Dataset Viewer
Auto-converted to Parquet
Name
stringlengths
2
14
Year
int64
1.91k
2.02k
Total_sum
int64
1
1.76M
Female_count
int64
0
909k
Male_count
int64
0
852k
Female_percentage
float64
0
100
Male_percentage
float64
0
100
Gender
stringclasses
3 values
Beth
2,013
1
1
0
100
0
Female
Tamara
2,013
5
5
0
100
0
Female
Kensi
2,013
2
2
0
100
0
Female
Aniston
2,013
1
1
0
100
0
Female
Kendal
2,013
3
3
0
100
0
Female
Kate
2,013
44
44
0
100
0
Female
Arianne
2,013
6
6
0
100
0
Female
Giovanna
2,013
1
1
0
100
0
Female
Hillary
2,013
3
3
0
100
0
Female
Morley
2,013
1
1
0
100
0
Female
Georgina
2,013
2
2
0
100
0
Female
Riya
2,013
11
11
0
100
0
Female
Jasnoor
2,013
3
3
0
100
0
Female
Carsen
2,013
4
0
4
0
100
Male
Kuol
2,013
2
0
2
0
100
Male
Suber
2,013
1
0
1
0
100
Male
Red
2,013
2
0
2
0
100
Male
Ryden
2,013
5
0
5
0
100
Male
Afan
2,013
1
0
1
0
100
Male
Warren
2,013
6
0
6
0
100
Male
Aydan
2,013
4
0
4
0
100
Male
Daylen
2,013
6
0
6
0
100
Male
Kirat
2,013
1
0
1
0
100
Male
Cage
2,013
1
0
1
0
100
Male
Vivan
2,013
2
0
2
0
100
Male
Shae
2,013
252
178
74
70.634921
29.365079
Unisex
Aven
2,013
95
58
37
61.052632
38.947368
Unisex
Myer
2,013
21
6
15
28.571429
71.428571
Unisex
Eberle
2,013
12
8
4
66.666667
33.333333
Unisex
Sage
2,013
529
366
163
69.187146
30.812854
Unisex
Beaux
2,013
7
3
4
42.857143
57.142857
Unisex
Storm
2,013
89
36
53
40.449438
59.550562
Unisex
Ocean
2,013
183
149
34
81.420765
18.579235
Unisex
Rory
2,013
743
150
593
20.188425
79.811575
Unisex
Austyn
2,013
172
79
93
45.930233
54.069767
Unisex
Reece
2,013
482
85
397
17.634855
82.365145
Unisex
Dakota
2,013
1,265
546
719
43.162055
56.837945
Unisex
Lexington
2,013
24
15
9
62.5
37.5
Unisex
Rian
2,013
74
40
34
54.054054
45.945946
Unisex
Amari
2,013
46
17
29
36.956522
63.043478
Unisex
Kyrie
2,013
116
48
68
41.37931
58.62069
Unisex
Channing
2,013
67
29
38
43.283582
56.716418
Unisex
Drew
2,013
880
147
733
16.704545
83.295455
Unisex
Robin
2,013
1,019
608
411
59.66634
40.33366
Unisex
Amrit
2,013
107
54
53
50.46729
49.53271
Unisex
Shiloh
2,013
179
145
34
81.005587
18.994413
Unisex
Taylor
2,013
6,000
3,926
2,074
65.433333
34.566667
Unisex
Kasey
2,013
198
130
68
65.656566
34.343434
Unisex
Harley
2,013
524
171
353
32.633588
67.366412
Unisex
Hargun
2,013
60
43
17
71.666667
28.333333
Unisex
Dallas
2,013
1,335
250
1,085
18.726592
81.273408
Unisex
Azariah
2,013
48
24
24
50
50
Unisex
Tristyn
2,013
113
61
52
53.982301
46.017699
Unisex
Misha
2,013
81
58
23
71.604938
28.395062
Unisex
Sehaj
2,013
92
49
43
53.26087
46.73913
Unisex
Arden
2,013
165
101
64
61.212121
38.787879
Unisex
Sahej
2,013
37
17
20
45.945946
54.054054
Unisex
Collins
2,013
38
29
9
76.315789
23.684211
Unisex
Remi
2,013
152
84
68
55.263158
44.736842
Unisex
Nakota
2,013
15
6
9
40
60
Unisex
Hennessy
2,013
14
9
5
64.285714
35.714286
Unisex
Arrow
2,013
17
3
14
17.647059
82.352941
Unisex
Jin
2,013
32
7
25
21.875
78.125
Unisex
Rayyan
2,013
137
21
116
15.328467
84.671533
Unisex
Micah
2,013
751
121
630
16.111851
83.888149
Unisex
Layne
2,013
414
80
334
19.323671
80.676329
Unisex
Sina
2,013
41
17
24
41.463415
58.536585
Unisex
Locklyn
2,013
21
15
6
71.428571
28.571429
Unisex
Regan
2,013
317
184
133
58.044164
41.955836
Unisex
Emmerson
2,013
65
51
14
78.461538
21.538462
Unisex
Israel
2,013
80
12
68
15
85
Unisex
Noa
2,013
67
49
18
73.134328
26.865672
Unisex
Morgan
2,013
3,134
2,222
912
70.899809
29.100191
Unisex
Bailey
2,013
1,550
1,259
291
81.225806
18.774194
Unisex
Mackenzie
2,013
3,387
2,605
782
76.911721
23.088279
Unisex
Emry
2,013
53
39
14
73.584906
26.415094
Unisex
Casey
2,013
1,020
397
623
38.921569
61.078431
Unisex
Kelly
2,013
2,170
1,538
632
70.875576
29.124424
Unisex
Harnoor
2,013
80
61
19
76.25
23.75
Unisex
Cedar
2,013
67
37
30
55.223881
44.776119
Unisex
Sloan
2,013
221
153
68
69.230769
30.769231
Unisex
Saihaj
2,013
18
7
11
38.888889
61.111111
Unisex
Adair
2,013
11
6
5
54.545455
45.454545
Unisex
Miracle
2,013
48
39
9
81.25
18.75
Unisex
Jean
2,013
226
84
142
37.168142
62.831858
Unisex
Rylie
2,013
283
214
69
75.618375
24.381625
Unisex
Jaiden
2,013
354
121
233
34.180791
65.819209
Unisex
Amen
2,013
84
37
47
44.047619
55.952381
Unisex
Riley
2,013
3,875
772
3,103
19.922581
80.077419
Unisex
Laine
2,013
173
72
101
41.618497
58.381503
Unisex
Leighton
2,013
246
103
143
41.869919
58.130081
Unisex
Britton
2,013
43
16
27
37.209302
62.790698
Unisex
Adan
2,013
43
11
32
25.581395
74.418605
Unisex
Aram
2,013
29
5
24
17.241379
82.758621
Unisex
Nael
2,013
15
5
10
33.333333
66.666667
Unisex
Frankie
2,013
172
121
51
70.348837
29.651163
Unisex
Karsyn
2,013
62
41
21
66.129032
33.870968
Unisex
Charlie
2,013
1,163
511
652
43.938091
56.061909
Unisex
Raven
2,013
316
261
55
82.594937
17.405063
Unisex
Krishna
2,013
36
7
29
19.444444
80.555556
Unisex
End of preview. Expand in Data Studio

