Question
stringlengths
49
4.42k
answer
listlengths
1
1
$\triangle A B C$ is on a coordinate plane such that $A=(3,6)$, $B=(T, 0)$, and $C=(2 T-1,1-T)$. Let $\ell$ be the line containing the altitude to $\overline{B C}$. Compute the $y$-intercept of $\ell$.
[ "3" ]
Let $T=3$. In triangle $A B C, A B=A C-2=T$, and $\mathrm{m} \angle A=60^{\circ}$. Compute $B C^{2}$.
[ "19" ]
Let $T=19$. Let $\mathcal{S}_{1}$ denote the arithmetic sequence $0, \frac{1}{4}, \frac{1}{2}, \ldots$, and let $\mathcal{S}_{2}$ denote the arithmetic sequence $0, \frac{1}{6}, \frac{1}{3}, \ldots$ Compute the $T^{\text {th }}$ smallest number that occurs in both sequences $\mathcal{S}_{1}$ and $\mathcal{S}_{2}$.
[ "9" ]
$\quad$ Let $T=9$. An integer $n$ is randomly selected from the set $\{1,2,3, \ldots, 2 T\}$. Compute the probability that the integer $\left|n^{3}-7 n^{2}+13 n-6\right|$ is a prime number.
[ "$\\frac{1}{9}$" ]
Let $A=\frac{1}{9}$, and let $B=\frac{1}{25}$. In $\frac{1}{A}$ minutes, 20 frogs can eat 1800 flies. At this rate, in $\frac{1}{B}$ minutes, how many flies will 15 frogs be able to eat?
[ "3750" ]
Let $T=5$. If $|T|-1+3 i=\frac{1}{z}$, compute the sum of the real and imaginary parts of $z$.
[ "$\\frac{1}{25}$" ]
Let $T=10$. Ann spends 80 seconds climbing up a $T$ meter rope at a constant speed, and she spends 70 seconds climbing down the same rope at a constant speed (different from her upward speed). Ann begins climbing up and down the rope repeatedly, and she does not pause after climbing the length of the rope. After $T$ minutes, how many meters will Ann have climbed in either direction?
[ "80" ]
Let $T=800$. Simplify $2^{\log _{4} T} / 2^{\log _{16} 64}$.
[ "10" ]
Let $P(x)=x^{2}+T x+800$, and let $r_{1}$ and $r_{2}$ be the roots of $P(x)$. The polynomial $Q(x)$ is quadratic, it has leading coefficient 1, and it has roots $r_{1}+1$ and $r_{2}+1$. Find the sum of the coefficients of $Q(x)$.
[ "800" ]
Let $T=12$. Equilateral triangle $A B C$ is given with side length $T$. Points $D$ and $E$ are the midpoints of $\overline{A B}$ and $\overline{A C}$, respectively. Point $F$ lies in space such that $\triangle D E F$ is equilateral and $\triangle D E F$ lies in a plane perpendicular to the plane containing $\triangle A B C$. Compute the volume of tetrahedron $A B C F$.
[ "108" ]
In triangle $A B C, A B=5, A C=6$, and $\tan \angle B A C=-\frac{4}{3}$. Compute the area of $\triangle A B C$.
[ "12" ]
Compute the number of positive integers less than 25 that cannot be written as the difference of two squares of integers.
[ "6" ]
For digits $A, B$, and $C,(\underline{A} \underline{B})^{2}+(\underline{A} \underline{C})^{2}=1313$. Compute $A+B+C$.
[ "13" ]
Points $P, Q, R$, and $S$ lie in the interior of square $A B C D$ such that triangles $A B P, B C Q$, $C D R$, and $D A S$ are equilateral. If $A B=1$, compute the area of quadrilateral $P Q R S$.
[ "$2-\\sqrt{3}$" ]
For real numbers $\alpha, B$, and $C$, the zeros of $T(x)=x^{3}+x^{2}+B x+C \operatorname{are~}^{2} \alpha$, $\cos ^{2} \alpha$, and $-\csc ^{2} \alpha$. Compute $T(5)$.
[ "$\\frac{567}{4}$" ]
Let $\mathcal{R}$ denote the circular region bounded by $x^{2}+y^{2}=36$. The lines $x=4$ and $y=3$ partition $\mathcal{R}$ into four regions $\mathcal{R}_{1}, \mathcal{R}_{2}, \mathcal{R}_{3}$, and $\mathcal{R}_{4}$. $\left[\mathcal{R}_{i}\right]$ denotes the area of region $\mathcal{R}_{i}$. If $\left[\mathcal{R}_{1}\right]>\left[\mathcal{R}_{2}\right]>\left[\mathcal{R}_{3}\right]>\left[\mathcal{R}_{4}\right]$, compute $\left[\mathcal{R}_{1}\right]-\left[\mathcal{R}_{2}\right]-\left[\mathcal{R}_{3}\right]+\left[\mathcal{R}_{4}\right]$.
