label_19468", "label_19469", "label_19470", "label_19471", "label_19472", "label_19473", "label_19474", "label_19475", "label_19476", "label_19477", "label_19478", "label_19479", "label_19480", "label_19481", "label_19482", "label_19483", "label_19484", "label_19485", "label_19486", "label_19487", "label_19488", "label_19489", "label_19490", "label_19491", "label_19492", "label_19493", "label_19494", "label_19495", "label_19496", "label_19497", "label_19498", "label_19499", "label_19500", "label_19501", "label_19502", "label_19503", "label_19504", "label_19505", "label_19506", "label_19507", "label_19508", "label_19509", "label_19510", "label_19511", "label_19512", "label_19513", "label_19514", "label_19515", "label_19516", "label_19517", "label_19518", "label_19519", "label_19520", "label_19521", "label_19522", "label_19523", "label_19524", "label_19525", "label_19526", "label_19527", "label_19528", "label_19529", "label_19530", "label_19531", "label_19532", "label_19533", "label_19534", "label_19535", "label_19536", "label_19537", "label_19538", "label_19539", "label_19540", "label_19541", "label_19542", "label_19543", "label_19544", "label_19545", "label_19546", "label_19547", "label_19548", "label_19549", "label_19550", "label_19551", "label_19552", "label_19553", "label_19554", "label_19555", "label_19556", "label_19557", "label_19558", "label_19559", "label_19560", "label_19561", "label_19562", "label_19563", "label_19564", "label_19565", "label_19566", "label_19567", "label_19568", "label_19569", "label_19570", "label_19571", "label_19572", "label_19573", "label_19574", "label_19575", "label_19576", "label_19577", "label_19578", "label_19579", "label_19580", "label_19581", "label_19582", "label_19583", "label_19584", "label_19585", "label_19586", "label_19587", "label_19588", "label_19589", "label_19590", "label_19591", "label_19592", "label_19593", "label_19594", "label_19595", "label_19596", "label_19597", "label_19598", "label_19599", "label_19600", "label_19601", "label_19602", "label_19603", "label_19604", "label_19605", "label_19606", "label_19607", "label_19608", "label_19609", "label_19610", "label_19611", "label_19612", "label_19613", "label_19614", "label_19615", "label_19616", "label_19617", "label_19618", "label_19619", "label_19620", "label_19621", "label_19622", "label_19623", "label_19624", "label_19625", "label_19626", "label_19627", "label_19628", "label_19629", "label_19630", "label_19631", "label_19632", "label_19633", "label_19634", "label_19635", "label_19636", "label_19637", "label_19638", "label_19639", "label_19640", "label_19641", "label_19642", "label_19643", "label_19644", "label_19645", "label_19646", "label_19647", "label_19648", "label_19649", "label_19650", "label_19651", "label_19652", "label_19653", "label_19654", "label_19655", "label_19656", "label_19657", "label_19658", "label_19659", "label_19660", "label_19661", "label_19662", "label_19663", "label_19664", "label_19665", "label_19666", "label_19667", "label_19668", "label_19669", "label_19670", "label_19671", "label_19672", "label_19673", "label_19674", "label_19675", "label_19676", "label_19677", "label_19678", "label_19679", "label_19680", "label_19681", "label_19682", "label_19683", "label_19684", "label_19685", "label_19686", "label_19687", "label_19688", "label_19689", "label_19690", "label_19691", "label_19692", "label_19693", "label_19694", "label_19695", "label_19696", "label_19697", "label_19698", "label_19699", "label_19700", "label_19701", "label_19702", "label_19703", "label_19704", "label_19705", "label_19706", "label_19707", "label_19708", "label_19709", "label_19710", "label_19711", "label_19712", "label_19713", "label_19714", "label_19715", "label_19716", "label_19717", "label_19718", "label_19719", "label_19720", "label_19721", "label_19722", "label_19723", "label_19724", "label_19725", "label_19726", "label_19727", "label_19728", "label_19729", "label_19730", "label_19731", "label_19732", "label_19733", "label_19734", "label_19735", "label_19736", "label_19737", "label_19738", "label_19739", "label_19740", "label_19741", "label_19742", "label_19743", "label_19744", "label_19745", "label_19746", "label_19747", "label_19748", "label_19749", "label_19750", "label_19751", "label_19752", "label_19753", "label_19754", "label_19755", "label_19756", "label_19757", "label_19758", "label_19759", "label_19760", "label_19761", "label_19762", "label_19763", "label_19764", "label_19765", "label_19766", "label_19767", "label_19768", "label_19769", "label_19770", "label_19771", "label_19772", "label_19773", "label_19774", "label_19775", "label_19776", "label_19777", "label_19778", "label_19779", "label_19780", "label_19781", "label_19782", "label_19783", "label_19784", "label_19785", "label_19786", "label_19787", "label_19788", "label_19789", "label_19790", "label_19791", "label_19792", "label_19793", "label_19794", "label_19795", "label_19796", "label_19797", "label_19798", "label_19799", "label_19800", "label_19801", "label_19802", "label_19803", "label_19804", "label_19805", "label_19806", "label_19807", "label_19808", "label_19809", "label_19810", "label_19811", "label_19812", "label_19813", "label_19814", "label_19815", "label_19816", "label_19817", "label_19818", "label_19819", "label_19820", "label_19821", "label_19822", "label_19823", "label_19824", "label_19825", "label_19826", "label_19827", "label_19828", "label_19829", "label_19830", "label_19831", "label_19832", "label_19833", "label_19834", "label_19835", "label_19836", "label_19837", "label_19838", "label_19839", "label_19840", "label_19841", "label_19842", "label_19843", "label_19844", "label_19845", "label_19846", "label_19847", "label_19848", "label_19849", "label_19850", "label_19851", "label_19852", "label_19853", "label_19854", "label_19855", "label_19856", "label_19857", "label_19858", "label_19859", "label_19860", "label_19861", "label_19862", "label_19863", "label_19864", "label_19865", "label_19866", "label_19867", "label_19868", "label_19869", "label_19870", "label_19871", "label_19872", "label_19873", "label_19874", "label_19875", "label_19876", "label_19877", "label_19878", "label_19879", "label_19880", "label_19881", "label_19882", "label_19883", "label_19884", "label_19885", "label_19886", "label_19887", "label_19888", "label_19889", "label_19890", "label_19891", "label_19892", "label_19893", "label_19894", "label_19895", "label_19896", "label_19897", "label_19898", "label_19899", "label_19900", "label_19901", "label_19902", "label_19903", "label_19904", "label_19905", "label_19906", "label_19907", "label_19908", "label_19909", "label_19910", "label_19911", "label_19912", "label_19913", "label_19914", "label_19915", "label_19916", "label_19917", "label_19918", "label_19919", "label_19920", "label_19921", "label_19922", "label_19923", "label_19924", "label_19925", "label_19926", "label_19927", "label_19928", "label_19929", "label_19930", "label_19931", "label_19932", "label_19933", "label_19934", "label_19935", "label_19936", "label_19937", "label_19938", "label_19939", "label_19940", "label_19941", "label_19942", "label_19943", "label_19944", "label_19945", "label_19946", "label_19947", "label_19948", "label_19949", "label_19950", "label_19951", "label_19952", "label_19953", "label_19954", "label_19955", "label_19956", "label_19957", "label_19958", "label_19959", "label_19960", "label_19961", "label_19962", "label_19963", "label_19964", "label_19965", "label_19966", "label_19967", "label_19968", "label_19969", "label_19970", "label_19971", "label_19972", "label_19973", "label_19974", "label_19975", "label_19976", "label_19977", "label_19978", "label_19979", "label_19980", "label_19981", "label_19982", "label_19983", "label_19984", "label_19985", "label_19986", "label_19987", "label_19988", "label_19989", "label_19990", "label_19991", "label_19992", "label_19993", "label_19994", "label_19995", "label_19996", "label_19997", "label_19998", "label_19999", "label_20000", "label_20001", "label_20002", "label_20003", "label_20004", "label_20005", "label_20006", "label_20007", "label_20008", "label_20009", "label_20010", "label_20011", "label_20012", "label_20013", "label_20014", "label_20015", "label_20016", "label_20017", "label_20018", "label_20019", "label_20020", "label_20021", "label_20022", "label_20023", "label_20024", "label_20025", "label_20026", "label_20027", "label_20028", "label_20029", "label_20030", "label_20031", "label_20032", "label_20033", "label_20034", "label_20035", "label_20036", "label_20037", "label_20038", "label_20039", "label_20040", "label_20041", "label_20042", "label_20043", "label_20044", "label_20045", "label_20046", "label_20047", "label_20048", "label_20049", "label_20050", "label_20051", "label_20052", "label_20053", "label_20054", "label_20055", "label_20056", "label_20057", "label_20058", "label_20059", "label_20060", "label_20061", "label_20062", "label_20063", "label_20064", "label_20065", "label_20066", "label_20067", "label_20068", "label_20069", "label_20070", "label_20071", "label_20072", "label_20073", "label_20074", "label_20075", "label_20076", "label_20077", "label_20078", "label_20079", "label_20080", "label_20081", "label_20082", "label_20083", "label_20084", "label_20085", "label_20086", "label_20087", "label_20088", "label_20089", "label_20090", "label_20091", "label_20092", "label_20093", "label_20094", "label_20095", "label_20096", "label_20097", "label_20098", "label_20099", "label_20100", "label_20101", "label_20102", "label_20103", "label_20104", "label_20105", "label_20106", "label_20107", "label_20108", "label_20109", "label_20110", "label_20111", "label_20112", "label_20113", "label_20114", "label_20115", "label_20116", "label_20117", "label_20118", "label_20119", "label_20120", "label_20121", "label_20122", "label_20123", "label_20124", "label_20125", "label_20126", "label_20127", "label_20128", "label_20129", "label_20130", "label_20131", "label_20132", "label_20133", "label_20134", "label_20135", "label_20136", "label_20137", "label_20138", "label_20139", "label_20140", "label_20141", "label_20142", "label_20143", "label_20144", "label_20145", "label_20146", "label_20147", "label_20148", "label_20149", "label_20150", "label_20151", "label_20152", "label_20153", "label_20154", "label_20155", "label_20156", "label_20157", "label_20158", "label_20159", "label_20160", "label_20161", "label_20162", "label_20163", "label_20164", "label_20165", "label_20166", "label_20167", "label_20168", "label_20169", "label_20170", "label_20171", "label_20172", "label_20173", "label_20174", "label_20175", "label_20176", "label_20177", "label_20178", "label_20179", "label_20180", "label_20181", "label_20182", "label_20183", "label_20184", "label_20185", "label_20186", "label_20187", "label_20188", "label_20189", "label_20190", "label_20191", "label_20192", "label_20193", "label_20194", "label_20195", "label_20196", "label_20197", "label_20198", "label_20199", "label_20200", "label_20201", "label_20202", "label_20203", "label_20204", "label_20205", "label_20206", "label_20207", "label_20208", "label_20209", "label_20210", "label_20211", "label_20212", "label_20213", "label_20214", "label_20215", "label_20216", "label_20217", "label_20218", "label_20219", "label_20220", "label_20221", "label_20222", "label_20223", "label_20224", "label_20225", "label_20226", "label_20227", "label_20228", "label_20229", "label_20230", "label_20231", "label_20232", "label_20233", "label_20234", "label_20235", "label_20236", "label_20237", "label_20238", "label_20239", "label_20240", "label_20241", "label_20242", "label_20243", "label_20244", "label_20245", "label_20246", "label_20247", "label_20248", "label_20249", "label_20250", "label_20251", "label_20252", "label_20253", "label_20254", "label_20255", "label_20256", "label_20257", "label_20258", "label_20259", "label_20260", "label_20261", "label_20262", "label_20263", "label_20264", "label_20265", "label_20266", "label_20267", "label_20268", "label_20269", "label_20270", "label_20271", "label_20272", "label_20273", "label_20274", "label_20275", "label_20276", "label_20277", "label_20278", "label_20279", "label_20280", "label_20281", "label_20282", "label_20283", "label_20284", "label_20285", "label_20286", "label_20287", "label_20288", "label_20289", "label_20290", "label_20291", "label_20292", "label_20293", "label_20294", "label_20295", "label_20296", "label_20297", "label_20298", "label_20299", "label_20300", "label_20301", "label_20302", "label_20303", "label_20304", "label_20305", "label_20306", "label_20307", "label_20308", "label_20309", "label_20310", "label_20311", "label_20312", "label_20313", "label_20314", "label_20315", "label_20316", "label_20317", "label_20318", "label_20319", "label_20320", "label_20321", "label_20322", "label_20323", "label_20324", "label_20325", "label_20326", "label_20327", "label_20328", "label_20329", "label_20330", "label_20331", "label_20332", "label_20333", "label_20334", "label_20335", "label_20336", "label_20337", "label_20338", "label_20339", "label_20340", "label_20341", "label_20342", "label_20343", "label_20344", "label_20345", "label_20346", "label_20347", "label_20348", "label_20349", "label_20350", "label_20351", "label_20352", "label_20353", "label_20354", "label_20355", "label_20356", "label_20357", "label_20358", "label_20359", "label_20360", "label_20361", "label_20362", "label_20363", "label_20364", "label_20365", "label_20366", "label_20367", "label_20368", "label_20369", "label_20370", "label_20371", "label_20372", "label_20373", "label_20374", "label_20375", "label_20376", "label_20377", "label_20378", "label_20379", "label_20380", "label_20381", "label_20382", "label_20383", "label_20384", "label_20385", "label_20386", "label_20387", "label_20388", "label_20389", "label_20390", "label_20391", "label_20392", "label_20393", "label_20394", "label_20395", "label_20396", "label_20397", "label_20398", "label_20399", "label_20400", "label_20401", "label_20402", "label_20403", "label_20404", "label_20405", "label_20406", "label_20407", "label_20408", "label_20409", "label_20410", "label_20411", "label_20412", "label_20413", "label_20414", "label_20415", "label_20416", "label_20417", "label_20418", "label_20419", "label_20420", "label_20421", "label_20422", "label_20423", "label_20424", "label_20425", "label_20426", "label_20427", "label_20428", "label_20429", "label_20430", "label_20431", "label_20432", "label_20433", "label_20434", "label_20435", "label_20436", "label_20437", "label_20438", "label_20439", "label_20440", "label_20441", "label_20442", "label_20443", "label_20444", "label_20445", "label_20446", "label_20447", "label_20448", "label_20449", "label_20450", "label_20451", "label_20452", "label_20453", "label_20454", "label_20455", "label_20456", "label_20457", "label_20458", "label_20459", "label_20460", "label_20461", "label_20462", "label_20463", "label_20464", "label_20465", "label_20466", "label_20467", "label_20468", "label_20469", "label_20470", "label_20471", "label_20472", "label_20473", "label_20474", "label_20475", "label_20476", "label_20477", "label_20478", "label_20479", "label_20480", "label_20481", "label_20482", "label_20483", "label_20484", "label_20485", "label_20486", "label_20487", "label_20488", "label_20489", "label_20490", "label_20491", "label_20492", "label_20493", "label_20494", "label_20495", "label_20496", "label_20497", "label_20498", "label_20499", "label_20500", "label_20501", "label_20502", "label_20503", "label_20504", "label_20505", "label_20506", "label_20507", "label_20508", "label_20509", "label_20510", "label_20511", "label_20512", "label_20513", "label_20514", "label_20515", "label_20516", "label_20517", "label_20518", "label_20519", "label_20520", "label_20521", "label_20522", "label_20523", "label_20524", "label_20525", "label_20526", "label_20527", "label_20528", "label_20529", "label_20530", "label_20531", "label_20532", "label_20533", "label_20534", "label_20535", "label_20536", "label_20537", "label_20538", "label_20539", "label_20540", "label_20541", "label_20542", "label_20543", "label_20544", "label_20545", "label_20546", "label_20547", "label_20548", "label_20549", "label_20550", "label_20551", "label_20552", "label_20553", "label_20554", "label_20555", "label_20556", "label_20557", "label_20558", "label_20559", "label_20560", "label_20561", "label_20562", "label_20563", "label_20564", "label_20565", "label_20566", "label_20567", "label_20568", "label_20569", "label_20570", "label_20571", "label_20572", "label_20573", "label_20574", "label_20575", "label_20576", "label_20577", "label_20578", "label_20579", "label_20580", "label_20581", "label_20582", "label_20583", "label_20584", "label_20585", "label_20586", "label_20587", "label_20588", "label_20589", "label_20590", "label_20591", "label_20592", "label_20593", "label_20594", "label_20595", "label_20596", "label_20597", "label_20598", "label_20599", "label_20600", "label_20601", "label_20602", "label_20603", "label_20604", "label_20605", "label_20606", "label_20607", "label_20608", "label_20609", "label_20610", "label_20611", "label_20612", "label_20613", "label_20614", "label_20615", "label_20616", "label_20617", "label_20618", "label_20619", "label_20620", "label_20621", "label_20622", "label_20623", "label_20624", "label_20625", "label_20626", "label_20627", "label_20628", "label_20629", "label_20630", "label_20631", "label_20632", "label_20633", "label_20634", "label_20635", "label_20636", "label_20637", "label_20638", "label_20639", "label_20640", "label_20641", "label_20642", "label_20643", "label_20644", "label_20645", "label_20646", "label_20647", "label_20648", "label_20649", "label_20650", "label_20651", "label_20652", "label_20653", "label_20654", "label_20655", "label_20656", "label_20657", "label_20658", "label_20659", "label_20660", "label_20661", "label_20662", "label_20663", "label_20664", "label_20665", "label_20666", "label_20667", "label_20668", "label_20669", "label_20670", "label_20671", "label_20672", "label_20673", "label_20674", "label_20675", "label_20676", "label_20677", "label_20678", "label_20679", "label_20680", "label_20681", "label_20682", "label_20683", "label_20684", "label_20685", "label_20686", "label_20687", "label_20688", "label_20689", "label_20690", "label_20691", "label_20692", "label_20693", "label_20694", "label_20695", "label_20696", "label_20697", "label_20698", "label_20699", "label_20700", "label_20701", "label_20702", "label_20703", "label_20704", "label_20705", "label_20706", "label_20707", "label_20708", "label_20709", "label_20710", "label_20711", "label_20712", "label_20713", "label_20714", "label_20715", "label_20716", "label_20717", "label_20718", "label_20719", "label_20720", "label_20721", "label_20722", "label_20723", "label_20724", "label_20725", "label_20726", "label_20727", "label_20728", "label_20729", "label_20730", "label_20731", "label_20732", "label_20733", "label_20734", "label_20735", "label_20736", "label_20737", "label_20738", "label_20739", "label_20740", "label_20741", "label_20742", "label_20743", "label_20744", "label_20745", "label_20746", "label_20747", "label_20748", "label_20749", "label_20750", "label_20751", "label_20752", "label_20753", "label_20754", "label_20755", "label_20756", "label_20757", "label_20758", "label_20759", "label_20760", "label_20761", "label_20762", "label_20763", "label_20764", "label_20765", "label_20766", "label_20767", "label_20768", "label_20769", "label_20770", "label_20771", "label_20772", "label_20773", "label_20774", "label_20775", "label_20776", "label_20777", "label_20778", "label_20779", "label_20780", "label_20781", "label_20782", "label_20783", "label_20784", "label_20785", "label_20786", "label_20787", "label_20788", "label_20789", "label_20790", "label_20791", "label_20792", "label_20793", "label_20794", "label_20795", "label_20796", "label_20797", "label_20798", "label_20799", "label_20800", "label_20801", "label_20802", "label_20803", "label_20804", "label_20805", "label_20806", "label_20807", "label_20808", "label_20809", "label_20810", "label_20811", "label_20812", "label_20813", "label_20814", "label_20815", "label_20816", "label_20817", "label_20818", "label_20819", "label_20820", "label_20821", "label_20822", "label_20823", "label_20824", "label_20825", "label_20826", "label_20827", "label_20828", "label_20829", "label_20830", "label_20831", "label_20832", "label_20833", "label_20834", "label_20835", "label_20836", "label_20837", "label_20838", "label_20839", "label_20840", "label_20841", "label_20842", "label_20843", "label_20844", "label_20845", "label_20846", "label_20847", "label_20848", "label_20849", "label_20850", "label_20851", "label_20852", "label_20853", "label_20854", "label_20855", "label_20856", "label_20857", "label_20858", "label_20859", "label_20860", "label_20861", "label_20862", "label_20863", "label_20864", "label_20865", "label_20866", "label_20867", "label_20868", "label_20869", "label_20870", "label_20871", "label_20872", "label_20873", "label_20874", "label_20875", "label_20876", "label_20877", "label_20878", "label_20879", "label_20880", "label_20881", "label_20882", "label_20883", "label_20884", "label_20885", "label_20886", "label_20887", "label_20888", "label_20889", "label_20890", "label_20891", "label_20892", "label_20893", "label_20894", "label_20895", "label_20896", "label_20897", "label_20898", "label_20899", "label_20900", "label_20901", "label_20902", "label_20903", "label_20904", "label_20905", "label_20906", "label_20907", "label_20908", "label_20909", "label_20910", "label_20911", "label_20912", "label_20913", "label_20914", "label_20915", "label_20916", "label_20917", "label_20918", "label_20919", "label_20920", "label_20921", "label_20922", "label_20923", "label_20924", "label_20925", "label_20926", "label_20927", "label_20928", "label_20929", "label_20930", "label_20931", "label_20932", "label_20933", "label_20934", "label_20935", "label_20936", "label_20937", "label_20938", "label_20939", "label_20940", "label_20941", "label_20942", "label_20943", "label_20944", "label_20945", "label_20946", "label_20947", "label_20948", "label_20949", "label_20950", "label_20951", "label_20952", "label_20953", "label_20954", "label_20955", "label_20956", "label_20957", "label_20958", "label_20959", "label_20960", "label_20961", "label_20962", "label_20963", "label_20964", "label_20965", "label_20966", "label_20967", "label_20968", "label_20969", "label_20970", "label_20971", "label_20972", "label_20973", "label_20974", "label_20975", "label_20976", "label_20977", "label_20978", "label_20979", "label_20980", "label_20981", "label_20982", "label_20983", "label_20984", "label_20985", "label_20986", "label_20987", "label_20988", "label_20989", "label_20990", "label_20991", "label_20992", "label_20993", "label_20994", "label_20995", "label_20996", "label_20997", "label_20998", "label_20999", "label_21000", "label_21001", "label_21002", "label_21003", "label_21004", "label_21005", "label_21006", "label_21007", "label_21008", "label_21009", "label_21010", "label_21011", "label_21012", "label_21013", "label_21014", "label_21015", "label_21016", "label_21017", "label_21018", "label_21019", "label_21020", "label_21021", "label_21022", "label_21023", "label_21024", "label_21025", "label_21026", "label_21027", "label_21028", "label_21029", "label_21030", "label_21031", "label_21032", "label_21033", "label_21034", "label_21035", "label_21036", "label_21037", "label_21038", "label_21039", "label_21040", "label_21041", "label_21042", "label_21043", "label_21044", "label_21045", "label_21046", "label_21047", "label_21048", "label_21049", "label_21050", "label_21051", "label_21052", "label_21053", "label_21054", "label_21055", "label_21056", "label_21057", "label_21058", "label_21059", "label_21060", "label_21061", "label_21062", "label_21063", "label_21064", "label_21065", "label_21066", "label_21067", "label_21068", "label_21069", "label_21070", "label_21071", "label_21072", "label_21073", "label_21074", "label_21075", "label_21076", "label_21077", "label_21078", "label_21079", "label_21080", "label_21081", "label_21082", "label_21083", "label_21084", "label_21085", "label_21086", "label_21087", "label_21088", "label_21089", "label_21090", "label_21091", "label_21092", "label_21093", "label_21094", "label_21095", "label_21096", "label_21097", "label_21098", "label_21099", "label_21100", "label_21101", "label_21102", "label_21103", "label_21104", "label_21105", "label_21106", "label_21107", "label_21108", "label_21109", "label_21110", "label_21111", "label_21112", "label_21113", "label_21114", "label_21115", "label_21116", "label_21117", "label_21118", "label_21119", "label_21120", "label_21121", "label_21122", "label_21123", "label_21124", "label_21125", "label_21126", "label_21127", "label_21128", "label_21129", "label_21130", "label_21131", "label_21132", "label_21133", "label_21134", "label_21135", "label_21136", "label_21137", "label_21138", "label_21139", "label_21140", "label_21141", "label_21142", "label_21143", "label_21144", "label_21145", "label_21146", "label_21147", "label_21148", "label_21149", "label_21150", "label_21151", "label_21152", "label_21153", "label_21154", "label_21155", "label_21156", "label_21157", "label_21158", "label_21159", "label_21160", "label_21161", "label_21162", "label_21163", "label_21164", "label_21165", "label_21166", "label_21167", "label_21168", "label_21169", "label_21170", "label_21171", "label_21172", "label_21173", "label_21174", "label_21175", "label_21176", "label_21177", "label_21178", "label_21179", "label_21180", "label_21181", "label_21182", "label_21183", "label_21184", "label_21185", "label_21186", "label_21187", "label_21188", "label_21189", "label_21190", "label_21191", "label_21192", "label_21193", "label_21194", "label_21195", "label_21196", "label_21197", "label_21198", "label_21199", "label_21200", "label_21201", "label_21202", "label_21203", "label_21204", "label_21205", "label_21206", "label_21207", "label_21208", "label_21209", "label_21210", "label_21211", "label_21212", "label_21213", "label_21214", "label_21215", "label_21216", "label_21217", "label_21218", "label_21219", "label_21220", "label_21221", "label_21222", "label_21223", "label_21224", "label_21225", "label_21226", "label_21227", "label_21228", "label_21229", "label_21230", "label_21231", "label_21232", "label_21233", "label_21234", "label_21235", "label_21236", "label_21237", "label_21238", "label_21239", "label_21240", "label_21241", "label_21242", "label_21243", "label_21244", "label_21245", "label_21246", "label_21247", "label_21248", "label_21249", "label_21250", "label_21251", "label_21252", "label_21253", "label_21254", "label_21255", "label_21256", "label_21257", "label_21258", "label_21259", "label_21260", "label_21261", "label_21262", "label_21263", "label_21264", "label_21265", "label_21266", "label_21267", "label_21268", "label_21269", "label_21270", "label_21271", "label_21272", "label_21273", "label_21274", "label_21275", "label_21276", "label_21277", "label_21278", "label_21279", "label_21280", "label_21281", "label_21282", "label_21283", "label_21284", "label_21285", "label_21286", "label_21287", "label_21288", "label_21289", "label_21290", "label_21291", "label_21292", "label_21293", "label_21294", "label_21295", "label_21296", "label_21297", "label_21298", "label_21299", "label_21300", "label_21301", "label_21302", "label_21303", "label_21304", "label_21305", "label_21306", "label_21307", "label_21308", "label_21309", "label_21310", "label_21311", "label_21312", "label_21313", "label_21314", "label_21315", "label_21316", "label_21317", "label_21318", "label_21319", "label_21320", "label_21321", "label_21322", "label_21323", "label_21324", "label_21325", "label_21326", "label_21327", "label_21328", "label_21329", "label_21330", "label_21331", "label_21332", "label_21333", "label_21334", "label_21335", "label_21336", "label_21337", "label_21338", "label_21339", "label_21340", "label_21341", "label_21342", "label_21343", "label_21344", "label_21345", "label_21346", "label_21347", "label_21348", "label_21349", "label_21350", "label_21351", "label_21352", "label_21353", "label_21354", "label_21355", "label_21356", "label_21357", "label_21358", "label_21359", "label_21360", "label_21361", "label_21362", "label_21363", "label_21364", "label_21365", "label_21366", "label_21367", "label_21368", "label_21369", "label_21370", "label_21371", "label_21372", "label_21373", "label_21374", "label_21375", "label_21376", "label_21377", "label_21378", "label_21379", "label_21380", "label_21381", "label_21382", "label_21383", "label_21384", "label_21385", "label_21386", "label_21387", "label_21388", "label_21389", "label_21390", "label_21391", "label_21392", "label_21393", "label_21394", "label_21395", "label_21396", "label_21397", "label_21398", "label_21399", "label_21400", "label_21401", "label_21402", "label_21403", "label_21404", "label_21405", "label_21406", "label_21407", "label_21408", "label_21409", "label_21410", "label_21411", "label_21412", "label_21413", "label_21414", "label_21415", "label_21416", "label_21417", "label_21418", "label_21419", "label_21420", "label_21421", "label_21422", "label_21423", "label_21424", "label_21425", "label_21426", "label_21427", "label_21428", "label_21429", "label_21430", "label_21431", "label_21432", "label_21433", "label_21434", "label_21435", "label_21436", "label_21437", "label_21438", "label_21439", "label_21440", "label_21441", "label_21442", "label_21443", "label_21444", "label_21445", "label_21446", "label_21447", "label_21448", "label_21449", "label_21450", "label_21451", "label_21452", "label_21453", "label_21454", "label_21455", "label_21456", "label_21457", "label_21458", "label_21459", "label_21460", "label_21461", "label_21462", "label_21463", "label_21464", "label_21465", "label_21466", "label_21467", "label_21468", "label_21469", "label_21470", "label_21471", "label_21472", "label_21473", "label_21474", "label_21475", "label_21476", "label_21477", "label_21478", "label_21479", "label_21480", "label_21481", "label_21482", "label_21483", "label_21484", "label_21485", "label_21486", "label_21487", "label_21488", "label_21489", "label_21490", "label_21491", "label_21492", "label_21493", "label_21494", "label_21495", "label_21496", "label_21497", "label_21498", "label_21499", "label_21500", "label_21501", "label_21502", "label_21503", "label_21504", "label_21505", "label_21506", "label_21507", "label_21508", "label_21509", "label_21510", "label_21511", "label_21512", "label_21513", "label_21514", "label_21515", "label_21516", "label_21517", "label_21518", "label_21519", "label_21520", "label_21521", "label_21522", "label_21523", "label_21524", "label_21525", "label_21526", "label_21527", "label_21528", "label_21529", "label_21530", "label_21531", "label_21532", "label_21533", "label_21534", "label_21535", "label_21536", "label_21537", "label_21538", "label_21539", "label_21540", "label_21541", "label_21542", "label_21543", "label_21544", "label_21545", "label_21546", "label_21547", "label_21548", "label_21549", "label_21550", "label_21551", "label_21552", "label_21553", "label_21554", "label_21555", "label_21556", "label_21557", "label_21558", "label_21559", "label_21560", "label_21561", "label_21562", "label_21563", "label_21564", "label_21565", "label_21566", "label_21567", "label_21568", "label_21569", "label_21570", "label_21571", "label_21572", "label_21573", "label_21574", "label_21575", "label_21576", "label_21577", "label_21578", "label_21579", "label_21580", "label_21581", "label_21582", "label_21583", "label_21584", "label_21585", "label_21586", "label_21587", "label_21588", "label_21589", "label_21590", "label_21591", "label_21592", "label_21593", "label_21594", "label_21595", "label_21596", "label_21597", "label_21598", "label_21599", "label_21600", "label_21601", "label_21602", "label_21603", "label_21604", "label_21605", "label_21606", "label_21607", "label_21608", "label_21609", "label_21610", "label_21611", "label_21612", "label_21613", "label_21614", "label_21615", "label_21616", "label_21617", "label_21618", "label_21619", "label_21620", "label_21621", "label_21622", "label_21623", "label_21624", "label_21625", "label_21626", "label_21627", "label_21628", "label_21629", "label_21630", "label_21631", "label_21632", "label_21633", "label_21634", "label_21635", "label_21636", "label_21637", "label_21638", "label_21639", "label_21640", "label_21641", "label_21642", "label_21643", "label_21644", "label_21645", "label_21646", "label_21647", "label_21648", "label_21649", "label_21650", "label_21651", "label_21652", "label_21653", "label_21654", "label_21655", "label_21656", "label_21657", "label_21658", "label_21659", "label_21660", "label_21661", "label_21662", "label_21663", "label_21664", "label_21665", "label_21666", "label_21667", "label_21668", "label_21669", "label_21670", "label_21671", "label_21672", "label_21673", "label_21674", "label_21675", "label_21676", "label_21677", "label_21678", "label_21679", "label_21680", "label_21681", "label_21682", "label_21683", "label_21684", "label_21685", "label_21686", "label_21687", "label_21688", "label_21689", "label_21690", "label_21691", "label_21692", "label_21693", "label_21694", "label_21695", "label_21696", "label_21697", "label_21698", "label_21699", "label_21700", "label_21701", "label_21702", "label_21703", "label_21704", "label_21705", "label_21706", "label_21707", "label_21708", "label_21709", "label_21710", "label_21711", "label_21712", "label_21713", "label_21714", "label_21715", "label_21716", "label_21717", "label_21718", "label_21719", "label_21720", "label_21721", "label_21722", "label_21723", "label_21724", "label_21725", "label_21726", "label_21727", "label_21728", "label_21729", "label_21730", "label_21731", "label_21732", "label_21733", "label_21734", "label_21735", "label_21736", "label_21737", "label_21738", "label_21739", "label_21740", "label_21741", "label_21742", "label_21743", "label_21744", "label_21745", "label_21746", "label_21747", "label_21748", "label_21749", "label_21750", "label_21751", "label_21752", "label_21753", "label_21754", "label_21755", "label_21756", "label_21757", "label_21758", "label_21759", "label_21760", "label_21761", "label_21762", "label_21763", "label_21764", "label_21765", "label_21766", "label_21767", "label_21768", "label_21769", "label_21770", "label_21771", "label_21772", "label_21773", "label_21774", "label_21775", "label_21776", "label_21777", "label_21778", "label_21779", "label_21780", "label_21781", "label_21782", "label_21783", "label_21784", "label_21785", "label_21786", "label_21787", "label_21788", "label_21789", "label_21790", "label_21791", "label_21792", "label_21793", "label_21794", "label_21795", "label_21796", "label_21797", "label_21798", "label_21799", "label_21800", "label_21801", "label_21802", "label_21803", "label_21804", "label_21805", "label_21806", "label_21807", "label_21808", "label_21809", "label_21810", "label_21811", "label_21812", "label_21813", "label_21814", "label_21815", "label_21816", "label_21817", "label_21818", "label_21819", "label_21820", "label_21821", "label_21822", "label_21823", "label_21824", "label_21825", "label_21826", "label_21827", "label_21828", "label_21829", "label_21830", "label_21831", "label_21832", "label_21833", "label_21834", "label_21835", "label_21836", "label_21837", "label_21838", "label_21839", "label_21840" ]
microsoft/swinv2-base-patch4-window12to16-192to256-22kto1k-ft
# Swin Transformer v2 (base-sized model) Swin Transformer v2 model pre-trained on ImageNet-21k and fine-tuned on ImageNet-1k at resolution 256x256. It was introduced in the paper [Swin Transformer V2: Scaling Up Capacity and Resolution](https://arxiv.org/abs/2111.09883) by Liu et al. and first released in [this repository](https://github.com/microsoft/Swin-Transformer). Disclaimer: The team releasing Swin Transformer v2 did not write a model card for this model so this model card has been written by the Hugging Face team. ## Model description The Swin Transformer is a type of Vision Transformer. It builds hierarchical feature maps by merging image patches (shown in gray) in deeper layers and has linear computation complexity to input image size due to computation of self-attention only within each local window (shown in red). It can thus serve as a general-purpose backbone for both image classification and dense recognition tasks. In contrast, previous vision Transformers produce feature maps of a single low resolution and have quadratic computation complexity to input image size due to computation of self-attention globally. Swin Transformer v2 adds 3 main improvements: 1) a residual-post-norm method combined with cosine attention to improve training stability; 2) a log-spaced continuous position bias method to effectively transfer models pre-trained using low-resolution images to downstream tasks with high-resolution inputs; 3) a self-supervised pre-training method, SimMIM, to reduce the needs of vast labeled images. ![model image](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/swin_transformer_architecture.png) [Source](https://paperswithcode.com/method/swin-transformer) ## Intended uses & limitations You can use the raw model for image classification. See the [model hub](https://huggingface.co/models?search=swinv2) to look for fine-tuned versions on a task that interests you. ### How to use Here is how to use this model to classify an image of the COCO 2017 dataset into one of the 1,000 ImageNet classes: ```python from transformers import AutoImageProcessor, AutoModelForImageClassification from PIL import Image import requests url = "http://images.cocodataset.org/val2017/000000039769.jpg" image = Image.open(requests.get(url, stream=True).raw) processor = AutoImageProcessor.from_pretrained("microsoft/swinv2-base-patch4-window12to16-192to256-22kto1k-ft") model = AutoModelForImageClassification.from_pretrained("microsoft/swinv2-base-patch4-window12to16-192to256-22kto1k-ft") inputs = processor(images=image, return_tensors="pt") outputs = model(**inputs) logits = outputs.logits # model predicts one of the 1000 ImageNet classes predicted_class_idx = logits.argmax(-1).item() print("Predicted class:", model.config.id2label[predicted_class_idx]) ``` For more code examples, we refer to the [documentation](https://huggingface.co/transformers/model_doc/swinv2.html#). ### BibTeX entry and citation info ```bibtex @article{DBLP:journals/corr/abs-2111-09883, author = {Ze Liu and Han Hu and Yutong Lin and Zhuliang Yao and Zhenda Xie and Yixuan Wei and Jia Ning and Yue Cao and Zheng Zhang and Li Dong and Furu Wei and Baining Guo}, title = {Swin Transformer {V2:} Scaling Up Capacity and Resolution}, journal = {CoRR}, volume = {abs/2111.09883}, year = {2021}, url = {https://arxiv.org/abs/2111.09883}, eprinttype = {arXiv}, eprint = {2111.09883}, timestamp = {Thu, 02 Dec 2021 15:54:22 +0100}, biburl = {https://dblp.org/rec/journals/corr/abs-2111-09883.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ```
[ "tench, tinca tinca", "goldfish, carassius auratus", "great white shark, white shark, man-eater, man-eating shark, carcharodon carcharias", "tiger shark, galeocerdo cuvieri", "hammerhead, hammerhead shark", "electric ray, crampfish, numbfish, torpedo", "stingray", "cock", "hen", "ostrich, struthio camelus", "brambling, fringilla montifringilla", "goldfinch, carduelis carduelis", "house finch, linnet, carpodacus mexicanus", "junco, snowbird", "indigo bunting, indigo finch, indigo bird, passerina cyanea", "robin, american robin, turdus migratorius", "bulbul", "jay", "magpie", "chickadee", "water ouzel, dipper", "kite", "bald eagle, american eagle, haliaeetus leucocephalus", "vulture", "great grey owl, great gray owl, strix nebulosa", "european fire salamander, salamandra salamandra", "common newt, triturus vulgaris", "eft", "spotted salamander, ambystoma maculatum", "axolotl, mud puppy, ambystoma mexicanum", "bullfrog, rana catesbeiana", "tree frog, tree-frog", "tailed frog, bell toad, ribbed toad, tailed toad, ascaphus trui", "loggerhead, loggerhead turtle, caretta caretta", "leatherback turtle, leatherback, leathery turtle, dermochelys coriacea", "mud turtle", "terrapin", "box turtle, box tortoise", "banded gecko", "common iguana, iguana, iguana iguana", "american chameleon, anole, anolis carolinensis", "whiptail, whiptail lizard", "agama", "frilled lizard, chlamydosaurus kingi", "alligator lizard", "gila monster, heloderma suspectum", "green lizard, lacerta viridis", "african chameleon, chamaeleo chamaeleon", "komodo dragon, komodo lizard, dragon lizard, giant lizard, varanus komodoensis", "african crocodile, nile crocodile, crocodylus niloticus", "american alligator, alligator mississipiensis", "triceratops", "thunder snake, worm snake, carphophis amoenus", "ringneck snake, ring-necked snake, ring snake", "hognose snake, puff adder, sand viper", "green snake, grass snake", "king snake, kingsnake", "garter snake, grass snake", "water snake", "vine snake", "night snake, hypsiglena torquata", "boa constrictor, constrictor constrictor", "rock python, rock snake, python sebae", "indian cobra, naja naja", "green mamba", "sea snake", "horned viper, cerastes, sand viper, horned asp, cerastes cornutus", "diamondback, diamondback rattlesnake, crotalus adamanteus", "sidewinder, horned rattlesnake, crotalus cerastes", "trilobite", "harvestman, daddy longlegs, phalangium opilio", "scorpion", "black and gold garden spider, argiope aurantia", "barn spider, araneus cavaticus", "garden spider, aranea diademata", "black widow, latrodectus mactans", "tarantula", "wolf spider, hunting spider", "tick", "centipede", "black grouse", "ptarmigan", "ruffed grouse, partridge, bonasa umbellus", "prairie chicken, prairie grouse, prairie fowl", "peacock", "quail", "partridge", "african grey, african gray, psittacus erithacus", "macaw", "sulphur-crested cockatoo, kakatoe galerita, cacatua galerita", "lorikeet", "coucal", "bee eater", "hornbill", "hummingbird", "jacamar", "toucan", "drake", "red-breasted merganser, mergus serrator", "goose", "black swan, cygnus atratus", "tusker", "echidna, spiny anteater, anteater", "platypus, duckbill, duckbilled platypus, duck-billed platypus, ornithorhynchus anatinus", "wallaby, brush kangaroo", "koala, koala bear, kangaroo bear, native bear, phascolarctos cinereus", "wombat", "jellyfish", "sea anemone, anemone", "brain coral", "flatworm, platyhelminth", "nematode, nematode worm, roundworm", "conch", "snail", "slug", "sea slug, nudibranch", "chiton, coat-of-mail shell, sea cradle, polyplacophore", "chambered nautilus, pearly nautilus, nautilus", "dungeness crab, cancer magister", "rock crab, cancer irroratus", "fiddler crab", "king crab, alaska crab, alaskan king crab, alaska king crab, paralithodes camtschatica", "american lobster, northern lobster, maine lobster, homarus americanus", "spiny lobster, langouste, rock lobster, crawfish, crayfish, sea crawfish", "crayfish, crawfish, crawdad, crawdaddy", "hermit crab", "isopod", "white stork, ciconia ciconia", "black stork, ciconia nigra", "spoonbill", "flamingo", "little blue heron, egretta caerulea", "american egret, great white heron, egretta albus", "bittern", "crane", "limpkin, aramus pictus", "european gallinule, porphyrio porphyrio", "american coot, marsh hen, mud hen, water hen, fulica americana", "bustard", "ruddy turnstone, arenaria interpres", "red-backed sandpiper, dunlin, erolia alpina", "redshank, tringa totanus", "dowitcher", "oystercatcher, oyster catcher", "pelican", "king penguin, aptenodytes patagonica", "albatross, mollymawk", "grey whale, gray whale, devilfish, eschrichtius gibbosus, eschrichtius robustus", "killer whale, killer, orca, grampus, sea wolf, orcinus orca", "dugong, dugong dugon", "sea lion", "chihuahua", "japanese spaniel", "maltese dog, maltese terrier, maltese", "pekinese, pekingese, peke", "shih-tzu", "blenheim spaniel", "papillon", "toy terrier", "rhodesian ridgeback", "afghan hound, afghan", "basset, basset hound", "beagle", "bloodhound, sleuthhound", "bluetick", "black-and-tan coonhound", "walker hound, walker foxhound", "english foxhound", "redbone", "borzoi, russian wolfhound", "irish wolfhound", "italian greyhound", "whippet", "ibizan hound, ibizan podenco", "norwegian elkhound, elkhound", "otterhound, otter hound", "saluki, gazelle hound", "scottish deerhound, deerhound", "weimaraner", "staffordshire bullterrier, staffordshire bull terrier", "american staffordshire terrier, staffordshire terrier, american pit bull terrier, pit bull terrier", "bedlington terrier", "border terrier", "kerry blue terrier", "irish terrier", "norfolk terrier", "norwich terrier", "yorkshire terrier", "wire-haired fox terrier", "lakeland terrier", "sealyham terrier, sealyham", "airedale, airedale terrier", "cairn, cairn terrier", "australian terrier", "dandie dinmont, dandie dinmont terrier", "boston bull, boston terrier", "miniature schnauzer", "giant schnauzer", "standard schnauzer", "scotch terrier, scottish terrier, scottie", "tibetan terrier, chrysanthemum dog", "silky terrier, sydney silky", "soft-coated wheaten terrier", "west highland white terrier", "lhasa, lhasa apso", "flat-coated retriever", "curly-coated retriever", "golden retriever", "labrador retriever", "chesapeake bay retriever", "german short-haired pointer", "vizsla, hungarian pointer", "english setter", "irish setter, red setter", "gordon setter", "brittany spaniel", "clumber, clumber spaniel", "english springer, english springer spaniel", "welsh springer spaniel", "cocker spaniel, english cocker spaniel, cocker", "sussex spaniel", "irish water spaniel", "kuvasz", "schipperke", "groenendael", "malinois", "briard", "kelpie", "komondor", "old english sheepdog, bobtail", "shetland sheepdog, shetland sheep dog, shetland", "collie", "border collie", "bouvier des flandres, bouviers des flandres", "rottweiler", "german shepherd, german shepherd dog, german police dog, alsatian", "doberman, doberman pinscher", "miniature pinscher", "greater swiss mountain dog", "bernese mountain dog", "appenzeller", "entlebucher", "boxer", "bull mastiff", "tibetan mastiff", "french bulldog", "great dane", "saint bernard, st bernard", "eskimo dog, husky", "malamute, malemute, alaskan malamute", "siberian husky", "dalmatian, coach dog, carriage dog", "affenpinscher, monkey pinscher, monkey dog", "basenji", "pug, pug-dog", "leonberg", "newfoundland, newfoundland dog", "great pyrenees", "samoyed, samoyede", "pomeranian", "chow, chow chow", "keeshond", "brabancon griffon", "pembroke, pembroke welsh corgi", "cardigan, cardigan welsh corgi", "toy poodle", "miniature poodle", "standard poodle", "mexican hairless", "timber wolf, grey wolf, gray wolf, canis lupus", "white wolf, arctic wolf, canis lupus tundrarum", "red wolf, maned wolf, canis rufus, canis niger", "coyote, prairie wolf, brush wolf, canis latrans", "dingo, warrigal, warragal, canis dingo", "dhole, cuon alpinus", "african hunting dog, hyena dog, cape hunting dog, lycaon pictus", "hyena, hyaena", "red fox, vulpes vulpes", "kit fox, vulpes macrotis", "arctic fox, white fox, alopex lagopus", "grey fox, gray fox, urocyon cinereoargenteus", "tabby, tabby cat", "tiger cat", "persian cat", "siamese cat, siamese", "egyptian cat", "cougar, puma, catamount, mountain lion, painter, panther, felis concolor", "lynx, catamount", "leopard, panthera pardus", "snow leopard, ounce, panthera uncia", "jaguar, panther, panthera onca, felis onca", "lion, king of beasts, panthera leo", "tiger, panthera tigris", "cheetah, chetah, acinonyx jubatus", "brown bear, bruin, ursus arctos", "american black bear, black bear, ursus americanus, euarctos americanus", "ice bear, polar bear, ursus maritimus, thalarctos maritimus", "sloth bear, melursus ursinus, ursus ursinus", "mongoose", "meerkat, mierkat", "tiger beetle", "ladybug, ladybeetle, lady beetle, ladybird, ladybird beetle", "ground beetle, carabid beetle", "long-horned beetle, longicorn, longicorn beetle", "leaf beetle, chrysomelid", "dung beetle", "rhinoceros beetle", "weevil", "fly", "bee", "ant, emmet, pismire", "grasshopper, hopper", "cricket", "walking stick, walkingstick, stick insect", "cockroach, roach", "mantis, mantid", "cicada, cicala", "leafhopper", "lacewing, lacewing fly", "dragonfly, darning needle, devil's darning needle, sewing needle, snake feeder, snake doctor, mosquito hawk, skeeter hawk", "damselfly", "admiral", "ringlet, ringlet butterfly", "monarch, monarch butterfly, milkweed butterfly, danaus plexippus", "cabbage butterfly", "sulphur butterfly, sulfur butterfly", "lycaenid, lycaenid butterfly", "starfish, sea star", "sea urchin", "sea cucumber, holothurian", "wood rabbit, cottontail, cottontail rabbit", "hare", "angora, angora rabbit", "hamster", "porcupine, hedgehog", "fox squirrel, eastern fox squirrel, sciurus niger", "marmot", "beaver", "guinea pig, cavia cobaya", "sorrel", "zebra", "hog, pig, grunter, squealer, sus scrofa", "wild boar, boar, sus scrofa", "warthog", "hippopotamus, hippo, river horse, hippopotamus amphibius", "ox", "water buffalo, water ox, asiatic buffalo, bubalus bubalis", "bison", "ram, tup", "bighorn, bighorn sheep, cimarron, rocky mountain bighorn, rocky mountain sheep, ovis canadensis", "ibex, capra ibex", "hartebeest", "impala, aepyceros melampus", "gazelle", "arabian camel, dromedary, camelus dromedarius", "llama", "weasel", "mink", "polecat, fitch, foulmart, foumart, mustela putorius", "black-footed ferret, ferret, mustela nigripes", "otter", "skunk, polecat, wood pussy", "badger", "armadillo", "three-toed sloth, ai, bradypus tridactylus", "orangutan, orang, orangutang, pongo pygmaeus", "gorilla, gorilla gorilla", "chimpanzee, chimp, pan troglodytes", "gibbon, hylobates lar", "siamang, hylobates syndactylus, symphalangus syndactylus", "guenon, guenon monkey", "patas, hussar monkey, erythrocebus patas", "baboon", "macaque", "langur", "colobus, colobus monkey", "proboscis monkey, nasalis larvatus", "marmoset", "capuchin, ringtail, cebus capucinus", "howler monkey, howler", "titi, titi monkey", "spider monkey, ateles geoffroyi", "squirrel monkey, saimiri sciureus", "madagascar cat, ring-tailed lemur, lemur catta", "indri, indris, indri indri, indri brevicaudatus", "indian elephant, elephas maximus", "african elephant, loxodonta africana", "lesser panda, red panda, panda, bear cat, cat bear, ailurus fulgens", "giant panda, panda, panda bear, coon bear, ailuropoda melanoleuca", "barracouta, snoek", "eel", "coho, cohoe, coho salmon, blue jack, silver salmon, oncorhynchus kisutch", "rock beauty, holocanthus tricolor", "anemone fish", "sturgeon", "gar, garfish, garpike, billfish, lepisosteus osseus", "lionfish", "puffer, pufferfish, blowfish, globefish", "abacus", "abaya", "academic gown, academic robe, judge's robe", "accordion, piano accordion, squeeze box", "acoustic guitar", "aircraft carrier, carrier, flattop, attack aircraft carrier", "airliner", "airship, dirigible", "altar", "ambulance", "amphibian, amphibious vehicle", "analog clock", "apiary, bee house", "apron", "ashcan, trash can, garbage can, wastebin, ash bin, ash-bin, ashbin, dustbin, trash barrel, trash bin", "assault rifle, assault gun", "backpack, back pack, knapsack, packsack, rucksack, haversack", "bakery, bakeshop, bakehouse", "balance beam, beam", "balloon", "ballpoint, ballpoint pen, ballpen, biro", "band aid", "banjo", "bannister, banister, balustrade, balusters, handrail", "barbell", "barber chair", "barbershop", "barn", "barometer", "barrel, cask", "barrow, garden cart, lawn cart, wheelbarrow", "baseball", "basketball", "bassinet", "bassoon", "bathing cap, swimming cap", "bath towel", "bathtub, bathing tub, bath, tub", "beach wagon, station wagon, wagon, estate car, beach waggon, station waggon, waggon", "beacon, lighthouse, beacon light, pharos", "beaker", "bearskin, busby, shako", "beer bottle", "beer glass", "bell cote, bell cot", "bib", "bicycle-built-for-two, tandem bicycle, tandem", "bikini, two-piece", "binder, ring-binder", "binoculars, field glasses, opera glasses", "birdhouse", "boathouse", "bobsled, bobsleigh, bob", "bolo tie, bolo, bola tie, bola", "bonnet, poke bonnet", "bookcase", "bookshop, bookstore, bookstall", "bottlecap", "bow", "bow tie, bow-tie, bowtie", "brass, memorial tablet, plaque", "brassiere, bra, bandeau", "breakwater, groin, groyne, mole, bulwark, seawall, jetty", "breastplate, aegis, egis", "broom", "bucket, pail", "buckle", "bulletproof vest", "bullet train, bullet", "butcher shop, meat market", "cab, hack, taxi, taxicab", "caldron, cauldron", "candle, taper, wax light", "cannon", "canoe", "can opener, tin opener", "cardigan", "car mirror", "carousel, carrousel, merry-go-round, roundabout, whirligig", "carpenter's kit, tool kit", "carton", "car wheel", "cash machine, cash dispenser, automated teller machine, automatic teller machine, automated teller, automatic teller, atm", "cassette", "cassette player", "castle", "catamaran", "cd player", "cello, violoncello", "cellular telephone, cellular phone, cellphone, cell, mobile phone", "chain", "chainlink fence", "chain mail, ring mail, mail, chain armor, chain armour, ring armor, ring armour", "chain saw, chainsaw", "chest", "chiffonier, commode", "chime, bell, gong", "china cabinet, china closet", "christmas stocking", "church, church building", "cinema, movie theater, movie theatre, movie house, picture palace", "cleaver, meat cleaver, chopper", "cliff dwelling", "cloak", "clog, geta, patten, sabot", "cocktail shaker", "coffee mug", "coffeepot", "coil, spiral, volute, whorl, helix", "combination