This is the official dataset for Beyond Binary Gender Labels: Revealing Gender Bias in LLMs through Gender-Neutral Name Predictions

Name-based gender prediction has traditionally categorized individuals as either female or male based on their names, using a binary classification system. That binary approach can be problematic in the cases of gender-neutral names that do not align with any one gender, among other reasons. Relying solely on binary gender categories without recognizing gender-neutral names can reduce the inclusiveness of gender prediction tasks. We introduce an additional gender category, i.e., "neutral", to study and address potential gender biases in Large Language Models (LLMs).

For Other Balanced SSA datasets, please visit US SSA, Canada SSA, and France SSA.

Dynamic Gender Label Dataset

We observed that each balanced SSA dataset included first names labeled with different genders over the years, as shown in the below table. For example, Victory was recorded as a male name in 1933, a female name in 2000, and as a gender-neutral name in 2016. To further analyze the gender prediction performance of LLMs on first names with varying gender labels over time, we created a dynamic gender label dataset for each country. We selected first names with dynamic gender labels (i.e. names for which the gender association changes over time) from the test set of each balanced SSA dataset.

image/png

Dataset Statistics

Please see below and the paper for more details of our curated datasets:

image/png

Citation

Please cite the below paper if you intent to use our data for your research:

@inproceedings{you-etal-2024-beyond,
    title = "Beyond Binary Gender Labels: Revealing Gender Bias in {LLM}s through Gender-Neutral Name Predictions",
    author = "You, Zhiwen  and
      Lee, HaeJin  and
      Mishra, Shubhanshu  and
      Jeoung, Sullam  and
      Mishra, Apratim  and
      Kim, Jinseok  and
      Diesner, Jana",
    editor = "Fale{\'n}ska, Agnieszka  and
      Basta, Christine  and
      Costa-juss{\`a}, Marta  and
      Goldfarb-Tarrant, Seraphina  and
      Nozza, Debora",
    booktitle = "Proceedings of the 5th Workshop on Gender Bias in Natural Language Processing (GeBNLP)",
    month = aug,
    year = "2024",
    address = "Bangkok, Thailand",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/2024.gebnlp-1.16",
    doi = "10.18653/v1/2024.gebnlp-1.16",
    pages = "255--268",
}

Contact Information

If you have any questions, please email [email protected].

Downloads last month
101