image
imagewidth (px) 2.55k
2.55k
| pdf_name
stringclasses 9
values | page_number
int64 0
23
| markdown
stringlengths 0
5.31k
| html
stringlengths 0
5.36k
| layout
stringlengths 106
6.67k
| lines
stringlengths 2
33.9k
| images
stringclasses 18
values | equations
stringlengths 2
13k
| tables
stringclasses 8
values | page_size
stringclasses 1
value | content_list
stringlengths 45
8.72k
| base_layout_detection
stringlengths 503
35.4k
| pdf_info
stringlengths 2.2k
73.9k
|
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0003042v1 | 18 | [31] Singer, J.: Three-dimensional manifolds and their Heegaard diagrams.
Trans. Am. Math. Soc. 35 (1933), 88–111
[32] Song, H.J., Kim, S.H.: Dunwoody 3-manifolds and $$(1,1)$$ -decomposible
knots. Preprint, 1999
[34] Vesnin, A., Kim, A.C.: The fractional Fibonacci groups and manifolds.
Sib. Math. J. 39 (1998), 655–664
[35] Wu, Y-Q.,: Incompressibility of surfaces in surgered 3-manifold. Topol-
ogy 31 (1992), 271–279
[36] Wu, Y-Q.,: $$\Dot{O}$$ -reducing Dehn surgeries and 1-bridge-knots. Math. Ann.
295 (1992), 319–331
[37] Wu, Y-Q.,: Incompressible surfaces and Dehn surgery on 1-bridge knots
in handlebody. Math. Proc. Camb. Philos. Soc. 120 (1996), 687–696
[38] Zimmermann, B.: Genus actions of finite groups on 3-manifolds. Mich.
Math. J. 43 (1996), 593–610
LUIGI GRASSELLI, Department of Sciences and Methods for Engineer-
ing, University of Modena and Reggio Emilia, 42100 Reggio Emilia, ITALY.
E-mail: [email protected]
MICHELE MULAZZANI, Department of Mathematics, University of
Bologna, I-40127 Bologna, ITALY, and C.I.R.A.M., Bologna, ITALY. E-mail:
[email protected]
| <p>[31] Singer, J.: Three-dimensional manifolds and their Heegaard diagrams.
Trans. Am. Math. Soc. 35 (1933), 88–111</p>
<p>[32] Song, H.J., Kim, S.H.: Dunwoody 3-manifolds and $$(1,1)$$ -decomposible
knots. Preprint, 1999</p>
<p>[34] Vesnin, A., Kim, A.C.: The fractional Fibonacci groups and manifolds.
Sib. Math. J. 39 (1998), 655–664</p>
<p>[35] Wu, Y-Q.,: Incompressibility of surfaces in surgered 3-manifold. Topol-
ogy 31 (1992), 271–279</p>
<p>[36] Wu, Y-Q.,: $$\Dot{O}$$ -reducing Dehn surgeries and 1-bridge-knots. Math. Ann.
295 (1992), 319–331</p>
<p>[37] Wu, Y-Q.,: Incompressible surfaces and Dehn surgery on 1-bridge knots
in handlebody. Math. Proc. Camb. Philos. Soc. 120 (1996), 687–696</p>
<p>[38] Zimmermann, B.: Genus actions of finite groups on 3-manifolds. Mich.
Math. J. 43 (1996), 593–610</p>
<p>LUIGI GRASSELLI, Department of Sciences and Methods for Engineer-
ing, University of Modena and Reggio Emilia, 42100 Reggio Emilia, ITALY.
E-mail: [email protected]</p>
<p>MICHELE MULAZZANI, Department of Mathematics, University of
Bologna, I-40127 Bologna, ITALY, and C.I.R.A.M., Bologna, ITALY. E-mail:
[email protected]</p>
| [{"type": "text", "coordinates": [110, 124, 501, 154], "content": "[31] Singer, J.: Three-dimensional manifolds and their Heegaard diagrams.\nTrans. Am. Math. Soc. 35 (1933), 88\u2013111", "block_type": "text", "index": 1}, {"type": "text", "coordinates": [110, 163, 501, 193], "content": "[32] Song, H.J., Kim, S.H.: Dunwoody 3-manifolds and $$(1,1)$$ -decomposible\nknots. Preprint, 1999", "block_type": "text", "index": 2}, {"type": "text", "coordinates": [110, 241, 501, 271], "content": "[34] Vesnin, A., Kim, A.C.: The fractional Fibonacci groups and manifolds.\nSib. Math. J. 39 (1998), 655\u2013664", "block_type": "text", "index": 3}, {"type": "text", "coordinates": [110, 279, 501, 310], "content": "[35] Wu, Y-Q.,: Incompressibility of surfaces in surgered 3-manifold. Topol-\nogy 31 (1992), 271\u2013279", "block_type": "text", "index": 4}, {"type": "text", "coordinates": [110, 318, 501, 349], "content": "[36] Wu, Y-Q.,: $$\\Dot{O}$$ -reducing Dehn surgeries and 1-bridge-knots. Math. Ann.\n295 (1992), 319\u2013331", "block_type": "text", "index": 5}, {"type": "text", "coordinates": [110, 357, 500, 388], "content": "[37] Wu, Y-Q.,: Incompressible surfaces and Dehn surgery on 1-bridge knots\nin handlebody. Math. Proc. Camb. Philos. Soc. 120 (1996), 687\u2013696", "block_type": "text", "index": 6}, {"type": "text", "coordinates": [110, 397, 499, 426], "content": "[38] Zimmermann, B.: Genus actions of finite groups on 3-manifolds. Mich.\nMath. J. 43 (1996), 593\u2013610", "block_type": "text", "index": 7}, {"type": "text", "coordinates": [109, 453, 500, 498], "content": "LUIGI GRASSELLI, Department of Sciences and Methods for Engineer-\ning, University of Modena and Reggio Emilia, 42100 Reggio Emilia, ITALY.\nE-mail: [email protected]", "block_type": "text", "index": 8}, {"type": "text", "coordinates": [109, 511, 501, 556], "content": "MICHELE MULAZZANI, Department of Mathematics, University of\nBologna, I-40127 Bologna, ITALY, and C.I.R.A.M., Bologna, ITALY. E-mail:\[email protected]", "block_type": "text", "index": 9}] | [{"type": "text", "coordinates": [111, 128, 499, 142], "content": "[31] Singer, J.: Three-dimensional manifolds and their Heegaard diagrams.", "score": 1.0, "index": 1}, {"type": "text", "coordinates": [127, 141, 343, 156], "content": "Trans. Am. Math. Soc. 35 (1933), 88\u2013111", "score": 1.0, "index": 2}, {"type": "text", "coordinates": [110, 166, 400, 181], "content": "[32] Song, H.J., Kim, S.H.: Dunwoody 3-manifolds and ", "score": 1.0, "index": 3}, {"type": "inline_equation", "coordinates": [401, 168, 427, 180], "content": "(1,1)", "score": 0.91, "index": 4}, {"type": "text", "coordinates": [427, 166, 500, 181], "content": "-decomposible", "score": 1.0, "index": 5}, {"type": "text", "coordinates": [127, 181, 237, 194], "content": "knots. Preprint, 1999", "score": 1.0, "index": 6}, {"type": "text", "coordinates": [110, 244, 498, 258], "content": "[34] Vesnin, A., Kim, A.C.: The fractional Fibonacci groups and manifolds.", "score": 1.0, "index": 7}, {"type": "text", "coordinates": [128, 259, 299, 272], "content": "Sib. Math. J. 39 (1998), 655\u2013664", "score": 1.0, "index": 8}, {"type": "text", "coordinates": [110, 282, 498, 298], "content": "[35] Wu, Y-Q.,: Incompressibility of surfaces in surgered 3-manifold. Topol-", "score": 1.0, "index": 9}, {"type": "text", "coordinates": [128, 297, 250, 311], "content": "ogy 31 (1992), 271\u2013279", "score": 1.0, "index": 10}, {"type": "text", "coordinates": [110, 321, 196, 336], "content": "[36] Wu, Y-Q.,: ", "score": 1.0, "index": 11}, {"type": "inline_equation", "coordinates": [196, 324, 204, 333], "content": "\\Dot{O}", "score": 0.74, "index": 12}, {"type": "text", "coordinates": [204, 321, 500, 336], "content": "-reducing Dehn surgeries and 1-bridge-knots. Math. Ann.", "score": 1.0, "index": 13}, {"type": "text", "coordinates": [128, 336, 234, 350], "content": "295 (1992), 319\u2013331", "score": 1.0, "index": 14}, {"type": "text", "coordinates": [110, 361, 500, 375], "content": "[37] Wu, Y-Q.,: Incompressible surfaces and Dehn surgery on 1-bridge knots", "score": 1.0, "index": 15}, {"type": "text", "coordinates": [127, 375, 481, 389], "content": "in handlebody. Math. Proc. Camb. Philos. Soc. 120 (1996), 687\u2013696", "score": 1.0, "index": 16}, {"type": "text", "coordinates": [111, 399, 498, 414], "content": "[38] Zimmermann, B.: Genus actions of finite groups on 3-manifolds. Mich.", "score": 1.0, "index": 17}, {"type": "text", "coordinates": [128, 412, 276, 428], "content": "Math. J. 43 (1996), 593\u2013610", "score": 1.0, "index": 18}, {"type": "text", "coordinates": [127, 456, 499, 471], "content": "LUIGI GRASSELLI, Department of Sciences and Methods for Engineer-", "score": 1.0, "index": 19}, {"type": "text", "coordinates": [109, 471, 499, 485], "content": "ing, University of Modena and Reggio Emilia, 42100 Reggio Emilia, ITALY.", "score": 1.0, "index": 20}, {"type": "text", "coordinates": [110, 486, 271, 499], "content": "E-mail: [email protected]", "score": 1.0, "index": 21}, {"type": "text", "coordinates": [127, 515, 501, 529], "content": "MICHELE MULAZZANI, Department of Mathematics, University of", "score": 1.0, "index": 22}, {"type": "text", "coordinates": [110, 529, 500, 543], "content": "Bologna, I-40127 Bologna, ITALY, and C.I.R.A.M., Bologna, ITALY. E-mail:", "score": 1.0, "index": 23}, {"type": "text", "coordinates": [110, 544, 221, 557], "content": "[email protected]", "score": 1.0, "index": 24}] | [] | [{"type": "inline", "coordinates": [401, 168, 427, 180], "content": "(1,1)", "caption": ""}, {"type": "inline", "coordinates": [196, 324, 204, 333], "content": "\\Dot{O}", "caption": ""}] | [] | [612.0, 792.0] | [{"type": "text", "text": "[31] Singer, J.: Three-dimensional manifolds and their Heegaard diagrams. Trans. Am. Math. Soc. 35 (1933), 88\u2013111 ", "page_idx": 18}, {"type": "text", "text": "[32] Song, H.J., Kim, S.H.: Dunwoody 3-manifolds and $(1,1)$ -decomposible knots. Preprint, 1999 ", "page_idx": 18}, {"type": "text", "text": "[34] Vesnin, A., Kim, A.C.: The fractional Fibonacci groups and manifolds. Sib. Math. J. 39 (1998), 655\u2013664 ", "page_idx": 18}, {"type": "text", "text": "[35] Wu, Y-Q.,: Incompressibility of surfaces in surgered 3-manifold. Topology 31 (1992), 271\u2013279 ", "page_idx": 18}, {"type": "text", "text": "[36] Wu, Y-Q.,: $\\Dot{O}$ -reducing Dehn surgeries and 1-bridge-knots. Math. Ann. 295 (1992), 319\u2013331 ", "page_idx": 18}, {"type": "text", "text": "[37] Wu, Y-Q.,: Incompressible surfaces and Dehn surgery on 1-bridge knots in handlebody. Math. Proc. Camb. Philos. Soc. 120 (1996), 687\u2013696 ", "page_idx": 18}, {"type": "text", "text": "[38] Zimmermann, B.: Genus actions of finite groups on 3-manifolds. Mich. Math. J. 43 (1996), 593\u2013610 ", "page_idx": 18}, {"type": "text", "text": "LUIGI GRASSELLI, Department of Sciences and Methods for Engineering, University of Modena and Reggio Emilia, 42100 Reggio Emilia, ITALY. E-mail: [email protected] ", "page_idx": 18}, {"type": "text", "text": "MICHELE MULAZZANI, Department of Mathematics, University of Bologna, I-40127 Bologna, ITALY, and C.I.R.A.M., Bologna, ITALY. E-mail: [email protected] ", "page_idx": 18}] | [{"category_id": 2, "poly": [830, 1920, 868, 1920, 868, 1953, 830, 1953], "score": 0.834}, {"category_id": 1, "poly": [304, 1261, 1390, 1261, 1390, 1384, 304, 1384], "score": 0.799}, {"category_id": 1, "poly": [305, 1422, 1393, 1422, 1393, 1546, 305, 1546], "score": 0.738}, {"category_id": 1, "poly": [306, 1103, 1388, 1103, 1388, 1185, 306, 1185], "score": 0.455}, {"category_id": 1, "poly": [307, 886, 1392, 886, 1392, 970, 307, 970], "score": 0.388}, {"category_id": 1, "poly": [307, 455, 1393, 455, 1393, 537, 307, 537], "score": 0.383}, {"category_id": 1, "poly": [306, 993, 1391, 993, 1391, 1078, 306, 1078], "score": 0.369}, {"category_id": 1, "poly": [307, 670, 1392, 670, 1392, 755, 307, 755], "score": 0.36}, {"category_id": 1, "poly": [307, 777, 1392, 777, 1392, 863, 307, 863], "score": 0.334}, {"category_id": 1, "poly": [306, 347, 1392, 347, 1392, 430, 306, 430], "score": 0.333}, {"category_id": 13, "poly": [1114, 467, 1187, 467, 1187, 501, 1114, 501], "score": 0.91, "latex": "(1,1)"}, {"category_id": 13, "poly": [547, 900, 567, 900, 567, 925, 547, 925], "score": 0.74, "latex": "\\Dot{O}"}, {"category_id": 15, "poly": [826.0, 1923.0, 869.0, 1923.0, 869.0, 1960.0, 826.0, 1960.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [353.0, 1268.0, 1388.0, 1268.0, 1388.0, 1309.0, 353.0, 1309.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [303.0, 1310.0, 1388.0, 1310.0, 1388.0, 1349.0, 303.0, 1349.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [307.0, 1350.0, 754.0, 1350.0, 754.0, 1388.0, 307.0, 1388.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [353.0, 1432.0, 1393.0, 1432.0, 1393.0, 1471.0, 353.0, 1471.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [306.0, 1470.0, 1391.0, 1470.0, 1391.0, 1511.0, 306.0, 1511.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [308.0, 1512.0, 615.0, 1512.0, 615.0, 1548.0, 308.0, 1548.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [309.0, 1111.0, 1386.0, 1111.0, 1386.0, 1150.0, 309.0, 1150.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [356.0, 1147.0, 768.0, 1147.0, 768.0, 1190.0, 356.0, 1190.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [308.0, 894.0, 546.0, 894.0, 546.0, 936.0, 308.0, 936.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [568.0, 894.0, 1389.0, 894.0, 1389.0, 936.0, 568.0, 936.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [357.0, 934.0, 652.0, 934.0, 652.0, 974.0, 357.0, 974.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [306.0, 462.0, 1113.0, 462.0, 1113.0, 504.0, 306.0, 504.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1188.0, 462.0, 1390.0, 462.0, 1390.0, 504.0, 1188.0, 504.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [355.0, 505.0, 661.0, 505.0, 661.0, 541.0, 355.0, 541.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [308.0, 1004.0, 1390.0, 1004.0, 1390.0, 1044.0, 308.0, 1044.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [354.0, 1042.0, 1337.0, 1042.0, 1337.0, 1082.0, 354.0, 1082.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [308.0, 679.0, 1385.0, 679.0, 1385.0, 717.0, 308.0, 717.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [357.0, 721.0, 832.0, 721.0, 832.0, 758.0, 357.0, 758.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [306.0, 785.0, 1386.0, 785.0, 1386.0, 828.0, 306.0, 828.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [356.0, 826.0, 696.0, 826.0, 696.0, 866.0, 356.0, 866.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [309.0, 356.0, 1388.0, 356.0, 1388.0, 395.0, 309.0, 395.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [354.0, 393.0, 953.0, 393.0, 953.0, 435.0, 354.0, 435.0], "score": 1.0, "text": ""}] | {"preproc_blocks": [{"type": "text", "bbox": [110, 124, 501, 154], "lines": [{"bbox": [111, 128, 499, 142], "spans": [{"bbox": [111, 128, 499, 142], "score": 1.0, "content": "[31] Singer, J.: Three-dimensional manifolds and their Heegaard diagrams.", "type": "text"}], "index": 0}, {"bbox": [127, 141, 343, 156], "spans": [{"bbox": [127, 141, 343, 156], "score": 1.0, "content": "Trans. Am. Math. Soc. 35 (1933), 88\u2013111", "type": "text"}], "index": 1}], "index": 0.5}, {"type": "text", "bbox": [110, 163, 501, 193], "lines": [{"bbox": [110, 166, 500, 181], "spans": [{"bbox": [110, 166, 400, 181], "score": 1.0, "content": "[32] Song, H.J., Kim, S.H.: Dunwoody 3-manifolds and ", "type": "text"}, {"bbox": [401, 168, 427, 180], "score": 0.91, "content": "(1,1)", "type": "inline_equation", "height": 12, "width": 26}, {"bbox": [427, 166, 500, 181], "score": 1.0, "content": "-decomposible", "type": "text"}], "index": 2}, {"bbox": [127, 181, 237, 194], "spans": [{"bbox": [127, 181, 237, 194], "score": 1.0, "content": "knots. Preprint, 1999", "type": "text"}], "index": 3}], "index": 2.5}, {"type": "text", "bbox": [110, 241, 501, 271], "lines": [{"bbox": [110, 244, 498, 258], "spans": [{"bbox": [110, 244, 498, 258], "score": 1.0, "content": "[34] Vesnin, A., Kim, A.C.: The fractional Fibonacci groups and manifolds.", "type": "text"}], "index": 4}, {"bbox": [128, 259, 299, 272], "spans": [{"bbox": [128, 259, 299, 272], "score": 1.0, "content": "Sib. Math. J. 39 (1998), 655\u2013664", "type": "text"}], "index": 5}], "index": 4.5}, {"type": "text", "bbox": [110, 279, 501, 310], "lines": [{"bbox": [110, 282, 498, 298], "spans": [{"bbox": [110, 282, 498, 298], "score": 1.0, "content": "[35] Wu, Y-Q.,: Incompressibility of surfaces in surgered 3-manifold. Topol-", "type": "text"}], "index": 6}, {"bbox": [128, 297, 250, 311], "spans": [{"bbox": [128, 297, 250, 311], "score": 1.0, "content": "ogy 31 (1992), 271\u2013279", "type": "text"}], "index": 7}], "index": 6.5}, {"type": "text", "bbox": [110, 318, 501, 349], "lines": [{"bbox": [110, 321, 500, 336], "spans": [{"bbox": [110, 321, 196, 336], "score": 1.0, "content": "[36] Wu, Y-Q.,: ", "type": "text"}, {"bbox": [196, 324, 204, 333], "score": 0.74, "content": "\\Dot{O}", "type": "inline_equation", "height": 9, "width": 8}, {"bbox": [204, 321, 500, 336], "score": 1.0, "content": "-reducing Dehn surgeries and 1-bridge-knots. Math. Ann.", "type": "text"}], "index": 8}, {"bbox": [128, 336, 234, 350], "spans": [{"bbox": [128, 336, 234, 350], "score": 1.0, "content": "295 (1992), 319\u2013331", "type": "text"}], "index": 9}], "index": 8.5}, {"type": "text", "bbox": [110, 357, 500, 388], "lines": [{"bbox": [110, 361, 500, 375], "spans": [{"bbox": [110, 361, 500, 375], "score": 1.0, "content": "[37] Wu, Y-Q.,: Incompressible surfaces and Dehn surgery on 1-bridge knots", "type": "text"}], "index": 10}, {"bbox": [127, 375, 481, 389], "spans": [{"bbox": [127, 375, 481, 389], "score": 1.0, "content": "in handlebody. Math. Proc. Camb. Philos. Soc. 120 (1996), 687\u2013696", "type": "text"}], "index": 11}], "index": 10.5}, {"type": "text", "bbox": [110, 397, 499, 426], "lines": [{"bbox": [111, 399, 498, 414], "spans": [{"bbox": [111, 399, 498, 414], "score": 1.0, "content": "[38] Zimmermann, B.: Genus actions of finite groups on 3-manifolds. Mich.", "type": "text"}], "index": 12}, {"bbox": [128, 412, 276, 428], "spans": [{"bbox": [128, 412, 276, 428], "score": 1.0, "content": "Math. J. 43 (1996), 593\u2013610", "type": "text"}], "index": 13}], "index": 12.5}, {"type": "text", "bbox": [109, 453, 500, 498], "lines": [{"bbox": [127, 456, 499, 471], "spans": [{"bbox": [127, 456, 499, 471], "score": 1.0, "content": "LUIGI GRASSELLI, Department of Sciences and Methods for Engineer-", "type": "text"}], "index": 14}, {"bbox": [109, 471, 499, 485], "spans": [{"bbox": [109, 471, 499, 485], "score": 1.0, "content": "ing, University of Modena and Reggio Emilia, 42100 Reggio Emilia, ITALY.", "type": "text"}], "index": 15}, {"bbox": [110, 486, 271, 499], "spans": [{"bbox": [110, 486, 271, 499], "score": 1.0, "content": "E-mail: [email protected]", "type": "text"}], "index": 16}], "index": 15}, {"type": "text", "bbox": [109, 511, 501, 556], "lines": [{"bbox": [127, 515, 501, 529], "spans": [{"bbox": [127, 515, 501, 529], "score": 1.0, "content": "MICHELE MULAZZANI, Department of Mathematics, University of", "type": "text"}], "index": 17}, {"bbox": [110, 529, 500, 543], "spans": [{"bbox": [110, 529, 500, 543], "score": 1.0, "content": "Bologna, I-40127 Bologna, ITALY, and C.I.R.A.M., Bologna, ITALY. E-mail:", "type": "text"}], "index": 18}, {"bbox": [110, 544, 221, 557], "spans": [{"bbox": [110, 544, 221, 557], "score": 1.0, "content": "[email protected]", "type": "text"}], "index": 19}], "index": 18}], "layout_bboxes": [], "page_idx": 18, "page_size": [612.0, 792.0], "_layout_tree": [], "images": [], "tables": [], "interline_equations": [], "discarded_blocks": [{"type": "discarded", "bbox": [298, 691, 312, 703], "lines": [{"bbox": [297, 692, 312, 705], "spans": [{"bbox": [297, 692, 312, 705], "score": 1.0, "content": "19", "type": "text"}]}]}], "need_drop": false, "drop_reason": [], "para_blocks": [{"type": "text", "bbox": [110, 124, 501, 154], "lines": [{"bbox": [111, 128, 499, 142], "spans": [{"bbox": [111, 128, 499, 142], "score": 1.0, "content": "[31] Singer, J.: Three-dimensional manifolds and their Heegaard diagrams.", "type": "text"}], "index": 0}, {"bbox": [127, 141, 343, 156], "spans": [{"bbox": [127, 141, 343, 156], "score": 1.0, "content": "Trans. Am. Math. Soc. 35 (1933), 88\u2013111", "type": "text"}], "index": 1}], "index": 0.5, "page_num": "page_18", "page_size": [612.0, 792.0], "bbox_fs": [111, 128, 499, 156]}, {"type": "text", "bbox": [110, 163, 501, 193], "lines": [{"bbox": [110, 166, 500, 181], "spans": [{"bbox": [110, 166, 400, 181], "score": 1.0, "content": "[32] Song, H.J., Kim, S.H.: Dunwoody 3-manifolds and ", "type": "text"}, {"bbox": [401, 168, 427, 180], "score": 0.91, "content": "(1,1)", "type": "inline_equation", "height": 12, "width": 26}, {"bbox": [427, 166, 500, 181], "score": 1.0, "content": "-decomposible", "type": "text"}], "index": 2}, {"bbox": [127, 181, 237, 194], "spans": [{"bbox": [127, 181, 237, 194], "score": 1.0, "content": "knots. Preprint, 1999", "type": "text"}], "index": 3}], "index": 2.5, "page_num": "page_18", "page_size": [612.0, 792.0], "bbox_fs": [110, 166, 500, 194]}, {"type": "text", "bbox": [110, 241, 501, 271], "lines": [{"bbox": [110, 244, 498, 258], "spans": [{"bbox": [110, 244, 498, 258], "score": 1.0, "content": "[34] Vesnin, A., Kim, A.C.: The fractional Fibonacci groups and manifolds.", "type": "text"}], "index": 4}, {"bbox": [128, 259, 299, 272], "spans": [{"bbox": [128, 259, 299, 272], "score": 1.0, "content": "Sib. Math. J. 39 (1998), 655\u2013664", "type": "text"}], "index": 5}], "index": 4.5, "page_num": "page_18", "page_size": [612.0, 792.0], "bbox_fs": [110, 244, 498, 272]}, {"type": "text", "bbox": [110, 279, 501, 310], "lines": [{"bbox": [110, 282, 498, 298], "spans": [{"bbox": [110, 282, 498, 298], "score": 1.0, "content": "[35] Wu, Y-Q.,: Incompressibility of surfaces in surgered 3-manifold. Topol-", "type": "text"}], "index": 6}, {"bbox": [128, 297, 250, 311], "spans": [{"bbox": [128, 297, 250, 311], "score": 1.0, "content": "ogy 31 (1992), 271\u2013279", "type": "text"}], "index": 7}], "index": 6.5, "page_num": "page_18", "page_size": [612.0, 792.0], "bbox_fs": [110, 282, 498, 311]}, {"type": "text", "bbox": [110, 318, 501, 349], "lines": [{"bbox": [110, 321, 500, 336], "spans": [{"bbox": [110, 321, 196, 336], "score": 1.0, "content": "[36] Wu, Y-Q.,: ", "type": "text"}, {"bbox": [196, 324, 204, 333], "score": 0.74, "content": "\\Dot{O}", "type": "inline_equation", "height": 9, "width": 8}, {"bbox": [204, 321, 500, 336], "score": 1.0, "content": "-reducing Dehn surgeries and 1-bridge-knots. Math. Ann.", "type": "text"}], "index": 8}, {"bbox": [128, 336, 234, 350], "spans": [{"bbox": [128, 336, 234, 350], "score": 1.0, "content": "295 (1992), 319\u2013331", "type": "text"}], "index": 9}], "index": 8.5, "page_num": "page_18", "page_size": [612.0, 792.0], "bbox_fs": [110, 321, 500, 350]}, {"type": "text", "bbox": [110, 357, 500, 388], "lines": [{"bbox": [110, 361, 500, 375], "spans": [{"bbox": [110, 361, 500, 375], "score": 1.0, "content": "[37] Wu, Y-Q.,: Incompressible surfaces and Dehn surgery on 1-bridge knots", "type": "text"}], "index": 10}, {"bbox": [127, 375, 481, 389], "spans": [{"bbox": [127, 375, 481, 389], "score": 1.0, "content": "in handlebody. Math. Proc. Camb. Philos. Soc. 120 (1996), 687\u2013696", "type": "text"}], "index": 11}], "index": 10.5, "page_num": "page_18", "page_size": [612.0, 792.0], "bbox_fs": [110, 361, 500, 389]}, {"type": "text", "bbox": [110, 397, 499, 426], "lines": [{"bbox": [111, 399, 498, 414], "spans": [{"bbox": [111, 399, 498, 414], "score": 1.0, "content": "[38] Zimmermann, B.: Genus actions of finite groups on 3-manifolds. Mich.", "type": "text"}], "index": 12}, {"bbox": [128, 412, 276, 428], "spans": [{"bbox": [128, 412, 276, 428], "score": 1.0, "content": "Math. J. 43 (1996), 593\u2013610", "type": "text"}], "index": 13}], "index": 12.5, "page_num": "page_18", "page_size": [612.0, 792.0], "bbox_fs": [111, 399, 498, 428]}, {"type": "text", "bbox": [109, 453, 500, 498], "lines": [{"bbox": [127, 456, 499, 471], "spans": [{"bbox": [127, 456, 499, 471], "score": 1.0, "content": "LUIGI GRASSELLI, Department of Sciences and Methods for Engineer-", "type": "text"}], "index": 14}, {"bbox": [109, 471, 499, 485], "spans": [{"bbox": [109, 471, 499, 485], "score": 1.0, "content": "ing, University of Modena and Reggio Emilia, 42100 Reggio Emilia, ITALY.", "type": "text"}], "index": 15}, {"bbox": [110, 486, 271, 499], "spans": [{"bbox": [110, 486, 271, 499], "score": 1.0, "content": "E-mail: [email protected]", "type": "text"}], "index": 16}], "index": 15, "page_num": "page_18", "page_size": [612.0, 792.0], "bbox_fs": [109, 456, 499, 499]}, {"type": "text", "bbox": [109, 511, 501, 556], "lines": [{"bbox": [127, 515, 501, 529], "spans": [{"bbox": [127, 515, 501, 529], "score": 1.0, "content": "MICHELE MULAZZANI, Department of Mathematics, University of", "type": "text"}], "index": 17}, {"bbox": [110, 529, 500, 543], "spans": [{"bbox": [110, 529, 500, 543], "score": 1.0, "content": "Bologna, I-40127 Bologna, ITALY, and C.I.R.A.M., Bologna, ITALY. E-mail:", "type": "text"}], "index": 18}, {"bbox": [110, 544, 221, 557], "spans": [{"bbox": [110, 544, 221, 557], "score": 1.0, "content": "[email protected]", "type": "text"}], "index": 19}], "index": 18, "page_num": "page_18", "page_size": [612.0, 792.0], "bbox_fs": [110, 515, 501, 557]}]} |
|
0003042v1 | 21 | [{"type": "image", "coordinates": [167, 120, 444, 634], "content": "", "block_type": "image", "index": 1}] | [] | [{"coordinates": [167, 120, 444, 634], "index": 27.5, "caption": "Figure 6:", "caption_coordinates": [277, 657, 326, 671]}] | [] | [] | [612.0, 792.0] | [{"type": "image", "img_path": "images/823f2e180b2f3347a8b1d1f8997fd38c3ab9ea535f708bc18823523da33303de.jpg", "img_caption": ["Figure 6: "], "img_footnote": [], "page_idx": 21}] | [{"category_id": 4, "poly": [772, 1825, 907, 1825, 907, 1866, 772, 1866], "score": 0.852}, {"category_id": 2, "poly": [828, 1920, 867, 1920, 867, 1954, 828, 1954], "score": 0.839}, {"category_id": 4, "poly": [771, 972, 908, 972, 908, 1015, 771, 1015], "score": 0.741}, {"category_id": 3, "poly": [464, 342, 1234, 342, 1234, 912, 464, 912], "score": 0.703}, {"category_id": 3, "poly": [527, 1034, 1165, 1034, 1165, 1756, 527, 1756], "score": 0.593}, {"category_id": 3, "poly": [465, 335, 1233, 335, 1233, 1762, 465, 1762], "score": 0.29}, {"category_id": 15, "poly": [774.0, 1829.0, 908.0, 1829.0, 908.0, 1869.0, 774.0, 1869.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [827.0, 1922.0, 869.0, 1922.0, 869.0, 1960.0, 827.0, 1960.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [773.0, 974.0, 910.0, 974.0, 910.0, 1022.0, 773.0, 1022.0], "score": 1.0, "text": ""}] | {"preproc_blocks": [{"type": "image", "bbox": [167, 120, 444, 634], "blocks": [{"type": "image_body", "bbox": [167, 120, 444, 634], "group_id": 0, "lines": [{"bbox": [167, 120, 443, 634], "spans": [{"bbox": [167, 120, 443, 634], "score": 0.29, "type": "image", "image_path": "823f2e180b2f3347a8b1d1f8997fd38c3ab9ea535f708bc18823523da33303de.jpg"}]}], "index": 18, "virtual_lines": [{"bbox": [167, 120, 444, 134], "spans": [], "index": 0}, {"bbox": [167, 134, 444, 148], "spans": [], "index": 1}, {"bbox": [167, 148, 444, 162], "spans": [], "index": 2}, {"bbox": [167, 162, 444, 176], "spans": [], "index": 3}, {"bbox": [167, 176, 444, 190], "spans": [], "index": 4}, {"bbox": [167, 190, 444, 204], "spans": [], "index": 5}, {"bbox": [167, 204, 444, 218], "spans": [], "index": 6}, {"bbox": [167, 218, 444, 232], "spans": [], "index": 7}, {"bbox": [167, 232, 444, 246], "spans": [], "index": 8}, {"bbox": [167, 246, 444, 260], "spans": [], "index": 9}, {"bbox": [167, 260, 444, 274], "spans": [], "index": 10}, {"bbox": [167, 274, 444, 288], "spans": [], "index": 11}, {"bbox": [167, 288, 444, 302], "spans": [], "index": 12}, {"bbox": [167, 302, 444, 316], "spans": [], "index": 13}, {"bbox": [167, 316, 444, 330], "spans": [], "index": 14}, {"bbox": [167, 330, 444, 344], "spans": [], "index": 15}, {"bbox": [167, 344, 444, 358], "spans": [], "index": 16}, {"bbox": [167, 358, 444, 372], "spans": [], "index": 17}, {"bbox": [167, 372, 444, 386], "spans": [], "index": 18}, {"bbox": [167, 386, 444, 400], "spans": [], "index": 19}, {"bbox": [167, 400, 444, 414], "spans": [], "index": 20}, {"bbox": [167, 414, 444, 428], "spans": [], "index": 21}, {"bbox": [167, 428, 444, 442], "spans": [], "index": 22}, {"bbox": [167, 442, 444, 456], "spans": [], "index": 23}, {"bbox": [167, 456, 444, 470], "spans": [], "index": 24}, {"bbox": [167, 470, 444, 484], "spans": [], "index": 25}, {"bbox": [167, 484, 444, 498], "spans": [], "index": 26}, {"bbox": [167, 498, 444, 512], "spans": [], "index": 27}, {"bbox": [167, 512, 444, 526], "spans": [], "index": 28}, {"bbox": [167, 526, 444, 540], "spans": [], "index": 29}, {"bbox": [167, 540, 444, 554], "spans": [], "index": 30}, {"bbox": [167, 554, 444, 568], "spans": [], "index": 31}, {"bbox": [167, 568, 444, 582], "spans": [], "index": 32}, {"bbox": [167, 582, 444, 596], "spans": [], "index": 33}, {"bbox": [167, 596, 444, 610], "spans": [], "index": 34}, {"bbox": [167, 610, 444, 624], "spans": [], "index": 35}, {"bbox": [167, 624, 444, 638], "spans": [], "index": 36}]}, {"type": "image_caption", "bbox": [277, 657, 326, 671], "group_id": 0, "lines": [{"bbox": [278, 658, 326, 672], "spans": [{"bbox": [278, 658, 326, 672], "score": 1.0, "content": "Figure 6:", "type": "text"}], "index": 37}], "index": 37}], "index": 27.5}], "layout_bboxes": [], "page_idx": 21, "page_size": [612.0, 792.0], "_layout_tree": [], "images": [{"type": "image", "bbox": [167, 120, 444, 634], "blocks": [{"type": "image_body", "bbox": [167, 120, 444, 634], "group_id": 0, "lines": [{"bbox": [167, 120, 443, 634], "spans": [{"bbox": [167, 120, 443, 634], "score": 0.29, "type": "image", "image_path": "823f2e180b2f3347a8b1d1f8997fd38c3ab9ea535f708bc18823523da33303de.jpg"}]}], "index": 18, "virtual_lines": [{"bbox": [167, 120, 444, 134], "spans": [], "index": 0}, {"bbox": [167, 134, 444, 148], "spans": [], "index": 1}, {"bbox": [167, 148, 444, 162], "spans": [], "index": 2}, {"bbox": [167, 162, 444, 176], "spans": [], "index": 3}, {"bbox": [167, 176, 444, 190], "spans": [], "index": 4}, {"bbox": [167, 190, 444, 204], "spans": [], "index": 5}, {"bbox": [167, 204, 444, 218], "spans": [], "index": 6}, {"bbox": [167, 218, 444, 232], "spans": [], "index": 7}, {"bbox": [167, 232, 444, 246], "spans": [], "index": 8}, {"bbox": [167, 246, 444, 260], "spans": [], "index": 9}, {"bbox": [167, 260, 444, 274], "spans": [], "index": 10}, {"bbox": [167, 274, 444, 288], "spans": [], "index": 11}, {"bbox": [167, 288, 444, 302], "spans": [], "index": 12}, {"bbox": [167, 302, 444, 316], "spans": [], "index": 13}, {"bbox": [167, 316, 444, 330], "spans": [], "index": 14}, {"bbox": [167, 330, 444, 344], "spans": [], "index": 15}, {"bbox": [167, 344, 444, 358], "spans": [], "index": 16}, {"bbox": [167, 358, 444, 372], "spans": [], "index": 17}, {"bbox": [167, 372, 444, 386], "spans": [], "index": 18}, {"bbox": [167, 386, 444, 400], "spans": [], "index": 19}, {"bbox": [167, 400, 444, 414], "spans": [], "index": 20}, {"bbox": [167, 414, 444, 428], "spans": [], "index": 21}, {"bbox": [167, 428, 444, 442], "spans": [], "index": 22}, {"bbox": [167, 442, 444, 456], "spans": [], "index": 23}, {"bbox": [167, 456, 444, 470], "spans": [], "index": 24}, {"bbox": [167, 470, 444, 484], "spans": [], "index": 25}, {"bbox": [167, 484, 444, 498], "spans": [], "index": 26}, {"bbox": [167, 498, 444, 512], "spans": [], "index": 27}, {"bbox": [167, 512, 444, 526], "spans": [], "index": 28}, {"bbox": [167, 526, 444, 540], "spans": [], "index": 29}, {"bbox": [167, 540, 444, 554], "spans": [], "index": 30}, {"bbox": [167, 554, 444, 568], "spans": [], "index": 31}, {"bbox": [167, 568, 444, 582], "spans": [], "index": 32}, {"bbox": [167, 582, 444, 596], "spans": [], "index": 33}, {"bbox": [167, 596, 444, 610], "spans": [], "index": 34}, {"bbox": [167, 610, 444, 624], "spans": [], "index": 35}, {"bbox": [167, 624, 444, 638], "spans": [], "index": 36}]}, {"type": "image_caption", "bbox": [277, 657, 326, 671], "group_id": 0, "lines": [{"bbox": [278, 658, 326, 672], "spans": [{"bbox": [278, 658, 326, 672], "score": 1.0, "content": "Figure 6:", "type": "text"}], "index": 37}], "index": 37}], "index": 27.5}], "tables": [], "interline_equations": [], "discarded_blocks": [{"type": "discarded", "bbox": [298, 691, 312, 703], "lines": [{"bbox": [297, 691, 312, 705], "spans": [{"bbox": [297, 691, 312, 705], "score": 1.0, "content": "22", "type": "text"}]}]}], "need_drop": false, "drop_reason": [], "para_blocks": [{"type": "image", "bbox": [167, 120, 444, 634], "blocks": [{"type": "image_body", "bbox": [167, 120, 444, 634], "group_id": 0, "lines": [{"bbox": [167, 120, 443, 634], "spans": [{"bbox": [167, 120, 443, 634], "score": 0.29, "type": "image", "image_path": "823f2e180b2f3347a8b1d1f8997fd38c3ab9ea535f708bc18823523da33303de.jpg"}]}], "index": 18, "virtual_lines": [{"bbox": [167, 120, 444, 134], "spans": [], "index": 0}, {"bbox": [167, 134, 444, 148], "spans": [], "index": 1}, {"bbox": [167, 148, 444, 162], "spans": [], "index": 2}, {"bbox": [167, 162, 444, 176], "spans": [], "index": 3}, {"bbox": [167, 176, 444, 190], "spans": [], "index": 4}, {"bbox": [167, 190, 444, 204], "spans": [], "index": 5}, {"bbox": [167, 204, 444, 218], "spans": [], "index": 6}, {"bbox": [167, 218, 444, 232], "spans": [], "index": 7}, {"bbox": [167, 232, 444, 246], "spans": [], "index": 8}, {"bbox": [167, 246, 444, 260], "spans": [], "index": 9}, {"bbox": [167, 260, 444, 274], "spans": [], "index": 10}, {"bbox": [167, 274, 444, 288], "spans": [], "index": 11}, {"bbox": [167, 288, 444, 302], "spans": [], "index": 12}, {"bbox": [167, 302, 444, 316], "spans": [], "index": 13}, {"bbox": [167, 316, 444, 330], "spans": [], "index": 14}, {"bbox": [167, 330, 444, 344], "spans": [], "index": 15}, {"bbox": [167, 344, 444, 358], "spans": [], "index": 16}, {"bbox": [167, 358, 444, 372], "spans": [], "index": 17}, {"bbox": [167, 372, 444, 386], "spans": [], "index": 18}, {"bbox": [167, 386, 444, 400], "spans": [], "index": 19}, {"bbox": [167, 400, 444, 414], "spans": [], "index": 20}, {"bbox": [167, 414, 444, 428], "spans": [], "index": 21}, {"bbox": [167, 428, 444, 442], "spans": [], "index": 22}, {"bbox": [167, 442, 444, 456], "spans": [], "index": 23}, {"bbox": [167, 456, 444, 470], "spans": [], "index": 24}, {"bbox": [167, 470, 444, 484], "spans": [], "index": 25}, {"bbox": [167, 484, 444, 498], "spans": [], "index": 26}, {"bbox": [167, 498, 444, 512], "spans": [], "index": 27}, {"bbox": [167, 512, 444, 526], "spans": [], "index": 28}, {"bbox": [167, 526, 444, 540], "spans": [], "index": 29}, {"bbox": [167, 540, 444, 554], "spans": [], "index": 30}, {"bbox": [167, 554, 444, 568], "spans": [], "index": 31}, {"bbox": [167, 568, 444, 582], "spans": [], "index": 32}, {"bbox": [167, 582, 444, 596], "spans": [], "index": 33}, {"bbox": [167, 596, 444, 610], "spans": [], "index": 34}, {"bbox": [167, 610, 444, 624], "spans": [], "index": 35}, {"bbox": [167, 624, 444, 638], "spans": [], "index": 36}]}, {"type": "image_caption", "bbox": [277, 657, 326, 671], "group_id": 0, "lines": [{"bbox": [278, 658, 326, 672], "spans": [{"bbox": [278, 658, 326, 672], "score": 1.0, "content": "Figure 6:", "type": "text"}], "index": 37}], "index": 37}], "index": 27.5, "page_num": "page_21", "page_size": [612.0, 792.0]}]} |
|||
0003042v1 | 20 | [{"type": "image", "coordinates": [138, 217, 468, 538], "content": "", "block_type": "image", "index": 1}] | [] | [{"coordinates": [138, 217, 468, 538], "index": 2.0, "caption": "Figure 4:", "caption_coordinates": [277, 559, 327, 575]}] | [] | [] | [612.0, 792.0] | [{"type": "image", "img_path": "images/1bc4540a8550b330ac83a1cd4985568eeb8d692dc0af2e41be8d0f6b53ca4ab5.jpg", "img_caption": ["Figure 4: "], "img_footnote": [], "page_idx": 20}] | [{"category_id": 3, "poly": [386, 605, 1301, 605, 1301, 1496, 386, 1496], "score": 0.953}, {"category_id": 4, "poly": [770, 1555, 910, 1555, 910, 1598, 770, 1598], "score": 0.864}, {"category_id": 2, "poly": [826, 1918, 865, 1918, 865, 1956, 826, 1956], "score": 0.852}, {"category_id": 13, "poly": [1047, 967, 1265, 967, 1265, 995, 1047, 995], "score": 0.36, "latex": "|{\\bf j}{=}{\\bf a}{+}1{\\bf\\cdot}(1{+}2{\\bf k})\\Gamma;\\ k{=}0,{\\ldots},{\\bf a}{-}1\\;\\;\\;"}, {"category_id": 15, "poly": [774.0, 1561.0, 907.0, 1561.0, 907.0, 1601.0, 774.0, 1601.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [828.0, 1924.0, 867.0, 1924.0, 867.0, 1960.0, 828.0, 1960.0], "score": 1.0, "text": ""}] | {"preproc_blocks": [{"type": "image", "bbox": [138, 217, 468, 538], "blocks": [{"type": "image_body", "bbox": [138, 217, 468, 538], "group_id": 0, "lines": [{"bbox": [138, 217, 468, 538], "spans": [{"bbox": [138, 217, 468, 538], "score": 0.953, "type": "image", "image_path": "1bc4540a8550b330ac83a1cd4985568eeb8d692dc0af2e41be8d0f6b53ca4ab5.jpg"}]}], "index": 1, "virtual_lines": [{"bbox": [138, 217, 468, 324.0], "spans": [], "index": 0}, {"bbox": [138, 324.0, 468, 431.0], "spans": [], "index": 1}, {"bbox": [138, 431.0, 468, 538.0], "spans": [], "index": 2}]}, {"type": "image_caption", "bbox": [277, 559, 327, 575], "group_id": 0, "lines": [{"bbox": [278, 561, 326, 576], "spans": [{"bbox": [278, 561, 326, 576], "score": 1.0, "content": "Figure 4:", "type": "text"}], "index": 3}], "index": 3}], "index": 2.0}], "layout_bboxes": [], "page_idx": 20, "page_size": [612.0, 792.0], "_layout_tree": [], "images": [{"type": "image", "bbox": [138, 217, 468, 538], "blocks": [{"type": "image_body", "bbox": [138, 217, 468, 538], "group_id": 0, "lines": [{"bbox": [138, 217, 468, 538], "spans": [{"bbox": [138, 217, 468, 538], "score": 0.953, "type": "image", "image_path": "1bc4540a8550b330ac83a1cd4985568eeb8d692dc0af2e41be8d0f6b53ca4ab5.jpg"}]}], "index": 1, "virtual_lines": [{"bbox": [138, 217, 468, 324.0], "spans": [], "index": 0}, {"bbox": [138, 324.0, 468, 431.0], "spans": [], "index": 1}, {"bbox": [138, 431.0, 468, 538.0], "spans": [], "index": 2}]}, {"type": "image_caption", "bbox": [277, 559, 327, 575], "group_id": 0, "lines": [{"bbox": [278, 561, 326, 576], "spans": [{"bbox": [278, 561, 326, 576], "score": 1.0, "content": "Figure 4:", "type": "text"}], "index": 3}], "index": 3}], "index": 2.0}], "tables": [], "interline_equations": [], "discarded_blocks": [{"type": "discarded", "bbox": [297, 690, 311, 704], "lines": [{"bbox": [298, 692, 312, 705], "spans": [{"bbox": [298, 692, 312, 705], "score": 1.0, "content": "21", "type": "text"}]}]}], "need_drop": false, "drop_reason": [], "para_blocks": [{"type": "image", "bbox": [138, 217, 468, 538], "blocks": [{"type": "image_body", "bbox": [138, 217, 468, 538], "group_id": 0, "lines": [{"bbox": [138, 217, 468, 538], "spans": [{"bbox": [138, 217, 468, 538], "score": 0.953, "type": "image", "image_path": "1bc4540a8550b330ac83a1cd4985568eeb8d692dc0af2e41be8d0f6b53ca4ab5.jpg"}]}], "index": 1, "virtual_lines": [{"bbox": [138, 217, 468, 324.0], "spans": [], "index": 0}, {"bbox": [138, 324.0, 468, 431.0], "spans": [], "index": 1}, {"bbox": [138, 431.0, 468, 538.0], "spans": [], "index": 2}]}, {"type": "image_caption", "bbox": [277, 559, 327, 575], "group_id": 0, "lines": [{"bbox": [278, 561, 326, 576], "spans": [{"bbox": [278, 561, 326, 576], "score": 1.0, "content": "Figure 4:", "type": "text"}], "index": 3}], "index": 3}], "index": 2.0, "page_num": "page_20", "page_size": [612.0, 792.0]}]} |
|||
0003042v1 | 19 | [{"type": "image", "coordinates": [153, 232, 457, 523], "content": "", "block_type": "image", "index": 1}] | [] | [{"coordinates": [153, 232, 457, 523], "index": 14.75, "caption": "Figure 3:", "caption_coordinates": [276, 545, 327, 561]}] | [] | [] | [612.0, 792.0] | [{"type": "image", "img_path": "images/37d9c42a10d8f384b8ac1d1963b7c1c2cb952b435c9d2179d23107e812c27429.jpg", "img_caption": ["Figure 3: "], "img_footnote": [], "page_idx": 19}] | [{"category_id": 3, "poly": [426, 645, 1270, 645, 1270, 1454, 426, 1454], "score": 0.951}, {"category_id": 4, "poly": [769, 1516, 909, 1516, 909, 1561, 769, 1561], "score": 0.855}, {"category_id": 2, "poly": [827, 1918, 868, 1918, 868, 1955, 827, 1955], "score": 0.79}, {"category_id": 15, "poly": [773.0, 1522.0, 909.0, 1522.0, 909.0, 1563.0, 773.0, 1563.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [827.0, 1923.0, 870.0, 1923.0, 870.0, 1961.0, 827.0, 1961.0], "score": 1.0, "text": ""}] | {"preproc_blocks": [{"type": "image", "bbox": [153, 232, 457, 523], "blocks": [{"type": "image_body", "bbox": [153, 232, 457, 523], "group_id": 0, "lines": [{"bbox": [153, 232, 457, 523], "spans": [{"bbox": [153, 232, 457, 523], "score": 0.951, "type": "image", "image_path": "37d9c42a10d8f384b8ac1d1963b7c1c2cb952b435c9d2179d23107e812c27429.jpg"}]}], "index": 9.5, "virtual_lines": [{"bbox": [153, 232, 457, 247], "spans": [], "index": 0}, {"bbox": [153, 247, 457, 262], "spans": [], "index": 1}, {"bbox": [153, 262, 457, 277], "spans": [], "index": 2}, {"bbox": [153, 277, 457, 292], "spans": [], "index": 3}, {"bbox": [153, 292, 457, 307], "spans": [], "index": 4}, {"bbox": [153, 307, 457, 322], "spans": [], "index": 5}, {"bbox": [153, 322, 457, 337], "spans": [], "index": 6}, {"bbox": [153, 337, 457, 352], "spans": [], "index": 7}, {"bbox": [153, 352, 457, 367], "spans": [], "index": 8}, {"bbox": [153, 367, 457, 382], "spans": [], "index": 9}, {"bbox": [153, 382, 457, 397], "spans": [], "index": 10}, {"bbox": [153, 397, 457, 412], "spans": [], "index": 11}, {"bbox": [153, 412, 457, 427], "spans": [], "index": 12}, {"bbox": [153, 427, 457, 442], "spans": [], "index": 13}, {"bbox": [153, 442, 457, 457], "spans": [], "index": 14}, {"bbox": [153, 457, 457, 472], "spans": [], "index": 15}, {"bbox": [153, 472, 457, 487], "spans": [], "index": 16}, {"bbox": [153, 487, 457, 502], "spans": [], "index": 17}, {"bbox": [153, 502, 457, 517], "spans": [], "index": 18}, {"bbox": [153, 517, 457, 532], "spans": [], "index": 19}]}, {"type": "image_caption", "bbox": [276, 545, 327, 561], "group_id": 0, "lines": [{"bbox": [278, 547, 327, 562], "spans": [{"bbox": [278, 547, 327, 562], "score": 1.0, "content": "Figure 3:", "type": "text"}], "index": 20}], "index": 20}], "index": 14.75}], "layout_bboxes": [], "page_idx": 19, "page_size": [612.0, 792.0], "_layout_tree": [], "images": [{"type": "image", "bbox": [153, 232, 457, 523], "blocks": [{"type": "image_body", "bbox": [153, 232, 457, 523], "group_id": 0, "lines": [{"bbox": [153, 232, 457, 523], "spans": [{"bbox": [153, 232, 457, 523], "score": 0.951, "type": "image", "image_path": "37d9c42a10d8f384b8ac1d1963b7c1c2cb952b435c9d2179d23107e812c27429.jpg"}]}], "index": 9.5, "virtual_lines": [{"bbox": [153, 232, 457, 247], "spans": [], "index": 0}, {"bbox": [153, 247, 457, 262], "spans": [], "index": 1}, {"bbox": [153, 262, 457, 277], "spans": [], "index": 2}, {"bbox": [153, 277, 457, 292], "spans": [], "index": 3}, {"bbox": [153, 292, 457, 307], "spans": [], "index": 4}, {"bbox": [153, 307, 457, 322], "spans": [], "index": 5}, {"bbox": [153, 322, 457, 337], "spans": [], "index": 6}, {"bbox": [153, 337, 457, 352], "spans": [], "index": 7}, {"bbox": [153, 352, 457, 367], "spans": [], "index": 8}, {"bbox": [153, 367, 457, 382], "spans": [], "index": 9}, {"bbox": [153, 382, 457, 397], "spans": [], "index": 10}, {"bbox": [153, 397, 457, 412], "spans": [], "index": 11}, {"bbox": [153, 412, 457, 427], "spans": [], "index": 12}, {"bbox": [153, 427, 457, 442], "spans": [], "index": 13}, {"bbox": [153, 442, 457, 457], "spans": [], "index": 14}, {"bbox": [153, 457, 457, 472], "spans": [], "index": 15}, {"bbox": [153, 472, 457, 487], "spans": [], "index": 16}, {"bbox": [153, 487, 457, 502], "spans": [], "index": 17}, {"bbox": [153, 502, 457, 517], "spans": [], "index": 18}, {"bbox": [153, 517, 457, 532], "spans": [], "index": 19}]}, {"type": "image_caption", "bbox": [276, 545, 327, 561], "group_id": 0, "lines": [{"bbox": [278, 547, 327, 562], "spans": [{"bbox": [278, 547, 327, 562], "score": 1.0, "content": "Figure 3:", "type": "text"}], "index": 20}], "index": 20}], "index": 14.75}], "tables": [], "interline_equations": [], "discarded_blocks": [{"type": "discarded", "bbox": [297, 690, 312, 703], "lines": [{"bbox": [297, 692, 313, 705], "spans": [{"bbox": [297, 692, 313, 705], "score": 1.0, "content": "20", "type": "text"}]}]}], "need_drop": false, "drop_reason": [], "para_blocks": [{"type": "image", "bbox": [153, 232, 457, 523], "blocks": [{"type": "image_body", "bbox": [153, 232, 457, 523], "group_id": 0, "lines": [{"bbox": [153, 232, 457, 523], "spans": [{"bbox": [153, 232, 457, 523], "score": 0.951, "type": "image", "image_path": "37d9c42a10d8f384b8ac1d1963b7c1c2cb952b435c9d2179d23107e812c27429.jpg"}]}], "index": 9.5, "virtual_lines": [{"bbox": [153, 232, 457, 247], "spans": [], "index": 0}, {"bbox": [153, 247, 457, 262], "spans": [], "index": 1}, {"bbox": [153, 262, 457, 277], "spans": [], "index": 2}, {"bbox": [153, 277, 457, 292], "spans": [], "index": 3}, {"bbox": [153, 292, 457, 307], "spans": [], "index": 4}, {"bbox": [153, 307, 457, 322], "spans": [], "index": 5}, {"bbox": [153, 322, 457, 337], "spans": [], "index": 6}, {"bbox": [153, 337, 457, 352], "spans": [], "index": 7}, {"bbox": [153, 352, 457, 367], "spans": [], "index": 8}, {"bbox": [153, 367, 457, 382], "spans": [], "index": 9}, {"bbox": [153, 382, 457, 397], "spans": [], "index": 10}, {"bbox": [153, 397, 457, 412], "spans": [], "index": 11}, {"bbox": [153, 412, 457, 427], "spans": [], "index": 12}, {"bbox": [153, 427, 457, 442], "spans": [], "index": 13}, {"bbox": [153, 442, 457, 457], "spans": [], "index": 14}, {"bbox": [153, 457, 457, 472], "spans": [], "index": 15}, {"bbox": [153, 472, 457, 487], "spans": [], "index": 16}, {"bbox": [153, 487, 457, 502], "spans": [], "index": 17}, {"bbox": [153, 502, 457, 517], "spans": [], "index": 18}, {"bbox": [153, 517, 457, 532], "spans": [], "index": 19}]}, {"type": "image_caption", "bbox": [276, 545, 327, 561], "group_id": 0, "lines": [{"bbox": [278, 547, 327, 562], "spans": [{"bbox": [278, 547, 327, 562], "score": 1.0, "content": "Figure 3:", "type": "text"}], "index": 20}], "index": 20}], "index": 14.75, "page_num": "page_19", "page_size": [612.0, 792.0]}]} |
|||
0003042v1 | 23 | [{"type": "image", "coordinates": [189, 163, 422, 370], "content": "", "block_type": "image", "index": 1}, {"type": "image", "coordinates": [181, 498, 427, 593], "content": "", "block_type": "image", "index": 2}] | [] | [{"coordinates": [189, 163, 422, 370], "index": 11.0, "caption": "Figure 9:", "caption_coordinates": [277, 392, 326, 407]}, {"coordinates": [181, 498, 427, 593], "index": 18.0, "caption": "Figure 10:", "caption_coordinates": [275, 614, 329, 629]}] | [] | [] | [612.0, 792.0] | [{"type": "image", "img_path": "images/1963e1807a16305c5f7d8e712872995a22e73652a35ff3fa741fd07f31c16de6.jpg", "img_caption": ["Figure 9: "], "img_footnote": [], "page_idx": 23}, {"type": "image", "img_path": "images/82e90c6299eb4342d9edaed05ee9b0285c427ec2529769af6fa098272a4c9205.jpg", "img_caption": ["Figure 10: "], "img_footnote": [], "page_idx": 23}] | [{"category_id": 3, "poly": [525, 453, 1174, 453, 1174, 1030, 525, 1030], "score": 0.933}, {"category_id": 4, "poly": [764, 1706, 916, 1706, 916, 1749, 764, 1749], "score": 0.87}, {"category_id": 2, "poly": [827, 1919, 867, 1919, 867, 1955, 827, 1955], "score": 0.854}, {"category_id": 4, "poly": [770, 1089, 907, 1089, 907, 1133, 770, 1133], "score": 0.835}, {"category_id": 3, "poly": [504, 1384, 1188, 1384, 1188, 1649, 504, 1649], "score": 0.815}, {"category_id": 15, "poly": [766.0, 1711.0, 915.0, 1711.0, 915.0, 1751.0, 766.0, 1751.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [826.0, 1922.0, 870.0, 1922.0, 870.0, 1960.0, 826.0, 1960.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [773.0, 1095.0, 907.0, 1095.0, 907.0, 1136.0, 773.0, 1136.0], "score": 1.0, "text": ""}] | {"preproc_blocks": [{"type": "image", "bbox": [189, 163, 422, 370], "blocks": [{"type": "image_body", "bbox": [189, 163, 422, 370], "group_id": 0, "lines": [{"bbox": [189, 163, 422, 370], "spans": [{"bbox": [189, 163, 422, 370], "score": 0.933, "type": "image", "image_path": "1963e1807a16305c5f7d8e712872995a22e73652a35ff3fa741fd07f31c16de6.jpg"}]}], "index": 7, "virtual_lines": [{"bbox": [189, 163, 422, 177.5], "spans": [], "index": 0}, {"bbox": [189, 177.5, 422, 192.0], "spans": [], "index": 1}, {"bbox": [189, 192.0, 422, 206.5], "spans": [], "index": 2}, {"bbox": [189, 206.5, 422, 221.0], "spans": [], "index": 3}, {"bbox": [189, 221.0, 422, 235.5], "spans": [], "index": 4}, {"bbox": [189, 235.5, 422, 250.0], "spans": [], "index": 5}, {"bbox": [189, 250.0, 422, 264.5], "spans": [], "index": 6}, {"bbox": [189, 264.5, 422, 279.0], "spans": [], "index": 7}, {"bbox": [189, 279.0, 422, 293.5], "spans": [], "index": 8}, {"bbox": [189, 293.5, 422, 308.0], "spans": [], "index": 9}, {"bbox": [189, 308.0, 422, 322.5], "spans": [], "index": 10}, {"bbox": [189, 322.5, 422, 337.0], "spans": [], "index": 11}, {"bbox": [189, 337.0, 422, 351.5], "spans": [], "index": 12}, {"bbox": [189, 351.5, 422, 366.0], "spans": [], "index": 13}, {"bbox": [189, 366.0, 422, 380.5], "spans": [], "index": 14}]}, {"type": "image_caption", "bbox": [277, 392, 326, 407], "group_id": 0, "lines": [{"bbox": [278, 394, 326, 408], "spans": [{"bbox": [278, 394, 326, 408], "score": 1.0, "content": "Figure 9:", "type": "text"}], "index": 15}], "index": 15}], "index": 11.0}, {"type": "image", "bbox": [181, 498, 427, 593], "blocks": [{"type": "image_body", "bbox": [181, 498, 427, 593], "group_id": 1, "lines": [{"bbox": [181, 498, 427, 593], "spans": [{"bbox": [181, 498, 427, 593], "score": 0.815, "type": "image", "image_path": "82e90c6299eb4342d9edaed05ee9b0285c427ec2529769af6fa098272a4c9205.jpg"}]}], "index": 17, "virtual_lines": [{"bbox": [181, 498, 427, 529.6666666666666], "spans": [], "index": 16}, {"bbox": [181, 529.6666666666666, 427, 561.3333333333333], "spans": [], "index": 17}, {"bbox": [181, 561.3333333333333, 427, 592.9999999999999], "spans": [], "index": 18}]}, {"type": "image_caption", "bbox": [275, 614, 329, 629], "group_id": 1, "lines": [{"bbox": [275, 615, 329, 630], "spans": [{"bbox": [275, 615, 329, 630], "score": 1.0, "content": "Figure 10:", "type": "text"}], "index": 19}], "index": 19}], "index": 18.0}], "layout_bboxes": [], "page_idx": 23, "page_size": [612.0, 792.0], "_layout_tree": [], "images": [{"type": "image", "bbox": [189, 163, 422, 370], "blocks": [{"type": "image_body", "bbox": [189, 163, 422, 370], "group_id": 0, "lines": [{"bbox": [189, 163, 422, 370], "spans": [{"bbox": [189, 163, 422, 370], "score": 0.933, "type": "image", "image_path": "1963e1807a16305c5f7d8e712872995a22e73652a35ff3fa741fd07f31c16de6.jpg"}]}], "index": 7, "virtual_lines": [{"bbox": [189, 163, 422, 177.5], "spans": [], "index": 0}, {"bbox": [189, 177.5, 422, 192.0], "spans": [], "index": 1}, {"bbox": [189, 192.0, 422, 206.5], "spans": [], "index": 2}, {"bbox": [189, 206.5, 422, 221.0], "spans": [], "index": 3}, {"bbox": [189, 221.0, 422, 235.5], "spans": [], "index": 4}, {"bbox": [189, 235.5, 422, 250.0], "spans": [], "index": 5}, {"bbox": [189, 250.0, 422, 264.5], "spans": [], "index": 6}, {"bbox": [189, 264.5, 422, 279.0], "spans": [], "index": 7}, {"bbox": [189, 279.0, 422, 293.5], "spans": [], "index": 8}, {"bbox": [189, 293.5, 422, 308.0], "spans": [], "index": 9}, {"bbox": [189, 308.0, 422, 322.5], "spans": [], "index": 10}, {"bbox": [189, 322.5, 422, 337.0], "spans": [], "index": 11}, {"bbox": [189, 337.0, 422, 351.5], "spans": [], "index": 12}, {"bbox": [189, 351.5, 422, 366.0], "spans": [], "index": 13}, {"bbox": [189, 366.0, 422, 380.5], "spans": [], "index": 14}]}, {"type": "image_caption", "bbox": [277, 392, 326, 407], "group_id": 0, "lines": [{"bbox": [278, 394, 326, 408], "spans": [{"bbox": [278, 394, 326, 408], "score": 1.0, "content": "Figure 9:", "type": "text"}], "index": 15}], "index": 15}], "index": 11.0}, {"type": "image", "bbox": [181, 498, 427, 593], "blocks": [{"type": "image_body", "bbox": [181, 498, 427, 593], "group_id": 1, "lines": [{"bbox": [181, 498, 427, 593], "spans": [{"bbox": [181, 498, 427, 593], "score": 0.815, "type": "image", "image_path": "82e90c6299eb4342d9edaed05ee9b0285c427ec2529769af6fa098272a4c9205.jpg"}]}], "index": 17, "virtual_lines": [{"bbox": [181, 498, 427, 529.6666666666666], "spans": [], "index": 16}, {"bbox": [181, 529.6666666666666, 427, 561.3333333333333], "spans": [], "index": 17}, {"bbox": [181, 561.3333333333333, 427, 592.9999999999999], "spans": [], "index": 18}]}, {"type": "image_caption", "bbox": [275, 614, 329, 629], "group_id": 1, "lines": [{"bbox": [275, 615, 329, 630], "spans": [{"bbox": [275, 615, 329, 630], "score": 1.0, "content": "Figure 10:", "type": "text"}], "index": 19}], "index": 19}], "index": 18.0}], "tables": [], "interline_equations": [], "discarded_blocks": [{"type": "discarded", "bbox": [297, 690, 312, 703], "lines": [{"bbox": [297, 691, 313, 705], "spans": [{"bbox": [297, 691, 313, 705], "score": 1.0, "content": "24", "type": "text"}]}]}], "need_drop": false, "drop_reason": [], "para_blocks": [{"type": "image", "bbox": [189, 163, 422, 370], "blocks": [{"type": "image_body", "bbox": [189, 163, 422, 370], "group_id": 0, "lines": [{"bbox": [189, 163, 422, 370], "spans": [{"bbox": [189, 163, 422, 370], "score": 0.933, "type": "image", "image_path": "1963e1807a16305c5f7d8e712872995a22e73652a35ff3fa741fd07f31c16de6.jpg"}]}], "index": 7, "virtual_lines": [{"bbox": [189, 163, 422, 177.5], "spans": [], "index": 0}, {"bbox": [189, 177.5, 422, 192.0], "spans": [], "index": 1}, {"bbox": [189, 192.0, 422, 206.5], "spans": [], "index": 2}, {"bbox": [189, 206.5, 422, 221.0], "spans": [], "index": 3}, {"bbox": [189, 221.0, 422, 235.5], "spans": [], "index": 4}, {"bbox": [189, 235.5, 422, 250.0], "spans": [], "index": 5}, {"bbox": [189, 250.0, 422, 264.5], "spans": [], "index": 6}, {"bbox": [189, 264.5, 422, 279.0], "spans": [], "index": 7}, {"bbox": [189, 279.0, 422, 293.5], "spans": [], "index": 8}, {"bbox": [189, 293.5, 422, 308.0], "spans": [], "index": 9}, {"bbox": [189, 308.0, 422, 322.5], "spans": [], "index": 10}, {"bbox": [189, 322.5, 422, 337.0], "spans": [], "index": 11}, {"bbox": [189, 337.0, 422, 351.5], "spans": [], "index": 12}, {"bbox": [189, 351.5, 422, 366.0], "spans": [], "index": 13}, {"bbox": [189, 366.0, 422, 380.5], "spans": [], "index": 14}]}, {"type": "image_caption", "bbox": [277, 392, 326, 407], "group_id": 0, "lines": [{"bbox": [278, 394, 326, 408], "spans": [{"bbox": [278, 394, 326, 408], "score": 1.0, "content": "Figure 9:", "type": "text"}], "index": 15}], "index": 15}], "index": 11.0, "page_num": "page_23", "page_size": [612.0, 792.0]}, {"type": "image", "bbox": [181, 498, 427, 593], "blocks": [{"type": "image_body", "bbox": [181, 498, 427, 593], "group_id": 1, "lines": [{"bbox": [181, 498, 427, 593], "spans": [{"bbox": [181, 498, 427, 593], "score": 0.815, "type": "image", "image_path": "82e90c6299eb4342d9edaed05ee9b0285c427ec2529769af6fa098272a4c9205.jpg"}]}], "index": 17, "virtual_lines": [{"bbox": [181, 498, 427, 529.6666666666666], "spans": [], "index": 16}, {"bbox": [181, 529.6666666666666, 427, 561.3333333333333], "spans": [], "index": 17}, {"bbox": [181, 561.3333333333333, 427, 592.9999999999999], "spans": [], "index": 18}]}, {"type": "image_caption", "bbox": [275, 614, 329, 629], "group_id": 1, "lines": [{"bbox": [275, 615, 329, 630], "spans": [{"bbox": [275, 615, 329, 630], "score": 1.0, "content": "Figure 10:", "type": "text"}], "index": 19}], "index": 19}], "index": 18.0, "page_num": "page_23", "page_size": [612.0, 792.0]}]} |
|||
0002044v1 | 2 | # 2.1. The affine fusion ring
The source of some of the most interesting fusion data are the affine nontwisted
Kac-Moody algebras $$X_{r}^{(1)}$$ [23]. Choose any positive integer $$k$$ . Consider the (finite) set
$$P_{+}=P_{+}^{k}(X_{r}^{(1)})$$ of level $$k$$ integrable highest weights:
where $$\Lambda_{i}$$ denote the fundamental weights, and $$a_{j}^{\vee}$$ are the co-labels, of $$X_{r}^{(1)}$$ (the $$a_{j}^{\vee}$$ will be
given for each algebra in §3). We will usually drop the (redundant) component $$\lambda_{0}\Lambda_{0}$$ . Kac-
Peterson [24] found a natural representation of the modular group $$\operatorname{SL_{2}}(\mathbb{Z})$$ on the complex
space spanned by the affine characters $$\chi_{\mu}$$ , $$\mu\in P_{+}$$ : most significantly, $$\left(\begin{array}{c c}{{0}}&{{-1}}\\ {{1}}&{{0}}\end{array}\right)$$ is sent
to the Kac-Peterson matrix $$S$$ with entries
An explicit expression for the normalisation constant $$c$$ is given in e.g. [23, Theorem 13.8(a)].
The inner product in (2.1a) is scaled so that the long roots have norm 2. $$\overline{W}$$ is the (finite)
Weyl group of $$X_{r}$$ , and acts on $$P_{+}$$ by fixing $$\Lambda_{0}$$ . The Weyl vector $$\rho$$ equals $$\sum_{i}\Lambda_{i}$$ , and
κ d=ef k + i ai∨ . This is the matrix S appearing in (1.1); Φ there is P+ here.
The matrix $$S$$ is symmetric and unitary. One of the weights, $$k\Lambda_{0}$$ , is distinguished and
will be denoted ‘ $$0^{\circ}$$ . It is the weight appearing in the denominator of (1.1). A useful fact
is that
Equation (2.1a) gives us the important
where $$\mathrm{ch}_{{\overline{{\lambda}}}}$$ is the Weyl character of the $$X_{r}$$ -module $$L(\overline{{\lambda}})$$ . Together with the Weyl denomi-
nator formula, it provides a useful expression for the $$q$$ -dimensions:
where the product is over the positive roots $$\alpha\in\overline{{\Delta}}_{+}$$ of $$X_{r}$$ . Another consequence of (2.1b)
is the Kac-Walton formula (2.4).
| <h1>2.1. The affine fusion ring</h1>
<p>The source of some of the most interesting fusion data are the affine nontwisted
Kac-Moody algebras $$X_{r}^{(1)}$$ [23]. Choose any positive integer $$k$$ . Consider the (finite) set
$$P_{+}=P_{+}^{k}(X_{r}^{(1)})$$ of level $$k$$ integrable highest weights:</p>
<p>where $$\Lambda_{i}$$ denote the fundamental weights, and $$a_{j}^{\vee}$$ are the co-labels, of $$X_{r}^{(1)}$$ (the $$a_{j}^{\vee}$$ will be
given for each algebra in §3). We will usually drop the (redundant) component $$\lambda_{0}\Lambda_{0}$$ . Kac-
Peterson [24] found a natural representation of the modular group $$\operatorname{SL_{2}}(\mathbb{Z})$$ on the complex
space spanned by the affine characters $$\chi_{\mu}$$ , $$\mu\in P_{+}$$ : most significantly, $$\left(\begin{array}{c c}{{0}}&{{-1}}\\ {{1}}&{{0}}\end{array}\right)$$ is sent
to the Kac-Peterson matrix $$S$$ with entries</p>
<p>An explicit expression for the normalisation constant $$c$$ is given in e.g. [23, Theorem 13.8(a)].
The inner product in (2.1a) is scaled so that the long roots have norm 2. $$\overline{W}$$ is the (finite)
Weyl group of $$X_{r}$$ , and acts on $$P_{+}$$ by fixing $$\Lambda_{0}$$ . The Weyl vector $$\rho$$ equals $$\sum_{i}\Lambda_{i}$$ , and
κ d=ef k + i ai∨ . This is the matrix S appearing in (1.1); Φ there is P+ here.</p>
<p>The matrix $$S$$ is symmetric and unitary. One of the weights, $$k\Lambda_{0}$$ , is distinguished and
will be denoted ‘ $$0^{\circ}$$ . It is the weight appearing in the denominator of (1.1). A useful fact
is that</p>
<p>Equation (2.1a) gives us the important</p>
<p>where $$\mathrm{ch}_{{\overline{{\lambda}}}}$$ is the Weyl character of the $$X_{r}$$ -module $$L(\overline{{\lambda}})$$ . Together with the Weyl denomi-
nator formula, it provides a useful expression for the $$q$$ -dimensions:</p>
<p>where the product is over the positive roots $$\alpha\in\overline{{\Delta}}_{+}$$ of $$X_{r}$$ . Another consequence of (2.1b)
is the Kac-Walton formula (2.4).</p>
| [{"type": "title", "coordinates": [70, 100, 214, 116], "content": "2.1. The affine fusion ring", "block_type": "title", "index": 1}, {"type": "text", "coordinates": [70, 123, 541, 171], "content": "The source of some of the most interesting fusion data are the affine nontwisted\nKac-Moody algebras $$X_{r}^{(1)}$$ [23]. Choose any positive integer $$k$$ . Consider the (finite) set\n$$P_{+}=P_{+}^{k}(X_{r}^{(1)})$$ of level $$k$$ integrable highest weights:", "block_type": "text", "index": 2}, {"type": "interline_equation", "coordinates": [174, 187, 436, 226], "content": "", "block_type": "interline_equation", "index": 3}, {"type": "text", "coordinates": [69, 239, 541, 328], "content": "where $$\\Lambda_{i}$$ denote the fundamental weights, and $$a_{j}^{\\vee}$$ are the co-labels, of $$X_{r}^{(1)}$$ (the $$a_{j}^{\\vee}$$ will be\ngiven for each algebra in \u00a73). We will usually drop the (redundant) component $$\\lambda_{0}\\Lambda_{0}$$ . Kac-\nPeterson [24] found a natural representation of the modular group $$\\operatorname{SL_{2}}(\\mathbb{Z})$$ on the complex\nspace spanned by the affine characters $$\\chi_{\\mu}$$ , $$\\mu\\in P_{+}$$ : most significantly, $$\\left(\\begin{array}{c c}{{0}}&{{-1}}\\\\ {{1}}&{{0}}\\end{array}\\right)$$ is sent\nto the Kac-Peterson matrix $$S$$ with entries", "block_type": "text", "index": 4}, {"type": "interline_equation", "coordinates": [175, 338, 435, 378], "content": "", "block_type": "interline_equation", "index": 5}, {"type": "text", "coordinates": [70, 389, 541, 452], "content": "An explicit expression for the normalisation constant $$c$$ is given in e.g. [23, Theorem 13.8(a)].\nThe inner product in (2.1a) is scaled so that the long roots have norm 2. $$\\overline{W}$$ is the (finite)\nWeyl group of $$X_{r}$$ , and acts on $$P_{+}$$ by fixing $$\\Lambda_{0}$$ . The Weyl vector $$\\rho$$ equals $$\\sum_{i}\\Lambda_{i}$$ , and\n\u03ba d=ef k + i ai\u2228 . This is the matrix S appearing in (1.1); \u03a6 there is P+ here.", "block_type": "text", "index": 6}, {"type": "text", "coordinates": [70, 452, 541, 494], "content": "The matrix $$S$$ is symmetric and unitary. One of the weights, $$k\\Lambda_{0}$$ , is distinguished and\nwill be denoted \u2018 $$0^{\\circ}$$ . It is the weight appearing in the denominator of (1.1). A useful fact\nis that", "block_type": "text", "index": 7}, {"type": "interline_equation", "coordinates": [233, 497, 378, 511], "content": "", "block_type": "interline_equation", "index": 8}, {"type": "text", "coordinates": [93, 519, 300, 534], "content": "Equation (2.1a) gives us the important", "block_type": "text", "index": 9}, {"type": "interline_equation", "coordinates": [218, 549, 393, 580], "content": "", "block_type": "interline_equation", "index": 10}, {"type": "text", "coordinates": [69, 592, 540, 622], "content": "where $$\\mathrm{ch}_{{\\overline{{\\lambda}}}}$$ is the Weyl character of the $$X_{r}$$ -module $$L(\\overline{{\\lambda}})$$ . Together with the Weyl denomi-\nnator formula, it provides a useful expression for the $$q$$ -dimensions:", "block_type": "text", "index": 11}, {"type": "interline_equation", "coordinates": [200, 636, 410, 672], "content": "", "block_type": "interline_equation", "index": 12}, {"type": "text", "coordinates": [69, 685, 540, 715], "content": "where the product is over the positive roots $$\\alpha\\in\\overline{{\\Delta}}_{+}$$ of $$X_{r}$$ . Another consequence of (2.1b)\nis the Kac-Walton formula (2.4).", "block_type": "text", "index": 13}] | [{"type": "text", "coordinates": [72, 102, 213, 118], "content": "2.1. The affine fusion ring", "score": 1.0, "index": 1}, {"type": "text", "coordinates": [93, 125, 541, 141], "content": "The source of some of the most interesting fusion data are the affine nontwisted", "score": 1.0, "index": 2}, {"type": "text", "coordinates": [69, 137, 184, 159], "content": "Kac-Moody algebras ", "score": 1.0, "index": 3}, {"type": "inline_equation", "coordinates": [184, 140, 208, 154], "content": "X_{r}^{(1)}", "score": 0.93, "index": 4}, {"type": "text", "coordinates": [209, 137, 393, 159], "content": "[23]. Choose any positive integer ", "score": 1.0, "index": 5}, {"type": "inline_equation", "coordinates": [394, 144, 401, 153], "content": "k", "score": 0.89, "index": 6}, {"type": "text", "coordinates": [401, 137, 542, 159], "content": ". Consider the (finite) set", "score": 1.0, "index": 7}, {"type": "inline_equation", "coordinates": [71, 156, 152, 173], "content": "P_{+}=P_{+}^{k}(X_{r}^{(1)})", "score": 0.94, "index": 8}, {"type": "text", "coordinates": [152, 156, 196, 174], "content": " of level ", "score": 1.0, "index": 9}, {"type": "inline_equation", "coordinates": [196, 160, 203, 169], "content": "k", "score": 0.9, "index": 10}, {"type": "text", "coordinates": [203, 156, 347, 174], "content": " integrable highest weights:", "score": 1.0, "index": 11}, {"type": "interline_equation", "coordinates": [174, 187, 436, 226], "content": "P_{+}\\stackrel{\\mathrm{def}}{=}\\{\\sum_{j=0}^{r}\\lambda_{j}\\Lambda_{j}\\mid\\lambda_{j}\\in\\mathbb{Z},\\ \\lambda_{j}\\geq0,\\ \\sum_{j=0}^{r}a_{j}^{\\vee}\\lambda_{j}=k\\}\\ ,", "score": 0.93, "index": 12}, {"type": "text", "coordinates": [69, 241, 105, 260], "content": "where ", "score": 1.0, "index": 13}, {"type": "inline_equation", "coordinates": [105, 246, 117, 257], "content": "\\Lambda_{i}", "score": 0.92, "index": 14}, {"type": "text", "coordinates": [118, 241, 315, 260], "content": " denote the fundamental weights, and ", "score": 1.0, "index": 15}, {"type": "inline_equation", "coordinates": [316, 245, 329, 259], "content": "a_{j}^{\\vee}", "score": 0.9, "index": 16}, {"type": "text", "coordinates": [329, 241, 436, 260], "content": " are the co-labels, of ", "score": 1.0, "index": 17}, {"type": "inline_equation", "coordinates": [436, 241, 460, 256], "content": "X_{r}^{(1)}", "score": 0.91, "index": 18}, {"type": "text", "coordinates": [461, 241, 488, 260], "content": "(the ", "score": 1.0, "index": 19}, {"type": "inline_equation", "coordinates": [488, 245, 501, 259], "content": "a_{j}^{\\vee}", "score": 0.88, "index": 20}, {"type": "text", "coordinates": [502, 241, 542, 260], "content": " will be", "score": 1.0, "index": 21}, {"type": "text", "coordinates": [70, 258, 480, 274], "content": "given for each algebra in \u00a73). We will usually drop the (redundant) component ", "score": 1.0, "index": 22}, {"type": "inline_equation", "coordinates": [480, 259, 506, 271], "content": "\\lambda_{0}\\Lambda_{0}", "score": 0.9, "index": 23}, {"type": "text", "coordinates": [507, 258, 540, 274], "content": ". Kac-", "score": 1.0, "index": 24}, {"type": "text", "coordinates": [70, 273, 419, 288], "content": "Peterson [24] found a natural representation of the modular group ", "score": 1.0, "index": 25}, {"type": "inline_equation", "coordinates": [419, 274, 456, 286], "content": "\\operatorname{SL_{2}}(\\mathbb{Z})", "score": 0.9, "index": 26}, {"type": "text", "coordinates": [457, 273, 540, 288], "content": " on the complex", "score": 1.0, "index": 27}, {"type": "text", "coordinates": [70, 293, 277, 311], "content": "space spanned by the affine characters ", "score": 1.0, "index": 28}, {"type": "inline_equation", "coordinates": [278, 299, 292, 308], "content": "\\chi_{\\mu}", "score": 0.82, "index": 29}, {"type": "text", "coordinates": [293, 293, 299, 311], "content": ", ", "score": 1.0, "index": 30}, {"type": "inline_equation", "coordinates": [299, 296, 338, 308], "content": "\\mu\\in P_{+}", "score": 0.91, "index": 31}, {"type": "text", "coordinates": [339, 293, 446, 311], "content": ": most significantly,", "score": 1.0, "index": 32}, {"type": "inline_equation", "coordinates": [447, 287, 502, 317], "content": "\\left(\\begin{array}{c c}{{0}}&{{-1}}\\\\ {{1}}&{{0}}\\end{array}\\right)", "score": 0.95, "index": 33}, {"type": "text", "coordinates": [505, 294, 540, 308], "content": "is sent", "score": 1.0, "index": 34}, {"type": "text", "coordinates": [70, 315, 220, 330], "content": "to the Kac-Peterson matrix ", "score": 1.0, "index": 35}, {"type": "inline_equation", "coordinates": [220, 317, 228, 326], "content": "S", "score": 0.87, "index": 36}, {"type": "text", "coordinates": [229, 315, 295, 330], "content": " with entries", "score": 1.0, "index": 37}, {"type": "interline_equation", "coordinates": [175, 338, 435, 378], "content": "S_{\\mu\\nu}=c\\,\\sum_{w\\in\\overline{{{W}}}}{\\operatorname*{det}(w)}\\,\\exp[-2\\pi\\mathrm{i}\\,\\frac{(w(\\mu+\\rho)|\\nu+\\rho)}{\\kappa}]\\ .", "score": 0.94, "index": 38}, {"type": "text", "coordinates": [71, 393, 343, 407], "content": "An explicit expression for the normalisation constant ", "score": 1.0, "index": 39}, {"type": "inline_equation", "coordinates": [344, 397, 349, 403], "content": "c", "score": 0.87, "index": 40}, {"type": "text", "coordinates": [349, 393, 540, 407], "content": " is given in e.g. [23, Theorem 13.8(a)].", "score": 1.0, "index": 41}, {"type": "text", "coordinates": [70, 406, 454, 421], "content": "The inner product in (2.1a) is scaled so that the long roots have norm 2. ", "score": 1.0, "index": 42}, {"type": "inline_equation", "coordinates": [455, 407, 468, 417], "content": "\\overline{W}", "score": 0.92, "index": 43}, {"type": "text", "coordinates": [468, 406, 540, 421], "content": " is the (finite)", "score": 1.0, "index": 44}, {"type": "text", "coordinates": [70, 420, 151, 436], "content": "Weyl group of ", "score": 1.0, "index": 45}, {"type": "inline_equation", "coordinates": [151, 423, 167, 433], "content": "X_{r}", "score": 0.91, "index": 46}, {"type": "text", "coordinates": [167, 420, 242, 436], "content": ", and acts on ", "score": 1.0, "index": 47}, {"type": "inline_equation", "coordinates": [242, 423, 258, 434], "content": "P_{+}", "score": 0.91, "index": 48}, {"type": "text", "coordinates": [258, 420, 313, 436], "content": " by fixing ", "score": 1.0, "index": 49}, {"type": "inline_equation", "coordinates": [314, 423, 328, 434], "content": "\\Lambda_{0}", "score": 0.9, "index": 50}, {"type": "text", "coordinates": [328, 420, 432, 436], "content": ". The Weyl vector ", "score": 1.0, "index": 51}, {"type": "inline_equation", "coordinates": [432, 426, 439, 434], "content": "\\rho", "score": 0.87, "index": 52}, {"type": "text", "coordinates": [439, 420, 480, 436], "content": " equals", "score": 1.0, "index": 53}, {"type": "inline_equation", "coordinates": [480, 422, 512, 435], "content": "\\sum_{i}\\Lambda_{i}", "score": 0.93, "index": 54}, {"type": "text", "coordinates": [512, 420, 541, 436], "content": ", and", "score": 1.0, "index": 55}, {"type": "text", "coordinates": [68, 435, 473, 457], "content": "\u03ba d=ef k + i ai\u2228 . This is the matrix S appearing in (1.1); \u03a6 there is P+ here.", "score": 1.0, "index": 56}, {"type": "text", "coordinates": [94, 453, 157, 469], "content": "The matrix ", "score": 1.0, "index": 57}, {"type": "inline_equation", "coordinates": [158, 456, 166, 465], "content": "S", "score": 0.88, "index": 58}, {"type": "text", "coordinates": [166, 453, 409, 469], "content": " is symmetric and unitary. One of the weights, ", "score": 1.0, "index": 59}, {"type": "inline_equation", "coordinates": [409, 456, 430, 467], "content": "k\\Lambda_{0}", "score": 0.91, "index": 60}, {"type": "text", "coordinates": [430, 453, 541, 469], "content": ", is distinguished and", "score": 1.0, "index": 61}, {"type": "text", "coordinates": [70, 468, 159, 484], "content": "will be denoted \u2018", "score": 1.0, "index": 62}, {"type": "inline_equation", "coordinates": [159, 470, 169, 479], "content": "0^{\\circ}", "score": 0.43, "index": 63}, {"type": "text", "coordinates": [169, 468, 541, 484], "content": ". It is the weight appearing in the denominator of (1.1). A useful fact", "score": 1.0, "index": 64}, {"type": "text", "coordinates": [70, 484, 107, 496], "content": "is that", "score": 1.0, "index": 65}, {"type": "interline_equation", "coordinates": [233, 497, 378, 511], "content": "S_{\\lambda0}>0\\qquad\\mathrm{for~all~}\\lambda\\in P_{+}\\ .", "score": 0.89, "index": 66}, {"type": "text", "coordinates": [95, 521, 300, 536], "content": "Equation (2.1a) gives us the important", "score": 1.0, "index": 67}, {"type": "interline_equation", "coordinates": [218, 549, 393, 580], "content": "\\chi_{\\lambda}[\\mu]\\stackrel{\\mathrm{def}}{=}\\frac{S_{\\lambda\\mu}}{S_{0\\mu}}=\\mathrm{ch}_{\\overline{{{\\lambda}}}}(-2\\pi\\mathrm{i}\\frac{\\overline{{{\\mu}}}+\\overline{{{\\rho}}}}{\\kappa})~,", "score": 0.94, "index": 68}, {"type": "text", "coordinates": [70, 595, 105, 611], "content": "where ", "score": 1.0, "index": 69}, {"type": "inline_equation", "coordinates": [106, 597, 125, 610], "content": "\\mathrm{ch}_{{\\overline{{\\lambda}}}}", "score": 0.74, "index": 70}, {"type": "text", "coordinates": [125, 595, 275, 611], "content": " is the Weyl character of the ", "score": 1.0, "index": 71}, {"type": "inline_equation", "coordinates": [275, 597, 291, 608], "content": "X_{r}", "score": 0.92, "index": 72}, {"type": "text", "coordinates": [291, 595, 336, 611], "content": "-module ", "score": 1.0, "index": 73}, {"type": "inline_equation", "coordinates": [336, 595, 361, 609], "content": "L(\\overline{{\\lambda}})", "score": 0.94, "index": 74}, {"type": "text", "coordinates": [362, 595, 540, 611], "content": ". Together with the Weyl denomi-", "score": 1.0, "index": 75}, {"type": "text", "coordinates": [70, 610, 351, 625], "content": "nator formula, it provides a useful expression for the ", "score": 1.0, "index": 76}, {"type": "inline_equation", "coordinates": [351, 615, 357, 623], "content": "q", "score": 0.86, "index": 77}, {"type": "text", "coordinates": [357, 610, 424, 625], "content": "-dimensions:", "score": 1.0, "index": 78}, {"type": "interline_equation", "coordinates": [200, 636, 410, 672], "content": "{\\mathcal D}(\\lambda)\\,\\overset{\\mathrm{def}}{=}\\frac{S_{\\lambda0}}{S_{00}}=\\prod_{\\alpha>0}\\frac{\\sin(\\pi\\left(\\lambda+\\rho\\left|\\alpha\\right)/\\kappa\\right)}{\\sin(\\pi\\left(\\rho\\left|\\alpha\\right)/\\kappa\\right)}~,", "score": 0.94, "index": 79}, {"type": "text", "coordinates": [71, 688, 300, 703], "content": "where the product is over the positive roots ", "score": 1.0, "index": 80}, {"type": "inline_equation", "coordinates": [301, 688, 341, 702], "content": "\\alpha\\in\\overline{{\\Delta}}_{+}", "score": 0.94, "index": 81}, {"type": "text", "coordinates": [341, 688, 357, 703], "content": " of ", "score": 1.0, "index": 82}, {"type": "inline_equation", "coordinates": [357, 690, 373, 701], "content": "X_{r}", "score": 0.91, "index": 83}, {"type": "text", "coordinates": [373, 688, 540, 703], "content": ". Another consequence of (2.1b)", "score": 1.0, "index": 84}, {"type": "text", "coordinates": [69, 702, 243, 718], "content": "is the Kac-Walton formula (2.4).", "score": 1.0, "index": 85}] | [] | [{"type": "block", "coordinates": [174, 187, 436, 226], "content": "", "caption": ""}, {"type": "block", "coordinates": [175, 338, 435, 378], "content": "", "caption": ""}, {"type": "block", "coordinates": [233, 497, 378, 511], "content": "", "caption": ""}, {"type": "block", "coordinates": [218, 549, 393, 580], "content": "", "caption": ""}, {"type": "block", "coordinates": [200, 636, 410, 672], "content": "", "caption": ""}, {"type": "inline", "coordinates": [184, 140, 208, 154], "content": "X_{r}^{(1)}", "caption": ""}, {"type": "inline", "coordinates": [394, 144, 401, 153], "content": "k", "caption": ""}, {"type": "inline", "coordinates": [71, 156, 152, 173], "content": "P_{+}=P_{+}^{k}(X_{r}^{(1)})", "caption": ""}, {"type": "inline", "coordinates": [196, 160, 203, 169], "content": "k", "caption": ""}, {"type": "inline", "coordinates": [105, 246, 117, 257], "content": "\\Lambda_{i}", "caption": ""}, {"type": "inline", "coordinates": [316, 245, 329, 259], "content": "a_{j}^{\\vee}", "caption": ""}, {"type": "inline", "coordinates": [436, 241, 460, 256], "content": "X_{r}^{(1)}", "caption": ""}, {"type": "inline", "coordinates": [488, 245, 501, 259], "content": "a_{j}^{\\vee}", "caption": ""}, {"type": "inline", "coordinates": [480, 259, 506, 271], "content": "\\lambda_{0}\\Lambda_{0}", "caption": ""}, {"type": "inline", "coordinates": [419, 274, 456, 286], "content": "\\operatorname{SL_{2}}(\\mathbb{Z})", "caption": ""}, {"type": "inline", "coordinates": [278, 299, 292, 308], "content": "\\chi_{\\mu}", "caption": ""}, {"type": "inline", "coordinates": [299, 296, 338, 308], "content": "\\mu\\in P_{+}", "caption": ""}, {"type": "inline", "coordinates": [447, 287, 502, 317], "content": "\\left(\\begin{array}{c c}{{0}}&{{-1}}\\\\ {{1}}&{{0}}\\end{array}\\right)", "caption": ""}, {"type": "inline", "coordinates": [220, 317, 228, 326], "content": "S", "caption": ""}, {"type": "inline", "coordinates": [344, 397, 349, 403], "content": "c", "caption": ""}, {"type": "inline", "coordinates": [455, 407, 468, 417], "content": "\\overline{W}", "caption": ""}, {"type": "inline", "coordinates": [151, 423, 167, 433], "content": "X_{r}", "caption": ""}, {"type": "inline", "coordinates": [242, 423, 258, 434], "content": "P_{+}", "caption": ""}, {"type": "inline", "coordinates": [314, 423, 328, 434], "content": "\\Lambda_{0}", "caption": ""}, {"type": "inline", "coordinates": [432, 426, 439, 434], "content": "\\rho", "caption": ""}, {"type": "inline", "coordinates": [480, 422, 512, 435], "content": "\\sum_{i}\\Lambda_{i}", "caption": ""}, {"type": "inline", "coordinates": [158, 456, 166, 465], "content": "S", "caption": ""}, {"type": "inline", "coordinates": [409, 456, 430, 467], "content": "k\\Lambda_{0}", "caption": ""}, {"type": "inline", "coordinates": [159, 470, 169, 479], "content": "0^{\\circ}", "caption": ""}, {"type": "inline", "coordinates": [106, 597, 125, 610], "content": "\\mathrm{ch}_{{\\overline{{\\lambda}}}}", "caption": ""}, {"type": "inline", "coordinates": [275, 597, 291, 608], "content": "X_{r}", "caption": ""}, {"type": "inline", "coordinates": [336, 595, 361, 609], "content": "L(\\overline{{\\lambda}})", "caption": ""}, {"type": "inline", "coordinates": [351, 615, 357, 623], "content": "q", "caption": ""}, {"type": "inline", "coordinates": [301, 688, 341, 702], "content": "\\alpha\\in\\overline{{\\Delta}}_{+}", "caption": ""}, {"type": "inline", "coordinates": [357, 690, 373, 701], "content": "X_{r}", "caption": ""}] | [] | [612.0, 792.0] | [{"type": "text", "text": "2.1. The affine fusion ring ", "text_level": 1, "page_idx": 2}, {"type": "text", "text": "The source of some of the most interesting fusion data are the affine nontwisted Kac-Moody algebras $X_{r}^{(1)}$ [23]. Choose any positive integer $k$ . Consider the (finite) set $P_{+}=P_{+}^{k}(X_{r}^{(1)})$ of level $k$ integrable highest weights: ", "page_idx": 2}, {"type": "equation", "text": "$$\nP_{+}\\stackrel{\\mathrm{def}}{=}\\{\\sum_{j=0}^{r}\\lambda_{j}\\Lambda_{j}\\mid\\lambda_{j}\\in\\mathbb{Z},\\ \\lambda_{j}\\geq0,\\ \\sum_{j=0}^{r}a_{j}^{\\vee}\\lambda_{j}=k\\}\\ ,\n$$", "text_format": "latex", "page_idx": 2}, {"type": "text", "text": "where $\\Lambda_{i}$ denote the fundamental weights, and $a_{j}^{\\vee}$ are the co-labels, of $X_{r}^{(1)}$ (the $a_{j}^{\\vee}$ will be given for each algebra in \u00a73). We will usually drop the (redundant) component $\\lambda_{0}\\Lambda_{0}$ . KacPeterson [24] found a natural representation of the modular group $\\operatorname{SL_{2}}(\\mathbb{Z})$ on the complex space spanned by the affine characters $\\chi_{\\mu}$ , $\\mu\\in P_{+}$ : most significantly, $\\left(\\begin{array}{c c}{{0}}&{{-1}}\\\\ {{1}}&{{0}}\\end{array}\\right)$ is sent to the Kac-Peterson matrix $S$ with entries ", "page_idx": 2}, {"type": "equation", "text": "$$\nS_{\\mu\\nu}=c\\,\\sum_{w\\in\\overline{{{W}}}}{\\operatorname*{det}(w)}\\,\\exp[-2\\pi\\mathrm{i}\\,\\frac{(w(\\mu+\\rho)|\\nu+\\rho)}{\\kappa}]\\ .\n$$", "text_format": "latex", "page_idx": 2}, {"type": "text", "text": "An explicit expression for the normalisation constant $c$ is given in e.g. [23, Theorem 13.8(a)]. The inner product in (2.1a) is scaled so that the long roots have norm 2. $\\overline{W}$ is the (finite) Weyl group of $X_{r}$ , and acts on $P_{+}$ by fixing $\\Lambda_{0}$ . The Weyl vector $\\rho$ equals $\\sum_{i}\\Lambda_{i}$ , and \u03ba d=ef k + i ai\u2228 . This is the matrix S appearing in (1.1); \u03a6 there is P+ here. ", "page_idx": 2}, {"type": "text", "text": "The matrix $S$ is symmetric and unitary. One of the weights, $k\\Lambda_{0}$ , is distinguished and will be denoted \u2018 $0^{\\circ}$ . It is the weight appearing in the denominator of (1.1). A useful fact is that ", "page_idx": 2}, {"type": "equation", "text": "$$\nS_{\\lambda0}>0\\qquad\\mathrm{for~all~}\\lambda\\in P_{+}\\ .