[ "48" ]
Let $x$ be a real number in the interval $[0,360]$ such that the four expressions $\sin x^{\circ}, \cos x^{\circ}$, $\tan x^{\circ}, \cot x^{\circ}$ take on exactly three distinct (finite) real values. Compute the sum of all possible values of $x$.
[ "990" ]
Let $a_{1}, a_{2}, a_{3}, \ldots$ be an arithmetic sequence, and let $b_{1}, b_{2}, b_{3}, \ldots$ be a geometric sequence. The sequence $c_{1}, c_{2}, c_{3}, \ldots$ has $c_{n}=a_{n}+b_{n}$ for each positive integer $n$. If $c_{1}=1, c_{2}=4, c_{3}=15$, and $c_{4}=2$, compute $c_{5}$.
[ "61" ]
In square $A B C D$ with diagonal $1, E$ is on $\overline{A B}$ and $F$ is on $\overline{B C}$ with $\mathrm{m} \angle B C E=\mathrm{m} \angle B A F=$ $30^{\circ}$. If $\overline{C E}$ and $\overline{A F}$ intersect at $G$, compute the distance between the incenters of triangles $A G E$ and $C G F$.
[ "$4-2 \\sqrt{3}$" ]
Let $a, b, m, n$ be positive integers with $a m=b n=120$ and $a \neq b$. In the coordinate plane, let $A=(a, m), B=(b, n)$, and $O=(0,0)$. If $X$ is a point in the plane such that $A O B X$ is a parallelogram, compute the minimum area of $A O B X$.
[ "44" ]
Let $\mathcal{S}$ be the set of integers from 0 to 9999 inclusive whose base- 2 and base- 5 representations end in the same four digits. (Leading zeros are allowed, so $1=0001_{2}=0001_{5}$ is one such number.) Compute the remainder when the sum of the elements of $\mathcal{S}$ is divided by 10,000.
[ "6248" ]
If $A, R, M$, and $L$ are positive integers such that $A^{2}+R^{2}=20$ and $M^{2}+L^{2}=10$, compute the product $A \cdot R \cdot M \cdot L$.
[ "24" ]
Let $T=49$. Compute the last digit, in base 10, of the sum $$ T^{2}+(2 T)^{2}+(3 T)^{2}+\ldots+\left(T^{2}\right)^{2} $$
[ "5" ]
A fair coin is flipped $n$ times. Compute the smallest positive integer $n$ for which the probability that the coin has the same result every time is less than $10 \%$.
[ "5" ]
Let $T=5$. Compute the smallest positive integer $n$ such that there are at least $T$ positive integers in the domain of $f(x)=\sqrt{-x^{2}-2 x+n}$.
[ "35" ]
Let $T=35$. Compute the smallest positive real number $x$ such that $\frac{\lfloor x\rfloor}{x-\lfloor x\rfloor}=T$.
[ "$\\frac{36}{35}$" ]
Let set $S=\{1,2,3,4,5,6\}$, and let set $T$ be the set of all subsets of $S$ (including the empty set and $S$ itself). Let $t_{1}, t_{2}, t_{3}$ be elements of $T$, not necessarily distinct. The ordered triple $\left(t_{1}, t_{2}, t_{3}\right)$ is called satisfactory if either (a) both $t_{1} \subseteq t_{3}$ and $t_{2} \subseteq t_{3}$, or (b) $t_{3} \subseteq t_{1}$ and $t_{3} \subseteq t_{2}$. Compute the number of satisfactory ordered triples $\left(t_{1}, t_{2}, t_{3}\right)$.
[ "31186" ]
Let $A B C D$ be a parallelogram with $\angle A B C$ obtuse. Let $\overline{B E}$ be the altitude to side $\overline{A D}$ of $\triangle A B D$. Let $X$ be the point of intersection of $\overline{A C}$ and $\overline{B E}$, and let $F$ be the point of intersection of $\overline{A B}$ and $\overleftrightarrow{D X}$. If $B C=30, C D=13$, and $B E=12$, compute the ratio $\frac{A C}{A F}$.
[ "$\\frac{222}{13}$" ]
Compute the sum of all positive two-digit factors of $2^{32}-1$.