lock", "computer keyboard, keypad", "confectionery, confectionary, candy store", "container ship, containership, container vessel", "convertible", "corkscrew, bottle screw", "cornet, horn, trumpet, trump", "cowboy boot", "cowboy hat, ten-gallon hat", "cradle", "crane", "crash helmet", "crate", "crib, cot", "crock pot", "croquet ball", "crutch", "cuirass", "dam, dike, dyke", "desk", "desktop computer", "dial telephone, dial phone", "diaper, nappy, napkin", "digital clock", "digital watch", "dining table, board", "dishrag, dishcloth", "dishwasher, dish washer, dishwashing machine", "disk brake, disc brake", "dock, dockage, docking facility", "dogsled, dog sled, dog sleigh", "dome", "doormat, welcome mat", "drilling platform, offshore rig", "drum, membranophone, tympan", "drumstick", "dumbbell", "dutch oven", "electric fan, blower", "electric guitar", "electric locomotive", "entertainment center", "envelope", "espresso maker", "face powder", "feather boa, boa", "file, file cabinet, filing cabinet", "fireboat", "fire engine, fire truck", "fire screen, fireguard", "flagpole, flagstaff", "flute, transverse flute", "folding chair", "football helmet", "forklift", "fountain", "fountain pen", "four-poster", "freight car", "french horn, horn", "frying pan, frypan, skillet", "fur coat", "garbage truck, dustcart", "gasmask, respirator, gas helmet", "gas pump, gasoline pump, petrol pump, island dispenser", "goblet", "go-kart", "golf ball", "golfcart, golf cart", "gondola", "gong, tam-tam", "gown", "grand piano, grand", "greenhouse, nursery, glasshouse", "grille, radiator grille", "grocery store, grocery, food market, market", "guillotine", "hair slide", "hair spray", "half track", "hammer", "hamper", "hand blower, blow dryer, blow drier, hair dryer, hair drier", "hand-held computer, hand-held microcomputer", "handkerchief, hankie, hanky, hankey", "hard disc, hard disk, fixed disk", "harmonica, mouth organ, harp, mouth harp", "harp", "harvester, reaper", "hatchet", "holster", "home theater, home theatre", "honeycomb", "hook, claw", "hoopskirt, crinoline", "horizontal bar, high bar", "horse cart, horse-cart", "hourglass", "ipod", "iron, smoothing iron", "jack-o'-lantern", "jean, blue jean, denim", "jeep, landrover", "jersey, t-shirt, tee shirt", "jigsaw puzzle", "jinrikisha, ricksha, rickshaw", "joystick", "kimono", "knee pad", "knot", "lab coat, laboratory coat", "ladle", "lampshade, lamp shade", "laptop, laptop computer", "lawn mower, mower", "lens cap, lens cover", "letter opener, paper knife, paperknife", "library", "lifeboat", "lighter, light, igniter, ignitor", "limousine, limo", "liner, ocean liner", "lipstick, lip rouge", "loafer", "lotion", "loudspeaker, speaker, speaker unit, loudspeaker system, speaker system", "loupe, jeweler's loupe", "lumbermill, sawmill", "magnetic compass", "mailbag, postbag", "mailbox, letter box", "maillot", "maillot, tank suit", "manhole cover", "maraca", "marimba, xylophone", "mask", "matchstick", "maypole", "maze, labyrinth", "measuring cup", "medicine chest, medicine cabinet", "megalith, megalithic structure", "microphone, mike", "microwave, microwave oven", "military uniform", "milk can", "minibus", "miniskirt, mini", "minivan", "missile", "mitten", "mixing bowl", "mobile home, manufactured home", "model t", "modem", "monastery", "monitor", "moped", "mortar", "mortarboard", "mosque", "mosquito net", "motor scooter, scooter", "mountain bike, all-terrain bike, off-roader", "mountain tent", "mouse, computer mouse", "mousetrap", "moving van", "muzzle", "nail", "neck brace", "necklace", "nipple", "notebook, notebook computer", "obelisk", "oboe, hautboy, hautbois", "ocarina, sweet potato", "odometer, hodometer, mileometer, milometer", "oil filter", "organ, pipe organ", "oscilloscope, scope, cathode-ray oscilloscope, cro", "overskirt", "oxcart", "oxygen mask", "packet", "paddle, boat paddle", "paddlewheel, paddle wheel", "padlock", "paintbrush", "pajama, pyjama, pj's, jammies", "palace", "panpipe, pandean pipe, syrinx", "paper towel", "parachute, chute", "parallel bars, bars", "park bench", "parking meter", "passenger car, coach, carriage", "patio, terrace", "pay-phone, pay-station", "pedestal, plinth, footstall", "pencil box, pencil case", "pencil sharpener", "perfume, essence", "petri dish", "photocopier", "pick, plectrum, plectron", "pickelhaube", "picket fence, paling", "pickup, pickup truck", "pier", "piggy bank, penny bank", "pill bottle", "pillow", "ping-pong ball", "pinwheel", "pirate, pirate ship", "pitcher, ewer", "plane, carpenter's plane, woodworking plane", "planetarium", "plastic bag", "plate rack", "plow, plough", "plunger, plumber's helper", "polaroid camera, polaroid land camera", "pole", "police van, police wagon, paddy wagon, patrol wagon, wagon, black maria", "poncho", "pool table, billiard table, snooker table", "pop bottle, soda bottle", "pot, flowerpot", "potter's wheel", "power drill", "prayer rug, prayer mat", "printer", "prison, prison house", "projectile, missile", "projector", "puck, hockey puck", "punching bag, punch bag, punching ball, punchball", "purse", "quill, quill pen", "quilt, comforter, comfort, puff", "racer, race car, racing car", "racket, racquet", "radiator", "radio, wireless", "radio telescope, radio reflector", "rain barrel", "recreational vehicle, rv, r.v.", "reel", "reflex camera", "refrigerator, icebox", "remote control, remote", "restaurant, eating house, eating place, eatery", "revolver, six-gun, six-shooter", "rifle", "rocking chair, rocker", "rotisserie", "rubber eraser, rubber, pencil eraser", "rugby ball", "rule, ruler", "running shoe", "safe", "safety pin", "saltshaker, salt shaker", "sandal", "sarong", "sax, saxophone", "scabbard", "scale, weighing machine", "school bus", "schooner", "scoreboard", "screen, crt screen", "screw", "screwdriver", "seat belt, seatbelt", "sewing machine", "shield, buckler", "shoe shop, shoe-shop, shoe store", "shoji", "shopping basket", "shopping cart", "shovel", "shower cap", "shower curtain", "ski", "ski mask", "sleeping bag", "slide rule, slipstick", "sliding door", "slot, one-armed bandit", "snorkel", "snowmobile", "snowplow, snowplough", "soap dispenser", "soccer ball", "sock", "solar dish, solar collector, solar furnace", "sombrero", "soup bowl", "space bar", "space heater", "space shuttle", "spatula", "speedboat", "spider web, spider's web", "spindle", "sports car, sport car", "spotlight, spot", "stage", "steam locomotive", "steel arch bridge", "steel drum", "stethoscope", "stole", "stone wall", "stopwatch, stop watch", "stove", "strainer", "streetcar, tram, tramcar, trolley, trolley car", "stretcher", "studio couch, day bed", "stupa, tope", "submarine, pigboat, sub, u-boat", "suit, suit of clothes", "sundial", "sunglass", "sunglasses, dark glasses, shades", "sunscreen, sunblock, sun blocker", "suspension bridge", "swab, swob, mop", "sweatshirt", "swimming trunks, bathing trunks", "swing", "switch, electric switch, electrical switch", "syringe", "table lamp", "tank, army tank, armored combat vehicle, armoured combat vehicle", "tape player", "teapot", "teddy, teddy bear", "television, television system", "tennis ball", "thatch, thatched roof", "theater curtain, theatre curtain", "thimble", "thresher, thrasher, threshing machine", "throne", "tile roof", "toaster", "tobacco shop, tobacconist shop, tobacconist", "toilet seat", "torch", "totem pole", "tow truck, tow car, wrecker", "toyshop", "tractor", "trailer truck, tractor trailer, trucking rig, rig, articulated lorry, semi", "tray", "trench coat", "tricycle, trike, velocipede", "trimaran", "tripod", "triumphal arch", "trolleybus, trolley coach, trackless trolley", "trombone", "tub, vat", "turnstile", "typewriter keyboard", "umbrella", "unicycle, monocycle", "upright, upright piano", "vacuum, vacuum cleaner", "vase", "vault", "velvet", "vending machine", "vestment", "viaduct", "violin, fiddle", "volleyball", "waffle iron", "wall clock", "wallet, billfold, notecase, pocketbook", "wardrobe, closet, press", "warplane, military plane", "washbasin, handbasin, washbowl, lavabo, wash-hand basin", "washer, automatic washer, washing machine", "water bottle", "water jug", "water tower", "whiskey jug", "whistle", "wig", "window screen", "window shade", "windsor tie", "wine bottle", "wing", "wok", "wooden spoon", "wool, woolen, woollen", "worm fence, snake fence, snake-rail fence, virginia fence", "wreck", "yawl", "yurt", "web site, website, internet site, site", "comic book", "crossword puzzle, crossword", "street sign", "traffic light, traffic signal, stoplight", "book jacket, dust cover, dust jacket, dust wrapper", "menu", "plate", "guacamole", "consomme", "hot pot, hotpot", "trifle", "ice cream, icecream", "ice lolly, lolly, lollipop, popsicle", "french loaf", "bagel, beigel", "pretzel", "cheeseburger", "hotdog, hot dog, red hot", "mashed potato", "head cabbage", "broccoli", "cauliflower", "zucchini, courgette", "spaghetti squash", "acorn squash", "butternut squash", "cucumber, cuke", "artichoke, globe artichoke", "bell pepper", "cardoon", "mushroom", "granny smith", "strawberry", "orange", "lemon", "fig", "pineapple, ananas", "banana", "jackfruit, jak, jack", "custard apple", "pomegranate", "hay", "carbonara", "chocolate sauce, chocolate syrup", "dough", "meat loaf, meatloaf", "pizza, pizza pie", "potpie", "burrito", "red wine", "espresso", "cup", "eggnog", "alp", "bubble", "cliff, drop, drop-off", "coral reef", "geyser", "lakeside, lakeshore", "promontory, headland, head, foreland", "sandbar, sand bar", "seashore, coast, seacoast, sea-coast", "valley, vale", "volcano", "ballplayer, baseball player", "groom, bridegroom", "scuba diver", "rapeseed", "daisy", "yellow lady's slipper, yellow lady-slipper, cypripedium calceolus, cypripedium parviflorum", "corn", "acorn", "hip, rose hip, rosehip", "buckeye, horse chestnut, conker", "coral fungus", "agaric", "gyromitra", "stinkhorn, carrion fungus", "earthstar", "hen-of-the-woods, hen of the woods, polyporus frondosus, grifola frondosa", "bolete", "ear, spike, capitulum", "toilet tissue, toilet paper, bathroom tissue" ]
microsoft/swinv2-base-patch4-window12to24-192to384-22kto1k-ft
# Swin Transformer v2 (base-sized model) Swin Transformer v2 model pre-trained on ImageNet-21k and fine-tuned on ImageNet-1k at resolution 384x384. It was introduced in the paper [Swin Transformer V2: Scaling Up Capacity and Resolution](https://arxiv.org/abs/2111.09883) by Liu et al. and first released in [this repository](https://github.com/microsoft/Swin-Transformer). Disclaimer: The team releasing Swin Transformer v2 did not write a model card for this model so this model card has been written by the Hugging Face team. ## Model description The Swin Transformer is a type of Vision Transformer. It builds hierarchical feature maps by merging image patches (shown in gray) in deeper layers and has linear computation complexity to input image size due to computation of self-attention only within each local window (shown in red). It can thus serve as a general-purpose backbone for both image classification and dense recognition tasks. In contrast, previous vision Transformers produce feature maps of a single low resolution and have quadratic computation complexity to input image size due to computation of self-attention globally. Swin Transformer v2 adds 3 main improvements: 1) a residual-post-norm method combined with cosine attention to improve training stability; 2) a log-spaced continuous position bias method to effectively transfer models pre-trained using low-resolution images to downstream tasks with high-resolution inputs; 3) a self-supervised pre-training method, SimMIM, to reduce the needs of vast labeled images. ![model image](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/swin_transformer_architecture.png) [Source](https://paperswithcode.com/method/swin-transformer) ## Intended uses & limitations You can use the raw model for image classification. See the [model hub](https://huggingface.co/models?search=swinv2) to look for fine-tuned versions on a task that interests you. ### How to use Here is how to use this model to classify an image of the COCO 2017 dataset into one of the 1,000 ImageNet classes: ```python from transformers import AutoImageProcessor, AutoModelForImageClassification from PIL import Image import requests url = "http://images.cocodataset.org/val2017/000000039769.jpg" image = Image.open(requests.get(url, stream=True).raw) processor = AutoImageProcessor.from_pretrained("microsoft/swinv2-base-patch4-window12to24-192to384-22kto1k-ft") model = AutoModelForImageClassification.from_pretrained("microsoft/swinv2-base-patch4-window12to24-192to384-22kto1k-ft") inputs = processor(images=image, return_tensors="pt") outputs = model(**inputs) logits = outputs.logits # model predicts one of the 1000 ImageNet classes predicted_class_idx = logits.argmax(-1).item() print("Predicted class:", model.config.id2label[predicted_class_idx]) ``` For more code examples, we refer to the [documentation](https://huggingface.co/transformers/model_doc/swinv2.html#). ### BibTeX entry and citation info ```bibtex @article{DBLP:journals/corr/abs-2111-09883, author = {Ze Liu and Han Hu and Yutong Lin and Zhuliang Yao and Zhenda Xie and Yixuan Wei and Jia Ning and Yue Cao and Zheng Zhang and Li Dong and Furu Wei and Baining Guo}, title = {Swin Transformer {V2:} Scaling Up Capacity and Resolution}, journal = {CoRR}, volume = {abs/2111.09883}, year = {2021}, url = {https://arxiv.org/abs/2111.09883}, eprinttype = {arXiv}, eprint = {2111.09883}, timestamp = {Thu, 02 Dec 2021 15:54:22 +0100}, biburl = {https://dblp.org/rec/journals/corr/abs-2111-09883.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ```
[ "tench, tinca tinca", "goldfish, carassius auratus", "great white shark, white shark, man-eater, man-eating shark, carcharodon carcharias", "tiger shark, galeocerdo cuvieri", "hammerhead, hammerhead shark", "electric ray, crampfish, numbfish, torpedo", "stingray", "cock", "hen", "ostrich, struthio camelus", "brambling, fringilla montifringilla", "goldfinch, carduelis carduelis", "house finch, linnet, carpodacus mexicanus", "junco, snowbird", "indigo bunting, indigo finch, indigo bird, passerina cyanea", "robin, american robin, turdus migratorius", "bulbul", "jay", "magpie", "chickadee", "water ouzel, dipper", "kite", "bald eagle, american eagle, haliaeetus leucocephalus", "vulture", "great grey owl, great gray owl, strix nebulosa", "european fire salamander, salamandra salamandra", "common newt, triturus vulgaris", "eft", "spotted salamander, ambystoma maculatum", "axolotl, mud puppy, ambystoma mexicanum", "bullfrog, rana catesbeiana", "tree frog, tree-frog", "tailed frog, bell toad, ribbed toad, tailed toad, ascaphus trui", "loggerhead, loggerhead turtle, caretta caretta", "leatherback turtle, leatherback, leathery turtle, dermochelys coriacea", "mud turtle", "terrapin", "box turtle, box tortoise", "banded gecko", "common iguana, iguana, iguana iguana", "american chameleon, anole, anolis carolinensis", "whiptail, whiptail lizard", "agama", "frilled lizard, chlamydosaurus kingi", "alligator lizard", "gila monster, heloderma suspectum", "green lizard, lacerta viridis", "african chameleon, chamaeleo chamaeleon", "komodo dragon, komodo lizard, dragon lizard, giant lizard, varanus komodoensis", "african crocodile, nile crocodile, crocodylus niloticus", "american alligator, alligator mississipiensis", "triceratops", "thunder snake, worm snake, carphophis amoenus", "ringneck snake, ring-necked snake, ring snake", "hognose snake, puff adder, sand viper", "green snake, grass snake", "king snake, kingsnake", "garter snake, grass snake", "water snake", "vine snake", "night snake, hypsiglena torquata", "boa constrictor, constrictor constrictor", "rock python, rock snake, python sebae", "indian cobra, naja naja", "green mamba", "sea snake", "horned viper, cerastes, sand viper, horned asp, cerastes cornutus", "diamondback, diamondback rattlesnake, crotalus adamanteus", "sidewinder, horned rattlesnake, crotalus cerastes", "trilobite", "harvestman, daddy longlegs, phalangium opilio", "scorpion", "black and gold garden spider, argiope aurantia", "barn spider, araneus cavaticus", "garden spider, aranea diademata", "black widow, latrodectus mactans", "tarantula", "wolf spider, hunting spider", "tick", "centipede", "black grouse", "ptarmigan", "ruffed grouse, partridge, bonasa umbellus", "prairie chicken, prairie grouse, prairie fowl", "peacock", "quail", "partridge", "african grey, african gray, psittacus erithacus", "macaw", "sulphur-crested cockatoo, kakatoe galerita, cacatua galerita", "lorikeet", "coucal", "bee eater", "hornbill", "hummingbird", "jacamar", "toucan", "drake", "red-breasted merganser, mergus serrator", "goose", "black swan, cygnus atratus", "tusker", "echidna, spiny anteater, anteater", "platypus, duckbill, duckbilled platypus, duck-billed platypus, ornithorhynchus anatinus", "wallaby, brush kangaroo", "koala, koala bear, kangaroo bear, native bear, phascolarctos cinereus", "wombat", "jellyfish", "sea anemone, anemone", "brain coral", "flatworm, platyhelminth", "nematode, nematode worm, roundworm", "conch", "snail", "slug", "sea slug, nudibranch", "chiton, coat-of-mail shell, sea cradle, polyplacophore", "chambered nautilus, pearly nautilus, nautilus", "dungeness crab, cancer magister", "rock crab, cancer irroratus", "fiddler crab", "king crab, alaska crab, alaskan king crab, alaska king crab, paralithodes camtschatica", "american lobster, northern lobster, maine lobster, homarus americanus", "spiny lobster, langouste, rock lobster, crawfish, crayfish, sea crawfish", "crayfish, crawfish, crawdad, crawdaddy", "hermit crab", "isopod", "white stork, ciconia ciconia", "black stork, ciconia nigra", "spoonbill", "flamingo", "little blue heron, egretta caerulea", "american egret, great white heron, egretta albus", "bittern", "crane", "limpkin, aramus pictus", "european gallinule, porphyrio porphyrio", "american coot, marsh hen, mud hen, water hen, fulica americana", "bustard", "ruddy turnstone, arenaria interpres", "red-backed sandpiper, dunlin, erolia alpina", "redshank, tringa totanus", "dowitcher", "oystercatcher, oyster catcher", "pelican", "king penguin, aptenodytes patagonica", "albatross, mollymawk", "grey whale, gray whale, devilfish, eschrichtius gibbosus, eschrichtius robustus", "killer whale, killer, orca, grampus, sea wolf, orcinus orca", "dugong, dugong dugon", "sea lion", "chihuahua", "japanese spaniel", "maltese dog, maltese terrier, maltese", "pekinese, pekingese, peke", "shih-tzu", "blenheim spaniel", "papillon", "toy terrier", "rhodesian ridgeback", "afghan hound, afghan", "basset, basset hound", "beagle", "bloodhound, sleuthhound", "bluetick", "black-and-tan coonhound", "walker hound, walker foxhound", "english foxhound", "redbone", "borzoi, russian wolfhound", "irish wolfhound", "italian greyhound", "whippet", "ibizan hound, ibizan podenco", "norwegian elkhound, elkhound", "otterhound, otter hound", "saluki, gazelle hound", "scottish deerhound, deerhound", "weimaraner", "staffordshire bullterrier, staffordshire bull terrier", "american staffordshire terrier, staffordshire terrier, american pit bull terrier, pit bull terrier", "bedlington terrier", "border terrier", "kerry blue terrier", "irish terrier", "norfolk terrier", "norwich terrier", "yorkshire terrier", "wire-haired fox terrier", "lakeland terrier", "sealyham terrier, sealyham", "airedale, airedale terrier", "cairn, cairn terrier", "australian terrier", "dandie dinmont, dandie dinmont terrier", "boston bull, boston terrier", "miniature schnauzer", "giant schnauzer", "standard schnauzer", "scotch terrier, scottish terrier, scottie", "tibetan terrier, chrysanthemum dog", "silky terrier, sydney silky", "soft-coated wheaten terrier", "west highland white terrier", "lhasa, lhasa apso", "flat-coated retriever", "curly-coated retriever", "golden retriever", "labrador retriever", "chesapeake bay retriever", "german short-haired pointer", "vizsla, hungarian pointer", "english setter", "irish setter, red setter", "gordon setter", "brittany spaniel", "clumber, clumber spaniel", "english springer, english springer spaniel", "welsh springer spaniel", "cocker spaniel, english cocker spaniel, cocker", "sussex spaniel", "irish water spaniel", "kuvasz", "schipperke", "groenendael", "malinois", "briard", "kelpie", "komondor", "old english sheepdog, bobtail", "shetland sheepdog, shetland sheep dog, shetland", "collie", "border collie", "bouvier des flandres, bouviers des flandres", "rottweiler", "german shepherd, german shepherd dog, german police dog, alsatian", "doberman, doberman pinscher", "miniature pinscher", "greater swiss mountain dog", "bernese mountain dog", "appenzeller", "entlebucher", "boxer", "bull mastiff", "tibetan mastiff", "french bulldog", "great dane", "saint bernard, st bernard", "eskimo dog, husky", "malamute, malemute, alaskan malamute", "siberian husky", "dalmatian, coach dog, carriage dog", "affenpinscher, monkey pinscher, monkey dog", "basenji", "pug, pug-dog", "leonberg", "newfoundland, newfoundland dog", "great pyrenees", "samoyed, samoyede", "pomeranian", "chow, chow chow", "keeshond", "brabancon griffon", "pembroke, pembroke welsh corgi", "cardigan, cardigan welsh corgi", "toy poodle", "miniature poodle", "standard poodle", "mexican hairless", "timber wolf, grey wolf, gray wolf, canis lupus", "white wolf, arctic wolf, canis lupus tundrarum", "red wolf, maned wolf, canis rufus, canis niger", "coyote, prairie wolf, brush wolf, canis latrans", "dingo, warrigal, warragal, canis dingo", "dhole, cuon alpinus", "african hunting dog, hyena dog, cape hunting dog, lycaon pictus", "hyena, hyaena", "red fox, vulpes vulpes", "kit fox, vulpes macrotis", "arctic fox, white fox, alopex lagopus", "grey fox, gray fox, urocyon cinereoargenteus", "tabby, tabby cat", "tiger cat", "persian cat", "siamese cat, siamese", "egyptian cat", "cougar, puma, catamount, mountain lion, painter, panther, felis concolor", "lynx, catamount", "leopard, panthera pardus", "snow leopard, ounce, panthera uncia", "jaguar, panther, panthera onca, felis onca", "lion, king of beasts, panthera leo", "tiger, panthera tigris", "cheetah, chetah, acinonyx jubatus", "brown bear, bruin, ursus arctos", "american black bear, black bear, ursus americanus, euarctos americanus", "ice bear, polar bear, ursus maritimus, thalarctos maritimus", "sloth bear, melursus ursinus, ursus ursinus", "mongoose", "meerkat, mierkat", "tiger beetle", "ladybug, ladybeetle, lady beetle, ladybird, ladybird beetle", "ground beetle, carabid beetle", "long-horned beetle, longicorn, longicorn beetle", "leaf beetle, chrysomelid", "dung beetle", "rhinoceros beetle", "weevil", "fly", "bee", "ant, emmet, pismire", "grasshopper, hopper", "cricket", "walking stick, walkingstick, stick insect", "cockroach, roach", "mantis, mantid", "cicada, cicala", "leafhopper", "lacewing, lacewing fly", "dragonfly, darning needle, devil's darning needle, sewing needle, snake feeder, snake doctor, mosquito hawk, skeeter hawk", "damselfly", "admiral", "ringlet, ringlet butterfly", "monarch, monarch butterfly, milkweed butterfly, danaus plexippus", "cabbage butterfly", "sulphur butterfly, sulfur butterfly", "lycaenid, lycaenid butterfly", "starfish, sea star", "sea urchin", "sea cucumber, holothurian", "wood rabbit, cottontail, cottontail rabbit", "hare", "angora, angora rabbit", "hamster", "porcupine, hedgehog", "fox squirrel, eastern fox squirrel, sciurus niger", "marmot", "beaver", "guinea pig, cavia cobaya", "sorrel", "zebra", "hog, pig, grunter, squealer, sus scrofa", "wild boar, boar, sus scrofa", "warthog", "hippopotamus, hippo, river horse, hippopotamus amphibius", "ox", "water buffalo, water ox, asiatic buffalo, bubalus bubalis", "bison", "ram, tup", "bighorn, bighorn sheep, cimarron, rocky mountain bighorn, rocky mountain sheep, ovis canadensis", "ibex, capra ibex", "hartebeest", "impala, aepyceros melampus", "gazelle", "arabian camel, dromedary, camelus dromedarius", "llama", "weasel", "mink", "polecat, fitch, foulmart, foumart, mustela putorius", "black-footed ferret, ferret, mustela nigripes", "otter", "skunk, polecat, wood pussy", "badger", "armadillo", "three-toed sloth, ai, bradypus tridactylus", "orangutan, orang, orangutang, pongo pygmaeus", "gorilla, gorilla gorilla", "chimpanzee, chimp, pan troglodytes", "gibbon, hylobates lar", "siamang, hylobates syndactylus, symphalangus syndactylus", "guenon, guenon monkey", "patas, hussar monkey, erythrocebus patas", "baboon", "macaque", "langur", "colobus, colobus monkey", "proboscis monkey, nasalis larvatus", "marmoset", "capuchin, ringtail, cebus capucinus", "howler monkey, howler", "titi, titi monkey", "spider monkey, ateles geoffroyi", "squirrel monkey, saimiri sciureus", "madagascar cat, ring-tailed lemur, lemur catta", "indri, indris, indri indri, indri brevicaudatus", "indian elephant, elephas maximus", "african elephant, loxodonta africana", "lesser panda, red panda, panda, bear cat, cat bear, ailurus fulgens", "giant panda, panda, panda bear, coon bear, ailuropoda melanoleuca", "barracouta, snoek", "eel", "coho, cohoe, coho salmon, blue jack, silver salmon, oncorhynchus kisutch", "rock beauty, holocanthus tricolor", "anemone fish", "sturgeon", "gar, garfish, garpike, billfish, lepisosteus osseus", "lionfish", "puffer, pufferfish, blowfish, globefish", "abacus", "abaya", "academic gown, academic robe, judge's robe", "accordion, piano accordion, squeeze box", "acoustic guitar", "aircraft carrier, carrier, flattop, attack aircraft carrier", "airliner", "airship, dirigible", "altar", "ambulance", "amphibian, amphibious vehicle", "analog clock", "apiary, bee house", "apron", "ashcan, trash can, garbage can, wastebin, ash bin, ash-bin, ashbin, dustbin, trash barrel, trash bin", "assault rifle, assault gun", "backpack, back pack, knapsack, packsack, rucksack, haversack", "bakery, bakeshop, bakehouse", "balance beam, beam", "balloon", "ballpoint, ballpoint pen, ballpen, biro", "band aid", "banjo", "bannister, banister, balustrade, balusters, handrail", "barbell", "barber chair", "barbershop", "barn", "barometer", "barrel, cask", "barrow, garden cart, lawn cart, wheelbarrow", "baseball", "basketball", "bassinet", "bassoon", "bathing cap, swimming cap", "bath towel", "bathtub, bathing tub, bath, tub", "beach wagon, station wagon, wagon, estate car, beach waggon, station waggon, waggon", "beacon, lighthouse, beacon light, pharos", "beaker", "bearskin, busby, shako", "beer bottle", "beer glass", "bell cote, bell cot", "bib", "bicycle-built-for-two, tandem bicycle, tandem", "bikini, two-piece", "binder, ring-binder", "binoculars, field glasses, opera glasses", "birdhouse", "boathouse", "bobsled, bobsleigh, bob", "bolo tie, bolo, bola tie, bola", "bonnet, poke bonnet", "bookcase", "bookshop, bookstore, bookstall", "bottlecap", "bow", "bow tie, bow-tie, bowtie", "brass, memorial tablet, plaque", "brassiere, bra, bandeau", "breakwater, groin, groyne, mole, bulwark, seawall, jetty", "breastplate, aegis, egis", "broom", "bucket, pail", "buckle", "bulletproof vest", "bullet train, bullet", "butcher shop, meat market", "cab, hack, taxi, taxicab", "caldron, cauldron", "candle, taper, wax light", "cannon", "canoe", "can opener, tin opener", "cardigan", "car mirror", "carousel, carrousel, merry-go-round, roundabout, whirligig", "carpenter's kit, tool kit", "carton", "car wheel", "cash machine, cash dispenser, automated teller machine, automatic teller machine, automated teller, automatic teller, atm", "cassette", "cassette player", "castle", "catamaran", "cd player", "cello, violoncello", "cellular telephone, cellular phone, cellphone, cell, mobile phone", "chain", "chainlink fence", "chain mail, ring mail, mail, chain armor, chain armour, ring armor, ring armour", "chain saw, chainsaw", "chest", "chiffonier, commode", "chime, bell, gong", "china cabinet, china closet", "christmas stocking", "church, church building", "cinema, movie theater, movie theatre, movie house, picture palace", "cleaver, meat cleaver, chopper", "cliff dwelling", "cloak", "clog, geta, patten, sabot", "cocktail shaker", "coffee mug", "coffeepot", "coil, spiral, volute, whorl, helix", "combination lock", "computer keyboard, keypad", "confectionery, confectionary, candy store", "container ship, containership, container vessel", "convertible", "corkscrew, bottle screw", "cornet, horn, trumpet, trump", "cowboy boot", "cowboy hat, ten-gallon hat", "cradle", "crane", "crash helmet", "crate", "crib, cot", "crock pot", "croquet ball", "crutch", "cuirass", "dam, dike, dyke", "desk", "desktop computer", "dial telephone, dial phone", "diaper, nappy, napkin", "digital clock", "digital watch", "dining table, board", "dishrag, dishcloth", "dishwasher, dish washer, dishwashing machine", "disk brake, disc brake", "dock, dockage, docking facility", "dogsled, dog sled, dog sleigh", "dome", "doormat, welcome mat", "drilling platform, offshore rig", "drum, membranophone, tympan", "drumstick", "dumbbell", "dutch oven", "electric fan, blower", "electric guitar", "electric locomotive", "entertainment center", "envelope", "espresso maker", "face powder", "feather boa, boa", "file, file cabinet, filing cabinet", "fireboat", "fire engine, fire truck", "fire screen, fireguard", "flagpole, flagstaff", "flute, transverse flute", "folding chair", "football helmet", "forklift", "fountain", "fountain pen", "four-poster", "freight car", "french horn, horn", "frying pan, frypan, skillet", "fur coat", "garbage truck, dustcart", "gasmask, respirator, gas helmet", "gas pump, gasoline pump, petrol pump, island dispenser", "goblet", "go-kart", "golf ball", "golfcart, golf cart", "gondola", "gong, tam-tam", "gown", "grand piano, grand", "greenhouse, nursery, glasshouse", "grille, radiator grille", "grocery store, grocery, food market, market", "guillotine", "hair slide", "hair spray", "half track", "hammer", "hamper", "hand blower, blow dryer, blow drier, hair dryer, hair drier", "hand-held computer, hand-held microcomputer", "handkerchief, hankie, hanky, hankey", "hard disc, hard disk, fixed disk", "harmonica, mouth organ, harp, mouth harp", "harp", "harvester, reaper", "hatchet", "holster", "home theater, home theatre", "honeycomb", "hook, claw", "hoopskirt, crinoline", "horizontal bar, high bar", "horse cart, horse-cart", "hourglass", "ipod", "iron, smoothing iron", "jack-o'-lantern", "jean, blue jean, denim", "jeep, landrover", "jersey, t-shirt, tee shirt", "jigsaw puzzle", "jinrikisha, ricksha, rickshaw", "joystick", "kimono", "knee pad", "knot", "lab coat, laboratory coat", "ladle", "lampshade, lamp shade", "laptop, laptop computer", "lawn mower, mower", "lens cap, lens cover", "letter opener, paper knife, paperknife", "library", "lifeboat", "lighter, light, igniter, ignitor", "limousine, limo", "liner, ocean liner", "lipstick, lip rouge", "loafer", "lotion", "loudspeaker, speaker, speaker unit, loudspeaker system, speaker system", "loupe, jeweler's loupe", "lumbermill, sawmill", "magnetic compass", "mailbag, postbag", "mailbox, letter box", "maillot", "maillot, tank suit", "manhole cover", "maraca", "marimba, xylophone", "mask", "matchstick", "maypole", "maze, labyrinth", "measuring cup", "medicine chest, medicine cabinet", "megalith, megalithic structure", "microphone, mike", "microwave, microwave oven", "military uniform", "milk can", "minibus", "miniskirt, mini", "minivan", "missile", "mitten", "mixing bowl", "mobile home, manufactured home", "model t", "modem", "monastery", "monitor", "moped", "mortar", "mortarboard", "mosque", "mosquito net", "motor scooter, scooter", "mountain bike, all-terrain bike, off-roader", "mountain tent", "mouse, computer mouse", "mousetrap", "moving van", "muzzle", "nail", "neck brace", "necklace", "nipple", "notebook, notebook computer", "obelisk", "oboe, hautboy, hautbois", "ocarina, sweet potato", "odometer, hodometer, mileometer, milometer", "oil filter", "organ, pipe organ", "oscilloscope, scope, cathode-ray oscilloscope, cro", "overskirt", "oxcart", "oxygen mask", "packet", "paddle, boat paddle", "paddlewheel, paddle wheel", "padlock", "paintbrush", "pajama, pyjama, pj's, jammies", "palace", "panpipe, pandean pipe, syrinx", "paper towel", "parachute, chute", "parallel bars, bars", "park bench", "parking meter", "passenger car, coach, carriage", "patio, terrace", "pay-phone, pay-station", "pedestal, plinth, footstall", "pencil box, pencil case", "pencil sharpener", "perfume, essence", "petri dish", "photocopier", "pick, plectrum, plectron", "pickelhaube", "picket fence, paling", "pickup, pickup truck", "pier", "piggy bank, penny bank", "pill bottle", "pillow", "ping-pong ball", "pinwheel", "pirate, pirate ship", "pitcher, ewer", "plane, carpenter's plane, woodworking plane", "planetarium", "plastic bag", "plate rack", "plow, plough", "plunger, plumber's helper", "polaroid camera, polaroid land camera", "pole", "police van, police wagon, paddy wagon, patrol wagon, wagon, black maria", "poncho", "pool table, billiard table, snooker table", "pop bottle, soda bottle", "pot, flowerpot", "potter's wheel", "power drill", "prayer rug, prayer mat", "printer", "prison, prison house", "projectile, missile", "projector", "puck, hockey puck", "punching bag, punch bag, punching ball, punchball", "purse", "quill, quill pen", "quilt, comforter, comfort, puff", "racer, race car, racing car", "racket, racquet", "radiator", "radio, wireless", "radio telescope, radio reflector", "rain barrel", "recreational vehicle, rv, r.v.", "reel", "reflex camera", "refrigerator, icebox", "remote control, remote", "restaurant, eating house, eating place, eatery", "revolver, six-gun, six-shooter", "rifle", "rocking chair, rocker", "rotisserie", "rubber eraser, rubber, pencil eraser", "rugby ball", "rule, ruler", "running shoe", "safe", "safety pin", "saltshaker, salt shaker", "sandal", "sarong", "sax, saxophone", "scabbard", "scale, weighing machine", "school bus", "schooner", "scoreboard", "screen, crt screen", "screw", "screwdriver", "seat belt, seatbelt", "sewing machine", "shield, buckler", "shoe shop, shoe-shop, shoe store", "shoji", "shopping basket", "shopping cart", "shovel", "shower cap", "shower curtain", "ski", "ski mask", "sleeping bag", "slide rule, slipstick", "sliding door", "slot, one-armed bandit", "snorkel", "snowmobile", "snowplow, snowplough", "soap dispenser", "soccer ball", "sock", "solar dish, solar collector, solar furnace", "sombrero", "soup bowl", "space bar", "space heater", "space shuttle", "spatula", "speedboat", "spider web, spider's web", "spindle", "sports car, sport car", "spotlight, spot", "stage", "steam locomotive", "steel arch bridge", "steel drum", "stethoscope", "stole", "stone wall", "stopwatch, stop watch", "stove", "strainer", "streetcar, tram, tramcar, trolley, trolley car", "stretcher", "studio couch, day bed", "stupa, tope", "submarine, pigboat, sub, u-boat", "suit, suit of clothes", "sundial", "sunglass", "sunglasses, dark glasses, shades", "sunscreen, sunblock, sun blocker", "suspension bridge", "swab, swob, mop", "sweatshirt", "swimming trunks, bathing trunks", "swing", "switch, electric switch, electrical switch", "syringe", "table lamp", "tank, army tank, armored combat vehicle, armoured combat vehicle", "tape player", "teapot", "teddy, teddy bear", "television, television system", "tennis ball", "thatch, thatched roof", "theater curtain, theatre curtain", "thimble", "thresher, thrasher, threshing machine", "throne", "tile roof", "toaster", "tobacco shop, tobacconist shop, tobacconist", "toilet seat", "torch", "totem pole", "tow truck, tow car, wrecker", "toyshop", "tractor", "trailer truck, tractor trailer, trucking rig, rig, articulated lorry, semi", "tray", "trench coat", "tricycle, trike, velocipede", "trimaran", "tripod", "triumphal arch", "trolleybus, trolley coach, trackless trolley", "trombone", "tub, vat", "turnstile", "typewriter keyboard", "umbrella", "unicycle, monocycle", "upright, upright piano", "vacuum, vacuum cleaner", "vase", "vault", "velvet", "vending machine", "vestment", "viaduct", "violin, fiddle", "volleyball", "waffle iron", "wall clock", "wallet, billfold, notecase, pocketbook", "wardrobe, closet, press", "warplane, military plane", "washbasin, handbasin, washbowl, lavabo, wash-hand basin", "washer, automatic washer, washing machine", "water bottle", "water jug", "water tower", "whiskey jug", "whistle", "wig", "window screen", "window shade", "windsor tie", "wine bottle", "wing", "wok", "wooden spoon", "wool, woolen, woollen", "worm fence, snake fence, snake-rail fence, virginia fence", "wreck", "yawl", "yurt", "web site, website, internet site, site", "comic book", "crossword puzzle, crossword", "street sign", "traffic light, traffic signal, stoplight", "book jacket, dust cover, dust jacket, dust wrapper", "menu", "plate", "guacamole", "consomme", "hot pot, hotpot", "trifle", "ice cream, icecream", "ice lolly, lolly, lollipop, popsicle", "french loaf", "bagel, beigel", "pretzel", "cheeseburger", "hotdog, hot dog, red hot", "mashed potato", "head cabbage", "broccoli", "cauliflower", "zucchini, courgette", "spaghetti squash", "acorn squash", "butternut squash", "cucumber, cuke", "artichoke, globe artichoke", "bell pepper", "cardoon", "mushroom", "granny smith", "strawberry", "orange", "lemon", "fig", "pineapple, ananas", "banana", "jackfruit, jak, jack", "custard apple", "pomegranate", "hay", "carbonara", "chocolate sauce, chocolate syrup", "dough", "meat loaf, meatloaf", "pizza, pizza pie", "potpie", "burrito", "red wine", "espresso", "cup", "eggnog", "alp", "bubble", "cliff, drop, drop-off", "coral reef", "geyser", "lakeside, lakeshore", "promontory, headland, head, foreland", "sandbar, sand bar", "seashore, coast, seacoast, sea-coast", "valley, vale", "volcano", "ballplayer, baseball player", "groom, bridegroom", "scuba diver", "rapeseed", "daisy", "yellow lady's slipper, yellow lady-slipper, cypripedium calceolus, cypripedium parviflorum", "corn", "acorn", "hip, rose hip, rosehip", "buckeye, horse chestnut, conker", "coral fungus", "agaric", "gyromitra", "stinkhorn, carrion fungus", "earthstar", "hen-of-the-woods, hen of the woods, polyporus frondosus, grifola frondosa", "bolete", "ear, spike, capitulum", "toilet tissue, toilet paper, bathroom tissue" ]
microsoft/swinv2-large-patch4-window12to16-192to256-22kto1k-ft
# Swin Transformer v2 (base-sized model) Swin Transformer v2 model pre-trained on ImageNet-21k and fine-tuned on ImageNet-1k at resolution 256x256. It was introduced in the paper [Swin Transformer V2: Scaling Up Capacity and Resolution](https://arxiv.org/abs/2111.09883) by Liu et al. and first released in [this repository](https://github.com/microsoft/Swin-Transformer). Disclaimer: The team releasing Swin Transformer v2 did not write a model card for this model so this model card has been written by the Hugging Face team. ## Model description The Swin Transformer is a type of Vision Transformer. It builds hierarchical feature maps by merging image patches (shown in gray) in deeper layers and has linear computation complexity to input image size due to computation of self-attention only within each local window (shown in red). It can thus serve as a general-purpose backbone for both image classification and dense recognition tasks. In contrast, previous vision Transformers produce feature maps of a single low resolution and have quadratic computation complexity to input image size due to computation of self-attention globally. Swin Transformer v2 adds 3 main improvements: 1) a residual-post-norm method combined with cosine attention to improve training stability; 2) a log-spaced continuous position bias method to effectively transfer models pre-trained using low-resolution images to downstream tasks with high-resolution inputs; 3) a self-supervised pre-training method, SimMIM, to reduce the needs of vast labeled images. ![model image](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/swin_transformer_architecture.png) [Source](https://paperswithcode.com/method/swin-transformer) ## Intended uses & limitations You can use the raw model for image classification. See the [model hub](https://huggingface.co/models?search=swinv2) to look for fine-tuned versions on a task that interests you. ### How to use Here is how to use this model to classify an image of the COCO 2017 dataset into one of the 1,000 ImageNet classes: ```python from transformers import AutoImageProcessor, AutoModelForImageClassification from PIL import Image import requests url = "http://images.cocodataset.org/val2017/000000039769.jpg" image = Image.open(requests.get(url, stream=True).raw) processor = AutoImageProcessor.from_pretrained("microsoft/swinv2-large-patch4-window12to16-192to256-22kto1k-ft") model = AutoModelForImageClassification.from_pretrained("microsoft/swinv2-large-patch4-window12to16-192to256-22kto1k-ft") inputs = processor(images=image, return_tensors="pt") outputs = model(**inputs) logits = outputs.logits # model predicts one of the 1000 ImageNet classes predicted_class_idx = logits.argmax(-1).item() print("Predicted class:", model.config.id2label[predicted_class_idx]) ``` For more code examples, we refer to the [documentation](https://huggingface.co/transformers/model_doc/swinv2.html#). ### BibTeX entry and citation info ```bibtex @article{DBLP:journals/corr/abs-2111-09883, author = {Ze Liu and Han Hu and Yutong Lin and Zhuliang Yao and Zhenda Xie and Yixuan Wei and Jia Ning and Yue Cao and Zheng Zhang and Li Dong and Furu Wei and Baining Guo}, title = {Swin Transformer {V2:} Scaling Up Capacity and Resolution}, journal = {CoRR}, volume = {abs/2111.09883}, year = {2021}, url = {https://arxiv.org/abs/2111.09883}, eprinttype = {arXiv}, eprint = {2111.09883}, timestamp = {Thu, 02 Dec 2021 15:54:22 +0100}, biburl = {https://dblp.org/rec/journals/corr/abs-2111-09883.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ```
[ "tench, tinca tinca", "goldfish, carassius auratus", "great white shark, white shark, man-eater, man-eating shark, carcharodon carcharias", "tiger shark, galeocerdo cuvieri", "hammerhead, hammerhead shark", "electric ray, crampfish, numbfish, torpedo", "stingray", "cock", "hen", "ostrich, struthio camelus", "brambling, fringilla montifringilla", "goldfinch, carduelis carduelis", "house finch, linnet, carpodacus mexicanus", "junco, snowbird", "indigo bunting, indigo finch, indigo bird, passerina cyanea", "robin, american robin, turdus migratorius", "bulbul", "jay", "magpie", "chickadee", "water ouzel, dipper", "kite", "bald eagle, american eagle, haliaeetus leucocephalus", "vulture", "great grey owl, great gray owl, strix nebulosa", "european fire salamander, salamandra salamandra", "common newt, triturus vulgaris", "eft", "spotted salamander, ambystoma maculatum", "axolotl, mud puppy, ambystoma mexicanum", "bullfrog, rana catesbeiana", "tree frog, tree-frog", "tailed frog, bell toad, ribbed toad, tailed toad, ascaphus trui", "loggerhead, loggerhead turtle, caretta caretta", "leatherback turtle, leatherback, leathery turtle, dermochelys coriacea", "mud turtle", "terrapin", "box turtle, box tortoise", "banded gecko", "common iguana, iguana, iguana iguana", "american chameleon, anole, anolis carolinensis", "whiptail, whiptail lizard", "agama", "frilled lizard, chlamydosaurus kingi", "alligator lizard", "gila monster, heloderma suspectum", "green lizard, lacerta viridis", "african chameleon, chamaeleo chamaeleon", "komodo dragon, komodo lizard, dragon lizard, giant lizard, varanus komodoensis", "african crocodile, nile crocodile, crocodylus niloticus", "american alligator, alligator mississipiensis", "triceratops", "thunder snake, worm snake, carphophis amoenus", "ringneck snake, ring-necked snake, ring snake", "hognose snake, puff adder, sand viper", "green snake, grass snake", "king snake, kingsnake", "garter snake, grass snake", "water snake", "vine snake", "night snake, hypsiglena torquata", "boa constrictor, constrictor constrictor", "rock python, rock snake, python sebae", "indian cobra, naja naja", "green mamba", "sea snake", "horned viper, cerastes, sand viper, horned asp, cerastes cornutus", "diamondback, diamondback rattlesnake, crotalus adamanteus", "sidewinder, horned rattlesnake, crotalus cerastes", "trilobite", "harvestman, daddy longlegs, phalangium opilio", "scorpion", "black and gold garden spider, argiope aurantia", "barn spider, araneus cavaticus", "garden spider, aranea diademata", "black widow, latrodectus mactans", "tarantula", "wolf spider, hunting spider", "tick", "centipede", "black grouse", "ptarmigan", "ruffed grouse, partridge, bonasa umbellus", "prairie chicken, prairie grouse, prairie fowl", "peacock", "quail", "partridge", "african grey, african gray, psittacus erithacus", "macaw", "sulphur-crested cockatoo, kakatoe galerita, cacatua galerita", "lorikeet", "coucal", "bee eater", "hornbill", "hummingbird", "jacamar", "toucan", "drake", "red-breasted merganser, mergus serrator", "goose", "black swan, cygnus atratus", "tusker", "echidna, spiny anteater, anteater", "platypus, duckbill, duckbilled platypus, duck-billed platypus, ornithorhynchus anatinus", "wallaby, brush kangaroo", "koala, koala bear, kangaroo bear, native bear, phascolarctos cinereus", "wombat", "jellyfish", "sea anemone, anemone", "brain coral", "flatworm, platyhelminth", "nematode, nematode worm, roundworm", "conch", "snail", "slug", "sea slug, nudibranch", "chiton, coat-of-mail shell, sea cradle, polyplacophore", "chambered nautilus, pearly nautilus, nautilus", "dungeness crab, cancer magister", "rock crab, cancer irroratus", "fiddler crab", "king crab, alaska crab, alaskan king crab, alaska king crab, paralithodes camtschatica", "american lobster, northern lobster, maine lobster, homarus americanus", "spiny lobster, langouste, rock lobster, crawfish, crayfish, sea crawfish", "crayfish, crawfish, crawdad, crawdaddy", "hermit crab", "isopod", "white stork, ciconia ciconia", "black stork, ciconia nigra", "spoonbill", "flamingo", "little blue heron, egretta caerulea", "american egret, great white heron, egretta albus", "bittern", "crane", "limpkin, aramus pictus", "european gallinule, porphyrio porphyrio", "american coot, marsh hen, mud hen, water hen, fulica americana", "bustard", "ruddy turnstone, arenaria interpres", "red-backed sandpiper, dunlin, erolia alpina", "redshank, tringa totanus", "dowitcher", "oystercatcher, oyster catcher", "pelican", "king penguin, aptenodytes patagonica", "albatross, mollymawk", "grey whale, gray whale, devilfish, eschrichtius gibbosus, eschrichtius robustus", "killer whale, killer, orca, grampus, sea wolf, orcinus orca", "dugong, dugong dugon", "sea lion", "chihuahua", "japanese spaniel", "maltese dog, maltese terrier, maltese", "pekinese, pekingese, peke", "shih-tzu", "blenheim spaniel", "papillon", "toy terrier", "rhodesian ridgeback", "afghan hound, afghan", "basset, basset hound", "beagle", "bloodhound, sleuthhound", "bluetick", "black-and-tan coonhound", "walker hound, walker foxhound", "english foxhound", "redbone", "borzoi, russian wolfhound", "irish wolfhound", "italian greyhound", "whippet", "ibizan hound, ibizan podenco", "norwegian elkhound, elkhound", "otterhound, otter hound", "saluki, gazelle hound", "scottish deerhound, deerhound", "weimaraner", "staffordshire bullterrier, staffordshire bull terrier", "american staffordshire terrier, staffordshire terrier, american pit bull terrier, pit bull terrier", "bedlington terrier", "border terrier", "kerry blue terrier", "irish terrier", "norfolk terrier", "norwich terrier", "yorkshire terrier", "wire-haired fox terrier", "lakeland terrier", "sealyham terrier, sealyham", "airedale, airedale terrier", "cairn, cairn terrier", "australian terrier", "dandie dinmont, dandie dinmont terrier", "boston bull, boston terrier", "miniature schnauzer", "giant schnauzer", "standard schnauzer", "scotch terrier, scottish terrier, scottie", "tibetan terrier, chrysanthemum dog", "silky terrier, sydney silky", "soft-coated wheaten terrier", "west highland white terrier", "lhasa, lhasa apso", "flat-coated retriever", "curly-coated retriever", "golden retriever", "labrador retriever", "chesapeake bay retriever", "german short-haired pointer", "vizsla, hungarian pointer", "english setter", "irish setter, red setter", "gordon setter", "brittany spaniel", "clumber, clumber spaniel", "english springer, english springer spaniel", "welsh springer spaniel", "cocker spaniel, english cocker spaniel, cocker", "sussex spaniel", "irish water spaniel", "kuvasz", "schipperke", "groenendael", "malinois", "briard", "kelpie", "komondor", "old english sheepdog, bobtail", "shetland sheepdog, shetland sheep dog, shetland", "collie", "border collie", "bouvier des flandres, bouviers des flandres", "rottweiler", "german shepherd, german shepherd dog, german police dog, alsatian", "doberman, doberman pinscher", "miniature pinscher", "greater swiss mountain dog", "bernese mountain dog", "appenzeller", "entlebucher", "boxer", "bull mastiff", "tibetan mastiff", "french bulldog", "great dane", "saint bernard, st bernard", "eskimo dog, husky", "malamute, malemute, alaskan malamute", "siberian husky", "dalmatian, coach dog, carriage dog", "affenpinscher, monkey pinscher, monkey dog", "basenji", "pug, pug-dog", "leonberg", "newfoundland, newfoundland dog", "great pyrenees", "samoyed, samoyede", "pomeranian", "chow, chow chow", "keeshond", "brabancon griffon", "pembroke, pembroke welsh corgi", "cardigan, cardigan welsh corgi", "toy poodle", "miniature poodle", "standard poodle", "mexican hairless", "timber wolf, grey wolf, gray wolf, canis lupus", "white wolf, arctic wolf, canis lupus tundrarum", "red wolf, maned wolf, canis rufus, canis niger", "coyote, prairie wolf, brush wolf, canis latrans", "dingo, warrigal, warragal, canis dingo", "dhole, cuon alpinus", "african hunting dog, hyena dog, cape hunting dog, lycaon pictus", "hyena, hyaena", "red fox, vulpes vulpes", "kit fox, vulpes macrotis", "arctic fox, white fox, alopex lagopus", "grey fox, gray fox, urocyon cinereoargenteus", "tabby, tabby cat", "tiger cat", "persian cat", "siamese cat, siamese", "egyptian cat", "cougar, puma, catamount, mountain lion, painter, panther, felis concolor", "lynx, catamount", "leopard, panthera pardus", "snow leopard, ounce, panthera uncia", "jaguar, panther, panthera onca, felis onca", "lion, king of beasts, panthera leo", "tiger, panthera tigris", "cheetah, chetah, acinonyx jubatus", "brown bear, bruin, ursus arctos", "american black bear, black bear, ursus americanus, euarctos americanus", "ice bear, polar bear, ursus maritimus, thalarctos maritimus", "sloth bear, melursus ursinus, ursus ursinus", "mongoose", "meerkat, mierkat", "tiger beetle", "ladybug, ladybeetle, lady beetle, ladybird, ladybird beetle", "ground beetle, carabid beetle", "long-horned beetle, longicorn, longicorn beetle", "leaf beetle, chrysomelid", "dung beetle", "rhinoceros beetle", "weevil", "fly", "bee", "ant, emmet, pismire", "grasshopper, hopper", "cricket", "walking stick, walkingstick, stick insect", "cockroach, roach", "mantis, mantid", "cicada, cicala", "leafhopper", "lacewing, lacewing fly", "dragonfly, darning needle, devil's darning needle, sewing needle, snake feeder, snake doctor, mosquito hawk, skeeter hawk", "damselfly", "admiral", "ringlet, ringlet butterfly", "monarch, monarch butterfly, milkweed butterfly, danaus plexippus", "cabbage butterfly", "sulphur butterfly, sulfur butterfly", "lycaenid, lycaenid butterfly", "starfish, sea star", "sea urchin", "sea cucumber, holothurian", "wood rabbit, cottontail, cottontail rabbit", "hare", "angora, angora rabbit", "hamster", "porcupine, hedgehog", "fox squirrel, eastern fox squirrel, sciurus niger", "marmot", "beaver", "guinea pig, cavia cobaya", "sorrel", "zebra", "hog, pig, grunter, squealer, sus scrofa", "wild boar, boar, sus scrofa", "warthog", "hippopotamus, hippo, river horse, hippopotamus amphibius", "ox", "water buffalo, water ox, asiatic buffalo, bubalus bubalis", "bison", "ram, tup", "bighorn, bighorn sheep, cimarron, rocky mountain bighorn, rocky mountain sheep, ovis canadensis", "ibex, capra ibex", "hartebeest", "impala, aepyceros melampus", "gazelle", "arabian camel, dromedary, camelus dromedarius", "llama", "weasel", "mink", "polecat, fitch, foulmart, foumart, mustela putorius", "black-footed ferret, ferret, mustela nigripes", "otter", "skunk, polecat, wood pussy", "badger", "armadillo", "three-toed sloth, ai, bradypus tridactylus", "orangutan, orang, orangutang, pongo pygmaeus", "gorilla, gorilla gorilla", "chimpanzee, chimp, pan troglodytes", "gibbon, hylobates lar", "siamang, hylobates syndactylus, symphalangus syndactylus", "guenon, guenon monkey", "patas, hussar monkey, erythrocebus patas", "baboon", "macaque", "langur", "colobus, colobus monkey", "proboscis monkey, nasalis larvatus", "marmoset", "capuchin, ringtail, cebus capucinus", "howler monkey, howler", "titi, titi monkey", "spider monkey, ateles geoffroyi", "squirrel monkey, saimiri sciureus", "madagascar cat, ring-tailed lemur, lemur catta", "indri, indris, indri indri, indri brevicaudatus", "indian elephant, elephas maximus", "african elephant, loxodonta africana", "lesser panda, red panda, panda, bear cat, cat bear, ailurus fulgens", "giant panda, panda, panda bear, coon bear, ailuropoda melanoleuca", "barracouta, snoek", "eel", "coho, cohoe, coho salmon, blue jack, silver salmon, oncorhynchus kisutch", "rock beauty, holocanthus tricolor", "anemone fish", "sturgeon", "gar, garfish, garpike, billfish, lepisosteus osseus", "lionfish", "puffer, pufferfish, blowfish, globefish", "abacus", "abaya", "academic