\n$$", "text_format": "latex", "page_idx": 2}, {"type": "text", "text": "Equation (2.1a) gives us the important ", "page_idx": 2}, {"type": "equation", "text": "$$\n\\chi_{\\lambda}[\\mu]\\stackrel{\\mathrm{def}}{=}\\frac{S_{\\lambda\\mu}}{S_{0\\mu}}=\\mathrm{ch}_{\\overline{{{\\lambda}}}}(-2\\pi\\mathrm{i}\\frac{\\overline{{{\\mu}}}+\\overline{{{\\rho}}}}{\\kappa})~,\n$$", "text_format": "latex", "page_idx": 2}, {"type": "text", "text": "where $\\mathrm{ch}_{{\\overline{{\\lambda}}}}$ is the Weyl character of the $X_{r}$ -module $L(\\overline{{\\lambda}})$ . Together with the Weyl denominator formula, it provides a useful expression for the $q$ -dimensions: ", "page_idx": 2}, {"type": "equation", "text": "$$\n{\\mathcal D}(\\lambda)\\,\\overset{\\mathrm{def}}{=}\\frac{S_{\\lambda0}}{S_{00}}=\\prod_{\\alpha>0}\\frac{\\sin(\\pi\\left(\\lambda+\\rho\\left|\\alpha\\right)/\\kappa\\right)}{\\sin(\\pi\\left(\\rho\\left|\\alpha\\right)/\\kappa\\right)}~,\n$$", "text_format": "latex", "page_idx": 2}, {"type": "text", "text": "where the product is over the positive roots $\\alpha\\in\\overline{{\\Delta}}_{+}$ of $X_{r}$ . Another consequence of (2.1b) is the Kac-Walton formula (2.4). ", "page_idx": 2}] | [{"category_id": 1, "poly": [195, 1082, 1504, 1082, 1504, 1256, 195, 1256], "score": 0.982}, {"category_id": 1, "poly": [193, 665, 1505, 665, 1505, 912, 193, 912], "score": 0.981}, {"category_id": 1, "poly": [197, 342, 1505, 342, 1505, 477, 197, 477], "score": 0.973}, {"category_id": 1, "poly": [194, 1646, 1500, 1646, 1500, 1730, 194, 1730], "score": 0.966}, {"category_id": 1, "poly": [197, 1258, 1503, 1258, 1503, 1373, 197, 1373], "score": 0.964}, {"category_id": 1, "poly": [193, 1904, 1502, 1904, 1502, 1988, 193, 1988], "score": 0.963}, {"category_id": 8, "poly": [483, 515, 1215, 515, 1215, 627, 483, 627], "score": 0.952}, {"category_id": 8, "poly": [486, 936, 1212, 936, 1212, 1048, 486, 1048], "score": 0.95}, {"category_id": 8, "poly": [555, 1763, 1144, 1763, 1144, 1865, 555, 1865], "score": 0.949}, {"category_id": 8, "poly": [602, 1519, 1096, 1519, 1096, 1608, 602, 1608], "score": 0.94}, {"category_id": 8, "poly": [644, 1375, 1052, 1375, 1052, 1421, 644, 1421], "score": 0.939}, {"category_id": 1, "poly": [261, 1442, 835, 1442, 835, 1485, 261, 1485], "score": 0.938}, {"category_id": 2, "poly": [713, 199, 986, 199, 986, 237, 713, 237], "score": 0.907}, {"category_id": 9, "poly": [1415, 1788, 1501, 1788, 1501, 1830, 1415, 1830], "score": 0.842}, {"category_id": 0, "poly": [197, 280, 595, 280, 595, 323, 197, 323], "score": 0.83}, {"category_id": 9, "poly": [1415, 1541, 1501, 1541, 1501, 1583, 1415, 1583], "score": 0.76}, {"category_id": 9, "poly": [1411, 962, 1502, 962, 1502, 1004, 1411, 1004], "score": 0.595}, {"category_id": 2, "poly": [837, 2031, 864, 2031, 864, 2061, 837, 2061], "score": 0.262}, {"category_id": 13, "poly": [1244, 798, 1395, 798, 1395, 881, 1244, 881], "score": 0.95, "latex": "\\left(\\begin{array}{c c}{{0}}&{{-1}}\\\\ {{1}}&{{0}}\\end{array}\\right)"}, {"category_id": 14, "poly": [488, 941, 1211, 941, 1211, 1051, 488, 1051], "score": 0.94, "latex": "S_{\\mu\\nu}=c\\,\\sum_{w\\in\\overline{{{W}}}}{\\operatorname*{det}(w)}\\,\\exp[-2\\pi\\mathrm{i}\\,\\frac{(w(\\mu+\\rho)|\\nu+\\rho)}{\\kappa}]\\ ."}, {"category_id": 13, "poly": [199, 436, 423, 436, 423, 482, 199, 482], "score": 0.94, "latex": "P_{+}=P_{+}^{k}(X_{r}^{(1)})"}, {"category_id": 14, "poly": [606, 1525, 1092, 1525, 1092, 1612, 606, 1612], "score": 0.94, "latex": "\\chi_{\\lambda}[\\mu]\\stackrel{\\mathrm{def}}{=}\\frac{S_{\\lambda\\mu}}{S_{0\\mu}}=\\mathrm{ch}_{\\overline{{{\\lambda}}}}(-2\\pi\\mathrm{i}\\frac{\\overline{{{\\mu}}}+\\overline{{{\\rho}}}}{\\kappa})~,"}, {"category_id": 13, "poly": [936, 1655, 1005, 1655, 1005, 1694, 936, 1694], "score": 0.94, "latex": "L(\\overline{{\\lambda}})"}, {"category_id": 13, "poly": [837, 1912, 948, 1912, 948, 1950, 837, 1950], "score": 0.94, "latex": "\\alpha\\in\\overline{{\\Delta}}_{+}"}, {"category_id": 14, "poly": [557, 1768, 1140, 1768, 1140, 1868, 557, 1868], "score": 0.94, "latex": "{\\mathcal D}(\\lambda)\\,\\overset{\\mathrm{def}}{=}\\frac{S_{\\lambda0}}{S_{00}}=\\prod_{\\alpha>0}\\frac{\\sin(\\pi\\left(\\lambda+\\rho\\left|\\alpha\\right)/\\kappa\\right)}{\\sin(\\pi\\left(\\rho\\left|\\alpha\\right)/\\kappa\\right)}~,"}, {"category_id": 13, "poly": [1336, 1174, 1423, 1174, 1423, 1210, 1336, 1210], "score": 0.93, "latex": "\\sum_{i}\\Lambda_{i}"}, {"category_id": 13, "poly": [513, 389, 580, 389, 580, 429, 513, 429], "score": 0.93, "latex": "X_{r}^{(1)}"}, {"category_id": 14, "poly": [485, 520, 1213, 520, 1213, 630, 485, 630], "score": 0.93, "latex": "P_{+}\\stackrel{\\mathrm{def}}{=}\\{\\sum_{j=0}^{r}\\lambda_{j}\\Lambda_{j}\\mid\\lambda_{j}\\in\\mathbb{Z},\\ \\lambda_{j}\\geq0,\\ \\sum_{j=0}^{r}a_{j}^{\\vee}\\lambda_{j}=k\\}\\ ,"}, {"category_id": 13, "poly": [1180, 1227, 1223, 1227, 1223, 1259, 1180, 1259], "score": 0.93, "latex": "P_{+}"}, {"category_id": 13, "poly": [199, 1214, 414, 1214, 414, 1262, 199, 1262], "score": 0.93, "latex": "\\begin{array}{r}{\\kappa\\,{\\stackrel{\\mathrm{def}}{=}}\\,k+\\sum_{i}a_{i}^{\\vee}}\\end{array}"}, {"category_id": 13, "poly": [766, 1661, 809, 1661, 809, 1691, 766, 1691], "score": 0.92, "latex": "X_{r}"}, {"category_id": 13, "poly": [293, 685, 327, 685, 327, 714, 293, 714], "score": 0.92, "latex": "\\Lambda_{i}"}, {"category_id": 13, "poly": [1264, 1131, 1300, 1131, 1300, 1161, 1264, 1161], "score": 0.92, "latex": "\\overline{W}"}, {"category_id": 13, "poly": [994, 1918, 1037, 1918, 1037, 1948, 994, 1948], "score": 0.91, "latex": "X_{r}"}, {"category_id": 13, "poly": [674, 1176, 718, 1176, 718, 1208, 674, 1208], "score": 0.91, "latex": "P_{+}"}, {"category_id": 13, "poly": [1213, 672, 1280, 672, 1280, 713, 1213, 713], "score": 0.91, "latex": "X_{r}^{(1)}"}, {"category_id": 13, "poly": [1138, 1268, 1195, 1268, 1195, 1298, 1138, 1298], "score": 0.91, "latex": "k\\Lambda_{0}"}, {"category_id": 13, "poly": [833, 824, 941, 824, 941, 856, 833, 856], "score": 0.91, "latex": "\\mu\\in P_{+}"}, {"category_id": 13, "poly": [422, 1176, 465, 1176, 465, 1205, 422, 1205], "score": 0.91, "latex": "X_{r}"}, {"category_id": 13, "poly": [878, 682, 914, 682, 914, 722, 878, 722], "score": 0.9, "latex": "a_{j}^{\\vee}"}, {"category_id": 13, "poly": [873, 1176, 912, 1176, 912, 1206, 873, 1206], "score": 0.9, "latex": "\\Lambda_{0}"}, {"category_id": 13, "poly": [1165, 762, 1269, 762, 1269, 796, 1165, 796], "score": 0.9, "latex": "\\operatorname{SL_{2}}(\\mathbb{Z})"}, {"category_id": 13, "poly": [1335, 722, 1408, 722, 1408, 754, 1335, 754], "score": 0.9, "latex": "\\lambda_{0}\\Lambda_{0}"}, {"category_id": 13, "poly": [546, 447, 565, 447, 565, 472, 546, 472], "score": 0.9, "latex": "k"}, {"category_id": 14, "poly": [648, 1381, 1052, 1381, 1052, 1422, 648, 1422], "score": 0.89, "latex": "S_{\\lambda0}>0\\qquad\\mathrm{for~all~}\\lambda\\in P_{+}\\ ."}, {"category_id": 13, "poly": [1095, 400, 1115, 400, 1115, 425, 1095, 425], "score": 0.89, "latex": "k"}, {"category_id": 13, "poly": [1357, 682, 1394, 682, 1394, 721, 1357, 721], "score": 0.88, "latex": "a_{j}^{\\vee}"}, {"category_id": 13, "poly": [439, 1268, 462, 1268, 462, 1293, 439, 1293], "score": 0.88, "latex": "S"}, {"category_id": 13, "poly": [613, 882, 636, 882, 636, 907, 613, 907], "score": 0.87, "latex": "S"}, {"category_id": 13, "poly": [712, 1227, 736, 1227, 736, 1252, 712, 1252], "score": 0.87, "latex": "S"}, {"category_id": 13, "poly": [1202, 1184, 1221, 1184, 1221, 1207, 1202, 1207], "score": 0.87, "latex": "\\rho"}, {"category_id": 13, "poly": [956, 1105, 971, 1105, 971, 1120, 956, 1120], "score": 0.87, "latex": "c"}, {"category_id": 13, "poly": [976, 1710, 992, 1710, 992, 1732, 976, 1732], "score": 0.86, "latex": "q"}, {"category_id": 13, "poly": [773, 832, 813, 832, 813, 858, 773, 858], "score": 0.82, "latex": "\\chi_{\\mu}"}, {"category_id": 13, "poly": [1026, 1225, 1051, 1225, 1051, 1252, 1026, 1252], "score": 0.77, "latex": "\\Phi"}, {"category_id": 13, "poly": [295, 1661, 348, 1661, 348, 1697, 295, 1697], "score": 0.74, "latex": "\\mathrm{ch}_{{\\overline{{\\lambda}}}}"}, {"category_id": 13, "poly": [443, 1307, 471, 1307, 471, 1333, 443, 1333], "score": 0.43, "latex": "0^{\\circ}"}, {"category_id": 15, "poly": [199.0, 1092.0, 955.0, 1092.0, 955.0, 1132.0, 199.0, 1132.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [972.0, 1092.0, 1500.0, 1092.0, 1500.0, 1132.0, 972.0, 1132.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [196.0, 1128.0, 1263.0, 1128.0, 1263.0, 1172.0, 196.0, 1172.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1301.0, 1128.0, 1500.0, 1128.0, 1500.0, 1172.0, 1301.0, 1172.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [196.0, 1168.0, 421.0, 1168.0, 421.0, 1213.0, 196.0, 1213.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [466.0, 1168.0, 673.0, 1168.0, 673.0, 1213.0, 466.0, 1213.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [719.0, 1168.0, 872.0, 1168.0, 872.0, 1213.0, 719.0, 1213.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [913.0, 1168.0, 1201.0, 1168.0, 1201.0, 1213.0, 913.0, 1213.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1222.0, 1168.0, 1335.0, 1168.0, 1335.0, 1213.0, 1222.0, 1213.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1424.0, 1168.0, 1504.0, 1168.0, 1504.0, 1213.0, 1424.0, 1213.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [190.0, 1209.0, 1314.0, 1209.0, 1314.0, 1271.5, 190.0, 1271.5], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [193.0, 671.0, 292.0, 671.0, 292.0, 723.0, 193.0, 723.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [328.0, 671.0, 877.0, 671.0, 877.0, 723.0, 328.0, 723.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [915.0, 671.0, 1212.0, 671.0, 1212.0, 723.0, 915.0, 723.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1281.0, 671.0, 1356.0, 671.0, 1356.0, 723.0, 1281.0, 723.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1395.0, 671.0, 1508.0, 671.0, 1508.0, 723.0, 1395.0, 723.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [197.0, 719.0, 1334.0, 719.0, 1334.0, 762.0, 197.0, 762.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1409.0, 719.0, 1502.0, 719.0, 1502.0, 762.0, 1409.0, 762.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [197.0, 759.0, 1164.0, 759.0, 1164.0, 802.0, 197.0, 802.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1270.0, 759.0, 1502.0, 759.0, 1502.0, 802.0, 1270.0, 802.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [196.0, 816.0, 772.0, 816.0, 772.0, 864.0, 196.0, 864.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [814.0, 816.0, 832.0, 816.0, 832.0, 864.0, 814.0, 864.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [942.0, 816.0, 1239.0, 816.0, 1239.0, 864.0, 942.0, 864.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1405.0, 818.0, 1501.0, 818.0, 1501.0, 857.0, 1405.0, 857.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [197.0, 875.0, 612.0, 875.0, 612.0, 917.0, 197.0, 917.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [637.0, 875.0, 821.0, 875.0, 821.0, 917.0, 637.0, 917.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [261.0, 348.0, 1504.0, 348.0, 1504.0, 392.0, 261.0, 392.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [194.0, 383.0, 512.0, 383.0, 512.0, 442.0, 194.0, 442.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [581.0, 383.0, 1094.0, 383.0, 1094.0, 442.0, 581.0, 442.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1116.0, 383.0, 1507.0, 383.0, 1507.0, 442.0, 1116.0, 442.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [424.0, 434.0, 545.0, 434.0, 545.0, 486.0, 424.0, 486.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [566.0, 434.0, 965.0, 434.0, 965.0, 486.0, 566.0, 486.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [197.0, 1654.0, 294.0, 1654.0, 294.0, 1698.0, 197.0, 1698.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [349.0, 1654.0, 765.0, 1654.0, 765.0, 1698.0, 349.0, 1698.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [810.0, 1654.0, 935.0, 1654.0, 935.0, 1698.0, 810.0, 1698.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1006.0, 1654.0, 1502.0, 1654.0, 1502.0, 1698.0, 1006.0, 1698.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [197.0, 1695.0, 975.0, 1695.0, 975.0, 1738.0, 197.0, 1738.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [993.0, 1695.0, 1178.0, 1695.0, 1178.0, 1738.0, 993.0, 1738.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [263.0, 1260.0, 438.0, 1260.0, 438.0, 1305.0, 263.0, 1305.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [463.0, 1260.0, 1137.0, 1260.0, 1137.0, 1305.0, 463.0, 1305.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1196.0, 1260.0, 1505.0, 1260.0, 1505.0, 1305.0, 1196.0, 1305.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [197.0, 1301.0, 442.0, 1301.0, 442.0, 1345.0, 197.0, 1345.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [472.0, 1301.0, 1503.0, 1301.0, 1503.0, 1345.0, 472.0, 1345.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [195.0, 1345.0, 299.0, 1345.0, 299.0, 1380.0, 195.0, 1380.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [199.0, 1913.0, 836.0, 1913.0, 836.0, 1953.0, 199.0, 1953.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [949.0, 1913.0, 993.0, 1913.0, 993.0, 1953.0, 949.0, 1953.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1038.0, 1913.0, 1501.0, 1913.0, 1501.0, 1953.0, 1038.0, 1953.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [193.0, 1950.0, 677.0, 1950.0, 677.0, 1995.0, 193.0, 1995.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [265.0, 1449.0, 836.0, 1449.0, 836.0, 1491.0, 265.0, 1491.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [717.0, 204.0, 985.0, 204.0, 985.0, 241.0, 717.0, 241.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [200.0, 286.0, 592.0, 286.0, 592.0, 328.0, 200.0, 328.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [839.0, 2036.0, 861.0, 2036.0, 861.0, 2068.0, 839.0, 2068.0], "score": 1.0, "text": ""}] | {"preproc_blocks": [{"type": "title", "bbox": [70, 100, 214, 116], "lines": [{"bbox": [72, 102, 213, 118], "spans": [{"bbox": [72, 102, 213, 118], "score": 1.0, "content": "2.1. The affine fusion ring", "type": "text"}], "index": 0}], "index": 0}, {"type": "text", "bbox": [70, 123, 541, 171], "lines": [{"bbox": [93, 125, 541, 141], "spans": [{"bbox": [93, 125, 541, 141], "score": 1.0, "content": "The source of some of the most interesting fusion data are the affine nontwisted", "type": "text"}], "index": 1}, {"bbox": [69, 137, 542, 159], "spans": [{"bbox": [69, 137, 184, 159], "score": 1.0, "content": "Kac-Moody algebras ", "type": "text"}, {"bbox": [184, 140, 208, 154], "score": 0.93, "content": "X_{r}^{(1)}", "type": "inline_equation", "height": 14, "width": 24}, {"bbox": [209, 137, 393, 159], "score": 1.0, "content": "[23]. Choose any positive integer ", "type": "text"}, {"bbox": [394, 144, 401, 153], "score": 0.89, "content": "k", "type": "inline_equation", "height": 9, "width": 7}, {"bbox": [401, 137, 542, 159], "score": 1.0, "content": ". Consider the (finite) set", "type": "text"}], "index": 2}, {"bbox": [71, 156, 347, 174], "spans": [{"bbox": [71, 156, 152, 173], "score": 0.94, "content": "P_{+}=P_{+}^{k}(X_{r}^{(1)})", "type": "inline_equation", "height": 17, "width": 81}, {"bbox": [152, 156, 196, 174], "score": 1.0, "content": " of level ", "type": "text"}, {"bbox": [196, 160, 203, 169], "score": 0.9, "content": "k", "type": "inline_equation", "height": 9, "width": 7}, {"bbox": [203, 156, 347, 174], "score": 1.0, "content": " integrable highest weights:", "type": "text"}], "index": 3}], "index": 2}, {"type": "interline_equation", "bbox": [174, 187, 436, 226], "lines": [{"bbox": [174, 187, 436, 226], "spans": [{"bbox": [174, 187, 436, 226], "score": 0.93, "content": "P_{+}\\stackrel{\\mathrm{def}}{=}\\{\\sum_{j=0}^{r}\\lambda_{j}\\Lambda_{j}\\mid\\lambda_{j}\\in\\mathbb{Z},\\ \\lambda_{j}\\geq0,\\ \\sum_{j=0}^{r}a_{j}^{\\vee}\\lambda_{j}=k\\}\\ ,", "type": "interline_equation"}], "index": 4}], "index": 4}, {"type": "text", "bbox": [69, 239, 541, 328], "lines": [{"bbox": [69, 241, 542, 260], "spans": [{"bbox": [69, 241, 105, 260], "score": 1.0, "content": "where ", "type": "text"}, {"bbox": [105, 246, 117, 257], "score": 0.92, "content": "\\Lambda_{i}", "type": "inline_equation", "height": 11, "width": 12}, {"bbox": [118, 241, 315, 260], "score": 1.0, "content": " denote the fundamental weights, and ", "type": "text"}, {"bbox": [316, 245, 329, 259], "score": 0.9, "content": "a_{j}^{\\vee}", "type": "inline_equation", "height": 14, "width": 13}, {"bbox": [329, 241, 436, 260], "score": 1.0, "content": " are the co-labels, of ", "type": "text"}, {"bbox": [436, 241, 460, 256], "score": 0.91, "content": "X_{r}^{(1)}", "type": "inline_equation", "height": 15, "width": 24}, {"bbox": [461, 241, 488, 260], "score": 1.0, "content": "(the ", "type": "text"}, {"bbox": [488, 245, 501, 259], "score": 0.88, "content": "a_{j}^{\\vee}", "type": "inline_equation", "height": 14, "width": 13}, {"bbox": [502, 241, 542, 260], "score": 1.0, "content": " will be", "type": "text"}], "index": 5}, {"bbox": [70, 258, 540, 274], "spans": [{"bbox": [70, 258, 480, 274], "score": 1.0, "content": "given for each algebra in \u00a73). We will usually drop the (redundant) component ", "type": "text"}, {"bbox": [480, 259, 506, 271], "score": 0.9, "content": "\\lambda_{0}\\Lambda_{0}", "type": "inline_equation", "height": 12, "width": 26}, {"bbox": [507, 258, 540, 274], "score": 1.0, "content": ". Kac-", "type": "text"}], "index": 6}, {"bbox": [70, 273, 540, 288], "spans": [{"bbox": [70, 273, 419, 288], "score": 1.0, "content": "Peterson [24] found a natural representation of the modular group ", "type": "text"}, {"bbox": [419, 274, 456, 286], "score": 0.9, "content": "\\operatorname{SL_{2}}(\\mathbb{Z})", "type": "inline_equation", "height": 12, "width": 37}, {"bbox": [457, 273, 540, 288], "score": 1.0, "content": " on the complex", "type": "text"}], "index": 7}, {"bbox": [70, 287, 540, 317], "spans": [{"bbox": [70, 293, 277, 311], "score": 1.0, "content": "space spanned by the affine characters ", "type": "text"}, {"bbox": [278, 299, 292, 308], "score": 0.82, "content": "\\chi_{\\mu}", "type": "inline_equation", "height": 9, "width": 14}, {"bbox": [293, 293, 299, 311], "score": 1.0, "content": ", ", "type": "text"}, {"bbox": [299, 296, 338, 308], "score": 0.91, "content": "\\mu\\in P_{+}", "type": "inline_equation", "height": 12, "width": 39}, {"bbox": [339, 293, 446, 311], "score": 1.0, "content": ": most significantly,", "type": "text"}, {"bbox": [447, 287, 502, 317], "score": 0.95, "content": "\\left(\\begin{array}{c c}{{0}}&{{-1}}\\\\ {{1}}&{{0}}\\end{array}\\right)", "type": "inline_equation", "height": 30, "width": 55}, {"bbox": [505, 294, 540, 308], "score": 1.0, "content": "is sent", "type": "text"}], "index": 8}, {"bbox": [70, 315, 295, 330], "spans": [{"bbox": [70, 315, 220, 330], "score": 1.0, "content": "to the Kac-Peterson matrix ", "type": "text"}, {"bbox": [220, 317, 228, 326], "score": 0.87, "content": "S", "type": "inline_equation", "height": 9, "width": 8}, {"bbox": [229, 315, 295, 330], "score": 1.0, "content": " with entries", "type": "text"}], "index": 9}], "index": 7}, {"type": "interline_equation", "bbox": [175, 338, 435, 378], "lines": [{"bbox": [175, 338, 435, 378], "spans": [{"bbox": [175, 338, 435, 378], "score": 0.94, "content": "S_{\\mu\\nu}=c\\,\\sum_{w\\in\\overline{{{W}}}}{\\operatorname*{det}(w)}\\,\\exp[-2\\pi\\mathrm{i}\\,\\frac{(w(\\mu+\\rho)|\\nu+\\rho)}{\\kappa}]\\ .", "type": "interline_equation"}], "index": 10}], "index": 10}, {"type": "text", "bbox": [70, 389, 541, 452], "lines": [{"bbox": [71, 393, 540, 407], "spans": [{"bbox": [71, 393, 343, 407], "score": 1.0, "content": "An explicit expression for the normalisation constant ", "type": "text"}, {"bbox": [344, 397, 349, 403], "score": 0.87, "content": "c", "type": "inline_equation", "height": 6, "width": 5}, {"bbox": [349, 393, 540, 407], "score": 1.0, "content": " is given in e.g. [23, Theorem 13.8(a)].", "type": "text"}], "index": 11}, {"bbox": [70, 406, 540, 421], "spans": [{"bbox": [70, 406, 454, 421], "score": 1.0, "content": "The inner product in (2.1a) is scaled so that the long roots have norm 2. ", "type": "text"}, {"bbox": [455, 407, 468, 417], "score": 0.92, "content": "\\overline{W}", "type": "inline_equation", "height": 10, "width": 13}, {"bbox": [468, 406, 540, 421], "score": 1.0, "content": " is the (finite)", "type": "text"}], "index": 12}, {"bbox": [70, 420, 541, 436], "spans": [{"bbox": [70, 420, 151, 436], "score": 1.0, "content": "Weyl group of ", "type": "text"}, {"bbox": [151, 423, 167, 433], "score": 0.91, "content": "X_{r}", "type": "inline_equation", "height": 10, "width": 16}, {"bbox": [167, 420, 242, 436], "score": 1.0, "content": ", and acts on ", "type": "text"}, {"bbox": [242, 423, 258, 434], "score": 0.91, "content": "P_{+}", "type": "inline_equation", "height": 11, "width": 16}, {"bbox": [258, 420, 313, 436], "score": 1.0, "content": " by fixing ", "type": "text"}, {"bbox": [314, 423, 328, 434], "score": 0.9, "content": "\\Lambda_{0}", "type": "inline_equation", "height": 11, "width": 14}, {"bbox": [328, 420, 432, 436], "score": 1.0, "content": ". The Weyl vector ", "type": "text"}, {"bbox": [432, 426, 439, 434], "score": 0.87, "content": "\\rho", "type": "inline_equation", "height": 8, "width": 7}, {"bbox": [439, 420, 480, 436], "score": 1.0, "content": " equals", "type": "text"}, {"bbox": [480, 422, 512, 435], "score": 0.93, "content": "\\sum_{i}\\Lambda_{i}", "type": "inline_equation", "height": 13, "width": 32}, {"bbox": [512, 420, 541, 436], "score": 1.0, "content": ", and", "type": "text"}], "index": 13}, {"bbox": [68, 435, 473, 457], "spans": [{"bbox": [68, 435, 473, 457], "score": 1.0, "content": "\u03ba d=ef k + i ai\u2228 . This is the matrix S appearing in (1.1); \u03a6 there is P+ here.", "type": "text"}], "index": 14}], "index": 12.5}, {"type": "text", "bbox": [70, 452, 541, 494], "lines": [{"bbox": [94, 453, 541, 469], "spans": [{"bbox": [94, 453, 157, 469], "score": 1.0, "content": "The matrix ", "type": "text"}, {"bbox": [158, 456, 166, 465], "score": 0.88, "content": "S", "type": "inline_equation", "height": 9, "width": 8}, {"bbox": [166, 453, 409, 469], "score": 1.0, "content": " is symmetric and unitary. One of the weights, ", "type": "text"}, {"bbox": [409, 456, 430, 467], "score": 0.91, "content": "k\\Lambda_{0}", "type": "inline_equation", "height": 11, "width": 21}, {"bbox": [430, 453, 541, 469], "score": 1.0, "content": ", is distinguished and", "type": "text"}], "index": 15}, {"bbox": [70, 468, 541, 484], "spans": [{"bbox": [70, 468, 159, 484], "score": 1.0, "content": "will be denoted \u2018", "type": "text"}, {"bbox": [159, 470, 169, 479], "score": 0.43, "content": "0^{\\circ}", "type": "inline_equation", "height": 9, "width": 10}, {"bbox": [169, 468, 541, 484], "score": 1.0, "content": ". It is the weight appearing in the denominator of (1.1). A useful fact", "type": "text"}], "index": 16}, {"bbox": [70, 484, 107, 496], "spans": [{"bbox": [70, 484, 107, 496], "score": 1.0, "content": "is that", "type": "text"}], "index": 17}], "index": 16}, {"type": "interline_equation", "bbox": [233, 497, 378, 511], "lines": [{"bbox": [233, 497, 378, 511], "spans": [{"bbox": [233, 497, 378, 511], "score": 0.89, "content": "S_{\\lambda0}>0\\qquad\\mathrm{for~all~}\\lambda\\in P_{+}\\ .", "type": "interline_equation"}], "index": 18}], "index": 18}, {"type": "text", "bbox": [93, 519, 300, 534], "lines": [{"bbox": [95, 521, 300, 536], "spans": [{"bbox": [95, 521, 300, 536], "score": 1.0, "content": "Equation (2.1a) gives us the important", "type": "text"}], "index": 19}], "index": 19}, {"type": "interline_equation", "bbox": [218, 549, 393, 580], "lines": [{"bbox": [218, 549, 393, 580], "spans": [{"bbox": [218, 549, 393, 580], "score": 0.94, "content": "\\chi_{\\lambda}[\\mu]\\stackrel{\\mathrm{def}}{=}\\frac{S_{\\lambda\\mu}}{S_{0\\mu}}=\\mathrm{ch}_{\\overline{{{\\lambda}}}}(-2\\pi\\mathrm{i}\\frac{\\overline{{{\\mu}}}+\\overline{{{\\rho}}}}{\\kappa})~,", "type": "interline_equation"}], "index": 20}], "index": 20}, {"type": "text", "bbox": [69, 592, 540, 622], "lines": [{"bbox": [70, 595, 540, 611], "spans": [{"bbox": [70, 595, 105, 611], "score": 1.0, "content": "where ", "type": "text"}, {"bbox": [106, 597, 125, 610], "score": 0.74, "content": "\\mathrm{ch}_{{\\overline{{\\lambda}}}}", "type": "inline_equation", "height": 13, "width": 19}, {"bbox": [125, 595, 275, 611], "score": 1.0, "content": " is the Weyl character of the ", "type": "text"}, {"bbox": [275, 597, 291, 608], "score": 0.92, "content": "X_{r}", "type": "inline_equation", "height": 11, "width": 16}, {"bbox": [291, 595, 336, 611], "score": 1.0, "content": "-module ", "type": "text"}, {"bbox": [336, 595, 361, 609], "score": 0.94, "content": "L(\\overline{{\\lambda}})", "type": "inline_equation", "height": 14, "width": 25}, {"bbox": [362, 595, 540, 611], "score": 1.0, "content": ". Together with the Weyl denomi-", "type": "text"}], "index": 21}, {"bbox": [70, 610, 424, 625], "spans": [{"bbox": [70, 610, 351, 625], "score": 1.0, "content": "nator formula, it provides a useful expression for the ", "type": "text"}, {"bbox": [351, 615, 357, 623], "score": 0.86, "content": "q", "type": "inline_equation", "height": 8, "width": 6}, {"bbox": [357, 610, 424, 625], "score": 1.0, "content": "-dimensions:", "type": "text"}], "index": 22}], "index": 21.5}, {"type": "interline_equation", "bbox": [200, 636, 410, 672], "lines": [{"bbox": [200, 636, 410, 672], "spans": [{"bbox": [200, 636, 410, 672], "score": 0.94, "content": "{\\mathcal D}(\\lambda)\\,\\overset{\\mathrm{def}}{=}\\frac{S_{\\lambda0}}{S_{00}}=\\prod_{\\alpha>0}\\frac{\\sin(\\pi\\left(\\lambda+\\rho\\left|\\alpha\\right)/\\kappa\\right)}{\\sin(\\pi\\left(\\rho\\left|\\alpha\\right)/\\kappa\\right)}~,", "type": "interline_equation"}], "index": 23}], "index": 23}, {"type": "text", "bbox": [69, 685, 540, 715], "lines": [{"bbox": [71, 688, 540, 703], "spans": [{"bbox": [71, 688, 300, 703], "score": 1.0, "content": "where the product is over the positive roots ", "type": "text"}, {"bbox": [301, 688, 341, 702], "score": 0.94, "content": "\\alpha\\in\\overline{{\\Delta}}_{+}", "type": "inline_equation", "height": 14, "width": 40}, {"bbox": [341, 688, 357, 703], "score": 1.0, "content": " of ", "type": "text"}, {"bbox": [357, 690, 373, 701], "score": 0.91, "content": "X_{r}", "type": "inline_equation", "height": 11, "width": 16}, {"bbox": [373, 688, 540, 703], "score": 1.0, "content": ". Another consequence of (2.1b)", "type": "text"}], "index": 24}, {"bbox": [69, 702, 243, 718], "spans": [{"bbox": [69, 702, 243, 718], "score": 1.0, "content": "is the Kac-Walton formula (2.4).", "type": "text"}], "index": 25}], "index": 24.5}], "layout_bboxes": [], "page_idx": 2, "page_size": [612.0, 792.0], "_layout_tree": [], "images": [], "tables": [], "interline_equations": [{"type": "interline_equation", "bbox": [174, 187, 436, 226], "lines": [{"bbox": [174, 187, 436, 226], "spans": [{"bbox": [174, 187, 436, 226], "score": 0.93, "content": "P_{+}\\stackrel{\\mathrm{def}}{=}\\{\\sum_{j=0}^{r}\\lambda_{j}\\Lambda_{j}\\mid\\lambda_{j}\\in\\mathbb{Z},\\ \\lambda_{j}\\geq0,\\ \\sum_{j=0}^{r}a_{j}^{\\vee}\\lambda_{j}=k\\}\\ ,", "type": "interline_equation"}], "index": 4}], "index": 4}, {"type": "interline_equation", "bbox": [175, 338, 435, 378], "lines": [{"bbox": [175, 338, 435, 378], "spans": [{"bbox": [175, 338, 435, 378], "score": 0.94, "content": "S_{\\mu\\nu}=c\\,\\sum_{w\\in\\overline{{{W}}}}{\\operatorname*{det}(w)}\\,\\exp[-2\\pi\\mathrm{i}\\,\\frac{(w(\\mu+\\rho)|\\nu+\\rho)}{\\kappa}]\\ .", "type": "interline_equation"}], "index": 10}], "index": 10}, {"type": "interline_equation", "bbox": [233, 497, 378, 511], "lines": [{"bbox": [233, 497, 378, 511], "spans": [{"bbox": [233, 497, 378, 511], "score": 0.89, "content": "S_{\\lambda0}>0\\qquad\\mathrm{for~all~}\\lambda\\in P_{+}\\ .", "type": "interline_equation"}], "index": 18}], "index": 18}, {"type": "interline_equation", "bbox": [218, 549, 393, 580], "lines": [{"bbox": [218, 549, 393, 580], "spans": [{"bbox": [218, 549, 393, 580], "score": 0.94, "content": "\\chi_{\\lambda}[\\mu]\\stackrel{\\mathrm{def}}{=}\\frac{S_{\\lambda\\mu}}{S_{0\\mu}}=\\mathrm{ch}_{\\overline{{{\\lambda}}}}(-2\\pi\\mathrm{i}\\frac{\\overline{{{\\mu}}}+\\overline{{{\\rho}}}}{\\kappa})~,", "type": "interline_equation"}], "index": 20}], "index": 20}, {"type": "interline_equation", "bbox": [200, 636, 410, 672], "lines": [{"bbox": [200, 636, 410, 672], "spans": [{"bbox": [200, 636, 410, 672], "score": 0.94, "content": "{\\mathcal D}(\\lambda)\\,\\overset{\\mathrm{def}}{=}\\frac{S_{\\lambda0}}{S_{00}}=\\prod_{\\alpha>0}\\frac{\\sin(\\pi\\left(\\lambda+\\rho\\left|\\alpha\\right)/\\kappa\\right)}{\\sin(\\pi\\left(\\rho\\left|\\alpha\\right)/\\kappa\\right)}~,", "type": "interline_equation"}], "index": 23}], "index": 23}], "discarded_blocks": [{"type": "discarded", "bbox": [256, 71, 354, 85], "lines": [{"bbox": [258, 73, 354, 86], "spans": [{"bbox": [258, 73, 354, 86], "score": 1.0, "content": "2. Generalities", "type": "text"}]}]}, {"type": "discarded", "bbox": [301, 731, 311, 741], "lines": [{"bbox": [302, 732, 309, 744], "spans": [{"bbox": [302, 732, 309, 744], "score": 1.0, "content": "3", "type": "text"}]}]}], "need_drop": false, "drop_reason": [], "para_blocks": [{"type": "title", "bbox": [70, 100, 214, 116], "lines": [{"bbox": [72, 102, 213, 118], "spans": [{"bbox": [72, 102, 213, 118], "score": 1.0, "content": "2.1. The affine fusion ring", "type": "text"}], "index": 0}], "index": 0, "page_num": "page_2", "page_size": [612.0, 792.0]}, {"type": "text", "bbox": [70, 123, 541, 171], "lines": [{"bbox": [93, 125, 541, 141], "spans": [{"bbox": [93, 125, 541, 141], "score": 1.0, "content": "The source of some of the most interesting fusion data are the affine nontwisted", "type": "text"}], "index": 1}, {"bbox": [69, 137, 542, 159], "spans": [{"bbox": [69, 137, 184, 159], "score": 1.0, "content": "Kac-Moody algebras ", "type": "text"}, {"bbox": [184, 140, 208, 154], "score": 0.93, "content": "X_{r}^{(1)}", "type": "inline_equation", "height": 14, "width": 24}, {"bbox": [209, 137, 393, 159], "score": 1.0, "content": "[23]. Choose any positive integer ", "type": "text"}, {"bbox": [394, 144, 401, 153], "score": 0.89, "content": "k", "type": "inline_equation", "height": 9, "width": 7}, {"bbox": [401, 137, 542, 159], "score": 1.0, "content": ". Consider the (finite) set", "type": "text"}], "index": 2}, {"bbox": [71, 156, 347, 174], "spans": [{"bbox": [71, 156, 152, 173], "score": 0.94, "content": "P_{+}=P_{+}^{k}(X_{r}^{(1)})", "type": "inline_equation", "height": 17, "width": 81}, {"bbox": [152, 156, 196, 174], "score": 1.0, "content": " of level ", "type": "text"}, {"bbox": [196, 160, 203, 169], "score": 0.9, "content": "k", "type": "inline_equation", "height": 9, "width": 7}, {"bbox": [203, 156, 347, 174], "score": 1.0, "content": " integrable highest weights:", "type": "text"}], "index": 3}], "index": 2, "page_num": "page_2", "page_size": [612.0, 792.0], "bbox_fs": [69, 125, 542, 174]}, {"type": "interline_equation", "bbox": [174, 187, 436, 226], "lines": [{"bbox": [174, 187, 436, 226], "spans": [{"bbox": [174, 187, 436, 226], "score": 0.93, "content": "P_{+}\\stackrel{\\mathrm{def}}{=}\\{\\sum_{j=0}^{r}\\lambda_{j}\\Lambda_{j}\\mid\\lambda_{j}\\in\\mathbb{Z},\\ \\lambda_{j}\\geq0,\\ \\sum_{j=0}^{r}a_{j}^{\\vee}\\lambda_{j}=k\\}\\ ,", "type": "interline_equation"}], "index": 4}], "index": 4, "page_num": "page_2", "page_size": [612.0, 792.0]}, {"type": "text", "bbox": [69, 239, 541, 328], "lines": [{"bbox": [69, 241, 542, 260], "spans": [{"bbox": [69, 241, 105, 260], "score": 1.0, "content": "where ", "type": "text"}, {"bbox": [105, 246, 117, 257], "score": 0.92, "content": "\\Lambda_{i}", "type": "inline_equation", "height": 11, "width": 12}, {"bbox": [118, 241, 315, 260], "score": 1.0, "content": " denote the fundamental weights, and ", "type": "text"}, {"bbox": [316, 245, 329, 259], "score": 0.9, "content": "a_{j}^{\\vee}", "type": "inline_equation", "height": 14, "width": 13}, {"bbox": [329, 241, 436, 260], "score": 1.0, "content": " are the co-labels, of ", "type": "text"}, {"bbox": [436, 241, 460, 256], "score": 0.91, "content": "X_{r}^{(1)}", "type": "inline_equation", "height": 15, "width": 24}, {"bbox": [461, 241, 488, 260], "score": 1.0, "content": "(the ", "type": "text"}, {"bbox": [488, 245, 501, 259], "score": 0.88, "content": "a_{j}^{\\vee}", "type": "inline_equation", "height": 14, "width": 13}, {"bbox": [502, 241, 542, 260], "score": 1.0, "content": " will be", "type": "text"}], "index": 5}, {"bbox": [70, 258, 540, 274], "spans": [{"bbox": [70, 258, 480, 274], "score": 1.0, "content": "given for each algebra in \u00a73). We will usually drop the (redundant) component ", "type": "text"}, {"bbox": [480, 259, 506, 271], "score": 0.9, "content": "\\lambda_{0}\\Lambda_{0}", "type": "inline_equation", "height": 12, "width": 26}, {"bbox": [507, 258, 540, 274], "score": 1.0, "content": ". Kac-", "type": "text"}], "index": 6}, {"bbox": [70, 273, 540, 288], "spans": [{"bbox": [70, 273, 419, 288], "score": 1.0, "content": "Peterson [24] found a natural representation of the modular group ", "type": "text"}, {"bbox": [419, 274, 456, 286], "score": 0.9, "content": "\\operatorname{SL_{2}}(\\mathbb{Z})", "type": "inline_equation", "height": 12, "width": 37}, {"bbox": [457, 273, 540, 288], "score": 1.0, "content": " on the complex", "type": "text"}], "index": 7}, {"bbox": [70, 287, 540, 317], "spans": [{"bbox": [70, 293, 277, 311], "score": 1.0, "content": "space spanned by the affine characters ", "type": "text"}, {"bbox": [278, 299, 292, 308], "score": 0.82, "content": "\\chi_{\\mu}", "type": "inline_equation", "height": 9, "width": 14}, {"bbox": [293, 293, 299, 311], "score": 1.0, "content": ", ", "type": "text"}, {"bbox": [299, 296, 338, 308], "score": 0.91, "content": "\\mu\\in P_{+}", "type": "inline_equation", "height": 12, "width": 39}, {"bbox": [339, 293, 446, 311], "score": 1.0, "content": ": most significantly,", "type": "text"}, {"bbox": [447, 287, 502, 317], "score": 0.95, "content": "\\left(\\begin{array}{c c}{{0}}&{{-1}}\\\\ {{1}}&{{0}}\\end{array}\\right)", "type": "inline_equation", "height": 30, "width": 55}, {"bbox": [505, 294, 540, 308], "score": 1.0, "content": "is sent", "type": "text"}], "index": 8}, {"bbox": [70, 315, 295, 330], "spans": [{"bbox": [70, 315, 220, 330], "score": 1.0, "content": "to the Kac-Peterson matrix ", "type": "text"}, {"bbox": [220, 317, 228, 326], "score": 0.87, "content": "S", "type": "inline_equation", "height": 9, "width": 8}, {"bbox": [229, 315, 295, 330], "score": 1.0, "content": " with entries", "type": "text"}], "index": 9}], "index": 7, "page_num": "page_2", "page_size": [612.0, 792.0], "bbox_fs": [69, 241, 542, 330]}, {"type": "interline_equation", "bbox": [175, 338, 435, 378], "lines": [{"bbox": [175, 338, 435, 378], "spans": [{"bbox": [175, 338, 435, 378], "score": 0.94, "content": "S_{\\mu\\nu}=c\\,\\sum_{w\\in\\overline{{{W}}}}{\\operatorname*{det}(w)}\\,\\exp[-2\\pi\\mathrm{i}\\,\\frac{(w(\\mu+\\rho)|\\nu+\\rho)}{\\kappa}]\\ .", "type": "interline_equation"}], "index": 10}], "index": 10, "page_num": "page_2", "page_size": [612.0, 792.0]}, {"type": "text", "bbox": [70, 389, 541, 452], "lines": [{"bbox": [71, 393, 540, 407], "spans": [{"bbox": [71, 393, 343, 407], "score": 1.0, "content": "An explicit expression for the normalisation constant ", "type": "text"}, {"bbox": [344, 397, 349, 403], "score": 0.87, "content": "c", "type": "inline_equation", "height": 6, "width": 5}, {"bbox": [349, 393, 540, 407], "score": 1.0, "content": " is given in e.g. [23, Theorem 13.8(a)].", "type": "text"}], "index": 11}, {"bbox": [70, 406, 540, 421], "spans": [{"bbox": [70, 406, 454, 421], "score": 1.0, "content": "The inner product in (2.1a) is scaled so that the long roots have norm 2. ", "type": "text"}, {"bbox": [455, 407, 468, 417], "score": 0.92, "content": "\\overline{W}", "type": "inline_equation", "height": 10, "width": 13}, {"bbox": [468, 406, 540, 421], "score": 1.0, "content": " is the (finite)", "type": "text"}], "index": 12}, {"bbox": [70, 420, 541, 436], "spans": [{"bbox": [70, 420, 151, 436], "score": 1.0, "content": "Weyl group of ", "type": "text"}, {"bbox": [151, 423, 167, 433], "score": 0.91, "content": "X_{r}", "type": "inline_equation", "height": 10, "width": 16}, {"bbox": [167, 420, 242, 436], "score": 1.0, "content": ", and acts on ", "type": "text"}, {"bbox": [242, 423, 258, 434], "score": 0.91, "content": "P_{+}", "type": "inline_equation", "height": 11, "width": 16}, {"bbox": [258, 420, 313, 436], "score": 1.0, "content": " by fixing ", "type": "text"}, {"bbox": [314, 423, 328, 434], "score": 0.9, "content": "\\Lambda_{0}", "type": "inline_equation", "height": 11, "width": 14}, {"bbox": [328, 420, 432, 436], "score": 1.0, "content": ". The Weyl vector ", "type": "text"}, {"bbox": [432, 426, 439, 434], "score": 0.87, "content": "\\rho", "type": "inline_equation", "height": 8, "width": 7}, {"bbox": [439, 420, 480, 436], "score": 1.0, "content": " equals", "type": "text"}, {"bbox": [480, 422, 512, 435], "score": 0.93, "content": "\\sum_{i}\\Lambda_{i}", "type": "inline_equation", "height": 13, "width": 32}, {"bbox": [512, 420, 541, 436], "score": 1.0, "content": ", and", "type": "text"}], "index": 13}, {"bbox": [68, 435, 473, 457], "spans": [{"bbox": [68, 435, 473, 457], "score": 1.0, "content": "\u03ba d=ef k + i ai\u2228 . This is the matrix S appearing in (1.1); \u03a6 there is P+ here.", "type": "text"}], "index": 14}], "index": 12.5, "page_num": "page_2", "page_size": [612.0, 792.0], "bbox_fs": [68, 393, 541, 457]}, {"type": "text", "bbox": [70, 452, 541, 494], "lines": [{"bbox": [94, 453, 541, 469], "spans": [{"bbox": [94, 453, 157, 469], "score": 1.0, "content": "The matrix ", "type": "text"}, {"bbox": [158, 456, 166, 465], "score": 0.88, "content": "S", "type": "inline_equation", "height": 9, "width": 8}, {"bbox": [166, 453, 409, 469], "score": 1.0, "content": " is symmetric and unitary. One of the weights, ", "type": "text"}, {"bbox": [409, 456, 430, 467], "score": 0.91, "content": "k\\Lambda_{0}", "type": "inline_equation", "height": 11, "width": 21}, {"bbox": [430, 453, 541, 469], "score": 1.0, "content": ", is distinguished and", "type": "text"}], "index": 15}, {"bbox": [70, 468, 541, 484], "spans": [{"bbox": [70, 468, 159, 484], "score": 1.0, "content": "will be denoted \u2018", "type": "text"}, {"bbox": [159, 470, 169, 479], "score": 0.43, "content": "0^{\\circ}", "type": "inline_equation", "height": 9, "width": 10}, {"bbox": [169, 468, 541, 484], "score": 1.0, "content": ". It is the weight appearing in the denominator of (1.1). A useful fact", "type": "text"}], "index": 16}, {"bbox": [70, 484, 107, 496], "spans": [{"bbox": [70, 484, 107, 496], "score": 1.0, "content": "is that", "type": "text"}], "index": 17}], "index": 16, "page_num": "page_2", "page_size": [612.0, 792.0], "bbox_fs": [70, 453, 541, 496]}, {"type": "interline_equation", "bbox": [233, 497, 378, 511], "lines": [{"bbox": [233, 497, 378, 511], "spans": [{"bbox": [233, 497, 378, 511], "score": 0.89, "content": "S_{\\lambda0}>0\\qquad\\mathrm{for~all~}\\lambda\\in P_{+}\\ .", "type": "interline_equation"}], "index": 18}], "index": 18, "page_num": "page_2", "page_size": [612.0, 792.0]}, {"type": "text", "bbox": [93, 519, 300, 534], "lines": [{"bbox": [95, 521, 300, 536], "spans": [{"bbox": [95, 521, 300, 536], "score": 1.0, "content": "Equation (2.1a) gives us the important", "type": "text"}], "index": 19}], "index": 19, "page_num": "page_2", "page_size": [612.0, 792.0], "bbox_fs": [95, 521, 300, 536]}, {"type": "interline_equation", "bbox": [218, 549, 393, 580], "lines": [{"bbox": [218, 549, 393, 580], "spans": [{"bbox": [218, 549, 393, 580], "score": 0.94, "content": "\\chi_{\\lambda}[\\mu]\\stackrel{\\mathrm{def}}{=}\\frac{S_{\\lambda\\mu}}{S_{0\\mu}}=\\mathrm{ch}_{\\overline{{{\\lambda}}}}(-2\\pi\\mathrm{i}\\frac{\\overline{{{\\mu}}}+\\overline{{{\\rho}}}}{\\kappa})~,", "type": "interline_equation"}], "index": 20}], "index": 20, "page_num": "page_2", "page_size": [612.0, 792.0]}, {"type": "text", "bbox": [69, 592, 540, 622], "lines": [{"bbox": [70, 595, 540, 611], "spans": [{"bbox": [70, 595, 105, 611], "score": 1.0, "content": "where ", "type": "text"}, {"bbox": [106, 597, 125, 610], "score": 0.74, "content": "\\mathrm{ch}_{{\\overline{{\\lambda}}}}", "type": "inline_equation", "height": 13, "width": 19}, {"bbox": [125, 595, 275, 611], "score": 1.0, "content": " is the Weyl character of the ", "type": "text"}, {"bbox": [275, 597, 291, 608], "score": 0.92, "content": "X_{r}", "type": "inline_equation", "height": 11, "width": 16}, {"bbox": [291, 595, 336, 611], "score": 1.0, "content": "-module ", "type": "text"}, {"bbox": [336, 595, 361, 609], "score": 0.94, "content": "L(\\overline{{\\lambda}})", "type": "inline_equation", "height": 14, "width": 25}, {"bbox": [362, 595, 540, 611], "score": 1.0, "content": ". Together with the Weyl denomi-", "type": "text"}], "index": 21}, {"bbox": [70, 610, 424, 625], "spans": [{"bbox": [70, 610, 351, 625], "score": 1.0, "content": "nator formula, it provides a useful expression for the ", "type": "text"}, {"bbox": [351, 615, 357, 623], "score": 0.86, "content": "q", "type": "inline_equation", "height": 8, "width": 6}, {"bbox": [357, 610, 424, 625], "score": 1.0, "content": "-dimensions:", "type": "text"}], "index": 22}], "index": 21.5, "page_num": "page_2", "page_size": [612.0, 792.0], "bbox_fs": [70, 595, 540, 625]}, {"type": "interline_equation", "bbox": [200, 636, 410, 672], "lines": [{"bbox": [200, 636, 410, 672], "spans": [{"bbox": [200, 636, 410, 672], "score": 0.94, "content": "{\\mathcal D}(\\lambda)\\,\\overset{\\mathrm{def}}{=}\\frac{S_{\\lambda0}}{S_{00}}=\\prod_{\\alpha>0}\\frac{\\sin(\\pi\\left(\\lambda+\\rho\\left|\\alpha\\right)/\\kappa\\right)}{\\sin(\\pi\\left(\\rho\\left|\\alpha\\right)/\\kappa\\right)}~,", "type": "interline_equation"}], "index": 23}], "index": 23, "page_num": "page_2", "page_size": [612.0, 792.0]}, {"type": "text", "bbox": [69, 685, 540, 715], "lines": [{"bbox": [71, 688, 540, 703], "spans": [{"bbox": [71, 688, 300, 703], "score": 1.0, "content": "where the product is over the positive roots ", "type": "text"}, {"bbox": [301, 688, 341, 702], "score": 0.94, "content": "\\alpha\\in\\overline{{\\Delta}}_{+}", "type": "inline_equation", "height": 14, "width": 40}, {"bbox": [341, 688, 357, 703], "score": 1.0, "content": " of ", "type": "text"}, {"bbox": [357, 690, 373, 701], "score": 0.91, "content": "X_{r}", "type": "inline_equation", "height": 11, "width": 16}, {"bbox": [373, 688, 540, 703], "score": 1.0, "content": ". Another consequence of (2.1b)", "type": "text"}], "index": 24}, {"bbox": [69, 702, 243, 718], "spans": [{"bbox": [69, 702, 243, 718], "score": 1.0, "content": "is the Kac-Walton formula (2.4).", "type": "text"}], "index": 25}], "index": 24.5, "page_num": "page_2", "page_size": [612.0, 792.0], "bbox_fs": [69, 688, 540, 718]}]} |
|
0003042v1 | 17 | [17] Kim, G., Kim, Y., Vesnin, A.: The knot $$5_{2}$$ and cyclically presented
groups. J. Korean Math. Soc. 35 (1998), 961–980
[18] Kim, A.C., Vesnin, A.: On a class of cyclically presented groups. To
appear in: Proc. Inter. Conf., Groups-Korea ’98, Walter de Gruyter,
Berlin-New York, 2000
[19] Lins, S., Mandel, A.: Graph-encoded 3-manifolds. Discrete Math. 57
(1985), 261–284
[20] Maclachlan, C., Reid, A.W.: Generalised Fibonacci manifolds. Trans-
form. Groups 2 (1997), 165–182
[21] Minkus, J.: The branched cyclic coverings of 2 bridge knots and links.
Mem. Am. Math. Soc. 35 Nr. 255 (1982), 1–68
[22] Montesinos, J.M.: Representing 3-manifolds by a universal branching
set. Math. Proc. Camb. Philos. Soc. 94 (1983), 109–123
[23] Morimoto, K., Sakuma, M.: On unknotting tunnels for knots. Math.
Ann. 289 (1991), 143–167
[24] Mulazzani, M.: All Lins-Mandel spaces are branched cyclic coverings of
S . J. Knot Theory Ramifications 5 (1996), 239–263
[25] Neuwirth, L.: An algorithm for the construction of 3-manifolds from
2-complexes. Proc. Camb. Philos. Soc. 64 (1968), 603–613
[26] Osborne, R.P., Stevens, R.S.: Group presentations corresponding to
spines of 3-manifolds I. Amer. J. Math. 96 (1974), 454–471
[27] Osborne, R.P., Stevens, R.S.: Group presentations corresponding to
spines of 3-manifolds II. Trans. Amer. Math. Soc. 234 (1977), 213–243
[28] Osborne, R.P., Stevens, R.S.: Group presentations corresponding to
spines of 3-manifolds III. Trans. Amer. Math. Soc. 234 (1977), 245–251
[29] Reni, M., Zimmermann, B.,: Extending finite group actions from sur-
faces to handlebodies. Proc. Am. Math. Soc. 124 (1996), 2877–2887
[30] Schubert, H.: Knoten mit zwei Bricken. Math. Z. 65 (1956), 133-170
| <p>[17] Kim, G., Kim, Y., Vesnin, A.: The knot $$5_{2}$$ and cyclically presented
groups. J. Korean Math. Soc. 35 (1998), 961–980
[18] Kim, A.C., Vesnin, A.: On a class of cyclically presented groups. To
appear in: Proc. Inter. Conf., Groups-Korea ’98, Walter de Gruyter,
Berlin-New York, 2000
[19] Lins, S., Mandel, A.: Graph-encoded 3-manifolds. Discrete Math. 57
(1985), 261–284
[20] Maclachlan, C., Reid, A.W.: Generalised Fibonacci manifolds. Trans-
form. Groups 2 (1997), 165–182
[21] Minkus, J.: The branched cyclic coverings of 2 bridge knots and links.
Mem. Am. Math. Soc. 35 Nr. 255 (1982), 1–68
[22] Montesinos, J.M.: Representing 3-manifolds by a universal branching
set. Math. Proc. Camb. Philos. Soc. 94 (1983), 109–123
[23] Morimoto, K., Sakuma, M.: On unknotting tunnels for knots. Math.
Ann. 289 (1991), 143–167
[24] Mulazzani, M.: All Lins-Mandel spaces are branched cyclic coverings of
S . J. Knot Theory Ramifications 5 (1996), 239–263
[25] Neuwirth, L.: An algorithm for the construction of 3-manifolds from
2-complexes. Proc. Camb. Philos. Soc. 64 (1968), 603–613
[26] Osborne, R.P., Stevens, R.S.: Group presentations corresponding to
spines of 3-manifolds I. Amer. J. Math. 96 (1974), 454–471
[27] Osborne, R.P., Stevens, R.S.: Group presentations corresponding to
spines of 3-manifolds II. Trans. Amer. Math. Soc. 234 (1977), 213–243
[28] Osborne, R.P., Stevens, R.S.: Group presentations corresponding to
spines of 3-manifolds III. Trans. Amer. Math. Soc. 234 (1977), 245–251
[29] Reni, M., Zimmermann, B.,: Extending finite group actions from sur-
faces to handlebodies. Proc. Am. Math. Soc. 124 (1996), 2877–2887
[30] Schubert, H.: Knoten mit zwei Bricken. Math. Z. 65 (1956), 133-170</p>
| [{"type": "text", "coordinates": [108, 120, 503, 663], "content": "[17] Kim, G., Kim, Y., Vesnin, A.: The knot $$5_{2}$$ and cyclically presented\ngroups. J. Korean Math. Soc. 35 (1998), 961\u2013980\n[18] Kim, A.C., Vesnin, A.: On a class of cyclically presented groups. To\nappear in: Proc. Inter. Conf., Groups-Korea \u201998, Walter de Gruyter,\nBerlin-New York, 2000\n[19] Lins, S., Mandel, A.: Graph-encoded 3-manifolds. Discrete Math. 57\n(1985), 261\u2013284\n[20] Maclachlan, C., Reid, A.W.: Generalised Fibonacci manifolds. Trans-\nform. Groups 2 (1997), 165\u2013182\n[21] Minkus, J.: The branched cyclic coverings of 2 bridge knots and links.\nMem. Am. Math. Soc. 35 Nr. 255 (1982), 1\u201368\n[22] Montesinos, J.M.: Representing 3-manifolds by a universal branching\nset. Math. Proc. Camb. Philos. Soc. 94 (1983), 109\u2013123\n[23] Morimoto, K., Sakuma, M.: On unknotting tunnels for knots. Math.\nAnn. 289 (1991), 143\u2013167\n[24] Mulazzani, M.: All Lins-Mandel spaces are branched cyclic coverings of\nS . J. Knot Theory Ramifications 5 (1996), 239\u2013263\n[25] Neuwirth, L.: An algorithm for the construction of 3-manifolds from\n2-complexes. Proc. Camb. Philos. Soc. 64 (1968), 603\u2013613\n[26] Osborne, R.P., Stevens, R.S.: Group presentations corresponding to\nspines of 3-manifolds I. Amer. J. Math. 96 (1974), 454\u2013471\n[27] Osborne, R.P., Stevens, R.S.: Group presentations corresponding to\nspines of 3-manifolds II. Trans. Amer. Math. Soc. 234 (1977), 213\u2013243\n[28] Osborne, R.P., Stevens, R.S.: Group presentations corresponding to\nspines of 3-manifolds III. Trans. Amer. Math. Soc. 234 (1977), 245\u2013251\n[29] Reni, M., Zimmermann, B.,: Extending finite group actions from sur-\nfaces to handlebodies. Proc. Am. Math. Soc. 124 (1996), 2877\u20132887\n[30] Schubert, H.: Knoten mit zwei Bricken. Math. Z. 65 (1956), 133-170", "block_type": "text", "index": 1}] | [{"type": "text", "coordinates": [110, 128, 358, 143], "content": "[17] Kim, G., Kim, Y., Vesnin, A.: The knot ", "score": 1.0, "index": 1}, {"type": "inline_equation", "coordinates": [358, 130, 369, 140], "content": "5_{2}", "score": 0.75, "index": 2}, {"type": "text", "coordinates": [369, 128, 500, 143], "content": " and cyclically presented", "score": 1.0, "index": 3}, {"type": "text", "coordinates": [127, 142, 385, 158], "content": "groups. J. Korean Math. Soc. 35 (1998), 961\u2013980", "score": 1.0, "index": 4}, {"type": "text", "coordinates": [109, 166, 501, 183], "content": "[18] Kim, A.C., Vesnin, A.: On a class of cyclically presented groups. To", "score": 1.0, "index": 5}, {"type": "text", "coordinates": [127, 181, 500, 196], "content": "appear in: Proc. Inter. Conf., Groups-Korea \u201998, Walter de Gruyter,", "score": 1.0, "index": 6}, {"type": "text", "coordinates": [128, 195, 247, 210], "content": "Berlin-New York, 2000", "score": 1.0, "index": 7}, {"type": "text", "coordinates": [110, 220, 501, 235], "content": "[19] Lins, S., Mandel, A.: Graph-encoded 3-manifolds. Discrete Math. 57", "score": 1.0, "index": 8}, {"type": "text", "coordinates": [128, 235, 212, 250], "content": "(1985), 261\u2013284", "score": 1.0, "index": 9}, {"type": "text", "coordinates": [110, 259, 500, 274], "content": "[20] Maclachlan, C., Reid, A.W.: Generalised Fibonacci manifolds. Trans-", "score": 1.0, "index": 10}, {"type": "text", "coordinates": [127, 272, 295, 289], "content": "form. Groups 2 (1997), 165\u2013182", "score": 1.0, "index": 11}, {"type": "text", "coordinates": [110, 297, 499, 313], "content": "[21] Minkus, J.: The branched cyclic coverings of 2 bridge knots and links.", "score": 1.0, "index": 12}, {"type": "text", "coordinates": [128, 312, 371, 327], "content": "Mem. Am. Math. Soc. 35 Nr. 255 (1982), 1\u201368", "score": 1.0, "index": 13}, {"type": "text", "coordinates": [109, 335, 501, 353], "content": "[22] Montesinos, J.M.: Representing 3-manifolds by a universal branching", "score": 1.0, "index": 14}, {"type": "text", "coordinates": [127, 351, 416, 366], "content": "set. Math. Proc. Camb. Philos. Soc. 94 (1983), 109\u2013123", "score": 1.0, "index": 15}, {"type": "text", "coordinates": [110, 375, 499, 390], "content": "[23] Morimoto, K., Sakuma, M.: On unknotting tunnels for knots. Math.", "score": 1.0, "index": 16}, {"type": "text", "coordinates": [127, 389, 264, 405], "content": "Ann. 289 (1991), 143\u2013167", "score": 1.0, "index": 17}, {"type": "text", "coordinates": [109, 412, 502, 430], "content": "[24] Mulazzani, M.: All Lins-Mandel spaces are branched cyclic coverings of", "score": 1.0, "index": 18}, {"type": "text", "coordinates": [127, 428, 399, 444], "content": "S . J. Knot Theory Ramifications 5 (1996), 239\u2013263", "score": 1.0, "index": 19}, {"type": "text", "coordinates": [110, 453, 500, 468], "content": "[25] Neuwirth, L.: An algorithm for the construction of 3-manifolds from", "score": 1.0, "index": 20}, {"type": "text", "coordinates": [127, 467, 430, 482], "content": "2-complexes. Proc. Camb. Philos. Soc. 64 (1968), 603\u2013613", "score": 1.0, "index": 21}, {"type": "text", "coordinates": [109, 490, 500, 508], "content": "[26] Osborne, R.P., Stevens, R.S.: Group presentations corresponding to", "score": 1.0, "index": 22}, {"type": "text", "coordinates": [126, 505, 434, 521], "content": "spines of 3-manifolds I. Amer. J. Math. 96 (1974), 454\u2013471", "score": 1.0, "index": 23}, {"type": "text", "coordinates": [109, 530, 501, 547], "content": "[27] Osborne, R.P., Stevens, R.S.: Group presentations corresponding to", "score": 1.0, "index": 24}, {"type": "text", "coordinates": [127, 545, 493, 560], "content": "spines of 3-manifolds II. Trans. Amer. Math. Soc. 234 (1977), 213\u2013243", "score": 1.0, "index": 25}, {"type": "text", "coordinates": [109, 568, 500, 586], "content": "[28] Osborne, R.P., Stevens, R.S.: Group presentations corresponding to", "score": 1.0, "index": 26}, {"type": "text", "coordinates": [126, 583, 497, 599], "content": "spines of 3-manifolds III. Trans. Amer. Math. Soc. 234 (1977), 245\u2013251", "score": 1.0, "index": 27}, {"type": "text", "coordinates": [109, 608, 500, 625], "content": "[29] Reni, M., Zimmermann, B.,: Extending finite group actions from sur-", "score": 1.0, "index": 28}, {"type": "text", "coordinates": [126, 622, 479, 638], "content": "faces to handlebodies. Proc. Am. Math. Soc. 124 (1996), 2877\u20132887", "score": 1.0, "index": 29}, {"type": "text", "coordinates": [110, 647, 493, 662], "content": "[30] Schubert, H.: Knoten mit zwei Bricken. Math. Z. 65 (1956), 133-170", "score": 0.9834961295127869, "index": 30}] | [] | [{"type": "inline", "coordinates": [358, 130, 369, 140], "content": "5_{2}", "caption": ""}] | [] | [612.0, 792.0] | [{"type": "text", "text": "", "page_idx": 17}] | [{"category_id": 1, "poly": [302, 336, 1399, 336, 1399, 1844, 302, 1844], "score": 0.653}, {"category_id": 2, "poly": [830, 1921, 867, 1921, 867, 1953, 830, 1953], "score": 0.547}, {"category_id": 1, "poly": [305, 347, 1394, 347, 1394, 430, 305, 430], "score": 0.438}, {"category_id": 1, "poly": [308, 455, 1391, 455, 1391, 577, 308, 577], "score": 0.395}, {"category_id": 2, "poly": [830, 1921, 867, 1921, 867, 1953, 830, 1953], "score": 0.394}, {"category_id": 1, "poly": [307, 604, 1393, 604, 1393, 686, 307, 686], "score": 0.361}, {"category_id": 1, "poly": [307, 1251, 1395, 1251, 1395, 1334, 307, 1334], "score": 0.357}, {"category_id": 1, "poly": [307, 1359, 1394, 1359, 1394, 1443, 307, 1443], "score": 0.353}, {"category_id": 1, "poly": [308, 1467, 1394, 1467, 1394, 1551, 308, 1551], "score": 0.337}, {"category_id": 1, "poly": [307, 1143, 1396, 1143, 1396, 1226, 307, 1226], "score": 0.336}, {"category_id": 1, "poly": [307, 1575, 1395, 1575, 1395, 1659, 307, 1659], "score": 0.334}, {"category_id": 1, "poly": [307, 818, 1392, 818, 1392, 903, 307, 903], "score": 0.332}, {"category_id": 1, "poly": [306, 1683, 1392, 1683, 1392, 1767, 306, 1767], "score": 0.322}, {"category_id": 1, "poly": [306, 1792, 1377, 1792, 1377, 1834, 306, 1834], "score": 0.307}, {"category_id": 1, "poly": [306, 927, 1395, 927, 1395, 1011, 306, 1011], "score": 0.301}, {"category_id": 1, "poly": [307, 711, 1385, 711, 1385, 795, 307, 795], "score": 0.272}, {"category_id": 13, "poly": [996, 362, 1026, 362, 1026, 390, 996, 390], "score": 0.75, "latex": "5_{2}"}, {"category_id": 15, "poly": [306.0, 356.0, 995.0, 356.0, 995.0, 398.0, 306.0, 398.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1027.0, 356.0, 1389.0, 356.0, 1389.0, 398.0, 1027.0, 398.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [354.0, 395.0, 1070.0, 395.0, 1070.0, 440.0, 354.0, 440.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [305.0, 462.0, 1393.0, 462.0, 1393.0, 509.0, 305.0, 509.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [354.0, 504.0, 1389.0, 504.0, 1389.0, 547.0, 354.0, 547.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [356.0, 544.0, 687.0, 544.0, 687.0, 584.0, 356.0, 584.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [306.0, 613.0, 1393.0, 613.0, 1393.0, 654.0, 306.0, 654.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [356.0, 653.0, 589.0, 653.0, 589.0, 696.0, 356.0, 696.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [306.0, 720.0, 1389.0, 720.0, 1389.0, 762.0, 306.0, 762.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [354.0, 758.0, 820.0, 758.0, 820.0, 804.0, 354.0, 804.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [306.0, 825.0, 1388.0, 825.0, 1388.0, 872.0, 306.0, 872.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [356.0, 867.0, 1031.0, 867.0, 1031.0, 909.0, 356.0, 909.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [303.0, 933.0, 1393.0, 933.0, 1393.0, 981.0, 303.0, 981.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [354.0, 976.0, 1158.0, 976.0, 1158.0, 1018.0, 354.0, 1018.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [306.0, 1043.0, 1388.0, 1043.0, 1388.0, 1085.0, 306.0, 1085.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [354.0, 1083.0, 735.0, 1083.0, 735.0, 1125.0, 354.0, 1125.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [303.0, 1147.0, 1396.0, 1147.0, 1396.0, 1197.0, 303.0, 1197.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [354.0, 1189.0, 1111.0, 1189.0, 1111.0, 1234.0, 354.0, 1234.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [308.0, 1259.0, 1391.0, 1259.0, 1391.0, 1301.0, 308.0, 1301.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [354.0, 1299.0, 1196.0, 1299.0, 1196.0, 1341.0, 354.0, 1341.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [305.0, 1363.0, 1391.0, 1363.0, 1391.0, 1412.0, 305.0, 1412.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [352.0, 1405.0, 1206.0, 1405.0, 1206.0, 1448.0, 352.0, 1448.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [305.0, 1474.0, 1393.0, 1474.0, 1393.0, 1520.0, 305.0, 1520.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [354.0, 1514.0, 1372.0, 1514.0, 1372.0, 1556.0, 354.0, 1556.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [303.0, 1579.0, 1391.0, 1579.0, 1391.0, 1628.0, 303.0, 1628.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [352.0, 1621.0, 1383.0, 1621.0, 1383.0, 1666.0, 352.0, 1666.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [305.0, 1690.0, 1389.0, 1690.0, 1389.0, 1737.0, 305.0, 1737.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [352.0, 1728.0, 1333.0, 1728.0, 1333.0, 1773.0, 352.0, 1773.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [306.0, 1799.0, 1372.0, 1799.0, 1372.0, 1840.0, 306.0, 1840.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [826.0, 1923.0, 869.0, 1923.0, 869.0, 1960.0, 826.0, 1960.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [307.0, 355.0, 995.0, 355.0, 995.0, 398.0, 307.0, 398.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1027.0, 355.0, 1391.0, 355.0, 1391.0, 398.0, 1027.0, 398.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [355.0, 397.0, 1065.0, 397.0, 1065.0, 434.0, 355.0, 434.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [306.0, 463.0, 1389.0, 463.0, 1389.0, 506.0, 306.0, 506.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [354.0, 504.0, 1388.0, 504.0, 1388.0, 544.0, 354.0, 544.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [358.0, 546.0, 684.0, 546.0, 684.0, 580.0, 358.0, 580.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [826.0, 1923.0, 869.0, 1923.0, 869.0, 1960.0, 826.0, 1960.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [306.0, 611.0, 1391.0, 611.0, 1391.0, 653.0, 306.0, 653.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [357.0, 651.0, 588.0, 651.0, 588.0, 693.0, 357.0, 693.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [309.0, 1259.0, 1392.0, 1259.0, 1392.0, 1298.0, 309.0, 1298.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [356.0, 1299.0, 1194.0, 1299.0, 1194.0, 1338.0, 356.0, 1338.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [309.0, 1368.0, 1392.0, 1368.0, 1392.0, 1407.0, 309.0, 1407.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [356.0, 1406.0, 1203.0, 1406.0, 1203.0, 1446.0, 356.0, 1446.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [309.0, 1476.0, 1391.0, 1476.0, 1391.0, 1515.0, 309.0, 1515.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [356.0, 1515.0, 1370.0, 1515.0, 1370.0, 1554.0, 356.0, 1554.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [307.0, 1151.0, 1394.0, 1151.0, 1394.0, 1190.0, 307.0, 1190.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [355.0, 1189.0, 1110.0, 1189.0, 1110.0, 1230.0, 355.0, 1230.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [308.0, 1582.0, 1391.0, 1582.0, 1391.0, 1624.0, 308.0, 1624.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [355.0, 1623.0, 1381.0, 1623.0, 1381.0, 1662.0, 355.0, 1662.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [308.0, 826.0, 1386.0, 826.0, 1386.0, 869.0, 308.0, 869.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [356.0, 867.0, 1028.0, 867.0, 1028.0, 907.0, 356.0, 907.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [309.0, 1692.0, 1390.0, 1692.0, 1390.0, 1731.0, 309.0, 1731.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [354.0, 1731.0, 1333.0, 1731.0, 1333.0, 1770.0, 354.0, 1770.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [311.0, 1800.0, 1368.0, 1800.0, 1368.0, 1837.0, 311.0, 1837.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [308.0, 937.0, 1389.0, 937.0, 1389.0, 976.0, 308.0, 976.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [354.0, 975.0, 1158.0, 975.0, 1158.0, 1015.0, 354.0, 1015.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [309.0, 721.0, 1390.0, 721.0, 1390.0, 760.0, 309.0, 760.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [356.0, 761.0, 815.0, 761.0, 815.0, 798.0, 356.0, 798.0], "score": 1.0, "text": ""}] | {"preproc_blocks": [{"type": "text", "bbox": [108, 120, 503, 663], "lines": [{"bbox": [110, 128, 500, 143], "spans": [{"bbox": [110, 128, 358, 143], "score": 1.0, "content": "[17] Kim, G., Kim, Y., Vesnin, A.: The knot ", "type": "text"}, {"bbox": [358, 130, 369, 140], "score": 0.75, "content": "5_{2}", "type": "inline_equation", "height": 10, "width": 11}, {"bbox": [369, 128, 500, 143], "score": 1.0, "content": " and cyclically presented", "type": "text"}], "index": 0}, {"bbox": [127, 142, 385, 158], "spans": [{"bbox": [127, 142, 385, 158], "score": 1.0, "content": "groups. J. Korean Math. Soc. 35 (1998), 961\u2013980", "type": "text"}], "index": 1}, {"bbox": [109, 166, 501, 183], "spans": [{"bbox": [109, 166, 501, 183], "score": 1.0, "content": "[18] Kim, A.C., Vesnin, A.: On a class of cyclically presented groups. To", "type": "text"}], "index": 2}, {"bbox": [127, 181, 500, 196], "spans": [{"bbox": [127, 181, 500, 196], "score": 1.0, "content": "appear in: Proc. Inter. Conf., Groups-Korea \u201998, Walter de Gruyter,", "type": "text"}], "index": 3}, {"bbox": [128, 195, 247, 210], "spans": [{"bbox": [128, 195, 247, 210], "score": 1.0, "content": "Berlin-New York, 2000", "type": "text"}], "index": 4}, {"bbox": [110, 220, 501, 235], "spans": [{"bbox": [110, 220, 501, 235], "score": 1.0, "content": "[19] Lins, S., Mandel, A.: Graph-encoded 3-manifolds. Discrete Math. 57", "type": "text"}], "index": 5}, {"bbox": [128, 235, 212, 250], "spans": [{"bbox": [128, 235, 212, 250], "score": 1.0, "content": "(1985), 261\u2013284", "type": "text"}], "index": 6}, {"bbox": [110, 259, 500, 274], "spans": [{"bbox": [110, 259, 500, 274], "score": 1.0, "content": "[20] Maclachlan, C., Reid, A.W.: Generalised Fibonacci manifolds. Trans-", "type": "text"}], "index": 7}, {"bbox": [127, 272, 295, 289], "spans": [{"bbox": [127, 272, 295, 289], "score": 1.0, "content": "form. Groups 2 (1997), 165\u2013182", "type": "text"}], "index": 8}, {"bbox": [110, 297, 499, 313], "spans": [{"bbox": [110, 297, 499, 313], "score": 1.0, "content": "[21] Minkus, J.: The branched cyclic coverings of 2 bridge knots and links.", "type": "text"}], "index": 9}, {"bbox": [128, 312, 371, 327], "spans": [{"bbox": [128, 312, 371, 327], "score": 1.0, "content": "Mem. Am. Math. Soc. 35 Nr. 255 (1982), 1\u201368", "type": "text"}], "index": 10}, {"bbox": [109, 335, 501, 353], "spans": [{"bbox": [109, 335, 501, 353], "score": 1.0, "content": "[22] Montesinos, J.M.: Representing 3-manifolds by a universal branching", "type": "text"}], "index": 11}, {"bbox": [127, 351, 416, 366], "spans": [{"bbox": [127, 351, 416, 366], "score": 1.0, "content": "set. Math. Proc. Camb. Philos. Soc. 94 (1983), 109\u2013123", "type": "text"}], "index": 12}, {"bbox": [110, 375, 499, 390], "spans": [{"bbox": [110, 375, 499, 390], "score": 1.0, "content": "[23] Morimoto, K., Sakuma, M.: On unknotting tunnels for knots. Math.", "type": "text"}], "index": 13}, {"bbox": [127, 389, 264, 405], "spans": [{"bbox": [127, 389, 264, 405], "score": 1.0, "content": "Ann. 289 (1991), 143\u2013167", "type": "text"}], "index": 14}, {"bbox": [109, 412, 502, 430], "spans": [{"bbox": [109, 412, 502, 430], "score": 1.0, "content": "[24] Mulazzani, M.: All Lins-Mandel spaces are branched cyclic coverings of", "type": "text"}], "index": 15}, {"bbox": [127, 428, 399, 444], "spans": [{"bbox": [127, 428, 399, 444], "score": 1.0, "content": "S . J. Knot Theory Ramifications 5 (1996), 239\u2013263", "type": "text"}], "index": 16}, {"bbox": [110, 453, 500, 468], "spans": [{"bbox": [110, 453, 500, 468], "score": 1.0, "content": "[25] Neuwirth, L.: An algorithm for the construction of 3-manifolds from", "type": "text"}], "index": 17}, {"bbox": [127, 467, 430, 482], "spans": [{"bbox": [127, 467, 430, 482], "score": 1.0, "content": "2-complexes. Proc. Camb. Philos. Soc. 64 (1968), 603\u2013613", "type": "text"}], "index": 18}, {"bbox": [109, 490, 500, 508], "spans": [{"bbox": [109, 490, 500, 508], "score": 1.0, "content": "[26] Osborne, R.P., Stevens, R.S.: Group presentations corresponding to", "type": "text"}], "index": 19}, {"bbox": [126, 505, 434, 521], "spans": [{"bbox": [126, 505, 434, 521], "score": 1.0, "content": "spines of 3-manifolds I. Amer. J. Math. 96 (1974), 454\u2013471", "type": "text"}], "index": 20}, {"bbox": [109, 530, 501, 547], "spans": [{"bbox": [109, 530, 501, 547], "score": 1.0, "content": "[27] Osborne, R.P., Stevens, R.S.: Group presentations corresponding to", "type": "text"}], "index": 21}, {"bbox": [127, 545, 493, 560], "spans": [{"bbox": [127, 545, 493, 560], "score": 1.0, "content": "spines of 3-manifolds II. Trans. Amer. Math. Soc. 234 (1977), 213\u2013243", "type": "text"}], "index": 22}, {"bbox": [109, 568, 500, 586], "spans": [{"bbox": [109, 568, 500, 586], "score": 1.0, "content": "[28] Osborne, R.P., Stevens, R.S.: Group presentations corresponding to", "type": "text"}], "index": 23}, {"bbox": [126, 583, 497, 599], "spans": [{"bbox": [126, 583, 497, 599], "score": 1.0, "content": "spines of 3-manifolds III. Trans. Amer. Math. Soc. 234 (1977), 245\u2013251", "type": "text"}], "index": 24}, {"bbox": [109, 608, 500, 625], "spans": [{"bbox": [109, 608, 500, 625], "score": 1.0, "content": "[29] Reni, M., Zimmermann, B.,: Extending finite group actions from sur-", "type": "text"}], "index": 25}, {"bbox": [126, 622, 479, 638], "spans": [{"bbox": [126, 622, 479, 638], "score": 1.0, "content": "faces to handlebodies. Proc. Am. Math. Soc. 124 (1996), 2877\u20132887", "type": "text"}], "index": 26}, {"bbox": [110, 647, 493, 662], "spans": [{"bbox": [110, 647, 493, 662], "score": 0.9834961295127869, "content": "[30] Schubert, H.: Knoten mit zwei Bricken. Math. Z. 65 (1956), 133-170", "type": "text"}], "index": 27}], "index": 13.5}], "layout_bboxes": [], "page_idx": 17, "page_size": [612.0, 792.0], "_layout_tree": [], "images": [], "tables": [], "interline_equations": [], "discarded_blocks": [{"type": "discarded", "bbox": [298, 691, 312, 703], "lines": [{"bbox": [297, 692, 312, 705], "spans": [{"bbox": [297, 692, 312, 705], "score": 1.0, "content": "18", "type": "text"}]}]}], "need_drop": false, "drop_reason": [], "para_blocks": [{"type": "list", "bbox": [108, 120, 503, 663], "lines": [], "index": 13.5, "page_num": "page_17", "page_size": [612.0, 792.0], "bbox_fs": [109, 128, 502, 662], "lines_deleted": true}]} |
|
0003042v1 | 22 | [{"type": "image", "coordinates": [195, 129, 414, 335], "content": "", "block_type": "image", "index": 1}, {"type": "image", "coordinates": [192, 391, 419, 624], "content": "", "block_type": "image", "index": 2}] | [] | [{"coordinates": [195, 129, 414, 335], "index": 10.25, "caption": "Figure 7:", "caption_coordinates": [277, 357, 326, 372]}, {"coordinates": [192, 391, 419, 624], "index": 26.75, "caption": "Figure 8:", "caption_coordinates": [277, 650, 326, 664]}] | [] | [] | [612.0, 792.0] | [{"type": "image", "img_path": "images/afa6c1d4126b51f26085ef905548e66959d447ba989d9aae31ce44b4b2e53297.jpg", "img_caption": ["Figure 7: "], "img_footnote": [], "page_idx": 22}, {"type": "image", "img_path": "images/171ccc85ab2cd22c5f9616b27b9031bf676f084fe1975b0b88aff7fe1648e461.jpg", "img_caption": ["Figure 8: "], "img_footnote": [], "page_idx": 22}] | [{"category_id": 3, "poly": [544, 360, 1151, 360, 1151, 931, 544, 931], "score": 0.938}, {"category_id": 2, "poly": [828, 1920, 867, 1920, 867, 1954, 828, 1954], "score": 0.858}, {"category_id": 3, "poly": [534, 1088, 1164, 1088, 1164, 1736, 534, 1736], "score": 0.857}, {"category_id": 4, "poly": [771, 992, 908, 992, 908, 1036, 771, 1036], "score": 0.813}, {"category_id": 4, "poly": [771, 1806, 908, 1806, 908, 1847, 771, 1847], "score": 0.779}, {"category_id": 15, "poly": [827.0, 1923.0, 869.0, 1923.0, 869.0, 1961.0, 827.0, 1961.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [774.0, 997.0, 908.0, 997.0, 908.0, 1038.0, 774.0, 1038.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [774.0, 1810.0, 907.0, 1810.0, 907.0, 1850.0, 774.0, 1850.0], "score": 1.0, "text": ""}] | {"preproc_blocks": [{"type": "image", "bbox": [195, 129, 414, 335], "blocks": [{"type": "image_body", "bbox": [195, 129, 414, 335], "group_id": 0, "lines": [{"bbox": [195, 129, 414, 335], "spans": [{"bbox": [195, 129, 414, 335], "score": 0.938, "type": "image", "image_path": "afa6c1d4126b51f26085ef905548e66959d447ba989d9aae31ce44b4b2e53297.jpg"}]}], "index": 6.5, "virtual_lines": [{"bbox": [195, 129, 414, 144.0], "spans": [], "index": 0}, {"bbox": [195, 144.0, 414, 159.0], "spans": [], "index": 1}, {"bbox": [195, 159.0, 414, 174.0], "spans": [], "index": 2}, {"bbox": [195, 174.0, 414, 189.0], "spans": [], "index": 3}, {"bbox": [195, 189.0, 414, 204.0], "spans": [], "index": 4}, {"bbox": [195, 204.0, 414, 219.0], "spans": [], "index": 5}, {"bbox": [195, 219.0, 414, 234.0], "spans": [], "index": 6}, {"bbox": [195, 234.0, 414, 249.0], "spans": [], "index": 7}, {"bbox": [195, 249.0, 414, 264.0], "spans": [], "index": 8}, {"bbox": [195, 264.0, 414, 279.0], "spans": [], "index": 9}, {"bbox": [195, 279.0, 414, 294.0], "spans": [], "index": 10}, {"bbox": [195, 294.0, 414, 309.0], "spans": [], "index": 11}, {"bbox": [195, 309.0, 414, 324.0], "spans": [], "index": 12}, {"bbox": [195, 324.0, 414, 339.0], "spans": [], "index": 13}]}, {"type": "image_caption", "bbox": [277, 357, 326, 372], "group_id": 0, "lines": [{"bbox": [278, 358, 326, 373], "spans": [{"bbox": [278, 358, 326, 373], "score": 1.0, "content": "Figure 7:", "type": "text"}], "index": 14}], "index": 14}], "index": 10.25}, {"type": "image", "bbox": [192, 391, 419, 624], "blocks": [{"type": "image_body", "bbox": [192, 391, 419, 624], "group_id": 1, "lines": [{"bbox": [192, 391, 419, 624], "spans": [{"bbox": [192, 391, 419, 624], "score": 0.857, "type": "image", "image_path": "171ccc85ab2cd22c5f9616b27b9031bf676f084fe1975b0b88aff7fe1648e461.jpg"}]}], "index": 22.5, "virtual_lines": [{"bbox": [192, 391, 419, 406.0], "spans": [], "index": 15}, {"bbox": [192, 406.0, 419, 421.0], "spans": [], "index": 16}, {"bbox": [192, 421.0, 419, 436.0], "spans": [], "index": 17}, {"bbox": [192, 436.0, 419, 451.0], "spans": [], "index": 18}, {"bbox": [192, 451.0, 419, 466.0], "spans": [], "index": 19}, {"bbox": [192, 466.0, 419, 481.0], "spans": [], "index": 20}, {"bbox": [192, 481.0, 419, 496.0], "spans": [], "index": 21}, {"bbox": [192, 496.0, 419, 511.0], "spans": [], "index": 22}, {"bbox": [192, 511.0, 419, 526.0], "spans": [], "index": 23}, {"bbox": [192, 526.0, 419, 541.0], "spans": [], "index": 24}, {"bbox": [192, 541.0, 419, 556.0], "spans": [], "index": 25}, {"bbox": [192, 556.0, 419, 571.0], "spans": [], "index": 26}, {"bbox": [192, 571.0, 419, 586.0], "spans": [], "index": 27}, {"bbox": [192, 586.0, 419, 601.0], "spans": [], "index": 28}, {"bbox": [192, 601.0, 419, 616.0], "spans": [], "index": 29}, {"bbox": [192, 616.0, 419, 631.0], "spans": [], "index": 30}]}, {"type": "image_caption", "bbox": [277, 650, 326, 664], "group_id": 1, "lines": [{"bbox": [278, 651, 326, 666], "spans": [{"bbox": [278, 651, 326, 666], "score": 1.0, "content": "Figure 8:", "type": "text"}], "index": 31}], "index": 31}], "index": 26.75}], "layout_bboxes": [], "page_idx": 22, "page_size": [612.0, 792.0], "_layout_tree": [], "images": [{"type": "image", "bbox": [195, 129, 414, 335], "blocks": [{"type": "image_body", "bbox": [195, 129, 414, 335], "group_id": 0, "lines": [{"bbox": [195, 129, 414, 335], "spans": [{"bbox": [195, 129, 414, 335], "score": 0.938, "type": "image", "image_path": "afa6c1d4126b51f26085ef905548e66959d447ba989d9aae31ce44b4b2e53297.jpg"}]}], "index": 6.5, "virtual_lines": [{"bbox": [195, 129, 414, 144.0], "spans": [], "index": 0}, {"bbox": [195, 144.0, 414, 159.0], "spans": [], "index": 1}, {"bbox": [195, 159.0, 414, 174.0], "spans": [], "index": 2}, {"bbox": [195, 174.0, 414, 189.0], "spans": [], "index": 3}, {"bbox": [195, 189.0, 414, 204.0], "spans": [], "index": 4}, {"bbox": [195, 204.0, 414, 219.0], "spans": [], "index": 5}, {"bbox": [195, 219.0, 414, 234.0], "spans": [], "index": 6}, {"bbox": [195, 234.0, 414, 249.0], "spans": [], "index": 7}, {"bbox": [195, 249.0, 414, 264.0], "spans": [], "index": 8}, {"bbox": [195, 264.0, 414, 279.0], "spans": [], "index": 9}, {"bbox": [195, 279.0, 414, 294.0], "spans": [], "index": 10}, {"bbox": [195, 294.0, 414, 309.0], "spans": [], "index": 11}, {"bbox": [195, 309.0, 414, 324.0], "spans": [], "index": 12}, {"bbox": [195, 324.0, 414, 339.0], "spans": [], "index": 13}]}, {"type": "image_caption", "bbox": [277, 357, 326, 372], "group_id": 0, "lines": [{"bbox": [278, 358, 326, 373], "spans": [{"bbox": [278, 358, 326, 373], "score": 1.0, "content": "Figure 7:", "type": "text"}], "index": 14}], "index": 14}], "index": 10.25}, {"type": "image", "bbox": [192, 391, 419, 624], "blocks": [{"type": "image_body", "bbox": [192, 391, 419, 624], "group_id": 1, "lines": [{"bbox": [192, 391, 419, 624], "spans": [{"bbox": [192, 391, 419, 624], "score": 0.857, "type": "image", "image_path": "171ccc85ab2cd22c5f9616b27b9031bf676f084fe1975b0b88aff7fe1648e461.jpg"}]}], "index": 22.5, "virtual_lines": [{"bbox": [192, 391, 419, 406.0], "spans": [], "index": 15}, {"bbox": [192, 406.0, 419, 421.0], "spans": [], "index": 16}, {"bbox": [192, 421.0, 419, 436.0], "spans": [], "index": 17}, {"bbox": [192, 436.0, 419, 451.0], "spans": [], "index": 18}, {"bbox": [192, 451.0, 419, 466.0], "spans": [], "index": 19}, {"bbox": [192, 466.0, 419, 481.0], "spans": [], "index": 20}, {"bbox": [192, 481.0, 419, 496.0], "spans": [], "index": 21}, {"bbox": [192, 496.0, 419, 511.0], "spans": [], "index": 22}, {"bbox": [192, 511.0, 419, 526.0], "spans": [], "index": 23}, {"bbox": [192, 526.0, 419, 541.0], "spans": [], "index": 24}, {"bbox": [192, 541.0, 419, 556.0], "spans": [], "index": 25}, {"bbox": [192, 556.0, 419, 571.0], "spans": [], "index": 26}, {"bbox": [192, 571.0, 419, 586.0], "spans": [], "index": 27}, {"bbox": [192, 586.0, 419, 601.0], "spans": [], "index": 28}, {"bbox": [192, 601.0, 419, 616.0], "spans": [], "index": 29}, {"bbox": [192, 616.0, 419, 631.0], "spans": [], "index": 30}]}, {"type": "image_caption", "bbox": [277, 650, 326, 664], "group_id": 1, "lines": [{"bbox": [278, 651, 326, 666], "spans": [{"bbox": [278, 651, 326, 666], "score": 1.0, "content": "Figure 8:", "type": "text"}], "index": 31}], "index": 31}], "index": 26.75}], "tables": [], "interline_equations": [], "discarded_blocks": [{"type": "discarded", "bbox": [298, 691, 312, 703], "lines": [{"bbox": [297, 692, 312, 705], "spans": [{"bbox": [297, 692, 312, 705], "score": 1.0, "content": "23", "type": "text"}]}]}], "need_drop": false, "drop_reason": [], "para_blocks": [{"type": "image", "bbox": [195, 129, 414, 335], "blocks": [{"type": "image_body", "bbox": [195, 129, 414, 335], "group_id": 0, "lines": [{"bbox": [195, 129, 414, 335], "spans": [{"bbox": [195, 129, 414, 335], "score": 0.938, "type": "image", "image_path": "afa6c1d4126b51f26085ef905548e66959d447ba989d9aae31ce44b4b2e53297.jpg"}]}], "index": 6.5, "virtual_lines": [{"bbox": [195, 129, 414, 144.0], "spans": [], "index": 0}, {"bbox": [195, 144.0, 414, 159.0], "spans": [], "index": 1}, {"bbox": [195, 159.0, 414, 174.0], "spans": [], "index": 2}, {"bbox": [195, 174.0, 414, 189.0], "spans": [], "index": 3}, {"bbox": [195, 189.0, 414, 204.0], "spans": [], "index": 4}, {"bbox": [195, 204.0, 414, 219.0], "spans": [], "index": 5}, {"bbox": [195, 219.0, 414, 234.0], "spans": [], "index": 6}, {"bbox": [195, 234.0, 414, 249.0], "spans": [], "index": 7}, {"bbox": [195, 249.0, 414, 264.0], "spans": [], "index": 8}, {"bbox": [195, 264.0, 414, 279.0], "spans": [], "index": 9}, {"bbox": [195, 279.0, 414, 294.0], "spans": [], "index": 10}, {"bbox": [195, 294.0, 414, 309.0], "spans": [], "index": 11}, {"bbox": [195, 309.0, 414, 324.0], "spans": [], "index": 12}, {"bbox": [195, 324.0, 414, 339.0], "spans": [], "index": 13}]}, {"type": "image_caption", "bbox": [277, 357, 326, 372], "group_id": 0, "lines": [{"bbox": [278, 358, 326, 373], "spans": [{"bbox": [278, 358, 326, 373], "score": 1.0, "content": "Figure 7:", "type": "text"}], "index": 14}], "index": 14}], "index": 10.25, "page_num": "page_22", "page_size": [612.0, 792.0]}, {"type": "image", "bbox": [192, 391, 419, 624], "blocks": [{"type": "image_body", "bbox": [192, 391, 419, 624], "group_id": 1, "lines": [{"bbox": [192, 391, 419, 624], "spans": [{"bbox": [192, 391, 419, 624], "score": 0.857, "type": "image", "image_path": "171ccc85ab2cd22c5f9616b27b9031bf676f084fe1975b0b88aff7fe1648e461.jpg"}]}], "index": 22.5, "virtual_lines": [{"bbox": [192, 391, 419, 406.0], "spans": [], "index": 15}, {"bbox": [192, 406.0, 419, 421.0], "spans": [], "index": 16}, {"bbox": [192, 421.0, 419, 436.0], "spans": [], "index": 17}, {"bbox": [192, 436.0, 419, 451.0], "spans": [], "index": 18}, {"bbox": [192, 451.0, 419, 466.0], "spans": [], "index": 19}, {"bbox": [192, 466.0, 419, 481.0], "spans": [], "index": 20}, {"bbox": [192, 481.0, 419, 496.0], "spans": [], "index": 21}, {"bbox": [192, 496.0, 419, 511.0], "spans": [], "index": 22}, {"bbox": [192, 511.0, 419, 526.0], "spans": [], "index": 23}, {"bbox": [192, 526.0, 419, 541.0], "spans": [], "index": 24}, {"bbox": [192, 541.0, 419, 556.0], "spans": [], "index": 25}, {"bbox": [192, 556.0, 419, 571.0], "spans": [], "index": 26}, {"bbox": [192, 571.0, 419, 586.0], "spans": [], "index": 27}, {"bbox": [192, 586.0, 419, 601.0], "spans": [], "index": 28}, {"bbox": [192, 601.0, 419, 616.0], "spans": [], "index": 29}, {"bbox": [192, 616.0, 419, 631.0], "spans": [], "index": 30}]}, {"type": "image_caption", "bbox": [277, 650, 326, 664], "group_id": 1, "lines": [{"bbox": [278, 651, 326, 666], "spans": [{"bbox": [278, 651, 326, 666], "score": 1.0, "content": "Figure 8:", "type": "text"}], "index": 31}], "index": 31}], "index": 26.75, "page_num": "page_22", "page_size": [612.0, 792.0]}]} |
|||
0002044v1 | 0 | # The Automorphisms of Affine Fusion Rings
Terry Gannon
Department of Mathematical Sciences, University of Alberta,
Edmonton, Canada, T6G 2G1
e-mail: [email protected]
# 1. Introduction
Verlinde’s formula [33]
arose first in rational conformal field theory (RCFT) as an extremely useful expression for
the dimensions of conformal blocks on a genus $$g$$ surface with $$t$$ punctures. $$\Phi$$ here is the
finite set of ‘primary fields’. The matrix $$S$$ comes from a representation of $$\mathrm{SL_{2}}(\mathbb{Z})$$ defined
by the chiral characters of the theory. Contrary to appearances, these numbers $$V_{\star\cdots\star}^{(g)}$$ will
always be nonnegative integers. See the excellent bibliography in [6] for references to the
physics literature.
These numbers are remarkable for also arising in several other contexts: for example,
as dimensions of spaces of generalised theta functions; as certain tensor product coefficients
in quantum groups and Hecke algebras at roots of 1 and Chevalley groups for $$\mathbb{F}_{p}$$ ; as
certain knot invariants for 3-manifolds; as composition laws of the superselection sectors in
algebraic quantum field theories; as dimensions of spaces of intertwiners in vertex operator
algebras (VOAs); in von Neumann algebras as “Connes’ fusion”; in quantum cohomology;
and in Lusztig’s exotic Fourier transform. See for example [7,20,19,32,11,10,36,37,26], and
references therein.
The more fundamental of these numbers are those corresponding to a sphere with three
punctures. It is more convenient to write these in the form (called fusion coefficients)
where $$C$$ is a permutation of $$\Phi$$ called charge-conjugation and will be defined below. The
fusion coefficients uniquely determine all other Verlinde dimensions (1.1a). The symmetries
of the numbers (1.1b), i.e. the permutations $$\pi$$ of $$\Phi$$ obeying
are precisely the symmetries of all numbers of the form (1.1a).