[ "168" ]
Compute all ordered pairs of real numbers $(x, y)$ that satisfy both of the equations: $$ x^{2}+y^{2}=6 y-4 x+12 \quad \text { and } \quad 4 y=x^{2}+4 x+12 $$
[ "$(-6,6)$, $(2,6)$" ]
Define $\log ^{*}(n)$ to be the smallest number of times the log function must be iteratively applied to $n$ to get a result less than or equal to 1 . For example, $\log ^{*}(1000)=2$ since $\log 1000=3$ and $\log (\log 1000)=\log 3=0.477 \ldots \leq 1$. Let $a$ be the smallest integer such that $\log ^{*}(a)=3$. Compute the number of zeros in the base 10 representation of $a$.
[ "9" ]
An integer $N$ is worth 1 point for each pair of digits it contains that forms a prime in its original order. For example, 6733 is worth 3 points (for 67,73 , and 73 again), and 20304 is worth 2 points (for 23 and 03). Compute the smallest positive integer that is worth exactly 11 points. [Note: Leading zeros are not allowed in the original integer.]
[ "100337" ]
The six sides of convex hexagon $A_{1} A_{2} A_{3} A_{4} A_{5} A_{6}$ are colored red. Each of the diagonals of the hexagon is colored either red or blue. Compute the number of colorings such that every triangle $A_{i} A_{j} A_{k}$ has at least one red side.
[ "392" ]
Compute the smallest positive integer $n$ such that $n^{n}$ has at least 1,000,000 positive divisors.
[ "84" ]
Given an arbitrary finite sequence of letters (represented as a word), a subsequence is a sequence of one or more letters that appear in the same order as in the original sequence. For example, $N, C T, O T T$, and CONTEST are subsequences of the word CONTEST, but NOT, ONSET, and TESS are not. Assuming the standard English alphabet $\{A, B, \ldots, Z\}$, compute the number of distinct four-letter "words" for which $E E$ is a subsequence.
[ "3851" ]
Six solid regular tetrahedra are placed on a flat surface so that their bases form a regular hexagon $\mathcal{H}$ with side length 1 , and so that the vertices not lying in the plane of $\mathcal{H}$ (the "top" vertices) are themselves coplanar. A spherical ball of radius $r$ is placed so that its center is directly above the center of the hexagon. The sphere rests on the tetrahedra so that it is tangent to one edge from each tetrahedron. If the ball's center is coplanar with the top vertices of the tetrahedra, compute $r$.
[ "$\\frac{\\sqrt{2}}{3}$" ]
Derek starts at the point $(0,0)$, facing the point $(0,1)$, and he wants to get to the point $(1,1)$. He takes unit steps parallel to the coordinate axes. A move consists of either a step forward, or a $90^{\circ}$ right (clockwise) turn followed by a step forward, so that his path does not contain any left turns. His path is restricted to the square region defined by $0 \leq x \leq 17$ and $0 \leq y \leq 17$. Compute the number of ways he can get to $(1,1)$ without returning to any previously visited point.
[ "529" ]
The equations $x^{3}+A x+10=0$ and $x^{3}+B x^{2}+50=0$ have two roots in common. Compute the product of these common roots.
[ "$5 \\sqrt[3]{4}$" ]
Let $N$ be a perfect square between 100 and 400 , inclusive. What is the only digit that cannot appear in $N$ ?
[ "7" ]
Let $T=7$. Let $A$ and $B$ be distinct digits in base $T$, and let $N$ be the largest number of the form $\underline{A} \underline{B} \underline{A}_{T}$. Compute the value of $N$ in base 10 .
[ "335" ]
Let T be an integer. Given a nonzero integer $n$, let $f(n)$ denote the sum of all numbers of the form $i^{d}$, where $i=\sqrt{-1}$, and $d$ is a divisor (positive or negative) of $n$. Compute $f(2 T+1)$.
[ "0" ]
Let $T=0$. Compute the real value of $x$ for which there exists a solution to the system of equations $$ \begin{aligned} x+y & =0 \\ x^{3}-y^{3} & =54+T . \end{aligned} $$
[ "3" ]
Let $T=3$. In $\triangle A B C, A C=T^{2}, \mathrm{~m} \angle A B C=45^{\circ}$, and $\sin \angle A C B=\frac{8}{9}$. Compute $A B$.
[ "$8 \\sqrt{2}$" ]
Let $T=9$. The sequence $a_{1}, a_{2}, a_{3}, \ldots$ is an arithmetic progression, $d$ is the common difference, $a_{T}=10$, and $a_{K}=2010$, where $K>T$. If $d$ is an integer, compute the value of $K$ such that $|K-d|$ is minimal.