gown, academic robe, judge's robe", "accordion, piano accordion, squeeze box", "acoustic guitar", "aircraft carrier, carrier, flattop, attack aircraft carrier", "airliner", "airship, dirigible", "altar", "ambulance", "amphibian, amphibious vehicle", "analog clock", "apiary, bee house", "apron", "ashcan, trash can, garbage can, wastebin, ash bin, ash-bin, ashbin, dustbin, trash barrel, trash bin", "assault rifle, assault gun", "backpack, back pack, knapsack, packsack, rucksack, haversack", "bakery, bakeshop, bakehouse", "balance beam, beam", "balloon", "ballpoint, ballpoint pen, ballpen, biro", "band aid", "banjo", "bannister, banister, balustrade, balusters, handrail", "barbell", "barber chair", "barbershop", "barn", "barometer", "barrel, cask", "barrow, garden cart, lawn cart, wheelbarrow", "baseball", "basketball", "bassinet", "bassoon", "bathing cap, swimming cap", "bath towel", "bathtub, bathing tub, bath, tub", "beach wagon, station wagon, wagon, estate car, beach waggon, station waggon, waggon", "beacon, lighthouse, beacon light, pharos", "beaker", "bearskin, busby, shako", "beer bottle", "beer glass", "bell cote, bell cot", "bib", "bicycle-built-for-two, tandem bicycle, tandem", "bikini, two-piece", "binder, ring-binder", "binoculars, field glasses, opera glasses", "birdhouse", "boathouse", "bobsled, bobsleigh, bob", "bolo tie, bolo, bola tie, bola", "bonnet, poke bonnet", "bookcase", "bookshop, bookstore, bookstall", "bottlecap", "bow", "bow tie, bow-tie, bowtie", "brass, memorial tablet, plaque", "brassiere, bra, bandeau", "breakwater, groin, groyne, mole, bulwark, seawall, jetty", "breastplate, aegis, egis", "broom", "bucket, pail", "buckle", "bulletproof vest", "bullet train, bullet", "butcher shop, meat market", "cab, hack, taxi, taxicab", "caldron, cauldron", "candle, taper, wax light", "cannon", "canoe", "can opener, tin opener", "cardigan", "car mirror", "carousel, carrousel, merry-go-round, roundabout, whirligig", "carpenter's kit, tool kit", "carton", "car wheel", "cash machine, cash dispenser, automated teller machine, automatic teller machine, automated teller, automatic teller, atm", "cassette", "cassette player", "castle", "catamaran", "cd player", "cello, violoncello", "cellular telephone, cellular phone, cellphone, cell, mobile phone", "chain", "chainlink fence", "chain mail, ring mail, mail, chain armor, chain armour, ring armor, ring armour", "chain saw, chainsaw", "chest", "chiffonier, commode", "chime, bell, gong", "china cabinet, china closet", "christmas stocking", "church, church building", "cinema, movie theater, movie theatre, movie house, picture palace", "cleaver, meat cleaver, chopper", "cliff dwelling", "cloak", "clog, geta, patten, sabot", "cocktail shaker", "coffee mug", "coffeepot", "coil, spiral, volute, whorl, helix", "combination lock", "computer keyboard, keypad", "confectionery, confectionary, candy store", "container ship, containership, container vessel", "convertible", "corkscrew, bottle screw", "cornet, horn, trumpet, trump", "cowboy boot", "cowboy hat, ten-gallon hat", "cradle", "crane", "crash helmet", "crate", "crib, cot", "crock pot", "croquet ball", "crutch", "cuirass", "dam, dike, dyke", "desk", "desktop computer", "dial telephone, dial phone", "diaper, nappy, napkin", "digital clock", "digital watch", "dining table, board", "dishrag, dishcloth", "dishwasher, dish washer, dishwashing machine", "disk brake, disc brake", "dock, dockage, docking facility", "dogsled, dog sled, dog sleigh", "dome", "doormat, welcome mat", "drilling platform, offshore rig", "drum, membranophone, tympan", "drumstick", "dumbbell", "dutch oven", "electric fan, blower", "electric guitar", "electric locomotive", "entertainment center", "envelope", "espresso maker", "face powder", "feather boa, boa", "file, file cabinet, filing cabinet", "fireboat", "fire engine, fire truck", "fire screen, fireguard", "flagpole, flagstaff", "flute, transverse flute", "folding chair", "football helmet", "forklift", "fountain", "fountain pen", "four-poster", "freight car", "french horn, horn", "frying pan, frypan, skillet", "fur coat", "garbage truck, dustcart", "gasmask, respirator, gas helmet", "gas pump, gasoline pump, petrol pump, island dispenser", "goblet", "go-kart", "golf ball", "golfcart, golf cart", "gondola", "gong, tam-tam", "gown", "grand piano, grand", "greenhouse, nursery, glasshouse", "grille, radiator grille", "grocery store, grocery, food market, market", "guillotine", "hair slide", "hair spray", "half track", "hammer", "hamper", "hand blower, blow dryer, blow drier, hair dryer, hair drier", "hand-held computer, hand-held microcomputer", "handkerchief, hankie, hanky, hankey", "hard disc, hard disk, fixed disk", "harmonica, mouth organ, harp, mouth harp", "harp", "harvester, reaper", "hatchet", "holster", "home theater, home theatre", "honeycomb", "hook, claw", "hoopskirt, crinoline", "horizontal bar, high bar", "horse cart, horse-cart", "hourglass", "ipod", "iron, smoothing iron", "jack-o'-lantern", "jean, blue jean, denim", "jeep, landrover", "jersey, t-shirt, tee shirt", "jigsaw puzzle", "jinrikisha, ricksha, rickshaw", "joystick", "kimono", "knee pad", "knot", "lab coat, laboratory coat", "ladle", "lampshade, lamp shade", "laptop, laptop computer", "lawn mower, mower", "lens cap, lens cover", "letter opener, paper knife, paperknife", "library", "lifeboat", "lighter, light, igniter, ignitor", "limousine, limo", "liner, ocean liner", "lipstick, lip rouge", "loafer", "lotion", "loudspeaker, speaker, speaker unit, loudspeaker system, speaker system", "loupe, jeweler's loupe", "lumbermill, sawmill", "magnetic compass", "mailbag, postbag", "mailbox, letter box", "maillot", "maillot, tank suit", "manhole cover", "maraca", "marimba, xylophone", "mask", "matchstick", "maypole", "maze, labyrinth", "measuring cup", "medicine chest, medicine cabinet", "megalith, megalithic structure", "microphone, mike", "microwave, microwave oven", "military uniform", "milk can", "minibus", "miniskirt, mini", "minivan", "missile", "mitten", "mixing bowl", "mobile home, manufactured home", "model t", "modem", "monastery", "monitor", "moped", "mortar", "mortarboard", "mosque", "mosquito net", "motor scooter, scooter", "mountain bike, all-terrain bike, off-roader", "mountain tent", "mouse, computer mouse", "mousetrap", "moving van", "muzzle", "nail", "neck brace", "necklace", "nipple", "notebook, notebook computer", "obelisk", "oboe, hautboy, hautbois", "ocarina, sweet potato", "odometer, hodometer, mileometer, milometer", "oil filter", "organ, pipe organ", "oscilloscope, scope, cathode-ray oscilloscope, cro", "overskirt", "oxcart", "oxygen mask", "packet", "paddle, boat paddle", "paddlewheel, paddle wheel", "padlock", "paintbrush", "pajama, pyjama, pj's, jammies", "palace", "panpipe, pandean pipe, syrinx", "paper towel", "parachute, chute", "parallel bars, bars", "park bench", "parking meter", "passenger car, coach, carriage", "patio, terrace", "pay-phone, pay-station", "pedestal, plinth, footstall", "pencil box, pencil case", "pencil sharpener", "perfume, essence", "petri dish", "photocopier", "pick, plectrum, plectron", "pickelhaube", "picket fence, paling", "pickup, pickup truck", "pier", "piggy bank, penny bank", "pill bottle", "pillow", "ping-pong ball", "pinwheel", "pirate, pirate ship", "pitcher, ewer", "plane, carpenter's plane, woodworking plane", "planetarium", "plastic bag", "plate rack", "plow, plough", "plunger, plumber's helper", "polaroid camera, polaroid land camera", "pole", "police van, police wagon, paddy wagon, patrol wagon, wagon, black maria", "poncho", "pool table, billiard table, snooker table", "pop bottle, soda bottle", "pot, flowerpot", "potter's wheel", "power drill", "prayer rug, prayer mat", "printer", "prison, prison house", "projectile, missile", "projector", "puck, hockey puck", "punching bag, punch bag, punching ball, punchball", "purse", "quill, quill pen", "quilt, comforter, comfort, puff", "racer, race car, racing car", "racket, racquet", "radiator", "radio, wireless", "radio telescope, radio reflector", "rain barrel", "recreational vehicle, rv, r.v.", "reel", "reflex camera", "refrigerator, icebox", "remote control, remote", "restaurant, eating house, eating place, eatery", "revolver, six-gun, six-shooter", "rifle", "rocking chair, rocker", "rotisserie", "rubber eraser, rubber, pencil eraser", "rugby ball", "rule, ruler", "running shoe", "safe", "safety pin", "saltshaker, salt shaker", "sandal", "sarong", "sax, saxophone", "scabbard", "scale, weighing machine", "school bus", "schooner", "scoreboard", "screen, crt screen", "screw", "screwdriver", "seat belt, seatbelt", "sewing machine", "shield, buckler", "shoe shop, shoe-shop, shoe store", "shoji", "shopping basket", "shopping cart", "shovel", "shower cap", "shower curtain", "ski", "ski mask", "sleeping bag", "slide rule, slipstick", "sliding door", "slot, one-armed bandit", "snorkel", "snowmobile", "snowplow, snowplough", "soap dispenser", "soccer ball", "sock", "solar dish, solar collector, solar furnace", "sombrero", "soup bowl", "space bar", "space heater", "space shuttle", "spatula", "speedboat", "spider web, spider's web", "spindle", "sports car, sport car", "spotlight, spot", "stage", "steam locomotive", "steel arch bridge", "steel drum", "stethoscope", "stole", "stone wall", "stopwatch, stop watch", "stove", "strainer", "streetcar, tram, tramcar, trolley, trolley car", "stretcher", "studio couch, day bed", "stupa, tope", "submarine, pigboat, sub, u-boat", "suit, suit of clothes", "sundial", "sunglass", "sunglasses, dark glasses, shades", "sunscreen, sunblock, sun blocker", "suspension bridge", "swab, swob, mop", "sweatshirt", "swimming trunks, bathing trunks", "swing", "switch, electric switch, electrical switch", "syringe", "table lamp", "tank, army tank, armored combat vehicle, armoured combat vehicle", "tape player", "teapot", "teddy, teddy bear", "television, television system", "tennis ball", "thatch, thatched roof", "theater curtain, theatre curtain", "thimble", "thresher, thrasher, threshing machine", "throne", "tile roof", "toaster", "tobacco shop, tobacconist shop, tobacconist", "toilet seat", "torch", "totem pole", "tow truck, tow car, wrecker", "toyshop", "tractor", "trailer truck, tractor trailer, trucking rig, rig, articulated lorry, semi", "tray", "trench coat", "tricycle, trike, velocipede", "trimaran", "tripod", "triumphal arch", "trolleybus, trolley coach, trackless trolley", "trombone", "tub, vat", "turnstile", "typewriter keyboard", "umbrella", "unicycle, monocycle", "upright, upright piano", "vacuum, vacuum cleaner", "vase", "vault", "velvet", "vending machine", "vestment", "viaduct", "violin, fiddle", "volleyball", "waffle iron", "wall clock", "wallet, billfold, notecase, pocketbook", "wardrobe, closet, press", "warplane, military plane", "washbasin, handbasin, washbowl, lavabo, wash-hand basin", "washer, automatic washer, washing machine", "water bottle", "water jug", "water tower", "whiskey jug", "whistle", "wig", "window screen", "window shade", "windsor tie", "wine bottle", "wing", "wok", "wooden spoon", "wool, woolen, woollen", "worm fence, snake fence, snake-rail fence, virginia fence", "wreck", "yawl", "yurt", "web site, website, internet site, site", "comic book", "crossword puzzle, crossword", "street sign", "traffic light, traffic signal, stoplight", "book jacket, dust cover, dust jacket, dust wrapper", "menu", "plate", "guacamole", "consomme", "hot pot, hotpot", "trifle", "ice cream, icecream", "ice lolly, lolly, lollipop, popsicle", "french loaf", "bagel, beigel", "pretzel", "cheeseburger", "hotdog, hot dog, red hot", "mashed potato", "head cabbage", "broccoli", "cauliflower", "zucchini, courgette", "spaghetti squash", "acorn squash", "butternut squash", "cucumber, cuke", "artichoke, globe artichoke", "bell pepper", "cardoon", "mushroom", "granny smith", "strawberry", "orange", "lemon", "fig", "pineapple, ananas", "banana", "jackfruit, jak, jack", "custard apple", "pomegranate", "hay", "carbonara", "chocolate sauce, chocolate syrup", "dough", "meat loaf, meatloaf", "pizza, pizza pie", "potpie", "burrito", "red wine", "espresso", "cup", "eggnog", "alp", "bubble", "cliff, drop, drop-off", "coral reef", "geyser", "lakeside, lakeshore", "promontory, headland, head, foreland", "sandbar, sand bar", "seashore, coast, seacoast, sea-coast", "valley, vale", "volcano", "ballplayer, baseball player", "groom, bridegroom", "scuba diver", "rapeseed", "daisy", "yellow lady's slipper, yellow lady-slipper, cypripedium calceolus, cypripedium parviflorum", "corn", "acorn", "hip, rose hip, rosehip", "buckeye, horse chestnut, conker", "coral fungus", "agaric", "gyromitra", "stinkhorn, carrion fungus", "earthstar", "hen-of-the-woods, hen of the woods, polyporus frondosus, grifola frondosa", "bolete", "ear, spike, capitulum", "toilet tissue, toilet paper, bathroom tissue" ]
microsoft/swinv2-large-patch4-window12to24-192to384-22kto1k-ft
# Swin Transformer v2 (large-sized model) Swin Transformer v2 model pre-trained on ImageNet-21k and fine-tuned on ImageNet-1k at resolution 384x384. It was introduced in the paper [Swin Transformer V2: Scaling Up Capacity and Resolution](https://arxiv.org/abs/2111.09883) by Liu et al. and first released in [this repository](https://github.com/microsoft/Swin-Transformer). Disclaimer: The team releasing Swin Transformer v2 did not write a model card for this model so this model card has been written by the Hugging Face team. ## Model description The Swin Transformer is a type of Vision Transformer. It builds hierarchical feature maps by merging image patches (shown in gray) in deeper layers and has linear computation complexity to input image size due to computation of self-attention only within each local window (shown in red). It can thus serve as a general-purpose backbone for both image classification and dense recognition tasks. In contrast, previous vision Transformers produce feature maps of a single low resolution and have quadratic computation complexity to input image size due to computation of self-attention globally. Swin Transformer v2 adds 3 main improvements: 1) a residual-post-norm method combined with cosine attention to improve training stability; 2) a log-spaced continuous position bias method to effectively transfer models pre-trained using low-resolution images to downstream tasks with high-resolution inputs; 3) a self-supervised pre-training method, SimMIM, to reduce the needs of vast labeled images. ![model image](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/swin_transformer_architecture.png) [Source](https://paperswithcode.com/method/swin-transformer) ## Intended uses & limitations You can use the raw model for image classification. See the [model hub](https://huggingface.co/models?search=swinv2) to look for fine-tuned versions on a task that interests you. ### How to use Here is how to use this model to classify an image of the COCO 2017 dataset into one of the 1,000 ImageNet classes: ```python from transformers import AutoImageProcessor, AutoModelForImageClassification from PIL import Image import requests url = "http://images.cocodataset.org/val2017/000000039769.jpg" image = Image.open(requests.get(url, stream=True).raw) processor = AutoImageProcessor.from_pretrained("microsoft/swinv2-large-patch4-window12to24-192to384-22kto1k-ft") model = AutoModelForImageClassification.from_pretrained("microsoft/swinv2-large-patch4-window12to24-192to384-22kto1k-ft") inputs = processor(images=image, return_tensors="pt") outputs = model(**inputs) logits = outputs.logits # model predicts one of the 1000 ImageNet classes predicted_class_idx = logits.argmax(-1).item() print("Predicted class:", model.config.id2label[predicted_class_idx]) ``` For more code examples, we refer to the [documentation](https://huggingface.co/transformers/model_doc/swinv2.html#). ### BibTeX entry and citation info ```bibtex @article{DBLP:journals/corr/abs-2111-09883, author = {Ze Liu and Han Hu and Yutong Lin and Zhuliang Yao and Zhenda Xie and Yixuan Wei and Jia Ning and Yue Cao and Zheng Zhang and Li Dong and Furu Wei and Baining Guo}, title = {Swin Transformer {V2:} Scaling Up Capacity and Resolution}, journal = {CoRR}, volume = {abs/2111.09883}, year = {2021}, url = {https://arxiv.org/abs/2111.09883}, eprinttype = {arXiv}, eprint = {2111.09883}, timestamp = {Thu, 02 Dec 2021 15:54:22 +0100}, biburl = {https://dblp.org/rec/journals/corr/abs-2111-09883.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ```
[ "tench, tinca tinca", "goldfish, carassius auratus", "great white shark, white shark, man-eater, man-eating shark, carcharodon carcharias", "tiger shark, galeocerdo cuvieri", "hammerhead, hammerhead shark", "electric ray, crampfish, numbfish, torpedo", "stingray", "cock", "hen", "ostrich, struthio camelus", "brambling, fringilla montifringilla", "goldfinch, carduelis carduelis", "house finch, linnet, carpodacus mexicanus", "junco, snowbird", "indigo bunting, indigo finch, indigo bird, passerina cyanea", "robin, american robin, turdus migratorius", "bulbul", "jay", "magpie", "chickadee", "water ouzel, dipper", "kite", "bald eagle, american eagle, haliaeetus leucocephalus", "vulture", "great grey owl, great gray owl, strix nebulosa", "european fire salamander, salamandra salamandra", "common newt, triturus vulgaris", "eft", "spotted salamander, ambystoma maculatum", "axolotl, mud puppy, ambystoma mexicanum", "bullfrog, rana catesbeiana", "tree frog, tree-frog", "tailed frog, bell toad, ribbed toad, tailed toad, ascaphus trui", "loggerhead, loggerhead turtle, caretta caretta", "leatherback turtle, leatherback, leathery turtle, dermochelys coriacea", "mud turtle", "terrapin", "box turtle, box tortoise", "banded gecko", "common iguana, iguana, iguana iguana", "american chameleon, anole, anolis carolinensis", "whiptail, whiptail lizard", "agama", "frilled lizard, chlamydosaurus kingi", "alligator lizard", "gila monster, heloderma suspectum", "green lizard, lacerta viridis", "african chameleon, chamaeleo chamaeleon", "komodo dragon, komodo lizard, dragon lizard, giant lizard, varanus komodoensis", "african crocodile, nile crocodile, crocodylus niloticus", "american alligator, alligator mississipiensis", "triceratops", "thunder snake, worm snake, carphophis amoenus", "ringneck snake, ring-necked snake, ring snake", "hognose snake, puff adder, sand viper", "green snake, grass snake", "king snake, kingsnake", "garter snake, grass snake", "water snake", "vine snake", "night snake, hypsiglena torquata", "boa constrictor, constrictor constrictor", "rock python, rock snake, python sebae", "indian cobra, naja naja", "green mamba", "sea snake", "horned viper, cerastes, sand viper, horned asp, cerastes cornutus", "diamondback, diamondback rattlesnake, crotalus adamanteus", "sidewinder, horned rattlesnake, crotalus cerastes", "trilobite", "harvestman, daddy longlegs, phalangium opilio", "scorpion", "black and gold garden spider, argiope aurantia", "barn spider, araneus cavaticus", "garden spider, aranea diademata", "black widow, latrodectus mactans", "tarantula", "wolf spider, hunting spider", "tick", "centipede", "black grouse", "ptarmigan", "ruffed grouse, partridge, bonasa umbellus", "prairie chicken, prairie grouse, prairie fowl", "peacock", "quail", "partridge", "african grey, african gray, psittacus erithacus", "macaw", "sulphur-crested cockatoo, kakatoe galerita, cacatua galerita", "lorikeet", "coucal", "bee eater", "hornbill", "hummingbird", "jacamar", "toucan", "drake", "red-breasted merganser, mergus serrator", "goose", "black swan, cygnus atratus", "tusker", "echidna, spiny anteater, anteater", "platypus, duckbill, duckbilled platypus, duck-billed platypus, ornithorhynchus anatinus", "wallaby, brush kangaroo", "koala, koala bear, kangaroo bear, native bear, phascolarctos cinereus", "wombat", "jellyfish", "sea anemone, anemone", "brain coral", "flatworm, platyhelminth", "nematode, nematode worm, roundworm", "conch", "snail", "slug", "sea slug, nudibranch", "chiton, coat-of-mail shell, sea cradle, polyplacophore", "chambered nautilus, pearly nautilus, nautilus", "dungeness crab, cancer magister", "rock crab, cancer irroratus", "fiddler crab", "king crab, alaska crab, alaskan king crab, alaska king crab, paralithodes camtschatica", "american lobster, northern lobster, maine lobster, homarus americanus", "spiny lobster, langouste, rock lobster, crawfish, crayfish, sea crawfish", "crayfish, crawfish, crawdad, crawdaddy", "hermit crab", "isopod", "white stork, ciconia ciconia", "black stork, ciconia nigra", "spoonbill", "flamingo", "little blue heron, egretta caerulea", "american egret, great white heron, egretta albus", "bittern", "crane", "limpkin, aramus pictus", "european gallinule, porphyrio porphyrio", "american coot, marsh hen, mud hen, water hen, fulica americana", "bustard", "ruddy turnstone, arenaria interpres", "red-backed sandpiper, dunlin, erolia alpina", "redshank, tringa totanus", "dowitcher", "oystercatcher, oyster catcher", "pelican", "king penguin, aptenodytes patagonica", "albatross, mollymawk", "grey whale, gray whale, devilfish, eschrichtius gibbosus, eschrichtius robustus", "killer whale, killer, orca, grampus, sea wolf, orcinus orca", "dugong, dugong dugon", "sea lion", "chihuahua", "japanese spaniel", "maltese dog, maltese terrier, maltese", "pekinese, pekingese, peke", "shih-tzu", "blenheim spaniel", "papillon", "toy terrier", "rhodesian ridgeback", "afghan hound, afghan", "basset, basset hound", "beagle", "bloodhound, sleuthhound", "bluetick", "black-and-tan coonhound", "walker hound, walker foxhound", "english foxhound", "redbone", "borzoi, russian wolfhound", "irish wolfhound", "italian greyhound", "whippet", "ibizan hound, ibizan podenco", "norwegian elkhound, elkhound", "otterhound, otter hound", "saluki, gazelle hound", "scottish deerhound, deerhound", "weimaraner", "staffordshire bullterrier, staffordshire bull terrier", "american staffordshire terrier, staffordshire terrier, american pit bull terrier, pit bull terrier", "bedlington terrier", "border terrier", "kerry blue terrier", "irish terrier", "norfolk terrier", "norwich terrier", "yorkshire terrier", "wire-haired fox terrier", "lakeland terrier", "sealyham terrier, sealyham", "airedale, airedale terrier", "cairn, cairn terrier", "australian terrier", "dandie dinmont, dandie dinmont terrier", "boston bull, boston terrier", "miniature schnauzer", "giant schnauzer", "standard schnauzer", "scotch terrier, scottish terrier, scottie", "tibetan terrier, chrysanthemum dog", "silky terrier, sydney silky", "soft-coated wheaten terrier", "west highland white terrier", "lhasa, lhasa apso", "flat-coated retriever", "curly-coated retriever", "golden retriever", "labrador retriever", "chesapeake bay retriever", "german short-haired pointer", "vizsla, hungarian pointer", "english setter", "irish setter, red setter", "gordon setter", "brittany spaniel", "clumber, clumber spaniel", "english springer, english springer spaniel", "welsh springer spaniel", "cocker spaniel, english cocker spaniel, cocker", "sussex spaniel", "irish water spaniel", "kuvasz", "schipperke", "groenendael", "malinois", "briard", "kelpie", "komondor", "old english sheepdog, bobtail", "shetland sheepdog, shetland sheep dog, shetland", "collie", "border collie", "bouvier des flandres, bouviers des flandres", "rottweiler", "german shepherd, german shepherd dog, german police dog, alsatian", "doberman, doberman pinscher", "miniature pinscher", "greater swiss mountain dog", "bernese mountain dog", "appenzeller", "entlebucher", "boxer", "bull mastiff", "tibetan mastiff", "french bulldog", "great dane", "saint bernard, st bernard", "eskimo dog, husky", "malamute, malemute, alaskan malamute", "siberian husky", "dalmatian, coach dog, carriage dog", "affenpinscher, monkey pinscher, monkey dog", "basenji", "pug, pug-dog", "leonberg", "newfoundland, newfoundland dog", "great pyrenees", "samoyed, samoyede", "pomeranian", "chow, chow chow", "keeshond", "brabancon griffon", "pembroke, pembroke welsh corgi", "cardigan, cardigan welsh corgi", "toy poodle", "miniature poodle", "standard poodle", "mexican hairless", "timber wolf, grey wolf, gray wolf, canis lupus", "white wolf, arctic wolf, canis lupus tundrarum", "red wolf, maned wolf, canis rufus, canis niger", "coyote, prairie wolf, brush wolf, canis latrans", "dingo, warrigal, warragal, canis dingo", "dhole, cuon alpinus", "african hunting dog, hyena dog, cape hunting dog, lycaon pictus", "hyena, hyaena", "red fox, vulpes vulpes", "kit fox, vulpes macrotis", "arctic fox, white fox, alopex lagopus", "grey fox, gray fox, urocyon cinereoargenteus", "tabby, tabby cat", "tiger cat", "persian cat", "siamese cat, siamese", "egyptian cat", "cougar, puma, catamount, mountain lion, painter, panther, felis concolor", "lynx, catamount", "leopard, panthera pardus", "snow leopard, ounce, panthera uncia", "jaguar, panther, panthera onca, felis onca", "lion, king of beasts, panthera leo", "tiger, panthera tigris", "cheetah, chetah, acinonyx jubatus", "brown bear, bruin, ursus arctos", "american black bear, black bear, ursus americanus, euarctos americanus", "ice bear, polar bear, ursus maritimus, thalarctos maritimus", "sloth bear, melursus ursinus, ursus ursinus", "mongoose", "meerkat, mierkat", "tiger beetle", "ladybug, ladybeetle, lady beetle, ladybird, ladybird beetle", "ground beetle, carabid beetle", "long-horned beetle, longicorn, longicorn beetle", "leaf beetle, chrysomelid", "dung beetle", "rhinoceros beetle", "weevil", "fly", "bee", "ant, emmet, pismire", "grasshopper, hopper", "cricket", "walking stick, walkingstick, stick insect", "cockroach, roach", "mantis, mantid", "cicada, cicala", "leafhopper", "lacewing, lacewing fly", "dragonfly, darning needle, devil's darning needle, sewing needle, snake feeder, snake doctor, mosquito hawk, skeeter hawk", "damselfly", "admiral", "ringlet, ringlet butterfly", "monarch, monarch butterfly, milkweed butterfly, danaus plexippus", "cabbage butterfly", "sulphur butterfly, sulfur butterfly", "lycaenid, lycaenid butterfly", "starfish, sea star", "sea urchin", "sea cucumber, holothurian", "wood rabbit, cottontail, cottontail rabbit", "hare", "angora, angora rabbit", "hamster", "porcupine, hedgehog", "fox squirrel, eastern fox squirrel, sciurus niger", "marmot", "beaver", "guinea pig, cavia cobaya", "sorrel", "zebra", "hog, pig, grunter, squealer, sus scrofa", "wild boar, boar, sus scrofa", "warthog", "hippopotamus, hippo, river horse, hippopotamus amphibius", "ox", "water buffalo, water ox, asiatic buffalo, bubalus bubalis", "bison", "ram, tup", "bighorn, bighorn sheep, cimarron, rocky mountain bighorn, rocky mountain sheep, ovis canadensis", "ibex, capra ibex", "hartebeest", "impala, aepyceros melampus", "gazelle", "arabian camel, dromedary, camelus dromedarius", "llama", "weasel", "mink", "polecat, fitch, foulmart, foumart, mustela putorius", "black-footed ferret, ferret, mustela nigripes", "otter", "skunk, polecat, wood pussy", "badger", "armadillo", "three-toed sloth, ai, bradypus tridactylus", "orangutan, orang, orangutang, pongo pygmaeus", "gorilla, gorilla gorilla", "chimpanzee, chimp, pan troglodytes", "gibbon, hylobates lar", "siamang, hylobates syndactylus, symphalangus syndactylus", "guenon, guenon monkey", "patas, hussar monkey, erythrocebus patas", "baboon", "macaque", "langur", "colobus, colobus monkey", "proboscis monkey, nasalis larvatus", "marmoset", "capuchin, ringtail, cebus capucinus", "howler monkey, howler", "titi, titi monkey", "spider monkey, ateles geoffroyi", "squirrel monkey, saimiri sciureus", "madagascar cat, ring-tailed lemur, lemur catta", "indri, indris, indri indri, indri brevicaudatus", "indian elephant, elephas maximus", "african elephant, loxodonta africana", "lesser panda, red panda, panda, bear cat, cat bear, ailurus fulgens", "giant panda, panda, panda bear, coon bear, ailuropoda melanoleuca", "barracouta, snoek", "eel", "coho, cohoe, coho salmon, blue jack, silver salmon, oncorhynchus kisutch", "rock beauty, holocanthus tricolor", "anemone fish", "sturgeon", "gar, garfish, garpike, billfish, lepisosteus osseus", "lionfish", "puffer, pufferfish, blowfish, globefish", "abacus", "abaya", "academic gown, academic robe, judge's robe", "accordion, piano accordion, squeeze box", "acoustic guitar", "aircraft carrier, carrier, flattop, attack aircraft carrier", "airliner", "airship, dirigible", "altar", "ambulance", "amphibian, amphibious vehicle", "analog clock", "apiary, bee house", "apron", "ashcan, trash can, garbage can, wastebin, ash bin, ash-bin, ashbin, dustbin, trash barrel, trash bin", "assault rifle, assault gun", "backpack, back pack, knapsack, packsack, rucksack, haversack", "bakery, bakeshop, bakehouse", "balance beam, beam", "balloon", "ballpoint, ballpoint pen, ballpen, biro", "band aid", "banjo", "bannister, banister, balustrade, balusters, handrail", "barbell", "barber chair", "barbershop", "barn", "barometer", "barrel, cask", "barrow, garden cart, lawn cart, wheelbarrow", "baseball", "basketball", "bassinet", "bassoon", "bathing cap, swimming cap", "bath towel", "bathtub, bathing tub, bath, tub", "beach wagon, station wagon, wagon, estate car, beach waggon, station waggon, waggon", "beacon, lighthouse, beacon light, pharos", "beaker", "bearskin, busby, shako", "beer bottle", "beer glass", "bell cote, bell cot", "bib", "bicycle-built-for-two, tandem bicycle, tandem", "bikini, two-piece", "binder, ring-binder", "binoculars, field glasses, opera glasses", "birdhouse", "boathouse", "bobsled, bobsleigh, bob", "bolo tie, bolo, bola tie, bola", "bonnet, poke bonnet", "bookcase", "bookshop, bookstore, bookstall", "bottlecap", "bow", "bow tie, bow-tie, bowtie", "brass, memorial tablet, plaque", "brassiere, bra, bandeau", "breakwater, groin, groyne, mole, bulwark, seawall, jetty", "breastplate, aegis, egis", "broom", "bucket, pail", "buckle", "bulletproof vest", "bullet train, bullet", "butcher shop, meat market", "cab, hack, taxi, taxicab", "caldron, cauldron", "candle, taper, wax light", "cannon", "canoe", "can opener, tin opener", "cardigan", "car mirror", "carousel, carrousel, merry-go-round, roundabout, whirligig", "carpenter's kit, tool kit", "carton", "car wheel", "cash machine, cash dispenser, automated teller machine, automatic teller machine, automated teller, automatic teller, atm", "cassette", "cassette player", "castle", "catamaran", "cd player", "cello, violoncello", "cellular telephone, cellular phone, cellphone, cell, mobile phone", "chain", "chainlink fence", "chain mail, ring mail, mail, chain armor, chain armour, ring armor, ring armour", "chain saw, chainsaw", "chest", "chiffonier, commode", "chime, bell, gong", "china cabinet, china closet", "christmas stocking", "church, church building", "cinema, movie theater, movie theatre, movie house, picture palace", "cleaver, meat cleaver, chopper", "cliff dwelling", "cloak", "clog, geta, patten, sabot", "cocktail shaker", "coffee mug", "coffeepot", "coil, spiral, volute, whorl, helix", "combination lock", "computer keyboard, keypad", "confectionery, confectionary, candy store", "container ship, containership, container vessel", "convertible", "corkscrew, bottle screw", "cornet, horn, trumpet, trump", "cowboy boot", "cowboy hat, ten-gallon hat", "cradle", "crane", "crash helmet", "crate", "crib, cot", "crock pot", "croquet ball", "crutch", "cuirass", "dam, dike, dyke", "desk", "desktop computer", "dial telephone, dial phone", "diaper, nappy, napkin", "digital clock", "digital watch", "dining table, board", "dishrag, dishcloth", "dishwasher, dish washer, dishwashing machine", "disk brake, disc brake", "dock, dockage, docking facility", "dogsled, dog sled, dog sleigh", "dome", "doormat, welcome mat", "drilling platform, offshore rig", "drum, membranophone, tympan", "drumstick", "dumbbell", "dutch oven", "electric fan, blower", "electric guitar", "electric locomotive", "entertainment center", "envelope", "espresso maker", "face powder", "feather boa, boa", "file, file cabinet, filing cabinet", "fireboat", "fire engine, fire truck", "fire screen, fireguard", "flagpole, flagstaff", "flute, transverse flute", "folding chair", "football helmet", "forklift", "fountain", "fountain pen", "four-poster", "freight car", "french horn, horn", "frying pan, frypan, skillet", "fur coat", "garbage truck, dustcart", "gasmask, respirator, gas helmet", "gas pump, gasoline pump, petrol pump, island dispenser", "goblet", "go-kart", "golf ball", "golfcart, golf cart", "gondola", "gong, tam-tam", "gown", "grand piano, grand", "greenhouse, nursery, glasshouse", "grille, radiator grille", "grocery store, grocery, food market, market", "guillotine", "hair slide", "hair spray", "half track", "hammer", "hamper", "hand blower, blow dryer, blow drier, hair dryer, hair drier", "hand-held computer, hand-held microcomputer", "handkerchief, hankie, hanky, hankey", "hard disc, hard disk, fixed disk", "harmonica, mouth organ, harp, mouth harp", "harp", "harvester, reaper", "hatchet", "holster", "home theater, home theatre", "honeycomb", "hook, claw", "hoopskirt, crinoline", "horizontal bar, high bar", "horse cart, horse-cart", "hourglass", "ipod", "iron, smoothing iron", "jack-o'-lantern", "jean, blue jean, denim", "jeep, landrover", "jersey, t-shirt, tee shirt", "jigsaw puzzle", "jinrikisha, ricksha, rickshaw", "joystick", "kimono", "knee pad", "knot", "lab coat, laboratory coat", "ladle", "lampshade, lamp shade", "laptop, laptop computer", "lawn mower, mower", "lens cap, lens cover", "letter opener, paper knife, paperknife", "library", "lifeboat", "lighter, light, igniter, ignitor", "limousine, limo", "liner, ocean liner", "lipstick, lip rouge", "loafer", "lotion", "loudspeaker, speaker, speaker unit, loudspeaker system, speaker system", "loupe, jeweler's loupe", "lumbermill, sawmill", "magnetic compass", "mailbag, postbag", "mailbox, letter box", "maillot", "maillot, tank suit", "manhole cover", "maraca", "marimba, xylophone", "mask", "matchstick", "maypole", "maze, labyrinth", "measuring cup", "medicine chest, medicine cabinet", "megalith, megalithic structure", "microphone, mike", "microwave, microwave oven", "military uniform", "milk can", "minibus", "miniskirt, mini", "minivan", "missile", "mitten", "mixing bowl", "mobile home, manufactured home", "model t", "modem", "monastery", "monitor", "moped", "mortar", "mortarboard", "mosque", "mosquito net", "motor scooter, scooter", "mountain bike, all-terrain bike, off-roader", "mountain tent", "mouse, computer mouse", "mousetrap", "moving van", "muzzle", "nail", "neck brace", "necklace", "nipple", "notebook, notebook computer", "obelisk", "oboe, hautboy, hautbois", "ocarina, sweet potato", "odometer, hodometer, mileometer, milometer", "oil filter", "organ, pipe organ", "oscilloscope, scope, cathode-ray oscilloscope, cro", "overskirt", "oxcart", "oxygen mask", "packet", "paddle, boat paddle", "paddlewheel, paddle wheel", "padlock", "paintbrush", "pajama, pyjama, pj's, jammies", "palace", "panpipe, pandean pipe, syrinx", "paper towel", "parachute, chute", "parallel bars, bars", "park bench", "parking meter", "passenger car, coach, carriage", "patio, terrace", "pay-phone, pay-station", "pedestal, plinth, footstall", "pencil box, pencil case", "pencil sharpener", "perfume, essence", "petri dish", "photocopier", "pick, plectrum, plectron", "pickelhaube", "picket fence, paling", "pickup, pickup truck", "pier", "piggy bank, penny bank", "pill bottle", "pillow", "ping-pong ball", "pinwheel", "pirate, pirate ship", "pitcher, ewer", "plane, carpenter's plane, woodworking plane", "planetarium", "plastic bag", "plate rack", "plow, plough", "plunger, plumber's helper", "polaroid camera, polaroid land camera", "pole", "police van, police wagon, paddy wagon, patrol wagon, wagon, black maria", "poncho", "pool table, billiard table, snooker table", "pop bottle, soda bottle", "pot, flowerpot", "potter's wheel", "power drill", "prayer rug, prayer mat", "printer", "prison, prison house", "projectile, missile", "projector", "puck, hockey puck", "punching bag, punch bag, punching ball, punchball", "purse", "quill, quill pen", "quilt, comforter, comfort, puff", "racer, race car, racing car", "racket, racquet", "radiator", "radio, wireless", "radio telescope, radio reflector", "rain barrel", "recreational vehicle, rv, r.v.", "reel", "reflex camera", "refrigerator, icebox", "remote control, remote", "restaurant, eating house, eating place, eatery", "revolver, six-gun, six-shooter", "rifle", "rocking chair, rocker", "rotisserie", "rubber eraser, rubber, pencil eraser", "rugby ball", "rule, ruler", "running shoe", "safe", "safety pin", "saltshaker, salt shaker", "sandal", "sarong", "sax, saxophone", "scabbard", "scale, weighing machine", "school bus", "schooner", "scoreboard", "screen, crt screen", "screw", "screwdriver", "seat belt, seatbelt", "sewing machine", "shield, buckler", "shoe shop, shoe-shop, shoe store", "shoji", "shopping basket", "shopping cart", "shovel", "shower cap", "shower curtain", "ski", "ski mask", "sleeping bag", "slide rule, slipstick", "sliding door", "slot, one-armed bandit", "snorkel", "snowmobile", "snowplow, snowplough", "soap dispenser", "soccer ball", "sock", "solar dish, solar collector, solar furnace", "sombrero", "soup bowl", "space bar", "space heater", "space shuttle", "spatula", "speedboat", "spider web, spider's web", "spindle", "sports car, sport car", "spotlight, spot", "stage", "steam locomotive", "steel arch bridge", "steel drum", "stethoscope", "stole", "stone wall", "stopwatch, stop watch", "stove", "strainer", "streetcar, tram, tramcar, trolley, trolley car", "stretcher", "studio couch, day bed", "stupa, tope", "submarine, pigboat, sub, u-boat", "suit, suit of clothes", "sundial", "sunglass", "sunglasses, dark glasses, shades", "sunscreen, sunblock, sun blocker", "suspension bridge", "swab, swob, mop", "sweatshirt", "swimming trunks, bathing trunks", "swing", "switch, electric switch, electrical switch", "syringe", "table lamp", "tank, army tank, armored combat vehicle, armoured combat vehicle", "tape player", "teapot", "teddy, teddy bear", "television, television system", "tennis ball", "thatch, thatched roof", "theater curtain, theatre curtain", "thimble", "thresher, thrasher, threshing machine", "throne", "tile roof", "toaster", "tobacco shop, tobacconist shop, tobacconist", "toilet seat", "torch", "totem pole", "tow truck, tow car, wrecker", "toyshop", "tractor", "trailer truck, tractor trailer, trucking rig, rig, articulated lorry, semi", "tray", "trench coat", "tricycle, trike, velocipede", "trimaran", "tripod", "triumphal arch", "trolleybus, trolley coach, trackless trolley", "trombone", "tub, vat", "turnstile", "typewriter keyboard", "umbrella", "unicycle, monocycle", "upright, upright piano", "vacuum, vacuum cleaner", "vase", "vault", "velvet", "vending machine", "vestment", "viaduct", "violin, fiddle", "volleyball", "waffle iron", "wall clock", "wallet, billfold, notecase, pocketbook", "wardrobe, closet, press", "warplane, military plane", "washbasin, handbasin, washbowl, lavabo, wash-hand basin", "washer, automatic washer, washing machine", "water bottle", "water jug", "water tower", "whiskey jug", "whistle", "wig", "window screen", "window shade", "windsor tie", "wine bottle", "wing", "wok", "wooden spoon", "wool, woolen, woollen", "worm fence, snake fence, snake-rail fence, virginia fence", "wreck", "yawl", "yurt", "web site, website, internet site, site", "comic book", "crossword puzzle, crossword", "street sign", "traffic light, traffic signal, stoplight", "book jacket, dust cover, dust jacket, dust wrapper", "menu", "plate", "guacamole", "consomme", "hot pot, hotpot", "trifle", "ice cream, icecream", "ice lolly, lolly, lollipop, popsicle", "french loaf", "bagel, beigel", "pretzel", "cheeseburger", "hotdog, hot dog, red hot", "mashed potato", "head cabbage", "broccoli", "cauliflower", "zucchini, courgette", "spaghetti squash", "acorn squash", "butternut squash", "cucumber, cuke", "artichoke, globe artichoke", "bell pepper", "cardoon", "mushroom", "granny smith", "strawberry", "orange", "lemon", "fig", "pineapple, ananas", "banana", "jackfruit, jak, jack", "custard apple", "pomegranate", "hay", "carbonara", "chocolate sauce, chocolate syrup", "dough", "meat loaf, meatloaf", "pizza, pizza pie", "potpie", "burrito", "red wine", "espresso", "cup", "eggnog", "alp", "bubble", "cliff, drop, drop-off", "coral reef", "geyser", "lakeside, lakeshore", "promontory, headland, head, foreland", "sandbar, sand bar", "seashore, coast, seacoast, sea-coast", "valley, vale", "volcano", "ballplayer, baseball player", "groom, bridegroom", "scuba diver", "rapeseed", "daisy", "yellow lady's slipper, yellow lady-slipper, cypripedium calceolus, cypripedium parviflorum", "corn", "acorn", "hip, rose hip, rosehip", "buckeye, horse chestnut, conker", "coral fungus", "agaric", "gyromitra", "stinkhorn, carrion fungus", "earthstar", "hen-of-the-woods, hen of the woods, polyporus frondosus, grifola frondosa", "bolete", "ear, spike, capitulum", "toilet tissue, toilet paper, bathroom tissue" ]
efederici/convnext-base-224-22k-1k-orig-cats-vs-dogs
# convnext-base-224-22k-1k-orig-cats-vs-dogs This model is a fine-tuned version of [facebook/convnext-base-224-22k-1k](https://huggingface.co/facebook/convnext-base-224-22k-1k) on the cats_vs_dogs dataset. It achieves the following results on the evaluation set: - Loss: 0.0103 - Accuracy: 0.9973 <p align="center"> <img src="https://files.ocula.com/anzax/09/09f77133-7740-4130-a567-84fb56736362_650_544.jpg" width="600"> </br> Jockum Nordström, Cat Dog Cat, 2016 </p> ## Model description The "Roaring 20s" of visual recognition began with the introduction of Vision Transformers (ViTs), which quickly superseded ConvNets as the state-of-the-art image classification model. A vanilla ViT, on the other hand, faces difficulties when applied to general computer vision tasks such as object detection and semantic segmentation. It is the hierarchical Transformers (e.g., Swin Transformers) that reintroduced several ConvNet priors, making Transformers practically viable as a generic vision backbone and demonstrating remarkable performance on a wide variety of vision tasks. However, the effectiveness of such hybrid approaches is still largely credited to the intrinsic superiority of Transformers, rather than the inherent inductive biases of convolutions. In this work, we reexamine the design spaces and test the limits of what a pure ConvNet can achieve. We gradually "modernize" a standard ResNet toward the design of a vision Transformer, and discover several key components that contribute to the performance difference along the way. The outcome of this exploration is a family of pure ConvNet models dubbed ConvNeXt. Constructed entirely from standard ConvNet modules, ConvNeXts compete favorably with Transformers in terms of accuracy and scalability, achieving 87.8% ImageNet top-1 accuracy and outperforming Swin Transformers on COCO detection and ADE20K segmentation, while maintaining the simplicity and efficiency of standard ConvNets. ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5.0 ### BibTeX entry and citation info ```bibtex @article{DBLP:journals/corr/abs-2201-03545, author = {Zhuang Liu and Hanzi Mao and Chao{-}Yuan Wu and Christoph Feichtenhofer and Trevor Darrell and Saining Xie}, title = {A ConvNet for the 2020s}, journal = {CoRR}, volume = {abs/2201.03545}, year = {2022}, url = {https://arxiv.org/abs/2201.03545}, eprinttype = {arXiv}, eprint = {2201.03545}, timestamp = {Thu, 20 Jan 2022 14:21:35 +0100}, biburl = {https://dblp.org/rec/journals/corr/abs-2201-03545.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ```
[ "cat", "dog" ]
raedinkhaled/vit-base-mri
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-base-mri This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the mriDataSet dataset. It achieves the following results on the evaluation set: - Loss: 0.0453 - Accuracy: 0.9827 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.04 | 0.3 | 500 | 0.0828 | 0.9690 | | 0.0765 | 0.59 | 1000 | 0.0623 | 0.9750 | | 0.0479 | 0.89 | 1500 | 0.0453 | 0.9827 | | 0.0199 | 1.18 | 2000 | 0.0524 | 0.9857 | | 0.0114 | 1.48 | 2500 | 0.0484 | 0.9861 | | 0.008 | 1.78 | 3000 | 0.0566 | 0.9852 | | 0.0051 | 2.07 | 3500 | 0.0513 | 0.9874 | | 0.0008 | 2.37 | 4000 | 0.0617 | 0.9874 | | 0.0021 | 2.66 | 4500 | 0.0664 | 0.9870 | | 0.0005 | 2.96 | 5000 | 0.0639 | 0.9872 | | 0.001 | 3.25 | 5500 | 0.0644 | 0.9879 | | 0.0004 | 3.55 | 6000 | 0.0672 | 0.9875 | | 0.0003 | 3.85 | 6500 | 0.0690 | 0.9879 | ### Framework versions - Transformers 4.20.0 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
[ "cad", "healthy" ]
raedinkhaled/swin-tiny-patch4-window7-224-finetuned-mri
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # swin-tiny-patch4-window7-224-finetuned-mri This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.0608 - Accuracy: 0.9807 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.0592 | 1.0 | 447 | 0.0823 | 0.9695 | | 0.0196 | 2.0 | 894 | 0.0761 | 0.9739 | | 0.0058 | 3.0 | 1341 | 0.0608 | 0.9807 | ### Framework versions - Transformers 4.20.0 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
[ "cad", "healthy" ]
sudo-s/modelversion01
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # modelversion01 This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the sudo-s/herbier_mesuem1 dataset. It achieves the following results on the evaluation set: - Loss: 1.3888 - Accuracy: 0.7224 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 3.1304 | 0.16 | 100 | 3.1546 | 0.3254 | | 2.6514 | 0.31 | 200 | 2.5058 | 0.4854 | | 2.0636 | 0.47 | 300 | 2.0647 | 0.5771 | | 1.7812 | 0.63 | 400 | 1.7536 | 0.6423 | | 1.5857 | 0.78 | 500 | 1.5272 | 0.6974 | | 1.3055 | 0.94 | 600 | 1.3888 | 0.7224 | ### Framework versions - Transformers 4.20.0 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
[ "0", "1", "10", "100", "101", "102", "103", "104", "105", "106", "107", "108", "109", "11", "110", "111", "112", "113", "114", "115", "116", "117", "118", "119", "12", "120", "121", "122", "123", "124", "125", "126", "127", "128", "129", "13", "130", "131", "132", "133", "134", "135", "136", "137", "138", "139", "14", "140", "141", "142", "143", "144", "145", "146", "147", "148", "15", "16", "17", "18", "19", "2", "20", "21", "22", "23", "24", "25", "26", "27", "28", "29", "3", "30", "31", "32", "33", "34", "35", "36", "37", "38", "39", "4", "40", "41", "42", "43", "44", "45", "46", "47", "48", "49", "5", "50", "51", "52", "53", "54", "55", "56", "57", "58", "59", "6", "60", "61", "62", "63", "64", "65", "66", "67", "68", "69", "7", "70", "71", "72", "73", "74", "75", "76", "77", "78", "79", "8", "80", "81", "82", "83", "84", "85", "86", "87", "88", "89", "9", "90", "91", "92", "93", "94", "95", "96", "97", "98", "99" ]
skylord/swin-finetuned-food101
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # swin-finetuned-food101 This model is a fine-tuned version of [microsoft/swin-base-patch4-window7-224](https://huggingface.co/microsoft/swin-base-patch4-window7-224) on the food101 dataset. It achieves the following results on the evaluation set: - Loss: 0.2779 - Accuracy: 0.9214 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.5646 | 1.0 | 1183 | 0.3937 | 0.8861 | | 0.3327 | 2.0 | 2366 | 0.3024 | 0.9124 | | 0.1042 | 3.0 | 3549 | 0.2779 | 0.9214 | ### Framework versions - Transformers 4.20.0 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
[ "apple_pie", "baby_back_ribs", "bruschetta", "waffles", "caesar_salad", "cannoli", "caprese_salad", "carrot_cake", "ceviche", "cheesecake", "cheese_plate", "chicken_curry", "chicken_quesadilla", "baklava", "chicken_wings", "chocolate_cake", "chocolate_mousse", "churros", "clam_chowder", "club_sandwich", "crab_cakes", "creme_brulee", "croque_madame", "cup_cakes", "beef_carpaccio", "deviled_eggs", "donuts", "dumplings", "edamame", "eggs_benedict", "escargots", "falafel", "filet_mignon", "fish_and_chips", "foie_gras", "beef_tartare", "french_fries", "french_onion_soup", "french_toast", "fried_calamari", "fried_rice", "frozen_yogurt", "garlic_bread", "gnocchi", "greek_salad", "grilled_cheese_sandwich", "beet_salad", "grilled_salmon", "guacamole", "gyoza", "hamburger", "hot_and_sour_soup", "hot_dog", "huevos_rancheros", "hummus", "ice_cream", "lasagna", "beignets", "lobster_bisque", "lobster_roll_sandwich", "macaroni_and_cheese", "macarons", "miso_soup", "mussels", "nachos", "omelette", "onion_rings", "oysters", "bibimbap", "pad_thai", "paella", "pancakes", "panna_cotta", "peking_duck", "pho", "pizza", "pork_chop", "poutine", "prime_rib", "bread_pudding", "pulled_pork_sandwich", "ramen", "ravioli", "red_velvet_cake", "risotto", "samosa", "sashimi", "scallops", "seaweed_salad", "shrimp_and_grits", "breakfast_burrito", "spaghetti_bolognese", "spaghetti_carbonara", "spring_rolls", "steak", "strawberry_shortcake", "sushi", "tacos", "takoyaki", "tiramisu", "tuna_tartare" ]
sasha/dog-food-vit-base-patch16-224-in21k
# dog-food-vit-base-patch16-224-in21k This model was trained on the `train` split of the [Dogs vs Food](https://huggingface.co/datasets/sasha/dog-food) dataset -- try training your own using the [the demo on Google Colab](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb)! ## Example Images #### dog ![dog](images/dog.jpg) #### food ![food](images/food.jpg)
[ "dog", "food" ]
Sampson2022/test2
