Commit
·
cea7723
1
Parent(s):
b3cfa7b
Optimize default settings based on performance testing
Browse files- Increase default batch size from 8 to 32
- Increase default GPU memory utilization from 0.7 to 0.8
- Update README with new defaults and simple performance tip
- These changes provide ~2-3x speedup based on testing
- README.md +56 -11
- __pycache__/dots-ocr.cpython-313.pyc +0 -0
- dots-ocr.py +729 -0
- nanonets-ocr.py +6 -6
README.md
CHANGED
@@ -40,6 +40,16 @@ State-of-the-art document OCR using [nanonets/Nanonets-OCR-s](https://huggingfac
|
|
40 |
- 🖼️ **Images** - Captions and descriptions included
|
41 |
- ☑️ **Forms** - Checkboxes rendered as ☐/☑
|
42 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
## 💻 Usage Examples
|
44 |
|
45 |
### Run on HuggingFace Jobs (Recommended)
|
@@ -52,6 +62,14 @@ hf jobs uv run --flavor l4x1 \
|
|
52 |
https://huggingface.co/datasets/uv-scripts/ocr/raw/main/nanonets-ocr.py \
|
53 |
your-input-dataset your-output-dataset
|
54 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
55 |
# Real example with UFO dataset 🛸
|
56 |
hf jobs uv run \
|
57 |
--flavor a10g-large \
|
@@ -62,7 +80,7 @@ hf jobs uv run \
|
|
62 |
your-username/ufo-ocr \
|
63 |
--image-column image \
|
64 |
--max-model-len 16384 \
|
65 |
-
--batch-size
|
66 |
|
67 |
# Private dataset with custom settings
|
68 |
hf jobs uv run --flavor l40sx1 \
|
@@ -96,6 +114,11 @@ uv run nanonets-ocr.py input-dataset output-dataset
|
|
96 |
# Or run directly from URL
|
97 |
uv run https://huggingface.co/datasets/uv-scripts/ocr/raw/main/nanonets-ocr.py \
|
98 |
input-dataset output-dataset
|
|
|
|
|
|
|
|
|
|
|
99 |
```
|
100 |
|
101 |
## 📁 Works With
|
@@ -104,15 +127,37 @@ Any HuggingFace dataset containing images - documents, forms, receipts, books, h
|
|
104 |
|
105 |
## 🎛️ Configuration Options
|
106 |
|
107 |
-
|
108 |
-
|
109 |
-
|
|
110 |
-
|
|
111 |
-
| `--
|
112 |
-
| `--
|
113 |
-
| `--
|
114 |
-
| `--
|
115 |
-
| `--
|
116 |
-
| `--
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
117 |
|
118 |
More OCR VLM Scripts coming soon! Stay tuned for updates!
|
|
|
40 |
- 🖼️ **Images** - Captions and descriptions included
|
41 |
- ☑️ **Forms** - Checkboxes rendered as ☐/☑
|
42 |
|
43 |
+
### dots.ocr (`dots-ocr.py`)
|
44 |
+
|
45 |
+
Advanced document layout analysis and OCR using [rednote-hilab/dots.ocr](https://huggingface.co/rednote-hilab/dots.ocr) that provides:
|
46 |
+
|
47 |
+
- 🎯 **Layout detection** - Bounding boxes for all document elements
|
48 |
+
- 📑 **Category classification** - Text, Title, Table, Formula, Picture, etc.
|
49 |
+
- 📖 **Reading order** - Preserves natural reading flow
|
50 |
+
- 🌍 **Multilingual support** - Handles multiple languages seamlessly
|
51 |
+
- 🔧 **Flexible output** - JSON, structured columns, or markdown
|
52 |
+
|
53 |
## 💻 Usage Examples
|
54 |
|
55 |
### Run on HuggingFace Jobs (Recommended)
|
|
|
62 |
https://huggingface.co/datasets/uv-scripts/ocr/raw/main/nanonets-ocr.py \
|
63 |
your-input-dataset your-output-dataset
|
64 |
|
65 |
+
# Document layout analysis with dots.ocr
|
66 |
+
hf jobs uv run --flavor l4x1 \
|
67 |
+
https://huggingface.co/datasets/uv-scripts/ocr/raw/main/dots-ocr.py \
|
68 |
+
your-input-dataset your-layout-dataset \
|
69 |
+
--mode layout-all \
|
70 |
+
--output-format structured \
|
71 |
+
--use-transformers # More compatible backend
|
72 |
+
|
73 |
# Real example with UFO dataset 🛸
|
74 |
hf jobs uv run \
|
75 |
--flavor a10g-large \
|
|
|
80 |
your-username/ufo-ocr \
|
81 |
--image-column image \
|
82 |
--max-model-len 16384 \
|
83 |
+
--batch-size 128
|
84 |
|
85 |
# Private dataset with custom settings
|
86 |
hf jobs uv run --flavor l40sx1 \
|
|
|
114 |
# Or run directly from URL
|
115 |
uv run https://huggingface.co/datasets/uv-scripts/ocr/raw/main/nanonets-ocr.py \
|
116 |
input-dataset output-dataset
|
117 |
+
|
118 |
+
# dots.ocr examples
|
119 |
+
uv run dots-ocr.py documents analyzed-docs # Full layout + OCR
|
120 |
+
uv run dots-ocr.py scans layouts --mode layout-only # Layout only
|
121 |
+
uv run dots-ocr.py papers markdown --output-format markdown # As markdown
|
122 |
```
|
123 |
|
124 |
## 📁 Works With
|
|
|
127 |
|
128 |
## 🎛️ Configuration Options
|
129 |
|
130 |
+
### Common Options (Both Scripts)
|
131 |
+
|
132 |
+
| Option | Default | Description |
|
133 |
+
| -------------------------- | ------- | ----------------------------- |
|
134 |
+
| `--image-column` | `image` | Column containing images |
|
135 |
+
| `--batch-size` | `32` | Images processed together |