| <h1>The Automorphisms of Affine Fusion Rings</h1>
<p>Terry Gannon</p>
<p>Department of Mathematical Sciences, University of Alberta,
Edmonton, Canada, T6G 2G1
e-mail: [email protected]</p>
<h1>1. Introduction</h1>
<p>Verlinde’s formula [33]</p>
<p>arose first in rational conformal field theory (RCFT) as an extremely useful expression for
the dimensions of conformal blocks on a genus $$g$$ surface with $$t$$ punctures. $$\Phi$$ here is the
finite set of ‘primary fields’. The matrix $$S$$ comes from a representation of $$\mathrm{SL_{2}}(\mathbb{Z})$$ defined
by the chiral characters of the theory. Contrary to appearances, these numbers $$V_{\star\cdots\star}^{(g)}$$ will
always be nonnegative integers. See the excellent bibliography in [6] for references to the
physics literature.</p>
<p>These numbers are remarkable for also arising in several other contexts: for example,
as dimensions of spaces of generalised theta functions; as certain tensor product coefficients
in quantum groups and Hecke algebras at roots of 1 and Chevalley groups for $$\mathbb{F}_{p}$$ ; as
certain knot invariants for 3-manifolds; as composition laws of the superselection sectors in
algebraic quantum field theories; as dimensions of spaces of intertwiners in vertex operator
algebras (VOAs); in von Neumann algebras as “Connes’ fusion”; in quantum cohomology;
and in Lusztig’s exotic Fourier transform. See for example [7,20,19,32,11,10,36,37,26], and
references therein.</p>
<p>The more fundamental of these numbers are those corresponding to a sphere with three
punctures. It is more convenient to write these in the form (called fusion coefficients)</p>
<p>where $$C$$ is a permutation of $$\Phi$$ called charge-conjugation and will be defined below. The
fusion coefficients uniquely determine all other Verlinde dimensions (1.1a). The symmetries
of the numbers (1.1b), i.e. the permutations $$\pi$$ of $$\Phi$$ obeying</p>
<p>are precisely the symmetries of all numbers of the form (1.1a).</p>
| [{"type": "title", "coordinates": [140, 66, 471, 87], "content": "The Automorphisms of Affine Fusion Rings", "block_type": "title", "index": 1}, {"type": "text", "coordinates": [260, 115, 351, 129], "content": "Terry Gannon", "block_type": "text", "index": 2}, {"type": "text", "coordinates": [147, 137, 465, 185], "content": "Department of Mathematical Sciences, University of Alberta,\nEdmonton, Canada, T6G 2G1\ne-mail: [email protected]", "block_type": "text", "index": 3}, {"type": "title", "coordinates": [255, 214, 355, 228], "content": "1. Introduction", "block_type": "title", "index": 4}, {"type": "text", "coordinates": [93, 243, 216, 258], "content": "Verlinde\u2019s formula [33]", "block_type": "text", "index": 5}, {"type": "interline_equation", "coordinates": [209, 272, 402, 308], "content": "", "block_type": "interline_equation", "index": 6}, {"type": "text", "coordinates": [70, 318, 541, 408], "content": "arose first in rational conformal field theory (RCFT) as an extremely useful expression for\nthe dimensions of conformal blocks on a genus $$g$$ surface with $$t$$ punctures. $$\\Phi$$ here is the\nfinite set of \u2018primary fields\u2019. The matrix $$S$$ comes from a representation of $$\\mathrm{SL_{2}}(\\mathbb{Z})$$ defined\nby the chiral characters of the theory. Contrary to appearances, these numbers $$V_{\\star\\cdots\\star}^{(g)}$$ will\nalways be nonnegative integers. See the excellent bibliography in [6] for references to the\nphysics literature.", "block_type": "text", "index": 7}, {"type": "text", "coordinates": [70, 408, 541, 523], "content": "These numbers are remarkable for also arising in several other contexts: for example,\nas dimensions of spaces of generalised theta functions; as certain tensor product coefficients\nin quantum groups and Hecke algebras at roots of 1 and Chevalley groups for $$\\mathbb{F}_{p}$$ ; as\ncertain knot invariants for 3-manifolds; as composition laws of the superselection sectors in\nalgebraic quantum field theories; as dimensions of spaces of intertwiners in vertex operator\nalgebras (VOAs); in von Neumann algebras as \u201cConnes\u2019 fusion\u201d; in quantum cohomology;\nand in Lusztig\u2019s exotic Fourier transform. See for example [7,20,19,32,11,10,36,37,26], and\nreferences therein.", "block_type": "text", "index": 8}, {"type": "text", "coordinates": [70, 523, 541, 552], "content": "The more fundamental of these numbers are those corresponding to a sphere with three\npunctures. It is more convenient to write these in the form (called fusion coefficients)", "block_type": "text", "index": 9}, {"type": "interline_equation", "coordinates": [223, 567, 387, 602], "content": "", "block_type": "interline_equation", "index": 10}, {"type": "text", "coordinates": [70, 613, 541, 657], "content": "where $$C$$ is a permutation of $$\\Phi$$ called charge-conjugation and will be defined below. The\nfusion coefficients uniquely determine all other Verlinde dimensions (1.1a). The symmetries\nof the numbers (1.1b), i.e. the permutations $$\\pi$$ of $$\\Phi$$ obeying", "block_type": "text", "index": 11}, {"type": "interline_equation", "coordinates": [266, 673, 344, 689], "content": "", "block_type": "interline_equation", "index": 12}, {"type": "text", "coordinates": [70, 700, 399, 715], "content": "are precisely the symmetries of all numbers of the form (1.1a).", "block_type": "text", "index": 13}] | [{"type": "text", "coordinates": [141, 69, 469, 88], "content": "The Automorphisms of Affine Fusion Rings", "score": 1.0, "index": 1}, {"type": "text", "coordinates": [261, 117, 351, 131], "content": "Terry Gannon", "score": 1.0, "index": 2}, {"type": "text", "coordinates": [147, 140, 464, 153], "content": "Department of Mathematical Sciences, University of Alberta,", "score": 1.0, "index": 3}, {"type": "text", "coordinates": [227, 154, 386, 167], "content": "Edmonton, Canada, T6G 2G1", "score": 1.0, "index": 4}, {"type": "text", "coordinates": [215, 173, 396, 185], "content": "e-mail: [email protected]", "score": 1.0, "index": 5}, {"type": "text", "coordinates": [257, 216, 355, 229], "content": "1. Introduction", "score": 1.0, "index": 6}, {"type": "text", "coordinates": [95, 245, 213, 259], "content": "Verlinde\u2019s formula [33]", "score": 1.0, "index": 7}, {"type": "interline_equation", "coordinates": [209, 272, 402, 308], "content": "V_{a^{1}\\ldots a^{t}}^{(g)}=\\sum_{b\\in\\Phi}(S_{0b})^{2(1-g)}\\frac{S_{a^{1}b}}{S_{0b}}\\cdot\\cdot\\cdot\\frac{S_{a^{t}b}}{S_{0b}}", "score": 0.94, "index": 8}, {"type": "text", "coordinates": [70, 322, 541, 338], "content": "arose first in rational conformal field theory (RCFT) as an extremely useful expression for", "score": 1.0, "index": 9}, {"type": "text", "coordinates": [70, 336, 321, 352], "content": "the dimensions of conformal blocks on a genus ", "score": 1.0, "index": 10}, {"type": "inline_equation", "coordinates": [322, 342, 328, 349], "content": "g", "score": 0.89, "index": 11}, {"type": "text", "coordinates": [328, 336, 400, 352], "content": " surface with ", "score": 1.0, "index": 12}, {"type": "inline_equation", "coordinates": [401, 339, 405, 347], "content": "t", "score": 0.86, "index": 13}, {"type": "text", "coordinates": [406, 336, 470, 352], "content": " punctures. ", "score": 1.0, "index": 14}, {"type": "inline_equation", "coordinates": [471, 338, 479, 347], "content": "\\Phi", "score": 0.89, "index": 15}, {"type": "text", "coordinates": [480, 336, 541, 352], "content": " here is the", "score": 1.0, "index": 16}, {"type": "text", "coordinates": [71, 352, 284, 366], "content": "finite set of \u2018primary fields\u2019. The matrix ", "score": 1.0, "index": 17}, {"type": "inline_equation", "coordinates": [285, 353, 293, 362], "content": "S", "score": 0.9, "index": 18}, {"type": "text", "coordinates": [293, 352, 461, 366], "content": " comes from a representation of ", "score": 1.0, "index": 19}, {"type": "inline_equation", "coordinates": [461, 352, 498, 364], "content": "\\mathrm{SL_{2}}(\\mathbb{Z})", "score": 0.92, "index": 20}, {"type": "text", "coordinates": [499, 352, 541, 366], "content": " defined", "score": 1.0, "index": 21}, {"type": "text", "coordinates": [68, 361, 490, 386], "content": "by the chiral characters of the theory. Contrary to appearances, these numbers ", "score": 1.0, "index": 22}, {"type": "inline_equation", "coordinates": [491, 365, 516, 380], "content": "V_{\\star\\cdots\\star}^{(g)}", "score": 0.93, "index": 23}, {"type": "text", "coordinates": [517, 361, 545, 386], "content": "will", "score": 1.0, "index": 24}, {"type": "text", "coordinates": [71, 382, 541, 396], "content": "always be nonnegative integers. See the excellent bibliography in [6] for references to the", "score": 1.0, "index": 25}, {"type": "text", "coordinates": [70, 397, 165, 410], "content": "physics literature.", "score": 1.0, "index": 26}, {"type": "text", "coordinates": [94, 410, 540, 425], "content": "These numbers are remarkable for also arising in several other contexts: for example,", "score": 1.0, "index": 27}, {"type": "text", "coordinates": [71, 426, 541, 439], "content": "as dimensions of spaces of generalised theta functions; as certain tensor product coefficients", "score": 1.0, "index": 28}, {"type": "text", "coordinates": [69, 439, 505, 455], "content": "in quantum groups and Hecke algebras at roots of 1 and Chevalley groups for ", "score": 1.0, "index": 29}, {"type": "inline_equation", "coordinates": [506, 441, 519, 453], "content": "\\mathbb{F}_{p}", "score": 0.91, "index": 30}, {"type": "text", "coordinates": [519, 439, 542, 455], "content": "; as", "score": 1.0, "index": 31}, {"type": "text", "coordinates": [70, 454, 540, 467], "content": "certain knot invariants for 3-manifolds; as composition laws of the superselection sectors in", "score": 1.0, "index": 32}, {"type": "text", "coordinates": [72, 469, 540, 482], "content": "algebraic quantum field theories; as dimensions of spaces of intertwiners in vertex operator", "score": 1.0, "index": 33}, {"type": "text", "coordinates": [70, 482, 541, 497], "content": "algebras (VOAs); in von Neumann algebras as \u201cConnes\u2019 fusion\u201d; in quantum cohomology;", "score": 1.0, "index": 34}, {"type": "text", "coordinates": [70, 496, 541, 511], "content": "and in Lusztig\u2019s exotic Fourier transform. See for example [7,20,19,32,11,10,36,37,26], and", "score": 1.0, "index": 35}, {"type": "text", "coordinates": [71, 512, 167, 525], "content": "references therein.", "score": 1.0, "index": 36}, {"type": "text", "coordinates": [94, 525, 541, 540], "content": "The more fundamental of these numbers are those corresponding to a sphere with three", "score": 1.0, "index": 37}, {"type": "text", "coordinates": [70, 540, 520, 555], "content": "punctures. It is more convenient to write these in the form (called fusion coefficients)", "score": 1.0, "index": 38}, {"type": "interline_equation", "coordinates": [223, 567, 387, 602], "content": "N_{a b}^{c}\\,{\\overset{\\mathrm{def}}{=}}\\,V_{a,b,C c}^{(0)}=\\sum_{d\\in\\Phi}{\\frac{S_{a d}S_{b d}S_{c d}^{*}}{S_{0d}}}", "score": 0.95, "index": 39}, {"type": "text", "coordinates": [71, 616, 106, 631], "content": "where ", "score": 1.0, "index": 40}, {"type": "inline_equation", "coordinates": [106, 618, 116, 627], "content": "C", "score": 0.91, "index": 41}, {"type": "text", "coordinates": [116, 616, 225, 631], "content": " is a permutation of ", "score": 1.0, "index": 42}, {"type": "inline_equation", "coordinates": [226, 618, 234, 627], "content": "\\Phi", "score": 0.88, "index": 43}, {"type": "text", "coordinates": [235, 616, 541, 631], "content": " called charge-conjugation and will be defined below. The", "score": 1.0, "index": 44}, {"type": "text", "coordinates": [70, 630, 542, 645], "content": "fusion coefficients uniquely determine all other Verlinde dimensions (1.1a). The symmetries", "score": 1.0, "index": 45}, {"type": "text", "coordinates": [70, 643, 305, 660], "content": "of the numbers (1.1b), i.e. the permutations ", "score": 1.0, "index": 46}, {"type": "inline_equation", "coordinates": [305, 649, 313, 655], "content": "\\pi", "score": 0.88, "index": 47}, {"type": "text", "coordinates": [313, 643, 330, 660], "content": " of ", "score": 1.0, "index": 48}, {"type": "inline_equation", "coordinates": [330, 646, 339, 655], "content": "\\Phi", "score": 0.9, "index": 49}, {"type": "text", "coordinates": [339, 643, 385, 660], "content": " obeying", "score": 1.0, "index": 50}, {"type": "interline_equation", "coordinates": [266, 673, 344, 689], "content": "{\\cal N}_{\\pi a,\\pi b}^{\\pi c}={\\cal N}_{a b}^{c}\\ ,", "score": 0.93, "index": 51}, {"type": "text", "coordinates": [70, 703, 398, 717], "content": "are precisely the symmetries of all numbers of the form (1.1a).", "score": 1.0, "index": 52}] | [] | [{"type": "block", "coordinates": [209, 272, 402, 308], "content": "", "caption": ""}, {"type": "block", "coordinates": [223, 567, 387, 602], "content": "", "caption": ""}, {"type": "block", "coordinates": [266, 673, 344, 689], "content": "", "caption": ""}, {"type": "inline", "coordinates": [322, 342, 328, 349], "content": "g", "caption": ""}, {"type": "inline", "coordinates": [401, 339, 405, 347], "content": "t", "caption": ""}, {"type": "inline", "coordinates": [471, 338, 479, 347], "content": "\\Phi", "caption": ""}, {"type": "inline", "coordinates": [285, 353, 293, 362], "content": "S", "caption": ""}, {"type": "inline", "coordinates": [461, 352, 498, 364], "content": "\\mathrm{SL_{2}}(\\mathbb{Z})", "caption": ""}, {"type": "inline", "coordinates": [491, 365, 516, 380], "content": "V_{\\star\\cdots\\star}^{(g)}", "caption": ""}, {"type": "inline", "coordinates": [506, 441, 519, 453], "content": "\\mathbb{F}_{p}", "caption": ""}, {"type": "inline", "coordinates": [106, 618, 116, 627], "content": "C", "caption": ""}, {"type": "inline", "coordinates": [226, 618, 234, 627], "content": "\\Phi", "caption": ""}, {"type": "inline", "coordinates": [305, 649, 313, 655], "content": "\\pi", "caption": ""}, {"type": "inline", "coordinates": [330, 646, 339, 655], "content": "\\Phi", "caption": ""}] | [] | [612.0, 792.0] | [{"type": "text", "text": "The Automorphisms of Affine Fusion Rings ", "text_level": 1, "page_idx": 0}, {"type": "text", "text": "Terry Gannon ", "page_idx": 0}, {"type": "text", "text": "Department of Mathematical Sciences, University of Alberta, Edmonton, Canada, T6G 2G1 e-mail: [email protected] ", "page_idx": 0}, {"type": "text", "text": "1. Introduction ", "text_level": 1, "page_idx": 0}, {"type": "text", "text": "Verlinde\u2019s formula [33] ", "page_idx": 0}, {"type": "equation", "text": "$$\nV_{a^{1}\\ldots a^{t}}^{(g)}=\\sum_{b\\in\\Phi}(S_{0b})^{2(1-g)}\\frac{S_{a^{1}b}}{S_{0b}}\\cdot\\cdot\\cdot\\frac{S_{a^{t}b}}{S_{0b}}\n$$", "text_format": "latex", "page_idx": 0}, {"type": "text", "text": "arose first in rational conformal field theory (RCFT) as an extremely useful expression for the dimensions of conformal blocks on a genus $g$ surface with $t$ punctures. $\\Phi$ here is the finite set of \u2018primary fields\u2019. The matrix $S$ comes from a representation of $\\mathrm{SL_{2}}(\\mathbb{Z})$ defined by the chiral characters of the theory. Contrary to appearances, these numbers $V_{\\star\\cdots\\star}^{(g)}$ will always be nonnegative integers. See the excellent bibliography in [6] for references to the physics literature. ", "page_idx": 0}, {"type": "text", "text": "These numbers are remarkable for also arising in several other contexts: for example, as dimensions of spaces of generalised theta functions; as certain tensor product coefficients in quantum groups and Hecke algebras at roots of 1 and Chevalley groups for $\\mathbb{F}_{p}$ ; as certain knot invariants for 3-manifolds; as composition laws of the superselection sectors in algebraic quantum field theories; as dimensions of spaces of intertwiners in vertex operator algebras (VOAs); in von Neumann algebras as \u201cConnes\u2019 fusion\u201d; in quantum cohomology; and in Lusztig\u2019s exotic Fourier transform. See for example [7,20,19,32,11,10,36,37,26], and references therein. ", "page_idx": 0}, {"type": "text", "text": "The more fundamental of these numbers are those corresponding to a sphere with three punctures. It is more convenient to write these in the form (called fusion coefficients) ", "page_idx": 0}, {"type": "equation", "text": "$$\nN_{a b}^{c}\\,{\\overset{\\mathrm{def}}{=}}\\,V_{a,b,C c}^{(0)}=\\sum_{d\\in\\Phi}{\\frac{S_{a d}S_{b d}S_{c d}^{*}}{S_{0d}}}\n$$", "text_format": "latex", "page_idx": 0}, {"type": "text", "text": "where $C$ is a permutation of $\\Phi$ called charge-conjugation and will be defined below. The fusion coefficients uniquely determine all other Verlinde dimensions (1.1a). The symmetries of the numbers (1.1b), i.e. the permutations $\\pi$ of $\\Phi$ obeying ", "page_idx": 0}, {"type": "equation", "text": "$$\n{\\cal N}_{\\pi a,\\pi b}^{\\pi c}={\\cal N}_{a b}^{c}\\ ,\n$$", "text_format": "latex", "page_idx": 0}, {"type": "text", "text": "are precisely the symmetries of all numbers of the form (1.1a). ", "page_idx": 0}] | [{"category_id": 1, "poly": [196, 1136, 1504, 1136, 1504, 1453, 196, 1453], "score": 0.986}, {"category_id": 1, "poly": [197, 886, 1505, 886, 1505, 1135, 197, 1135], "score": 0.985}, {"category_id": 1, "poly": [195, 1705, 1504, 1705, 1504, 1826, 195, 1826], "score": 0.978}, {"category_id": 1, "poly": [196, 1455, 1505, 1455, 1505, 1536, 196, 1536], "score": 0.961}, {"category_id": 8, "poly": [622, 1568, 1081, 1568, 1081, 1671, 622, 1671], "score": 0.95}, {"category_id": 1, "poly": [196, 1946, 1109, 1946, 1109, 1988, 196, 1988], "score": 0.935}, {"category_id": 8, "poly": [741, 1862, 958, 1862, 958, 1913, 741, 1913], "score": 0.928}, {"category_id": 1, "poly": [261, 676, 600, 676, 600, 717, 261, 717], "score": 0.925}, {"category_id": 0, "poly": [391, 185, 1311, 185, 1311, 242, 391, 242], "score": 0.897}, {"category_id": 9, "poly": [1412, 774, 1501, 774, 1501, 816, 1412, 816], "score": 0.894}, {"category_id": 9, "poly": [1416, 1592, 1500, 1592, 1500, 1633, 1416, 1633], "score": 0.89}, {"category_id": 9, "poly": [1429, 1866, 1500, 1866, 1500, 1906, 1429, 1906], "score": 0.883}, {"category_id": 0, "poly": [711, 595, 988, 595, 988, 635, 711, 635], "score": 0.859}, {"category_id": 8, "poly": [579, 750, 1121, 750, 1121, 853, 579, 853], "score": 0.81}, {"category_id": 2, "poly": [38, 464, 107, 464, 107, 1550, 38, 1550], "score": 0.781}, {"category_id": 1, "poly": [724, 320, 977, 320, 977, 360, 724, 360], "score": 0.588}, {"category_id": 2, "poly": [42, 458, 106, 458, 106, 1542, 42, 1542], "score": 0.477}, {"category_id": 1, "poly": [409, 381, 1292, 381, 1292, 514, 409, 514], "score": 0.437}, {"category_id": 1, "poly": [592, 474, 1106, 474, 1106, 514, 592, 514], "score": 0.35}, {"category_id": 8, "poly": [579, 750, 1119, 750, 1119, 853, 579, 853], "score": 0.3}, {"category_id": 14, "poly": [622, 1575, 1076, 1575, 1076, 1673, 622, 1673], "score": 0.95, "latex": "N_{a b}^{c}\\,{\\overset{\\mathrm{def}}{=}}\\,V_{a,b,C c}^{(0)}=\\sum_{d\\in\\Phi}{\\frac{S_{a d}S_{b d}S_{c d}^{*}}{S_{0d}}}"}, {"category_id": 14, "poly": [582, 758, 1119, 758, 1119, 856, 582, 856], "score": 0.94, "latex": "V_{a^{1}\\ldots a^{t}}^{(g)}=\\sum_{b\\in\\Phi}(S_{0b})^{2(1-g)}\\frac{S_{a^{1}b}}{S_{0b}}\\cdot\\cdot\\cdot\\frac{S_{a^{t}b}}{S_{0b}}"}, {"category_id": 13, "poly": [1364, 1015, 1436, 1015, 1436, 1056, 1364, 1056], "score": 0.93, "latex": "V_{\\star\\cdots\\star}^{(g)}"}, {"category_id": 14, "poly": [741, 1870, 957, 1870, 957, 1914, 741, 1914], "score": 0.93, "latex": "{\\cal N}_{\\pi a,\\pi b}^{\\pi c}={\\cal N}_{a b}^{c}\\ ,"}, {"category_id": 13, "poly": [1283, 979, 1386, 979, 1386, 1013, 1283, 1013], "score": 0.92, "latex": "\\mathrm{SL_{2}}(\\mathbb{Z})"}, {"category_id": 13, "poly": [1406, 1227, 1443, 1227, 1443, 1261, 1406, 1261], "score": 0.91, "latex": "\\mathbb{F}_{p}"}, {"category_id": 13, "poly": [296, 1718, 323, 1718, 323, 1742, 296, 1742], "score": 0.91, "latex": "C"}, {"category_id": 13, "poly": [792, 981, 815, 981, 815, 1006, 792, 1006], "score": 0.9, "latex": "S"}, {"category_id": 13, "poly": [918, 1796, 943, 1796, 943, 1820, 918, 1820], "score": 0.9, "latex": "\\Phi"}, {"category_id": 13, "poly": [895, 950, 912, 950, 912, 972, 895, 972], "score": 0.89, "latex": "g"}, {"category_id": 13, "poly": [1309, 941, 1333, 941, 1333, 966, 1309, 966], "score": 0.89, "latex": "\\Phi"}, {"category_id": 13, "poly": [628, 1717, 652, 1717, 652, 1742, 628, 1742], "score": 0.88, "latex": "\\Phi"}, {"category_id": 13, "poly": [849, 1805, 870, 1805, 870, 1820, 849, 1820], "score": 0.88, "latex": "\\pi"}, {"category_id": 13, "poly": [1114, 943, 1127, 943, 1127, 966, 1114, 966], "score": 0.86, "latex": "t"}, {"category_id": 15, "poly": [262.0, 1140.0, 1500.0, 1140.0, 1500.0, 1182.0, 262.0, 1182.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [199.0, 1184.0, 1503.0, 1184.0, 1503.0, 1221.0, 199.0, 1221.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [194.0, 1221.0, 1405.0, 1221.0, 1405.0, 1266.0, 194.0, 1266.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1444.0, 1221.0, 1506.0, 1221.0, 1506.0, 1266.0, 1444.0, 1266.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [197.0, 1263.0, 1501.0, 1263.0, 1501.0, 1299.0, 197.0, 1299.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [200.0, 1303.0, 1501.0, 1303.0, 1501.0, 1339.0, 200.0, 1339.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [197.0, 1339.0, 1503.0, 1339.0, 1503.0, 1383.0, 197.0, 1383.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [197.0, 1378.0, 1504.0, 1378.0, 1504.0, 1422.0, 197.0, 1422.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [199.0, 1423.0, 464.0, 1423.0, 464.0, 1460.0, 199.0, 1460.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [197.0, 895.0, 1504.0, 895.0, 1504.0, 939.0, 197.0, 939.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [197.0, 936.0, 894.0, 936.0, 894.0, 979.0, 197.0, 979.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [913.0, 936.0, 1113.0, 936.0, 1113.0, 979.0, 913.0, 979.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1128.0, 936.0, 1308.0, 936.0, 1308.0, 979.0, 1128.0, 979.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1334.0, 936.0, 1505.0, 936.0, 1505.0, 979.0, 1334.0, 979.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [198.0, 978.0, 791.0, 978.0, 791.0, 1017.0, 198.0, 1017.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [816.0, 978.0, 1282.0, 978.0, 1282.0, 1017.0, 816.0, 1017.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1387.0, 978.0, 1504.0, 978.0, 1504.0, 1017.0, 1387.0, 1017.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [190.0, 1004.0, 1363.0, 1004.0, 1363.0, 1073.0, 190.0, 1073.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1437.0, 1004.0, 1514.0, 1004.0, 1514.0, 1073.0, 1437.0, 1073.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [198.0, 1063.0, 1504.0, 1063.0, 1504.0, 1102.0, 198.0, 1102.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [197.0, 1104.0, 459.0, 1104.0, 459.0, 1141.0, 197.0, 1141.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1386.0, 1028.0, 1444.0, 1028.0, 1444.0, 1050.0, 1386.0, 1050.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [199.0, 1712.0, 295.0, 1712.0, 295.0, 1754.0, 199.0, 1754.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [324.0, 1712.0, 627.0, 1712.0, 627.0, 1754.0, 324.0, 1754.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [653.0, 1712.0, 1504.0, 1712.0, 1504.0, 1754.0, 653.0, 1754.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [196.0, 1750.0, 1506.0, 1750.0, 1506.0, 1793.0, 196.0, 1793.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [197.0, 1788.0, 848.0, 1788.0, 848.0, 1835.0, 197.0, 1835.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [871.0, 1788.0, 917.0, 1788.0, 917.0, 1835.0, 871.0, 1835.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [944.0, 1788.0, 1071.0, 1788.0, 1071.0, 1835.0, 944.0, 1835.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [262.0, 1459.0, 1504.0, 1459.0, 1504.0, 1501.0, 262.0, 1501.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [197.0, 1501.0, 1446.0, 1501.0, 1446.0, 1542.0, 197.0, 1542.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [197.0, 1953.0, 1108.0, 1953.0, 1108.0, 1994.0, 197.0, 1994.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [266.0, 682.0, 593.0, 682.0, 593.0, 721.0, 266.0, 721.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [393.0, 192.0, 1305.0, 192.0, 1305.0, 246.0, 393.0, 246.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [714.0, 601.0, 987.0, 601.0, 987.0, 637.0, 714.0, 637.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [38.0, 468.0, 104.0, 468.0, 104.0, 1547.0, 38.0, 1547.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [725.0, 327.0, 976.0, 327.0, 976.0, 364.0, 725.0, 364.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [38.0, 466.0, 106.0, 466.0, 106.0, 1547.0, 38.0, 1547.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [410.0, 389.0, 1290.0, 389.0, 1290.0, 427.0, 410.0, 427.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [631.0, 430.0, 1073.0, 430.0, 1073.0, 466.0, 631.0, 466.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [599.0, 483.0, 1102.0, 483.0, 1102.0, 515.0, 599.0, 515.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [598.0, 481.0, 1104.0, 481.0, 1104.0, 518.0, 598.0, 518.0], "score": 1.0, "text": ""}] | {"preproc_blocks": [{"type": "title", "bbox": [140, 66, 471, 87], "lines": [{"bbox": [141, 69, 469, 88], "spans": [{"bbox": [141, 69, 469, 88], "score": 1.0, "content": "The Automorphisms of Affine Fusion Rings", "type": "text"}], "index": 0}], "index": 0}, {"type": "text", "bbox": [260, 115, 351, 129], "lines": [{"bbox": [261, 117, 351, 131], "spans": [{"bbox": [261, 117, 351, 131], "score": 1.0, "content": "Terry Gannon", "type": "text"}], "index": 1}], "index": 1}, {"type": "text", "bbox": [147, 137, 465, 185], "lines": [{"bbox": [147, 140, 464, 153], "spans": [{"bbox": [147, 140, 464, 153], "score": 1.0, "content": "Department of Mathematical Sciences, University of Alberta,", "type": "text"}], "index": 2}, {"bbox": [227, 154, 386, 167], "spans": [{"bbox": [227, 154, 386, 167], "score": 1.0, "content": "Edmonton, Canada, T6G 2G1", "type": "text"}], "index": 3}, {"bbox": [215, 173, 396, 185], "spans": [{"bbox": [215, 173, 396, 185], "score": 1.0, "content": "e-mail: [email protected]", "type": "text"}], "index": 4}], "index": 3}, {"type": "title", "bbox": [255, 214, 355, 228], "lines": [{"bbox": [257, 216, 355, 229], "spans": [{"bbox": [257, 216, 355, 229], "score": 1.0, "content": "1. Introduction", "type": "text"}], "index": 5}], "index": 5}, {"type": "text", "bbox": [93, 243, 216, 258], "lines": [{"bbox": [95, 245, 213, 259], "spans": [{"bbox": [95, 245, 213, 259], "score": 1.0, "content": "Verlinde\u2019s formula [33]", "type": "text"}], "index": 6}], "index": 6}, {"type": "interline_equation", "bbox": [209, 272, 402, 308], "lines": [{"bbox": [209, 272, 402, 308], "spans": [{"bbox": [209, 272, 402, 308], "score": 0.94, "content": "V_{a^{1}\\ldots a^{t}}^{(g)}=\\sum_{b\\in\\Phi}(S_{0b})^{2(1-g)}\\frac{S_{a^{1}b}}{S_{0b}}\\cdot\\cdot\\cdot\\frac{S_{a^{t}b}}{S_{0b}}", "type": "interline_equation"}], "index": 7}], "index": 7}, {"type": "text", "bbox": [70, 318, 541, 408], "lines": [{"bbox": [70, 322, 541, 338], "spans": [{"bbox": [70, 322, 541, 338], "score": 1.0, "content": "arose first in rational conformal field theory (RCFT) as an extremely useful expression for", "type": "text"}], "index": 8}, {"bbox": [70, 336, 541, 352], "spans": [{"bbox": [70, 336, 321, 352], "score": 1.0, "content": "the dimensions of conformal blocks on a genus ", "type": "text"}, {"bbox": [322, 342, 328, 349], "score": 0.89, "content": "g", "type": "inline_equation", "height": 7, "width": 6}, {"bbox": [328, 336, 400, 352], "score": 1.0, "content": " surface with ", "type": "text"}, {"bbox": [401, 339, 405, 347], "score": 0.86, "content": "t", "type": "inline_equation", "height": 8, "width": 4}, {"bbox": [406, 336, 470, 352], "score": 1.0, "content": " punctures. ", "type": "text"}, {"bbox": [471, 338, 479, 347], "score": 0.89, "content": "\\Phi", "type": "inline_equation", "height": 9, "width": 8}, {"bbox": [480, 336, 541, 352], "score": 1.0, "content": " here is the", "type": "text"}], "index": 9}, {"bbox": [71, 352, 541, 366], "spans": [{"bbox": [71, 352, 284, 366], "score": 1.0, "content": "finite set of \u2018primary fields\u2019. The matrix ", "type": "text"}, {"bbox": [285, 353, 293, 362], "score": 0.9, "content": "S", "type": "inline_equation", "height": 9, "width": 8}, {"bbox": [293, 352, 461, 366], "score": 1.0, "content": " comes from a representation of ", "type": "text"}, {"bbox": [461, 352, 498, 364], "score": 0.92, "content": "\\mathrm{SL_{2}}(\\mathbb{Z})", "type": "inline_equation", "height": 12, "width": 37}, {"bbox": [499, 352, 541, 366], "score": 1.0, "content": " defined", "type": "text"}], "index": 10}, {"bbox": [68, 361, 545, 386], "spans": [{"bbox": [68, 361, 490, 386], "score": 1.0, "content": "by the chiral characters of the theory. Contrary to appearances, these numbers ", "type": "text"}, {"bbox": [491, 365, 516, 380], "score": 0.93, "content": "V_{\\star\\cdots\\star}^{(g)}", "type": "inline_equation", "height": 15, "width": 25}, {"bbox": [517, 361, 545, 386], "score": 1.0, "content": "will", "type": "text"}], "index": 11}, {"bbox": [71, 382, 541, 396], "spans": [{"bbox": [71, 382, 541, 396], "score": 1.0, "content": "always be nonnegative integers. See the excellent bibliography in [6] for references to the", "type": "text"}], "index": 12}, {"bbox": [70, 397, 165, 410], "spans": [{"bbox": [70, 397, 165, 410], "score": 1.0, "content": "physics literature.", "type": "text"}], "index": 13}], "index": 10.5}, {"type": "text", "bbox": [70, 408, 541, 523], "lines": [{"bbox": [94, 410, 540, 425], "spans": [{"bbox": [94, 410, 540, 425], "score": 1.0, "content": "These numbers are remarkable for also arising in several other contexts: for example,", "type": "text"}], "index": 14}, {"bbox": [71, 426, 541, 439], "spans": [{"bbox": [71, 426, 541, 439], "score": 1.0, "content": "as dimensions of spaces of generalised theta functions; as certain tensor product coefficients", "type": "text"}], "index": 15}, {"bbox": [69, 439, 542, 455], "spans": [{"bbox": [69, 439, 505, 455], "score": 1.0, "content": "in quantum groups and Hecke algebras at roots of 1 and Chevalley groups for ", "type": "text"}, {"bbox": [506, 441, 519, 453], "score": 0.91, "content": "\\mathbb{F}_{p}", "type": "inline_equation", "height": 12, "width": 13}, {"bbox": [519, 439, 542, 455], "score": 1.0, "content": "; as", "type": "text"}], "index": 16}, {"bbox": [70, 454, 540, 467], "spans": [{"bbox": [70, 454, 540, 467], "score": 1.0, "content": "certain knot invariants for 3-manifolds; as composition laws of the superselection sectors in", "type": "text"}], "index": 17}, {"bbox": [72, 469, 540, 482], "spans": [{"bbox": [72, 469, 540, 482], "score": 1.0, "content": "algebraic quantum field theories; as dimensions of spaces of intertwiners in vertex operator", "type": "text"}], "index": 18}, {"bbox": [70, 482, 541, 497], "spans": [{"bbox": [70, 482, 541, 497], "score": 1.0, "content": "algebras (VOAs); in von Neumann algebras as \u201cConnes\u2019 fusion\u201d; in quantum cohomology;", "type": "text"}], "index": 19}, {"bbox": [70, 496, 541, 511], "spans": [{"bbox": [70, 496, 541, 511], "score": 1.0, "content": "and in Lusztig\u2019s exotic Fourier transform. See for example [7,20,19,32,11,10,36,37,26], and", "type": "text"}], "index": 20}, {"bbox": [71, 512, 167, 525], "spans": [{"bbox": [71, 512, 167, 525], "score": 1.0, "content": "references therein.", "type": "text"}], "index": 21}], "index": 17.5}, {"type": "text", "bbox": [70, 523, 541, 552], "lines": [{"bbox": [94, 525, 541, 540], "spans": [{"bbox": [94, 525, 541, 540], "score": 1.0, "content": "The more fundamental of these numbers are those corresponding to a sphere with three", "type": "text"}], "index": 22}, {"bbox": [70, 540, 520, 555], "spans": [{"bbox": [70, 540, 520, 555], "score": 1.0, "content": "punctures. It is more convenient to write these in the form (called fusion coefficients)", "type": "text"}], "index": 23}], "index": 22.5}, {"type": "interline_equation", "bbox": [223, 567, 387, 602], "lines": [{"bbox": [223, 567, 387, 602], "spans": [{"bbox": [223, 567, 387, 602], "score": 0.95, "content": "N_{a b}^{c}\\,{\\overset{\\mathrm{def}}{=}}\\,V_{a,b,C c}^{(0)}=\\sum_{d\\in\\Phi}{\\frac{S_{a d}S_{b d}S_{c d}^{*}}{S_{0d}}}", "type": "interline_equation"}], "index": 24}], "index": 24}, {"type": "text", "bbox": [70, 613, 541, 657], "lines": [{"bbox": [71, 616, 541, 631], "spans": [{"bbox": [71, 616, 106, 631], "score": 1.0, "content": "where ", "type": "text"}, {"bbox": [106, 618, 116, 627], "score": 0.91, "content": "C", "type": "inline_equation", "height": 9, "width": 10}, {"bbox": [116, 616, 225, 631], "score": 1.0, "content": " is a permutation of ", "type": "text"}, {"bbox": [226, 618, 234, 627], "score": 0.88, "content": "\\Phi", "type": "inline_equation", "height": 9, "width": 8}, {"bbox": [235, 616, 541, 631], "score": 1.0, "content": " called charge-conjugation and will be defined below. The", "type": "text"}], "index": 25}, {"bbox": [70, 630, 542, 645], "spans": [{"bbox": [70, 630, 542, 645], "score": 1.0, "content": "fusion coefficients uniquely determine all other Verlinde dimensions (1.1a). The symmetries", "type": "text"}], "index": 26}, {"bbox": [70, 643, 385, 660], "spans": [{"bbox": [70, 643, 305, 660], "score": 1.0, "content": "of the numbers (1.1b), i.e. the permutations ", "type": "text"}, {"bbox": [305, 649, 313, 655], "score": 0.88, "content": "\\pi", "type": "inline_equation", "height": 6, "width": 8}, {"bbox": [313, 643, 330, 660], "score": 1.0, "content": " of ", "type": "text"}, {"bbox": [330, 646, 339, 655], "score": 0.9, "content": "\\Phi", "type": "inline_equation", "height": 9, "width": 9}, {"bbox": [339, 643, 385, 660], "score": 1.0, "content": " obeying", "type": "text"}], "index": 27}], "index": 26}, {"type": "interline_equation", "bbox": [266, 673, 344, 689], "lines": [{"bbox": [266, 673, 344, 689], "spans": [{"bbox": [266, 673, 344, 689], "score": 0.93, "content": "{\\cal N}_{\\pi a,\\pi b}^{\\pi c}={\\cal N}_{a b}^{c}\\ ,", "type": "interline_equation"}], "index": 28}], "index": 28}, {"type": "text", "bbox": [70, 700, 399, 715], "lines": [{"bbox": [70, 703, 398, 717], "spans": [{"bbox": [70, 703, 398, 717], "score": 1.0, "content": "are precisely the symmetries of all numbers of the form (1.1a).", "type": "text"}], "index": 29}], "index": 29}], "layout_bboxes": [], "page_idx": 0, "page_size": [612.0, 792.0], "_layout_tree": [], "images": [], "tables": [], "interline_equations": [{"type": "interline_equation", "bbox": [209, 272, 402, 308], "lines": [{"bbox": [209, 272, 402, 308], "spans": [{"bbox": [209, 272, 402, 308], "score": 0.94, "content": "V_{a^{1}\\ldots a^{t}}^{(g)}=\\sum_{b\\in\\Phi}(S_{0b})^{2(1-g)}\\frac{S_{a^{1}b}}{S_{0b}}\\cdot\\cdot\\cdot\\frac{S_{a^{t}b}}{S_{0b}}", "type": "interline_equation"}], "index": 7}], "index": 7}, {"type": "interline_equation", "bbox": [223, 567, 387, 602], "lines": [{"bbox": [223, 567, 387, 602], "spans": [{"bbox": [223, 567, 387, 602], "score": 0.95, "content": "N_{a b}^{c}\\,{\\overset{\\mathrm{def}}{=}}\\,V_{a,b,C c}^{(0)}=\\sum_{d\\in\\Phi}{\\frac{S_{a d}S_{b d}S_{c d}^{*}}{S_{0d}}}", "type": "interline_equation"}], "index": 24}], "index": 24}, {"type": "interline_equation", "bbox": [266, 673, 344, 689], "lines": [{"bbox": [266, 673, 344, 689], "spans": [{"bbox": [266, 673, 344, 689], "score": 0.93, "content": "{\\cal N}_{\\pi a,\\pi b}^{\\pi c}={\\cal N}_{a b}^{c}\\ ,", "type": "interline_equation"}], "index": 28}], "index": 28}], "discarded_blocks": [{"type": "discarded", "bbox": [13, 167, 38, 558], "lines": [{"bbox": [13, 168, 37, 556], "spans": [{"bbox": [13, 168, 37, 556], "score": 1.0, "content": "arXiv:math/0002044v1 [math.QA] 7 Feb 2000", "type": "text", "height": 388, "width": 24}]}]}], "need_drop": false, "drop_reason": [], "para_blocks": [{"type": "title", "bbox": [140, 66, 471, 87], "lines": [{"bbox": [141, 69, 469, 88], "spans": [{"bbox": [141, 69, 469, 88], "score": 1.0, "content": "The Automorphisms of Affine Fusion Rings", "type": "text"}], "index": 0}], "index": 0, "page_num": "page_0", "page_size": [612.0, 792.0]}, {"type": "text", "bbox": [260, 115, 351, 129], "lines": [{"bbox": [261, 117, 351, 131], "spans": [{"bbox": [261, 117, 351, 131], "score": 1.0, "content": "Terry Gannon", "type": "text"}], "index": 1}], "index": 1, "page_num": "page_0", "page_size": [612.0, 792.0], "bbox_fs": [261, 117, 351, 131]}, {"type": "text", "bbox": [147, 137, 465, 185], "lines": [{"bbox": [147, 140, 464, 153], "spans": [{"bbox": [147, 140, 464, 153], "score": 1.0, "content": "Department of Mathematical Sciences, University of Alberta,", "type": "text"}], "index": 2}, {"bbox": [227, 154, 386, 167], "spans": [{"bbox": [227, 154, 386, 167], "score": 1.0, "content": "Edmonton, Canada, T6G 2G1", "type": "text"}], "index": 3}, {"bbox": [215, 173, 396, 185], "spans": [{"bbox": [215, 173, 396, 185], "score": 1.0, "content": "e-mail: [email protected]", "type": "text"}], "index": 4}], "index": 3, "page_num": "page_0", "page_size": [612.0, 792.0], "bbox_fs": [147, 140, 464, 185]}, {"type": "title", "bbox": [255, 214, 355, 228], "lines": [{"bbox": [257, 216, 355, 229], "spans": [{"bbox": [257, 216, 355, 229], "score": 1.0, "content": "1. Introduction", "type": "text"}], "index": 5}], "index": 5, "page_num": "page_0", "page_size": [612.0, 792.0]}, {"type": "text", "bbox": [93, 243, 216, 258], "lines": [{"bbox": [95, 245, 213, 259], "spans": [{"bbox": [95, 245, 213, 259], "score": 1.0, "content": "Verlinde\u2019s formula [33]", "type": "text"}], "index": 6}], "index": 6, "page_num": "page_0", "page_size": [612.0, 792.0], "bbox_fs": [95, 245, 213, 259]}, {"type": "interline_equation", "bbox": [209, 272, 402, 308], "lines": [{"bbox": [209, 272, 402, 308], "spans": [{"bbox": [209, 272, 402, 308], "score": 0.94, "content": "V_{a^{1}\\ldots a^{t}}^{(g)}=\\sum_{b\\in\\Phi}(S_{0b})^{2(1-g)}\\frac{S_{a^{1}b}}{S_{0b}}\\cdot\\cdot\\cdot\\frac{S_{a^{t}b}}{S_{0b}}", "type": "interline_equation"}], "index": 7}], "index": 7, "page_num": "page_0", "page_size": [612.0, 792.0]}, {"type": "text", "bbox": [70, 318, 541, 408], "lines": [{"bbox": [70, 322, 541, 338], "spans": [{"bbox": [70, 322, 541, 338], "score": 1.0, "content": "arose first in rational conformal field theory (RCFT) as an extremely useful expression for", "type": "text"}], "index": 8}, {"bbox": [70, 336, 541, 352], "spans": [{"bbox": [70, 336, 321, 352], "score": 1.0, "content": "the dimensions of conformal blocks on a genus ", "type": "text"}, {"bbox": [322, 342, 328, 349], "score": 0.89, "content": "g", "type": "inline_equation", "height": 7, "width": 6}, {"bbox": [328, 336, 400, 352], "score": 1.0, "content": " surface with ", "type": "text"}, {"bbox": [401, 339, 405, 347], "score": 0.86, "content": "t", "type": "inline_equation", "height": 8, "width": 4}, {"bbox": [406, 336, 470, 352], "score": 1.0, "content": " punctures. ", "type": "text"}, {"bbox": [471, 338, 479, 347], "score": 0.89, "content": "\\Phi", "type": "inline_equation", "height": 9, "width": 8}, {"bbox": [480, 336, 541, 352], "score": 1.0, "content": " here is the", "type": "text"}], "index": 9}, {"bbox": [71, 352, 541, 366], "spans": [{"bbox": [71, 352, 284, 366], "score": 1.0, "content": "finite set of \u2018primary fields\u2019. The matrix ", "type": "text"}, {"bbox": [285, 353, 293, 362], "score": 0.9, "content": "S", "type": "inline_equation", "height": 9, "width": 8}, {"bbox": [293, 352, 461, 366], "score": 1.0, "content": " comes from a representation of ", "type": "text"}, {"bbox": [461, 352, 498, 364], "score": 0.92, "content": "\\mathrm{SL_{2}}(\\mathbb{Z})", "type": "inline_equation", "height": 12, "width": 37}, {"bbox": [499, 352, 541, 366], "score": 1.0, "content": " defined", "type": "text"}], "index": 10}, {"bbox": [68, 361, 545, 386], "spans": [{"bbox": [68, 361, 490, 386], "score": 1.0, "content": "by the chiral characters of the theory. Contrary to appearances, these numbers ", "type": "text"}, {"bbox": [491, 365, 516, 380], "score": 0.93, "content": "V_{\\star\\cdots\\star}^{(g)}", "type": "inline_equation", "height": 15, "width": 25}, {"bbox": [517, 361, 545, 386], "score": 1.0, "content": "will", "type": "text"}], "index": 11}, {"bbox": [71, 382, 541, 396], "spans": [{"bbox": [71, 382, 541, 396], "score": 1.0, "content": "always be nonnegative integers. See the excellent bibliography in [6] for references to the", "type": "text"}], "index": 12}, {"bbox": [70, 397, 165, 410], "spans": [{"bbox": [70, 397, 165, 410], "score": 1.0, "content": "physics literature.", "type": "text"}], "index": 13}], "index": 10.5, "page_num": "page_0", "page_size": [612.0, 792.0], "bbox_fs": [68, 322, 545, 410]}, {"type": "text", "bbox": [70, 408, 541, 523], "lines": [{"bbox": [94, 410, 540, 425], "spans": [{"bbox": [94, 410, 540, 425], "score": 1.0, "content": "These numbers are remarkable for also arising in several other contexts: for example,", "type": "text"}], "index": 14}, {"bbox": [71, 426, 541, 439], "spans": [{"bbox": [71, 426, 541, 439], "score": 1.0, "content": "as dimensions of spaces of generalised theta functions; as certain tensor product coefficients", "type": "text"}], "index": 15}, {"bbox": [69, 439, 542, 455], "spans": [{"bbox": [69, 439, 505, 455], "score": 1.0, "content": "in quantum groups and Hecke algebras at roots of 1 and Chevalley groups for ", "type": "text"}, {"bbox": [506, 441, 519, 453], "score": 0.91, "content": "\\mathbb{F}_{p}", "type": "inline_equation", "height": 12, "width": 13}, {"bbox": [519, 439, 542, 455], "score": 1.0, "content": "; as", "type": "text"}], "index": 16}, {"bbox": [70, 454, 540, 467], "spans": [{"bbox": [70, 454, 540, 467], "score": 1.0, "content": "certain knot invariants for 3-manifolds; as composition laws of the superselection sectors in", "type": "text"}], "index": 17}, {"bbox": [72, 469, 540, 482], "spans": [{"bbox": [72, 469, 540, 482], "score": 1.0, "content": "algebraic quantum field theories; as dimensions of spaces of intertwiners in vertex operator", "type": "text"}], "index": 18}, {"bbox": [70, 482, 541, 497], "spans": [{"bbox": [70, 482, 541, 497], "score": 1.0, "content": "algebras (VOAs); in von Neumann algebras as \u201cConnes\u2019 fusion\u201d; in quantum cohomology;", "type": "text"}], "index": 19}, {"bbox": [70, 496, 541, 511], "spans": [{"bbox": [70, 496, 541, 511], "score": 1.0, "content": "and in Lusztig\u2019s exotic Fourier transform. See for example [7,20,19,32,11,10,36,37,26], and", "type": "text"}], "index": 20}, {"bbox": [71, 512, 167, 525], "spans": [{"bbox": [71, 512, 167, 525], "score": 1.0, "content": "references therein.", "type": "text"}], "index": 21}], "index": 17.5, "page_num": "page_0", "page_size": [612.0, 792.0], "bbox_fs": [69, 410, 542, 525]}, {"type": "text", "bbox": [70, 523, 541, 552], "lines": [{"bbox": [94, 525, 541, 540], "spans": [{"bbox": [94, 525, 541, 540], "score": 1.0, "content": "The more fundamental of these numbers are those corresponding to a sphere with three", "type": "text"}], "index": 22}, {"bbox": [70, 540, 520, 555], "spans": [{"bbox": [70, 540, 520, 555], "score": 1.0, "content": "punctures. It is more convenient to write these in the form (called fusion coefficients)", "type": "text"}], "index": 23}], "index": 22.5, "page_num": "page_0", "page_size": [612.0, 792.0], "bbox_fs": [70, 525, 541, 555]}, {"type": "interline_equation", "bbox": [223, 567, 387, 602], "lines": [{"bbox": [223, 567, 387, 602], "spans": [{"bbox": [223, 567, 387, 602], "score": 0.95, "content": "N_{a b}^{c}\\,{\\overset{\\mathrm{def}}{=}}\\,V_{a,b,C c}^{(0)}=\\sum_{d\\in\\Phi}{\\frac{S_{a d}S_{b d}S_{c d}^{*}}{S_{0d}}}", "type": "interline_equation"}], "index": 24}], "index": 24, "page_num": "page_0", "page_size": [612.0, 792.0]}, {"type": "text", "bbox": [70, 613, 541, 657], "lines": [{"bbox": [71, 616, 541, 631], "spans": [{"bbox": [71, 616, 106, 631], "score": 1.0, "content": "where ", "type": "text"}, {"bbox": [106, 618, 116, 627], "score": 0.91, "content": "C", "type": "inline_equation", "height": 9, "width": 10}, {"bbox": [116, 616, 225, 631], "score": 1.0, "content": " is a permutation of ", "type": "text"}, {"bbox": [226, 618, 234, 627], "score": 0.88, "content": "\\Phi", "type": "inline_equation", "height": 9, "width": 8}, {"bbox": [235, 616, 541, 631], "score": 1.0, "content": " called charge-conjugation and will be defined below. The", "type": "text"}], "index": 25}, {"bbox": [70, 630, 542, 645], "spans": [{"bbox": [70, 630, 542, 645], "score": 1.0, "content": "fusion coefficients uniquely determine all other Verlinde dimensions (1.1a). The symmetries", "type": "text"}], "index": 26}, {"bbox": [70, 643, 385, 660], "spans": [{"bbox": [70, 643, 305, 660], "score": 1.0, "content": "of the numbers (1.1b), i.e. the permutations ", "type": "text"}, {"bbox": [305, 649, 313, 655], "score": 0.88, "content": "\\pi", "type": "inline_equation", "height": 6, "width": 8}, {"bbox": [313, 643, 330, 660], "score": 1.0, "content": " of ", "type": "text"}, {"bbox": [330, 646, 339, 655], "score": 0.9, "content": "\\Phi", "type": "inline_equation", "height": 9, "width": 9}, {"bbox": [339, 643, 385, 660], "score": 1.0, "content": " obeying", "type": "text"}], "index": 27}], "index": 26, "page_num": "page_0", "page_size": [612.0, 792.0], "bbox_fs": [70, 616, 542, 660]}, {"type": "interline_equation", "bbox": [266, 673, 344, 689], "lines": [{"bbox": [266, 673, 344, 689], "spans": [{"bbox": [266, 673, 344, 689], "score": 0.93, "content": "{\\cal N}_{\\pi a,\\pi b}^{\\pi c}={\\cal N}_{a b}^{c}\\ ,", "type": "interline_equation"}], "index": 28}], "index": 28, "page_num": "page_0", "page_size": [612.0, 792.0]}, {"type": "text", "bbox": [70, 700, 399, 715], "lines": [{"bbox": [70, 703, 398, 717], "spans": [{"bbox": [70, 703, 398, 717], "score": 1.0, "content": "are precisely the symmetries of all numbers of the form (1.1a).", "type": "text"}], "index": 29}], "index": 29, "page_num": "page_0", "page_size": [612.0, 792.0], "bbox_fs": [70, 703, 398, 717]}]} |
|
0002044v1 | 1 | The point of introducing the $$N_{a b}^{c}$$ in (1.1b) is that they define an algebraic structure,
the fusion ring. Consider all formal linear combinations of objects $$\chi_{a}$$ labelled by the
$$a\in\Phi$$ ; the multiplication is defined to have structure constants $$N_{a b}^{c}$$ :
As an abstract ring, it is not so interesting (the fusion ring over $$\mathbb{C}$$ is isomorphic to $$\mathbb{C}^{||\Phi||}$$
with operations defined component-wise; over $$\mathbb{Q}$$ it will be a direct sum of number fields).
This is analogous to the character ring of a Lie algebra, which is isomorphic as a ring to a
polynomial ring. Of course it is important in both contexts that we have a preferred basis,
namely $$\{\chi_{a}\}$$ , and so proper definitions of isomorphisms etc. must respect that.
The most important examples of fusion rings are associated to the affine algebras,
and it is to these that this paper is devoted. Their automorphisms appear explicitly for
instance in the classification of modular invariant (i.e. torus) partition functions [17,18],
and also in D-branes and boundary conditions for conformal field theory (see e.g. [1]). For
instance, fusion-automorphisms (more generally, -homomorphisms) generate large classes
of nonnegative integer representations of the fusion-ring, each of which is associated to a
boundary (cylinder) partition function. This will be studied elsewhere. Also, whenever the
coefficient matrix of the torus partition function is a permutation matrix (in which case the
partition function is called an automorphism invariant), we get a fusion ring automorphism.
However most torus partition functions are not automorphism invariants (although Moore-
Seiberg assert that there is a sense in which any torus partition function can be interpreted
as one — see e.g. [3]), and most fusion ring automorphisms do not correspond to partition
functions. Nevertheless, the two problems are related. The automorphism invariants for
the affine algebras were classified in [17,18]; a Lemma proved there (our Proposition 4.1
below) involving q-dimensions will be very useful to us, and conversely the arguments in
Section 4 of this paper could be used to considerably simplify the proofs of [17,18].
It is surprising that it is even possible to find all affine fusion automorphisms, and
in fact the arguments turn out to be rather short. It is remarkable that the answer is so
simple: with few exceptions, they correspond to the Dynkin diagram symmetries.
A related task is determining which affine fusion rings are isomorphic. We answer this
in section 5 below; as expected most fusion rings with different names are nonisomorphic.
Acknowledgements. Most of this paper was written during a visit to Max-Planck
in Bonn, whose hospitality as always was both stimulating and pleasurable. I also thank
Yi-Zhi Huang for clarifying an issue concerning [8,21].
| <p>The point of introducing the $$N_{a b}^{c}$$ in (1.1b) is that they define an algebraic structure,
the fusion ring. Consider all formal linear combinations of objects $$\chi_{a}$$ labelled by the
$$a\in\Phi$$ ; the multiplication is defined to have structure constants $$N_{a b}^{c}$$ :</p>
<p>As an abstract ring, it is not so interesting (the fusion ring over $$\mathbb{C}$$ is isomorphic to $$\mathbb{C}^{||\Phi||}$$
with operations defined component-wise; over $$\mathbb{Q}$$ it will be a direct sum of number fields).
This is analogous to the character ring of a Lie algebra, which is isomorphic as a ring to a
polynomial ring. Of course it is important in both contexts that we have a preferred basis,
namely $$\{\chi_{a}\}$$ , and so proper definitions of isomorphisms etc. must respect that.</p>
<p>The most important examples of fusion rings are associated to the affine algebras,
and it is to these that this paper is devoted. Their automorphisms appear explicitly for
instance in the classification of modular invariant (i.e. torus) partition functions [17,18],
and also in D-branes and boundary conditions for conformal field theory (see e.g. [1]). For
instance, fusion-automorphisms (more generally, -homomorphisms) generate large classes
of nonnegative integer representations of the fusion-ring, each of which is associated to a
boundary (cylinder) partition function. This will be studied elsewhere. Also, whenever the
coefficient matrix of the torus partition function is a permutation matrix (in which case the
partition function is called an automorphism invariant), we get a fusion ring automorphism.
However most torus partition functions are not automorphism invariants (although Moore-
Seiberg assert that there is a sense in which any torus partition function can be interpreted
as one — see e.g. [3]), and most fusion ring automorphisms do not correspond to partition
functions. Nevertheless, the two problems are related. The automorphism invariants for
the affine algebras were classified in [17,18]; a Lemma proved there (our Proposition 4.1
below) involving q-dimensions will be very useful to us, and conversely the arguments in
Section 4 of this paper could be used to considerably simplify the proofs of [17,18].</p>
<p>It is surprising that it is even possible to find all affine fusion automorphisms, and
in fact the arguments turn out to be rather short. It is remarkable that the answer is so
simple: with few exceptions, they correspond to the Dynkin diagram symmetries.</p>
<p>A related task is determining which affine fusion rings are isomorphic. We answer this
in section 5 below; as expected most fusion rings with different names are nonisomorphic.</p>
<p>Acknowledgements. Most of this paper was written during a visit to Max-Planck
in Bonn, whose hospitality as always was both stimulating and pleasurable. I also thank
Yi-Zhi Huang for clarifying an issue concerning [8,21].</p>
| [{"type": "text", "coordinates": [70, 70, 541, 115], "content": "The point of introducing the $$N_{a b}^{c}$$ in (1.1b) is that they define an algebraic structure,\nthe fusion ring. Consider all formal linear combinations of objects $$\\chi_{a}$$ labelled by the\n$$a\\in\\Phi$$ ; the multiplication is defined to have structure constants $$N_{a b}^{c}$$ :", "block_type": "text", "index": 1}, {"type": "interline_equation", "coordinates": [258, 130, 353, 160], "content": "", "block_type": "interline_equation", "index": 2}, {"type": "text", "coordinates": [70, 173, 540, 245], "content": "As an abstract ring, it is not so interesting (the fusion ring over $$\\mathbb{C}$$ is isomorphic to $$\\mathbb{C}^{||\\Phi||}$$\nwith operations defined component-wise; over $$\\mathbb{Q}$$ it will be a direct sum of number fields).\nThis is analogous to the character ring of a Lie algebra, which is isomorphic as a ring to a\npolynomial ring. Of course it is important in both contexts that we have a preferred basis,\nnamely $$\\{\\chi_{a}\\}$$ , and so proper definitions of isomorphisms etc. must respect that.", "block_type": "text", "index": 3}, {"type": "text", "coordinates": [71, 246, 541, 475], "content": "The most important examples of fusion rings are associated to the affine algebras,\nand it is to these that this paper is devoted. Their automorphisms appear explicitly for\ninstance in the classification of modular invariant (i.e. torus) partition functions [17,18],\nand also in D-branes and boundary conditions for conformal field theory (see e.g. [1]). For\ninstance, fusion-automorphisms (more generally, -homomorphisms) generate large classes\nof nonnegative integer representations of the fusion-ring, each of which is associated to a\nboundary (cylinder) partition function. This will be studied elsewhere. Also, whenever the\ncoefficient matrix of the torus partition function is a permutation matrix (in which case the\npartition function is called an automorphism invariant), we get a fusion ring automorphism.\nHowever most torus partition functions are not automorphism invariants (although Moore-\nSeiberg assert that there is a sense in which any torus partition function can be interpreted\nas one \u2014 see e.g. [3]), and most fusion ring automorphisms do not correspond to partition\nfunctions. Nevertheless, the two problems are related. The automorphism invariants for\nthe affine algebras were classified in [17,18]; a Lemma proved there (our Proposition 4.1\nbelow) involving q-dimensions will be very useful to us, and conversely the arguments in\nSection 4 of this paper could be used to considerably simplify the proofs of [17,18].", "block_type": "text", "index": 4}, {"type": "text", "coordinates": [70, 476, 541, 518], "content": "It is surprising that it is even possible to find all affine fusion automorphisms, and\nin fact the arguments turn out to be rather short. It is remarkable that the answer is so\nsimple: with few exceptions, they correspond to the Dynkin diagram symmetries.", "block_type": "text", "index": 5}, {"type": "text", "coordinates": [71, 518, 541, 547], "content": "A related task is determining which affine fusion rings are isomorphic. We answer this\nin section 5 below; as expected most fusion rings with different names are nonisomorphic.", "block_type": "text", "index": 6}, {"type": "text", "coordinates": [70, 554, 540, 598], "content": "Acknowledgements. Most of this paper was written during a visit to Max-Planck\nin Bonn, whose hospitality as always was both stimulating and pleasurable. I also thank\nYi-Zhi Huang for clarifying an issue concerning [8,21].", "block_type": "text", "index": 7}] | [{"type": "text", "coordinates": [93, 73, 249, 89], "content": "The point of introducing the ", "score": 1.0, "index": 1}, {"type": "inline_equation", "coordinates": [249, 75, 268, 88], "content": "N_{a b}^{c}", "score": 0.93, "index": 2}, {"type": "text", "coordinates": [269, 73, 540, 89], "content": " in (1.1b) is that they define an algebraic structure,", "score": 1.0, "index": 3}, {"type": "text", "coordinates": [70, 87, 439, 104], "content": "the fusion ring. Consider all formal linear combinations of objects ", "score": 1.0, "index": 4}, {"type": "inline_equation", "coordinates": [440, 93, 453, 101], "content": "\\chi_{a}", "score": 0.9, "index": 5}, {"type": "text", "coordinates": [453, 87, 541, 104], "content": " labelled by the", "score": 1.0, "index": 6}, {"type": "inline_equation", "coordinates": [71, 104, 101, 114], "content": "a\\in\\Phi", "score": 0.91, "index": 7}, {"type": "text", "coordinates": [101, 100, 405, 120], "content": "; the multiplication is defined to have structure constants ", "score": 1.0, "index": 8}, {"type": "inline_equation", "coordinates": [405, 104, 425, 116], "content": "N_{a b}^{c}", "score": 0.93, "index": 9}, {"type": "text", "coordinates": [425, 100, 430, 120], "content": ":", "score": 1.0, "index": 10}, {"type": "interline_equation", "coordinates": [258, 130, 353, 160], "content": "\\chi_{a}\\chi_{b}=\\sum_{c\\in\\Phi}N_{a b}^{c}\\chi_{c}", "score": 0.94, "index": 11}, {"type": "text", "coordinates": [69, 174, 412, 192], "content": "As an abstract ring, it is not so interesting (the fusion ring over ", "score": 1.0, "index": 12}, {"type": "inline_equation", "coordinates": [412, 178, 421, 187], "content": "\\mathbb{C}", "score": 0.9, "index": 13}, {"type": "text", "coordinates": [422, 174, 513, 192], "content": " is isomorphic to ", "score": 1.0, "index": 14}, {"type": "inline_equation", "coordinates": [513, 176, 539, 187], "content": "\\mathbb{C}^{||\\Phi||}", "score": 0.92, "index": 15}, {"type": "text", "coordinates": [70, 190, 313, 205], "content": "with operations defined component-wise; over ", "score": 1.0, "index": 16}, {"type": "inline_equation", "coordinates": [314, 192, 324, 203], "content": "\\mathbb{Q}", "score": 0.89, "index": 17}, {"type": "text", "coordinates": [324, 190, 540, 205], "content": " it will be a direct sum of number fields).", "score": 1.0, "index": 18}, {"type": "text", "coordinates": [69, 204, 542, 221], "content": "This is analogous to the character ring of a Lie algebra, which is isomorphic as a ring to a", "score": 1.0, "index": 19}, {"type": "text", "coordinates": [70, 218, 541, 235], "content": "polynomial ring. Of course it is important in both contexts that we have a preferred basis,", "score": 1.0, "index": 20}, {"type": "text", "coordinates": [70, 234, 113, 249], "content": "namely ", "score": 1.0, "index": 21}, {"type": "inline_equation", "coordinates": [113, 235, 138, 247], "content": "\\{\\chi_{a}\\}", "score": 0.93, "index": 22}, {"type": "text", "coordinates": [138, 234, 487, 249], "content": ", and so proper definitions of isomorphisms etc. must respect that.", "score": 1.0, "index": 23}, {"type": "text", "coordinates": [94, 247, 541, 263], "content": "The most important examples of fusion rings are associated to the affine algebras,", "score": 1.0, "index": 24}, {"type": "text", "coordinates": [70, 262, 541, 277], "content": "and it is to these that this paper is devoted. Their automorphisms appear explicitly for", "score": 1.0, "index": 25}, {"type": "text", "coordinates": [70, 277, 541, 291], "content": "instance in the classification of modular invariant (i.e. torus) partition functions [17,18],", "score": 1.0, "index": 26}, {"type": "text", "coordinates": [70, 290, 541, 306], "content": "and also in D-branes and boundary conditions for conformal field theory (see e.g. [1]). For", "score": 1.0, "index": 27}, {"type": "text", "coordinates": [70, 306, 541, 320], "content": "instance, fusion-automorphisms (more generally, -homomorphisms) generate large classes", "score": 1.0, "index": 28}, {"type": "text", "coordinates": [71, 319, 542, 334], "content": "of nonnegative integer representations of the fusion-ring, each of which is associated to a", "score": 1.0, "index": 29}, {"type": "text", "coordinates": [70, 334, 541, 349], "content": "boundary (cylinder) partition function. This will be studied elsewhere. Also, whenever the", "score": 1.0, "index": 30}, {"type": "text", "coordinates": [71, 349, 541, 363], "content": "coefficient matrix of the torus partition function is a permutation matrix (in which case the", "score": 1.0, "index": 31}, {"type": "text", "coordinates": [70, 363, 540, 377], "content": "partition function is called an automorphism invariant), we get a fusion ring automorphism.", "score": 1.0, "index": 32}, {"type": "text", "coordinates": [70, 377, 540, 392], "content": "However most torus partition functions are not automorphism invariants (although Moore-", "score": 1.0, "index": 33}, {"type": "text", "coordinates": [71, 392, 540, 406], "content": "Seiberg assert that there is a sense in which any torus partition function can be interpreted", "score": 1.0, "index": 34}, {"type": "text", "coordinates": [71, 407, 540, 420], "content": "as one \u2014 see e.g. [3]), and most fusion ring automorphisms do not correspond to partition", "score": 1.0, "index": 35}, {"type": "text", "coordinates": [70, 419, 541, 434], "content": "functions. Nevertheless, the two problems are related. The automorphism invariants for", "score": 1.0, "index": 36}, {"type": "text", "coordinates": [71, 435, 541, 448], "content": "the affine algebras were classified in [17,18]; a Lemma proved there (our Proposition 4.1", "score": 1.0, "index": 37}, {"type": "text", "coordinates": [70, 448, 541, 464], "content": "below) involving q-dimensions will be very useful to us, and conversely the arguments in", "score": 1.0, "index": 38}, {"type": "text", "coordinates": [70, 462, 507, 478], "content": "Section 4 of this paper could be used to considerably simplify the proofs of [17,18].", "score": 1.0, "index": 39}, {"type": "text", "coordinates": [94, 477, 541, 492], "content": "It is surprising that it is even possible to find all affine fusion automorphisms, and", "score": 1.0, "index": 40}, {"type": "text", "coordinates": [70, 491, 541, 506], "content": "in fact the arguments turn out to be rather short. It is remarkable that the answer is so", "score": 1.0, "index": 41}, {"type": "text", "coordinates": [70, 506, 498, 520], "content": "simple: with few exceptions, they correspond to the Dynkin diagram symmetries.", "score": 1.0, "index": 42}, {"type": "text", "coordinates": [95, 521, 540, 535], "content": "A related task is determining which affine fusion rings are isomorphic. We answer this", "score": 1.0, "index": 43}, {"type": "text", "coordinates": [70, 536, 538, 550], "content": "in section 5 below; as expected most fusion rings with different names are nonisomorphic.", "score": 1.0, "index": 44}, {"type": "text", "coordinates": [95, 556, 541, 572], "content": "Acknowledgements. Most of this paper was written during a visit to Max-Planck", "score": 1.0, "index": 45}, {"type": "text", "coordinates": [70, 571, 540, 585], "content": "in Bonn, whose hospitality as always was both stimulating and pleasurable. I also thank", "score": 1.0, "index": 46}, {"type": "text", "coordinates": [72, 586, 354, 600], "content": "Yi-Zhi Huang for clarifying an issue concerning [8,21].", "score": 1.0, "index": 47}] | [] | [{"type": "block", "coordinates": [258, 130, 353, 160], "content": "", "caption": ""}, {"type": "inline", "coordinates": [249, 75, 268, 88], "content": "N_{a b}^{c}", "caption": ""}, {"type": "inline", "coordinates": [440, 93, 453, 101], "content": "\\chi_{a}", "caption": ""}, {"type": "inline", "coordinates": [71, 104, 101, 114], "content": "a\\in\\Phi", "caption": ""}, {"type": "inline", "coordinates": [405, 104, 425, 116], "content": "N_{a b}^{c}", "caption": ""}, {"type": "inline", "coordinates": [412, 178, 421, 187], "content": "\\mathbb{C}", "caption": ""}, {"type": "inline", "coordinates": [513, 176, 539, 187], "content": "\\mathbb{C}^{||\\Phi||}", "caption": ""}, {"type": "inline", "coordinates": [314, 192, 324, 203], "content": "\\mathbb{Q}", "caption": ""}, {"type": "inline", "coordinates": [113, 235, 138, 247], "content": "\\{\\chi_{a}\\}", "caption": ""}] | [] | [612.0, 792.0] | [{"type": "text", "text": "The point of introducing the $N_{a b}^{c}$ in (1.1b) is that they define an algebraic structure, the fusion ring. Consider all formal linear combinations of objects $\\chi_{a}$ labelled by the $a\\in\\Phi$ ; the multiplication is defined to have structure constants $N_{a b}^{c}$ : ", "page_idx": 1}, {"type": "equation", "text": "$$\n\\chi_{a}\\chi_{b}=\\sum_{c\\in\\Phi}N_{a b}^{c}\\chi_{c}\n$$", "text_format": "latex", "page_idx": 1}, {"type": "text", "text": "As an abstract ring, it is not so interesting (the fusion ring over $\\mathbb{C}$ is isomorphic to $\\mathbb{C}^{||\\Phi||}$ with operations defined component-wise; over $\\mathbb{Q}$ it will be a direct sum of number fields). This is analogous to the character ring of a Lie algebra, which is isomorphic as a ring to a polynomial ring. Of course it is important in both contexts that we have a preferred basis, namely $\\{\\chi_{a}\\}$ , and so proper definitions of isomorphisms etc. must respect that. ", "page_idx": 1}, {"type": "text", "text": "The most important examples of fusion rings are associated to the affine algebras, and it is to these that this paper is devoted. Their automorphisms appear explicitly for instance in the classification of modular invariant (i.e. torus) partition functions [17,18], and also in D-branes and boundary conditions for conformal field theory (see e.g. [1]). For instance, fusion-automorphisms (more generally, -homomorphisms) generate large classes of nonnegative integer representations of the fusion-ring, each of which is associated to a boundary (cylinder) partition function. This will be studied elsewhere. Also, whenever the coefficient matrix of the torus partition function is a permutation matrix (in which case the partition function is called an automorphism invariant), we get a fusion ring automorphism. However most torus partition functions are not automorphism invariants (although MooreSeiberg assert that there is a sense in which any torus partition function can be interpreted as one \u2014 see e.g. [3]), and most fusion ring automorphisms do not correspond to partition functions. Nevertheless, the two problems are related. The automorphism invariants for the affine algebras were classified in [17,18]; a Lemma proved there (our Proposition 4.1 below) involving q-dimensions will be very useful to us, and conversely the arguments in Section 4 of this paper could be used to considerably simplify the proofs of [17,18]. ", "page_idx": 1}, {"type": "text", "text": "It is surprising that it is even possible to find all affine fusion automorphisms, and in fact the arguments turn out to be rather short. It is remarkable that the answer is so simple: with few exceptions, they correspond to the Dynkin diagram symmetries. ", "page_idx": 1}, {"type": "text", "text": "A related task is determining which affine fusion rings are isomorphic. We answer this in section 5 below; as expected most fusion rings with different names are nonisomorphic. ", "page_idx": 1}, {"type": "text", "text": "Acknowledgements. Most of this paper was written during a visit to Max-Planck in Bonn, whose hospitality as always was both stimulating and pleasurable. I also thank Yi-Zhi Huang for clarifying an issue concerning [8,21]. ", "page_idx": 1}] | [{"category_id": 1, "poly": [198, 685, 1504, 685, 1504, 1321, 198, 1321], "score": 0.985}, {"category_id": 1, "poly": [197, 482, 1502, 482, 1502, 683, 197, 683], "score": 0.984}, {"category_id": 1, "poly": [197, 1541, 1502, 1541, 1502, 1663, 197, 1663], "score": 0.97}, {"category_id": 1, "poly": [197, 197, 1505, 197, 1505, 320, 197, 320], "score": 0.969}, {"category_id": 1, "poly": [196, 1323, 1503, 1323, 1503, 1440, 196, 1440], "score": 0.953}, {"category_id": 1, "poly": [198, 1441, 1503, 1441, 1503, 1521, 198, 1521], "score": 0.941}, {"category_id": 8, "poly": [716, 353, 982, 353, 982, 443, 716, 443], "score": 0.94}, {"category_id": 9, "poly": [1430, 366, 1500, 366, 1500, 405, 1430, 405], "score": 0.884}, {"category_id": 14, "poly": [719, 362, 981, 362, 981, 447, 719, 447], "score": 0.94, "latex": "\\chi_{a}\\chi_{b}=\\sum_{c\\in\\Phi}N_{a b}^{c}\\chi_{c}"}, {"category_id": 13, "poly": [315, 653, 385, 653, 385, 688, 315, 688], "score": 0.93, "latex": "\\{\\chi_{a}\\}"}, {"category_id": 13, "poly": [693, 211, 747, 211, 747, 245, 693, 245], "score": 0.93, "latex": "N_{a b}^{c}"}, {"category_id": 13, "poly": [1126, 291, 1181, 291, 1181, 324, 1126, 324], "score": 0.93, "latex": "N_{a b}^{c}"}, {"category_id": 13, "poly": [1427, 490, 1498, 490, 1498, 520, 1427, 520], "score": 0.92, "latex": "\\mathbb{C}^{||\\Phi||}"}, {"category_id": 13, "poly": [199, 291, 282, 291, 282, 317, 199, 317], "score": 0.91, "latex": "a\\in\\Phi"}, {"category_id": 13, "poly": [1147, 496, 1172, 496, 1172, 521, 1147, 521], "score": 0.9, "latex": "\\mathbb{C}"}, {"category_id": 13, "poly": [1223, 259, 1260, 259, 1260, 282, 1223, 282], "score": 0.9, "latex": "\\chi_{a}"}, {"category_id": 13, "poly": [873, 536, 901, 536, 901, 566, 873, 566], "score": 0.89, "latex": "\\mathbb{Q}"}, {"category_id": 15, "poly": [262.0, 688.0, 1503.0, 688.0, 1503.0, 731.0, 262.0, 731.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [196.0, 728.0, 1504.0, 728.0, 1504.0, 772.0, 196.0, 772.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [196.0, 770.0, 1503.0, 770.0, 1503.0, 810.0, 196.0, 810.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [195.0, 807.0, 1504.0, 807.0, 1504.0, 851.0, 195.0, 851.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [196.0, 851.0, 1504.0, 851.0, 1504.0, 891.0, 196.0, 891.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [198.0, 888.0, 1506.0, 888.0, 1506.0, 928.0, 198.0, 928.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [195.0, 930.0, 1504.0, 930.0, 1504.0, 970.0, 195.0, 970.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [198.0, 970.0, 1504.0, 970.0, 1504.0, 1010.0, 198.0, 1010.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [196.0, 1010.0, 1500.0, 1010.0, 1500.0, 1049.0, 196.0, 1049.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [195.0, 1048.0, 1501.0, 1048.0, 1501.0, 1089.0, 195.0, 1089.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [198.0, 1089.0, 1501.0, 1089.0, 1501.0, 1128.0, 198.0, 1128.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [198.0, 1131.0, 1501.0, 1131.0, 1501.0, 1167.0, 198.0, 1167.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [195.0, 1165.0, 1504.0, 1165.0, 1504.0, 1207.0, 195.0, 1207.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [198.0, 1210.0, 1503.0, 1210.0, 1503.0, 1246.0, 198.0, 1246.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [195.0, 1246.0, 1504.0, 1246.0, 1504.0, 1289.0, 195.0, 1289.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [196.0, 1286.0, 1409.0, 1286.0, 1409.0, 1328.0, 196.0, 1328.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [194.0, 485.0, 1146.0, 485.0, 1146.0, 534.0, 194.0, 534.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1173.0, 485.0, 1426.0, 485.0, 1426.0, 534.0, 1173.0, 534.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1499.0, 485.0, 1505.0, 485.0, 1505.0, 534.0, 1499.0, 534.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [197.0, 529.0, 872.0, 529.0, 872.0, 572.0, 197.0, 572.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [902.0, 529.0, 1501.0, 529.0, 1501.0, 572.0, 902.0, 572.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [194.0, 567.0, 1507.0, 567.0, 1507.0, 614.0, 194.0, 614.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [195.0, 608.0, 1504.0, 608.0, 1504.0, 653.0, 195.0, 653.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [195.0, 650.0, 314.0, 650.0, 314.0, 692.0, 195.0, 692.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [386.0, 650.0, 1354.0, 650.0, 1354.0, 692.0, 386.0, 692.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [266.0, 1547.0, 1505.0, 1547.0, 1505.0, 1590.0, 266.0, 1590.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [197.0, 1588.0, 1502.0, 1588.0, 1502.0, 1627.0, 197.0, 1627.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [200.0, 1628.0, 986.0, 1628.0, 986.0, 1667.0, 200.0, 1667.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [261.0, 203.0, 692.0, 203.0, 692.0, 249.0, 261.0, 249.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [748.0, 203.0, 1501.0, 203.0, 1501.0, 249.0, 748.0, 249.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [197.0, 243.0, 1222.0, 243.0, 1222.0, 289.0, 197.0, 289.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1261.0, 243.0, 1505.0, 243.0, 1505.0, 289.0, 1261.0, 289.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [193.0, 278.0, 198.0, 278.0, 198.0, 334.0, 193.0, 334.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [283.0, 278.0, 1125.0, 278.0, 1125.0, 334.0, 283.0, 334.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1182.0, 278.0, 1197.0, 278.0, 1197.0, 334.0, 1182.0, 334.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [262.0, 1327.0, 1503.0, 1327.0, 1503.0, 1369.0, 262.0, 1369.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [196.0, 1365.0, 1505.0, 1365.0, 1505.0, 1407.0, 196.0, 1407.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [197.0, 1407.0, 1384.0, 1407.0, 1384.0, 1447.0, 197.0, 1447.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [265.0, 1449.0, 1502.0, 1449.0, 1502.0, 1488.0, 265.0, 1488.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [196.0, 1489.0, 1497.0, 1489.0, 1497.0, 1529.0, 196.0, 1529.0], "score": 1.0, "text": ""}] | {"preproc_blocks": [{"type": "text", "bbox": [70, 70, 541, 115], "lines": [{"bbox": [93, 73, 540, 89], "spans": [{"bbox": [93, 73, 249, 89], "score": 1.0, "content": "The point of introducing the ", "type": "text"}, {"bbox": [249, 75, 268, 88], "score": 0.93, "content": "N_{a b}^{c}", "type": "inline_equation", "height": 13, "width": 19}, {"bbox": [269, 73, 540, 89], "score": 1.0, "content": " in (1.1b) is that they define an algebraic structure,", "type": "text"}], "index": 0}, {"bbox": [70, 87, 541, 104], "spans": [{"bbox": [70, 87, 439, 104], "score": 1.0, "content": "the fusion ring. Consider all formal linear combinations of objects ", "type": "text"}, {"bbox": [440, 93, 453, 101], "score": 0.9, "content": "\\chi_{a}", "type": "inline_equation", "height": 8, "width": 13}, {"bbox": [453, 87, 541, 104], "score": 1.0, "content": " labelled by the", "type": "text"}], "index": 1}, {"bbox": [71, 100, 430, 120], "spans": [{"bbox": [71, 104, 101, 114], "score": 0.91, "content": "a\\in\\Phi", "type": "inline_equation", "height": 10, "width": 30}, {"bbox": [101, 100, 405, 120], "score": 1.0, "content": "; the multiplication is defined to have structure constants ", "type": "text"}, {"bbox": [405, 104, 425, 116], "score": 0.93, "content": "N_{a b}^{c}", "type": "inline_equation", "height": 12, "width": 20}, {"bbox": [425, 100, 430, 120], "score": 1.0, "content": ":", "type": "text"}], "index": 2}], "index": 1}, {"type": "interline_equation", "bbox": [258, 130, 353, 160], "lines": [{"bbox": [258, 130, 353, 160], "spans": [{"bbox": [258, 130, 353, 160], "score": 0.94, "content": "\\chi_{a}\\chi_{b}=\\sum_{c\\in\\Phi}N_{a b}^{c}\\chi_{c}", "type": "interline_equation"}], "index": 3}], "index": 3}, {"type": "text", "bbox": [70, 173, 540, 245], "lines": [{"bbox": [69, 174, 539, 192], "spans": [{"bbox": [69, 174, 412, 192], "score": 1.0, "content": "As an abstract ring, it is not so interesting (the fusion ring over ", "type": "text"}, {"bbox": [412, 178, 421, 187], "score": 0.9, "content": "\\mathbb{C}", "type": "inline_equation", "height": 9, "width": 9}, {"bbox": [422, 174, 513, 192], "score": 1.0, "content": " is isomorphic to ", "type": "text"}, {"bbox": [513, 176, 539, 187], "score": 0.92, "content": "\\mathbb{C}^{||\\Phi||}", "type": "inline_equation", "height": 11, "width": 26}], "index": 4}, {"bbox": [70, 190, 540, 205], "spans": [{"bbox": [70, 190, 313, 205], "score": 1.0, "content": "with operations defined component-wise; over ", "type": "text"}, {"bbox": [314, 192, 324, 203], "score": 0.89, "content": "\\mathbb{Q}", "type": "inline_equation", "height": 11, "width": 10}, {"bbox": [324, 190, 540, 205], "score": 1.0, "content": " it will be a direct sum of number fields).", "type": "text"}], "index": 5}, {"bbox": [69, 204, 542, 221], "spans": [{"bbox": [69, 204, 542, 221], "score": 1.0, "content": "This is analogous to the character ring of a Lie algebra, which is isomorphic as a ring to a", "type": "text"}], "index": 6}, {"bbox": [70, 218, 541, 235], "spans": [{"bbox": [70, 218, 541, 235], "score": 1.0, "content": "polynomial ring. Of course it is important in both contexts that we have a preferred basis,", "type": "text"}], "index": 7}, {"bbox": [70, 234, 487, 249], "spans": [{"bbox": [70, 234, 113, 249], "score": 1.0, "content": "namely ", "type": "text"}, {"bbox": [113, 235, 138, 247], "score": 0.93, "content": "\\{\\chi_{a}\\}", "type": "inline_equation", "height": 12, "width": 25}, {"bbox": [138, 234, 487, 249], "score": 1.0, "content": ", and so proper definitions of isomorphisms etc. must respect that.", "type": "text"}], "index": 8}], "index": 6}, {"type": "text", "bbox": [71, 246, 541, 475], "lines": [{"bbox": [94, 247, 541, 263], "spans": [{"bbox": [94, 247, 541, 263], "score": 1.0, "content": "The most important examples of fusion rings are associated to the affine algebras,", "type": "text"}], "index": 9}, {"bbox": [70, 262, 541, 277], "spans": [{"bbox": [70, 262, 541, 277], "score": 1.0, "content": "and it is to these that this paper is devoted. Their automorphisms appear explicitly for", "type": "text"}], "index": 10}, {"bbox": [70, 277, 541, 291], "spans": [{"bbox": [70, 277, 541, 291], "score": 1.0, "content": "instance in the classification of modular invariant (i.e. torus) partition functions [17,18],", "type": "text"}], "index": 11}, {"bbox": [70, 290, 541, 306], "spans": [{"bbox": [70, 290, 541, 306], "score": 1.0, "content": "and also in D-branes and boundary conditions for conformal field theory (see e.g. [1]). For", "type": "text"}], "index": 12}, {"bbox": [70, 306, 541, 320], "spans": [{"bbox": [70, 306, 541, 320], "score": 1.0, "content": "instance, fusion-automorphisms (more generally, -homomorphisms) generate large classes", "type": "text"}], "index": 13}, {"bbox": [71, 319, 542, 334], "spans": [{"bbox": [71, 319, 542, 334], "score": 1.0, "content": "of nonnegative integer representations of the fusion-ring, each of which is associated to a", "type": "text"}], "index": 14}, {"bbox": [70, 334, 541, 349], "spans": [{"bbox": [70, 334, 541, 349], "score": 1.0, "content": "boundary (cylinder) partition function. This will be studied elsewhere. Also, whenever the", "type": "text"}], "index": 15}, {"bbox": [71, 349, 541, 363], "spans": [{"bbox": [71, 349, 541, 363], "score": 1.0, "content": "coefficient matrix of the torus partition function is a permutation matrix (in which case the", "type": "text"}], "index": 16}, {"bbox": [70, 363, 540, 377], "spans": [{"bbox": [70, 363, 540, 377], "score": 1.0, "content": "partition function is called an automorphism invariant), we get a fusion ring automorphism.", "type": "text"}], "index": 17}, {"bbox": [70, 377, 540, 392], "spans": [{"bbox": [70, 377, 540, 392], "score": 1.0, "content": "However most torus partition functions are not automorphism invariants (although Moore-", "type": "text"}], "index": 18}, {"bbox": [71, 392, 540, 406], "spans": [{"bbox": [71, 392, 540, 406], "score": 1.0, "content": "Seiberg assert that there is a sense in which any torus partition function can be interpreted", "type": "text"}], "index": 19}, {"bbox": [71, 407, 540, 420], "spans": [{"bbox": [71, 407, 540, 420], "score": 1.0, "content": "as one \u2014 see e.g. [3]), and most fusion ring automorphisms do not correspond to partition", "type": "text"}], "index": 20}, {"bbox": [70, 419, 541, 434], "spans": [{"bbox": [70, 419, 541, 434], "score": 1.0, "content": "functions. Nevertheless, the two problems are related. The automorphism invariants for", "type": "text"}], "index": 21}, {"bbox": [71, 435, 541, 448], "spans": [{"bbox": [71, 435, 541, 448], "score": 1.0, "content": "the affine algebras were classified in [17,18]; a Lemma proved there (our Proposition 4.1", "type": "text"}], "index": 22}, {"bbox": [70, 448, 541, 464], "spans": [{"bbox": [70, 448, 541, 464], "score": 1.0, "content": "below) involving q-dimensions will be very useful to us, and conversely the arguments in", "type": "text"}], "index": 23}, {"bbox": [70, 462, 507, 478], "spans": [{"bbox": [70, 462, 507, 478], "score": 1.0, "content": "Section 4 of this paper could be used to considerably simplify the proofs of [17,18].", "type": "text"}], "index": 24}], "index": 16.5}, {"type": "text", "bbox": [70, 476, 541, 518], "lines": [{"bbox": [94, 477, 541, 492], "spans": [{"bbox": [94, 477, 541, 492], "score": 1.0, "content": "It is surprising that it is even possible to find all affine fusion automorphisms, and", "type": "text"}], "index": 25}, {"bbox": [70, 491, 541, 506], "spans": [{"bbox": [70, 491, 541, 506], "score": 1.0, "content": "in fact the arguments turn out to be rather short. It is remarkable that the answer is so", "type": "text"}], "index": 26}, {"bbox": [70, 506, 498, 520], "spans": [{"bbox": [70, 506, 498, 520], "score": 1.0, "content": "simple: with few exceptions, they correspond to the Dynkin diagram symmetries.", "type": "text"}], "index": 27}], "index": 26}, {"type": "text", "bbox": [71, 518, 541, 547], "lines": [{"bbox": [95, 521, 540, 535], "spans": [{"bbox": [95, 521, 540, 535], "score": 1.0, "content": "A related task is determining which affine fusion rings are isomorphic. We answer this", "type": "text"}], "index": 28}, {"bbox": [70, 536, 538, 550], "spans": [{"bbox": [70, 536, 538, 550], "score": 1.0, "content": "in section 5 below; as expected most fusion rings with different names are nonisomorphic.", "type": "text"}], "index": 29}], "index": 28.5}, {"type": "text", "bbox": [70, 554, 540, 598], "lines": [{"bbox": [95, 556, 541, 572], "spans": [{"bbox": [95, 556, 541, 572], "score": 1.0, "content": "Acknowledgements. Most of this paper was written during a visit to Max-Planck", "type": "text"}], "index": 30}, {"bbox": [70, 571, 540, 585], "spans": [{"bbox": [70, 571, 540, 585], "score": 1.0, "content": "in Bonn, whose hospitality as always was both stimulating and pleasurable. I also thank", "type": "text"}], "index": 31}, {"bbox": [72, 586, 354, 600], "spans": [{"bbox": [72, 586, 354, 600], "score": 1.0, "content": "Yi-Zhi Huang for clarifying an issue concerning [8,21].", "type": "text"}], "index": 32}], "index": 31}], "layout_bboxes": [], "page_idx": 1, "page_size": [612.0, 792.0], "_layout_tree": [], "images": [], "tables": [], "interline_equations": [{"type": "interline_equation", "bbox": [258, 130, 353, 160], "lines": [{"bbox": [258, 130, 353, 160], "spans": [{"bbox": [258, 130, 353, 160], "score": 0.94, "content": "\\chi_{a}\\chi_{b}=\\sum_{c\\in\\Phi}N_{a b}^{c}\\chi_{c}", "type": "interline_equation"}], "index": 3}], "index": 3}], "discarded_blocks": [], "need_drop": false, "drop_reason": [], "para_blocks": [{"type": "text", "bbox": [70, 70, 541, 115], "lines": [{"bbox": [93, 73, 540, 89], "spans": [{"bbox": [93, 73, 249, 89], "score": 1.0, "content": "The point of introducing the ", "type": "text"}, {"bbox": [249, 75, 268, 88], "score": 0.93, "content": "N_{a b}^{c}", "type": "inline_equation", "height": 13, "width": 19}, {"bbox": [269, 73, 540, 89], "score": 1.0, "content": " in (1.1b) is that they define an algebraic structure,", "type": "text"}], "index": 0}, {"bbox": [70, 87, 541, 104], "spans": [{"bbox": [70, 87, 439, 104], "score": 1.0, "content": "the fusion ring. Consider all formal linear combinations of objects ", "type": "text"}, {"bbox": [440, 93, 453, 101], "score": 0.9, "content": "\\chi_{a}", "type": "inline_equation", "height": 8, "width": 13}, {"bbox": [453, 87, 541, 104], "score": 1.0, "content": " labelled by the", "type": "text"}], "index": 1}, {"bbox": [71, 100, 430, 120], "spans": [{"bbox": [71, 104, 101, 114], "score": 0.91, "content": "a\\in\\Phi", "type": "inline_equation", "height": 10, "width": 30}, {"bbox": [101, 100, 405, 120], "score": 1.0, "content": "; the multiplication is defined to have structure constants ", "type": "text"}, {"bbox": [405, 104, 425, 116], "score": 0.93, "content": "N_{a b}^{c}", "type": "inline_equation", "height": 12, "width": 20}, {"bbox": [425, 100, 430, 120], "score": 1.0, "content": ":", "type": "text"}], "index": 2}], "index": 1, "page_num": "page_1", "page_size": [612.0, 792.0], "bbox_fs": [70, 73, 541, 120]}, {"type": "interline_equation", "bbox": [258, 130, 353, 160], "lines": [{"bbox": [258, 130, 353, 160], "spans": [{"bbox": [258, 130, 353, 160], "score": 0.94, "content": "\\chi_{a}\\chi_{b}=\\sum_{c\\in\\Phi}N_{a b}^{c}\\chi_{c}", "type": "interline_equation"}], "index": 3}], "index": 3, "page_num": "page_1", "page_size": [612.0, 792.0]}, {"type": "text", "bbox": [70, 173, 540, 245], "lines": [{"bbox": [69, 174, 539, 192], "spans": [{"bbox": [69, 174, 412, 192], "score": 1.0, "content": "As an abstract ring, it is not so interesting (the fusion ring over ", "type": "text"}, {"bbox": [412, 178, 421, 187], "score": 0.9, "content": "\\mathbb{C}", "type": "inline_equation", "height": 9, "width": 9}, {"bbox": [422, 174, 513, 192], "score": 1.0, "content": " is isomorphic to ", "type": "text"}, {"bbox": [513, 176, 539, 187], "score": 0.92, "content": "\\mathbb{C}^{||\\Phi||}", "type": "inline_equation", "height": 11, "width": 26}], "index": 4}, {"bbox": [70, 190, 540, 205], "spans": [{"bbox": [70, 190, 313, 205], "score": 1.0, "content": "with operations defined component-wise; over ", "type": "text"}, {"bbox": [314, 192, 324, 203], "score": 0.89, "content": "\\mathbb{Q}", "type": "inline_equation", "height": 11, "width": 10}, {"bbox": [324, 190, 540, 205], "score": 1.0, "content": " it will be a direct sum of number fields).", "type": "text"}], "index": 5}, {"bbox": [69, 204, 542, 221], "spans": [{"bbox": [69, 204, 542, 221], "score": 1.0, "content": "This is analogous to the character ring of a Lie algebra, which is isomorphic as a ring to a", "type": "text"}], "index": 6}, {"bbox": [70, 218, 541, 235], "spans": [{"bbox": [70, 218, 541, 235], "score": 1.0, "content": "polynomial ring. Of course it is important in both contexts that we have a preferred basis,", "type": "text"}], "index": 7}, {"bbox": [70, 234, 487, 249], "spans": [{"bbox": [70, 234, 113, 249], "score": 1.0, "content": "namely ", "type": "text"}, {"bbox": [113, 235, 138, 247], "score": 0.93, "content": "\\{\\chi_{a}\\}", "type": "inline_equation", "height": 12, "width": 25}, {"bbox": [138, 234, 487, 249], "score": 1.0, "content": ", and so proper definitions of isomorphisms etc. must respect that.", "type": "text"}], "index": 8}], "index": 6, "page_num": "page_1", "page_size": [612.0, 792.0], "bbox_fs": [69, 174, 542, 249]}, {"type": "text", "bbox": [71, 246, 541, 475], "lines": [{"bbox": [94, 247, 541, 263], "spans": [{"bbox": [94, 247, 541, 263], "score": 1.0, "content": "The most important examples of fusion rings are associated to the affine algebras,", "type": "text"}], "index": 9}, {"bbox": [70, 262, 541, 277], "spans": [{"bbox": [70, 262, 541, 277], "score": 1.0, "content": "and it is to these that this paper is devoted. Their automorphisms appear explicitly for", "type": "text"}], "index": 10}, {"bbox": [70, 277, 541, 291], "spans": [{"bbox": [70, 277, 541, 291], "score": 1.0, "content": "instance in the classification of modular invariant (i.e. torus) partition functions [17,18],", "type": "text"}], "index": 11}, {"bbox": [70, 290, 541, 306], "spans": [{"bbox": [70, 290, 541, 306], "score": 1.0, "content": "and also in D-branes and boundary conditions for conformal field theory (see e.g. [1]). For", "type": "text"}], "index": 12}, {"bbox": [70, 306, 541, 320], "spans": [{"bbox": [70, 306, 541, 320], "score": 1.0, "content": "instance, fusion-automorphisms (more generally, -homomorphisms) generate large classes", "type": "text"}], "index": 13}, {"bbox": [71, 319, 542, 334], "spans": [{"bbox": [71, 319, 542, 334], "score": 1.0, "content": "of nonnegative integer representations of the fusion-ring, each of which is associated to a", "type": "text"}], "index": 14}, {"bbox": [70, 334, 541, 349], "spans": [{"bbox": [70, 334, 541, 349], "score": 1.0, "content": "boundary (cylinder) partition function. This will be studied elsewhere. Also, whenever the", "type": "text"}], "index": 15}, {"bbox": [71, 349, 541, 363], "spans": [{"bbox": [71, 349, 541, 363], "score": 1.0, "content": "coefficient matrix of the torus partition function is a permutation matrix (in which case the", "type": "text"}], "index": 16}, {"bbox": [70, 363, 540, 377], "spans": [{"bbox": [70, 363, 540, 377], "score": 1.0, "content": "partition function is called an automorphism invariant), we get a fusion ring automorphism.", "type": "text"}], "index": 17}, {"bbox": [70, 377, 540, 392], "spans": [{"bbox": [70, 377, 540, 392], "score": 1.0, "content": "However most torus partition functions are not automorphism invariants (although Moore-", "type": "text"}], "index": 18}, {"bbox": [71, 392, 540, 406], "spans": [{"bbox": [71, 392, 540, 406], "score": 1.0, "content": "Seiberg assert that there is a sense in which any torus partition function can be interpreted", "type": "text"}], "index": 19}, {"bbox": [71, 407, 540, 420], "spans": [{"bbox": [71, 407, 540, 420], "score": 1.0, "content": "as one \u2014 see e.g. [3]), and most fusion ring automorphisms do not correspond to partition", "type": "text"}], "index": 20}, {"bbox": [70, 419, 541, 434], "spans": [{"bbox": [70, 419, 541, 434], "score": 1.0, "content": "functions. Nevertheless, the two problems are related. The automorphism invariants for", "type": "text"}], "index": 21}, {"bbox": [71, 435, 541, 448], "spans": [{"bbox": [71, 435, 541, 448], "score": 1.0, "content": "the affine algebras were classified in [17,18]; a Lemma proved there (our Proposition 4.1", "type": "text"}], "index": 22}, {"bbox": [70, 448, 541, 464], "spans": [{"bbox": [70, 448, 541, 464], "score": 1.0, "content": "below) involving q-dimensions will be very useful to us, and conversely the arguments in", "type": "text"}], "index": 23}, {"bbox": [70, 462, 507, 478], "spans": [{"bbox": [70, 462, 507, 478], "score": 1.0, "content": "Section 4 of this paper could be used to considerably simplify the proofs of [17,18].", "type": "text"}], "index": 24}], "index": 16.5, "page_num": "page_1", "page_size": [612.0, 792.0], "bbox_fs": [70, 247, 542, 478]}, {"type": "text", "bbox": [70, 476, 541, 518], "lines": [{"bbox": [94, 477, 541, 492], "spans": [{"bbox": [94, 477, 541, 492], "score": 1.0, "content": "It is surprising that it is even possible to find all affine fusion automorphisms, and", "type": "text"}], "index": 25}, {"bbox": [70, 491, 541, 506], "spans": [{"bbox": [70, 491, 541, 506], "score": 1.0, "content": "in fact the arguments turn out to be rather short. It is remarkable that the answer is so", "type": "text"}], "index": 26}, {"bbox": [70, 506, 498, 520], "spans": [{"bbox": [70, 506, 498, 520], "score": 1.0, "content": "simple: with few exceptions, they correspond to the Dynkin diagram symmetries.", "type": "text"}], "index": 27}], "index": 26, "page_num": "page_1", "page_size": [612.0, 792.0], "bbox_fs": [70, 477, 541, 520]}, {"type": "text", "bbox": [71, 518, 541, 547], "lines": [{"bbox": [95, 521, 540, 535], "spans": [{"bbox": [95, 521, 540, 535], "score": 1.0, "content": "A related task is determining which affine fusion rings are isomorphic. We answer this", "type": "text"}], "index": 28}, {"bbox": [70, 536, 538, 550], "spans": [{"bbox": [70, 536, 538, 550], "score": 1.0, "content": "in section 5 below; as expected most fusion rings with different names are nonisomorphic.", "type": "text"}], "index": 29}], "index": 28.5, "page_num": "page_1", "page_size": [612.0, 792.0], "bbox_fs": [70, 521, 540, 550]}, {"type": "text", "bbox": [70, 554, 540, 598], "lines": [{"bbox": [95, 556, 541, 572], "spans": [{"bbox": [95, 556, 541, 572], "score": 1.0, "content": "Acknowledgements. Most of this paper was written during a visit to Max-Planck", "type": "text"}], "index": 30}, {"bbox": [70, 571, 540, 585], "spans": [{"bbox": [70, 571, 540, 585], "score": 1.0, "content": "in Bonn, whose hospitality as always was both stimulating and pleasurable. I also thank", "type": "text"}], "index": 31}, {"bbox": [72, 586, 354, 600], "spans": [{"bbox": [72, 586, 354, 600], "score": 1.0, "content": "Yi-Zhi Huang for clarifying an issue concerning [8,21].", "type": "text"}], "index": 32}], "index": 31, "page_num": "page_1", "page_size": [612.0, 792.0], "bbox_fs": [70, 556, 541, 600]}]} |
|
0002044v1 | 5 | root of unity $$q\,=\,\xi_{2m\kappa}$$ for appropriate choice of $$m\in\{1,2,3\}$$ . They also arise from the
Huang-Lepowsky coproduct [21] for the modules of the VOA $$L(k,0)$$ . Because of these
isomorphisms, we get that the $$N_{\lambda\mu}^{\nu}$$ do indeed lie in $$\mathbb{Z}_{\geq}$$ , for any affine algebra.
A useful way of identifying weights in affine Weyl orbits involves computing q-dimensions
and norms. Q-dimensions vary by at most a sign while norms are constant mod $$2\kappa$$ :
$${\cal D}(w.\lambda)\;=\;\operatorname*{det}\left(w\right){\cal D}(\lambda)$$ and $$(w\lambda|w\lambda)\,\equiv\,(\lambda|\lambda)$$ (mod $$2\kappa$$ ). The point is that for excep-
tional algebras at small levels, the highest weights can often be distinguished by the pair
$$(\mathcal{D}(\lambda),(\lambda+\rho|\lambda+\rho)$$ (mod $$2\kappa$$ )). For example this is true of $$E_{8,5},E_{8,6},F_{4,4}$$ . This is a useful
way in practise to use both (2.4) and the Galois action (2.3).
An important property obeyed by the matrix $$S$$ for any classical algebra $$X_{r}$$ is rank-
level duality. The first appearance of this curious duality seems to be by Frenkel [9],
but by now many aspects and generalisations have been explored in the literature. For
$$A_{r}^{(1)}$$ , it is related to the existence of mutually commutative affine subalgbras $$\widehat{\mathrm{sl}(n)}$$ and
$$\widehat{\mathrm{sl}}(\widehat{k})$$ in $$\widehat{\mathrm{gl}}(n\widehat{k})$$ . Witten has another interpretation of it [37]: he found a natural map (a
ring homomorphism) from the quantum cohomology of the Grassmannian $$G(k,N)$$ , to the
fusion ring of the algebra $$\mathrm{u}(k)\cong\mathrm{su}(k)\oplus\mathrm{u}(1)$$ at level $$(N-k,N)$$ . Witten used the duality
between $$G(k,N)$$ and $$G(N-k,N)$$ to show that the fusion rings of $$\operatorname{u}(k)$$ level $$(N-k,N)$$
and $$\mathrm{u}(N-k)$$ level $$(k,N)$$ should coincide. A considerable generalisation, applying to any
VOA (or RCFT), has been conjectured by Nahm [30], and relates to the natural involution
$$\textstyle\sum_{i}[x_{i}]\leftrightarrow\sum_{i}[1-x_{i}]$$ of torsion elements of the Bloch group.
The Kac-Peterson matrices of $$\widehat{\mathrm{sl}(\ell)}$$ level $$k$$ and $$\widehat{\mathrm{sl}(k)}$$ level $$\ell$$ are related, as are those of
$$C_{r,k}$$ and $$C_{k,r}$$ , and $$\widehat{\mathrm{so}(\ell)}$$ level $$k$$ and $$\widehat{\mathrm{so}(k)}$$ level $$\ell$$ . We will need only the symplectic one;
the details will be given in §3.3.