# ResNet-50 v1.5 ResNet model pre-trained on ImageNet-1k at resolution 224x224. It was introduced in the paper [Deep Residual Learning for Image Recognition](https://arxiv.org/abs/1512.03385) by He et al. Disclaimer: The team releasing ResNet did not write a model card for this model so this model card has been written by the Hugging Face team. ## Model description ResNet (Residual Network) is a convolutional neural network that democratized the concepts of residual learning and skip connections. This enables to train much deeper models. This is ResNet v1.5, which differs from the original model: in the bottleneck blocks which require downsampling, v1 has stride = 2 in the first 1x1 convolution, whereas v1.5 has stride = 2 in the 3x3 convolution. This difference makes ResNet50 v1.5 slightly more accurate (\~0.5% top1) than v1, but comes with a small performance drawback (~5% imgs/sec) according to [Nvidia](https://catalog.ngc.nvidia.com/orgs/nvidia/resources/resnet_50_v1_5_for_pytorch). ![model image](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/resnet_architecture.png) ## Intended uses & limitations You can use the raw model for image classification. See the [model hub](https://huggingface.co/models?search=resnet) to look for fine-tuned versions on a task that interests you. ### How to use Here is how to use this model to classify an image of the COCO 2017 dataset into one of the 1,000 ImageNet classes: ```python from transformers import AutoFeatureExtractor, ResNetForImageClassification import torch from datasets import load_dataset dataset = load_dataset("huggingface/cats-image") image = dataset["test"]["image"][0] feature_extractor = AutoFeatureExtractor.from_pretrained("microsoft/resnet-50") model = ResNetForImageClassification.from_pretrained("microsoft/resnet-50") inputs = feature_extractor(image, return_tensors="pt") with torch.no_grad(): logits = model(**inputs).logits # model predicts one of the 1000 ImageNet classes predicted_label = logits.argmax(-1).item() print(model.config.id2label[predicted_label]) ``` For more code examples, we refer to the [documentation](https://huggingface.co/docs/transformers/main/en/model_doc/resnet). ### BibTeX entry and citation info ```bibtex @inproceedings{he2016deep, title={Deep residual learning for image recognition}, author={He, Kaiming and Zhang, Xiangyu and Ren, Shaoqing and Sun, Jian}, booktitle={Proceedings of the IEEE conference on computer vision and pattern recognition}, pages={770--778}, year={2016} } ```
[ "tench, tinca tinca", "goldfish, carassius auratus", "great white shark, white shark, man-eater, man-eating shark, carcharodon carcharias", "tiger shark, galeocerdo cuvieri", "hammerhead, hammerhead shark", "electric ray, crampfish, numbfish, torpedo", "stingray", "cock", "hen", "ostrich, struthio camelus", "brambling, fringilla montifringilla", "goldfinch, carduelis carduelis", "house finch, linnet, carpodacus mexicanus", "junco, snowbird", "indigo bunting, indigo finch, indigo bird, passerina cyanea", "robin, american robin, turdus migratorius", "bulbul", "jay", "magpie", "chickadee", "water ouzel, dipper", "kite", "bald eagle, american eagle, haliaeetus leucocephalus", "vulture", "great grey owl, great gray owl, strix nebulosa", "european fire salamander, salamandra salamandra", "common newt, triturus vulgaris", "eft", "spotted salamander, ambystoma maculatum", "axolotl, mud puppy, ambystoma mexicanum", "bullfrog, rana catesbeiana", "tree frog, tree-frog", "tailed frog, bell toad, ribbed toad, tailed toad, ascaphus trui", "loggerhead, loggerhead turtle, caretta caretta", "leatherback turtle, leatherback, leathery turtle, dermochelys coriacea", "mud turtle", "terrapin", "box turtle, box tortoise", "banded gecko", "common iguana, iguana, iguana iguana", "american chameleon, anole, anolis carolinensis", "whiptail, whiptail lizard", "agama", "frilled lizard, chlamydosaurus kingi", "alligator lizard", "gila monster, heloderma suspectum", "green lizard, lacerta viridis", "african chameleon, chamaeleo chamaeleon", "komodo dragon, komodo lizard, dragon lizard, giant lizard, varanus komodoensis", "african crocodile, nile crocodile, crocodylus niloticus", "american alligator, alligator mississipiensis", "triceratops", "thunder snake, worm snake, carphophis amoenus", "ringneck snake, ring-necked snake, ring snake", "hognose snake, puff adder, sand viper", "green snake, grass snake", "king snake, kingsnake", "garter snake, grass snake", "water snake", "vine snake", "night snake, hypsiglena torquata", "boa constrictor, constrictor constrictor", "rock python, rock snake, python sebae", "indian cobra, naja naja", "green mamba", "sea snake", "horned viper, cerastes, sand viper, horned asp, cerastes cornutus", "diamondback, diamondback rattlesnake, crotalus adamanteus", "sidewinder, horned rattlesnake, crotalus cerastes", "trilobite", "harvestman, daddy longlegs, phalangium opilio", "scorpion", "black and gold garden spider, argiope aurantia", "barn spider, araneus cavaticus", "garden spider, aranea diademata", "black widow, latrodectus mactans", "tarantula", "wolf spider, hunting spider", "tick", "centipede", "black grouse", "ptarmigan", "ruffed grouse, partridge, bonasa umbellus", "prairie chicken, prairie grouse, prairie fowl", "peacock", "quail", "partridge", "african grey, african gray, psittacus erithacus", "macaw", "sulphur-crested cockatoo, kakatoe galerita, cacatua galerita", "lorikeet", "coucal", "bee eater", "hornbill", "hummingbird", "jacamar", "toucan", "drake", "red-breasted merganser, mergus serrator", "goose", "black swan, cygnus atratus", "tusker", "echidna, spiny anteater, anteater", "platypus, duckbill, duckbilled platypus, duck-billed platypus, ornithorhynchus anatinus", "wallaby, brush kangaroo", "koala, koala bear, kangaroo bear, native bear, phascolarctos cinereus", "wombat", "jellyfish", "sea anemone, anemone", "brain coral", "flatworm, platyhelminth", "nematode, nematode worm, roundworm", "conch", "snail", "slug", "sea slug, nudibranch", "chiton, coat-of-mail shell, sea cradle, polyplacophore", "chambered nautilus, pearly nautilus, nautilus", "dungeness crab, cancer magister", "rock crab, cancer irroratus", "fiddler crab", "king crab, alaska crab, alaskan king crab, alaska king crab, paralithodes camtschatica", "american lobster, northern lobster, maine lobster, homarus americanus", "spiny lobster, langouste, rock lobster, crawfish, crayfish, sea crawfish", "crayfish, crawfish, crawdad, crawdaddy", "hermit crab", "isopod", "white stork, ciconia ciconia", "black stork, ciconia nigra", "spoonbill", "flamingo", "little blue heron, egretta caerulea", "american egret, great white heron, egretta albus", "bittern", "crane", "limpkin, aramus pictus", "european gallinule, porphyrio porphyrio", "american coot, marsh hen, mud hen, water hen, fulica americana", "bustard", "ruddy turnstone, arenaria interpres", "red-backed sandpiper, dunlin, erolia alpina", "redshank, tringa totanus", "dowitcher", "oystercatcher, oyster catcher", "pelican", "king penguin, aptenodytes patagonica", "albatross, mollymawk", "grey whale, gray whale, devilfish, eschrichtius gibbosus, eschrichtius robustus", "killer whale, killer, orca, grampus, sea wolf, orcinus orca", "dugong, dugong dugon", "sea lion", "chihuahua", "japanese spaniel", "maltese dog, maltese terrier, maltese", "pekinese, pekingese, peke", "shih-tzu", "blenheim spaniel", "papillon", "toy terrier", "rhodesian ridgeback", "afghan hound, afghan", "basset, basset hound", "beagle", "bloodhound, sleuthhound", "bluetick", "black-and-tan coonhound", "walker hound, walker foxhound", "english foxhound", "redbone", "borzoi, russian wolfhound", "irish wolfhound", "italian greyhound", "whippet", "ibizan hound, ibizan podenco", "norwegian elkhound, elkhound", "otterhound, otter hound", "saluki, gazelle hound", "scottish deerhound, deerhound", "weimaraner", "staffordshire bullterrier, staffordshire bull terrier", "american staffordshire terrier, staffordshire terrier, american pit bull terrier, pit bull terrier", "bedlington terrier", "border terrier", "kerry blue terrier", "irish terrier", "norfolk terrier", "norwich terrier", "yorkshire terrier", "wire-haired fox terrier", "lakeland terrier", "sealyham terrier, sealyham", "airedale, airedale terrier", "cairn, cairn terrier", "australian terrier", "dandie dinmont, dandie dinmont terrier", "boston bull, boston terrier", "miniature schnauzer", "giant schnauzer", "standard schnauzer", "scotch terrier, scottish terrier, scottie", "tibetan terrier, chrysanthemum dog", "silky terrier, sydney silky", "soft-coated wheaten terrier", "west highland white terrier", "lhasa, lhasa apso", "flat-coated retriever", "curly-coated retriever", "golden retriever", "labrador retriever", "chesapeake bay retriever", "german short-haired pointer", "vizsla, hungarian pointer", "english setter", "irish setter, red setter", "gordon setter", "brittany spaniel", "clumber, clumber spaniel", "english springer, english springer spaniel", "welsh springer spaniel", "cocker spaniel, english cocker spaniel, cocker", "sussex spaniel", "irish water spaniel", "kuvasz", "schipperke", "groenendael", "malinois", "briard", "kelpie", "komondor", "old english sheepdog, bobtail", "shetland sheepdog, shetland sheep dog, shetland", "collie", "border collie", "bouvier des flandres, bouviers des flandres", "rottweiler", "german shepherd, german shepherd dog, german police dog, alsatian", "doberman, doberman pinscher", "miniature pinscher", "greater swiss mountain dog", "bernese mountain dog", "appenzeller", "entlebucher", "boxer", "bull mastiff", "tibetan mastiff", "french bulldog", "great dane", "saint bernard, st bernard", "eskimo dog, husky", "malamute, malemute, alaskan malamute", "siberian husky", "dalmatian, coach dog, carriage dog", "affenpinscher, monkey pinscher, monkey dog", "basenji", "pug, pug-dog", "leonberg", "newfoundland, newfoundland dog", "great pyrenees", "samoyed, samoyede", "pomeranian", "chow, chow chow", "keeshond", "brabancon griffon", "pembroke, pembroke welsh corgi", "cardigan, cardigan welsh corgi", "toy poodle", "miniature poodle", "standard poodle", "mexican hairless", "timber wolf, grey wolf, gray wolf, canis lupus", "white wolf, arctic wolf, canis lupus tundrarum", "red wolf, maned wolf, canis rufus, canis niger", "coyote, prairie wolf, brush wolf, canis latrans", "dingo, warrigal, warragal, canis dingo", "dhole, cuon alpinus", "african hunting dog, hyena dog, cape hunting dog, lycaon pictus", "hyena, hyaena", "red fox, vulpes vulpes", "kit fox, vulpes macrotis", "arctic fox, white fox, alopex lagopus", "grey fox, gray fox, urocyon cinereoargenteus", "tabby, tabby cat", "tiger cat", "persian cat", "siamese cat, siamese", "egyptian cat", "cougar, puma, catamount, mountain lion, painter, panther, felis concolor", "lynx, catamount", "leopard, panthera pardus", "snow leopard, ounce, panthera uncia", "jaguar, panther, panthera onca, felis onca", "lion, king of beasts, panthera leo", "tiger, panthera tigris", "cheetah, chetah, acinonyx jubatus", "brown bear, bruin, ursus arctos", "american black bear, black bear, ursus americanus, euarctos americanus", "ice bear, polar bear, ursus maritimus, thalarctos maritimus", "sloth bear, melursus ursinus, ursus ursinus", "mongoose", "meerkat, mierkat", "tiger beetle", "ladybug, ladybeetle, lady beetle, ladybird, ladybird beetle", "ground beetle, carabid beetle", "long-horned beetle, longicorn, longicorn beetle", "leaf beetle, chrysomelid", "dung beetle", "rhinoceros beetle", "weevil", "fly", "bee", "ant, emmet, pismire", "grasshopper, hopper", "cricket", "walking stick, walkingstick, stick insect", "cockroach, roach", "mantis, mantid", "cicada, cicala", "leafhopper", "lacewing, lacewing fly", "dragonfly, darning needle, devil's darning needle, sewing needle, snake feeder, snake doctor, mosquito hawk, skeeter hawk", "damselfly", "admiral", "ringlet, ringlet butterfly", "monarch, monarch butterfly, milkweed butterfly, danaus plexippus", "cabbage butterfly", "sulphur butterfly, sulfur butterfly", "lycaenid, lycaenid butterfly", "starfish, sea star", "sea urchin", "sea cucumber, holothurian", "wood rabbit, cottontail, cottontail rabbit", "hare", "angora, angora rabbit", "hamster", "porcupine, hedgehog", "fox squirrel, eastern fox squirrel, sciurus niger", "marmot", "beaver", "guinea pig, cavia cobaya", "sorrel", "zebra", "hog, pig, grunter, squealer, sus scrofa", "wild boar, boar, sus scrofa", "warthog", "hippopotamus, hippo, river horse, hippopotamus amphibius", "ox", "water buffalo, water ox, asiatic buffalo, bubalus bubalis", "bison", "ram, tup", "bighorn, bighorn sheep, cimarron, rocky mountain bighorn, rocky mountain sheep, ovis canadensis", "ibex, capra ibex", "hartebeest", "impala, aepyceros melampus", "gazelle", "arabian camel, dromedary, camelus dromedarius", "llama", "weasel", "mink", "polecat, fitch, foulmart, foumart, mustela putorius", "black-footed ferret, ferret, mustela nigripes", "otter", "skunk, polecat, wood pussy", "badger", "armadillo", "three-toed sloth, ai, bradypus tridactylus", "orangutan, orang, orangutang, pongo pygmaeus", "gorilla, gorilla gorilla", "chimpanzee, chimp, pan troglodytes", "gibbon, hylobates lar", "siamang, hylobates syndactylus, symphalangus syndactylus", "guenon, guenon monkey", "patas, hussar monkey, erythrocebus patas", "baboon", "macaque", "langur", "colobus, colobus monkey", "proboscis monkey, nasalis larvatus", "marmoset", "capuchin, ringtail, cebus capucinus", "howler monkey, howler", "titi, titi monkey", "spider monkey, ateles geoffroyi", "squirrel monkey, saimiri sciureus", "madagascar cat, ring-tailed lemur, lemur catta", "indri, indris, indri indri, indri brevicaudatus", "indian elephant, elephas maximus", "african elephant, loxodonta africana", "lesser panda, red panda, panda, bear cat, cat bear, ailurus fulgens", "giant panda, panda, panda bear, coon bear, ailuropoda melanoleuca", "barracouta, snoek", "eel", "coho, cohoe, coho salmon, blue jack, silver salmon, oncorhynchus kisutch", "rock beauty, holocanthus tricolor", "anemone fish", "sturgeon", "gar, garfish, garpike, billfish, lepisosteus osseus", "lionfish", "puffer, pufferfish, blowfish, globefish", "abacus", "abaya", "academic gown, academic robe, judge's robe", "accordion, piano accordion, squeeze box", "acoustic guitar", "aircraft carrier, carrier, flattop, attack aircraft carrier", "airliner", "airship, dirigible", "altar", "ambulance", "amphibian, amphibious vehicle", "analog clock", "apiary, bee house", "apron", "ashcan, trash can, garbage can, wastebin, ash bin, ash-bin, ashbin, dustbin, trash barrel, trash bin", "assault rifle, assault gun", "backpack, back pack, knapsack, packsack, rucksack, haversack", "bakery, bakeshop, bakehouse", "balance beam, beam", "balloon", "ballpoint, ballpoint pen, ballpen, biro", "band aid", "banjo", "bannister, banister, balustrade, balusters, handrail", "barbell", "barber chair", "barbershop", "barn", "barometer", "barrel, cask", "barrow, garden cart, lawn cart, wheelbarrow", "baseball", "basketball", "bassinet", "bassoon", "bathing cap, swimming cap", "bath towel", "bathtub, bathing tub, bath, tub", "beach wagon, station wagon, wagon, estate car, beach waggon, station waggon, waggon", "beacon, lighthouse, beacon light, pharos", "beaker", "bearskin, busby, shako", "beer bottle", "beer glass", "bell cote, bell cot", "bib", "bicycle-built-for-two, tandem bicycle, tandem", "bikini, two-piece", "binder, ring-binder", "binoculars, field glasses, opera glasses", "birdhouse", "boathouse", "bobsled, bobsleigh, bob", "bolo tie, bolo, bola tie, bola", "bonnet, poke bonnet", "bookcase", "bookshop, bookstore, bookstall", "bottlecap", "bow", "bow tie, bow-tie, bowtie", "brass, memorial tablet, plaque", "brassiere, bra, bandeau", "breakwater, groin, groyne, mole, bulwark, seawall, jetty", "breastplate, aegis, egis", "broom", "bucket, pail", "buckle", "bulletproof vest", "bullet train, bullet", "butcher shop, meat market", "cab, hack, taxi, taxicab", "caldron, cauldron", "candle, taper, wax light", "cannon", "canoe", "can opener, tin opener", "cardigan", "car mirror", "carousel, carrousel, merry-go-round, roundabout, whirligig", "carpenter's kit, tool kit", "carton", "car wheel", "cash machine, cash dispenser, automated teller machine, automatic teller machine, automated teller, automatic teller, atm", "cassette", "cassette player", "castle", "catamaran", "cd player", "cello, violoncello", "cellular telephone, cellular phone, cellphone, cell, mobile phone", "chain", "chainlink fence", "chain mail, ring mail, mail, chain armor, chain armour, ring armor, ring armour", "chain saw, chainsaw", "chest", "chiffonier, commode", "chime, bell, gong", "china cabinet, china closet", "christmas stocking", "church, church building", "cinema, movie theater, movie theatre, movie house, picture palace", "cleaver, meat cleaver, chopper", "cliff dwelling", "cloak", "clog, geta, patten, sabot", "cocktail shaker", "coffee mug", "coffeepot", "coil, spiral, volute, whorl, helix", "combination lock", "computer keyboard, keypad", "confectionery, confectionary, candy store", "container ship, containership, container vessel", "convertible", "corkscrew, bottle screw", "cornet, horn, trumpet, trump", "cowboy boot", "cowboy hat, ten-gallon hat", "cradle", "crane", "crash helmet", "crate", "crib, cot", "crock pot", "croquet ball", "crutch", "cuirass", "dam, dike, dyke", "desk", "desktop computer", "dial telephone, dial phone", "diaper, nappy, napkin", "digital clock", "digital watch", "dining table, board", "dishrag, dishcloth", "dishwasher, dish washer, dishwashing machine", "disk brake, disc brake", "dock, dockage, docking facility", "dogsled, dog sled, dog sleigh", "dome", "doormat, welcome mat", "drilling platform, offshore rig", "drum, membranophone, tympan", "drumstick", "dumbbell", "dutch oven", "electric fan, blower", "electric guitar", "electric locomotive", "entertainment center", "envelope", "espresso maker", "face powder", "feather boa, boa", "file, file cabinet, filing cabinet", "fireboat", "fire engine, fire truck", "fire screen, fireguard", "flagpole, flagstaff", "flute, transverse flute", "folding chair", "football helmet", "forklift", "fountain", "fountain pen", "four-poster", "freight car", "french horn, horn", "frying pan, frypan, skillet", "fur coat", "garbage truck, dustcart", "gasmask, respirator, gas helmet", "gas pump, gasoline pump, petrol pump, island dispenser", "goblet", "go-kart", "golf ball", "golfcart, golf cart", "gondola", "gong, tam-tam", "gown", "grand piano, grand", "greenhouse, nursery, glasshouse", "grille, radiator grille", "grocery store, grocery, food market, market", "guillotine", "hair slide", "hair spray", "half track", "hammer", "hamper", "hand blower, blow dryer, blow drier, hair dryer, hair drier", "hand-held computer, hand-held microcomputer", "handkerchief, hankie, hanky, hankey", "hard disc, hard disk, fixed disk", "harmonica, mouth organ, harp, mouth harp", "harp", "harvester, reaper", "hatchet", "holster", "home theater, home theatre", "honeycomb", "hook, claw", "hoopskirt, crinoline", "horizontal bar, high bar", "horse cart, horse-cart", "hourglass", "ipod", "iron, smoothing iron", "jack-o'-lantern", "jean, blue jean, denim", "jeep, landrover", "jersey, t-shirt, tee shirt", "jigsaw puzzle", "jinrikisha, ricksha, rickshaw", "joystick", "kimono", "knee pad", "knot", "lab coat, laboratory coat", "ladle", "lampshade, lamp shade", "laptop, laptop computer", "lawn mower, mower", "lens cap, lens cover", "letter opener, paper knife, paperknife", "library", "lifeboat", "lighter, light, igniter, ignitor", "limousine, limo", "liner, ocean liner", "lipstick, lip rouge", "loafer", "lotion", "loudspeaker, speaker, speaker unit, loudspeaker system, speaker system", "loupe, jeweler's loupe", "lumbermill, sawmill", "magnetic compass", "mailbag, postbag", "mailbox, letter box", "maillot", "maillot, tank suit", "manhole cover", "maraca", "marimba, xylophone", "mask", "matchstick", "maypole", "maze, labyrinth", "measuring cup", "medicine chest, medicine cabinet", "megalith, megalithic structure", "microphone, mike", "microwave, microwave oven", "military uniform", "milk can", "minibus", "miniskirt, mini", "minivan", "missile", "mitten", "mixing bowl", "mobile home, manufactured home", "model t", "modem", "monastery", "monitor", "moped", "mortar", "mortarboard", "mosque", "mosquito net", "motor scooter, scooter", "mountain bike, all-terrain bike, off-roader", "mountain tent", "mouse, computer mouse", "mousetrap", "moving van", "muzzle", "nail", "neck brace", "necklace", "nipple", "notebook, notebook computer", "obelisk", "oboe, hautboy, hautbois", "ocarina, sweet potato", "odometer, hodometer, mileometer, milometer", "oil filter", "organ, pipe organ", "oscilloscope, scope, cathode-ray oscilloscope, cro", "overskirt", "oxcart", "oxygen mask", "packet", "paddle, boat paddle", "paddlewheel, paddle wheel", "padlock", "paintbrush", "pajama, pyjama, pj's, jammies", "palace", "panpipe, pandean pipe, syrinx", "paper towel", "parachute, chute", "parallel bars, bars", "park bench", "parking meter", "passenger car, coach, carriage", "patio, terrace", "pay-phone, pay-station", "pedestal, plinth, footstall", "pencil box, pencil case", "pencil sharpener", "perfume, essence", "petri dish", "photocopier", "pick, plectrum, plectron", "pickelhaube", "picket fence, paling", "pickup, pickup truck", "pier", "piggy bank, penny bank", "pill bottle", "pillow", "ping-pong ball", "pinwheel", "pirate, pirate ship", "pitcher, ewer", "plane, carpenter's plane, woodworking plane", "planetarium", "plastic bag", "plate rack", "plow, plough", "plunger, plumber's helper", "polaroid camera, polaroid land camera", "pole", "police van, police wagon, paddy wagon, patrol wagon, wagon, black maria", "poncho", "pool table, billiard table, snooker table", "pop bottle, soda bottle", "pot, flowerpot", "potter's wheel", "power drill", "prayer rug, prayer mat", "printer", "prison, prison house", "projectile, missile", "projector", "puck, hockey puck", "punching bag, punch bag, punching ball, punchball", "purse", "quill, quill pen", "quilt, comforter, comfort, puff", "racer, race car, racing car", "racket, racquet", "radiator", "radio, wireless", "radio telescope, radio reflector", "rain barrel", "recreational vehicle, rv, r.v.", "reel", "reflex camera", "refrigerator, icebox", "remote control, remote", "restaurant, eating house, eating place, eatery", "revolver, six-gun, six-shooter", "rifle", "rocking chair, rocker", "rotisserie", "rubber eraser, rubber, pencil eraser", "rugby ball", "rule, ruler", "running shoe", "safe", "safety pin", "saltshaker, salt shaker", "sandal", "sarong", "sax, saxophone", "scabbard", "scale, weighing machine", "school bus", "schooner", "scoreboard", "screen, crt screen", "screw", "screwdriver", "seat belt, seatbelt", "sewing machine", "shield, buckler", "shoe shop, shoe-shop, shoe store", "shoji", "shopping basket", "shopping cart", "shovel", "shower cap", "shower curtain", "ski", "ski mask", "sleeping bag", "slide rule, slipstick", "sliding door", "slot, one-armed bandit", "snorkel", "snowmobile", "snowplow, snowplough", "soap dispenser", "soccer ball", "sock", "solar dish, solar collector, solar furnace", "sombrero", "soup bowl", "space bar", "space heater", "space shuttle", "spatula", "speedboat", "spider web, spider's web", "spindle", "sports car, sport car", "spotlight, spot", "stage", "steam locomotive", "steel arch bridge", "steel drum", "stethoscope", "stole", "stone wall", "stopwatch, stop watch", "stove", "strainer", "streetcar, tram, tramcar, trolley, trolley car", "stretcher", "studio couch, day bed", "stupa, tope", "submarine, pigboat, sub, u-boat", "suit, suit of clothes", "sundial", "sunglass", "sunglasses, dark glasses, shades", "sunscreen, sunblock, sun blocker", "suspension bridge", "swab, swob, mop", "sweatshirt", "swimming trunks, bathing trunks", "swing", "switch, electric switch, electrical switch", "syringe", "table lamp", "tank, army tank, armored combat vehicle, armoured combat vehicle", "tape player", "teapot", "teddy, teddy bear", "television, television system", "tennis ball", "thatch, thatched roof", "theater curtain, theatre curtain", "thimble", "thresher, thrasher, threshing machine", "throne", "tile roof", "toaster", "tobacco shop, tobacconist shop, tobacconist", "toilet seat", "torch", "totem pole", "tow truck, tow car, wrecker", "toyshop", "tractor", "trailer truck, tractor trailer, trucking rig, rig, articulated lorry, semi", "tray", "trench coat", "tricycle, trike, velocipede", "trimaran", "tripod", "triumphal arch", "trolleybus, trolley coach, trackless trolley", "trombone", "tub, vat", "turnstile", "typewriter keyboard", "umbrella", "unicycle, monocycle", "upright, upright piano", "vacuum, vacuum cleaner", "vase", "vault", "velvet", "vending machine", "vestment", "viaduct", "violin, fiddle", "volleyball", "waffle iron", "wall clock", "wallet, billfold, notecase, pocketbook", "wardrobe, closet, press", "warplane, military plane", "washbasin, handbasin, washbowl, lavabo, wash-hand basin", "washer, automatic washer, washing machine", "water bottle", "water jug", "water tower", "whiskey jug", "whistle", "wig", "window screen", "window shade", "windsor tie", "wine bottle", "wing", "wok", "wooden spoon", "wool, woolen, woollen", "worm fence, snake fence, snake-rail fence, virginia fence", "wreck", "yawl", "yurt", "web site, website, internet site, site", "comic book", "crossword puzzle, crossword", "street sign", "traffic light, traffic signal, stoplight", "book jacket, dust cover, dust jacket, dust wrapper", "menu", "plate", "guacamole", "consomme", "hot pot, hotpot", "trifle", "ice cream, icecream", "ice lolly, lolly, lollipop, popsicle", "french loaf", "bagel, beigel", "pretzel", "cheeseburger", "hotdog, hot dog, red hot", "mashed potato", "head cabbage", "broccoli", "cauliflower", "zucchini, courgette", "spaghetti squash", "acorn squash", "butternut squash", "cucumber, cuke", "artichoke, globe artichoke", "bell pepper", "cardoon", "mushroom", "granny smith", "strawberry", "orange", "lemon", "fig", "pineapple, ananas", "banana", "jackfruit, jak, jack", "custard apple", "pomegranate", "hay", "carbonara", "chocolate sauce, chocolate syrup", "dough", "meat loaf, meatloaf", "pizza, pizza pie", "potpie", "burrito", "red wine", "espresso", "cup", "eggnog", "alp", "bubble", "cliff, drop, drop-off", "coral reef", "geyser", "lakeside, lakeshore", "promontory, headland, head, foreland", "sandbar, sand bar", "seashore, coast, seacoast, sea-coast", "valley, vale", "volcano", "ballplayer, baseball player", "groom, bridegroom", "scuba diver", "rapeseed", "daisy", "yellow lady's slipper, yellow lady-slipper, cypripedium calceolus, cypripedium parviflorum", "corn", "acorn", "hip, rose hip, rosehip", "buckeye, horse chestnut, conker", "coral fungus", "agaric", "gyromitra", "stinkhorn, carrion fungus", "earthstar", "hen-of-the-woods, hen of the woods, polyporus frondosus, grifola frondosa", "bolete", "ear, spike, capitulum", "toilet tissue, toilet paper, bathroom tissue" ]
autoevaluate/image-multi-class-classification
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # image-classification This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the mnist dataset. It achieves the following results on the evaluation set: - Loss: 0.0556 - Accuracy: 0.9833 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.3743 | 1.0 | 422 | 0.0556 | 0.9833 | ### Framework versions - Transformers 4.20.0 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
[ "0", "1", "2", "3", "4", "5", "6", "7", "8", "9" ]
sasha/dog-food-swin-tiny-patch4-window7-224
# dog-food-swin-tiny-patch4-window7-224 This model was trained on the `train` split of the [Dogs vs Food](https://huggingface.co/datasets/sasha/dog-food) dataset -- try training your own using the [the demo on Google Colab](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb)! ## Example Images #### dog ![dog](images/dog.jpg) #### food ![food](images/food.jpg)
[ "dog", "food" ]
sasha/dog-food-convnext-tiny-224
# dog-food-convnext-tiny-224 This model was trained on the `train` split of the [Dogs vs Food](https://huggingface.co/datasets/sasha/dog-food) dataset -- try training your own using the [the demo on Google Colab](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb)! ## Example Images #### dog ![dog](images/image2.jpg) #### food ![food](images/image1.jpg)
[ "dog", "food" ]
Matthijs/mobilenet_v1_1.0_224
# MobileNet V1 MobileNet V1 model pre-trained on ImageNet-1k at resolution 224x224. It was introduced in [MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications](https://arxiv.org/abs/1704.04861) by Howard et al, and first released in [this repository](https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet_v1.md). Disclaimer: The team releasing MobileNet V1 did not write a model card for this model so this model card has been written by the Hugging Face team. ## Model description From the [original README](https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet_v1.md): > MobileNets are small, low-latency, low-power models parameterized to meet the resource constraints of a variety of use cases. They can be built upon for classification, detection, embeddings and segmentation similar to how other popular large scale models, such as Inception, are used. MobileNets can be run efficiently on mobile devices [...] MobileNets trade off between latency, size and accuracy while comparing favorably with popular models from the literature. ## Intended uses & limitations You can use the raw model for image classification. See the [model hub](https://huggingface.co/models?search=mobilenet_v1) to look for fine-tuned versions on a task that interests you. ### How to use Here is how to use this model to classify an image of the COCO 2017 dataset into one of the 1,000 ImageNet classes: ```python from transformers import MobileNetV1FeatureExtractor, MobileNetV1ForImageClassification from PIL import Image import requests url = "http://images.cocodataset.org/val2017/000000039769.jpg" image = Image.open(requests.get(url, stream=True).raw) feature_extractor = MobileNetV1FeatureExtractor.from_pretrained("Matthijs/mobilenet_v1_1.0_224") model = MobileNetV1ForImageClassification.from_pretrained("Matthijs/mobilenet_v1_1.0_224") inputs = feature_extractor(images=image, return_tensors="pt") outputs = model(**inputs) logits = outputs.logits # model predicts one of the 1000 ImageNet classes predicted_class_idx = logits.argmax(-1).item() print("Predicted class:", model.config.id2label[predicted_class_idx]) ``` Note: This model actually predicts 1001 classes, the 1000 classes from ImageNet plus an extra “background” class (index 0). Currently, both the feature extractor and model support PyTorch.
[ "background", "tench, tinca tinca", "goldfish, carassius auratus", "great white shark, white shark, man-eater, man-eating shark, carcharodon carcharias", "tiger shark, galeocerdo cuvieri", "hammerhead, hammerhead shark", "electric ray, crampfish, numbfish, torpedo", "stingray", "cock", "hen", "ostrich, struthio camelus", "brambling, fringilla montifringilla", "goldfinch, carduelis carduelis", "house finch, linnet, carpodacus mexicanus", "junco, snowbird", "indigo bunting, indigo finch, indigo bird, passerina cyanea", "robin, american robin, turdus migratorius", "bulbul", "jay", "magpie", "chickadee", "water ouzel, dipper", "kite", "bald eagle, american eagle, haliaeetus leucocephalus", "vulture", "great grey owl, great gray owl, strix nebulosa", "european fire salamander, salamandra salamandra", "common newt, triturus vulgaris", "eft", "spotted salamander, ambystoma maculatum", "axolotl, mud puppy, ambystoma mexicanum", "bullfrog, rana catesbeiana", "tree frog, tree-frog", "tailed frog, bell toad, ribbed toad, tailed toad, ascaphus trui", "loggerhead, loggerhead turtle, caretta caretta", "leatherback turtle, leatherback, leathery turtle, dermochelys coriacea", "mud turtle", "terrapin", "box turtle, box tortoise", "banded gecko", "common iguana, iguana, iguana iguana", "american chameleon, anole, anolis carolinensis", "whiptail, whiptail lizard", "agama", "frilled lizard, chlamydosaurus kingi", "alligator lizard", "gila monster, heloderma suspectum", "green lizard, lacerta viridis", "african chameleon, chamaeleo chamaeleon", "komodo dragon, komodo lizard, dragon lizard, giant lizard, varanus komodoensis", "african crocodile, nile crocodile, crocodylus niloticus", "american alligator, alligator mississipiensis", "triceratops", "thunder snake, worm snake, carphophis amoenus", "ringneck snake, ring-necked snake, ring snake", "hognose snake, puff adder, sand viper", "green snake, grass snake", "king snake, kingsnake", "garter snake, grass snake", "water snake", "vine snake", "night snake, hypsiglena torquata", "boa constrictor, constrictor constrictor", "rock python, rock snake, python sebae", "indian cobra, naja naja", "green mamba", "sea snake", "horned viper, cerastes, sand viper, horned asp, cerastes cornutus", "diamondback, diamondback rattlesnake, crotalus adamanteus", "sidewinder, horned rattlesnake, crotalus cerastes", "trilobite", "harvestman, daddy longlegs, phalangium opilio", "scorpion", "black and gold garden spider, argiope aurantia", "barn spider, araneus cavaticus", "garden spider, aranea diademata", "black widow, latrodectus mactans", "tarantula", "wolf spider, hunting spider", "tick", "centipede", "black grouse", "ptarmigan", "ruffed grouse, partridge, bonasa umbellus", "prairie chicken, prairie grouse, prairie fowl", "peacock", "quail", "partridge", "african grey, african gray, psittacus erithacus", "macaw", "sulphur-crested cockatoo, kakatoe galerita, cacatua galerita", "lorikeet", "coucal", "bee eater", "hornbill", "hummingbird", "jacamar", "toucan", "drake", "red-breasted merganser, mergus serrator", "goose", "black swan, cygnus atratus", "tusker", "echidna, spiny anteater, anteater", "platypus, duckbill, duckbilled platypus, duck-billed platypus, ornithorhynchus anatinus", "wallaby, brush kangaroo", "koala, koala bear, kangaroo bear, native bear, phascolarctos cinereus", "wombat", "jellyfish", "sea anemone, anemone", "brain coral", "flatworm, platyhelminth", "nematode, nematode worm, roundworm", "conch", "snail", "slug", "sea slug, nudibranch", "chiton, coat-of-mail shell, sea cradle, polyplacophore", "chambered nautilus, pearly nautilus, nautilus", "dungeness crab, cancer magister", "rock crab, cancer irroratus", "fiddler crab", "king crab, alaska crab, alaskan king crab, alaska king crab, paralithodes camtschatica", "american lobster, northern lobster, maine lobster, homarus americanus", "spiny lobster, langouste, rock lobster, crawfish, crayfish, sea crawfish", "crayfish, crawfish, crawdad, crawdaddy", "hermit crab", "isopod", "white stork, ciconia ciconia", "black stork, ciconia nigra", "spoonbill", "flamingo", "little blue heron, egretta caerulea", "american egret, great white heron, egretta albus", "bittern", "crane", "limpkin, aramus pictus", "european gallinule, porphyrio porphyrio", "american coot, marsh hen, mud hen, water hen, fulica americana", "bustard", "ruddy turnstone, arenaria interpres", "red-backed sandpiper, dunlin, erolia alpina", "redshank, tringa totanus", "dowitcher", "oystercatcher, oyster catcher", "pelican", "king penguin, aptenodytes patagonica", "albatross, mollymawk", "grey whale, gray whale, devilfish, eschrichtius gibbosus, eschrichtius robustus", "killer whale, killer, orca, grampus, sea wolf, orcinus orca", "dugong, dugong dugon", "sea lion", "chihuahua", "japanese spaniel", "maltese dog, maltese terrier, maltese", "pekinese, pekingese, peke", "shih-tzu", "blenheim spaniel", "papillon", "toy terrier", "rhodesian ridgeback", "afghan hound, afghan", "basset, basset hound", "beagle", "bloodhound, sleuthhound", "bluetick", "black-and-tan coonhound", "walker hound, walker foxhound", "english foxhound", "redbone", "borzoi, russian wolfhound", "irish wolfhound", "italian greyhound", "whippet", "ibizan hound, ibizan podenco", "norwegian elkhound, elkhound", "otterhound, otter hound", "saluki, gazelle hound", "scottish deerhound, deerhound", "weimaraner", "staffordshire bullterrier, staffordshire bull terrier", "american staffordshire terrier, staffordshire terrier, american pit bull terrier, pit bull terrier", "bedlington terrier", "border terrier", "kerry blue terrier", "irish terrier", "norfolk terrier", "norwich terrier", "yorkshire terrier", "wire-haired fox terrier", "lakeland terrier", "sealyham terrier, sealyham", "airedale, airedale terrier", "cairn, cairn terrier", "australian terrier", "dandie dinmont, dandie dinmont terrier", "boston bull, boston terrier", "miniature schnauzer", "giant schnauzer", "standard schnauzer", "scotch terrier, scottish terrier, scottie", "tibetan terrier, chrysanthemum dog", "silky terrier, sydney silky", "soft-coated wheaten terrier", "west highland white terrier", "lhasa, lhasa apso", "flat-coated retriever", "curly-coated retriever", "golden retriever", "labrador retriever", "chesapeake bay retriever", "german short-haired pointer", "vizsla, hungarian pointer", "english setter", "irish setter, red setter", "gordon setter", "brittany spaniel", "clumber, clumber spaniel", "english springer, english springer spaniel", "welsh springer spaniel", "cocker spaniel, english cocker spaniel, cocker", "sussex spaniel", "irish water spaniel", "kuvasz", "schipperke", "groenendael", "malinois", "briard", "kelpie", "komondor", "old english sheepdog, bobtail", "shetland sheepdog, shetland sheep dog, shetland", "collie", "border collie", "bouvier des flandres, bouviers des flandres", "rottweiler", "german shepherd, german shepherd dog, german police dog, alsatian", "doberman, doberman pinscher", "miniature pinscher", "greater swiss mountain dog", "bernese mountain dog", "appenzeller", "entlebucher", "boxer", "bull mastiff", "tibetan mastiff", "french bulldog", "great dane", "saint bernard, st bernard", "eskimo dog, husky", "malamute, malemute, alaskan malamute", "siberian husky", "dalmatian, coach dog, carriage dog", "affenpinscher, monkey pinscher, monkey dog", "basenji", "pug, pug-dog", "leonberg", "newfoundland, newfoundland dog", "great pyrenees", "samoyed, samoyede", "pomeranian", "chow, chow chow", "keeshond", "brabancon griffon", "pembroke, pembroke welsh corgi", "cardigan, cardigan welsh corgi", "toy poodle", "miniature poodle", "standard poodle", "mexican hairless", "timber wolf, grey wolf, gray wolf, canis lupus", "white wolf, arctic wolf, canis lupus tundrarum", "red wolf, maned wolf, canis rufus, canis niger", "coyote, prairie wolf, brush wolf, canis latrans", "dingo, warrigal, warragal, canis dingo", "dhole, cuon alpinus", "african hunting dog, hyena dog, cape hunting dog, lycaon pictus", "hyena, hyaena", "red fox, vulpes vulpes", "kit fox, vulpes macrotis", "arctic fox, white fox, alopex lagopus", "grey fox, gray fox, urocyon cinereoargenteus", "tabby, tabby cat", "tiger cat", "persian cat", "siamese cat, siamese", "egyptian cat", "cougar, puma, catamount, mountain lion, painter, panther, felis concolor", "lynx, catamount", "leopard, panthera pardus", "snow leopard, ounce, panthera uncia", "jaguar, panther, panthera onca, felis onca", "lion, king of beasts, panthera leo", "tiger, panthera tigris", "cheetah, chetah, acinonyx jubatus", "brown bear, bruin, ursus arctos", "american black bear, black bear, ursus americanus, euarctos americanus", "ice bear, polar bear, ursus maritimus, thalarctos maritimus", "sloth bear, melursus ursinus, ursus ursinus", "mongoose", "meerkat, mierkat", "tiger beetle", "ladybug, ladybeetle, lady beetle, ladybird, ladybird beetle", "ground beetle, carabid beetle", "long-horned beetle, longicorn, longicorn beetle", "leaf beetle, chrysomelid", "dung beetle", "rhinoceros beetle", "weevil", "fly", "bee", "ant, emmet, pismire", "grasshopper, hopper", "cricket", "walking stick, walkingstick, stick insect", "cockroach, roach", "mantis, mantid", "cicada, cicala", "leafhopper", "lacewing, lacewing fly", "dragonfly, darning needle, devil's darning needle, sewing needle, snake feeder, snake doctor, mosquito hawk, skeeter hawk", "damselfly", "admiral", "ringlet, ringlet butterfly", "monarch, monarch butterfly, milkweed butterfly, danaus plexippus", "cabbage butterfly", "sulphur butterfly, sulfur butterfly", "lycaenid, lycaenid butterfly", "starfish, sea star", "sea urchin", "sea cucumber, holothurian", "wood rabbit, cottontail, cottontail rabbit", "hare", "angora, angora rabbit", "hamster", "porcupine, hedgehog", "fox squirrel, eastern fox squirrel, sciurus niger", "marmot", "beaver", "guinea pig, cavia cobaya", "sorrel", "zebra", "hog, pig, grunter, squealer, sus scrofa", "wild boar, boar, sus scrofa", "warthog", "hippopotamus, hippo, river horse, hippopotamus amphibius", "ox", "water buffalo, water ox, asiatic buffalo, bubalus bubalis", "bison", "ram, tup", "bighorn, bighorn sheep, cimarron, rocky mountain bighorn, rocky mountain sheep, ovis canadensis", "ibex, capra ibex", "hartebeest", "impala, aepyceros melampus", "gazelle", "arabian camel, dromedary, camelus dromedarius", "llama", "weasel", "mink", "polecat, fitch, foulmart, foumart, mustela putorius", "black-footed ferret, ferret, mustela nigripes", "otter", "skunk, polecat, wood pussy", "badger", "armadillo", "three-toed sloth, ai, bradypus tridactylus", "orangutan, orang, orangutang, pongo pygmaeus", "gorilla, gorilla gorilla", "chimpanzee, chimp, pan troglodytes", "gibbon, hylobates lar", "siamang, hylobates syndactylus, symphalangus syndactylus", "guenon, guenon monkey", "patas, hussar monkey, erythrocebus patas", "baboon", "macaque", "langur", "colobus, colobus monkey", "proboscis monkey, nasalis larvatus", "marmoset", "capuchin, ringtail, cebus capucinus", "howler monkey, howler", "titi, titi monkey", "spider monkey, ateles geoffroyi", "squirrel monkey, saimiri sciureus", "madagascar cat, ring-tailed lemur, lemur catta", "indri, indris, indri indri, indri brevicaudatus", "indian elephant, elephas maximus", "african elephant, loxodonta africana", "lesser panda, red panda, panda, bear cat, cat bear, ailurus fulgens", "giant panda, panda, panda bear, coon bear, ailuropoda melanoleuca", "barracouta, snoek", "eel", "coho, cohoe, coho salmon, blue jack, silver salmon, oncorhynchus kisutch", "rock beauty, holocanthus tricolor", "anemone fish", "sturgeon", "gar, garfish, garpike, billfish, lepisosteus osseus", "lionfish", "puffer, pufferfish, blowfish, globefish", "abacus", "abaya", "academic gown, academic robe, judge's robe", "accordion, piano accordion, squeeze box", "acoustic guitar", "aircraft carrier, carrier, flattop, attack aircraft carrier", "airliner", "airship, dirigible", "altar", "ambulance", "amphibian, amphibious vehicle", "analog clock", "apiary, bee house", "apron", "ashcan, trash can, garbage can, wastebin, ash bin, ash-bin, ashbin, dustbin, trash barrel, trash bin", "assault rifle, assault gun", "backpack, back pack, knapsack, packsack, rucksack, haversack", "bakery, bakeshop, bakehouse", "balance beam, beam", "balloon", "ballpoint, ballpoint pen, ballpen, biro", "band aid", "banjo", "bannister, banister, balustrade, balusters, handrail", "barbell", "barber chair", "barbershop", "barn", "barometer", "barrel, cask", "barrow, garden cart, lawn cart, wheelbarrow", "baseball", "basketball", "bassinet", "bassoon", "bathing cap, swimming cap", "bath towel", "bathtub, bathing tub, bath, tub", "beach wagon, station wagon, wagon, estate car, beach waggon, station waggon, waggon", "beacon, lighthouse, beacon light, pharos", "beaker", "bearskin, busby, shako", "beer bottle", "beer glass", "bell cote, bell cot", "bib", "bicycle-built-for-two, tandem bicycle, tandem", "bikini, two-piece", "binder, ring-binder", "binoculars, field glasses, opera glasses", "birdhouse", "boathouse", "bobsled, bobsleigh, bob", "bolo tie, bolo, bola tie, bola", "bonnet, poke bonnet", "bookcase", "bookshop, bookstore, bookstall", "bottlecap", "bow", "bow tie, bow-tie, bowtie", "brass, memorial tablet, plaque", "brassiere, bra, bandeau", "breakwater, groin, groyne, mole, bulwark, seawall, jetty", "breastplate, aegis, egis", "broom", "bucket, pail", "buckle", "bulletproof vest", "bullet train, bullet", "butcher shop, meat market", "cab, hack, taxi, taxicab", "caldron, cauldron", "candle, taper, wax light", "cannon", "canoe", "can opener, tin opener", "cardigan", "car mirror", "carousel, carrousel, merry-go-round, roundabout, whirligig", "carpenter's kit, tool kit", "carton", "car wheel", "cash machine, cash dispenser, automated teller machine, automatic teller machine, automated teller, automatic teller, atm", "cassette", "cassette player", "castle", "catamaran", "cd player", "cello, violoncello", "cellular telephone, cellular phone, cellphone, cell, mobile phone", "chain", "chainlink fence", "chain mail, ring mail, mail, chain armor, chain armour, ring armor, ring armour", "chain saw, chainsaw", "chest", "chiffonier, commode", "chime, bell, gong", "china cabinet, china closet", "christmas stocking", "church, church building", "cinema, movie theater, movie theatre, movie house, picture palace", "cleaver, meat cleaver, chopper", "cliff dwelling", "cloak", "clog, geta, patten, sabot", "cocktail shaker", "coffee mug", "coffeepot", "coil, spiral, volute, whorl, helix", "combination lock", "computer keyboard, keypad", "confectionery, confectionary, candy store", "container ship, containership, container vessel", "convertible", "corkscrew, bottle screw", "cornet, horn, trumpet, trump", "cowboy boot", "cowboy hat, ten-gallon hat", "cradle", "crane", "crash helmet", "crate", "crib, cot", "crock pot", "croquet ball", "crutch", "cuirass", "dam, dike, dyke", "desk", "desktop computer", "dial telephone, dial phone", "diaper, nappy, napkin", "digital clock", "digital watch", "dining table, board", "dishrag, dishcloth", "dishwasher, dish washer, dishwashing machine", "disk brake, disc brake", "dock, dockage, docking facility", "dogsled, dog sled, dog sleigh", "dome", "doormat, welcome mat", "drilling platform, offshore rig", "drum, membranophone, tympan", "drumstick", "dumbbell", "dutch oven", "electric fan, blower", "electric guitar", "electric locomotive", "entertainment center", "envelope", "espresso maker", "face powder", "feather boa, boa", "file, file cabinet, filing cabinet", "fireboat", "fire engine, fire truck", "fire screen, fireguard", "flagpole, flagstaff", "flute, transverse flute", "folding chair", "football helmet", "forklift", "fountain", "fountain pen", "four-poster", "freight car", "french horn, horn", "frying pan, frypan, skillet", "fur coat", "garbage truck, dustcart", "gasmask, respirator, gas helmet", "gas pump, gasoline pump, petrol pump, island dispenser", "goblet", "go-kart", "golf ball", "golfcart, golf cart", "gondola", "gong, tam-tam", "gown", "grand piano, grand", "greenhouse, nursery, glasshouse", "grille, radiator grille", "grocery store, grocery, food market, market", "guillotine", "hair slide", "hair spray", "half track", "hammer", "hamper", "hand blower, blow dryer, blow drier, hair dryer, hair drier", "hand-held computer, hand-held microcomputer", "handkerchief, hankie, hanky, hankey", "hard disc, hard disk, fixed disk", "harmonica, mouth organ, harp, mouth harp", "harp", "harvester, reaper", "hatchet", "holster", "home theater, home theatre", "honeycomb", "hook, claw", "hoopskirt, crinoline", "horizontal bar, high bar", "horse cart, horse-cart", "hourglass", "ipod", "iron, smoothing iron", "jack-o'-lantern", "jean, blue jean, denim", "jeep, landrover", "jersey, t-shirt, tee shirt", "jigsaw puzzle", "jinrikisha, ricksha, rickshaw", "joystick", "kimono", "knee pad", "knot", "lab coat, laboratory coat", "ladle", "lampshade, lamp shade", "laptop, laptop computer", "lawn mower, mower", "lens cap, lens cover", "letter opener, paper knife, paperknife", "library", "lifeboat", "lighter, light, igniter, ignitor", "limousine, limo", "liner, ocean liner", "lipstick, lip rouge", "loafer", "lotion", "loudspeaker, speaker, speaker unit, loudspeaker system, speaker system", "loupe, jeweler's loupe", "lumbermill, sawmill", "magnetic compass", "mailbag, postbag", "mailbox, letter box", "maillot", "maillot, tank suit", "manhole cover", "maraca", "marimba, xylophone", "mask", "matchstick", "maypole", "maze, labyrinth", "measuring cup", "medicine chest, medicine cabinet", "megalith, megalithic structure", "microphone, mike", "microwave, microwave oven", "military uniform", "milk can", "minibus", "miniskirt, mini", "minivan", "missile", "mitten", "mixing bowl", "mobile home, manufactured home", "model t", "modem", "monastery", "monitor", "moped", "mortar", "mortarboard", "mosque", "mosquito net", "motor scooter, scooter", "mountain bike, all-terrain bike, off-roader", "mountain tent", "mouse, computer mouse", "mousetrap", "moving van", "muzzle", "nail", "neck brace", "necklace", "nipple", "notebook, notebook computer", "obelisk", "oboe, hautboy, hautbois", "ocarina, sweet potato", "odometer, hodometer, mileometer, milometer", "oil filter", "organ, pipe organ", "oscilloscope, scope, cathode-ray oscilloscope, cro", "overskirt", "oxcart", "oxygen mask", "packet", "paddle, boat paddle", "paddlewheel, paddle wheel", "padlock", "paintbrush", "pajama, pyjama, pj's, jammies", "palace", "panpipe, pandean pipe, syrinx", "paper towel", "parachute, chute", "parallel bars, bars", "park bench", "parking meter", "passenger car, coach, carriage", "patio, terrace", "pay-phone, pay-station", "pedestal, plinth, footstall", "pencil box, pencil case", "pencil sharpener", "perfume, essence", "petri dish", "photocopier", "pick, plectrum, plectron", "pickelhaube", "picket fence, paling", "pickup, pickup truck", "pier", "piggy bank, penny bank", "pill bottle", "pillow", "ping-pong ball", "pinwheel", "pirate, pirate ship", "pitcher, ewer", "plane, carpenter's plane, woodworking plane", "planetarium", "plastic bag", "plate rack", "plow, plough", "plunger, plumber's helper", "polaroid camera, polaroid land camera", "pole", "police van, police wagon, paddy wagon, patrol wagon, wagon, black maria", "poncho", "pool table, billiard table, snooker table", "pop bottle, soda bottle", "pot, flowerpot", "potter's wheel", "power drill", "prayer rug, prayer mat", "printer", "prison, prison house", "projectile, missile", "projector", "puck, hockey puck", "punching bag, punch bag, punching ball, punchball", "purse", "quill, quill pen", "quilt, comforter, comfort, puff", "racer, race car, racing car", "racket, racquet", "radiator", "radio, wireless", "radio telescope, radio reflector", "rain barrel", "recreational vehicle, rv, r.v.", "reel", "reflex camera", "refrigerator, icebox", "remote control, remote", "restaurant, eating house, eating place, eatery", "revolver, six-gun, six-shooter", "rifle", "rocking chair, rocker", "rotisserie", "rubber eraser, rubber, pencil eraser", "rugby ball", "rule, ruler", "running shoe", "safe", "safety pin", "saltshaker, salt shaker", "sandal", "sarong", "sax, saxophone", "scabbard", "scale, weighing machine", "school bus", "schooner", "scoreboard", "screen, crt screen", "screw", "screwdriver", "seat belt, seatbelt", "sewing machine", "shield, buckler", "shoe shop, shoe-shop, shoe store", "shoji", "shopping basket", "shopping cart", "shovel", "shower cap", "shower curtain", "ski", "ski mask", "sleeping bag", "slide rule, slipstick", "sliding door", "slot, one-armed bandit", "snorkel", "snowmobile", "snowplow, snowplough", "soap dispenser", "soccer ball", "sock", "solar dish, solar collector, solar furnace", "sombrero", "soup bowl", "space bar", "space heater", "space shuttle", "spatula", "speedboat", "spider web, spider's web", "spindle", "sports car, sport car", "spotlight, spot", "stage", "steam locomotive", "steel arch bridge", "steel drum", "stethoscope", "stole", "stone wall", "stopwatch, stop watch", "stove", "strainer", "streetcar, tram, tramcar, trolley, trolley car", "stretcher", "studio couch, day bed", "stupa, tope", "submarine, pigboat, sub, u-boat", "suit, suit of clothes", "sundial", "sunglass", "sunglasses, dark glasses, shades", "sunscreen, sunblock, sun blocker", "suspension bridge", "swab, swob, mop", "sweatshirt", "swimming trunks, bathing trunks", "swing", "switch, electric switch, electrical switch", "syringe", "table lamp", "tank, army tank, armored combat vehicle, armoured combat vehicle", "tape player", "teapot", "teddy, teddy bear", "television, television system", "tennis ball", "thatch, thatched roof", "theater curtain, theatre curtain", "thimble", "thresher, thrasher, threshing machine", "throne", "tile roof", "toaster", "tobacco shop, tobacconist shop, tobacconist", "toilet seat", "torch", "totem pole", "tow truck, tow car, wrecker", "toyshop", "tractor", "trailer truck, tractor trailer, trucking rig, rig, articulated lorry, semi", "tray", "trench coat", "tricycle, trike, velocipede", "trimaran", "tripod", "triumphal arch", "trolleybus, trolley coach, trackless trolley", "trombone", "tub, vat", "turnstile", "typewriter keyboard", "umbrella", "unicycle, monocycle", "upright, upright piano", "vacuum, vacuum cleaner", "vase", "vault", "velvet", "vending machine", "vestment", "viaduct", "violin, fiddle", "volleyball", "waffle iron", "wall clock", "wallet, billfold, notecase, pocketbook", "wardrobe, closet, press", "warplane, military plane", "washbasin, handbasin, washbowl, lavabo, wash-hand basin", "washer, automatic washer, washing machine", "water bottle", "water jug", "water tower", "whiskey jug", "whistle", "wig", "window screen", "window shade", "windsor tie", "wine bottle", "wing", "wok", "wooden spoon", "wool, woolen, woollen", "worm fence, snake fence, snake-rail fence, virginia fence", "wreck", "yawl", "yurt", "web site, website, internet site, site", "comic book", "crossword puzzle, crossword", "street sign", "traffic light, traffic signal, stoplight", "book jacket, dust cover, dust jacket, dust wrapper", "menu", "plate", "guacamole", "consomme", "hot pot, hotpot", "trifle", "ice cream, icecream", "ice lolly, lolly, lollipop, popsicle", "french loaf", "bagel, beigel", "pretzel", "cheeseburger", "hotdog, hot dog, red hot", "mashed potato", "head cabbage", "broccoli", "cauliflower", "zucchini, courgette", "spaghetti squash", "acorn squash", "butternut squash", "cucumber, cuke", "artichoke, globe artichoke", "bell pepper", "cardoon", "mushroom", "granny smith", "strawberry", "orange", "lemon", "fig", "pineapple, ananas", "banana", "jackfruit, jak, jack", "custard apple", "pomegranate", "hay", "carbonara", "chocolate sauce, chocolate syrup", "dough", "meat loaf, meatloaf", "pizza, pizza pie", "potpie", "burrito", "red wine", "espresso", "cup", "eggnog", "alp", "bubble", "cliff, drop, drop-off", "coral reef", "geyser", "lakeside, lakeshore", "promontory, headland, head, foreland", "sandbar, sand bar", "seashore, coast, seacoast, sea-coast", "valley, vale", "volcano", "ballplayer, baseball player", "groom, bridegroom", "scuba diver", "rapeseed", "daisy", "yellow lady's slipper, yellow lady-slipper, cypripedium calceolus, cypripedium parviflorum", "corn", "acorn", "hip, rose hip, rosehip", "buckeye, horse chestnut, conker", "coral fungus", "agaric", "gyromitra", "stinkhorn, carrion fungus", "earthstar", "hen-of-the-woods, hen of the woods, polyporus frondosus, grifola frondosa", "bolete", "ear, spike, capitulum", "toilet tissue, toilet paper, bathroom tissue" ]
Matthijs/mobilenet_v1_0.75_192
# MobileNet V1 MobileNet V1 model pre-trained on ImageNet-1k at resolution 192x192. It was introduced in [MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications](https://arxiv.org/abs/1704.04861) by Howard et al, and first released in [this repository](https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet_v1.md). Disclaimer: The team releasing MobileNet V1 did not write a model card for this model so this model card has been written by the Hugging Face team. ## Model description From the [original README](https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet_v1.md): > MobileNets are small, low-latency, low-power models parameterized to meet the resource constraints of a variety of use cases. They can be built upon for classification, detection, embeddings and segmentation similar to how other popular large scale models, such as Inception, are used. MobileNets can be run efficiently on mobile devices [...] MobileNets trade off between latency, size and accuracy while comparing favorably with popular models from the literature. ## Intended uses & limitations You can use the raw model for image classification. See the [model hub](https://huggingface.co/models?search=mobilenet_v1) to look for fine-tuned versions on a task that interests you. ### How to use Here is how to use this model to classify an image of the COCO 2017 dataset into one of the 1,000 ImageNet classes: ```python from transformers import MobileNetV1FeatureExtractor, MobileNetV1ForImageClassification from PIL import Image import requests url = "http://images.cocodataset.org/val2017/000000039769.jpg" image = Image.open(requests.get(url, stream=True).raw) feature_extractor = MobileNetV1FeatureExtractor.from_pretrained("Matthijs/mobilenet_v1_1.0_224") model = MobileNetV1ForImageClassification.from_pretrained("Matthijs/mobilenet_v1_1.0_224") inputs = feature_extractor(images=image, return_tensors="pt") outputs = model(**inputs) logits = outputs.logits # model predicts one of the 1000 ImageNet classes predicted_class_idx = logits.argmax(-1).item() print("Predicted class:", model.config.id2label[predicted_class_idx]) ``` Note: This model actually predicts 1001 classes, the 1000 classes from ImageNet plus an extra “background” class (index 0). Currently, both the feature extractor and model support PyTorch.