[ "49" ]
Let $A$ be the number you will receive from position 7 , and let $B$ be the number you will receive from position 9 . There are exactly two ordered pairs of real numbers $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)$ that satisfy both $|x+y|=6(\sqrt{A}-5)$ and $x^{2}+y^{2}=B^{2}$. Compute $\left|x_{1}\right|+\left|y_{1}\right|+\left|x_{2}\right|+\left|y_{2}\right|$.
[ "24" ]
Let $T=23$. In triangle $A B C$, the altitude from $A$ to $\overline{B C}$ has length $\sqrt{T}, A B=A C$, and $B C=T-K$, where $K$ is the real root of the equation $x^{3}-8 x^{2}-8 x-9=0$. Compute the length $A B$.
[ "$6 \\sqrt{2}$" ]
Let $T=8$. A cube has volume $T-2$. The cube's surface area equals one-eighth the surface area of a $2 \times 2 \times n$ rectangular prism. Compute $n$.
[ "23" ]
Let $T=98721$, and let $K$ be the sum of the digits of $T$. Let $A_{n}$ be the number of ways to tile a $1 \times n$ rectangle using $1 \times 3$ and $1 \times 1$ tiles that do not overlap. Tiles of both types need not be used; for example, $A_{3}=2$ because a $1 \times 3$ rectangle can be tiled with three $1 \times 1$ tiles or one $1 \times 3$ tile. Compute the smallest value of $n$ such that $A_{n} \geq K$.
[ "10" ]
Let $T=3$, and let $K=T+2$. Compute the largest $K$-digit number which has distinct digits and is a multiple of 63.
[ "98721" ]
Let $T\neq 0$. Suppose that $a, b, c$, and $d$ are real numbers so that $\log _{a} c=\log _{b} d=T$. Compute $$ \frac{\log _{\sqrt{a b}}(c d)^{3}}{\log _{a} c+\log _{b} d} $$
[ "3" ]
Let $T=2030$. Given that $\mathrm{A}, \mathrm{D}, \mathrm{E}, \mathrm{H}, \mathrm{S}$, and $\mathrm{W}$ are distinct digits, and that $\underline{\mathrm{W}} \underline{\mathrm{A}} \underline{\mathrm{D}} \underline{\mathrm{E}}+\underline{\mathrm{A}} \underline{\mathrm{S}} \underline{\mathrm{H}}=T$, what is the largest possible value of $\mathrm{D}+\mathrm{E}$ ?
[ "9" ]
Let $f(x)=2^{x}+x^{2}$. Compute the smallest integer $n>10$ such that $f(n)$ and $f(10)$ have the same units digit.
[ "30" ]
In rectangle $P A U L$, point $D$ is the midpoint of $\overline{U L}$ and points $E$ and $F$ lie on $\overline{P L}$ and $\overline{P A}$, respectively such that $\frac{P E}{E L}=\frac{3}{2}$ and $\frac{P F}{F A}=2$. Given that $P A=36$ and $P L=25$, compute the area of pentagon $A U D E F$.
[ "630" ]
Rectangle $A R M L$ has length 125 and width 8. The rectangle is divided into 1000 squares of area 1 by drawing in gridlines parallel to the sides of $A R M L$. Diagonal $\overline{A M}$ passes through the interior of exactly $n$ of the 1000 unit squares. Compute $n$.
[ "132" ]
Compute the least integer $n>1$ such that the product of all positive divisors of $n$ equals $n^{4}$.
[ "24" ]
Each of the six faces of a cube is randomly colored red or blue with equal probability. Compute the probability that no three faces of the same color share a common vertex.
[ "$\\frac{9}{32}$" ]
Scalene triangle $A B C$ has perimeter 2019 and integer side lengths. The angle bisector from $C$ meets $\overline{A B}$ at $D$ such that $A D=229$. Given that $A C$ and $A D$ are relatively prime, compute $B C$.
[ "888" ]
Given that $a$ and $b$ are positive and $$ \lfloor 20-a\rfloor=\lfloor 19-b\rfloor=\lfloor a b\rfloor, $$ compute the least upper bound of the set of possible values of $a+b$.
[ "$\\frac{41}{5}$" ]
Compute the number of five-digit integers $\underline{M} \underline{A} \underline{R} \underline{T} \underline{Y}$, with all digits distinct, such that $M>A>R$ and $R<T<Y$.
