|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" |
|
Generate responses for prompts in a dataset using vLLM for efficient GPU inference. |
|
|
|
This script loads a dataset from Hugging Face Hub containing chat-formatted messages, |
|
applies the model's chat template, generates responses using vLLM, and saves the |
|
results back to the Hub with a comprehensive dataset card. |
|
|
|
Example usage: |
|
# Local execution with auto GPU detection |
|
uv run generate-responses.py \\ |
|
username/input-dataset \\ |
|
username/output-dataset \\ |
|
--messages-column messages |
|
|
|
# With custom model and sampling parameters |
|
uv run generate-responses.py \\ |
|
username/input-dataset \\ |
|
username/output-dataset \\ |
|
--model-id meta-llama/Llama-3.1-8B-Instruct \\ |
|
--temperature 0.9 \\ |
|
--top-p 0.95 \\ |
|
--max-tokens 2048 |
|
|
|
# HF Jobs execution (see script output for full command) |
|
hf jobs uv run --flavor a100x4 ... |
|
""" |
|
|
|
import argparse |
|
import logging |
|
import os |
|
import sys |
|
from datetime import datetime |
|
from typing import Optional |
|
|
|
from datasets import load_dataset |
|
from huggingface_hub import DatasetCard, get_token, login |
|
from torch import cuda |
|
from tqdm.auto import tqdm |
|
from transformers import AutoTokenizer |
|
from vllm import LLM, SamplingParams |
|
|
|
|
|
os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "1" |
|
|
|
logging.basicConfig( |
|
level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s" |
|
) |
|
logger = logging.getLogger(__name__) |
|
|
|
|
|
def check_gpu_availability() -> int: |
|
"""Check if CUDA is available and return the number of GPUs.""" |
|
if not cuda.is_available(): |
|
logger.error("CUDA is not available. This script requires a GPU.") |
|
logger.error( |
|
"Please run on a machine with NVIDIA GPU or use HF Jobs with GPU flavor." |
|
) |
|
sys.exit(1) |
|
|
|
num_gpus = cuda.device_count() |
|
for i in range(num_gpus): |
|
gpu_name = cuda.get_device_name(i) |
|
gpu_memory = cuda.get_device_properties(i).total_memory / 1024**3 |
|
logger.info(f"GPU {i}: {gpu_name} with {gpu_memory:.1f} GB memory") |
|
|
|
return num_gpus |
|
|
|
|
|
def create_dataset_card( |
|
source_dataset: str, |
|
model_id: str, |
|
messages_column: str, |
|
sampling_params: SamplingParams, |
|
tensor_parallel_size: int, |
|
num_examples: int, |
|
generation_time: str, |
|
num_skipped: int = 0, |
|
max_model_len_used: Optional[int] = None, |
|
) -> str: |
|
"""Create a comprehensive dataset card documenting the generation process.""" |
|
filtering_section = "" |
|
if num_skipped > 0: |
|
skip_percentage = (num_skipped / num_examples) * 100 |
|
processed = num_examples - num_skipped |
|
filtering_section = f""" |
|
|
|
### Filtering Statistics |
|
|
|
- **Total Examples**: {num_examples:,} |
|
- **Processed**: {processed:,} ({100 - skip_percentage:.1f}%) |
|
- **Skipped (too long)**: {num_skipped:,} ({skip_percentage:.1f}%) |
|
- **Max Model Length Used**: {max_model_len_used:,} tokens |
|
|
|
Note: Prompts exceeding the maximum model length were skipped and have empty responses.""" |
|
|
|
return f"""--- |
|
tags: |
|
- generated |
|
- vllm |
|
- uv-script |
|
--- |
|
|
|
# Generated Responses Dataset |
|
|
|
This dataset contains generated responses for prompts from [{source_dataset}](https://huggingface.co/datasets/{source_dataset}). |