[ "background", "tench, tinca tinca", "goldfish, carassius auratus", "great white shark, white shark, man-eater, man-eating shark, carcharodon carcharias", "tiger shark, galeocerdo cuvieri", "hammerhead, hammerhead shark", "electric ray, crampfish, numbfish, torpedo", "stingray", "cock", "hen", "ostrich, struthio camelus", "brambling, fringilla montifringilla", "goldfinch, carduelis carduelis", "house finch, linnet, carpodacus mexicanus", "junco, snowbird", "indigo bunting, indigo finch, indigo bird, passerina cyanea", "robin, american robin, turdus migratorius", "bulbul", "jay", "magpie", "chickadee", "water ouzel, dipper", "kite", "bald eagle, american eagle, haliaeetus leucocephalus", "vulture", "great grey owl, great gray owl, strix nebulosa", "european fire salamander, salamandra salamandra", "common newt, triturus vulgaris", "eft", "spotted salamander, ambystoma maculatum", "axolotl, mud puppy, ambystoma mexicanum", "bullfrog, rana catesbeiana", "tree frog, tree-frog", "tailed frog, bell toad, ribbed toad, tailed toad, ascaphus trui", "loggerhead, loggerhead turtle, caretta caretta", "leatherback turtle, leatherback, leathery turtle, dermochelys coriacea", "mud turtle", "terrapin", "box turtle, box tortoise", "banded gecko", "common iguana, iguana, iguana iguana", "american chameleon, anole, anolis carolinensis", "whiptail, whiptail lizard", "agama", "frilled lizard, chlamydosaurus kingi", "alligator lizard", "gila monster, heloderma suspectum", "green lizard, lacerta viridis", "african chameleon, chamaeleo chamaeleon", "komodo dragon, komodo lizard, dragon lizard, giant lizard, varanus komodoensis", "african crocodile, nile crocodile, crocodylus niloticus", "american alligator, alligator mississipiensis", "triceratops", "thunder snake, worm snake, carphophis amoenus", "ringneck snake, ring-necked snake, ring snake", "hognose snake, puff adder, sand viper", "green snake, grass snake", "king snake, kingsnake", "garter snake, grass snake", "water snake", "vine snake", "night snake, hypsiglena torquata", "boa constrictor, constrictor constrictor", "rock python, rock snake, python sebae", "indian cobra, naja naja", "green mamba", "sea snake", "horned viper, cerastes, sand viper, horned asp, cerastes cornutus", "diamondback, diamondback rattlesnake, crotalus adamanteus", "sidewinder, horned rattlesnake, crotalus cerastes", "trilobite", "harvestman, daddy longlegs, phalangium opilio", "scorpion", "black and gold garden spider, argiope aurantia", "barn spider, araneus cavaticus", "garden spider, aranea diademata", "black widow, latrodectus mactans", "tarantula", "wolf spider, hunting spider", "tick", "centipede", "black grouse", "ptarmigan", "ruffed grouse, partridge, bonasa umbellus", "prairie chicken, prairie grouse, prairie fowl", "peacock", "quail", "partridge", "african grey, african gray, psittacus erithacus", "macaw", "sulphur-crested cockatoo, kakatoe galerita, cacatua galerita", "lorikeet", "coucal", "bee eater", "hornbill", "hummingbird", "jacamar", "toucan", "drake", "red-breasted merganser, mergus serrator", "goose", "black swan, cygnus atratus", "tusker", "echidna, spiny anteater, anteater", "platypus, duckbill, duckbilled platypus, duck-billed platypus, ornithorhynchus anatinus", "wallaby, brush kangaroo", "koala, koala bear, kangaroo bear, native bear, phascolarctos cinereus", "wombat", "jellyfish", "sea anemone, anemone", "brain coral", "flatworm, platyhelminth", "nematode, nematode worm, roundworm", "conch", "snail", "slug", "sea slug, nudibranch", "chiton, coat-of-mail shell, sea cradle, polyplacophore", "chambered nautilus, pearly nautilus, nautilus", "dungeness crab, cancer magister", "rock crab, cancer irroratus", "fiddler crab", "king crab, alaska crab, alaskan king crab, alaska king crab, paralithodes camtschatica", "american lobster, northern lobster, maine lobster, homarus americanus", "spiny lobster, langouste, rock lobster, crawfish, crayfish, sea crawfish", "crayfish, crawfish, crawdad, crawdaddy", "hermit crab", "isopod", "white stork, ciconia ciconia", "black stork, ciconia nigra", "spoonbill", "flamingo", "little blue heron, egretta caerulea", "american egret, great white heron, egretta albus", "bittern", "crane", "limpkin, aramus pictus", "european gallinule, porphyrio porphyrio", "american coot, marsh hen, mud hen, water hen, fulica americana", "bustard", "ruddy turnstone, arenaria interpres", "red-backed sandpiper, dunlin, erolia alpina", "redshank, tringa totanus", "dowitcher", "oystercatcher, oyster catcher", "pelican", "king penguin, aptenodytes patagonica", "albatross, mollymawk", "grey whale, gray whale, devilfish, eschrichtius gibbosus, eschrichtius robustus", "killer whale, killer, orca, grampus, sea wolf, orcinus orca", "dugong, dugong dugon", "sea lion", "chihuahua", "japanese spaniel", "maltese dog, maltese terrier, maltese", "pekinese, pekingese, peke", "shih-tzu", "blenheim spaniel", "papillon", "toy terrier", "rhodesian ridgeback", "afghan hound, afghan", "basset, basset hound", "beagle", "bloodhound, sleuthhound", "bluetick", "black-and-tan coonhound", "walker hound, walker foxhound", "english foxhound", "redbone", "borzoi, russian wolfhound", "irish wolfhound", "italian greyhound", "whippet", "ibizan hound, ibizan podenco", "norwegian elkhound, elkhound", "otterhound, otter hound", "saluki, gazelle hound", "scottish deerhound, deerhound", "weimaraner", "staffordshire bullterrier, staffordshire bull terrier", "american staffordshire terrier, staffordshire terrier, american pit bull terrier, pit bull terrier", "bedlington terrier", "border terrier", "kerry blue terrier", "irish terrier", "norfolk terrier", "norwich terrier", "yorkshire terrier", "wire-haired fox terrier", "lakeland terrier", "sealyham terrier, sealyham", "airedale, airedale terrier", "cairn, cairn terrier", "australian terrier", "dandie dinmont, dandie dinmont terrier", "boston bull, boston terrier", "miniature schnauzer", "giant schnauzer", "standard schnauzer", "scotch terrier, scottish terrier, scottie", "tibetan terrier, chrysanthemum dog", "silky terrier, sydney silky", "soft-coated wheaten terrier", "west highland white terrier", "lhasa, lhasa apso", "flat-coated retriever", "curly-coated retriever", "golden retriever", "labrador retriever", "chesapeake bay retriever", "german short-haired pointer", "vizsla, hungarian pointer", "english setter", "irish setter, red setter", "gordon setter", "brittany spaniel", "clumber, clumber spaniel", "english springer, english springer spaniel", "welsh springer spaniel", "cocker spaniel, english cocker spaniel, cocker", "sussex spaniel", "irish water spaniel", "kuvasz", "schipperke", "groenendael", "malinois", "briard", "kelpie", "komondor", "old english sheepdog, bobtail", "shetland sheepdog, shetland sheep dog, shetland", "collie", "border collie", "bouvier des flandres, bouviers des flandres", "rottweiler", "german shepherd, german shepherd dog, german police dog, alsatian", "doberman, doberman pinscher", "miniature pinscher", "greater swiss mountain dog", "bernese mountain dog", "appenzeller", "entlebucher", "boxer", "bull mastiff", "tibetan mastiff", "french bulldog", "great dane", "saint bernard, st bernard", "eskimo dog, husky", "malamute, malemute, alaskan malamute", "siberian husky", "dalmatian, coach dog, carriage dog", "affenpinscher, monkey pinscher, monkey dog", "basenji", "pug, pug-dog", "leonberg", "newfoundland, newfoundland dog", "great pyrenees", "samoyed, samoyede", "pomeranian", "chow, chow chow", "keeshond", "brabancon griffon", "pembroke, pembroke welsh corgi", "cardigan, cardigan welsh corgi", "toy poodle", "miniature poodle", "standard poodle", "mexican hairless", "timber wolf, grey wolf, gray wolf, canis lupus", "white wolf, arctic wolf, canis lupus tundrarum", "red wolf, maned wolf, canis rufus, canis niger", "coyote, prairie wolf, brush wolf, canis latrans", "dingo, warrigal, warragal, canis dingo", "dhole, cuon alpinus", "african hunting dog, hyena dog, cape hunting dog, lycaon pictus", "hyena, hyaena", "red fox, vulpes vulpes", "kit fox, vulpes macrotis", "arctic fox, white fox, alopex lagopus", "grey fox, gray fox, urocyon cinereoargenteus", "tabby, tabby cat", "tiger cat", "persian cat", "siamese cat, siamese", "egyptian cat", "cougar, puma, catamount, mountain lion, painter, panther, felis concolor", "lynx, catamount", "leopard, panthera pardus", "snow leopard, ounce, panthera uncia", "jaguar, panther, panthera onca, felis onca", "lion, king of beasts, panthera leo", "tiger, panthera tigris", "cheetah, chetah, acinonyx jubatus", "brown bear, bruin, ursus arctos", "american black bear, black bear, ursus americanus, euarctos americanus", "ice bear, polar bear, ursus maritimus, thalarctos maritimus", "sloth bear, melursus ursinus, ursus ursinus", "mongoose", "meerkat, mierkat", "tiger beetle", "ladybug, ladybeetle, lady beetle, ladybird, ladybird beetle", "ground beetle, carabid beetle", "long-horned beetle, longicorn, longicorn beetle", "leaf beetle, chrysomelid", "dung beetle", "rhinoceros beetle", "weevil", "fly", "bee", "ant, emmet, pismire", "grasshopper, hopper", "cricket", "walking stick, walkingstick, stick insect", "cockroach, roach", "mantis, mantid", "cicada, cicala", "leafhopper", "lacewing, lacewing fly", "dragonfly, darning needle, devil's darning needle, sewing needle, snake feeder, snake doctor, mosquito hawk, skeeter hawk", "damselfly", "admiral", "ringlet, ringlet butterfly", "monarch, monarch butterfly, milkweed butterfly, danaus plexippus", "cabbage butterfly", "sulphur butterfly, sulfur butterfly", "lycaenid, lycaenid butterfly", "starfish, sea star", "sea urchin", "sea cucumber, holothurian", "wood rabbit, cottontail, cottontail rabbit", "hare", "angora, angora rabbit", "hamster", "porcupine, hedgehog", "fox squirrel, eastern fox squirrel, sciurus niger", "marmot", "beaver", "guinea pig, cavia cobaya", "sorrel", "zebra", "hog, pig, grunter, squealer, sus scrofa", "wild boar, boar, sus scrofa", "warthog", "hippopotamus, hippo, river horse, hippopotamus amphibius", "ox", "water buffalo, water ox, asiatic buffalo, bubalus bubalis", "bison", "ram, tup", "bighorn, bighorn sheep, cimarron, rocky mountain bighorn, rocky mountain sheep, ovis canadensis", "ibex, capra ibex", "hartebeest", "impala, aepyceros melampus", "gazelle", "arabian camel, dromedary, camelus dromedarius", "llama", "weasel", "mink", "polecat, fitch, foulmart, foumart, mustela putorius", "black-footed ferret, ferret, mustela nigripes", "otter", "skunk, polecat, wood pussy", "badger", "armadillo", "three-toed sloth, ai, bradypus tridactylus", "orangutan, orang, orangutang, pongo pygmaeus", "gorilla, gorilla gorilla", "chimpanzee, chimp, pan troglodytes", "gibbon, hylobates lar", "siamang, hylobates syndactylus, symphalangus syndactylus", "guenon, guenon monkey", "patas, hussar monkey, erythrocebus patas", "baboon", "macaque", "langur", "colobus, colobus monkey", "proboscis monkey, nasalis larvatus", "marmoset", "capuchin, ringtail, cebus capucinus", "howler monkey, howler", "titi, titi monkey", "spider monkey, ateles geoffroyi", "squirrel monkey, saimiri sciureus", "madagascar cat, ring-tailed lemur, lemur catta", "indri, indris, indri indri, indri brevicaudatus", "indian elephant, elephas maximus", "african elephant, loxodonta africana", "lesser panda, red panda, panda, bear cat, cat bear, ailurus fulgens", "giant panda, panda, panda bear, coon bear, ailuropoda melanoleuca", "barracouta, snoek", "eel", "coho, cohoe, coho salmon, blue jack, silver salmon, oncorhynchus kisutch", "rock beauty, holocanthus tricolor", "anemone fish", "sturgeon", "gar, garfish, garpike, billfish, lepisosteus osseus", "lionfish", "puffer, pufferfish, blowfish, globefish", "abacus", "abaya", "academic gown, academic robe, judge's robe", "accordion, piano accordion, squeeze box", "acoustic guitar", "aircraft carrier, carrier, flattop, attack aircraft carrier", "airliner", "airship, dirigible", "altar", "ambulance", "amphibian, amphibious vehicle", "analog clock", "apiary, bee house", "apron", "ashcan, trash can, garbage can, wastebin, ash bin, ash-bin, ashbin, dustbin, trash barrel, trash bin", "assault rifle, assault gun", "backpack, back pack, knapsack, packsack, rucksack, haversack", "bakery, bakeshop, bakehouse", "balance beam, beam", "balloon", "ballpoint, ballpoint pen, ballpen, biro", "band aid", "banjo", "bannister, banister, balustrade, balusters, handrail", "barbell", "barber chair", "barbershop", "barn", "barometer", "barrel, cask", "barrow, garden cart, lawn cart, wheelbarrow", "baseball", "basketball", "bassinet", "bassoon", "bathing cap, swimming cap", "bath towel", "bathtub, bathing tub, bath, tub", "beach wagon, station wagon, wagon, estate car, beach waggon, station waggon, waggon", "beacon, lighthouse, beacon light, pharos", "beaker", "bearskin, busby, shako", "beer bottle", "beer glass", "bell cote, bell cot", "bib", "bicycle-built-for-two, tandem bicycle, tandem", "bikini, two-piece", "binder, ring-binder", "binoculars, field glasses, opera glasses", "birdhouse", "boathouse", "bobsled, bobsleigh, bob", "bolo tie, bolo, bola tie, bola", "bonnet, poke bonnet", "bookcase", "bookshop, bookstore, bookstall", "bottlecap", "bow", "bow tie, bow-tie, bowtie", "brass, memorial tablet, plaque", "brassiere, bra, bandeau", "breakwater, groin, groyne, mole, bulwark, seawall, jetty", "breastplate, aegis, egis", "broom", "bucket, pail", "buckle", "bulletproof vest", "bullet train, bullet", "butcher shop, meat market", "cab, hack, taxi, taxicab", "caldron, cauldron", "candle, taper, wax light", "cannon", "canoe", "can opener, tin opener", "cardigan", "car mirror", "carousel, carrousel, merry-go-round, roundabout, whirligig", "carpenter's kit, tool kit", "carton", "car wheel", "cash machine, cash dispenser, automated teller machine, automatic teller machine, automated teller, automatic teller, atm", "cassette", "cassette player", "castle", "catamaran", "cd player", "cello, violoncello", "cellular telephone, cellular phone, cellphone, cell, mobile phone", "chain", "chainlink fence", "chain mail, ring mail, mail, chain armor, chain armour, ring armor, ring armour", "chain saw, chainsaw", "chest", "chiffonier, commode", "chime, bell, gong", "china cabinet, china closet", "christmas stocking", "church, church building", "cinema, movie theater, movie theatre, movie house, picture palace", "cleaver, meat cleaver, chopper", "cliff dwelling", "cloak", "clog, geta, patten, sabot", "cocktail shaker", "coffee mug", "coffeepot", "coil, spiral, volute, whorl, helix", "combination lock", "computer keyboard, keypad", "confectionery, confectionary, candy store", "container ship, containership, container vessel", "convertible", "corkscrew, bottle screw", "cornet, horn, trumpet, trump", "cowboy boot", "cowboy hat, ten-gallon hat", "cradle", "crane", "crash helmet", "crate", "crib, cot", "crock pot", "croquet ball", "crutch", "cuirass", "dam, dike, dyke", "desk", "desktop computer", "dial telephone, dial phone", "diaper, nappy, napkin", "digital clock", "digital watch", "dining table, board", "dishrag, dishcloth", "dishwasher, dish washer, dishwashing machine", "disk brake, disc brake", "dock, dockage, docking facility", "dogsled, dog sled, dog sleigh", "dome", "doormat, welcome mat", "drilling platform, offshore rig", "drum, membranophone, tympan", "drumstick", "dumbbell", "dutch oven", "electric fan, blower", "electric guitar", "electric locomotive", "entertainment center", "envelope", "espresso maker", "face powder", "feather boa, boa", "file, file cabinet, filing cabinet", "fireboat", "fire engine, fire truck", "fire screen, fireguard", "flagpole, flagstaff", "flute, transverse flute", "folding chair", "football helmet", "forklift", "fountain", "fountain pen", "four-poster", "freight car", "french horn, horn", "frying pan, frypan, skillet", "fur coat", "garbage truck, dustcart", "gasmask, respirator, gas helmet", "gas pump, gasoline pump, petrol pump, island dispenser", "goblet", "go-kart", "golf ball", "golfcart, golf cart", "gondola", "gong, tam-tam", "gown", "grand piano, grand", "greenhouse, nursery, glasshouse", "grille, radiator grille", "grocery store, grocery, food market, market", "guillotine", "hair slide", "hair spray", "half track", "hammer", "hamper", "hand blower, blow dryer, blow drier, hair dryer, hair drier", "hand-held computer, hand-held microcomputer", "handkerchief, hankie, hanky, hankey", "hard disc, hard disk, fixed disk", "harmonica, mouth organ, harp, mouth harp", "harp", "harvester, reaper", "hatchet", "holster", "home theater, home theatre", "honeycomb", "hook, claw", "hoopskirt, crinoline", "horizontal bar, high bar", "horse cart, horse-cart", "hourglass", "ipod", "iron, smoothing iron", "jack-o'-lantern", "jean, blue jean, denim", "jeep, landrover", "jersey, t-shirt, tee shirt", "jigsaw puzzle", "jinrikisha, ricksha, rickshaw", "joystick", "kimono", "knee pad", "knot", "lab coat, laboratory coat", "ladle", "lampshade, lamp shade", "laptop, laptop computer", "lawn mower, mower", "lens cap, lens cover", "letter opener, paper knife, paperknife", "library", "lifeboat", "lighter, light, igniter, ignitor", "limousine, limo", "liner, ocean liner", "lipstick, lip rouge", "loafer", "lotion", "loudspeaker, speaker, speaker unit, loudspeaker system, speaker system", "loupe, jeweler's loupe", "lumbermill, sawmill", "magnetic compass", "mailbag, postbag", "mailbox, letter box", "maillot", "maillot, tank suit", "manhole cover", "maraca", "marimba, xylophone", "mask", "matchstick", "maypole", "maze, labyrinth", "measuring cup", "medicine chest, medicine cabinet", "megalith, megalithic structure", "microphone, mike", "microwave, microwave oven", "military uniform", "milk can", "minibus", "miniskirt, mini", "minivan", "missile", "mitten", "mixing bowl", "mobile home, manufactured home", "model t", "modem", "monastery", "monitor", "moped", "mortar", "mortarboard", "mosque", "mosquito net", "motor scooter, scooter", "mountain bike, all-terrain bike, off-roader", "mountain tent", "mouse, computer mouse", "mousetrap", "moving van", "muzzle", "nail", "neck brace", "necklace", "nipple", "notebook, notebook computer", "obelisk", "oboe, hautboy, hautbois", "ocarina, sweet potato", "odometer, hodometer, mileometer, milometer", "oil filter", "organ, pipe organ", "oscilloscope, scope, cathode-ray oscilloscope, cro", "overskirt", "oxcart", "oxygen mask", "packet", "paddle, boat paddle", "paddlewheel, paddle wheel", "padlock", "paintbrush", "pajama, pyjama, pj's, jammies", "palace", "panpipe, pandean pipe, syrinx", "paper towel", "parachute, chute", "parallel bars, bars", "park bench", "parking meter", "passenger car, coach, carriage", "patio, terrace", "pay-phone, pay-station", "pedestal, plinth, footstall", "pencil box, pencil case", "pencil sharpener", "perfume, essence", "petri dish", "photocopier", "pick, plectrum, plectron", "pickelhaube", "picket fence, paling", "pickup, pickup truck", "pier", "piggy bank, penny bank", "pill bottle", "pillow", "ping-pong ball", "pinwheel", "pirate, pirate ship", "pitcher, ewer", "plane, carpenter's plane, woodworking plane", "planetarium", "plastic bag", "plate rack", "plow, plough", "plunger, plumber's helper", "polaroid camera, polaroid land camera", "pole", "police van, police wagon, paddy wagon, patrol wagon, wagon, black maria", "poncho", "pool table, billiard table, snooker table", "pop bottle, soda bottle", "pot, flowerpot", "potter's wheel", "power drill", "prayer rug, prayer mat", "printer", "prison, prison house", "projectile, missile", "projector", "puck, hockey puck", "punching bag, punch bag, punching ball, punchball", "purse", "quill, quill pen", "quilt, comforter, comfort, puff", "racer, race car, racing car", "racket, racquet", "radiator", "radio, wireless", "radio telescope, radio reflector", "rain barrel", "recreational vehicle, rv, r.v.", "reel", "reflex camera", "refrigerator, icebox", "remote control, remote", "restaurant, eating house, eating place, eatery", "revolver, six-gun, six-shooter", "rifle", "rocking chair, rocker", "rotisserie", "rubber eraser, rubber, pencil eraser", "rugby ball", "rule, ruler", "running shoe", "safe", "safety pin", "saltshaker, salt shaker", "sandal", "sarong", "sax, saxophone", "scabbard", "scale, weighing machine", "school bus", "schooner", "scoreboard", "screen, crt screen", "screw", "screwdriver", "seat belt, seatbelt", "sewing machine", "shield, buckler", "shoe shop, shoe-shop, shoe store", "shoji", "shopping basket", "shopping cart", "shovel", "shower cap", "shower curtain", "ski", "ski mask", "sleeping bag", "slide rule, slipstick", "sliding door", "slot, one-armed bandit", "snorkel", "snowmobile", "snowplow, snowplough", "soap dispenser", "soccer ball", "sock", "solar dish, solar collector, solar furnace", "sombrero", "soup bowl", "space bar", "space heater", "space shuttle", "spatula", "speedboat", "spider web, spider's web", "spindle", "sports car, sport car", "spotlight, spot", "stage", "steam locomotive", "steel arch bridge", "steel drum", "stethoscope", "stole", "stone wall", "stopwatch, stop watch", "stove", "strainer", "streetcar, tram, tramcar, trolley, trolley car", "stretcher", "studio couch, day bed", "stupa, tope", "submarine, pigboat, sub, u-boat", "suit, suit of clothes", "sundial", "sunglass", "sunglasses, dark glasses, shades", "sunscreen, sunblock, sun blocker", "suspension bridge", "swab, swob, mop", "sweatshirt", "swimming trunks, bathing trunks", "swing", "switch, electric switch, electrical switch", "syringe", "table lamp", "tank, army tank, armored combat vehicle, armoured combat vehicle", "tape player", "teapot", "teddy, teddy bear", "television, television system", "tennis ball", "thatch, thatched roof", "theater curtain, theatre curtain", "thimble", "thresher, thrasher, threshing machine", "throne", "tile roof", "toaster", "tobacco shop, tobacconist shop, tobacconist", "toilet seat", "torch", "totem pole", "tow truck, tow car, wrecker", "toyshop", "tractor", "trailer truck, tractor trailer, trucking rig, rig, articulated lorry, semi", "tray", "trench coat", "tricycle, trike, velocipede", "trimaran", "tripod", "triumphal arch", "trolleybus, trolley coach, trackless trolley", "trombone", "tub, vat", "turnstile", "typewriter keyboard", "umbrella", "unicycle, monocycle", "upright, upright piano", "vacuum, vacuum cleaner", "vase", "vault", "velvet", "vending machine", "vestment", "viaduct", "violin, fiddle", "volleyball", "waffle iron", "wall clock", "wallet, billfold, notecase, pocketbook", "wardrobe, closet, press", "warplane, military plane", "washbasin, handbasin, washbowl, lavabo, wash-hand basin", "washer, automatic washer, washing machine", "water bottle", "water jug", "water tower", "whiskey jug", "whistle", "wig", "window screen", "window shade", "windsor tie", "wine bottle", "wing", "wok", "wooden spoon", "wool, woolen, woollen", "worm fence, snake fence, snake-rail fence, virginia fence", "wreck", "yawl", "yurt", "web site, website, internet site, site", "comic book", "crossword puzzle, crossword", "street sign", "traffic light, traffic signal, stoplight", "book jacket, dust cover, dust jacket, dust wrapper", "menu", "plate", "guacamole", "consomme", "hot pot, hotpot", "trifle", "ice cream, icecream", "ice lolly, lolly, lollipop, popsicle", "french loaf", "bagel, beigel", "pretzel", "cheeseburger", "hotdog, hot dog, red hot", "mashed potato", "head cabbage", "broccoli", "cauliflower", "zucchini, courgette", "spaghetti squash", "acorn squash", "butternut squash", "cucumber, cuke", "artichoke, globe artichoke", "bell pepper", "cardoon", "mushroom", "granny smith", "strawberry", "orange", "lemon", "fig", "pineapple, ananas", "banana", "jackfruit, jak, jack", "custard apple", "pomegranate", "hay", "carbonara", "chocolate sauce, chocolate syrup", "dough", "meat loaf, meatloaf", "pizza, pizza pie", "potpie", "burrito", "red wine", "espresso", "cup", "eggnog", "alp", "bubble", "cliff, drop, drop-off", "coral reef", "geyser", "lakeside, lakeshore", "promontory, headland, head, foreland", "sandbar, sand bar", "seashore, coast, seacoast, sea-coast", "valley, vale", "volcano", "ballplayer, baseball player", "groom, bridegroom", "scuba diver", "rapeseed", "daisy", "yellow lady's slipper, yellow lady-slipper, cypripedium calceolus, cypripedium parviflorum", "corn", "acorn", "hip, rose hip, rosehip", "buckeye, horse chestnut, conker", "coral fungus", "agaric", "gyromitra", "stinkhorn, carrion fungus", "earthstar", "hen-of-the-woods, hen of the woods, polyporus frondosus, grifola frondosa", "bolete", "ear, spike, capitulum", "toilet tissue, toilet paper, bathroom tissue" ]
optimum/vit-base-patch16-224
# ONNX convert of ViT (base-sized model) Conversion of [ViT-base](https://huggingface.co/google/vit-base-patch16-224), which has a classification head to perform **image classification**. # Vision Transformer (base-sized model) Vision Transformer (ViT) model pre-trained on ImageNet-21k (14 million images, 21,843 classes) at resolution 224x224, and fine-tuned on ImageNet 2012 (1 million images, 1,000 classes) at resolution 224x224. It was introduced in the paper [An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale](https://arxiv.org/abs/2010.11929) by Dosovitskiy et al. and first released in [this repository](https://github.com/google-research/vision_transformer). However, the weights were converted from the [timm repository](https://github.com/rwightman/pytorch-image-models) by Ross Wightman, who already converted the weights from JAX to PyTorch. Credits go to him. Disclaimer: The team releasing ViT did not write a model card for this model so this model card has been written by the Hugging Face team. ## Model description The Vision Transformer (ViT) is a transformer encoder model (BERT-like) pretrained on a large collection of images in a supervised fashion, namely ImageNet-21k, at a resolution of 224x224 pixels. Next, the model was fine-tuned on ImageNet (also referred to as ILSVRC2012), a dataset comprising 1 million images and 1,000 classes, also at resolution 224x224. Images are presented to the model as a sequence of fixed-size patches (resolution 16x16), which are linearly embedded. One also adds a [CLS] token to the beginning of a sequence to use it for classification tasks. One also adds absolute position embeddings before feeding the sequence to the layers of the Transformer encoder. By pre-training the model, it learns an inner representation of images that can then be used to extract features useful for downstream tasks: if you have a dataset of labeled images for instance, you can train a standard classifier by placing a linear layer on top of the pre-trained encoder. One typically places a linear layer on top of the [CLS] token, as the last hidden state of this token can be seen as a representation of an entire image. ## Intended uses & limitations You can use the raw model for image classification. See the [model hub](https://huggingface.co/models?search=google/vit) to look for fine-tuned versions on a task that interests you. ### How to use Here is how to use this model to classify an image of the COCO 2017 dataset into one of the 1,000 ImageNet classes: ```python from transformers import AutoFeatureExtractor from optimum.onnxruntime import ORTModelForImageClassification from optimum.pipelines import pipeline feature_extractor = AutoFeatureExtractor.from_pretrained("optimum/vit-base-patch16-224") # Loading already converted and optimized ORT checkpoint for inference model = ORTModelForImageClassification.from_pretrained("optimum/vit-base-patch16-224") onnx_img_classif = pipeline( "image-classification", model=model, feature_extractor=feature_extractor ) url = "http://images.cocodataset.org/val2017/000000039769.jpg" pred = onnx_img_classif(url) print("Top-5 predicted classes:", pred) ``` ## Training data The ViT model was pretrained on [ImageNet-21k](http://www.image-net.org/), a dataset consisting of 14 million images and 21k classes, and fine-tuned on [ImageNet](http://www.image-net.org/challenges/LSVRC/2012/), a dataset consisting of 1 million images and 1k classes. ## Training procedure ### Preprocessing The exact details of preprocessing of images during training/validation can be found [here](https://github.com/google-research/vision_transformer/blob/master/vit_jax/input_pipeline.py). Images are resized/rescaled to the same resolution (224x224) and normalized across the RGB channels with mean (0.5, 0.5, 0.5) and standard deviation (0.5, 0.5, 0.5). ### Pretraining The model was trained on TPUv3 hardware (8 cores). All model variants are trained with a batch size of 4096 and learning rate warmup of 10k steps. For ImageNet, the authors found it beneficial to additionally apply gradient clipping at global norm 1. Training resolution is 224. ## Evaluation results For evaluation results on several image classification benchmarks, we refer to tables 2 and 5 of the original paper. Note that for fine-tuning, the best results are obtained with a higher resolution (384x384). Of course, increasing the model size will result in better performance. ### BibTeX entry and citation info ```bibtex @misc{wu2020visual, title={Visual Transformers: Token-based Image Representation and Processing for Computer Vision}, author={Bichen Wu and Chenfeng Xu and Xiaoliang Dai and Alvin Wan and Peizhao Zhang and Zhicheng Yan and Masayoshi Tomizuka and Joseph Gonzalez and Kurt Keutzer and Peter Vajda}, year={2020}, eprint={2006.03677}, archivePrefix={arXiv}, primaryClass={cs.CV} } ``` ```bibtex @inproceedings{deng2009imagenet, title={Imagenet: A large-scale hierarchical image database}, author={Deng, Jia and Dong, Wei and Socher, Richard and Li, Li-Jia and Li, Kai and Fei-Fei, Li}, booktitle={2009 IEEE conference on computer vision and pattern recognition}, pages={248--255}, year={2009}, organization={Ieee} } ```
[ "tench, tinca tinca", "goldfish, carassius auratus", "great white shark, white shark, man-eater, man-eating shark, carcharodon carcharias", "tiger shark, galeocerdo cuvieri", "hammerhead, hammerhead shark", "electric ray, crampfish, numbfish, torpedo", "stingray", "cock", "hen", "ostrich, struthio camelus", "brambling, fringilla montifringilla", "goldfinch, carduelis carduelis", "house finch, linnet, carpodacus mexicanus", "junco, snowbird", "indigo bunting, indigo finch, indigo bird, passerina cyanea", "robin, american robin, turdus migratorius", "bulbul", "jay", "magpie", "chickadee", "water ouzel, dipper", "kite", "bald eagle, american eagle, haliaeetus leucocephalus", "vulture", "great grey owl, great gray owl, strix nebulosa", "european fire salamander, salamandra salamandra", "common newt, triturus vulgaris", "eft", "spotted salamander, ambystoma maculatum", "axolotl, mud puppy, ambystoma mexicanum", "bullfrog, rana catesbeiana", "tree frog, tree-frog", "tailed frog, bell toad, ribbed toad, tailed toad, ascaphus trui", "loggerhead, loggerhead turtle, caretta caretta", "leatherback turtle, leatherback, leathery turtle, dermochelys coriacea", "mud turtle", "terrapin", "box turtle, box tortoise", "banded gecko", "common iguana, iguana, iguana iguana", "american chameleon, anole, anolis carolinensis", "whiptail, whiptail lizard", "agama", "frilled lizard, chlamydosaurus kingi", "alligator lizard", "gila monster, heloderma suspectum", "green lizard, lacerta viridis", "african chameleon, chamaeleo chamaeleon", "komodo dragon, komodo lizard, dragon lizard, giant lizard, varanus komodoensis", "african crocodile, nile crocodile, crocodylus niloticus", "american alligator, alligator mississipiensis", "triceratops", "thunder snake, worm snake, carphophis amoenus", "ringneck snake, ring-necked snake, ring snake", "hognose snake, puff adder, sand viper", "green snake, grass snake", "king snake, kingsnake", "garter snake, grass snake", "water snake", "vine snake", "night snake, hypsiglena torquata", "boa constrictor, constrictor constrictor", "rock python, rock snake, python sebae", "indian cobra, naja naja", "green mamba", "sea snake", "horned viper, cerastes, sand viper, horned asp, cerastes cornutus", "diamondback, diamondback rattlesnake, crotalus adamanteus", "sidewinder, horned rattlesnake, crotalus cerastes", "trilobite", "harvestman, daddy longlegs, phalangium opilio", "scorpion", "black and gold garden spider, argiope aurantia", "barn spider, araneus cavaticus", "garden spider, aranea diademata", "black widow, latrodectus mactans", "tarantula", "wolf spider, hunting spider", "tick", "centipede", "black grouse", "ptarmigan", "ruffed grouse, partridge, bonasa umbellus", "prairie chicken, prairie grouse, prairie fowl", "peacock", "quail", "partridge", "african grey, african gray, psittacus erithacus", "macaw", "sulphur-crested cockatoo, kakatoe galerita, cacatua galerita", "lorikeet", "coucal", "bee eater", "hornbill", "hummingbird", "jacamar", "toucan", "drake", "red-breasted merganser, mergus serrator", "goose", "black swan, cygnus atratus", "tusker", "echidna, spiny anteater, anteater", "platypus, duckbill, duckbilled platypus, duck-billed platypus, ornithorhynchus anatinus", "wallaby, brush kangaroo", "koala, koala bear, kangaroo bear, native bear, phascolarctos cinereus", "wombat", "jellyfish", "sea anemone, anemone", "brain coral", "flatworm, platyhelminth", "nematode, nematode worm, roundworm", "conch", "snail", "slug", "sea slug, nudibranch", "chiton, coat-of-mail shell, sea cradle, polyplacophore", "chambered nautilus, pearly nautilus, nautilus", "dungeness crab, cancer magister", "rock crab, cancer irroratus", "fiddler crab", "king crab, alaska crab, alaskan king crab, alaska king crab, paralithodes camtschatica", "american lobster, northern lobster, maine lobster, homarus americanus", "spiny lobster, langouste, rock lobster, crawfish, crayfish, sea crawfish", "crayfish, crawfish, crawdad, crawdaddy", "hermit crab", "isopod", "white stork, ciconia ciconia", "black stork, ciconia nigra", "spoonbill", "flamingo", "little blue heron, egretta caerulea", "american egret, great white heron, egretta albus", "bittern", "crane", "limpkin, aramus pictus", "european gallinule, porphyrio porphyrio", "american coot, marsh hen, mud hen, water hen, fulica americana", "bustard", "ruddy turnstone, arenaria interpres", "red-backed sandpiper, dunlin, erolia alpina", "redshank, tringa totanus", "dowitcher", "oystercatcher, oyster catcher", "pelican", "king penguin, aptenodytes patagonica", "albatross, mollymawk", "grey whale, gray whale, devilfish, eschrichtius gibbosus, eschrichtius robustus", "killer whale, killer, orca, grampus, sea wolf, orcinus orca", "dugong, dugong dugon", "sea lion", "chihuahua", "japanese spaniel", "maltese dog, maltese terrier, maltese", "pekinese, pekingese, peke", "shih-tzu", "blenheim spaniel", "papillon", "toy terrier", "rhodesian ridgeback", "afghan hound, afghan", "basset, basset hound", "beagle", "bloodhound, sleuthhound", "bluetick", "black-and-tan coonhound", "walker hound, walker foxhound", "english foxhound", "redbone", "borzoi, russian wolfhound", "irish wolfhound", "italian greyhound", "whippet", "ibizan hound, ibizan podenco", "norwegian elkhound, elkhound", "otterhound, otter hound", "saluki, gazelle hound", "scottish deerhound, deerhound", "weimaraner", "staffordshire bullterrier, staffordshire bull terrier", "american staffordshire terrier, staffordshire terrier, american pit bull terrier, pit bull terrier", "bedlington terrier", "border terrier", "kerry blue terrier", "irish terrier", "norfolk terrier", "norwich terrier", "yorkshire terrier", "wire-haired fox terrier", "lakeland terrier", "sealyham terrier, sealyham", "airedale, airedale terrier", "cairn, cairn terrier", "australian terrier", "dandie dinmont, dandie dinmont terrier", "boston bull, boston terrier", "miniature schnauzer", "giant schnauzer", "standard schnauzer", "scotch terrier, scottish terrier, scottie", "tibetan terrier, chrysanthemum dog", "silky terrier, sydney silky", "soft-coated wheaten terrier", "west highland white terrier", "lhasa, lhasa apso", "flat-coated retriever", "curly-coated retriever", "golden retriever", "labrador retriever", "chesapeake bay retriever", "german short-haired pointer", "vizsla, hungarian pointer", "english setter", "irish setter, red setter", "gordon setter", "brittany spaniel", "clumber, clumber spaniel", "english springer, english springer spaniel", "welsh springer spaniel", "cocker spaniel, english cocker spaniel, cocker", "sussex spaniel", "irish water spaniel", "kuvasz", "schipperke", "groenendael", "malinois", "briard", "kelpie", "komondor", "old english sheepdog, bobtail", "shetland sheepdog, shetland sheep dog, shetland", "collie", "border collie", "bouvier des flandres, bouviers des flandres", "rottweiler", "german shepherd, german shepherd dog, german police dog, alsatian", "doberman, doberman pinscher", "miniature pinscher", "greater swiss mountain dog", "bernese mountain dog", "appenzeller", "entlebucher", "boxer", "bull mastiff", "tibetan mastiff", "french bulldog", "great dane", "saint bernard, st bernard", "eskimo dog, husky", "malamute, malemute, alaskan malamute", "siberian husky", "dalmatian, coach dog, carriage dog", "affenpinscher, monkey pinscher, monkey dog", "basenji", "pug, pug-dog", "leonberg", "newfoundland, newfoundland dog", "great pyrenees", "samoyed, samoyede", "pomeranian", "chow, chow chow", "keeshond", "brabancon griffon", "pembroke, pembroke welsh corgi", "cardigan, cardigan welsh corgi", "toy poodle", "miniature poodle", "standard poodle", "mexican hairless", "timber wolf, grey wolf, gray wolf, canis lupus", "white wolf, arctic wolf, canis lupus tundrarum", "red wolf, maned wolf, canis rufus, canis niger", "coyote, prairie wolf, brush wolf, canis latrans", "dingo, warrigal, warragal, canis dingo", "dhole, cuon alpinus", "african hunting dog, hyena dog, cape hunting dog, lycaon pictus", "hyena, hyaena", "red fox, vulpes vulpes", "kit fox, vulpes macrotis", "arctic fox, white fox, alopex lagopus", "grey fox, gray fox, urocyon cinereoargenteus", "tabby, tabby cat", "tiger cat", "persian cat", "siamese cat, siamese", "egyptian cat", "cougar, puma, catamount, mountain lion, painter, panther, felis concolor", "lynx, catamount", "leopard, panthera pardus", "snow leopard, ounce, panthera uncia", "jaguar, panther, panthera onca, felis onca", "lion, king of beasts, panthera leo", "tiger, panthera tigris", "cheetah, chetah, acinonyx jubatus", "brown bear, bruin, ursus arctos", "american black bear, black bear, ursus americanus, euarctos americanus", "ice bear, polar bear, ursus maritimus, thalarctos maritimus", "sloth bear, melursus ursinus, ursus ursinus", "mongoose", "meerkat, mierkat", "tiger beetle", "ladybug, ladybeetle, lady beetle, ladybird, ladybird beetle", "ground beetle, carabid beetle", "long-horned beetle, longicorn, longicorn beetle", "leaf beetle, chrysomelid", "dung beetle", "rhinoceros beetle", "weevil", "fly", "bee", "ant, emmet, pismire", "grasshopper, hopper", "cricket", "walking stick, walkingstick, stick insect", "cockroach, roach", "mantis, mantid", "cicada, cicala", "leafhopper", "lacewing, lacewing fly", "dragonfly, darning needle, devil's darning needle, sewing needle, snake feeder, snake doctor, mosquito hawk, skeeter hawk", "damselfly", "admiral", "ringlet, ringlet butterfly", "monarch, monarch butterfly, milkweed butterfly, danaus plexippus", "cabbage butterfly", "sulphur butterfly, sulfur butterfly", "lycaenid, lycaenid butterfly", "starfish, sea star", "sea urchin", "sea cucumber, holothurian", "wood rabbit, cottontail, cottontail rabbit", "hare", "angora, angora rabbit", "hamster", "porcupine, hedgehog", "fox squirrel, eastern fox squirrel, sciurus niger", "marmot", "beaver", "guinea pig, cavia cobaya", "sorrel", "zebra", "hog, pig, grunter, squealer, sus scrofa", "wild boar, boar, sus scrofa", "warthog", "hippopotamus, hippo, river horse, hippopotamus amphibius", "ox", "water buffalo, water ox, asiatic buffalo, bubalus bubalis", "bison", "ram, tup", "bighorn, bighorn sheep, cimarron, rocky mountain bighorn, rocky mountain sheep, ovis canadensis", "ibex, capra ibex", "hartebeest", "impala, aepyceros melampus", "gazelle", "arabian camel, dromedary, camelus dromedarius", "llama", "weasel", "mink", "polecat, fitch, foulmart, foumart, mustela putorius", "black-footed ferret, ferret, mustela nigripes", "otter", "skunk, polecat, wood pussy", "badger", "armadillo", "three-toed sloth, ai, bradypus tridactylus", "orangutan, orang, orangutang, pongo pygmaeus", "gorilla, gorilla gorilla", "chimpanzee, chimp, pan troglodytes", "gibbon, hylobates lar", "siamang, hylobates syndactylus, symphalangus syndactylus", "guenon, guenon monkey", "patas, hussar monkey, erythrocebus patas", "baboon", "macaque", "langur", "colobus, colobus monkey", "proboscis monkey, nasalis larvatus", "marmoset", "capuchin, ringtail, cebus capucinus", "howler monkey, howler", "titi, titi monkey", "spider monkey, ateles geoffroyi", "squirrel monkey, saimiri sciureus", "madagascar cat, ring-tailed lemur, lemur catta", "indri, indris, indri indri, indri brevicaudatus", "indian elephant, elephas maximus", "african elephant, loxodonta africana", "lesser panda, red panda, panda, bear cat, cat bear, ailurus fulgens", "giant panda, panda, panda bear, coon bear, ailuropoda melanoleuca", "barracouta, snoek", "eel", "coho, cohoe, coho salmon, blue jack, silver salmon, oncorhynchus kisutch", "rock beauty, holocanthus tricolor", "anemone fish", "sturgeon", "gar, garfish, garpike, billfish, lepisosteus osseus", "lionfish", "puffer, pufferfish, blowfish, globefish", "abacus", "abaya", "academic gown, academic robe, judge's robe", "accordion, piano accordion, squeeze box", "acoustic guitar", "aircraft carrier, carrier, flattop, attack aircraft carrier", "airliner", "airship, dirigible", "altar", "ambulance", "amphibian, amphibious vehicle", "analog clock", "apiary, bee house", "apron", "ashcan, trash can, garbage can, wastebin, ash bin, ash-bin, ashbin, dustbin, trash barrel, trash bin", "assault rifle, assault gun", "backpack, back pack, knapsack, packsack, rucksack, haversack", "bakery, bakeshop, bakehouse", "balance beam, beam", "balloon", "ballpoint, ballpoint pen, ballpen, biro", "band aid", "banjo", "bannister, banister, balustrade, balusters, handrail", "barbell", "barber chair", "barbershop", "barn", "barometer", "barrel, cask", "barrow, garden cart, lawn cart, wheelbarrow", "baseball", "basketball", "bassinet", "bassoon", "bathing cap, swimming cap", "bath towel", "bathtub, bathing tub, bath, tub", "beach wagon, station wagon, wagon, estate car, beach waggon, station waggon, waggon", "beacon, lighthouse, beacon light, pharos", "beaker", "bearskin, busby, shako", "beer bottle", "beer glass", "bell cote, bell cot", "bib", "bicycle-built-for-two, tandem bicycle, tandem", "bikini, two-piece", "binder, ring-binder", "binoculars, field glasses, opera glasses", "birdhouse", "boathouse", "bobsled, bobsleigh, bob", "bolo tie, bolo, bola tie, bola", "bonnet, poke bonnet", "bookcase", "bookshop, bookstore, bookstall", "bottlecap", "bow", "bow tie, bow-tie, bowtie", "brass, memorial tablet, plaque", "brassiere, bra, bandeau", "breakwater, groin, groyne, mole, bulwark, seawall, jetty", "breastplate, aegis, egis", "broom", "bucket, pail", "buckle", "bulletproof vest", "bullet train, bullet", "butcher shop, meat market", "cab, hack, taxi, taxicab", "caldron, cauldron", "candle, taper, wax light", "cannon", "canoe", "can opener, tin opener", "cardigan", "car mirror", "carousel, carrousel, merry-go-round, roundabout, whirligig", "carpenter's kit, tool kit", "carton", "car wheel", "cash machine, cash dispenser, automated teller machine, automatic teller machine, automated teller, automatic teller, atm", "cassette", "cassette player", "castle", "catamaran", "cd player", "cello, violoncello", "cellular telephone, cellular phone, cellphone, cell, mobile phone", "chain", "chainlink fence", "chain mail, ring mail, mail, chain armor, chain armour, ring armor, ring armour", "chain saw, chainsaw", "chest", "chiffonier, commode", "chime, bell, gong", "china cabinet, china closet", "christmas stocking", "church, church building", "cinema, movie theater, movie theatre, movie house, picture palace", "cleaver, meat cleaver, chopper", "cliff dwelling", "cloak", "clog, geta, patten, sabot", "cocktail shaker", "coffee mug", "coffeepot", "coil, spiral, volute, whorl, helix", "combination lock", "computer keyboard, keypad", "confectionery, confectionary, candy store", "container ship, containership, container vessel", "convertible", "corkscrew, bottle screw", "cornet, horn, trumpet, trump", "cowboy boot", "cowboy hat, ten-gallon hat", "cradle", "crane", "crash helmet", "crate", "crib, cot", "crock pot", "croquet ball", "crutch", "cuirass", "dam, dike, dyke", "desk", "desktop computer", "dial telephone, dial phone", "diaper, nappy, napkin", "digital clock", "digital watch", "dining table, board", "dishrag, dishcloth", "dishwasher, dish washer, dishwashing machine", "disk brake, disc brake", "dock, dockage, docking facility", "dogsled, dog sled, dog sleigh", "dome", "doormat, welcome mat", "drilling platform, offshore rig", "drum, membranophone, tympan", "drumstick", "dumbbell", "dutch oven", "electric fan, blower", "electric guitar", "electric locomotive", "entertainment center", "envelope", "espresso maker", "face powder", "feather boa, boa", "file, file cabinet, filing cabinet", "fireboat", "fire engine, fire truck", "fire screen, fireguard", "flagpole, flagstaff", "flute, transverse flute", "folding chair", "football helmet", "forklift", "fountain", "fountain pen", "four-poster", "freight car", "french horn, horn", "frying pan, frypan, skillet", "fur coat", "garbage truck, dustcart", "gasmask, respirator, gas helmet", "gas pump, gasoline pump, petrol pump, island dispenser", "goblet", "go-kart", "golf ball", "golfcart, golf cart", "gondola", "gong, tam-tam", "gown", "grand piano, grand", "greenhouse, nursery, glasshouse", "grille, radiator grille", "grocery store, grocery, food market, market", "guillotine", "hair slide", "hair spray", "half track", "hammer", "hamper", "hand blower, blow dryer, blow drier, hair dryer, hair drier", "hand-held computer, hand-held microcomputer", "handkerchief, hankie, hanky, hankey", "hard disc, hard disk, fixed disk", "harmonica, mouth organ, harp, mouth harp", "harp", "harvester, reaper", "hatchet", "holster", "home theater, home theatre", "honeycomb", "hook, claw", "hoopskirt, crinoline", "horizontal bar, high bar", "horse cart, horse-cart", "hourglass", "ipod", "iron, smoothing iron", "jack-o'-lantern", "jean, blue jean, denim", "jeep, landrover", "jersey, t-shirt, tee shirt", "jigsaw puzzle", "jinrikisha, ricksha, rickshaw", "joystick", "kimono", "knee pad", "knot", "lab coat, laboratory coat", "ladle", "lampshade, lamp shade", "laptop, laptop computer", "lawn mower, mower", "lens cap, lens cover", "letter opener, paper knife, paperknife", "library", "lifeboat", "lighter, light, igniter, ignitor", "limousine, limo", "liner, ocean liner", "lipstick, lip rouge", "loafer", "lotion", "loudspeaker, speaker, speaker unit, loudspeaker system, speaker system", "loupe, jeweler's loupe", "lumbermill, sawmill", "magnetic compass", "mailbag, postbag", "mailbox, letter box", "maillot", "maillot, tank suit", "manhole cover", "maraca", "marimba, xylophone", "mask", "matchstick", "maypole", "maze, labyrinth", "measuring cup", "medicine chest, medicine cabinet", "megalith, megalithic structure", "microphone, mike", "microwave, microwave oven", "military uniform", "milk can", "minibus", "miniskirt, mini", "minivan", "missile", "mitten", "mixing bowl", "mobile home, manufactured home", "model t", "modem", "monastery", "monitor", "moped", "mortar", "mortarboard", "mosque", "mosquito net", "motor scooter, scooter", "mountain bike, all-terrain bike, off-roader", "mountain tent", "mouse, computer mouse", "mousetrap", "moving van", "muzzle", "nail", "neck brace", "necklace", "nipple", "notebook, notebook computer", "obelisk", "oboe, hautboy, hautbois", "ocarina, sweet potato", "odometer, hodometer, mileometer, milometer", "oil filter", "organ, pipe organ", "oscilloscope, scope, cathode-ray oscilloscope, cro", "overskirt", "oxcart", "oxygen mask", "packet", "paddle, boat paddle", "paddlewheel, paddle wheel", "padlock", "paintbrush", "pajama, pyjama, pj's, jammies", "palace", "panpipe, pandean pipe, syrinx", "paper towel", "parachute, chute", "parallel bars, bars", "park bench", "parking meter", "passenger car, coach, carriage", "patio, terrace", "pay-phone, pay-station", "pedestal, plinth, footstall", "pencil box, pencil case", "pencil sharpener", "perfume, essence", "petri dish", "photocopier", "pick, plectrum, plectron", "pickelhaube", "picket fence, paling", "pickup, pickup truck", "pier", "piggy bank, penny bank", "pill bottle", "pillow", "ping-pong ball", "pinwheel", "pirate, pirate ship", "pitcher, ewer", "plane, carpenter's plane, woodworking plane", "planetarium", "plastic bag", "plate rack", "plow, plough", "plunger, plumber's helper", "polaroid camera, polaroid land camera", "pole", "police van, police wagon, paddy wagon, patrol wagon, wagon, black maria", "poncho", "pool table, billiard table, snooker table", "pop bottle, soda bottle", "pot, flowerpot", "potter's wheel", "power drill", "prayer rug, prayer mat", "printer", "prison, prison house", "projectile, missile", "projector", "puck, hockey puck", "punching bag, punch bag, punching ball, punchball", "purse", "quill, quill pen", "quilt, comforter, comfort, puff", "racer, race car, racing car", "racket, racquet", "radiator", "radio, wireless", "radio telescope, radio reflector", "rain barrel", "recreational vehicle, rv, r.v.", "reel", "reflex camera", "refrigerator, icebox", "remote control, remote", "restaurant, eating house, eating place, eatery", "revolver, six-gun, six-shooter", "rifle", "rocking chair, rocker", "rotisserie", "rubber eraser, rubber, pencil eraser", "rugby ball", "rule, ruler", "running shoe", "safe", "safety pin", "saltshaker, salt shaker", "sandal", "sarong", "sax, saxophone", "scabbard", "scale, weighing machine", "school bus", "schooner", "scoreboard", "screen, crt screen", "screw", "screwdriver", "seat belt, seatbelt", "sewing machine", "shield, buckler", "shoe shop, shoe-shop, shoe store", "shoji", "shopping basket", "shopping cart", "shovel", "shower cap", "shower curtain", "ski", "ski mask", "sleeping bag", "slide rule, slipstick", "sliding door", "slot, one-armed bandit", "snorkel", "snowmobile", "snowplow, snowplough", "soap dispenser", "soccer ball", "sock", "solar dish, solar collector, solar furnace", "sombrero", "soup bowl", "space bar", "space heater", "space shuttle", "spatula", "speedboat", "spider web, spider's web", "spindle", "sports car, sport car", "spotlight, spot", "stage", "steam locomotive", "steel arch bridge", "steel drum", "stethoscope", "stole", "stone wall", "stopwatch, stop watch", "stove", "strainer", "streetcar, tram, tramcar, trolley, trolley car", "stretcher", "studio couch, day bed", "stupa, tope", "submarine, pigboat, sub, u-boat", "suit, suit of clothes", "sundial", "sunglass", "sunglasses, dark glasses, shades", "sunscreen, sunblock, sun blocker", "suspension bridge", "swab, swob, mop", "sweatshirt", "swimming trunks, bathing trunks", "swing", "switch, electric switch, electrical switch", "syringe", "table lamp", "tank, army tank, armored combat vehicle, armoured combat vehicle", "tape player", "teapot", "teddy, teddy bear", "television, television system", "tennis ball", "thatch, thatched roof", "theater curtain, theatre curtain", "thimble", "thresher, thrasher, threshing machine", "throne", "tile roof", "toaster", "tobacco shop, tobacconist shop, tobacconist", "toilet seat", "torch", "totem pole", "tow truck, tow car, wrecker", "toyshop", "tractor", "trailer truck, tractor trailer, trucking rig, rig, articulated lorry, semi", "tray", "trench coat", "tricycle, trike, velocipede", "trimaran", "tripod", "triumphal arch", "trolleybus, trolley coach, trackless trolley", "trombone", "tub, vat", "turnstile", "typewriter keyboard", "umbrella", "unicycle, monocycle", "upright, upright piano", "vacuum, vacuum cleaner", "vase", "vault", "velvet", "vending machine", "vestment", "viaduct", "violin, fiddle", "volleyball", "waffle iron", "wall clock", "wallet, billfold, notecase, pocketbook", "wardrobe, closet, press", "warplane, military plane", "washbasin, handbasin, washbowl, lavabo, wash-hand basin", "washer, automatic washer, washing machine", "water bottle", "water jug", "water tower", "whiskey jug", "whistle", "wig", "window screen", "window shade", "windsor tie", "wine bottle", "wing", "wok", "wooden spoon", "wool, woolen, woollen", "worm fence, snake fence, snake-rail fence, virginia fence", "wreck", "yawl", "yurt", "web site, website, internet site, site", "comic book", "crossword puzzle, crossword", "street sign", "traffic light, traffic signal, stoplight", "book jacket, dust cover, dust jacket, dust wrapper", "menu", "plate", "guacamole", "consomme", "hot pot, hotpot", "trifle", "ice cream, icecream", "ice lolly, lolly, lollipop, popsicle", "french loaf", "bagel, beigel", "pretzel", "cheeseburger", "hotdog, hot dog, red hot", "mashed potato", "head cabbage", "broccoli", "cauliflower", "zucchini, courgette", "spaghetti squash", "acorn squash", "butternut squash", "cucumber, cuke", "artichoke, globe artichoke", "bell pepper", "cardoon", "mushroom", "granny smith", "strawberry", "orange", "lemon", "fig", "pineapple, ananas", "banana", "jackfruit, jak, jack", "custard apple", "pomegranate", "hay", "carbonara", "chocolate sauce, chocolate syrup", "dough", "meat loaf, meatloaf", "pizza, pizza pie", "potpie", "burrito", "red wine", "espresso", "cup", "eggnog", "alp", "bubble", "cliff, drop, drop-off", "coral reef", "geyser", "lakeside, lakeshore", "promontory, headland, head, foreland", "sandbar, sand bar", "seashore, coast, seacoast, sea-coast", "valley, vale", "volcano", "ballplayer, baseball player", "groom, bridegroom", "scuba diver", "rapeseed", "daisy", "yellow lady's slipper, yellow lady-slipper, cypripedium calceolus, cypripedium parviflorum", "corn", "acorn", "hip, rose hip, rosehip", "buckeye, horse chestnut, conker", "coral fungus", "agaric", "gyromitra", "stinkhorn, carrion fungus", "earthstar", "hen-of-the-woods, hen of the woods, polyporus frondosus, grifola frondosa", "bolete", "ear, spike, capitulum", "toilet tissue, toilet paper, bathroom tissue" ]
gianlab/swin-tiny-patch4-window7-224-finetuned-plantdisease
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # swin-tiny-patch4-window7-224-finetuned-plantdisease This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.1032 - Accuracy: 0.9690 ## Model description This model was created by importing the dataset of the photos of diseased plants into Google Colab from kaggle here: https://www.kaggle.com/datasets/emmarex/plantdisease. I then used the image classification tutorial here: https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/image_classification.ipynb obtaining the following notebook: https://colab.research.google.com/drive/14ItHnpARBBGaYQCiJwJsnWiiNQnlrIyP?usp=sharing The possible classified diseases are: Tomato Tomato YellowLeaf Curl Virus , Tomato Late blight , Pepper bell Bacterial spot, Tomato Early blight, Potato healthy, Tomato healthy , Tomato Target_Spot , Potato Early blight , Tomato Tomato mosaic virus, Pepper bell healthy, Potato Late blight, Tomato Septoria leaf spot , Tomato Leaf Mold , Tomato Spider mites Two spotted spider mite , Tomato Bacterial spot . ## Leaf example: ![leaf](foglia-2.png) ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.1903 | 1.0 | 145 | 0.1032 | 0.9690 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
[ "pepper__bell___bacterial_spot", "pepper__bell___healthy", "potato___early_blight", "potato___late_blight", "potato___healthy", "tomato_bacterial_spot", "tomato_early_blight", "tomato_late_blight", "tomato_leaf_mold", "tomato_septoria_leaf_spot", "tomato_spider_mites_two_spotted_spider_mite", "tomato__target_spot", "tomato__tomato_yellowleaf__curl_virus", "tomato__tomato_mosaic_virus", "tomato_healthy" ]
douwekiela/resnet-18-finetuned-dogfood
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # resnet-18-finetuned-dogfood This model is a fine-tuned version of [microsoft/resnet-18](https://huggingface.co/microsoft/resnet-18) on the lewtun/dog_food dataset. It achieves the following results on the evaluation set: - Loss: 0.2991 - Accuracy: 0.896 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.846 | 1.0 | 16 | 0.2662 | 0.9156 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
[ "chicken", "dog", "muffin" ]
sasha/swin-tiny-finetuned-dogfood
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # swin-tiny-finetuned-dogfood This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the lewtun/dog_food dataset. It achieves the following results on the evaluation set: - Loss: 0.1959 - Accuracy: 0.988 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.8198 | 1.0 | 16 | 0.1901 | 0.9822 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
[ "chicken", "dog", "muffin" ]
SerdarHelli/ThyroidTumorClassificationModel
Thyroid nodule is one of the most common endocrine carcinomas. Due to its higher reveal ability and ability to distinguish between benign and malignant nodules in pathological features, ultrasonography has become the most widely used modality for finding and diagnosing thyroid cancer when compared to CT and MRI. In this study, the purpose is the classification of thyroid tumors on ultrasound images with 2 different categories: - Malign(1) - Benign(0) This study was made using HF Transformers : - [ On Google Colab](https://colab.research.google.com/drive/1ueSq8Y_NmFr7NGdtS8FStI3d2HR-43LD?usp=sharing) - [On Github](https://github.com/SerdarHelli/The-Classification-of-Thyroid-Tumors-on-UltraSound-Images-using-Deep-Learning-Methods) - [ Using Keras and GradCam With MultiClasses Medium Article](https://serdarhelli.medium.com/the-basic-classification-of-thyroid-tumors-on-ultrasound-images-using-deep-learning-methods-46f812d859ea) The Dataset: [Colombia National University presented an open access database of thyroid ultrasound images.](http://cimalab.unal.edu.co/?lang=es&mod=program&id=5) Ref : Pedraza, Lina & Vargas, Carlos & Narváez, Fabián & Durán, Oscar & Muñoz, Emma & Romero, Eduardo. (2015). An open access thyroid ultrasound-image Database. Progress in Biomedical Optics and Imaging — Proceedings of SPIE. 9287. 10.1117/12.2073532.
