File size: 10,304 Bytes
1825db8
 
 
 
 
 
 
 
 
 
 
5951139
1825db8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cdbefb7
1825db8
 
 
 
cdbefb7
1825db8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5951139
1825db8
 
 
 
5951139
1825db8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cea7723
1825db8
 
 
cea7723
1825db8
 
 
 
 
 
5951139
1825db8
 
5951139
1825db8
 
5951139
1825db8
 
 
 
5951139
1825db8
 
 
5951139
1825db8
 
5951139
 
 
 
1825db8
 
 
 
5951139
1825db8
 
 
 
 
 
 
 
 
5951139
1825db8
 
 
 
5951139
1825db8
 
5951139
1825db8
5951139
1825db8
 
 
 
5951139
1825db8
 
 
5951139
1825db8
 
 
5951139
1825db8
 
5951139
1825db8
 
 
 
5951139
1825db8
 
 
 
5951139
1825db8
 
 
5951139
1825db8
 
 
5951139
1825db8
5951139
 
 
1825db8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5951139
 
 
1825db8
 
 
 
 
5951139
1825db8
 
 
 
 
 
 
 
 
 
 
 
 
5951139
1825db8
5951139
 
 
1825db8
 
 
5951139
1825db8
 
 
 
cea7723
 
1825db8
 
 
 
5951139
1825db8
 
 
 
 
5951139
1825db8
 
 
 
 
5951139
1825db8
 
 
 
cea7723
 
1825db8
5951139
1825db8
5951139
1825db8
 
 
 
5951139
1825db8
 
5951139
1825db8
5951139
1825db8
5951139
1825db8
 
 
 
 
 
 
 
 
 
 
 
 
5951139
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
# /// script
# requires-python = ">=3.11"
# dependencies = [
#     "datasets",
#     "huggingface-hub[hf_transfer]",
#     "pillow",
#     "vllm",
#     "tqdm",
#     "toolz",
#     "torch",  # Added for CUDA check
# ]
#
# ///

"""
Convert document images to markdown using Nanonets-OCR-s with vLLM.

This script processes images through the Nanonets-OCR-s model to extract
text and structure as markdown, ideal for document understanding tasks.

Features:
- LaTeX equation recognition
- Table extraction and formatting
- Document structure preservation
- Signature and watermark detection
"""

import argparse
import base64
import io
import logging
import os
import sys
from typing import Any, Dict, List, Union

import torch
from datasets import load_dataset
from huggingface_hub import login
from PIL import Image
from toolz import partition_all
from tqdm.auto import tqdm
from vllm import LLM, SamplingParams

logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)


def check_cuda_availability():
    """Check if CUDA is available and exit if not."""
    if not torch.cuda.is_available():
        logger.error("CUDA is not available. This script requires a GPU.")
        logger.error("Please run on a machine with a CUDA-capable GPU.")
        sys.exit(1)
    else:
        logger.info(f"CUDA is available. GPU: {torch.cuda.get_device_name(0)}")


def make_ocr_message(
    image: Union[Image.Image, Dict[str, Any], str],
    prompt: str = "Extract the text from the above document as if you were reading it naturally. Return the tables in html format. Return the equations in LaTeX representation. If there is an image in the document and image caption is not present, add a small description of the image inside the <img></img> tag; otherwise, add the image caption inside <img></img>. Watermarks should be wrapped in brackets. Ex: <watermark>OFFICIAL COPY</watermark>. Page numbers should be wrapped in brackets. Ex: <page_number>14</page_number> or <page_number>9/22</page_number>. Prefer using ☐ and ☑ for check boxes.",
) -> List[Dict]:
    """Create chat message for OCR processing."""
    # Convert to PIL Image if needed
    if isinstance(image, Image.Image):
        pil_img = image
    elif isinstance(image, dict) and "bytes" in image:
        pil_img = Image.open(io.BytesIO(image["bytes"]))
    elif isinstance(image, str):
        pil_img = Image.open(image)
    else:
        raise ValueError(f"Unsupported image type: {type(image)}")

    # Convert to base64 data URI
    buf = io.BytesIO()
    pil_img.save(buf, format="PNG")
    data_uri = f"data:image/png;base64,{base64.b64encode(buf.getvalue()).decode()}"

    # Return message in vLLM format
    return [
        {
            "role": "user",
            "content": [
                {"type": "image_url", "image_url": {"url": data_uri}},
                {"type": "text", "text": prompt},
            ],
        }
    ]


def main(
    input_dataset: str,
    output_dataset: str,
    image_column: str = "image",
    batch_size: int = 32,
    model: str = "nanonets/Nanonets-OCR-s",
    max_model_len: int = 8192,
    max_tokens: int = 4096,
    gpu_memory_utilization: float = 0.8,
    hf_token: str = None,
    split: str = "train",
    max_samples: int = None,
    private: bool = False,
):
    """Process images from HF dataset through OCR model."""