[ "1512" ]
In parallelogram $A R M L$, points $P$ and $Q$ are the midpoints of sides $\overline{R M}$ and $\overline{A L}$, respectively. Point $X$ lies on segment $\overline{P Q}$, and $P X=3, R X=4$, and $P R=5$. Point $I$ lies on segment $\overline{R X}$ such that $I A=I L$. Compute the maximum possible value of $\frac{[P Q R]}{[L I P]}$.
[ "$\\frac{4}{3}$" ]
Given that $a, b, c$, and $d$ are positive integers such that $$ a ! \cdot b ! \cdot c !=d ! \quad \text { and } \quad a+b+c+d=37 $$ compute the product $a b c d$.
[ "2240" ]
Compute the value of $$ \sin \left(6^{\circ}\right) \cdot \sin \left(12^{\circ}\right) \cdot \sin \left(24^{\circ}\right) \cdot \sin \left(42^{\circ}\right)+\sin \left(12^{\circ}\right) \cdot \sin \left(24^{\circ}\right) \cdot \sin \left(42^{\circ}\right) \text {. } $$
[ "$\\frac{1}{16}$" ]
Let $a=19, b=20$, and $c=21$. Compute $$ \frac{a^{2}+b^{2}+c^{2}+2 a b+2 b c+2 c a}{a+b+c} $$
[ "60" ]
Let $T=60$ . Lydia is a professional swimmer and can swim one-fifth of a lap of a pool in an impressive 20.19 seconds, and she swims at a constant rate. Rounded to the nearest integer, compute the number of minutes required for Lydia to swim $T$ laps.
[ "101" ]
Let $T=101$. In $\triangle A B C, \mathrm{~m} \angle C=90^{\circ}$ and $A C=B C=\sqrt{T-3}$. Circles $O$ and $P$ each have radius $r$ and lie inside $\triangle A B C$. Circle $O$ is tangent to $\overline{A C}$ and $\overline{B C}$. Circle $P$ is externally tangent to circle $O$ and to $\overline{A B}$. Given that points $C, O$, and $P$ are collinear, compute $r$.
[ "$3-\\sqrt{2}$" ]
Given that $p=6.6 \times 10^{-27}$, then $\sqrt{p}=a \times 10^{b}$, where $1 \leq a<10$ and $b$ is an integer. Compute $10 a+b$ rounded to the nearest integer.
[ "67" ]
Let $T=67$. A group of children and adults go to a rodeo. A child's admission ticket costs $\$ 5$, and an adult's admission ticket costs more than $\$ 5$. The total admission cost for the group is $\$ 10 \cdot T$. If the number of adults in the group were to increase by $20 \%$, then the total cost would increase by $10 \%$. Compute the number of children in the group.
[ "67" ]
Let $T=67$. Rectangles $F A K E$ and $F U N K$ lie in the same plane. Given that $E F=T$, $A F=\frac{4 T}{3}$, and $U F=\frac{12}{5}$, compute the area of the intersection of the two rectangles.
[ "262" ]
Elizabeth is in an "escape room" puzzle. She is in a room with one door which is locked at the start of the puzzle. The room contains $n$ light switches, each of which is initially off. Each minute, she must flip exactly $k$ different light switches (to "flip" a switch means to turn it on if it is currently off, and off if it is currently on). At the end of each minute, if all of the switches are on, then the door unlocks and Elizabeth escapes from the room. Let $E(n, k)$ be the minimum number of minutes required for Elizabeth to escape, for positive integers $n, k$ with $k \leq n$. For example, $E(2,1)=2$ because Elizabeth cannot escape in one minute (there are two switches and one must be flipped every minute) but she can escape in two minutes (by flipping Switch 1 in the first minute and Switch 2 in the second minute). Define $E(n, k)=\infty$ if the puzzle is impossible to solve (that is, if it is impossible to have all switches on at the end of any minute). For convenience, assume the $n$ light switches are numbered 1 through $n$. Compute the $E(6,1)$
[ "6" ]
Elizabeth is in an "escape room" puzzle. She is in a room with one door which is locked at the start of the puzzle. The room contains $n$ light switches, each of which is initially off. Each minute, she must flip exactly $k$ different light switches (to "flip" a switch means to turn it on if it is currently off, and off if it is currently on). At the end of each minute, if all of the switches are on, then the door unlocks and Elizabeth escapes from the room. Let $E(n, k)$ be the minimum number of minutes required for Elizabeth to escape, for positive integers $n, k$ with $k \leq n$. For example, $E(2,1)=2$ because Elizabeth cannot escape in one minute (there are two switches and one must be flipped every minute) but she can escape in two minutes (by flipping Switch 1 in the first minute and Switch 2 in the second minute). Define $E(n, k)=\infty$ if the puzzle is impossible to solve (that is, if it is impossible to have all switches on at the end of any minute). For convenience, assume the $n$ light switches are numbered 1 through $n$. Compute the $E(6,2)$
[ "3" ]
