|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" |
|
Batch text classification using vLLM for efficient GPU inference. |
|
|
|
This script loads a dataset from Hugging Face Hub, performs classification using |
|
a BERT-style model via vLLM, and saves the results back to the Hub with predicted |
|
labels and confidence scores. |
|
|
|
Example usage: |
|
# Local execution |
|
uv run classify-dataset.py \\ |
|
davanstrien/ModernBERT-base-is-new-arxiv-dataset \\ |
|
username/input-dataset \\ |
|
username/output-dataset \\ |
|
--inference-column text \\ |
|
--batch-size 10000 |
|
|
|
# HF Jobs execution (see script output for full command) |
|
hfjobs run --flavor l4x1 ... |
|
""" |
|
|
|
import argparse |
|
import logging |
|
import os |
|
import sys |
|
from typing import Optional |
|
|
|
import httpx |
|
import torch |
|
import torch.nn.functional as F |
|
import vllm |
|
from datasets import load_dataset |
|
from huggingface_hub import hf_hub_url, login |
|
from toolz import concat, keymap, partition_all |
|
from tqdm.auto import tqdm |
|
from vllm import LLM |
|
|
|
logging.basicConfig( |
|
level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s" |
|
) |
|
logger = logging.getLogger(__name__) |
|
|
|
|
|
def check_gpu_availability(): |
|
"""Check if CUDA is available and log GPU information.""" |
|
if not torch.cuda.is_available(): |
|
logger.error("CUDA is not available. This script requires a GPU.") |
|
logger.error( |
|
"Please run on a machine with NVIDIA GPU or use HF Jobs with GPU flavor." |
|
) |
|
sys.exit(1) |
|
|
|
gpu_name = torch.cuda.get_device_name(0) |
|
gpu_memory = torch.cuda.get_device_properties(0).total_memory / 1024**3 |
|
logger.info(f"GPU detected: {gpu_name} with {gpu_memory:.1f} GB memory") |
|
logger.info(f"vLLM version: {vllm.__version__}") |
|
|
|
|
|
def get_model_id2label(hub_model_id: str) -> Optional[dict[int, str]]: |
|
"""Extract label mapping from model's config.json on Hugging Face Hub.""" |
|
try: |
|
response = httpx.get( |
|
hf_hub_url(hub_model_id, filename="config.json"), follow_redirects=True |
|
) |
|
if response.status_code != 200: |
|
logger.warning(f"Could not fetch config.json for {hub_model_id}") |
|
return None |
|
|
|
data = response.json() |
|
id2label = data.get("id2label") |
|
|
|
if id2label is None: |
|
logger.info("No id2label mapping found in config.json") |
|
return None |
|
|
|
|
|
label_map = keymap(int, id2label) |
|
logger.info(f"Found label mapping: {label_map}") |
|
return label_map |
|
|
|
except Exception as e: |
|
logger.warning(f"Failed to parse config.json: {e}") |
|
return None |
|
|
|
|
|
def get_top_label(output, label_map: Optional[dict[int, str]] = None): |
|
""" |
|
Extract the top predicted label and confidence score from vLLM output. |
|
|
|
Args: |
|
output: vLLM ClassificationRequestOutput |
|
label_map: Optional mapping from label indices to label names |
|
|
|
Returns: |
|
Tuple of (label, confidence_score) |
|
""" |
|
logits = torch.tensor(output.outputs.probs) |
|
probs = F.softmax(logits, dim=0) |
|
top_idx = torch.argmax(probs).item() |
|
top_prob = probs[top_idx].item() |
|
|
|
|
|
label = label_map.get(top_idx, str(top_idx)) if label_map else str(top_idx) |
|
return label, top_prob |
|
|
|
|
|
def main( |
|
hub_model_id: str, |
|
src_dataset_hub_id: str, |
|
output_dataset_hub_id: str, |
|
inference_column: str = "text", |
|
batch_size: int = 10_000, |
|
hf_token: Optional[str] = None, |
|
): |
|
""" |
|
Main classification pipeline. |
|
|
|
Args: |
|
hub_model_id: Hugging Face model ID for classification |
|
src_dataset_hub_id: Input dataset on Hugging Face Hub |
|
output_dataset_hub_id: Where to save results on Hugging Face Hub |
|
inference_column: Column name containing text to classify |
|
batch_size: Number of examples to process at once |
|
hf_token: Hugging Face authentication token |
|
""" |
|
|
|
check_gpu_availability() |
|
|
|
|
|
HF_TOKEN = hf_token or os.environ.get("HF_TOKEN") |
|
if HF_TOKEN: |
|
login(token=HF_TOKEN) |
|
else: |
|
logger.error( |
|
"HF_TOKEN is required. Set via --hf-token or HF_TOKEN environment variable." |