# 2.2. Symmetries of fusion coefficients
Definition 2.1. By an isomorphism between fusion rings $$\mathcal{R}(X_{r,k})$$ and $$\mathcal{R}(Y_{s,m})$$
(with fusion coefficients $$N$$ and $$M$$ respectively) we mean a bijection $$\pi\ :\ P_{+}^{k}(X_{r}^{(1)})\ \to$$
$${\cal P}_{+}^{m}(Y_{s}^{(1)})$$ such that
When $$X_{r,k}~=~Y_{s,m}$$ we call $$\pi$$ an automorphism or fusion-symmetry. Call the pair of
permutations $$\pi,\pi^{\prime}$$ an $$S$$ -symmetry if
The lemma below tells us that fusion- and $$S$$ -symmetries form two isomorphic groups;
the former we will label $$\boldsymbol{A}(\boldsymbol{X}_{r,k})$$ . Equation (2.5a) says that the charge-conjugation $$C$$ , and
more generally any conjugation, is a fusion-symmetry, while (2.2a) says $$(C,C)$$ is an $$S$$ -
symmetry. Because $$N_{0}=I=M_{\tilde{0}}$$ , $$N_{\lambda\mu}^{0}=C_{\lambda\mu}$$ and $$M_{\tilde{\lambda},\tilde{\mu}}^{\tilde{0}}=\widetilde{C}_{\tilde{\lambda},\tilde{\mu}}$$ (we use tilde’s to denote
quantities in $$Y_{s}^{(1)}$$ level $${\boldsymbol{\mathit{\varepsilon}}}^{\prime}{\boldsymbol{\mathit{m}}}$$ ), any isomorphism $$\pi$$ must obey $$\pi0=\tilde{0}$$ and $$\widetilde{C}\circ\pi=\pi\circ C$$ . More
generally, since $$N_{\lambda}$$ is a permutation matrix of order $${\boldsymbol{n}}$$ iff $$\lambda$$ is a simpl e- current of order $$n$$ ,
we see that an isomorphism sends simple-currents to simple-currents of equal order. We
get
| <p>root of unity $$q\,=\,\xi_{2m\kappa}$$ for appropriate choice of $$m\in\{1,2,3\}$$ . They also arise from the
Huang-Lepowsky coproduct [21] for the modules of the VOA $$L(k,0)$$ . Because of these
isomorphisms, we get that the $$N_{\lambda\mu}^{\nu}$$ do indeed lie in $$\mathbb{Z}_{\geq}$$ , for any affine algebra.</p>
<p>A useful way of identifying weights in affine Weyl orbits involves computing q-dimensions
and norms. Q-dimensions vary by at most a sign while norms are constant mod $$2\kappa$$ :
$${\cal D}(w.\lambda)\;=\;\operatorname*{det}\left(w\right){\cal D}(\lambda)$$ and $$(w\lambda|w\lambda)\,\equiv\,(\lambda|\lambda)$$ (mod $$2\kappa$$ ). The point is that for excep-
tional algebras at small levels, the highest weights can often be distinguished by the pair
$$(\mathcal{D}(\lambda),(\lambda+\rho|\lambda+\rho)$$ (mod $$2\kappa$$ )). For example this is true of $$E_{8,5},E_{8,6},F_{4,4}$$ . This is a useful
way in practise to use both (2.4) and the Galois action (2.3).</p>
<p>An important property obeyed by the matrix $$S$$ for any classical algebra $$X_{r}$$ is rank-
level duality. The first appearance of this curious duality seems to be by Frenkel [9],
but by now many aspects and generalisations have been explored in the literature. For
$$A_{r}^{(1)}$$ , it is related to the existence of mutually commutative affine subalgbras $$\widehat{\mathrm{sl}(n)}$$ and
$$\widehat{\mathrm{sl}}(\widehat{k})$$ in $$\widehat{\mathrm{gl}}(n\widehat{k})$$ . Witten has another interpretation of it [37]: he found a natural map (a
ring homomorphism) from the quantum cohomology of the Grassmannian $$G(k,N)$$ , to the
fusion ring of the algebra $$\mathrm{u}(k)\cong\mathrm{su}(k)\oplus\mathrm{u}(1)$$ at level $$(N-k,N)$$ . Witten used the duality
between $$G(k,N)$$ and $$G(N-k,N)$$ to show that the fusion rings of $$\operatorname{u}(k)$$ level $$(N-k,N)$$
and $$\mathrm{u}(N-k)$$ level $$(k,N)$$ should coincide. A considerable generalisation, applying to any
VOA (or RCFT), has been conjectured by Nahm [30], and relates to the natural involution
$$\textstyle\sum_{i}[x_{i}]\leftrightarrow\sum_{i}[1-x_{i}]$$ of torsion elements of the Bloch group.</p>
<p>The Kac-Peterson matrices of $$\widehat{\mathrm{sl}(\ell)}$$ level $$k$$ and $$\widehat{\mathrm{sl}(k)}$$ level $$\ell$$ are related, as are those of
$$C_{r,k}$$ and $$C_{k,r}$$ , and $$\widehat{\mathrm{so}(\ell)}$$ level $$k$$ and $$\widehat{\mathrm{so}(k)}$$ level $$\ell$$ . We will need only the symplectic one;
the details will be given in §3.3.</p>
<h1>2.2. Symmetries of fusion coefficients</h1>
<p>Definition 2.1. By an isomorphism between fusion rings $$\mathcal{R}(X_{r,k})$$ and $$\mathcal{R}(Y_{s,m})$$
(with fusion coefficients $$N$$ and $$M$$ respectively) we mean a bijection $$\pi\ :\ P_{+}^{k}(X_{r}^{(1)})\ \to$$
$${\cal P}_{+}^{m}(Y_{s}^{(1)})$$ such that</p>
<p>When $$X_{r,k}~=~Y_{s,m}$$ we call $$\pi$$ an automorphism or fusion-symmetry. Call the pair of
permutations $$\pi,\pi^{\prime}$$ an $$S$$ -symmetry if</p>
<p>The lemma below tells us that fusion- and $$S$$ -symmetries form two isomorphic groups;
the former we will label $$\boldsymbol{A}(\boldsymbol{X}_{r,k})$$ . Equation (2.5a) says that the charge-conjugation $$C$$ , and
more generally any conjugation, is a fusion-symmetry, while (2.2a) says $$(C,C)$$ is an $$S$$ -
symmetry. Because $$N_{0}=I=M_{\tilde{0}}$$ , $$N_{\lambda\mu}^{0}=C_{\lambda\mu}$$ and $$M_{\tilde{\lambda},\tilde{\mu}}^{\tilde{0}}=\widetilde{C}_{\tilde{\lambda},\tilde{\mu}}$$ (we use tilde’s to denote
quantities in $$Y_{s}^{(1)}$$ level $${\boldsymbol{\mathit{\varepsilon}}}^{\prime}{\boldsymbol{\mathit{m}}}$$ ), any isomorphism $$\pi$$ must obey $$\pi0=\tilde{0}$$ and $$\widetilde{C}\circ\pi=\pi\circ C$$ . More
generally, since $$N_{\lambda}$$ is a permutation matrix of order $${\boldsymbol{n}}$$ iff $$\lambda$$ is a simpl e- current of order $$n$$ ,
we see that an isomorphism sends simple-currents to simple-currents of equal order. We
get</p>
| [{"type": "text", "coordinates": [70, 70, 543, 114], "content": "root of unity $$q\\,=\\,\\xi_{2m\\kappa}$$ for appropriate choice of $$m\\in\\{1,2,3\\}$$ . They also arise from the\nHuang-Lepowsky coproduct [21] for the modules of the VOA $$L(k,0)$$ . Because of these\nisomorphisms, we get that the $$N_{\\lambda\\mu}^{\\nu}$$ do indeed lie in $$\\mathbb{Z}_{\\geq}$$ , for any affine algebra.", "block_type": "text", "index": 1}, {"type": "text", "coordinates": [71, 115, 545, 200], "content": "A useful way of identifying weights in affine Weyl orbits involves computing q-dimensions\nand norms. Q-dimensions vary by at most a sign while norms are constant mod $$2\\kappa$$ :\n$${\\cal D}(w.\\lambda)\\;=\\;\\operatorname*{det}\\left(w\\right){\\cal D}(\\lambda)$$ and $$(w\\lambda|w\\lambda)\\,\\equiv\\,(\\lambda|\\lambda)$$ (mod $$2\\kappa$$ ). The point is that for excep-\ntional algebras at small levels, the highest weights can often be distinguished by the pair\n$$(\\mathcal{D}(\\lambda),(\\lambda+\\rho|\\lambda+\\rho)$$ (mod $$2\\kappa$$ )). For example this is true of $$E_{8,5},E_{8,6},F_{4,4}$$ . This is a useful\nway in practise to use both (2.4) and the Galois action (2.3).", "block_type": "text", "index": 2}, {"type": "text", "coordinates": [70, 201, 542, 365], "content": "An important property obeyed by the matrix $$S$$ for any classical algebra $$X_{r}$$ is rank-\nlevel duality. The first appearance of this curious duality seems to be by Frenkel [9],\nbut by now many aspects and generalisations have been explored in the literature. For\n$$A_{r}^{(1)}$$ , it is related to the existence of mutually commutative affine subalgbras $$\\widehat{\\mathrm{sl}(n)}$$ and\n$$\\widehat{\\mathrm{sl}}(\\widehat{k})$$ in $$\\widehat{\\mathrm{gl}}(n\\widehat{k})$$ . Witten has another interpretation of it [37]: he found a natural map (a\nring homomorphism) from the quantum cohomology of the Grassmannian $$G(k,N)$$ , to the\nfusion ring of the algebra $$\\mathrm{u}(k)\\cong\\mathrm{su}(k)\\oplus\\mathrm{u}(1)$$ at level $$(N-k,N)$$ . Witten used the duality\nbetween $$G(k,N)$$ and $$G(N-k,N)$$ to show that the fusion rings of $$\\operatorname{u}(k)$$ level $$(N-k,N)$$\nand $$\\mathrm{u}(N-k)$$ level $$(k,N)$$ should coincide. A considerable generalisation, applying to any\nVOA (or RCFT), has been conjectured by Nahm [30], and relates to the natural involution\n$$\\textstyle\\sum_{i}[x_{i}]\\leftrightarrow\\sum_{i}[1-x_{i}]$$ of torsion elements of the Bloch group.", "block_type": "text", "index": 3}, {"type": "text", "coordinates": [71, 366, 541, 414], "content": "The Kac-Peterson matrices of $$\\widehat{\\mathrm{sl}(\\ell)}$$ level $$k$$ and $$\\widehat{\\mathrm{sl}(k)}$$ level $$\\ell$$ are related, as are those of\n$$C_{r,k}$$ and $$C_{k,r}$$ , and $$\\widehat{\\mathrm{so}(\\ell)}$$ level $$k$$ and $$\\widehat{\\mathrm{so}(k)}$$ level $$\\ell$$ . We will need only the symplectic one;\nthe details will be given in \u00a73.3.", "block_type": "text", "index": 4}, {"type": "title", "coordinates": [71, 426, 270, 441], "content": "2.2. Symmetries of fusion coefficients", "block_type": "title", "index": 5}, {"type": "text", "coordinates": [71, 446, 541, 493], "content": "Definition 2.1. By an isomorphism between fusion rings $$\\mathcal{R}(X_{r,k})$$ and $$\\mathcal{R}(Y_{s,m})$$\n(with fusion coefficients $$N$$ and $$M$$ respectively) we mean a bijection $$\\pi\\ :\\ P_{+}^{k}(X_{r}^{(1)})\\ \\to$$\n$${\\cal P}_{+}^{m}(Y_{s}^{(1)})$$ such that", "block_type": "text", "index": 6}, {"type": "interline_equation", "coordinates": [198, 496, 413, 513], "content": "", "block_type": "interline_equation", "index": 7}, {"type": "text", "coordinates": [71, 516, 542, 545], "content": "When $$X_{r,k}~=~Y_{s,m}$$ we call $$\\pi$$ an automorphism or fusion-symmetry. Call the pair of\npermutations $$\\pi,\\pi^{\\prime}$$ an $$S$$ -symmetry if", "block_type": "text", "index": 8}, {"type": "interline_equation", "coordinates": [225, 556, 387, 570], "content": "", "block_type": "interline_equation", "index": 9}, {"type": "text", "coordinates": [70, 577, 541, 700], "content": "The lemma below tells us that fusion- and $$S$$ -symmetries form two isomorphic groups;\nthe former we will label $$\\boldsymbol{A}(\\boldsymbol{X}_{r,k})$$ . Equation (2.5a) says that the charge-conjugation $$C$$ , and\nmore generally any conjugation, is a fusion-symmetry, while (2.2a) says $$(C,C)$$ is an $$S$$ -\nsymmetry. Because $$N_{0}=I=M_{\\tilde{0}}$$ , $$N_{\\lambda\\mu}^{0}=C_{\\lambda\\mu}$$ and $$M_{\\tilde{\\lambda},\\tilde{\\mu}}^{\\tilde{0}}=\\widetilde{C}_{\\tilde{\\lambda},\\tilde{\\mu}}$$ (we use tilde\u2019s to denote\nquantities in $$Y_{s}^{(1)}$$ level $${\\boldsymbol{\\mathit{\\varepsilon}}}^{\\prime}{\\boldsymbol{\\mathit{m}}}$$ ), any isomorphism $$\\pi$$ must obey $$\\pi0=\\tilde{0}$$ and $$\\widetilde{C}\\circ\\pi=\\pi\\circ C$$ . More\ngenerally, since $$N_{\\lambda}$$ is a permutation matrix of order $${\\boldsymbol{n}}$$ iff $$\\lambda$$ is a simpl e- current of order $$n$$ ,\nwe see that an isomorphism sends simple-currents to simple-currents of equal order. We\nget", "block_type": "text", "index": 10}, {"type": "interline_equation", "coordinates": [254, 702, 358, 716], "content": "", "block_type": "interline_equation", "index": 11}] | [{"type": "text", "coordinates": [70, 73, 143, 89], "content": "root of unity ", "score": 1.0, "index": 1}, {"type": "inline_equation", "coordinates": [144, 75, 192, 87], "content": "q\\,=\\,\\xi_{2m\\kappa}", "score": 0.94, "index": 2}, {"type": "text", "coordinates": [192, 73, 330, 89], "content": " for appropriate choice of ", "score": 1.0, "index": 3}, {"type": "inline_equation", "coordinates": [331, 75, 399, 87], "content": "m\\in\\{1,2,3\\}", "score": 0.94, "index": 4}, {"type": "text", "coordinates": [399, 73, 541, 89], "content": ". They also arise from the", "score": 1.0, "index": 5}, {"type": "text", "coordinates": [70, 88, 403, 103], "content": "Huang-Lepowsky coproduct [21] for the modules of the VOA ", "score": 1.0, "index": 6}, {"type": "inline_equation", "coordinates": [404, 89, 439, 101], "content": "L(k,0)", "score": 0.94, "index": 7}, {"type": "text", "coordinates": [440, 88, 541, 103], "content": ". Because of these", "score": 1.0, "index": 8}, {"type": "text", "coordinates": [70, 103, 233, 117], "content": "isomorphisms, we get that the ", "score": 1.0, "index": 9}, {"type": "inline_equation", "coordinates": [233, 104, 255, 118], "content": "N_{\\lambda\\mu}^{\\nu}", "score": 0.93, "index": 10}, {"type": "text", "coordinates": [255, 103, 343, 117], "content": " do indeed lie in ", "score": 1.0, "index": 11}, {"type": "inline_equation", "coordinates": [343, 104, 360, 117], "content": "\\mathbb{Z}_{\\geq}", "score": 0.9, "index": 12}, {"type": "text", "coordinates": [360, 103, 481, 117], "content": ", for any affine algebra.", "score": 1.0, "index": 13}, {"type": "text", "coordinates": [94, 116, 548, 133], "content": "A useful way of identifying weights in affine Weyl orbits involves computing q-dimensions", "score": 1.0, "index": 14}, {"type": "text", "coordinates": [70, 131, 523, 146], "content": "and norms. Q-dimensions vary by at most a sign while norms are constant mod ", "score": 1.0, "index": 15}, {"type": "inline_equation", "coordinates": [523, 133, 536, 142], "content": "2\\kappa", "score": 0.81, "index": 16}, {"type": "text", "coordinates": [537, 131, 540, 146], "content": ":", "score": 1.0, "index": 17}, {"type": "inline_equation", "coordinates": [71, 146, 195, 159], "content": "{\\cal D}(w.\\lambda)\\;=\\;\\operatorname*{det}\\left(w\\right){\\cal D}(\\lambda)", "score": 0.92, "index": 18}, {"type": "text", "coordinates": [196, 144, 225, 160], "content": " and ", "score": 1.0, "index": 19}, {"type": "inline_equation", "coordinates": [226, 146, 317, 159], "content": "(w\\lambda|w\\lambda)\\,\\equiv\\,(\\lambda|\\lambda)", "score": 0.92, "index": 20}, {"type": "text", "coordinates": [318, 144, 356, 160], "content": " (mod ", "score": 1.0, "index": 21}, {"type": "inline_equation", "coordinates": [356, 147, 369, 156], "content": "2\\kappa", "score": 0.67, "index": 22}, {"type": "text", "coordinates": [370, 144, 541, 160], "content": "). The point is that for excep-", "score": 1.0, "index": 23}, {"type": "text", "coordinates": [71, 160, 540, 174], "content": "tional algebras at small levels, the highest weights can often be distinguished by the pair", "score": 1.0, "index": 24}, {"type": "inline_equation", "coordinates": [71, 175, 172, 188], "content": "(\\mathcal{D}(\\lambda),(\\lambda+\\rho|\\lambda+\\rho)", "score": 0.85, "index": 25}, {"type": "text", "coordinates": [172, 173, 207, 190], "content": " (mod ", "score": 1.0, "index": 26}, {"type": "inline_equation", "coordinates": [207, 176, 220, 185], "content": "2\\kappa", "score": 0.65, "index": 27}, {"type": "text", "coordinates": [221, 173, 377, 190], "content": ")). For example this is true of ", "score": 1.0, "index": 28}, {"type": "inline_equation", "coordinates": [378, 176, 453, 188], "content": "E_{8,5},E_{8,6},F_{4,4}", "score": 0.93, "index": 29}, {"type": "text", "coordinates": [453, 173, 541, 190], "content": ". This is a useful", "score": 1.0, "index": 30}, {"type": "text", "coordinates": [70, 189, 393, 203], "content": "way in practise to use both (2.4) and the Galois action (2.3).", "score": 1.0, "index": 31}, {"type": "text", "coordinates": [94, 202, 338, 218], "content": "An important property obeyed by the matrix ", "score": 1.0, "index": 32}, {"type": "inline_equation", "coordinates": [338, 205, 347, 214], "content": "S", "score": 0.89, "index": 33}, {"type": "text", "coordinates": [347, 202, 480, 218], "content": " for any classical algebra ", "score": 1.0, "index": 34}, {"type": "inline_equation", "coordinates": [480, 205, 496, 215], "content": "X_{r}", "score": 0.92, "index": 35}, {"type": "text", "coordinates": [496, 202, 541, 218], "content": " is rank-", "score": 1.0, "index": 36}, {"type": "text", "coordinates": [70, 216, 541, 233], "content": "level duality. The first appearance of this curious duality seems to be by Frenkel [9],", "score": 1.0, "index": 37}, {"type": "text", "coordinates": [70, 232, 542, 246], "content": "but by now many aspects and generalisations have been explored in the literature. For", "score": 1.0, "index": 38}, {"type": "inline_equation", "coordinates": [71, 246, 93, 261], "content": "A_{r}^{(1)}", "score": 0.92, "index": 39}, {"type": "text", "coordinates": [93, 244, 489, 265], "content": ", it is related to the existence of mutually commutative affine subalgbras", "score": 1.0, "index": 40}, {"type": "inline_equation", "coordinates": [490, 245, 515, 262], "content": "\\widehat{\\mathrm{sl}(n)}", "score": 0.91, "index": 41}, {"type": "text", "coordinates": [515, 244, 542, 265], "content": " and", "score": 1.0, "index": 42}, {"type": "inline_equation", "coordinates": [71, 263, 95, 280], "content": "\\widehat{\\mathrm{sl}}(\\widehat{k})", "score": 0.9, "index": 43}, {"type": "text", "coordinates": [96, 265, 114, 281], "content": " in ", "score": 1.0, "index": 44}, {"type": "inline_equation", "coordinates": [114, 263, 147, 279], "content": "\\widehat{\\mathrm{gl}}(n\\widehat{k})", "score": 0.91, "index": 45}, {"type": "text", "coordinates": [147, 265, 541, 281], "content": ". Witten has another interpretation of it [37]: he found a natural map (a", "score": 1.0, "index": 46}, {"type": "text", "coordinates": [71, 281, 460, 295], "content": "ring homomorphism) from the quantum cohomology of the Grassmannian ", "score": 1.0, "index": 47}, {"type": "inline_equation", "coordinates": [460, 281, 502, 294], "content": "G(k,N)", "score": 0.93, "index": 48}, {"type": "text", "coordinates": [502, 281, 541, 295], "content": ", to the", "score": 1.0, "index": 49}, {"type": "text", "coordinates": [70, 294, 204, 309], "content": "fusion ring of the algebra ", "score": 1.0, "index": 50}, {"type": "inline_equation", "coordinates": [205, 296, 306, 308], "content": "\\mathrm{u}(k)\\cong\\mathrm{su}(k)\\oplus\\mathrm{u}(1)", "score": 0.92, "index": 51}, {"type": "text", "coordinates": [306, 294, 350, 309], "content": " at level ", "score": 1.0, "index": 52}, {"type": "inline_equation", "coordinates": [351, 296, 407, 308], "content": "(N-k,N)", "score": 0.93, "index": 53}, {"type": "text", "coordinates": [407, 294, 541, 309], "content": ". Witten used the duality", "score": 1.0, "index": 54}, {"type": "text", "coordinates": [70, 309, 117, 323], "content": "between ", "score": 1.0, "index": 55}, {"type": "inline_equation", "coordinates": [118, 310, 159, 322], "content": "G(k,N)", "score": 0.94, "index": 56}, {"type": "text", "coordinates": [160, 309, 186, 323], "content": " and ", "score": 1.0, "index": 57}, {"type": "inline_equation", "coordinates": [186, 310, 254, 322], "content": "G(N-k,N)", "score": 0.94, "index": 58}, {"type": "text", "coordinates": [254, 309, 426, 323], "content": " to show that the fusion rings of", "score": 1.0, "index": 59}, {"type": "inline_equation", "coordinates": [427, 309, 450, 322], "content": "\\operatorname{u}(k)", "score": 0.87, "index": 60}, {"type": "text", "coordinates": [451, 309, 481, 323], "content": " level ", "score": 1.0, "index": 61}, {"type": "inline_equation", "coordinates": [482, 309, 540, 322], "content": "(N-k,N)", "score": 0.92, "index": 62}, {"type": "text", "coordinates": [70, 322, 94, 338], "content": "and ", "score": 1.0, "index": 63}, {"type": "inline_equation", "coordinates": [94, 324, 142, 336], "content": "\\mathrm{u}(N-k)", "score": 0.94, "index": 64}, {"type": "text", "coordinates": [143, 322, 173, 338], "content": " level ", "score": 1.0, "index": 65}, {"type": "inline_equation", "coordinates": [173, 324, 205, 337], "content": "(k,N)", "score": 0.94, "index": 66}, {"type": "text", "coordinates": [206, 322, 541, 338], "content": " should coincide. A considerable generalisation, applying to any", "score": 1.0, "index": 67}, {"type": "text", "coordinates": [70, 337, 542, 353], "content": "VOA (or RCFT), has been conjectured by Nahm [30], and relates to the natural involution", "score": 1.0, "index": 68}, {"type": "inline_equation", "coordinates": [71, 353, 179, 366], "content": "\\textstyle\\sum_{i}[x_{i}]\\leftrightarrow\\sum_{i}[1-x_{i}]", "score": 0.93, "index": 69}, {"type": "text", "coordinates": [179, 351, 388, 368], "content": " of torsion elements of the Bloch group.", "score": 1.0, "index": 70}, {"type": "text", "coordinates": [94, 369, 253, 385], "content": "The Kac-Peterson matrices of", "score": 1.0, "index": 71}, {"type": "inline_equation", "coordinates": [253, 367, 276, 383], "content": "\\widehat{\\mathrm{sl}(\\ell)}", "score": 0.92, "index": 72}, {"type": "text", "coordinates": [276, 369, 306, 385], "content": " level ", "score": 1.0, "index": 73}, {"type": "inline_equation", "coordinates": [306, 372, 313, 380], "content": "k", "score": 0.88, "index": 74}, {"type": "text", "coordinates": [313, 369, 339, 385], "content": " and ", "score": 1.0, "index": 75}, {"type": "inline_equation", "coordinates": [339, 367, 363, 384], "content": "\\widehat{\\mathrm{sl}(k)}", "score": 0.92, "index": 76}, {"type": "text", "coordinates": [364, 369, 393, 385], "content": " level ", "score": 1.0, "index": 77}, {"type": "inline_equation", "coordinates": [393, 371, 399, 380], "content": "\\ell", "score": 0.77, "index": 78}, {"type": "text", "coordinates": [399, 369, 542, 385], "content": "are related, as are those of", "score": 1.0, "index": 79}, {"type": "inline_equation", "coordinates": [71, 389, 93, 402], "content": "C_{r,k}", "score": 0.92, "index": 80}, {"type": "text", "coordinates": [93, 387, 120, 404], "content": " and ", "score": 1.0, "index": 81}, {"type": "inline_equation", "coordinates": [120, 389, 143, 402], "content": "C_{k,r}", "score": 0.92, "index": 82}, {"type": "text", "coordinates": [143, 387, 173, 404], "content": ", and", "score": 1.0, "index": 83}, {"type": "inline_equation", "coordinates": [174, 385, 199, 401], "content": "\\widehat{\\mathrm{so}(\\ell)}", "score": 0.89, "index": 84}, {"type": "text", "coordinates": [200, 387, 231, 404], "content": " level ", "score": 1.0, "index": 85}, {"type": "inline_equation", "coordinates": [231, 389, 238, 398], "content": "k", "score": 0.87, "index": 86}, {"type": "text", "coordinates": [238, 387, 265, 404], "content": " and", "score": 1.0, "index": 87}, {"type": "inline_equation", "coordinates": [266, 384, 293, 401], "content": "\\widehat{\\mathrm{so}(k)}", "score": 0.86, "index": 88}, {"type": "text", "coordinates": [293, 387, 324, 404], "content": " level ", "score": 1.0, "index": 89}, {"type": "inline_equation", "coordinates": [324, 389, 330, 398], "content": "\\ell", "score": 0.86, "index": 90}, {"type": "text", "coordinates": [330, 387, 541, 404], "content": ". We will need only the symplectic one;", "score": 1.0, "index": 91}, {"type": "text", "coordinates": [70, 402, 239, 416], "content": "the details will be given in \u00a73.3.", "score": 1.0, "index": 92}, {"type": "text", "coordinates": [72, 429, 269, 442], "content": "2.2. Symmetries of fusion coefficients", "score": 1.0, "index": 93}, {"type": "text", "coordinates": [93, 447, 423, 465], "content": "Definition 2.1. By an isomorphism between fusion rings ", "score": 1.0, "index": 94}, {"type": "inline_equation", "coordinates": [423, 449, 466, 463], "content": "\\mathcal{R}(X_{r,k})", "score": 0.92, "index": 95}, {"type": "text", "coordinates": [466, 447, 496, 465], "content": " and ", "score": 1.0, "index": 96}, {"type": "inline_equation", "coordinates": [496, 449, 540, 462], "content": "\\mathcal{R}(Y_{s,m})", "score": 0.9, "index": 97}, {"type": "text", "coordinates": [69, 464, 203, 481], "content": "(with fusion coefficients ", "score": 1.0, "index": 98}, {"type": "inline_equation", "coordinates": [204, 466, 216, 477], "content": "N", "score": 0.79, "index": 99}, {"type": "text", "coordinates": [216, 464, 245, 481], "content": " and ", "score": 1.0, "index": 100}, {"type": "inline_equation", "coordinates": [245, 465, 259, 477], "content": "M", "score": 0.64, "index": 101}, {"type": "text", "coordinates": [260, 464, 448, 481], "content": " respectively) we mean a bijection ", "score": 1.0, "index": 102}, {"type": "inline_equation", "coordinates": [448, 463, 541, 480], "content": "\\pi\\ :\\ P_{+}^{k}(X_{r}^{(1)})\\ \\to", "score": 0.92, "index": 103}, {"type": "inline_equation", "coordinates": [71, 480, 122, 498], "content": "{\\cal P}_{+}^{m}(Y_{s}^{(1)})", "score": 0.94, "index": 104}, {"type": "text", "coordinates": [122, 478, 177, 498], "content": " such that", "score": 1.0, "index": 105}, {"type": "interline_equation", "coordinates": [198, 496, 413, 513], "content": "N_{\\lambda,\\mu}^{\\nu}=M_{\\pi\\lambda,\\pi\\mu}^{\\pi\\nu}\\qquad\\forall\\lambda,\\mu,\\nu\\in P_{+}(X_{r,k})\\ .", "score": 0.9, "index": 106}, {"type": "text", "coordinates": [71, 516, 107, 535], "content": "When ", "score": 1.0, "index": 107}, {"type": "inline_equation", "coordinates": [107, 518, 176, 532], "content": "X_{r,k}~=~Y_{s,m}", "score": 0.91, "index": 108}, {"type": "text", "coordinates": [176, 516, 224, 535], "content": " we call ", "score": 1.0, "index": 109}, {"type": "inline_equation", "coordinates": [225, 523, 232, 529], "content": "\\pi", "score": 0.77, "index": 110}, {"type": "text", "coordinates": [233, 516, 544, 535], "content": " an automorphism or fusion-symmetry. Call the pair of", "score": 1.0, "index": 111}, {"type": "text", "coordinates": [71, 533, 142, 547], "content": "permutations ", "score": 1.0, "index": 112}, {"type": "inline_equation", "coordinates": [143, 533, 167, 546], "content": "\\pi,\\pi^{\\prime}", "score": 0.87, "index": 113}, {"type": "text", "coordinates": [167, 533, 187, 547], "content": " an ", "score": 1.0, "index": 114}, {"type": "inline_equation", "coordinates": [187, 534, 196, 543], "content": "S", "score": 0.84, "index": 115}, {"type": "text", "coordinates": [196, 533, 267, 547], "content": "-symmetry if", "score": 1.0, "index": 116}, {"type": "interline_equation", "coordinates": [225, 556, 387, 570], "content": "S_{\\pi\\lambda,\\pi^{\\prime}\\mu}=S_{\\lambda\\mu}\\qquad\\forall\\lambda,\\mu\\in{\\cal P}_{+}\\ .", "score": 0.9, "index": 117}, {"type": "text", "coordinates": [94, 578, 317, 595], "content": "The lemma below tells us that fusion- and ", "score": 1.0, "index": 118}, {"type": "inline_equation", "coordinates": [317, 582, 325, 591], "content": "S", "score": 0.9, "index": 119}, {"type": "text", "coordinates": [326, 578, 541, 595], "content": "-symmetries form two isomorphic groups;", "score": 1.0, "index": 120}, {"type": "text", "coordinates": [71, 594, 196, 610], "content": "the former we will label ", "score": 1.0, "index": 121}, {"type": "inline_equation", "coordinates": [196, 595, 238, 608], "content": "\\boldsymbol{A}(\\boldsymbol{X}_{r,k})", "score": 0.94, "index": 122}, {"type": "text", "coordinates": [239, 594, 504, 610], "content": ". Equation (2.5a) says that the charge-conjugation ", "score": 1.0, "index": 123}, {"type": "inline_equation", "coordinates": [504, 596, 514, 605], "content": "C", "score": 0.89, "index": 124}, {"type": "text", "coordinates": [514, 594, 541, 610], "content": ", and", "score": 1.0, "index": 125}, {"type": "text", "coordinates": [70, 609, 459, 623], "content": "more generally any conjugation, is a fusion-symmetry, while (2.2a) says ", "score": 1.0, "index": 126}, {"type": "inline_equation", "coordinates": [459, 610, 492, 622], "content": "(C,C)", "score": 0.94, "index": 127}, {"type": "text", "coordinates": [492, 609, 527, 623], "content": " is an ", "score": 1.0, "index": 128}, {"type": "inline_equation", "coordinates": [527, 610, 536, 619], "content": "S", "score": 0.88, "index": 129}, {"type": "text", "coordinates": [536, 609, 541, 623], "content": "-", "score": 1.0, "index": 130}, {"type": "text", "coordinates": [67, 622, 177, 644], "content": "symmetry. Because ", "score": 1.0, "index": 131}, {"type": "inline_equation", "coordinates": [177, 626, 248, 639], "content": "N_{0}=I=M_{\\tilde{0}}", "score": 0.92, "index": 132}, {"type": "text", "coordinates": [248, 622, 254, 644], "content": ", ", "score": 1.0, "index": 133}, {"type": "inline_equation", "coordinates": [255, 625, 313, 640], "content": "N_{\\lambda\\mu}^{0}=C_{\\lambda\\mu}", "score": 0.94, "index": 134}, {"type": "text", "coordinates": [314, 622, 341, 644], "content": " and ", "score": 1.0, "index": 135}, {"type": "inline_equation", "coordinates": [341, 623, 407, 642], "content": "M_{\\tilde{\\lambda},\\tilde{\\mu}}^{\\tilde{0}}=\\widetilde{C}_{\\tilde{\\lambda},\\tilde{\\mu}}", "score": 0.94, "index": 136}, {"type": "text", "coordinates": [408, 622, 542, 644], "content": " (we use tilde\u2019s to denote", "score": 1.0, "index": 137}, {"type": "text", "coordinates": [69, 641, 139, 662], "content": "quantities in ", "score": 1.0, "index": 138}, {"type": "inline_equation", "coordinates": [140, 643, 162, 657], "content": "Y_{s}^{(1)}", "score": 0.92, "index": 139}, {"type": "text", "coordinates": [162, 641, 192, 662], "content": "level ", "score": 1.0, "index": 140}, {"type": "inline_equation", "coordinates": [192, 650, 203, 656], "content": "{\\boldsymbol{\\mathit{\\varepsilon}}}^{\\prime}{\\boldsymbol{\\mathit{m}}}", "score": 0.85, "index": 141}, {"type": "text", "coordinates": [204, 641, 306, 662], "content": "), any isomorphism ", "score": 1.0, "index": 142}, {"type": "inline_equation", "coordinates": [306, 650, 313, 656], "content": "\\pi", "score": 0.88, "index": 143}, {"type": "text", "coordinates": [314, 641, 374, 662], "content": " must obey ", "score": 1.0, "index": 144}, {"type": "inline_equation", "coordinates": [374, 645, 410, 656], "content": "\\pi0=\\tilde{0}", "score": 0.92, "index": 145}, {"type": "text", "coordinates": [410, 641, 435, 662], "content": " and", "score": 1.0, "index": 146}, {"type": "inline_equation", "coordinates": [435, 644, 504, 656], "content": "\\widetilde{C}\\circ\\pi=\\pi\\circ C", "score": 0.92, "index": 147}, {"type": "text", "coordinates": [505, 641, 542, 662], "content": ". More", "score": 1.0, "index": 148}, {"type": "text", "coordinates": [70, 659, 153, 675], "content": "generally, since ", "score": 1.0, "index": 149}, {"type": "inline_equation", "coordinates": [154, 661, 169, 672], "content": "N_{\\lambda}", "score": 0.93, "index": 150}, {"type": "text", "coordinates": [169, 659, 347, 675], "content": " is a permutation matrix of order ", "score": 1.0, "index": 151}, {"type": "inline_equation", "coordinates": [347, 664, 354, 670], "content": "{\\boldsymbol{n}}", "score": 0.87, "index": 152}, {"type": "text", "coordinates": [355, 659, 372, 675], "content": " iff", "score": 1.0, "index": 153}, {"type": "inline_equation", "coordinates": [372, 661, 380, 670], "content": "\\lambda", "score": 0.88, "index": 154}, {"type": "text", "coordinates": [380, 659, 528, 675], "content": " is a simpl e- current of order ", "score": 1.0, "index": 155}, {"type": "inline_equation", "coordinates": [529, 664, 536, 670], "content": "n", "score": 0.84, "index": 156}, {"type": "text", "coordinates": [537, 659, 541, 675], "content": ",", "score": 1.0, "index": 157}, {"type": "text", "coordinates": [71, 675, 541, 689], "content": "we see that an isomorphism sends simple-currents to simple-currents of equal order. We", "score": 1.0, "index": 158}, {"type": "text", "coordinates": [70, 690, 90, 703], "content": "get", "score": 1.0, "index": 159}, {"type": "interline_equation", "coordinates": [254, 702, 358, 716], "content": "\\pi(J\\mu)=\\pi(j)\\,\\pi(\\mu)~.", "score": 0.93, "index": 160}] | [] | [{"type": "block", "coordinates": [198, 496, 413, 513], "content": "", "caption": ""}, {"type": "block", "coordinates": [225, 556, 387, 570], "content": "", "caption": ""}, {"type": "block", "coordinates": [254, 702, 358, 716], "content": "", "caption": ""}, {"type": "inline", "coordinates": [144, 75, 192, 87], "content": "q\\,=\\,\\xi_{2m\\kappa}", "caption": ""}, {"type": "inline", "coordinates": [331, 75, 399, 87], "content": "m\\in\\{1,2,3\\}", "caption": ""}, {"type": "inline", "coordinates": [404, 89, 439, 101], "content": "L(k,0)", "caption": ""}, {"type": "inline", "coordinates": [233, 104, 255, 118], "content": "N_{\\lambda\\mu}^{\\nu}", "caption": ""}, {"type": "inline", "coordinates": [343, 104, 360, 117], "content": "\\mathbb{Z}_{\\geq}", "caption": ""}, {"type": "inline", "coordinates": [523, 133, 536, 142], "content": "2\\kappa", "caption": ""}, {"type": "inline", "coordinates": [71, 146, 195, 159], "content": "{\\cal D}(w.\\lambda)\\;=\\;\\operatorname*{det}\\left(w\\right){\\cal D}(\\lambda)", "caption": ""}, {"type": "inline", "coordinates": [226, 146, 317, 159], "content": "(w\\lambda|w\\lambda)\\,\\equiv\\,(\\lambda|\\lambda)", "caption": ""}, {"type": "inline", "coordinates": [356, 147, 369, 156], "content": "2\\kappa", "caption": ""}, {"type": "inline", "coordinates": [71, 175, 172, 188], "content": "(\\mathcal{D}(\\lambda),(\\lambda+\\rho|\\lambda+\\rho)", "caption": ""}, {"type": "inline", "coordinates": [207, 176, 220, 185], "content": "2\\kappa", "caption": ""}, {"type": "inline", "coordinates": [378, 176, 453, 188], "content": "E_{8,5},E_{8,6},F_{4,4}", "caption": ""}, {"type": "inline", "coordinates": [338, 205, 347, 214], "content": "S", "caption": ""}, {"type": "inline", "coordinates": [480, 205, 496, 215], "content": "X_{r}", "caption": ""}, {"type": "inline", "coordinates": [71, 246, 93, 261], "content": "A_{r}^{(1)}", "caption": ""}, {"type": "inline", "coordinates": [490, 245, 515, 262], "content": "\\widehat{\\mathrm{sl}(n)}", "caption": ""}, {"type": "inline", "coordinates": [71, 263, 95, 280], "content": "\\widehat{\\mathrm{sl}}(\\widehat{k})", "caption": ""}, {"type": "inline", "coordinates": [114, 263, 147, 279], "content": "\\widehat{\\mathrm{gl}}(n\\widehat{k})", "caption": ""}, {"type": "inline", "coordinates": [460, 281, 502, 294], "content": "G(k,N)", "caption": ""}, {"type": "inline", "coordinates": [205, 296, 306, 308], "content": "\\mathrm{u}(k)\\cong\\mathrm{su}(k)\\oplus\\mathrm{u}(1)", "caption": ""}, {"type": "inline", "coordinates": [351, 296, 407, 308], "content": "(N-k,N)", "caption": ""}, {"type": "inline", "coordinates": [118, 310, 159, 322], "content": "G(k,N)", "caption": ""}, {"type": "inline", "coordinates": [186, 310, 254, 322], "content": "G(N-k,N)", "caption": ""}, {"type": "inline", "coordinates": [427, 309, 450, 322], "content": "\\operatorname{u}(k)", "caption": ""}, {"type": "inline", "coordinates": [482, 309, 540, 322], "content": "(N-k,N)", "caption": ""}, {"type": "inline", "coordinates": [94, 324, 142, 336], "content": "\\mathrm{u}(N-k)", "caption": ""}, {"type": "inline", "coordinates": [173, 324, 205, 337], "content": "(k,N)", "caption": ""}, {"type": "inline", "coordinates": [71, 353, 179, 366], "content": "\\textstyle\\sum_{i}[x_{i}]\\leftrightarrow\\sum_{i}[1-x_{i}]", "caption": ""}, {"type": "inline", "coordinates": [253, 367, 276, 383], "content": "\\widehat{\\mathrm{sl}(\\ell)}", "caption": ""}, {"type": "inline", "coordinates": [306, 372, 313, 380], "content": "k", "caption": ""}, {"type": "inline", "coordinates": [339, 367, 363, 384], "content": "\\widehat{\\mathrm{sl}(k)}", "caption": ""}, {"type": "inline", "coordinates": [393, 371, 399, 380], "content": "\\ell", "caption": ""}, {"type": "inline", "coordinates": [71, 389, 93, 402], "content": "C_{r,k}", "caption": ""}, {"type": "inline", "coordinates": [120, 389, 143, 402], "content": "C_{k,r}", "caption": ""}, {"type": "inline", "coordinates": [174, 385, 199, 401], "content": "\\widehat{\\mathrm{so}(\\ell)}", "caption": ""}, {"type": "inline", "coordinates": [231, 389, 238, 398], "content": "k", "caption": ""}, {"type": "inline", "coordinates": [266, 384, 293, 401], "content": "\\widehat{\\mathrm{so}(k)}", "caption": ""}, {"type": "inline", "coordinates": [324, 389, 330, 398], "content": "\\ell", "caption": ""}, {"type": "inline", "coordinates": [423, 449, 466, 463], "content": "\\mathcal{R}(X_{r,k})", "caption": ""}, {"type": "inline", "coordinates": [496, 449, 540, 462], "content": "\\mathcal{R}(Y_{s,m})", "caption": ""}, {"type": "inline", "coordinates": [204, 466, 216, 477], "content": "N", "caption": ""}, {"type": "inline", "coordinates": [245, 465, 259, 477], "content": "M", "caption": ""}, {"type": "inline", "coordinates": [448, 463, 541, 480], "content": "\\pi\\ :\\ P_{+}^{k}(X_{r}^{(1)})\\ \\to", "caption": ""}, {"type": "inline", "coordinates": [71, 480, 122, 498], "content": "{\\cal P}_{+}^{m}(Y_{s}^{(1)})", "caption": ""}, {"type": "inline", "coordinates": [107, 518, 176, 532], "content": "X_{r,k}~=~Y_{s,m}", "caption": ""}, {"type": "inline", "coordinates": [225, 523, 232, 529], "content": "\\pi", "caption": ""}, {"type": "inline", "coordinates": [143, 533, 167, 546], "content": "\\pi,\\pi^{\\prime}", "caption": ""}, {"type": "inline", "coordinates": [187, 534, 196, 543], "content": "S", "caption": ""}, {"type": "inline", "coordinates": [317, 582, 325, 591], "content": "S", "caption": ""}, {"type": "inline", "coordinates": [196, 595, 238, 608], "content": "\\boldsymbol{A}(\\boldsymbol{X}_{r,k})", "caption": ""}, {"type": "inline", "coordinates": [504, 596, 514, 605], "content": "C", "caption": ""}, {"type": "inline", "coordinates": [459, 610, 492, 622], "content": "(C,C)", "caption": ""}, {"type": "inline", "coordinates": [527, 610, 536, 619], "content": "S", "caption": ""}, {"type": "inline", "coordinates": [177, 626, 248, 639], "content": "N_{0}=I=M_{\\tilde{0}}", "caption": ""}, {"type": "inline", "coordinates": [255, 625, 313, 640], "content": "N_{\\lambda\\mu}^{0}=C_{\\lambda\\mu}", "caption": ""}, {"type": "inline", "coordinates": [341, 623, 407, 642], "content": "M_{\\tilde{\\lambda},\\tilde{\\mu}}^{\\tilde{0}}=\\widetilde{C}_{\\tilde{\\lambda},\\tilde{\\mu}}", "caption": ""}, {"type": "inline", "coordinates": [140, 643, 162, 657], "content": "Y_{s}^{(1)}", "caption": ""}, {"type": "inline", "coordinates": [192, 650, 203, 656], "content": "{\\boldsymbol{\\mathit{\\varepsilon}}}^{\\prime}{\\boldsymbol{\\mathit{m}}}", "caption": ""}, {"type": "inline", "coordinates": [306, 650, 313, 656], "content": "\\pi", "caption": ""}, {"type": "inline", "coordinates": [374, 645, 410, 656], "content": "\\pi0=\\tilde{0}", "caption": ""}, {"type": "inline", "coordinates": [435, 644, 504, 656], "content": "\\widetilde{C}\\circ\\pi=\\pi\\circ C", "caption": ""}, {"type": "inline", "coordinates": [154, 661, 169, 672], "content": "N_{\\lambda}", "caption": ""}, {"type": "inline", "coordinates": [347, 664, 354, 670], "content": "{\\boldsymbol{n}}", "caption": ""}, {"type": "inline", "coordinates": [372, 661, 380, 670], "content": "\\lambda", "caption": ""}, {"type": "inline", "coordinates": [529, 664, 536, 670], "content": "n", "caption": ""}] | [] | [612.0, 792.0] | [{"type": "text", "text": "", "page_idx": 5}, {"type": "text", "text": "A useful way of identifying weights in affine Weyl orbits involves computing q-dimensions and norms. Q-dimensions vary by at most a sign while norms are constant mod $2\\kappa$ : ${\\cal D}(w.\\lambda)\\;=\\;\\operatorname*{det}\\left(w\\right){\\cal D}(\\lambda)$ and $(w\\lambda|w\\lambda)\\,\\equiv\\,(\\lambda|\\lambda)$ (mod $2\\kappa$ ). The point is that for exceptional algebras at small levels, the highest weights can often be distinguished by the pair $(\\mathcal{D}(\\lambda),(\\lambda+\\rho|\\lambda+\\rho)$ (mod $2\\kappa$ )). For example this is true of $E_{8,5},E_{8,6},F_{4,4}$ . This is a useful way in practise to use both (2.4) and the Galois action (2.3). ", "page_idx": 5}, {"type": "text", "text": "An important property obeyed by the matrix $S$ for any classical algebra $X_{r}$ is ranklevel duality. The first appearance of this curious duality seems to be by Frenkel [9], but by now many aspects and generalisations have been explored in the literature. For $A_{r}^{(1)}$ , it is related to the existence of mutually commutative affine subalgbras $\\widehat{\\mathrm{sl}(n)}$ and $\\widehat{\\mathrm{sl}}(\\widehat{k})$ in $\\widehat{\\mathrm{gl}}(n\\widehat{k})$ . Witten has another interpretation of it [37]: he found a natural map (a ring homomorphism) from the quantum cohomology of the Grassmannian $G(k,N)$ , to the fusion ring of the algebra $\\mathrm{u}(k)\\cong\\mathrm{su}(k)\\oplus\\mathrm{u}(1)$ at level $(N-k,N)$ . Witten used the duality between $G(k,N)$ and $G(N-k,N)$ to show that the fusion rings of $\\operatorname{u}(k)$ level $(N-k,N)$ and $\\mathrm{u}(N-k)$ level $(k,N)$ should coincide. A considerable generalisation, applying to any VOA (or RCFT), has been conjectured by Nahm [30], and relates to the natural involution $\\textstyle\\sum_{i}[x_{i}]\\leftrightarrow\\sum_{i}[1-x_{i}]$ of torsion elements of the Bloch group. ", "page_idx": 5}, {"type": "text", "text": "The Kac-Peterson matrices of $\\widehat{\\mathrm{sl}(\\ell)}$ level $k$ and $\\widehat{\\mathrm{sl}(k)}$ level $\\ell$ are related, as are those of $C_{r,k}$ and $C_{k,r}$ , and $\\widehat{\\mathrm{so}(\\ell)}$ level $k$ and $\\widehat{\\mathrm{so}(k)}$ level $\\ell$ . We will need only the symplectic one; the details will be given in \u00a73.3. ", "page_idx": 5}, {"type": "text", "text": "2.2. Symmetries of fusion coefficients ", "text_level": 1, "page_idx": 5}, {"type": "text", "text": "Definition 2.1. By an isomorphism between fusion rings $\\mathcal{R}(X_{r,k})$ and $\\mathcal{R}(Y_{s,m})$ (with fusion coefficients $N$ and $M$ respectively) we mean a bijection $\\pi\\ :\\ P_{+}^{k}(X_{r}^{(1)})\\ \\to$ ${\\cal P}_{+}^{m}(Y_{s}^{(1)})$ such that ", "page_idx": 5}, {"type": "equation", "text": "$$\nN_{\\lambda,\\mu}^{\\nu}=M_{\\pi\\lambda,\\pi\\mu}^{\\pi\\nu}\\qquad\\forall\\lambda,\\mu,\\nu\\in P_{+}(X_{r,k})\\ .\n$$", "text_format": "latex", "page_idx": 5}, {"type": "text", "text": "When $X_{r,k}~=~Y_{s,m}$ we call $\\pi$ an automorphism or fusion-symmetry. Call the pair of permutations $\\pi,\\pi^{\\prime}$ an $S$ -symmetry if ", "page_idx": 5}, {"type": "equation", "text": "$$\nS_{\\pi\\lambda,\\pi^{\\prime}\\mu}=S_{\\lambda\\mu}\\qquad\\forall\\lambda,\\mu\\in{\\cal P}_{+}\\ .\n$$", "text_format": "latex", "page_idx": 5}, {"type": "text", "text": "The lemma below tells us that fusion- and $S$ -symmetries form two isomorphic groups; the former we will label $\\boldsymbol{A}(\\boldsymbol{X}_{r,k})$ . Equation (2.5a) says that the charge-conjugation $C$ , and more generally any conjugation, is a fusion-symmetry, while (2.2a) says $(C,C)$ is an $S$ - symmetry. Because $N_{0}=I=M_{\\tilde{0}}$ , $N_{\\lambda\\mu}^{0}=C_{\\lambda\\mu}$ and $M_{\\tilde{\\lambda},\\tilde{\\mu}}^{\\tilde{0}}=\\widetilde{C}_{\\tilde{\\lambda},\\tilde{\\mu}}$ (we use tilde\u2019s to denote quantities in $Y_{s}^{(1)}$ level ${\\boldsymbol{\\mathit{\\varepsilon}}}^{\\prime}{\\boldsymbol{\\mathit{m}}}$ ), any isomorphism $\\pi$ must obey $\\pi0=\\tilde{0}$ and $\\widetilde{C}\\circ\\pi=\\pi\\circ C$ . More generally, since $N_{\\lambda}$ is a permutation matrix of order ${\\boldsymbol{n}}$ iff $\\lambda$ is a simpl e- current of order $n$ , we see that an isomorphism sends simple-currents to simple-currents of equal order. We get ", "page_idx": 5}, {"type": "equation", "text": "$$\n\\pi(J\\mu)=\\pi(j)\\,\\pi(\\mu)~.\n$$", "text_format": "latex", "page_idx": 5}] | [{"category_id": 1, "poly": [195, 559, 1506, 559, 1506, 1014, 195, 1014], "score": 0.984}, {"category_id": 1, "poly": [195, 1604, 1505, 1604, 1505, 1945, 195, 1945], "score": 0.982}, {"category_id": 1, "poly": [198, 321, 1516, 321, 1516, 558, 198, 558], "score": 0.979}, {"category_id": 1, "poly": [199, 1018, 1504, 1018, 1504, 1152, 199, 1152], "score": 0.967}, {"category_id": 1, "poly": [197, 197, 1509, 197, 1509, 318, 197, 318], "score": 0.965}, {"category_id": 1, "poly": [199, 1240, 1503, 1240, 1503, 1371, 199, 1371], "score": 0.964}, {"category_id": 8, "poly": [624, 1537, 1073, 1537, 1073, 1587, 624, 1587], "score": 0.942}, {"category_id": 8, "poly": [549, 1374, 1147, 1374, 1147, 1425, 549, 1425], "score": 0.941}, {"category_id": 1, "poly": [198, 1435, 1507, 1435, 1507, 1516, 198, 1516], "score": 0.937}, {"category_id": 8, "poly": [702, 1946, 994, 1946, 994, 1991, 702, 1991], "score": 0.918}, {"category_id": 9, "poly": [1429, 1378, 1501, 1378, 1501, 1418, 1429, 1418], "score": 0.886}, {"category_id": 9, "poly": [1412, 1948, 1500, 1948, 1500, 1987, 1412, 1987], "score": 0.885}, {"category_id": 0, "poly": [199, 1184, 750, 1184, 750, 1225, 199, 1225], "score": 0.542}, {"category_id": 0, "poly": [199, 1184, 751, 1184, 751, 1225, 199, 1225], "score": 0.288}, {"category_id": 13, "poly": [328, 862, 444, 862, 444, 896, 328, 896], "score": 0.94, "latex": "G(k,N)"}, {"category_id": 13, "poly": [483, 902, 572, 902, 572, 937, 483, 937], "score": 0.94, "latex": "(k,N)"}, {"category_id": 13, "poly": [949, 1732, 1133, 1732, 1133, 1785, 949, 1785], "score": 0.94, "latex": "M_{\\tilde{\\lambda},\\tilde{\\mu}}^{\\tilde{0}}=\\widetilde{C}_{\\tilde{\\lambda},\\tilde{\\mu}}"}, {"category_id": 13, "poly": [1123, 249, 1222, 249, 1222, 283, 1123, 283], "score": 0.94, "latex": "L(k,0)"}, {"category_id": 13, "poly": [709, 1737, 872, 1737, 872, 1779, 709, 1779], "score": 0.94, "latex": "N_{\\lambda\\mu}^{0}=C_{\\lambda\\mu}"}, {"category_id": 13, "poly": [400, 211, 534, 211, 534, 242, 400, 242], "score": 0.94, "latex": "q\\,=\\,\\xi_{2m\\kappa}"}, {"category_id": 13, "poly": [1277, 1695, 1368, 1695, 1368, 1729, 1277, 1729], "score": 0.94, "latex": "(C,C)"}, {"category_id": 13, "poly": [920, 209, 1110, 209, 1110, 244, 920, 244], "score": 0.94, "latex": "m\\in\\{1,2,3\\}"}, {"category_id": 13, "poly": [519, 862, 707, 862, 707, 897, 519, 897], "score": 0.94, "latex": "G(N-k,N)"}, {"category_id": 13, "poly": [199, 1335, 340, 1335, 340, 1384, 199, 1384], "score": 0.94, "latex": "{\\cal P}_{+}^{m}(Y_{s}^{(1)})"}, {"category_id": 13, "poly": [263, 902, 397, 902, 397, 936, 263, 936], "score": 0.94, "latex": "\\mathrm{u}(N-k)"}, {"category_id": 13, "poly": [547, 1655, 663, 1655, 663, 1690, 547, 1690], "score": 0.94, "latex": "\\boldsymbol{A}(\\boldsymbol{X}_{r,k})"}, {"category_id": 13, "poly": [1279, 782, 1395, 782, 1395, 817, 1279, 817], "score": 0.93, "latex": "G(k,N)"}, {"category_id": 13, "poly": [199, 981, 498, 981, 498, 1018, 199, 1018], "score": 0.93, "latex": "\\textstyle\\sum_{i}[x_{i}]\\leftrightarrow\\sum_{i}[1-x_{i}]"}, {"category_id": 13, "poly": [975, 823, 1131, 823, 1131, 858, 975, 858], "score": 0.93, "latex": "(N-k,N)"}, {"category_id": 13, "poly": [1050, 490, 1259, 490, 1259, 523, 1050, 523], "score": 0.93, "latex": "E_{8,5},E_{8,6},F_{4,4}"}, {"category_id": 14, "poly": [706, 1950, 997, 1950, 997, 1991, 706, 1991], "score": 0.93, "latex": "\\pi(J\\mu)=\\pi(j)\\,\\pi(\\mu)~."}, {"category_id": 13, "poly": [649, 291, 709, 291, 709, 329, 649, 329], "score": 0.93, "latex": "N_{\\lambda\\mu}^{\\nu}"}, {"category_id": 13, "poly": [428, 1838, 471, 1838, 471, 1867, 428, 1867], "score": 0.93, "latex": "N_{\\lambda}"}, {"category_id": 13, "poly": [199, 684, 260, 684, 260, 725, 199, 725], "score": 0.92, "latex": "A_{r}^{(1)}"}, {"category_id": 13, "poly": [570, 823, 851, 823, 851, 858, 570, 858], "score": 0.92, "latex": "\\mathrm{u}(k)\\cong\\mathrm{su}(k)\\oplus\\mathrm{u}(1)"}, {"category_id": 13, "poly": [1335, 570, 1378, 570, 1378, 599, 1335, 599], "score": 0.92, "latex": "X_{r}"}, {"category_id": 13, "poly": [1040, 1792, 1139, 1792, 1139, 1824, 1040, 1824], "score": 0.92, "latex": "\\pi0=\\tilde{0}"}, {"category_id": 13, "poly": [1339, 861, 1500, 861, 1500, 897, 1339, 897], "score": 0.92, "latex": "(N-k,N)"}, {"category_id": 13, "poly": [199, 1083, 259, 1083, 259, 1117, 199, 1117], "score": 0.92, "latex": "C_{r,k}"}, {"category_id": 13, "poly": [336, 1083, 398, 1083, 398, 1117, 336, 1117], "score": 0.92, "latex": "C_{k,r}"}, {"category_id": 13, "poly": [628, 407, 883, 407, 883, 443, 628, 443], "score": 0.92, "latex": "(w\\lambda|w\\lambda)\\,\\equiv\\,(\\lambda|\\lambda)"}, {"category_id": 13, "poly": [493, 1741, 690, 1741, 690, 1775, 493, 1775], "score": 0.92, "latex": "N_{0}=I=M_{\\tilde{0}}"}, {"category_id": 13, "poly": [943, 1021, 1011, 1021, 1011, 1067, 943, 1067], "score": 0.92, "latex": "\\widehat{\\mathrm{sl}(k)}"}, {"category_id": 13, "poly": [1211, 1789, 1402, 1789, 1402, 1824, 1211, 1824], "score": 0.92, "latex": "\\widetilde{C}\\circ\\pi=\\pi\\circ C"}, {"category_id": 13, "poly": [199, 407, 544, 407, 544, 443, 199, 443], "score": 0.92, "latex": "{\\cal D}(w.\\lambda)\\;=\\;\\operatorname*{det}\\left(w\\right){\\cal D}(\\lambda)"}, {"category_id": 13, "poly": [389, 1787, 451, 1787, 451, 1826, 389, 1826], "score": 0.92, "latex": "Y_{s}^{(1)}"}, {"category_id": 13, "poly": [1246, 1287, 1504, 1287, 1504, 1335, 1246, 1335], "score": 0.92, "latex": "\\pi\\ :\\ P_{+}^{k}(X_{r}^{(1)})\\ \\to"}, {"category_id": 13, "poly": [705, 1022, 768, 1022, 768, 1066, 705, 1066], "score": 0.92, "latex": "\\widehat{\\mathrm{sl}(\\ell)}"}, {"category_id": 13, "poly": [1176, 1248, 1295, 1248, 1295, 1287, 1176, 1287], "score": 0.92, "latex": "\\mathcal{R}(X_{r,k})"}, {"category_id": 13, "poly": [318, 732, 409, 732, 409, 777, 318, 777], "score": 0.91, "latex": "\\widehat{\\mathrm{gl}}(n\\widehat{k})"}, {"category_id": 13, "poly": [299, 1441, 490, 1441, 490, 1480, 299, 1480], "score": 0.91, "latex": "X_{r,k}~=~Y_{s,m}"}, {"category_id": 13, "poly": [1362, 683, 1432, 683, 1432, 728, 1362, 728], "score": 0.91, "latex": "\\widehat{\\mathrm{sl}(n)}"}, {"category_id": 14, "poly": [550, 1380, 1149, 1380, 1149, 1426, 550, 1426], "score": 0.9, "latex": "N_{\\lambda,\\mu}^{\\nu}=M_{\\pi\\lambda,\\pi\\mu}^{\\pi\\nu}\\qquad\\forall\\lambda,\\mu,\\nu\\in P_{+}(X_{r,k})\\ ."}, {"category_id": 13, "poly": [198, 733, 266, 733, 266, 778, 198, 778], "score": 0.9, "latex": "\\widehat{\\mathrm{sl}}(\\widehat{k})"}, {"category_id": 13, "poly": [954, 291, 1000, 291, 1000, 325, 954, 325], "score": 0.9, "latex": "\\mathbb{Z}_{\\geq}"}, {"category_id": 13, "poly": [882, 1617, 905, 1617, 905, 1642, 882, 1642], "score": 0.9, "latex": "S"}, {"category_id": 14, "poly": [626, 1545, 1075, 1545, 1075, 1585, 626, 1585], "score": 0.9, "latex": "S_{\\pi\\lambda,\\pi^{\\prime}\\mu}=S_{\\lambda\\mu}\\qquad\\forall\\lambda,\\mu\\in{\\cal P}_{+}\\ ."}, {"category_id": 13, "poly": [1380, 1249, 1500, 1249, 1500, 1286, 1380, 1286], "score": 0.9, "latex": "\\mathcal{R}(Y_{s,m})"}, {"category_id": 13, "poly": [484, 1070, 555, 1070, 555, 1116, 484, 1116], "score": 0.89, "latex": "\\widehat{\\mathrm{so}(\\ell)}"}, {"category_id": 13, "poly": [1401, 1657, 1428, 1657, 1428, 1682, 1401, 1682], "score": 0.89, "latex": "C"}, {"category_id": 13, "poly": [941, 570, 964, 570, 964, 595, 941, 595], "score": 0.89, "latex": "S"}, {"category_id": 13, "poly": [852, 1034, 871, 1034, 871, 1058, 852, 1058], "score": 0.88, "latex": "k"}, {"category_id": 13, "poly": [1036, 1838, 1056, 1838, 1056, 1862, 1036, 1862], "score": 0.88, "latex": "\\lambda"}, {"category_id": 13, "poly": [1466, 1697, 1489, 1697, 1489, 1722, 1466, 1722], "score": 0.88, "latex": "S"}, {"category_id": 13, "poly": [851, 1808, 872, 1808, 872, 1823, 851, 1823], "score": 0.88, "latex": "\\pi"}, {"category_id": 13, "poly": [643, 1083, 662, 1083, 662, 1108, 643, 1108], "score": 0.87, "latex": "k"}, {"category_id": 13, "poly": [398, 1482, 465, 1482, 465, 1517, 398, 1517], "score": 0.87, "latex": "\\pi,\\pi^{\\prime}"}, {"category_id": 13, "poly": [1187, 860, 1252, 860, 1252, 896, 1187, 896], "score": 0.87, "latex": "\\operatorname{u}(k)"}, {"category_id": 13, "poly": [966, 1847, 986, 1847, 986, 1862, 966, 1862], "score": 0.87, "latex": "{\\boldsymbol{n}}"}, {"category_id": 13, "poly": [739, 1069, 814, 1069, 814, 1116, 739, 1116], "score": 0.86, "latex": "\\widehat{\\mathrm{so}(k)}"}, {"category_id": 13, "poly": [901, 1083, 917, 1083, 917, 1107, 901, 1107], "score": 0.86, "latex": "\\ell"}, {"category_id": 13, "poly": [199, 487, 479, 487, 479, 523, 199, 523], "score": 0.85, "latex": "(\\mathcal{D}(\\lambda),(\\lambda+\\rho|\\lambda+\\rho)"}, {"category_id": 13, "poly": [536, 1808, 566, 1808, 566, 1824, 536, 1824], "score": 0.85, "latex": "{\\boldsymbol{\\mathit{\\varepsilon}}}^{\\prime}{\\boldsymbol{\\mathit{m}}}"}, {"category_id": 13, "poly": [522, 1484, 545, 1484, 545, 1511, 522, 1511], "score": 0.84, "latex": "S"}, {"category_id": 13, "poly": [1470, 1847, 1491, 1847, 1491, 1862, 1470, 1862], "score": 0.84, "latex": "n"}, {"category_id": 13, "poly": [1454, 372, 1491, 372, 1491, 395, 1454, 395], "score": 0.81, "latex": "2\\kappa"}, {"category_id": 13, "poly": [567, 1295, 600, 1295, 600, 1325, 567, 1325], "score": 0.79, "latex": "N"}, {"category_id": 13, "poly": [625, 1454, 647, 1454, 647, 1470, 625, 1470], "score": 0.77, "latex": "\\pi"}, {"category_id": 13, "poly": [1094, 1033, 1110, 1033, 1110, 1058, 1094, 1058], "score": 0.77, "latex": "\\ell"}, {"category_id": 13, "poly": [990, 411, 1027, 411, 1027, 435, 990, 435], "score": 0.67, "latex": "2\\kappa"}, {"category_id": 13, "poly": [576, 491, 613, 491, 613, 515, 576, 515], "score": 0.65, "latex": "2\\kappa"}, {"category_id": 13, "poly": [683, 1294, 722, 1294, 722, 1325, 683, 1325], "score": 0.64, "latex": "M"}, {"category_id": 15, "poly": [263.0, 562.0, 940.0, 562.0, 940.0, 607.0, 263.0, 607.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [965.0, 562.0, 1334.0, 562.0, 1334.0, 607.0, 965.0, 607.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1379.0, 562.0, 1505.0, 562.0, 1505.0, 607.0, 1379.0, 607.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [196.0, 601.0, 1505.0, 601.0, 1505.0, 648.0, 196.0, 648.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [195.0, 645.0, 1506.0, 645.0, 1506.0, 685.0, 195.0, 685.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [198.0, 679.0, 198.0, 679.0, 198.0, 737.0, 198.0, 737.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [261.0, 679.0, 1361.0, 679.0, 1361.0, 737.0, 261.0, 737.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1433.0, 679.0, 1508.0, 679.0, 1508.0, 737.0, 1433.0, 737.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [267.0, 737.0, 317.0, 737.0, 317.0, 781.0, 267.0, 781.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [410.0, 737.0, 1505.0, 737.0, 1505.0, 781.0, 410.0, 781.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [198.0, 781.0, 1278.0, 781.0, 1278.0, 821.0, 198.0, 821.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1396.0, 781.0, 1505.0, 781.0, 1505.0, 821.0, 1396.0, 821.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [195.0, 818.0, 569.0, 818.0, 569.0, 860.0, 195.0, 860.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [852.0, 818.0, 974.0, 818.0, 974.0, 860.0, 852.0, 860.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1132.0, 818.0, 1503.0, 818.0, 1503.0, 860.0, 1132.0, 860.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [196.0, 859.0, 327.0, 859.0, 327.0, 899.0, 196.0, 899.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [445.0, 859.0, 518.0, 859.0, 518.0, 899.0, 445.0, 899.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [708.0, 859.0, 1186.0, 859.0, 1186.0, 899.0, 708.0, 899.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1253.0, 859.0, 1338.0, 859.0, 1338.0, 899.0, 1253.0, 899.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1501.0, 859.0, 1503.0, 859.0, 1503.0, 899.0, 1501.0, 899.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [197.0, 896.0, 262.0, 896.0, 262.0, 941.0, 197.0, 941.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [398.0, 896.0, 482.0, 896.0, 482.0, 941.0, 398.0, 941.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [573.0, 896.0, 1503.0, 896.0, 1503.0, 941.0, 573.0, 941.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [196.0, 937.0, 1507.0, 937.0, 1507.0, 982.0, 196.0, 982.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [198.0, 977.0, 198.0, 977.0, 198.0, 1024.0, 198.0, 1024.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [499.0, 977.0, 1080.0, 977.0, 1080.0, 1024.0, 499.0, 1024.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [263.0, 1608.0, 881.0, 1608.0, 881.0, 1655.0, 263.0, 1655.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [906.0, 1608.0, 1504.0, 1608.0, 1504.0, 1655.0, 906.0, 1655.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [198.0, 1652.0, 546.0, 1652.0, 546.0, 1695.0, 198.0, 1695.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [664.0, 1652.0, 1400.0, 1652.0, 1400.0, 1695.0, 664.0, 1695.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1429.0, 1652.0, 1505.0, 1652.0, 1505.0, 1695.0, 1429.0, 1695.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [196.0, 1692.0, 1276.0, 1692.0, 1276.0, 1732.0, 196.0, 1732.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1369.0, 1692.0, 1465.0, 1692.0, 1465.0, 1732.0, 1369.0, 1732.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1490.0, 1692.0, 1505.0, 1692.0, 1505.0, 1732.0, 1490.0, 1732.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [187.0, 1729.0, 492.0, 1729.0, 492.0, 1791.0, 187.0, 1791.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [691.0, 1729.0, 708.0, 1729.0, 708.0, 1791.0, 691.0, 1791.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [873.0, 1729.0, 948.0, 1729.0, 948.0, 1791.0, 873.0, 1791.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1134.0, 1729.0, 1506.0, 1729.0, 1506.0, 1791.0, 1134.0, 1791.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [193.0, 1782.0, 388.0, 1782.0, 388.0, 1840.0, 193.0, 1840.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [452.0, 1782.0, 535.0, 1782.0, 535.0, 1840.0, 452.0, 1840.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [567.0, 1782.0, 850.0, 1782.0, 850.0, 1840.0, 567.0, 1840.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [873.0, 1782.0, 1039.0, 1782.0, 1039.0, 1840.0, 873.0, 1840.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1140.0, 1782.0, 1210.0, 1782.0, 1210.0, 1840.0, 1140.0, 1840.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1403.0, 1782.0, 1508.0, 1782.0, 1508.0, 1840.0, 1403.0, 1840.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [195.0, 1833.0, 427.0, 1833.0, 427.0, 1876.0, 195.0, 1876.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [472.0, 1833.0, 965.0, 1833.0, 965.0, 1876.0, 472.0, 1876.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [987.0, 1833.0, 1035.0, 1833.0, 1035.0, 1876.0, 987.0, 1876.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1057.0, 1833.0, 1469.0, 1833.0, 1469.0, 1876.0, 1057.0, 1876.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1492.0, 1833.0, 1504.0, 1833.0, 1504.0, 1876.0, 1492.0, 1876.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [198.0, 1876.0, 1504.0, 1876.0, 1504.0, 1914.0, 198.0, 1914.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [195.0, 1917.0, 251.0, 1917.0, 251.0, 1955.0, 195.0, 1955.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [262.0, 324.0, 1523.0, 324.0, 1523.0, 370.0, 262.0, 370.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [197.0, 364.0, 1453.0, 364.0, 1453.0, 407.0, 197.0, 407.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1492.0, 364.0, 1502.0, 364.0, 1502.0, 407.0, 1492.0, 407.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [197.0, 402.0, 198.0, 402.0, 198.0, 447.0, 197.0, 447.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [545.0, 402.0, 627.0, 402.0, 627.0, 447.0, 545.0, 447.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [884.0, 402.0, 989.0, 402.0, 989.0, 447.0, 884.0, 447.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1028.0, 402.0, 1503.0, 402.0, 1503.0, 447.0, 1028.0, 447.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [198.0, 447.0, 1502.0, 447.0, 1502.0, 485.0, 198.0, 485.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [198.0, 483.0, 198.0, 483.0, 198.0, 530.0, 198.0, 530.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [480.0, 483.0, 575.0, 483.0, 575.0, 530.0, 480.0, 530.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [614.0, 483.0, 1049.0, 483.0, 1049.0, 530.0, 614.0, 530.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1260.0, 483.0, 1505.0, 483.0, 1505.0, 530.0, 1260.0, 530.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [195.0, 525.0, 1092.0, 525.0, 1092.0, 566.0, 195.0, 566.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [262.0, 1026.0, 704.0, 1026.0, 704.0, 1070.0, 262.0, 1070.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [769.0, 1026.0, 851.0, 1026.0, 851.0, 1070.0, 769.0, 1070.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [872.0, 1026.0, 942.0, 1026.0, 942.0, 1070.0, 872.0, 1070.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1012.0, 1026.0, 1093.0, 1026.0, 1093.0, 1070.0, 1012.0, 1070.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1111.0, 1026.0, 1507.0, 1026.0, 1507.0, 1070.0, 1111.0, 1070.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [194.0, 1075.0, 198.0, 1075.0, 198.0, 1123.0, 194.0, 1123.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [260.0, 1075.0, 335.0, 1075.0, 335.0, 1123.0, 260.0, 1123.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [399.0, 1075.0, 483.0, 1075.0, 483.0, 1123.0, 399.0, 1123.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [556.0, 1075.0, 642.0, 1075.0, 642.0, 1123.0, 556.0, 1123.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [663.0, 1075.0, 738.0, 1075.0, 738.0, 1123.0, 663.0, 1123.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [815.0, 1075.0, 900.0, 1075.0, 900.0, 1123.0, 815.0, 1123.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [918.0, 1075.0, 1504.0, 1075.0, 1504.0, 1123.0, 918.0, 1123.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [197.0, 1119.0, 664.0, 1119.0, 664.0, 1158.0, 197.0, 1158.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [196.0, 205.0, 399.0, 205.0, 399.0, 248.0, 196.0, 248.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [535.0, 205.0, 919.0, 205.0, 919.0, 248.0, 535.0, 248.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1111.0, 205.0, 1503.0, 205.0, 1503.0, 248.0, 1111.0, 248.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [197.0, 245.0, 1122.0, 245.0, 1122.0, 288.0, 197.0, 288.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1223.0, 245.0, 1505.0, 245.0, 1505.0, 288.0, 1223.0, 288.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [197.0, 287.0, 648.0, 287.0, 648.0, 325.0, 197.0, 325.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [710.0, 287.0, 953.0, 287.0, 953.0, 325.0, 710.0, 325.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1001.0, 287.0, 1337.0, 287.0, 1337.0, 325.0, 1001.0, 325.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [260.0, 1243.0, 1175.0, 1243.0, 1175.0, 1293.0, 260.0, 1293.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1296.0, 1243.0, 1379.0, 1243.0, 1379.0, 1293.0, 1296.0, 1293.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [194.0, 1291.0, 566.0, 1291.0, 566.0, 1337.0, 194.0, 1337.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [601.0, 1291.0, 682.0, 1291.0, 682.0, 1337.0, 601.0, 1337.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [723.0, 1291.0, 1245.0, 1291.0, 1245.0, 1337.0, 723.0, 1337.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [198.0, 1330.0, 198.0, 1330.0, 198.0, 1385.0, 198.0, 1385.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [341.0, 1330.0, 493.0, 1330.0, 493.0, 1385.0, 341.0, 1385.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [199.0, 1436.0, 298.0, 1436.0, 298.0, 1488.0, 199.0, 1488.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [491.0, 1436.0, 624.0, 1436.0, 624.0, 1488.0, 491.0, 1488.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [648.0, 1436.0, 1512.0, 1436.0, 1512.0, 1488.0, 648.0, 1488.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [198.0, 1483.0, 397.0, 1483.0, 397.0, 1522.0, 198.0, 1522.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [466.0, 1483.0, 521.0, 1483.0, 521.0, 1522.0, 466.0, 1522.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [546.0, 1483.0, 742.0, 1483.0, 742.0, 1522.0, 546.0, 1522.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [201.0, 1192.0, 748.0, 1192.0, 748.0, 1230.0, 201.0, 1230.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [200.0, 1191.0, 750.0, 1191.0, 750.0, 1229.0, 200.0, 1229.0], "score": 1.0, "text": ""}] | {"preproc_blocks": [{"type": "text", "bbox": [70, 70, 543, 114], "lines": [{"bbox": [70, 73, 541, 89], "spans": [{"bbox": [70, 73, 143, 89], "score": 1.0, "content": "root of unity ", "type": "text"}, {"bbox": [144, 75, 192, 87], "score": 0.94, "content": "q\\,=\\,\\xi_{2m\\kappa}", "type": "inline_equation", "height": 12, "width": 48}, {"bbox": [192, 73, 330, 89], "score": 1.0, "content": " for appropriate choice of ", "type": "text"}, {"bbox": [331, 75, 399, 87], "score": 0.94, "content": "m\\in\\{1,2,3\\}", "type": "inline_equation", "height": 12, "width": 68}, {"bbox": [399, 73, 541, 89], "score": 1.0, "content": ". They also arise from the", "type": "text"}], "index": 0}, {"bbox": [70, 88, 541, 103], "spans": [{"bbox": [70, 88, 403, 103], "score": 1.0, "content": "Huang-Lepowsky coproduct [21] for the modules of the VOA ", "type": "text"}, {"bbox": [404, 89, 439, 101], "score": 0.94, "content": "L(k,0)", "type": "inline_equation", "height": 12, "width": 35}, {"bbox": [440, 88, 541, 103], "score": 1.0, "content": ". Because of these", "type": "text"}], "index": 1}, {"bbox": [70, 103, 481, 118], "spans": [{"bbox": [70, 103, 233, 117], "score": 1.0, "content": "isomorphisms, we get that the ", "type": "text"}, {"bbox": [233, 104, 255, 118], "score": 0.93, "content": "N_{\\lambda\\mu}^{\\nu}", "type": "inline_equation", "height": 14, "width": 22}, {"bbox": [255, 103, 343, 117], "score": 1.0, "content": " do indeed lie in ", "type": "text"}, {"bbox": [343, 104, 360, 117], "score": 0.9, "content": "\\mathbb{Z}_{\\geq}", "type": "inline_equation", "height": 13, "width": 17}, {"bbox": [360, 103, 481, 117], "score": 1.0, "content": ", for any affine algebra.", "type": "text"}], "index": 2}], "index": 1}, {"type": "text", "bbox": [71, 115, 545, 200], "lines": [{"bbox": [94, 116, 548, 133], "spans": [{"bbox": [94, 116, 548, 133], "score": 1.0, "content": "A useful way of identifying weights in affine Weyl orbits involves computing q-dimensions", "type": "text"}], "index": 3}, {"bbox": [70, 131, 540, 146], "spans": [{"bbox": [70, 131, 523, 146], "score": 1.0, "content": "and norms. Q-dimensions vary by at most a sign while norms are constant mod ", "type": "text"}, {"bbox": [523, 133, 536, 142], "score": 0.81, "content": "2\\kappa", "type": "inline_equation", "height": 9, "width": 13}, {"bbox": [537, 131, 540, 146], "score": 1.0, "content": ":", "type": "text"}], "index": 4}, {"bbox": [71, 144, 541, 160], "spans": [{"bbox": [71, 146, 195, 159], "score": 0.92, "content": "{\\cal D}(w.\\lambda)\\;=\\;\\operatorname*{det}\\left(w\\right){\\cal D}(\\lambda)", "type": "inline_equation", "height": 13, "width": 124}, {"bbox": [196, 144, 225, 160], "score": 1.0, "content": " and ", "type": "text"}, {"bbox": [226, 146, 317, 159], "score": 0.92, "content": "(w\\lambda|w\\lambda)\\,\\equiv\\,(\\lambda|\\lambda)", "type": "inline_equation", "height": 13, "width": 91}, {"bbox": [318, 144, 356, 160], "score": 1.0, "content": " (mod ", "type": "text"}, {"bbox": [356, 147, 369, 156], "score": 0.67, "content": "2\\kappa", "type": "inline_equation", "height": 9, "width": 13}, {"bbox": [370, 144, 541, 160], "score": 1.0, "content": "). The point is that for excep-", "type": "text"}], "index": 5}, {"bbox": [71, 160, 540, 174], "spans": [{"bbox": [71, 160, 540, 174], "score": 1.0, "content": "tional algebras at small levels, the highest weights can often be distinguished by the pair", "type": "text"}], "index": 6}, {"bbox": [71, 173, 541, 190], "spans": [{"bbox": [71, 175, 172, 188], "score": 0.85, "content": "(\\mathcal{D}(\\lambda),(\\lambda+\\rho|\\lambda+\\rho)", "type": "inline_equation", "height": 13, "width": 101}, {"bbox": [172, 173, 207, 190], "score": 1.0, "content": " (mod ", "type": "text"}, {"bbox": [207, 176, 220, 185], "score": 0.65, "content": "2\\kappa", "type": "inline_equation", "height": 9, "width": 13}, {"bbox": [221, 173, 377, 190], "score": 1.0, "content": ")). For example this is true of ", "type": "text"}, {"bbox": [378, 176, 453, 188], "score": 0.93, "content": "E_{8,5},E_{8,6},F_{4,4}", "type": "inline_equation", "height": 12, "width": 75}, {"bbox": [453, 173, 541, 190], "score": 1.0, "content": ". This is a useful", "type": "text"}], "index": 7}, {"bbox": [70, 189, 393, 203], "spans": [{"bbox": [70, 189, 393, 203], "score": 1.0, "content": "way in practise to use both (2.4) and the Galois action (2.3).", "type": "text"}], "index": 8}], "index": 5.5}, {"type": "text", "bbox": [70, 201, 542, 365], "lines": [{"bbox": [94, 202, 541, 218], "spans": [{"bbox": [94, 202, 338, 218], "score": 1.0, "content": "An important property obeyed by the matrix ", "type": "text"}, {"bbox": [338, 205, 347, 214], "score": 0.89, "content": "S", "type": "inline_equation", "height": 9, "width": 9}, {"bbox": [347, 202, 480, 218], "score": 1.0, "content": " for any classical algebra ", "type": "text"}, {"bbox": [480, 205, 496, 215], "score": 0.92, "content": "X_{r}", "type": "inline_equation", "height": 10, "width": 16}, {"bbox": [496, 202, 541, 218], "score": 1.0, "content": " is rank-", "type": "text"}], "index": 9}, {"bbox": [70, 216, 541, 233], "spans": [{"bbox": [70, 216, 541, 233], "score": 1.0, "content": "level duality. The first appearance of this curious duality seems to be by Frenkel [9],", "type": "text"}], "index": 10}, {"bbox": [70, 232, 542, 246], "spans": [{"bbox": [70, 232, 542, 246], "score": 1.0, "content": "but by now many aspects and generalisations have been explored in the literature. For", "type": "text"}], "index": 11}, {"bbox": [71, 244, 542, 265], "spans": [{"bbox": [71, 246, 93, 261], "score": 0.92, "content": "A_{r}^{(1)}", "type": "inline_equation", "height": 15, "width": 22}, {"bbox": [93, 244, 489, 265], "score": 1.0, "content": ", it is related to the existence of mutually commutative affine subalgbras", "type": "text"}, {"bbox": [490, 245, 515, 262], "score": 0.91, "content": "\\widehat{\\mathrm{sl}(n)}", "type": "inline_equation", "height": 17, "width": 25}, {"bbox": [515, 244, 542, 265], "score": 1.0, "content": " and", "type": "text"}], "index": 12}, {"bbox": [71, 263, 541, 281], "spans": [{"bbox": [71, 263, 95, 280], "score": 0.9, "content": "\\widehat{\\mathrm{sl}}(\\widehat{k})", "type": "inline_equation", "height": 17, "width": 24}, {"bbox": [96, 265, 114, 281], "score": 1.0, "content": " in ", "type": "text"}, {"bbox": [114, 263, 147, 279], "score": 0.91, "content": "\\widehat{\\mathrm{gl}}(n\\widehat{k})", "type": "inline_equation", "height": 16, "width": 33}, {"bbox": [147, 265, 541, 281], "score": 1.0, "content": ". Witten has another interpretation of it [37]: he found a natural map (a", "type": "text"}], "index": 13}, {"bbox": [71, 281, 541, 295], "spans": [{"bbox": [71, 281, 460, 295], "score": 1.0, "content": "ring homomorphism) from the quantum cohomology of the Grassmannian ", "type": "text"}, {"bbox": [460, 281, 502, 294], "score": 0.93, "content": "G(k,N)", "type": "inline_equation", "height": 13, "width": 42}, {"bbox": [502, 281, 541, 295], "score": 1.0, "content": ", to the", "type": "text"}], "index": 14}, {"bbox": [70, 294, 541, 309], "spans": [{"bbox": [70, 294, 204, 309], "score": 1.0, "content": "fusion ring of the algebra ", "type": "text"}, {"bbox": [205, 296, 306, 308], "score": 0.92, "content": "\\mathrm{u}(k)\\cong\\mathrm{su}(k)\\oplus\\mathrm{u}(1)", "type": "inline_equation", "height": 12, "width": 101}, {"bbox": [306, 294, 350, 309], "score": 1.0, "content": " at level ", "type": "text"}, {"bbox": [351, 296, 407, 308], "score": 0.93, "content": "(N-k,N)", "type": "inline_equation", "height": 12, "width": 56}, {"bbox": [407, 294, 541, 309], "score": 1.0, "content": ". Witten used the duality", "type": "text"}], "index": 15}, {"bbox": [70, 309, 540, 323], "spans": [{"bbox": [70, 309, 117, 323], "score": 1.0, "content": "between ", "type": "text"}, {"bbox": [118, 310, 159, 322], "score": 0.94, "content": "G(k,N)", "type": "inline_equation", "height": 12, "width": 41}, {"bbox": [160, 309, 186, 323], "score": 1.0, "content": " and ", "type": "text"}, {"bbox": [186, 310, 254, 322], "score": 0.94, "content": "G(N-k,N)", "type": "inline_equation", "height": 12, "width": 68}, {"bbox": [254, 309, 426, 323], "score": 1.0, "content": " to show that the fusion rings of", "type": "text"}, {"bbox": [427, 309, 450, 322], "score": 0.87, "content": "\\operatorname{u}(k)", "type": "inline_equation", "height": 13, "width": 23}, {"bbox": [451, 309, 481, 323], "score": 1.0, "content": " level ", "type": "text"}, {"bbox": [482, 309, 540, 322], "score": 0.92, "content": "(N-k,N)", "type": "inline_equation", "height": 13, "width": 58}], "index": 16}, {"bbox": [70, 322, 541, 338], "spans": [{"bbox": [70, 322, 94, 338], "score": 1.0, "content": "and ", "type": "text"}, {"bbox": [94, 324, 142, 336], "score": 0.94, "content": "\\mathrm{u}(N-k)", "type": "inline_equation", "height": 12, "width": 48}, {"bbox": [143, 322, 173, 338], "score": 1.0, "content": " level ", "type": "text"}, {"bbox": [173, 324, 205, 337], "score": 0.94, "content": "(k,N)", "type": "inline_equation", "height": 13, "width": 32}, {"bbox": [206, 322, 541, 338], "score": 1.0, "content": " should coincide. A considerable generalisation, applying to any", "type": "text"}], "index": 17}, {"bbox": [70, 337, 542, 353], "spans": [{"bbox": [70, 337, 542, 353], "score": 1.0, "content": "VOA (or RCFT), has been conjectured by Nahm [30], and relates to the natural involution", "type": "text"}], "index": 18}, {"bbox": [71, 351, 388, 368], "spans": [{"bbox": [71, 353, 179, 366], "score": 0.93, "content": "\\textstyle\\sum_{i}[x_{i}]\\leftrightarrow\\sum_{i}[1-x_{i}]", "type": "inline_equation", "height": 13, "width": 108}, {"bbox": [179, 351, 388, 368], "score": 1.0, "content": " of torsion elements of the Bloch group.", "type": "text"}], "index": 19}], "index": 14}, {"type": "text", "bbox": [71, 366, 541, 414], "lines": [{"bbox": [94, 367, 542, 385], "spans": [{"bbox": [94, 369, 253, 385], "score": 1.0, "content": "The Kac-Peterson matrices of", "type": "text"}, {"bbox": [253, 367, 276, 383], "score": 0.92, "content": "\\widehat{\\mathrm{sl}(\\ell)}", "type": "inline_equation", "height": 16, "width": 23}, {"bbox": [276, 369, 306, 385], "score": 1.0, "content": " level ", "type": "text"}, {"bbox": [306, 372, 313, 380], "score": 0.88, "content": "k", "type": "inline_equation", "height": 8, "width": 7}, {"bbox": [313, 369, 339, 385], "score": 1.0, "content": " and ", "type": "text"}, {"bbox": [339, 367, 363, 384], "score": 0.92, "content": "\\widehat{\\mathrm{sl}(k)}", "type": "inline_equation", "height": 17, "width": 24}, {"bbox": [364, 369, 393, 385], "score": 1.0, "content": " level ", "type": "text"}, {"bbox": [393, 371, 399, 380], "score": 0.77, "content": "\\ell", "type": "inline_equation", "height": 9, "width": 6}, {"bbox": [399, 369, 542, 385], "score": 1.0, "content": "are related, as are those of", "type": "text"}], "index": 20}, {"bbox": [71, 384, 541, 404], "spans": [{"bbox": [71, 389, 93, 402], "score": 0.92, "content": "C_{r,k}", "type": "inline_equation", "height": 13, "width": 22}, {"bbox": [93, 387, 120, 404], "score": 1.0, "content": " and ", "type": "text"}, {"bbox": [120, 389, 143, 402], "score": 0.92, "content": "C_{k,r}", "type": "inline_equation", "height": 13, "width": 23}, {"bbox": [143, 387, 173, 404], "score": 1.0, "content": ", and", "type": "text"}, {"bbox": [174, 385, 199, 401], "score": 0.89, "content": "\\widehat{\\mathrm{so}(\\ell)}", "type": "inline_equation", "height": 16, "width": 25}, {"bbox": [200, 387, 231, 404], "score": 1.0, "content": " level ", "type": "text"}, {"bbox": [231, 389, 238, 398], "score": 0.87, "content": "k", "type": "inline_equation", "height": 9, "width": 7}, {"bbox": [238, 387, 265, 404], "score": 1.0, "content": " and", "type": "text"}, {"bbox": [266, 384, 293, 401], "score": 0.86, "content": "\\widehat{\\mathrm{so}(k)}", "type": "inline_equation", "height": 17, "width": 27}, {"bbox": [293, 387, 324, 404], "score": 1.0, "content": " level ", "type": "text"}, {"bbox": [324, 389, 330, 398], "score": 0.86, "content": "\\ell", "type": "inline_equation", "height": 9, "width": 6}, {"bbox": [330, 387, 541, 404], "score": 1.0, "content": ". We will need only the symplectic one;", "type": "text"}], "index": 21}, {"bbox": [70, 402, 239, 416], "spans": [{"bbox": [70, 402, 239, 416], "score": 1.0, "content": "the details will be given in \u00a73.3.", "type": "text"}], "index": 22}], "index": 21}, {"type": "title", "bbox": [71, 426, 270, 441], "lines": [{"bbox": [72, 429, 269, 442], "spans": [{"bbox": [72, 429, 269, 442], "score": 1.0, "content": "2.2. Symmetries of fusion coefficients", "type": "text"}], "index": 23}], "index": 23}, {"type": "text", "bbox": [71, 446, 541, 493], "lines": [{"bbox": [93, 447, 540, 465], "spans": [{"bbox": [93, 447, 423, 465], "score": 1.0, "content": "Definition 2.1. By an isomorphism between fusion rings ", "type": "text"}, {"bbox": [423, 449, 466, 463], "score": 0.92, "content": "\\mathcal{R}(X_{r,k})", "type": "inline_equation", "height": 14, "width": 43}, {"bbox": [466, 447, 496, 465], "score": 1.0, "content": " and ", "type": "text"}, {"bbox": [496, 449, 540, 462], "score": 0.9, "content": "\\mathcal{R}(Y_{s,m})", "type": "inline_equation", "height": 13, "width": 44}], "index": 24}, {"bbox": [69, 463, 541, 481], "spans": [{"bbox": [69, 464, 203, 481], "score": 1.0, "content": "(with fusion coefficients ", "type": "text"}, {"bbox": [204, 466, 216, 477], "score": 0.79, "content": "N", "type": "inline_equation", "height": 11, "width": 12}, {"bbox": [216, 464, 245, 481], "score": 1.0, "content": " and ", "type": "text"}, {"bbox": [245, 465, 259, 477], "score": 0.64, "content": "M", "type": "inline_equation", "height": 12, "width": 14}, {"bbox": [260, 464, 448, 481], "score": 1.0, "content": " respectively) we mean a bijection ", "type": "text"}, {"bbox": [448, 463, 541, 480], "score": 0.92, "content": "\\pi\\ :\\ P_{+}^{k}(X_{r}^{(1)})\\ \\to", "type": "inline_equation", "height": 17, "width": 93}], "index": 25}, {"bbox": [71, 478, 177, 498], "spans": [{"bbox": [71, 480, 122, 498], "score": 0.94, "content": "{\\cal P}_{+}^{m}(Y_{s}^{(1)})", "type": "inline_equation", "height": 18, "width": 51}, {"bbox": [122, 478, 177, 498], "score": 1.0, "content": " such that", "type": "text"}], "index": 26}], "index": 25}, {"type": "interline_equation", "bbox": [198, 496, 413, 513], "lines": [{"bbox": [198, 496, 413, 513], "spans": [{"bbox": [198, 496, 413, 513], "score": 0.9, "content": "N_{\\lambda,\\mu}^{\\nu}=M_{\\pi\\lambda,\\pi\\mu}^{\\pi\\nu}\\qquad\\forall\\lambda,\\mu,\\nu\\in P_{+}(X_{r,k})\\ .", "type": "interline_equation"}], "index": 27}], "index": 27}, {"type": "text", "bbox": [71, 516, 542, 545], "lines": [{"bbox": [71, 516, 544, 535], "spans": [{"bbox": [71, 516, 107, 535], "score": 1.0, "content": "When ", "type": "text"}, {"bbox": [107, 518, 176, 532], "score": 0.91, "content": "X_{r,k}~=~Y_{s,m}", "type": "inline_equation", "height": 14, "width": 69}, {"bbox": [176, 516, 224, 535], "score": 1.0, "content": " we call ", "type": "text"}, {"bbox": [225, 523, 232, 529], "score": 0.77, "content": "\\pi", "type": "inline_equation", "height": 6, "width": 7}, {"bbox": [233, 516, 544, 535], "score": 1.0, "content": " an automorphism or fusion-symmetry. Call the pair of", "type": "text"}], "index": 28}, {"bbox": [71, 533, 267, 547], "spans": [{"bbox": [71, 533, 142, 547], "score": 1.0, "content": "permutations ", "type": "text"}, {"bbox": [143, 533, 167, 546], "score": 0.87, "content": "\\pi,\\pi^{\\prime}", "type": "inline_equation", "height": 13, "width": 24}, {"bbox": [167, 533, 187, 547], "score": 1.0, "content": " an ", "type": "text"}, {"bbox": [187, 534, 196, 543], "score": 0.84, "content": "S", "type": "inline_equation", "height": 9, "width": 9}, {"bbox": [196, 533, 267, 547], "score": 1.0, "content": "-symmetry if", "type": "text"}], "index": 29}], "index": 28.5}, {"type": "interline_equation", "bbox": [225, 556, 387, 570], "lines": [{"bbox": [225, 556, 387, 570], "spans": [{"bbox": [225, 556, 387, 570], "score": 0.9, "content": "S_{\\pi\\lambda,\\pi^{\\prime}\\mu}=S_{\\lambda\\mu}\\qquad\\forall\\lambda,\\mu\\in{\\cal P}_{+}\\ .", "type": "interline_equation"}], "index": 30}], "index": 30}, {"type": "text", "bbox": [70, 577, 541, 700], "lines": [{"bbox": [94, 578, 541, 595], "spans": [{"bbox": [94, 578, 317, 595], "score": 1.0, "content": "The lemma below tells us that fusion- and ", "type": "text"}, {"bbox": [317, 582, 325, 591], "score": 0.9, "content": "S", "type": "inline_equation", "height": 9, "width": 8}, {"bbox": [326, 578, 541, 595], "score": 1.0, "content": "-symmetries form two isomorphic groups;", "type": "text"}], "index": 31}, {"bbox": [71, 594, 541, 610], "spans": [{"bbox": [71, 594, 196, 610], "score": 1.0, "content": "the former we will label ", "type": "text"}, {"bbox": [196, 595, 238, 608], "score": 0.94, "content": "\\boldsymbol{A}(\\boldsymbol{X}_{r,k})", "type": "inline_equation", "height": 13, "width": 42}, {"bbox": [239, 594, 504, 610], "score": 1.0, "content": ". Equation (2.5a) says that the charge-conjugation ", "type": "text"}, {"bbox": [504, 596, 514, 605], "score": 0.89, "content": "C", "type": "inline_equation", "height": 9, "width": 10}, {"bbox": [514, 594, 541, 610], "score": 1.0, "content": ", and", "type": "text"}], "index": 32}, {"bbox": [70, 609, 541, 623], "spans": [{"bbox": [70, 609, 459, 623], "score": 1.0, "content": "more generally any conjugation, is a fusion-symmetry, while (2.2a) says ", "type": "text"}, {"bbox": [459, 610, 492, 622], "score": 0.94, "content": "(C,C)", "type": "inline_equation", "height": 12, "width": 33}, {"bbox": [492, 609, 527, 623], "score": 1.0, "content": " is an ", "type": "text"}, {"bbox": [527, 610, 536, 619], "score": 0.88, "content": "S", "type": "inline_equation", "height": 9, "width": 9}, {"bbox": [536, 609, 541, 623], "score": 1.0, "content": "-", "type": "text"}], "index": 33}, {"bbox": [67, 622, 542, 644], "spans": [{"bbox": [67, 622, 177, 644], "score": 1.0, "content": "symmetry. Because ", "type": "text"}, {"bbox": [177, 626, 248, 639], "score": 0.92, "content": "N_{0}=I=M_{\\tilde{0}}", "type": "inline_equation", "height": 13, "width": 71}, {"bbox": [248, 622, 254, 644], "score": 1.0, "content": ", ", "type": "text"}, {"bbox": [255, 625, 313, 640], "score": 0.94, "content": "N_{\\lambda\\mu}^{0}=C_{\\lambda\\mu}", "type": "inline_equation", "height": 15, "width": 58}, {"bbox": [314, 622, 341, 644], "score": 1.0, "content": " and ", "type": "text"}, {"bbox": [341, 623, 407, 642], "score": 0.94, "content": "M_{\\tilde{\\lambda},\\tilde{\\mu}}^{\\tilde{0}}=\\widetilde{C}_{\\tilde{\\lambda},\\tilde{\\mu}}", "type": "inline_equation", "height": 19, "width": 66}, {"bbox": [408, 622, 542, 644], "score": 1.0, "content": " (we use tilde\u2019s to denote", "type": "text"}], "index": 34}, {"bbox": [69, 641, 542, 662], "spans": [{"bbox": [69, 641, 139, 662], "score": 1.0, "content": "quantities in ", "type": "text"}, {"bbox": [140, 643, 162, 657], "score": 0.92, "content": "Y_{s}^{(1)}", "type": "inline_equation", "height": 14, "width": 22}, {"bbox": [162, 641, 192, 662], "score": 1.0, "content": "level ", "type": "text"}, {"bbox": [192, 650, 203, 656], "score": 0.85, "content": "{\\boldsymbol{\\mathit{\\varepsilon}}}^{\\prime}{\\boldsymbol{\\mathit{m}}}", "type": "inline_equation", "height": 6, "width": 11}, {"bbox": [204, 641, 306, 662], "score": 1.0, "content": "), any isomorphism ", "type": "text"}, {"bbox": [306, 650, 313, 656], "score": 0.88, "content": "\\pi", "type": "inline_equation", "height": 6, "width": 7}, {"bbox": [314, 641, 374, 662], "score": 1.0, "content": " must obey ", "type": "text"}, {"bbox": [374, 645, 410, 656], "score": 0.92, "content": "\\pi0=\\tilde{0}", "type": "inline_equation", "height": 11, "width": 36}, {"bbox": [410, 641, 435, 662], "score": 1.0, "content": " and", "type": "text"}, {"bbox": [435, 644, 504, 656], "score": 0.92, "content": "\\widetilde{C}\\circ\\pi=\\pi\\circ C", "type": "inline_equation", "height": 12, "width": 69}, {"bbox": [505, 641, 542, 662], "score": 1.0, "content": ". More", "type": "text"}], "index": 35}, {"bbox": [70, 659, 541, 675], "spans": [{"bbox": [70, 659, 153, 675], "score": 1.0, "content": "generally, since ", "type": "text"}, {"bbox": [154, 661, 169, 672], "score": 0.93, "content": "N_{\\lambda}", "type": "inline_equation", "height": 11, "width": 15}, {"bbox": [169, 659, 347, 675], "score": 1.0, "content": " is a permutation matrix of order ", "type": "text"}, {"bbox": [347, 664, 354, 670], "score": 0.87, "content": "{\\boldsymbol{n}}", "type": "inline_equation", "height": 6, "width": 7}, {"bbox": [355, 659, 372, 675], "score": 1.0, "content": " iff", "type": "text"}, {"bbox": [372, 661, 380, 670], "score": 0.88, "content": "\\lambda", "type": "inline_equation", "height": 9, "width": 8}, {"bbox": [380, 659, 528, 675], "score": 1.0, "content": " is a simpl e- current of order ", "type": "text"}, {"bbox": [529, 664, 536, 670], "score": 0.84, "content": "n", "type": "inline_equation", "height": 6, "width": 7}, {"bbox": [537, 659, 541, 675], "score": 1.0, "content": ",", "type": "text"}], "index": 36}, {"bbox": [71, 675, 541, 689], "spans": [{"bbox": [71, 675, 541, 689], "score": 1.0, "content": "we see that an isomorphism sends simple-currents to simple-currents of equal order. We", "type": "text"}], "index": 37}, {"bbox": [70, 690, 90, 703], "spans": [{"bbox": [70, 690, 90, 703], "score": 1.0, "content": "get", "type": "text"}], "index": 38}], "index": 34.5}, {"type": "interline_equation", "bbox": [254, 702, 358, 716], "lines": [{"bbox": [254, 702, 358, 716], "spans": [{"bbox": [254, 702, 358, 716], "score": 0.93, "content": "\\pi(J\\mu)=\\pi(j)\\,\\pi(\\mu)~.", "type": "interline_equation"}], "index": 39}], "index": 39}], "layout_bboxes": [], "page_idx": 5, "page_size": [612.0, 792.0], "_layout_tree": [], "images": [], "tables": [], "interline_equations": [{"type": "interline_equation", "bbox": [198, 496, 413, 513], "lines": [{"bbox": [198, 496, 413, 513], "spans": [{"bbox": [198, 496, 413, 513], "score": 0.9, "content": "N_{\\lambda,\\mu}^{\\nu}=M_{\\pi\\lambda,\\pi\\mu}^{\\pi\\nu}\\qquad\\forall\\lambda,\\mu,\\nu\\in P_{+}(X_{r,k})\\ .", "type": "interline_equation"}], "index": 27}], "index": 27}, {"type": "interline_equation", "bbox": [225, 556, 387, 570], "lines": [{"bbox": [225, 556, 387, 570], "spans": [{"bbox": [225, 556, 387, 570], "score": 0.9, "content": "S_{\\pi\\lambda,\\pi^{\\prime}\\mu}=S_{\\lambda\\mu}\\qquad\\forall\\lambda,\\mu\\in{\\cal P}_{+}\\ .", "type": "interline_equation"}], "index": 30}], "index": 30}, {"type": "interline_equation", "bbox": [254, 702, 358, 716], "lines": [{"bbox": [254, 702, 358, 716], "spans": [{"bbox": [254, 702, 358, 716], "score": 0.93, "content": "\\pi(J\\mu)=\\pi(j)\\,\\pi(\\mu)~.", "type": "interline_equation"}], "index": 39}], "index": 39}], "discarded_blocks": [], "need_drop": false, "drop_reason": [], "para_blocks": [{"type": "text", "bbox": [70, 70, 543, 114], "lines": [], "index": 1, "page_num": "page_5", "page_size": [612.0, 792.0], "bbox_fs": [70, 73, 541, 118], "lines_deleted": true}, {"type": "text", "bbox": [71, 115, 545, 200], "lines": [{"bbox": [94, 116, 548, 133], "spans": [{"bbox": [94, 116, 548, 133], "score": 1.0, "content": "A useful way of identifying weights in affine Weyl orbits involves computing q-dimensions", "type": "text"}], "index": 3}, {"bbox": [70, 131, 540, 146], "spans": [{"bbox": [70, 131, 523, 146], "score": 1.0, "content": "and norms. Q-dimensions vary by at most a sign while norms are constant mod ", "type": "text"}, {"bbox": [523, 133, 536, 142], "score": 0.81, "content": "2\\kappa", "type": "inline_equation", "height": 9, "width": 13}, {"bbox": [537, 131, 540, 146], "score": 1.0, "content": ":", "type": "text"}], "index": 4}, {"bbox": [71, 144, 541, 160], "spans": [{"bbox": [71, 146, 195, 159], "score": 0.92, "content": "{\\cal D}(w.\\lambda)\\;=\\;\\operatorname*{det}\\left(w\\right){\\cal D}(\\lambda)", "type": "inline_equation", "height": 13, "width": 124}, {"bbox": [196, 144, 225, 160], "score": 1.0, "content": " and ", "type": "text"}, {"bbox": [226, 146, 317, 159], "score": 0.92, "content": "(w\\lambda|w\\lambda)\\,\\equiv\\,(\\lambda|\\lambda)", "type": "inline_equation", "height": 13, "width": 91}, {"bbox": [318, 144, 356, 160], "score": 1.0, "content": " (mod ", "type": "text"}, {"bbox": [356, 147, 369, 156], "score": 0.67, "content": "2\\kappa", "type": "inline_equation", "height": 9, "width": 13}, {"bbox": [370, 144, 541, 160], "score": 1.0, "content": "). The point is that for excep-", "type": "text"}], "index": 5}, {"bbox": [71, 160, 540, 174], "spans": [{"bbox": [71, 160, 540, 174], "score": 1.0, "content": "tional algebras at small levels, the highest weights can often be distinguished by the pair", "type": "text"}], "index": 6}, {"bbox": [71, 173, 541, 190], "spans": [{"bbox": [71, 175, 172, 188], "score": 0.85, "content": "(\\mathcal{D}(\\lambda),(\\lambda+\\rho|\\lambda+\\rho)", "type": "inline_equation", "height": 13, "width": 101}, {"bbox": [172, 173, 207, 190], "score": 1.0, "content": " (mod ", "type": "text"}, {"bbox": [207, 176, 220, 185], "score": 0.65, "content": "2\\kappa", "type": "inline_equation", "height": 9, "width": 13}, {"bbox": [221, 173, 377, 190], "score": 1.0, "content": ")). For example this is true of ", "type": "text"}, {"bbox": [378, 176, 453, 188], "score": 0.93, "content": "E_{8,5},E_{8,6},F_{4,4}", "type": "inline_equation", "height": 12, "width": 75}, {"bbox": [453, 173, 541, 190], "score": 1.0, "content": ". This is a useful", "type": "text"}], "index": 7}, {"bbox": [70, 189, 393, 203], "spans": [{"bbox": [70, 189, 393, 203], "score": 1.0, "content": "way in practise to use both (2.4) and the Galois action (2.3).", "type": "text"}], "index": 8}], "index": 5.5, "page_num": "page_5", "page_size": [612.0, 792.0], "bbox_fs": [70, 116, 548, 203]}, {"type": "text", "bbox": [70, 201, 542, 365], "lines": [{"bbox": [94, 202, 541, 218], "spans": [{"bbox": [94, 202, 338, 218], "score": 1.0, "content": "An important property obeyed by the matrix ", "type": "text"}, {"bbox": [338, 205, 347, 214], "score": 0.89, "content": "S", "type": "inline_equation", "height": 9, "width": 9}, {"bbox": [347, 202, 480, 218], "score": 1.0, "content": " for any classical algebra ", "type": "text"}, {"bbox": [480, 205, 496, 215], "score": 0.92, "content": "X_{r}", "type": "inline_equation", "height": 10, "width": 16}, {"bbox": [496, 202, 541, 218], "score": 1.0, "content": " is rank-", "type": "text"}], "index": 9}, {"bbox": [70, 216, 541, 233], "spans": [{"bbox": [70, 216, 541, 233], "score": 1.0, "content": "level duality. The first appearance of this curious duality seems to be by Frenkel [9],", "type": "text"}], "index": 10}, {"bbox": [70, 232, 542, 246], "spans": [{"bbox": [70, 232, 542, 246], "score": 1.0, "content": "but by now many aspects and generalisations have been explored in the literature. For", "type": "text"}], "index": 11}, {"bbox": [71, 244, 542, 265], "spans": [{"bbox": [71, 246, 93, 261], "score": 0.92, "content": "A_{r}^{(1)}", "type": "inline_equation", "height": 15, "width": 22}, {"bbox": [93, 244, 489, 265], "score": 1.0, "content": ", it is related to the existence of mutually commutative affine subalgbras", "type": "text"}, {"bbox": [490, 245, 515, 262], "score": 0.91, "content": "\\widehat{\\mathrm{sl}(n)}", "type": "inline_equation", "height": 17, "width": 25}, {"bbox": [515, 244, 542, 265], "score": 1.0, "content": " and", "type": "text"}], "index": 12}, {"bbox": [71, 263, 541, 281], "spans": [{"bbox": [71, 263, 95, 280], "score": 0.9, "content": "\\widehat{\\mathrm{sl}}(\\widehat{k})", "type": "inline_equation", "height": 17, "width": 24}, {"bbox": [96, 265, 114, 281], "score": 1.0, "content": " in ", "type": "text"}, {"bbox": [114, 263, 147, 279], "score": 0.91, "content": "\\widehat{\\mathrm{gl}}(n\\widehat{k})", "type": "inline_equation", "height": 16, "width": 33}, {"bbox": [147, 265, 541, 281], "score": 1.0, "content": ". Witten has another interpretation of it [37]: he found a natural map (a", "type": "text"}], "index": 13}, {"bbox": [71, 281, 541, 295], "spans": [{"bbox": [71, 281, 460, 295], "score": 1.0, "content": "ring homomorphism) from the quantum cohomology of the Grassmannian ", "type": "text"}, {"bbox": [460, 281, 502, 294], "score": 0.93, "content": "G(k,N)", "type": "inline_equation", "height": 13, "width": 42}, {"bbox": [502, 281, 541, 295], "score": 1.0, "content": ", to the", "type": "text"}], "index": 14}, {"bbox": [70, 294, 541, 309], "spans": [{"bbox": [70, 294, 204, 309], "score": 1.0, "content": "fusion ring of the algebra ", "type": "text"}, {"bbox": [205, 296, 306, 308], "score": 0.92, "content": "\\mathrm{u}(k)\\cong\\mathrm{su}(k)\\oplus\\mathrm{u}(1)", "type": "inline_equation", "height": 12, "width": 101}, {"bbox": [306, 294, 350, 309], "score": 1.0, "content": " at level ", "type": "text"}, {"bbox": [351, 296, 407, 308], "score": 0.93, "content": "(N-k,N)", "type": "inline_equation", "height": 12, "width": 56}, {"bbox": [407, 294, 541, 309], "score": 1.0, "content": ". Witten used the duality", "type": "text"}], "index": 15}, {"bbox": [70, 309, 540, 323], "spans": [{"bbox": [70, 309, 117, 323], "score": 1.0, "content": "between ", "type": "text"}, {"bbox": [118, 310, 159, 322], "score": 0.94, "content": "G(k,N)", "type": "inline_equation", "height": 12, "width": 41}, {"bbox": [160, 309, 186, 323], "score": 1.0, "content": " and ", "type": "text"}, {"bbox": [186, 310, 254, 322], "score": 0.94, "content": "G(N-k,N)", "type": "inline_equation", "height": 12, "width": 68}, {"bbox": [254, 309, 426, 323], "score": 1.0, "content": " to show that the fusion rings of", "type": "text"}, {"bbox": [427, 309, 450, 322], "score": 0.87, "content": "\\operatorname{u}(k)", "type": "inline_equation", "height": 13, "width": 23}, {"bbox": [451, 309, 481, 323], "score": 1.0, "content": " level ", "type": "text"}, {"bbox": [482, 309, 540, 322], "score": 0.92, "content": "(N-k,N)", "type": "inline_equation", "height": 13, "width": 58}], "index": 16}, {"bbox": [70, 322, 541, 338], "spans": [{"bbox": [70, 322, 94, 338], "score": 1.0, "content": "and ", "type": "text"}, {"bbox": [94, 324, 142, 336], "score": 0.94, "content": "\\mathrm{u}(N-k)", "type": "inline_equation", "height": 12, "width": 48}, {"bbox": [143, 322, 173, 338], "score": 1.0, "content": " level ", "type": "text"}, {"bbox": [173, 324, 205, 337], "score": 0.94, "content": "(k,N)", "type": "inline_equation", "height": 13, "width": 32}, {"bbox": [206, 322, 541, 338], "score": 1.0, "content": " should coincide. A considerable generalisation, applying to any", "type": "text"}], "index": 17}, {"bbox": [70, 337, 542, 353], "spans": [{"bbox": [70, 337, 542, 353], "score": 1.0, "content": "VOA (or RCFT), has been conjectured by Nahm [30], and relates to the natural involution", "type": "text"}], "index": 18}, {"bbox": [71, 351, 388, 368], "spans": [{"bbox": [71, 353, 179, 366], "score": 0.93, "content": "\\textstyle\\sum_{i}[x_{i}]\\leftrightarrow\\sum_{i}[1-x_{i}]", "type": "inline_equation", "height": 13, "width": 108}, {"bbox": [179, 351, 388, 368], "score": 1.0, "content": " of torsion elements of the Bloch group.", "type": "text"}], "index": 19}], "index": 14, "page_num": "page_5", "page_size": [612.0, 792.0], "bbox_fs": [70, 202, 542, 368]}, {"type": "text", "bbox": [71, 366, 541, 414], "lines": [{"bbox": [94, 367, 542, 385], "spans": [{"bbox": [94, 369, 253, 385], "score": 1.0, "content": "The Kac-Peterson matrices of", "type": "text"}, {"bbox": [253, 367, 276, 383], "score": 0.92, "content": "\\widehat{\\mathrm{sl}(\\ell)}", "type": "inline_equation", "height": 16, "width": 23}, {"bbox": [276, 369, 306, 385], "score": 1.0, "content": " level ", "type": "text"}, {"bbox": [306, 372, 313, 380], "score": 0.88, "content": "k", "type": "inline_equation", "height": 8, "width": 7}, {"bbox": [313, 369, 339, 385], "score": 1.0, "content": " and ", "type": "text"}, {"bbox": [339, 367, 363, 384], "score": 0.92, "content": "\\widehat{\\mathrm{sl}(k)}", "type": "inline_equation", "height": 17, "width": 24}, {"bbox": [364, 369, 393, 385], "score": 1.0, "content": " level ", "type": "text"}, {"bbox": [393, 371, 399, 380], "score": 0.77, "content": "\\ell", "type": "inline_equation", "height": 9, "width": 6}, {"bbox": [399, 369, 542, 385], "score": 1.0, "content": "are related, as are those of", "type": "text"}], "index": 20}, {"bbox": [71, 384, 541, 404], "spans": [{"bbox": [71, 389, 93, 402], "score": 0.92, "content": "C_{r,k}", "type": "inline_equation", "height": 13, "width": 22}, {"bbox": [93, 387, 120, 404], "score": 1.0, "content": " and ", "type": "text"}, {"bbox": [120, 389, 143, 402], "score": 0.92, "content": "C_{k,r}", "type": "inline_equation", "height": 13, "width": 23}, {"bbox": [143, 387, 173, 404], "score": 1.0, "content": ", and", "type": "text"}, {"bbox": [174, 385, 199, 401], "score": 0.89, "content": "\\widehat{\\mathrm{so}(\\ell)}", "type": "inline_equation", "height": 16, "width": 25}, {"bbox": [200, 387, 231, 404], "score": 1.0, "content": " level ", "type": "text"}, {"bbox": [231, 389, 238, 398], "score": 0.87, "content": "k", "type": "inline_equation", "height": 9, "width": 7}, {"bbox": [238, 387, 265, 404], "score": 1.0, "content": " and", "type": "text"}, {"bbox": [266, 384, 293, 401], "score": 0.86, "content": "\\widehat{\\mathrm{so}(k)}", "type": "inline_equation", "height": 17, "width": 27}, {"bbox": [293, 387, 324, 404], "score": 1.0, "content": " level ", "type": "text"}, {"bbox": [324, 389, 330, 398], "score": 0.86, "content": "\\ell", "type": "inline_equation", "height": 9, "width": 6}, {"bbox": [330, 387, 541, 404], "score": 1.0, "content": ". We will need only the symplectic one;", "type": "text"}], "index": 21}, {"bbox": [70, 402, 239, 416], "spans": [{"bbox": [70, 402, 239, 416], "score": 1.0, "content": "the details will be given in \u00a73.3.", "type": "text"}], "index": 22}], "index": 21, "page_num": "page_5", "page_size": [612.0, 792.0], "bbox_fs": [70, 367, 542, 416]}, {"type": "title", "bbox": [71, 426, 270, 441], "lines": [{"bbox": [72, 429, 269, 442], "spans": [{"bbox": [72, 429, 269, 442], "score": 1.0, "content": "2.2. Symmetries of fusion coefficients", "type": "text"}], "index": 23}], "index": 23, "page_num": "page_5", "page_size": [612.0, 792.0]}, {"type": "text", "bbox": [71, 446, 541, 493], "lines": [{"bbox": [93, 447, 540, 465], "spans": [{"bbox": [93, 447, 423, 465], "score": 1.0, "content": "Definition 2.1. By an isomorphism between fusion rings ", "type": "text"}, {"bbox": [423, 449, 466, 463], "score": 0.92, "content": "\\mathcal{R}(X_{r,k})", "type": "inline_equation", "height": 14, "width": 43}, {"bbox": [466, 447, 496, 465], "score": 1.0, "content": " and ", "type": "text"}, {"bbox": [496, 449, 540, 462], "score": 0.9, "content": "\\mathcal{R}(Y_{s,m})", "type": "inline_equation", "height": 13, "width": 44}], "index": 24}, {"bbox": [69, 463, 541, 481], "spans": [{"bbox": [69, 464, 203, 481], "score": 1.0, "content": "(with fusion coefficients ", "type": "text"}, {"bbox": [204, 466, 216, 477], "score": 0.79, "content": "N", "type": "inline_equation", "height": 11, "width": 12}, {"bbox": [216, 464, 245, 481], "score": 1.0, "content": " and ", "type": "text"}, {"bbox": [245, 465, 259, 477], "score": 0.64, "content": "M", "type": "inline_equation", "height": 12, "width": 14}, {"bbox": [260, 464, 448, 481], "score": 1.0, "content": " respectively) we mean a bijection ", "type": "text"}, {"bbox": [448, 463, 541, 480], "score": 0.92, "content": "\\pi\\ :\\ P_{+}^{k}(X_{r}^{(1)})\\ \\to", "type": "inline_equation", "height": 17, "width": 93}], "index": 25}, {"bbox": [71, 478, 177, 498], "spans": [{"bbox": [71, 480, 122, 498], "score": 0.94, "content": "{\\cal P}_{+}^{m}(Y_{s}^{(1)})", "type": "inline_equation", "height": 18, "width": 51}, {"bbox": [122, 478, 177, 498], "score": 1.0, "content": " such that", "type": "text"}], "index": 26}], "index": 25, "page_num": "page_5", "page_size": [612.0, 792.0], "bbox_fs": [69, 447, 541, 498]}, {"type": "interline_equation", "bbox": [198, 496, 413, 513], "lines": [{"bbox": [198, 496, 413, 513], "spans": [{"bbox": [198, 496, 413, 513], "score": 0.9, "content": "N_{\\lambda,\\mu}^{\\nu}=M_{\\pi\\lambda,\\pi\\mu}^{\\pi\\nu}\\qquad\\forall\\lambda,\\mu,\\nu\\in P_{+}(X_{r,k})\\ .", "type": "interline_equation"}], "index": 27}], "index": 27, "page_num": "page_5", "page_size": [612.0, 792.0]}, {"type": "text", "bbox": [71, 516, 542, 545], "lines": [{"bbox": [71, 516, 544, 535], "spans": [{"bbox": [71, 516, 107, 535], "score": 1.0, "content": "When ", "type": "text"}, {"bbox": [107, 518, 176, 532], "score": 0.91, "content": "X_{r,k}~=~Y_{s,m}", "type": "inline_equation", "height": 14, "width": 69}, {"bbox": [176, 516, 224, 535], "score": 1.0, "content": " we call ", "type": "text"}, {"bbox": [225, 523, 232, 529], "score": 0.77, "content": "\\pi", "type": "inline_equation", "height": 6, "width": 7}, {"bbox": [233, 516, 544, 535], "score": 1.0, "content": " an automorphism or fusion-symmetry. Call the pair of", "type": "text"}], "index": 28}, {"bbox": [71, 533, 267, 547], "spans": [{"bbox": [71, 533, 142, 547], "score": 1.0, "content": "permutations ", "type": "text"}, {"bbox": [143, 533, 167, 546], "score": 0.87, "content": "\\pi,\\pi^{\\prime}", "type": "inline_equation", "height": 13, "width": 24}, {"bbox": [167, 533, 187, 547], "score": 1.0, "content": " an ", "type": "text"}, {"bbox": [187, 534, 196, 543], "score": 0.84, "content": "S", "type": "inline_equation", "height": 9, "width": 9}, {"bbox": [196, 533, 267, 547], "score": 1.0, "content": "-symmetry if", "type": "text"}], "index": 29}], "index": 28.5, "page_num": "page_5", "page_size": [612.0, 792.0], "bbox_fs": [71, 516, 544, 547]}, {"type": "interline_equation", "bbox": [225, 556, 387, 570], "lines": [{"bbox": [225, 556, 387, 570], "spans": [{"bbox": [225, 556, 387, 570], "score": 0.9, "content": "S_{\\pi\\lambda,\\pi^{\\prime}\\mu}=S_{\\lambda\\mu}\\qquad\\forall\\lambda,\\mu\\in{\\cal P}_{+}\\ .", "type": "interline_equation"}], "index": 30}], "index": 30, "page_num": "page_5", "page_size": [612.0, 792.0]}, {"type": "text", "bbox": [70, 577, 541, 700], "lines": [{"bbox": [94, 578, 541, 595], "spans": [{"bbox": [94, 578, 317, 595], "score": 1.0, "content": "The lemma below tells us that fusion- and ", "type": "text"}, {"bbox": [317, 582, 325, 591], "score": 0.9, "content": "S", "type": "inline_equation", "height": 9, "width": 8}, {"bbox": [326, 578, 541, 595], "score": 1.0, "content": "-symmetries form two isomorphic groups;", "type": "text"}], "index": 31}, {"bbox": [71, 594, 541, 610], "spans": [{"bbox": [71, 594, 196, 610], "score": 1.0, "content": "the former we will label ", "type": "text"}, {"bbox": [196, 595, 238, 608], "score": 0.94, "content": "\\boldsymbol{A}(\\boldsymbol{X}_{r,k})", "type": "inline_equation", "height": 13, "width": 42}, {"bbox": [239, 594, 504, 610], "score": 1.0, "content": ". Equation (2.5a) says that the charge-conjugation ", "type": "text"}, {"bbox": [504, 596, 514, 605], "score": 0.89, "content": "C", "type": "inline_equation", "height": 9, "width": 10}, {"bbox": [514, 594, 541, 610], "score": 1.0, "content": ", and", "type": "text"}], "index": 32}, {"bbox": [70, 609, 541, 623], "spans": [{"bbox": [70, 609, 459, 623], "score": 1.0, "content": "more generally any conjugation, is a fusion-symmetry, while (2.2a) says ", "type": "text"}, {"bbox": [459, 610, 492, 622], "score": 0.94, "content": "(C,C)", "type": "inline_equation", "height": 12, "width": 33}, {"bbox": [492, 609, 527, 623], "score": 1.0, "content": " is an ", "type": "text"}, {"bbox": [527, 610, 536, 619], "score": 0.88, "content": "S", "type": "inline_equation", "height": 9, "width": 9}, {"bbox": [536, 609, 541, 623], "score": 1.0, "content": "-", "type": "text"}], "index": 33}, {"bbox": [67, 622, 542, 644], "spans": [{"bbox": [67, 622, 177, 644], "score": 1.0, "content": "symmetry. Because ", "type": "text"}, {"bbox": [177, 626, 248, 639], "score": 0.92, "content": "N_{0}=I=M_{\\tilde{0}}", "type": "inline_equation", "height": 13, "width": 71}, {"bbox": [248, 622, 254, 644], "score": 1.0, "content": ", ", "type": "text"}, {"bbox": [255, 625, 313, 640], "score": 0.94, "content": "N_{\\lambda\\mu}^{0}=C_{\\lambda\\mu}", "type": "inline_equation", "height": 15, "width": 58}, {"bbox": [314, 622, 341, 644], "score": 1.0, "content": " and ", "type": "text"}, {"bbox": [341, 623, 407, 642], "score": 0.94, "content": "M_{\\tilde{\\lambda},\\tilde{\\mu}}^{\\tilde{0}}=\\widetilde{C}_{\\tilde{\\lambda},\\tilde{\\mu}}", "type": "inline_equation", "height": 19, "width": 66}, {"bbox": [408, 622, 542, 644], "score": 1.0, "content": " (we use tilde\u2019s to denote", "type": "text"}], "index": 34}, {"bbox": [69, 641, 542, 662], "spans": [{"bbox": [69, 641, 139, 662], "score": 1.0, "content": "quantities in ", "type": "text"}, {"bbox": [140, 643, 162, 657], "score": 0.92, "content": "Y_{s}^{(1)}", "type": "inline_equation", "height": 14, "width": 22}, {"bbox": [162, 641, 192, 662], "score": 1.0, "content": "level ", "type": "text"}, {"bbox": [192, 650, 203, 656], "score": 0.85, "content": "{\\boldsymbol{\\mathit{\\varepsilon}}}^{\\prime}{\\boldsymbol{\\mathit{m}}}", "type": "inline_equation", "height": 6, "width": 11}, {"bbox": [204, 641, 306, 662], "score": 1.0, "content": "), any isomorphism ", "type": "text"}, {"bbox": [306, 650, 313, 656], "score": 0.88, "content": "\\pi", "type": "inline_equation", "height": 6, "width": 7}, {"bbox": [314, 641, 374, 662], "score": 1.0, "content": " must obey ", "type": "text"}, {"bbox": [374, 645, 410, 656], "score": 0.92, "content": "\\pi0=\\tilde{0}", "type": "inline_equation", "height": 11, "width": 36}, {"bbox": [410, 641, 435, 662], "score": 1.0, "content": " and", "type": "text"}, {"bbox": [435, 644, 504, 656], "score": 0.92, "content": "\\widetilde{C}\\circ\\pi=\\pi\\circ C", "type": "inline_equation", "height": 12, "width": 69}, {"bbox": [505, 641, 542, 662], "score": 1.0, "content": ". More", "type": "text"}], "index": 35}, {"bbox": [70, 659, 541, 675], "spans": [{"bbox": [70, 659, 153, 675], "score": 1.0, "content": "generally, since ", "type": "text"}, {"bbox": [154, 661, 169, 672], "score": 0.93, "content": "N_{\\lambda}", "type": "inline_equation", "height": 11, "width": 15}, {"bbox": [169, 659, 347, 675], "score": 1.0, "content": " is a permutation matrix of order ", "type": "text"}, {"bbox": [347, 664, 354, 670], "score": 0.87, "content": "{\\boldsymbol{n}}", "type": "inline_equation", "height": 6, "width": 7}, {"bbox": [355, 659, 372, 675], "score": 1.0, "content": " iff", "type": "text"}, {"bbox": [372, 661, 380, 670], "score": 0.88, "content": "\\lambda", "type": "inline_equation", "height": 9, "width": 8}, {"bbox": [380, 659, 528, 675], "score": 1.0, "content": " is a simpl e- current of order ", "type": "text"}, {"bbox": [529, 664, 536, 670], "score": 0.84, "content": "n", "type": "inline_equation", "height": 6, "width": 7}, {"bbox": [537, 659, 541, 675], "score": 1.0, "content": ",", "type": "text"}], "index": 36}, {"bbox": [71, 675, 541, 689], "spans": [{"bbox": [71, 675, 541, 689], "score": 1.0, "content": "we see that an isomorphism sends simple-currents to simple-currents of equal order. We", "type": "text"}], "index": 37}, {"bbox": [70, 690, 90, 703], "spans": [{"bbox": [70, 690, 90, 703], "score": 1.0, "content": "get", "type": "text"}], "index": 38}], "index": 34.5, "page_num": "page_5", "page_size": [612.0, 792.0], "bbox_fs": [67, 578, 542, 703]}, {"type": "interline_equation", "bbox": [254, 702, 358, 716], "lines": [{"bbox": [254, 702, 358, 716], "spans": [{"bbox": [254, 702, 358, 716], "score": 0.93, "content": "\\pi(J\\mu)=\\pi(j)\\,\\pi(\\mu)~.", "type": "interline_equation"}], "index": 39}], "index": 39, "page_num": "page_5", "page_size": [612.0, 792.0]}]} |
|
0002044v1 | 4 | $$\epsilon_{\ell}(\lambda)/\epsilon_{\ell}^{\prime}(\lambda)=\sigma_{\ell}(c)/c$$ is an unimportant sign independent of $$\lambda$$ . This Galois action will play
a fairly important role in this paper. Note that $$\sigma_{-1}=C$$ , so this action can be thought of
as a generalisation of charge-conjugation. Note also that $$\sigma_{\ell}\circ J=J^{\ell}\circ\sigma_{\ell}$$ .
The fusion coefficients (1.1b) are usually computed by the Kac-Walton formula [23
p. 288, 35] (there are other codiscoverers) in terms of the tensor product multiplicities
$$T_{\lambda\mu}^{\nu}\overset{\mathrm{def}}{=}\mathrm{mult}_{L(\overline{{\lambda}})\otimes L(\overline{{\mu}})}(L(\overline{{\nu}}))$$ in $$X_{r}$$ :
where $$w.\gamma\,{\stackrel{\mathrm{def}}{=}}\,w(\gamma+\rho)-\rho$$ and $$W$$ is the affine Weyl group of $$X_{r}^{(1)}$$ (the dependence of $$N_{\lambda\mu}^{\nu}$$
on $$k$$ arises through the action of $$W$$ ). We shall see shortly that these fusion coefficients,
now manifestly integral, are in fact nonnegative. Let $$\mathcal{R}(X_{r,k})$$ denote the corresponding
fusion ring.
A handy consequence of (2.4) that whenever $$k$$ is large enough that $$\lambda+\mu\in P_{+}^{k}(X_{r}^{(1)})$$
(i.e. that $$\begin{array}{r}{\sum_{i=1}^{\tau}a_{i}^{\vee}(\lambda_{i}+\mu_{i})\le k)}\end{array}$$ , then $$N_{\lambda\mu}^{\nu}=T_{\lambda\mu}^{\nu}$$ .
It will sometimes be convenient to collect these coefficients in matrix form as the
fusion matrices $$N_{\lambda}$$ , defined by $$(N_{\lambda})_{\mu\nu}=N_{\lambda\mu}^{\nu}$$ . For instance, $$N_{0}=I$$ and, more generally,
$$N_{j}$$ is the permutation matrix associated to $$J$$ .
The importance of (charge-)conjugation and simple-currents for us is that they respect
fusions:
for any simple-currents $$J,J^{\prime},j$$ .