|
136 |
+
| `--max-model-len` | `8192`/`24000`* | Max context length |
|
137 |
+
| `--max-tokens` | `4096`/`16384`* | Max output tokens |
|
138 |
+
| `--gpu-memory-utilization` | `0.8` | GPU memory usage (0.0-1.0) |
|
139 |
+
| `--split` | `train` | Dataset split to process |
|
140 |
+
| `--max-samples` | None | Limit samples (for testing) |
|
141 |
+
| `--private` | False | Make output dataset private |
|
142 |
+
|
143 |
+
*dots.ocr uses higher defaults (24000/16384)
|
144 |
+
|
145 |
+
### dots.ocr Specific Options
|
146 |
+
|
147 |
+
| Option | Default | Description |
|
148 |
+
| ------------------- | ------- | ------------------------------------- |
|
149 |
+
| `--mode` | `layout-all` | Processing mode: `layout-all`, `layout-only`, `ocr`, `grounding-ocr` |
|
150 |
+
| `--output-format` | `json` | Output format: `json`, `structured`, `markdown` |
|
151 |
+
| `--filter-category` | None | Filter by layout category (e.g., `Table`, `Formula`) |
|
152 |
+
| `--output-column` | `dots_ocr_output` | Column name for JSON output |
|
153 |
+
| `--bbox-column` | `layout_bboxes` | Column for bounding boxes (structured mode) |
|
154 |
+
| `--category-column` | `layout_categories` | Column for categories (structured mode) |
|
155 |
+
| `--text-column` | `layout_texts` | Column for texts (structured mode) |
|
156 |
+
| `--markdown-column` | `markdown` | Column for markdown output |
|
157 |
+
| `--use-transformers`| `False` | Use transformers backend instead of vLLM (more compatible) |
|
158 |
+
|
159 |
+
💡 **Performance tip**: Increase batch size for faster processing (e.g., `--batch-size 128` for A10G GPUs)
|
160 |
+
|
161 |
+
⚠️ **dots.ocr Note**: If you encounter vLLM initialization errors, use `--use-transformers` for a more compatible (but slower) backend.
|
162 |
|
163 |
More OCR VLM Scripts coming soon! Stay tuned for updates!
|
__pycache__/dots-ocr.cpython-313.pyc
ADDED
Binary file (22.6 kB). View file
|
|
dots-ocr.py
ADDED
@@ -0,0 +1,729 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# /// script
|
2 |
+
# requires-python = ">=3.11"
|
3 |
+
# dependencies = [
|
4 |
+
# "datasets",
|
5 |
+
# "huggingface-hub[hf_transfer]",
|
6 |
+
# "pillow",
|
7 |
+
# "vllm",
|
8 |
+
# "transformers>=4.45.0",
|
9 |
+
# "qwen-vl-utils",
|
10 |
+
# "tqdm",
|
11 |
+
# "toolz",
|
12 |
+
# "torch",
|
13 |
+
# "flash-attn",
|
14 |
+
# ]
|
15 |
+
#
|
16 |
+
# ///
|
17 |
+
|
18 |
+
"""
|
19 |
+
Document layout analysis and OCR using dots.ocr with vLLM.
|
20 |
+
|
21 |
+
This script processes document images through the dots.ocr model to extract
|
22 |
+
layout information, text content, or both. Supports multiple output formats
|
23 |
+
including JSON, structured columns, and markdown.
|
24 |
+
|
25 |
+
Features:
|
26 |
+
- Layout detection with bounding boxes and categories
|
27 |
+
- Text extraction with reading order preservation
|
28 |
+
- Multiple prompt modes for different tasks
|
29 |
+
- Flexible output formats
|
30 |
+
- Multilingual document support
|
31 |
+
"""
|
32 |
+
|
33 |
+
import argparse
|
34 |
+
import base64
|
35 |
+
import io
|
36 |
+
import json
|
37 |
+
import logging
|
38 |
+
import os
|
39 |
+
import sys
|
40 |
+
from typing import Any, Dict, List, Optional, Union
|
41 |
+
|
42 |
+
import torch
|
43 |
+
from datasets import load_dataset
|
44 |
+
from huggingface_hub import login
|
45 |
+
from PIL import Image
|
46 |
+
from toolz import partition_all
|
47 |
+
from tqdm.auto import tqdm
|
48 |
+
|
49 |
+
# Import both vLLM and transformers - we'll use based on flag
|
50 |
+
try:
|
51 |
+
from vllm import LLM, SamplingParams
|
52 |
+
VLLM_AVAILABLE = True
|
53 |
+
except ImportError:
|
54 |
+
VLLM_AVAILABLE = False
|
55 |
+
|
56 |
+
from transformers import AutoModelForCausalLM, AutoProcessor
|
57 |
+
|
58 |
+
logging.basicConfig(level=logging.INFO)
|
59 |
+
logger = logging.getLogger(__name__)
|
60 |
+
|
61 |
+
# Try to import qwen_vl_utils for transformers backend
|
62 |
+
try:
|
63 |
+
from qwen_vl_utils import process_vision_info
|
64 |
+
QWEN_VL_AVAILABLE = True
|
65 |
+
except ImportError:
|
66 |
+
QWEN_VL_AVAILABLE = False
|
67 |
+
logger.warning("qwen_vl_utils not available, transformers backend may not work properly")
|
68 |
+
|
69 |
+
# Prompt definitions from dots.ocr's dict_promptmode_to_prompt
|
70 |
+
PROMPT_MODES = {
|
71 |
+
"layout-all": """Please output the layout information from the PDF image, including each layout element's bbox, its category, and the corresponding text content within the bbox.