Elizabeth is in an "escape room" puzzle. She is in a room with one door which is locked at the start of the puzzle. The room contains $n$ light switches, each of which is initially off. Each minute, she must flip exactly $k$ different light switches (to "flip" a switch means to turn it on if it is currently off, and off if it is currently on). At the end of each minute, if all of the switches are on, then the door unlocks and Elizabeth escapes from the room. Let $E(n, k)$ be the minimum number of minutes required for Elizabeth to escape, for positive integers $n, k$ with $k \leq n$. For example, $E(2,1)=2$ because Elizabeth cannot escape in one minute (there are two switches and one must be flipped every minute) but she can escape in two minutes (by flipping Switch 1 in the first minute and Switch 2 in the second minute). Define $E(n, k)=\infty$ if the puzzle is impossible to solve (that is, if it is impossible to have all switches on at the end of any minute). For convenience, assume the $n$ light switches are numbered 1 through $n$. Compute the $E(7,3)$
[ "3" ]
Elizabeth is in an "escape room" puzzle. She is in a room with one door which is locked at the start of the puzzle. The room contains $n$ light switches, each of which is initially off. Each minute, she must flip exactly $k$ different light switches (to "flip" a switch means to turn it on if it is currently off, and off if it is currently on). At the end of each minute, if all of the switches are on, then the door unlocks and Elizabeth escapes from the room. Let $E(n, k)$ be the minimum number of minutes required for Elizabeth to escape, for positive integers $n, k$ with $k \leq n$. For example, $E(2,1)=2$ because Elizabeth cannot escape in one minute (there are two switches and one must be flipped every minute) but she can escape in two minutes (by flipping Switch 1 in the first minute and Switch 2 in the second minute). Define $E(n, k)=\infty$ if the puzzle is impossible to solve (that is, if it is impossible to have all switches on at the end of any minute). For convenience, assume the $n$ light switches are numbered 1 through $n$. Compute the $E(9,5)$
[ "3" ]
Elizabeth is in an "escape room" puzzle. She is in a room with one door which is locked at the start of the puzzle. The room contains $n$ light switches, each of which is initially off. Each minute, she must flip exactly $k$ different light switches (to "flip" a switch means to turn it on if it is currently off, and off if it is currently on). At the end of each minute, if all of the switches are on, then the door unlocks and Elizabeth escapes from the room. Let $E(n, k)$ be the minimum number of minutes required for Elizabeth to escape, for positive integers $n, k$ with $k \leq n$. For example, $E(2,1)=2$ because Elizabeth cannot escape in one minute (there are two switches and one must be flipped every minute) but she can escape in two minutes (by flipping Switch 1 in the first minute and Switch 2 in the second minute). Define $E(n, k)=\infty$ if the puzzle is impossible to solve (that is, if it is impossible to have all switches on at the end of any minute). For convenience, assume the $n$ light switches are numbered 1 through $n$. Find the following in terms of $n$. $E(n, 2)$ for positive even integers $n$
[ "$\\frac{n}{2}$" ]
Elizabeth is in an "escape room" puzzle. She is in a room with one door which is locked at the start of the puzzle. The room contains $n$ light switches, each of which is initially off. Each minute, she must flip exactly $k$ different light switches (to "flip" a switch means to turn it on if it is currently off, and off if it is currently on). At the end of each minute, if all of the switches are on, then the door unlocks and Elizabeth escapes from the room. Let $E(n, k)$ be the minimum number of minutes required for Elizabeth to escape, for positive integers $n, k$ with $k \leq n$. For example, $E(2,1)=2$ because Elizabeth cannot escape in one minute (there are two switches and one must be flipped every minute) but she can escape in two minutes (by flipping Switch 1 in the first minute and Switch 2 in the second minute). Define $E(n, k)=\infty$ if the puzzle is impossible to solve (that is, if it is impossible to have all switches on at the end of any minute). For convenience, assume the $n$ light switches are numbered 1 through $n$. Find the following in terms of $n$. $E(n, n-2)$ for $n \geq 5$
[ "3" ]