|
|
|
## Generation Details |
|
|
|
- **Source Dataset**: [{source_dataset}](https://huggingface.co/datasets/{source_dataset}) |
|
- **Messages Column**: `{messages_column}` |
|
- **Model**: [{model_id}](https://huggingface.co/{model_id}) |
|
- **Number of Examples**: {num_examples:,} |
|
- **Generation Date**: {generation_time}{filtering_section} |
|
|
|
### Sampling Parameters |
|
|
|
- **Temperature**: {sampling_params.temperature} |
|
- **Top P**: {sampling_params.top_p} |
|
- **Top K**: {sampling_params.top_k} |
|
- **Min P**: {sampling_params.min_p} |
|
- **Max Tokens**: {sampling_params.max_tokens} |
|
- **Repetition Penalty**: {sampling_params.repetition_penalty} |
|
|
|
### Hardware Configuration |
|
|
|
- **Tensor Parallel Size**: {tensor_parallel_size} |
|
- **GPU Configuration**: {tensor_parallel_size} GPU(s) |
|
|
|
## Dataset Structure |
|
|
|
The dataset contains all columns from the source dataset plus: |
|
- `response`: The generated response from the model |
|
|
|
## Generation Script |
|
|
|
Generated using the vLLM inference script from [uv-scripts/vllm](https://huggingface.co/datasets/uv-scripts/vllm). |
|
|
|
To reproduce this generation: |
|
|
|
```bash |
|
uv run https://huggingface.co/datasets/uv-scripts/vllm/raw/main/generate-responses.py \\ |
|
{source_dataset} \\ |
|
<output-dataset> \\ |
|
--model-id {model_id} \\ |
|
--messages-column {messages_column} \\ |
|
--temperature {sampling_params.temperature} \\ |
|
--top-p {sampling_params.top_p} \\ |
|
--top-k {sampling_params.top_k} \\ |
|
--max-tokens {sampling_params.max_tokens}{f" \\\\\\n --max-model-len {max_model_len_used}" if max_model_len_used else ""} |
|
``` |
|
""" |
|
|
|
|
|
def main( |
|
src_dataset_hub_id: str, |
|
output_dataset_hub_id: str, |
|
model_id: str = "Qwen/Qwen3-30B-A3B-Instruct-2507", |
|
messages_column: str = "messages", |
|
output_column: str = "response", |
|
temperature: float = 0.7, |
|
top_p: float = 0.8, |
|
top_k: int = 20, |
|
min_p: float = 0.0, |
|
max_tokens: int = 16384, |
|
repetition_penalty: float = 1.0, |
|
gpu_memory_utilization: float = 0.90, |
|
max_model_len: Optional[int] = None, |
|
tensor_parallel_size: Optional[int] = None, |
|
skip_long_prompts: bool = True, |
|
hf_token: Optional[str] = None, |
|
): |
|
""" |
|
Main generation pipeline. |
|
|
|
Args: |
|
src_dataset_hub_id: Input dataset on Hugging Face Hub |
|
output_dataset_hub_id: Where to save results on Hugging Face Hub |
|
model_id: Hugging Face model ID for generation |
|
messages_column: Column name containing chat messages |
|
output_column: Column name for generated responses |
|
temperature: Sampling temperature |
|
top_p: Top-p sampling parameter |
|
top_k: Top-k sampling parameter |
|
min_p: Minimum probability threshold |
|
max_tokens: Maximum tokens to generate |
|
repetition_penalty: Repetition penalty parameter |
|
gpu_memory_utilization: GPU memory utilization factor |
|
max_model_len: Maximum model context length (None uses model default) |
|
tensor_parallel_size: Number of GPUs to use (auto-detect if None) |
|
skip_long_prompts: Skip prompts exceeding max_model_len instead of failing |
|
hf_token: Hugging Face authentication token |
|
""" |
|
generation_start_time = datetime.now().isoformat() |