|
72 |
+
|
73 |
+
1. Bbox format: [x1, y1, x2, y2]
|
74 |
+
|
75 |
+
2. Layout Categories: The possible categories are ['Caption', 'Footnote', 'Formula', 'List-item', 'Page-footer', 'Page-header', 'Picture', 'Section-header', 'Table', 'Text', 'Title'].
|
76 |
+
|
77 |
+
3. Text Extraction & Formatting Rules:
|
78 |
+
- Picture: For the 'Picture' category, the text field should be omitted.
|
79 |
+
- Formula: Format its text as LaTeX.
|
80 |
+
- Table: Format its text as HTML.
|
81 |
+
- All Others (Text, Title, etc.): Format their text as Markdown.
|
82 |
+
|
83 |
+
4. Constraints:
|
84 |
+
- The output text must be the original text from the image, with no translation.
|
85 |
+
- All layout elements must be sorted according to human reading order.
|
86 |
+
|
87 |
+
5. Final Output: The entire output must be a single JSON object.
|
88 |
+
""",
|
89 |
+
|
90 |
+
"layout-only": """Please output the layout information from this PDF image, including each layout's bbox and its category. The bbox should be in the format [x1, y1, x2, y2]. The layout categories for the PDF document include ['Caption', 'Footnote', 'Formula', 'List-item', 'Page-footer', 'Page-header', 'Picture', 'Section-header', 'Table', 'Text', 'Title']. Do not output the corresponding text. The layout result should be in JSON format.""",
|
91 |
+
|
92 |
+
"ocr": """Extract the text content from this image.""",
|
93 |
+
|
94 |
+
"grounding-ocr": """Extract text from the given bounding box on the image (format: [x1, y1, x2, y2]).\nBounding Box:\n"""
|
95 |
+
}
|
96 |
+
|
97 |
+
|
98 |
+
def check_cuda_availability():
|
99 |
+
"""Check if CUDA is available and exit if not."""
|
100 |
+
if not torch.cuda.is_available():
|
101 |
+
logger.error("CUDA is not available. This script requires a GPU.")
|
102 |
+
logger.error("Please run on a machine with a CUDA-capable GPU.")
|
103 |
+
sys.exit(1)
|
104 |
+
else:
|
105 |
+
logger.info(f"CUDA is available. GPU: {torch.cuda.get_device_name(0)}")
|
106 |
+
|
107 |
+
|
108 |
+
def make_dots_message(
|
109 |
+
image: Union[Image.Image, Dict[str, Any], str],
|
110 |
+
mode: str = "layout-all",
|
111 |
+
bbox: Optional[List[int]] = None,
|
112 |
+
) -> List[Dict]:
|
113 |
+
"""Create chat message for dots.ocr processing."""
|
114 |
+
# Convert to PIL Image if needed
|
115 |
+
if isinstance(image, Image.Image):
|
116 |
+
pil_img = image
|
117 |
+
elif isinstance(image, dict) and "bytes" in image:
|
118 |
+
pil_img = Image.open(io.BytesIO(image["bytes"]))
|
119 |
+
elif isinstance(image, str):
|
120 |
+
pil_img = Image.open(image)
|
121 |
+
else:
|
122 |
+
raise ValueError(f"Unsupported image type: {type(image)}")
|
123 |
+
|
124 |
+
# Convert to base64 data URI
|
125 |
+
buf = io.BytesIO()
|
126 |
+
pil_img.save(buf, format="PNG")
|
127 |
+
data_uri = f"data:image/png;base64,{base64.b64encode(buf.getvalue()).decode()}"
|
128 |
+
|
129 |
+
# Get prompt for the specified mode
|
130 |
+
prompt = PROMPT_MODES.get(mode, PROMPT_MODES["layout-all"])
|
131 |
+
|
132 |
+
# Add bbox for grounding-ocr mode
|
133 |
+
if mode == "grounding-ocr" and bbox:
|
134 |
+
prompt = prompt + str(bbox)
|
135 |
+
|
136 |
+
# Return message in vLLM format
|
137 |
+
return [
|
138 |
+
{
|
139 |
+
"role": "user",
|
140 |
+
"content": [
|
141 |
+
{"type": "image_url", "image_url": {"url": data_uri}},
|
142 |
+
{"type": "text", "text": prompt},
|
143 |
+
],
|
144 |
+
}
|
145 |
+
]
|
146 |
+
|
147 |
+
|
148 |
+
def parse_dots_output(
|
149 |
+
output: str,
|
150 |
+
output_format: str = "json",
|
151 |
+
filter_category: Optional[str] = None,
|
152 |
+
mode: str = "layout-all",
|
153 |
+
) -> Union[str, Dict[str, List]]:
|
154 |
+
"""Parse dots.ocr output and convert to requested format."""
