Tom Aarsen commited on
Commit
ad533c2
·
1 Parent(s): af78b07

Write README

Browse files
Files changed (1) hide show
  1. README.md +43 -0
README.md CHANGED
@@ -480,3 +480,46 @@ dataset_info:
480
  dataset_size: 35559142
481
  ---
482
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
480
  dataset_size: 35559142
481
  ---
482
 
483
+ # Multilingual Complex Named Entity Recognition (MultiCoNER)
484
+
485
+ ## Dataset Summary
486
+ MultiCoNER is a large multilingual dataset for Named Entity Recognition that covers 3 domains (Wiki sentences, questions, and search queries) across 11 languages, as well as multilingual and code-mixing subsets. This dataset is designed to represent contemporary challenges in NER, including low-context scenarios (short and uncased text), syntactically complex entities like movie titles, and long-tail entity distributions. The 26M token dataset is compiled from public resources using techniques such as heuristic-based sentence sampling, template extraction and slotting, and machine translation.
487
+
488
+ See the [AWS Open Data Registry entry for MultiCoNER](https://registry.opendata.aws/multiconer/) for more information.
489
+
490
+ ## Labels
491
+ * `PER`: Person, i.e. names of people
492
+ * `LOC`: Location, i.e. locations/physical facilities
493
+ * `CORP`: Corporation, i.e. corporations/businesses
494
+ * `GRP`: Groups, i.e. all other groups
495
+ * `PROD`: Product, i.e. consumer products
496
+ * `CW`: Creative Work, i.e. movies/songs/book titles
497
+
498
+ ## Languages
499
+ The MultiCoNER dataset consists of the following languages: Bangla, German, English, Spanish, Farsi, Hindi, Korean, Dutch, Russian, Turkish and Chinese.
500
+
501
+ ## Dataset Structure
502
+ The dataset follows the IOB format of CoNLL.
503
+
504
+ ## Usage
505
+ ```python
506
+ from datasets import load_dataset
507
+
508
+ dataset = load_dataset('tomaarsen/MultiCoNER', 'multi')
509
+ ```
510
+
511
+ ## License
512
+
513
+ CC BY 4.0
514
+
515
+ ## Citation
516
+ ```
517
+ @misc{malmasi2022multiconer,
518
+ title={MultiCoNER: A Large-scale Multilingual dataset for Complex Named Entity Recognition},
519
+ author={Shervin Malmasi and Anjie Fang and Besnik Fetahu and Sudipta Kar and Oleg Rokhlenko},
520
+ year={2022},
521
+ eprint={2208.14536},
522
+ archivePrefix={arXiv},
523
+ primaryClass={cs.CL}
524
+ }
525
+ ```