Elizabeth is in an "escape room" puzzle. She is in a room with one door which is locked at the start of the puzzle. The room contains $n$ light switches, each of which is initially off. Each minute, she must flip exactly $k$ different light switches (to "flip" a switch means to turn it on if it is currently off, and off if it is currently on). At the end of each minute, if all of the switches are on, then the door unlocks and Elizabeth escapes from the room. Let $E(n, k)$ be the minimum number of minutes required for Elizabeth to escape, for positive integers $n, k$ with $k \leq n$. For example, $E(2,1)=2$ because Elizabeth cannot escape in one minute (there are two switches and one must be flipped every minute) but she can escape in two minutes (by flipping Switch 1 in the first minute and Switch 2 in the second minute). Define $E(n, k)=\infty$ if the puzzle is impossible to solve (that is, if it is impossible to have all switches on at the end of any minute). For convenience, assume the $n$ light switches are numbered 1 through $n$. Find the $E(2020,1993)$
[ "76" ]
Elizabeth is in an "escape room" puzzle. She is in a room with one door which is locked at the start of the puzzle. The room contains $n$ light switches, each of which is initially off. Each minute, she must flip exactly $k$ different light switches (to "flip" a switch means to turn it on if it is currently off, and off if it is currently on). At the end of each minute, if all of the switches are on, then the door unlocks and Elizabeth escapes from the room. Let $E(n, k)$ be the minimum number of minutes required for Elizabeth to escape, for positive integers $n, k$ with $k \leq n$. For example, $E(2,1)=2$ because Elizabeth cannot escape in one minute (there are two switches and one must be flipped every minute) but she can escape in two minutes (by flipping Switch 1 in the first minute and Switch 2 in the second minute). Define $E(n, k)=\infty$ if the puzzle is impossible to solve (that is, if it is impossible to have all switches on at the end of any minute). For convenience, assume the $n$ light switches are numbered 1 through $n$. Find the $E(2001,501)$
[ "5" ]
Elizabeth is in an "escape room" puzzle. She is in a room with one door which is locked at the start of the puzzle. The room contains $n$ light switches, each of which is initially off. Each minute, she must flip exactly $k$ different light switches (to "flip" a switch means to turn it on if it is currently off, and off if it is currently on). At the end of each minute, if all of the switches are on, then the door unlocks and Elizabeth escapes from the room. Let $E(n, k)$ be the minimum number of minutes required for Elizabeth to escape, for positive integers $n, k$ with $k \leq n$. For example, $E(2,1)=2$ because Elizabeth cannot escape in one minute (there are two switches and one must be flipped every minute) but she can escape in two minutes (by flipping Switch 1 in the first minute and Switch 2 in the second minute). Define $E(n, k)=\infty$ if the puzzle is impossible to solve (that is, if it is impossible to have all switches on at the end of any minute). For convenience, assume the $n$ light switches are numbered 1 through $n$. One might guess that in most cases, $E(n, k) \approx \frac{n}{k}$. In light of this guess, define the inefficiency of the ordered pair $(n, k)$, denoted $I(n, k)$, as $$ I(n, k)=E(n, k)-\frac{n}{k} $$ if $E(n, k) \neq \infty$. If $E(n, k)=\infty$, then by convention, $I(n, k)$ is undefined. Compute $I(6,3)$.
[ "0" ]
Regular tetrahedra $J A N E, J O H N$, and $J O A N$ have non-overlapping interiors. Compute $\tan \angle H A E$.
[ "$\\frac{5 \\sqrt{2}}{2}$" ]
Each positive integer less than or equal to 2019 is written on a blank sheet of paper, and each of the digits 0 and 5 is erased. Compute the remainder when the product of the remaining digits on the sheet of paper is divided by 1000 .
[ "976" ]
Compute the third least positive integer $n$ such that each of $n, n+1$, and $n+2$ is a product of exactly two (not necessarily distinct) primes.
[ "93" ]
The points $(1,2,3)$ and $(3,3,2)$ are vertices of a cube. Compute the product of all possible distinct volumes of the cube.
[ "216" ]
Eight students attend a Harper Valley ARML practice. At the end of the practice, they decide to take selfies to celebrate the event. Each selfie will have either two or three students in the picture. Compute the minimum number of selfies so that each pair of the eight students appears in exactly one selfie.
[ "12" ]
$\quad$ Compute the least positive value of $t$ such that $$ \operatorname{Arcsin}(\sin (t)), \operatorname{Arccos}(\cos (t)), \operatorname{Arctan}(\tan (t)) $$ form (in some order) a three-term arithmetic progression with a nonzero common difference.
[ "$\\frac{3 \\pi}{4}$" ]
In non-right triangle $A B C$, distinct points $P, Q, R$, and $S$ lie on $\overline{B C}$ in that order such that $\angle B A P \cong \angle P A Q \cong \angle Q A R \cong \angle R A S \cong \angle S A C$. Given that the angles of $\triangle A B C$ are congruent to the angles of $\triangle A P Q$ in some order of correspondence, compute $\mathrm{m} \angle B$ in degrees.