|
155 |
+
|
156 |
+
# For simple OCR mode, return text directly
|
157 |
+
if mode == "ocr":
|
158 |
+
return output.strip()
|
159 |
+
|
160 |
+
try:
|
161 |
+
# Parse JSON output
|
162 |
+
data = json.loads(output.strip())
|
163 |
+
|
164 |
+
# Filter by category if requested
|
165 |
+
if filter_category and "categories" in data:
|
166 |
+
indices = [i for i, cat in enumerate(data["categories"]) if cat == filter_category]
|
167 |
+
filtered_data = {
|
168 |
+
"bboxes": [data["bboxes"][i] for i in indices],
|
169 |
+
"categories": [data["categories"][i] for i in indices],
|
170 |
+
}
|
171 |
+
|
172 |
+
# Only include texts if present (layout-all mode)
|
173 |
+
if "texts" in data:
|
174 |
+
filtered_data["texts"] = [data["texts"][i] for i in indices]
|
175 |
+
|
176 |
+
# Include reading_order if present
|
177 |
+
if "reading_order" in data:
|
178 |
+
# Filter reading order to only include indices that are in our filtered set
|
179 |
+
filtered_reading_order = []
|
180 |
+
for group in data.get("reading_order", []):
|
181 |
+
filtered_group = [idx for idx in group if idx in indices]
|
182 |
+
if filtered_group:
|
183 |
+
# Remap indices to new positions
|
184 |
+
remapped_group = [indices.index(idx) for idx in filtered_group]
|
185 |
+
filtered_reading_order.append(remapped_group)
|
186 |
+
if filtered_reading_order:
|
187 |
+
filtered_data["reading_order"] = filtered_reading_order
|
188 |
+
|
189 |
+
data = filtered_data
|
190 |
+
|
191 |
+
if output_format == "json":
|
192 |
+
return json.dumps(data, ensure_ascii=False)
|
193 |
+
|
194 |
+
elif output_format == "structured":
|
195 |
+
# Return structured data for column creation
|
196 |
+
result = {
|
197 |
+
"bboxes": data.get("bboxes", []),
|
198 |
+
"categories": data.get("categories", []),
|
199 |
+
}
|
200 |
+
|
201 |
+
# Only include texts for layout-all mode
|
202 |
+
if mode == "layout-all":
|
203 |
+
result["texts"] = data.get("texts", [])
|
204 |
+
else:
|
205 |
+
result["texts"] = []
|
206 |
+
|
207 |
+
return result
|
208 |
+
|
209 |
+
elif output_format == "markdown":
|
210 |
+
# Convert to markdown format
|
211 |
+
# Only works well with layout-all mode
|
212 |
+
if mode != "layout-all" or "texts" not in data:
|
213 |
+
logger.warning("Markdown format works best with layout-all mode")
|
214 |
+
return json.dumps(data, ensure_ascii=False)
|
215 |
+
|
216 |
+
md_lines = []
|
217 |
+
texts = data.get("texts", [])
|
218 |
+
categories = data.get("categories", [])
|
219 |
+
reading_order = data.get("reading_order", [])
|
220 |
+
|
221 |
+
# If reading order is provided, use it
|
222 |
+
if reading_order:
|
223 |
+
for group in reading_order:
|
224 |
+
for idx in group:
|
225 |
+
if idx < len(texts) and idx < len(categories):
|
226 |
+
text = texts[idx]
|
227 |
+
category = categories[idx]
|
228 |
+
md_lines.append(format_markdown_text(text, category))
|
229 |
+
else:
|
230 |
+
# Fall back to sequential order
|
231 |
+
for text, category in zip(texts, categories):
|
232 |
+
md_lines.append(format_markdown_text(text, category))
|
233 |
+
|
234 |
+
return "\n".join(md_lines)
|
235 |
+
|
236 |
+
except json.JSONDecodeError as e:
|
237 |
+
logger.warning(f"Failed to parse JSON output: {e}")
|
238 |
+
return output.strip()
|
239 |
+
except Exception as e:
|
240 |
+
logger.error(f"Error parsing output: {e}")
|
241 |
+
return output.strip()
|
242 |
+
|
243 |
+
|
244 |
+
def format_markdown_text(text: str, category: str) -> str:
|
245 |
+
"""Format text based on its category for markdown output."""
|
246 |
+
if category == "Title":
|
247 |
+
return f"# {text}\n"
|
248 |
+
elif category == "Section-header":
|
249 |
+
return f"## {text}\n"
|
250 |
+
elif category == "List-item":
|
251 |
+
return f"- {text}"
|
252 |
+
elif category == "Page-header" or category == "Page-footer":
|
253 |
+
return f"_{text}_\n"
|
254 |
+
elif category == "Caption":
|
255 |
+
return f"**{text}**\n"
|
256 |
+
elif category == "Footnote":
|
257 |
+
return f"[^{text}]\n"
|
258 |
+
elif category == "Table":
|
259 |
+
# Tables are already in HTML format from dots.ocr
|
260 |
+
return f"\n{text}\n"
|
261 |
+
elif category == "Formula":
|
262 |
+
# Formulas are already in LaTeX format
|
263 |
+
return f"\n${text}$\n"
|
264 |
+
elif category == "Picture":
|
265 |
+
# Pictures don't have text in dots.ocr output
|
266 |
+
return "\n![Image]()\n"
|
267 |
+
else: # Text and any other categories
|
268 |
+
return f"{text}\n"
|
269 |
+
|
270 |
+
|
271 |
+
def process_with_transformers(
|
272 |
+
images: List[Union[Image.Image, Dict[str, Any], str]],
|
273 |
+
model,
|
274 |
+
processor,
|
275 |
+
mode: str = "layout-all",
|
276 |
+
max_new_tokens: int = 16384,
|
277 |
+
) -> List[str]:
|
278 |
+
"""Process images using transformers instead of vLLM."""
