Datasets:
Tasks:
Token Classification
Modalities:
Text
Sub-tasks:
named-entity-recognition
Languages:
English
Size:
1K - 10K
License:
metadata
language:
- en
license:
- other
multilinguality:
- monolingual
size_categories:
- 1K<n<10K
task_categories:
- token-classification
task_ids:
- named-entity-recognition
pretty_name: MIT Movie
Dataset Card for "tner/mit_movie_trivia"
Dataset Description
- Repository: T-NER
- Dataset: MIT Movie
- Domain: Movie
- Number of Entity: 12
Dataset Summary
MIT Movie NER dataset formatted in a part of TNER project.
- Entity Types:
Actor
,Plot
,Opinion
,Award
,Year
,Genre
,Origin
,Director
,Soundtrack
,Relationship
,Character_Name
,Quote
Dataset Structure
Data Instances
An example of train
looks as follows.
{
'tags': [0, 13, 14, 0, 0, 0, 3, 4, 4, 4, 4, 4, 4, 4, 4],
'tokens': ['a', 'steven', 'spielberg', 'film', 'featuring', 'a', 'bluff', 'called', 'devil', 's', 'tower', 'and', 'a', 'spectacular', 'mothership']
}
Label ID
The label2id dictionary can be found at here.
{
"O": 0,
"B-Actor": 1,
"I-Actor": 2,
"B-Plot": 3,
"I-Plot": 4,
"B-Opinion": 5,
"I-Opinion": 6,
"B-Award": 7,
"I-Award": 8,
"B-Year": 9,
"B-Genre": 10,
"B-Origin": 11,
"I-Origin": 12,
"B-Director": 13,
"I-Director": 14,
"I-Genre": 15,
"I-Year": 16,
"B-Soundtrack": 17,
"I-Soundtrack": 18,
"B-Relationship": 19,
"I-Relationship": 20,
"B-Character_Name": 21,
"I-Character_Name": 22,
"B-Quote": 23,
"I-Quote": 24
}
Data Splits
name | train | validation | test |
---|---|---|---|
mit_movie_trivia | 6816 | 1000 | 1953 |