For example, for $$\mathcal{R}(A_{1,k})$$ we may take $$P_{+}\;=\;\{0,1,\ldots,k\}$$ (the value of $$\lambda_{1}$$ ), and
then the Kac-Peterson matrix is Sab = k2+2 sin(π (a+1k)+ (2b+1) ). Charge-conjugation C is
trivial here, but $$j=k$$ is a simple-current corresponding to permutation $$J a=k-a$$ and
function $$Q_{j}(a)=a/2$$ . The Galois action sends $$a$$ to the unique weight $$a^{(\ell)}\in P_{+}$$ satisfying
$$a^{(\ell)}+1\equiv\pm\ell\left(a+1\right)$$ (mod $$2k+4$$ ), where that sign there equals $$\mathrm{i}^{\ell-1}\epsilon_{\ell}^{\prime}(a)$$ . The fusion
coefficients are given by
Equation (2.4) tells us the affine fusion rules are the structure constants for the ring
$$\mathrm{Ch}(X_{r})/\mathcal{I}_{k}$$ where $$\operatorname{Ch}(X_{r})$$ is the character ring for all finite-dimensional $$X_{r}$$ -modules, and
$$\mathcal{I}_{k}$$ is the subspace spanned by the elements $$\mathrm{ch}_{\overline{{\mu}}}-(\operatorname*{det}w)\mathrm{ch}_{\overline{{w}}.\mu}$$ . Finkelberg [8] proved that
this ring is isomorphic to the K-ring of a “sub-quotient” $$\widetilde{\mathcal{O}}_{k}$$ of Kazhdan-Lusztig’s category
of level $$k$$ integrable highest weight $$X_{r}^{(1)}$$ -modules, and t o Gelfand-Kazhdan’s category $$\widetilde{\mathcal{O}}_{q}$$
coming from finite-dimensional modules of the quantum group $$U_{q}X_{r}$$ specialised to the
| <p>$$\epsilon_{\ell}(\lambda)/\epsilon_{\ell}^{\prime}(\lambda)=\sigma_{\ell}(c)/c$$ is an unimportant sign independent of $$\lambda$$ . This Galois action will play
a fairly important role in this paper. Note that $$\sigma_{-1}=C$$ , so this action can be thought of
as a generalisation of charge-conjugation. Note also that $$\sigma_{\ell}\circ J=J^{\ell}\circ\sigma_{\ell}$$ .</p>
<p>The fusion coefficients (1.1b) are usually computed by the Kac-Walton formula [23
p. 288, 35] (there are other codiscoverers) in terms of the tensor product multiplicities
$$T_{\lambda\mu}^{\nu}\overset{\mathrm{def}}{=}\mathrm{mult}_{L(\overline{{\lambda}})\otimes L(\overline{{\mu}})}(L(\overline{{\nu}}))$$ in $$X_{r}$$ :</p>
<p>where $$w.\gamma\,{\stackrel{\mathrm{def}}{=}}\,w(\gamma+\rho)-\rho$$ and $$W$$ is the affine Weyl group of $$X_{r}^{(1)}$$ (the dependence of $$N_{\lambda\mu}^{\nu}$$
on $$k$$ arises through the action of $$W$$ ). We shall see shortly that these fusion coefficients,
now manifestly integral, are in fact nonnegative. Let $$\mathcal{R}(X_{r,k})$$ denote the corresponding
fusion ring.</p>
<p>A handy consequence of (2.4) that whenever $$k$$ is large enough that $$\lambda+\mu\in P_{+}^{k}(X_{r}^{(1)})$$
(i.e. that $$\begin{array}{r}{\sum_{i=1}^{\tau}a_{i}^{\vee}(\lambda_{i}+\mu_{i})\le k)}\end{array}$$ , then $$N_{\lambda\mu}^{\nu}=T_{\lambda\mu}^{\nu}$$ .</p>
<p>It will sometimes be convenient to collect these coefficients in matrix form as the
fusion matrices $$N_{\lambda}$$ , defined by $$(N_{\lambda})_{\mu\nu}=N_{\lambda\mu}^{\nu}$$ . For instance, $$N_{0}=I$$ and, more generally,
$$N_{j}$$ is the permutation matrix associated to $$J$$ .</p>
<p>The importance of (charge-)conjugation and simple-currents for us is that they respect
fusions:</p>
<p>for any simple-currents $$J,J^{\prime},j$$ .</p>
<p>For example, for $$\mathcal{R}(A_{1,k})$$ we may take $$P_{+}\;=\;\{0,1,\ldots,k\}$$ (the value of $$\lambda_{1}$$ ), and
then the Kac-Peterson matrix is Sab = k2+2 sin(π (a+1k)+ (2b+1) ). Charge-conjugation C is
trivial here, but $$j=k$$ is a simple-current corresponding to permutation $$J a=k-a$$ and
function $$Q_{j}(a)=a/2$$ . The Galois action sends $$a$$ to the unique weight $$a^{(\ell)}\in P_{+}$$ satisfying
$$a^{(\ell)}+1\equiv\pm\ell\left(a+1\right)$$ (mod $$2k+4$$ ), where that sign there equals $$\mathrm{i}^{\ell-1}\epsilon_{\ell}^{\prime}(a)$$ . The fusion
coefficients are given by</p>
<p>Equation (2.4) tells us the affine fusion rules are the structure constants for the ring
$$\mathrm{Ch}(X_{r})/\mathcal{I}_{k}$$ where $$\operatorname{Ch}(X_{r})$$ is the character ring for all finite-dimensional $$X_{r}$$ -modules, and
$$\mathcal{I}_{k}$$ is the subspace spanned by the elements $$\mathrm{ch}_{\overline{{\mu}}}-(\operatorname*{det}w)\mathrm{ch}_{\overline{{w}}.\mu}$$ . Finkelberg [8] proved that
this ring is isomorphic to the K-ring of a “sub-quotient” $$\widetilde{\mathcal{O}}_{k}$$ of Kazhdan-Lusztig’s category
of level $$k$$ integrable highest weight $$X_{r}^{(1)}$$ -modules, and t o Gelfand-Kazhdan’s category $$\widetilde{\mathcal{O}}_{q}$$
coming from finite-dimensional modules of the quantum group $$U_{q}X_{r}$$ specialised to the</p>
| [{"type": "text", "coordinates": [70, 70, 541, 114], "content": "$$\\epsilon_{\\ell}(\\lambda)/\\epsilon_{\\ell}^{\\prime}(\\lambda)=\\sigma_{\\ell}(c)/c$$ is an unimportant sign independent of $$\\lambda$$ . This Galois action will play\na fairly important role in this paper. Note that $$\\sigma_{-1}=C$$ , so this action can be thought of\nas a generalisation of charge-conjugation. Note also that $$\\sigma_{\\ell}\\circ J=J^{\\ell}\\circ\\sigma_{\\ell}$$ .", "block_type": "text", "index": 1}, {"type": "text", "coordinates": [69, 115, 541, 164], "content": "The fusion coefficients (1.1b) are usually computed by the Kac-Walton formula [23\np. 288, 35] (there are other codiscoverers) in terms of the tensor product multiplicities\n$$T_{\\lambda\\mu}^{\\nu}\\overset{\\mathrm{def}}{=}\\mathrm{mult}_{L(\\overline{{\\lambda}})\\otimes L(\\overline{{\\mu}})}(L(\\overline{{\\nu}}))$$ in $$X_{r}$$ :", "block_type": "text", "index": 2}, {"type": "interline_equation", "coordinates": [239, 178, 372, 209], "content": "", "block_type": "interline_equation", "index": 3}, {"type": "text", "coordinates": [70, 221, 541, 281], "content": "where $$w.\\gamma\\,{\\stackrel{\\mathrm{def}}{=}}\\,w(\\gamma+\\rho)-\\rho$$ and $$W$$ is the affine Weyl group of $$X_{r}^{(1)}$$ (the dependence of $$N_{\\lambda\\mu}^{\\nu}$$\non $$k$$ arises through the action of $$W$$ ). We shall see shortly that these fusion coefficients,\nnow manifestly integral, are in fact nonnegative. Let $$\\mathcal{R}(X_{r,k})$$ denote the corresponding\nfusion ring.", "block_type": "text", "index": 4}, {"type": "text", "coordinates": [70, 282, 541, 313], "content": "A handy consequence of (2.4) that whenever $$k$$ is large enough that $$\\lambda+\\mu\\in P_{+}^{k}(X_{r}^{(1)})$$\n(i.e. that $$\\begin{array}{r}{\\sum_{i=1}^{\\tau}a_{i}^{\\vee}(\\lambda_{i}+\\mu_{i})\\le k)}\\end{array}$$ , then $$N_{\\lambda\\mu}^{\\nu}=T_{\\lambda\\mu}^{\\nu}$$ .", "block_type": "text", "index": 5}, {"type": "text", "coordinates": [70, 313, 541, 354], "content": "It will sometimes be convenient to collect these coefficients in matrix form as the\nfusion matrices $$N_{\\lambda}$$ , defined by $$(N_{\\lambda})_{\\mu\\nu}=N_{\\lambda\\mu}^{\\nu}$$ . For instance, $$N_{0}=I$$ and, more generally,\n$$N_{j}$$ is the permutation matrix associated to $$J$$ .", "block_type": "text", "index": 6}, {"type": "text", "coordinates": [70, 355, 540, 383], "content": "The importance of (charge-)conjugation and simple-currents for us is that they respect\nfusions:", "block_type": "text", "index": 7}, {"type": "interline_equation", "coordinates": [176, 394, 435, 455], "content": "", "block_type": "interline_equation", "index": 8}, {"type": "text", "coordinates": [70, 463, 235, 477], "content": "for any simple-currents $$J,J^{\\prime},j$$ .", "block_type": "text", "index": 9}, {"type": "text", "coordinates": [70, 478, 541, 572], "content": "For example, for $$\\mathcal{R}(A_{1,k})$$ we may take $$P_{+}\\;=\\;\\{0,1,\\ldots,k\\}$$ (the value of $$\\lambda_{1}$$ ), and\nthen the Kac-Peterson matrix is Sab = k2+2 sin(\u03c0 (a+1k)+ (2b+1) ). Charge-conjugation C is\ntrivial here, but $$j=k$$ is a simple-current corresponding to permutation $$J a=k-a$$ and\nfunction $$Q_{j}(a)=a/2$$ . The Galois action sends $$a$$ to the unique weight $$a^{(\\ell)}\\in P_{+}$$ satisfying\n$$a^{(\\ell)}+1\\equiv\\pm\\ell\\left(a+1\\right)$$ (mod $$2k+4$$ ), where that sign there equals $$\\mathrm{i}^{\\ell-1}\\epsilon_{\\ell}^{\\prime}(a)$$ . The fusion\ncoefficients are given by", "block_type": "text", "index": 10}, {"type": "interline_equation", "coordinates": [117, 582, 496, 616], "content": "", "block_type": "interline_equation", "index": 11}, {"type": "text", "coordinates": [70, 624, 541, 716], "content": "Equation (2.4) tells us the affine fusion rules are the structure constants for the ring\n$$\\mathrm{Ch}(X_{r})/\\mathcal{I}_{k}$$ where $$\\operatorname{Ch}(X_{r})$$ is the character ring for all finite-dimensional $$X_{r}$$ -modules, and\n$$\\mathcal{I}_{k}$$ is the subspace spanned by the elements $$\\mathrm{ch}_{\\overline{{\\mu}}}-(\\operatorname*{det}w)\\mathrm{ch}_{\\overline{{w}}.\\mu}$$ . Finkelberg [8] proved that\nthis ring is isomorphic to the K-ring of a \u201csub-quotient\u201d $$\\widetilde{\\mathcal{O}}_{k}$$ of Kazhdan-Lusztig\u2019s category\nof level $$k$$ integrable highest weight $$X_{r}^{(1)}$$ -modules, and t o Gelfand-Kazhdan\u2019s category $$\\widetilde{\\mathcal{O}}_{q}$$\ncoming from finite-dimensional modules of the quantum group $$U_{q}X_{r}$$ specialised to the", "block_type": "text", "index": 12}] | [{"type": "inline_equation", "coordinates": [71, 75, 182, 88], "content": "\\epsilon_{\\ell}(\\lambda)/\\epsilon_{\\ell}^{\\prime}(\\lambda)=\\sigma_{\\ell}(c)/c", "score": 0.92, "index": 1}, {"type": "text", "coordinates": [182, 73, 383, 89], "content": " is an unimportant sign independent of ", "score": 1.0, "index": 2}, {"type": "inline_equation", "coordinates": [383, 75, 391, 84], "content": "\\lambda", "score": 0.89, "index": 3}, {"type": "text", "coordinates": [391, 73, 540, 89], "content": ". This Galois action will play", "score": 1.0, "index": 4}, {"type": "text", "coordinates": [70, 88, 321, 103], "content": "a fairly important role in this paper. Note that ", "score": 1.0, "index": 5}, {"type": "inline_equation", "coordinates": [321, 90, 367, 101], "content": "\\sigma_{-1}=C", "score": 0.93, "index": 6}, {"type": "text", "coordinates": [367, 88, 542, 103], "content": ", so this action can be thought of", "score": 1.0, "index": 7}, {"type": "text", "coordinates": [70, 101, 370, 118], "content": "as a generalisation of charge-conjugation. Note also that ", "score": 1.0, "index": 8}, {"type": "inline_equation", "coordinates": [371, 102, 453, 115], "content": "\\sigma_{\\ell}\\circ J=J^{\\ell}\\circ\\sigma_{\\ell}", "score": 0.93, "index": 9}, {"type": "text", "coordinates": [453, 101, 458, 118], "content": ".", "score": 1.0, "index": 10}, {"type": "text", "coordinates": [94, 115, 541, 132], "content": "The fusion coefficients (1.1b) are usually computed by the Kac-Walton formula [23", "score": 1.0, "index": 11}, {"type": "text", "coordinates": [69, 132, 541, 146], "content": "p. 288, 35] (there are other codiscoverers) in terms of the tensor product multiplicities", "score": 1.0, "index": 12}, {"type": "inline_equation", "coordinates": [71, 146, 215, 166], "content": "T_{\\lambda\\mu}^{\\nu}\\overset{\\mathrm{def}}{=}\\mathrm{mult}_{L(\\overline{{\\lambda}})\\otimes L(\\overline{{\\mu}})}(L(\\overline{{\\nu}}))", "score": 0.93, "index": 13}, {"type": "text", "coordinates": [215, 148, 232, 168], "content": " in ", "score": 1.0, "index": 14}, {"type": "inline_equation", "coordinates": [232, 151, 248, 162], "content": "X_{r}", "score": 0.9, "index": 15}, {"type": "text", "coordinates": [248, 148, 255, 168], "content": ":", "score": 1.0, "index": 16}, {"type": "interline_equation", "coordinates": [239, 178, 372, 209], "content": "N_{\\lambda\\mu}^{\\nu}=\\sum_{w\\in W}\\operatorname*{det}(w)\\,T_{\\lambda\\mu}^{w.\\nu}~,", "score": 0.95, "index": 17}, {"type": "text", "coordinates": [66, 218, 105, 247], "content": "where ", "score": 1.0, "index": 18}, {"type": "inline_equation", "coordinates": [105, 223, 206, 240], "content": "w.\\gamma\\,{\\stackrel{\\mathrm{def}}{=}}\\,w(\\gamma+\\rho)-\\rho", "score": 0.92, "index": 19}, {"type": "text", "coordinates": [207, 218, 231, 247], "content": " and ", "score": 1.0, "index": 20}, {"type": "inline_equation", "coordinates": [232, 227, 245, 237], "content": "W", "score": 0.81, "index": 21}, {"type": "text", "coordinates": [245, 218, 388, 247], "content": " is the affine Weyl group of ", "score": 1.0, "index": 22}, {"type": "inline_equation", "coordinates": [388, 223, 412, 238], "content": "X_{r}^{(1)}", "score": 0.93, "index": 23}, {"type": "text", "coordinates": [412, 218, 517, 247], "content": "(the dependence of ", "score": 1.0, "index": 24}, {"type": "inline_equation", "coordinates": [518, 228, 539, 242], "content": "N_{\\lambda\\mu}^{\\nu}", "score": 0.92, "index": 25}, {"type": "text", "coordinates": [69, 239, 88, 256], "content": "on ", "score": 1.0, "index": 26}, {"type": "inline_equation", "coordinates": [88, 242, 95, 251], "content": "k", "score": 0.84, "index": 27}, {"type": "text", "coordinates": [96, 239, 249, 256], "content": " arises through the action of ", "score": 1.0, "index": 28}, {"type": "inline_equation", "coordinates": [249, 243, 262, 252], "content": "W", "score": 0.85, "index": 29}, {"type": "text", "coordinates": [263, 239, 541, 256], "content": "). We shall see shortly that these fusion coefficients,", "score": 1.0, "index": 30}, {"type": "text", "coordinates": [69, 254, 358, 270], "content": "now manifestly integral, are in fact nonnegative. Let ", "score": 1.0, "index": 31}, {"type": "inline_equation", "coordinates": [359, 256, 401, 268], "content": "\\mathcal{R}(X_{r,k})", "score": 0.95, "index": 32}, {"type": "text", "coordinates": [402, 254, 541, 270], "content": " denote the corresponding", "score": 1.0, "index": 33}, {"type": "text", "coordinates": [70, 268, 131, 285], "content": "fusion ring.", "score": 1.0, "index": 34}, {"type": "text", "coordinates": [93, 283, 330, 301], "content": "A handy consequence of (2.4) that whenever ", "score": 1.0, "index": 35}, {"type": "inline_equation", "coordinates": [330, 287, 337, 296], "content": "k", "score": 0.91, "index": 36}, {"type": "text", "coordinates": [338, 283, 448, 301], "content": " is large enough that ", "score": 1.0, "index": 37}, {"type": "inline_equation", "coordinates": [448, 283, 539, 300], "content": "\\lambda+\\mu\\in P_{+}^{k}(X_{r}^{(1)})", "score": 0.92, "index": 38}, {"type": "text", "coordinates": [69, 297, 120, 318], "content": "(i.e. that", "score": 1.0, "index": 39}, {"type": "inline_equation", "coordinates": [121, 300, 237, 314], "content": "\\begin{array}{r}{\\sum_{i=1}^{\\tau}a_{i}^{\\vee}(\\lambda_{i}+\\mu_{i})\\le k)}\\end{array}", "score": 0.91, "index": 40}, {"type": "text", "coordinates": [237, 297, 272, 318], "content": ", then ", "score": 1.0, "index": 41}, {"type": "inline_equation", "coordinates": [273, 302, 330, 315], "content": "N_{\\lambda\\mu}^{\\nu}=T_{\\lambda\\mu}^{\\nu}", "score": 0.94, "index": 42}, {"type": "text", "coordinates": [330, 297, 335, 318], "content": ".", "score": 1.0, "index": 43}, {"type": "text", "coordinates": [93, 313, 540, 327], "content": "It will sometimes be convenient to collect these coefficients in matrix form as the", "score": 1.0, "index": 44}, {"type": "text", "coordinates": [69, 327, 154, 343], "content": "fusion matrices ", "score": 1.0, "index": 45}, {"type": "inline_equation", "coordinates": [155, 330, 171, 340], "content": "N_{\\lambda}", "score": 0.91, "index": 46}, {"type": "text", "coordinates": [171, 327, 236, 343], "content": ", defined by ", "score": 1.0, "index": 47}, {"type": "inline_equation", "coordinates": [236, 329, 311, 344], "content": "(N_{\\lambda})_{\\mu\\nu}=N_{\\lambda\\mu}^{\\nu}", "score": 0.9, "index": 48}, {"type": "text", "coordinates": [312, 327, 392, 343], "content": ". For instance, ", "score": 1.0, "index": 49}, {"type": "inline_equation", "coordinates": [392, 330, 430, 341], "content": "N_{0}=I", "score": 0.94, "index": 50}, {"type": "text", "coordinates": [430, 327, 541, 343], "content": " and, more generally,", "score": 1.0, "index": 51}, {"type": "inline_equation", "coordinates": [71, 344, 86, 357], "content": "N_{j}", "score": 0.91, "index": 52}, {"type": "text", "coordinates": [86, 343, 301, 356], "content": " is the permutation matrix associated to ", "score": 1.0, "index": 53}, {"type": "inline_equation", "coordinates": [302, 344, 309, 353], "content": "J", "score": 0.82, "index": 54}, {"type": "text", "coordinates": [310, 343, 315, 356], "content": ".", "score": 1.0, "index": 55}, {"type": "text", "coordinates": [93, 355, 542, 374], "content": "The importance of (charge-)conjugation and simple-currents for us is that they respect", "score": 1.0, "index": 56}, {"type": "text", "coordinates": [70, 371, 112, 387], "content": "fusions:", "score": 1.0, "index": 57}, {"type": "interline_equation", "coordinates": [176, 394, 435, 455], "content": "\\begin{array}{c}{{N_{C\\lambda,C\\mu}^{C\\nu}=N_{\\lambda\\mu}^{\\nu}}}\\\\ {{{}}}\\\\ {{N_{J\\lambda,J^{\\prime}\\mu}^{J J^{\\prime}\\nu}=N_{\\lambda\\mu}^{\\nu}}}\\\\ {{N_{\\lambda\\mu}^{\\nu}\\neq0\\ \\Rightarrow\\ Q_{j}(\\lambda){+}Q_{j}(\\mu)\\equiv Q_{j}(\\nu){\\qquad}(\\mathrm{mod~1})}}\\end{array}", "score": 0.93, "index": 58}, {"type": "text", "coordinates": [70, 465, 195, 479], "content": "for any simple-currents ", "score": 1.0, "index": 59}, {"type": "inline_equation", "coordinates": [195, 465, 230, 478], "content": "J,J^{\\prime},j", "score": 0.92, "index": 60}, {"type": "text", "coordinates": [230, 465, 233, 479], "content": ".", "score": 1.0, "index": 61}, {"type": "text", "coordinates": [93, 479, 190, 495], "content": "For example, for ", "score": 1.0, "index": 62}, {"type": "inline_equation", "coordinates": [190, 480, 233, 494], "content": "\\mathcal{R}(A_{1,k})", "score": 0.92, "index": 63}, {"type": "text", "coordinates": [234, 479, 312, 495], "content": " we may take ", "score": 1.0, "index": 64}, {"type": "inline_equation", "coordinates": [313, 479, 414, 493], "content": "P_{+}\\;=\\;\\{0,1,\\ldots,k\\}", "score": 0.89, "index": 65}, {"type": "text", "coordinates": [414, 479, 493, 495], "content": " (the value of ", "score": 1.0, "index": 66}, {"type": "inline_equation", "coordinates": [493, 482, 506, 492], "content": "\\lambda_{1}", "score": 0.85, "index": 67}, {"type": "text", "coordinates": [506, 479, 542, 495], "content": "), and", "score": 1.0, "index": 68}, {"type": "text", "coordinates": [64, 489, 548, 523], "content": "then the Kac-Peterson matrix is Sab = k2+2 sin(\u03c0 (a+1k)+ (2b+1) ). Charge-conjugation C is", "score": 1.0, "index": 69}, {"type": "text", "coordinates": [70, 515, 159, 530], "content": "trivial here, but ", "score": 1.0, "index": 70}, {"type": "inline_equation", "coordinates": [159, 516, 189, 529], "content": "j=k", "score": 0.9, "index": 71}, {"type": "text", "coordinates": [190, 515, 456, 530], "content": " is a simple-current corresponding to permutation ", "score": 1.0, "index": 72}, {"type": "inline_equation", "coordinates": [456, 517, 516, 527], "content": "J a=k-a", "score": 0.91, "index": 73}, {"type": "text", "coordinates": [516, 515, 542, 530], "content": " and", "score": 1.0, "index": 74}, {"type": "text", "coordinates": [69, 527, 117, 547], "content": "function ", "score": 1.0, "index": 75}, {"type": "inline_equation", "coordinates": [118, 531, 182, 544], "content": "Q_{j}(a)=a/2", "score": 0.92, "index": 76}, {"type": "text", "coordinates": [182, 527, 317, 547], "content": ". The Galois action sends ", "score": 1.0, "index": 77}, {"type": "inline_equation", "coordinates": [317, 533, 325, 541], "content": "a", "score": 0.69, "index": 78}, {"type": "text", "coordinates": [325, 527, 437, 547], "content": " to the unique weight ", "score": 1.0, "index": 79}, {"type": "inline_equation", "coordinates": [438, 529, 486, 543], "content": "a^{(\\ell)}\\in P_{+}", "score": 0.92, "index": 80}, {"type": "text", "coordinates": [487, 527, 542, 547], "content": " satisfying", "score": 1.0, "index": 81}, {"type": "inline_equation", "coordinates": [71, 544, 185, 558], "content": "a^{(\\ell)}+1\\equiv\\pm\\ell\\left(a+1\\right)", "score": 0.91, "index": 82}, {"type": "text", "coordinates": [185, 542, 221, 561], "content": " (mod ", "score": 1.0, "index": 83}, {"type": "inline_equation", "coordinates": [221, 544, 257, 557], "content": "2k+4", "score": 0.46, "index": 84}, {"type": "text", "coordinates": [258, 542, 425, 561], "content": "), where that sign there equals ", "score": 1.0, "index": 85}, {"type": "inline_equation", "coordinates": [425, 545, 471, 558], "content": "\\mathrm{i}^{\\ell-1}\\epsilon_{\\ell}^{\\prime}(a)", "score": 0.93, "index": 86}, {"type": "text", "coordinates": [472, 542, 542, 561], "content": ". The fusion", "score": 1.0, "index": 87}, {"type": "text", "coordinates": [71, 559, 196, 574], "content": "coefficients are given by", "score": 1.0, "index": 88}, {"type": "interline_equation", "coordinates": [117, 582, 496, 616], "content": "N_{a b}^{c}=\\left\\{\\begin{array}{c c}{{1}}&{{\\mathrm{if~}c\\equiv a\\!+\\!b\\;(\\mathrm{mod~}2)\\;\\mathrm{and~}|a\\!-\\!b|\\leq c\\leq\\operatorname*{min}\\{a\\!+\\!b,2k\\!-\\!a\\!-\\!b\\}}}\\\\ {{0}}&{{\\mathrm{otherwise}}}\\end{array}\\right..", "score": 0.84, "index": 89}, {"type": "text", "coordinates": [95, 627, 541, 642], "content": "Equation (2.4) tells us the affine fusion rules are the structure constants for the ring", "score": 1.0, "index": 90}, {"type": "inline_equation", "coordinates": [71, 642, 131, 655], "content": "\\mathrm{Ch}(X_{r})/\\mathcal{I}_{k}", "score": 0.91, "index": 91}, {"type": "text", "coordinates": [131, 640, 168, 656], "content": " where ", "score": 1.0, "index": 92}, {"type": "inline_equation", "coordinates": [169, 642, 209, 655], "content": "\\operatorname{Ch}(X_{r})", "score": 0.9, "index": 93}, {"type": "text", "coordinates": [209, 640, 450, 656], "content": " is the character ring for all finite-dimensional ", "score": 1.0, "index": 94}, {"type": "inline_equation", "coordinates": [451, 643, 466, 654], "content": "X_{r}", "score": 0.92, "index": 95}, {"type": "text", "coordinates": [466, 640, 542, 656], "content": "-modules, and", "score": 1.0, "index": 96}, {"type": "inline_equation", "coordinates": [71, 658, 85, 668], "content": "\\mathcal{I}_{k}", "score": 0.91, "index": 97}, {"type": "text", "coordinates": [86, 656, 300, 671], "content": " is the subspace spanned by the elements ", "score": 1.0, "index": 98}, {"type": "inline_equation", "coordinates": [300, 657, 397, 670], "content": "\\mathrm{ch}_{\\overline{{\\mu}}}-(\\operatorname*{det}w)\\mathrm{ch}_{\\overline{{w}}.\\mu}", "score": 0.92, "index": 99}, {"type": "text", "coordinates": [397, 656, 541, 671], "content": ". Finkelberg [8] proved that", "score": 1.0, "index": 100}, {"type": "text", "coordinates": [70, 672, 363, 687], "content": "this ring is isomorphic to the K-ring of a \u201csub-quotient\u201d", "score": 1.0, "index": 101}, {"type": "inline_equation", "coordinates": [363, 671, 379, 685], "content": "\\widetilde{\\mathcal{O}}_{k}", "score": 0.91, "index": 102}, {"type": "text", "coordinates": [379, 672, 540, 687], "content": " of Kazhdan-Lusztig\u2019s category", "score": 1.0, "index": 103}, {"type": "text", "coordinates": [69, 684, 111, 704], "content": "of level ", "score": 1.0, "index": 104}, {"type": "inline_equation", "coordinates": [112, 690, 119, 699], "content": "k", "score": 0.89, "index": 105}, {"type": "text", "coordinates": [119, 684, 257, 704], "content": " integrable highest weight ", "score": 1.0, "index": 106}, {"type": "inline_equation", "coordinates": [257, 686, 281, 700], "content": "X_{r}^{(1)}", "score": 0.93, "index": 107}, {"type": "text", "coordinates": [281, 684, 524, 704], "content": "-modules, and t o Gelfand-Kazhdan\u2019s category", "score": 1.0, "index": 108}, {"type": "inline_equation", "coordinates": [525, 687, 539, 702], "content": "\\widetilde{\\mathcal{O}}_{q}", "score": 0.92, "index": 109}, {"type": "text", "coordinates": [71, 703, 412, 717], "content": "coming from finite-dimensional modules of the quantum group ", "score": 1.0, "index": 110}, {"type": "inline_equation", "coordinates": [413, 704, 441, 717], "content": "U_{q}X_{r}", "score": 0.93, "index": 111}, {"type": "text", "coordinates": [442, 703, 541, 717], "content": " specialised to the", "score": 1.0, "index": 112}] | [] | [{"type": "block", "coordinates": [239, 178, 372, 209], "content": "", "caption": ""}, {"type": "block", "coordinates": [176, 394, 435, 455], "content": "", "caption": ""}, {"type": "block", "coordinates": [117, 582, 496, 616], "content": "", "caption": ""}, {"type": "inline", "coordinates": [71, 75, 182, 88], "content": "\\epsilon_{\\ell}(\\lambda)/\\epsilon_{\\ell}^{\\prime}(\\lambda)=\\sigma_{\\ell}(c)/c", "caption": ""}, {"type": "inline", "coordinates": [383, 75, 391, 84], "content": "\\lambda", "caption": ""}, {"type": "inline", "coordinates": [321, 90, 367, 101], "content": "\\sigma_{-1}=C", "caption": ""}, {"type": "inline", "coordinates": [371, 102, 453, 115], "content": "\\sigma_{\\ell}\\circ J=J^{\\ell}\\circ\\sigma_{\\ell}", "caption": ""}, {"type": "inline", "coordinates": [71, 146, 215, 166], "content": "T_{\\lambda\\mu}^{\\nu}\\overset{\\mathrm{def}}{=}\\mathrm{mult}_{L(\\overline{{\\lambda}})\\otimes L(\\overline{{\\mu}})}(L(\\overline{{\\nu}}))", "caption": ""}, {"type": "inline", "coordinates": [232, 151, 248, 162], "content": "X_{r}", "caption": ""}, {"type": "inline", "coordinates": [105, 223, 206, 240], "content": "w.\\gamma\\,{\\stackrel{\\mathrm{def}}{=}}\\,w(\\gamma+\\rho)-\\rho", "caption": ""}, {"type": "inline", "coordinates": [232, 227, 245, 237], "content": "W", "caption": ""}, {"type": "inline", "coordinates": [388, 223, 412, 238], "content": "X_{r}^{(1)}", "caption": ""}, {"type": "inline", "coordinates": [518, 228, 539, 242], "content": "N_{\\lambda\\mu}^{\\nu}", "caption": ""}, {"type": "inline", "coordinates": [88, 242, 95, 251], "content": "k", "caption": ""}, {"type": "inline", "coordinates": [249, 243, 262, 252], "content": "W", "caption": ""}, {"type": "inline", "coordinates": [359, 256, 401, 268], "content": "\\mathcal{R}(X_{r,k})", "caption": ""}, {"type": "inline", "coordinates": [330, 287, 337, 296], "content": "k", "caption": ""}, {"type": "inline", "coordinates": [448, 283, 539, 300], "content": "\\lambda+\\mu\\in P_{+}^{k}(X_{r}^{(1)})", "caption": ""}, {"type": "inline", "coordinates": [121, 300, 237, 314], "content": "\\begin{array}{r}{\\sum_{i=1}^{\\tau}a_{i}^{\\vee}(\\lambda_{i}+\\mu_{i})\\le k)}\\end{array}", "caption": ""}, {"type": "inline", "coordinates": [273, 302, 330, 315], "content": "N_{\\lambda\\mu}^{\\nu}=T_{\\lambda\\mu}^{\\nu}", "caption": ""}, {"type": "inline", "coordinates": [155, 330, 171, 340], "content": "N_{\\lambda}", "caption": ""}, {"type": "inline", "coordinates": [236, 329, 311, 344], "content": "(N_{\\lambda})_{\\mu\\nu}=N_{\\lambda\\mu}^{\\nu}", "caption": ""}, {"type": "inline", "coordinates": [392, 330, 430, 341], "content": "N_{0}=I", "caption": ""}, {"type": "inline", "coordinates": [71, 344, 86, 357], "content": "N_{j}", "caption": ""}, {"type": "inline", "coordinates": [302, 344, 309, 353], "content": "J", "caption": ""}, {"type": "inline", "coordinates": [195, 465, 230, 478], "content": "J,J^{\\prime},j", "caption": ""}, {"type": "inline", "coordinates": [190, 480, 233, 494], "content": "\\mathcal{R}(A_{1,k})", "caption": ""}, {"type": "inline", "coordinates": [313, 479, 414, 493], "content": "P_{+}\\;=\\;\\{0,1,\\ldots,k\\}", "caption": ""}, {"type": "inline", "coordinates": [493, 482, 506, 492], "content": "\\lambda_{1}", "caption": ""}, {"type": "inline", "coordinates": [159, 516, 189, 529], "content": "j=k", "caption": ""}, {"type": "inline", "coordinates": [456, 517, 516, 527], "content": "J a=k-a", "caption": ""}, {"type": "inline", "coordinates": [118, 531, 182, 544], "content": "Q_{j}(a)=a/2", "caption": ""}, {"type": "inline", "coordinates": [317, 533, 325, 541], "content": "a", "caption": ""}, {"type": "inline", "coordinates": [438, 529, 486, 543], "content": "a^{(\\ell)}\\in P_{+}", "caption": ""}, {"type": "inline", "coordinates": [71, 544, 185, 558], "content": "a^{(\\ell)}+1\\equiv\\pm\\ell\\left(a+1\\right)", "caption": ""}, {"type": "inline", "coordinates": [221, 544, 257, 557], "content": "2k+4", "caption": ""}, {"type": "inline", "coordinates": [425, 545, 471, 558], "content": "\\mathrm{i}^{\\ell-1}\\epsilon_{\\ell}^{\\prime}(a)", "caption": ""}, {"type": "inline", "coordinates": [71, 642, 131, 655], "content": "\\mathrm{Ch}(X_{r})/\\mathcal{I}_{k}", "caption": ""}, {"type": "inline", "coordinates": [169, 642, 209, 655], "content": "\\operatorname{Ch}(X_{r})", "caption": ""}, {"type": "inline", "coordinates": [451, 643, 466, 654], "content": "X_{r}", "caption": ""}, {"type": "inline", "coordinates": [71, 658, 85, 668], "content": "\\mathcal{I}_{k}", "caption": ""}, {"type": "inline", "coordinates": [300, 657, 397, 670], "content": "\\mathrm{ch}_{\\overline{{\\mu}}}-(\\operatorname*{det}w)\\mathrm{ch}_{\\overline{{w}}.\\mu}", "caption": ""}, {"type": "inline", "coordinates": [363, 671, 379, 685], "content": "\\widetilde{\\mathcal{O}}_{k}", "caption": ""}, {"type": "inline", "coordinates": [112, 690, 119, 699], "content": "k", "caption": ""}, {"type": "inline", "coordinates": [257, 686, 281, 700], "content": "X_{r}^{(1)}", "caption": ""}, {"type": "inline", "coordinates": [525, 687, 539, 702], "content": "\\widetilde{\\mathcal{O}}_{q}", "caption": ""}, {"type": "inline", "coordinates": [413, 704, 441, 717], "content": "U_{q}X_{r}", "caption": ""}] | [] | [612.0, 792.0] | [{"type": "text", "text": "$\\epsilon_{\\ell}(\\lambda)/\\epsilon_{\\ell}^{\\prime}(\\lambda)=\\sigma_{\\ell}(c)/c$ is an unimportant sign independent of $\\lambda$ . This Galois action will play a fairly important role in this paper. Note that $\\sigma_{-1}=C$ , so this action can be thought of as a generalisation of charge-conjugation. Note also that $\\sigma_{\\ell}\\circ J=J^{\\ell}\\circ\\sigma_{\\ell}$ . ", "page_idx": 4}, {"type": "text", "text": "The fusion coefficients (1.1b) are usually computed by the Kac-Walton formula [23 p. 288, 35] (there are other codiscoverers) in terms of the tensor product multiplicities $T_{\\lambda\\mu}^{\\nu}\\overset{\\mathrm{def}}{=}\\mathrm{mult}_{L(\\overline{{\\lambda}})\\otimes L(\\overline{{\\mu}})}(L(\\overline{{\\nu}}))$ in $X_{r}$ : ", "page_idx": 4}, {"type": "equation", "text": "$$\nN_{\\lambda\\mu}^{\\nu}=\\sum_{w\\in W}\\operatorname*{det}(w)\\,T_{\\lambda\\mu}^{w.\\nu}~,\n$$", "text_format": "latex", "page_idx": 4}, {"type": "text", "text": "where $w.\\gamma\\,{\\stackrel{\\mathrm{def}}{=}}\\,w(\\gamma+\\rho)-\\rho$ and $W$ is the affine Weyl group of $X_{r}^{(1)}$ (the dependence of $N_{\\lambda\\mu}^{\\nu}$ on $k$ arises through the action of $W$ ). We shall see shortly that these fusion coefficients, now manifestly integral, are in fact nonnegative. Let $\\mathcal{R}(X_{r,k})$ denote the corresponding fusion ring. ", "page_idx": 4}, {"type": "text", "text": "A handy consequence of (2.4) that whenever $k$ is large enough that $\\lambda+\\mu\\in P_{+}^{k}(X_{r}^{(1)})$ (i.e. that $\\begin{array}{r}{\\sum_{i=1}^{\\tau}a_{i}^{\\vee}(\\lambda_{i}+\\mu_{i})\\le k)}\\end{array}$ , then $N_{\\lambda\\mu}^{\\nu}=T_{\\lambda\\mu}^{\\nu}$ . ", "page_idx": 4}, {"type": "text", "text": "It will sometimes be convenient to collect these coefficients in matrix form as the fusion matrices $N_{\\lambda}$ , defined by $(N_{\\lambda})_{\\mu\\nu}=N_{\\lambda\\mu}^{\\nu}$ . For instance, $N_{0}=I$ and, more generally, $N_{j}$ is the permutation matrix associated to $J$ . ", "page_idx": 4}, {"type": "text", "text": "The importance of (charge-)conjugation and simple-currents for us is that they respect fusions: ", "page_idx": 4}, {"type": "equation", "text": "$$\n\\begin{array}{c}{{N_{C\\lambda,C\\mu}^{C\\nu}=N_{\\lambda\\mu}^{\\nu}}}\\\\ {{{}}}\\\\ {{N_{J\\lambda,J^{\\prime}\\mu}^{J J^{\\prime}\\nu}=N_{\\lambda\\mu}^{\\nu}}}\\\\ {{N_{\\lambda\\mu}^{\\nu}\\neq0\\ \\Rightarrow\\ Q_{j}(\\lambda){+}Q_{j}(\\mu)\\equiv Q_{j}(\\nu){\\qquad}(\\mathrm{mod~1})}}\\end{array}\n$$", "text_format": "latex", "page_idx": 4}, {"type": "text", "text": "for any simple-currents $J,J^{\\prime},j$ . ", "page_idx": 4}, {"type": "text", "text": "For example, for $\\mathcal{R}(A_{1,k})$ we may take $P_{+}\\;=\\;\\{0,1,\\ldots,k\\}$ (the value of $\\lambda_{1}$ ), and then the Kac-Peterson matrix is Sab = k2+2 sin(\u03c0 (a+1k)+ (2b+1) ). Charge-conjugation C is trivial here, but $j=k$ is a simple-current corresponding to permutation $J a=k-a$ and function $Q_{j}(a)=a/2$ . The Galois action sends $a$ to the unique weight $a^{(\\ell)}\\in P_{+}$ satisfying $a^{(\\ell)}+1\\equiv\\pm\\ell\\left(a+1\\right)$ (mod $2k+4$ ), where that sign there equals $\\mathrm{i}^{\\ell-1}\\epsilon_{\\ell}^{\\prime}(a)$ . The fusion coefficients are given by ", "page_idx": 4}, {"type": "equation", "text": "$$\nN_{a b}^{c}=\\left\\{\\begin{array}{c c}{{1}}&{{\\mathrm{if~}c\\equiv a\\!+\\!b\\;(\\mathrm{mod~}2)\\;\\mathrm{and~}|a\\!-\\!b|\\leq c\\leq\\operatorname*{min}\\{a\\!+\\!b,2k\\!-\\!a\\!-\\!b\\}}}\\\\ {{0}}&{{\\mathrm{otherwise}}}\\end{array}\\right..\n$$", "text_format": "latex", "page_idx": 4}, {"type": "text", "text": "Equation (2.4) tells us the affine fusion rules are the structure constants for the ring $\\mathrm{Ch}(X_{r})/\\mathcal{I}_{k}$ where $\\operatorname{Ch}(X_{r})$ is the character ring for all finite-dimensional $X_{r}$ -modules, and $\\mathcal{I}_{k}$ is the subspace spanned by the elements $\\mathrm{ch}_{\\overline{{\\mu}}}-(\\operatorname*{det}w)\\mathrm{ch}_{\\overline{{w}}.\\mu}$ . Finkelberg [8] proved that this ring is isomorphic to the K-ring of a \u201csub-quotient\u201d $\\widetilde{\\mathcal{O}}_{k}$ of Kazhdan-Lusztig\u2019s category of level $k$ integrable highest weight $X_{r}^{(1)}$ -modules, and t o Gelfand-Kazhdan\u2019s category $\\widetilde{\\mathcal{O}}_{q}$ coming from finite-dimensional modules of the quantum group $U_{q}X_{r}$ specialised to the root of unity $q\\,=\\,\\xi_{2m\\kappa}$ for appropriate choice of $m\\in\\{1,2,3\\}$ . They also arise from the Huang-Lepowsky coproduct [21] for the modules of the VOA $L(k,0)$ . Because of these isomorphisms, we get that the $N_{\\lambda\\mu}^{\\nu}$ do indeed lie in $\\mathbb{Z}_{\\geq}$ , for any affine algebra. ", "page_idx": 4}] | [{"category_id": 1, "poly": [196, 1736, 1505, 1736, 1505, 1990, 196, 1990], "score": 0.985}, {"category_id": 1, "poly": [195, 1329, 1504, 1329, 1504, 1590, 195, 1590], "score": 0.983}, {"category_id": 1, "poly": [196, 614, 1504, 614, 1504, 782, 196, 782], "score": 0.976}, {"category_id": 1, "poly": [194, 320, 1504, 320, 1504, 458, 194, 458], "score": 0.971}, {"category_id": 1, "poly": [195, 197, 1505, 197, 1505, 318, 195, 318], "score": 0.963}, {"category_id": 1, "poly": [197, 870, 1503, 870, 1503, 984, 197, 984], "score": 0.959}, {"category_id": 1, "poly": [196, 987, 1501, 987, 1501, 1066, 196, 1066], "score": 0.959}, {"category_id": 1, "poly": [197, 786, 1503, 786, 1503, 870, 197, 870], "score": 0.942}, {"category_id": 8, "poly": [663, 487, 1038, 487, 1038, 578, 663, 578], "score": 0.936}, {"category_id": 8, "poly": [322, 1615, 1351, 1615, 1351, 1702, 322, 1702], "score": 0.926}, {"category_id": 1, "poly": [196, 1288, 653, 1288, 653, 1327, 196, 1327], "score": 0.926}, {"category_id": 9, "poly": [1412, 1103, 1501, 1103, 1501, 1142, 1412, 1142], "score": 0.897}, {"category_id": 9, "poly": [1429, 499, 1501, 499, 1501, 540, 1429, 540], "score": 0.891}, {"category_id": 8, "poly": [654, 1097, 868, 1097, 868, 1150, 654, 1150], "score": 0.889}, {"category_id": 9, "poly": [1416, 1161, 1501, 1161, 1501, 1200, 1416, 1200], "score": 0.872}, {"category_id": 9, "poly": [1417, 1213, 1500, 1213, 1500, 1251, 1417, 1251], "score": 0.848}, {"category_id": 8, "poly": [492, 1210, 1029, 1210, 1029, 1258, 492, 1258], "score": 0.84}, {"category_id": 8, "poly": [653, 1156, 868, 1156, 868, 1205, 653, 1205], "score": 0.836}, {"category_id": 9, "poly": [1086, 1212, 1208, 1212, 1208, 1252, 1086, 1252], "score": 0.779}, {"category_id": 9, "poly": [1416, 1161, 1501, 1161, 1501, 1201, 1416, 1201], "score": 0.286}, {"category_id": 9, "poly": [1416, 1213, 1500, 1213, 1500, 1251, 1416, 1251], "score": 0.254}, {"category_id": 14, "poly": [664, 495, 1035, 495, 1035, 582, 664, 582], "score": 0.95, "latex": "N_{\\lambda\\mu}^{\\nu}=\\sum_{w\\in W}\\operatorname*{det}(w)\\,T_{\\lambda\\mu}^{w.\\nu}~,"}, {"category_id": 13, "poly": [998, 712, 1116, 712, 1116, 747, 998, 747], "score": 0.95, "latex": "\\mathcal{R}(X_{r,k})"}, {"category_id": 13, "poly": [682, 1371, 1116, 1371, 1116, 1437, 682, 1437], "score": 0.94, "latex": "\\begin{array}{r}{S_{a b}=\\sqrt{\\frac{2}{k+2}}\\,\\sin(\\pi\\,\\frac{(a+1)\\,(b+1)}{k+2})}\\end{array}"}, {"category_id": 13, "poly": [1090, 918, 1195, 918, 1195, 948, 1090, 948], "score": 0.94, "latex": "N_{0}=I"}, {"category_id": 13, "poly": [759, 839, 917, 839, 917, 877, 759, 877], "score": 0.94, "latex": "N_{\\lambda\\mu}^{\\nu}=T_{\\lambda\\mu}^{\\nu}"}, {"category_id": 13, "poly": [1148, 1958, 1227, 1958, 1227, 1992, 1148, 1992], "score": 0.93, "latex": "U_{q}X_{r}"}, {"category_id": 13, "poly": [1183, 1514, 1311, 1514, 1311, 1552, 1183, 1552], "score": 0.93, "latex": "\\mathrm{i}^{\\ell-1}\\epsilon_{\\ell}^{\\prime}(a)"}, {"category_id": 13, "poly": [1031, 286, 1259, 286, 1259, 321, 1031, 321], "score": 0.93, "latex": "\\sigma_{\\ell}\\circ J=J^{\\ell}\\circ\\sigma_{\\ell}"}, {"category_id": 13, "poly": [715, 1906, 781, 1906, 781, 1947, 715, 1947], "score": 0.93, "latex": "X_{r}^{(1)}"}, {"category_id": 14, "poly": [491, 1097, 1210, 1097, 1210, 1265, 491, 1265], "score": 0.93, "latex": "\\begin{array}{c}{{N_{C\\lambda,C\\mu}^{C\\nu}=N_{\\lambda\\mu}^{\\nu}}}\\\\ {{{}}}\\\\ {{N_{J\\lambda,J^{\\prime}\\mu}^{J J^{\\prime}\\nu}=N_{\\lambda\\mu}^{\\nu}}}\\\\ {{N_{\\lambda\\mu}^{\\nu}\\neq0\\ \\Rightarrow\\ Q_{j}(\\lambda){+}Q_{j}(\\mu)\\equiv Q_{j}(\\nu){\\qquad}(\\mathrm{mod~1})}}\\end{array}"}, {"category_id": 13, "poly": [894, 251, 1020, 251, 1020, 282, 894, 282], "score": 0.93, "latex": "\\sigma_{-1}=C"}, {"category_id": 13, "poly": [1080, 622, 1146, 622, 1146, 663, 1080, 663], "score": 0.93, "latex": "X_{r}^{(1)}"}, {"category_id": 13, "poly": [199, 408, 598, 408, 598, 462, 199, 462], "score": 0.93, "latex": "T_{\\lambda\\mu}^{\\nu}\\overset{\\mathrm{def}}{=}\\mathrm{mult}_{L(\\overline{{\\lambda}})\\otimes L(\\overline{{\\mu}})}(L(\\overline{{\\nu}}))"}, {"category_id": 13, "poly": [544, 1293, 640, 1293, 640, 1330, 544, 1330], "score": 0.92, "latex": "J,J^{\\prime},j"}, {"category_id": 13, "poly": [1459, 1909, 1499, 1909, 1499, 1952, 1459, 1952], "score": 0.92, "latex": "\\widetilde{\\mathcal{O}}_{q}"}, {"category_id": 13, "poly": [199, 209, 507, 209, 507, 245, 199, 245], "score": 0.92, "latex": "\\epsilon_{\\ell}(\\lambda)/\\epsilon_{\\ell}^{\\prime}(\\lambda)=\\sigma_{\\ell}(c)/c"}, {"category_id": 13, "poly": [530, 1335, 649, 1335, 649, 1373, 530, 1373], "score": 0.92, "latex": "\\mathcal{R}(A_{1,k})"}, {"category_id": 13, "poly": [1217, 1472, 1352, 1472, 1352, 1511, 1217, 1511], "score": 0.92, "latex": "a^{(\\ell)}\\in P_{+}"}, {"category_id": 13, "poly": [294, 621, 574, 621, 574, 668, 294, 668], "score": 0.92, "latex": "w.\\gamma\\,{\\stackrel{\\mathrm{def}}{=}}\\,w(\\gamma+\\rho)-\\rho"}, {"category_id": 13, "poly": [1247, 788, 1499, 788, 1499, 834, 1247, 834], "score": 0.92, "latex": "\\lambda+\\mu\\in P_{+}^{k}(X_{r}^{(1)})"}, {"category_id": 13, "poly": [835, 1826, 1103, 1826, 1103, 1862, 835, 1862], "score": 0.92, "latex": "\\mathrm{ch}_{\\overline{{\\mu}}}-(\\operatorname*{det}w)\\mathrm{ch}_{\\overline{{w}}.\\mu}"}, {"category_id": 13, "poly": [328, 1475, 507, 1475, 507, 1512, 328, 1512], "score": 0.92, "latex": "Q_{j}(a)=a/2"}, {"category_id": 13, "poly": [1439, 635, 1499, 635, 1499, 673, 1439, 673], "score": 0.92, "latex": "N_{\\lambda\\mu}^{\\nu}"}, {"category_id": 13, "poly": [1253, 1788, 1296, 1788, 1296, 1817, 1253, 1817], "score": 0.92, "latex": "X_{r}"}, {"category_id": 13, "poly": [1269, 1438, 1434, 1438, 1434, 1466, 1269, 1466], "score": 0.91, "latex": "J a=k-a"}, {"category_id": 13, "poly": [198, 1785, 365, 1785, 365, 1821, 198, 1821], "score": 0.91, "latex": "\\mathrm{Ch}(X_{r})/\\mathcal{I}_{k}"}, {"category_id": 13, "poly": [199, 958, 240, 958, 240, 992, 199, 992], "score": 0.91, "latex": "N_{j}"}, {"category_id": 13, "poly": [1011, 1864, 1053, 1864, 1053, 1903, 1011, 1903], "score": 0.91, "latex": "\\widetilde{\\mathcal{O}}_{k}"}, {"category_id": 13, "poly": [199, 1828, 238, 1828, 238, 1858, 199, 1858], "score": 0.91, "latex": "\\mathcal{I}_{k}"}, {"category_id": 13, "poly": [337, 835, 660, 835, 660, 873, 337, 873], "score": 0.91, "latex": "\\begin{array}{r}{\\sum_{i=1}^{\\tau}a_{i}^{\\vee}(\\lambda_{i}+\\mu_{i})\\le k)}\\end{array}"}, {"category_id": 13, "poly": [919, 799, 938, 799, 938, 823, 919, 823], "score": 0.91, "latex": "k"}, {"category_id": 13, "poly": [431, 918, 476, 918, 476, 947, 431, 947], "score": 0.91, "latex": "N_{\\lambda}"}, {"category_id": 13, "poly": [198, 1512, 515, 1512, 515, 1551, 198, 1551], "score": 0.91, "latex": "a^{(\\ell)}+1\\equiv\\pm\\ell\\left(a+1\\right)"}, {"category_id": 13, "poly": [658, 916, 866, 916, 866, 958, 658, 958], "score": 0.9, "latex": "(N_{\\lambda})_{\\mu\\nu}=N_{\\lambda\\mu}^{\\nu}"}, {"category_id": 13, "poly": [470, 1786, 581, 1786, 581, 1820, 470, 1820], "score": 0.9, "latex": "\\operatorname{Ch}(X_{r})"}, {"category_id": 13, "poly": [647, 421, 690, 421, 690, 451, 647, 451], "score": 0.9, "latex": "X_{r}"}, {"category_id": 13, "poly": [1439, 1391, 1465, 1391, 1465, 1416, 1439, 1416], "score": 0.9, "latex": "C"}, {"category_id": 13, "poly": [443, 1435, 527, 1435, 527, 1470, 443, 1470], "score": 0.9, "latex": "j=k"}, {"category_id": 13, "poly": [312, 1918, 331, 1918, 331, 1943, 312, 1943], "score": 0.89, "latex": "k"}, {"category_id": 13, "poly": [1066, 211, 1087, 211, 1087, 235, 1066, 235], "score": 0.89, "latex": "\\lambda"}, {"category_id": 13, "poly": [870, 1332, 1150, 1332, 1150, 1372, 870, 1372], "score": 0.89, "latex": "P_{+}\\;=\\;\\{0,1,\\ldots,k\\}"}, {"category_id": 13, "poly": [864, 1631, 1367, 1631, 1367, 1666, 864, 1666], "score": 0.85, "latex": "|a\\!-\\!b|\\leq c\\leq\\operatorname*{min}\\{a\\!+\\!b,2k\\!-\\!a\\!-\\!b\\}"}, {"category_id": 13, "poly": [1372, 1339, 1407, 1339, 1407, 1369, 1372, 1369], "score": 0.85, "latex": "\\lambda_{1}"}, {"category_id": 13, "poly": [694, 675, 730, 675, 730, 700, 694, 700], "score": 0.85, "latex": "W"}, {"category_id": 13, "poly": [246, 673, 266, 673, 266, 699, 246, 699], "score": 0.84, "latex": "k"}, {"category_id": 14, "poly": [325, 1618, 1378, 1618, 1378, 1712, 325, 1712], "score": 0.84, "latex": "N_{a b}^{c}=\\left\\{\\begin{array}{c c}{{1}}&{{\\mathrm{if~}c\\equiv a\\!+\\!b\\;(\\mathrm{mod~}2)\\;\\mathrm{and~}|a\\!-\\!b|\\leq c\\leq\\operatorname*{min}\\{a\\!+\\!b,2k\\!-\\!a\\!-\\!b\\}}}\\\\ {{0}}&{{\\mathrm{otherwise}}}\\end{array}\\right.."}, {"category_id": 13, "poly": [839, 957, 861, 957, 861, 983, 839, 983], "score": 0.82, "latex": "J"}, {"category_id": 13, "poly": [645, 631, 682, 631, 682, 660, 645, 660], "score": 0.81, "latex": "W"}, {"category_id": 13, "poly": [883, 1481, 903, 1481, 903, 1503, 883, 1503], "score": 0.69, "latex": "a"}, {"category_id": 13, "poly": [615, 1512, 716, 1512, 716, 1548, 615, 1548], "score": 0.46, "latex": "2k+4"}, {"category_id": 15, "poly": [265.0, 1743.0, 1504.0, 1743.0, 1504.0, 1784.0, 265.0, 1784.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [366.0, 1780.0, 469.0, 1780.0, 469.0, 1824.0, 366.0, 1824.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [582.0, 1780.0, 1252.0, 1780.0, 1252.0, 1824.0, 582.0, 1824.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1297.0, 1780.0, 1507.0, 1780.0, 1507.0, 1824.0, 1297.0, 1824.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [239.0, 1823.0, 834.0, 1823.0, 834.0, 1866.0, 239.0, 1866.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1104.0, 1823.0, 1504.0, 1823.0, 1504.0, 1866.0, 1104.0, 1866.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [197.0, 1867.0, 1010.0, 1867.0, 1010.0, 1910.0, 197.0, 1910.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1054.0, 1867.0, 1502.0, 1867.0, 1502.0, 1910.0, 1054.0, 1910.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [193.0, 1902.0, 311.0, 1902.0, 311.0, 1958.0, 193.0, 1958.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [332.0, 1902.0, 714.0, 1902.0, 714.0, 1958.0, 332.0, 1958.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [782.0, 1902.0, 1458.0, 1902.0, 1458.0, 1958.0, 782.0, 1958.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1500.0, 1902.0, 1505.0, 1902.0, 1505.0, 1958.0, 1500.0, 1958.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [199.0, 1954.0, 1147.0, 1954.0, 1147.0, 1993.0, 199.0, 1993.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1228.0, 1954.0, 1505.0, 1954.0, 1505.0, 1993.0, 1228.0, 1993.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [261.0, 1333.0, 529.0, 1333.0, 529.0, 1376.0, 261.0, 1376.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [650.0, 1333.0, 869.0, 1333.0, 869.0, 1376.0, 650.0, 1376.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1151.0, 1333.0, 1371.0, 1333.0, 1371.0, 1376.0, 1151.0, 1376.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1408.0, 1333.0, 1506.0, 1333.0, 1506.0, 1376.0, 1408.0, 1376.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [195.0, 1431.0, 442.0, 1431.0, 442.0, 1474.0, 195.0, 1474.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [528.0, 1431.0, 1268.0, 1431.0, 1268.0, 1474.0, 528.0, 1474.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1435.0, 1431.0, 1506.0, 1431.0, 1506.0, 1474.0, 1435.0, 1474.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [193.0, 1465.0, 327.0, 1465.0, 327.0, 1520.0, 193.0, 1520.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [508.0, 1465.0, 882.0, 1465.0, 882.0, 1520.0, 508.0, 1520.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [904.0, 1465.0, 1216.0, 1465.0, 1216.0, 1520.0, 904.0, 1520.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1353.0, 1465.0, 1507.0, 1465.0, 1507.0, 1520.0, 1353.0, 1520.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [195.0, 1506.0, 197.0, 1506.0, 197.0, 1560.0, 195.0, 1560.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [516.0, 1506.0, 614.0, 1506.0, 614.0, 1560.0, 516.0, 1560.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [717.0, 1506.0, 1182.0, 1506.0, 1182.0, 1560.0, 717.0, 1560.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1312.0, 1506.0, 1507.0, 1506.0, 1507.0, 1560.0, 1312.0, 1560.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [198.0, 1554.0, 547.0, 1554.0, 547.0, 1595.0, 198.0, 1595.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [178.25, 1360.0, 1522.25, 1360.0, 1522.25, 1453.5, 178.25, 1453.5], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [186.0, 606.0, 293.0, 606.0, 293.0, 687.0, 186.0, 687.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [575.0, 606.0, 644.0, 606.0, 644.0, 687.0, 575.0, 687.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [683.0, 606.0, 1079.0, 606.0, 1079.0, 687.0, 683.0, 687.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1147.0, 606.0, 1438.0, 606.0, 1438.0, 687.0, 1147.0, 687.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1500.0, 606.0, 1512.0, 606.0, 1512.0, 687.0, 1500.0, 687.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [193.0, 666.0, 245.0, 666.0, 245.0, 712.0, 193.0, 712.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [267.0, 666.0, 693.0, 666.0, 693.0, 712.0, 267.0, 712.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [731.0, 666.0, 1503.0, 666.0, 1503.0, 712.0, 731.0, 712.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [193.0, 708.0, 997.0, 708.0, 997.0, 751.0, 193.0, 751.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1117.0, 708.0, 1504.0, 708.0, 1504.0, 751.0, 1117.0, 751.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [195.0, 746.0, 366.0, 746.0, 366.0, 792.0, 195.0, 792.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [263.0, 322.0, 1503.0, 322.0, 1503.0, 368.0, 263.0, 368.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [194.0, 367.0, 1503.0, 367.0, 1503.0, 407.0, 194.0, 407.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [599.0, 413.0, 646.0, 413.0, 646.0, 468.0, 599.0, 468.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [691.0, 413.0, 709.0, 413.0, 709.0, 468.0, 691.0, 468.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [192.25, 401.5, 308.25, 401.5, 308.25, 443.5, 192.25, 443.5], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [508.0, 205.0, 1065.0, 205.0, 1065.0, 248.0, 508.0, 248.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1088.0, 205.0, 1501.0, 205.0, 1501.0, 248.0, 1088.0, 248.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [196.0, 245.0, 893.0, 245.0, 893.0, 288.0, 196.0, 288.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1021.0, 245.0, 1508.0, 245.0, 1508.0, 288.0, 1021.0, 288.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [195.0, 282.0, 1030.0, 282.0, 1030.0, 329.0, 195.0, 329.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1260.0, 282.0, 1274.0, 282.0, 1274.0, 329.0, 1260.0, 329.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [261.0, 872.0, 1502.0, 872.0, 1502.0, 910.0, 261.0, 910.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [194.0, 910.0, 430.0, 910.0, 430.0, 954.0, 194.0, 954.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [477.0, 910.0, 657.0, 910.0, 657.0, 954.0, 477.0, 954.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [867.0, 910.0, 1089.0, 910.0, 1089.0, 954.0, 867.0, 954.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1196.0, 910.0, 1503.0, 910.0, 1503.0, 954.0, 1196.0, 954.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [241.0, 954.0, 838.0, 954.0, 838.0, 991.0, 241.0, 991.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [862.0, 954.0, 876.0, 954.0, 876.0, 991.0, 862.0, 991.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [259.0, 987.0, 1506.0, 987.0, 1506.0, 1039.0, 259.0, 1039.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [196.0, 1032.0, 313.0, 1032.0, 313.0, 1075.0, 196.0, 1075.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [260.0, 788.0, 918.0, 788.0, 918.0, 838.0, 260.0, 838.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [939.0, 788.0, 1246.0, 788.0, 1246.0, 838.0, 939.0, 838.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [194.0, 825.0, 336.0, 825.0, 336.0, 886.0, 194.0, 886.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [661.0, 825.0, 758.0, 825.0, 758.0, 886.0, 661.0, 886.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [918.0, 825.0, 931.0, 825.0, 931.0, 886.0, 918.0, 886.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [197.0, 1293.0, 543.0, 1293.0, 543.0, 1333.0, 197.0, 1333.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [641.0, 1293.0, 649.0, 1293.0, 649.0, 1333.0, 641.0, 1333.0], "score": 1.0, "text": ""}] | {"preproc_blocks": [{"type": "text", "bbox": [70, 70, 541, 114], "lines": [{"bbox": [71, 73, 540, 89], "spans": [{"bbox": [71, 75, 182, 88], "score": 0.92, "content": "\\epsilon_{\\ell}(\\lambda)/\\epsilon_{\\ell}^{\\prime}(\\lambda)=\\sigma_{\\ell}(c)/c", "type": "inline_equation", "height": 13, "width": 111}, {"bbox": [182, 73, 383, 89], "score": 1.0, "content": " is an unimportant sign independent of ", "type": "text"}, {"bbox": [383, 75, 391, 84], "score": 0.89, "content": "\\lambda", "type": "inline_equation", "height": 9, "width": 8}, {"bbox": [391, 73, 540, 89], "score": 1.0, "content": ". This Galois action will play", "type": "text"}], "index": 0}, {"bbox": [70, 88, 542, 103], "spans": [{"bbox": [70, 88, 321, 103], "score": 1.0, "content": "a fairly important role in this paper. Note that ", "type": "text"}, {"bbox": [321, 90, 367, 101], "score": 0.93, "content": "\\sigma_{-1}=C", "type": "inline_equation", "height": 11, "width": 46}, {"bbox": [367, 88, 542, 103], "score": 1.0, "content": ", so this action can be thought of", "type": "text"}], "index": 1}, {"bbox": [70, 101, 458, 118], "spans": [{"bbox": [70, 101, 370, 118], "score": 1.0, "content": "as a generalisation of charge-conjugation. Note also that ", "type": "text"}, {"bbox": [371, 102, 453, 115], "score": 0.93, "content": "\\sigma_{\\ell}\\circ J=J^{\\ell}\\circ\\sigma_{\\ell}", "type": "inline_equation", "height": 13, "width": 82}, {"bbox": [453, 101, 458, 118], "score": 1.0, "content": ".", "type": "text"}], "index": 2}], "index": 1}, {"type": "text", "bbox": [69, 115, 541, 164], "lines": [{"bbox": [94, 115, 541, 132], "spans": [{"bbox": [94, 115, 541, 132], "score": 1.0, "content": "The fusion coefficients (1.1b) are usually computed by the Kac-Walton formula [23", "type": "text"}], "index": 3}, {"bbox": [69, 132, 541, 146], "spans": [{"bbox": [69, 132, 541, 146], "score": 1.0, "content": "p. 288, 35] (there are other codiscoverers) in terms of the tensor product multiplicities", "type": "text"}], "index": 4}, {"bbox": [71, 146, 255, 168], "spans": [{"bbox": [71, 146, 215, 166], "score": 0.93, "content": "T_{\\lambda\\mu}^{\\nu}\\overset{\\mathrm{def}}{=}\\mathrm{mult}_{L(\\overline{{\\lambda}})\\otimes L(\\overline{{\\mu}})}(L(\\overline{{\\nu}}))", "type": "inline_equation", "height": 20, "width": 144}, {"bbox": [215, 148, 232, 168], "score": 1.0, "content": " in ", "type": "text"}, {"bbox": [232, 151, 248, 162], "score": 0.9, "content": "X_{r}", "type": "inline_equation", "height": 11, "width": 16}, {"bbox": [248, 148, 255, 168], "score": 1.0, "content": ":", "type": "text"}], "index": 5}], "index": 4}, {"type": "interline_equation", "bbox": [239, 178, 372, 209], "lines": [{"bbox": [239, 178, 372, 209], "spans": [{"bbox": [239, 178, 372, 209], "score": 0.95, "content": "N_{\\lambda\\mu}^{\\nu}=\\sum_{w\\in W}\\operatorname*{det}(w)\\,T_{\\lambda\\mu}^{w.\\nu}~,", "type": "interline_equation"}], "index": 6}], "index": 6}, {"type": "text", "bbox": [70, 221, 541, 281], "lines": [{"bbox": [66, 218, 539, 247], "spans": [{"bbox": [66, 218, 105, 247], "score": 1.0, "content": "where ", "type": "text"}, {"bbox": [105, 223, 206, 240], "score": 0.92, "content": "w.\\gamma\\,{\\stackrel{\\mathrm{def}}{=}}\\,w(\\gamma+\\rho)-\\rho", "type": "inline_equation", "height": 17, "width": 101}, {"bbox": [207, 218, 231, 247], "score": 1.0, "content": " and ", "type": "text"}, {"bbox": [232, 227, 245, 237], "score": 0.81, "content": "W", "type": "inline_equation", "height": 10, "width": 13}, {"bbox": [245, 218, 388, 247], "score": 1.0, "content": " is the affine Weyl group of ", "type": "text"}, {"bbox": [388, 223, 412, 238], "score": 0.93, "content": "X_{r}^{(1)}", "type": "inline_equation", "height": 15, "width": 24}, {"bbox": [412, 218, 517, 247], "score": 1.0, "content": "(the dependence of ", "type": "text"}, {"bbox": [518, 228, 539, 242], "score": 0.92, "content": "N_{\\lambda\\mu}^{\\nu}", "type": "inline_equation", "height": 14, "width": 21}], "index": 7}, {"bbox": [69, 239, 541, 256], "spans": [{"bbox": [69, 239, 88, 256], "score": 1.0, "content": "on ", "type": "text"}, {"bbox": [88, 242, 95, 251], "score": 0.84, "content": "k", "type": "inline_equation", "height": 9, "width": 7}, {"bbox": [96, 239, 249, 256], "score": 1.0, "content": " arises through the action of ", "type": "text"}, {"bbox": [249, 243, 262, 252], "score": 0.85, "content": "W", "type": "inline_equation", "height": 9, "width": 13}, {"bbox": [263, 239, 541, 256], "score": 1.0, "content": "). We shall see shortly that these fusion coefficients,", "type": "text"}], "index": 8}, {"bbox": [69, 254, 541, 270], "spans": [{"bbox": [69, 254, 358, 270], "score": 1.0, "content": "now manifestly integral, are in fact nonnegative. Let ", "type": "text"}, {"bbox": [359, 256, 401, 268], "score": 0.95, "content": "\\mathcal{R}(X_{r,k})", "type": "inline_equation", "height": 12, "width": 42}, {"bbox": [402, 254, 541, 270], "score": 1.0, "content": " denote the corresponding", "type": "text"}], "index": 9}, {"bbox": [70, 268, 131, 285], "spans": [{"bbox": [70, 268, 131, 285], "score": 1.0, "content": "fusion ring.", "type": "text"}], "index": 10}], "index": 8.5}, {"type": "text", "bbox": [70, 282, 541, 313], "lines": [{"bbox": [93, 283, 539, 301], "spans": [{"bbox": [93, 283, 330, 301], "score": 1.0, "content": "A handy consequence of (2.4) that whenever ", "type": "text"}, {"bbox": [330, 287, 337, 296], "score": 0.91, "content": "k", "type": "inline_equation", "height": 9, "width": 7}, {"bbox": [338, 283, 448, 301], "score": 1.0, "content": " is large enough that ", "type": "text"}, {"bbox": [448, 283, 539, 300], "score": 0.92, "content": "\\lambda+\\mu\\in P_{+}^{k}(X_{r}^{(1)})", "type": "inline_equation", "height": 17, "width": 91}], "index": 11}, {"bbox": [69, 297, 335, 318], "spans": [{"bbox": [69, 297, 120, 318], "score": 1.0, "content": "(i.e. that", "type": "text"}, {"bbox": [121, 300, 237, 314], "score": 0.91, "content": "\\begin{array}{r}{\\sum_{i=1}^{\\tau}a_{i}^{\\vee}(\\lambda_{i}+\\mu_{i})\\le k)}\\end{array}", "type": "inline_equation", "height": 14, "width": 116}, {"bbox": [237, 297, 272, 318], "score": 1.0, "content": ", then ", "type": "text"}, {"bbox": [273, 302, 330, 315], "score": 0.94, "content": "N_{\\lambda\\mu}^{\\nu}=T_{\\lambda\\mu}^{\\nu}", "type": "inline_equation", "height": 13, "width": 57}, {"bbox": [330, 297, 335, 318], "score": 1.0, "content": ".", "type": "text"}], "index": 12}], "index": 11.5}, {"type": "text", "bbox": [70, 313, 541, 354], "lines": [{"bbox": [93, 313, 540, 327], "spans": [{"bbox": [93, 313, 540, 327], "score": 1.0, "content": "It will sometimes be convenient to collect these coefficients in matrix form as the", "type": "text"}], "index": 13}, {"bbox": [69, 327, 541, 344], "spans": [{"bbox": [69, 327, 154, 343], "score": 1.0, "content": "fusion matrices ", "type": "text"}, {"bbox": [155, 330, 171, 340], "score": 0.91, "content": "N_{\\lambda}", "type": "inline_equation", "height": 10, "width": 16}, {"bbox": [171, 327, 236, 343], "score": 1.0, "content": ", defined by ", "type": "text"}, {"bbox": [236, 329, 311, 344], "score": 0.9, "content": "(N_{\\lambda})_{\\mu\\nu}=N_{\\lambda\\mu}^{\\nu}", "type": "inline_equation", "height": 15, "width": 75}, {"bbox": [312, 327, 392, 343], "score": 1.0, "content": ". For instance, ", "type": "text"}, {"bbox": [392, 330, 430, 341], "score": 0.94, "content": "N_{0}=I", "type": "inline_equation", "height": 11, "width": 38}, {"bbox": [430, 327, 541, 343], "score": 1.0, "content": " and, more generally,", "type": "text"}], "index": 14}, {"bbox": [71, 343, 315, 357], "spans": [{"bbox": [71, 344, 86, 357], "score": 0.91, "content": "N_{j}", "type": "inline_equation", "height": 13, "width": 15}, {"bbox": [86, 343, 301, 356], "score": 1.0, "content": " is the permutation matrix associated to ", "type": "text"}, {"bbox": [302, 344, 309, 353], "score": 0.82, "content": "J", "type": "inline_equation", "height": 9, "width": 7}, {"bbox": [310, 343, 315, 356], "score": 1.0, "content": ".", "type": "text"}], "index": 15}], "index": 14}, {"type": "text", "bbox": [70, 355, 540, 383], "lines": [{"bbox": [93, 355, 542, 374], "spans": [{"bbox": [93, 355, 542, 374], "score": 1.0, "content": "The importance of (charge-)conjugation and simple-currents for us is that they respect", "type": "text"}], "index": 16}, {"bbox": [70, 371, 112, 387], "spans": [{"bbox": [70, 371, 112, 387], "score": 1.0, "content": "fusions:", "type": "text"}], "index": 17}], "index": 16.5}, {"type": "interline_equation", "bbox": [176, 394, 435, 455], "lines": [{"bbox": [176, 394, 435, 455], "spans": [{"bbox": [176, 394, 435, 455], "score": 0.93, "content": "\\begin{array}{c}{{N_{C\\lambda,C\\mu}^{C\\nu}=N_{\\lambda\\mu}^{\\nu}}}\\\\ {{{}}}\\\\ {{N_{J\\lambda,J^{\\prime}\\mu}^{J J^{\\prime}\\nu}=N_{\\lambda\\mu}^{\\nu}}}\\\\ {{N_{\\lambda\\mu}^{\\nu}\\neq0\\ \\Rightarrow\\ Q_{j}(\\lambda){+}Q_{j}(\\mu)\\equiv Q_{j}(\\nu){\\qquad}(\\mathrm{mod~1})}}\\end{array}", "type": "interline_equation"}], "index": 18}], "index": 18}, {"type": "text", "bbox": [70, 463, 235, 477], "lines": [{"bbox": [70, 465, 233, 479], "spans": [{"bbox": [70, 465, 195, 479], "score": 1.0, "content": "for any simple-currents ", "type": "text"}, {"bbox": [195, 465, 230, 478], "score": 0.92, "content": "J,J^{\\prime},j", "type": "inline_equation", "height": 13, "width": 35}, {"bbox": [230, 465, 233, 479], "score": 1.0, "content": ".", "type": "text"}], "index": 19}], "index": 19}, {"type": "text", "bbox": [70, 478, 541, 572], "lines": [{"bbox": [93, 479, 542, 495], "spans": [{"bbox": [93, 479, 190, 495], "score": 1.0, "content": "For example, for ", "type": "text"}, {"bbox": [190, 480, 233, 494], "score": 0.92, "content": "\\mathcal{R}(A_{1,k})", "type": "inline_equation", "height": 14, "width": 43}, {"bbox": [234, 479, 312, 495], "score": 1.0, "content": " we may take ", "type": "text"}, {"bbox": [313, 479, 414, 493], "score": 0.89, "content": "P_{+}\\;=\\;\\{0,1,\\ldots,k\\}", "type": "inline_equation", "height": 14, "width": 101}, {"bbox": [414, 479, 493, 495], "score": 1.0, "content": " (the value of ", "type": "text"}, {"bbox": [493, 482, 506, 492], "score": 0.85, "content": "\\lambda_{1}", "type": "inline_equation", "height": 10, "width": 13}, {"bbox": [506, 479, 542, 495], "score": 1.0, "content": "), and", "type": "text"}], "index": 20}, {"bbox": [64, 489, 548, 523], "spans": [{"bbox": [64, 489, 548, 523], "score": 1.0, "content": "then the Kac-Peterson matrix is Sab = k2+2 sin(\u03c0 (a+1k)+ (2b+1) ). Charge-conjugation C is", "type": "text"}], "index": 21}, {"bbox": [70, 515, 542, 530], "spans": [{"bbox": [70, 515, 159, 530], "score": 1.0, "content": "trivial here, but ", "type": "text"}, {"bbox": [159, 516, 189, 529], "score": 0.9, "content": "j=k", "type": "inline_equation", "height": 13, "width": 30}, {"bbox": [190, 515, 456, 530], "score": 1.0, "content": " is a simple-current corresponding to permutation ", "type": "text"}, {"bbox": [456, 517, 516, 527], "score": 0.91, "content": "J a=k-a", "type": "inline_equation", "height": 10, "width": 60}, {"bbox": [516, 515, 542, 530], "score": 1.0, "content": " and", "type": "text"}], "index": 22}, {"bbox": [69, 527, 542, 547], "spans": [{"bbox": [69, 527, 117, 547], "score": 1.0, "content": "function ", "type": "text"}, {"bbox": [118, 531, 182, 544], "score": 0.92, "content": "Q_{j}(a)=a/2", "type": "inline_equation", "height": 13, "width": 64}, {"bbox": [182, 527, 317, 547], "score": 1.0, "content": ". The Galois action sends ", "type": "text"}, {"bbox": [317, 533, 325, 541], "score": 0.69, "content": "a", "type": "inline_equation", "height": 8, "width": 8}, {"bbox": [325, 527, 437, 547], "score": 1.0, "content": " to the unique weight ", "type": "text"}, {"bbox": [438, 529, 486, 543], "score": 0.92, "content": "a^{(\\ell)}\\in P_{+}", "type": "inline_equation", "height": 14, "width": 48}, {"bbox": [487, 527, 542, 547], "score": 1.0, "content": " satisfying", "type": "text"}], "index": 23}, {"bbox": [71, 542, 542, 561], "spans": [{"bbox": [71, 544, 185, 558], "score": 0.91, "content": "a^{(\\ell)}+1\\equiv\\pm\\ell\\left(a+1\\right)", "type": "inline_equation", "height": 14, "width": 114}, {"bbox": [185, 542, 221, 561], "score": 1.0, "content": " (mod ", "type": "text"}, {"bbox": [221, 544, 257, 557], "score": 0.46, "content": "2k+4", "type": "inline_equation", "height": 13, "width": 36}, {"bbox": [258, 542, 425, 561], "score": 1.0, "content": "), where that sign there equals ", "type": "text"}, {"bbox": [425, 545, 471, 558], "score": 0.93, "content": "\\mathrm{i}^{\\ell-1}\\epsilon_{\\ell}^{\\prime}(a)", "type": "inline_equation", "height": 13, "width": 46}, {"bbox": [472, 542, 542, 561], "score": 1.0, "content": ". The fusion", "type": "text"}], "index": 24}, {"bbox": [71, 559, 196, 574], "spans": [{"bbox": [71, 559, 196, 574], "score": 1.0, "content": "coefficients are given by", "type": "text"}], "index": 25}], "index": 22.5}, {"type": "interline_equation", "bbox": [117, 582, 496, 616], "lines": [{"bbox": [117, 582, 496, 616], "spans": [{"bbox": [117, 582, 496, 616], "score": 0.84, "content": "N_{a b}^{c}=\\left\\{\\begin{array}{c c}{{1}}&{{\\mathrm{if~}c\\equiv a\\!+\\!b\\;(\\mathrm{mod~}2)\\;\\mathrm{and~}|a\\!-\\!b|\\leq c\\leq\\operatorname*{min}\\{a\\!+\\!b,2k\\!-\\!a\\!-\\!b\\}}}\\\\ {{0}}&{{\\mathrm{otherwise}}}\\end{array}\\right..", "type": "interline_equation"}], "index": 26}], "index": 26}, {"type": "text", "bbox": [70, 624, 541, 716], "lines": [{"bbox": [95, 627, 541, 642], "spans": [{"bbox": [95, 627, 541, 642], "score": 1.0, "content": "Equation (2.4) tells us the affine fusion rules are the structure constants for the ring", "type": "text"}], "index": 27}, {"bbox": [71, 640, 542, 656], "spans": [{"bbox": [71, 642, 131, 655], "score": 0.91, "content": "\\mathrm{Ch}(X_{r})/\\mathcal{I}_{k}", "type": "inline_equation", "height": 13, "width": 60}, {"bbox": [131, 640, 168, 656], "score": 1.0, "content": " where ", "type": "text"}, {"bbox": [169, 642, 209, 655], "score": 0.9, "content": "\\operatorname{Ch}(X_{r})", "type": "inline_equation", "height": 13, "width": 40}, {"bbox": [209, 640, 450, 656], "score": 1.0, "content": " is the character ring for all finite-dimensional ", "type": "text"}, {"bbox": [451, 643, 466, 654], "score": 0.92, "content": "X_{r}", "type": "inline_equation", "height": 11, "width": 15}, {"bbox": [466, 640, 542, 656], "score": 1.0, "content": "-modules, and", "type": "text"}], "index": 28}, {"bbox": [71, 656, 541, 671], "spans": [{"bbox": [71, 658, 85, 668], "score": 0.91, "content": "\\mathcal{I}_{k}", "type": "inline_equation", "height": 10, "width": 14}, {"bbox": [86, 656, 300, 671], "score": 1.0, "content": " is the subspace spanned by the elements ", "type": "text"}, {"bbox": [300, 657, 397, 670], "score": 0.92, "content": "\\mathrm{ch}_{\\overline{{\\mu}}}-(\\operatorname*{det}w)\\mathrm{ch}_{\\overline{{w}}.\\mu}", "type": "inline_equation", "height": 13, "width": 97}, {"bbox": [397, 656, 541, 671], "score": 1.0, "content": ". Finkelberg [8] proved that", "type": "text"}], "index": 29}, {"bbox": [70, 671, 540, 687], "spans": [{"bbox": [70, 672, 363, 687], "score": 1.0, "content": "this ring is isomorphic to the K-ring of a \u201csub-quotient\u201d", "type": "text"}, {"bbox": [363, 671, 379, 685], "score": 0.91, "content": "\\widetilde{\\mathcal{O}}_{k}", "type": "inline_equation", "height": 14, "width": 16}, {"bbox": [379, 672, 540, 687], "score": 1.0, "content": " of Kazhdan-Lusztig\u2019s category", "type": "text"}], "index": 30}, {"bbox": [69, 684, 539, 704], "spans": [{"bbox": [69, 684, 111, 704], "score": 1.0, "content": "of level ", "type": "text"}, {"bbox": [112, 690, 119, 699], "score": 0.89, "content": "k", "type": "inline_equation", "height": 9, "width": 7}, {"bbox": [119, 684, 257, 704], "score": 1.0, "content": " integrable highest weight ", "type": "text"}, {"bbox": [257, 686, 281, 700], "score": 0.93, "content": "X_{r}^{(1)}", "type": "inline_equation", "height": 14, "width": 24}, {"bbox": [281, 684, 524, 704], "score": 1.0, "content": "-modules, and t o Gelfand-Kazhdan\u2019s category", "type": "text"}, {"bbox": [525, 687, 539, 702], "score": 0.92, "content": "\\widetilde{\\mathcal{O}}_{q}", "type": "inline_equation", "height": 15, "width": 14}], "index": 31}, {"bbox": [71, 703, 541, 717], "spans": [{"bbox": [71, 703, 412, 717], "score": 1.0, "content": "coming from finite-dimensional modules of the quantum group ", "type": "text"}, {"bbox": [413, 704, 441, 717], "score": 0.93, "content": "U_{q}X_{r}", "type": "inline_equation", "height": 13, "width": 28}, {"bbox": [442, 703, 541, 717], "score": 1.0, "content": " specialised to the", "type": "text"}], "index": 32}], "index": 29.5}], "layout_bboxes": [], "page_idx": 4, "page_size": [612.0, 792.0], "_layout_tree": [], "images": [], "tables": [], "interline_equations": [{"type": "interline_equation", "bbox": [239, 178, 372, 209], "lines": [{"bbox": [239, 178, 372, 209], "spans": [{"bbox": [239, 178, 372, 209], "score": 0.95, "content": "N_{\\lambda\\mu}^{\\nu}=\\sum_{w\\in W}\\operatorname*{det}(w)\\,T_{\\lambda\\mu}^{w.\\nu}~,", "type": "interline_equation"}], "index": 6}], "index": 6}, {"type": "interline_equation", "bbox": [176, 394, 435, 455], "lines": [{"bbox": [176, 394, 435, 455], "spans": [{"bbox": [176, 394, 435, 455], "score": 0.93, "content": "\\begin{array}{c}{{N_{C\\lambda,C\\mu}^{C\\nu}=N_{\\lambda\\mu}^{\\nu}}}\\\\ {{{}}}\\\\ {{N_{J\\lambda,J^{\\prime}\\mu}^{J J^{\\prime}\\nu}=N_{\\lambda\\mu}^{\\nu}}}\\\\ {{N_{\\lambda\\mu}^{\\nu}\\neq0\\ \\Rightarrow\\ Q_{j}(\\lambda){+}Q_{j}(\\mu)\\equiv Q_{j}(\\nu){\\qquad}(\\mathrm{mod~1})}}\\end{array}", "type": "interline_equation"}], "index": 18}], "index": 18}, {"type": "interline_equation", "bbox": [117, 582, 496, 616], "lines": [{"bbox": [117, 582, 496, 616], "spans": [{"bbox": [117, 582, 496, 616], "score": 0.84, "content": "N_{a b}^{c}=\\left\\{\\begin{array}{c c}{{1}}&{{\\mathrm{if~}c\\equiv a\\!+\\!b\\;(\\mathrm{mod~}2)\\;\\mathrm{and~}|a\\!-\\!b|\\leq c\\leq\\operatorname*{min}\\{a\\!+\\!b,2k\\!-\\!a\\!-\\!b\\}}}\\\\ {{0}}&{{\\mathrm{otherwise}}}\\end{array}\\right..", "type": "interline_equation"}], "index": 26}], "index": 26}], "discarded_blocks": [], "need_drop": false, "drop_reason": [], "para_blocks": [{"type": "text", "bbox": [70, 70, 541, 114], "lines": [{"bbox": [71, 73, 540, 89], "spans": [{"bbox": [71, 75, 182, 88], "score": 0.92, "content": "\\epsilon_{\\ell}(\\lambda)/\\epsilon_{\\ell}^{\\prime}(\\lambda)=\\sigma_{\\ell}(c)/c", "type": "inline_equation", "height": 13, "width": 111}, {"bbox": [182, 73, 383, 89], "score": 1.0, "content": " is an unimportant sign independent of ", "type": "text"}, {"bbox": [383, 75, 391, 84], "score": 0.89, "content": "\\lambda", "type": "inline_equation", "height": 9, "width": 8}, {"bbox": [391, 73, 540, 89], "score": 1.0, "content": ". This Galois action will play", "type": "text"}], "index": 0}, {"bbox": [70, 88, 542, 103], "spans": [{"bbox": [70, 88, 321, 103], "score": 1.0, "content": "a fairly important role in this paper. Note that ", "type": "text"}, {"bbox": [321, 90, 367, 101], "score": 0.93, "content": "\\sigma_{-1}=C", "type": "inline_equation", "height": 11, "width": 46}, {"bbox": [367, 88, 542, 103], "score": 1.0, "content": ", so this action can be thought of", "type": "text"}], "index": 1}, {"bbox": [70, 101, 458, 118], "spans": [{"bbox": [70, 101, 370, 118], "score": 1.0, "content": "as a generalisation of charge-conjugation. Note also that ", "type": "text"}, {"bbox": [371, 102, 453, 115], "score": 0.93, "content": "\\sigma_{\\ell}\\circ J=J^{\\ell}\\circ\\sigma_{\\ell}", "type": "inline_equation", "height": 13, "width": 82}, {"bbox": [453, 101, 458, 118], "score": 1.0, "content": ".", "type": "text"}], "index": 2}], "index": 1, "page_num": "page_4", "page_size": [612.0, 792.0], "bbox_fs": [70, 73, 542, 118]}, {"type": "text", "bbox": [69, 115, 541, 164], "lines": [{"bbox": [94, 115, 541, 132], "spans": [{"bbox": [94, 115, 541, 132], "score": 1.0, "content": "The fusion coefficients (1.1b) are usually computed by the Kac-Walton formula [23", "type": "text"}], "index": 3}, {"bbox": [69, 132, 541, 146], "spans": [{"bbox": [69, 132, 541, 146], "score": 1.0, "content": "p. 288, 35] (there are other codiscoverers) in terms of the tensor product multiplicities", "type": "text"}], "index": 4}, {"bbox": [71, 146, 255, 168], "spans": [{"bbox": [71, 146, 215, 166], "score": 0.93, "content": "T_{\\lambda\\mu}^{\\nu}\\overset{\\mathrm{def}}{=}\\mathrm{mult}_{L(\\overline{{\\lambda}})\\otimes L(\\overline{{\\mu}})}(L(\\overline{{\\nu}}))", "type": "inline_equation", "height": 20, "width": 144}, {"bbox": [215, 148, 232, 168], "score": 1.0, "content": " in ", "type": "text"}, {"bbox": [232, 151, 248, 162], "score": 0.9, "content": "X_{r}", "type": "inline_equation", "height": 11, "width": 16}, {"bbox": [248, 148, 255, 168], "score": 1.0, "content": ":", "type": "text"}], "index": 5}], "index": 4, "page_num": "page_4", "page_size": [612.0, 792.0], "bbox_fs": [69, 115, 541, 168]}, {"type": "interline_equation", "bbox": [239, 178, 372, 209], "lines": [{"bbox": [239, 178, 372, 209], "spans": [{"bbox": [239, 178, 372, 209], "score": 0.95, "content": "N_{\\lambda\\mu}^{\\nu}=\\sum_{w\\in W}\\operatorname*{det}(w)\\,T_{\\lambda\\mu}^{w.\\nu}~,", "type": "interline_equation"}], "index": 6}], "index": 6, "page_num": "page_4", "page_size": [612.0, 792.0]}, {"type": "text", "bbox": [70, 221, 541, 281], "lines": [{"bbox": [66, 218, 539, 247], "spans": [{"bbox": [66, 218, 105, 247], "score": 1.0, "content": "where ", "type": "text"}, {"bbox": [105, 223, 206, 240], "score": 0.92, "content": "w.\\gamma\\,{\\stackrel{\\mathrm{def}}{=}}\\,w(\\gamma+\\rho)-\\rho", "type": "inline_equation", "height": 17, "width": 101}, {"bbox": [207, 218, 231, 247], "score": 1.0, "content": " and ", "type": "text"}, {"bbox": [232, 227, 245, 237], "score": 0.81, "content": "W", "type": "inline_equation", "height": 10, "width": 13}, {"bbox": [245, 218, 388, 247], "score": 1.0, "content": " is the affine Weyl group of ", "type": "text"}, {"bbox": [388, 223, 412, 238], "score": 0.93, "content": "X_{r}^{(1)}", "type": "inline_equation", "height": 15, "width": 24}, {"bbox": [412, 218, 517, 247], "score": 1.0, "content": "(the dependence of ", "type": "text"}, {"bbox": [518, 228, 539, 242], "score": 0.92, "content": "N_{\\lambda\\mu}^{\\nu}", "type": "inline_equation", "height": 14, "width": 21}], "index": 7}, {"bbox": [69, 239, 541, 256], "spans": [{"bbox": [69, 239, 88, 256], "score": 1.0, "content": "on ", "type": "text"}, {"bbox": [88, 242, 95, 251], "score": 0.84, "content": "k", "type": "inline_equation", "height": 9, "width": 7}, {"bbox": [96, 239, 249, 256], "score": 1.0, "content": " arises through the action of ", "type": "text"}, {"bbox": [249, 243, 262, 252], "score": 0.85, "content": "W", "type": "inline_equation", "height": 9, "width": 13}, {"bbox": [263, 239, 541, 256], "score": 1.0, "content": "). We shall see shortly that these fusion coefficients,", "type": "text"}], "index": 8}, {"bbox": [69, 254, 541, 270], "spans": [{"bbox": [69, 254, 358, 270], "score": 1.0, "content": "now manifestly integral, are in fact nonnegative. Let ", "type": "text"}, {"bbox": [359, 256, 401, 268], "score": 0.95, "content": "\\mathcal{R}(X_{r,k})", "type": "inline_equation", "height": 12, "width": 42}, {"bbox": [402, 254, 541, 270], "score": 1.0, "content": " denote the corresponding", "type": "text"}], "index": 9}, {"bbox": [70, 268, 131, 285], "spans": [{"bbox": [70, 268, 131, 285], "score": 1.0, "content": "fusion ring.", "type": "text"}], "index": 10}], "index": 8.5, "page_num": "page_4", "page_size": [612.0, 792.0], "bbox_fs": [66, 218, 541, 285]}, {"type": "text", "bbox": [70, 282, 541, 313], "lines": [{"bbox": [93, 283, 539, 301], "spans": [{"bbox": [93, 283, 330, 301], "score": 1.0, "content": "A handy consequence of (2.4) that whenever ", "type": "text"}, {"bbox": [330, 287, 337, 296], "score": 0.91, "content": "k", "type": "inline_equation", "height": 9, "width": 7}, {"bbox": [338, 283, 448, 301], "score": 1.0, "content": " is large enough that ", "type": "text"}, {"bbox": [448, 283, 539, 300], "score": 0.92, "content": "\\lambda+\\mu\\in P_{+}^{k}(X_{r}^{(1)})", "type": "inline_equation", "height": 17, "width": 91}], "index": 11}, {"bbox": [69, 297, 335, 318], "spans": [{"bbox": [69, 297, 120, 318], "score": 1.0, "content": "(i.e. that", "type": "text"}, {"bbox": [121, 300, 237, 314], "score": 0.91, "content": "\\begin{array}{r}{\\sum_{i=1}^{\\tau}a_{i}^{\\vee}(\\lambda_{i}+\\mu_{i})\\le k)}\\end{array}", "type": "inline_equation", "height": 14, "width": 116}, {"bbox": [237, 297, 272, 318], "score": 1.0, "content": ", then ", "type": "text"}, {"bbox": [273, 302, 330, 315], "score": 0.94, "content": "N_{\\lambda\\mu}^{\\nu}=T_{\\lambda\\mu}^{\\nu}", "type": "inline_equation", "height": 13, "width": 57}, {"bbox": [330, 297, 335, 318], "score": 1.0, "content": ".", "type": "text"}], "index": 12}], "index": 11.5, "page_num": "page_4", "page_size": [612.0, 792.0], "bbox_fs": [69, 283, 539, 318]}, {"type": "text", "bbox": [70, 313, 541, 354], "lines": [{"bbox": [93, 313, 540, 327], "spans": [{"bbox": [93, 313, 540, 327], "score": 1.0, "content": "It will sometimes be convenient to collect these coefficients in matrix form as the", "type": "text"}], "index": 13}, {"bbox": [69, 327, 541, 344], "spans": [{"bbox": [69, 327, 154, 343], "score": 1.0, "content": "fusion matrices ", "type": "text"}, {"bbox": [155, 330, 171, 340], "score": 0.91, "content": "N_{\\lambda}", "type": "inline_equation", "height": 10, "width": 16}, {"bbox": [171, 327, 236, 343], "score": 1.0, "content": ", defined by ", "type": "text"}, {"bbox": [236, 329, 311, 344], "score": 0.9, "content": "(N_{\\lambda})_{\\mu\\nu}=N_{\\lambda\\mu}^{\\nu}", "type": "inline_equation", "height": 15, "width": 75}, {"bbox": [312, 327, 392, 343], "score": 1.0, "content": ". For instance, ", "type": "text"}, {"bbox": [392, 330, 430, 341], "score": 0.94, "content": "N_{0}=I", "type": "inline_equation", "height": 11, "width": 38}, {"bbox": [430, 327, 541, 343], "score": 1.0, "content": " and, more generally,", "type": "text"}], "index": 14}, {"bbox": [71, 343, 315, 357], "spans": [{"bbox": [71, 344, 86, 357], "score": 0.91, "content": "N_{j}", "type": "inline_equation", "height": 13, "width": 15}, {"bbox": [86, 343, 301, 356], "score": 1.0, "content": " is the permutation matrix associated to ", "type": "text"}, {"bbox": [302, 344, 309, 353], "score": 0.82, "content": "J", "type": "inline_equation", "height": 9, "width": 7}, {"bbox": [310, 343, 315, 356], "score": 1.0, "content": ".", "type": "text"}], "index": 15}], "index": 14, "page_num": "page_4", "page_size": [612.0, 792.0], "bbox_fs": [69, 313, 541, 357]}, {"type": "text", "bbox": [70, 355, 540, 383], "lines": [{"bbox": [93, 355, 542, 374], "spans": [{"bbox": [93, 355, 542, 374], "score": 1.0, "content": "The importance of (charge-)conjugation and simple-currents for us is that they respect", "type": "text"}], "index": 16}, {"bbox": [70, 371, 112, 387], "spans": [{"bbox": [70, 371, 112, 387], "score": 1.0, "content": "fusions:", "type": "text"}], "index": 17}], "index": 16.5, "page_num": "page_4", "page_size": [612.0, 792.0], "bbox_fs": [70, 355, 542, 387]}, {"type": "interline_equation", "bbox": [176, 394, 435, 455], "lines": [{"bbox": [176, 394, 435, 455], "spans": [{"bbox": [176, 394, 435, 455], "score": 0.93, "content": "\\begin{array}{c}{{N_{C\\lambda,C\\mu}^{C\\nu}=N_{\\lambda\\mu}^{\\nu}}}\\\\ {{{}}}\\\\ {{N_{J\\lambda,J^{\\prime}\\mu}^{J J^{\\prime}\\nu}=N_{\\lambda\\mu}^{\\nu}}}\\\\ {{N_{\\lambda\\mu}^{\\nu}\\neq0\\ \\Rightarrow\\ Q_{j}(\\lambda){+}Q_{j}(\\mu)\\equiv Q_{j}(\\nu){\\qquad}(\\mathrm{mod~1})}}\\end{array}", "type": "interline_equation"}], "index": 18}], "index": 18, "page_num": "page_4", "page_size": [612.0, 792.0]}, {"type": "text", "bbox": [70, 463, 235, 477], "lines": [{"bbox": [70, 465, 233, 479], "spans": [{"bbox": [70, 465, 195, 479], "score": 1.0, "content": "for any simple-currents ", "type": "text"}, {"bbox": [195, 465, 230, 478], "score": 0.92, "content": "J,J^{\\prime},j", "type": "inline_equation", "height": 13, "width": 35}, {"bbox": [230, 465, 233, 479], "score": 1.0, "content": ".", "type": "text"}], "index": 19}], "index": 19, "page_num": "page_4", "page_size": [612.0, 792.0], "bbox_fs": [70, 465, 233, 479]}, {"type": "text", "bbox": [70, 478, 541, 572], "lines": [{"bbox": [93, 479, 542, 495], "spans": [{"bbox": [93, 479, 190, 495], "score": 1.0, "content": "For example, for ", "type": "text"}, {"bbox": [190, 480, 233, 494], "score": 0.92, "content": "\\mathcal{R}(A_{1,k})", "type": "inline_equation", "height": 14, "width": 43}, {"bbox": [234, 479, 312, 495], "score": 1.0, "content": " we may take ", "type": "text"}, {"bbox": [313, 479, 414, 493], "score": 0.89, "content": "P_{+}\\;=\\;\\{0,1,\\ldots,k\\}", "type": "inline_equation", "height": 14, "width": 101}, {"bbox": [414, 479, 493, 495], "score": 1.0, "content": " (the value of ", "type": "text"}, {"bbox": [493, 482, 506, 492], "score": 0.85, "content": "\\lambda_{1}", "type": "inline_equation", "height": 10, "width": 13}, {"bbox": [506, 479, 542, 495], "score": 1.0, "content": "), and", "type": "text"}], "index": 20}, {"bbox": [64, 489, 548, 523], "spans": [{"bbox": [64, 489, 548, 523], "score": 1.0, "content": "then the Kac-Peterson matrix is Sab = k2+2 sin(\u03c0 (a+1k)+ (2b+1) ). Charge-conjugation C is", "type": "text"}], "index": 21}, {"bbox": [70, 515, 542, 530], "spans": [{"bbox": [70, 515, 159, 530], "score": 1.0, "content": "trivial here, but ", "type": "text"}, {"bbox": [159, 516, 189, 529], "score": 0.9, "content": "j=k", "type": "inline_equation", "height": 13, "width": 30}, {"bbox": [190, 515, 456, 530], "score": 1.0, "content": " is a simple-current corresponding to permutation ", "type": "text"}, {"bbox": [456, 517, 516, 527], "score": 0.91, "content": "J a=k-a", "type": "inline_equation", "height": 10, "width": 60}, {"bbox": [516, 515, 542, 530], "score": 1.0, "content": " and", "type": "text"}], "index": 22}, {"bbox": [69, 527, 542, 547], "spans": [{"bbox": [69, 527, 117, 547], "score": 1.0, "content": "function ", "type": "text"}, {"bbox": [118, 531, 182, 544], "score": 0.92, "content": "Q_{j}(a)=a/2", "type": "inline_equation", "height": 13, "width": 64}, {"bbox": [182, 527, 317, 547], "score": 1.0, "content": ". The Galois action sends ", "type": "text"}, {"bbox": [317, 533, 325, 541], "score": 0.69, "content": "a", "type": "inline_equation", "height": 8, "width": 8}, {"bbox": [325, 527, 437, 547], "score": 1.0, "content": " to the unique weight ", "type": "text"}, {"bbox": [438, 529, 486, 543], "score": 0.92, "content": "a^{(\\ell)}\\in P_{+}", "type": "inline_equation", "height": 14, "width": 48}, {"bbox": [487, 527, 542, 547], "score": 1.0, "content": " satisfying", "type": "text"}], "index": 23}, {"bbox": [71, 542, 542, 561], "spans": [{"bbox": [71, 544, 185, 558], "score": 0.91, "content": "a^{(\\ell)}+1\\equiv\\pm\\ell\\left(a+1\\right)", "type": "inline_equation", "height": 14, "width": 114}, {"bbox": [185, 542, 221, 561], "score": 1.0, "content": " (mod ", "type": "text"}, {"bbox": [221, 544, 257, 557], "score": 0.46, "content": "2k+4", "type": "inline_equation", "height": 13, "width": 36}, {"bbox": [258, 542, 425, 561], "score": 1.0, "content": "), where that sign there equals ", "type": "text"}, {"bbox": [425, 545, 471, 558], "score": 0.93, "content": "\\mathrm{i}^{\\ell-1}\\epsilon_{\\ell}^{\\prime}(a)", "type": "inline_equation", "height": 13, "width": 46}, {"bbox": [472, 542, 542, 561], "score": 1.0, "content": ". The fusion", "type": "text"}], "index": 24}, {"bbox": [71, 559, 196, 574], "spans": [{"bbox": [71, 559, 196, 574], "score": 1.0, "content": "coefficients are given by", "type": "text"}], "index": 25}], "index": 22.5, "page_num": "page_4", "page_size": [612.0, 792.0], "bbox_fs": [64, 479, 548, 574]}, {"type": "interline_equation", "bbox": [117, 582, 496, 616], "lines": [{"bbox": [117, 582, 496, 616], "spans": [{"bbox": [117, 582, 496, 616], "score": 0.84, "content": "N_{a b}^{c}=\\left\\{\\begin{array}{c c}{{1}}&{{\\mathrm{if~}c\\equiv a\\!+\\!b\\;(\\mathrm{mod~}2)\\;\\mathrm{and~}|a\\!-\\!b|\\leq c\\leq\\operatorname*{min}\\{a\\!+\\!b,2k\\!-\\!a\\!-\\!b\\}}}\\\\ {{0}}&{{\\mathrm{otherwise}}}\\end{array}\\right..", "type": "interline_equation"}], "index": 26}], "index": 26, "page_num": "page_4", "page_size": [612.0, 792.0]}, {"type": "text", "bbox": [70, 624, 541, 716], "lines": [{"bbox": [95, 627, 541, 642], "spans": [{"bbox": [95, 627, 541, 642], "score": 1.0, "content": "Equation (2.4) tells us the affine fusion rules are the structure constants for the ring", "type": "text"}], "index": 27}, {"bbox": [71, 640, 542, 656], "spans": [{"bbox": [71, 642, 131, 655], "score": 0.91, "content": "\\mathrm{Ch}(X_{r})/\\mathcal{I}_{k}", "type": "inline_equation", "height": 13, "width": 60}, {"bbox": [131, 640, 168, 656], "score": 1.0, "content": " where ", "type": "text"}, {"bbox": [169, 642, 209, 655], "score": 0.9, "content": "\\operatorname{Ch}(X_{r})", "type": "inline_equation", "height": 13, "width": 40}, {"bbox": [209, 640, 450, 656], "score": 1.0, "content": " is the character ring for all finite-dimensional ", "type": "text"}, {"bbox": [451, 643, 466, 654], "score": 0.92, "content": "X_{r}", "type": "inline_equation", "height": 11, "width": 15}, {"bbox": [466, 640, 542, 656], "score": 1.0, "content": "-modules, and", "type": "text"}], "index": 28}, {"bbox": [71, 656, 541, 671], "spans": [{"bbox": [71, 658, 85, 668], "score": 0.91, "content": "\\mathcal{I}_{k}", "type": "inline_equation", "height": 10, "width": 14}, {"bbox": [86, 656, 300, 671], "score": 1.0, "content": " is the subspace spanned by the elements ", "type": "text"}, {"bbox": [300, 657, 397, 670], "score": 0.92, "content": "\\mathrm{ch}_{\\overline{{\\mu}}}-(\\operatorname*{det}w)\\mathrm{ch}_{\\overline{{w}}.\\mu}", "type": "inline_equation", "height": 13, "width": 97}, {"bbox": [397, 656, 541, 671], "score": 1.0, "content": ". Finkelberg [8] proved that", "type": "text"}], "index": 29}, {"bbox": [70, 671, 540, 687], "spans": [{"bbox": [70, 672, 363, 687], "score": 1.0, "content": "this ring is isomorphic to the K-ring of a \u201csub-quotient\u201d", "type": "text"}, {"bbox": [363, 671, 379, 685], "score": 0.91, "content": "\\widetilde{\\mathcal{O}}_{k}", "type": "inline_equation", "height": 14, "width": 16}, {"bbox": [379, 672, 540, 687], "score": 1.0, "content": " of Kazhdan-Lusztig\u2019s category", "type": "text"}], "index": 30}, {"bbox": [69, 684, 539, 704], "spans": [{"bbox": [69, 684, 111, 704], "score": 1.0, "content": "of level ", "type": "text"}, {"bbox": [112, 690, 119, 699], "score": 0.89, "content": "k", "type": "inline_equation", "height": 9, "width": 7}, {"bbox": [119, 684, 257, 704], "score": 1.0, "content": " integrable highest weight ", "type": "text"}, {"bbox": [257, 686, 281, 700], "score": 0.93, "content": "X_{r}^{(1)}", "type": "inline_equation", "height": 14, "width": 24}, {"bbox": [281, 684, 524, 704], "score": 1.0, "content": "-modules, and t o Gelfand-Kazhdan\u2019s category", "type": "text"}, {"bbox": [525, 687, 539, 702], "score": 0.92, "content": "\\widetilde{\\mathcal{O}}_{q}", "type": "inline_equation", "height": 15, "width": 14}], "index": 31}, {"bbox": [71, 703, 541, 717], "spans": [{"bbox": [71, 703, 412, 717], "score": 1.0, "content": "coming from finite-dimensional modules of the quantum group ", "type": "text"}, {"bbox": [413, 704, 441, 717], "score": 0.93, "content": "U_{q}X_{r}", "type": "inline_equation", "height": 13, "width": 28}, {"bbox": [442, 703, 541, 717], "score": 1.0, "content": " specialised to the", "type": "text"}], "index": 32}, {"bbox": [70, 73, 541, 89], "spans": [{"bbox": [70, 73, 143, 89], "score": 1.0, "content": "root of unity ", "type": "text", "cross_page": true}, {"bbox": [144, 75, 192, 87], "score": 0.94, "content": "q\\,=\\,\\xi_{2m\\kappa}", "type": "inline_equation", "height": 12, "width": 48, "cross_page": true}, {"bbox": [192, 73, 330, 89], "score": 1.0, "content": " for appropriate choice of ", "type": "text", "cross_page": true}, {"bbox": [331, 75, 399, 87], "score": 0.94, "content": "m\\in\\{1,2,3\\}", "type": "inline_equation", "height": 12, "width": 68, "cross_page": true}, {"bbox": [399, 73, 541, 89], "score": 1.0, "content": ". They also arise from the", "type": "text", "cross_page": true}], "index": 0}, {"bbox": [70, 88, 541, 103], "spans": [{"bbox": [70, 88, 403, 103], "score": 1.0, "content": "Huang-Lepowsky coproduct [21] for the modules of the VOA ", "type": "text", "cross_page": true}, {"bbox": [404, 89, 439, 101], "score": 0.94, "content": "L(k,0)", "type": "inline_equation", "height": 12, "width": 35, "cross_page": true}, {"bbox": [440, 88, 541, 103], "score": 1.0, "content": ". Because of these", "type": "text", "cross_page": true}], "index": 1}, {"bbox": [70, 103, 481, 118], "spans": [{"bbox": [70, 103, 233, 117], "score": 1.0, "content": "isomorphisms, we get that the ", "type": "text", "cross_page": true}, {"bbox": [233, 104, 255, 118], "score": 0.93, "content": "N_{\\lambda\\mu}^{\\nu}", "type": "inline_equation", "height": 14, "width": 22, "cross_page": true}, {"bbox": [255, 103, 343, 117], "score": 1.0, "content": " do indeed lie in ", "type": "text", "cross_page": true}, {"bbox": [343, 104, 360, 117], "score": 0.9, "content": "\\mathbb{Z}_{\\geq}", "type": "inline_equation", "height": 13, "width": 17, "cross_page": true}, {"bbox": [360, 103, 481, 117], "score": 1.0, "content": ", for any affine algebra.", "type": "text", "cross_page": true}], "index": 2}], "index": 29.5, "page_num": "page_4", "page_size": [612.0, 792.0], "bbox_fs": [69, 627, 542, 717]}]} |
|
0002044v1 | 6 | For instance $$\pi$$ must send $$J$$ -fixed-points to $$\pi(J)$$ -fixed-points.
More generally, a fusion-homomorphism $$\pi$$ is defined in the obvious algebraic way. It
turns out that for such a $$\pi$$ , $$\pi\lambda\,=\,\pi\mu$$ iff $$\mu\,=\,J\lambda$$ for some simple-current $$J$$ for which
$$\pi(J0)=\tilde{0}$$ . Moreover, $$\pi(J0)=\tilde{0}$$ is possible only if there are no $$J$$ -fixed-points. When $$\pi$$ is
one-to-one (e.g. when there are no nontrivial simple-currents in $$P_{+}^{k}(X_{r}^{(1)}))$$ , then $$\pi$$ obeys
(2.6). Fusion-homomorphisms will be studied elsewhere.
The key to finding fusion-symmetries is the following Lemma.
Lemma 2.2. Let $$\widetilde{S}$$ be the Kac-Peterson matrix for $$Y_{s}^{(1)}$$ level $$m$$ . Then a bijection
$$\pi\,:\,P_{+}^{k}(X_{r}^{(1)})\,\to\,P_{+}^{m}(Y_{s}^{(1)})$$ defines an isomorphism of fusion rings iff there exists some
bijection $$\pi^{\prime}:P_{+}^{k}(X_{r}^{(1)})\to P_{+}^{m}(Y_{s}^{(1)})$$ such that $$S_{\lambda\mu}=\widetilde{S}_{\pi\lambda,\pi^{\prime}\mu}$$ for all $$\lambda,\mu\in P_{+}^{k}(X_{r}^{(1)})$$ . In
particular, a permutation $$\pi$$ is a fusion-symmetry iff $$(\pi,\pi^{\prime})$$ is an $$S$$ -symmetry for some $$\pi^{\prime}$$ .
Proof. The equality $$N_{\lambda\mu}^{\nu}=M_{\pi\lambda,\pi\mu}^{\pi\nu}$$ means that, for each $$\mu$$ , the column vectors $$(\underline{{x}}_{\mu})_{\nu}=$$
$$\widetilde{S}_{\pi\nu,\pi\mu}$$ are simultaneous eigenvectors for the fusion matrices $$N_{\lambda}$$ , with eigenvalues $$\widetilde{S}_{\pi\lambda,\pi\mu}/\widetilde{S}_{0,\pi\mu}$$ .
I t is easy to see from Verlinde’s formula (1.1b) that any simultaneous eigenvec t or for a ll
fusion matrices must be a scalar multiple of some column of $$S$$ . Thus there must be a
permutation $$\pi^{\prime\prime}$$ of $$P_{+}^{k}(X_{r}^{(1)})$$ and scalars $$\alpha(\mu)$$ such that $$\widetilde{S}_{\pi\nu,\pi\mu}\,=\,\alpha(\mu)\,S_{\nu,\pi^{\prime\prime}\mu}$$ . Taking
$$\nu=0$$ forces $$\alpha(\mu)>0$$ , and then unitarity forces $$\alpha(\mu)=1$$ . ■
Let $$\pi$$ be any isomorphism, and let $$\pi^{\prime}$$ be as in the Lemma. Then $$\pi^{\prime}$$ is also an
isomorphism, with $$(\pi^{\prime})^{\prime}\;=\;\pi$$ . Equation (2.2b) implies for all $$\lambda\:\in\:P_{+}$$ and all simple-
currents $$j$$ , that
Another quick consequence of the Lemma is that for any Galois automorphism $$\sigma_{\ell}$$
and isomorphism $$\pi$$ , we have $$\tilde{\epsilon}_{\ell}(\pi\lambda)=\epsilon_{\ell}(\lambda)$$ and $$\pi(\lambda^{(\ell)})=(\pi\lambda)^{(\ell)}$$ . To see this, apply the
invertibility of $$S$$ to the equation
A very useful notion for studying the fusion ring is that of fusion-generator, i.e. a
subset $$\Gamma=\{\gamma_{1},...,\gamma_{m}\}$$ of $$P_{+}$$ which generates $$\mathcal{R}(X_{r,k})$$ as a ring. Diagonalising, this is
equivalent to requiring that there are $$m$$ -variable polynomials $$P_{\lambda}(x_{1},\ldots,x_{m})$$ such that
Let $$(\pi,\pi^{\prime})$$ be an $$S$$ -symmetry, and suppose we know that $$\pi\gamma=\gamma$$ for all $$\gamma$$ in the fusion-
generator $$\Gamma$$ . Then for any $$\lambda\in P_{+}$$ ,
for all $$\mu\in P_{+}$$ , so $$\pi\lambda=\lambda$$ .
One of the reasons fusion-symmetries for the affine algebras are so tractible is the
existence of small fusion-generators. In particular, because we know that any Lie character
| <p>For instance $$\pi$$ must send $$J$$ -fixed-points to $$\pi(J)$$ -fixed-points.</p>
<p>More generally, a fusion-homomorphism $$\pi$$ is defined in the obvious algebraic way. It
turns out that for such a $$\pi$$ , $$\pi\lambda\,=\,\pi\mu$$ iff $$\mu\,=\,J\lambda$$ for some simple-current $$J$$ for which
$$\pi(J0)=\tilde{0}$$ . Moreover, $$\pi(J0)=\tilde{0}$$ is possible only if there are no $$J$$ -fixed-points. When $$\pi$$ is
one-to-one (e.g. when there are no nontrivial simple-currents in $$P_{+}^{k}(X_{r}^{(1)}))$$ , then $$\pi$$ obeys
(2.6). Fusion-homomorphisms will be studied elsewhere.</p>
<p>The key to finding fusion-symmetries is the following Lemma.</p>
<p>Lemma 2.2. Let $$\widetilde{S}$$ be the Kac-Peterson matrix for $$Y_{s}^{(1)}$$ level $$m$$ . Then a bijection
$$\pi\,:\,P_{+}^{k}(X_{r}^{(1)})\,\to\,P_{+}^{m}(Y_{s}^{(1)})$$ defines an isomorphism of fusion rings iff there exists some
bijection $$\pi^{\prime}:P_{+}^{k}(X_{r}^{(1)})\to P_{+}^{m}(Y_{s}^{(1)})$$ such that $$S_{\lambda\mu}=\widetilde{S}_{\pi\lambda,\pi^{\prime}\mu}$$ for all $$\lambda,\mu\in P_{+}^{k}(X_{r}^{(1)})$$ . In
particular, a permutation $$\pi$$ is a fusion-symmetry iff $$(\pi,\pi^{\prime})$$ is an $$S$$ -symmetry for some $$\pi^{\prime}$$ .</p>
<p>Proof. The equality $$N_{\lambda\mu}^{\nu}=M_{\pi\lambda,\pi\mu}^{\pi\nu}$$ means that, for each $$\mu$$ , the column vectors $$(\underline{{x}}_{\mu})_{\nu}=$$
$$\widetilde{S}_{\pi\nu,\pi\mu}$$ are simultaneous eigenvectors for the fusion matrices $$N_{\lambda}$$ , with eigenvalues $$\widetilde{S}_{\pi\lambda,\pi\mu}/\widetilde{S}_{0,\pi\mu}$$ .