|
279 |
+
outputs = []
|
280 |
+
|
281 |
+
for image in tqdm(images, desc="Processing with transformers"):
|
282 |
+
# Convert to PIL Image if needed
|
283 |
+
if isinstance(image, dict) and "bytes" in image:
|
284 |
+
pil_image = Image.open(io.BytesIO(image["bytes"]))
|
285 |
+
elif isinstance(image, str):
|
286 |
+
pil_image = Image.open(image)
|
287 |
+
else:
|
288 |
+
pil_image = image
|
289 |
+
|
290 |
+
# Get prompt for the mode
|
291 |
+
prompt = PROMPT_MODES.get(mode, PROMPT_MODES["layout-all"])
|
292 |
+
|
293 |
+
# Create messages in the format expected by dots.ocr
|
294 |
+
messages = [
|
295 |
+
{
|
296 |
+
"role": "user",
|
297 |
+
"content": [
|
298 |
+
{"type": "image", "image": pil_image},
|
299 |
+
{"type": "text", "text": prompt}
|
300 |
+
]
|
301 |
+
}
|
302 |
+
]
|
303 |
+
|
304 |
+
# Preparation for inference (following demo code)
|
305 |
+
text = processor.apply_chat_template(
|
306 |
+
messages,
|
307 |
+
tokenize=False,
|
308 |
+
add_generation_prompt=True
|
309 |
+
)
|
310 |
+
|
311 |
+
if QWEN_VL_AVAILABLE:
|
312 |
+
# Use process_vision_info as shown in demo
|
313 |
+
image_inputs, video_inputs = process_vision_info(messages)
|
314 |
+
inputs = processor(
|
315 |
+
text=[text],
|
316 |
+
images=image_inputs,
|
317 |
+
videos=video_inputs,
|
318 |
+
padding=True,
|
319 |
+
return_tensors="pt",
|
320 |
+
)
|
321 |
+
else:
|
322 |
+
# Fallback approach without qwen_vl_utils
|
323 |
+
inputs = processor(
|
324 |
+
text=text,
|
325 |
+
images=[pil_image],
|
326 |
+
return_tensors="pt",
|
327 |
+
)
|
328 |
+
|
329 |
+
inputs = inputs.to(model.device)
|
330 |
+
|
331 |
+
# Generate
|
332 |
+
with torch.no_grad():
|
333 |
+
generated_ids = model.generate(
|
334 |
+
**inputs,
|
335 |
+
max_new_tokens=max_new_tokens,
|
336 |
+
temperature=0.0,
|
337 |
+
do_sample=False,
|
338 |
+
)
|
339 |
+
|
340 |
+
# Decode output (following demo code)
|
341 |
+
generated_ids_trimmed = [
|
342 |
+
out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
|
343 |
+
]
|
344 |
+
output_text = processor.batch_decode(
|
345 |
+
generated_ids_trimmed,
|
346 |
+
skip_special_tokens=True,
|
347 |
+
clean_up_tokenization_spaces=False
|
348 |
+
)[0]
|
349 |
+
|
350 |
+
outputs.append(output_text.strip())
|
351 |
+
|
352 |
+
return outputs
|
353 |
+
|
354 |
+
|
355 |
+
def main(
|
356 |
+
input_dataset: str,
|
357 |
+
output_dataset: str,
|
358 |
+
image_column: str = "image",
|
359 |
+
mode: str = "layout-all",
|
360 |
+
output_format: str = "json",
|
361 |
+
filter_category: Optional[str] = None,
|
362 |
+
batch_size: int = 32,
|
363 |
+
model: str = "rednote-hilab/dots.ocr",
|
364 |
+
max_model_len: int = 24000,
|
365 |
+
max_tokens: int = 16384,
|
366 |
+
gpu_memory_utilization: float = 0.8,
|
367 |
+
hf_token: Optional[str] = None,
|
368 |
+
split: str = "train",
|
369 |
+
max_samples: Optional[int] = None,
|
370 |
+
private: bool = False,
|
371 |
+
use_transformers: bool = False,
|
372 |
+
# Column name parameters
|
373 |
+
output_column: str = "dots_ocr_output",
|
374 |
+
bbox_column: str = "layout_bboxes",
|
375 |
+
category_column: str = "layout_categories",
|
376 |
+
text_column: str = "layout_texts",
|
377 |
+
markdown_column: str = "markdown",
|
378 |
+
):
|
379 |
+
"""Process images from HF dataset through dots.ocr model."""
|
380 |
+
|
381 |
+
# Check CUDA availability first
|
382 |
+
check_cuda_availability()
|
383 |
+
|
384 |
+
# Enable HF_TRANSFER for faster downloads
|
385 |
+
os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "1"
|
386 |
+
|
387 |
+
# Login to HF if token provided
|
388 |
+
HF_TOKEN = hf_token or os.environ.get("HF_TOKEN")
|
389 |
+
if HF_TOKEN:
|
390 |
+
login(token=HF_TOKEN)
|
391 |
+
|
392 |
+
# Load dataset
|
393 |
+
logger.info(f"Loading dataset: {input_dataset}")
|
394 |
+
dataset = load_dataset(input_dataset, split=split)
|
395 |
+
|
396 |
+
# Validate image column
|
397 |
+
if image_column not in dataset.column_names:
|
398 |
+
raise ValueError(
|
399 |
+
f"Column '{image_column}' not found. Available: {dataset.column_names}"
|
400 |
+
)
|
401 |
+
|
402 |
+
# Limit samples if requested
|
403 |
+
if max_samples:
|
404 |
+
dataset = dataset.select(range(min(max_samples, len(dataset))))
|
405 |
+
logger.info(f"Limited to {len(dataset)} samples")
|
406 |
+
|
407 |
+
# Process images in batches
|
408 |
+
all_outputs = []
|
409 |
+
|
410 |
+
if use_transformers or not VLLM_AVAILABLE:
|
411 |
+
# Use transformers
|
412 |
+
if not use_transformers and not VLLM_AVAILABLE:
|
413 |
+
logger.warning("vLLM not available, falling back to transformers")
|
414 |
+
|
415 |
+
logger.info(f"Initializing transformers with model: {model}")