|
|
|
|
|
num_gpus = check_gpu_availability() |
|
if tensor_parallel_size is None: |
|
tensor_parallel_size = num_gpus |
|
logger.info( |
|
f"Auto-detected {num_gpus} GPU(s), using tensor_parallel_size={tensor_parallel_size}" |
|
) |
|
else: |
|
logger.info(f"Using specified tensor_parallel_size={tensor_parallel_size}") |
|
if tensor_parallel_size > num_gpus: |
|
logger.warning( |
|
f"Requested {tensor_parallel_size} GPUs but only {num_gpus} available" |
|
) |
|
|
|
|
|
HF_TOKEN = hf_token or os.environ.get("HF_TOKEN") or get_token() |
|
|
|
if not HF_TOKEN: |
|
logger.error("No HuggingFace token found. Please provide token via:") |
|
logger.error(" 1. --hf-token argument") |
|
logger.error(" 2. HF_TOKEN environment variable") |
|
logger.error(" 3. Run 'huggingface-cli login' or use login() in Python") |
|
sys.exit(1) |
|
|
|
logger.info("HuggingFace token found, authenticating...") |
|
login(token=HF_TOKEN) |
|
|
|
|
|
logger.info(f"Loading model: {model_id}") |
|
vllm_kwargs = { |
|
"model": model_id, |
|
"tensor_parallel_size": tensor_parallel_size, |
|
"gpu_memory_utilization": gpu_memory_utilization, |
|
} |
|
if max_model_len is not None: |
|
vllm_kwargs["max_model_len"] = max_model_len |
|
logger.info(f"Using max_model_len={max_model_len}") |
|
|
|
llm = LLM(**vllm_kwargs) |
|
|
|
|
|
logger.info("Loading tokenizer...") |
|
tokenizer = AutoTokenizer.from_pretrained(model_id) |
|
|
|
|
|
sampling_params = SamplingParams( |
|
temperature=temperature, |
|
top_p=top_p, |
|
top_k=top_k, |
|
min_p=min_p, |
|
max_tokens=max_tokens, |
|
repetition_penalty=repetition_penalty, |
|
) |
|
|
|
|
|
logger.info(f"Loading dataset: {src_dataset_hub_id}") |
|
dataset = load_dataset(src_dataset_hub_id, split="train") |
|
total_examples = len(dataset) |
|
logger.info(f"Dataset loaded with {total_examples:,} examples") |
|
|
|
|
|
if messages_column not in dataset.column_names: |
|
logger.error( |
|
f"Column '{messages_column}' not found. Available columns: {dataset.column_names}" |
|
) |
|
sys.exit(1) |
|
|
|
|
|
if max_model_len is not None: |
|
effective_max_len = max_model_len |
|
else: |
|
|
|
effective_max_len = llm.llm_engine.model_config.max_model_len |
|
logger.info(f"Using effective max model length: {effective_max_len}") |
|
|
|
|
|
logger.info("Applying chat template to messages...") |
|
all_prompts = [] |
|
valid_prompts = [] |
|
valid_indices = [] |
|
skipped_info = [] |
|
|
|
for i, example in enumerate(tqdm(dataset, desc="Processing messages")): |
|
messages = example[messages_column] |
|
|
|
prompt = tokenizer.apply_chat_template( |
|
messages, tokenize=False, add_generation_prompt=True |
|
) |
|
all_prompts.append(prompt) |
|
|
|
|
|
if skip_long_prompts: |
|
tokens = tokenizer.encode(prompt) |
|
if len(tokens) <= effective_max_len: |
|
valid_prompts.append(prompt) |
|
valid_indices.append(i) |
|
else: |
|
skipped_info.append((i, len(tokens))) |
|
else: |
|
valid_prompts.append(prompt) |
|
valid_indices.append(i) |
|
|
|
|
|
if skip_long_prompts and skipped_info: |
|
logger.warning( |
|
f"Skipped {len(skipped_info)} prompts that exceed max_model_len ({effective_max_len} tokens)" |
|
) |
|
logger.info("Skipped prompt details (first 10):") |
|
for idx, (prompt_idx, token_count) in enumerate(skipped_info[:10]): |
|
logger.info( |
|