[ "$\\frac{45}{2}$" ]
Consider the system of equations $$ \begin{aligned} & \log _{4} x+\log _{8}(y z)=2 \\ & \log _{4} y+\log _{8}(x z)=4 \\ & \log _{4} z+\log _{8}(x y)=5 . \end{aligned} $$ Given that $x y z$ can be expressed in the form $2^{k}$, compute $k$.
[ "$\\frac{66}{7}$" ]
A complex number $z$ is selected uniformly at random such that $|z|=1$. Compute the probability that $z$ and $z^{2019}$ both lie in Quadrant II in the complex plane.
[ "$\\frac{505}{8076}$" ]
Compute the least positive integer $n$ such that the sum of the digits of $n$ is five times the sum of the digits of $(n+2019)$.
[ "7986" ]
$\quad$ Compute the greatest real number $K$ for which the graphs of $$ (|x|-5)^{2}+(|y|-5)^{2}=K \quad \text { and } \quad(x-1)^{2}+(y+1)^{2}=37 $$ have exactly two intersection points.
[ "29" ]
To morph a sequence means to replace two terms $a$ and $b$ with $a+1$ and $b-1$ if and only if $a+1<b-1$, and such an operation is referred to as a morph. Compute the least number of morphs needed to transform the sequence $1^{2}, 2^{2}, 3^{2}, \ldots, 10^{2}$ into an arithmetic progression.
[ "56" ]
Triangle $A B C$ is inscribed in circle $\omega$. The tangents to $\omega$ at $B$ and $C$ meet at point $T$. The tangent to $\omega$ at $A$ intersects the perpendicular bisector of $\overline{A T}$ at point $P$. Given that $A B=14, A C=30$, and $B C=40$, compute $[P B C]$.
[ "$\\frac{800}{3}$" ]
Given that $a, b, c$, and $d$ are integers such that $a+b c=20$ and $-a+c d=19$, compute the greatest possible value of $c$.
[ "39" ]
Let $T$ = 39. Emile randomly chooses a set of $T$ cards from a standard deck of 52 cards. Given that Emile's set contains no clubs, compute the probability that his set contains three aces.
[ "1" ]
Let $T=1$. In parallelogram $A B C D, \frac{A B}{B C}=T$. Given that $M$ is the midpoint of $\overline{A B}$ and $P$ and $Q$ are the trisection points of $\overline{C D}$, compute $\frac{[A B C D]}{[M P Q]}$.
[ "6" ]
Let $T=6$. Compute the value of $x$ such that $\log _{T} \sqrt{x-7}+\log _{T^{2}}(x-2)=1$.
[ "11" ]
Let $T=11$. Let $p$ be an odd prime and let $x, y$, and $z$ be positive integers less than $p$. When the trinomial $(p x+y+z)^{T-1}$ is expanded and simplified, there are $N$ terms, of which $M$ are always multiples of $p$. Compute $M$.
[ "55" ]
Let $T=55$. Compute the value of $K$ such that $20, T-5, K$ is an increasing geometric sequence and $19, K, 4 T+11$ is an increasing arithmetic sequence.
[ "125" ]
Let $T=125$. Cube $\mathcal{C}_{1}$ has volume $T$ and sphere $\mathcal{S}_{1}$ is circumscribed about $\mathcal{C}_{1}$. For $n \geq 1$, the sphere $\mathcal{S}_{n}$ is circumscribed about the cube $\mathcal{C}_{n}$ and is inscribed in the cube $\mathcal{C}_{n+1}$. Let $k$ be the least integer such that the volume of $\mathcal{C}_{k}$ is at least 2019. Compute the edge length of $\mathcal{C}_{k}$.
[ "15" ]
Square $K E N T$ has side length 20 . Point $M$ lies in the interior of $K E N T$ such that $\triangle M E N$ is equilateral. Given that $K M^{2}=a-b \sqrt{3}$, where $a$ and $b$ are integers, compute $b$.
[ "400" ]
Let $T$ be a rational number. Let $a, b$, and $c$ be the three solutions of the equation $x^{3}-20 x^{2}+19 x+T=0$. Compute $a^{2}+b^{2}+c^{2}$.
[ "362" ]
Let $T=362$ and let $K=\sqrt{T-1}$. Compute $\left|(K-20)(K+1)+19 K-K^{2}\right|$.
[ "20" ]