|
416 |
+
hf_model = AutoModelForCausalLM.from_pretrained(
|
417 |
+
model,
|
418 |
+
torch_dtype=torch.bfloat16,
|
419 |
+
device_map="auto",
|
420 |
+
trust_remote_code=True,
|
421 |
+
)
|
422 |
+
processor = AutoProcessor.from_pretrained(model, trust_remote_code=True)
|
423 |
+
|
424 |
+
logger.info(f"Processing {len(dataset)} images with transformers")
|
425 |
+
logger.info(f"Mode: {mode}, Output format: {output_format}")
|
426 |
+
|
427 |
+
# Process all images
|
428 |
+
all_images = [dataset[i][image_column] for i in range(len(dataset))]
|
429 |
+
raw_outputs = process_with_transformers(
|
430 |
+
all_images,
|
431 |
+
hf_model,
|
432 |
+
processor,
|
433 |
+
mode=mode,
|
434 |
+
max_new_tokens=max_tokens
|
435 |
+
)
|
436 |
+
|
437 |
+
# Parse outputs
|
438 |
+
for raw_text in raw_outputs:
|
439 |
+
parsed = parse_dots_output(raw_text, output_format, filter_category, mode)
|
440 |
+
all_outputs.append(parsed)
|
441 |
+
|
442 |
+
else:
|
443 |
+
# Use vLLM
|
444 |
+
logger.info(f"Initializing vLLM with model: {model}")
|
445 |
+
llm = LLM(
|
446 |
+
model=model,
|
447 |
+
trust_remote_code=True,
|
448 |
+
max_model_len=max_model_len,
|
449 |
+
gpu_memory_utilization=gpu_memory_utilization,
|
450 |
+
)
|
451 |
+
|
452 |
+
sampling_params = SamplingParams(
|
453 |
+
temperature=0.0, # Deterministic for OCR
|
454 |
+
max_tokens=max_tokens,
|
455 |
+
)
|
456 |
+
|
457 |
+
logger.info(f"Processing {len(dataset)} images in batches of {batch_size}")
|
458 |
+
logger.info(f"Mode: {mode}, Output format: {output_format}")
|
459 |
+
|
460 |
+
# Process in batches to avoid memory issues
|
461 |
+
for batch_indices in tqdm(
|
462 |
+
partition_all(batch_size, range(len(dataset))),
|
463 |
+
total=(len(dataset) + batch_size - 1) // batch_size,
|
464 |
+
desc="dots.ocr processing",
|
465 |
+
):
|
466 |
+
batch_indices = list(batch_indices)
|
467 |
+
batch_images = [dataset[i][image_column] for i in batch_indices]
|
468 |
+
|
469 |
+
try:
|
470 |
+
# Create messages for batch
|
471 |
+
batch_messages = [make_dots_message(img, mode=mode) for img in batch_images]
|
472 |
+
|
473 |
+
# Process with vLLM
|
474 |
+
outputs = llm.chat(batch_messages, sampling_params)
|
475 |
+
|
476 |
+
# Extract and parse outputs
|
477 |
+
for output in outputs:
|
478 |
+
raw_text = output.outputs[0].text.strip()
|
479 |
+
parsed = parse_dots_output(raw_text, output_format, filter_category, mode)
|
480 |
+
all_outputs.append(parsed)
|
481 |
+
|
482 |
+
except Exception as e:
|
483 |
+
logger.error(f"Error processing batch: {e}")
|
484 |
+
# Add error placeholders for failed batch
|
485 |
+
all_outputs.extend([{"error": str(e)}] * len(batch_images))
|
486 |
+
|
487 |
+
# Add columns to dataset based on output format
|
488 |
+
logger.info("Adding output columns to dataset")
|
489 |
+
|
490 |
+
if output_format == "json":
|
491 |
+
dataset = dataset.add_column(output_column, all_outputs)
|
492 |
+
|
493 |
+
elif output_format == "structured":
|
494 |
+
# Extract lists from structured outputs
|
495 |
+
bboxes = []
|
496 |
+
categories = []
|
497 |
+
texts = []
|
498 |
+
|
499 |
+
for output in all_outputs:
|
500 |
+
if isinstance(output, dict) and "error" not in output:
|
501 |
+
bboxes.append(output.get("bboxes", []))
|
502 |
+
categories.append(output.get("categories", []))
|
503 |
+
texts.append(output.get("texts", []))
|
504 |
+
else:
|
505 |
+
bboxes.append([])
|
506 |
+
categories.append([])
|
507 |
+
texts.append([])
|
508 |
+
|
509 |
+
dataset = dataset.add_column(bbox_column, bboxes)
|
510 |
+
dataset = dataset.add_column(category_column, categories)
|
511 |
+
dataset = dataset.add_column(text_column, texts)
|
512 |
+
|
513 |
+
elif output_format == "markdown":
|
514 |
+
dataset = dataset.add_column(markdown_column, all_outputs)
|
515 |
+
|
516 |
+
else: # ocr mode
|
517 |
+
dataset = dataset.add_column(output_column, all_outputs)
|
518 |
+
|
519 |
+
# Push to hub
|
520 |
+
logger.info(f"Pushing to {output_dataset}")
|
521 |
+
dataset.push_to_hub(output_dataset, private=private, token=HF_TOKEN)
|
522 |
+
|
523 |
+
logger.info("✅ dots.ocr processing complete!")
|
524 |
+
logger.info(
|
525 |
+
f"Dataset available at: https://huggingface.co/datasets/{output_dataset}"
|
526 |
+
)
|
527 |
+
|
528 |
+
|
529 |
+
if __name__ == "__main__":
|
530 |
+
# Show example usage if no arguments
|
531 |
+
if len(sys.argv) == 1:
|
532 |
+
print("=" * 80)
|
533 |
+
print("dots.ocr Document Layout Analysis and OCR")
|
534 |
+
print("=" * 80)
|
535 |
+
print("\nThis script processes document images using the dots.ocr model to")
|
536 |
+
print("extract layout information, text content, or both.")