    # Check CUDA availability first
    check_cuda_availability()

    # Enable HF_TRANSFER for faster downloads
    os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "1"

    # Login to HF if token provided
    HF_TOKEN = hf_token or os.environ.get("HF_TOKEN")
    if HF_TOKEN:
        login(token=HF_TOKEN)

    # Load dataset
    logger.info(f"Loading dataset: {input_dataset}")
    dataset = load_dataset(input_dataset, split=split)

    # Validate image column
    if image_column not in dataset.column_names:
        raise ValueError(
            f"Column '{image_column}' not found. Available: {dataset.column_names}"
        )

    # Limit samples if requested
    if max_samples:
        dataset = dataset.select(range(min(max_samples, len(dataset))))
        logger.info(f"Limited to {len(dataset)} samples")

    # Initialize vLLM
    logger.info(f"Initializing vLLM with model: {model}")
    llm = LLM(
        model=model,
        trust_remote_code=True,
        max_model_len=max_model_len,
        gpu_memory_utilization=gpu_memory_utilization,
        limit_mm_per_prompt={"image": 1},
    )

    sampling_params = SamplingParams(
        temperature=0.0,  # Deterministic for OCR
        max_tokens=max_tokens,
    )

    # Process images in batches
    all_markdown = []

    logger.info(f"Processing {len(dataset)} images in batches of {batch_size}")

    # Process in batches to avoid memory issues
    for batch_indices in tqdm(
        partition_all(batch_size, range(len(dataset))),
        total=(len(dataset) + batch_size - 1) // batch_size,
        desc="OCR processing",
    ):
        batch_indices = list(batch_indices)
        batch_images = [dataset[i][image_column] for i in batch_indices]

        try:
            # Create messages for batch
            batch_messages = [make_ocr_message(img) for img in batch_images]

            # Process with vLLM
            outputs = llm.chat(batch_messages, sampling_params)

            # Extract markdown from outputs
            for output in outputs:
                markdown_text = output.outputs[0].text.strip()
                all_markdown.append(markdown_text)

        except Exception as e:
            logger.error(f"Error processing batch: {e}")
            # Add error placeholders for failed batch
            all_markdown.extend(["[OCR FAILED]"] * len(batch_images))

    # Add markdown column to dataset
    logger.info("Adding markdown column to dataset")
    dataset = dataset.add_column("markdown", all_markdown)

    # Push to hub
    logger.info(f"Pushing to {output_dataset}")
    dataset.push_to_hub(output_dataset, private=private, token=HF_TOKEN)

    logger.info("✅ OCR conversion complete!")
    logger.info(
        f"Dataset available at: https://huggingface.co/datasets/{output_dataset}"
    )


if __name__ == "__main__":
    # Show example usage if no arguments
    if len(sys.argv) == 1:
        print("=" * 80)
        print("Nanonets OCR to Markdown Converter")
        print("=" * 80)
        print("\nThis script converts document images to structured markdown using")
        print("the Nanonets-OCR-s model with vLLM acceleration.")
        print("\nFeatures:")
        print("- LaTeX equation recognition")
        print("- Table extraction and formatting")
        print("- Document structure preservation")
        print("- Signature and watermark detection")
        print("\nExample usage:")
        print("\n1. Basic OCR conversion:")
        print("   uv run nanonets-ocr.py document-images markdown-docs")
        print("\n2. With custom settings:")
        print("   uv run nanonets-ocr.py scanned-pdfs extracted-text \\")
        print("       --image-column page \\")
        print("       --batch-size 16 \\")
        print("       --gpu-memory-utilization 0.8")
        print("\n3. Process a subset for testing:")
        print("   uv run nanonets-ocr.py large-dataset test-output --max-samples 10")
        print("\n4. Running on HF Jobs:")
        print("   hfjobs run \\")
        print("     --flavor l4x1 \\")
        print("     --secret HF_TOKEN=... \\")
        print(
            "     uv run https://huggingface.co/datasets/uv-scripts/ocr/raw/main/nanonets-ocr.py \\"
        )
        print("       your-document-dataset \\")
        print("       your-markdown-output")
        print("\n" + "=" * 80)
        print("\nFor full help, run: uv run nanonets-ocr.py --help")
        sys.exit(0)

    parser = argparse.ArgumentParser(
        description="OCR images to markdown using Nanonets-OCR-s",
        formatter_class=argparse.RawDescriptionHelpFormatter,
        epilog="""
Examples:
  # Basic usage
  uv run nanonets-ocr.py my-images-dataset ocr-results

  # With specific image column
  uv run nanonets-ocr.py documents extracted-text --image-column scan

  # Process subset for testing
  uv run nanonets-ocr.py large-dataset test-output --max-samples 100
        """,
    )

    parser.add_argument("input_dataset", help="Input dataset ID from Hugging Face Hub")
    parser.add_argument("output_dataset", help="Output dataset ID for Hugging Face Hub")
    parser.add_argument(
        "--image-column",
        default="image",
        help="Column containing images (default: image)",
    )
    parser.add_argument(
        "--batch-size",
        type=int,
        default=32,
        help="Batch size for processing (default: 32)",
    )
    parser.add_argument(
        "--model",
        default="nanonets/Nanonets-OCR-s",
        help="Model to use (default: nanonets/Nanonets-OCR-s)",
    )
    parser.add_argument(
        "--max-model-len",
        type=int,
        default=8192,
        help="Maximum model context length (default: 8192)",
    )
    parser.add_argument(
        "--max-tokens",
        type=int,
        default=4096,
        help="Maximum tokens to generate (default: 4096)",
    )
    parser.add_argument(
        "--gpu-memory-utilization",
        type=float,
        default=0.8,
        help="GPU memory utilization (default: 0.8)",
    )
    parser.add_argument("--hf-token", help="Hugging Face API token")
    parser.add_argument(
        "--split", default="train", help="Dataset split to use (default: train)"
    )
    parser.add_argument(
        "--max-samples",
        type=int,
        help="Maximum number of samples to process (for testing)",
    )
    parser.add_argument(
        "--private", action="store_true", help="Make output dataset private"
    )

    args = parser.parse_args()

    main(
        input_dataset=args.input_dataset,
        output_dataset=args.output_dataset,
        image_column=args.image_column,
        batch_size=args.batch_size,
        model=args.model,
        max_model_len=args.max_model_len,
        max_tokens=args.max_tokens,
        gpu_memory_utilization=args.gpu_memory_utilization,
        hf_token=args.hf_token,
        split=args.split,
        max_samples=args.max_samples,
        private=args.private,
    )