[ "0", "1" ]
sudo-s/exper_batch_8_e4
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # exper_batch_8_e4 This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the sudo-s/herbier_mesuem1 dataset. It achieves the following results on the evaluation set: - Loss: 0.3353 - Accuracy: 0.9183 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 - mixed_precision_training: Apex, opt level O1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 4.2251 | 0.08 | 100 | 4.1508 | 0.1203 | | 3.4942 | 0.16 | 200 | 3.5566 | 0.2082 | | 3.2871 | 0.23 | 300 | 3.0942 | 0.3092 | | 2.7273 | 0.31 | 400 | 2.8338 | 0.3308 | | 2.4984 | 0.39 | 500 | 2.4860 | 0.4341 | | 2.3423 | 0.47 | 600 | 2.2201 | 0.4796 | | 1.8785 | 0.55 | 700 | 2.1890 | 0.4653 | | 1.8012 | 0.63 | 800 | 1.9901 | 0.4865 | | 1.7236 | 0.7 | 900 | 1.6821 | 0.5736 | | 1.4949 | 0.78 | 1000 | 1.5422 | 0.6083 | | 1.5573 | 0.86 | 1100 | 1.5436 | 0.6110 | | 1.3241 | 0.94 | 1200 | 1.4077 | 0.6207 | | 1.0773 | 1.02 | 1300 | 1.1417 | 0.6916 | | 0.7935 | 1.1 | 1400 | 1.1194 | 0.6931 | | 0.7677 | 1.17 | 1500 | 1.0727 | 0.7167 | | 0.9468 | 1.25 | 1600 | 1.0707 | 0.7136 | | 0.7563 | 1.33 | 1700 | 0.9427 | 0.7390 | | 0.8471 | 1.41 | 1800 | 0.8906 | 0.7571 | | 0.9998 | 1.49 | 1900 | 0.8098 | 0.7845 | | 0.6039 | 1.57 | 2000 | 0.7244 | 0.8034 | | 0.7052 | 1.64 | 2100 | 0.7881 | 0.7953 | | 0.6753 | 1.72 | 2200 | 0.7458 | 0.7926 | | 0.3758 | 1.8 | 2300 | 0.6987 | 0.8022 | | 0.4985 | 1.88 | 2400 | 0.6286 | 0.8265 | | 0.4122 | 1.96 | 2500 | 0.5949 | 0.8358 | | 0.1286 | 2.04 | 2600 | 0.5691 | 0.8385 | | 0.1989 | 2.11 | 2700 | 0.5535 | 0.8389 | | 0.3304 | 2.19 | 2800 | 0.5261 | 0.8520 | | 0.3415 | 2.27 | 2900 | 0.5504 | 0.8477 | | 0.4066 | 2.35 | 3000 | 0.5418 | 0.8497 | | 0.1208 | 2.43 | 3100 | 0.5156 | 0.8612 | | 0.1668 | 2.51 | 3200 | 0.5655 | 0.8539 | | 0.0727 | 2.58 | 3300 | 0.4971 | 0.8658 | | 0.0929 | 2.66 | 3400 | 0.4962 | 0.8635 | | 0.0678 | 2.74 | 3500 | 0.4903 | 0.8670 | | 0.1212 | 2.82 | 3600 | 0.4357 | 0.8867 | | 0.1579 | 2.9 | 3700 | 0.4642 | 0.8739 | | 0.2625 | 2.98 | 3800 | 0.3994 | 0.8951 | | 0.024 | 3.05 | 3900 | 0.3953 | 0.8971 | | 0.0696 | 3.13 | 4000 | 0.3883 | 0.9056 | | 0.0169 | 3.21 | 4100 | 0.3755 | 0.9086 | | 0.023 | 3.29 | 4200 | 0.3685 | 0.9109 | | 0.0337 | 3.37 | 4300 | 0.3623 | 0.9109 | | 0.0123 | 3.45 | 4400 | 0.3647 | 0.9067 | | 0.0159 | 3.52 | 4500 | 0.3630 | 0.9082 | | 0.0154 | 3.6 | 4600 | 0.3522 | 0.9094 | | 0.0112 | 3.68 | 4700 | 0.3439 | 0.9163 | | 0.0219 | 3.76 | 4800 | 0.3404 | 0.9194 | | 0.0183 | 3.84 | 4900 | 0.3371 | 0.9183 | | 0.0103 | 3.92 | 5000 | 0.3362 | 0.9183 | | 0.0357 | 3.99 | 5100 | 0.3353 | 0.9183 | ### Framework versions - Transformers 4.19.4 - Pytorch 1.5.1 - Datasets 2.3.2 - Tokenizers 0.12.1
[ "0", "1", "10", "100", "101", "102", "103", "104", "105", "106", "107", "108", "109", "11", "110", "111", "112", "113", "114", "115", "116", "117", "118", "119", "12", "120", "121", "122", "123", "124", "125", "126", "127", "128", "129", "13", "130", "131", "132", "133", "134", "135", "136", "137", "138", "139", "14", "140", "141", "142", "143", "144", "145", "146", "147", "148", "15", "16", "17", "18", "19", "2", "20", "21", "22", "23", "24", "25", "26", "27", "28", "29", "3", "30", "31", "32", "33", "34", "35", "36", "37", "38", "39", "4", "40", "41", "42", "43", "44", "45", "46", "47", "48", "49", "5", "50", "51", "52", "53", "54", "55", "56", "57", "58", "59", "6", "60", "61", "62", "63", "64", "65", "66", "67", "68", "69", "7", "70", "71", "72", "73", "74", "75", "76", "77", "78", "79", "8", "80", "81", "82", "83", "84", "85", "86", "87", "88", "89", "9", "90", "91", "92", "93", "94", "95", "96", "97", "98", "99" ]
sudo-s/exper_batch_8_e8
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # exper_batch_8_e8 This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the sudo-s/herbier_mesuem1 dataset. It achieves the following results on the evaluation set: - Loss: 0.4608 - Accuracy: 0.9052 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 - mixed_precision_training: Apex, opt level O1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 4.2202 | 0.08 | 100 | 4.1245 | 0.1237 | | 3.467 | 0.16 | 200 | 3.5622 | 0.2143 | | 3.3469 | 0.23 | 300 | 3.1688 | 0.2675 | | 2.8086 | 0.31 | 400 | 2.8965 | 0.3034 | | 2.6291 | 0.39 | 500 | 2.5858 | 0.4025 | | 2.2382 | 0.47 | 600 | 2.2908 | 0.4133 | | 1.9259 | 0.55 | 700 | 2.2007 | 0.4676 | | 1.8088 | 0.63 | 800 | 2.0419 | 0.4742 | | 1.9462 | 0.7 | 900 | 1.6793 | 0.5578 | | 1.5392 | 0.78 | 1000 | 1.5460 | 0.6079 | | 1.561 | 0.86 | 1100 | 1.5793 | 0.5690 | | 1.2135 | 0.94 | 1200 | 1.4663 | 0.5929 | | 1.0725 | 1.02 | 1300 | 1.2974 | 0.6534 | | 0.8696 | 1.1 | 1400 | 1.2406 | 0.6569 | | 0.8758 | 1.17 | 1500 | 1.2127 | 0.6623 | | 1.1737 | 1.25 | 1600 | 1.2243 | 0.6550 | | 0.8242 | 1.33 | 1700 | 1.1371 | 0.6735 | | 1.0141 | 1.41 | 1800 | 1.0536 | 0.7024 | | 0.9855 | 1.49 | 1900 | 0.9885 | 0.7205 | | 0.805 | 1.57 | 2000 | 0.9048 | 0.7479 | | 0.7207 | 1.64 | 2100 | 0.8842 | 0.7490 | | 0.7101 | 1.72 | 2200 | 0.8954 | 0.7436 | | 0.5946 | 1.8 | 2300 | 0.9174 | 0.7386 | | 0.6937 | 1.88 | 2400 | 0.7818 | 0.7760 | | 0.5593 | 1.96 | 2500 | 0.7449 | 0.7934 | | 0.4139 | 2.04 | 2600 | 0.7787 | 0.7830 | | 0.2929 | 2.11 | 2700 | 0.7122 | 0.7945 | | 0.4159 | 2.19 | 2800 | 0.7446 | 0.7907 | | 0.4079 | 2.27 | 2900 | 0.7354 | 0.7938 | | 0.516 | 2.35 | 3000 | 0.7499 | 0.8007 | | 0.2728 | 2.43 | 3100 | 0.6851 | 0.8061 | | 0.4159 | 2.51 | 3200 | 0.7258 | 0.7999 | | 0.3396 | 2.58 | 3300 | 0.7455 | 0.7972 | | 0.1918 | 2.66 | 3400 | 0.6793 | 0.8119 | | 0.1228 | 2.74 | 3500 | 0.6696 | 0.8134 | | 0.2671 | 2.82 | 3600 | 0.6306 | 0.8285 | | 0.4986 | 2.9 | 3700 | 0.6111 | 0.8296 | | 0.3699 | 2.98 | 3800 | 0.5600 | 0.8508 | | 0.0444 | 3.05 | 3900 | 0.6021 | 0.8331 | | 0.1489 | 3.13 | 4000 | 0.5599 | 0.8516 | | 0.15 | 3.21 | 4100 | 0.6377 | 0.8365 | | 0.2535 | 3.29 | 4200 | 0.5752 | 0.8543 | | 0.2679 | 3.37 | 4300 | 0.5677 | 0.8608 | | 0.0989 | 3.45 | 4400 | 0.6325 | 0.8396 | | 0.0825 | 3.52 | 4500 | 0.5979 | 0.8524 | | 0.0427 | 3.6 | 4600 | 0.5903 | 0.8516 | | 0.1806 | 3.68 | 4700 | 0.5323 | 0.8628 | | 0.2672 | 3.76 | 4800 | 0.5688 | 0.8604 | | 0.2674 | 3.84 | 4900 | 0.5369 | 0.8635 | | 0.2185 | 3.92 | 5000 | 0.4743 | 0.8820 | | 0.2195 | 3.99 | 5100 | 0.5340 | 0.8709 | | 0.0049 | 4.07 | 5200 | 0.5883 | 0.8608 | | 0.0204 | 4.15 | 5300 | 0.6102 | 0.8539 | | 0.0652 | 4.23 | 5400 | 0.5659 | 0.8670 | | 0.028 | 4.31 | 5500 | 0.4916 | 0.8840 | | 0.0423 | 4.39 | 5600 | 0.5706 | 0.8736 | | 0.0087 | 4.46 | 5700 | 0.5653 | 0.8697 | | 0.0964 | 4.54 | 5800 | 0.5423 | 0.8755 | | 0.0841 | 4.62 | 5900 | 0.5160 | 0.8743 | | 0.0945 | 4.7 | 6000 | 0.5532 | 0.8697 | | 0.0311 | 4.78 | 6100 | 0.4947 | 0.8867 | | 0.0423 | 4.86 | 6200 | 0.5063 | 0.8843 | | 0.1348 | 4.93 | 6300 | 0.5619 | 0.8743 | | 0.049 | 5.01 | 6400 | 0.5800 | 0.8732 | | 0.0053 | 5.09 | 6500 | 0.5499 | 0.8770 | | 0.0234 | 5.17 | 6600 | 0.5102 | 0.8874 | | 0.0192 | 5.25 | 6700 | 0.5447 | 0.8836 | | 0.0029 | 5.32 | 6800 | 0.4787 | 0.8936 | | 0.0249 | 5.4 | 6900 | 0.5232 | 0.8870 | | 0.0671 | 5.48 | 7000 | 0.4766 | 0.8975 | | 0.0056 | 5.56 | 7100 | 0.5136 | 0.8894 | | 0.003 | 5.64 | 7200 | 0.5085 | 0.8882 | | 0.0015 | 5.72 | 7300 | 0.4832 | 0.8971 | | 0.0014 | 5.79 | 7400 | 0.4648 | 0.8998 | | 0.0065 | 5.87 | 7500 | 0.4739 | 0.8978 | | 0.0011 | 5.95 | 7600 | 0.5349 | 0.8867 | | 0.0021 | 6.03 | 7700 | 0.5460 | 0.8847 | | 0.0012 | 6.11 | 7800 | 0.5309 | 0.8890 | | 0.0011 | 6.19 | 7900 | 0.4852 | 0.8998 | | 0.0093 | 6.26 | 8000 | 0.4751 | 0.8998 | | 0.003 | 6.34 | 8100 | 0.4934 | 0.8963 | | 0.0027 | 6.42 | 8200 | 0.4882 | 0.9029 | | 0.0009 | 6.5 | 8300 | 0.4806 | 0.9021 | | 0.0009 | 6.58 | 8400 | 0.4974 | 0.9029 | | 0.0009 | 6.66 | 8500 | 0.4748 | 0.9075 | | 0.0008 | 6.73 | 8600 | 0.4723 | 0.9094 | | 0.001 | 6.81 | 8700 | 0.4692 | 0.9098 | | 0.0007 | 6.89 | 8800 | 0.4726 | 0.9075 | | 0.0011 | 6.97 | 8900 | 0.4686 | 0.9067 | | 0.0006 | 7.05 | 9000 | 0.4653 | 0.9056 | | 0.0006 | 7.13 | 9100 | 0.4755 | 0.9029 | | 0.0007 | 7.2 | 9200 | 0.4633 | 0.9036 | | 0.0067 | 7.28 | 9300 | 0.4611 | 0.9036 | | 0.0007 | 7.36 | 9400 | 0.4608 | 0.9052 | | 0.0007 | 7.44 | 9500 | 0.4623 | 0.9044 | | 0.0005 | 7.52 | 9600 | 0.4621 | 0.9056 | | 0.0005 | 7.6 | 9700 | 0.4615 | 0.9056 | | 0.0005 | 7.67 | 9800 | 0.4612 | 0.9059 | | 0.0005 | 7.75 | 9900 | 0.4626 | 0.9075 | | 0.0004 | 7.83 | 10000 | 0.4626 | 0.9075 | | 0.0005 | 7.91 | 10100 | 0.4626 | 0.9075 | | 0.0006 | 7.99 | 10200 | 0.4626 | 0.9079 | ### Framework versions - Transformers 4.19.4 - Pytorch 1.5.1 - Datasets 2.3.2 - Tokenizers 0.12.1
[ "0", "1", "10", "100", "101", "102", "103", "104", "105", "106", "107", "108", "109", "11", "110", "111", "112", "113", "114", "115", "116", "117", "118", "119", "12", "120", "121", "122", "123", "124", "125", "126", "127", "128", "129", "13", "130", "131", "132", "133", "134", "135", "136", "137", "138", "139", "14", "140", "141", "142", "143", "144", "145", "146", "147", "148", "15", "16", "17", "18", "19", "2", "20", "21", "22", "23", "24", "25", "26", "27", "28", "29", "3", "30", "31", "32", "33", "34", "35", "36", "37", "38", "39", "4", "40", "41", "42", "43", "44", "45", "46", "47", "48", "49", "5", "50", "51", "52", "53", "54", "55", "56", "57", "58", "59", "6", "60", "61", "62", "63", "64", "65", "66", "67", "68", "69", "7", "70", "71", "72", "73", "74", "75", "76", "77", "78", "79", "8", "80", "81", "82", "83", "84", "85", "86", "87", "88", "89", "9", "90", "91", "92", "93", "94", "95", "96", "97", "98", "99" ]
sudo-s/exper_batch_16_e4
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # exper_batch_16_e4 This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the sudo-s/herbier_mesuem1 dataset. It achieves the following results on the evaluation set: - Loss: 0.3598 - Accuracy: 0.9059 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 - mixed_precision_training: Apex, opt level O1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 3.7606 | 0.16 | 100 | 3.7839 | 0.1989 | | 3.1072 | 0.31 | 200 | 3.0251 | 0.3285 | | 2.4068 | 0.47 | 300 | 2.4380 | 0.4719 | | 2.0881 | 0.63 | 400 | 2.0489 | 0.5412 | | 1.6817 | 0.78 | 500 | 1.7968 | 0.6025 | | 1.342 | 0.94 | 600 | 1.5044 | 0.6249 | | 0.9343 | 1.1 | 700 | 1.1881 | 0.7132 | | 0.9552 | 1.25 | 800 | 1.1064 | 0.7224 | | 0.7265 | 1.41 | 900 | 0.9189 | 0.7768 | | 0.6732 | 1.56 | 1000 | 0.9227 | 0.7606 | | 0.5587 | 1.72 | 1100 | 0.7912 | 0.7903 | | 0.6332 | 1.88 | 1200 | 0.7606 | 0.7945 | | 0.3188 | 2.03 | 1300 | 0.6535 | 0.8288 | | 0.3079 | 2.19 | 1400 | 0.5686 | 0.8577 | | 0.2518 | 2.35 | 1500 | 0.5517 | 0.8577 | | 0.2 | 2.5 | 1600 | 0.5277 | 0.8631 | | 0.2032 | 2.66 | 1700 | 0.4841 | 0.8701 | | 0.1555 | 2.82 | 1800 | 0.4578 | 0.8793 | | 0.145 | 2.97 | 1900 | 0.4466 | 0.8755 | | 0.0985 | 3.13 | 2000 | 0.4249 | 0.8867 | | 0.0955 | 3.29 | 2100 | 0.3977 | 0.8932 | | 0.0438 | 3.44 | 2200 | 0.3785 | 0.9036 | | 0.0589 | 3.6 | 2300 | 0.3717 | 0.9017 | | 0.0709 | 3.76 | 2400 | 0.3609 | 0.9052 | | 0.0706 | 3.91 | 2500 | 0.3598 | 0.9059 | ### Framework versions - Transformers 4.19.4 - Pytorch 1.5.1 - Datasets 2.3.2 - Tokenizers 0.12.1
[ "0", "1", "10", "100", "101", "102", "103", "104", "105", "106", "107", "108", "109", "11", "110", "111", "112", "113", "114", "115", "116", "117", "118", "119", "12", "120", "121", "122", "123", "124", "125", "126", "127", "128", "129", "13", "130", "131", "132", "133", "134", "135", "136", "137", "138", "139", "14", "140", "141", "142", "143", "144", "145", "146", "147", "148", "15", "16", "17", "18", "19", "2", "20", "21", "22", "23", "24", "25", "26", "27", "28", "29", "3", "30", "31", "32", "33", "34", "35", "36", "37", "38", "39", "4", "40", "41", "42", "43", "44", "45", "46", "47", "48", "49", "5", "50", "51", "52", "53", "54", "55", "56", "57", "58", "59", "6", "60", "61", "62", "63", "64", "65", "66", "67", "68", "69", "7", "70", "71", "72", "73", "74", "75", "76", "77", "78", "79", "8", "80", "81", "82", "83", "84", "85", "86", "87", "88", "89", "9", "90", "91", "92", "93", "94", "95", "96", "97", "98", "99" ]
sudo-s/exper_batch_16_e8
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # exper_batch_16_e8 This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the sudo-s/herbier_mesuem1 dataset. It achieves the following results on the evaluation set: - Loss: 0.3951 - Accuracy: 0.9129 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 - mixed_precision_training: Apex, opt level O1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 3.8115 | 0.16 | 100 | 3.7948 | 0.1862 | | 3.1194 | 0.31 | 200 | 3.0120 | 0.3281 | | 2.3703 | 0.47 | 300 | 2.4791 | 0.4426 | | 2.07 | 0.63 | 400 | 2.1720 | 0.5 | | 1.6847 | 0.78 | 500 | 1.7291 | 0.5956 | | 1.3821 | 0.94 | 600 | 1.4777 | 0.6299 | | 0.9498 | 1.1 | 700 | 1.2935 | 0.6681 | | 0.8741 | 1.25 | 800 | 1.1353 | 0.7051 | | 0.8875 | 1.41 | 900 | 0.9951 | 0.7448 | | 0.7233 | 1.56 | 1000 | 0.9265 | 0.7487 | | 0.6696 | 1.72 | 1100 | 0.8660 | 0.7625 | | 0.7364 | 1.88 | 1200 | 0.8710 | 0.7579 | | 0.3933 | 2.03 | 1300 | 0.7162 | 0.8038 | | 0.3443 | 2.19 | 1400 | 0.6305 | 0.8300 | | 0.3376 | 2.35 | 1500 | 0.6273 | 0.8315 | | 0.3071 | 2.5 | 1600 | 0.5988 | 0.8319 | | 0.2863 | 2.66 | 1700 | 0.6731 | 0.8153 | | 0.3017 | 2.82 | 1800 | 0.6042 | 0.8315 | | 0.2382 | 2.97 | 1900 | 0.5118 | 0.8712 | | 0.1578 | 3.13 | 2000 | 0.4917 | 0.8736 | | 0.1794 | 3.29 | 2100 | 0.5302 | 0.8631 | | 0.1093 | 3.44 | 2200 | 0.5035 | 0.8635 | | 0.1076 | 3.6 | 2300 | 0.5186 | 0.8674 | | 0.1219 | 3.76 | 2400 | 0.4723 | 0.8801 | | 0.1017 | 3.91 | 2500 | 0.5132 | 0.8712 | | 0.0351 | 4.07 | 2600 | 0.4709 | 0.8728 | | 0.0295 | 4.23 | 2700 | 0.4674 | 0.8824 | | 0.0416 | 4.38 | 2800 | 0.4836 | 0.8805 | | 0.0386 | 4.54 | 2900 | 0.4663 | 0.8828 | | 0.0392 | 4.69 | 3000 | 0.4003 | 0.8990 | | 0.0383 | 4.85 | 3100 | 0.4187 | 0.8948 | | 0.0624 | 5.01 | 3200 | 0.4460 | 0.8874 | | 0.0188 | 5.16 | 3300 | 0.4169 | 0.9029 | | 0.0174 | 5.32 | 3400 | 0.4098 | 0.8951 | | 0.0257 | 5.48 | 3500 | 0.4289 | 0.8951 | | 0.0123 | 5.63 | 3600 | 0.4295 | 0.9029 | | 0.0052 | 5.79 | 3700 | 0.4395 | 0.8994 | | 0.0081 | 5.95 | 3800 | 0.4217 | 0.9082 | | 0.0032 | 6.1 | 3900 | 0.4216 | 0.9056 | | 0.0033 | 6.26 | 4000 | 0.4113 | 0.9082 | | 0.0024 | 6.42 | 4100 | 0.4060 | 0.9102 | | 0.0022 | 6.57 | 4200 | 0.4067 | 0.9090 | | 0.0031 | 6.73 | 4300 | 0.4005 | 0.9113 | | 0.0021 | 6.89 | 4400 | 0.4008 | 0.9129 | | 0.0021 | 7.04 | 4500 | 0.3967 | 0.9113 | | 0.0043 | 7.2 | 4600 | 0.3960 | 0.9121 | | 0.0022 | 7.36 | 4700 | 0.3962 | 0.9125 | | 0.0021 | 7.51 | 4800 | 0.3992 | 0.9121 | | 0.002 | 7.67 | 4900 | 0.3951 | 0.9129 | | 0.0023 | 7.82 | 5000 | 0.3952 | 0.9125 | | 0.0021 | 7.98 | 5100 | 0.3952 | 0.9129 | ### Framework versions - Transformers 4.19.4 - Pytorch 1.5.1 - Datasets 2.3.2 - Tokenizers 0.12.1
[ "0", "1", "10", "100", "101", "102", "103", "104", "105", "106", "107", "108", "109", "11", "110", "111", "112", "113", "114", "115", "116", "117", "118", "119", "12", "120", "121", "122", "123", "124", "125", "126", "127", "128", "129", "13", "130", "131", "132", "133", "134", "135", "136", "137", "138", "139", "14", "140", "141", "142", "143", "144", "145", "146", "147", "148", "15", "16", "17", "18", "19", "2", "20", "21", "22", "23", "24", "25", "26", "27", "28", "29", "3", "30", "31", "32", "33", "34", "35", "36", "37", "38", "39", "4", "40", "41", "42", "43", "44", "45", "46", "47", "48", "49", "5", "50", "51", "52", "53", "54", "55", "56", "57", "58", "59", "6", "60", "61", "62", "63", "64", "65", "66", "67", "68", "69", "7", "70", "71", "72", "73", "74", "75", "76", "77", "78", "79", "8", "80", "81", "82", "83", "84", "85", "86", "87", "88", "89", "9", "90", "91", "92", "93", "94", "95", "96", "97", "98", "99" ]
sudo-s/exper_batch_32_e4
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # exper_batch_32_e4 This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the sudo-s/herbier_mesuem1 dataset. It achieves the following results on the evaluation set: - Loss: 0.3909 - Accuracy: 0.9067 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 - mixed_precision_training: Apex, opt level O1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 3.4295 | 0.31 | 100 | 3.4027 | 0.2837 | | 2.5035 | 0.62 | 200 | 2.4339 | 0.5247 | | 1.6542 | 0.94 | 300 | 1.7690 | 0.6388 | | 1.1589 | 1.25 | 400 | 1.3106 | 0.7460 | | 0.9363 | 1.56 | 500 | 0.9977 | 0.7803 | | 0.6946 | 1.88 | 600 | 0.8138 | 0.8207 | | 0.3488 | 2.19 | 700 | 0.6593 | 0.8489 | | 0.2935 | 2.5 | 800 | 0.5725 | 0.8662 | | 0.2557 | 2.81 | 900 | 0.5088 | 0.8855 | | 0.1509 | 3.12 | 1000 | 0.4572 | 0.8971 | | 0.1367 | 3.44 | 1100 | 0.4129 | 0.9090 | | 0.1078 | 3.75 | 1200 | 0.3909 | 0.9067 | ### Framework versions - Transformers 4.19.4 - Pytorch 1.5.1 - Datasets 2.3.2 - Tokenizers 0.12.1
[ "0", "1", "10", "100", "101", "102", "103", "104", "105", "106", "107", "108", "109", "11", "110", "111", "112", "113", "114", "115", "116", "117", "118", "119", "12", "120", "121", "122", "123", "124", "125", "126", "127", "128", "129", "13", "130", "131", "132", "133", "134", "135", "136", "137", "138", "139", "14", "140", "141", "142", "143", "144", "145", "146", "147", "148", "15", "16", "17", "18", "19", "2", "20", "21", "22", "23", "24", "25", "26", "27", "28", "29", "3", "30", "31", "32", "33", "34", "35", "36", "37", "38", "39", "4", "40", "41", "42", "43", "44", "45", "46", "47", "48", "49", "5", "50", "51", "52", "53", "54", "55", "56", "57", "58", "59", "6", "60", "61", "62", "63", "64", "65", "66", "67", "68", "69", "7", "70", "71", "72", "73", "74", "75", "76", "77", "78", "79", "8", "80", "81", "82", "83", "84", "85", "86", "87", "88", "89", "9", "90", "91", "92", "93", "94", "95", "96", "97", "98", "99" ]
sudo-s/exper_batch_32_e8
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # exper_batch_32_e8 This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the sudo-s/herbier_mesuem1 dataset. It achieves the following results on the evaluation set: - Loss: 0.3520 - Accuracy: 0.9113 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 - mixed_precision_training: Apex, opt level O1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 3.3787 | 0.31 | 100 | 3.3100 | 0.3566 | | 2.3975 | 0.62 | 200 | 2.3196 | 0.5717 | | 1.5578 | 0.94 | 300 | 1.6764 | 0.6461 | | 1.0291 | 1.25 | 400 | 1.1713 | 0.7463 | | 0.8185 | 1.56 | 500 | 0.9292 | 0.7953 | | 0.6181 | 1.88 | 600 | 0.7732 | 0.8169 | | 0.3873 | 2.19 | 700 | 0.6877 | 0.8277 | | 0.2979 | 2.5 | 800 | 0.6250 | 0.8404 | | 0.2967 | 2.81 | 900 | 0.6151 | 0.8365 | | 0.1874 | 3.12 | 1000 | 0.5401 | 0.8608 | | 0.2232 | 3.44 | 1100 | 0.5032 | 0.8712 | | 0.1109 | 3.75 | 1200 | 0.4635 | 0.8774 | | 0.0539 | 4.06 | 1300 | 0.4495 | 0.8843 | | 0.0668 | 4.38 | 1400 | 0.4273 | 0.8951 | | 0.0567 | 4.69 | 1500 | 0.4427 | 0.8867 | | 0.0285 | 5.0 | 1600 | 0.4092 | 0.8955 | | 0.0473 | 5.31 | 1700 | 0.3720 | 0.9071 | | 0.0225 | 5.62 | 1800 | 0.3691 | 0.9063 | | 0.0196 | 5.94 | 1900 | 0.3775 | 0.9048 | | 0.0173 | 6.25 | 2000 | 0.3641 | 0.9040 | | 0.0092 | 6.56 | 2100 | 0.3551 | 0.9090 | | 0.008 | 6.88 | 2200 | 0.3591 | 0.9125 | | 0.0072 | 7.19 | 2300 | 0.3542 | 0.9121 | | 0.007 | 7.5 | 2400 | 0.3532 | 0.9106 | | 0.007 | 7.81 | 2500 | 0.3520 | 0.9113 | ### Framework versions - Transformers 4.19.4 - Pytorch 1.5.1 - Datasets 2.3.2 - Tokenizers 0.12.1
[ "0", "1", "10", "100", "101", "102", "103", "104", "105", "106", "107", "108", "109", "11", "110", "111", "112", "113", "114", "115", "116", "117", "118", "119", "12", "120", "121", "122", "123", "124", "125", "126", "127", "128", "129", "13", "130", "131", "132", "133", "134", "135", "136", "137", "138", "139", "14", "140", "141", "142", "143", "144", "145", "146", "147", "148", "15", "16", "17", "18", "19", "2", "20", "21", "22", "23", "24", "25", "26", "27", "28", "29", "3", "30", "31", "32", "33", "34", "35", "36", "37", "38", "39", "4", "40", "41", "42", "43", "44", "45", "46", "47", "48", "49", "5", "50", "51", "52", "53", "54", "55", "56", "57", "58", "59", "6", "60", "61", "62", "63", "64", "65", "66", "67", "68", "69", "7", "70", "71", "72", "73", "74", "75", "76", "77", "78", "79", "8", "80", "81", "82", "83", "84", "85", "86", "87", "88", "89", "9", "90", "91", "92", "93", "94", "95", "96", "97", "98", "99" ]
Matthijs/mobilenet_v2_1.0_224
# MobileNet V2 MobileNet V2 model pre-trained on ImageNet-1k at resolution 224x224. It was introduced in [MobileNetV2: Inverted Residuals and Linear Bottlenecks](https://arxiv.org/abs/1801.04381) by Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, Liang-Chieh Chen. It was first released in [this repository](https://github.com/tensorflow/models/tree/master/research/slim/nets/mobilenet). Disclaimer: The team releasing MobileNet V2 did not write a model card for this model so this model card has been written by the Hugging Face team. ## Model description From the [original README](https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet_v1.md): > MobileNets are small, low-latency, low-power models parameterized to meet the resource constraints of a variety of use cases. They can be built upon for classification, detection, embeddings and segmentation similar to how other popular large scale models, such as Inception, are used. MobileNets can be run efficiently on mobile devices [...] MobileNets trade off between latency, size and accuracy while comparing favorably with popular models from the literature. The checkpoints are named **mobilenet\_v2\_*depth*\_*size***, for example **mobilenet\_v2\_1.0\_224**, where **1.0** is the depth multiplier and **224** is the resolution of the input images the model was trained on. ## Intended uses & limitations You can use the raw model for image classification. See the [model hub](https://huggingface.co/models?search=mobilenet_v2) to look for fine-tuned versions on a task that interests you. ### How to use Here is how to use this model to classify an image of the COCO 2017 dataset into one of the 1,000 ImageNet classes: ```python from transformers import MobileNetV2FeatureExtractor, MobileNetV2ForImageClassification from PIL import Image import requests url = "http://images.cocodataset.org/val2017/000000039769.jpg" image = Image.open(requests.get(url, stream=True).raw) feature_extractor = MobileNetV2FeatureExtractor.from_pretrained("Matthijs/mobilenet_v2_1.0_224") model = MobileNetV2ForImageClassification.from_pretrained("Matthijs/mobilenet_v2_1.0_224") inputs = feature_extractor(images=image, return_tensors="pt") outputs = model(**inputs) logits = outputs.logits # model predicts one of the 1000 ImageNet classes predicted_class_idx = logits.argmax(-1).item() print("Predicted class:", model.config.id2label[predicted_class_idx]) ``` Note: This model actually predicts 1001 classes, the 1000 classes from ImageNet plus an extra “background” class (index 0). Currently, both the feature extractor and model support PyTorch. ### BibTeX entry and citation info ```bibtex @inproceedings{mobilenetv22018, title={MobileNetV2: Inverted Residuals and Linear Bottlenecks}, author={Mark Sandler and Andrew Howard and Menglong Zhu and Andrey Zhmoginov and Liang-Chieh Chen}, booktitle={CVPR}, year={2018} } ```
[ "background", "tench, tinca tinca", "goldfish, carassius auratus", "great white shark, white shark, man-eater, man-eating shark, carcharodon carcharias", "tiger shark, galeocerdo cuvieri", "hammerhead, hammerhead shark", "electric ray, crampfish, numbfish, torpedo", "stingray", "cock", "hen", "ostrich, struthio camelus", "brambling, fringilla montifringilla", "goldfinch, carduelis carduelis", "house finch, linnet, carpodacus mexicanus", "junco, snowbird", "indigo bunting, indigo finch, indigo bird, passerina cyanea", "robin, american robin, turdus migratorius", "bulbul", "jay", "magpie", "chickadee", "water ouzel, dipper", "kite", "bald eagle, american eagle, haliaeetus leucocephalus", "vulture", "great grey owl, great gray owl, strix nebulosa", "european fire salamander, salamandra salamandra", "common newt, triturus vulgaris", "eft", "spotted salamander, ambystoma maculatum", "axolotl, mud puppy, ambystoma mexicanum", "bullfrog, rana catesbeiana", "tree frog, tree-frog", "tailed frog, bell toad, ribbed toad, tailed toad, ascaphus trui", "loggerhead, loggerhead turtle, caretta caretta", "leatherback turtle, leatherback, leathery turtle, dermochelys coriacea", "mud turtle", "terrapin", "box turtle, box tortoise", "banded gecko", "common iguana, iguana, iguana iguana", "american chameleon, anole, anolis carolinensis", "whiptail, whiptail lizard", "agama", "frilled lizard, chlamydosaurus kingi", "alligator lizard", "gila monster, heloderma suspectum", "green lizard, lacerta viridis", "african chameleon, chamaeleo chamaeleon", "komodo dragon, komodo lizard, dragon lizard, giant lizard, varanus komodoensis", "african crocodile, nile crocodile, crocodylus niloticus", "american alligator, alligator mississipiensis", "triceratops", "thunder snake, worm snake, carphophis amoenus", "ringneck snake, ring-necked snake, ring snake", "hognose snake, puff adder, sand viper", "green snake, grass snake", "king snake, kingsnake", "garter snake, grass snake", "water snake", "vine snake", "night snake, hypsiglena torquata", "boa constrictor, constrictor constrictor", "rock python, rock snake, python sebae", "indian cobra, naja naja", "green mamba", "sea snake", "horned viper, cerastes, sand viper, horned asp, cerastes cornutus", "diamondback, diamondback rattlesnake, crotalus adamanteus", "sidewinder, horned rattlesnake, crotalus cerastes", "trilobite", "harvestman, daddy longlegs, phalangium opilio", "scorpion", "black and gold garden spider, argiope aurantia", "barn spider, araneus cavaticus", "garden spider, aranea diademata", "black widow, latrodectus mactans", "tarantula", "wolf spider, hunting spider", "tick", "centipede", "black grouse", "ptarmigan", "ruffed grouse, partridge, bonasa umbellus", "prairie chicken, prairie grouse, prairie fowl", "peacock", "quail", "partridge", "african grey, african gray, psittacus erithacus", "macaw", "sulphur-crested cockatoo, kakatoe galerita, cacatua galerita", "lorikeet", "coucal", "bee eater", "hornbill", "hummingbird", "jacamar", "toucan", "drake", "red-breasted merganser, mergus serrator", "goose", "black swan, cygnus atratus", "tusker", "echidna, spiny anteater, anteater", "platypus, duckbill, duckbilled platypus, duck-billed platypus, ornithorhynchus anatinus", "wallaby, brush kangaroo", "koala, koala bear, kangaroo bear, native bear, phascolarctos cinereus", "wombat", "jellyfish", "sea anemone, anemone", "brain coral", "flatworm, platyhelminth", "nematode, nematode worm, roundworm", "conch", "snail", "slug", "sea slug, nudibranch", "chiton, coat-of-mail shell, sea cradle, polyplacophore", "chambered nautilus, pearly nautilus, nautilus", "dungeness crab, cancer magister", "rock crab, cancer irroratus", "fiddler crab", "king crab, alaska crab, alaskan king crab, alaska king crab, paralithodes camtschatica", "american lobster, northern lobster, maine lobster, homarus americanus", "spiny lobster, langouste, rock lobster, crawfish, crayfish, sea crawfish", "crayfish, crawfish, crawdad, crawdaddy", "hermit crab", "isopod", "white stork, ciconia ciconia", "black stork, ciconia nigra", "spoonbill", "flamingo", "little blue heron, egretta caerulea", "american egret, great white heron, egretta albus", "bittern", "crane", "limpkin, aramus pictus", "european gallinule, porphyrio porphyrio", "american coot, marsh hen, mud hen, water hen, fulica americana", "bustard", "ruddy turnstone, arenaria interpres", "red-backed sandpiper, dunlin, erolia alpina", "redshank, tringa totanus", "dowitcher", "oystercatcher, oyster catcher", "pelican", "king penguin, aptenodytes patagonica", "albatross, mollymawk", "grey whale, gray whale, devilfish, eschrichtius gibbosus, eschrichtius robustus", "killer whale, killer, orca, grampus, sea wolf, orcinus orca", "dugong, dugong dugon", "sea lion", "chihuahua", "japanese spaniel", "maltese dog, maltese terrier, maltese", "pekinese, pekingese, peke", "shih-tzu", "blenheim spaniel", "papillon", "toy terrier", "rhodesian ridgeback", "afghan hound, afghan", "basset, basset hound", "beagle", "bloodhound, sleuthhound", "bluetick", "black-and-tan coonhound", "walker hound, walker foxhound", "english foxhound", "redbone", "borzoi, russian wolfhound", "irish wolfhound", "italian greyhound", "whippet", "ibizan hound, ibizan podenco", "norwegian elkhound, elkhound", "otterhound, otter hound", "saluki, gazelle hound", "scottish deerhound, deerhound", "weimaraner", "staffordshire bullterrier, staffordshire bull terrier", "american staffordshire terrier, staffordshire terrier, american pit bull terrier, pit bull terrier", "bedlington terrier", "border terrier", "kerry blue terrier", "irish terrier", "norfolk terrier", "norwich terrier", "yorkshire terrier", "wire-haired fox terrier", "lakeland terrier", "sealyham terrier, sealyham", "airedale, airedale terrier", "cairn, cairn terrier", "australian terrier", "dandie dinmont, dandie dinmont terrier", "boston bull, boston terrier", "miniature schnauzer", "giant schnauzer", "standard schnauzer", "scotch terrier, scottish terrier, scottie", "tibetan terrier, chrysanthemum dog", "silky terrier, sydney silky", "soft-coated wheaten terrier", "west highland white terrier", "lhasa, lhasa apso", "flat-coated retriever", "curly-coated retriever", "golden retriever", "labrador retriever", "chesapeake bay retriever", "german short-haired pointer", "vizsla, hungarian pointer", "english setter", "irish setter, red setter", "gordon setter", "brittany spaniel", "clumber, clumber spaniel", "english springer, english springer spaniel", "welsh springer spaniel", "cocker spaniel, english cocker spaniel, cocker", "sussex spaniel", "irish water spaniel", "kuvasz", "schipperke", "groenendael", "malinois", "briard", "kelpie", "komondor", "old english sheepdog, bobtail", "shetland sheepdog, shetland sheep dog, shetland", "collie", "border collie", "bouvier des flandres, bouviers des flandres", "rottweiler", "german shepherd, german shepherd dog, german police dog, alsatian", "doberman, doberman pinscher", "miniature pinscher", "greater swiss mountain dog", "bernese mountain dog", "appenzeller", "entlebucher", "boxer", "bull mastiff", "tibetan mastiff", "french bulldog", "great dane", "saint bernard, st bernard", "eskimo dog, husky", "malamute, malemute, alaskan malamute", "siberian husky", "dalmatian, coach dog, carriage dog", "affenpinscher, monkey pinscher, monkey dog", "basenji", "pug, pug-dog", "leonberg", "newfoundland, newfoundland dog", "great pyrenees", "samoyed, samoyede", "pomeranian", "chow, chow chow", "keeshond", "brabancon griffon", "pembroke, pembroke welsh corgi", "cardigan, cardigan welsh corgi", "toy poodle", "miniature poodle", "standard poodle", "mexican hairless", "timber wolf, grey wolf, gray wolf, canis lupus", "white wolf, arctic wolf, canis lupus tundrarum", "red wolf, maned wolf, canis rufus, canis niger", "coyote, prairie wolf, brush wolf, canis latrans", "dingo, warrigal, warragal, canis dingo", "dhole, cuon alpinus", "african hunting dog, hyena dog, cape hunting dog, lycaon pictus", "hyena, hyaena", "red fox, vulpes vulpes", "kit fox, vulpes macrotis", "arctic fox, white fox, alopex lagopus", "grey fox, gray fox, urocyon cinereoargenteus", "tabby, tabby cat", "tiger cat", "persian cat", "siamese cat, siamese", "egyptian cat", "cougar, puma, catamount, mountain lion, painter, panther, felis concolor", "lynx, catamount", "leopard, panthera pardus", "snow leopard, ounce, panthera uncia", "jaguar, panther, panthera onca, felis onca", "lion, king of beasts, panthera leo", "tiger, panthera tigris", "cheetah, chetah, acinonyx jubatus", "brown bear, bruin, ursus arctos", "american black bear, black bear, ursus americanus, euarctos americanus", "ice bear, polar bear, ursus maritimus, thalarctos maritimus", "sloth bear, melursus ursinus, ursus ursinus", "mongoose", "meerkat, mierkat", "tiger beetle", "ladybug, ladybeetle, lady beetle, ladybird, ladybird beetle", "ground beetle, carabid beetle", "long-horned beetle, longicorn, longicorn beetle", "leaf beetle, chrysomelid", "dung beetle", "rhinoceros beetle", "weevil", "fly", "bee", "ant, emmet, pismire", "grasshopper, hopper", "cricket", "walking stick, walkingstick, stick insect", "cockroach, roach", "mantis, mantid", "cicada, cicala", "leafhopper", "lacewing, lacewing fly", "dragonfly, darning needle, devil's darning needle, sewing needle, snake feeder, snake doctor, mosquito hawk, skeeter hawk", "damselfly", "admiral", "ringlet, ringlet butterfly", "monarch, monarch butterfly, milkweed butterfly, danaus plexippus", "cabbage butterfly", "sulphur butterfly, sulfur butterfly", "lycaenid, lycaenid butterfly", "starfish, sea star", "sea urchin", "sea cucumber, holothurian", "wood rabbit, cottontail, cottontail rabbit", "hare", "angora, angora rabbit", "hamster", "porcupine, hedgehog", "fox squirrel, eastern fox squirrel, sciurus niger", "marmot", "beaver", "guinea pig, cavia cobaya", "sorrel", "zebra", "hog, pig, grunter, squealer, sus scrofa", "wild boar, boar, sus scrofa", "warthog", "hippopotamus, hippo, river horse, hippopotamus amphibius", "ox", "water buffalo, water ox, asiatic buffalo, bubalus bubalis", "bison", "ram, tup", "bighorn, bighorn sheep, cimarron, rocky mountain bighorn, rocky mountain sheep, ovis canadensis", "ibex, capra ibex", "hartebeest", "impala, aepyceros melampus", "gazelle", "arabian camel, dromedary, camelus dromedarius", "llama", "weasel", "mink", "polecat, fitch, foulmart, foumart, mustela putorius", "black-footed ferret, ferret, mustela nigripes", "otter", "skunk, polecat, wood pussy", "badger", "armadillo", "three-toed sloth, ai, bradypus tridactylus", "orangutan, orang, orangutang, pongo pygmaeus", "gorilla, gorilla gorilla", "chimpanzee, chimp, pan troglodytes", "gibbon, hylobates lar", "siamang, hylobates syndactylus, symphalangus syndactylus", "guenon, guenon monkey", "patas, hussar monkey, erythrocebus patas", "baboon", "macaque", "langur", "colobus, colobus monkey", "proboscis monkey, nasalis larvatus", "marmoset", "capuchin, ringtail, cebus capucinus", "howler monkey, howler", "titi, titi monkey", "spider monkey, ateles geoffroyi", "squirrel monkey, saimiri sciureus", "madagascar cat, ring-tailed lemur, lemur catta", "indri, indris, indri indri, indri brevicaudatus", "indian elephant, elephas maximus", "african elephant, loxodonta africana", "lesser panda, red panda, panda, bear cat, cat bear, ailurus fulgens", "giant panda, panda, panda bear, coon bear, ailuropoda melanoleuca", "barracouta, snoek", "eel", "coho, cohoe, coho salmon, blue jack, silver salmon, oncorhynchus kisutch", "rock beauty, holocanthus tricolor", "anemone fish", "sturgeon", "gar, garfish, garpike, billfish, lepisosteus osseus", "lionfish", "puffer, pufferfish, blowfish, globefish", "abacus", "abaya", "academic gown, academic robe, judge's robe", "accordion, piano accordion, squeeze box", "acoustic guitar", "aircraft carrier, carrier, flattop, attack aircraft carrier", "airliner", "airship, dirigible", "altar", "ambulance", "amphibian, amphibious vehicle", "analog clock", "apiary, bee house", "apron", "ashcan, trash can, garbage can, wastebin, ash bin, ash-bin, ashbin, dustbin, trash barrel, trash bin", "assault rifle, assault gun", "backpack, back pack, knapsack, packsack, rucksack, haversack", "bakery, bakeshop, bakehouse", "balance beam, beam", "balloon", "ballpoint, ballpoint pen, ballpen, biro", "band aid", "banjo", "bannister, banister, balustrade, balusters, handrail", "barbell", "barber chair", "barbershop", "barn", "barometer", "barrel, cask", "barrow, garden cart, lawn cart, wheelbarrow", "baseball", "basketball", "bassinet", "bassoon", "bathing cap, swimming cap", "bath towel", "bathtub, bathing tub, bath, tub", "beach wagon, station wagon, wagon, estate car, beach waggon, station waggon, waggon", "beacon, lighthouse, beacon light, pharos", "beaker", "bearskin, busby, shako", "beer bottle", "beer glass", "bell cote, bell cot", "bib", "bicycle-built-for-two, tandem bicycle, tandem", "bikini, two-piece", "binder, ring-binder", "binoculars, field glasses, opera glasses", "birdhouse", "boathouse", "bobsled, bobsleigh, bob", "bolo tie, bolo, bola tie, bola", "bonnet, poke bonnet", "bookcase", "bookshop, bookstore, bookstall", "bottlecap", "bow", "bow tie, bow-tie, bowtie", "brass, memorial tablet, plaque", "brassiere, bra, bandeau", "breakwater, groin, groyne, mole, bulwark, seawall, jetty", "breastplate, aegis, egis", "broom", "bucket, pail", "buckle", "bulletproof vest", "bullet train, bullet", "butcher shop, meat market", "cab, hack, taxi, taxicab", "caldron, cauldron", "candle, taper, wax light", "cannon", "canoe", "can opener, tin opener", "cardigan", "car mirror", "carousel, carrousel, merry-go-round, roundabout, whirligig", "carpenter's kit, tool kit", "carton", "car wheel", "cash machine, cash dispenser, automated teller machine, automatic teller machine, automated teller, automatic teller, atm", "cassette", "cassette player", "castle", "catamaran", "cd player", "cello, violoncello", "cellular telephone, cellular phone, cellphone, cell, mobile phone", "chain", "chainlink fence", "chain mail, ring mail, mail, chain armor, chain armour, ring armor, ring armour", "chain saw, chainsaw", "chest", "chiffonier, commode", "chime, bell, gong", "china cabinet, china closet", "christmas stocking", "church, church building", "cinema, movie theater, movie theatre, movie house, picture palace", "cleaver, meat cleaver, chopper", "cliff dwelling", "cloak", "clog, geta, patten, sabot", "cocktail shaker", "coffee mug", "coffeepot", "coil, spiral, volute, whorl, helix", "combination lock", "computer keyboard, keypad", "confectionery, confectionary, candy store", "container ship, containership, container vessel", "convertible", "corkscrew, bottle screw", "cornet, horn, trumpet, trump", "cowboy boot", "cowboy hat, ten-gallon hat", "cradle", "crane", "crash helmet", "crate", "crib, cot", "crock pot", "croquet ball", "crutch", "cuirass", "dam, dike, dyke", "desk", "desktop computer", "dial telephone, dial phone", "diaper, nappy, napkin", "digital clock", "digital watch", "dining table, board", "dishrag, dishcloth", "dishwasher, dish washer, dishwashing machine", "disk brake, disc brake", "dock, dockage, docking facility", "dogsled, dog sled, dog sleigh", "dome", "doormat, welcome mat", "drilling platform, offshore rig", "drum, membranophone, tympan", "drumstick", "dumbbell", "dutch oven", "electric fan, blower", "electric guitar", "electric locomotive", "entertainment center", "envelope", "espresso maker", "face powder", "feather boa, boa", "file, file cabinet, filing cabinet", "fireboat", "fire engine, fire truck", "fire screen, fireguard", "flagpole, flagstaff", "flute, transverse flute", "folding chair", "football helmet", "forklift", "fountain", "fountain pen", "four-poster", "freight car", "french horn, horn", "frying pan, frypan, skillet", "fur coat", "garbage truck, dustcart", "gasmask, respirator, gas helmet", "gas pump, gasoline pump, petrol pump, island dispenser", "goblet", "go-kart", "golf ball", "golfcart, golf cart", "gondola", "gong, tam-tam", "gown", "grand piano, grand", "greenhouse, nursery, glasshouse", "grille, radiator grille", "grocery store, grocery, food market, market", "guillotine", "hair slide", "hair spray", "half track", "hammer", "hamper", "hand blower, blow dryer, blow drier, hair dryer, hair drier", "hand-held computer, hand-held microcomputer", "handkerchief, hankie, hanky, hankey", "hard disc, hard disk, fixed disk", "harmonica, mouth organ, harp, mouth harp", "harp", "harvester, reaper", "hatchet", "holster", "home theater, home theatre", "honeycomb", "hook, claw", "hoopskirt, crinoline", "horizontal bar, high bar", "horse cart, horse-cart", "hourglass", "ipod", "iron, smoothing iron", "jack-o'-lantern", "jean, blue jean, denim", "jeep, landrover", "jersey, t-shirt, tee shirt", "jigsaw puzzle", "jinrikisha, ricksha, rickshaw", "joystick", "kimono", "knee pad", "knot", "lab coat, laboratory coat", "ladle", "lampshade, lamp shade", "laptop, laptop computer", "lawn mower, mower", "lens cap, lens cover", "letter opener, paper knife, paperknife", "library", "lifeboat", "lighter, light, igniter, ignitor", "limousine, limo", "liner, ocean liner", "lipstick, lip rouge", "loafer", "lotion", "loudspeaker, speaker, speaker unit, loudspeaker system, speaker system", "loupe, jeweler's loupe", "lumbermill, sawmill", "magnetic compass", "mailbag, postbag", "mailbox, letter box", "maillot", "maillot, tank suit", "manhole cover", "maraca", "marimba, xylophone", "mask", "matchstick", "maypole", "maze, labyrinth", "measuring cup", "medicine chest, medicine cabinet", "megalith, megalithic structure", "microphone, mike", "microwave, microwave oven", "military uniform", "milk can", "minibus", "miniskirt, mini", "minivan", "missile", "mitten", "mixing bowl", "mobile home, manufactured home", "model t", "modem", "monastery", "monitor", "moped", "mortar", "mortarboard", "mosque", "mosquito net", "motor scooter, scooter", "mountain bike, all-terrain bike, off-roader", "mountain tent", "mouse, computer mouse", "mousetrap", "moving van", "muzzle", "nail", "neck brace", "necklace", "nipple", "notebook, notebook computer", "obelisk", "oboe, hautboy, hautbois", "ocarina, sweet potato", "odometer, hodometer, mileometer, milometer", "oil filter", "organ, pipe organ", "oscilloscope, scope, cathode-ray oscilloscope, cro", "overskirt", "oxcart", "oxygen mask", "packet", "paddle, boat paddle", "paddlewheel, paddle wheel", "padlock", "paintbrush", "pajama, pyjama, pj's, jammies", "palace", "panpipe, pandean pipe, syrinx", "paper towel", "parachute, chute", "parallel bars, bars", "park bench", "parking meter", "passenger car, coach, carriage", "patio, terrace", "pay-phone, pay-station", "pedestal, plinth, footstall", "pencil box, pencil case", "pencil sharpener", "perfume, essence", "petri dish", "photocopier", "pick, plectrum, plectron", "pickelhaube", "picket fence, paling", "pickup, pickup truck", "pier", "piggy bank, penny bank", "pill bottle", "pillow", "ping-pong ball", "pinwheel", "pirate, pirate ship", "pitcher, ewer", "plane, carpenter's plane, woodworking plane", "planetarium", "plastic bag", "plate rack", "plow, plough", "plunger, plumber's helper", "polaroid camera, polaroid land camera", "pole", "police van, police wagon, paddy wagon, patrol wagon, wagon, black maria", "poncho", "pool table, billiard table, snooker table", "pop bottle, soda bottle", "pot, flowerpot", "potter's wheel", "power drill", "prayer rug, prayer mat", "printer", "prison, prison house", "projectile, missile", "projector", "puck, hockey puck", "punching bag, punch bag, punching ball, punchball", "purse", "quill, quill pen", "quilt, comforter, comfort, puff", "racer, race car, racing car", "racket, racquet", "radiator", "radio, wireless", "radio telescope, radio reflector", "rain barrel", "recreational vehicle, rv, r.v.", "reel", "reflex camera", "refrigerator, icebox", "remote control, remote", "restaurant, eating house, eating place, eatery", "revolver, six-gun, six-shooter", "rifle", "rocking chair, rocker", "rotisserie", "rubber eraser, rubber, pencil eraser", "rugby ball", "rule, ruler", "running shoe", "safe", "safety pin", "saltshaker, salt shaker", "sandal", "sarong", "sax, saxophone", "scabbard", "scale, weighing machine", "school bus", "schooner", "scoreboard", "screen, crt screen", "screw", "screwdriver", "seat belt, seatbelt", "sewing machine", "shield, buckler", "shoe shop, shoe-shop, shoe store", "shoji", "shopping basket", "shopping cart", "shovel", "shower cap", "shower curtain", "ski", "ski mask", "sleeping bag", "slide rule, slipstick", "sliding door", "slot, one-armed bandit", "snorkel", "snowmobile", "snowplow, snowplough", "soap dispenser", "soccer ball", "sock", "solar dish, solar collector, solar furnace", "sombrero", "soup bowl", "space bar", "space heater", "space shuttle", "spatula", "speedboat", "spider web, spider's web", "spindle", "sports car, sport car", "spotlight, spot", "stage", "steam locomotive", "steel arch bridge", "steel drum", "stethoscope", "stole", "stone wall", "stopwatch, stop watch", "stove", "strainer", "streetcar, tram, tramcar, trolley, trolley car", "stretcher", "studio couch, day bed", "stupa, tope", "submarine, pigboat, sub, u-boat", "suit, suit of clothes", "sundial", "sunglass", "sunglasses, dark glasses, shades", "sunscreen, sunblock, sun blocker", "suspension bridge", "swab, swob, mop", "sweatshirt", "swimming trunks, bathing trunks", "swing", "switch, electric switch, electrical switch", "syringe", "table lamp", "tank, army tank, armored combat vehicle, armoured combat vehicle", "tape player", "teapot", "teddy, teddy bear", "television, television system", "tennis ball", "thatch, thatched roof", "theater curtain, theatre curtain", "thimble", "thresher, thrasher, threshing machine", "throne", "tile roof", "toaster", "tobacco shop, tobacconist shop, tobacconist", "toilet seat", "torch", "totem pole", "tow truck, tow car, wrecker", "toyshop", "tractor", "trailer truck, tractor trailer, trucking rig, rig, articulated lorry, semi", "tray", "trench coat", "tricycle, trike, velocipede", "trimaran", "tripod", "triumphal arch", "trolleybus, trolley coach, trackless trolley", "trombone", "tub, vat", "turnstile", "typewriter keyboard", "umbrella", "unicycle, monocycle", "upright, upright piano", "vacuum, vacuum cleaner", "vase", "vault", "velvet", "vending machine", "vestment", "viaduct", "violin, fiddle", "volleyball", "waffle iron", "wall clock", "wallet, billfold, notecase, pocketbook", "wardrobe, closet, press", "warplane, military plane", "washbasin, handbasin, washbowl, lavabo, wash-hand basin", "washer, automatic washer, washing machine", "water bottle", "water jug", "water tower", "whiskey jug", "whistle", "wig", "window screen", "window shade", "windsor tie", "wine bottle", "wing", "wok", "wooden spoon", "wool, woolen, woollen", "worm fence, snake fence, snake-rail fence, virginia fence", "wreck", "yawl", "yurt", "web site, website, internet site, site", "comic book", "crossword puzzle, crossword", "street sign", "traffic light, traffic signal, stoplight", "book jacket, dust cover, dust jacket, dust wrapper", "menu", "plate", "guacamole", "consomme", "hot pot, hotpot", "trifle", "ice cream, icecream", "ice lolly, lolly, lollipop, popsicle", "french loaf", "bagel, beigel", "pretzel", "cheeseburger", "hotdog, hot dog, red hot", "mashed potato", "head cabbage", "broccoli", "cauliflower", "zucchini, courgette", "spaghetti squash", "acorn squash", "butternut squash", "cucumber, cuke", "artichoke, globe artichoke", "bell pepper", "cardoon", "mushroom", "granny smith", "strawberry", "orange", "lemon", "fig", "pineapple, ananas", "banana", "jackfruit, jak, jack", "custard apple", "pomegranate", "hay", "carbonara", "chocolate sauce, chocolate syrup", "dough", "meat loaf, meatloaf", "pizza, pizza pie", "potpie", "burrito", "red wine", "espresso", "cup", "eggnog", "alp", "bubble", "cliff, drop, drop-off", "coral reef", "geyser", "lakeside, lakeshore", "promontory, headland, head, foreland", "sandbar, sand bar", "seashore, coast, seacoast, sea-coast", "valley, vale", "volcano", "ballplayer, baseball player", "groom, bridegroom", "scuba diver", "rapeseed", "daisy", "yellow lady's slipper, yellow lady-slipper, cypripedium calceolus, cypripedium parviflorum", "corn", "acorn", "hip, rose hip, rosehip", "buckeye, horse chestnut, conker", "coral fungus", "agaric", "gyromitra", "stinkhorn, carrion fungus", "earthstar", "hen-of-the-woods, hen of the woods, polyporus frondosus, grifola frondosa", "bolete", "ear, spike, capitulum", "toilet tissue, toilet paper, bathroom tissue" ]