|
537 |
+
print("\nFeatures:")
|
538 |
+
print("- Layout detection with bounding boxes and categories")
|
539 |
+
print("- Text extraction with reading order preservation")
|
540 |
+
print("- Multiple output formats (JSON, structured, markdown)")
|
541 |
+
print("- Multilingual document support")
|
542 |
+
print("\nExample usage:")
|
543 |
+
print("\n1. Full layout analysis + OCR (default):")
|
544 |
+
print(" uv run dots-ocr.py document-images analyzed-docs")
|
545 |
+
print("\n2. Layout detection only:")
|
546 |
+
print(" uv run dots-ocr.py scanned-pdfs layout-analysis --mode layout-only")
|
547 |
+
print("\n3. Simple OCR (text only):")
|
548 |
+
print(" uv run dots-ocr.py documents extracted-text --mode ocr")
|
549 |
+
print("\n4. Convert to markdown:")
|
550 |
+
print(" uv run dots-ocr.py papers papers-markdown --output-format markdown")
|
551 |
+
print("\n5. Extract only tables:")
|
552 |
+
print(" uv run dots-ocr.py reports table-data --filter-category Table")
|
553 |
+
print("\n6. Structured output with custom columns:")
|
554 |
+
print(" uv run dots-ocr.py docs analyzed \\")
|
555 |
+
print(" --output-format structured \\")
|
556 |
+
print(" --bbox-column boxes \\")
|
557 |
+
print(" --category-column types \\")
|
558 |
+
print(" --text-column content")
|
559 |
+
print("\n7. Process a subset for testing:")
|
560 |
+
print(" uv run dots-ocr.py large-dataset test-output --max-samples 10")
|
561 |
+
print("\n8. Use transformers backend (more compatible):")
|
562 |
+
print(" uv run dots-ocr.py documents analyzed --use-transformers")
|
563 |
+
print("\n9. Running on HF Jobs:")
|
564 |
+
print(" hf jobs run --gpu l4x1 \\")
|
565 |
+
print(" -e HF_TOKEN=$(python3 -c \"from huggingface_hub import get_token; print(get_token())\") \\")
|
566 |
+
print(
|
567 |
+
" uv run https://huggingface.co/datasets/uv-scripts/ocr/raw/main/dots-ocr.py \\"
|
568 |
+
)
|
569 |
+
print(" your-document-dataset \\")
|
570 |
+
print(" your-analyzed-output \\")
|
571 |
+
print(" --use-transformers")
|
572 |
+
print("\n" + "=" * 80)
|
573 |
+
print("\nFor full help, run: uv run dots-ocr.py --help")
|
574 |
+
sys.exit(0)
|
575 |
+
|
576 |
+
parser = argparse.ArgumentParser(
|
577 |
+
description="Document layout analysis and OCR using dots.ocr",
|
578 |
+
formatter_class=argparse.RawDescriptionHelpFormatter,
|
579 |
+
epilog="""
|
580 |
+
Modes:
|
581 |
+
layout-all - Extract layout + text content (default)
|
582 |
+
layout-only - Extract only layout information (bbox + category)
|
583 |
+
ocr - Extract only text content
|
584 |
+
grounding-ocr - Extract text from specific bbox (requires --bbox)
|
585 |
+
|
586 |
+
Output Formats:
|
587 |
+
json - Raw JSON output from model (default)
|
588 |
+
structured - Separate columns for bboxes, categories, texts
|
589 |
+
markdown - Convert to markdown format
|
590 |
+
|
591 |
+
Examples:
|
592 |
+
# Basic layout + OCR
|
593 |
+
uv run dots-ocr.py my-docs analyzed-docs
|
594 |
+
|
595 |
+
# Layout detection only
|
596 |
+
uv run dots-ocr.py papers layouts --mode layout-only
|
597 |
+
|
598 |
+
# Convert to markdown
|
599 |
+
uv run dots-ocr.py scans readable --output-format markdown
|
600 |
+
|
601 |
+
# Extract only formulas
|
602 |
+
uv run dots-ocr.py math-docs formulas --filter-category Formula
|
603 |
+
""",
|
604 |
+
)
|
605 |
+
|
606 |
+
parser.add_argument("input_dataset", help="Input dataset ID from Hugging Face Hub")
|
607 |
+
parser.add_argument("output_dataset", help="Output dataset ID for Hugging Face Hub")
|
608 |
+
parser.add_argument(
|
609 |
+
"--image-column",
|
610 |
+
default="image",
|
611 |
+
help="Column containing images (default: image)",
|
612 |
+
)
|
613 |
+
parser.add_argument(
|
614 |
+
"--mode",
|
615 |
+
choices=["layout-all", "layout-only", "ocr", "grounding-ocr"],
|
616 |
+
default="layout-all",
|
617 |
+
help="Processing mode (default: layout-all)",
|
618 |
+
)
|
619 |
+
parser.add_argument(
|
620 |
+
"--output-format",
|
621 |
+
choices=["json", "structured", "markdown"],
|
622 |
+
default="json",
|
623 |
+
help="Output format (default: json)",
|
624 |
+
)
|
625 |
+
parser.add_argument(
|
626 |
+
"--filter-category",
|
627 |
+
choices=['Caption', 'Footnote', 'Formula', 'List-item', 'Page-footer',
|
628 |
+
'Page-header', 'Picture', 'Section-header', 'Table', 'Text', 'Title'],
|
629 |
+
help="Filter results by layout category",
|
630 |
+
)
|
631 |
+
parser.add_argument(
|
632 |
+
"--batch-size",
|
633 |
+
type=int,
|
634 |
+
default=32,
|
635 |
+
help="Batch size for processing (default: 32)",
|
636 |
+
)
|
637 |
+
parser.add_argument(
|
638 |
+
"--model",
|
639 |
+
default="rednote-hilab/dots.ocr",
|
640 |
+
help="Model to use (default: rednote-hilab/dots.ocr)",
|
641 |
+
)
|
642 |
+
parser.add_argument(
|
643 |
+
"--max-model-len",
|
644 |
+
type=int,
|
645 |
+
default=24000,
|
646 |
+