I t is easy to see from Verlinde’s formula (1.1b) that any simultaneous eigenvec t or for a ll
fusion matrices must be a scalar multiple of some column of $$S$$ . Thus there must be a
permutation $$\pi^{\prime\prime}$$ of $$P_{+}^{k}(X_{r}^{(1)})$$ and scalars $$\alpha(\mu)$$ such that $$\widetilde{S}_{\pi\nu,\pi\mu}\,=\,\alpha(\mu)\,S_{\nu,\pi^{\prime\prime}\mu}$$ . Taking
$$\nu=0$$ forces $$\alpha(\mu)>0$$ , and then unitarity forces $$\alpha(\mu)=1$$ . ■</p>
<p>Let $$\pi$$ be any isomorphism, and let $$\pi^{\prime}$$ be as in the Lemma. Then $$\pi^{\prime}$$ is also an
isomorphism, with $$(\pi^{\prime})^{\prime}\;=\;\pi$$ . Equation (2.2b) implies for all $$\lambda\:\in\:P_{+}$$ and all simple-
currents $$j$$ , that</p>
<p>Another quick consequence of the Lemma is that for any Galois automorphism $$\sigma_{\ell}$$
and isomorphism $$\pi$$ , we have $$\tilde{\epsilon}_{\ell}(\pi\lambda)=\epsilon_{\ell}(\lambda)$$ and $$\pi(\lambda^{(\ell)})=(\pi\lambda)^{(\ell)}$$ . To see this, apply the
invertibility of $$S$$ to the equation</p>
<p>A very useful notion for studying the fusion ring is that of fusion-generator, i.e. a
subset $$\Gamma=\{\gamma_{1},...,\gamma_{m}\}$$ of $$P_{+}$$ which generates $$\mathcal{R}(X_{r,k})$$ as a ring. Diagonalising, this is
equivalent to requiring that there are $$m$$ -variable polynomials $$P_{\lambda}(x_{1},\ldots,x_{m})$$ such that</p>
<p>Let $$(\pi,\pi^{\prime})$$ be an $$S$$ -symmetry, and suppose we know that $$\pi\gamma=\gamma$$ for all $$\gamma$$ in the fusion-
generator $$\Gamma$$ . Then for any $$\lambda\in P_{+}$$ ,</p>
<p>for all $$\mu\in P_{+}$$ , so $$\pi\lambda=\lambda$$ .</p>
<p>One of the reasons fusion-symmetries for the affine algebras are so tractible is the
existence of small fusion-generators. In particular, because we know that any Lie character</p>
| [{"type": "text", "coordinates": [70, 70, 392, 85], "content": "For instance $$\\pi$$ must send $$J$$ -fixed-points to $$\\pi(J)$$ -fixed-points.", "block_type": "text", "index": 1}, {"type": "text", "coordinates": [70, 86, 542, 160], "content": "More generally, a fusion-homomorphism $$\\pi$$ is defined in the obvious algebraic way. It\nturns out that for such a $$\\pi$$ , $$\\pi\\lambda\\,=\\,\\pi\\mu$$ iff $$\\mu\\,=\\,J\\lambda$$ for some simple-current $$J$$ for which\n$$\\pi(J0)=\\tilde{0}$$ . Moreover, $$\\pi(J0)=\\tilde{0}$$ is possible only if there are no $$J$$ -fixed-points. When $$\\pi$$ is\none-to-one (e.g. when there are no nontrivial simple-currents in $$P_{+}^{k}(X_{r}^{(1)}))$$ , then $$\\pi$$ obeys\n(2.6). Fusion-homomorphisms will be studied elsewhere.", "block_type": "text", "index": 2}, {"type": "text", "coordinates": [95, 160, 420, 174], "content": "The key to finding fusion-symmetries is the following Lemma.", "block_type": "text", "index": 3}, {"type": "text", "coordinates": [70, 180, 543, 246], "content": "Lemma 2.2. Let $$\\widetilde{S}$$ be the Kac-Peterson matrix for $$Y_{s}^{(1)}$$ level $$m$$ . Then a bijection\n$$\\pi\\,:\\,P_{+}^{k}(X_{r}^{(1)})\\,\\to\\,P_{+}^{m}(Y_{s}^{(1)})$$ defines an isomorphism of fusion rings iff there exists some\nbijection $$\\pi^{\\prime}:P_{+}^{k}(X_{r}^{(1)})\\to P_{+}^{m}(Y_{s}^{(1)})$$ such that $$S_{\\lambda\\mu}=\\widetilde{S}_{\\pi\\lambda,\\pi^{\\prime}\\mu}$$ for all $$\\lambda,\\mu\\in P_{+}^{k}(X_{r}^{(1)})$$ . In\nparticular, a permutation $$\\pi$$ is a fusion-symmetry iff $$(\\pi,\\pi^{\\prime})$$ is an $$S$$ -symmetry for some $$\\pi^{\\prime}$$ .", "block_type": "text", "index": 4}, {"type": "text", "coordinates": [70, 250, 558, 344], "content": "Proof. The equality $$N_{\\lambda\\mu}^{\\nu}=M_{\\pi\\lambda,\\pi\\mu}^{\\pi\\nu}$$ means that, for each $$\\mu$$ , the column vectors $$(\\underline{{x}}_{\\mu})_{\\nu}=$$\n$$\\widetilde{S}_{\\pi\\nu,\\pi\\mu}$$ are simultaneous eigenvectors for the fusion matrices $$N_{\\lambda}$$ , with eigenvalues $$\\widetilde{S}_{\\pi\\lambda,\\pi\\mu}/\\widetilde{S}_{0,\\pi\\mu}$$ .\nI t is easy to see from Verlinde\u2019s formula (1.1b) that any simultaneous eigenvec t or for a ll\nfusion matrices must be a scalar multiple of some column of $$S$$ . Thus there must be a\npermutation $$\\pi^{\\prime\\prime}$$ of $$P_{+}^{k}(X_{r}^{(1)})$$ and scalars $$\\alpha(\\mu)$$ such that $$\\widetilde{S}_{\\pi\\nu,\\pi\\mu}\\,=\\,\\alpha(\\mu)\\,S_{\\nu,\\pi^{\\prime\\prime}\\mu}$$ . Taking\n$$\\nu=0$$ forces $$\\alpha(\\mu)>0$$ , and then unitarity forces $$\\alpha(\\mu)=1$$ . \u25a0", "block_type": "text", "index": 5}, {"type": "text", "coordinates": [70, 349, 541, 391], "content": "Let $$\\pi$$ be any isomorphism, and let $$\\pi^{\\prime}$$ be as in the Lemma. Then $$\\pi^{\\prime}$$ is also an\nisomorphism, with $$(\\pi^{\\prime})^{\\prime}\\;=\\;\\pi$$ . Equation (2.2b) implies for all $$\\lambda\\:\\in\\:P_{+}$$ and all simple-\ncurrents $$j$$ , that", "block_type": "text", "index": 6}, {"type": "interline_equation", "coordinates": [190, 391, 422, 409], "content": "", "block_type": "interline_equation", "index": 7}, {"type": "text", "coordinates": [70, 414, 541, 458], "content": "Another quick consequence of the Lemma is that for any Galois automorphism $$\\sigma_{\\ell}$$\nand isomorphism $$\\pi$$ , we have $$\\tilde{\\epsilon}_{\\ell}(\\pi\\lambda)=\\epsilon_{\\ell}(\\lambda)$$ and $$\\pi(\\lambda^{(\\ell)})=(\\pi\\lambda)^{(\\ell)}$$ . To see this, apply the\ninvertibility of $$S$$ to the equation", "block_type": "text", "index": 8}, {"type": "interline_equation", "coordinates": [111, 468, 507, 488], "content": "", "block_type": "interline_equation", "index": 9}, {"type": "text", "coordinates": [69, 496, 542, 540], "content": "A very useful notion for studying the fusion ring is that of fusion-generator, i.e. a\nsubset $$\\Gamma=\\{\\gamma_{1},...,\\gamma_{m}\\}$$ of $$P_{+}$$ which generates $$\\mathcal{R}(X_{r,k})$$ as a ring. Diagonalising, this is\nequivalent to requiring that there are $$m$$ -variable polynomials $$P_{\\lambda}(x_{1},\\ldots,x_{m})$$ such that", "block_type": "text", "index": 10}, {"type": "interline_equation", "coordinates": [189, 552, 423, 582], "content": "", "block_type": "interline_equation", "index": 11}, {"type": "text", "coordinates": [69, 592, 541, 621], "content": "Let $$(\\pi,\\pi^{\\prime})$$ be an $$S$$ -symmetry, and suppose we know that $$\\pi\\gamma=\\gamma$$ for all $$\\gamma$$ in the fusion-\ngenerator $$\\Gamma$$ . Then for any $$\\lambda\\in P_{+}$$ ,", "block_type": "text", "index": 12}, {"type": "interline_equation", "coordinates": [146, 632, 465, 663], "content": "", "block_type": "interline_equation", "index": 13}, {"type": "text", "coordinates": [69, 672, 207, 686], "content": "for all $$\\mu\\in P_{+}$$ , so $$\\pi\\lambda=\\lambda$$ .", "block_type": "text", "index": 14}, {"type": "text", "coordinates": [70, 687, 541, 715], "content": "One of the reasons fusion-symmetries for the affine algebras are so tractible is the\nexistence of small fusion-generators. In particular, because we know that any Lie character", "block_type": "text", "index": 15}] | [{"type": "text", "coordinates": [70, 74, 139, 87], "content": "For instance ", "score": 1.0, "index": 1}, {"type": "inline_equation", "coordinates": [139, 79, 146, 84], "content": "\\pi", "score": 0.86, "index": 2}, {"type": "text", "coordinates": [147, 74, 207, 87], "content": " must send ", "score": 1.0, "index": 3}, {"type": "inline_equation", "coordinates": [208, 75, 216, 84], "content": "J", "score": 0.89, "index": 4}, {"type": "text", "coordinates": [216, 74, 298, 87], "content": "-fixed-points to ", "score": 1.0, "index": 5}, {"type": "inline_equation", "coordinates": [298, 75, 323, 87], "content": "\\pi(J)", "score": 0.94, "index": 6}, {"type": "text", "coordinates": [324, 74, 390, 87], "content": "-fixed-points.", "score": 1.0, "index": 7}, {"type": "text", "coordinates": [95, 88, 309, 102], "content": "More generally, a fusion-homomorphism ", "score": 1.0, "index": 8}, {"type": "inline_equation", "coordinates": [309, 93, 316, 99], "content": "\\pi", "score": 0.85, "index": 9}, {"type": "text", "coordinates": [317, 88, 541, 102], "content": " is defined in the obvious algebraic way. It", "score": 1.0, "index": 10}, {"type": "text", "coordinates": [70, 102, 212, 117], "content": "turns out that for such a ", "score": 1.0, "index": 11}, {"type": "inline_equation", "coordinates": [213, 108, 220, 113], "content": "\\pi", "score": 0.82, "index": 12}, {"type": "text", "coordinates": [220, 102, 228, 117], "content": ", ", "score": 1.0, "index": 13}, {"type": "inline_equation", "coordinates": [228, 104, 278, 115], "content": "\\pi\\lambda\\,=\\,\\pi\\mu", "score": 0.91, "index": 14}, {"type": "text", "coordinates": [278, 102, 298, 117], "content": " iff", "score": 1.0, "index": 15}, {"type": "inline_equation", "coordinates": [298, 104, 341, 115], "content": "\\mu\\,=\\,J\\lambda", "score": 0.93, "index": 16}, {"type": "text", "coordinates": [341, 102, 476, 117], "content": " for some simple-current ", "score": 1.0, "index": 17}, {"type": "inline_equation", "coordinates": [477, 105, 484, 113], "content": "J", "score": 0.9, "index": 18}, {"type": "text", "coordinates": [485, 102, 541, 117], "content": " for which", "score": 1.0, "index": 19}, {"type": "inline_equation", "coordinates": [71, 117, 124, 131], "content": "\\pi(J0)=\\tilde{0}", "score": 0.94, "index": 20}, {"type": "text", "coordinates": [124, 116, 187, 132], "content": ". Moreover, ", "score": 1.0, "index": 21}, {"type": "inline_equation", "coordinates": [187, 117, 240, 131], "content": "\\pi(J0)=\\tilde{0}", "score": 0.95, "index": 22}, {"type": "text", "coordinates": [241, 116, 404, 132], "content": " is possible only if there are no ", "score": 1.0, "index": 23}, {"type": "inline_equation", "coordinates": [404, 119, 412, 127], "content": "J", "score": 0.9, "index": 24}, {"type": "text", "coordinates": [413, 116, 520, 132], "content": "-fixed-points. When ", "score": 1.0, "index": 25}, {"type": "inline_equation", "coordinates": [520, 122, 528, 127], "content": "\\pi", "score": 0.88, "index": 26}, {"type": "text", "coordinates": [528, 116, 542, 132], "content": " is", "score": 1.0, "index": 27}, {"type": "text", "coordinates": [69, 131, 409, 149], "content": "one-to-one (e.g. when there are no nontrivial simple-currents in ", "score": 1.0, "index": 28}, {"type": "inline_equation", "coordinates": [410, 131, 463, 148], "content": "P_{+}^{k}(X_{r}^{(1)}))", "score": 0.93, "index": 29}, {"type": "text", "coordinates": [463, 131, 498, 149], "content": ", then ", "score": 1.0, "index": 30}, {"type": "inline_equation", "coordinates": [498, 138, 506, 144], "content": "\\pi", "score": 0.88, "index": 31}, {"type": "text", "coordinates": [506, 131, 542, 149], "content": " obeys", "score": 1.0, "index": 32}, {"type": "text", "coordinates": [72, 148, 366, 162], "content": "(2.6). Fusion-homomorphisms will be studied elsewhere.", "score": 1.0, "index": 33}, {"type": "text", "coordinates": [95, 162, 419, 176], "content": "The key to finding fusion-symmetries is the following Lemma.", "score": 1.0, "index": 34}, {"type": "text", "coordinates": [91, 178, 194, 201], "content": "Lemma 2.2. Let", "score": 1.0, "index": 35}, {"type": "inline_equation", "coordinates": [194, 183, 203, 196], "content": "\\widetilde{S}", "score": 0.87, "index": 36}, {"type": "text", "coordinates": [203, 178, 376, 201], "content": " be the Kac-Peterson matrix for ", "score": 1.0, "index": 37}, {"type": "inline_equation", "coordinates": [376, 181, 400, 197], "content": "Y_{s}^{(1)}", "score": 0.9, "index": 38}, {"type": "text", "coordinates": [400, 178, 431, 201], "content": "level ", "score": 1.0, "index": 39}, {"type": "inline_equation", "coordinates": [431, 186, 443, 196], "content": "m", "score": 0.46, "index": 40}, {"type": "text", "coordinates": [443, 178, 543, 201], "content": ". Then a bijection", "score": 1.0, "index": 41}, {"type": "inline_equation", "coordinates": [71, 198, 214, 216], "content": "\\pi\\,:\\,P_{+}^{k}(X_{r}^{(1)})\\,\\to\\,P_{+}^{m}(Y_{s}^{(1)})", "score": 0.92, "index": 42}, {"type": "text", "coordinates": [214, 195, 543, 218], "content": " defines an isomorphism of fusion rings iff there exists some", "score": 1.0, "index": 43}, {"type": "text", "coordinates": [68, 212, 119, 236], "content": "bijection ", "score": 1.0, "index": 44}, {"type": "inline_equation", "coordinates": [120, 216, 261, 233], "content": "\\pi^{\\prime}:P_{+}^{k}(X_{r}^{(1)})\\to P_{+}^{m}(Y_{s}^{(1)})", "score": 0.92, "index": 45}, {"type": "text", "coordinates": [261, 212, 317, 236], "content": " such that ", "score": 1.0, "index": 46}, {"type": "inline_equation", "coordinates": [317, 216, 392, 232], "content": "S_{\\lambda\\mu}=\\widetilde{S}_{\\pi\\lambda,\\pi^{\\prime}\\mu}", "score": 0.94, "index": 47}, {"type": "text", "coordinates": [392, 212, 433, 236], "content": " for all ", "score": 1.0, "index": 48}, {"type": "inline_equation", "coordinates": [433, 215, 518, 233], "content": "\\lambda,\\mu\\in P_{+}^{k}(X_{r}^{(1)})", "score": 0.91, "index": 49}, {"type": "text", "coordinates": [518, 212, 544, 236], "content": ". In", "score": 1.0, "index": 50}, {"type": "text", "coordinates": [70, 232, 205, 247], "content": "particular, a permutation ", "score": 1.0, "index": 51}, {"type": "inline_equation", "coordinates": [206, 238, 213, 243], "content": "\\pi", "score": 0.67, "index": 52}, {"type": "text", "coordinates": [213, 232, 344, 247], "content": " is a fusion-symmetry iff", "score": 1.0, "index": 53}, {"type": "inline_equation", "coordinates": [344, 233, 377, 246], "content": "(\\pi,\\pi^{\\prime})", "score": 0.92, "index": 54}, {"type": "text", "coordinates": [377, 232, 409, 247], "content": " is an ", "score": 1.0, "index": 55}, {"type": "inline_equation", "coordinates": [409, 234, 418, 244], "content": "S", "score": 0.83, "index": 56}, {"type": "text", "coordinates": [418, 232, 524, 247], "content": "-symmetry for some ", "score": 1.0, "index": 57}, {"type": "inline_equation", "coordinates": [525, 234, 536, 243], "content": "\\pi^{\\prime}", "score": 0.87, "index": 58}, {"type": "text", "coordinates": [536, 232, 541, 247], "content": ".", "score": 1.0, "index": 59}, {"type": "text", "coordinates": [68, 250, 185, 273], "content": "Proof. The equality ", "score": 1.0, "index": 60}, {"type": "inline_equation", "coordinates": [185, 256, 263, 270], "content": "N_{\\lambda\\mu}^{\\nu}=M_{\\pi\\lambda,\\pi\\mu}^{\\pi\\nu}", "score": 0.93, "index": 61}, {"type": "text", "coordinates": [263, 250, 378, 273], "content": " means that, for each ", "score": 1.0, "index": 62}, {"type": "inline_equation", "coordinates": [378, 256, 387, 267], "content": "\\mu", "score": 0.75, "index": 63}, {"type": "text", "coordinates": [387, 250, 497, 273], "content": ", the column vectors ", "score": 1.0, "index": 64}, {"type": "inline_equation", "coordinates": [498, 254, 542, 269], "content": "(\\underline{{x}}_{\\mu})_{\\nu}=", "score": 0.9, "index": 65}, {"type": "inline_equation", "coordinates": [71, 270, 105, 286], "content": "\\widetilde{S}_{\\pi\\nu,\\pi\\mu}", "score": 0.92, "index": 66}, {"type": "text", "coordinates": [105, 268, 377, 290], "content": " are simultaneous eigenvectors for the fusion matrices", "score": 1.0, "index": 67}, {"type": "inline_equation", "coordinates": [378, 272, 394, 284], "content": "N_{\\lambda}", "score": 0.89, "index": 68}, {"type": "text", "coordinates": [394, 268, 486, 290], "content": ", with eigenvalues", "score": 1.0, "index": 69}, {"type": "inline_equation", "coordinates": [487, 269, 555, 286], "content": "\\widetilde{S}_{\\pi\\lambda,\\pi\\mu}/\\widetilde{S}_{0,\\pi\\mu}", "score": 0.92, "index": 70}, {"type": "text", "coordinates": [555, 268, 559, 290], "content": ".", "score": 1.0, "index": 71}, {"type": "text", "coordinates": [70, 285, 542, 301], "content": "I t is easy to see from Verlinde\u2019s formula (1.1b) that any simultaneous eigenvec t or for a ll", "score": 1.0, "index": 72}, {"type": "text", "coordinates": [71, 300, 402, 315], "content": "fusion matrices must be a scalar multiple of some column of ", "score": 1.0, "index": 73}, {"type": "inline_equation", "coordinates": [402, 302, 410, 311], "content": "S", "score": 0.85, "index": 74}, {"type": "text", "coordinates": [411, 300, 542, 315], "content": ". Thus there must be a", "score": 1.0, "index": 75}, {"type": "text", "coordinates": [68, 312, 140, 335], "content": "permutation ", "score": 1.0, "index": 76}, {"type": "inline_equation", "coordinates": [141, 317, 155, 327], "content": "\\pi^{\\prime\\prime}", "score": 0.9, "index": 77}, {"type": "text", "coordinates": [155, 312, 174, 335], "content": " of ", "score": 1.0, "index": 78}, {"type": "inline_equation", "coordinates": [174, 314, 223, 331], "content": "P_{+}^{k}(X_{r}^{(1)})", "score": 0.95, "index": 79}, {"type": "text", "coordinates": [224, 312, 293, 335], "content": " and scalars ", "score": 1.0, "index": 80}, {"type": "inline_equation", "coordinates": [293, 317, 317, 330], "content": "\\alpha(\\mu)", "score": 0.94, "index": 81}, {"type": "text", "coordinates": [318, 312, 378, 335], "content": " such that", "score": 1.0, "index": 82}, {"type": "inline_equation", "coordinates": [378, 315, 491, 330], "content": "\\widetilde{S}_{\\pi\\nu,\\pi\\mu}\\,=\\,\\alpha(\\mu)\\,S_{\\nu,\\pi^{\\prime\\prime}\\mu}", "score": 0.92, "index": 83}, {"type": "text", "coordinates": [492, 312, 543, 335], "content": ". Taking", "score": 1.0, "index": 84}, {"type": "inline_equation", "coordinates": [71, 333, 100, 342], "content": "\\nu=0", "score": 0.91, "index": 85}, {"type": "text", "coordinates": [100, 331, 137, 345], "content": " forces ", "score": 1.0, "index": 86}, {"type": "inline_equation", "coordinates": [137, 332, 184, 344], "content": "\\alpha(\\mu)>0", "score": 0.94, "index": 87}, {"type": "text", "coordinates": [184, 331, 325, 345], "content": ", and then unitarity forces ", "score": 1.0, "index": 88}, {"type": "inline_equation", "coordinates": [325, 332, 371, 344], "content": "\\alpha(\\mu)=1", "score": 0.94, "index": 89}, {"type": "text", "coordinates": [372, 331, 377, 345], "content": ". ", "score": 1.0, "index": 90}, {"type": "text", "coordinates": [401, 332, 412, 344], "content": "\u25a0", "score": 0.9251790046691895, "index": 91}, {"type": "text", "coordinates": [92, 351, 118, 366], "content": "Let ", "score": 1.0, "index": 92}, {"type": "inline_equation", "coordinates": [119, 357, 126, 362], "content": "\\pi", "score": 0.86, "index": 93}, {"type": "text", "coordinates": [126, 351, 294, 366], "content": " be any isomorphism, and let ", "score": 1.0, "index": 94}, {"type": "inline_equation", "coordinates": [294, 353, 305, 362], "content": "\\pi^{\\prime}", "score": 0.9, "index": 95}, {"type": "text", "coordinates": [306, 351, 470, 366], "content": " be as in the Lemma. Then ", "score": 1.0, "index": 96}, {"type": "inline_equation", "coordinates": [470, 353, 481, 362], "content": "\\pi^{\\prime}", "score": 0.89, "index": 97}, {"type": "text", "coordinates": [482, 351, 541, 366], "content": " is also an", "score": 1.0, "index": 98}, {"type": "text", "coordinates": [71, 367, 175, 381], "content": "isomorphism, with ", "score": 1.0, "index": 99}, {"type": "inline_equation", "coordinates": [175, 367, 227, 380], "content": "(\\pi^{\\prime})^{\\prime}\\;=\\;\\pi", "score": 0.94, "index": 100}, {"type": "text", "coordinates": [228, 367, 410, 381], "content": ". Equation (2.2b) implies for all ", "score": 1.0, "index": 101}, {"type": "inline_equation", "coordinates": [411, 367, 453, 380], "content": "\\lambda\\:\\in\\:P_{+}", "score": 0.91, "index": 102}, {"type": "text", "coordinates": [454, 367, 538, 381], "content": " and all simple-", "score": 1.0, "index": 103}, {"type": "text", "coordinates": [71, 382, 117, 393], "content": "currents ", "score": 1.0, "index": 104}, {"type": "inline_equation", "coordinates": [117, 383, 123, 393], "content": "j", "score": 0.88, "index": 105}, {"type": "text", "coordinates": [124, 382, 154, 393], "content": ", that", "score": 1.0, "index": 106}, {"type": "interline_equation", "coordinates": [190, 391, 422, 409], "content": "Q_{j}(\\lambda)\\equiv\\widetilde{Q}_{\\pi^{\\prime}j}(\\pi\\lambda)\\equiv\\widetilde{Q}_{\\pi j}(\\pi^{\\prime}\\lambda)\\qquad(\\mathrm{mod~1})~.", "score": 0.92, "index": 107}, {"type": "text", "coordinates": [94, 416, 528, 432], "content": "Another quick consequence of the Lemma is that for any Galois automorphism ", "score": 1.0, "index": 108}, {"type": "inline_equation", "coordinates": [528, 422, 539, 429], "content": "\\sigma_{\\ell}", "score": 0.86, "index": 109}, {"type": "text", "coordinates": [69, 430, 164, 447], "content": "and isomorphism ", "score": 1.0, "index": 110}, {"type": "inline_equation", "coordinates": [165, 436, 172, 442], "content": "\\pi", "score": 0.86, "index": 111}, {"type": "text", "coordinates": [173, 430, 225, 447], "content": ", we have ", "score": 1.0, "index": 112}, {"type": "inline_equation", "coordinates": [225, 432, 300, 444], "content": "\\tilde{\\epsilon}_{\\ell}(\\pi\\lambda)=\\epsilon_{\\ell}(\\lambda)", "score": 0.94, "index": 113}, {"type": "text", "coordinates": [301, 430, 327, 447], "content": " and ", "score": 1.0, "index": 114}, {"type": "inline_equation", "coordinates": [328, 430, 416, 445], "content": "\\pi(\\lambda^{(\\ell)})=(\\pi\\lambda)^{(\\ell)}", "score": 0.94, "index": 115}, {"type": "text", "coordinates": [416, 430, 542, 447], "content": ". To see this, apply the", "score": 1.0, "index": 116}, {"type": "text", "coordinates": [71, 445, 149, 460], "content": "invertibility of ", "score": 1.0, "index": 117}, {"type": "inline_equation", "coordinates": [150, 447, 158, 456], "content": "S", "score": 0.91, "index": 118}, {"type": "text", "coordinates": [158, 445, 243, 460], "content": " to the equation", "score": 1.0, "index": 119}, {"type": "interline_equation", "coordinates": [111, 468, 507, 488], "content": "\\left\\varepsilon(\\lambda\\right)S_{\\lambda^{(\\ell)},\\mu}=\\sigma_{\\ell}S_{\\lambda\\mu}=\\sigma_{\\ell}\\widetilde{S}_{\\pi\\lambda,\\pi^{\\prime}\\mu}=\\widetilde{\\epsilon}_{\\ell}(\\pi\\lambda)\\,\\widetilde{S}_{(\\pi\\lambda)^{(\\ell)},\\pi^{\\prime}\\mu}=\\widetilde{\\epsilon}_{\\ell}(\\pi\\lambda)\\,S_{\\pi^{-1}(\\pi\\lambda)^{(\\ell)},\\mu}\\ .", "score": 0.9, "index": 120}, {"type": "text", "coordinates": [95, 498, 542, 514], "content": "A very useful notion for studying the fusion ring is that of fusion-generator, i.e. a", "score": 1.0, "index": 121}, {"type": "text", "coordinates": [70, 511, 108, 529], "content": "subset ", "score": 1.0, "index": 122}, {"type": "inline_equation", "coordinates": [108, 514, 199, 527], "content": "\\Gamma=\\{\\gamma_{1},...,\\gamma_{m}\\}", "score": 0.93, "index": 123}, {"type": "text", "coordinates": [200, 511, 217, 529], "content": " of ", "score": 1.0, "index": 124}, {"type": "inline_equation", "coordinates": [218, 515, 233, 526], "content": "P_{+}", "score": 0.92, "index": 125}, {"type": "text", "coordinates": [234, 511, 325, 529], "content": " which generates ", "score": 1.0, "index": 126}, {"type": "inline_equation", "coordinates": [325, 513, 369, 527], "content": "\\mathcal{R}(X_{r,k})", "score": 0.93, "index": 127}, {"type": "text", "coordinates": [369, 511, 542, 529], "content": " as a ring. Diagonalising, this is", "score": 1.0, "index": 128}, {"type": "text", "coordinates": [72, 527, 270, 543], "content": "equivalent to requiring that there are ", "score": 1.0, "index": 129}, {"type": "inline_equation", "coordinates": [270, 532, 281, 538], "content": "m", "score": 0.78, "index": 130}, {"type": "text", "coordinates": [281, 527, 396, 543], "content": "-variable polynomials ", "score": 1.0, "index": 131}, {"type": "inline_equation", "coordinates": [396, 528, 474, 541], "content": "P_{\\lambda}(x_{1},\\ldots,x_{m})", "score": 0.93, "index": 132}, {"type": "text", "coordinates": [474, 527, 529, 543], "content": " such that", "score": 1.0, "index": 133}, {"type": "interline_equation", "coordinates": [189, 552, 423, 582], "content": "\\frac{S_{\\lambda\\mu}}{S_{0\\mu}}=P_{\\lambda}(\\frac{S_{\\gamma_{1}\\mu}}{S_{0\\mu}},\\ldots,\\frac{S_{\\gamma_{m}\\mu}}{S_{0\\mu}})\\qquad\\forall\\lambda,\\mu\\in{\\cal P}_{+}\\ .", "score": 0.93, "index": 134}, {"type": "text", "coordinates": [70, 594, 93, 609], "content": "Let ", "score": 1.0, "index": 135}, {"type": "inline_equation", "coordinates": [93, 595, 126, 608], "content": "(\\pi,\\pi^{\\prime})", "score": 0.94, "index": 136}, {"type": "text", "coordinates": [126, 594, 163, 609], "content": " be an ", "score": 1.0, "index": 137}, {"type": "inline_equation", "coordinates": [164, 596, 172, 605], "content": "S", "score": 0.9, "index": 138}, {"type": "text", "coordinates": [172, 594, 378, 609], "content": "-symmetry, and suppose we know that ", "score": 1.0, "index": 139}, {"type": "inline_equation", "coordinates": [379, 596, 418, 607], "content": "\\pi\\gamma=\\gamma", "score": 0.84, "index": 140}, {"type": "text", "coordinates": [419, 594, 457, 609], "content": " for all ", "score": 1.0, "index": 141}, {"type": "inline_equation", "coordinates": [457, 599, 465, 607], "content": "\\gamma", "score": 0.89, "index": 142}, {"type": "text", "coordinates": [465, 594, 540, 609], "content": " in the fusion-", "score": 1.0, "index": 143}, {"type": "text", "coordinates": [70, 608, 124, 624], "content": "generator ", "score": 1.0, "index": 144}, {"type": "inline_equation", "coordinates": [124, 610, 132, 619], "content": "\\Gamma", "score": 0.88, "index": 145}, {"type": "text", "coordinates": [132, 608, 212, 624], "content": ". Then for any ", "score": 1.0, "index": 146}, {"type": "inline_equation", "coordinates": [213, 610, 250, 622], "content": "\\lambda\\in P_{+}", "score": 0.93, "index": 147}, {"type": "text", "coordinates": [250, 608, 254, 624], "content": ",", "score": 1.0, "index": 148}, {"type": "interline_equation", "coordinates": [146, 632, 465, 663], "content": "{\\frac{S_{\\lambda\\mu}}{S_{0\\mu}}}={\\frac{S_{\\pi\\lambda,\\pi^{\\prime}\\mu}}{S_{0,\\pi^{\\prime}\\mu}}}=P_{\\pi\\lambda}({\\frac{S_{\\gamma_{1},\\pi^{\\prime}\\mu}}{S_{0,\\pi^{\\prime}\\mu}}},\\dots)=P_{\\pi\\lambda}({\\frac{S_{\\gamma_{1}\\mu}}{S_{0\\mu}}},\\dots)={\\frac{S_{\\pi\\lambda,\\mu}}{S_{0\\mu}}}", "score": 0.93, "index": 149}, {"type": "text", "coordinates": [71, 674, 106, 687], "content": "for all ", "score": 1.0, "index": 150}, {"type": "inline_equation", "coordinates": [106, 676, 144, 687], "content": "\\mu\\in P_{+}", "score": 0.93, "index": 151}, {"type": "text", "coordinates": [144, 674, 165, 687], "content": ", so ", "score": 1.0, "index": 152}, {"type": "inline_equation", "coordinates": [165, 676, 203, 685], "content": "\\pi\\lambda=\\lambda", "score": 0.93, "index": 153}, {"type": "text", "coordinates": [203, 674, 207, 687], "content": ".", "score": 1.0, "index": 154}, {"type": "text", "coordinates": [95, 689, 541, 703], "content": "One of the reasons fusion-symmetries for the affine algebras are so tractible is the", "score": 1.0, "index": 155}, {"type": "text", "coordinates": [72, 703, 540, 717], "content": "existence of small fusion-generators. In particular, because we know that any Lie character", "score": 1.0, "index": 156}] | [] | [{"type": "block", "coordinates": [190, 391, 422, 409], "content": "", "caption": ""}, {"type": "block", "coordinates": [111, 468, 507, 488], "content": "", "caption": ""}, {"type": "block", "coordinates": [189, 552, 423, 582], "content": "", "caption": ""}, {"type": "block", "coordinates": [146, 632, 465, 663], "content": "", "caption": ""}, {"type": "inline", "coordinates": [139, 79, 146, 84], "content": "\\pi", "caption": ""}, {"type": "inline", "coordinates": [208, 75, 216, 84], "content": "J", "caption": ""}, {"type": "inline", "coordinates": [298, 75, 323, 87], "content": "\\pi(J)", "caption": ""}, {"type": "inline", "coordinates": [309, 93, 316, 99], "content": "\\pi", "caption": ""}, {"type": "inline", "coordinates": [213, 108, 220, 113], "content": "\\pi", "caption": ""}, {"type": "inline", "coordinates": [228, 104, 278, 115], "content": "\\pi\\lambda\\,=\\,\\pi\\mu", "caption": ""}, {"type": "inline", "coordinates": [298, 104, 341, 115], "content": "\\mu\\,=\\,J\\lambda", "caption": ""}, {"type": "inline", "coordinates": [477, 105, 484, 113], "content": "J", "caption": ""}, {"type": "inline", "coordinates": [71, 117, 124, 131], "content": "\\pi(J0)=\\tilde{0}", "caption": ""}, {"type": "inline", "coordinates": [187, 117, 240, 131], "content": "\\pi(J0)=\\tilde{0}", "caption": ""}, {"type": "inline", "coordinates": [404, 119, 412, 127], "content": "J", "caption": ""}, {"type": "inline", "coordinates": [520, 122, 528, 127], "content": "\\pi", "caption": ""}, {"type": "inline", "coordinates": [410, 131, 463, 148], "content": "P_{+}^{k}(X_{r}^{(1)}))", "caption": ""}, {"type": "inline", "coordinates": [498, 138, 506, 144], "content": "\\pi", "caption": ""}, {"type": "inline", "coordinates": [194, 183, 203, 196], "content": "\\widetilde{S}", "caption": ""}, {"type": "inline", "coordinates": [376, 181, 400, 197], "content": "Y_{s}^{(1)}", "caption": ""}, {"type": "inline", "coordinates": [431, 186, 443, 196], "content": "m", "caption": ""}, {"type": "inline", "coordinates": [71, 198, 214, 216], "content": "\\pi\\,:\\,P_{+}^{k}(X_{r}^{(1)})\\,\\to\\,P_{+}^{m}(Y_{s}^{(1)})", "caption": ""}, {"type": "inline", "coordinates": [120, 216, 261, 233], "content": "\\pi^{\\prime}:P_{+}^{k}(X_{r}^{(1)})\\to P_{+}^{m}(Y_{s}^{(1)})", "caption": ""}, {"type": "inline", "coordinates": [317, 216, 392, 232], "content": "S_{\\lambda\\mu}=\\widetilde{S}_{\\pi\\lambda,\\pi^{\\prime}\\mu}", "caption": ""}, {"type": "inline", "coordinates": [433, 215, 518, 233], "content": "\\lambda,\\mu\\in P_{+}^{k}(X_{r}^{(1)})", "caption": ""}, {"type": "inline", "coordinates": [206, 238, 213, 243], "content": "\\pi", "caption": ""}, {"type": "inline", "coordinates": [344, 233, 377, 246], "content": "(\\pi,\\pi^{\\prime})", "caption": ""}, {"type": "inline", "coordinates": [409, 234, 418, 244], "content": "S", "caption": ""}, {"type": "inline", "coordinates": [525, 234, 536, 243], "content": "\\pi^{\\prime}", "caption": ""}, {"type": "inline", "coordinates": [185, 256, 263, 270], "content": "N_{\\lambda\\mu}^{\\nu}=M_{\\pi\\lambda,\\pi\\mu}^{\\pi\\nu}", "caption": ""}, {"type": "inline", "coordinates": [378, 256, 387, 267], "content": "\\mu", "caption": ""}, {"type": "inline", "coordinates": [498, 254, 542, 269], "content": "(\\underline{{x}}_{\\mu})_{\\nu}=", "caption": ""}, {"type": "inline", "coordinates": [71, 270, 105, 286], "content": "\\widetilde{S}_{\\pi\\nu,\\pi\\mu}", "caption": ""}, {"type": "inline", "coordinates": [378, 272, 394, 284], "content": "N_{\\lambda}", "caption": ""}, {"type": "inline", "coordinates": [487, 269, 555, 286], "content": "\\widetilde{S}_{\\pi\\lambda,\\pi\\mu}/\\widetilde{S}_{0,\\pi\\mu}", "caption": ""}, {"type": "inline", "coordinates": [402, 302, 410, 311], "content": "S", "caption": ""}, {"type": "inline", "coordinates": [141, 317, 155, 327], "content": "\\pi^{\\prime\\prime}", "caption": ""}, {"type": "inline", "coordinates": [174, 314, 223, 331], "content": "P_{+}^{k}(X_{r}^{(1)})", "caption": ""}, {"type": "inline", "coordinates": [293, 317, 317, 330], "content": "\\alpha(\\mu)", "caption": ""}, {"type": "inline", "coordinates": [378, 315, 491, 330], "content": "\\widetilde{S}_{\\pi\\nu,\\pi\\mu}\\,=\\,\\alpha(\\mu)\\,S_{\\nu,\\pi^{\\prime\\prime}\\mu}", "caption": ""}, {"type": "inline", "coordinates": [71, 333, 100, 342], "content": "\\nu=0", "caption": ""}, {"type": "inline", "coordinates": [137, 332, 184, 344], "content": "\\alpha(\\mu)>0", "caption": ""}, {"type": "inline", "coordinates": [325, 332, 371, 344], "content": "\\alpha(\\mu)=1", "caption": ""}, {"type": "inline", "coordinates": [119, 357, 126, 362], "content": "\\pi", "caption": ""}, {"type": "inline", "coordinates": [294, 353, 305, 362], "content": "\\pi^{\\prime}", "caption": ""}, {"type": "inline", "coordinates": [470, 353, 481, 362], "content": "\\pi^{\\prime}", "caption": ""}, {"type": "inline", "coordinates": [175, 367, 227, 380], "content": "(\\pi^{\\prime})^{\\prime}\\;=\\;\\pi", "caption": ""}, {"type": "inline", "coordinates": [411, 367, 453, 380], "content": "\\lambda\\:\\in\\:P_{+}", "caption": ""}, {"type": "inline", "coordinates": [117, 383, 123, 393], "content": "j", "caption": ""}, {"type": "inline", "coordinates": [528, 422, 539, 429], "content": "\\sigma_{\\ell}", "caption": ""}, {"type": "inline", "coordinates": [165, 436, 172, 442], "content": "\\pi", "caption": ""}, {"type": "inline", "coordinates": [225, 432, 300, 444], "content": "\\tilde{\\epsilon}_{\\ell}(\\pi\\lambda)=\\epsilon_{\\ell}(\\lambda)", "caption": ""}, {"type": "inline", "coordinates": [328, 430, 416, 445], "content": "\\pi(\\lambda^{(\\ell)})=(\\pi\\lambda)^{(\\ell)}", "caption": ""}, {"type": "inline", "coordinates": [150, 447, 158, 456], "content": "S", "caption": ""}, {"type": "inline", "coordinates": [108, 514, 199, 527], "content": "\\Gamma=\\{\\gamma_{1},...,\\gamma_{m}\\}", "caption": ""}, {"type": "inline", "coordinates": [218, 515, 233, 526], "content": "P_{+}", "caption": ""}, {"type": "inline", "coordinates": [325, 513, 369, 527], "content": "\\mathcal{R}(X_{r,k})", "caption": ""}, {"type": "inline", "coordinates": [270, 532, 281, 538], "content": "m", "caption": ""}, {"type": "inline", "coordinates": [396, 528, 474, 541], "content": "P_{\\lambda}(x_{1},\\ldots,x_{m})", "caption": ""}, {"type": "inline", "coordinates": [93, 595, 126, 608], "content": "(\\pi,\\pi^{\\prime})", "caption": ""}, {"type": "inline", "coordinates": [164, 596, 172, 605], "content": "S", "caption": ""}, {"type": "inline", "coordinates": [379, 596, 418, 607], "content": "\\pi\\gamma=\\gamma", "caption": ""}, {"type": "inline", "coordinates": [457, 599, 465, 607], "content": "\\gamma", "caption": ""}, {"type": "inline", "coordinates": [124, 610, 132, 619], "content": "\\Gamma", "caption": ""}, {"type": "inline", "coordinates": [213, 610, 250, 622], "content": "\\lambda\\in P_{+}", "caption": ""}, {"type": "inline", "coordinates": [106, 676, 144, 687], "content": "\\mu\\in P_{+}", "caption": ""}, {"type": "inline", "coordinates": [165, 676, 203, 685], "content": "\\pi\\lambda=\\lambda", "caption": ""}] | [] | [612.0, 792.0] | [{"type": "text", "text": "For instance $\\pi$ must send $J$ -fixed-points to $\\pi(J)$ -fixed-points. ", "page_idx": 6}, {"type": "text", "text": "More generally, a fusion-homomorphism $\\pi$ is defined in the obvious algebraic way. It turns out that for such a $\\pi$ , $\\pi\\lambda\\,=\\,\\pi\\mu$ iff $\\mu\\,=\\,J\\lambda$ for some simple-current $J$ for which $\\pi(J0)=\\tilde{0}$ . Moreover, $\\pi(J0)=\\tilde{0}$ is possible only if there are no $J$ -fixed-points. When $\\pi$ is one-to-one (e.g. when there are no nontrivial simple-currents in $P_{+}^{k}(X_{r}^{(1)}))$ , then $\\pi$ obeys (2.6). Fusion-homomorphisms will be studied elsewhere. ", "page_idx": 6}, {"type": "text", "text": "The key to finding fusion-symmetries is the following Lemma. ", "page_idx": 6}, {"type": "text", "text": "Lemma 2.2. Let $\\widetilde{S}$ be the Kac-Peterson matrix for $Y_{s}^{(1)}$ level $m$ . Then a bijection $\\pi\\,:\\,P_{+}^{k}(X_{r}^{(1)})\\,\\to\\,P_{+}^{m}(Y_{s}^{(1)})$ defines an isomorphism of fusion rings iff there exists some bijection $\\pi^{\\prime}:P_{+}^{k}(X_{r}^{(1)})\\to P_{+}^{m}(Y_{s}^{(1)})$ such that $S_{\\lambda\\mu}=\\widetilde{S}_{\\pi\\lambda,\\pi^{\\prime}\\mu}$ for all $\\lambda,\\mu\\in P_{+}^{k}(X_{r}^{(1)})$ . In particular, a permutation $\\pi$ is a fusion-symmetry iff $(\\pi,\\pi^{\\prime})$ is an $S$ -symmetry for some $\\pi^{\\prime}$ . ", "page_idx": 6}, {"type": "text", "text": "Proof. The equality $N_{\\lambda\\mu}^{\\nu}=M_{\\pi\\lambda,\\pi\\mu}^{\\pi\\nu}$ means that, for each $\\mu$ , the column vectors $(\\underline{{x}}_{\\mu})_{\\nu}=$ $\\widetilde{S}_{\\pi\\nu,\\pi\\mu}$ are simultaneous eigenvectors for the fusion matrices $N_{\\lambda}$ , with eigenvalues $\\widetilde{S}_{\\pi\\lambda,\\pi\\mu}/\\widetilde{S}_{0,\\pi\\mu}$ . I t is easy to see from Verlinde\u2019s formula (1.1b) that any simultaneous eigenvec t or for a ll fusion matrices must be a scalar multiple of some column of $S$ . Thus there must be a permutation $\\pi^{\\prime\\prime}$ of $P_{+}^{k}(X_{r}^{(1)})$ and scalars $\\alpha(\\mu)$ such that $\\widetilde{S}_{\\pi\\nu,\\pi\\mu}\\,=\\,\\alpha(\\mu)\\,S_{\\nu,\\pi^{\\prime\\prime}\\mu}$ . Taking $\\nu=0$ forces $\\alpha(\\mu)>0$ , and then unitarity forces $\\alpha(\\mu)=1$ . \u25a0 ", "page_idx": 6}, {"type": "text", "text": "Let $\\pi$ be any isomorphism, and let $\\pi^{\\prime}$ be as in the Lemma. Then $\\pi^{\\prime}$ is also an isomorphism, with $(\\pi^{\\prime})^{\\prime}\\;=\\;\\pi$ . Equation (2.2b) implies for all $\\lambda\\:\\in\\:P_{+}$ and all simplecurrents $j$ , that ", "page_idx": 6}, {"type": "equation", "text": "$$\nQ_{j}(\\lambda)\\equiv\\widetilde{Q}_{\\pi^{\\prime}j}(\\pi\\lambda)\\equiv\\widetilde{Q}_{\\pi j}(\\pi^{\\prime}\\lambda)\\qquad(\\mathrm{mod~1})~.\n$$", "text_format": "latex", "page_idx": 6}, {"type": "text", "text": "Another quick consequence of the Lemma is that for any Galois automorphism $\\sigma_{\\ell}$ and isomorphism $\\pi$ , we have $\\tilde{\\epsilon}_{\\ell}(\\pi\\lambda)=\\epsilon_{\\ell}(\\lambda)$ and $\\pi(\\lambda^{(\\ell)})=(\\pi\\lambda)^{(\\ell)}$ . To see this, apply the invertibility of $S$ to the equation ", "page_idx": 6}, {"type": "equation", "text": "$$\n\\left\\varepsilon(\\lambda\\right)S_{\\lambda^{(\\ell)},\\mu}=\\sigma_{\\ell}S_{\\lambda\\mu}=\\sigma_{\\ell}\\widetilde{S}_{\\pi\\lambda,\\pi^{\\prime}\\mu}=\\widetilde{\\epsilon}_{\\ell}(\\pi\\lambda)\\,\\widetilde{S}_{(\\pi\\lambda)^{(\\ell)},\\pi^{\\prime}\\mu}=\\widetilde{\\epsilon}_{\\ell}(\\pi\\lambda)\\,S_{\\pi^{-1}(\\pi\\lambda)^{(\\ell)},\\mu}\\ .\n$$", "text_format": "latex", "page_idx": 6}, {"type": "text", "text": "A very useful notion for studying the fusion ring is that of fusion-generator, i.e. a subset $\\Gamma=\\{\\gamma_{1},...,\\gamma_{m}\\}$ of $P_{+}$ which generates $\\mathcal{R}(X_{r,k})$ as a ring. Diagonalising, this is equivalent to requiring that there are $m$ -variable polynomials $P_{\\lambda}(x_{1},\\ldots,x_{m})$ such that ", "page_idx": 6}, {"type": "equation", "text": "$$\n\\frac{S_{\\lambda\\mu}}{S_{0\\mu}}=P_{\\lambda}(\\frac{S_{\\gamma_{1}\\mu}}{S_{0\\mu}},\\ldots,\\frac{S_{\\gamma_{m}\\mu}}{S_{0\\mu}})\\qquad\\forall\\lambda,\\mu\\in{\\cal P}_{+}\\ .\n$$", "text_format": "latex", "page_idx": 6}, {"type": "text", "text": "Let $(\\pi,\\pi^{\\prime})$ be an $S$ -symmetry, and suppose we know that $\\pi\\gamma=\\gamma$ for all $\\gamma$ in the fusiongenerator $\\Gamma$ . Then for any $\\lambda\\in P_{+}$ , ", "page_idx": 6}, {"type": "equation", "text": "$$\n{\\frac{S_{\\lambda\\mu}}{S_{0\\mu}}}={\\frac{S_{\\pi\\lambda,\\pi^{\\prime}\\mu}}{S_{0,\\pi^{\\prime}\\mu}}}=P_{\\pi\\lambda}({\\frac{S_{\\gamma_{1},\\pi^{\\prime}\\mu}}{S_{0,\\pi^{\\prime}\\mu}}},\\dots)=P_{\\pi\\lambda}({\\frac{S_{\\gamma_{1}\\mu}}{S_{0\\mu}}},\\dots)={\\frac{S_{\\pi\\lambda,\\mu}}{S_{0\\mu}}}\n$$", "text_format": "latex", "page_idx": 6}, {"type": "text", "text": "for all $\\mu\\in P_{+}$ , so $\\pi\\lambda=\\lambda$ . ", "page_idx": 6}, {"type": "text", "text": "One of the reasons fusion-symmetries for the affine algebras are so tractible is the existence of small fusion-generators. In particular, because we know that any Lie character $\\mathrm{ch}_{\\overline{{{\\mu}}}}$ for $X_{r}$ can be written as a polynomial in the fundamental characters $\\mathrm{ch}_{\\Lambda_{1}},\\ldots,\\mathrm{ch}_{\\Lambda_{r}}$ , we know from (2.1b) that $\\Gamma=\\{\\Lambda_{1},\\dots,\\Lambda_{r}\\}$ is a fusion-generator for $X_{r}^{(1)}$ at any level $k$ sufficiently large that $P_{+}$ contains all $\\Lambda_{i}$ (in other words, for any $k\\geq\\operatorname*{max}_{i}a_{i}^{\\vee}$ ). In fact, it is easy to show [18] that a fusion-generator valid for any $X_{r,k}$ is $\\{\\Lambda_{1},\\ldots,\\Lambda_{r}\\}\\cap{\\cal P}_{+}$ . Smaller fusion-generators usually exist \u2014 for example $\\{\\Lambda_{1}\\}$ is a fusion-generator for $A_{8,k}$ whenever $k$ is even and coprime to 3. ", "page_idx": 6}] | [{"category_id": 1, "poly": [196, 241, 1507, 241, 1507, 445, 196, 445], "score": 0.982}, {"category_id": 1, "poly": [195, 970, 1505, 970, 1505, 1088, 195, 1088], "score": 0.968}, {"category_id": 1, "poly": [197, 697, 1552, 697, 1552, 957, 197, 957], "score": 0.965}, {"category_id": 1, "poly": [194, 1645, 1504, 1645, 1504, 1726, 194, 1726], "score": 0.965}, {"category_id": 1, "poly": [193, 1379, 1508, 1379, 1508, 1502, 193, 1502], "score": 0.963}, {"category_id": 1, "poly": [196, 1151, 1505, 1151, 1505, 1273, 196, 1273], "score": 0.963}, {"category_id": 1, "poly": [195, 1909, 1504, 1909, 1504, 1988, 195, 1988], "score": 0.956}, {"category_id": 8, "poly": [402, 1750, 1296, 1750, 1296, 1845, 402, 1845], "score": 0.949}, {"category_id": 8, "poly": [523, 1526, 1172, 1526, 1172, 1619, 523, 1619], "score": 0.945}, {"category_id": 1, "poly": [195, 501, 1510, 501, 1510, 685, 195, 685], "score": 0.931}, {"category_id": 8, "poly": [287, 1298, 1409, 1298, 1409, 1356, 287, 1356], "score": 0.921}, {"category_id": 1, "poly": [194, 1867, 575, 1867, 575, 1907, 194, 1907], "score": 0.911}, {"category_id": 1, "poly": [195, 197, 1090, 197, 1090, 238, 195, 238], "score": 0.898}, {"category_id": 9, "poly": [1416, 1091, 1501, 1091, 1501, 1131, 1416, 1131], "score": 0.889}, {"category_id": 1, "poly": [264, 445, 1167, 445, 1167, 486, 264, 486], "score": 0.84}, {"category_id": 8, "poly": [523, 1087, 1174, 1087, 1174, 1137, 523, 1137], "score": 0.612}, {"category_id": 8, "poly": [523, 1087, 1170, 1087, 1170, 1138, 523, 1138], "score": 0.405}, {"category_id": 13, "poly": [522, 325, 669, 325, 669, 364, 522, 364], "score": 0.95, "latex": "\\pi(J0)=\\tilde{0}"}, {"category_id": 13, "poly": [486, 874, 622, 874, 622, 921, 486, 921], "score": 0.95, "latex": "P_{+}^{k}(X_{r}^{(1)})"}, {"category_id": 13, "poly": [488, 1021, 633, 1021, 633, 1057, 488, 1057], "score": 0.94, "latex": "(\\pi^{\\prime})^{\\prime}\\;=\\;\\pi"}, {"category_id": 13, "poly": [912, 1196, 1156, 1196, 1156, 1237, 912, 1237], "score": 0.94, "latex": "\\pi(\\lambda^{(\\ell)})=(\\pi\\lambda)^{(\\ell)}"}, {"category_id": 13, "poly": [830, 209, 899, 209, 899, 244, 830, 244], "score": 0.94, "latex": "\\pi(J)"}, {"category_id": 13, "poly": [199, 325, 345, 325, 345, 364, 199, 364], "score": 0.94, "latex": "\\pi(J0)=\\tilde{0}"}, {"category_id": 13, "poly": [383, 923, 512, 923, 512, 958, 383, 958], "score": 0.94, "latex": "\\alpha(\\mu)>0"}, {"category_id": 13, "poly": [260, 1654, 350, 1654, 350, 1689, 260, 1689], "score": 0.94, "latex": "(\\pi,\\pi^{\\prime})"}, {"category_id": 13, "poly": [815, 883, 883, 883, 883, 917, 815, 917], "score": 0.94, "latex": "\\alpha(\\mu)"}, {"category_id": 13, "poly": [627, 1202, 836, 1202, 836, 1236, 627, 1236], "score": 0.94, "latex": "\\tilde{\\epsilon}_{\\ell}(\\pi\\lambda)=\\epsilon_{\\ell}(\\lambda)"}, {"category_id": 13, "poly": [904, 923, 1033, 923, 1033, 958, 904, 958], "score": 0.94, "latex": "\\alpha(\\mu)=1"}, {"category_id": 13, "poly": [883, 600, 1090, 600, 1090, 647, 883, 647], "score": 0.94, "latex": "S_{\\lambda\\mu}=\\widetilde{S}_{\\pi\\lambda,\\pi^{\\prime}\\mu}"}, {"category_id": 13, "poly": [516, 712, 732, 712, 732, 750, 516, 750], "score": 0.93, "latex": "N_{\\lambda\\mu}^{\\nu}=M_{\\pi\\lambda,\\pi\\mu}^{\\pi\\nu}"}, {"category_id": 13, "poly": [1139, 365, 1287, 365, 1287, 412, 1139, 412], "score": 0.93, "latex": "P_{+}^{k}(X_{r}^{(1)}))"}, {"category_id": 13, "poly": [302, 1429, 555, 1429, 555, 1464, 302, 1464], "score": 0.93, "latex": "\\Gamma=\\{\\gamma_{1},...,\\gamma_{m}\\}"}, {"category_id": 13, "poly": [905, 1425, 1025, 1425, 1025, 1464, 905, 1464], "score": 0.93, "latex": "\\mathcal{R}(X_{r,k})"}, {"category_id": 13, "poly": [297, 1879, 401, 1879, 401, 1910, 297, 1910], "score": 0.93, "latex": "\\mu\\in P_{+}"}, {"category_id": 13, "poly": [1101, 1468, 1317, 1468, 1317, 1503, 1101, 1503], "score": 0.93, "latex": "P_{\\lambda}(x_{1},\\ldots,x_{m})"}, {"category_id": 13, "poly": [830, 291, 948, 291, 948, 322, 830, 322], "score": 0.93, "latex": "\\mu\\,=\\,J\\lambda"}, {"category_id": 14, "poly": [406, 1758, 1294, 1758, 1294, 1844, 406, 1844], "score": 0.93, "latex": "{\\frac{S_{\\lambda\\mu}}{S_{0\\mu}}}={\\frac{S_{\\pi\\lambda,\\pi^{\\prime}\\mu}}{S_{0,\\pi^{\\prime}\\mu}}}=P_{\\pi\\lambda}({\\frac{S_{\\gamma_{1},\\pi^{\\prime}\\mu}}{S_{0,\\pi^{\\prime}\\mu}}},\\dots)=P_{\\pi\\lambda}({\\frac{S_{\\gamma_{1}\\mu}}{S_{0\\mu}}},\\dots)={\\frac{S_{\\pi\\lambda,\\mu}}{S_{0\\mu}}}"}, {"category_id": 13, "poly": [592, 1696, 696, 1696, 696, 1728, 592, 1728], "score": 0.93, "latex": "\\lambda\\in P_{+}"}, {"category_id": 14, "poly": [527, 1534, 1175, 1534, 1175, 1619, 527, 1619], "score": 0.93, "latex": "\\frac{S_{\\lambda\\mu}}{S_{0\\mu}}=P_{\\lambda}(\\frac{S_{\\gamma_{1}\\mu}}{S_{0\\mu}},\\ldots,\\frac{S_{\\gamma_{m}\\mu}}{S_{0\\mu}})\\qquad\\forall\\lambda,\\mu\\in{\\cal P}_{+}\\ ."}, {"category_id": 13, "poly": [461, 1878, 565, 1878, 565, 1903, 461, 1903], "score": 0.93, "latex": "\\pi\\lambda=\\lambda"}, {"category_id": 13, "poly": [1051, 875, 1366, 875, 1366, 919, 1051, 919], "score": 0.92, "latex": "\\widetilde{S}_{\\pi\\nu,\\pi\\mu}\\,=\\,\\alpha(\\mu)\\,S_{\\nu,\\pi^{\\prime\\prime}\\mu}"}, {"category_id": 13, "poly": [198, 552, 595, 552, 595, 600, 198, 600], "score": 0.92, "latex": "\\pi\\,:\\,P_{+}^{k}(X_{r}^{(1)})\\,\\to\\,P_{+}^{m}(Y_{s}^{(1)})"}, {"category_id": 13, "poly": [958, 648, 1048, 648, 1048, 685, 958, 685], "score": 0.92, "latex": "(\\pi,\\pi^{\\prime})"}, {"category_id": 13, "poly": [199, 750, 292, 750, 292, 795, 199, 795], "score": 0.92, "latex": "\\widetilde{S}_{\\pi\\nu,\\pi\\mu}"}, {"category_id": 13, "poly": [1353, 749, 1542, 749, 1542, 795, 1353, 795], "score": 0.92, "latex": "\\widetilde{S}_{\\pi\\lambda,\\pi\\mu}/\\widetilde{S}_{0,\\pi\\mu}"}, {"category_id": 13, "poly": [606, 1432, 649, 1432, 649, 1463, 606, 1463], "score": 0.92, "latex": "P_{+}"}, {"category_id": 14, "poly": [528, 1088, 1174, 1088, 1174, 1137, 528, 1137], "score": 0.92, "latex": "Q_{j}(\\lambda)\\equiv\\widetilde{Q}_{\\pi^{\\prime}j}(\\pi\\lambda)\\equiv\\widetilde{Q}_{\\pi j}(\\pi^{\\prime}\\lambda)\\qquad(\\mathrm{mod~1})~."}, {"category_id": 13, "poly": [334, 600, 725, 600, 725, 648, 334, 648], "score": 0.92, "latex": "\\pi^{\\prime}:P_{+}^{k}(X_{r}^{(1)})\\to P_{+}^{m}(Y_{s}^{(1)})"}, {"category_id": 13, "poly": [1205, 598, 1440, 598, 1440, 648, 1205, 648], "score": 0.91, "latex": "\\lambda,\\mu\\in P_{+}^{k}(X_{r}^{(1)})"}, {"category_id": 13, "poly": [199, 926, 279, 926, 279, 950, 199, 950], "score": 0.91, "latex": "\\nu=0"}, {"category_id": 13, "poly": [1142, 1022, 1261, 1022, 1261, 1056, 1142, 1056], "score": 0.91, "latex": "\\lambda\\:\\in\\:P_{+}"}, {"category_id": 13, "poly": [636, 291, 773, 291, 773, 322, 636, 322], "score": 0.91, "latex": "\\pi\\lambda\\,=\\,\\pi\\mu"}, {"category_id": 13, "poly": [417, 1243, 440, 1243, 440, 1268, 417, 1268], "score": 0.91, "latex": "S"}, {"category_id": 13, "poly": [1047, 504, 1112, 504, 1112, 549, 1047, 549], "score": 0.9, "latex": "Y_{s}^{(1)}"}, {"category_id": 13, "poly": [1384, 706, 1506, 706, 1506, 748, 1384, 748], "score": 0.9, "latex": "(\\underline{{x}}_{\\mu})_{\\nu}="}, {"category_id": 13, "poly": [819, 982, 849, 982, 849, 1008, 819, 1008], "score": 0.9, "latex": "\\pi^{\\prime}"}, {"category_id": 13, "poly": [456, 1656, 479, 1656, 479, 1681, 456, 1681], "score": 0.9, "latex": "S"}, {"category_id": 13, "poly": [1124, 331, 1147, 331, 1147, 355, 1124, 355], "score": 0.9, "latex": "J"}, {"category_id": 13, "poly": [392, 883, 431, 883, 431, 909, 392, 909], "score": 0.9, "latex": "\\pi^{\\prime\\prime}"}, {"category_id": 13, "poly": [1325, 292, 1347, 292, 1347, 316, 1325, 316], "score": 0.9, "latex": "J"}, {"category_id": 14, "poly": [310, 1302, 1410, 1302, 1410, 1356, 310, 1356], "score": 0.9, "latex": "\\left\\varepsilon(\\lambda\\right)S_{\\lambda^{(\\ell)},\\mu}=\\sigma_{\\ell}S_{\\lambda\\mu}=\\sigma_{\\ell}\\widetilde{S}_{\\pi\\lambda,\\pi^{\\prime}\\mu}=\\widetilde{\\epsilon}_{\\ell}(\\pi\\lambda)\\,\\widetilde{S}_{(\\pi\\lambda)^{(\\ell)},\\pi^{\\prime}\\mu}=\\widetilde{\\epsilon}_{\\ell}(\\pi\\lambda)\\,S_{\\pi^{-1}(\\pi\\lambda)^{(\\ell)},\\mu}\\ ."}, {"category_id": 13, "poly": [1050, 758, 1096, 758, 1096, 791, 1050, 791], "score": 0.89, "latex": "N_{\\lambda}"}, {"category_id": 13, "poly": [578, 211, 600, 211, 600, 236, 578, 236], "score": 0.89, "latex": "J"}, {"category_id": 13, "poly": [1307, 982, 1338, 982, 1338, 1008, 1307, 1008], "score": 0.89, "latex": "\\pi^{\\prime}"}, {"category_id": 13, "poly": [1272, 1665, 1293, 1665, 1293, 1687, 1272, 1687], "score": 0.89, "latex": "\\gamma"}, {"category_id": 13, "poly": [347, 1697, 368, 1697, 368, 1721, 347, 1721], "score": 0.88, "latex": "\\Gamma"}, {"category_id": 13, "poly": [1446, 340, 1467, 340, 1467, 355, 1446, 355], "score": 0.88, "latex": "\\pi"}, {"category_id": 13, "poly": [1385, 386, 1406, 386, 1406, 402, 1385, 402], "score": 0.88, "latex": "\\pi"}, {"category_id": 13, "poly": [327, 1064, 344, 1064, 344, 1094, 327, 1094], "score": 0.88, "latex": "j"}, {"category_id": 13, "poly": [1459, 651, 1490, 651, 1490, 677, 1459, 677], "score": 0.87, "latex": "\\pi^{\\prime}"}, {"category_id": 13, "poly": [541, 510, 564, 510, 564, 545, 541, 545], "score": 0.87, "latex": "\\widetilde{S}"}, {"category_id": 13, "poly": [388, 220, 408, 220, 408, 235, 388, 235], "score": 0.86, "latex": "\\pi"}, {"category_id": 13, "poly": [331, 993, 351, 993, 351, 1008, 331, 1008], "score": 0.86, "latex": "\\pi"}, {"category_id": 13, "poly": [1468, 1173, 1499, 1173, 1499, 1193, 1468, 1193], "score": 0.86, "latex": "\\sigma_{\\ell}"}, {"category_id": 13, "poly": [459, 1213, 480, 1213, 480, 1228, 459, 1228], "score": 0.86, "latex": "\\pi"}, {"category_id": 13, "poly": [860, 260, 880, 260, 880, 275, 860, 275], "score": 0.85, "latex": "\\pi"}, {"category_id": 13, "poly": [1118, 840, 1141, 840, 1141, 866, 1118, 866], "score": 0.85, "latex": "S"}, {"category_id": 13, "poly": [1053, 1657, 1163, 1657, 1163, 1687, 1053, 1687], "score": 0.84, "latex": "\\pi\\gamma=\\gamma"}, {"category_id": 13, "poly": [1138, 650, 1162, 650, 1162, 678, 1138, 678], "score": 0.83, "latex": "S"}, {"category_id": 13, "poly": [592, 300, 612, 300, 612, 315, 592, 315], "score": 0.82, "latex": "\\pi"}, {"category_id": 13, "poly": [751, 1479, 781, 1479, 781, 1495, 751, 1495], "score": 0.78, "latex": "m"}, {"category_id": 13, "poly": [1052, 713, 1075, 713, 1075, 743, 1052, 743], "score": 0.75, "latex": "\\mu"}, {"category_id": 13, "poly": [573, 662, 593, 662, 593, 677, 573, 677], "score": 0.67, "latex": "\\pi"}, {"category_id": 13, "poly": [1199, 519, 1231, 519, 1231, 545, 1199, 545], "score": 0.46, "latex": "m"}, {"category_id": 15, "poly": [264.0, 246.0, 859.0, 246.0, 859.0, 286.0, 264.0, 286.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [881.0, 246.0, 1504.0, 246.0, 1504.0, 286.0, 881.0, 286.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [197.0, 286.0, 591.0, 286.0, 591.0, 326.0, 197.0, 326.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [613.0, 286.0, 635.0, 286.0, 635.0, 326.0, 613.0, 326.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [774.0, 286.0, 829.0, 286.0, 829.0, 326.0, 774.0, 326.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [949.0, 286.0, 1324.0, 286.0, 1324.0, 326.0, 949.0, 326.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1348.0, 286.0, 1503.0, 286.0, 1503.0, 326.0, 1348.0, 326.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [197.0, 324.0, 198.0, 324.0, 198.0, 368.0, 197.0, 368.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [346.0, 324.0, 521.0, 324.0, 521.0, 368.0, 346.0, 368.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [670.0, 324.0, 1123.0, 324.0, 1123.0, 368.0, 670.0, 368.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1148.0, 324.0, 1445.0, 324.0, 1445.0, 368.0, 1148.0, 368.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1468.0, 324.0, 1506.0, 324.0, 1506.0, 368.0, 1468.0, 368.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [193.0, 364.0, 1138.0, 364.0, 1138.0, 416.0, 193.0, 416.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1288.0, 364.0, 1384.0, 364.0, 1384.0, 416.0, 1288.0, 416.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1407.0, 364.0, 1507.0, 364.0, 1507.0, 416.0, 1407.0, 416.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [202.0, 413.0, 1018.0, 413.0, 1018.0, 452.0, 202.0, 452.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [258.0, 976.0, 330.0, 976.0, 330.0, 1019.0, 258.0, 1019.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [352.0, 976.0, 818.0, 976.0, 818.0, 1019.0, 352.0, 1019.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [850.0, 976.0, 1306.0, 976.0, 1306.0, 1019.0, 850.0, 1019.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1339.0, 976.0, 1505.0, 976.0, 1505.0, 1019.0, 1339.0, 1019.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [198.0, 1021.0, 487.0, 1021.0, 487.0, 1059.0, 198.0, 1059.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [634.0, 1021.0, 1141.0, 1021.0, 1141.0, 1059.0, 634.0, 1059.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1262.0, 1021.0, 1496.0, 1021.0, 1496.0, 1059.0, 1262.0, 1059.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [199.0, 1062.0, 326.0, 1062.0, 326.0, 1094.0, 199.0, 1094.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [345.0, 1062.0, 430.0, 1062.0, 430.0, 1094.0, 345.0, 1094.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [191.0, 696.0, 515.0, 696.0, 515.0, 761.0, 191.0, 761.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [733.0, 696.0, 1051.0, 696.0, 1051.0, 761.0, 733.0, 761.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1076.0, 696.0, 1383.0, 696.0, 1383.0, 761.0, 1076.0, 761.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [193.0, 745.0, 198.0, 745.0, 198.0, 806.0, 193.0, 806.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [293.0, 745.0, 1049.0, 745.0, 1049.0, 806.0, 293.0, 806.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1097.0, 745.0, 1352.0, 745.0, 1352.0, 806.0, 1097.0, 806.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1543.0, 745.0, 1554.0, 745.0, 1554.0, 806.0, 1543.0, 806.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [196.0, 793.0, 1507.0, 793.0, 1507.0, 838.0, 196.0, 838.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [199.0, 835.0, 1117.0, 835.0, 1117.0, 875.0, 199.0, 875.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1142.0, 835.0, 1507.0, 835.0, 1507.0, 875.0, 1142.0, 875.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [190.0, 869.0, 391.0, 869.0, 391.0, 933.0, 190.0, 933.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [432.0, 869.0, 485.0, 869.0, 485.0, 933.0, 432.0, 933.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [623.0, 869.0, 814.0, 869.0, 814.0, 933.0, 623.0, 933.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [884.0, 869.0, 1050.0, 869.0, 1050.0, 933.0, 884.0, 933.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1367.0, 869.0, 1511.0, 869.0, 1511.0, 933.0, 1367.0, 933.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [197.0, 920.0, 198.0, 920.0, 198.0, 960.0, 197.0, 960.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [280.0, 920.0, 382.0, 920.0, 382.0, 960.0, 280.0, 960.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [513.0, 920.0, 903.0, 920.0, 903.0, 960.0, 513.0, 960.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1034.0, 920.0, 1049.0, 920.0, 1049.0, 960.0, 1034.0, 960.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1115.0, 923.0, 1147.0, 923.0, 1147.0, 956.0, 1115.0, 956.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [195.0, 1650.0, 259.0, 1650.0, 259.0, 1694.0, 195.0, 1694.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [351.0, 1650.0, 455.0, 1650.0, 455.0, 1694.0, 351.0, 1694.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [480.0, 1650.0, 1052.0, 1650.0, 1052.0, 1694.0, 480.0, 1694.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1164.0, 1650.0, 1271.0, 1650.0, 1271.0, 1694.0, 1164.0, 1694.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1294.0, 1650.0, 1500.0, 1650.0, 1500.0, 1694.0, 1294.0, 1694.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [197.0, 1690.0, 346.0, 1690.0, 346.0, 1735.0, 197.0, 1735.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [369.0, 1690.0, 591.0, 1690.0, 591.0, 1735.0, 369.0, 1735.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [697.0, 1690.0, 708.0, 1690.0, 708.0, 1735.0, 697.0, 1735.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [264.0, 1385.0, 1506.0, 1385.0, 1506.0, 1428.0, 264.0, 1428.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [196.0, 1422.0, 301.0, 1422.0, 301.0, 1470.0, 196.0, 1470.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [556.0, 1422.0, 605.0, 1422.0, 605.0, 1470.0, 556.0, 1470.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [650.0, 1422.0, 904.0, 1422.0, 904.0, 1470.0, 650.0, 1470.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1026.0, 1422.0, 1506.0, 1422.0, 1506.0, 1470.0, 1026.0, 1470.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [200.0, 1466.0, 750.0, 1466.0, 750.0, 1509.0, 200.0, 1509.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [782.0, 1466.0, 1100.0, 1466.0, 1100.0, 1509.0, 782.0, 1509.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1318.0, 1466.0, 1470.0, 1466.0, 1470.0, 1509.0, 1318.0, 1509.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [263.0, 1158.0, 1467.0, 1158.0, 1467.0, 1200.0, 263.0, 1200.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1500.0, 1158.0, 1502.0, 1158.0, 1502.0, 1200.0, 1500.0, 1200.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [194.0, 1195.0, 458.0, 1195.0, 458.0, 1243.0, 194.0, 1243.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [481.0, 1195.0, 626.0, 1195.0, 626.0, 1243.0, 481.0, 1243.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [837.0, 1195.0, 911.0, 1195.0, 911.0, 1243.0, 837.0, 1243.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1157.0, 1195.0, 1507.0, 1195.0, 1507.0, 1243.0, 1157.0, 1243.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [199.0, 1238.0, 416.0, 1238.0, 416.0, 1279.0, 199.0, 1279.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [441.0, 1238.0, 677.0, 1238.0, 677.0, 1279.0, 441.0, 1279.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [265.0, 1914.0, 1503.0, 1914.0, 1503.0, 1953.0, 265.0, 1953.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [201.0, 1954.0, 1501.0, 1954.0, 1501.0, 1993.0, 201.0, 1993.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [254.0, 497.0, 540.0, 497.0, 540.0, 561.0, 254.0, 561.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [565.0, 497.0, 1046.0, 497.0, 1046.0, 561.0, 565.0, 561.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1113.0, 497.0, 1198.0, 497.0, 1198.0, 561.0, 1113.0, 561.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1232.0, 497.0, 1510.0, 497.0, 1510.0, 561.0, 1232.0, 561.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [191.0, 544.0, 197.0, 544.0, 197.0, 606.0, 191.0, 606.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [596.0, 544.0, 1511.0, 544.0, 1511.0, 606.0, 596.0, 606.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [191.0, 590.0, 333.0, 590.0, 333.0, 657.0, 191.0, 657.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [726.0, 590.0, 882.0, 590.0, 882.0, 657.0, 726.0, 657.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1091.0, 590.0, 1204.0, 590.0, 1204.0, 657.0, 1091.0, 657.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1441.0, 590.0, 1513.0, 590.0, 1513.0, 657.0, 1441.0, 657.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [195.0, 646.0, 572.0, 646.0, 572.0, 688.0, 195.0, 688.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [594.0, 646.0, 957.0, 646.0, 957.0, 688.0, 594.0, 688.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1049.0, 646.0, 1137.0, 646.0, 1137.0, 688.0, 1049.0, 688.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1163.0, 646.0, 1458.0, 646.0, 1458.0, 688.0, 1163.0, 688.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1491.0, 646.0, 1504.0, 646.0, 1504.0, 688.0, 1491.0, 688.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [198.0, 1873.0, 296.0, 1873.0, 296.0, 1911.0, 198.0, 1911.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [402.0, 1873.0, 460.0, 1873.0, 460.0, 1911.0, 402.0, 1911.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [566.0, 1873.0, 575.0, 1873.0, 575.0, 1911.0, 566.0, 1911.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [197.0, 206.0, 387.0, 206.0, 387.0, 243.0, 197.0, 243.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [409.0, 206.0, 577.0, 206.0, 577.0, 243.0, 409.0, 243.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [601.0, 206.0, 829.0, 206.0, 829.0, 243.0, 601.0, 243.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [900.0, 206.0, 1086.0, 206.0, 1086.0, 243.0, 900.0, 243.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [265.0, 451.0, 1165.0, 451.0, 1165.0, 491.0, 265.0, 491.0], "score": 1.0, "text": ""}] | {"preproc_blocks": [{"type": "text", "bbox": [70, 70, 392, 85], "lines": [{"bbox": [70, 74, 390, 87], "spans": [{"bbox": [70, 74, 139, 87], "score": 1.0, "content": "For instance ", "type": "text"}, {"bbox": [139, 79, 146, 84], "score": 0.86, "content": "\\pi", "type": "inline_equation", "height": 5, "width": 7}, {"bbox": [147, 74, 207, 87], "score": 1.0, "content": " must send ", "type": "text"}, {"bbox": [208, 75, 216, 84], "score": 0.89, "content": "J", "type": "inline_equation", "height": 9, "width": 8}, {"bbox": [216, 74, 298, 87], "score": 1.0, "content": "-fixed-points to ", "type": "text"}, {"bbox": [298, 75, 323, 87], "score": 0.94, "content": "\\pi(J)", "type": "inline_equation", "height": 12, "width": 25}, {"bbox": [324, 74, 390, 87], "score": 1.0, "content": "-fixed-points.", "type": "text"}], "index": 0}], "index": 0}, {"type": "text", "bbox": [70, 86, 542, 160], "lines": [{"bbox": [95, 88, 541, 102], "spans": [{"bbox": [95, 88, 309, 102], "score": 1.0, "content": "More generally, a fusion-homomorphism ", "type": "text"}, {"bbox": [309, 93, 316, 99], "score": 0.85, "content": "\\pi", "type": "inline_equation", "height": 6, "width": 7}, {"bbox": [317, 88, 541, 102], "score": 1.0, "content": " is defined in the obvious algebraic way. It", "type": "text"}], "index": 1}, {"bbox": [70, 102, 541, 117], "spans": [{"bbox": [70, 102, 212, 117], "score": 1.0, "content": "turns out that for such a ", "type": "text"}, {"bbox": [213, 108, 220, 113], "score": 0.82, "content": "\\pi", "type": "inline_equation", "height": 5, "width": 7}, {"bbox": [220, 102, 228, 117], "score": 1.0, "content": ", ", "type": "text"}, {"bbox": [228, 104, 278, 115], "score": 0.91, "content": "\\pi\\lambda\\,=\\,\\pi\\mu", "type": "inline_equation", "height": 11, "width": 50}, {"bbox": [278, 102, 298, 117], "score": 1.0, "content": " iff", "type": "text"}, {"bbox": [298, 104, 341, 115], "score": 0.93, "content": "\\mu\\,=\\,J\\lambda", "type": "inline_equation", "height": 11, "width": 43}, {"bbox": [341, 102, 476, 117], "score": 1.0, "content": " for some simple-current ", "type": "text"}, {"bbox": [477, 105, 484, 113], "score": 0.9, "content": "J", "type": "inline_equation", "height": 8, "width": 7}, {"bbox": [485, 102, 541, 117], "score": 1.0, "content": " for which", "type": "text"}], "index": 2}, {"bbox": [71, 116, 542, 132], "spans": [{"bbox": [71, 117, 124, 131], "score": 0.94, "content": "\\pi(J0)=\\tilde{0}", "type": "inline_equation", "height": 14, "width": 53}, {"bbox": [124, 116, 187, 132], "score": 1.0, "content": ". Moreover, ", "type": "text"}, {"bbox": [187, 117, 240, 131], "score": 0.95, "content": "\\pi(J0)=\\tilde{0}", "type": "inline_equation", "height": 14, "width": 53}, {"bbox": [241, 116, 404, 132], "score": 1.0, "content": " is possible only if there are no ", "type": "text"}, {"bbox": [404, 119, 412, 127], "score": 0.9, "content": "J", "type": "inline_equation", "height": 8, "width": 8}, {"bbox": [413, 116, 520, 132], "score": 1.0, "content": "-fixed-points. When ", "type": "text"}, {"bbox": [520, 122, 528, 127], "score": 0.88, "content": "\\pi", "type": "inline_equation", "height": 5, "width": 8}, {"bbox": [528, 116, 542, 132], "score": 1.0, "content": " is", "type": "text"}], "index": 3}, {"bbox": [69, 131, 542, 149], "spans": [{"bbox": [69, 131, 409, 149], "score": 1.0, "content": "one-to-one (e.g. when there are no nontrivial simple-currents in ", "type": "text"}, {"bbox": [410, 131, 463, 148], "score": 0.93, "content": "P_{+}^{k}(X_{r}^{(1)}))", "type": "inline_equation", "height": 17, "width": 53}, {"bbox": [463, 131, 498, 149], "score": 1.0, "content": ", then ", "type": "text"}, {"bbox": [498, 138, 506, 144], "score": 0.88, "content": "\\pi", "type": "inline_equation", "height": 6, "width": 8}, {"bbox": [506, 131, 542, 149], "score": 1.0, "content": " obeys", "type": "text"}], "index": 4}, {"bbox": [72, 148, 366, 162], "spans": [{"bbox": [72, 148, 366, 162], "score": 1.0, "content": "(2.6). Fusion-homomorphisms will be studied elsewhere.", "type": "text"}], "index": 5}], "index": 3}, {"type": "text", "bbox": [95, 160, 420, 174], "lines": [{"bbox": [95, 162, 419, 176], "spans": [{"bbox": [95, 162, 419, 176], "score": 1.0, "content": "The key to finding fusion-symmetries is the following Lemma.", "type": "text"}], "index": 6}], "index": 6}, {"type": "text", "bbox": [70, 180, 543, 246], "lines": [{"bbox": [91, 178, 543, 201], "spans": [{"bbox": [91, 178, 194, 201], "score": 1.0, "content": "Lemma 2.2. Let", "type": "text"}, {"bbox": [194, 183, 203, 196], "score": 0.87, "content": "\\widetilde{S}", "type": "inline_equation", "height": 13, "width": 9}, {"bbox": [203, 178, 376, 201], "score": 1.0, "content": " be the Kac-Peterson matrix for ", "type": "text"}, {"bbox": [376, 181, 400, 197], "score": 0.9, "content": "Y_{s}^{(1)}", "type": "inline_equation", "height": 16, "width": 24}, {"bbox": [400, 178, 431, 201], "score": 1.0, "content": "level ", "type": "text"}, {"bbox": [431, 186, 443, 196], "score": 0.46, "content": "m", "type": "inline_equation", "height": 10, "width": 12}, {"bbox": [443, 178, 543, 201], "score": 1.0, "content": ". Then a bijection", "type": "text"}], "index": 7}, {"bbox": [71, 195, 543, 218], "spans": [{"bbox": [71, 198, 214, 216], "score": 0.92, "content": "\\pi\\,:\\,P_{+}^{k}(X_{r}^{(1)})\\,\\to\\,P_{+}^{m}(Y_{s}^{(1)})", "type": "inline_equation", "height": 18, "width": 143}, {"bbox": [214, 195, 543, 218], "score": 1.0, "content": " defines an isomorphism of fusion rings iff there exists some", "type": "text"}], "index": 8}, {"bbox": [68, 212, 544, 236], "spans": [{"bbox": [68, 212, 119, 236], "score": 1.0, "content": "bijection ", "type": "text"}, {"bbox": [120, 216, 261, 233], "score": 0.92, "content": "\\pi^{\\prime}:P_{+}^{k}(X_{r}^{(1)})\\to P_{+}^{m}(Y_{s}^{(1)})", "type": "inline_equation", "height": 17, "width": 141}, {"bbox": [261, 212, 317, 236], "score": 1.0, "content": " such that ", "type": "text"}, {"bbox": [317, 216, 392, 232], "score": 0.94, "content": "S_{\\lambda\\mu}=\\widetilde{S}_{\\pi\\lambda,\\pi^{\\prime}\\mu}", "type": "inline_equation", "height": 16, "width": 75}, {"bbox": [392, 212, 433, 236], "score": 1.0, "content": " for all ", "type": "text"}, {"bbox": [433, 215, 518, 233], "score": 0.91, "content": "\\lambda,\\mu\\in P_{+}^{k}(X_{r}^{(1)})", "type": "inline_equation", "height": 18, "width": 85}, {"bbox": [518, 212, 544, 236], "score": 1.0, "content": ". In", "type": "text"}], "index": 9}, {"bbox": [70, 232, 541, 247], "spans": [{"bbox": [70, 232, 205, 247], "score": 1.0, "content": "particular, a permutation ", "type": "text"}, {"bbox": [206, 238, 213, 243], "score": 0.67, "content": "\\pi", "type": "inline_equation", "height": 5, "width": 7}, {"bbox": [213, 232, 344, 247], "score": 1.0, "content": " is a fusion-symmetry iff", "type": "text"}, {"bbox": [344, 233, 377, 246], "score": 0.92, "content": "(\\pi,\\pi^{\\prime})", "type": "inline_equation", "height": 13, "width": 33}, {"bbox": [377, 232, 409, 247], "score": 1.0, "content": " is an ", "type": "text"}, {"bbox": [409, 234, 418, 244], "score": 0.83, "content": "S", "type": "inline_equation", "height": 10, "width": 9}, {"bbox": [418, 232, 524, 247], "score": 1.0, "content": "-symmetry for some ", "type": "text"}, {"bbox": [525, 234, 536, 243], "score": 0.87, "content": "\\pi^{\\prime}", "type": "inline_equation", "height": 9, "width": 11}, {"bbox": [536, 232, 541, 247], "score": 1.0, "content": ".", "type": "text"}], "index": 10}], "index": 8.5}, {"type": "text", "bbox": [70, 250, 558, 344], "lines": [{"bbox": [68, 250, 542, 273], "spans": [{"bbox": [68, 250, 185, 273], "score": 1.0, "content": "Proof. The equality ", "type": "text"}, {"bbox": [185, 256, 263, 270], "score": 0.93, "content": "N_{\\lambda\\mu}^{\\nu}=M_{\\pi\\lambda,\\pi\\mu}^{\\pi\\nu}", "type": "inline_equation", "height": 14, "width": 78}, {"bbox": [263, 250, 378, 273], "score": 1.0, "content": " means that, for each ", "type": "text"}, {"bbox": [378, 256, 387, 267], "score": 0.75, "content": "\\mu", "type": "inline_equation", "height": 11, "width": 9}, {"bbox": [387, 250, 497, 273], "score": 1.0, "content": ", the column vectors ", "type": "text"}, {"bbox": [498, 254, 542, 269], "score": 0.9, "content": "(\\underline{{x}}_{\\mu})_{\\nu}=", "type": "inline_equation", "height": 15, "width": 44}], "index": 11}, {"bbox": [71, 268, 559, 290], "spans": [{"bbox": [71, 270, 105, 286], "score": 0.92, "content": "\\widetilde{S}_{\\pi\\nu,\\pi\\mu}", "type": "inline_equation", "height": 16, "width": 34}, {"bbox": [105, 268, 377, 290], "score": 1.0, "content": " are simultaneous eigenvectors for the fusion matrices", "type": "text"}, {"bbox": [378, 272, 394, 284], "score": 0.89, "content": "N_{\\lambda}", "type": "inline_equation", "height": 12, "width": 16}, {"bbox": [394, 268, 486, 290], "score": 1.0, "content": ", with eigenvalues", "type": "text"}, {"bbox": [487, 269, 555, 286], "score": 0.92, "content": "\\widetilde{S}_{\\pi\\lambda,\\pi\\mu}/\\widetilde{S}_{0,\\pi\\mu}", "type": "inline_equation", "height": 17, "width": 68}, {"bbox": [555, 268, 559, 290], "score": 1.0, "content": ".", "type": "text"}], "index": 12}, {"bbox": [70, 285, 542, 301], "spans": [{"bbox": [70, 285, 542, 301], "score": 1.0, "content": "I t is easy to see from Verlinde\u2019s formula (1.1b) that any simultaneous eigenvec t or for a ll", "type": "text"}], "index": 13}, {"bbox": [71, 300, 542, 315], "spans": [{"bbox": [71, 300, 402, 315], "score": 1.0, "content": "fusion matrices must be a scalar multiple of some column of ", "type": "text"}, {"bbox": [402, 302, 410, 311], "score": 0.85, "content": "S", "type": "inline_equation", "height": 9, "width": 8}, {"bbox": [411, 300, 542, 315], "score": 1.0, "content": ". Thus there must be a", "type": "text"}], "index": 14}, {"bbox": [68, 312, 543, 335], "spans": [{"bbox": [68, 312, 140, 335], "score": 1.0, "content": "permutation ", "type": "text"}, {"bbox": [141, 317, 155, 327], "score": 0.9, "content": "\\pi^{\\prime\\prime}", "type": "inline_equation", "height": 10, "width": 14}, {"bbox": [155, 312, 174, 335], "score": 1.0, "content": " of ", "type": "text"}, {"bbox": [174, 314, 223, 331], "score": 0.95, "content": "P_{+}^{k}(X_{r}^{(1)})", "type": "inline_equation", "height": 17, "width": 49}, {"bbox": [224, 312, 293, 335], "score": 1.0, "content": " and scalars ", "type": "text"}, {"bbox": [293, 317, 317, 330], "score": 0.94, "content": "\\alpha(\\mu)", "type": "inline_equation", "height": 13, "width": 24}, {"bbox": [318, 312, 378, 335], "score": 1.0, "content": " such that", "type": "text"}, {"bbox": [378, 315, 491, 330], "score": 0.92, "content": "\\widetilde{S}_{\\pi\\nu,\\pi\\mu}\\,=\\,\\alpha(\\mu)\\,S_{\\nu,\\pi^{\\prime\\prime}\\mu}", "type": "inline_equation", "height": 15, "width": 113}, {"bbox": [492, 312, 543, 335], "score": 1.0, "content": ". Taking", "type": "text"}], "index": 15}, {"bbox": [71, 331, 412, 345], "spans": [{"bbox": [71, 333, 100, 342], "score": 0.91, "content": "\\nu=0", "type": "inline_equation", "height": 9, "width": 29}, {"bbox": [100, 331, 137, 345], "score": 1.0, "content": " forces ", "type": "text"}, {"bbox": [137, 332, 184, 344], "score": 0.94, "content": "\\alpha(\\mu)>0", "type": "inline_equation", "height": 12, "width": 47}, {"bbox": [184, 331, 325, 345], "score": 1.0, "content": ", and then unitarity forces ", "type": "text"}, {"bbox": [325, 332, 371, 344], "score": 0.94, "content": "\\alpha(\\mu)=1", "type": "inline_equation", "height": 12, "width": 46}, {"bbox": [372, 331, 377, 345], "score": 1.0, "content": ". ", "type": "text"}, {"bbox": [401, 332, 412, 344], "score": 0.9251790046691895, "content": "\u25a0", "type": "text"}], "index": 16}], "index": 13.5}, {"type": "text", "bbox": [70, 349, 541, 391], "lines": [{"bbox": [92, 351, 541, 366], "spans": [{"bbox": [92, 351, 118, 366], "score": 1.0, "content": "Let ", "type": "text"}, {"bbox": [119, 357, 126, 362], "score": 0.86, "content": "\\pi", "type": "inline_equation", "height": 5, "width": 7}, {"bbox": [126, 351, 294, 366], "score": 1.0, "content": " be any isomorphism, and let ", "type": "text"}, {"bbox": [294, 353, 305, 362], "score": 0.9, "content": "\\pi^{\\prime}", "type": "inline_equation", "height": 9, "width": 11}, {"bbox": [306, 351, 470, 366], "score": 1.0, "content": " be as in the Lemma. Then ", "type": "text"}, {"bbox": [470, 353, 481, 362], "score": 0.89, "content": "\\pi^{\\prime}", "type": "inline_equation", "height": 9, "width": 11}, {"bbox": [482, 351, 541, 366], "score": 1.0, "content": " is also an", "type": "text"}], "index": 17}, {"bbox": [71, 367, 538, 381], "spans": [{"bbox": [71, 367, 175, 381], "score": 1.0, "content": "isomorphism, with ", "type": "text"}, {"bbox": [175, 367, 227, 380], "score": 0.94, "content": "(\\pi^{\\prime})^{\\prime}\\;=\\;\\pi", "type": "inline_equation", "height": 13, "width": 52}, {"bbox": [228, 367, 410, 381], "score": 1.0, "content": ". Equation (2.2b) implies for all ", "type": "text"}, {"bbox": [411, 367, 453, 380], "score": 0.91, "content": "\\lambda\\:\\in\\:P_{+}", "type": "inline_equation", "height": 13, "width": 42}, {"bbox": [454, 367, 538, 381], "score": 1.0, "content": " and all simple-", "type": "text"}], "index": 18}, {"bbox": [71, 382, 154, 393], "spans": [{"bbox": [71, 382, 117, 393], "score": 1.0, "content": "currents ", "type": "text"}, {"bbox": [117, 383, 123, 393], "score": 0.88, "content": "j", "type": "inline_equation", "height": 10, "width": 6}, {"bbox": [124, 382, 154, 393], "score": 1.0, "content": ", that", "type": "text"}], "index": 19}], "index": 18}, {"type": "interline_equation", "bbox": [190, 391, 422, 409], "lines": [{"bbox": [190, 391, 422, 409], "spans": [{"bbox": [190, 391, 422, 409], "score": 0.92, "content": "Q_{j}(\\lambda)\\equiv\\widetilde{Q}_{\\pi^{\\prime}j}(\\pi\\lambda)\\equiv\\widetilde{Q}_{\\pi j}(\\pi^{\\prime}\\lambda)\\qquad(\\mathrm{mod~1})~.", "type": "interline_equation"}], "index": 20}], "index": 20}, {"type": "text", "bbox": [70, 414, 541, 458], "lines": [{"bbox": [94, 416, 539, 432], "spans": [{"bbox": [94, 416, 528, 432], "score": 1.0, "content": "Another quick consequence of the Lemma is that for any Galois automorphism ", "type": "text"}, {"bbox": [528, 422, 539, 429], "score": 0.86, "content": "\\sigma_{\\ell}", "type": "inline_equation", "height": 7, "width": 11}], "index": 21}, {"bbox": [69, 430, 542, 447], "spans": [{"bbox": [69, 430, 164, 447], "score": 1.0, "content": "and isomorphism ", "type": "text"}, {"bbox": [165, 436, 172, 442], "score": 0.86, "content": "\\pi", "type": "inline_equation", "height": 6, "width": 7}, {"bbox": [173, 430, 225, 447], "score": 1.0, "content": ", we have ", "type": "text"}, {"bbox": [225, 432, 300, 444], "score": 0.94, "content": "\\tilde{\\epsilon}_{\\ell}(\\pi\\lambda)=\\epsilon_{\\ell}(\\lambda)", "type": "inline_equation", "height": 12, "width": 75}, {"bbox": [301, 430, 327, 447], "score": 1.0, "content": " and ", "type": "text"}, {"bbox": [328, 430, 416, 445], "score": 0.94, "content": "\\pi(\\lambda^{(\\ell)})=(\\pi\\lambda)^{(\\ell)}", "type": "inline_equation", "height": 15, "width": 88}, {"bbox": [416, 430, 542, 447], "score": 1.0, "content": ". To see this, apply the", "type": "text"}], "index": 22}, {"bbox": [71, 445, 243, 460], "spans": [{"bbox": [71, 445, 149, 460], "score": 1.0, "content": "invertibility of ", "type": "text"}, {"bbox": [150, 447, 158, 456], "score": 0.91, "content": "S", "type": "inline_equation", "height": 9, "width": 8}, {"bbox": [158, 445, 243, 460], "score": 1.0, "content": " to the equation", "type": "text"}], "index": 23}], "index": 22}, {"type": "interline_equation", "bbox": [111, 468, 507, 488], "lines": [{"bbox": [111, 468, 507, 488], "spans": [{"bbox": [111, 468, 507, 488], "score": 0.9, "content": "\\left\\varepsilon(\\lambda\\right)S_{\\lambda^{(\\ell)},\\mu}=\\sigma_{\\ell}S_{\\lambda\\mu}=\\sigma_{\\ell}\\widetilde{S}_{\\pi\\lambda,\\pi^{\\prime}\\mu}=\\widetilde{\\epsilon}_{\\ell}(\\pi\\lambda)\\,\\widetilde{S}_{(\\pi\\lambda)^{(\\ell)},\\pi^{\\prime}\\mu}=\\widetilde{\\epsilon}_{\\ell}(\\pi\\lambda)\\,S_{\\pi^{-1}(\\pi\\lambda)^{(\\ell)},\\mu}\\ .", "type": "interline_equation"}], "index": 24}], "index": 24}, {"type": "text", "bbox": [69, 496, 542, 540], "lines": [{"bbox": [95, 498, 542, 514], "spans": [{"bbox": [95, 498, 542, 514], "score": 1.0, "content": "A very useful notion for studying the fusion ring is that of fusion-generator, i.e. a", "type": "text"}], "index": 25}, {"bbox": [70, 511, 542, 529], "spans": [{"bbox": [70, 511, 108, 529], "score": 1.0, "content": "subset ", "type": "text"}, {"bbox": [108, 514, 199, 527], "score": 0.93, "content": "\\Gamma=\\{\\gamma_{1},...,\\gamma_{m}\\}", "type": "inline_equation", "height": 13, "width": 91}, {"bbox": [200, 511, 217, 529], "score": 1.0, "content": " of ", "type": "text"}, {"bbox": [218, 515, 233, 526], "score": 0.92, "content": "P_{+}", "type": "inline_equation", "height": 11, "width": 15}, {"bbox": [234, 511, 325, 529], "score": 1.0, "content": " which generates ", "type": "text"}, {"bbox": [325, 513, 369, 527], "score": 0.93, "content": "\\mathcal{R}(X_{r,k})", "type": "inline_equation", "height": 14, "width": 44}, {"bbox": [369, 511, 542, 529], "score": 1.0, "content": " as a ring. Diagonalising, this is", "type": "text"}], "index": 26}, {"bbox": [72, 527, 529, 543], "spans": [{"bbox": [72, 527, 270, 543], "score": 1.0, "content": "equivalent to requiring that there are ", "type": "text"}, {"bbox": [270, 532, 281, 538], "score": 0.78, "content": "m", "type": "inline_equation", "height": 6, "width": 11}, {"bbox": [281, 527, 396, 543], "score": 1.0, "content": "-variable polynomials ", "type": "text"}, {"bbox": [396, 528, 474, 541], "score": 0.93, "content": "P_{\\lambda}(x_{1},\\ldots,x_{m})", "type": "inline_equation", "height": 13, "width": 78}, {"bbox": [474, 527, 529, 543], "score": 1.0, "content": " such that", "type": "text"}], "index": 27}], "index": 26}, {"type": "interline_equation", "bbox": [189, 552, 423, 582], "lines": [{"bbox": [189, 552, 423, 582], "spans": [{"bbox": [189, 552, 423, 582], "score": 0.93, "content": "\\frac{S_{\\lambda\\mu}}{S_{0\\mu}}=P_{\\lambda}(\\frac{S_{\\gamma_{1}\\mu}}{S_{0\\mu}},\\ldots,\\frac{S_{\\gamma_{m}\\mu}}{S_{0\\mu}})\\qquad\\forall\\lambda,\\mu\\in{\\cal P}_{+}\\ .", "type": "interline_equation"}], "index": 28}], "index": 28}, {"type": "text", "bbox": [69, 592, 541, 621], "lines": [{"bbox": [70, 594, 540, 609], "spans": [{"bbox": [70, 594, 93, 609], "score": 1.0, "content": "Let ", "type": "text"}, {"bbox": [93, 595, 126, 608], "score": 0.94, "content": "(\\pi,\\pi^{\\prime})", "type": "inline_equation", "height": 13, "width": 33}, {"bbox": [126, 594, 163, 609], "score": 1.0, "content": " be an ", "type": "text"}, {"bbox": [164, 596, 172, 605], "score": 0.9, "content": "S", "type": "inline_equation", "height": 9, "width": 8}, {"bbox": [172, 594, 378, 609], "score": 1.0, "content": "-symmetry, and suppose we know that ", "type": "text"}, {"bbox": [379, 596, 418, 607], "score": 0.84, "content": "\\pi\\gamma=\\gamma", "type": "inline_equation", "height": 11, "width": 39}, {"bbox": [419, 594, 457, 609], "score": 1.0, "content": " for all ", "type": "text"}, {"bbox": [457, 599, 465, 607], "score": 0.89, "content": "\\gamma", "type": "inline_equation", "height": 8, "width": 8}, {"bbox": [465, 594, 540, 609], "score": 1.0, "content": " in the fusion-", "type": "text"}], "index": 29}, {"bbox": [70, 608, 254, 624], "spans": [{"bbox": [70, 608, 124, 624], "score": 1.0, "content": "generator ", "type": "text"}, {"bbox": [124, 610, 132, 619], "score": 0.88, "content": "\\Gamma", "type": "inline_equation", "height": 9, "width": 8}, {"bbox": [132, 608, 212, 624], "score": 1.0, "content": ". Then for any ", "type": "text"}, {"bbox": [213, 610, 250, 622], "score": 0.93, "content": "\\lambda\\in P_{+}", "type": "inline_equation", "height": 12, "width": 37}, {"bbox": [250, 608, 254, 624], "score": 1.0, "content": ",", "type": "text"}], "index": 30}], "index": 29.5}, {"type": "interline_equation", "bbox": [146, 632, 465, 663], "lines": [{"bbox": [146, 632, 465, 663], "spans": [{"bbox": [146, 632, 465, 663], "score": 0.93, "content": "{\\frac{S_{\\lambda\\mu}}{S_{0\\mu}}}={\\frac{S_{\\pi\\lambda,\\pi^{\\prime}\\mu}}{S_{0,\\pi^{\\prime}\\mu}}}=P_{\\pi\\lambda}({\\frac{S_{\\gamma_{1},\\pi^{\\prime}\\mu}}{S_{0,\\pi^{\\prime}\\mu}}},\\dots)=P_{\\pi\\lambda}({\\frac{S_{\\gamma_{1}\\mu}}{S_{0\\mu}}},\\dots)={\\frac{S_{\\pi\\lambda,\\mu}}{S_{0\\mu}}}", "type": "interline_equation"}], "index": 31}], "index": 31}, {"type": "text", "bbox": [69, 672, 207, 686], "lines": [{"bbox": [71, 674, 207, 687], "spans": [{"bbox": [71, 674, 106, 687], "score": 1.0, "content": "for all ", "type": "text"}, {"bbox": [106, 676, 144, 687], "score": 0.93, "content": "\\mu\\in P_{+}", "type": "inline_equation", "height": 11, "width": 38}, {"bbox": [144, 674, 165, 687], "score": 1.0, "content": ", so ", "type": "text"}, {"bbox": [165, 676, 203, 685], "score": 0.93, "content": "\\pi\\lambda=\\lambda", "type": "inline_equation", "height": 9, "width": 38}, {"bbox": [203, 674, 207, 687], "score": 1.0, "content": ".", "type": "text"}], "index": 32}], "index": 32}, {"type": "text", "bbox": [70, 687, 541, 715], "lines": [{"bbox": [95, 689, 541, 703], "spans": [{"bbox": [95, 689, 541, 703], "score": 1.0, "content": "One of the reasons fusion-symmetries for the affine algebras are so tractible is the", "type": "text"}], "index": 33}, {"bbox": [72, 703, 540, 717], "spans": [{"bbox": [72, 703, 540, 717], "score": 1.0, "content": "existence of small fusion-generators. In particular, because we know that any Lie character", "type": "text"}], "index": 34}], "index": 33.5}], "layout_bboxes": [], "page_idx": 6, "page_size": [612.0, 792.0], "_layout_tree": [], "images": [], "tables": [], "interline_equations": [{"type": "interline_equation", "bbox": [190, 391, 422, 409], "lines": [{"bbox": [190, 391, 422, 409], "spans": [{"bbox": [190, 391, 422, 409], "score": 0.92, "content": "Q_{j}(\\lambda)\\equiv\\widetilde{Q}_{\\pi^{\\prime}j}(\\pi\\lambda)\\equiv\\widetilde{Q}_{\\pi j}(\\pi^{\\prime}\\lambda)\\qquad(\\mathrm{mod~1})~.", "type": "interline_equation"}], "index": 20}], "index": 20}, {"type": "interline_equation", "bbox": [111, 468, 507, 488], "lines": [{"bbox": [111, 468, 507, 488], "spans": [{"bbox": [111, 468, 507, 488], "score": 0.9, "content": "\\left\\varepsilon(\\lambda\\right)S_{\\lambda^{(\\ell)},\\mu}=\\sigma_{\\ell}S_{\\lambda\\mu}=\\sigma_{\\ell}\\widetilde{S}_{\\pi\\lambda,\\pi^{\\prime}\\mu}=\\widetilde{\\epsilon}_{\\ell}(\\pi\\lambda)\\,\\widetilde{S}_{(\\pi\\lambda)^{(\\ell)},\\pi^{\\prime}\\mu}=\\widetilde{\\epsilon}_{\\ell}(\\pi\\lambda)\\,S_{\\pi^{-1}(\\pi\\lambda)^{(\\ell)},\\mu}\\ .", "type": "interline_equation"}], "index": 24}], "index": 24}, {"type": "interline_equation", "bbox": [189, 552, 423, 582], "lines": [{"bbox": [189, 552, 423, 582], "spans": [{"bbox": [189, 552, 423, 582], "score": 0.93, "content": "\\frac{S_{\\lambda\\mu}}{S_{0\\mu}}=P_{\\lambda}(\\frac{S_{\\gamma_{1}\\mu}}{S_{0\\mu}},\\ldots,\\frac{S_{\\gamma_{m}\\mu}}{S_{0\\mu}})\\qquad\\forall\\lambda,\\mu\\in{\\cal P}_{+}\\ .", "type": "interline_equation"}], "index": 28}], "index": 28}, {"type": "interline_equation", "bbox": [146, 632, 465, 663], "lines": [{"bbox": [146, 632, 465, 663], "spans": [{"bbox": [146, 632, 465, 663], "score": 0.93, "content": "{\\frac{S_{\\lambda\\mu}}{S_{0\\mu}}}={\\frac{S_{\\pi\\lambda,\\pi^{\\prime}\\mu}}{S_{0,\\pi^{\\prime}\\mu}}}=P_{\\pi\\lambda}({\\frac{S_{\\gamma_{1},\\pi^{\\prime}\\mu}}{S_{0,\\pi^{\\prime}\\mu}}},\\dots)=P_{\\pi\\lambda}({\\frac{S_{\\gamma_{1}\\mu}}{S_{0\\mu}}},\\dots)={\\frac{S_{\\pi\\lambda,\\mu}}{S_{0\\mu}}}", "type": "interline_equation"}], "index": 31}], "index": 31}], "discarded_blocks": [], "need_drop": false, "drop_reason": [], "para_blocks": [{"type": "text", "bbox": [70, 70, 392, 85], "lines": [{"bbox": [70, 74, 390, 87], "spans": [{"bbox": [70, 74, 139, 87], "score": 1.0, "content": "For instance ", "type": "text"}, {"bbox": [139, 79, 146, 84], "score": 0.86, "content": "\\pi", "type": "inline_equation", "height": 5, "width": 7}, {"bbox": [147, 74, 207, 87], "score": 1.0, "content": " must send ", "type": "text"}, {"bbox": [208, 75, 216, 84], "score": 0.89, "content": "J", "type": "inline_equation", "height": 9, "width": 8}, {"bbox": [216, 74, 298, 87], "score": 1.0, "content": "-fixed-points to ", "type": "text"}, {"bbox": [298, 75, 323, 87], "score": 0.94, "content": "\\pi(J)", "type": "inline_equation", "height": 12, "width": 25}, {"bbox": [324, 74, 390, 87], "score": 1.0, "content": "-fixed-points.", "type": "text"}], "index": 0}], "index": 0, "page_num": "page_6", "page_size": [612.0, 792.0], "bbox_fs": [70, 74, 390, 87]}, {"type": "text", "bbox": [70, 86, 542, 160], "lines": [{"bbox": [95, 88, 541, 102], "spans": [{"bbox": [95, 88, 309, 102], "score": 1.0, "content": "More generally, a fusion-homomorphism ", "type": "text"}, {"bbox": [309, 93, 316, 99], "score": 0.85, "content": "\\pi", "type": "inline_equation", "height": 6, "width": 7}, {"bbox": [317, 88, 541, 102], "score": 1.0, "content": " is defined in the obvious algebraic way. It", "type": "text"}], "index": 1}, {"bbox": [70, 102, 541, 117], "spans": [{"bbox": [70, 102, 212, 117], "score": 1.0, "content": "turns out that for such a ", "type": "text"}, {"bbox": [213, 108, 220, 113], "score": 0.82, "content": "\\pi", "type": "inline_equation", "height": 5, "width": 7}, {"bbox": [220, 102, 228, 117], "score": 1.0, "content": ", ", "type": "text"}, {"bbox": [228, 104, 278, 115], "score": 0.91, "content": "\\pi\\lambda\\,=\\,\\pi\\mu", "type": "inline_equation", "height": 11, "width": 50}, {"bbox": [278, 102, 298, 117], "score": 1.0, "content": " iff", "type": "text"}, {"bbox": [298, 104, 341, 115], "score": 0.93, "content": "\\mu\\,=\\,J\\lambda", "type": "inline_equation", "height": 11, "width": 43}, {"bbox": [341, 102, 476, 117], "score": 1.0, "content": " for some simple-current ", "type": "text"}, {"bbox": [477, 105, 484, 113], "score": 0.9, "content": "J", "type": "inline_equation", "height": 8, "width": 7}, {"bbox": [485, 102, 541, 117], "score": 1.0, "content": " for which", "type": "text"}], "index": 2}, {"bbox": [71, 116, 542, 132], "spans": [{"bbox": [71, 117, 124, 131], "score": 0.94, "content": "\\pi(J0)=\\tilde{0}", "type": "inline_equation", "height": 14, "width": 53}, {"bbox": [124, 116, 187, 132], "score": 1.0, "content": ". Moreover, ", "type": "text"}, {"bbox": [187, 117, 240, 131], "score": 0.95, "content": "\\pi(J0)=\\tilde{0}", "type": "inline_equation", "height": 14, "width": 53}, {"bbox": [241, 116, 404, 132], "score": 1.0, "content": " is possible only if there are no ", "type": "text"}, {"bbox": [404, 119, 412, 127], "score": 0.9, "content": "J", "type": "inline_equation", "height": 8, "width": 8}, {"bbox": [413, 116, 520, 132], "score": 1.0, "content": "-fixed-points. When ", "type": "text"}, {"bbox": [520, 122, 528, 127], "score": 0.88, "content": "\\pi", "type": "inline_equation", "height": 5, "width": 8}, {"bbox": [528, 116, 542, 132], "score": 1.0, "content": " is", "type": "text"}], "index": 3}, {"bbox": [69, 131, 542, 149], "spans": [{"bbox": [69, 131, 409, 149], "score": 1.0, "content": "one-to-one (e.g. when there are no nontrivial simple-currents in ", "type": "text"}, {"bbox": [410, 131, 463, 148], "score": 0.93, "content": "P_{+}^{k}(X_{r}^{(1)}))", "type": "inline_equation", "height": 17, "width": 53}, {"bbox": [463, 131, 498, 149], "score": 1.0, "content": ", then ", "type": "text"}, {"bbox": [498, 138, 506, 144], "score": 0.88, "content": "\\pi", "type": "inline_equation", "height": 6, "width": 8}, {"bbox": [506, 131, 542, 149], "score": 1.0, "content": " obeys", "type": "text"}], "index": 4}, {"bbox": [72, 148, 366, 162], "spans": [{"bbox": [72, 148, 366, 162], "score": 1.0, "content": "(2.6). Fusion-homomorphisms will be studied elsewhere.", "type": "text"}], "index": 5}], "index": 3, "page_num": "page_6", "page_size": [612.0, 792.0], "bbox_fs": [69, 88, 542, 162]}, {"type": "text", "bbox": [95, 160, 420, 174], "lines": [{"bbox": [95, 162, 419, 176], "spans": [{"bbox": [95, 162, 419, 176], "score": 1.0, "content": "The key to finding fusion-symmetries is the following Lemma.", "type": "text"}], "index": 6}], "index": 6, "page_num": "page_6", "page_size": [612.0, 792.0], "bbox_fs": [95, 162, 419, 176]}, {"type": "text", "bbox": [70, 180, 543, 246], "lines": [{"bbox": [91, 178, 543, 201], "spans": [{"bbox": [91, 178, 194, 201], "score": 1.0, "content": "Lemma 2.2. Let", "type": "text"}, {"bbox": [194, 183, 203, 196], "score": 0.87, "content": "\\widetilde{S}", "type": "inline_equation", "height": 13, "width": 9}, {"bbox": [203, 178, 376, 201], "score": 1.0, "content": " be the Kac-Peterson matrix for ", "type": "text"}, {"bbox": [376, 181, 400, 197], "score": 0.9, "content": "Y_{s}^{(1)}", "type": "inline_equation", "height": 16, "width": 24}, {"bbox": [400, 178, 431, 201], "score": 1.0, "content": "level ", "type": "text"}, {"bbox": [431, 186, 443, 196], "score": 0.46, "content": "m", "type": "inline_equation", "height": 10, "width": 12}, {"bbox": [443, 178, 543, 201], "score": 1.0, "content": ". Then a bijection", "type": "text"}], "index": 7}, {"bbox": [71, 195, 543, 218], "spans": [{"bbox": [71, 198, 214, 216], "score": 0.92, "content": "\\pi\\,:\\,P_{+}^{k}(X_{r}^{(1)})\\,\\to\\,P_{+}^{m}(Y_{s}^{(1)})", "type": "inline_equation", "height": 18, "width": 143}, {"bbox": [214, 195, 543, 218], "score": 1.0, "content": " defines an isomorphism of fusion rings iff there exists some", "type": "text"}], "index": 8}, {"bbox": [68, 212, 544, 236], "spans": [{"bbox": [68, 212, 119, 236], "score": 1.0, "content": "bijection ", "type": "text"}, {"bbox": [120, 216, 261, 233], "score": 0.92, "content": "\\pi^{\\prime}:P_{+}^{k}(X_{r}^{(1)})\\to P_{+}^{m}(Y_{s}^{(1)})", "type": "inline_equation", "height": 17, "width": 141}, {"bbox": [261, 212, 317, 236], "score": 1.0, "content": " such that ", "type": "text"}, {"bbox": [317, 216, 392, 232], "score": 0.94, "content": "S_{\\lambda\\mu}=\\widetilde{S}_{\\pi\\lambda,\\pi^{\\prime}\\mu}", "type": "inline_equation", "height": 16, "width": 75}, {"bbox": [392, 212, 433, 236], "score": 1.0, "content": " for all ", "type": "text"}, {"bbox": [433, 215, 518, 233], "score": 0.91, "content": "\\lambda,\\mu\\in P_{+}^{k}(X_{r}^{(1)})", "type": "inline_equation", "height": 18, "width": 85}, {"bbox": [518, 212, 544, 236], "score": 1.0, "content": ". In", "type": "text"}], "index": 9}, {"bbox": [70, 232, 541, 247], "spans": [{"bbox": [70, 232, 205, 247], "score": 1.0, "content": "particular, a permutation ", "type": "text"}, {"bbox": [206, 238, 213, 243], "score": 0.67, "content": "\\pi", "type": "inline_equation", "height": 5, "width": 7}, {"bbox": [213, 232, 344, 247], "score": 1.0, "content": " is a fusion-symmetry iff", "type": "text"}, {"bbox": [344, 233, 377, 246], "score": 0.92, "content": "(\\pi,\\pi^{\\prime})", "type": "inline_equation", "height": 13, "width": 33}, {"bbox": [377, 232, 409, 247], "score": 1.0, "content": " is an ", "type": "text"}, {"bbox": [409, 234, 418, 244], "score": 0.83, "content": "S", "type": "inline_equation", "height": 10, "width": 9}, {"bbox": [418, 232, 524, 247], "score": 1.0, "content": "-symmetry for some ", "type": "text"}, {"bbox": [525, 234, 536, 243], "score": 0.87, "content": "\\pi^{\\prime}", "type": "inline_equation", "height": 9, "width": 11}, {"bbox": [536, 232, 541, 247], "score": 1.0, "content": ".", "type": "text"}], "index": 10}], "index": 8.5, "page_num": "page_6", "page_size": [612.0, 792.0], "bbox_fs": [68, 178, 544, 247]}, {"type": "text", "bbox": [70, 250, 558, 344], "lines": [{"bbox": [68, 250, 542, 273], "spans": [{"bbox": [68, 250, 185, 273], "score": 1.0, "content": "Proof. The equality ", "type": "text"}, {"bbox": [185, 256, 263, 270], "score": 0.93, "content": "N_{\\lambda\\mu}^{\\nu}=M_{\\pi\\lambda,\\pi\\mu}^{\\pi\\nu}", "type": "inline_equation", "height": 14, "width": 78}, {"bbox": [263, 250, 378, 273], "score": 1.0, "content": " means that, for each ", "type": "text"}, {"bbox": [378, 256, 387, 267], "score": 0.75, "content": "\\mu", "type": "inline_equation", "height": 11, "width": 9}, {"bbox": [387, 250, 497, 273], "score": 1.0, "content": ", the column vectors ", "type": "text"}, {"bbox": [498, 254, 542, 269], "score": 0.9, "content": "(\\underline{{x}}_{\\mu})_{\\nu}=", "type": "inline_equation", "height": 15, "width": 44}], "index": 11}, {"bbox": [71, 268, 559, 290], "spans": [{"bbox": [71, 270, 105, 286], "score": 0.92, "content": "\\widetilde{S}_{\\pi\\nu,\\pi\\mu}", "type": "inline_equation", "height": 16, "width": 34}, {"bbox": [105, 268, 377, 290], "score": 1.0, "content": " are simultaneous eigenvectors for the fusion matrices", "type": "text"}, {"bbox": [378, 272, 394, 284], "score": 0.89, "content": "N_{\\lambda}", "type": "inline_equation", "height": 12, "width": 16}, {"bbox": [394, 268, 486, 290], "score": 1.0, "content": ", with eigenvalues", "type": "text"}, {"bbox": [487, 269, 555, 286], "score": 0.92, "content": "\\widetilde{S}_{\\pi\\lambda,\\pi\\mu}/\\widetilde{S}_{0,\\pi\\mu}", "type": "inline_equation", "height": 17, "width": 68}, {"bbox": [555, 268, 559, 290], "score": 1.0, "content": ".", "type": "text"}], "index": 12}, {"bbox": [70, 285, 542, 301], "spans": [{"bbox": [70, 285, 542, 301], "score": 1.0, "content": "I t is easy to see from Verlinde\u2019s formula (1.1b) that any simultaneous eigenvec t or for a ll", "type": "text"}], "index": 13}, {"bbox": [71, 300, 542, 315], "spans": [{"bbox": [71, 300, 402, 315], "score": 1.0, "content": "fusion matrices must be a scalar multiple of some column of ", "type": "text"}, {"bbox": [402, 302, 410, 311], "score": 0.85, "content": "S", "type": "inline_equation", "height": 9, "width": 8}, {"bbox": [411, 300, 542, 315], "score": 1.0, "content": ". Thus there must be a", "type": "text"}], "index": 14}, {"bbox": [68, 312, 543, 335], "spans": [{"bbox": [68, 312, 140, 335], "score": 1.0, "content": "permutation ", "type": "text"}, {"bbox": [141, 317, 155, 327], "score": 0.9, "content": "\\pi^{\\prime\\prime}", "type": "inline_equation", "height": 10, "width": 14}, {"bbox": [155, 312, 174, 335], "score": 1.0, "content": " of ", "type": "text"}, {"bbox": [174, 314, 223, 331], "score": 0.95, "content": "P_{+}^{k}(X_{r}^{(1)})", "type": "inline_equation", "height": 17, "width": 49}, {"bbox": [224, 312, 293, 335], "score": 1.0, "content": " and scalars ", "type": "text"}, {"bbox": [293, 317, 317, 330], "score": 0.94, "content": "\\alpha(\\mu)", "type": "inline_equation", "height": 13, "width": 24}, {"bbox": [318, 312, 378, 335], "score": 1.0, "content": " such that", "type": "text"}, {"bbox": [378, 315, 491, 330], "score": 0.92, "content": "\\widetilde{S}_{\\pi\\nu,\\pi\\mu}\\,=\\,\\alpha(\\mu)\\,S_{\\nu,\\pi^{\\prime\\prime}\\mu}", "type": "inline_equation", "height": 15, "width": 113}, {"bbox": [492, 312, 543, 335], "score": 1.0, "content": ". Taking", "type": "text"}], "index": 15}, {"bbox": [71, 331, 412, 345], "spans": [{"bbox": [71, 333, 100, 342], "score": 0.91, "content": "\\nu=0", "type": "inline_equation", "height": 9, "width": 29}, {"bbox": [100, 331, 137, 345], "score": 1.0, "content": " forces ", "type": "text"}, {"bbox": [137, 332, 184, 344], "score": 0.94, "content": "\\alpha(\\mu)>0", "type": "inline_equation", "height": 12, "width": 47}, {"bbox": [184, 331, 325, 345], "score": 1.0, "content": ", and then unitarity forces ", "type": "text"}, {"bbox": [325, 332, 371, 344], "score": 0.94, "content": "\\alpha(\\mu)=1", "type": "inline_equation", "height": 12, "width": 46}, {"bbox": [372, 331, 377, 345], "score": 1.0, "content": ". ", "type": "text"}, {"bbox": [401, 332, 412, 344], "score": 0.9251790046691895, "content": "\u25a0", "type": "text"}], "index": 16}], "index": 13.5, "page_num": "page_6", "page_size": [612.0, 792.0], "bbox_fs": [68, 250, 559, 345]}, {"type": "text", "bbox": [70, 349, 541, 391], "lines": [{"bbox": [92, 351, 541, 366], "spans": [{"bbox": [92, 351, 118, 366], "score": 1.0, "content": "Let ", "type": "text"}, {"bbox": [119, 357, 126, 362], "score": 0.86, "content": "\\pi", "type": "inline_equation", "height": 5, "width": 7}, {"bbox": [126, 351, 294, 366], "score": 1.0, "content": " be any isomorphism, and let ", "type": "text"}, {"bbox": [294, 353, 305, 362], "score": 0.9, "content": "\\pi^{\\prime}", "type": "inline_equation", "height": 9, "width": 11}, {"bbox": [306, 351, 470, 366], "score": 1.0, "content": " be as in the Lemma. Then ", "type": "text"}, {"bbox": [470, 353, 481, 362], "score": 0.89, "content": "\\pi^{\\prime}", "type": "inline_equation", "height": 9, "width": 11}, {"bbox": [482, 351, 541, 366], "score": 1.0, "content": " is also an", "type": "text"}], "index": 17}, {"bbox": [71, 367, 538, 381], "spans": [{"bbox": [71, 367, 175, 381], "score": 1.0, "content": "isomorphism, with ", "type": "text"}, {"bbox": [175, 367, 227, 380], "score": 0.94, "content": "(\\pi^{\\prime})^{\\prime}\\;=\\;\\pi", "type": "inline_equation", "height": 13, "width": 52}, {"bbox": [228, 367, 410, 381], "score": 1.0, "content": ". Equation (2.2b) implies for all ", "type": "text"}, {"bbox": [411, 367, 453, 380], "score": 0.91, "content": "\\lambda\\:\\in\\:P_{+}", "type": "inline_equation", "height": 13, "width": 42}, {"bbox": [454, 367, 538, 381], "score": 1.0, "content": " and all simple-", "type": "text"}], "index": 18}, {"bbox": [71, 382, 154, 393], "spans": [{"bbox": [71, 382, 117, 393], "score": 1.0, "content": "currents ", "type": "text"}, {"bbox": [117, 383, 123, 393], "score": 0.88, "content": "j", "type": "inline_equation", "height": 10, "width": 6}, {"bbox": [124, 382, 154, 393], "score": 1.0, "content": ", that", "type": "text"}], "index": 19}], "index": 18, "page_num": "page_6", "page_size": [612.0, 792.0], "bbox_fs": [71, 351, 541, 393]}, {"type": "interline_equation", "bbox": [190, 391, 422, 409], "lines": [{"bbox": [190, 391, 422, 409], "spans": [{"bbox": [190, 391, 422, 409], "score": 0.92, "content": "Q_{j}(\\lambda)\\equiv\\widetilde{Q}_{\\pi^{\\prime}j}(\\pi\\lambda)\\equiv\\widetilde{Q}_{\\pi j}(\\pi^{\\prime}\\lambda)\\qquad(\\mathrm{mod~1})~.", "type": "interline_equation"}], "index": 20}], "index": 20, "page_num": "page_6", "page_size": [612.0, 792.0]}, {"type": "text", "bbox": [70, 414, 541, 458], "lines": [{"bbox": [94, 416, 539, 432], "spans": [{"bbox": [94, 416, 528, 432], "score": 1.0, "content": "Another quick consequence of the Lemma is that for any Galois automorphism ", "type": "text"}, {"bbox": [528, 422, 539, 429], "score": 0.86, "content": "\\sigma_{\\ell}", "type": "inline_equation", "height": 7, "width": 11}], "index": 21}, {"bbox": [69, 430, 542, 447], "spans": [{"bbox": [69, 430, 164, 447], "score": 1.0, "content": "and isomorphism ", "type": "text"}, {"bbox": [165, 436, 172, 442], "score": 0.86, "content": "\\pi", "type": "inline_equation", "height": 6, "width": 7}, {"bbox": [173, 430, 225, 447], "score": 1.0, "content": ", we have ", "type": "text"}, {"bbox": [225, 432, 300, 444], "score": 0.94, "content": "\\tilde{\\epsilon}_{\\ell}(\\pi\\lambda)=\\epsilon_{\\ell}(\\lambda)", "type": "inline_equation", "height": 12, "width": 75}, {"bbox": [301, 430, 327, 447], "score": 1.0, "content": " and ", "type": "text"}, {"bbox": [328, 430, 416, 445], "score": 0.94, "content": "\\pi(\\lambda^{(\\ell)})=(\\pi\\lambda)^{(\\ell)}", "type": "inline_equation", "height": 15, "width": 88}, {"bbox": [416, 430, 542, 447], "score": 1.0, "content": ". To see this, apply the", "type": "text"}], "index": 22}, {"bbox": [71, 445, 243, 460], "spans": [{"bbox": [71, 445, 149, 460], "score": 1.0, "content": "invertibility of ", "type": "text"}, {"bbox": [150, 447, 158, 456], "score": 0.91, "content": "S", "type": "inline_equation", "height": 9, "width": 8}, {"bbox": [158, 445, 243, 460], "score": 1.0, "content": " to the equation", "type": "text"}], "index": 23}], "index": 22, "page_num": "page_6", "page_size": [612.0, 792.0], "bbox_fs": [69, 416, 542, 460]}, {"type": "interline_equation", "bbox": [111, 468, 507, 488], "lines": [{"bbox": [111, 468, 507, 488], "spans": [{"bbox": [111, 468, 507, 488], "score": 0.9, "content": "\\left\\varepsilon(\\lambda\\right)S_{\\lambda^{(\\ell)},\\mu}=\\sigma_{\\ell}S_{\\lambda\\mu}=\\sigma_{\\ell}\\widetilde{S}_{\\pi\\lambda,\\pi^{\\prime}\\mu}=\\widetilde{\\epsilon}_{\\ell}(\\pi\\lambda)\\,\\widetilde{S}_{(\\pi\\lambda)^{(\\ell)},\\pi^{\\prime}\\mu}=\\widetilde{\\epsilon}_{\\ell}(\\pi\\lambda)\\,S_{\\pi^{-1}(\\pi\\lambda)^{(\\ell)},\\mu}\\ .", "type": "interline_equation"}], "index": 24}], "index": 24, "page_num": "page_6", "page_size": [612.0, 792.0]}, {"type": "text", "bbox": [69, 496, 542, 540], "lines": [{"bbox": [95, 498, 542, 514], "spans": [{"bbox": [95, 498, 542, 514], "score": 1.0, "content": "A very useful notion for studying the fusion ring is that of fusion-generator, i.e. a", "type": "text"}], "index": 25}, {"bbox": [70, 511, 542, 529], "spans": [{"bbox": [70, 511, 108, 529], "score": 1.0, "content": "subset ", "type": "text"}, {"bbox": [108, 514, 199, 527], "score": 0.93, "content": "\\Gamma=\\{\\gamma_{1},...,\\gamma_{m}\\}", "type": "inline_equation", "height": 13, "width": 91}, {"bbox": [200, 511, 217, 529], "score": 1.0, "content": " of ", "type": "text"}, {"bbox": [218, 515, 233, 526], "score": 0.92, "content": "P_{+}", "type": "inline_equation", "height": 11, "width": 15}, {"bbox": [234, 511, 325, 529], "score": 1.0, "content": " which generates ", "type": "text"}, {"bbox": [325, 513, 369, 527], "score": 0.93, "content": "\\mathcal{R}(X_{r,k})", "type": "inline_equation", "height": 14, "width": 44}, {"bbox": [369, 511, 542, 529], "score": 1.0, "content": " as a ring. Diagonalising, this is", "type": "text"}], "index": 26}, {"bbox": [72, 527, 529, 543], "spans": [{"bbox": [72, 527, 270, 543], "score": 1.0, "content": "equivalent to requiring that there are ", "type": "text"}, {"bbox": [270, 532, 281, 538], "score": 0.78, "content": "m", "type": "inline_equation", "height": 6, "width": 11}, {"bbox": [281, 527, 396, 543], "score": 1.0, "content": "-variable polynomials ", "type": "text"}, {"bbox": [396, 528, 474, 541], "score": 0.93, "content": "P_{\\lambda}(x_{1},\\ldots,x_{m})", "type": "inline_equation", "height": 13, "width": 78}, {"bbox": [474, 527, 529, 543], "score": 1.0, "content": " such that", "type": "text"}], "index": 27}], "index": 26, "page_num": "page_6", "page_size": [612.0, 792.0], "bbox_fs": [70, 498, 542, 543]}, {"type": "interline_equation", "bbox": [189, 552, 423, 582], "lines": [{"bbox": [189, 552, 423, 582], "spans": [{"bbox": [189, 552, 423, 582], "score": 0.93, "content": "\\frac{S_{\\lambda\\mu}}{S_{0\\mu}}=P_{\\lambda}(\\frac{S_{\\gamma_{1}\\mu}}{S_{0\\mu}},\\ldots,\\frac{S_{\\gamma_{m}\\mu}}{S_{0\\mu}})\\qquad\\forall\\lambda,\\mu\\in{\\cal P}_{+}\\ .", "type": "interline_equation"}], "index": 28}], "index": 28, "page_num": "page_6", "page_size": [612.0, 792.0]}, {"type": "text", "bbox": [69, 592, 541, 621], "lines": [{"bbox": [70, 594, 540, 609], "spans": [{"bbox": [70, 594, 93, 609], "score": 1.0, "content": "Let ", "type": "text"}, {"bbox": [93, 595, 126, 608], "score": 0.94, "content": "(\\pi,\\pi^{\\prime})", "type": "inline_equation", "height": 13, "width": 33}, {"bbox": [126, 594, 163, 609], "score": 1.0, "content": " be an ", "type": "text"}, {"bbox": [164, 596, 172, 605], "score": 0.9, "content": "S", "type": "inline_equation", "height": 9, "width": 8}, {"bbox": [172, 594, 378, 609], "score": 1.0, "content": "-symmetry, and suppose we know that ", "type": "text"}, {"bbox": [379, 596, 418, 607], "score": 0.84, "content": "\\pi\\gamma=\\gamma", "type": "inline_equation", "height": 11, "width": 39}, {"bbox": [419, 594, 457, 609], "score": 1.0, "content": " for all ", "type": "text"}, {"bbox": [457, 599, 465, 607], "score": 0.89, "content": "\\gamma", "type": "inline_equation", "height": 8, "width": 8}, {"bbox": [465, 594, 540, 609], "score": 1.0, "content": " in the fusion-", "type": "text"}], "index": 29}, {"bbox": [70, 608, 254, 624], "spans": [{"bbox": [70, 608, 124, 624], "score": 1.0, "content": "generator ", "type": "text"}, {"bbox": [124, 610, 132, 619], "score": 0.88, "content": "\\Gamma", "type": "inline_equation", "height": 9, "width": 8}, {"bbox": [132, 608, 212, 624], "score": 1.0, "content": ". Then for any ", "type": "text"}, {"bbox": [213, 610, 250, 622], "score": 0.93, "content": "\\lambda\\in P_{+}", "type": "inline_equation", "height": 12, "width": 37}, {"bbox": [250, 608, 254, 624], "score": 1.0, "content": ",", "type": "text"}], "index": 30}], "index": 29.5, "page_num": "page_6", "page_size": [612.0, 792.0], "bbox_fs": [70, 594, 540, 624]}, {"type": "interline_equation", "bbox": [146, 632, 465, 663], "lines": [{"bbox": [146, 632, 465, 663], "spans": [{"bbox": [146, 632, 465, 663], "score": 0.93, "content": "{\\frac{S_{\\lambda\\mu}}{S_{0\\mu}}}={\\frac{S_{\\pi\\lambda,\\pi^{\\prime}\\mu}}{S_{0,\\pi^{\\prime}\\mu}}}=P_{\\pi\\lambda}({\\frac{S_{\\gamma_{1},\\pi^{\\prime}\\mu}}{S_{0,\\pi^{\\prime}\\mu}}},\\dots)=P_{\\pi\\lambda}({\\frac{S_{\\gamma_{1}\\mu}}{S_{0\\mu}}},\\dots)={\\frac{S_{\\pi\\lambda,\\mu}}{S_{0\\mu}}}", "type": "interline_equation"}], "index": 31}], "index": 31, "page_num": "page_6", "page_size": [612.0, 792.0]}, {"type": "text", "bbox": [69, 672, 207, 686], "lines": [{"bbox": [71, 674, 207, 687], "spans": [{"bbox": [71, 674, 106, 687], "score": 1.0, "content": "for all ", "type": "text"}, {"bbox": [106, 676, 144, 687], "score": 0.93, "content": "\\mu\\in P_{+}", "type": "inline_equation", "height": 11, "width": 38}, {"bbox": [144, 674, 165, 687], "score": 1.0, "content": ", so ", "type": "text"}, {"bbox": [165, 676, 203, 685], "score": 0.93, "content": "\\pi\\lambda=\\lambda", "type": "inline_equation", "height": 9, "width": 38}, {"bbox": [203, 674, 207, 687], "score": 1.0, "content": ".", "type": "text"}], "index": 32}], "index": 32, "page_num": "page_6", "page_size": [612.0, 792.0], "bbox_fs": [71, 674, 207, 687]}, {"type": "text", "bbox": [70, 687, 541, 715], "lines": [{"bbox": [95, 689, 541, 703], "spans": [{"bbox": [95, 689, 541, 703], "score": 1.0, "content": "One of the reasons fusion-symmetries for the affine algebras are so tractible is the", "type": "text"}], "index": 33}, {"bbox": [72, 703, 540, 717], "spans": [{"bbox": [72, 703, 540, 717], "score": 1.0, "content": "existence of small fusion-generators. In particular, because we know that any Lie character", "type": "text"}], "index": 34}, {"bbox": [71, 71, 542, 91], "spans": [{"bbox": [71, 75, 90, 88], "score": 0.84, "content": "\\mathrm{ch}_{\\overline{{{\\mu}}}}", "type": "inline_equation", "height": 13, "width": 19, "cross_page": true}, {"bbox": [90, 71, 111, 91], "score": 1.0, "content": " for ", "type": "text", "cross_page": true}, {"bbox": [112, 75, 127, 86], "score": 0.92, "content": "X_{r}", "type": "inline_equation", "height": 11, "width": 15, "cross_page": true}, {"bbox": [128, 71, 462, 91], "score": 1.0, "content": " can be written as a polynomial in the fundamental characters ", "type": "text", "cross_page": true}, {"bbox": [462, 74, 537, 87], "score": 0.87, "content": "\\mathrm{ch}_{\\Lambda_{1}},\\ldots,\\mathrm{ch}_{\\Lambda_{r}}", "type": "inline_equation", "height": 13, "width": 75, "cross_page": true}, {"bbox": [537, 71, 542, 91], "score": 1.0, "content": ",", "type": "text", "cross_page": true}], "index": 0}, {"bbox": [69, 88, 540, 106], "spans": [{"bbox": [69, 88, 212, 106], "score": 1.0, "content": "we know from (2.1b) that ", "type": "text", "cross_page": true}, {"bbox": [212, 92, 303, 105], "score": 0.93, "content": "\\Gamma=\\{\\Lambda_{1},\\dots,\\Lambda_{r}\\}", "type": "inline_equation", "height": 13, "width": 91, "cross_page": true}, {"bbox": [304, 88, 438, 106], "score": 1.0, "content": " is a fusion-generator for ", "type": "text", "cross_page": true}, {"bbox": [438, 88, 462, 103], "score": 0.92, "content": "X_{r}^{(1)}", "type": "inline_equation", "height": 15, "width": 24, "cross_page": true}, {"bbox": [463, 88, 532, 106], "score": 1.0, "content": "at any level ", "type": "text", "cross_page": true}, {"bbox": [532, 93, 540, 102], "score": 0.84, "content": "k", "type": "inline_equation", "height": 9, "width": 8, "cross_page": true}], "index": 1}, {"bbox": [70, 105, 541, 120], "spans": [{"bbox": [70, 105, 185, 120], "score": 1.0, "content": "sufficiently large that ", "type": "text", "cross_page": true}, {"bbox": [186, 108, 201, 119], "score": 0.92, "content": "P_{+}", "type": "inline_equation", "height": 11, "width": 15, "cross_page": true}, {"bbox": [202, 105, 268, 120], "score": 1.0, "content": " contains all ", "type": "text", "cross_page": true}, {"bbox": [268, 107, 281, 118], "score": 0.9, "content": "\\Lambda_{i}", "type": "inline_equation", "height": 11, "width": 13, "cross_page": true}, {"bbox": [281, 105, 412, 120], "score": 1.0, "content": " (in other words, for any ", "type": "text", "cross_page": true}, {"bbox": [412, 105, 478, 119], "score": 0.91, "content": "k\\geq\\operatorname*{max}_{i}a_{i}^{\\vee}", "type": "inline_equation", "height": 14, "width": 66, "cross_page": true}, {"bbox": [479, 105, 541, 120], "score": 1.0, "content": "). In fact, it", "type": "text", "cross_page": true}], "index": 2}, {"bbox": [70, 119, 541, 135], "spans": [{"bbox": [70, 119, 362, 135], "score": 1.0, "content": "is easy to show [18] that a fusion-generator valid for any ", "type": "text", "cross_page": true}, {"bbox": [362, 122, 385, 134], "score": 0.93, "content": "X_{r,k}", "type": "inline_equation", "height": 12, "width": 23, "cross_page": true}, {"bbox": [385, 119, 399, 135], "score": 1.0, "content": " is ", "type": "text", "cross_page": true}, {"bbox": [400, 120, 492, 133], "score": 0.92, "content": "\\{\\Lambda_{1},\\ldots,\\Lambda_{r}\\}\\cap{\\cal P}_{+}", "type": "inline_equation", "height": 13, "width": 92, "cross_page": true}, {"bbox": [492, 119, 541, 135], "score": 1.0, "content": ". Smaller", "type": "text", "cross_page": true}], "index": 3}, {"bbox": [70, 133, 541, 149], "spans": [{"bbox": [70, 133, 310, 149], "score": 1.0, "content": "fusion-generators usually exist \u2014 for example ", "type": "text", "cross_page": true}, {"bbox": [310, 135, 336, 147], "score": 0.94, "content": "\\{\\Lambda_{1}\\}", "type": "inline_equation", "height": 12, "width": 26, "cross_page": true}, {"bbox": [336, 133, 465, 149], "score": 1.0, "content": " is a fusion-generator for ", "type": "text", "cross_page": true}, {"bbox": [465, 135, 487, 148], "score": 0.91, "content": "A_{8,k}", "type": "inline_equation", "height": 13, "width": 22, "cross_page": true}, {"bbox": [488, 133, 541, 149], "score": 1.0, "content": " whenever", "type": "text", "cross_page": true}], "index": 4}, {"bbox": [71, 149, 215, 163], "spans": [{"bbox": [71, 150, 78, 159], "score": 0.9, "content": "k", "type": "inline_equation", "height": 9, "width": 7, "cross_page": true}, {"bbox": [78, 149, 215, 163], "score": 1.0, "content": " is even and coprime to 3.", "type": "text", "cross_page": true}], "index": 5}], "index": 33.5, "page_num": "page_6", "page_size": [612.0, 792.0], "bbox_fs": [72, 689, 541, 717]}]} |
|
0002044v1 | 11 | valid for all $$1\leq i<r-2$$ and $$k>2$$ . We also will use the character formula (2.1b)
where $$\lambda^{+}(\ell)\,=\,(\lambda+\rho)(\ell)$$ and the orthonormal components $$\lambda(\ell)$$ are defined by $$\lambda(\ell)\,=$$
$$\begin{array}{r}{\sum_{i=\ell}^{r-1}\lambda_{i}+\frac{\lambda_{r}-\lambda_{r-1}}{2}}\end{array}$$ .