f" - Example {prompt_idx}: {token_count} tokens (exceeds by {token_count - effective_max_len})" |
|
) |
|
if len(skipped_info) > 10: |
|
logger.info(f" ... and {len(skipped_info) - 10} more") |
|
|
|
skip_percentage = (len(skipped_info) / total_examples) * 100 |
|
if skip_percentage > 10: |
|
logger.warning(f"WARNING: {skip_percentage:.1f}% of prompts were skipped!") |
|
|
|
if not valid_prompts: |
|
logger.error("No valid prompts to process after filtering!") |
|
sys.exit(1) |
|
|
|
|
|
logger.info(f"Starting generation for {len(valid_prompts):,} valid prompts...") |
|
logger.info("vLLM will handle batching and scheduling automatically") |
|
|
|
outputs = llm.generate(valid_prompts, sampling_params) |
|
|
|
|
|
logger.info("Extracting generated responses...") |
|
responses = [""] * total_examples |
|
|
|
for idx, output in enumerate(outputs): |
|
original_idx = valid_indices[idx] |
|
response = output.outputs[0].text.strip() |
|
responses[original_idx] = response |
|
|
|
|
|
logger.info("Adding responses to dataset...") |
|
dataset = dataset.add_column(output_column, responses) |
|
|
|
|
|
logger.info("Creating dataset card...") |
|
card_content = create_dataset_card( |
|
source_dataset=src_dataset_hub_id, |
|
model_id=model_id, |
|
messages_column=messages_column, |
|
sampling_params=sampling_params, |
|
tensor_parallel_size=tensor_parallel_size, |
|
num_examples=total_examples, |
|
generation_time=generation_start_time, |
|
num_skipped=len(skipped_info) if skip_long_prompts else 0, |
|
max_model_len_used=effective_max_len if skip_long_prompts else None, |
|
) |
|
|
|
|
|
logger.info(f"Pushing dataset to: {output_dataset_hub_id}") |
|
dataset.push_to_hub(output_dataset_hub_id, token=HF_TOKEN) |
|
|
|
|
|
card = DatasetCard(card_content) |
|
card.push_to_hub(output_dataset_hub_id, token=HF_TOKEN) |
|
|
|
logger.info("✅ Generation complete!") |
|
logger.info( |
|
f"Dataset available at: https://huggingface.co/datasets/{output_dataset_hub_id}" |
|
) |
|
|
|
|
|
if __name__ == "__main__": |
|
if len(sys.argv) > 1: |
|
parser = argparse.ArgumentParser( |
|
description="Generate responses for dataset prompts using vLLM", |
|
formatter_class=argparse.RawDescriptionHelpFormatter, |
|
epilog=""" |
|
Examples: |
|
# Basic usage with default Qwen model |
|
uv run generate-responses.py input-dataset output-dataset |
|
|
|
# With custom model and parameters |
|
uv run generate-responses.py input-dataset output-dataset \\ |
|
--model-id meta-llama/Llama-3.1-8B-Instruct \\ |
|
--temperature 0.9 \\ |
|
--max-tokens 2048 |
|
|
|
# Force specific GPU configuration |
|
uv run generate-responses.py input-dataset output-dataset \\ |
|
--tensor-parallel-size 2 \\ |
|
--gpu-memory-utilization 0.95 |
|
|
|
# Using environment variable for token |
|
HF_TOKEN=hf_xxx uv run generate-responses.py input-dataset output-dataset |
|
""", |
|
) |
|
|
|
parser.add_argument( |
|
"src_dataset_hub_id", |
|
help="Input dataset on Hugging Face Hub (e.g., username/dataset-name)", |
|
) |
|
parser.add_argument( |
|
"output_dataset_hub_id", help="Output dataset name on Hugging Face Hub" |
|
) |
|
parser.add_argument( |
|
"--model-id", |
|
type=str, |
|
default="Qwen/Qwen3-30B-A3B-Instruct-2507", |
|
help="Model to use for generation (default: Qwen3-30B-A3B-Instruct-2507)", |
|
) |
|
parser.add_argument( |
|
"--messages-column", |