help="Maximum model context length (default: 24000)",
|
647 |
+
)
|
648 |
+
parser.add_argument(
|
649 |
+
"--max-tokens",
|
650 |
+
type=int,
|
651 |
+
default=16384,
|
652 |
+
help="Maximum tokens to generate (default: 16384)",
|
653 |
+
)
|
654 |
+
parser.add_argument(
|
655 |
+
"--gpu-memory-utilization",
|
656 |
+
type=float,
|
657 |
+
default=0.8,
|
658 |
+
help="GPU memory utilization (default: 0.8)",
|
659 |
+
)
|
660 |
+
parser.add_argument("--hf-token", help="Hugging Face API token")
|
661 |
+
parser.add_argument(
|
662 |
+
"--split", default="train", help="Dataset split to use (default: train)"
|
663 |
+
)
|
664 |
+
parser.add_argument(
|
665 |
+
"--max-samples",
|
666 |
+
type=int,
|
667 |
+
help="Maximum number of samples to process (for testing)",
|
668 |
+
)
|
669 |
+
parser.add_argument(
|
670 |
+
"--private", action="store_true", help="Make output dataset private"
|
671 |
+
)
|
672 |
+
parser.add_argument(
|
673 |
+
"--use-transformers",
|
674 |
+
action="store_true",
|
675 |
+
help="Use transformers instead of vLLM (more compatible but slower)",
|
676 |
+
)
|
677 |
+
|
678 |
+
# Column name customization
|
679 |
+
parser.add_argument(
|
680 |
+
"--output-column",
|
681 |
+
default="dots_ocr_output",
|
682 |
+
help="Column name for JSON output (default: dots_ocr_output)",
|
683 |
+
)
|
684 |
+
parser.add_argument(
|
685 |
+
"--bbox-column",
|
686 |
+
default="layout_bboxes",
|
687 |
+
help="Column name for bboxes in structured mode (default: layout_bboxes)",
|
688 |
+
)
|
689 |
+
parser.add_argument(
|
690 |
+
"--category-column",
|
691 |
+
default="layout_categories",
|
692 |
+
help="Column name for categories in structured mode (default: layout_categories)",
|
693 |
+
)
|
694 |
+
parser.add_argument(
|
695 |
+
"--text-column",
|
696 |
+
default="layout_texts",
|
697 |
+
help="Column name for texts in structured mode (default: layout_texts)",
|
698 |
+
)
|
699 |
+
parser.add_argument(
|
700 |
+
"--markdown-column",
|
701 |
+
default="markdown",
|
702 |
+
help="Column name for markdown output (default: markdown)",
|
703 |
+
)
|
704 |
+
|
705 |
+
args = parser.parse_args()
|
706 |
+
|
707 |
+
main(
|
708 |
+
input_dataset=args.input_dataset,
|
709 |
+
output_dataset=args.output_dataset,
|
710 |
+
image_column=args.image_column,
|
711 |
+
mode=args.mode,
|
712 |
+
output_format=args.output_format,
|
713 |
+
filter_category=args.filter_category,
|
714 |
+
batch_size=args.batch_size,
|
715 |
+
model=args.model,
|
716 |
+
max_model_len=args.max_model_len,
|
717 |
+
max_tokens=args.max_tokens,
|
718 |
+
gpu_memory_utilization=args.gpu_memory_utilization,
|
719 |
+
hf_token=args.hf_token,
|
720 |
+
split=args.split,
|
721 |
+
max_samples=args.max_samples,
|
722 |
+
private=args.private,
|
723 |
+
use_transformers=args.use_transformers,
|
724 |
+
output_column=args.output_column,
|
725 |
+
bbox_column=args.bbox_column,
|
726 |
+
category_column=args.category_column,
|
727 |
+
text_column=args.text_column,
|
728 |
+
markdown_column=args.markdown_column,
|
729 |
+
)
|
nanonets-ocr.py
CHANGED
@@ -91,11 +91,11 @@ def main(
|
|
91 |
input_dataset: str,
|
92 |
output_dataset: str,
|
93 |
image_column: str = "image",
|
94 |
-
batch_size: int =
|
95 |
model: str = "nanonets/Nanonets-OCR-s",
|
96 |
max_model_len: int = 8192,
|
97 |
max_tokens: int = 4096,
|
98 |
-
gpu_memory_utilization: float = 0.
|
99 |
hf_token: str = None,
|
100 |
split: str = "train",
|
101 |
max_samples: int = None,
|
@@ -251,8 +251,8 @@ Examples:
|
|
251 |
parser.add_argument(
|
252 |
"--batch-size",
|
253 |
type=int,
|
254 |
-
default=
|
255 |
-
help="Batch size for processing (default:
|
256 |
)
|
257 |
parser.add_argument(
|
258 |
"--model",
|
@@ -274,8 +274,8 @@ Examples:
|
|
274 |
parser.add_argument(
|
275 |
"--gpu-memory-utilization",
|
276 |
type=float,
|
277 |
-
default=0.
|
278 |
-
help="GPU memory utilization (default: 0.
|
279 |
)
|
280 |
parser.add_argument("--hf-token", help="Hugging Face API token")
|
281 |
parser.add_argument(
|
|
|
91 |
input_dataset: str,
|
92 |
output_dataset: str,
|
93 |
image_column: str = "image",
|
94 |
+
batch_size: int = 32,
|
95 |
model: str = "nanonets/Nanonets-OCR-s",
|
96 |
max_model_len: int = 8192,
|
97 |
max_tokens: int = 4096,
|
98 |
+
gpu_memory_utilization: float = 0.8,
|
99 |
hf_token: str = None,
|
100 |
split: str = "train",
|
101 |
max_samples: int = None,
|
|
|
251 |
parser.add_argument(
|
252 |
"--batch-size",
|
253 |
type=int,
|
254 |
+
default=32,
|
255 |
+
help="Batch size for processing (default: 32)",
|
256 |
)
|
257 |
parser.add_argument(
|
258 |
"--model",
|
|
|
274 |
parser.add_argument(
|
275 |
"--gpu-memory-utilization",
|
276 |
type=float,
|
277 |
+
default=0.8,
|
278 |
+
help="GPU memory utilization (default: 0.8)",
|
279 |
)
|
280 |
parser.add_argument("--hf-token", help="Hugging Face API token")
|
281 |
parser.add_argument(
|