The simple-current automorphisms are as follows, and depend on whether $$r$$ and $$k$$ are
even or odd. When $$r$$ is odd, the group of simple-currents is generated by $$J_{s}$$ . If in addition
$$k$$ is odd, there will be only two simple-current automorphisms: $$\pi=\pi^{\prime}=\pi[a]=J_{s}^{4a\cup_{s}}$$ for
$$a\in\{0,2\}$$ . If instead $$k$$ is even, there will be four simple-current automorphisms: $$\pi=\pi[a]$$
and $$\pi^{\prime}=\pi[a k-a]$$ for $$0\leq a\leq3$$ . When $$k\equiv2$$ (mod 4), these form the group $$\mathbb{Z}_{2}\times\mathbb{Z}_{2}$$ ,
otherwise when $$4|k$$ the group is $$\mathbb{Z}_{4}$$ .
When $$r$$ is even, the simple-currents are generated by both $$J_{v}$$ and $$J_{s}$$ . If in addition
$$k$$ is even, we have 16 simple-current automorphisms:
for any $$a,b,c,d\in\{0,1\}$$ , forming a group isomorphic to $$\mathbb{Z}_{2}^{4}$$ . This notation means
When $$k$$ is odd, we will have six simple-current automorphisms:
where $$a={\frac{r}{2}}$$ or $$d=0$$ , and where $$b=1$$ or $$d=1$$ . The corresponding permutation of $$P_{+}$$
is still given by (3.5). Again, for these $$r,k$$ , these are the values of $$a,b,c,d$$ for which (3.5)
is invertible. For $$k$$ odd, the group of simple-current automorphisms is isomorphic to the
symmetric group $$\mathfrak{S}_{3}$$ when 4 divides $$r$$ , and to $$\mathbb{Z}_{6}$$ when $$r\equiv2$$ (mod 4).
For $$k=2$$ (so $$\kappa=2r$$ ), there are several Galois fusion-symmetries. In particular, write
$$\lambda^{i}\,=\,\lambda^{2r-i}\,=\,\Lambda_{i}$$ for $$1\,\leq\,i\,\leq\,r\,-\,2$$ , and $$\lambda^{r\pm1}=\Lambda_{r-1}+\Lambda_{r}$$ . As with $$B_{r,2}$$ , $$\begin{array}{r}{S_{00}^{2}\,=\,\frac{1}{4\kappa}}\end{array}$$ 1 is
rational so for any $${\boldsymbol{\mathit{\varepsilon}}}^{\prime}{\boldsymbol{\mathit{m}}}$$ coprime to $$2r$$ , we get a Galois fusion-symmetry $$\pi\{m\}$$ . It takes $$\lambda^{a}$$ to
$$\lambda^{m a}$$ , where the superscript is taken mod $$2r$$ , and will fix $$J_{v}0$$ . Also, $$\pi\{m\}$$ will send $$J_{s}0$$ to
$$J_{s}^{m}0$$ , as well as stabilise the set $$\left\{\Lambda_{r},\Lambda_{r-1},J_{v}\Lambda_{r},J_{v}\Lambda_{r-1}\right\}$$ . (In particular, put $$t=r$$ when
$$r$$ is even or when $$m\equiv1$$ (mod 4), otherwise put $$t=r-1$$ ; then for any $$i,j,\,\pi\{m\}\,C_{1}^{j}J_{v}^{i}\Lambda_{r}$$
is $$C_{1}^{j}J_{v}^{i}\Lambda_{t}$$ or $$C_{1}^{j}J_{v}^{i+1}\Lambda_{t}$$ , when the Jacobi symbol $$\textstyle\left({\frac{\kappa}{m}}\right)$$ is $$\pm1$$ , respectively.)
Theorem 3.D. The fusion-symmetries of $$D_{r}^{(1)}$$ for $$k\neq2$$ are all of the form $$C_{i}\,\pi$$ ,
where $$C_{i}$$ is a conjugation, and where $$\pi$$ is a simple-current automorphism. Similarly for
| <p>valid for all $$1\leq i<r-2$$ and $$k>2$$ . We also will use the character formula (2.1b)</p>
<p>where $$\lambda^{+}(\ell)\,=\,(\lambda+\rho)(\ell)$$ and the orthonormal components $$\lambda(\ell)$$ are defined by $$\lambda(\ell)\,=$$
$$\begin{array}{r}{\sum_{i=\ell}^{r-1}\lambda_{i}+\frac{\lambda_{r}-\lambda_{r-1}}{2}}\end{array}$$ .</p>
<p>The simple-current automorphisms are as follows, and depend on whether $$r$$ and $$k$$ are
even or odd. When $$r$$ is odd, the group of simple-currents is generated by $$J_{s}$$ . If in addition
$$k$$ is odd, there will be only two simple-current automorphisms: $$\pi=\pi^{\prime}=\pi[a]=J_{s}^{4a\cup_{s}}$$ for
$$a\in\{0,2\}$$ . If instead $$k$$ is even, there will be four simple-current automorphisms: $$\pi=\pi[a]$$
and $$\pi^{\prime}=\pi[a k-a]$$ for $$0\leq a\leq3$$ . When $$k\equiv2$$ (mod 4), these form the group $$\mathbb{Z}_{2}\times\mathbb{Z}_{2}$$ ,
otherwise when $$4|k$$ the group is $$\mathbb{Z}_{4}$$ .</p>
<p>When $$r$$ is even, the simple-currents are generated by both $$J_{v}$$ and $$J_{s}$$ . If in addition
$$k$$ is even, we have 16 simple-current automorphisms:</p>
<p>for any $$a,b,c,d\in\{0,1\}$$ , forming a group isomorphic to $$\mathbb{Z}_{2}^{4}$$ . This notation means</p>
<p>When $$k$$ is odd, we will have six simple-current automorphisms:</p>
<p>where $$a={\frac{r}{2}}$$ or $$d=0$$ , and where $$b=1$$ or $$d=1$$ . The corresponding permutation of $$P_{+}$$
is still given by (3.5). Again, for these $$r,k$$ , these are the values of $$a,b,c,d$$ for which (3.5)
is invertible. For $$k$$ odd, the group of simple-current automorphisms is isomorphic to the
symmetric group $$\mathfrak{S}_{3}$$ when 4 divides $$r$$ , and to $$\mathbb{Z}_{6}$$ when $$r\equiv2$$ (mod 4).</p>
<p>For $$k=2$$ (so $$\kappa=2r$$ ), there are several Galois fusion-symmetries. In particular, write
$$\lambda^{i}\,=\,\lambda^{2r-i}\,=\,\Lambda_{i}$$ for $$1\,\leq\,i\,\leq\,r\,-\,2$$ , and $$\lambda^{r\pm1}=\Lambda_{r-1}+\Lambda_{r}$$ . As with $$B_{r,2}$$ , $$\begin{array}{r}{S_{00}^{2}\,=\,\frac{1}{4\kappa}}\end{array}$$ 1 is
rational so for any $${\boldsymbol{\mathit{\varepsilon}}}^{\prime}{\boldsymbol{\mathit{m}}}$$ coprime to $$2r$$ , we get a Galois fusion-symmetry $$\pi\{m\}$$ . It takes $$\lambda^{a}$$ to
$$\lambda^{m a}$$ , where the superscript is taken mod $$2r$$ , and will fix $$J_{v}0$$ . Also, $$\pi\{m\}$$ will send $$J_{s}0$$ to
$$J_{s}^{m}0$$ , as well as stabilise the set $$\left\{\Lambda_{r},\Lambda_{r-1},J_{v}\Lambda_{r},J_{v}\Lambda_{r-1}\right\}$$ . (In particular, put $$t=r$$ when
$$r$$ is even or when $$m\equiv1$$ (mod 4), otherwise put $$t=r-1$$ ; then for any $$i,j,\,\pi\{m\}\,C_{1}^{j}J_{v}^{i}\Lambda_{r}$$
is $$C_{1}^{j}J_{v}^{i}\Lambda_{t}$$ or $$C_{1}^{j}J_{v}^{i+1}\Lambda_{t}$$ , when the Jacobi symbol $$\textstyle\left({\frac{\kappa}{m}}\right)$$ is $$\pm1$$ , respectively.)</p>
<p>Theorem 3.D. The fusion-symmetries of $$D_{r}^{(1)}$$ for $$k\neq2$$ are all of the form $$C_{i}\,\pi$$ ,
where $$C_{i}$$ is a conjugation, and where $$\pi$$ is a simple-current automorphism. Similarly for</p>
| [{"type": "text", "coordinates": [70, 70, 505, 86], "content": "valid for all $$1\\leq i<r-2$$ and $$k>2$$ . We also will use the character formula (2.1b)", "block_type": "text", "index": 1}, {"type": "interline_equation", "coordinates": [205, 99, 405, 137], "content": "", "block_type": "interline_equation", "index": 2}, {"type": "text", "coordinates": [70, 147, 541, 178], "content": "where $$\\lambda^{+}(\\ell)\\,=\\,(\\lambda+\\rho)(\\ell)$$ and the orthonormal components $$\\lambda(\\ell)$$ are defined by $$\\lambda(\\ell)\\,=$$\n$$\\begin{array}{r}{\\sum_{i=\\ell}^{r-1}\\lambda_{i}+\\frac{\\lambda_{r}-\\lambda_{r-1}}{2}}\\end{array}$$ .", "block_type": "text", "index": 3}, {"type": "text", "coordinates": [70, 178, 542, 264], "content": "The simple-current automorphisms are as follows, and depend on whether $$r$$ and $$k$$ are\neven or odd. When $$r$$ is odd, the group of simple-currents is generated by $$J_{s}$$ . If in addition\n$$k$$ is odd, there will be only two simple-current automorphisms: $$\\pi=\\pi^{\\prime}=\\pi[a]=J_{s}^{4a\\cup_{s}}$$ for\n$$a\\in\\{0,2\\}$$ . If instead $$k$$ is even, there will be four simple-current automorphisms: $$\\pi=\\pi[a]$$\nand $$\\pi^{\\prime}=\\pi[a k-a]$$ for $$0\\leq a\\leq3$$ . When $$k\\equiv2$$ (mod 4), these form the group $$\\mathbb{Z}_{2}\\times\\mathbb{Z}_{2}$$ ,\notherwise when $$4|k$$ the group is $$\\mathbb{Z}_{4}$$ .", "block_type": "text", "index": 4}, {"type": "text", "coordinates": [70, 264, 541, 293], "content": "When $$r$$ is even, the simple-currents are generated by both $$J_{v}$$ and $$J_{s}$$ . If in addition\n$$k$$ is even, we have 16 simple-current automorphisms:", "block_type": "text", "index": 5}, {"type": "interline_equation", "coordinates": [195, 305, 415, 337], "content": "", "block_type": "interline_equation", "index": 6}, {"type": "text", "coordinates": [69, 346, 495, 362], "content": "for any $$a,b,c,d\\in\\{0,1\\}$$ , forming a group isomorphic to $$\\mathbb{Z}_{2}^{4}$$ . This notation means", "block_type": "text", "index": 7}, {"type": "interline_equation", "coordinates": [164, 375, 448, 406], "content": "", "block_type": "interline_equation", "index": 8}, {"type": "text", "coordinates": [70, 415, 407, 430], "content": "When $$k$$ is odd, we will have six simple-current automorphisms:", "block_type": "text", "index": 9}, {"type": "interline_equation", "coordinates": [126, 441, 490, 510], "content": "", "block_type": "interline_equation", "index": 10}, {"type": "text", "coordinates": [69, 516, 541, 574], "content": "where $$a={\\frac{r}{2}}$$ or $$d=0$$ , and where $$b=1$$ or $$d=1$$ . The corresponding permutation of $$P_{+}$$\nis still given by (3.5). Again, for these $$r,k$$ , these are the values of $$a,b,c,d$$ for which (3.5)\nis invertible. For $$k$$ odd, the group of simple-current automorphisms is isomorphic to the\nsymmetric group $$\\mathfrak{S}_{3}$$ when 4 divides $$r$$ , and to $$\\mathbb{Z}_{6}$$ when $$r\\equiv2$$ (mod 4).", "block_type": "text", "index": 11}, {"type": "text", "coordinates": [70, 574, 542, 678], "content": "For $$k=2$$ (so $$\\kappa=2r$$ ), there are several Galois fusion-symmetries. In particular, write\n$$\\lambda^{i}\\,=\\,\\lambda^{2r-i}\\,=\\,\\Lambda_{i}$$ for $$1\\,\\leq\\,i\\,\\leq\\,r\\,-\\,2$$ , and $$\\lambda^{r\\pm1}=\\Lambda_{r-1}+\\Lambda_{r}$$ . As with $$B_{r,2}$$ , $$\\begin{array}{r}{S_{00}^{2}\\,=\\,\\frac{1}{4\\kappa}}\\end{array}$$ 1 is\nrational so for any $${\\boldsymbol{\\mathit{\\varepsilon}}}^{\\prime}{\\boldsymbol{\\mathit{m}}}$$ coprime to $$2r$$ , we get a Galois fusion-symmetry $$\\pi\\{m\\}$$ . It takes $$\\lambda^{a}$$ to\n$$\\lambda^{m a}$$ , where the superscript is taken mod $$2r$$ , and will fix $$J_{v}0$$ . Also, $$\\pi\\{m\\}$$ will send $$J_{s}0$$ to\n$$J_{s}^{m}0$$ , as well as stabilise the set $$\\left\\{\\Lambda_{r},\\Lambda_{r-1},J_{v}\\Lambda_{r},J_{v}\\Lambda_{r-1}\\right\\}$$ . (In particular, put $$t=r$$ when\n$$r$$ is even or when $$m\\equiv1$$ (mod 4), otherwise put $$t=r-1$$ ; then for any $$i,j,\\,\\pi\\{m\\}\\,C_{1}^{j}J_{v}^{i}\\Lambda_{r}$$\nis $$C_{1}^{j}J_{v}^{i}\\Lambda_{t}$$ or $$C_{1}^{j}J_{v}^{i+1}\\Lambda_{t}$$ , when the Jacobi symbol $$\\textstyle\\left({\\frac{\\kappa}{m}}\\right)$$ is $$\\pm1$$ , respectively.)", "block_type": "text", "index": 12}, {"type": "text", "coordinates": [70, 684, 541, 716], "content": "Theorem 3.D. The fusion-symmetries of $$D_{r}^{(1)}$$ for $$k\\neq2$$ are all of the form $$C_{i}\\,\\pi$$ ,\nwhere $$C_{i}$$ is a conjugation, and where $$\\pi$$ is a simple-current automorphism. Similarly for", "block_type": "text", "index": 13}] | [{"type": "text", "coordinates": [71, 73, 135, 88], "content": "valid for all ", "score": 1.0, "index": 1}, {"type": "inline_equation", "coordinates": [135, 75, 204, 86], "content": "1\\leq i<r-2", "score": 0.88, "index": 2}, {"type": "text", "coordinates": [204, 73, 230, 88], "content": " and ", "score": 1.0, "index": 3}, {"type": "inline_equation", "coordinates": [230, 75, 259, 85], "content": "k>2", "score": 0.88, "index": 4}, {"type": "text", "coordinates": [259, 73, 504, 88], "content": ". We also will use the character formula (2.1b)", "score": 1.0, "index": 5}, {"type": "interline_equation", "coordinates": [205, 99, 405, 137], "content": "\\chi_{\\Lambda_{1}}[\\lambda]={\\frac{S_{\\Lambda_{1}\\lambda}}{S_{0\\lambda}}}=2\\sum_{\\ell=1}^{r}\\cos(2\\pi{\\frac{\\lambda^{+}(\\ell)}{\\kappa}})~,", "score": 0.94, "index": 6}, {"type": "text", "coordinates": [70, 149, 106, 166], "content": "where ", "score": 1.0, "index": 7}, {"type": "inline_equation", "coordinates": [106, 150, 209, 163], "content": "\\lambda^{+}(\\ell)\\,=\\,(\\lambda+\\rho)(\\ell)", "score": 0.92, "index": 8}, {"type": "text", "coordinates": [209, 149, 396, 166], "content": " and the orthonormal components ", "score": 1.0, "index": 9}, {"type": "inline_equation", "coordinates": [396, 151, 418, 163], "content": "\\lambda(\\ell)", "score": 0.93, "index": 10}, {"type": "text", "coordinates": [418, 149, 503, 166], "content": " are defined by ", "score": 1.0, "index": 11}, {"type": "inline_equation", "coordinates": [503, 150, 541, 164], "content": "\\lambda(\\ell)\\,=", "score": 0.91, "index": 12}, {"type": "inline_equation", "coordinates": [71, 163, 171, 180], "content": "\\begin{array}{r}{\\sum_{i=\\ell}^{r-1}\\lambda_{i}+\\frac{\\lambda_{r}-\\lambda_{r-1}}{2}}\\end{array}", "score": 0.93, "index": 13}, {"type": "text", "coordinates": [171, 162, 175, 180], "content": ".", "score": 1.0, "index": 14}, {"type": "text", "coordinates": [76, 178, 481, 196], "content": "The simple-current automorphisms are as follows, and depend on whether ", "score": 1.0, "index": 15}, {"type": "inline_equation", "coordinates": [482, 185, 487, 191], "content": "r", "score": 0.86, "index": 16}, {"type": "text", "coordinates": [488, 178, 513, 196], "content": " and ", "score": 1.0, "index": 17}, {"type": "inline_equation", "coordinates": [513, 182, 520, 191], "content": "k", "score": 0.89, "index": 18}, {"type": "text", "coordinates": [520, 178, 542, 196], "content": " are", "score": 1.0, "index": 19}, {"type": "text", "coordinates": [69, 194, 173, 209], "content": "even or odd. When", "score": 1.0, "index": 20}, {"type": "inline_equation", "coordinates": [174, 199, 180, 205], "content": "r", "score": 0.67, "index": 21}, {"type": "text", "coordinates": [180, 194, 451, 209], "content": " is odd, the group of simple-currents is generated by ", "score": 1.0, "index": 22}, {"type": "inline_equation", "coordinates": [451, 196, 463, 207], "content": "J_{s}", "score": 0.9, "index": 23}, {"type": "text", "coordinates": [464, 194, 541, 209], "content": ". If in addition", "score": 1.0, "index": 24}, {"type": "inline_equation", "coordinates": [71, 210, 78, 219], "content": "k", "score": 0.86, "index": 25}, {"type": "text", "coordinates": [78, 207, 404, 224], "content": " is odd, there will be only two simple-current automorphisms: ", "score": 1.0, "index": 26}, {"type": "inline_equation", "coordinates": [405, 209, 521, 222], "content": "\\pi=\\pi^{\\prime}=\\pi[a]=J_{s}^{4a\\cup_{s}}", "score": 0.93, "index": 27}, {"type": "text", "coordinates": [521, 207, 543, 224], "content": "for", "score": 1.0, "index": 28}, {"type": "inline_equation", "coordinates": [71, 223, 122, 237], "content": "a\\in\\{0,2\\}", "score": 0.92, "index": 29}, {"type": "text", "coordinates": [122, 222, 182, 239], "content": ". If instead ", "score": 1.0, "index": 30}, {"type": "inline_equation", "coordinates": [182, 224, 190, 234], "content": "k", "score": 0.84, "index": 31}, {"type": "text", "coordinates": [190, 222, 495, 239], "content": " is even, there will be four simple-current automorphisms: ", "score": 1.0, "index": 32}, {"type": "inline_equation", "coordinates": [496, 224, 540, 236], "content": "\\pi=\\pi[a]", "score": 0.93, "index": 33}, {"type": "text", "coordinates": [70, 236, 95, 254], "content": "and ", "score": 1.0, "index": 34}, {"type": "inline_equation", "coordinates": [95, 238, 172, 251], "content": "\\pi^{\\prime}=\\pi[a k-a]", "score": 0.93, "index": 35}, {"type": "text", "coordinates": [172, 236, 194, 254], "content": " for ", "score": 1.0, "index": 36}, {"type": "inline_equation", "coordinates": [195, 238, 248, 250], "content": "0\\leq a\\leq3", "score": 0.85, "index": 37}, {"type": "text", "coordinates": [249, 236, 293, 254], "content": ". When ", "score": 1.0, "index": 38}, {"type": "inline_equation", "coordinates": [294, 239, 324, 248], "content": "k\\equiv2", "score": 0.92, "index": 39}, {"type": "text", "coordinates": [324, 236, 493, 254], "content": " (mod 4), these form the group ", "score": 1.0, "index": 40}, {"type": "inline_equation", "coordinates": [494, 239, 536, 250], "content": "\\mathbb{Z}_{2}\\times\\mathbb{Z}_{2}", "score": 0.92, "index": 41}, {"type": "text", "coordinates": [536, 236, 541, 254], "content": ",", "score": 1.0, "index": 42}, {"type": "text", "coordinates": [70, 250, 155, 268], "content": "otherwise when ", "score": 1.0, "index": 43}, {"type": "inline_equation", "coordinates": [155, 253, 172, 265], "content": "4|k", "score": 0.88, "index": 44}, {"type": "text", "coordinates": [172, 250, 241, 268], "content": " the group is ", "score": 1.0, "index": 45}, {"type": "inline_equation", "coordinates": [242, 254, 255, 264], "content": "\\mathbb{Z}_{4}", "score": 0.9, "index": 46}, {"type": "text", "coordinates": [256, 250, 260, 268], "content": ".", "score": 1.0, "index": 47}, {"type": "text", "coordinates": [95, 266, 130, 281], "content": "When ", "score": 1.0, "index": 48}, {"type": "inline_equation", "coordinates": [130, 271, 136, 277], "content": "r", "score": 0.87, "index": 49}, {"type": "text", "coordinates": [136, 266, 408, 281], "content": " is even, the simple-currents are generated by both ", "score": 1.0, "index": 50}, {"type": "inline_equation", "coordinates": [408, 268, 421, 279], "content": "J_{v}", "score": 0.92, "index": 51}, {"type": "text", "coordinates": [421, 266, 448, 281], "content": " and ", "score": 1.0, "index": 52}, {"type": "inline_equation", "coordinates": [448, 268, 460, 279], "content": "J_{s}", "score": 0.91, "index": 53}, {"type": "text", "coordinates": [461, 266, 541, 281], "content": ". If in addition", "score": 1.0, "index": 54}, {"type": "inline_equation", "coordinates": [71, 282, 78, 291], "content": "k", "score": 0.88, "index": 55}, {"type": "text", "coordinates": [78, 280, 349, 297], "content": " is even, we have 16 simple-current automorphisms:", "score": 1.0, "index": 56}, {"type": "interline_equation", "coordinates": [195, 305, 415, 337], "content": "{\\boldsymbol{\\pi}}={\\boldsymbol{\\pi}}\\left[{\\boldsymbol{a}}\\quad b\\,\\right]\\qquad{\\mathrm{and}}\\qquad{\\boldsymbol{\\pi}}^{\\prime}={\\boldsymbol{\\pi}}\\left[{\\boldsymbol{a}}\\quad c\\right]", "score": 0.92, "index": 57}, {"type": "text", "coordinates": [70, 348, 112, 366], "content": "for any ", "score": 1.0, "index": 58}, {"type": "inline_equation", "coordinates": [112, 351, 195, 363], "content": "a,b,c,d\\in\\{0,1\\}", "score": 0.93, "index": 59}, {"type": "text", "coordinates": [195, 348, 365, 366], "content": ", forming a group isomorphic to ", "score": 1.0, "index": 60}, {"type": "inline_equation", "coordinates": [365, 350, 379, 363], "content": "\\mathbb{Z}_{2}^{4}", "score": 0.92, "index": 61}, {"type": "text", "coordinates": [379, 348, 497, 366], "content": ". This notation means", "score": 1.0, "index": 62}, {"type": "interline_equation", "coordinates": [164, 375, 448, 406], "content": "\\pi\\left[\\!\\!\\begin{array}{r c}{{a}}&{{b}}\\\\ {{c}}&{{d}}\\end{array}\\!\\!\\right](\\lambda)\\ensuremath{\\stackrel{\\mathrm{def}}{=}}\\ J_{v}^{2a\\,Q_{v}(\\lambda)+2b\\,Q_{s}(\\lambda)}J_{s}^{2c\\,Q_{v}(\\lambda)+2d\\,Q_{s}(\\lambda)}\\lambda\\ .", "score": 0.92, "index": 63}, {"type": "text", "coordinates": [71, 417, 106, 432], "content": "When ", "score": 1.0, "index": 64}, {"type": "inline_equation", "coordinates": [106, 420, 113, 429], "content": "k", "score": 0.89, "index": 65}, {"type": "text", "coordinates": [113, 417, 405, 432], "content": " is odd, we will have six simple-current automorphisms:", "score": 1.0, "index": 66}, {"type": "interline_equation", "coordinates": [126, 441, 490, 510], "content": "{\\begin{array}{r l}&{\\pi\\,=\\pi\\left[{\\begin{array}{c c}{a}&{0}\\\\ {0}&{d}\\end{array}}\\right]\\qquad{\\mathrm{with}}\\qquad\\pi^{\\prime}=\\pi\\left[{\\begin{array}{c c}{a\\left(d+1\\right)}&{{\\frac{d r}{2}}}\\\\ {{\\frac{d r}{2}}}&{d}\\end{array}}\\right]}\\\\ {{\\mathrm{rr}}\\quad\\pi\\,=\\pi\\left[{\\begin{array}{c c}{{\\frac{r}{2}}+1}&{b}\\\\ {c}&{1}\\end{array}}\\right]\\qquad{\\mathrm{with}}\\qquad\\pi^{\\prime}=\\pi\\left[{\\begin{array}{c c}{{\\frac{r}{2}}+1+b c{\\frac{r}{2}}}&{b+{\\frac{r}{2}}}\\\\ {{\\frac{r}{2}}+1+b c+b}&{1}\\end{array}}\\right]}\\end{array}},", "score": 0.93, "index": 67}, {"type": "text", "coordinates": [70, 517, 106, 536], "content": "where ", "score": 1.0, "index": 68}, {"type": "inline_equation", "coordinates": [106, 520, 137, 533], "content": "a={\\frac{r}{2}}", "score": 0.93, "index": 69}, {"type": "text", "coordinates": [138, 517, 156, 536], "content": " or ", "score": 1.0, "index": 70}, {"type": "inline_equation", "coordinates": [156, 520, 186, 529], "content": "d=0", "score": 0.89, "index": 71}, {"type": "text", "coordinates": [187, 517, 252, 536], "content": ", and where ", "score": 1.0, "index": 72}, {"type": "inline_equation", "coordinates": [252, 519, 281, 529], "content": "b=1", "score": 0.88, "index": 73}, {"type": "text", "coordinates": [281, 517, 299, 536], "content": " or ", "score": 1.0, "index": 74}, {"type": "inline_equation", "coordinates": [299, 520, 329, 529], "content": "d=1", "score": 0.89, "index": 75}, {"type": "text", "coordinates": [330, 517, 523, 536], "content": ". The corresponding permutation of ", "score": 1.0, "index": 76}, {"type": "inline_equation", "coordinates": [523, 520, 539, 532], "content": "P_{+}", "score": 0.9, "index": 77}, {"type": "text", "coordinates": [70, 533, 274, 547], "content": "is still given by (3.5). Again, for these ", "score": 1.0, "index": 78}, {"type": "inline_equation", "coordinates": [275, 533, 293, 546], "content": "r,k", "score": 0.87, "index": 79}, {"type": "text", "coordinates": [293, 533, 419, 547], "content": ", these are the values of ", "score": 1.0, "index": 80}, {"type": "inline_equation", "coordinates": [419, 534, 459, 546], "content": "a,b,c,d", "score": 0.91, "index": 81}, {"type": "text", "coordinates": [459, 533, 540, 547], "content": " for which (3.5)", "score": 1.0, "index": 82}, {"type": "text", "coordinates": [69, 547, 163, 562], "content": "is invertible. For ", "score": 1.0, "index": 83}, {"type": "inline_equation", "coordinates": [164, 549, 171, 558], "content": "k", "score": 0.87, "index": 84}, {"type": "text", "coordinates": [171, 547, 542, 562], "content": " odd, the group of simple-current automorphisms is isomorphic to the", "score": 1.0, "index": 85}, {"type": "text", "coordinates": [70, 562, 163, 576], "content": "symmetric group ", "score": 1.0, "index": 86}, {"type": "inline_equation", "coordinates": [163, 564, 178, 574], "content": "\\mathfrak{S}_{3}", "score": 0.91, "index": 87}, {"type": "text", "coordinates": [179, 562, 264, 576], "content": " when 4 divides ", "score": 1.0, "index": 88}, {"type": "inline_equation", "coordinates": [264, 567, 270, 573], "content": "r", "score": 0.85, "index": 89}, {"type": "text", "coordinates": [271, 562, 314, 576], "content": ", and to ", "score": 1.0, "index": 90}, {"type": "inline_equation", "coordinates": [315, 563, 328, 574], "content": "\\mathbb{Z}_{6}", "score": 0.89, "index": 91}, {"type": "text", "coordinates": [329, 562, 363, 576], "content": " when ", "score": 1.0, "index": 92}, {"type": "inline_equation", "coordinates": [363, 564, 392, 573], "content": "r\\equiv2", "score": 0.85, "index": 93}, {"type": "text", "coordinates": [392, 562, 442, 576], "content": " (mod 4).", "score": 1.0, "index": 94}, {"type": "text", "coordinates": [93, 575, 115, 592], "content": "For", "score": 1.0, "index": 95}, {"type": "inline_equation", "coordinates": [116, 578, 145, 587], "content": "k=2", "score": 0.9, "index": 96}, {"type": "text", "coordinates": [145, 575, 167, 592], "content": " (so ", "score": 1.0, "index": 97}, {"type": "inline_equation", "coordinates": [167, 578, 201, 587], "content": "\\kappa=2r", "score": 0.86, "index": 98}, {"type": "text", "coordinates": [202, 575, 541, 592], "content": "), there are several Galois fusion-symmetries. In particular, write", "score": 1.0, "index": 99}, {"type": "inline_equation", "coordinates": [71, 591, 160, 602], "content": "\\lambda^{i}\\,=\\,\\lambda^{2r-i}\\,=\\,\\Lambda_{i}", "score": 0.9, "index": 100}, {"type": "text", "coordinates": [160, 587, 183, 609], "content": " for ", "score": 1.0, "index": 101}, {"type": "inline_equation", "coordinates": [184, 593, 259, 603], "content": "1\\,\\leq\\,i\\,\\leq\\,r\\,-\\,2", "score": 0.91, "index": 102}, {"type": "text", "coordinates": [259, 587, 290, 609], "content": ", and ", "score": 1.0, "index": 103}, {"type": "inline_equation", "coordinates": [291, 591, 390, 604], "content": "\\lambda^{r\\pm1}=\\Lambda_{r-1}+\\Lambda_{r}", "score": 0.92, "index": 104}, {"type": "text", "coordinates": [390, 587, 447, 609], "content": ". As with ", "score": 1.0, "index": 105}, {"type": "inline_equation", "coordinates": [447, 592, 469, 605], "content": "B_{r,2}", "score": 0.92, "index": 106}, {"type": "text", "coordinates": [469, 587, 476, 609], "content": ", ", "score": 1.0, "index": 107}, {"type": "inline_equation", "coordinates": [477, 590, 527, 605], "content": "\\begin{array}{r}{S_{00}^{2}\\,=\\,\\frac{1}{4\\kappa}}\\end{array}", "score": 0.93, "index": 108}, {"type": "text", "coordinates": [511, 588, 540, 604], "content": "1 is", "score": 1.0, "index": 109}, {"type": "text", "coordinates": [71, 605, 169, 620], "content": "rational so for any ", "score": 1.0, "index": 110}, {"type": "inline_equation", "coordinates": [169, 610, 180, 615], "content": "{\\boldsymbol{\\mathit{\\varepsilon}}}^{\\prime}{\\boldsymbol{\\mathit{m}}}", "score": 0.86, "index": 111}, {"type": "text", "coordinates": [180, 605, 241, 620], "content": " coprime to ", "score": 1.0, "index": 112}, {"type": "inline_equation", "coordinates": [241, 607, 253, 616], "content": "2r", "score": 0.86, "index": 113}, {"type": "text", "coordinates": [254, 605, 432, 620], "content": ", we get a Galois fusion-symmetry ", "score": 1.0, "index": 114}, {"type": "inline_equation", "coordinates": [432, 606, 462, 619], "content": "\\pi\\{m\\}", "score": 0.94, "index": 115}, {"type": "text", "coordinates": [462, 605, 512, 620], "content": ". It takes ", "score": 1.0, "index": 116}, {"type": "inline_equation", "coordinates": [513, 607, 525, 616], "content": "\\lambda^{a}", "score": 0.9, "index": 117}, {"type": "text", "coordinates": [525, 605, 542, 620], "content": " to", "score": 1.0, "index": 118}, {"type": "inline_equation", "coordinates": [71, 621, 93, 630], "content": "\\lambda^{m a}", "score": 0.89, "index": 119}, {"type": "text", "coordinates": [93, 617, 286, 635], "content": ", where the superscript is taken mod ", "score": 1.0, "index": 120}, {"type": "inline_equation", "coordinates": [286, 620, 299, 630], "content": "2r", "score": 0.8, "index": 121}, {"type": "text", "coordinates": [299, 617, 367, 635], "content": ", and will fix ", "score": 1.0, "index": 122}, {"type": "inline_equation", "coordinates": [367, 619, 386, 631], "content": "J_{v}0", "score": 0.88, "index": 123}, {"type": "text", "coordinates": [387, 617, 423, 635], "content": ". Also,", "score": 1.0, "index": 124}, {"type": "inline_equation", "coordinates": [424, 620, 454, 632], "content": "\\pi\\{m\\}", "score": 0.94, "index": 125}, {"type": "text", "coordinates": [455, 617, 507, 635], "content": " will send ", "score": 1.0, "index": 126}, {"type": "inline_equation", "coordinates": [507, 621, 525, 631], "content": "J_{s}0", "score": 0.92, "index": 127}, {"type": "text", "coordinates": [526, 617, 542, 635], "content": " to", "score": 1.0, "index": 128}, {"type": "inline_equation", "coordinates": [71, 635, 95, 647], "content": "J_{s}^{m}0", "score": 0.92, "index": 129}, {"type": "text", "coordinates": [95, 633, 241, 650], "content": ", as well as stabilise the set ", "score": 1.0, "index": 130}, {"type": "inline_equation", "coordinates": [241, 634, 372, 647], "content": "\\left\\{\\Lambda_{r},\\Lambda_{r-1},J_{v}\\Lambda_{r},J_{v}\\Lambda_{r-1}\\right\\}", "score": 0.91, "index": 131}, {"type": "text", "coordinates": [373, 633, 481, 650], "content": ". (In particular, put ", "score": 1.0, "index": 132}, {"type": "inline_equation", "coordinates": [482, 636, 508, 644], "content": "t=r", "score": 0.9, "index": 133}, {"type": "text", "coordinates": [508, 633, 541, 650], "content": " when", "score": 1.0, "index": 134}, {"type": "inline_equation", "coordinates": [71, 653, 77, 658], "content": "r", "score": 0.87, "index": 135}, {"type": "text", "coordinates": [77, 648, 164, 663], "content": " is even or when ", "score": 1.0, "index": 136}, {"type": "inline_equation", "coordinates": [165, 650, 198, 659], "content": "m\\equiv1", "score": 0.88, "index": 137}, {"type": "text", "coordinates": [198, 648, 324, 663], "content": " (mod 4), otherwise put ", "score": 1.0, "index": 138}, {"type": "inline_equation", "coordinates": [325, 649, 371, 660], "content": "t=r-1", "score": 0.87, "index": 139}, {"type": "text", "coordinates": [371, 648, 445, 663], "content": "; then for any ", "score": 1.0, "index": 140}, {"type": "inline_equation", "coordinates": [445, 646, 540, 662], "content": "i,j,\\,\\pi\\{m\\}\\,C_{1}^{j}J_{v}^{i}\\Lambda_{r}", "score": 0.84, "index": 141}, {"type": "text", "coordinates": [68, 661, 83, 681], "content": "is ", "score": 1.0, "index": 142}, {"type": "inline_equation", "coordinates": [83, 663, 123, 677], "content": "C_{1}^{j}J_{v}^{i}\\Lambda_{t}", "score": 0.94, "index": 143}, {"type": "text", "coordinates": [123, 661, 141, 681], "content": " or ", "score": 1.0, "index": 144}, {"type": "inline_equation", "coordinates": [141, 663, 192, 677], "content": "C_{1}^{j}J_{v}^{i+1}\\Lambda_{t}", "score": 0.93, "index": 145}, {"type": "text", "coordinates": [193, 661, 329, 681], "content": ", when the Jacobi symbol ", "score": 1.0, "index": 146}, {"type": "inline_equation", "coordinates": [329, 663, 350, 678], "content": "\\textstyle\\left({\\frac{\\kappa}{m}}\\right)", "score": 0.88, "index": 147}, {"type": "text", "coordinates": [351, 661, 365, 681], "content": " is ", "score": 1.0, "index": 148}, {"type": "inline_equation", "coordinates": [365, 664, 382, 676], "content": "\\pm1", "score": 0.82, "index": 149}, {"type": "text", "coordinates": [382, 661, 459, 681], "content": ", respectively.)", "score": 1.0, "index": 150}, {"type": "text", "coordinates": [93, 684, 323, 705], "content": "Theorem 3.D. The fusion-symmetries of ", "score": 1.0, "index": 151}, {"type": "inline_equation", "coordinates": [324, 685, 347, 700], "content": "D_{r}^{(1)}", "score": 0.93, "index": 152}, {"type": "text", "coordinates": [348, 684, 371, 705], "content": "for ", "score": 1.0, "index": 153}, {"type": "inline_equation", "coordinates": [371, 687, 405, 701], "content": "k\\neq2", "score": 0.89, "index": 154}, {"type": "text", "coordinates": [405, 684, 513, 705], "content": " are all of the form ", "score": 1.0, "index": 155}, {"type": "inline_equation", "coordinates": [513, 688, 536, 701], "content": "C_{i}\\,\\pi", "score": 0.88, "index": 156}, {"type": "text", "coordinates": [537, 684, 541, 705], "content": ",", "score": 1.0, "index": 157}, {"type": "text", "coordinates": [72, 702, 105, 718], "content": "where ", "score": 1.0, "index": 158}, {"type": "inline_equation", "coordinates": [105, 704, 118, 715], "content": "C_{i}", "score": 0.9, "index": 159}, {"type": "text", "coordinates": [118, 702, 272, 718], "content": " is a conjugation, and where ", "score": 1.0, "index": 160}, {"type": "inline_equation", "coordinates": [273, 708, 280, 713], "content": "\\pi", "score": 0.79, "index": 161}, {"type": "text", "coordinates": [281, 702, 541, 718], "content": " is a simple-current automorphism. Similarly for", "score": 1.0, "index": 162}] | [] | [{"type": "block", "coordinates": [205, 99, 405, 137], "content": "", "caption": ""}, {"type": "block", "coordinates": [195, 305, 415, 337], "content": "", "caption": ""}, {"type": "block", "coordinates": [164, 375, 448, 406], "content": "", "caption": ""}, {"type": "block", "coordinates": [126, 441, 490, 510], "content": "", "caption": ""}, {"type": "inline", "coordinates": [135, 75, 204, 86], "content": "1\\leq i<r-2", "caption": ""}, {"type": "inline", "coordinates": [230, 75, 259, 85], "content": "k>2", "caption": ""}, {"type": "inline", "coordinates": [106, 150, 209, 163], "content": "\\lambda^{+}(\\ell)\\,=\\,(\\lambda+\\rho)(\\ell)", "caption": ""}, {"type": "inline", "coordinates": [396, 151, 418, 163], "content": "\\lambda(\\ell)", "caption": ""}, {"type": "inline", "coordinates": [503, 150, 541, 164], "content": "\\lambda(\\ell)\\,=", "caption": ""}, {"type": "inline", "coordinates": [71, 163, 171, 180], "content": "\\begin{array}{r}{\\sum_{i=\\ell}^{r-1}\\lambda_{i}+\\frac{\\lambda_{r}-\\lambda_{r-1}}{2}}\\end{array}", "caption": ""}, {"type": "inline", "coordinates": [482, 185, 487, 191], "content": "r", "caption": ""}, {"type": "inline", "coordinates": [513, 182, 520, 191], "content": "k", "caption": ""}, {"type": "inline", "coordinates": [174, 199, 180, 205], "content": "r", "caption": ""}, {"type": "inline", "coordinates": [451, 196, 463, 207], "content": "J_{s}", "caption": ""}, {"type": "inline", "coordinates": [71, 210, 78, 219], "content": "k", "caption": ""}, {"type": "inline", "coordinates": [405, 209, 521, 222], "content": "\\pi=\\pi^{\\prime}=\\pi[a]=J_{s}^{4a\\cup_{s}}", "caption": ""}, {"type": "inline", "coordinates": [71, 223, 122, 237], "content": "a\\in\\{0,2\\}", "caption": ""}, {"type": "inline", "coordinates": [182, 224, 190, 234], "content": "k", "caption": ""}, {"type": "inline", "coordinates": [496, 224, 540, 236], "content": "\\pi=\\pi[a]", "caption": ""}, {"type": "inline", "coordinates": [95, 238, 172, 251], "content": "\\pi^{\\prime}=\\pi[a k-a]", "caption": ""}, {"type": "inline", "coordinates": [195, 238, 248, 250], "content": "0\\leq a\\leq3", "caption": ""}, {"type": "inline", "coordinates": [294, 239, 324, 248], "content": "k\\equiv2", "caption": ""}, {"type": "inline", "coordinates": [494, 239, 536, 250], "content": "\\mathbb{Z}_{2}\\times\\mathbb{Z}_{2}", "caption": ""}, {"type": "inline", "coordinates": [155, 253, 172, 265], "content": "4|k", "caption": ""}, {"type": "inline", "coordinates": [242, 254, 255, 264], "content": "\\mathbb{Z}_{4}", "caption": ""}, {"type": "inline", "coordinates": [130, 271, 136, 277], "content": "r", "caption": ""}, {"type": "inline", "coordinates": [408, 268, 421, 279], "content": "J_{v}", "caption": ""}, {"type": "inline", "coordinates": [448, 268, 460, 279], "content": "J_{s}", "caption": ""}, {"type": "inline", "coordinates": [71, 282, 78, 291], "content": "k", "caption": ""}, {"type": "inline", "coordinates": [112, 351, 195, 363], "content": "a,b,c,d\\in\\{0,1\\}", "caption": ""}, {"type": "inline", "coordinates": [365, 350, 379, 363], "content": "\\mathbb{Z}_{2}^{4}", "caption": ""}, {"type": "inline", "coordinates": [106, 420, 113, 429], "content": "k", "caption": ""}, {"type": "inline", "coordinates": [106, 520, 137, 533], "content": "a={\\frac{r}{2}}", "caption": ""}, {"type": "inline", "coordinates": [156, 520, 186, 529], "content": "d=0", "caption": ""}, {"type": "inline", "coordinates": [252, 519, 281, 529], "content": "b=1", "caption": ""}, {"type": "inline", "coordinates": [299, 520, 329, 529], "content": "d=1", "caption": ""}, {"type": "inline", "coordinates": [523, 520, 539, 532], "content": "P_{+}", "caption": ""}, {"type": "inline", "coordinates": [275, 533, 293, 546], "content": "r,k", "caption": ""}, {"type": "inline", "coordinates": [419, 534, 459, 546], "content": "a,b,c,d", "caption": ""}, {"type": "inline", "coordinates": [164, 549, 171, 558], "content": "k", "caption": ""}, {"type": "inline", "coordinates": [163, 564, 178, 574], "content": "\\mathfrak{S}_{3}", "caption": ""}, {"type": "inline", "coordinates": [264, 567, 270, 573], "content": "r", "caption": ""}, {"type": "inline", "coordinates": [315, 563, 328, 574], "content": "\\mathbb{Z}_{6}", "caption": ""}, {"type": "inline", "coordinates": [363, 564, 392, 573], "content": "r\\equiv2", "caption": ""}, {"type": "inline", "coordinates": [116, 578, 145, 587], "content": "k=2", "caption": ""}, {"type": "inline", "coordinates": [167, 578, 201, 587], "content": "\\kappa=2r", "caption": ""}, {"type": "inline", "coordinates": [71, 591, 160, 602], "content": "\\lambda^{i}\\,=\\,\\lambda^{2r-i}\\,=\\,\\Lambda_{i}", "caption": ""}, {"type": "inline", "coordinates": [184, 593, 259, 603], "content": "1\\,\\leq\\,i\\,\\leq\\,r\\,-\\,2", "caption": ""}, {"type": "inline", "coordinates": [291, 591, 390, 604], "content": "\\lambda^{r\\pm1}=\\Lambda_{r-1}+\\Lambda_{r}", "caption": ""}, {"type": "inline", "coordinates": [447, 592, 469, 605], "content": "B_{r,2}", "caption": ""}, {"type": "inline", "coordinates": [477, 590, 527, 605], "content": "\\begin{array}{r}{S_{00}^{2}\\,=\\,\\frac{1}{4\\kappa}}\\end{array}", "caption": ""}, {"type": "inline", "coordinates": [169, 610, 180, 615], "content": "{\\boldsymbol{\\mathit{\\varepsilon}}}^{\\prime}{\\boldsymbol{\\mathit{m}}}", "caption": ""}, {"type": "inline", "coordinates": [241, 607, 253, 616], "content": "2r", "caption": ""}, {"type": "inline", "coordinates": [432, 606, 462, 619], "content": "\\pi\\{m\\}", "caption": ""}, {"type": "inline", "coordinates": [513, 607, 525, 616], "content": "\\lambda^{a}", "caption": ""}, {"type": "inline", "coordinates": [71, 621, 93, 630], "content": "\\lambda^{m a}", "caption": ""}, {"type": "inline", "coordinates": [286, 620, 299, 630], "content": "2r", "caption": ""}, {"type": "inline", "coordinates": [367, 619, 386, 631], "content": "J_{v}0", "caption": ""}, {"type": "inline", "coordinates": [424, 620, 454, 632], "content": "\\pi\\{m\\}", "caption": ""}, {"type": "inline", "coordinates": [507, 621, 525, 631], "content": "J_{s}0", "caption": ""}, {"type": "inline", "coordinates": [71, 635, 95, 647], "content": "J_{s}^{m}0", "caption": ""}, {"type": "inline", "coordinates": [241, 634, 372, 647], "content": "\\left\\{\\Lambda_{r},\\Lambda_{r-1},J_{v}\\Lambda_{r},J_{v}\\Lambda_{r-1}\\right\\}", "caption": ""}, {"type": "inline", "coordinates": [482, 636, 508, 644], "content": "t=r", "caption": ""}, {"type": "inline", "coordinates": [71, 653, 77, 658], "content": "r", "caption": ""}, {"type": "inline", "coordinates": [165, 650, 198, 659], "content": "m\\equiv1", "caption": ""}, {"type": "inline", "coordinates": [325, 649, 371, 660], "content": "t=r-1", "caption": ""}, {"type": "inline", "coordinates": [445, 646, 540, 662], "content": "i,j,\\,\\pi\\{m\\}\\,C_{1}^{j}J_{v}^{i}\\Lambda_{r}", "caption": ""}, {"type": "inline", "coordinates": [83, 663, 123, 677], "content": "C_{1}^{j}J_{v}^{i}\\Lambda_{t}", "caption": ""}, {"type": "inline", "coordinates": [141, 663, 192, 677], "content": "C_{1}^{j}J_{v}^{i+1}\\Lambda_{t}", "caption": ""}, {"type": "inline", "coordinates": [329, 663, 350, 678], "content": "\\textstyle\\left({\\frac{\\kappa}{m}}\\right)", "caption": ""}, {"type": "inline", "coordinates": [365, 664, 382, 676], "content": "\\pm1", "caption": ""}, {"type": "inline", "coordinates": [324, 685, 347, 700], "content": "D_{r}^{(1)}", "caption": ""}, {"type": "inline", "coordinates": [371, 687, 405, 701], "content": "k\\neq2", "caption": ""}, {"type": "inline", "coordinates": [513, 688, 536, 701], "content": "C_{i}\\,\\pi", "caption": ""}, {"type": "inline", "coordinates": [105, 704, 118, 715], "content": "C_{i}", "caption": ""}, {"type": "inline", "coordinates": [273, 708, 280, 713], "content": "\\pi", "caption": ""}] | [] | [612.0, 792.0] | [{"type": "text", "text": "valid for all $1\\leq i<r-2$ and $k>2$ . We also will use the character formula (2.1b) ", "page_idx": 11}, {"type": "equation", "text": "$$\n\\chi_{\\Lambda_{1}}[\\lambda]={\\frac{S_{\\Lambda_{1}\\lambda}}{S_{0\\lambda}}}=2\\sum_{\\ell=1}^{r}\\cos(2\\pi{\\frac{\\lambda^{+}(\\ell)}{\\kappa}})~,\n$$", "text_format": "latex", "page_idx": 11}, {"type": "text", "text": "where $\\lambda^{+}(\\ell)\\,=\\,(\\lambda+\\rho)(\\ell)$ and the orthonormal components $\\lambda(\\ell)$ are defined by $\\lambda(\\ell)\\,=$ $\\begin{array}{r}{\\sum_{i=\\ell}^{r-1}\\lambda_{i}+\\frac{\\lambda_{r}-\\lambda_{r-1}}{2}}\\end{array}$ . ", "page_idx": 11}, {"type": "text", "text": "The simple-current automorphisms are as follows, and depend on whether $r$ and $k$ are even or odd. When $r$ is odd, the group of simple-currents is generated by $J_{s}$ . If in addition $k$ is odd, there will be only two simple-current automorphisms: $\\pi=\\pi^{\\prime}=\\pi[a]=J_{s}^{4a\\cup_{s}}$ for $a\\in\\{0,2\\}$ . If instead $k$ is even, there will be four simple-current automorphisms: $\\pi=\\pi[a]$ and $\\pi^{\\prime}=\\pi[a k-a]$ for $0\\leq a\\leq3$ . When $k\\equiv2$ (mod 4), these form the group $\\mathbb{Z}_{2}\\times\\mathbb{Z}_{2}$ , otherwise when $4|k$ the group is $\\mathbb{Z}_{4}$ . ", "page_idx": 11}, {"type": "text", "text": "When $r$ is even, the simple-currents are generated by both $J_{v}$ and $J_{s}$ . If in addition $k$ is even, we have 16 simple-current automorphisms: ", "page_idx": 11}, {"type": "equation", "text": "$$\n{\\boldsymbol{\\pi}}={\\boldsymbol{\\pi}}\\left[{\\boldsymbol{a}}\\quad b\\,\\right]\\qquad{\\mathrm{and}}\\qquad{\\boldsymbol{\\pi}}^{\\prime}={\\boldsymbol{\\pi}}\\left[{\\boldsymbol{a}}\\quad c\\right]\n$$", "text_format": "latex", "page_idx": 11}, {"type": "text", "text": "for any $a,b,c,d\\in\\{0,1\\}$ , forming a group isomorphic to $\\mathbb{Z}_{2}^{4}$ . This notation means ", "page_idx": 11}, {"type": "equation", "text": "$$\n\\pi\\left[\\!\\!\\begin{array}{r c}{{a}}&{{b}}\\\\ {{c}}&{{d}}\\end{array}\\!\\!\\right](\\lambda)\\ensuremath{\\stackrel{\\mathrm{def}}{=}}\\ J_{v}^{2a\\,Q_{v}(\\lambda)+2b\\,Q_{s}(\\lambda)}J_{s}^{2c\\,Q_{v}(\\lambda)+2d\\,Q_{s}(\\lambda)}\\lambda\\ .\n$$", "text_format": "latex", "page_idx": 11}, {"type": "text", "text": "When $k$ is odd, we will have six simple-current automorphisms: ", "page_idx": 11}, {"type": "equation", "text": "$$\n{\\begin{array}{r l}&{\\pi\\,=\\pi\\left[{\\begin{array}{c c}{a}&{0}\\\\ {0}&{d}\\end{array}}\\right]\\qquad{\\mathrm{with}}\\qquad\\pi^{\\prime}=\\pi\\left[{\\begin{array}{c c}{a\\left(d+1\\right)}&{{\\frac{d r}{2}}}\\\\ {{\\frac{d r}{2}}}&{d}\\end{array}}\\right]}\\\\ {{\\mathrm{rr}}\\quad\\pi\\,=\\pi\\left[{\\begin{array}{c c}{{\\frac{r}{2}}+1}&{b}\\\\ {c}&{1}\\end{array}}\\right]\\qquad{\\mathrm{with}}\\qquad\\pi^{\\prime}=\\pi\\left[{\\begin{array}{c c}{{\\frac{r}{2}}+1+b c{\\frac{r}{2}}}&{b+{\\frac{r}{2}}}\\\\ {{\\frac{r}{2}}+1+b c+b}&{1}\\end{array}}\\right]}\\end{array}},\n$$", "text_format": "latex", "page_idx": 11}, {"type": "text", "text": "where $a={\\frac{r}{2}}$ or $d=0$ , and where $b=1$ or $d=1$ . The corresponding permutation of $P_{+}$ is still given by (3.5). Again, for these $r,k$ , these are the values of $a,b,c,d$ for which (3.5) is invertible. For $k$ odd, the group of simple-current automorphisms is isomorphic to the symmetric group $\\mathfrak{S}_{3}$ when 4 divides $r$ , and to $\\mathbb{Z}_{6}$ when $r\\equiv2$ (mod 4). ", "page_idx": 11}, {"type": "text", "text": "For $k=2$ (so $\\kappa=2r$ ), there are several Galois fusion-symmetries. In particular, write $\\lambda^{i}\\,=\\,\\lambda^{2r-i}\\,=\\,\\Lambda_{i}$ for $1\\,\\leq\\,i\\,\\leq\\,r\\,-\\,2$ , and $\\lambda^{r\\pm1}=\\Lambda_{r-1}+\\Lambda_{r}$ . As with $B_{r,2}$ , $\\begin{array}{r}{S_{00}^{2}\\,=\\,\\frac{1}{4\\kappa}}\\end{array}$ 1 is rational so for any ${\\boldsymbol{\\mathit{\\varepsilon}}}^{\\prime}{\\boldsymbol{\\mathit{m}}}$ coprime to $2r$ , we get a Galois fusion-symmetry $\\pi\\{m\\}$ . It takes $\\lambda^{a}$ to $\\lambda^{m a}$ , where the superscript is taken mod $2r$ , and will fix $J_{v}0$ . Also, $\\pi\\{m\\}$ will send $J_{s}0$ to $J_{s}^{m}0$ , as well as stabilise the set $\\left\\{\\Lambda_{r},\\Lambda_{r-1},J_{v}\\Lambda_{r},J_{v}\\Lambda_{r-1}\\right\\}$ . (In particular, put $t=r$ when $r$ is even or when $m\\equiv1$ (mod 4), otherwise put $t=r-1$ ; then for any $i,j,\\,\\pi\\{m\\}\\,C_{1}^{j}J_{v}^{i}\\Lambda_{r}$ is $C_{1}^{j}J_{v}^{i}\\Lambda_{t}$ or $C_{1}^{j}J_{v}^{i+1}\\Lambda_{t}$ , when the Jacobi symbol $\\textstyle\\left({\\frac{\\kappa}{m}}\\right)$ is $\\pm1$ , respectively.) ", "page_idx": 11}, {"type": "text", "text": "Theorem 3.D. The fusion-symmetries of $D_{r}^{(1)}$ for $k\\neq2$ are all of the form $C_{i}\\,\\pi$ , where $C_{i}$ is a conjugation, and where $\\pi$ is a simple-current automorphism. Similarly for ${D}_{4}^{(1)}$ at $k=2$ . Finally, when both $k=2$ and $r>4$ , any fusion-symmetry $\\pi$ can be written as $\\pi=C_{1}^{a}\\,\\pi_{v}^{b}\\,\\pi\\{m\\}$ for $a,b\\in\\{0,1\\}$ and any $m\\in\\mathbb{Z}_{2r}^{\\times}$ , $1\\leq m<r$ . ", "page_idx": 11}] | [{"category_id": 1, "poly": [195, 1597, 1506, 1597, 1506, 1884, 195, 1884], "score": 0.985}, {"category_id": 1, "poly": [195, 497, 1506, 497, 1506, 734, 195, 734], "score": 0.983}, {"category_id": 1, "poly": [193, 1434, 1505, 1434, 1505, 1595, 193, 1595], "score": 0.978}, {"category_id": 1, "poly": [195, 736, 1504, 736, 1504, 815, 195, 815], "score": 0.962}, {"category_id": 8, "poly": [347, 1217, 1361, 1217, 1361, 1412, 347, 1412], "score": 0.955}, {"category_id": 1, "poly": [195, 410, 1504, 410, 1504, 496, 195, 496], "score": 0.953}, {"category_id": 1, "poly": [197, 1900, 1505, 1900, 1505, 1989, 197, 1989], "score": 0.95}, {"category_id": 8, "poly": [571, 272, 1128, 272, 1128, 378, 571, 378], "score": 0.948}, {"category_id": 8, "poly": [452, 1032, 1245, 1032, 1245, 1128, 452, 1128], "score": 0.948}, {"category_id": 1, "poly": [196, 1155, 1131, 1155, 1131, 1195, 196, 1195], "score": 0.932}, {"category_id": 1, "poly": [196, 195, 1404, 195, 1404, 239, 196, 239], "score": 0.92}, {"category_id": 8, "poly": [538, 838, 1160, 838, 1160, 937, 538, 937], "score": 0.912}, {"category_id": 9, "poly": [1428, 301, 1501, 301, 1501, 343, 1428, 343], "score": 0.885}, {"category_id": 9, "poly": [1428, 1060, 1501, 1060, 1501, 1102, 1428, 1102], "score": 0.883}, {"category_id": 2, "poly": [832, 2030, 869, 2030, 869, 2062, 832, 2062], "score": 0.881}, {"category_id": 1, "poly": [192, 963, 1377, 963, 1377, 1007, 192, 1007], "score": 0.867}, {"category_id": 13, "poly": [233, 1842, 342, 1842, 342, 1883, 233, 1883], "score": 0.94, "latex": "C_{1}^{j}J_{v}^{i}\\Lambda_{t}"}, {"category_id": 14, "poly": [572, 275, 1125, 275, 1125, 382, 572, 382], "score": 0.94, "latex": "\\chi_{\\Lambda_{1}}[\\lambda]={\\frac{S_{\\Lambda_{1}\\lambda}}{S_{0\\lambda}}}=2\\sum_{\\ell=1}^{r}\\cos(2\\pi{\\frac{\\lambda^{+}(\\ell)}{\\kappa}})~,"}, {"category_id": 13, "poly": [1201, 1685, 1285, 1685, 1285, 1720, 1201, 1720], "score": 0.94, "latex": "\\pi\\{m\\}"}, {"category_id": 13, "poly": [1178, 1723, 1263, 1723, 1263, 1758, 1178, 1758], "score": 0.94, "latex": "\\pi\\{m\\}"}, {"category_id": 13, "poly": [313, 975, 543, 975, 543, 1010, 313, 1010], "score": 0.93, "latex": "a,b,c,d\\in\\{0,1\\}"}, {"category_id": 13, "poly": [296, 1447, 383, 1447, 383, 1483, 296, 1483], "score": 0.93, "latex": "a={\\frac{r}{2}}"}, {"category_id": 13, "poly": [393, 1842, 536, 1842, 536, 1883, 393, 1883], "score": 0.93, "latex": "C_{1}^{j}J_{v}^{i+1}\\Lambda_{t}"}, {"category_id": 13, "poly": [1101, 421, 1162, 421, 1162, 455, 1101, 455], "score": 0.93, "latex": "\\lambda(\\ell)"}, {"category_id": 14, "poly": [350, 1226, 1363, 1226, 1363, 1417, 350, 1417], "score": 0.93, "latex": "{\\begin{array}{r l}&{\\pi\\,=\\pi\\left[{\\begin{array}{c c}{a}&{0}\\\\ {0}&{d}\\end{array}}\\right]\\qquad{\\mathrm{with}}\\qquad\\pi^{\\prime}=\\pi\\left[{\\begin{array}{c c}{a\\left(d+1\\right)}&{{\\frac{d r}{2}}}\\\\ {{\\frac{d r}{2}}}&{d}\\end{array}}\\right]}\\\\ {{\\mathrm{rr}}\\quad\\pi\\,=\\pi\\left[{\\begin{array}{c c}{{\\frac{r}{2}}+1}&{b}\\\\ {c}&{1}\\end{array}}\\right]\\qquad{\\mathrm{with}}\\qquad\\pi^{\\prime}=\\pi\\left[{\\begin{array}{c c}{{\\frac{r}{2}}+1+b c{\\frac{r}{2}}}&{b+{\\frac{r}{2}}}\\\\ {{\\frac{r}{2}}+1+b c+b}&{1}\\end{array}}\\right]}\\end{array}},"}, {"category_id": 13, "poly": [1325, 1641, 1464, 1641, 1464, 1683, 1325, 1683], "score": 0.93, "latex": "\\begin{array}{r}{S_{00}^{2}\\,=\\,\\frac{1}{4\\kappa}}\\end{array}"}, {"category_id": 13, "poly": [900, 1903, 966, 1903, 966, 1947, 900, 1947], "score": 0.93, "latex": "D_{r}^{(1)}"}, {"category_id": 13, "poly": [199, 455, 476, 455, 476, 502, 199, 502], "score": 0.93, "latex": "\\begin{array}{r}{\\sum_{i=\\ell}^{r-1}\\lambda_{i}+\\frac{\\lambda_{r}-\\lambda_{r-1}}{2}}\\end{array}"}, {"category_id": 13, "poly": [1125, 582, 1448, 582, 1448, 618, 1125, 618], "score": 0.93, "latex": "\\pi=\\pi^{\\prime}=\\pi[a]=J_{s}^{4a\\cup_{s}}"}, {"category_id": 13, "poly": [1378, 624, 1500, 624, 1500, 658, 1378, 658], "score": 0.93, "latex": "\\pi=\\pi[a]"}, {"category_id": 13, "poly": [265, 662, 479, 662, 479, 698, 265, 698], "score": 0.93, "latex": "\\pi^{\\prime}=\\pi[a k-a]"}, {"category_id": 13, "poly": [199, 622, 340, 622, 340, 659, 199, 659], "score": 0.92, "latex": "a\\in\\{0,2\\}"}, {"category_id": 13, "poly": [1373, 666, 1490, 666, 1490, 696, 1373, 696], "score": 0.92, "latex": "\\mathbb{Z}_{2}\\times\\mathbb{Z}_{2}"}, {"category_id": 13, "poly": [1015, 973, 1054, 973, 1054, 1009, 1015, 1009], "score": 0.92, "latex": "\\mathbb{Z}_{2}^{4}"}, {"category_id": 13, "poly": [809, 1643, 1084, 1643, 1084, 1679, 809, 1679], "score": 0.92, "latex": "\\lambda^{r\\pm1}=\\Lambda_{r-1}+\\Lambda_{r}"}, {"category_id": 13, "poly": [297, 418, 582, 418, 582, 454, 297, 454], "score": 0.92, "latex": "\\lambda^{+}(\\ell)\\,=\\,(\\lambda+\\rho)(\\ell)"}, {"category_id": 13, "poly": [1136, 746, 1170, 746, 1170, 775, 1136, 775], "score": 0.92, "latex": "J_{v}"}, {"category_id": 13, "poly": [1410, 1726, 1461, 1726, 1461, 1755, 1410, 1755], "score": 0.92, "latex": "J_{s}0"}, {"category_id": 14, "poly": [543, 849, 1155, 849, 1155, 937, 543, 937], "score": 0.92, "latex": "{\\boldsymbol{\\pi}}={\\boldsymbol{\\pi}}\\left[{\\boldsymbol{a}}\\quad b\\,\\right]\\qquad{\\mathrm{and}}\\qquad{\\boldsymbol{\\pi}}^{\\prime}={\\boldsymbol{\\pi}}\\left[{\\boldsymbol{a}}\\quad c\\right]"}, {"category_id": 13, "poly": [199, 1766, 264, 1766, 264, 1798, 199, 1798], "score": 0.92, "latex": "J_{s}^{m}0"}, {"category_id": 13, "poly": [1243, 1647, 1304, 1647, 1304, 1681, 1243, 1681], "score": 0.92, "latex": "B_{r,2}"}, {"category_id": 14, "poly": [457, 1043, 1246, 1043, 1246, 1130, 457, 1130], "score": 0.92, "latex": "\\pi\\left[\\!\\!\\begin{array}{r c}{{a}}&{{b}}\\\\ {{c}}&{{d}}\\end{array}\\!\\!\\right](\\lambda)\\ensuremath{\\stackrel{\\mathrm{def}}{=}}\\ J_{v}^{2a\\,Q_{v}(\\lambda)+2b\\,Q_{s}(\\lambda)}J_{s}^{2c\\,Q_{v}(\\lambda)+2d\\,Q_{s}(\\lambda)}\\lambda\\ ."}, {"category_id": 13, "poly": [817, 666, 901, 666, 901, 691, 817, 691], "score": 0.92, "latex": "k\\equiv2"}, {"category_id": 13, "poly": [1247, 746, 1280, 746, 1280, 775, 1247, 775], "score": 0.91, "latex": "J_{s}"}, {"category_id": 13, "poly": [671, 1763, 1036, 1763, 1036, 1798, 671, 1798], "score": 0.91, "latex": "\\left\\{\\Lambda_{r},\\Lambda_{r-1},J_{v}\\Lambda_{r},J_{v}\\Lambda_{r-1}\\right\\}"}, {"category_id": 13, "poly": [1399, 419, 1504, 419, 1504, 456, 1399, 456], "score": 0.91, "latex": "\\lambda(\\ell)\\,="}, {"category_id": 13, "poly": [512, 1648, 721, 1648, 721, 1676, 512, 1676], "score": 0.91, "latex": "1\\,\\leq\\,i\\,\\leq\\,r\\,-\\,2"}, {"category_id": 13, "poly": [1166, 1485, 1276, 1485, 1276, 1518, 1166, 1518], "score": 0.91, "latex": "a,b,c,d"}, {"category_id": 13, "poly": [455, 1568, 497, 1568, 497, 1597, 455, 1597], "score": 0.91, "latex": "\\mathfrak{S}_{3}"}, {"category_id": 13, "poly": [1455, 1447, 1499, 1447, 1499, 1479, 1455, 1479], "score": 0.9, "latex": "P_{+}"}, {"category_id": 13, "poly": [1255, 546, 1288, 546, 1288, 575, 1255, 575], "score": 0.9, "latex": "J_{s}"}, {"category_id": 13, "poly": [1339, 1768, 1412, 1768, 1412, 1790, 1339, 1790], "score": 0.9, "latex": "t=r"}, {"category_id": 13, "poly": [673, 706, 711, 706, 711, 735, 673, 735], "score": 0.9, "latex": "\\mathbb{Z}_{4}"}, {"category_id": 13, "poly": [1425, 1687, 1460, 1687, 1460, 1712, 1425, 1712], "score": 0.9, "latex": "\\lambda^{a}"}, {"category_id": 13, "poly": [199, 1642, 445, 1642, 445, 1674, 199, 1674], "score": 0.9, "latex": "\\lambda^{i}\\,=\\,\\lambda^{2r-i}\\,=\\,\\Lambda_{i}"}, {"category_id": 13, "poly": [323, 1607, 404, 1607, 404, 1631, 323, 1631], "score": 0.9, "latex": "k=2"}, {"category_id": 13, "poly": [294, 1958, 329, 1958, 329, 1987, 294, 1987], "score": 0.9, "latex": "C_{i}"}, {"category_id": 13, "poly": [436, 1447, 519, 1447, 519, 1472, 436, 1472], "score": 0.89, "latex": "d=0"}, {"category_id": 13, "poly": [199, 1726, 259, 1726, 259, 1751, 199, 1751], "score": 0.89, "latex": "\\lambda^{m a}"}, {"category_id": 13, "poly": [296, 1167, 315, 1167, 315, 1192, 296, 1192], "score": 0.89, "latex": "k"}, {"category_id": 13, "poly": [1032, 1910, 1126, 1910, 1126, 1949, 1032, 1949], "score": 0.89, "latex": "k\\neq2"}, {"category_id": 13, "poly": [875, 1566, 913, 1566, 913, 1596, 875, 1596], "score": 0.89, "latex": "\\mathbb{Z}_{6}"}, {"category_id": 13, "poly": [1427, 507, 1446, 507, 1446, 531, 1427, 531], "score": 0.89, "latex": "k"}, {"category_id": 13, "poly": [833, 1446, 916, 1446, 916, 1472, 833, 1472], "score": 0.89, "latex": "d=1"}, {"category_id": 13, "poly": [1021, 1722, 1074, 1722, 1074, 1755, 1021, 1755], "score": 0.88, "latex": "J_{v}0"}, {"category_id": 13, "poly": [377, 211, 568, 211, 568, 241, 377, 241], "score": 0.88, "latex": "1\\leq i<r-2"}, {"category_id": 13, "poly": [916, 1844, 974, 1844, 974, 1886, 916, 1886], "score": 0.88, "latex": "\\textstyle\\left({\\frac{\\kappa}{m}}\\right)"}, {"category_id": 13, "poly": [459, 1807, 550, 1807, 550, 1831, 459, 1831], "score": 0.88, "latex": "m\\equiv1"}, {"category_id": 13, "poly": [1427, 1912, 1491, 1912, 1491, 1948, 1427, 1948], "score": 0.88, "latex": "C_{i}\\,\\pi"}, {"category_id": 13, "poly": [433, 704, 479, 704, 479, 738, 433, 738], "score": 0.88, "latex": "4|k"}, {"category_id": 13, "poly": [199, 786, 218, 786, 218, 811, 199, 811], "score": 0.88, "latex": "k"}, {"category_id": 13, "poly": [641, 210, 721, 210, 721, 237, 641, 237], "score": 0.88, "latex": "k>2"}, {"category_id": 13, "poly": [701, 1444, 782, 1444, 782, 1472, 701, 1472], "score": 0.88, "latex": "b=1"}, {"category_id": 13, "poly": [903, 1805, 1031, 1805, 1031, 1834, 903, 1834], "score": 0.87, "latex": "t=r-1"}, {"category_id": 13, "poly": [363, 755, 379, 755, 379, 770, 363, 770], "score": 0.87, "latex": "r"}, {"category_id": 13, "poly": [764, 1482, 814, 1482, 814, 1518, 764, 1518], "score": 0.87, "latex": "r,k"}, {"category_id": 13, "poly": [199, 1815, 215, 1815, 215, 1830, 199, 1830], "score": 0.87, "latex": "r"}, {"category_id": 13, "poly": [456, 1527, 476, 1527, 476, 1551, 456, 1551], "score": 0.87, "latex": "k"}, {"category_id": 13, "poly": [199, 586, 218, 586, 218, 611, 199, 611], "score": 0.86, "latex": "k"}, {"category_id": 13, "poly": [672, 1688, 705, 1688, 705, 1712, 672, 1712], "score": 0.86, "latex": "2r"}, {"category_id": 13, "poly": [471, 1696, 500, 1696, 500, 1711, 471, 1711], "score": 0.86, "latex": "{\\boldsymbol{\\mathit{\\varepsilon}}}^{\\prime}{\\boldsymbol{\\mathit{m}}}"}, {"category_id": 13, "poly": [465, 1608, 561, 1608, 561, 1631, 465, 1631], "score": 0.86, "latex": "\\kappa=2r"}, {"category_id": 13, "poly": [1339, 515, 1355, 515, 1355, 531, 1339, 531], "score": 0.86, "latex": "r"}, {"category_id": 13, "poly": [735, 1576, 752, 1576, 752, 1592, 735, 1592], "score": 0.85, "latex": "r"}, {"category_id": 13, "poly": [1010, 1568, 1089, 1568, 1089, 1592, 1010, 1592], "score": 0.85, "latex": "r\\equiv2"}, {"category_id": 13, "poly": [542, 663, 691, 663, 691, 695, 542, 695], "score": 0.85, "latex": "0\\leq a\\leq3"}, {"category_id": 13, "poly": [1238, 1796, 1500, 1796, 1500, 1839, 1238, 1839], "score": 0.84, "latex": "i,j,\\,\\pi\\{m\\}\\,C_{1}^{j}J_{v}^{i}\\Lambda_{r}"}, {"category_id": 13, "poly": [508, 624, 528, 624, 528, 651, 508, 651], "score": 0.84, "latex": "k"}, {"category_id": 13, "poly": [1016, 1845, 1062, 1845, 1062, 1878, 1016, 1878], "score": 0.82, "latex": "\\pm1"}, {"category_id": 13, "poly": [796, 1724, 831, 1724, 831, 1751, 796, 1751], "score": 0.8, "latex": "2r"}, {"category_id": 13, "poly": [759, 1967, 780, 1967, 780, 1982, 759, 1982], "score": 0.79, "latex": "\\pi"}, {"category_id": 13, "poly": [484, 553, 501, 553, 501, 570, 484, 570], "score": 0.67, "latex": "r"}, {"category_id": 15, "poly": [260.0, 1598.0, 322.0, 1598.0, 322.0, 1645.0, 260.0, 1645.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [405.0, 1598.0, 464.0, 1598.0, 464.0, 1645.0, 405.0, 1645.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [562.0, 1598.0, 1505.0, 1598.0, 1505.0, 1645.0, 562.0, 1645.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [191.0, 1632.0, 198.0, 1632.0, 198.0, 1692.0, 191.0, 1692.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [446.0, 1632.0, 511.0, 1632.0, 511.0, 1692.0, 446.0, 1692.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [722.0, 1632.0, 808.0, 1632.0, 808.0, 1692.0, 722.0, 1692.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1085.0, 1632.0, 1242.0, 1632.0, 1242.0, 1692.0, 1085.0, 1692.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1305.0, 1632.0, 1324.0, 1632.0, 1324.0, 1692.0, 1305.0, 1692.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1465.0, 1632.0, 1466.0, 1632.0, 1466.0, 1692.0, 1465.0, 1692.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [198.0, 1682.0, 470.0, 1682.0, 470.0, 1724.0, 198.0, 1724.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [501.0, 1682.0, 671.0, 1682.0, 671.0, 1724.0, 501.0, 1724.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [706.0, 1682.0, 1200.0, 1682.0, 1200.0, 1724.0, 706.0, 1724.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1286.0, 1682.0, 1424.0, 1682.0, 1424.0, 1724.0, 1286.0, 1724.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1461.0, 1682.0, 1506.0, 1682.0, 1506.0, 1724.0, 1461.0, 1724.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [194.0, 1716.0, 198.0, 1716.0, 198.0, 1765.0, 194.0, 1765.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [260.0, 1716.0, 795.0, 1716.0, 795.0, 1765.0, 260.0, 1765.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [832.0, 1716.0, 1020.0, 1716.0, 1020.0, 1765.0, 832.0, 1765.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1075.0, 1716.0, 1177.0, 1716.0, 1177.0, 1765.0, 1075.0, 1765.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1264.0, 1716.0, 1409.0, 1716.0, 1409.0, 1765.0, 1264.0, 1765.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1462.0, 1716.0, 1506.0, 1716.0, 1506.0, 1765.0, 1462.0, 1765.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [196.0, 1759.0, 198.0, 1759.0, 198.0, 1806.0, 196.0, 1806.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [265.0, 1759.0, 670.0, 1759.0, 670.0, 1806.0, 265.0, 1806.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1037.0, 1759.0, 1338.0, 1759.0, 1338.0, 1806.0, 1037.0, 1806.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1413.0, 1759.0, 1505.0, 1759.0, 1505.0, 1806.0, 1413.0, 1806.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [195.0, 1801.0, 198.0, 1801.0, 198.0, 1843.0, 195.0, 1843.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [216.0, 1801.0, 458.0, 1801.0, 458.0, 1843.0, 216.0, 1843.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [551.0, 1801.0, 902.0, 1801.0, 902.0, 1843.0, 551.0, 1843.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1032.0, 1801.0, 1237.0, 1801.0, 1237.0, 1843.0, 1032.0, 1843.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [191.0, 1837.0, 232.0, 1837.0, 232.0, 1893.0, 191.0, 1893.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [343.0, 1837.0, 392.0, 1837.0, 392.0, 1893.0, 343.0, 1893.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [537.0, 1837.0, 915.0, 1837.0, 915.0, 1893.0, 537.0, 1893.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [975.0, 1837.0, 1015.0, 1837.0, 1015.0, 1893.0, 975.0, 1893.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1063.0, 1837.0, 1277.0, 1837.0, 1277.0, 1893.0, 1063.0, 1893.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1420.25, 1635.5, 1502.25, 1635.5, 1502.25, 1680.5, 1420.25, 1680.5], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [213.0, 497.0, 1338.0, 497.0, 1338.0, 546.0, 213.0, 546.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1356.0, 497.0, 1426.0, 497.0, 1426.0, 546.0, 1356.0, 546.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1447.0, 497.0, 1506.0, 497.0, 1506.0, 546.0, 1447.0, 546.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [193.0, 540.0, 483.0, 540.0, 483.0, 581.0, 193.0, 581.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [502.0, 540.0, 1254.0, 540.0, 1254.0, 581.0, 502.0, 581.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1289.0, 540.0, 1505.0, 540.0, 1505.0, 581.0, 1289.0, 581.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [190.0, 576.0, 198.0, 576.0, 198.0, 623.0, 190.0, 623.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [219.0, 576.0, 1124.0, 576.0, 1124.0, 623.0, 219.0, 623.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1449.0, 576.0, 1509.0, 576.0, 1509.0, 623.0, 1449.0, 623.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [195.0, 618.0, 198.0, 618.0, 198.0, 664.0, 195.0, 664.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [341.0, 618.0, 507.0, 618.0, 507.0, 664.0, 341.0, 664.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [529.0, 618.0, 1377.0, 618.0, 1377.0, 664.0, 529.0, 664.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1501.0, 618.0, 1503.0, 618.0, 1503.0, 664.0, 1501.0, 664.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [197.0, 658.0, 264.0, 658.0, 264.0, 706.0, 197.0, 706.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [480.0, 658.0, 541.0, 658.0, 541.0, 706.0, 480.0, 706.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [692.0, 658.0, 816.0, 658.0, 816.0, 706.0, 692.0, 706.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [902.0, 658.0, 1372.0, 658.0, 1372.0, 706.0, 902.0, 706.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1491.0, 658.0, 1503.0, 658.0, 1503.0, 706.0, 1491.0, 706.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [197.0, 697.0, 432.0, 697.0, 432.0, 745.0, 197.0, 745.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [480.0, 697.0, 672.0, 697.0, 672.0, 745.0, 480.0, 745.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [712.0, 697.0, 723.0, 697.0, 723.0, 745.0, 712.0, 745.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [196.0, 1438.0, 295.0, 1438.0, 295.0, 1489.0, 196.0, 1489.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [384.0, 1438.0, 435.0, 1438.0, 435.0, 1489.0, 384.0, 1489.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [520.0, 1438.0, 700.0, 1438.0, 700.0, 1489.0, 520.0, 1489.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [783.0, 1438.0, 832.0, 1438.0, 832.0, 1489.0, 783.0, 1489.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [917.0, 1438.0, 1454.0, 1438.0, 1454.0, 1489.0, 917.0, 1489.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1500.0, 1438.0, 1501.0, 1438.0, 1501.0, 1489.0, 1500.0, 1489.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [196.0, 1483.0, 763.0, 1483.0, 763.0, 1521.0, 196.0, 1521.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [815.0, 1483.0, 1165.0, 1483.0, 1165.0, 1521.0, 815.0, 1521.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1277.0, 1483.0, 1501.0, 1483.0, 1501.0, 1521.0, 1277.0, 1521.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [193.0, 1520.0, 455.0, 1520.0, 455.0, 1563.0, 193.0, 1563.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [477.0, 1520.0, 1506.0, 1520.0, 1506.0, 1563.0, 477.0, 1563.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [197.0, 1563.0, 454.0, 1563.0, 454.0, 1600.0, 197.0, 1600.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [498.0, 1563.0, 734.0, 1563.0, 734.0, 1600.0, 498.0, 1600.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [753.0, 1563.0, 874.0, 1563.0, 874.0, 1600.0, 753.0, 1600.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [914.0, 1563.0, 1009.0, 1563.0, 1009.0, 1600.0, 914.0, 1600.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1090.0, 1563.0, 1230.0, 1563.0, 1230.0, 1600.0, 1090.0, 1600.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [264.0, 741.0, 362.0, 741.0, 362.0, 783.0, 264.0, 783.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [380.0, 741.0, 1135.0, 741.0, 1135.0, 783.0, 380.0, 783.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1171.0, 741.0, 1246.0, 741.0, 1246.0, 783.0, 1171.0, 783.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1281.0, 741.0, 1503.0, 741.0, 1503.0, 783.0, 1281.0, 783.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [194.0, 780.0, 198.0, 780.0, 198.0, 825.0, 194.0, 825.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [219.0, 780.0, 971.0, 780.0, 971.0, 825.0, 219.0, 825.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [196.0, 414.0, 296.0, 414.0, 296.0, 463.0, 196.0, 463.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [583.0, 414.0, 1100.0, 414.0, 1100.0, 463.0, 583.0, 463.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1163.0, 414.0, 1398.0, 414.0, 1398.0, 463.0, 1163.0, 463.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [193.0, 451.0, 198.0, 451.0, 198.0, 500.0, 193.0, 500.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [477.0, 451.0, 488.0, 451.0, 488.0, 500.0, 477.0, 500.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [260.0, 1902.0, 899.0, 1902.0, 899.0, 1961.0, 260.0, 1961.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [967.0, 1902.0, 1031.0, 1902.0, 1031.0, 1961.0, 967.0, 1961.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1127.0, 1902.0, 1426.0, 1902.0, 1426.0, 1961.0, 1127.0, 1961.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1492.0, 1902.0, 1505.0, 1902.0, 1505.0, 1961.0, 1492.0, 1961.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [200.0, 1952.0, 293.0, 1952.0, 293.0, 1996.0, 200.0, 1996.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [330.0, 1952.0, 758.0, 1952.0, 758.0, 1996.0, 330.0, 1996.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [781.0, 1952.0, 1505.0, 1952.0, 1505.0, 1996.0, 781.0, 1996.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [199.0, 1160.0, 295.0, 1160.0, 295.0, 1202.0, 199.0, 1202.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [316.0, 1160.0, 1126.0, 1160.0, 1126.0, 1202.0, 316.0, 1202.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [199.0, 205.0, 376.0, 205.0, 376.0, 247.0, 199.0, 247.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [569.0, 205.0, 640.0, 205.0, 640.0, 247.0, 569.0, 247.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [722.0, 205.0, 1402.0, 205.0, 1402.0, 247.0, 722.0, 247.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [828.0, 2033.0, 872.0, 2033.0, 872.0, 2070.0, 828.0, 2070.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [196.0, 968.0, 312.0, 968.0, 312.0, 1018.0, 196.0, 1018.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [544.0, 968.0, 1014.0, 968.0, 1014.0, 1018.0, 544.0, 1018.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1055.0, 968.0, 1383.0, 968.0, 1383.0, 1018.0, 1055.0, 1018.0], "score": 1.0, "text": ""}] | {"preproc_blocks": [{"type": "text", "bbox": [70, 70, 505, 86], "lines": [{"bbox": [71, 73, 504, 88], "spans": [{"bbox": [71, 73, 135, 88], "score": 1.0, "content": "valid for all ", "type": "text"}, {"bbox": [135, 75, 204, 86], "score": 0.88, "content": "1\\leq i<r-2", "type": "inline_equation", "height": 11, "width": 69}, {"bbox": [204, 73, 230, 88], "score": 1.0, "content": " and ", "type": "text"}, {"bbox": [230, 75, 259, 85], "score": 0.88, "content": "k>2", "type": "inline_equation", "height": 10, "width": 29}, {"bbox": [259, 73, 504, 88], "score": 1.0, "content": ". We also will use the character formula (2.1b)", "type": "text"}], "index": 0}], "index": 0}, {"type": "interline_equation", "bbox": [205, 99, 405, 137], "lines": [{"bbox": [205, 99, 405, 137], "spans": [{"bbox": [205, 99, 405, 137], "score": 0.94, "content": "\\chi_{\\Lambda_{1}}[\\lambda]={\\frac{S_{\\Lambda_{1}\\lambda}}{S_{0\\lambda}}}=2\\sum_{\\ell=1}^{r}\\cos(2\\pi{\\frac{\\lambda^{+}(\\ell)}{\\kappa}})~,", "type": "interline_equation"}], "index": 1}], "index": 1}, {"type": "text", "bbox": [70, 147, 541, 178], "lines": [{"bbox": [70, 149, 541, 166], "spans": [{"bbox": [70, 149, 106, 166], "score": 1.0, "content": "where ", "type": "text"}, {"bbox": [106, 150, 209, 163], "score": 0.92, "content": "\\lambda^{+}(\\ell)\\,=\\,(\\lambda+\\rho)(\\ell)", "type": "inline_equation", "height": 13, "width": 103}, {"bbox": [209, 149, 396, 166], "score": 1.0, "content": " and the orthonormal components ", "type": "text"}, {"bbox": [396, 151, 418, 163], "score": 0.93, "content": "\\lambda(\\ell)", "type": "inline_equation", "height": 12, "width": 22}, {"bbox": [418, 149, 503, 166], "score": 1.0, "content": " are defined by ", "type": "text"}, {"bbox": [503, 150, 541, 164], "score": 0.91, "content": "\\lambda(\\ell)\\,=", "type": "inline_equation", "height": 14, "width": 38}], "index": 2}, {"bbox": [71, 162, 175, 180], "spans": [{"bbox": [71, 163, 171, 180], "score": 0.93, "content": "\\begin{array}{r}{\\sum_{i=\\ell}^{r-1}\\lambda_{i}+\\frac{\\lambda_{r}-\\lambda_{r-1}}{2}}\\end{array}", "type": "inline_equation", "height": 17, "width": 100}, {"bbox": [171, 162, 175, 180], "score": 1.0, "content": ".", "type": "text"}], "index": 3}], "index": 2.5}, {"type": "text", "bbox": [70, 178, 542, 264], "lines": [{"bbox": [76, 178, 542, 196], "spans": [{"bbox": [76, 178, 481, 196], "score": 1.0, "content": "The simple-current automorphisms are as follows, and depend on whether ", "type": "text"}, {"bbox": [482, 185, 487, 191], "score": 0.86, "content": "r", "type": "inline_equation", "height": 6, "width": 5}, {"bbox": [488, 178, 513, 196], "score": 1.0, "content": " and ", "type": "text"}, {"bbox": [513, 182, 520, 191], "score": 0.89, "content": "k", "type": "inline_equation", "height": 9, "width": 7}, {"bbox": [520, 178, 542, 196], "score": 1.0, "content": " are", "type": "text"}], "index": 4}, {"bbox": [69, 194, 541, 209], "spans": [{"bbox": [69, 194, 173, 209], "score": 1.0, "content": "even or odd. When", "type": "text"}, {"bbox": [174, 199, 180, 205], "score": 0.67, "content": "r", "type": "inline_equation", "height": 6, "width": 6}, {"bbox": [180, 194, 451, 209], "score": 1.0, "content": " is odd, the group of simple-currents is generated by ", "type": "text"}, {"bbox": [451, 196, 463, 207], "score": 0.9, "content": "J_{s}", "type": "inline_equation", "height": 11, "width": 12}, {"bbox": [464, 194, 541, 209], "score": 1.0, "content": ". If in addition", "type": "text"}], "index": 5}, {"bbox": [71, 207, 543, 224], "spans": [{"bbox": [71, 210, 78, 219], "score": 0.86, "content": "k", "type": "inline_equation", "height": 9, "width": 7}, {"bbox": [78, 207, 404, 224], "score": 1.0, "content": " is odd, there will be only two simple-current automorphisms: ", "type": "text"}, {"bbox": [405, 209, 521, 222], "score": 0.93, "content": "\\pi=\\pi^{\\prime}=\\pi[a]=J_{s}^{4a\\cup_{s}}", "type": "inline_equation", "height": 13, "width": 116}, {"bbox": [521, 207, 543, 224], "score": 1.0, "content": "for", "type": "text"}], "index": 6}, {"bbox": [71, 222, 540, 239], "spans": [{"bbox": [71, 223, 122, 237], "score": 0.92, "content": "a\\in\\{0,2\\}", "type": "inline_equation", "height": 14, "width": 51}, {"bbox": [122, 222, 182, 239], "score": 1.0, "content": ". If instead ", "type": "text"}, {"bbox": [182, 224, 190, 234], "score": 0.84, "content": "k", "type": "inline_equation", "height": 10, "width": 8}, {"bbox": [190, 222, 495, 239], "score": 1.0, "content": " is even, there will be four simple-current automorphisms: ", "type": "text"}, {"bbox": [496, 224, 540, 236], "score": 0.93, "content": "\\pi=\\pi[a]", "type": "inline_equation", "height": 12, "width": 44}], "index": 7}, {"bbox": [70, 236, 541, 254], "spans": [{"bbox": [70, 236, 95, 254], "score": 1.0, "content": "and ", "type": "text"}, {"bbox": [95, 238, 172, 251], "score": 0.93, "content": "\\pi^{\\prime}=\\pi[a k-a]", "type": "inline_equation", "height": 13, "width": 77}, {"bbox": [172, 236, 194, 254], "score": 1.0, "content": " for ", "type": "text"}, {"bbox": [195, 238, 248, 250], "score": 0.85, "content": "0\\leq a\\leq3", "type": "inline_equation", "height": 12, "width": 53}, {"bbox": [249, 236, 293, 254], "score": 1.0, "content": ". When ", "type": "text"}, {"bbox": [294, 239, 324, 248], "score": 0.92, "content": "k\\equiv2", "type": "inline_equation", "height": 9, "width": 30}, {"bbox": [324, 236, 493, 254], "score": 1.0, "content": " (mod 4), these form the group ", "type": "text"}, {"bbox": [494, 239, 536, 250], "score": 0.92, "content": "\\mathbb{Z}_{2}\\times\\mathbb{Z}_{2}", "type": "inline_equation", "height": 11, "width": 42}, {"bbox": [536, 236, 541, 254], "score": 1.0, "content": ",", "type": "text"}], "index": 8}, {"bbox": [70, 250, 260, 268], "spans": [{"bbox": [70, 250, 155, 268], "score": 1.0, "content": "otherwise when ", "type": "text"}, {"bbox": [155, 253, 172, 265], "score": 0.88, "content": "4|k", "type": "inline_equation", "height": 12, "width": 17}, {"bbox": [172, 250, 241, 268], "score": 1.0, "content": " the group is ", "type": "text"}, {"bbox": [242, 254, 255, 264], "score": 0.9, "content": "\\mathbb{Z}_{4}", "type": "inline_equation", "height": 10, "width": 13}, {"bbox": [256, 250, 260, 268], "score": 1.0, "content": ".", "type": "text"}], "index": 9}], "index": 6.5}, {"type": "text", "bbox": [70, 264, 541, 293], "lines": [{"bbox": [95, 266, 541, 281], "spans": [{"bbox": [95, 266, 130, 281], "score": 1.0, "content": "When ", "type": "text"}, {"bbox": [130, 271, 136, 277], "score": 0.87, "content": "r", "type": "inline_equation", "height": 6, "width": 6}, {"bbox": [136, 266, 408, 281], "score": 1.0, "content": " is even, the simple-currents are generated by both ", "type": "text"}, {"bbox": [408, 268, 421, 279], "score": 0.92, "content": "J_{v}", "type": "inline_equation", "height": 11, "width": 13}, {"bbox": [421, 266, 448, 281], "score": 1.0, "content": " and ", "type": "text"}, {"bbox": [448, 268, 460, 279], "score": 0.91, "content": "J_{s}", "type": "inline_equation", "height": 11, "width": 12}, {"bbox": [461, 266, 541, 281], "score": 1.0, "content": ". If in addition", "type": "text"}], "index": 10}, {"bbox": [71, 280, 349, 297], "spans": [{"bbox": [71, 282, 78, 291], "score": 0.88, "content": "k", "type": "inline_equation", "height": 9, "width": 7}, {"bbox": [78, 280, 349, 297], "score": 1.0, "content": " is even, we have 16 simple-current automorphisms:", "type": "text"}], "index": 11}], "index": 10.5}, {"type": "interline_equation", "bbox": [195, 305, 415, 337], "lines": [{"bbox": [195, 305, 415, 337], "spans": [{"bbox": [195, 305, 415, 337], "score": 0.92, "content": "{\\boldsymbol{\\pi}}={\\boldsymbol{\\pi}}\\left[{\\boldsymbol{a}}\\quad b\\,\\right]\\qquad{\\mathrm{and}}\\qquad{\\boldsymbol{\\pi}}^{\\prime}={\\boldsymbol{\\pi}}\\left[{\\boldsymbol{a}}\\quad c\\right]", "type": "interline_equation"}], "index": 12}], "index": 12}, {"type": "text", "bbox": [69, 346, 495, 362], "lines": [{"bbox": [70, 348, 497, 366], "spans": [{"bbox": [70, 348, 112, 366], "score": 1.0, "content": "for any ", "type": "text"}, {"bbox": [112, 351, 195, 363], "score": 0.93, "content": "a,b,c,d\\in\\{0,1\\}", "type": "inline_equation", "height": 12, "width": 83}, {"bbox": [195, 348, 365, 366], "score": 1.0, "content": ", forming a group isomorphic to ", "type": "text"}, {"bbox": [365, 350, 379, 363], "score": 0.92, "content": "\\mathbb{Z}_{2}^{4}", "type": "inline_equation", "height": 13, "width": 14}, {"bbox": [379, 348, 497, 366], "score": 1.0, "content": ". This notation means", "type": "text"}], "index": 13}], "index": 13}, {"type": "interline_equation", "bbox": [164, 375, 448, 406], "lines": [{"bbox": [164, 375, 448, 406], "spans": [{"bbox": [164, 375, 448, 406], "score": 0.92, "content": "\\pi\\left[\\!\\!\\begin{array}{r c}{{a}}&{{b}}\\\\ {{c}}&{{d}}\\end{array}\\!\\!