|
type=str, |
|
default="messages", |
|
help="Column containing chat messages (default: messages)", |
|
) |
|
parser.add_argument( |
|
"--output-column", |
|
type=str, |
|
default="response", |
|
help="Column name for generated responses (default: response)", |
|
) |
|
parser.add_argument( |
|
"--temperature", |
|
type=float, |
|
default=0.7, |
|
help="Sampling temperature (default: 0.7)", |
|
) |
|
parser.add_argument( |
|
"--top-p", |
|
type=float, |
|
default=0.8, |
|
help="Top-p sampling parameter (default: 0.8)", |
|
) |
|
parser.add_argument( |
|
"--top-k", |
|
type=int, |
|
default=20, |
|
help="Top-k sampling parameter (default: 20)", |
|
) |
|
parser.add_argument( |
|
"--min-p", |
|
type=float, |
|
default=0.0, |
|
help="Minimum probability threshold (default: 0.0)", |
|
) |
|
parser.add_argument( |
|
"--max-tokens", |
|
type=int, |
|
default=16384, |
|
help="Maximum tokens to generate (default: 16384)", |
|
) |
|
parser.add_argument( |
|
"--repetition-penalty", |
|
type=float, |
|
default=1.0, |
|
help="Repetition penalty (default: 1.0)", |
|
) |
|
parser.add_argument( |
|
"--gpu-memory-utilization", |
|
type=float, |
|
default=0.90, |
|
help="GPU memory utilization factor (default: 0.90)", |
|
) |
|
parser.add_argument( |
|
"--max-model-len", |
|
type=int, |
|
help="Maximum model context length (default: model's default)", |
|
) |
|
parser.add_argument( |
|
"--tensor-parallel-size", |
|
type=int, |
|
help="Number of GPUs to use (default: auto-detect)", |
|
) |
|
parser.add_argument( |
|
"--hf-token", |
|
type=str, |
|
help="Hugging Face token (can also use HF_TOKEN env var)", |
|
) |
|
parser.add_argument( |
|
"--skip-long-prompts", |
|
action="store_true", |
|
default=True, |
|
help="Skip prompts that exceed max_model_len instead of failing (default: True)", |
|
) |
|
parser.add_argument( |
|
"--no-skip-long-prompts", |
|
dest="skip_long_prompts", |
|
action="store_false", |
|
help="Fail on prompts that exceed max_model_len", |
|
) |
|
|
|
args = parser.parse_args() |
|
|
|
main( |
|
src_dataset_hub_id=args.src_dataset_hub_id, |
|
output_dataset_hub_id=args.output_dataset_hub_id, |
|
model_id=args.model_id, |
|
messages_column=args.messages_column, |
|
output_column=args.output_column, |
|
temperature=args.temperature, |
|
top_p=args.top_p, |
|
top_k=args.top_k, |
|
min_p=args.min_p, |
|
max_tokens=args.max_tokens, |
|
repetition_penalty=args.repetition_penalty, |
|
gpu_memory_utilization=args.gpu_memory_utilization, |
|
max_model_len=args.max_model_len, |
|
tensor_parallel_size=args.tensor_parallel_size, |
|
skip_long_prompts=args.skip_long_prompts, |
|
hf_token=args.hf_token, |
|
) |
|
else: |
|
|
|
print(""" |
|
vLLM Response Generation Script |
|
============================== |
|
|
|
This script requires arguments. For usage information: |
|
uv run generate-responses.py --help |
|
|
|
Example HF Jobs command with multi-GPU: |
|
# If you're logged in with huggingface-cli, token will be auto-detected |
|
hf jobs uv run \\ |
|
--flavor l4x4 \\ |
|
https://huggingface.co/datasets/uv-scripts/vllm/raw/main/generate-responses.py \\ |
|
username/input-dataset \\ |
|
username/output-dataset \\ |
|
--messages-column messages \\ |
|
--model-id Qwen/Qwen3-30B-A3B-Instruct-2507 \\ |
|
--temperature 0.7 \\ |
|
--max-tokens 16384 |
|
""") |
|
|