Matthijs/mobilenet_v2_1.4_224
# MobileNet V2 MobileNet V2 model pre-trained on ImageNet-1k at resolution 224x224. It was introduced in [MobileNetV2: Inverted Residuals and Linear Bottlenecks](https://arxiv.org/abs/1801.04381) by Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, Liang-Chieh Chen. It was first released in [this repository](https://github.com/tensorflow/models/tree/master/research/slim/nets/mobilenet). Disclaimer: The team releasing MobileNet V2 did not write a model card for this model so this model card has been written by the Hugging Face team. ## Model description From the [original README](https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet_v1.md): > MobileNets are small, low-latency, low-power models parameterized to meet the resource constraints of a variety of use cases. They can be built upon for classification, detection, embeddings and segmentation similar to how other popular large scale models, such as Inception, are used. MobileNets can be run efficiently on mobile devices [...] MobileNets trade off between latency, size and accuracy while comparing favorably with popular models from the literature. The checkpoints are named **mobilenet\_v2\_*depth*\_*size***, for example **mobilenet\_v2\_1.0\_224**, where **1.0** is the depth multiplier and **224** is the resolution of the input images the model was trained on. ## Intended uses & limitations You can use the raw model for image classification. See the [model hub](https://huggingface.co/models?search=mobilenet_v2) to look for fine-tuned versions on a task that interests you. ### How to use Here is how to use this model to classify an image of the COCO 2017 dataset into one of the 1,000 ImageNet classes: ```python from transformers import MobileNetV2FeatureExtractor, MobileNetV2ForImageClassification from PIL import Image import requests url = "http://images.cocodataset.org/val2017/000000039769.jpg" image = Image.open(requests.get(url, stream=True).raw) feature_extractor = MobileNetV2FeatureExtractor.from_pretrained("Matthijs/mobilenet_v2_1.0_224") model = MobileNetV2ForImageClassification.from_pretrained("Matthijs/mobilenet_v2_1.0_224") inputs = feature_extractor(images=image, return_tensors="pt") outputs = model(**inputs) logits = outputs.logits # model predicts one of the 1000 ImageNet classes predicted_class_idx = logits.argmax(-1).item() print("Predicted class:", model.config.id2label[predicted_class_idx]) ``` Note: This model actually predicts 1001 classes, the 1000 classes from ImageNet plus an extra “background” class (index 0). Currently, both the feature extractor and model support PyTorch. ### BibTeX entry and citation info ```bibtex @inproceedings{mobilenetv22018, title={MobileNetV2: Inverted Residuals and Linear Bottlenecks}, author={Mark Sandler and Andrew Howard and Menglong Zhu and Andrey Zhmoginov and Liang-Chieh Chen}, booktitle={CVPR}, year={2018} } ```
[ "background", "tench, tinca tinca", "goldfish, carassius auratus", "great white shark, white shark, man-eater, man-eating shark, carcharodon carcharias", "tiger shark, galeocerdo cuvieri", "hammerhead, hammerhead shark", "electric ray, crampfish, numbfish, torpedo", "stingray", "cock", "hen", "ostrich, struthio camelus", "brambling, fringilla montifringilla", "goldfinch, carduelis carduelis", "house finch, linnet, carpodacus mexicanus", "junco, snowbird", "indigo bunting, indigo finch, indigo bird, passerina cyanea", "robin, american robin, turdus migratorius", "bulbul", "jay", "magpie", "chickadee", "water ouzel, dipper", "kite", "bald eagle, american eagle, haliaeetus leucocephalus", "vulture", "great grey owl, great gray owl, strix nebulosa", "european fire salamander, salamandra salamandra", "common newt, triturus vulgaris", "eft", "spotted salamander, ambystoma maculatum", "axolotl, mud puppy, ambystoma mexicanum", "bullfrog, rana catesbeiana", "tree frog, tree-frog", "tailed frog, bell toad, ribbed toad, tailed toad, ascaphus trui", "loggerhead, loggerhead turtle, caretta caretta", "leatherback turtle, leatherback, leathery turtle, dermochelys coriacea", "mud turtle", "terrapin", "box turtle, box tortoise", "banded gecko", "common iguana, iguana, iguana iguana", "american chameleon, anole, anolis carolinensis", "whiptail, whiptail lizard", "agama", "frilled lizard, chlamydosaurus kingi", "alligator lizard", "gila monster, heloderma suspectum", "green lizard, lacerta viridis", "african chameleon, chamaeleo chamaeleon", "komodo dragon, komodo lizard, dragon lizard, giant lizard, varanus komodoensis", "african crocodile, nile crocodile, crocodylus niloticus", "american alligator, alligator mississipiensis", "triceratops", "thunder snake, worm snake, carphophis amoenus", "ringneck snake, ring-necked snake, ring snake", "hognose snake, puff adder, sand viper", "green snake, grass snake", "king snake, kingsnake", "garter snake, grass snake", "water snake", "vine snake", "night snake, hypsiglena torquata", "boa constrictor, constrictor constrictor", "rock python, rock snake, python sebae", "indian cobra, naja naja", "green mamba", "sea snake", "horned viper, cerastes, sand viper, horned asp, cerastes cornutus", "diamondback, diamondback rattlesnake, crotalus adamanteus", "sidewinder, horned rattlesnake, crotalus cerastes", "trilobite", "harvestman, daddy longlegs, phalangium opilio", "scorpion", "black and gold garden spider, argiope aurantia", "barn spider, araneus cavaticus", "garden spider, aranea diademata", "black widow, latrodectus mactans", "tarantula", "wolf spider, hunting spider", "tick", "centipede", "black grouse", "ptarmigan", "ruffed grouse, partridge, bonasa umbellus", "prairie chicken, prairie grouse, prairie fowl", "peacock", "quail", "partridge", "african grey, african gray, psittacus erithacus", "macaw", "sulphur-crested cockatoo, kakatoe galerita, cacatua galerita", "lorikeet", "coucal", "bee eater", "hornbill", "hummingbird", "jacamar", "toucan", "drake", "red-breasted merganser, mergus serrator", "goose", "black swan, cygnus atratus", "tusker", "echidna, spiny anteater, anteater", "platypus, duckbill, duckbilled platypus, duck-billed platypus, ornithorhynchus anatinus", "wallaby, brush kangaroo", "koala, koala bear, kangaroo bear, native bear, phascolarctos cinereus", "wombat", "jellyfish", "sea anemone, anemone", "brain coral", "flatworm, platyhelminth", "nematode, nematode worm, roundworm", "conch", "snail", "slug", "sea slug, nudibranch", "chiton, coat-of-mail shell, sea cradle, polyplacophore", "chambered nautilus, pearly nautilus, nautilus", "dungeness crab, cancer magister", "rock crab, cancer irroratus", "fiddler crab", "king crab, alaska crab, alaskan king crab, alaska king crab, paralithodes camtschatica", "american lobster, northern lobster, maine lobster, homarus americanus", "spiny lobster, langouste, rock lobster, crawfish, crayfish, sea crawfish", "crayfish, crawfish, crawdad, crawdaddy", "hermit crab", "isopod", "white stork, ciconia ciconia", "black stork, ciconia nigra", "spoonbill", "flamingo", "little blue heron, egretta caerulea", "american egret, great white heron, egretta albus", "bittern", "crane", "limpkin, aramus pictus", "european gallinule, porphyrio porphyrio", "american coot, marsh hen, mud hen, water hen, fulica americana", "bustard", "ruddy turnstone, arenaria interpres", "red-backed sandpiper, dunlin, erolia alpina", "redshank, tringa totanus", "dowitcher", "oystercatcher, oyster catcher", "pelican", "king penguin, aptenodytes patagonica", "albatross, mollymawk", "grey whale, gray whale, devilfish, eschrichtius gibbosus, eschrichtius robustus", "killer whale, killer, orca, grampus, sea wolf, orcinus orca", "dugong, dugong dugon", "sea lion", "chihuahua", "japanese spaniel", "maltese dog, maltese terrier, maltese", "pekinese, pekingese, peke", "shih-tzu", "blenheim spaniel", "papillon", "toy terrier", "rhodesian ridgeback", "afghan hound, afghan", "basset, basset hound", "beagle", "bloodhound, sleuthhound", "bluetick", "black-and-tan coonhound", "walker hound, walker foxhound", "english foxhound", "redbone", "borzoi, russian wolfhound", "irish wolfhound", "italian greyhound", "whippet", "ibizan hound, ibizan podenco", "norwegian elkhound, elkhound", "otterhound, otter hound", "saluki, gazelle hound", "scottish deerhound, deerhound", "weimaraner", "staffordshire bullterrier, staffordshire bull terrier", "american staffordshire terrier, staffordshire terrier, american pit bull terrier, pit bull terrier", "bedlington terrier", "border terrier", "kerry blue terrier", "irish terrier", "norfolk terrier", "norwich terrier", "yorkshire terrier", "wire-haired fox terrier", "lakeland terrier", "sealyham terrier, sealyham", "airedale, airedale terrier", "cairn, cairn terrier", "australian terrier", "dandie dinmont, dandie dinmont terrier", "boston bull, boston terrier", "miniature schnauzer", "giant schnauzer", "standard schnauzer", "scotch terrier, scottish terrier, scottie", "tibetan terrier, chrysanthemum dog", "silky terrier, sydney silky", "soft-coated wheaten terrier", "west highland white terrier", "lhasa, lhasa apso", "flat-coated retriever", "curly-coated retriever", "golden retriever", "labrador retriever", "chesapeake bay retriever", "german short-haired pointer", "vizsla, hungarian pointer", "english setter", "irish setter, red setter", "gordon setter", "brittany spaniel", "clumber, clumber spaniel", "english springer, english springer spaniel", "welsh springer spaniel", "cocker spaniel, english cocker spaniel, cocker", "sussex spaniel", "irish water spaniel", "kuvasz", "schipperke", "groenendael", "malinois", "briard", "kelpie", "komondor", "old english sheepdog, bobtail", "shetland sheepdog, shetland sheep dog, shetland", "collie", "border collie", "bouvier des flandres, bouviers des flandres", "rottweiler", "german shepherd, german shepherd dog, german police dog, alsatian", "doberman, doberman pinscher", "miniature pinscher", "greater swiss mountain dog", "bernese mountain dog", "appenzeller", "entlebucher", "boxer", "bull mastiff", "tibetan mastiff", "french bulldog", "great dane", "saint bernard, st bernard", "eskimo dog, husky", "malamute, malemute, alaskan malamute", "siberian husky", "dalmatian, coach dog, carriage dog", "affenpinscher, monkey pinscher, monkey dog", "basenji", "pug, pug-dog", "leonberg", "newfoundland, newfoundland dog", "great pyrenees", "samoyed, samoyede", "pomeranian", "chow, chow chow", "keeshond", "brabancon griffon", "pembroke, pembroke welsh corgi", "cardigan, cardigan welsh corgi", "toy poodle", "miniature poodle", "standard poodle", "mexican hairless", "timber wolf, grey wolf, gray wolf, canis lupus", "white wolf, arctic wolf, canis lupus tundrarum", "red wolf, maned wolf, canis rufus, canis niger", "coyote, prairie wolf, brush wolf, canis latrans", "dingo, warrigal, warragal, canis dingo", "dhole, cuon alpinus", "african hunting dog, hyena dog, cape hunting dog, lycaon pictus", "hyena, hyaena", "red fox, vulpes vulpes", "kit fox, vulpes macrotis", "arctic fox, white fox, alopex lagopus", "grey fox, gray fox, urocyon cinereoargenteus", "tabby, tabby cat", "tiger cat", "persian cat", "siamese cat, siamese", "egyptian cat", "cougar, puma, catamount, mountain lion, painter, panther, felis concolor", "lynx, catamount", "leopard, panthera pardus", "snow leopard, ounce, panthera uncia", "jaguar, panther, panthera onca, felis onca", "lion, king of beasts, panthera leo", "tiger, panthera tigris", "cheetah, chetah, acinonyx jubatus", "brown bear, bruin, ursus arctos", "american black bear, black bear, ursus americanus, euarctos americanus", "ice bear, polar bear, ursus maritimus, thalarctos maritimus", "sloth bear, melursus ursinus, ursus ursinus", "mongoose", "meerkat, mierkat", "tiger beetle", "ladybug, ladybeetle, lady beetle, ladybird, ladybird beetle", "ground beetle, carabid beetle", "long-horned beetle, longicorn, longicorn beetle", "leaf beetle, chrysomelid", "dung beetle", "rhinoceros beetle", "weevil", "fly", "bee", "ant, emmet, pismire", "grasshopper, hopper", "cricket", "walking stick, walkingstick, stick insect", "cockroach, roach", "mantis, mantid", "cicada, cicala", "leafhopper", "lacewing, lacewing fly", "dragonfly, darning needle, devil's darning needle, sewing needle, snake feeder, snake doctor, mosquito hawk, skeeter hawk", "damselfly", "admiral", "ringlet, ringlet butterfly", "monarch, monarch butterfly, milkweed butterfly, danaus plexippus", "cabbage butterfly", "sulphur butterfly, sulfur butterfly", "lycaenid, lycaenid butterfly", "starfish, sea star", "sea urchin", "sea cucumber, holothurian", "wood rabbit, cottontail, cottontail rabbit", "hare", "angora, angora rabbit", "hamster", "porcupine, hedgehog", "fox squirrel, eastern fox squirrel, sciurus niger", "marmot", "beaver", "guinea pig, cavia cobaya", "sorrel", "zebra", "hog, pig, grunter, squealer, sus scrofa", "wild boar, boar, sus scrofa", "warthog", "hippopotamus, hippo, river horse, hippopotamus amphibius", "ox", "water buffalo, water ox, asiatic buffalo, bubalus bubalis", "bison", "ram, tup", "bighorn, bighorn sheep, cimarron, rocky mountain bighorn, rocky mountain sheep, ovis canadensis", "ibex, capra ibex", "hartebeest", "impala, aepyceros melampus", "gazelle", "arabian camel, dromedary, camelus dromedarius", "llama", "weasel", "mink", "polecat, fitch, foulmart, foumart, mustela putorius", "black-footed ferret, ferret, mustela nigripes", "otter", "skunk, polecat, wood pussy", "badger", "armadillo", "three-toed sloth, ai, bradypus tridactylus", "orangutan, orang, orangutang, pongo pygmaeus", "gorilla, gorilla gorilla", "chimpanzee, chimp, pan troglodytes", "gibbon, hylobates lar", "siamang, hylobates syndactylus, symphalangus syndactylus", "guenon, guenon monkey", "patas, hussar monkey, erythrocebus patas", "baboon", "macaque", "langur", "colobus, colobus monkey", "proboscis monkey, nasalis larvatus", "marmoset", "capuchin, ringtail, cebus capucinus", "howler monkey, howler", "titi, titi monkey", "spider monkey, ateles geoffroyi", "squirrel monkey, saimiri sciureus", "madagascar cat, ring-tailed lemur, lemur catta", "indri, indris, indri indri, indri brevicaudatus", "indian elephant, elephas maximus", "african elephant, loxodonta africana", "lesser panda, red panda, panda, bear cat, cat bear, ailurus fulgens", "giant panda, panda, panda bear, coon bear, ailuropoda melanoleuca", "barracouta, snoek", "eel", "coho, cohoe, coho salmon, blue jack, silver salmon, oncorhynchus kisutch", "rock beauty, holocanthus tricolor", "anemone fish", "sturgeon", "gar, garfish, garpike, billfish, lepisosteus osseus", "lionfish", "puffer, pufferfish, blowfish, globefish", "abacus", "abaya", "academic gown, academic robe, judge's robe", "accordion, piano accordion, squeeze box", "acoustic guitar", "aircraft carrier, carrier, flattop, attack aircraft carrier", "airliner", "airship, dirigible", "altar", "ambulance", "amphibian, amphibious vehicle", "analog clock", "apiary, bee house", "apron", "ashcan, trash can, garbage can, wastebin, ash bin, ash-bin, ashbin, dustbin, trash barrel, trash bin", "assault rifle, assault gun", "backpack, back pack, knapsack, packsack, rucksack, haversack", "bakery, bakeshop, bakehouse", "balance beam, beam", "balloon", "ballpoint, ballpoint pen, ballpen, biro", "band aid", "banjo", "bannister, banister, balustrade, balusters, handrail", "barbell", "barber chair", "barbershop", "barn", "barometer", "barrel, cask", "barrow, garden cart, lawn cart, wheelbarrow", "baseball", "basketball", "bassinet", "bassoon", "bathing cap, swimming cap", "bath towel", "bathtub, bathing tub, bath, tub", "beach wagon, station wagon, wagon, estate car, beach waggon, station waggon, waggon", "beacon, lighthouse, beacon light, pharos", "beaker", "bearskin, busby, shako", "beer bottle", "beer glass", "bell cote, bell cot", "bib", "bicycle-built-for-two, tandem bicycle, tandem", "bikini, two-piece", "binder, ring-binder", "binoculars, field glasses, opera glasses", "birdhouse", "boathouse", "bobsled, bobsleigh, bob", "bolo tie, bolo, bola tie, bola", "bonnet, poke bonnet", "bookcase", "bookshop, bookstore, bookstall", "bottlecap", "bow", "bow tie, bow-tie, bowtie", "brass, memorial tablet, plaque", "brassiere, bra, bandeau", "breakwater, groin, groyne, mole, bulwark, seawall, jetty", "breastplate, aegis, egis", "broom", "bucket, pail", "buckle", "bulletproof vest", "bullet train, bullet", "butcher shop, meat market", "cab, hack, taxi, taxicab", "caldron, cauldron", "candle, taper, wax light", "cannon", "canoe", "can opener, tin opener", "cardigan", "car mirror", "carousel, carrousel, merry-go-round, roundabout, whirligig", "carpenter's kit, tool kit", "carton", "car wheel", "cash machine, cash dispenser, automated teller machine, automatic teller machine, automated teller, automatic teller, atm", "cassette", "cassette player", "castle", "catamaran", "cd player", "cello, violoncello", "cellular telephone, cellular phone, cellphone, cell, mobile phone", "chain", "chainlink fence", "chain mail, ring mail, mail, chain armor, chain armour, ring armor, ring armour", "chain saw, chainsaw", "chest", "chiffonier, commode", "chime, bell, gong", "china cabinet, china closet", "christmas stocking", "church, church building", "cinema, movie theater, movie theatre, movie house, picture palace", "cleaver, meat cleaver, chopper", "cliff dwelling", "cloak", "clog, geta, patten, sabot", "cocktail shaker", "coffee mug", "coffeepot", "coil, spiral, volute, whorl, helix", "combination lock", "computer keyboard, keypad", "confectionery, confectionary, candy store", "container ship, containership, container vessel", "convertible", "corkscrew, bottle screw", "cornet, horn, trumpet, trump", "cowboy boot", "cowboy hat, ten-gallon hat", "cradle", "crane", "crash helmet", "crate", "crib, cot", "crock pot", "croquet ball", "crutch", "cuirass", "dam, dike, dyke", "desk", "desktop computer", "dial telephone, dial phone", "diaper, nappy, napkin", "digital clock", "digital watch", "dining table, board", "dishrag, dishcloth", "dishwasher, dish washer, dishwashing machine", "disk brake, disc brake", "dock, dockage, docking facility", "dogsled, dog sled, dog sleigh", "dome", "doormat, welcome mat", "drilling platform, offshore rig", "drum, membranophone, tympan", "drumstick", "dumbbell", "dutch oven", "electric fan, blower", "electric guitar", "electric locomotive", "entertainment center", "envelope", "espresso maker", "face powder", "feather boa, boa", "file, file cabinet, filing cabinet", "fireboat", "fire engine, fire truck", "fire screen, fireguard", "flagpole, flagstaff", "flute, transverse flute", "folding chair", "football helmet", "forklift", "fountain", "fountain pen", "four-poster", "freight car", "french horn, horn", "frying pan, frypan, skillet", "fur coat", "garbage truck, dustcart", "gasmask, respirator, gas helmet", "gas pump, gasoline pump, petrol pump, island dispenser", "goblet", "go-kart", "golf ball", "golfcart, golf cart", "gondola", "gong, tam-tam", "gown", "grand piano, grand", "greenhouse, nursery, glasshouse", "grille, radiator grille", "grocery store, grocery, food market, market", "guillotine", "hair slide", "hair spray", "half track", "hammer", "hamper", "hand blower, blow dryer, blow drier, hair dryer, hair drier", "hand-held computer, hand-held microcomputer", "handkerchief, hankie, hanky, hankey", "hard disc, hard disk, fixed disk", "harmonica, mouth organ, harp, mouth harp", "harp", "harvester, reaper", "hatchet", "holster", "home theater, home theatre", "honeycomb", "hook, claw", "hoopskirt, crinoline", "horizontal bar, high bar", "horse cart, horse-cart", "hourglass", "ipod", "iron, smoothing iron", "jack-o'-lantern", "jean, blue jean, denim", "jeep, landrover", "jersey, t-shirt, tee shirt", "jigsaw puzzle", "jinrikisha, ricksha, rickshaw", "joystick", "kimono", "knee pad", "knot", "lab coat, laboratory coat", "ladle", "lampshade, lamp shade", "laptop, laptop computer", "lawn mower, mower", "lens cap, lens cover", "letter opener, paper knife, paperknife", "library", "lifeboat", "lighter, light, igniter, ignitor", "limousine, limo", "liner, ocean liner", "lipstick, lip rouge", "loafer", "lotion", "loudspeaker, speaker, speaker unit, loudspeaker system, speaker system", "loupe, jeweler's loupe", "lumbermill, sawmill", "magnetic compass", "mailbag, postbag", "mailbox, letter box", "maillot", "maillot, tank suit", "manhole cover", "maraca", "marimba, xylophone", "mask", "matchstick", "maypole", "maze, labyrinth", "measuring cup", "medicine chest, medicine cabinet", "megalith, megalithic structure", "microphone, mike", "microwave, microwave oven", "military uniform", "milk can", "minibus", "miniskirt, mini", "minivan", "missile", "mitten", "mixing bowl", "mobile home, manufactured home", "model t", "modem", "monastery", "monitor", "moped", "mortar", "mortarboard", "mosque", "mosquito net", "motor scooter, scooter", "mountain bike, all-terrain bike, off-roader", "mountain tent", "mouse, computer mouse", "mousetrap", "moving van", "muzzle", "nail", "neck brace", "necklace", "nipple", "notebook, notebook computer", "obelisk", "oboe, hautboy, hautbois", "ocarina, sweet potato", "odometer, hodometer, mileometer, milometer", "oil filter", "organ, pipe organ", "oscilloscope, scope, cathode-ray oscilloscope, cro", "overskirt", "oxcart", "oxygen mask", "packet", "paddle, boat paddle", "paddlewheel, paddle wheel", "padlock", "paintbrush", "pajama, pyjama, pj's, jammies", "palace", "panpipe, pandean pipe, syrinx", "paper towel", "parachute, chute", "parallel bars, bars", "park bench", "parking meter", "passenger car, coach, carriage", "patio, terrace", "pay-phone, pay-station", "pedestal, plinth, footstall", "pencil box, pencil case", "pencil sharpener", "perfume, essence", "petri dish", "photocopier", "pick, plectrum, plectron", "pickelhaube", "picket fence, paling", "pickup, pickup truck", "pier", "piggy bank, penny bank", "pill bottle", "pillow", "ping-pong ball", "pinwheel", "pirate, pirate ship", "pitcher, ewer", "plane, carpenter's plane, woodworking plane", "planetarium", "plastic bag", "plate rack", "plow, plough", "plunger, plumber's helper", "polaroid camera, polaroid land camera", "pole", "police van, police wagon, paddy wagon, patrol wagon, wagon, black maria", "poncho", "pool table, billiard table, snooker table", "pop bottle, soda bottle", "pot, flowerpot", "potter's wheel", "power drill", "prayer rug, prayer mat", "printer", "prison, prison house", "projectile, missile", "projector", "puck, hockey puck", "punching bag, punch bag, punching ball, punchball", "purse", "quill, quill pen", "quilt, comforter, comfort, puff", "racer, race car, racing car", "racket, racquet", "radiator", "radio, wireless", "radio telescope, radio reflector", "rain barrel", "recreational vehicle, rv, r.v.", "reel", "reflex camera", "refrigerator, icebox", "remote control, remote", "restaurant, eating house, eating place, eatery", "revolver, six-gun, six-shooter", "rifle", "rocking chair, rocker", "rotisserie", "rubber eraser, rubber, pencil eraser", "rugby ball", "rule, ruler", "running shoe", "safe", "safety pin", "saltshaker, salt shaker", "sandal", "sarong", "sax, saxophone", "scabbard", "scale, weighing machine", "school bus", "schooner", "scoreboard", "screen, crt screen", "screw", "screwdriver", "seat belt, seatbelt", "sewing machine", "shield, buckler", "shoe shop, shoe-shop, shoe store", "shoji", "shopping basket", "shopping cart", "shovel", "shower cap", "shower curtain", "ski", "ski mask", "sleeping bag", "slide rule, slipstick", "sliding door", "slot, one-armed bandit", "snorkel", "snowmobile", "snowplow, snowplough", "soap dispenser", "soccer ball", "sock", "solar dish, solar collector, solar furnace", "sombrero", "soup bowl", "space bar", "space heater", "space shuttle", "spatula", "speedboat", "spider web, spider's web", "spindle", "sports car, sport car", "spotlight, spot", "stage", "steam locomotive", "steel arch bridge", "steel drum", "stethoscope", "stole", "stone wall", "stopwatch, stop watch", "stove", "strainer", "streetcar, tram, tramcar, trolley, trolley car", "stretcher", "studio couch, day bed", "stupa, tope", "submarine, pigboat, sub, u-boat", "suit, suit of clothes", "sundial", "sunglass", "sunglasses, dark glasses, shades", "sunscreen, sunblock, sun blocker", "suspension bridge", "swab, swob, mop", "sweatshirt", "swimming trunks, bathing trunks", "swing", "switch, electric switch, electrical switch", "syringe", "table lamp", "tank, army tank, armored combat vehicle, armoured combat vehicle", "tape player", "teapot", "teddy, teddy bear", "television, television system", "tennis ball", "thatch, thatched roof", "theater curtain, theatre curtain", "thimble", "thresher, thrasher, threshing machine", "throne", "tile roof", "toaster", "tobacco shop, tobacconist shop, tobacconist", "toilet seat", "torch", "totem pole", "tow truck, tow car, wrecker", "toyshop", "tractor", "trailer truck, tractor trailer, trucking rig, rig, articulated lorry, semi", "tray", "trench coat", "tricycle, trike, velocipede", "trimaran", "tripod", "triumphal arch", "trolleybus, trolley coach, trackless trolley", "trombone", "tub, vat", "turnstile", "typewriter keyboard", "umbrella", "unicycle, monocycle", "upright, upright piano", "vacuum, vacuum cleaner", "vase", "vault", "velvet", "vending machine", "vestment", "viaduct", "violin, fiddle", "volleyball", "waffle iron", "wall clock", "wallet, billfold, notecase, pocketbook", "wardrobe, closet, press", "warplane, military plane", "washbasin, handbasin, washbowl, lavabo, wash-hand basin", "washer, automatic washer, washing machine", "water bottle", "water jug", "water tower", "whiskey jug", "whistle", "wig", "window screen", "window shade", "windsor tie", "wine bottle", "wing", "wok", "wooden spoon", "wool, woolen, woollen", "worm fence, snake fence, snake-rail fence, virginia fence", "wreck", "yawl", "yurt", "web site, website, internet site, site", "comic book", "crossword puzzle, crossword", "street sign", "traffic light, traffic signal, stoplight", "book jacket, dust cover, dust jacket, dust wrapper", "menu", "plate", "guacamole", "consomme", "hot pot, hotpot", "trifle", "ice cream, icecream", "ice lolly, lolly, lollipop, popsicle", "french loaf", "bagel, beigel", "pretzel", "cheeseburger", "hotdog, hot dog, red hot", "mashed potato", "head cabbage", "broccoli", "cauliflower", "zucchini, courgette", "spaghetti squash", "acorn squash", "butternut squash", "cucumber, cuke", "artichoke, globe artichoke", "bell pepper", "cardoon", "mushroom", "granny smith", "strawberry", "orange", "lemon", "fig", "pineapple, ananas", "banana", "jackfruit, jak, jack", "custard apple", "pomegranate", "hay", "carbonara", "chocolate sauce, chocolate syrup", "dough", "meat loaf, meatloaf", "pizza, pizza pie", "potpie", "burrito", "red wine", "espresso", "cup", "eggnog", "alp", "bubble", "cliff, drop, drop-off", "coral reef", "geyser", "lakeside, lakeshore", "promontory, headland, head, foreland", "sandbar, sand bar", "seashore, coast, seacoast, sea-coast", "valley, vale", "volcano", "ballplayer, baseball player", "groom, bridegroom", "scuba diver", "rapeseed", "daisy", "yellow lady's slipper, yellow lady-slipper, cypripedium calceolus, cypripedium parviflorum", "corn", "acorn", "hip, rose hip, rosehip", "buckeye, horse chestnut, conker", "coral fungus", "agaric", "gyromitra", "stinkhorn, carrion fungus", "earthstar", "hen-of-the-woods, hen of the woods, polyporus frondosus, grifola frondosa", "bolete", "ear, spike, capitulum", "toilet tissue, toilet paper, bathroom tissue" ]
jimypbr/cifar10_outputs
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # cifar10_outputs This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the cifar10 dataset. It achieves the following results on the evaluation set: - Loss: 0.0806 - Accuracy: 0.9914 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 17 - eval_batch_size: 17 - seed: 1337 - distributed_type: IPU - gradient_accumulation_steps: 128 - total_train_batch_size: 8704 - total_eval_batch_size: 272 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.25 - num_epochs: 100.0 - training precision: Mixed Precision ### Training results ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.0+cpu - Datasets 2.3.3.dev0 - Tokenizers 0.12.1
[ "airplane", "automobile", "bird", "cat", "deer", "dog", "frog", "horse", "ship", "truck" ]
Shivagowri/vit-snacks
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-snacks This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the Matthijs/snacks dataset. It achieves the following results on the evaluation set: - Loss: 0.2754 - Accuracy: 0.9393 ## Model description upload any image of your fave yummy snack ## Intended uses & limitations there are only 20 different varieties of snacks ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.8724 | 0.33 | 100 | 0.9118 | 0.8670 | | 0.5628 | 0.66 | 200 | 0.6873 | 0.8471 | | 0.4421 | 0.99 | 300 | 0.4995 | 0.8691 | | 0.2837 | 1.32 | 400 | 0.4008 | 0.9026 | | 0.1645 | 1.65 | 500 | 0.3702 | 0.9058 | | 0.1604 | 1.98 | 600 | 0.3981 | 0.8921 | | 0.0498 | 2.31 | 700 | 0.3185 | 0.9204 | | 0.0406 | 2.64 | 800 | 0.3427 | 0.9141 | | 0.1049 | 2.97 | 900 | 0.3444 | 0.9173 | | 0.0272 | 3.3 | 1000 | 0.3168 | 0.9246 | | 0.0186 | 3.63 | 1100 | 0.3142 | 0.9288 | | 0.0203 | 3.96 | 1200 | 0.2931 | 0.9298 | | 0.007 | 4.29 | 1300 | 0.2754 | 0.9393 | | 0.0072 | 4.62 | 1400 | 0.2778 | 0.9403 | | 0.0073 | 4.95 | 1500 | 0.2782 | 0.9393 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
[ "apple", "banana", "juice", "muffin", "orange", "pineapple", "popcorn", "pretzel", "salad", "strawberry", "waffle", "watermelon", "cake", "candy", "carrot", "cookie", "doughnut", "grape", "hot dog", "ice cream" ]
sudo-s/new_exper3
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # new_exper3 This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the sudo-s/herbier_mesuem1 dataset. It achieves the following results on the evaluation set: - Loss: 0.3000 - Accuracy: 0.9298 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 - mixed_precision_training: Apex, opt level O1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 4.093 | 0.16 | 100 | 4.1045 | 0.1885 | | 3.5057 | 0.31 | 200 | 3.4448 | 0.3231 | | 2.9116 | 0.47 | 300 | 2.9483 | 0.4537 | | 2.561 | 0.63 | 400 | 2.5700 | 0.5258 | | 2.1611 | 0.78 | 500 | 2.1721 | 0.6145 | | 1.715 | 0.94 | 600 | 1.8255 | 0.6407 | | 1.2752 | 1.1 | 700 | 1.5340 | 0.7051 | | 1.2487 | 1.25 | 800 | 1.3533 | 0.7201 | | 1.0333 | 1.41 | 900 | 1.1474 | 0.7826 | | 0.8856 | 1.56 | 1000 | 1.0914 | 0.7645 | | 0.7512 | 1.72 | 1100 | 0.8893 | 0.8119 | | 0.747 | 1.88 | 1200 | 0.8370 | 0.8304 | | 0.5082 | 2.03 | 1300 | 0.7131 | 0.8566 | | 0.4449 | 2.19 | 1400 | 0.6573 | 0.8547 | | 0.2912 | 2.35 | 1500 | 0.6184 | 0.8597 | | 0.285 | 2.5 | 1600 | 0.5974 | 0.8570 | | 0.2267 | 2.66 | 1700 | 0.5621 | 0.8647 | | 0.2553 | 2.82 | 1800 | 0.5044 | 0.8816 | | 0.2029 | 2.97 | 1900 | 0.4342 | 0.8955 | | 0.1763 | 3.13 | 2000 | 0.4487 | 0.8905 | | 0.1418 | 3.29 | 2100 | 0.4173 | 0.9005 | | 0.0563 | 3.44 | 2200 | 0.3870 | 0.9048 | | 0.0579 | 3.6 | 2300 | 0.3849 | 0.9036 | | 0.166 | 3.76 | 2400 | 0.3933 | 0.9025 | | 0.11 | 3.91 | 2500 | 0.3918 | 0.9056 | | 0.0356 | 4.07 | 2600 | 0.3298 | 0.9202 | | 0.0513 | 4.23 | 2700 | 0.3371 | 0.9210 | | 0.0762 | 4.38 | 2800 | 0.3253 | 0.9225 | | 0.018 | 4.54 | 2900 | 0.3467 | 0.9148 | | 0.0263 | 4.69 | 3000 | 0.3544 | 0.9144 | | 0.0205 | 4.85 | 3100 | 0.3340 | 0.9221 | | 0.0237 | 5.01 | 3200 | 0.3353 | 0.9144 | | 0.013 | 5.16 | 3300 | 0.3218 | 0.9229 | | 0.0116 | 5.32 | 3400 | 0.3088 | 0.9291 | | 0.0119 | 5.48 | 3500 | 0.3047 | 0.9279 | | 0.0098 | 5.63 | 3600 | 0.3063 | 0.9283 | | 0.0086 | 5.79 | 3700 | 0.3074 | 0.9268 | | 0.0081 | 5.95 | 3800 | 0.3220 | 0.9237 | | 0.0078 | 6.1 | 3900 | 0.3064 | 0.9268 | | 0.0074 | 6.26 | 4000 | 0.3062 | 0.9279 | | 0.0068 | 6.42 | 4100 | 0.3051 | 0.9291 | | 0.006 | 6.57 | 4200 | 0.3000 | 0.9298 | | 0.0075 | 6.73 | 4300 | 0.3010 | 0.9310 | | 0.0057 | 6.89 | 4400 | 0.3037 | 0.9298 | | 0.0058 | 7.04 | 4500 | 0.3071 | 0.9279 | | 0.0075 | 7.2 | 4600 | 0.3075 | 0.9283 | | 0.0066 | 7.36 | 4700 | 0.3077 | 0.9295 | | 0.0056 | 7.51 | 4800 | 0.3084 | 0.9295 | | 0.0053 | 7.67 | 4900 | 0.3064 | 0.9310 | | 0.0057 | 7.82 | 5000 | 0.3068 | 0.9318 | | 0.0055 | 7.98 | 5100 | 0.3068 | 0.9318 | ### Framework versions - Transformers 4.19.4 - Pytorch 1.5.1 - Datasets 2.3.2 - Tokenizers 0.12.1
[ "0", "1", "10", "100", "101", "102", "103", "104", "105", "106", "107", "108", "109", "11", "110", "111", "112", "113", "114", "115", "116", "117", "118", "119", "12", "120", "121", "122", "123", "124", "125", "126", "127", "128", "129", "13", "130", "131", "132", "133", "134", "135", "136", "137", "138", "139", "14", "140", "141", "142", "143", "144", "145", "146", "147", "148", "15", "16", "17", "18", "19", "2", "20", "21", "22", "23", "24", "25", "26", "27", "28", "29", "3", "30", "31", "32", "33", "34", "35", "36", "37", "38", "39", "4", "40", "41", "42", "43", "44", "45", "46", "47", "48", "49", "5", "50", "51", "52", "53", "54", "55", "56", "57", "58", "59", "6", "60", "61", "62", "63", "64", "65", "66", "67", "68", "69", "7", "70", "71", "72", "73", "74", "75", "76", "77", "78", "79", "8", "80", "81", "82", "83", "84", "85", "86", "87", "88", "89", "9", "90", "91", "92", "93", "94", "95", "96", "97", "98", "99" ]
YKXBCi/vit-base-patch16-224-in21k-ucSat
<!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # YKXBCi/vit-base-patch16-224-in21k-ucSat This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 1.3216 - Train Accuracy: 0.9960 - Train Top-3-accuracy: 1.0 - Validation Loss: 1.3683 - Validation Accuracy: 0.9688 - Validation Top-3-accuracy: 0.9931 - Epoch: 4 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'inner_optimizer': {'class_name': 'AdamWeightDecay', 'config': {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 3e-05, 'decay_steps': 275, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}}, 'dynamic': True, 'initial_scale': 32768.0, 'dynamic_growth_steps': 2000} - training_precision: mixed_float16 ### Training results | Train Loss | Train Accuracy | Train Top-3-accuracy | Validation Loss | Validation Accuracy | Validation Top-3-accuracy | Epoch | |:----------:|:--------------:|:--------------------:|:---------------:|:-------------------:|:-------------------------:|:-----:| | 2.7376 | 0.5375 | 0.7284 | 2.3789 | 0.8958 | 0.9757 | 0 | | 2.1030 | 0.9449 | 0.9972 | 1.8664 | 0.9479 | 0.9896 | 1 | | 1.6719 | 0.9812 | 1.0 | 1.5763 | 0.9618 | 0.9931 | 2 | | 1.4357 | 0.9926 | 1.0 | 1.4201 | 0.9688 | 0.9931 | 3 | | 1.3216 | 0.9960 | 1.0 | 1.3683 | 0.9688 | 0.9931 | 4 | ### Framework versions - Transformers 4.18.0 - TensorFlow 2.6.0 - Datasets 2.1.0 - Tokenizers 0.12.1
[ "agricultural", "airplane", "harbor", "intersection", "mediumresidential", "mobilehomepark", "overpass", "parkinglot", "river", "runway", "sparseresidential", "storagetanks", "baseballdiamond", "tenniscourt", "beach", "buildings", "chaparral", "denseresidential", "forest", "freeway", "golfcourse" ]
raedinkhaled/deit-base-mri
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # deit-base-mri This model is a fine-tuned version of [facebook/deit-base-distilled-patch16-224](https://huggingface.co/facebook/deit-base-distilled-patch16-224) on the mriDataSet dataset. It achieves the following results on the evaluation set: - Loss: 0.0657 - Accuracy: 0.9901 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.0107 | 0.8 | 500 | 0.0782 | 0.9887 | | 0.0065 | 1.6 | 1000 | 0.0657 | 0.9901 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
[ "diseased", "normale" ]
gianlab/swin-tiny-patch4-window7-224-finetuned-skin-cancer
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # swin-tiny-patch4-window7-224-finetuned-skin-cancer This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.7695 - Accuracy: 0.7275 ## Model description This model was created by importing the dataset of the photos of skin cancer into Google Colab from kaggle here: https://www.kaggle.com/datasets/kmader/skin-cancer-mnist-ham10000 . I then used the image classification tutorial here: https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/image_classification.ipynb obtaining the following notebook: https://colab.research.google.com/drive/1bMkXnAvAqjX3J2YJ8wXTNw2Z2pt5KCjy?usp=sharing The possible classified diseases are: 'Actinic-keratoses', 'Basal-cell-carcinoma', 'Benign-keratosis-like-lesions', 'Dermatofibroma', 'Melanocytic-nevi', 'Melanoma', 'Vascular-lesions' . ## Skin example: ![skin](skin.png) ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6911 | 0.99 | 70 | 0.7695 | 0.7275 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
[ "actinic-keratoses", "basal-cell-carcinoma", "benign-keratosis-like-lesions", "dermatofibroma", "melanocytic-nevi", "melanoma", "vascular-lesions" ]
bazyl/gtsrb-model
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gtsrb-model This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the bazyl/GTSRB dataset. It achieves the following results on the evaluation set: - Loss: 0.0034 - Accuracy: 0.9993 ## Model description The German Traffic Sign Benchmark is a multi-class, single-image classification challenge held at the International Joint Conference on Neural Networks (IJCNN) 2011. We cordially invite researchers from relevant fields to participate: The competition is designed to allow for participation without special domain knowledge. Our benchmark has the following properties: - Single-image, multi-class classification problem - More than 40 classes - More than 50,000 images in total - Large, lifelike database ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 1337 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.2593 | 1.0 | 4166 | 0.1585 | 0.9697 | | 0.2659 | 2.0 | 8332 | 0.0472 | 0.9900 | | 0.2825 | 3.0 | 12498 | 0.0155 | 0.9971 | | 0.0953 | 4.0 | 16664 | 0.0113 | 0.9983 | | 0.1277 | 5.0 | 20830 | 0.0076 | 0.9985 | | 0.0816 | 6.0 | 24996 | 0.0047 | 0.9988 | | 0.0382 | 7.0 | 29162 | 0.0041 | 0.9990 | | 0.0983 | 8.0 | 33328 | 0.0059 | 0.9990 | | 0.1746 | 9.0 | 37494 | 0.0034 | 0.9993 | | 0.1153 | 10.0 | 41660 | 0.0038 | 0.9990 | ### Framework versions - Transformers 4.21.0.dev0 - Pytorch 1.12.0 - Datasets 2.3.2 - Tokenizers 0.12.1
[ "speed limit (20km/h)", "speed limit (30km/h)", "no passing veh over 3.5 tons", "right-of-way at intersection", "priority road", "yield", "stop", "no vehicles", "veh > 3.5 tons prohibited", "no entry", "general caution", "dangerous curve left", "speed limit (50km/h)", "dangerous curve right", "double curve", "bumpy road", "slippery road", "road narrows on the right", "road work", "traffic signals", "pedestrians", "children crossing", "bicycles crossing", "speed limit (60km/h)", "beware of ice/snow", "wild animals crossing", "end speed + passing limits", "turn right ahead", "turn left ahead", "ahead only", "go straight or right", "go straight or left", "keep right", "keep left", "speed limit (70km/h)", "roundabout mandatory", "end of no passing", "end no passing veh > 3.5 tons", "none", "speed limit (80km/h)", "end of speed limit (80km/h)", "speed limit (100km/h)", "speed limit (120km/h)", "no passing" ]
YKXBCi/resnet-50-ucSat
<!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # YKXBCi/resnet-50-ucSat This model is a fine-tuned version of [microsoft/resnet-50](https://huggingface.co/microsoft/resnet-50) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.9091 - Train Accuracy: 0.7125 - Train Top-3-accuracy: 0.9227 - Validation Loss: 1.0869 - Validation Accuracy: 0.6562 - Validation Top-3-accuracy: 0.8924 - Epoch: 4 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'inner_optimizer': {'class_name': 'AdamWeightDecay', 'config': {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 3e-05, 'decay_steps': 275, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}}, 'dynamic': True, 'initial_scale': 32768.0, 'dynamic_growth_steps': 2000} - training_precision: mixed_float16 ### Training results | Train Loss | Train Accuracy | Train Top-3-accuracy | Validation Loss | Validation Accuracy | Validation Top-3-accuracy | Epoch | |:----------:|:--------------:|:--------------------:|:---------------:|:-------------------:|:-------------------------:|:-----:| | 2.6504 | 0.2057 | 0.3591 | 2.2693 | 0.3299 | 0.5069 | 0 | | 1.8871 | 0.4062 | 0.6494 | 1.6561 | 0.4618 | 0.7083 | 1 | | 1.4603 | 0.5278 | 0.7790 | 1.4162 | 0.5417 | 0.8021 | 2 | | 1.1499 | 0.6199 | 0.8676 | 1.2030 | 0.625 | 0.8646 | 3 | | 0.9091 | 0.7125 | 0.9227 | 1.0869 | 0.6562 | 0.8924 | 4 | ### Framework versions - Transformers 4.18.0 - TensorFlow 2.6.0 - Datasets 2.1.0 - Tokenizers 0.12.1
[ "agricultural", "airplane", "harbor", "intersection", "mediumresidential", "mobilehomepark", "overpass", "parkinglot", "river", "runway", "sparseresidential", "storagetanks", "baseballdiamond", "tenniscourt", "beach", "buildings", "chaparral", "denseresidential", "forest", "freeway", "golfcourse" ]
YKXBCi/resnet-50-euroSat
<!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # YKXBCi/resnet-50-euroSat This model is a fine-tuned version of [microsoft/resnet-50](https://huggingface.co/microsoft/resnet-50) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.1408 - Train Accuracy: 0.9540 - Train Top-3-accuracy: 0.9973 - Validation Loss: 0.2008 - Validation Accuracy: 0.9335 - Validation Top-3-accuracy: 0.9965 - Epoch: 4 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'inner_optimizer': {'class_name': 'AdamWeightDecay', 'config': {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 3e-05, 'decay_steps': 3585, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}}, 'dynamic': True, 'initial_scale': 32768.0, 'dynamic_growth_steps': 2000} - training_precision: mixed_float16 ### Training results | Train Loss | Train Accuracy | Train Top-3-accuracy | Validation Loss | Validation Accuracy | Validation Top-3-accuracy | Epoch | |:----------:|:--------------:|:--------------------:|:---------------:|:-------------------:|:-------------------------:|:-----:| | 0.8487 | 0.6969 | 0.9168 | 0.4793 | 0.8274 | 0.9802 | 0 | | 0.4363 | 0.8428 | 0.9845 | 0.3823 | 0.8641 | 0.9881 | 1 | | 0.3123 | 0.8863 | 0.9922 | 0.2945 | 0.8988 | 0.9928 | 2 | | 0.2153 | 0.9259 | 0.9952 | 0.2316 | 0.9187 | 0.9958 | 3 | | 0.1408 | 0.9540 | 0.9973 | 0.2008 | 0.9335 | 0.9965 | 4 | ### Framework versions - Transformers 4.18.0 - TensorFlow 2.6.0 - Datasets 2.1.0 - Tokenizers 0.12.1
[ "river", "annualcrop", "herbaceousvegetation", "industrial", "residential", "highway", "pasture", "forest", "sealake", "permanentcrop" ]
YKXBCi/vit-base-patch16-224-in21k-aidSat
<!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # YKXBCi/vit-base-patch16-224-in21k-aidSat This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.4026 - Train Accuracy: 0.9981 - Train Top-3-accuracy: 0.9998 - Validation Loss: 0.4715 - Validation Accuracy: 0.9796 - Validation Top-3-accuracy: 0.9980 - Epoch: 4 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'inner_optimizer': {'class_name': 'AdamWeightDecay', 'config': {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 3e-05, 'decay_steps': 1325, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}}, 'dynamic': True, 'initial_scale': 32768.0, 'dynamic_growth_steps': 2000} - training_precision: mixed_float16 ### Training results | Train Loss | Train Accuracy | Train Top-3-accuracy | Validation Loss | Validation Accuracy | Validation Top-3-accuracy | Epoch | |:----------:|:--------------:|:--------------------:|:---------------:|:-------------------:|:-------------------------:|:-----:| | 2.3544 | 0.7383 | 0.8687 | 1.5415 | 0.9266 | 0.9857 | 0 | | 1.1313 | 0.9522 | 0.9942 | 0.8788 | 0.9613 | 0.9966 | 1 | | 0.6741 | 0.9841 | 0.9985 | 0.6268 | 0.9640 | 0.9986 | 2 | | 0.4785 | 0.9953 | 0.9995 | 0.5058 | 0.9755 | 0.9980 | 3 | | 0.4026 | 0.9981 | 0.9998 | 0.4715 | 0.9796 | 0.9980 | 4 | ### Framework versions - Transformers 4.18.0 - TensorFlow 2.6.0 - Datasets 2.1.0 - Tokenizers 0.12.1