|
) |
|
sys.exit(1) |
|
|
|
|
|
logger.info(f"Loading model: {hub_model_id}") |
|
llm = LLM(model=hub_model_id, task="classify") |
|
|
|
|
|
id2label = get_model_id2label(hub_model_id) |
|
|
|
|
|
logger.info(f"Loading dataset: {src_dataset_hub_id}") |
|
dataset = load_dataset(src_dataset_hub_id, split="train") |
|
total_examples = len(dataset) |
|
logger.info(f"Dataset loaded with {total_examples:,} examples") |
|
|
|
|
|
if inference_column not in dataset.column_names: |
|
logger.error( |
|
f"Column '{inference_column}' not found. Available columns: {dataset.column_names}" |
|
) |
|
sys.exit(1) |
|
|
|
prompts = dataset[inference_column] |
|
|
|
|
|
logger.info(f"Starting classification with batch size {batch_size:,}") |
|
all_results = [] |
|
|
|
for batch in tqdm( |
|
list(partition_all(batch_size, prompts)), |
|
desc="Processing batches", |
|
unit="batch", |
|
): |
|
batch_results = llm.classify(batch) |
|
all_results.append(batch_results) |
|
|
|
|
|
outputs = list(concat(all_results)) |
|
|
|
|
|
logger.info("Extracting predictions...") |
|
labels_and_probs = [get_top_label(output, id2label) for output in outputs] |
|
|
|
|
|
dataset = dataset.add_column("label", [label for label, _ in labels_and_probs]) |
|
dataset = dataset.add_column("prob", [prob for _, prob in labels_and_probs]) |
|
|
|
|
|
logger.info(f"Pushing results to: {output_dataset_hub_id}") |
|
dataset.push_to_hub(output_dataset_hub_id, token=HF_TOKEN) |
|
logger.info("✅ Classification complete!") |
|
|
|
|
|
if __name__ == "__main__": |
|
if len(sys.argv) > 1: |
|
parser = argparse.ArgumentParser( |
|
description="Classify text data using vLLM and save results to Hugging Face Hub", |
|
formatter_class=argparse.RawDescriptionHelpFormatter, |
|
epilog=""" |
|
Examples: |
|
# Basic usage |
|
uv run classify-dataset.py model/name input-dataset output-dataset |
|
|
|
# With custom column and batch size |
|
uv run classify-dataset.py model/name input-dataset output-dataset \\ |
|
--inference-column prompt \\ |
|
--batch-size 50000 |
|
|
|
# Using environment variable for token |
|
HF_TOKEN=hf_xxx uv run classify-dataset.py model/name input-dataset output-dataset |
|
""", |
|
) |
|
|
|
parser.add_argument( |
|
"hub_model_id", |
|
help="Hugging Face model ID for classification (e.g., bert-base-uncased)", |
|
) |
|
parser.add_argument( |
|
"src_dataset_hub_id", |
|
help="Input dataset on Hugging Face Hub (e.g., username/dataset-name)", |
|
) |
|
parser.add_argument( |
|
"output_dataset_hub_id", help="Output dataset name on Hugging Face Hub" |
|
) |
|
parser.add_argument( |
|
"--inference-column", |
|
type=str, |
|
default="text", |
|
help="Column containing text to classify (default: text)", |
|
) |
|
parser.add_argument( |
|
"--batch-size", |
|
type=int, |
|
default=10_000, |
|
help="Batch size for inference (default: 10,000)", |
|
) |
|
parser.add_argument( |
|
"--hf-token", |
|
type=str, |
|
help="Hugging Face token (can also use HF_TOKEN env var)", |
|
) |
|
|
|
args = parser.parse_args() |
|
|
|
main( |
|
hub_model_id=args.hub_model_id, |
|
src_dataset_hub_id=args.src_dataset_hub_id, |
|
output_dataset_hub_id=args.output_dataset_hub_id, |
|
inference_column=args.inference_column, |
|
batch_size=args.batch_size, |
|
hf_token=args.hf_token, |
|
) |
|
else: |
|
|
|
print(""" |
|
vLLM Classification Script |
|
========================= |
|
|
|
This script requires arguments. For usage information: |
|
uv run classify-dataset.py --help |
|
|
|
Example HF Jobs command: |
|
hfjobs run \\ |
|
--flavor l4x1 \\ |
|
--secret HF_TOKEN=\$(python -c "from huggingface_hub import HfFolder; print(HfFolder.get_token())") \\ |
|
vllm/vllm-openai:latest \\ |
|
/bin/bash -c ' |
|
uv run https://huggingface.co/datasets/uv-scripts/vllm/resolve/main/classify-dataset.py \\ |
|
davanstrien/ModernBERT-base-is-new-arxiv-dataset \\ |
|
username/input-dataset \\ |
|
username/output-dataset \\ |
|
--inference-column text \\ |
|
--batch-size 100000 |
|
' \\ |
|
--project vllm-classify \\ |
|
--name my-classification-job |
|
""") |
|
|