[ "airport", "bareland", "farmland", "forest", "industrial", "meadow", "mediumresidential", "mountain", "park", "parking", "playground", "pond", "baseballfield", "port", "railwaystation", "resort", "river", "school", "sparseresidential", "square", "stadium", "storagetanks", "viaduct", "beach", "bridge", "center", "church", "commercial", "denseresidential", "desert" ]
ShihTing/PanJuOffset_TwoClass
# PanJu offset detect by image Use fintune from google/vit-base-patch16-224(https://huggingface.co/google/vit-base-patch16-224) ## Dataset ```python DatasetDict({ train: Dataset({ features: ['image', 'label'], num_rows: 329 }) validation: Dataset({ features: ['image', 'label'], num_rows: 56 }) }) ``` 36 Break and 293 Normal in train 5 Break and 51 Normal in validation ## Intended uses ### How to use Here is how to use this model to classify an image of the COCO 2017 dataset into one of the 1,000 ImageNet classes: ```python # Load image import torch from transformers import ViTFeatureExtractor, ViTForImageClassification,AutoModel from PIL import Image import requests url='https://datasets-server.huggingface.co/assets/ShihTing/IsCausewayOffset/--/ShihTing--IsCausewayOffset/validation/0/image/image.jpg' image = Image.open(requests.get(url, stream=True).raw) # Load model from transformers import AutoFeatureExtractor, AutoModelForImageClassification device = torch.device('cpu') extractor = AutoFeatureExtractor.from_pretrained('ShihTing/PanJuOffset_TwoClass') model = AutoModelForImageClassification.from_pretrained('ShihTing/PanJuOffset_TwoClass') # Predict inputs = extractor(images=image, return_tensors="pt") outputs = model(**inputs) logits = outputs.logits Prob = outputs.logits.softmax(dim=-1).tolist() print(Prob) # model predicts one of the 1000 ImageNet classes predicted_class_idx = logits.argmax(-1).item() print("Predicted class:", model.config.id2label[predicted_class_idx]) ```
[ "break", "normal" ]
HekmatTaherinejad/swin-tiny-patch4-window7-224-finetuned-eurosat
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # swin-tiny-patch4-window7-224-finetuned-eurosat This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.0653 - Accuracy: 0.98 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.203 | 1.0 | 190 | 0.1294 | 0.9574 | | 0.2017 | 2.0 | 380 | 0.0773 | 0.9763 | | 0.1563 | 3.0 | 570 | 0.0653 | 0.98 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
[ "annualcrop", "forest", "herbaceousvegetation", "highway", "industrial", "pasture", "permanentcrop", "residential", "river", "sealake" ]
aihub007/convnext-tiny-224-finetuned-eurosat-albumentations
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # convnext-tiny-224-finetuned-eurosat-albumentations This model is a fine-tuned version of [facebook/convnext-tiny-224](https://huggingface.co/facebook/convnext-tiny-224) on the image_folder dataset. It achieves the following results on the evaluation set: - Loss: 0.0886 - Accuracy: 0.9804 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 256 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.3879 | 1.0 | 95 | 0.2927 | 0.9567 | | 0.1095 | 2.0 | 190 | 0.1102 | 0.9759 | | 0.0911 | 3.0 | 285 | 0.0886 | 0.9804 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
[ "annualcrop", "forest", "herbaceousvegetation", "highway", "industrial", "pasture", "permanentcrop", "residential", "river", "sealake" ]
amyeroberts/resnet-18-finetuned-eurosat
<!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # amyeroberts/resnet-18-finetuned-eurosat This model is a fine-tuned version of [microsoft/resnet-18](https://huggingface.co/microsoft/resnet-18) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.5582 - Validation Loss: 2.1533 - Validation Accuracy: 0.2059 - Epoch: 2 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 5e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Validation Accuracy | Epoch | |:----------:|:---------------:|:-------------------:|:-----:| | 3.0662 | 2.7376 | 0.1374 | 0 | | 1.3977 | 2.3876 | 0.1685 | 1 | | 0.5582 | 2.1533 | 0.2059 | 2 | ### Framework versions - Transformers 4.21.0.dev0 - TensorFlow 2.9.1 - Datasets 2.3.3.dev0 - Tokenizers 0.11.0
[ "annualcrop", "forest", "herbaceousvegetation", "highway", "industrial", "pasture", "permanentcrop", "residential", "river", "sealake" ]
SiddharthaM/beit-base-patch16-224-pt22k-ft22k-rim_one-new
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # beit-base-patch16-224-pt22k-ft22k-rim_one-new This model is a fine-tuned version of [microsoft/beit-base-patch16-224-pt22k-ft22k](https://huggingface.co/microsoft/beit-base-patch16-224-pt22k-ft22k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.4550 - Accuracy: 0.8767 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 0.73 | 2 | 0.2411 | 0.9178 | | No log | 1.73 | 4 | 0.2182 | 0.8973 | | No log | 2.73 | 6 | 0.3085 | 0.8973 | | No log | 3.73 | 8 | 0.2794 | 0.8973 | | 0.1392 | 4.73 | 10 | 0.2398 | 0.9110 | | 0.1392 | 5.73 | 12 | 0.2925 | 0.8973 | | 0.1392 | 6.73 | 14 | 0.2798 | 0.9110 | | 0.1392 | 7.73 | 16 | 0.2184 | 0.9178 | | 0.1392 | 8.73 | 18 | 0.3007 | 0.9110 | | 0.0416 | 9.73 | 20 | 0.3344 | 0.9041 | | 0.0416 | 10.73 | 22 | 0.3626 | 0.9110 | | 0.0416 | 11.73 | 24 | 0.4842 | 0.8904 | | 0.0416 | 12.73 | 26 | 0.3664 | 0.8973 | | 0.0416 | 13.73 | 28 | 0.3458 | 0.9110 | | 0.0263 | 14.73 | 30 | 0.2810 | 0.9110 | | 0.0263 | 15.73 | 32 | 0.4695 | 0.8699 | | 0.0263 | 16.73 | 34 | 0.3723 | 0.9041 | | 0.0263 | 17.73 | 36 | 0.3447 | 0.9041 | | 0.0263 | 18.73 | 38 | 0.3708 | 0.8904 | | 0.0264 | 19.73 | 40 | 0.4052 | 0.9110 | | 0.0264 | 20.73 | 42 | 0.4492 | 0.9041 | | 0.0264 | 21.73 | 44 | 0.4649 | 0.8904 | | 0.0264 | 22.73 | 46 | 0.4061 | 0.9178 | | 0.0264 | 23.73 | 48 | 0.4136 | 0.9110 | | 0.0139 | 24.73 | 50 | 0.4183 | 0.8973 | | 0.0139 | 25.73 | 52 | 0.4504 | 0.8904 | | 0.0139 | 26.73 | 54 | 0.4368 | 0.8973 | | 0.0139 | 27.73 | 56 | 0.4711 | 0.9110 | | 0.0139 | 28.73 | 58 | 0.3928 | 0.9110 | | 0.005 | 29.73 | 60 | 0.4550 | 0.8767 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
[ "glaucoma", "normal" ]
prashanth0205/vit_spectrogram
<!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # vit_spectrogram This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on a dataset containing images of Mel spectrogram belonging to the classes 'Male' and 'Female'. This model is still being fine tuned and tested. It achieves the following results on the evaluation set: - Train Loss: 0.2893 - Train Accuracy: 0.8757 - Train Top-3-accuracy: 1.0000 - Validation Loss: 0.8757 - Validation Accuracy: 0.9366 - Validation Top-3-accuracy: 1.0 - Epoch: 1 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'inner_optimizer': {'class_name': 'AdamWeightDecay', 'config': {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 3e-05, 'decay_steps': 3032, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}}, 'dynamic': True, 'initial_scale': 32768.0, 'dynamic_growth_steps': 2000} - training_precision: mixed_float16 ### Training results ### Framework versions - Transformers 4.18.0 - TensorFlow 2.4.0 - Datasets 2.0.0 - Tokenizers 0.11.6
[ "female", "male" ]
samayl24/vit-base-beans-demo-v5
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-base-beans-demo-v5 This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the beans dataset. It achieves the following results on the evaluation set: - Loss: 0.0427 - Accuracy: 0.9925 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.1378 | 1.54 | 100 | 0.1444 | 0.9549 | | 0.0334 | 3.08 | 200 | 0.0427 | 0.9925 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
[ "angular_leaf_spot", "bean_rust", "healthy" ]
sl82/swin-tiny-patch4-window7-224-finetuned-eurosat
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # swin-tiny-patch4-window7-224-finetuned-eurosat This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.0581 - Accuracy: 0.9837 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.2666 | 1.0 | 190 | 0.1364 | 0.9541 | | 0.1735 | 2.0 | 380 | 0.0970 | 0.9663 | | 0.126 | 3.0 | 570 | 0.0581 | 0.9837 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
[ "annualcrop", "forest", "herbaceousvegetation", "highway", "industrial", "pasture", "permanentcrop", "residential", "river", "sealake" ]
dgrinwald/swin-tiny-patch4-window7-224-finetuned-eurosat
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # swin-tiny-patch4-window7-224-finetuned-eurosat This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.3266 - Accuracy: 0.8465 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.2941 | 1.0 | 17 | 1.1717 | 0.4689 | | 1.0655 | 2.0 | 34 | 0.9397 | 0.5560 | | 0.8008 | 3.0 | 51 | 0.6153 | 0.7303 | | 0.7204 | 4.0 | 68 | 0.5665 | 0.7427 | | 0.6931 | 5.0 | 85 | 0.4670 | 0.7801 | | 0.6277 | 6.0 | 102 | 0.4328 | 0.8465 | | 0.5689 | 7.0 | 119 | 0.4078 | 0.8174 | | 0.6103 | 8.0 | 136 | 0.4060 | 0.8091 | | 0.5501 | 9.0 | 153 | 0.4842 | 0.7884 | | 0.6018 | 10.0 | 170 | 0.3780 | 0.8423 | | 0.5668 | 11.0 | 187 | 0.3551 | 0.8631 | | 0.5192 | 12.0 | 204 | 0.4514 | 0.8216 | | 0.5133 | 13.0 | 221 | 0.3598 | 0.8174 | | 0.5753 | 14.0 | 238 | 0.4172 | 0.8091 | | 0.4833 | 15.0 | 255 | 0.4685 | 0.8050 | | 0.5546 | 16.0 | 272 | 0.4474 | 0.7842 | | 0.5179 | 17.0 | 289 | 0.4570 | 0.7884 | | 0.5017 | 18.0 | 306 | 0.4218 | 0.8050 | | 0.4808 | 19.0 | 323 | 0.4094 | 0.8050 | | 0.4708 | 20.0 | 340 | 0.4693 | 0.7759 | | 0.5033 | 21.0 | 357 | 0.3141 | 0.8672 | | 0.4859 | 22.0 | 374 | 0.3687 | 0.8257 | | 0.516 | 23.0 | 391 | 0.3819 | 0.8216 | | 0.4822 | 24.0 | 408 | 0.3391 | 0.8506 | | 0.4748 | 25.0 | 425 | 0.3281 | 0.8506 | | 0.4914 | 26.0 | 442 | 0.3308 | 0.8631 | | 0.4354 | 27.0 | 459 | 0.3859 | 0.8133 | | 0.4297 | 28.0 | 476 | 0.3761 | 0.8133 | | 0.4747 | 29.0 | 493 | 0.2914 | 0.8672 | | 0.4395 | 30.0 | 510 | 0.3025 | 0.8548 | | 0.4279 | 31.0 | 527 | 0.3314 | 0.8506 | | 0.4327 | 32.0 | 544 | 0.4626 | 0.7842 | | 0.446 | 33.0 | 561 | 0.3499 | 0.8382 | | 0.4011 | 34.0 | 578 | 0.3408 | 0.8465 | | 0.4418 | 35.0 | 595 | 0.3159 | 0.8589 | | 0.484 | 36.0 | 612 | 0.3130 | 0.8548 | | 0.4119 | 37.0 | 629 | 0.2899 | 0.8589 | | 0.4453 | 38.0 | 646 | 0.3200 | 0.8465 | | 0.4074 | 39.0 | 663 | 0.3493 | 0.8465 | | 0.3937 | 40.0 | 680 | 0.3003 | 0.8672 | | 0.4222 | 41.0 | 697 | 0.3547 | 0.8299 | | 0.3922 | 42.0 | 714 | 0.3206 | 0.8589 | | 0.3973 | 43.0 | 731 | 0.4074 | 0.8133 | | 0.4118 | 44.0 | 748 | 0.3147 | 0.8589 | | 0.4088 | 45.0 | 765 | 0.3393 | 0.8506 | | 0.3635 | 46.0 | 782 | 0.3584 | 0.8257 | | 0.403 | 47.0 | 799 | 0.3240 | 0.8506 | | 0.3943 | 48.0 | 816 | 0.3536 | 0.8216 | | 0.4085 | 49.0 | 833 | 0.3270 | 0.8465 | | 0.3865 | 50.0 | 850 | 0.3266 | 0.8465 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
[ "4.x (before awn extrusion)", "4.9 (awn extrusion)", "5.x (before flowering)", "6.x (flowering)" ]
dingusagar/vit-base-movie-scenes-v1
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-base-movie-scenes-v1 This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset. Fine-tuned on movie scene images from batman and harry potter. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
[ " batman movie scenes", "harry potter movie scenes" ]
dingusagar/vit-base-avengers-v1
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-base-avengers-v1 This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.5324 - Accuracy: 0.8683 Refer to this [medium article](https://medium.com/@dingusagar/marvel-character-classification-by-fine-tuning-vision-transformer-45c14a7d8719) for more info on how it was trained. ## Limitations Training was done on google images for these search terms each representing a class. Iron Man,Captain America,Thor,Spider Man,Docter Strage,Black Panther,Ant Man,Captain Marvel,Hulk,Black Widow,Hawkeye Avengers,Scarlet Witch,Vision Avengers,Bucky Barnes,Falcon Avengers,Loki Therefore it has seen more of images where these super heros are in their suit or superhero outfit. For example an image of hulk is detected correctly, but an image of Bruce Banner is not simply because the model has't seen those images. A little bit of data augmentation will help. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.8183 | 1.27 | 100 | 1.0134 | 0.8464 | | 0.2234 | 2.53 | 200 | 0.6146 | 0.8495 | | 0.1206 | 3.8 | 300 | 0.5324 | 0.8683 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
[ "ant man", "black panther", "iron man", "loki", "scarlet witch", "spider man", "thor", "vision avengers", "black widow", "bucky barnes", "captain america", "captain marvel", "docter strage", "falcon avengers", "hawkeye avengers", "hulk" ]
Loc/lucky-model
# Vision Transformer (base-sized model) Vision Transformer (ViT) model pre-trained on ImageNet-21k (14 million images, 21,843 classes) at resolution 224x224, and fine-tuned on ImageNet 2012 (1 million images, 1,000 classes) at resolution 224x224. It was introduced in the paper [An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale](https://arxiv.org/abs/2010.11929) by Dosovitskiy et al. and first released in [this repository](https://github.com/google-research/vision_transformer). However, the weights were converted from the [timm repository](https://github.com/rwightman/pytorch-image-models) by Ross Wightman, who already converted the weights from JAX to PyTorch. Credits go to him. Disclaimer: The team releasing ViT did not write a model card for this model so this model card has been written by the Hugging Face team. ## Model description The Vision Transformer (ViT) is a transformer encoder model (BERT-like) pretrained on a large collection of images in a supervised fashion, namely ImageNet-21k, at a resolution of 224x224 pixels. Next, the model was fine-tuned on ImageNet (also referred to as ILSVRC2012), a dataset comprising 1 million images and 1,000 classes, also at resolution 224x224. Images are presented to the model as a sequence of fixed-size patches (resolution 16x16), which are linearly embedded. One also adds a [CLS] token to the beginning of a sequence to use it for classification tasks. One also adds absolute position embeddings before feeding the sequence to the layers of the Transformer encoder. By pre-training the model, it learns an inner representation of images that can then be used to extract features useful for downstream tasks: if you have a dataset of labeled images for instance, you can train a standard classifier by placing a linear layer on top of the pre-trained encoder. One typically places a linear layer on top of the [CLS] token, as the last hidden state of this token can be seen as a representation of an entire image. ## Intended uses & limitations You can use the raw model for image classification. See the [model hub](https://huggingface.co/models?search=google/vit) to look for fine-tuned versions on a task that interests you. ### How to use Here is how to use this model to classify an image of the COCO 2017 dataset into one of the 1,000 ImageNet classes: ```python from transformers import ViTFeatureExtractor, ViTForImageClassification from PIL import Image import requests url = 'http://images.cocodataset.org/val2017/000000039769.jpg' image = Image.open(requests.get(url, stream=True).raw) feature_extractor = ViTFeatureExtractor.from_pretrained('google/vit-base-patch16-224') model = ViTForImageClassification.from_pretrained('google/vit-base-patch16-224') inputs = feature_extractor(images=image, return_tensors="pt") outputs = model(**inputs) logits = outputs.logits # model predicts one of the 1000 ImageNet classes predicted_class_idx = logits.argmax(-1).item() print("Predicted class:", model.config.id2label[predicted_class_idx]) ``` For more code examples, we refer to the [documentation](https://huggingface.co/transformers/model_doc/vit.html#). ## Training data The ViT model was pretrained on [ImageNet-21k](http://www.image-net.org/), a dataset consisting of 14 million images and 21k classes, and fine-tuned on [ImageNet](http://www.image-net.org/challenges/LSVRC/2012/), a dataset consisting of 1 million images and 1k classes. ## Training procedure ### Preprocessing The exact details of preprocessing of images during training/validation can be found [here](https://github.com/google-research/vision_transformer/blob/master/vit_jax/input_pipeline.py). Images are resized/rescaled to the same resolution (224x224) and normalized across the RGB channels with mean (0.5, 0.5, 0.5) and standard deviation (0.5, 0.5, 0.5). ### Pretraining The model was trained on TPUv3 hardware (8 cores). All model variants are trained with a batch size of 4096 and learning rate warmup of 10k steps. For ImageNet, the authors found it beneficial to additionally apply gradient clipping at global norm 1. Training resolution is 224. ## Evaluation results For evaluation results on several image classification benchmarks, we refer to tables 2 and 5 of the original paper. Note that for fine-tuning, the best results are obtained with a higher resolution (384x384). Of course, increasing the model size will result in better performance. ### BibTeX entry and citation info ```bibtex @misc{wu2020visual, title={Visual Transformers: Token-based Image Representation and Processing for Computer Vision}, author={Bichen Wu and Chenfeng Xu and Xiaoliang Dai and Alvin Wan and Peizhao Zhang and Zhicheng Yan and Masayoshi Tomizuka and Joseph Gonzalez and Kurt Keutzer and Peter Vajda}, year={2020}, eprint={2006.03677}, archivePrefix={arXiv}, primaryClass={cs.CV} } ``` ```bibtex @inproceedings{deng2009imagenet, title={Imagenet: A large-scale hierarchical image database}, author={Deng, Jia and Dong, Wei and Socher, Richard and Li, Li-Jia and Li, Kai and Fei-Fei, Li}, booktitle={2009 IEEE conference on computer vision and pattern recognition}, pages={248--255}, year={2009}, organization={Ieee} } ```
[ "tench, tinca tinca", "goldfish, carassius auratus", "great white shark, white shark, man-eater, man-eating shark, carcharodon carcharias", "tiger shark, galeocerdo cuvieri", "hammerhead, hammerhead shark", "electric ray, crampfish, numbfish, torpedo", "stingray", "cock", "hen", "ostrich, struthio camelus", "brambling, fringilla montifringilla", "goldfinch, carduelis carduelis", "house finch, linnet, carpodacus mexicanus", "junco, snowbird", "indigo bunting, indigo finch, indigo bird, passerina cyanea", "robin, american robin, turdus migratorius", "bulbul", "jay", "magpie", "chickadee", "water ouzel, dipper", "kite", "bald eagle, american eagle, haliaeetus leucocephalus", "vulture", "great grey owl, great gray owl, strix nebulosa", "european fire salamander, salamandra salamandra", "common newt, triturus vulgaris", "eft", "spotted salamander, ambystoma maculatum", "axolotl, mud puppy, ambystoma mexicanum", "bullfrog, rana catesbeiana", "tree frog, tree-frog", "tailed frog, bell toad, ribbed toad, tailed toad, ascaphus trui", "loggerhead, loggerhead turtle, caretta caretta", "leatherback turtle, leatherback, leathery turtle, dermochelys coriacea", "mud turtle", "terrapin", "box turtle, box tortoise", "banded gecko", "common iguana, iguana, iguana iguana", "american chameleon, anole, anolis carolinensis", "whiptail, whiptail lizard", "agama", "frilled lizard, chlamydosaurus kingi", "alligator lizard", "gila monster, heloderma suspectum", "green lizard, lacerta viridis", "african chameleon, chamaeleo chamaeleon", "komodo dragon, komodo lizard, dragon lizard, giant lizard, varanus komodoensis", "african crocodile, nile crocodile, crocodylus niloticus", "american alligator, alligator mississipiensis", "triceratops", "thunder snake, worm snake, carphophis amoenus", "ringneck snake, ring-necked snake, ring snake", "hognose snake, puff adder, sand viper", "green snake, grass snake", "king snake, kingsnake", "garter snake, grass snake", "water snake", "vine snake", "night snake, hypsiglena torquata", "boa constrictor, constrictor constrictor", "rock python, rock snake, python sebae", "indian cobra, naja naja", "green mamba", "sea snake", "horned viper, cerastes, sand viper, horned asp, cerastes cornutus", "diamondback, diamondback rattlesnake, crotalus adamanteus", "sidewinder, horned rattlesnake, crotalus cerastes", "trilobite", "harvestman, daddy longlegs, phalangium opilio", "scorpion", "black and gold garden spider, argiope aurantia", "barn spider, araneus cavaticus", "garden spider, aranea diademata", "black widow, latrodectus mactans", "tarantula", "wolf spider, hunting spider", "tick", "centipede", "black grouse", "ptarmigan", "ruffed grouse, partridge, bonasa umbellus", "prairie chicken, prairie grouse, prairie fowl", "peacock", "quail", "partridge", "african grey, african gray, psittacus erithacus", "macaw", "sulphur-crested cockatoo, kakatoe galerita, cacatua galerita", "lorikeet", "coucal", "bee eater", "hornbill", "hummingbird", "jacamar", "toucan", "drake", "red-breasted merganser, mergus serrator", "goose", "black swan, cygnus atratus", "tusker", "echidna, spiny anteater, anteater", "platypus, duckbill, duckbilled platypus, duck-billed platypus, ornithorhynchus anatinus", "wallaby, brush kangaroo", "koala, koala bear, kangaroo bear, native bear, phascolarctos cinereus", "wombat", "jellyfish", "sea anemone, anemone", "brain coral", "flatworm, platyhelminth", "nematode, nematode worm, roundworm", "conch", "snail", "slug", "sea slug, nudibranch", "chiton, coat-of-mail shell, sea cradle, polyplacophore", "chambered nautilus, pearly nautilus, nautilus", "dungeness crab, cancer magister", "rock crab, cancer irroratus", "fiddler crab", "king crab, alaska crab, alaskan king crab, alaska king crab, paralithodes camtschatica", "american lobster, northern lobster, maine lobster, homarus americanus", "spiny lobster, langouste, rock lobster, crawfish, crayfish, sea crawfish", "crayfish, crawfish, crawdad, crawdaddy", "hermit crab", "isopod", "white stork, ciconia ciconia", "black stork, ciconia nigra", "spoonbill", "flamingo", "little blue heron, egretta caerulea", "american egret, great white heron, egretta albus", "bittern", "crane", "limpkin, aramus pictus", "european gallinule, porphyrio porphyrio", "american coot, marsh hen, mud hen, water hen, fulica americana", "bustard", "ruddy turnstone, arenaria interpres", "red-backed sandpiper, dunlin, erolia alpina", "redshank, tringa totanus", "dowitcher", "oystercatcher, oyster catcher", "pelican", "king penguin, aptenodytes patagonica", "albatross, mollymawk", "grey whale, gray whale, devilfish, eschrichtius gibbosus, eschrichtius robustus", "killer whale, killer, orca, grampus, sea wolf, orcinus orca", "dugong, dugong dugon", "sea lion", "chihuahua", "japanese spaniel", "maltese dog, maltese terrier, maltese", "pekinese, pekingese, peke", "shih-tzu", "blenheim spaniel", "papillon", "toy terrier", "rhodesian ridgeback", "afghan hound, afghan", "basset, basset hound", "beagle", "bloodhound, sleuthhound", "bluetick", "black-and-tan coonhound", "walker hound, walker foxhound", "english foxhound", "redbone", "borzoi, russian wolfhound", "irish wolfhound", "italian greyhound", "whippet", "ibizan hound, ibizan podenco", "norwegian elkhound, elkhound", "otterhound, otter hound", "saluki, gazelle hound", "scottish deerhound, deerhound", "weimaraner", "staffordshire bullterrier, staffordshire bull terrier", "american staffordshire terrier, staffordshire terrier, american pit bull terrier, pit bull terrier", "bedlington terrier", "border terrier", "kerry blue terrier", "irish terrier", "norfolk terrier", "norwich terrier", "yorkshire terrier", "wire-haired fox terrier", "lakeland terrier", "sealyham terrier, sealyham", "airedale, airedale terrier", "cairn, cairn terrier", "australian terrier", "dandie dinmont, dandie dinmont terrier", "boston bull, boston terrier", "miniature schnauzer", "giant schnauzer", "standard schnauzer", "scotch terrier, scottish terrier, scottie", "tibetan terrier, chrysanthemum dog", "silky terrier, sydney silky", "soft-coated wheaten terrier", "west highland white terrier", "lhasa, lhasa apso", "flat-coated retriever", "curly-coated retriever", "golden retriever", "labrador retriever", "chesapeake bay retriever", "german short-haired pointer", "vizsla, hungarian pointer", "english setter", "irish setter, red setter", "gordon setter", "brittany spaniel", "clumber, clumber spaniel", "english springer, english springer spaniel", "welsh springer spaniel", "cocker spaniel, english cocker spaniel, cocker", "sussex spaniel", "irish water spaniel", "kuvasz", "schipperke", "groenendael", "malinois", "briard", "kelpie", "komondor", "old english sheepdog, bobtail", "shetland sheepdog, shetland sheep dog, shetland", "collie", "border collie", "bouvier des flandres, bouviers des flandres", "rottweiler", "german shepherd, german shepherd dog, german police dog, alsatian", "doberman, doberman pinscher", "miniature pinscher", "greater swiss mountain dog", "bernese mountain dog", "appenzeller", "entlebucher", "boxer", "bull mastiff", "tibetan mastiff", "french bulldog", "great dane", "saint bernard, st bernard", "eskimo dog, husky", "malamute, malemute, alaskan malamute", "siberian husky", "dalmatian, coach dog, carriage dog", "affenpinscher, monkey pinscher, monkey dog", "basenji", "pug, pug-dog", "leonberg", "newfoundland, newfoundland dog", "great pyrenees", "samoyed, samoyede", "pomeranian", "chow, chow chow", "keeshond", "brabancon griffon", "pembroke, pembroke welsh corgi", "cardigan, cardigan welsh corgi", "toy poodle", "miniature poodle", "standard poodle", "mexican hairless", "timber wolf, grey wolf, gray wolf, canis lupus", "white wolf, arctic wolf, canis lupus tundrarum", "red wolf, maned wolf, canis rufus, canis niger", "coyote, prairie wolf, brush wolf, canis latrans", "dingo, warrigal, warragal, canis dingo", "dhole, cuon alpinus", "african hunting dog, hyena dog, cape hunting dog, lycaon pictus", "hyena, hyaena", "red fox, vulpes vulpes", "kit fox, vulpes macrotis", "arctic fox, white fox, alopex lagopus", "grey fox, gray fox, urocyon cinereoargenteus", "tabby, tabby cat", "tiger cat", "persian cat", "siamese cat, siamese", "egyptian cat", "cougar, puma, catamount, mountain lion, painter, panther, felis concolor", "lynx, catamount", "leopard, panthera pardus", "snow leopard, ounce, panthera uncia", "jaguar, panther, panthera onca, felis onca", "lion, king of beasts, panthera leo", "tiger, panthera tigris", "cheetah, chetah, acinonyx jubatus", "brown bear, bruin, ursus arctos", "american black bear, black bear, ursus americanus, euarctos americanus", "ice bear, polar bear, ursus maritimus, thalarctos maritimus", "sloth bear, melursus ursinus, ursus ursinus", "mongoose", "meerkat, mierkat", "tiger beetle", "ladybug, ladybeetle, lady beetle, ladybird, ladybird beetle", "ground beetle, carabid beetle", "long-horned beetle, longicorn, longicorn beetle", "leaf beetle, chrysomelid", "dung beetle", "rhinoceros beetle", "weevil", "fly", "bee", "ant, emmet, pismire", "grasshopper, hopper", "cricket", "walking stick, walkingstick, stick insect", "cockroach, roach", "mantis, mantid", "cicada, cicala", "leafhopper", "lacewing, lacewing fly", "dragonfly, darning needle, devil's darning needle, sewing needle, snake feeder, snake doctor, mosquito hawk, skeeter hawk", "damselfly", "admiral", "ringlet, ringlet butterfly", "monarch, monarch butterfly, milkweed butterfly, danaus plexippus", "cabbage butterfly", "sulphur butterfly, sulfur butterfly", "lycaenid, lycaenid butterfly", "starfish, sea star", "sea urchin", "sea cucumber, holothurian", "wood rabbit, cottontail, cottontail rabbit", "hare", "angora, angora rabbit", "hamster", "porcupine, hedgehog", "fox squirrel, eastern fox squirrel, sciurus niger", "marmot", "beaver", "guinea pig, cavia cobaya", "sorrel", "zebra", "hog, pig, grunter, squealer, sus scrofa", "wild boar, boar, sus scrofa", "warthog", "hippopotamus, hippo, river horse, hippopotamus amphibius", "ox", "water buffalo, water ox, asiatic buffalo, bubalus bubalis", "bison", "ram, tup", "bighorn, bighorn sheep, cimarron, rocky mountain bighorn, rocky mountain sheep, ovis canadensis", "ibex, capra ibex", "hartebeest", "impala, aepyceros melampus", "gazelle", "arabian camel, dromedary, camelus dromedarius", "llama", "weasel", "mink", "polecat, fitch, foulmart, foumart, mustela putorius", "black-footed ferret, ferret, mustela nigripes", "otter", "skunk, polecat, wood pussy", "badger", "armadillo", "three-toed sloth, ai, bradypus tridactylus", "orangutan, orang, orangutang, pongo pygmaeus", "gorilla, gorilla gorilla", "chimpanzee, chimp, pan troglodytes", "gibbon, hylobates lar", "siamang, hylobates syndactylus, symphalangus syndactylus", "guenon, guenon monkey", "patas, hussar monkey, erythrocebus patas", "baboon", "macaque", "langur", "colobus, colobus monkey", "proboscis monkey, nasalis larvatus", "marmoset", "capuchin, ringtail, cebus capucinus", "howler monkey, howler", "titi, titi monkey", "spider monkey, ateles geoffroyi", "squirrel monkey, saimiri sciureus", "madagascar cat, ring-tailed lemur, lemur catta", "indri, indris, indri indri, indri brevicaudatus", "indian elephant, elephas maximus", "african elephant, loxodonta africana", "lesser panda, red panda, panda, bear cat, cat bear, ailurus fulgens", "giant panda, panda, panda bear, coon bear, ailuropoda melanoleuca", "barracouta, snoek", "eel", "coho, cohoe, coho salmon, blue jack, silver salmon, oncorhynchus kisutch", "rock beauty, holocanthus tricolor", "anemone fish", "sturgeon", "gar, garfish, garpike, billfish, lepisosteus osseus", "lionfish", "puffer, pufferfish, blowfish, globefish", "abacus", "abaya", "academic gown, academic robe, judge's robe", "accordion, piano accordion, squeeze box", "acoustic guitar", "aircraft carrier, carrier, flattop, attack aircraft carrier", "airliner", "airship, dirigible", "altar", "ambulance", "amphibian, amphibious vehicle", "analog clock", "apiary, bee house", "apron", "ashcan, trash can, garbage can, wastebin, ash bin, ash-bin, ashbin, dustbin, trash barrel, trash bin", "assault rifle, assault gun", "backpack, back pack, knapsack, packsack, rucksack, haversack", "bakery, bakeshop, bakehouse", "balance beam, beam", "balloon", "ballpoint, ballpoint pen, ballpen, biro", "band aid", "banjo", "bannister, banister, balustrade, balusters, handrail", "barbell", "barber chair", "barbershop", "barn", "barometer", "barrel, cask", "barrow, garden cart, lawn cart, wheelbarrow", "baseball", "basketball", "bassinet", "bassoon", "bathing cap, swimming cap", "bath towel", "bathtub, bathing tub, bath, tub", "beach wagon, station wagon, wagon, estate car, beach waggon, station waggon, waggon", "beacon, lighthouse, beacon light, pharos", "beaker", "bearskin, busby, shako", "beer bottle", "beer glass", "bell cote, bell cot", "bib", "bicycle-built-for-two, tandem bicycle, tandem", "bikini, two-piece", "binder, ring-binder", "binoculars, field glasses, opera glasses", "birdhouse", "boathouse", "bobsled, bobsleigh, bob", "bolo tie, bolo, bola tie, bola", "bonnet, poke bonnet", "bookcase", "bookshop, bookstore, bookstall", "bottlecap", "bow", "bow tie, bow-tie, bowtie", "brass, memorial tablet, plaque", "brassiere, bra, bandeau", "breakwater, groin, groyne, mole, bulwark, seawall, jetty", "breastplate, aegis, egis", "broom", "bucket, pail", "buckle", "bulletproof vest", "bullet train, bullet", "butcher shop, meat market", "cab, hack, taxi, taxicab", "caldron, cauldron", "candle, taper, wax light", "cannon", "canoe", "can opener, tin opener", "cardigan", "car mirror", "carousel, carrousel, merry-go-round, roundabout, whirligig", "carpenter's kit, tool kit", "carton", "car wheel", "cash machine, cash dispenser, automated teller machine, automatic teller machine, automated teller, automatic teller, atm", "cassette", "cassette player", "castle", "catamaran", "cd player", "cello, violoncello", "cellular telephone, cellular phone, cellphone, cell, mobile phone", "chain", "chainlink fence", "chain mail, ring mail, mail, chain armor, chain armour, ring armor, ring armour", "chain saw, chainsaw", "chest", "chiffonier, commode", "chime, bell, gong", "china cabinet, china closet", "christmas stocking", "church, church building", "cinema, movie theater, movie theatre, movie house, picture palace", "cleaver, meat cleaver, chopper", "cliff dwelling", "cloak", "clog, geta, patten, sabot", "cocktail shaker", "coffee mug", "coffeepot", "coil, spiral, volute, whorl, helix", "combination lock", "computer keyboard, keypad", "confectionery, confectionary, candy store", "container ship, containership, container vessel", "convertible", "corkscrew, bottle screw", "cornet, horn, trumpet, trump", "cowboy boot", "cowboy hat, ten-gallon hat", "cradle", "crane", "crash helmet", "crate", "crib, cot", "crock pot", "croquet ball", "crutch", "cuirass", "dam, dike, dyke", "desk", "desktop computer", "dial telephone, dial phone", "diaper, nappy, napkin", "digital clock", "digital watch", "dining table, board", "dishrag, dishcloth", "dishwasher, dish washer, dishwashing machine", "disk brake, disc brake", "dock, dockage, docking facility", "dogsled, dog sled, dog sleigh", "dome", "doormat, welcome mat", "drilling platform, offshore rig", "drum, membranophone, tympan", "drumstick", "dumbbell", "dutch oven", "electric fan, blower", "electric guitar", "electric locomotive", "entertainment center", "envelope", "espresso maker", "face powder", "feather boa, boa", "file, file cabinet, filing cabinet", "fireboat", "fire engine, fire truck", "fire screen, fireguard", "flagpole, flagstaff", "flute, transverse flute", "folding chair", "football helmet", "forklift", "fountain", "fountain pen", "four-poster", "freight car", "french horn, horn", "frying pan, frypan, skillet", "fur coat", "garbage truck, dustcart", "gasmask, respirator, gas helmet", "gas pump, gasoline pump, petrol pump, island dispenser", "goblet", "go-kart", "golf ball", "golfcart, golf cart", "gondola", "gong, tam-tam", "gown", "grand piano, grand", "greenhouse, nursery, glasshouse", "grille, radiator grille", "grocery store, grocery, food market, market", "guillotine", "hair slide", "hair spray", "half track", "hammer", "hamper", "hand blower, blow dryer, blow drier, hair dryer, hair drier", "hand-held computer, hand-held microcomputer", "handkerchief, hankie, hanky, hankey", "hard disc, hard disk, fixed disk", "harmonica, mouth organ, harp, mouth harp", "harp", "harvester, reaper", "hatchet", "holster", "home theater, home theatre", "honeycomb", "hook, claw", "hoopskirt, crinoline", "horizontal bar, high bar", "horse cart, horse-cart", "hourglass", "ipod", "iron, smoothing iron", "jack-o'-lantern", "jean, blue jean, denim", "jeep, landrover", "jersey, t-shirt, tee shirt", "jigsaw puzzle", "jinrikisha, ricksha, rickshaw", "joystick", "kimono", "knee pad", "knot", "lab coat, laboratory coat", "ladle", "lampshade, lamp shade", "laptop, laptop computer", "lawn mower, mower", "lens cap, lens cover", "letter opener, paper knife, paperknife", "library", "lifeboat", "lighter, light, igniter, ignitor", "limousine, limo", "liner, ocean liner", "lipstick, lip rouge", "loafer", "lotion", "loudspeaker, speaker, speaker unit, loudspeaker system, speaker system", "loupe, jeweler's loupe", "lumbermill, sawmill", "magnetic compass", "mailbag, postbag", "mailbox, letter box", "maillot", "maillot, tank suit", "manhole cover", "maraca", "marimba, xylophone", "mask", "matchstick", "maypole", "maze, labyrinth", "measuring cup", "medicine chest, medicine cabinet", "megalith, megalithic structure", "microphone, mike", "microwave, microwave oven", "military uniform", "milk can", "minibus", "miniskirt, mini", "minivan", "missile", "mitten", "mixing bowl", "mobile home, manufactured home", "model t", "modem", "monastery", "monitor", "moped", "mortar", "mortarboard", "mosque", "mosquito net", "motor scooter, scooter", "mountain bike, all-terrain bike, off-roader", "mountain tent", "mouse, computer mouse", "mousetrap", "moving van", "muzzle", "nail", "neck brace", "necklace", "nipple", "notebook, notebook computer", "obelisk", "oboe, hautboy, hautbois", "ocarina, sweet potato", "odometer, hodometer, mileometer, milometer", "oil filter", "organ, pipe organ", "oscilloscope, scope, cathode-ray oscilloscope, cro", "overskirt", "oxcart", "oxygen mask", "packet", "paddle, boat paddle", "paddlewheel, paddle wheel", "padlock", "paintbrush", "pajama, pyjama, pj's, jammies", "palace", "panpipe, pandean pipe, syrinx", "paper towel", "parachute, chute", "parallel bars, bars", "park bench", "parking meter", "passenger car, coach, carriage", "patio, terrace", "pay-phone, pay-station", "pedestal, plinth, footstall", "pencil box, pencil case", "pencil sharpener", "perfume, essence", "petri dish", "photocopier", "pick, plectrum, plectron", "pickelhaube", "picket fence, paling", "pickup, pickup truck", "pier", "piggy bank, penny bank", "pill bottle", "pillow", "ping-pong ball", "pinwheel", "pirate, pirate ship", "pitcher, ewer", "plane, carpenter's plane, woodworking plane", "planetarium", "plastic bag", "plate rack", "plow, plough", "plunger, plumber's helper", "polaroid camera, polaroid land camera", "pole", "police van, police wagon, paddy wagon, patrol wagon, wagon, black maria", "poncho", "pool table, billiard table, snooker table", "pop bottle, soda bottle", "pot, flowerpot", "potter's wheel", "power drill", "prayer rug, prayer mat", "printer", "prison, prison house", "projectile, missile", "projector", "puck, hockey puck", "punching bag, punch bag, punching ball, punchball", "purse", "quill, quill pen", "quilt, comforter, comfort, puff", "racer, race car, racing car", "racket, racquet", "radiator", "radio, wireless", "radio telescope, radio reflector", "rain barrel", "recreational vehicle, rv, r.v.", "reel", "reflex camera", "refrigerator, icebox", "remote control, remote", "restaurant, eating house, eating place, eatery", "revolver, six-gun, six-shooter", "rifle", "rocking chair, rocker", "rotisserie", "rubber eraser, rubber, pencil eraser", "rugby ball", "rule, ruler", "running shoe", "safe", "safety pin", "saltshaker, salt shaker", "sandal", "sarong", "sax, saxophone", "scabbard", "scale, weighing machine", "school bus", "schooner", "scoreboard", "screen, crt screen", "screw", "screwdriver", "seat belt, seatbelt", "sewing machine", "shield, buckler", "shoe shop, shoe-shop, shoe store", "shoji", "shopping basket", "shopping cart", "shovel", "shower cap", "shower curtain", "ski", "ski mask", "sleeping bag", "slide rule, slipstick", "sliding door", "slot, one-armed bandit", "snorkel", "snowmobile", "snowplow, snowplough", "soap dispenser", "soccer ball", "sock", "solar dish, solar collector, solar furnace", "sombrero", "soup bowl", "space bar", "space heater", "space shuttle", "spatula", "speedboat", "spider web, spider's web", "spindle", "sports car, sport car", "spotlight, spot", "stage", "steam locomotive", "steel arch bridge", "steel drum", "stethoscope", "stole", "stone wall", "stopwatch, stop watch", "stove", "strainer", "streetcar, tram, tramcar, trolley, trolley car", "stretcher", "studio couch, day bed", "stupa, tope", "submarine, pigboat, sub, u-boat", "suit, suit of clothes", "sundial", "sunglass", "sunglasses, dark glasses, shades", "sunscreen, sunblock, sun blocker", "suspension bridge", "swab, swob, mop", "sweatshirt", "swimming trunks, bathing trunks", "swing", "switch, electric switch, electrical switch", "syringe", "table lamp", "tank, army tank, armored combat vehicle, armoured combat vehicle", "tape player", "teapot", "teddy, teddy bear", "television, television system", "tennis ball", "thatch, thatched roof", "theater curtain, theatre curtain", "thimble", "thresher, thrasher, threshing machine", "throne", "tile roof", "toaster", "tobacco shop, tobacconist shop, tobacconist", "toilet seat", "torch", "totem pole", "tow truck, tow car, wrecker", "toyshop", "tractor", "trailer truck, tractor trailer, trucking rig, rig, articulated lorry, semi", "tray", "trench coat", "tricycle, trike, velocipede", "trimaran", "tripod", "triumphal arch", "trolleybus, trolley coach, trackless trolley", "trombone", "tub, vat", "turnstile", "typewriter keyboard", "umbrella", "unicycle, monocycle", "upright, upright piano", "vacuum, vacuum cleaner", "vase", "vault", "velvet", "vending machine", "vestment", "viaduct", "violin, fiddle", "volleyball", "waffle iron", "wall clock", "wallet, billfold, notecase, pocketbook", "wardrobe, closet, press", "warplane, military plane", "washbasin, handbasin, washbowl, lavabo, wash-hand basin", "washer, automatic washer, washing machine", "water bottle", "water jug", "water tower", "whiskey jug", "whistle", "wig", "window screen", "window shade", "windsor tie", "wine bottle", "wing", "wok", "wooden spoon", "wool, woolen, woollen", "worm fence, snake fence, snake-rail fence, virginia fence", "wreck", "yawl", "yurt", "web site, website, internet site, site", "comic book", "crossword puzzle, crossword", "street sign", "traffic light, traffic signal, stoplight", "book jacket, dust cover, dust jacket, dust wrapper", "menu", "plate", "guacamole", "consomme", "hot pot, hotpot", "trifle", "ice cream, icecream", "ice lolly, lolly, lollipop, popsicle", "french loaf", "bagel, beigel", "pretzel", "cheeseburger", "hotdog, hot dog, red hot", "mashed potato", "head cabbage", "broccoli", "cauliflower", "zucchini, courgette", "spaghetti squash", "acorn squash", "butternut squash", "cucumber, cuke", "artichoke, globe artichoke", "bell pepper", "cardoon", "mushroom", "granny smith", "strawberry", "orange", "lemon", "fig", "pineapple, ananas", "banana", "jackfruit, jak, jack", "custard apple", "pomegranate", "hay", "carbonara", "chocolate sauce, chocolate syrup", "dough", "meat loaf, meatloaf", "pizza, pizza pie", "potpie", "burrito", "red wine", "espresso", "cup", "eggnog", "alp", "bubble", "cliff, drop, drop-off", "coral reef", "geyser", "lakeside, lakeshore", "promontory, headland, head, foreland", "sandbar, sand bar", "seashore, coast, seacoast, sea-coast", "valley, vale", "volcano", "ballplayer, baseball player", "groom, bridegroom", "scuba diver", "rapeseed", "daisy", "yellow lady's slipper, yellow lady-slipper, cypripedium calceolus, cypripedium parviflorum", "corn", "acorn", "hip, rose hip, rosehip", "buckeye, horse chestnut, conker", "coral fungus", "agaric", "gyromitra", "stinkhorn, carrion fungus", "earthstar", "hen-of-the-woods, hen of the woods, polyporus frondosus, grifola frondosa", "bolete", "ear, spike, capitulum", "toilet tissue, toilet paper, bathroom tissue" ]
liyijing024/swin-base-patch4-window7-224-in22k-finetuned
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # swin-base-patch4-window7-224-in22k-finetuned This model is a fine-tuned version of [microsoft/swin-base-patch4-window7-224-in22k](https://huggingface.co/microsoft/swin-base-patch4-window7-224-in22k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.0021 - Accuracy: 0.9993 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 512 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.0253 | 1.0 | 889 | 0.0060 | 0.9980 | | 0.0134 | 2.0 | 1778 | 0.0031 | 0.9989 | | 0.0118 | 3.0 | 2667 | 0.0021 | 0.9993 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.8.0+cu111 - Datasets 2.3.3.dev0 - Tokenizers 0.12.1
[ "sans-serif", "scripts", "serif" ]
JoonJoon/swin-tiny-patch4-window7-224-finetuned-eurosat
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # swin-tiny-patch4-window7-224-finetuned-eurosat This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.0814 - Accuracy: 0.9726 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 96 - eval_batch_size: 96 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 384 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.3216 | 0.99 | 63 | 0.1349 | 0.9589 | | 0.2 | 1.99 | 126 | 0.0873 | 0.9704 | | 0.1664 | 2.99 | 189 | 0.0814 | 0.9726 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.2+cu102 - Datasets 2.3.2 - Tokenizers 0.11.6
[ "annualcrop", "forest", "herbaceousvegetation", "highway", "industrial", "pasture", "permanentcrop", "residential", "river", "sealake" ]
liyijing024/swin-base-patch4-window7-224-in22k-Chinese-finetuned
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # swin-base-patch4-window7-224-in22k-Chinese-finetuned This model is a fine-tuned version of [microsoft/swin-base-patch4-window7-224-in22k](https://huggingface.co/microsoft/swin-base-patch4-window7-224-in22k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.0000 - Accuracy: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 512 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.0121 | 0.99 | 140 | 0.0001 | 1.0 | | 0.0103 | 1.99 | 280 | 0.0001 | 1.0 | | 0.0049 | 2.99 | 420 | 0.0000 | 1.0 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.8.0+cu111 - Datasets 2.3.3.dev0 - Tokenizers 0.12.1
[ "fangsong", "heiti", "kaiti", "lishu", "songti" ]
pthpth/ViTFineTuned
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ViTFineTuned This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the KTH-TIPS2-b dataset. It achieves the following results on the evaluation set: - Loss: 0.0075 - Accuracy: 1.0 ## Model description Transfer learning by fine tuning the Vision Transformer by Google on KTP-TIP2-b dataset. ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 15 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.2859 | 0.99 | 67 | 0.2180 | 0.9784 | | 0.293 | 1.99 | 134 | 0.3308 | 0.9185 | | 0.1444 | 2.99 | 201 | 0.1532 | 0.9568 | | 0.0833 | 3.99 | 268 | 0.0515 | 0.9856 | | 0.1007 | 4.99 | 335 | 0.0295 | 0.9904 | | 0.0372 | 5.99 | 402 | 0.0574 | 0.9808 | | 0.0919 | 6.99 | 469 | 0.0537 | 0.9880 | | 0.0135 | 7.99 | 536 | 0.0117 | 0.9952 | | 0.0472 | 8.99 | 603 | 0.0075 | 1.0 | | 0.0151 | 9.99 | 670 | 0.0048 | 1.0 | | 0.0052 | 10.99 | 737 | 0.0073 | 0.9976 | | 0.0109 | 11.99 | 804 | 0.0198 | 0.9952 | | 0.0033 | 12.99 | 871 | 0.0066 | 0.9976 | | 0.011 | 13.99 | 938 | 0.0067 | 0.9976 | | 0.0032 | 14.99 | 1005 | 0.0060 | 0.9976 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
[ "aluminium_foil", "brown_bread", "wool", "corduroy", "cork", "cotton", "cracker", "lettuce_leaf", "linen", "white_bread", "wood" ]