\\right](\\lambda)\\ensuremath{\\stackrel{\\mathrm{def}}{=}}\\ J_{v}^{2a\\,Q_{v}(\\lambda)+2b\\,Q_{s}(\\lambda)}J_{s}^{2c\\,Q_{v}(\\lambda)+2d\\,Q_{s}(\\lambda)}\\lambda\\ .", "type": "interline_equation"}], "index": 14}], "index": 14}, {"type": "text", "bbox": [70, 415, 407, 430], "lines": [{"bbox": [71, 417, 405, 432], "spans": [{"bbox": [71, 417, 106, 432], "score": 1.0, "content": "When ", "type": "text"}, {"bbox": [106, 420, 113, 429], "score": 0.89, "content": "k", "type": "inline_equation", "height": 9, "width": 7}, {"bbox": [113, 417, 405, 432], "score": 1.0, "content": " is odd, we will have six simple-current automorphisms:", "type": "text"}], "index": 15}], "index": 15}, {"type": "interline_equation", "bbox": [126, 441, 490, 510], "lines": [{"bbox": [126, 441, 490, 510], "spans": [{"bbox": [126, 441, 490, 510], "score": 0.93, "content": "{\\begin{array}{r l}&{\\pi\\,=\\pi\\left[{\\begin{array}{c c}{a}&{0}\\\\ {0}&{d}\\end{array}}\\right]\\qquad{\\mathrm{with}}\\qquad\\pi^{\\prime}=\\pi\\left[{\\begin{array}{c c}{a\\left(d+1\\right)}&{{\\frac{d r}{2}}}\\\\ {{\\frac{d r}{2}}}&{d}\\end{array}}\\right]}\\\\ {{\\mathrm{rr}}\\quad\\pi\\,=\\pi\\left[{\\begin{array}{c c}{{\\frac{r}{2}}+1}&{b}\\\\ {c}&{1}\\end{array}}\\right]\\qquad{\\mathrm{with}}\\qquad\\pi^{\\prime}=\\pi\\left[{\\begin{array}{c c}{{\\frac{r}{2}}+1+b c{\\frac{r}{2}}}&{b+{\\frac{r}{2}}}\\\\ {{\\frac{r}{2}}+1+b c+b}&{1}\\end{array}}\\right]}\\end{array}},", "type": "interline_equation"}], "index": 16}], "index": 16}, {"type": "text", "bbox": [69, 516, 541, 574], "lines": [{"bbox": [70, 517, 539, 536], "spans": [{"bbox": [70, 517, 106, 536], "score": 1.0, "content": "where ", "type": "text"}, {"bbox": [106, 520, 137, 533], "score": 0.93, "content": "a={\\frac{r}{2}}", "type": "inline_equation", "height": 13, "width": 31}, {"bbox": [138, 517, 156, 536], "score": 1.0, "content": " or ", "type": "text"}, {"bbox": [156, 520, 186, 529], "score": 0.89, "content": "d=0", "type": "inline_equation", "height": 9, "width": 30}, {"bbox": [187, 517, 252, 536], "score": 1.0, "content": ", and where ", "type": "text"}, {"bbox": [252, 519, 281, 529], "score": 0.88, "content": "b=1", "type": "inline_equation", "height": 10, "width": 29}, {"bbox": [281, 517, 299, 536], "score": 1.0, "content": " or ", "type": "text"}, {"bbox": [299, 520, 329, 529], "score": 0.89, "content": "d=1", "type": "inline_equation", "height": 9, "width": 30}, {"bbox": [330, 517, 523, 536], "score": 1.0, "content": ". The corresponding permutation of ", "type": "text"}, {"bbox": [523, 520, 539, 532], "score": 0.9, "content": "P_{+}", "type": "inline_equation", "height": 12, "width": 16}], "index": 17}, {"bbox": [70, 533, 540, 547], "spans": [{"bbox": [70, 533, 274, 547], "score": 1.0, "content": "is still given by (3.5). Again, for these ", "type": "text"}, {"bbox": [275, 533, 293, 546], "score": 0.87, "content": "r,k", "type": "inline_equation", "height": 13, "width": 18}, {"bbox": [293, 533, 419, 547], "score": 1.0, "content": ", these are the values of ", "type": "text"}, {"bbox": [419, 534, 459, 546], "score": 0.91, "content": "a,b,c,d", "type": "inline_equation", "height": 12, "width": 40}, {"bbox": [459, 533, 540, 547], "score": 1.0, "content": " for which (3.5)", "type": "text"}], "index": 18}, {"bbox": [69, 547, 542, 562], "spans": [{"bbox": [69, 547, 163, 562], "score": 1.0, "content": "is invertible. For ", "type": "text"}, {"bbox": [164, 549, 171, 558], "score": 0.87, "content": "k", "type": "inline_equation", "height": 9, "width": 7}, {"bbox": [171, 547, 542, 562], "score": 1.0, "content": " odd, the group of simple-current automorphisms is isomorphic to the", "type": "text"}], "index": 19}, {"bbox": [70, 562, 442, 576], "spans": [{"bbox": [70, 562, 163, 576], "score": 1.0, "content": "symmetric group ", "type": "text"}, {"bbox": [163, 564, 178, 574], "score": 0.91, "content": "\\mathfrak{S}_{3}", "type": "inline_equation", "height": 10, "width": 15}, {"bbox": [179, 562, 264, 576], "score": 1.0, "content": " when 4 divides ", "type": "text"}, {"bbox": [264, 567, 270, 573], "score": 0.85, "content": "r", "type": "inline_equation", "height": 6, "width": 6}, {"bbox": [271, 562, 314, 576], "score": 1.0, "content": ", and to ", "type": "text"}, {"bbox": [315, 563, 328, 574], "score": 0.89, "content": "\\mathbb{Z}_{6}", "type": "inline_equation", "height": 11, "width": 13}, {"bbox": [329, 562, 363, 576], "score": 1.0, "content": " when ", "type": "text"}, {"bbox": [363, 564, 392, 573], "score": 0.85, "content": "r\\equiv2", "type": "inline_equation", "height": 9, "width": 29}, {"bbox": [392, 562, 442, 576], "score": 1.0, "content": " (mod 4).", "type": "text"}], "index": 20}], "index": 18.5}, {"type": "text", "bbox": [70, 574, 542, 678], "lines": [{"bbox": [93, 575, 541, 592], "spans": [{"bbox": [93, 575, 115, 592], "score": 1.0, "content": "For", "type": "text"}, {"bbox": [116, 578, 145, 587], "score": 0.9, "content": "k=2", "type": "inline_equation", "height": 9, "width": 29}, {"bbox": [145, 575, 167, 592], "score": 1.0, "content": " (so ", "type": "text"}, {"bbox": [167, 578, 201, 587], "score": 0.86, "content": "\\kappa=2r", "type": "inline_equation", "height": 9, "width": 34}, {"bbox": [202, 575, 541, 592], "score": 1.0, "content": "), there are several Galois fusion-symmetries. In particular, write", "type": "text"}], "index": 21}, {"bbox": [71, 587, 540, 609], "spans": [{"bbox": [71, 591, 160, 602], "score": 0.9, "content": "\\lambda^{i}\\,=\\,\\lambda^{2r-i}\\,=\\,\\Lambda_{i}", "type": "inline_equation", "height": 11, "width": 89}, {"bbox": [160, 587, 183, 609], "score": 1.0, "content": " for ", "type": "text"}, {"bbox": [184, 593, 259, 603], "score": 0.91, "content": "1\\,\\leq\\,i\\,\\leq\\,r\\,-\\,2", "type": "inline_equation", "height": 10, "width": 75}, {"bbox": [259, 587, 290, 609], "score": 1.0, "content": ", and ", "type": "text"}, {"bbox": [291, 591, 390, 604], "score": 0.92, "content": "\\lambda^{r\\pm1}=\\Lambda_{r-1}+\\Lambda_{r}", "type": "inline_equation", "height": 13, "width": 99}, {"bbox": [390, 587, 447, 609], "score": 1.0, "content": ". As with ", "type": "text"}, {"bbox": [447, 592, 469, 605], "score": 0.92, "content": "B_{r,2}", "type": "inline_equation", "height": 13, "width": 22}, {"bbox": [469, 587, 476, 609], "score": 1.0, "content": ", ", "type": "text"}, {"bbox": [477, 590, 527, 605], "score": 0.93, "content": "\\begin{array}{r}{S_{00}^{2}\\,=\\,\\frac{1}{4\\kappa}}\\end{array}", "type": "inline_equation", "height": 15, "width": 50}, {"bbox": [511, 588, 540, 604], "score": 1.0, "content": "1 is", "type": "text"}], "index": 22}, {"bbox": [71, 605, 542, 620], "spans": [{"bbox": [71, 605, 169, 620], "score": 1.0, "content": "rational so for any ", "type": "text"}, {"bbox": [169, 610, 180, 615], "score": 0.86, "content": "{\\boldsymbol{\\mathit{\\varepsilon}}}^{\\prime}{\\boldsymbol{\\mathit{m}}}", "type": "inline_equation", "height": 5, "width": 11}, {"bbox": [180, 605, 241, 620], "score": 1.0, "content": " coprime to ", "type": "text"}, {"bbox": [241, 607, 253, 616], "score": 0.86, "content": "2r", "type": "inline_equation", "height": 9, "width": 12}, {"bbox": [254, 605, 432, 620], "score": 1.0, "content": ", we get a Galois fusion-symmetry ", "type": "text"}, {"bbox": [432, 606, 462, 619], "score": 0.94, "content": "\\pi\\{m\\}", "type": "inline_equation", "height": 13, "width": 30}, {"bbox": [462, 605, 512, 620], "score": 1.0, "content": ". It takes ", "type": "text"}, {"bbox": [513, 607, 525, 616], "score": 0.9, "content": "\\lambda^{a}", "type": "inline_equation", "height": 9, "width": 12}, {"bbox": [525, 605, 542, 620], "score": 1.0, "content": " to", "type": "text"}], "index": 23}, {"bbox": [71, 617, 542, 635], "spans": [{"bbox": [71, 621, 93, 630], "score": 0.89, "content": "\\lambda^{m a}", "type": "inline_equation", "height": 9, "width": 22}, {"bbox": [93, 617, 286, 635], "score": 1.0, "content": ", where the superscript is taken mod ", "type": "text"}, {"bbox": [286, 620, 299, 630], "score": 0.8, "content": "2r", "type": "inline_equation", "height": 10, "width": 13}, {"bbox": [299, 617, 367, 635], "score": 1.0, "content": ", and will fix ", "type": "text"}, {"bbox": [367, 619, 386, 631], "score": 0.88, "content": "J_{v}0", "type": "inline_equation", "height": 12, "width": 19}, {"bbox": [387, 617, 423, 635], "score": 1.0, "content": ". Also,", "type": "text"}, {"bbox": [424, 620, 454, 632], "score": 0.94, "content": "\\pi\\{m\\}", "type": "inline_equation", "height": 12, "width": 30}, {"bbox": [455, 617, 507, 635], "score": 1.0, "content": " will send ", "type": "text"}, {"bbox": [507, 621, 525, 631], "score": 0.92, "content": "J_{s}0", "type": "inline_equation", "height": 10, "width": 18}, {"bbox": [526, 617, 542, 635], "score": 1.0, "content": " to", "type": "text"}], "index": 24}, {"bbox": [71, 633, 541, 650], "spans": [{"bbox": [71, 635, 95, 647], "score": 0.92, "content": "J_{s}^{m}0", "type": "inline_equation", "height": 12, "width": 24}, {"bbox": [95, 633, 241, 650], "score": 1.0, "content": ", as well as stabilise the set ", "type": "text"}, {"bbox": [241, 634, 372, 647], "score": 0.91, "content": "\\left\\{\\Lambda_{r},\\Lambda_{r-1},J_{v}\\Lambda_{r},J_{v}\\Lambda_{r-1}\\right\\}", "type": "inline_equation", "height": 13, "width": 131}, {"bbox": [373, 633, 481, 650], "score": 1.0, "content": ". (In particular, put ", "type": "text"}, {"bbox": [482, 636, 508, 644], "score": 0.9, "content": "t=r", "type": "inline_equation", "height": 8, "width": 26}, {"bbox": [508, 633, 541, 650], "score": 1.0, "content": " when", "type": "text"}], "index": 25}, {"bbox": [71, 646, 540, 663], "spans": [{"bbox": [71, 653, 77, 658], "score": 0.87, "content": "r", "type": "inline_equation", "height": 5, "width": 6}, {"bbox": [77, 648, 164, 663], "score": 1.0, "content": " is even or when ", "type": "text"}, {"bbox": [165, 650, 198, 659], "score": 0.88, "content": "m\\equiv1", "type": "inline_equation", "height": 9, "width": 33}, {"bbox": [198, 648, 324, 663], "score": 1.0, "content": " (mod 4), otherwise put ", "type": "text"}, {"bbox": [325, 649, 371, 660], "score": 0.87, "content": "t=r-1", "type": "inline_equation", "height": 11, "width": 46}, {"bbox": [371, 648, 445, 663], "score": 1.0, "content": "; then for any ", "type": "text"}, {"bbox": [445, 646, 540, 662], "score": 0.84, "content": "i,j,\\,\\pi\\{m\\}\\,C_{1}^{j}J_{v}^{i}\\Lambda_{r}", "type": "inline_equation", "height": 16, "width": 95}], "index": 26}, {"bbox": [68, 661, 459, 681], "spans": [{"bbox": [68, 661, 83, 681], "score": 1.0, "content": "is ", "type": "text"}, {"bbox": [83, 663, 123, 677], "score": 0.94, "content": "C_{1}^{j}J_{v}^{i}\\Lambda_{t}", "type": "inline_equation", "height": 14, "width": 40}, {"bbox": [123, 661, 141, 681], "score": 1.0, "content": " or ", "type": "text"}, {"bbox": [141, 663, 192, 677], "score": 0.93, "content": "C_{1}^{j}J_{v}^{i+1}\\Lambda_{t}", "type": "inline_equation", "height": 14, "width": 51}, {"bbox": [193, 661, 329, 681], "score": 1.0, "content": ", when the Jacobi symbol ", "type": "text"}, {"bbox": [329, 663, 350, 678], "score": 0.88, "content": "\\textstyle\\left({\\frac{\\kappa}{m}}\\right)", "type": "inline_equation", "height": 15, "width": 21}, {"bbox": [351, 661, 365, 681], "score": 1.0, "content": " is ", "type": "text"}, {"bbox": [365, 664, 382, 676], "score": 0.82, "content": "\\pm1", "type": "inline_equation", "height": 12, "width": 17}, {"bbox": [382, 661, 459, 681], "score": 1.0, "content": ", respectively.)", "type": "text"}], "index": 27}], "index": 24}, {"type": "text", "bbox": [70, 684, 541, 716], "lines": [{"bbox": [93, 684, 541, 705], "spans": [{"bbox": [93, 684, 323, 705], "score": 1.0, "content": "Theorem 3.D. The fusion-symmetries of ", "type": "text"}, {"bbox": [324, 685, 347, 700], "score": 0.93, "content": "D_{r}^{(1)}", "type": "inline_equation", "height": 15, "width": 23}, {"bbox": [348, 684, 371, 705], "score": 1.0, "content": "for ", "type": "text"}, {"bbox": [371, 687, 405, 701], "score": 0.89, "content": "k\\neq2", "type": "inline_equation", "height": 14, "width": 34}, {"bbox": [405, 684, 513, 705], "score": 1.0, "content": " are all of the form ", "type": "text"}, {"bbox": [513, 688, 536, 701], "score": 0.88, "content": "C_{i}\\,\\pi", "type": "inline_equation", "height": 13, "width": 23}, {"bbox": [537, 684, 541, 705], "score": 1.0, "content": ",", "type": "text"}], "index": 28}, {"bbox": [72, 702, 541, 718], "spans": [{"bbox": [72, 702, 105, 718], "score": 1.0, "content": "where ", "type": "text"}, {"bbox": [105, 704, 118, 715], "score": 0.9, "content": "C_{i}", "type": "inline_equation", "height": 11, "width": 13}, {"bbox": [118, 702, 272, 718], "score": 1.0, "content": " is a conjugation, and where ", "type": "text"}, {"bbox": [273, 708, 280, 713], "score": 0.79, "content": "\\pi", "type": "inline_equation", "height": 5, "width": 7}, {"bbox": [281, 702, 541, 718], "score": 1.0, "content": " is a simple-current automorphism. Similarly for", "type": "text"}], "index": 29}], "index": 28.5}], "layout_bboxes": [], "page_idx": 11, "page_size": [612.0, 792.0], "_layout_tree": [], "images": [], "tables": [], "interline_equations": [{"type": "interline_equation", "bbox": [205, 99, 405, 137], "lines": [{"bbox": [205, 99, 405, 137], "spans": [{"bbox": [205, 99, 405, 137], "score": 0.94, "content": "\\chi_{\\Lambda_{1}}[\\lambda]={\\frac{S_{\\Lambda_{1}\\lambda}}{S_{0\\lambda}}}=2\\sum_{\\ell=1}^{r}\\cos(2\\pi{\\frac{\\lambda^{+}(\\ell)}{\\kappa}})~,", "type": "interline_equation"}], "index": 1}], "index": 1}, {"type": "interline_equation", "bbox": [195, 305, 415, 337], "lines": [{"bbox": [195, 305, 415, 337], "spans": [{"bbox": [195, 305, 415, 337], "score": 0.92, "content": "{\\boldsymbol{\\pi}}={\\boldsymbol{\\pi}}\\left[{\\boldsymbol{a}}\\quad b\\,\\right]\\qquad{\\mathrm{and}}\\qquad{\\boldsymbol{\\pi}}^{\\prime}={\\boldsymbol{\\pi}}\\left[{\\boldsymbol{a}}\\quad c\\right]", "type": "interline_equation"}], "index": 12}], "index": 12}, {"type": "interline_equation", "bbox": [164, 375, 448, 406], "lines": [{"bbox": [164, 375, 448, 406], "spans": [{"bbox": [164, 375, 448, 406], "score": 0.92, "content": "\\pi\\left[\\!\\!\\begin{array}{r c}{{a}}&{{b}}\\\\ {{c}}&{{d}}\\end{array}\\!\\!\\right](\\lambda)\\ensuremath{\\stackrel{\\mathrm{def}}{=}}\\ J_{v}^{2a\\,Q_{v}(\\lambda)+2b\\,Q_{s}(\\lambda)}J_{s}^{2c\\,Q_{v}(\\lambda)+2d\\,Q_{s}(\\lambda)}\\lambda\\ .", "type": "interline_equation"}], "index": 14}], "index": 14}, {"type": "interline_equation", "bbox": [126, 441, 490, 510], "lines": [{"bbox": [126, 441, 490, 510], "spans": [{"bbox": [126, 441, 490, 510], "score": 0.93, "content": "{\\begin{array}{r l}&{\\pi\\,=\\pi\\left[{\\begin{array}{c c}{a}&{0}\\\\ {0}&{d}\\end{array}}\\right]\\qquad{\\mathrm{with}}\\qquad\\pi^{\\prime}=\\pi\\left[{\\begin{array}{c c}{a\\left(d+1\\right)}&{{\\frac{d r}{2}}}\\\\ {{\\frac{d r}{2}}}&{d}\\end{array}}\\right]}\\\\ {{\\mathrm{rr}}\\quad\\pi\\,=\\pi\\left[{\\begin{array}{c c}{{\\frac{r}{2}}+1}&{b}\\\\ {c}&{1}\\end{array}}\\right]\\qquad{\\mathrm{with}}\\qquad\\pi^{\\prime}=\\pi\\left[{\\begin{array}{c c}{{\\frac{r}{2}}+1+b c{\\frac{r}{2}}}&{b+{\\frac{r}{2}}}\\\\ {{\\frac{r}{2}}+1+b c+b}&{1}\\end{array}}\\right]}\\end{array}},", "type": "interline_equation"}], "index": 16}], "index": 16}], "discarded_blocks": [{"type": "discarded", "bbox": [299, 730, 312, 742], "lines": [{"bbox": [298, 731, 313, 745], "spans": [{"bbox": [298, 731, 313, 745], "score": 1.0, "content": "12", "type": "text"}]}]}], "need_drop": false, "drop_reason": [], "para_blocks": [{"type": "text", "bbox": [70, 70, 505, 86], "lines": [{"bbox": [71, 73, 504, 88], "spans": [{"bbox": [71, 73, 135, 88], "score": 1.0, "content": "valid for all ", "type": "text"}, {"bbox": [135, 75, 204, 86], "score": 0.88, "content": "1\\leq i<r-2", "type": "inline_equation", "height": 11, "width": 69}, {"bbox": [204, 73, 230, 88], "score": 1.0, "content": " and ", "type": "text"}, {"bbox": [230, 75, 259, 85], "score": 0.88, "content": "k>2", "type": "inline_equation", "height": 10, "width": 29}, {"bbox": [259, 73, 504, 88], "score": 1.0, "content": ". We also will use the character formula (2.1b)", "type": "text"}], "index": 0}], "index": 0, "page_num": "page_11", "page_size": [612.0, 792.0], "bbox_fs": [71, 73, 504, 88]}, {"type": "interline_equation", "bbox": [205, 99, 405, 137], "lines": [{"bbox": [205, 99, 405, 137], "spans": [{"bbox": [205, 99, 405, 137], "score": 0.94, "content": "\\chi_{\\Lambda_{1}}[\\lambda]={\\frac{S_{\\Lambda_{1}\\lambda}}{S_{0\\lambda}}}=2\\sum_{\\ell=1}^{r}\\cos(2\\pi{\\frac{\\lambda^{+}(\\ell)}{\\kappa}})~,", "type": "interline_equation"}], "index": 1}], "index": 1, "page_num": "page_11", "page_size": [612.0, 792.0]}, {"type": "text", "bbox": [70, 147, 541, 178], "lines": [{"bbox": [70, 149, 541, 166], "spans": [{"bbox": [70, 149, 106, 166], "score": 1.0, "content": "where ", "type": "text"}, {"bbox": [106, 150, 209, 163], "score": 0.92, "content": "\\lambda^{+}(\\ell)\\,=\\,(\\lambda+\\rho)(\\ell)", "type": "inline_equation", "height": 13, "width": 103}, {"bbox": [209, 149, 396, 166], "score": 1.0, "content": " and the orthonormal components ", "type": "text"}, {"bbox": [396, 151, 418, 163], "score": 0.93, "content": "\\lambda(\\ell)", "type": "inline_equation", "height": 12, "width": 22}, {"bbox": [418, 149, 503, 166], "score": 1.0, "content": " are defined by ", "type": "text"}, {"bbox": [503, 150, 541, 164], "score": 0.91, "content": "\\lambda(\\ell)\\,=", "type": "inline_equation", "height": 14, "width": 38}], "index": 2}, {"bbox": [71, 162, 175, 180], "spans": [{"bbox": [71, 163, 171, 180], "score": 0.93, "content": "\\begin{array}{r}{\\sum_{i=\\ell}^{r-1}\\lambda_{i}+\\frac{\\lambda_{r}-\\lambda_{r-1}}{2}}\\end{array}", "type": "inline_equation", "height": 17, "width": 100}, {"bbox": [171, 162, 175, 180], "score": 1.0, "content": ".", "type": "text"}], "index": 3}], "index": 2.5, "page_num": "page_11", "page_size": [612.0, 792.0], "bbox_fs": [70, 149, 541, 180]}, {"type": "text", "bbox": [70, 178, 542, 264], "lines": [{"bbox": [76, 178, 542, 196], "spans": [{"bbox": [76, 178, 481, 196], "score": 1.0, "content": "The simple-current automorphisms are as follows, and depend on whether ", "type": "text"}, {"bbox": [482, 185, 487, 191], "score": 0.86, "content": "r", "type": "inline_equation", "height": 6, "width": 5}, {"bbox": [488, 178, 513, 196], "score": 1.0, "content": " and ", "type": "text"}, {"bbox": [513, 182, 520, 191], "score": 0.89, "content": "k", "type": "inline_equation", "height": 9, "width": 7}, {"bbox": [520, 178, 542, 196], "score": 1.0, "content": " are", "type": "text"}], "index": 4}, {"bbox": [69, 194, 541, 209], "spans": [{"bbox": [69, 194, 173, 209], "score": 1.0, "content": "even or odd. When", "type": "text"}, {"bbox": [174, 199, 180, 205], "score": 0.67, "content": "r", "type": "inline_equation", "height": 6, "width": 6}, {"bbox": [180, 194, 451, 209], "score": 1.0, "content": " is odd, the group of simple-currents is generated by ", "type": "text"}, {"bbox": [451, 196, 463, 207], "score": 0.9, "content": "J_{s}", "type": "inline_equation", "height": 11, "width": 12}, {"bbox": [464, 194, 541, 209], "score": 1.0, "content": ". If in addition", "type": "text"}], "index": 5}, {"bbox": [71, 207, 543, 224], "spans": [{"bbox": [71, 210, 78, 219], "score": 0.86, "content": "k", "type": "inline_equation", "height": 9, "width": 7}, {"bbox": [78, 207, 404, 224], "score": 1.0, "content": " is odd, there will be only two simple-current automorphisms: ", "type": "text"}, {"bbox": [405, 209, 521, 222], "score": 0.93, "content": "\\pi=\\pi^{\\prime}=\\pi[a]=J_{s}^{4a\\cup_{s}}", "type": "inline_equation", "height": 13, "width": 116}, {"bbox": [521, 207, 543, 224], "score": 1.0, "content": "for", "type": "text"}], "index": 6}, {"bbox": [71, 222, 540, 239], "spans": [{"bbox": [71, 223, 122, 237], "score": 0.92, "content": "a\\in\\{0,2\\}", "type": "inline_equation", "height": 14, "width": 51}, {"bbox": [122, 222, 182, 239], "score": 1.0, "content": ". If instead ", "type": "text"}, {"bbox": [182, 224, 190, 234], "score": 0.84, "content": "k", "type": "inline_equation", "height": 10, "width": 8}, {"bbox": [190, 222, 495, 239], "score": 1.0, "content": " is even, there will be four simple-current automorphisms: ", "type": "text"}, {"bbox": [496, 224, 540, 236], "score": 0.93, "content": "\\pi=\\pi[a]", "type": "inline_equation", "height": 12, "width": 44}], "index": 7}, {"bbox": [70, 236, 541, 254], "spans": [{"bbox": [70, 236, 95, 254], "score": 1.0, "content": "and ", "type": "text"}, {"bbox": [95, 238, 172, 251], "score": 0.93, "content": "\\pi^{\\prime}=\\pi[a k-a]", "type": "inline_equation", "height": 13, "width": 77}, {"bbox": [172, 236, 194, 254], "score": 1.0, "content": " for ", "type": "text"}, {"bbox": [195, 238, 248, 250], "score": 0.85, "content": "0\\leq a\\leq3", "type": "inline_equation", "height": 12, "width": 53}, {"bbox": [249, 236, 293, 254], "score": 1.0, "content": ". When ", "type": "text"}, {"bbox": [294, 239, 324, 248], "score": 0.92, "content": "k\\equiv2", "type": "inline_equation", "height": 9, "width": 30}, {"bbox": [324, 236, 493, 254], "score": 1.0, "content": " (mod 4), these form the group ", "type": "text"}, {"bbox": [494, 239, 536, 250], "score": 0.92, "content": "\\mathbb{Z}_{2}\\times\\mathbb{Z}_{2}", "type": "inline_equation", "height": 11, "width": 42}, {"bbox": [536, 236, 541, 254], "score": 1.0, "content": ",", "type": "text"}], "index": 8}, {"bbox": [70, 250, 260, 268], "spans": [{"bbox": [70, 250, 155, 268], "score": 1.0, "content": "otherwise when ", "type": "text"}, {"bbox": [155, 253, 172, 265], "score": 0.88, "content": "4|k", "type": "inline_equation", "height": 12, "width": 17}, {"bbox": [172, 250, 241, 268], "score": 1.0, "content": " the group is ", "type": "text"}, {"bbox": [242, 254, 255, 264], "score": 0.9, "content": "\\mathbb{Z}_{4}", "type": "inline_equation", "height": 10, "width": 13}, {"bbox": [256, 250, 260, 268], "score": 1.0, "content": ".", "type": "text"}], "index": 9}], "index": 6.5, "page_num": "page_11", "page_size": [612.0, 792.0], "bbox_fs": [69, 178, 543, 268]}, {"type": "text", "bbox": [70, 264, 541, 293], "lines": [{"bbox": [95, 266, 541, 281], "spans": [{"bbox": [95, 266, 130, 281], "score": 1.0, "content": "When ", "type": "text"}, {"bbox": [130, 271, 136, 277], "score": 0.87, "content": "r", "type": "inline_equation", "height": 6, "width": 6}, {"bbox": [136, 266, 408, 281], "score": 1.0, "content": " is even, the simple-currents are generated by both ", "type": "text"}, {"bbox": [408, 268, 421, 279], "score": 0.92, "content": "J_{v}", "type": "inline_equation", "height": 11, "width": 13}, {"bbox": [421, 266, 448, 281], "score": 1.0, "content": " and ", "type": "text"}, {"bbox": [448, 268, 460, 279], "score": 0.91, "content": "J_{s}", "type": "inline_equation", "height": 11, "width": 12}, {"bbox": [461, 266, 541, 281], "score": 1.0, "content": ". If in addition", "type": "text"}], "index": 10}, {"bbox": [71, 280, 349, 297], "spans": [{"bbox": [71, 282, 78, 291], "score": 0.88, "content": "k", "type": "inline_equation", "height": 9, "width": 7}, {"bbox": [78, 280, 349, 297], "score": 1.0, "content": " is even, we have 16 simple-current automorphisms:", "type": "text"}], "index": 11}], "index": 10.5, "page_num": "page_11", "page_size": [612.0, 792.0], "bbox_fs": [71, 266, 541, 297]}, {"type": "interline_equation", "bbox": [195, 305, 415, 337], "lines": [{"bbox": [195, 305, 415, 337], "spans": [{"bbox": [195, 305, 415, 337], "score": 0.92, "content": "{\\boldsymbol{\\pi}}={\\boldsymbol{\\pi}}\\left[{\\boldsymbol{a}}\\quad b\\,\\right]\\qquad{\\mathrm{and}}\\qquad{\\boldsymbol{\\pi}}^{\\prime}={\\boldsymbol{\\pi}}\\left[{\\boldsymbol{a}}\\quad c\\right]", "type": "interline_equation"}], "index": 12}], "index": 12, "page_num": "page_11", "page_size": [612.0, 792.0]}, {"type": "text", "bbox": [69, 346, 495, 362], "lines": [{"bbox": [70, 348, 497, 366], "spans": [{"bbox": [70, 348, 112, 366], "score": 1.0, "content": "for any ", "type": "text"}, {"bbox": [112, 351, 195, 363], "score": 0.93, "content": "a,b,c,d\\in\\{0,1\\}", "type": "inline_equation", "height": 12, "width": 83}, {"bbox": [195, 348, 365, 366], "score": 1.0, "content": ", forming a group isomorphic to ", "type": "text"}, {"bbox": [365, 350, 379, 363], "score": 0.92, "content": "\\mathbb{Z}_{2}^{4}", "type": "inline_equation", "height": 13, "width": 14}, {"bbox": [379, 348, 497, 366], "score": 1.0, "content": ". This notation means", "type": "text"}], "index": 13}], "index": 13, "page_num": "page_11", "page_size": [612.0, 792.0], "bbox_fs": [70, 348, 497, 366]}, {"type": "interline_equation", "bbox": [164, 375, 448, 406], "lines": [{"bbox": [164, 375, 448, 406], "spans": [{"bbox": [164, 375, 448, 406], "score": 0.92, "content": "\\pi\\left[\\!\\!\\begin{array}{r c}{{a}}&{{b}}\\\\ {{c}}&{{d}}\\end{array}\\!\\!\\right](\\lambda)\\ensuremath{\\stackrel{\\mathrm{def}}{=}}\\ J_{v}^{2a\\,Q_{v}(\\lambda)+2b\\,Q_{s}(\\lambda)}J_{s}^{2c\\,Q_{v}(\\lambda)+2d\\,Q_{s}(\\lambda)}\\lambda\\ .", "type": "interline_equation"}], "index": 14}], "index": 14, "page_num": "page_11", "page_size": [612.0, 792.0]}, {"type": "text", "bbox": [70, 415, 407, 430], "lines": [{"bbox": [71, 417, 405, 432], "spans": [{"bbox": [71, 417, 106, 432], "score": 1.0, "content": "When ", "type": "text"}, {"bbox": [106, 420, 113, 429], "score": 0.89, "content": "k", "type": "inline_equation", "height": 9, "width": 7}, {"bbox": [113, 417, 405, 432], "score": 1.0, "content": " is odd, we will have six simple-current automorphisms:", "type": "text"}], "index": 15}], "index": 15, "page_num": "page_11", "page_size": [612.0, 792.0], "bbox_fs": [71, 417, 405, 432]}, {"type": "interline_equation", "bbox": [126, 441, 490, 510], "lines": [{"bbox": [126, 441, 490, 510], "spans": [{"bbox": [126, 441, 490, 510], "score": 0.93, "content": "{\\begin{array}{r l}&{\\pi\\,=\\pi\\left[{\\begin{array}{c c}{a}&{0}\\\\ {0}&{d}\\end{array}}\\right]\\qquad{\\mathrm{with}}\\qquad\\pi^{\\prime}=\\pi\\left[{\\begin{array}{c c}{a\\left(d+1\\right)}&{{\\frac{d r}{2}}}\\\\ {{\\frac{d r}{2}}}&{d}\\end{array}}\\right]}\\\\ {{\\mathrm{rr}}\\quad\\pi\\,=\\pi\\left[{\\begin{array}{c c}{{\\frac{r}{2}}+1}&{b}\\\\ {c}&{1}\\end{array}}\\right]\\qquad{\\mathrm{with}}\\qquad\\pi^{\\prime}=\\pi\\left[{\\begin{array}{c c}{{\\frac{r}{2}}+1+b c{\\frac{r}{2}}}&{b+{\\frac{r}{2}}}\\\\ {{\\frac{r}{2}}+1+b c+b}&{1}\\end{array}}\\right]}\\end{array}},", "type": "interline_equation"}], "index": 16}], "index": 16, "page_num": "page_11", "page_size": [612.0, 792.0]}, {"type": "text", "bbox": [69, 516, 541, 574], "lines": [{"bbox": [70, 517, 539, 536], "spans": [{"bbox": [70, 517, 106, 536], "score": 1.0, "content": "where ", "type": "text"}, {"bbox": [106, 520, 137, 533], "score": 0.93, "content": "a={\\frac{r}{2}}", "type": "inline_equation", "height": 13, "width": 31}, {"bbox": [138, 517, 156, 536], "score": 1.0, "content": " or ", "type": "text"}, {"bbox": [156, 520, 186, 529], "score": 0.89, "content": "d=0", "type": "inline_equation", "height": 9, "width": 30}, {"bbox": [187, 517, 252, 536], "score": 1.0, "content": ", and where ", "type": "text"}, {"bbox": [252, 519, 281, 529], "score": 0.88, "content": "b=1", "type": "inline_equation", "height": 10, "width": 29}, {"bbox": [281, 517, 299, 536], "score": 1.0, "content": " or ", "type": "text"}, {"bbox": [299, 520, 329, 529], "score": 0.89, "content": "d=1", "type": "inline_equation", "height": 9, "width": 30}, {"bbox": [330, 517, 523, 536], "score": 1.0, "content": ". The corresponding permutation of ", "type": "text"}, {"bbox": [523, 520, 539, 532], "score": 0.9, "content": "P_{+}", "type": "inline_equation", "height": 12, "width": 16}], "index": 17}, {"bbox": [70, 533, 540, 547], "spans": [{"bbox": [70, 533, 274, 547], "score": 1.0, "content": "is still given by (3.5). Again, for these ", "type": "text"}, {"bbox": [275, 533, 293, 546], "score": 0.87, "content": "r,k", "type": "inline_equation", "height": 13, "width": 18}, {"bbox": [293, 533, 419, 547], "score": 1.0, "content": ", these are the values of ", "type": "text"}, {"bbox": [419, 534, 459, 546], "score": 0.91, "content": "a,b,c,d", "type": "inline_equation", "height": 12, "width": 40}, {"bbox": [459, 533, 540, 547], "score": 1.0, "content": " for which (3.5)", "type": "text"}], "index": 18}, {"bbox": [69, 547, 542, 562], "spans": [{"bbox": [69, 547, 163, 562], "score": 1.0, "content": "is invertible. For ", "type": "text"}, {"bbox": [164, 549, 171, 558], "score": 0.87, "content": "k", "type": "inline_equation", "height": 9, "width": 7}, {"bbox": [171, 547, 542, 562], "score": 1.0, "content": " odd, the group of simple-current automorphisms is isomorphic to the", "type": "text"}], "index": 19}, {"bbox": [70, 562, 442, 576], "spans": [{"bbox": [70, 562, 163, 576], "score": 1.0, "content": "symmetric group ", "type": "text"}, {"bbox": [163, 564, 178, 574], "score": 0.91, "content": "\\mathfrak{S}_{3}", "type": "inline_equation", "height": 10, "width": 15}, {"bbox": [179, 562, 264, 576], "score": 1.0, "content": " when 4 divides ", "type": "text"}, {"bbox": [264, 567, 270, 573], "score": 0.85, "content": "r", "type": "inline_equation", "height": 6, "width": 6}, {"bbox": [271, 562, 314, 576], "score": 1.0, "content": ", and to ", "type": "text"}, {"bbox": [315, 563, 328, 574], "score": 0.89, "content": "\\mathbb{Z}_{6}", "type": "inline_equation", "height": 11, "width": 13}, {"bbox": [329, 562, 363, 576], "score": 1.0, "content": " when ", "type": "text"}, {"bbox": [363, 564, 392, 573], "score": 0.85, "content": "r\\equiv2", "type": "inline_equation", "height": 9, "width": 29}, {"bbox": [392, 562, 442, 576], "score": 1.0, "content": " (mod 4).", "type": "text"}], "index": 20}], "index": 18.5, "page_num": "page_11", "page_size": [612.0, 792.0], "bbox_fs": [69, 517, 542, 576]}, {"type": "text", "bbox": [70, 574, 542, 678], "lines": [{"bbox": [93, 575, 541, 592], "spans": [{"bbox": [93, 575, 115, 592], "score": 1.0, "content": "For", "type": "text"}, {"bbox": [116, 578, 145, 587], "score": 0.9, "content": "k=2", "type": "inline_equation", "height": 9, "width": 29}, {"bbox": [145, 575, 167, 592], "score": 1.0, "content": " (so ", "type": "text"}, {"bbox": [167, 578, 201, 587], "score": 0.86, "content": "\\kappa=2r", "type": "inline_equation", "height": 9, "width": 34}, {"bbox": [202, 575, 541, 592], "score": 1.0, "content": "), there are several Galois fusion-symmetries. In particular, write", "type": "text"}], "index": 21}, {"bbox": [71, 587, 540, 609], "spans": [{"bbox": [71, 591, 160, 602], "score": 0.9, "content": "\\lambda^{i}\\,=\\,\\lambda^{2r-i}\\,=\\,\\Lambda_{i}", "type": "inline_equation", "height": 11, "width": 89}, {"bbox": [160, 587, 183, 609], "score": 1.0, "content": " for ", "type": "text"}, {"bbox": [184, 593, 259, 603], "score": 0.91, "content": "1\\,\\leq\\,i\\,\\leq\\,r\\,-\\,2", "type": "inline_equation", "height": 10, "width": 75}, {"bbox": [259, 587, 290, 609], "score": 1.0, "content": ", and ", "type": "text"}, {"bbox": [291, 591, 390, 604], "score": 0.92, "content": "\\lambda^{r\\pm1}=\\Lambda_{r-1}+\\Lambda_{r}", "type": "inline_equation", "height": 13, "width": 99}, {"bbox": [390, 587, 447, 609], "score": 1.0, "content": ". As with ", "type": "text"}, {"bbox": [447, 592, 469, 605], "score": 0.92, "content": "B_{r,2}", "type": "inline_equation", "height": 13, "width": 22}, {"bbox": [469, 587, 476, 609], "score": 1.0, "content": ", ", "type": "text"}, {"bbox": [477, 590, 527, 605], "score": 0.93, "content": "\\begin{array}{r}{S_{00}^{2}\\,=\\,\\frac{1}{4\\kappa}}\\end{array}", "type": "inline_equation", "height": 15, "width": 50}, {"bbox": [511, 588, 540, 604], "score": 1.0, "content": "1 is", "type": "text"}], "index": 22}, {"bbox": [71, 605, 542, 620], "spans": [{"bbox": [71, 605, 169, 620], "score": 1.0, "content": "rational so for any ", "type": "text"}, {"bbox": [169, 610, 180, 615], "score": 0.86, "content": "{\\boldsymbol{\\mathit{\\varepsilon}}}^{\\prime}{\\boldsymbol{\\mathit{m}}}", "type": "inline_equation", "height": 5, "width": 11}, {"bbox": [180, 605, 241, 620], "score": 1.0, "content": " coprime to ", "type": "text"}, {"bbox": [241, 607, 253, 616], "score": 0.86, "content": "2r", "type": "inline_equation", "height": 9, "width": 12}, {"bbox": [254, 605, 432, 620], "score": 1.0, "content": ", we get a Galois fusion-symmetry ", "type": "text"}, {"bbox": [432, 606, 462, 619], "score": 0.94, "content": "\\pi\\{m\\}", "type": "inline_equation", "height": 13, "width": 30}, {"bbox": [462, 605, 512, 620], "score": 1.0, "content": ". It takes ", "type": "text"}, {"bbox": [513, 607, 525, 616], "score": 0.9, "content": "\\lambda^{a}", "type": "inline_equation", "height": 9, "width": 12}, {"bbox": [525, 605, 542, 620], "score": 1.0, "content": " to", "type": "text"}], "index": 23}, {"bbox": [71, 617, 542, 635], "spans": [{"bbox": [71, 621, 93, 630], "score": 0.89, "content": "\\lambda^{m a}", "type": "inline_equation", "height": 9, "width": 22}, {"bbox": [93, 617, 286, 635], "score": 1.0, "content": ", where the superscript is taken mod ", "type": "text"}, {"bbox": [286, 620, 299, 630], "score": 0.8, "content": "2r", "type": "inline_equation", "height": 10, "width": 13}, {"bbox": [299, 617, 367, 635], "score": 1.0, "content": ", and will fix ", "type": "text"}, {"bbox": [367, 619, 386, 631], "score": 0.88, "content": "J_{v}0", "type": "inline_equation", "height": 12, "width": 19}, {"bbox": [387, 617, 423, 635], "score": 1.0, "content": ". Also,", "type": "text"}, {"bbox": [424, 620, 454, 632], "score": 0.94, "content": "\\pi\\{m\\}", "type": "inline_equation", "height": 12, "width": 30}, {"bbox": [455, 617, 507, 635], "score": 1.0, "content": " will send ", "type": "text"}, {"bbox": [507, 621, 525, 631], "score": 0.92, "content": "J_{s}0", "type": "inline_equation", "height": 10, "width": 18}, {"bbox": [526, 617, 542, 635], "score": 1.0, "content": " to", "type": "text"}], "index": 24}, {"bbox": [71, 633, 541, 650], "spans": [{"bbox": [71, 635, 95, 647], "score": 0.92, "content": "J_{s}^{m}0", "type": "inline_equation", "height": 12, "width": 24}, {"bbox": [95, 633, 241, 650], "score": 1.0, "content": ", as well as stabilise the set ", "type": "text"}, {"bbox": [241, 634, 372, 647], "score": 0.91, "content": "\\left\\{\\Lambda_{r},\\Lambda_{r-1},J_{v}\\Lambda_{r},J_{v}\\Lambda_{r-1}\\right\\}", "type": "inline_equation", "height": 13, "width": 131}, {"bbox": [373, 633, 481, 650], "score": 1.0, "content": ". (In particular, put ", "type": "text"}, {"bbox": [482, 636, 508, 644], "score": 0.9, "content": "t=r", "type": "inline_equation", "height": 8, "width": 26}, {"bbox": [508, 633, 541, 650], "score": 1.0, "content": " when", "type": "text"}], "index": 25}, {"bbox": [71, 646, 540, 663], "spans": [{"bbox": [71, 653, 77, 658], "score": 0.87, "content": "r", "type": "inline_equation", "height": 5, "width": 6}, {"bbox": [77, 648, 164, 663], "score": 1.0, "content": " is even or when ", "type": "text"}, {"bbox": [165, 650, 198, 659], "score": 0.88, "content": "m\\equiv1", "type": "inline_equation", "height": 9, "width": 33}, {"bbox": [198, 648, 324, 663], "score": 1.0, "content": " (mod 4), otherwise put ", "type": "text"}, {"bbox": [325, 649, 371, 660], "score": 0.87, "content": "t=r-1", "type": "inline_equation", "height": 11, "width": 46}, {"bbox": [371, 648, 445, 663], "score": 1.0, "content": "; then for any ", "type": "text"}, {"bbox": [445, 646, 540, 662], "score": 0.84, "content": "i,j,\\,\\pi\\{m\\}\\,C_{1}^{j}J_{v}^{i}\\Lambda_{r}", "type": "inline_equation", "height": 16, "width": 95}], "index": 26}, {"bbox": [68, 661, 459, 681], "spans": [{"bbox": [68, 661, 83, 681], "score": 1.0, "content": "is ", "type": "text"}, {"bbox": [83, 663, 123, 677], "score": 0.94, "content": "C_{1}^{j}J_{v}^{i}\\Lambda_{t}", "type": "inline_equation", "height": 14, "width": 40}, {"bbox": [123, 661, 141, 681], "score": 1.0, "content": " or ", "type": "text"}, {"bbox": [141, 663, 192, 677], "score": 0.93, "content": "C_{1}^{j}J_{v}^{i+1}\\Lambda_{t}", "type": "inline_equation", "height": 14, "width": 51}, {"bbox": [193, 661, 329, 681], "score": 1.0, "content": ", when the Jacobi symbol ", "type": "text"}, {"bbox": [329, 663, 350, 678], "score": 0.88, "content": "\\textstyle\\left({\\frac{\\kappa}{m}}\\right)", "type": "inline_equation", "height": 15, "width": 21}, {"bbox": [351, 661, 365, 681], "score": 1.0, "content": " is ", "type": "text"}, {"bbox": [365, 664, 382, 676], "score": 0.82, "content": "\\pm1", "type": "inline_equation", "height": 12, "width": 17}, {"bbox": [382, 661, 459, 681], "score": 1.0, "content": ", respectively.)", "type": "text"}], "index": 27}], "index": 24, "page_num": "page_11", "page_size": [612.0, 792.0], "bbox_fs": [68, 575, 542, 681]}, {"type": "text", "bbox": [70, 684, 541, 716], "lines": [{"bbox": [93, 684, 541, 705], "spans": [{"bbox": [93, 684, 323, 705], "score": 1.0, "content": "Theorem 3.D. The fusion-symmetries of ", "type": "text"}, {"bbox": [324, 685, 347, 700], "score": 0.93, "content": "D_{r}^{(1)}", "type": "inline_equation", "height": 15, "width": 23}, {"bbox": [348, 684, 371, 705], "score": 1.0, "content": "for ", "type": "text"}, {"bbox": [371, 687, 405, 701], "score": 0.89, "content": "k\\neq2", "type": "inline_equation", "height": 14, "width": 34}, {"bbox": [405, 684, 513, 705], "score": 1.0, "content": " are all of the form ", "type": "text"}, {"bbox": [513, 688, 536, 701], "score": 0.88, "content": "C_{i}\\,\\pi", "type": "inline_equation", "height": 13, "width": 23}, {"bbox": [537, 684, 541, 705], "score": 1.0, "content": ",", "type": "text"}], "index": 28}, {"bbox": [72, 702, 541, 718], "spans": [{"bbox": [72, 702, 105, 718], "score": 1.0, "content": "where ", "type": "text"}, {"bbox": [105, 704, 118, 715], "score": 0.9, "content": "C_{i}", "type": "inline_equation", "height": 11, "width": 13}, {"bbox": [118, 702, 272, 718], "score": 1.0, "content": " is a conjugation, and where ", "type": "text"}, {"bbox": [273, 708, 280, 713], "score": 0.79, "content": "\\pi", "type": "inline_equation", "height": 5, "width": 7}, {"bbox": [281, 702, 541, 718], "score": 1.0, "content": " is a simple-current automorphism. Similarly for", "type": "text"}], "index": 29}, {"bbox": [71, 67, 544, 92], "spans": [{"bbox": [71, 70, 95, 88], "score": 0.9, "content": "{D}_{4}^{(1)}", "type": "inline_equation", "height": 18, "width": 24, "cross_page": true}, {"bbox": [95, 67, 112, 92], "score": 1.0, "content": "at ", "type": "text", "cross_page": true}, {"bbox": [112, 74, 142, 86], "score": 0.86, "content": "k=2", "type": "inline_equation", "height": 12, "width": 30, "cross_page": true}, {"bbox": [142, 67, 249, 92], "score": 1.0, "content": ". Finally, when both", "type": "text", "cross_page": true}, {"bbox": [250, 74, 280, 86], "score": 0.9, "content": "k=2", "type": "inline_equation", "height": 12, "width": 30, "cross_page": true}, {"bbox": [280, 67, 306, 92], "score": 1.0, "content": " and ", "type": "text", "cross_page": true}, {"bbox": [306, 74, 335, 86], "score": 0.87, "content": "r>4", "type": "inline_equation", "height": 12, "width": 29, "cross_page": true}, {"bbox": [335, 67, 454, 92], "score": 1.0, "content": ", any fusion-symmetry ", "type": "text", "cross_page": true}, {"bbox": [454, 77, 463, 85], "score": 0.63, "content": "\\pi", "type": "inline_equation", "height": 8, "width": 9, "cross_page": true}, {"bbox": [463, 67, 544, 92], "score": 1.0, "content": " can be written", "type": "text", "cross_page": true}], "index": 0}, {"bbox": [70, 86, 418, 106], "spans": [{"bbox": [70, 86, 86, 106], "score": 1.0, "content": "as ", "type": "text", "cross_page": true}, {"bbox": [86, 87, 171, 102], "score": 0.89, "content": "\\pi=C_{1}^{a}\\,\\pi_{v}^{b}\\,\\pi\\{m\\}", "type": "inline_equation", "height": 15, "width": 85, "cross_page": true}, {"bbox": [172, 86, 194, 106], "score": 1.0, "content": " for ", "type": "text", "cross_page": true}, {"bbox": [194, 88, 255, 102], "score": 0.91, "content": "a,b\\in\\{0,1\\}", "type": "inline_equation", "height": 14, "width": 61, "cross_page": true}, {"bbox": [256, 86, 305, 106], "score": 1.0, "content": " and any ", "type": "text", "cross_page": true}, {"bbox": [305, 87, 349, 102], "score": 0.9, "content": "m\\in\\mathbb{Z}_{2r}^{\\times}", "type": "inline_equation", "height": 15, "width": 44, "cross_page": true}, {"bbox": [349, 86, 356, 106], "score": 1.0, "content": ", ", "type": "text", "cross_page": true}, {"bbox": [356, 88, 411, 102], "score": 0.9, "content": "1\\leq m<r", "type": "inline_equation", "height": 14, "width": 55, "cross_page": true}, {"bbox": [412, 86, 418, 106], "score": 1.0, "content": ".", "type": "text", "cross_page": true}], "index": 1}], "index": 28.5, "page_num": "page_11", "page_size": [612.0, 792.0], "bbox_fs": [72, 684, 541, 718]}]} |
|
0002044v1 | 7 | $$\mathrm{ch}_{\overline{{{\mu}}}}$$ for $$X_{r}$$ can be written as a polynomial in the fundamental characters $$\mathrm{ch}_{\Lambda_{1}},\ldots,\mathrm{ch}_{\Lambda_{r}}$$ ,
we know from (2.1b) that $$\Gamma=\{\Lambda_{1},\dots,\Lambda_{r}\}$$ is a fusion-generator for $$X_{r}^{(1)}$$ at any level $$k$$
sufficiently large that $$P_{+}$$ contains all $$\Lambda_{i}$$ (in other words, for any $$k\geq\operatorname*{max}_{i}a_{i}^{\vee}$$ ). In fact, it
is easy to show [18] that a fusion-generator valid for any $$X_{r,k}$$ is $$\{\Lambda_{1},\ldots,\Lambda_{r}\}\cap{\cal P}_{+}$$ . Smaller
fusion-generators usually exist — for example $$\{\Lambda_{1}\}$$ is a fusion-generator for $$A_{8,k}$$ whenever
$$k$$ is even and coprime to 3.
2.3. Standard constructions of fusion-symmetries
Simple-currents are a large source of fusion-symmetries. Let $$j$$ be any simple-current
of order $${\boldsymbol{n}}$$ . Choose any number $$a\in\{0,1,\ldots,n-1\}$$ such that
Any solution to this defines a fusion-symmetry $$\lambda\mapsto J^{n a Q_{j}\,(\lambda)}\lambda$$ , which we shall denote $$\pi[a]$$
or $$\pi_{j}[a]$$ . Note that from (2.2b), (2.5b) and (2.5c) that any $$\pi\,=\,\pi[a]$$ , $$a\in\mathbb{Z}$$ , obeys the
relation $$N_{\pi\lambda,\pi\mu}^{\pi\nu}=\ N_{\lambda\mu}^{\nu}$$ when $$N_{\lambda\mu}^{\nu}\neq0$$ (it would in fact be a fusion-endomorphism — see
§2.2); the ‘gcd’ condition forces $$\pi[a]$$ to be a permutation. Choosing $$b\equiv-a\,(n a Q_{j}(j)\!+\!1)^{-1}$$
(mod $${\boldsymbol{n}}$$ ), we find that $$(\pi[a],\pi[b])$$ is an $$S$$ -symmetry.
When the group of simple-currents is not cyclic, this construction can be generalised
in a natural way, and the resulting fusion-symmetry will be parametrised by a matrix $$\left(a_{i j}\right)$$ .
We will meet these in 3.4.
We will call these simple-current automorphisms. The first examples of these were
found by Bernard [2], and were generalised further in [31].
For any affine algebra $$X_{r}^{(1)}$$ and any sufficiently high level, we will see in the next
section that its fusion-symmetries consist entirely of simple-current automorphisms and
conjugations. For this reason, any other fusion-symmetry is called exceptional.
There is another general construction of fusion-symmetries, generalising $$C$$ , although
it yields few new examples for the affine fusion rings. If the Galois automorphism $$\sigma_{\ell}$$ is such
that $$0^{(\ell)}$$ is a simple-current $$j$$ — equivalently, that $$\sigma_{\ell}(S_{00}^{2})=S_{00}^{2}$$ — then the permutation
is a fusion-symmetry. The simplest example is $$\pi\{-1\}=C$$ . We call $$\pi\{\ell\}$$ a Galois fusion-
symmetry. A special case of these was given in [13]. To see that $$\pi\{\ell\}$$ works, note from
that $$\epsilon_{\ell}(\lambda)\,\epsilon_{\ell}(0)=e^{2\pi\mathrm{i}\,Q_{j}(\lambda)}$$ . Hence
and so $$(\pi\{\ell\},\pi\{\ell\}^{-1})$$ is an $$S$$ -symmetry. Incidentally, $$J$$ will always be order 1 or 2 because
$$2\,Q_{j}(\lambda)\in\mathbb{Z}$$ for all $$\lambda\in P_{+}$$ .
Simple-currents (2.2), the Galois action (2.3), and the corresponding fusion-symmetries
have analogues in arbitrary (i.e. not necessarily affine) fusion rings.
| <p>$$\mathrm{ch}_{\overline{{{\mu}}}}$$ for $$X_{r}$$ can be written as a polynomial in the fundamental characters $$\mathrm{ch}_{\Lambda_{1}},\ldots,\mathrm{ch}_{\Lambda_{r}}$$ ,
we know from (2.1b) that $$\Gamma=\{\Lambda_{1},\dots,\Lambda_{r}\}$$ is a fusion-generator for $$X_{r}^{(1)}$$ at any level $$k$$
sufficiently large that $$P_{+}$$ contains all $$\Lambda_{i}$$ (in other words, for any $$k\geq\operatorname*{max}_{i}a_{i}^{\vee}$$ ). In fact, it
is easy to show [18] that a fusion-generator valid for any $$X_{r,k}$$ is $$\{\Lambda_{1},\ldots,\Lambda_{r}\}\cap{\cal P}_{+}$$ . Smaller
fusion-generators usually exist — for example $$\{\Lambda_{1}\}$$ is a fusion-generator for $$A_{8,k}$$ whenever
$$k$$ is even and coprime to 3.</p>
<p>2.3. Standard constructions of fusion-symmetries</p>
<p>Simple-currents are a large source of fusion-symmetries. Let $$j$$ be any simple-current
of order $${\boldsymbol{n}}$$ . Choose any number $$a\in\{0,1,\ldots,n-1\}$$ such that</p>
<p>Any solution to this defines a fusion-symmetry $$\lambda\mapsto J^{n a Q_{j}\,(\lambda)}\lambda$$ , which we shall denote $$\pi[a]$$
or $$\pi_{j}[a]$$ . Note that from (2.2b), (2.5b) and (2.5c) that any $$\pi\,=\,\pi[a]$$ , $$a\in\mathbb{Z}$$ , obeys the
relation $$N_{\pi\lambda,\pi\mu}^{\pi\nu}=\ N_{\lambda\mu}^{\nu}$$ when $$N_{\lambda\mu}^{\nu}\neq0$$ (it would in fact be a fusion-endomorphism — see
§2.2); the ‘gcd’ condition forces $$\pi[a]$$ to be a permutation. Choosing $$b\equiv-a\,(n a Q_{j}(j)\!+\!1)^{-1}$$
(mod $${\boldsymbol{n}}$$ ), we find that $$(\pi[a],\pi[b])$$ is an $$S$$ -symmetry.</p>
<p>When the group of simple-currents is not cyclic, this construction can be generalised
in a natural way, and the resulting fusion-symmetry will be parametrised by a matrix $$\left(a_{i j}\right)$$ .
We will meet these in 3.4.</p>
<p>We will call these simple-current automorphisms. The first examples of these were
found by Bernard [2], and were generalised further in [31].</p>
<p>For any affine algebra $$X_{r}^{(1)}$$ and any sufficiently high level, we will see in the next
section that its fusion-symmetries consist entirely of simple-current automorphisms and
conjugations. For this reason, any other fusion-symmetry is called exceptional.</p>
<p>There is another general construction of fusion-symmetries, generalising $$C$$ , although
it yields few new examples for the affine fusion rings. If the Galois automorphism $$\sigma_{\ell}$$ is such
that $$0^{(\ell)}$$ is a simple-current $$j$$ — equivalently, that $$\sigma_{\ell}(S_{00}^{2})=S_{00}^{2}$$ — then the permutation</p>
<p>is a fusion-symmetry. The simplest example is $$\pi\{-1\}=C$$ . We call $$\pi\{\ell\}$$ a Galois fusion-
symmetry. A special case of these was given in [13]. To see that $$\pi\{\ell\}$$ works, note from</p>
<p>that $$\epsilon_{\ell}(\lambda)\,\epsilon_{\ell}(0)=e^{2\pi\mathrm{i}\,Q_{j}(\lambda)}$$ . Hence</p>
<p>and so $$(\pi\{\ell\},\pi\{\ell\}^{-1})$$ is an $$S$$ -symmetry. Incidentally, $$J$$ will always be order 1 or 2 because
$$2\,Q_{j}(\lambda)\in\mathbb{Z}$$ for all $$\lambda\in P_{+}$$ .</p>
<p>Simple-currents (2.2), the Galois action (2.3), and the corresponding fusion-symmetries
have analogues in arbitrary (i.e. not necessarily affine) fusion rings.</p>
| [{"type": "text", "coordinates": [70, 70, 541, 160], "content": "$$\\mathrm{ch}_{\\overline{{{\\mu}}}}$$ for $$X_{r}$$ can be written as a polynomial in the fundamental characters $$\\mathrm{ch}_{\\Lambda_{1}},\\ldots,\\mathrm{ch}_{\\Lambda_{r}}$$ ,\nwe know from (2.1b) that $$\\Gamma=\\{\\Lambda_{1},\\dots,\\Lambda_{r}\\}$$ is a fusion-generator for $$X_{r}^{(1)}$$ at any level $$k$$\nsufficiently large that $$P_{+}$$ contains all $$\\Lambda_{i}$$ (in other words, for any $$k\\geq\\operatorname*{max}_{i}a_{i}^{\\vee}$$ ). In fact, it\nis easy to show [18] that a fusion-generator valid for any $$X_{r,k}$$ is $$\\{\\Lambda_{1},\\ldots,\\Lambda_{r}\\}\\cap{\\cal P}_{+}$$ . Smaller\nfusion-generators usually exist \u2014 for example $$\\{\\Lambda_{1}\\}$$ is a fusion-generator for $$A_{8,k}$$ whenever\n$$k$$ is even and coprime to 3.", "block_type": "text", "index": 1}, {"type": "text", "coordinates": [72, 173, 331, 188], "content": "2.3. Standard constructions of fusion-symmetries", "block_type": "text", "index": 2}, {"type": "text", "coordinates": [70, 194, 540, 225], "content": "Simple-currents are a large source of fusion-symmetries. Let $$j$$ be any simple-current\nof order $${\\boldsymbol{n}}$$ . Choose any number $$a\\in\\{0,1,\\ldots,n-1\\}$$ such that", "block_type": "text", "index": 3}, {"type": "interline_equation", "coordinates": [239, 239, 372, 252], "content": "", "block_type": "interline_equation", "index": 4}, {"type": "text", "coordinates": [70, 261, 541, 336], "content": "Any solution to this defines a fusion-symmetry $$\\lambda\\mapsto J^{n a Q_{j}\\,(\\lambda)}\\lambda$$ , which we shall denote $$\\pi[a]$$\nor $$\\pi_{j}[a]$$ . Note that from (2.2b), (2.5b) and (2.5c) that any $$\\pi\\,=\\,\\pi[a]$$ , $$a\\in\\mathbb{Z}$$ , obeys the\nrelation $$N_{\\pi\\lambda,\\pi\\mu}^{\\pi\\nu}=\\ N_{\\lambda\\mu}^{\\nu}$$ when $$N_{\\lambda\\mu}^{\\nu}\\neq0$$ (it would in fact be a fusion-endomorphism \u2014 see\n\u00a72.2); the \u2018gcd\u2019 condition forces $$\\pi[a]$$ to be a permutation. Choosing $$b\\equiv-a\\,(n a Q_{j}(j)\\!+\\!1)^{-1}$$\n(mod $${\\boldsymbol{n}}$$ ), we find that $$(\\pi[a],\\pi[b])$$ is an $$S$$ -symmetry.", "block_type": "text", "index": 5}, {"type": "text", "coordinates": [71, 336, 541, 378], "content": "When the group of simple-currents is not cyclic, this construction can be generalised\nin a natural way, and the resulting fusion-symmetry will be parametrised by a matrix $$\\left(a_{i j}\\right)$$ .\nWe will meet these in 3.4.", "block_type": "text", "index": 6}, {"type": "text", "coordinates": [70, 380, 541, 408], "content": "We will call these simple-current automorphisms. The first examples of these were\nfound by Bernard [2], and were generalised further in [31].", "block_type": "text", "index": 7}, {"type": "text", "coordinates": [70, 409, 541, 453], "content": "For any affine algebra $$X_{r}^{(1)}$$ and any sufficiently high level, we will see in the next\nsection that its fusion-symmetries consist entirely of simple-current automorphisms and\nconjugations. For this reason, any other fusion-symmetry is called exceptional.", "block_type": "text", "index": 8}, {"type": "text", "coordinates": [70, 453, 541, 497], "content": "There is another general construction of fusion-symmetries, generalising $$C$$ , although\nit yields few new examples for the affine fusion rings. If the Galois automorphism $$\\sigma_{\\ell}$$ is such\nthat $$0^{(\\ell)}$$ is a simple-current $$j$$ \u2014 equivalently, that $$\\sigma_{\\ell}(S_{00}^{2})=S_{00}^{2}$$ \u2014 then the permutation", "block_type": "text", "index": 9}, {"type": "interline_equation", "coordinates": [257, 509, 354, 524], "content": "", "block_type": "interline_equation", "index": 10}, {"type": "text", "coordinates": [69, 534, 540, 564], "content": "is a fusion-symmetry. The simplest example is $$\\pi\\{-1\\}=C$$ . We call $$\\pi\\{\\ell\\}$$ a Galois fusion-\nsymmetry. A special case of these was given in [13]. To see that $$\\pi\\{\\ell\\}$$ works, note from", "block_type": "text", "index": 11}, {"type": "interline_equation", "coordinates": [198, 576, 412, 593], "content": "", "block_type": "interline_equation", "index": 12}, {"type": "text", "coordinates": [70, 603, 254, 619], "content": "that $$\\epsilon_{\\ell}(\\lambda)\\,\\epsilon_{\\ell}(0)=e^{2\\pi\\mathrm{i}\\,Q_{j}(\\lambda)}$$ . Hence", "block_type": "text", "index": 13}, {"type": "interline_equation", "coordinates": [116, 631, 493, 648], "content": "", "block_type": "interline_equation", "index": 14}, {"type": "text", "coordinates": [70, 657, 542, 686], "content": "and so $$(\\pi\\{\\ell\\},\\pi\\{\\ell\\}^{-1})$$ is an $$S$$ -symmetry. Incidentally, $$J$$ will always be order 1 or 2 because\n$$2\\,Q_{j}(\\lambda)\\in\\mathbb{Z}$$ for all $$\\lambda\\in P_{+}$$ .", "block_type": "text", "index": 15}, {"type": "text", "coordinates": [70, 687, 542, 715], "content": "Simple-currents (2.2), the Galois action (2.3), and the corresponding fusion-symmetries\nhave analogues in arbitrary (i.e. not necessarily affine) fusion rings.", "block_type": "text", "index": 16}] | [{"type": "inline_equation", "coordinates": [71, 75, 90, 88], "content": "\\mathrm{ch}_{\\overline{{{\\mu}}}}", "score": 0.84, "index": 1}, {"type": "text", "coordinates": [90, 71, 111, 91], "content": " for ", "score": 1.0, "index": 2}, {"type": "inline_equation", "coordinates": [112, 75, 127, 86], "content": "X_{r}", "score": 0.92, "index": 3}, {"type": "text", "coordinates": [128, 71, 462, 91], "content": " can be written as a polynomial in the fundamental characters ", "score": 1.0, "index": 4}, {"type": "inline_equation", "coordinates": [462, 74, 537, 87], "content": "\\mathrm{ch}_{\\Lambda_{1}},\\ldots,\\mathrm{ch}_{\\Lambda_{r}}", "score": 0.87, "index": 5}, {"type": "text", "coordinates": [537, 71, 542, 91], "content": ",", "score": 1.0, "index": 6}, {"type": "text", "coordinates": [69, 88, 212, 106], "content": "we know from (2.1b) that ", "score": 1.0, "index": 7}, {"type": "inline_equation", "coordinates": [212, 92, 303, 105], "content": "\\Gamma=\\{\\Lambda_{1},\\dots,\\Lambda_{r}\\}", "score": 0.93, "index": 8}, {"type": "text", "coordinates": [304, 88, 438, 106], "content": " is a fusion-generator for ", "score": 1.0, "index": 9}, {"type": "inline_equation", "coordinates": [438, 88, 462, 103], "content": "X_{r}^{(1)}", "score": 0.92, "index": 10}, {"type": "text", "coordinates": [463, 88, 532, 106], "content": "at any level ", "score": 1.0, "index": 11}, {"type": "inline_equation", "coordinates": [532, 93, 540, 102], "content": "k", "score": 0.84, "index": 12}, {"type": "text", "coordinates": [70, 105, 185, 120], "content": "sufficiently large that ", "score": 1.0, "index": 13}, {"type": "inline_equation", "coordinates": [186, 108, 201, 119], "content": "P_{+}", "score": 0.92, "index": 14}, {"type": "text", "coordinates": [202, 105, 268, 120], "content": " contains all ", "score": 1.0, "index": 15}, {"type": "inline_equation", "coordinates": [268, 107, 281, 118], "content": "\\Lambda_{i}", "score": 0.9, "index": 16}, {"type": "text", "coordinates": [281, 105, 412, 120], "content": " (in other words, for any ", "score": 1.0, "index": 17}, {"type": "inline_equation", "coordinates": [412, 105, 478, 119], "content": "k\\geq\\operatorname*{max}_{i}a_{i}^{\\vee}", "score": 0.91, "index": 18}, {"type": "text", "coordinates": [479, 105, 541, 120], "content": "). In fact, it", "score": 1.0, "index": 19}, {"type": "text", "coordinates": [70, 119, 362, 135], "content": "is easy to show [18] that a fusion-generator valid for any ", "score": 1.0, "index": 20}, {"type": "inline_equation", "coordinates": [362, 122, 385, 134], "content": "X_{r,k}", "score": 0.93, "index": 21}, {"type": "text", "coordinates": [385, 119, 399, 135], "content": " is ", "score": 1.0, "index": 22}, {"type": "inline_equation", "coordinates": [400, 120, 492, 133], "content": "\\{\\Lambda_{1},\\ldots,\\Lambda_{r}\\}\\cap{\\cal P}_{+}", "score": 0.92, "index": 23}, {"type": "text", "coordinates": [492, 119, 541, 135], "content": ". Smaller", "score": 1.0, "index": 24}, {"type": "text", "coordinates": [70, 133, 310, 149], "content": "fusion-generators usually exist \u2014 for example ", "score": 1.0, "index": 25}, {"type": "inline_equation", "coordinates": [310, 135, 336, 147], "content": "\\{\\Lambda_{1}\\}", "score": 0.94, "index": 26}, {"type": "text", "coordinates": [336, 133, 465, 149], "content": " is a fusion-generator for ", "score": 1.0, "index": 27}, {"type": "inline_equation", "coordinates": [465, 135, 487, 148], "content": "A_{8,k}", "score": 0.91, "index": 28}, {"type": "text", "coordinates": [488, 133, 541, 149], "content": " whenever", "score": 1.0, "index": 29}, {"type": "inline_equation", "coordinates": [71, 150, 78, 159], "content": "k", "score": 0.9, "index": 30}, {"type": "text", "coordinates": [78, 149, 215, 163], "content": " is even and coprime to 3.", "score": 1.0, "index": 31}, {"type": "text", "coordinates": [72, 177, 330, 189], "content": "2.3. Standard constructions of fusion-symmetries", "score": 1.0, "index": 32}, {"type": "text", "coordinates": [95, 198, 415, 212], "content": "Simple-currents are a large source of fusion-symmetries. Let ", "score": 1.0, "index": 33}, {"type": "inline_equation", "coordinates": [416, 199, 421, 210], "content": "j", "score": 0.88, "index": 34}, {"type": "text", "coordinates": [421, 198, 540, 212], "content": " be any simple-current", "score": 1.0, "index": 35}, {"type": "text", "coordinates": [70, 211, 116, 226], "content": "of order ", "score": 1.0, "index": 36}, {"type": "inline_equation", "coordinates": [116, 217, 123, 222], "content": "{\\boldsymbol{n}}", "score": 0.89, "index": 37}, {"type": "text", "coordinates": [124, 211, 239, 226], "content": ". Choose any number ", "score": 1.0, "index": 38}, {"type": "inline_equation", "coordinates": [240, 212, 344, 225], "content": "a\\in\\{0,1,\\ldots,n-1\\}", "score": 0.93, "index": 39}, {"type": "text", "coordinates": [345, 211, 399, 226], "content": " such that", "score": 1.0, "index": 40}, {"type": "interline_equation", "coordinates": [239, 239, 372, 252], "content": "\\operatorname*{gcd}(n a Q_{j}(j)+1,n)=1\\ .", "score": 0.88, "index": 41}, {"type": "text", "coordinates": [70, 262, 317, 280], "content": "Any solution to this defines a fusion-symmetry ", "score": 1.0, "index": 42}, {"type": "inline_equation", "coordinates": [318, 264, 396, 276], "content": "\\lambda\\mapsto J^{n a Q_{j}\\,(\\lambda)}\\lambda", "score": 0.93, "index": 43}, {"type": "text", "coordinates": [396, 262, 519, 280], "content": ", which we shall denote ", "score": 1.0, "index": 44}, {"type": "inline_equation", "coordinates": [519, 266, 540, 279], "content": "\\pi[a]", "score": 0.91, "index": 45}, {"type": "text", "coordinates": [70, 279, 86, 294], "content": "or ", "score": 1.0, "index": 46}, {"type": "inline_equation", "coordinates": [87, 280, 112, 293], "content": "\\pi_{j}[a]", "score": 0.93, "index": 47}, {"type": "text", "coordinates": [112, 279, 393, 294], "content": ". Note that from (2.2b), (2.5b) and (2.5c) that any ", "score": 1.0, "index": 48}, {"type": "inline_equation", "coordinates": [393, 280, 441, 293], "content": "\\pi\\,=\\,\\pi[a]", "score": 0.92, "index": 49}, {"type": "text", "coordinates": [441, 279, 448, 294], "content": ", ", "score": 1.0, "index": 50}, {"type": "inline_equation", "coordinates": [448, 281, 480, 290], "content": "a\\in\\mathbb{Z}", "score": 0.87, "index": 51}, {"type": "text", "coordinates": [481, 279, 541, 294], "content": ", obeys the", "score": 1.0, "index": 52}, {"type": "text", "coordinates": [69, 292, 115, 311], "content": "relation ", "score": 1.0, "index": 53}, {"type": "inline_equation", "coordinates": [115, 295, 193, 309], "content": "N_{\\pi\\lambda,\\pi\\mu}^{\\pi\\nu}=\\ N_{\\lambda\\mu}^{\\nu}", "score": 0.94, "index": 54}, {"type": "text", "coordinates": [194, 292, 228, 311], "content": " when ", "score": 1.0, "index": 55}, {"type": "inline_equation", "coordinates": [228, 295, 273, 309], "content": "N_{\\lambda\\mu}^{\\nu}\\neq0", "score": 0.94, "index": 56}, {"type": "text", "coordinates": [273, 292, 543, 311], "content": " (it would in fact be a fusion-endomorphism \u2014 see", "score": 1.0, "index": 57}, {"type": "text", "coordinates": [69, 308, 235, 325], "content": "\u00a72.2); the \u2018gcd\u2019 condition forces ", "score": 1.0, "index": 58}, {"type": "inline_equation", "coordinates": [235, 311, 255, 323], "content": "\\pi[a]", "score": 0.92, "index": 59}, {"type": "text", "coordinates": [255, 308, 418, 325], "content": " to be a permutation. Choosing ", "score": 1.0, "index": 60}, {"type": "inline_equation", "coordinates": [419, 309, 539, 324], "content": "b\\equiv-a\\,(n a Q_{j}(j)\\!+\\!1)^{-1}", "score": 0.92, "index": 61}, {"type": "text", "coordinates": [71, 322, 102, 339], "content": "(mod ", "score": 1.0, "index": 62}, {"type": "inline_equation", "coordinates": [103, 329, 110, 334], "content": "{\\boldsymbol{n}}", "score": 0.82, "index": 63}, {"type": "text", "coordinates": [111, 322, 189, 339], "content": "), we find that ", "score": 1.0, "index": 64}, {"type": "inline_equation", "coordinates": [189, 324, 244, 337], "content": "(\\pi[a],\\pi[b])", "score": 0.94, "index": 65}, {"type": "text", "coordinates": [244, 322, 275, 339], "content": " is an ", "score": 1.0, "index": 66}, {"type": "inline_equation", "coordinates": [276, 325, 284, 334], "content": "S", "score": 0.88, "index": 67}, {"type": "text", "coordinates": [284, 322, 343, 339], "content": "-symmetry.", "score": 1.0, "index": 68}, {"type": "text", "coordinates": [95, 338, 541, 353], "content": "When the group of simple-currents is not cyclic, this construction can be generalised", "score": 1.0, "index": 69}, {"type": "text", "coordinates": [69, 352, 512, 368], "content": "in a natural way, and the resulting fusion-symmetry will be parametrised by a matrix ", "score": 1.0, "index": 70}, {"type": "inline_equation", "coordinates": [512, 353, 536, 366], "content": "\\left(a_{i j}\\right)", "score": 0.9, "index": 71}, {"type": "text", "coordinates": [537, 352, 540, 368], "content": ".", "score": 1.0, "index": 72}, {"type": "text", "coordinates": [71, 367, 213, 380], "content": "We will meet these in 3.4.", "score": 1.0, "index": 73}, {"type": "text", "coordinates": [94, 380, 541, 396], "content": "We will call these simple-current automorphisms. The first examples of these were", "score": 1.0, "index": 74}, {"type": "text", "coordinates": [72, 396, 376, 410], "content": "found by Bernard [2], and were generalised further in [31].", "score": 1.0, "index": 75}, {"type": "text", "coordinates": [92, 407, 217, 429], "content": "For any affine algebra ", "score": 1.0, "index": 76}, {"type": "inline_equation", "coordinates": [218, 410, 242, 424], "content": "X_{r}^{(1)}", "score": 0.93, "index": 77}, {"type": "text", "coordinates": [242, 407, 544, 429], "content": "and any sufficiently high level, we will see in the next", "score": 1.0, "index": 78}, {"type": "text", "coordinates": [70, 426, 542, 442], "content": "section that its fusion-symmetries consist entirely of simple-current automorphisms and", "score": 1.0, "index": 79}, {"type": "text", "coordinates": [72, 442, 483, 455], "content": "conjugations. For this reason, any other fusion-symmetry is called exceptional.", "score": 1.0, "index": 80}, {"type": "text", "coordinates": [94, 454, 476, 470], "content": "There is another general construction of fusion-symmetries, generalising ", "score": 1.0, "index": 81}, {"type": "inline_equation", "coordinates": [477, 457, 486, 466], "content": "C", "score": 0.88, "index": 82}, {"type": "text", "coordinates": [487, 454, 541, 470], "content": ", although", "score": 1.0, "index": 83}, {"type": "text", "coordinates": [69, 469, 490, 484], "content": "it yields few new examples for the affine fusion rings. If the Galois automorphism ", "score": 1.0, "index": 84}, {"type": "inline_equation", "coordinates": [491, 474, 502, 482], "content": "\\sigma_{\\ell}", "score": 0.89, "index": 85}, {"type": "text", "coordinates": [502, 469, 541, 484], "content": "is such", "score": 1.0, "index": 86}, {"type": "text", "coordinates": [69, 481, 96, 501], "content": "that ", "score": 1.0, "index": 87}, {"type": "inline_equation", "coordinates": [97, 483, 115, 495], "content": "0^{(\\ell)}", "score": 0.91, "index": 88}, {"type": "text", "coordinates": [115, 481, 218, 501], "content": " is a simple-current ", "score": 1.0, "index": 89}, {"type": "inline_equation", "coordinates": [218, 486, 224, 497], "content": "j", "score": 0.85, "index": 90}, {"type": "text", "coordinates": [224, 481, 336, 501], "content": " \u2014 equivalently, that ", "score": 1.0, "index": 91}, {"type": "inline_equation", "coordinates": [337, 484, 409, 497], "content": "\\sigma_{\\ell}(S_{00}^{2})=S_{00}^{2}", "score": 0.94, "index": 92}, {"type": "text", "coordinates": [409, 481, 542, 501], "content": " \u2014 then the permutation", "score": 1.0, "index": 93}, {"type": "interline_equation", "coordinates": [257, 509, 354, 524], "content": "\\pi\\{\\ell\\}:\\lambda\\mapsto J(\\lambda^{(\\ell)})", "score": 0.93, "index": 94}, {"type": "text", "coordinates": [68, 536, 317, 553], "content": "is a fusion-symmetry. The simplest example is ", "score": 1.0, "index": 95}, {"type": "inline_equation", "coordinates": [317, 538, 377, 551], "content": "\\pi\\{-1\\}=C", "score": 0.96, "index": 96}, {"type": "text", "coordinates": [378, 536, 428, 553], "content": ". We call ", "score": 1.0, "index": 97}, {"type": "inline_equation", "coordinates": [428, 538, 453, 551], "content": "\\pi\\{\\ell\\}", "score": 0.93, "index": 98}, {"type": "text", "coordinates": [453, 536, 541, 553], "content": " a Galois fusion-", "score": 1.0, "index": 99}, {"type": "text", "coordinates": [71, 552, 410, 566], "content": "symmetry. A special case of these was given in [13]. To see that ", "score": 1.0, "index": 100}, {"type": "inline_equation", "coordinates": [410, 552, 434, 565], "content": "\\pi\\{\\ell\\}", "score": 0.93, "index": 101}, {"type": "text", "coordinates": [435, 552, 528, 566], "content": " works, note from", "score": 1.0, "index": 102}, {"type": "interline_equation", "coordinates": [198, 576, 412, 593], "content": "\\epsilon_{\\ell}(\\lambda)\\,S_{\\lambda^{(\\ell)},0}=\\sigma_{\\ell}S_{\\lambda0}=\\epsilon_{\\ell}(0)\\,e^{2\\pi\\mathrm{i}\\,Q_{j}(\\lambda)}S_{\\lambda0}", "score": 0.89, "index": 103}, {"type": "text", "coordinates": [69, 603, 97, 620], "content": "that ", "score": 1.0, "index": 104}, {"type": "inline_equation", "coordinates": [97, 606, 212, 620], "content": "\\epsilon_{\\ell}(\\lambda)\\,\\epsilon_{\\ell}(0)=e^{2\\pi\\mathrm{i}\\,Q_{j}(\\lambda)}", "score": 0.93, "index": 105}, {"type": "text", "coordinates": [212, 603, 254, 620], "content": ". Hence", "score": 1.0, "index": 106}, {"type": "interline_equation", "coordinates": [116, 631, 493, 648], "content": "S_{J\\lambda^{(\\ell)},\\mu}=e^{2\\pi\\mathrm{i}\\,Q_{j}(\\mu)}\\epsilon_{\\ell}(\\lambda)\\,\\sigma_{\\ell}(S_{\\lambda\\mu})=e^{2\\pi\\mathrm{i}\\,Q_{j}(\\mu)}\\,\\epsilon_{\\ell}(\\lambda)\\,\\epsilon_{\\ell}(\\mu)\\,S_{\\lambda,\\mu^{(\\ell)}}=S_{\\lambda,J\\mu^{(\\ell)}}", "score": 0.91, "index": 107}, {"type": "text", "coordinates": [70, 658, 107, 675], "content": "and so ", "score": 1.0, "index": 108}, {"type": "inline_equation", "coordinates": [107, 660, 183, 673], "content": "(\\pi\\{\\ell\\},\\pi\\{\\ell\\}^{-1})", "score": 0.93, "index": 109}, {"type": "text", "coordinates": [184, 658, 213, 675], "content": " is an ", "score": 1.0, "index": 110}, {"type": "inline_equation", "coordinates": [213, 661, 222, 670], "content": "S", "score": 0.9, "index": 111}, {"type": "text", "coordinates": [222, 658, 351, 675], "content": "-symmetry. Incidentally, ", "score": 1.0, "index": 112}, {"type": "inline_equation", "coordinates": [352, 661, 360, 670], "content": "J", "score": 0.88, "index": 113}, {"type": "text", "coordinates": [360, 658, 542, 675], "content": " will always be order 1 or 2 because", "score": 1.0, "index": 114}, {"type": "inline_equation", "coordinates": [70, 675, 133, 688], "content": "2\\,Q_{j}(\\lambda)\\in\\mathbb{Z}", "score": 0.92, "index": 115}, {"type": "text", "coordinates": [133, 673, 171, 689], "content": " for all ", "score": 1.0, "index": 116}, {"type": "inline_equation", "coordinates": [172, 676, 209, 687], "content": "\\lambda\\in P_{+}", "score": 0.92, "index": 117}, {"type": "text", "coordinates": [209, 673, 214, 689], "content": ".", "score": 1.0, "index": 118}, {"type": "text", "coordinates": [93, 687, 542, 704], "content": "Simple-currents (2.2), the Galois action (2.3), and the corresponding fusion-symmetries", "score": 1.0, "index": 119}, {"type": "text", "coordinates": [70, 702, 424, 719], "content": "have analogues in arbitrary (i.e. not necessarily affine) fusion rings.", "score": 1.0, "index": 120}] | [] | [{"type": "block", "coordinates": [239, 239, 372, 252], "content": "", "caption": ""}, {"type": "block", "coordinates": [257, 509, 354, 524], "content": "", "caption": ""}, {"type": "block", "coordinates": [198, 576, 412, 593], "content": "", "caption": ""}, {"type": "block", "coordinates": [116, 631, 493, 648], "content": "", "caption": ""}, {"type": "inline", "coordinates": [71, 75, 90, 88], "content": "\\mathrm{ch}_{\\overline{{{\\mu}}}}", "caption": ""}, {"type": "inline", "coordinates": [112, 75, 127, 86], "content": "X_{r}", "caption": ""}, {"type": "inline", "coordinates": [462, 74, 537, 87], "content": "\\mathrm{ch}_{\\Lambda_{1}},\\ldots,\\mathrm{ch}_{\\Lambda_{r}}", "caption": ""}, {"type": "inline", "coordinates": [212, 92, 303, 105], "content": "\\Gamma=\\{\\Lambda_{1},\\dots,\\Lambda_{r}\\}", "caption": ""}, {"type": "inline", "coordinates": [438, 88, 462, 103], "content": "X_{r}^{(1)}", "caption": ""}, {"type": "inline", "coordinates": [532, 93, 540, 102], "content": "k", "caption": ""}, {"type": "inline", "coordinates": [186, 108, 201, 119], "content": "P_{+}", "caption": ""}, {"type": "inline", "coordinates": [268, 107, 281, 118], "content": "\\Lambda_{i}", "caption": ""}, {"type": "inline", "coordinates": [412, 105, 478, 119], "content": "k\\geq\\operatorname*{max}_{i}a_{i}^{\\vee}", "caption": ""}, {"type": "inline", "coordinates": [362, 122, 385, 134], "content": "X_{r,k}", "caption": ""}, {"type": "inline", "coordinates": [400, 120, 492, 133], "content": "\\{\\Lambda_{1},\\ldots,\\Lambda_{r}\\}\\cap{\\cal P}_{+}", "caption": ""}, {"type": "inline", "coordinates": [310, 135, 336, 147], "content": "\\{\\Lambda_{1}\\}", "caption": ""}, {"type": "inline", "coordinates": [465, 135, 487, 148], "content": "A_{8,k}", "caption": ""}, {"type": "inline", "coordinates": [71, 150, 78, 159], "content": "k", "caption": ""}, {"type": "inline", "coordinates": [416, 199, 421, 210], "content": "j", "caption": ""}, {"type": "inline", "coordinates": [116, 217, 123, 222], "content": "{\\boldsymbol{n}}", "caption": ""}, {"type": "inline", "coordinates": [240, 212, 344, 225], "content": "a\\in\\{0,1,\\ldots,n-1\\}", "caption": ""}, {"type": "inline", "coordinates": [318, 264, 396, 276], "content": "\\lambda\\mapsto J^{n a Q_{j}\\,(\\lambda)}\\lambda", "caption": ""}, {"type": "inline", "coordinates": [519, 266, 540, 279], "content": "\\pi[a]", "caption": ""}, {"type": "inline", "coordinates": [87, 280, 112, 293], "content": "\\pi_{j}[a]", "caption": ""}, {"type": "inline", "coordinates": [393, 280, 441, 293], "content": "\\pi\\,=\\,\\pi[a]", "caption": ""}, {"type": "inline", "coordinates": [448, 281, 480, 290], "content": "a\\in\\mathbb{Z}", "caption": ""}, {"type": "inline", "coordinates": [115, 295, 193, 309], "content": "N_{\\pi\\lambda,\\pi\\mu}^{\\pi\\nu}=\\ N_{\\lambda\\mu}^{\\nu}", "caption": ""}, {"type": "inline", "coordinates": [228, 295, 273, 309], "content": "N_{\\lambda\\mu}^{\\nu}\\neq0", "caption": ""}, {"type": "inline", "coordinates": [235, 311, 255, 323], "content": "\\pi[a]", "caption": ""}, {"type": "inline", "coordinates": [419, 309, 539, 324], "content": "b\\equiv-a\\,(n a Q_{j}(j)\\!+\\!1)^{-1}", "caption": ""}, {"type": "inline", "coordinates": [103, 329, 110, 334], "content": "{\\boldsymbol{n}}", "caption": ""}, {"type": "inline", "coordinates": [189, 324, 244, 337], "content": "(\\pi[a],\\pi[b])", "caption": ""}, {"type": "inline", "coordinates": [276, 325, 284, 334], "content": "S", "caption": ""}, {"type": "inline", "coordinates": [512, 353, 536, 366], "content": "\\left(a_{i j}\\right)", "caption": ""}, {"type": "inline", "coordinates": [218, 410, 242, 424], "content": "X_{r}^{(1)}", "caption": ""}, {"type": "inline", "coordinates": [477, 457, 486, 466], "content": "C", "caption": ""}, {"type": "inline", "coordinates": [491, 474, 502, 482], "content": "\\sigma_{\\ell}", "caption": ""}, {"type": "inline", "coordinates": [97, 483, 115, 495], "content": "0^{(\\ell)}", "caption": ""}, {"type": "inline", "coordinates": [218, 486, 224, 497], "content": "j", "caption": ""}, {"type": "inline", "coordinates": [337, 484, 409, 497], "content": "\\sigma_{\\ell}(S_{00}^{2})=S_{00}^{2}", "caption": ""}, {"type": "inline", "coordinates": [317, 538, 377, 551], "content": "\\pi\\{-1\\}=C", "caption": ""}, {"type": "inline", "coordinates": [428, 538, 453, 551], "content": "\\pi\\{\\ell\\}", "caption": ""}, {"type": "inline", "coordinates": [410, 552, 434, 565], "content": "\\pi\\{\\ell\\}", "caption": ""}, {"type": "inline", "coordinates": [97, 606, 212, 620], "content": "\\epsilon_{\\ell}(\\lambda)\\,\\epsilon_{\\ell}(0)=e^{2\\pi\\mathrm{i}\\,Q_{j}(\\lambda)}", "caption": ""}, {"type": "inline", "coordinates": [107, 660, 183, 673], "content": "(\\pi\\{\\ell\\},\\pi\\{\\ell\\}^{-1})", "caption": ""}, {"type": "inline", "coordinates": [213, 661, 222, 670], "content": "S", "caption": ""}, {"type": "inline", "coordinates": [352, 661, 360, 670], "content": "J", "caption": ""}, {"type": "inline", "coordinates": [70, 675, 133, 688], "content": "2\\,Q_{j}(\\lambda)\\in\\mathbb{Z}", "caption": ""}, {"type": "inline", "coordinates": [172, 676, 209, 687], "content": "\\lambda\\in P_{+}", "caption": ""}] | [] | [612.0, 792.0] | [{"type": "text", "text": "", "page_idx": 7}, {"type": "text", "text": "2.3. Standard constructions of fusion-symmetries ", "page_idx": 7}, {"type": "text", "text": "Simple-currents are a large source of fusion-symmetries. Let $j$ be any simple-current of order ${\\boldsymbol{n}}$ . Choose any number $a\\in\\{0,1,\\ldots,n-1\\}$ such that ", "page_idx": 7}, {"type": "equation", "text": "$$\n\\operatorname*{gcd}(n a Q_{j}(j)+1,n)=1\\ .\n$$", "text_format": "latex", "page_idx": 7}, {"type": "text", "text": "Any solution to this defines a fusion-symmetry $\\lambda\\mapsto J^{n a Q_{j}\\,(\\lambda)}\\lambda$ , which we shall denote $\\pi[a]$ or $\\pi_{j}[a]$ . Note that from (2.2b), (2.5b) and (2.5c) that any $\\pi\\,=\\,\\pi[a]$ , $a\\in\\mathbb{Z}$ , obeys the relation $N_{\\pi\\lambda,\\pi\\mu}^{\\pi\\nu}=\\ N_{\\lambda\\mu}^{\\nu}$ when $N_{\\lambda\\mu}^{\\nu}\\neq0$ (it would in fact be a fusion-endomorphism \u2014 see \u00a72.2); the \u2018gcd\u2019 condition forces $\\pi[a]$ to be a permutation. Choosing $b\\equiv-a\\,(n a Q_{j}(j)\\!+\\!1)^{-1}$ (mod ${\\boldsymbol{n}}$ ), we find that $(\\pi[a],\\pi[b])$ is an $S$ -symmetry. ", "page_idx": 7}, {"type": "text", "text": "When the group of simple-currents is not cyclic, this construction can be generalised in a natural way, and the resulting fusion-symmetry will be parametrised by a matrix $\\left(a_{i j}\\right)$ . We will meet these in 3.4. ", "page_idx": 7}, {"type": "text", "text": "We will call these simple-current automorphisms. The first examples of these were found by Bernard [2], and were generalised further in [31]. ", "page_idx": 7}, {"type": "text", "text": "For any affine algebra $X_{r}^{(1)}$ and any sufficiently high level, we will see in the next section that its fusion-symmetries consist entirely of simple-current automorphisms and conjugations. For this reason, any other fusion-symmetry is called exceptional. ", "page_idx": 7}, {"type": "text", "text": "There is another general construction of fusion-symmetries, generalising $C$ , although it yields few new examples for the affine fusion rings. If the Galois automorphism $\\sigma_{\\ell}$ is such that $0^{(\\ell)}$ is a simple-current $j$ \u2014 equivalently, that $\\sigma_{\\ell}(S_{00}^{2})=S_{00}^{2}$ \u2014 then the permutation ", "page_idx": 7}, {"type": "equation", "text": "$$\n\\pi\\{\\ell\\}:\\lambda\\mapsto J(\\lambda^{(\\ell)})\n$$", "text_format": "latex", "page_idx": 7}, {"type": "text", "text": "is a fusion-symmetry. The simplest example is $\\pi\\{-1\\}=C$ . We call $\\pi\\{\\ell\\}$ a Galois fusionsymmetry. A special case of these was given in [13]. To see that $\\pi\\{\\ell\\}$ works, note from ", "page_idx": 7}, {"type": "equation", "text": "$$\n\\epsilon_{\\ell}(\\lambda)\\,S_{\\lambda^{(\\ell)},0}=\\sigma_{\\ell}S_{\\lambda0}=\\epsilon_{\\ell}(0)\\,e^{2\\pi\\mathrm{i}\\,Q_{j}(\\lambda)}S_{\\lambda0}\n$$", "text_format": "latex", "page_idx": 7}, {"type": "text", "text": "that $\\epsilon_{\\ell}(\\lambda)\\,\\epsilon_{\\ell}(0)=e^{2\\pi\\mathrm{i}\\,Q_{j}(\\lambda)}$ . Hence ", "page_idx": 7}, {"type": "equation", "text": "$$\nS_{J\\lambda^{(\\ell)},\\mu}=e^{2\\pi\\mathrm{i}\\,Q_{j}(\\mu)}\\epsilon_{\\ell}(\\lambda)\\,\\sigma_{\\ell}(S_{\\lambda\\mu})=e^{2\\pi\\mathrm{i}\\,Q_{j}(\\mu)}\\,\\epsilon_{\\ell}(\\lambda)\\,\\epsilon_{\\ell}(\\mu)\\,S_{\\lambda,\\mu^{(\\ell)}}=S_{\\lambda,J\\mu^{(\\ell)}}\n$$", "text_format": "latex", "page_idx": 7}, {"type": "text", "text": "and so $(\\pi\\{\\ell\\},\\pi\\{\\ell\\}^{-1})$ is an $S$ -symmetry. Incidentally, $J$ will always be order 1 or 2 because $2\\,Q_{j}(\\lambda)\\in\\mathbb{Z}$ for all $\\lambda\\in P_{+}$ . ", "page_idx": 7}, {"type": "text", "text": "Simple-currents (2.2), the Galois action (2.3), and the corresponding fusion-symmetries have analogues in arbitrary (i.e. not necessarily affine) fusion rings. ", "page_idx": 7}] | [{"category_id": 1, "poly": [195, 196, 1504, 196, 1504, 447, 195, 447], "score": 0.983}, {"category_id": 1, "poly": [197, 725, 1505, 725, 1505, 934, 197, 934], "score": 0.982}, {"category_id": 1, "poly": [198, 935, 1503, 935, 1503, 1052, 198, 1052], "score": 0.968}, {"category_id": 1, "poly": [196, 1261, 1503, 1261, 1503, 1381, 196, 1381], "score": 0.966}, {"category_id": 1, "poly": [197, 1137, 1503, 1137, 1503, 1259, 197, 1259], "score": 0.965}, {"category_id": 1, "poly": [197, 1056, 1503, 1056, 1503, 1134, 197, 1134], "score": 0.965}, {"category_id": 1, "poly": [193, 1484, 1502, 1484, 1502, 1569, 193, 1569], "score": 0.958}, {"category_id": 1, "poly": [196, 1909, 1506, 1909, 1506, 1988, 196, 1988], "score": 0.956}, {"category_id": 1, "poly": [197, 541, 1502, 541, 1502, 625, 197, 625], "score": 0.955}, {"category_id": 1, "poly": [196, 1825, 1506, 1825, 1506, 1907, 196, 1907], "score": 0.955}, {"category_id": 1, "poly": [195, 1675, 708, 1675, 708, 1722, 195, 1722], "score": 0.939}, {"category_id": 8, "poly": [711, 1404, 987, 1404, 987, 1457, 711, 1457], "score": 0.927}, {"category_id": 8, "poly": [659, 654, 1036, 654, 1036, 701, 659, 701], "score": 0.926}, {"category_id": 8, "poly": [318, 1745, 1376, 1745, 1376, 1802, 318, 1802], "score": 0.92}, {"category_id": 8, "poly": [549, 1594, 1149, 1594, 1149, 1647, 549, 1647], "score": 0.902}, {"category_id": 1, "poly": [200, 483, 921, 483, 921, 523, 200, 523], "score": 0.546}, {"category_id": 0, "poly": [200, 483, 921, 483, 921, 523, 200, 523], "score": 0.487}, {"category_id": 13, "poly": [882, 1496, 1049, 1496, 1049, 1531, 882, 1531], "score": 0.96, "latex": "\\pi\\{-1\\}=C"}, {"category_id": 13, "poly": [937, 1346, 1137, 1346, 1137, 1382, 937, 1382], "score": 0.94, "latex": "\\sigma_{\\ell}(S_{00}^{2})=S_{00}^{2}"}, {"category_id": 13, "poly": [321, 821, 538, 821, 538, 860, 321, 860], "score": 0.94, "latex": "N_{\\pi\\lambda,\\pi\\mu}^{\\pi\\nu}=\\ N_{\\lambda\\mu}^{\\nu}"}, {"category_id": 13, "poly": [863, 376, 935, 376, 935, 410, 863, 410], "score": 0.94, "latex": "\\{\\Lambda_{1}\\}"}, {"category_id": 13, "poly": [636, 820, 760, 820, 760, 860, 636, 860], "score": 0.94, "latex": "N_{\\lambda\\mu}^{\\nu}\\neq0"}, {"category_id": 13, "poly": [527, 902, 678, 902, 678, 938, 527, 938], "score": 0.94, "latex": "(\\pi[a],\\pi[b])"}, {"category_id": 13, "poly": [1140, 1536, 1208, 1536, 1208, 1571, 1140, 1571], "score": 0.93, "latex": "\\pi\\{\\ell\\}"}, {"category_id": 13, "poly": [242, 779, 312, 779, 312, 815, 242, 815], "score": 0.93, "latex": "\\pi_{j}[a]"}, {"category_id": 13, "poly": [606, 1139, 673, 1139, 673, 1179, 606, 1179], "score": 0.93, "latex": "X_{r}^{(1)}"}, {"category_id": 13, "poly": [1191, 1496, 1259, 1496, 1259, 1531, 1191, 1531], "score": 0.93, "latex": "\\pi\\{\\ell\\}"}, {"category_id": 13, "poly": [884, 734, 1100, 734, 1100, 768, 884, 768], "score": 0.93, "latex": "\\lambda\\mapsto J^{n a Q_{j}\\,(\\lambda)}\\lambda"}, {"category_id": 13, "poly": [271, 1684, 590, 1684, 590, 1723, 271, 1723], "score": 0.93, "latex": "\\epsilon_{\\ell}(\\lambda)\\,\\epsilon_{\\ell}(0)=e^{2\\pi\\mathrm{i}\\,Q_{j}(\\lambda)}"}, {"category_id": 13, "poly": [667, 591, 958, 591, 958, 627, 667, 627], "score": 0.93, "latex": "a\\in\\{0,1,\\ldots,n-1\\}"}, {"category_id": 13, "poly": [299, 1834, 511, 1834, 511, 1871, 299, 1871], "score": 0.93, "latex": "(\\pi\\{\\ell\\},\\pi\\{\\ell\\}^{-1})"}, {"category_id": 14, "poly": [716, 1414, 984, 1414, 984, 1457, 716, 1457], "score": 0.93, "latex": "\\pi\\{\\ell\\}:\\lambda\\mapsto J(\\lambda^{(\\ell)})"}, {"category_id": 13, "poly": [590, 257, 844, 257, 844, 292, 590, 292], "score": 0.93, "latex": "\\Gamma=\\{\\Lambda_{1},\\dots,\\Lambda_{r}\\}"}, {"category_id": 13, "poly": [1008, 339, 1071, 339, 1071, 373, 1008, 373], "score": 0.93, "latex": "X_{r,k}"}, {"category_id": 13, "poly": [517, 300, 561, 300, 561, 331, 517, 331], "score": 0.92, "latex": "P_{+}"}, {"category_id": 13, "poly": [478, 1878, 581, 1878, 581, 1910, 478, 1910], "score": 0.92, "latex": "\\lambda\\in P_{+}"}, {"category_id": 13, "poly": [654, 864, 710, 864, 710, 898, 654, 898], "score": 0.92, "latex": "\\pi[a]"}, {"category_id": 13, "poly": [312, 211, 355, 211, 355, 240, 312, 240], "score": 0.92, "latex": "X_{r}"}, {"category_id": 13, "poly": [197, 1875, 371, 1875, 371, 1912, 197, 1912], "score": 0.92, "latex": "2\\,Q_{j}(\\lambda)\\in\\mathbb{Z}"}, {"category_id": 13, "poly": [1218, 245, 1286, 245, 1286, 287, 1218, 287], "score": 0.92, "latex": "X_{r}^{(1)}"}, {"category_id": 13, "poly": [1094, 779, 1225, 779, 1225, 814, 1094, 814], "score": 0.92, "latex": "\\pi\\,=\\,\\pi[a]"}, {"category_id": 13, "poly": [1164, 860, 1499, 860, 1499, 900, 1164, 900], "score": 0.92, "latex": "b\\equiv-a\\,(n a Q_{j}(j)\\!+\\!1)^{-1}"}, {"category_id": 13, "poly": [1112, 336, 1367, 336, 1367, 372, 1112, 372], "score": 0.92, "latex": "\\{\\Lambda_{1},\\ldots,\\Lambda_{r}\\}\\cap{\\cal P}_{+}"}, {"category_id": 13, "poly": [1443, 740, 1500, 740, 1500, 775, 1443, 775], "score": 0.91, "latex": "\\pi[a]"}, {"category_id": 13, "poly": [1293, 377, 1355, 377, 1355, 412, 1293, 412], "score": 0.91, "latex": "A_{8,k}"}, {"category_id": 13, "poly": [270, 1344, 320, 1344, 320, 1375, 270, 1375], "score": 0.91, "latex": "0^{(\\ell)}"}, {"category_id": 14, "poly": [324, 1753, 1372, 1753, 1372, 1801, 324, 1801], "score": 0.91, "latex": "S_{J\\lambda^{(\\ell)},\\mu}=e^{2\\pi\\mathrm{i}\\,Q_{j}(\\mu)}\\epsilon_{\\ell}(\\lambda)\\,\\sigma_{\\ell}(S_{\\lambda\\mu})=e^{2\\pi\\mathrm{i}\\,Q_{j}(\\mu)}\\,\\epsilon_{\\ell}(\\lambda)\\,\\epsilon_{\\ell}(\\mu)\\,S_{\\lambda,\\mu^{(\\ell)}}=S_{\\lambda,J\\mu^{(\\ell)}}"}, {"category_id": 13, "poly": [1146, 294, 1330, 294, 1330, 331, 1146, 331], "score": 0.91, "latex": "k\\geq\\operatorname*{max}_{i}a_{i}^{\\vee}"}, {"category_id": 13, "poly": [1424, 983, 1491, 983, 1491, 1019, 1424, 1019], "score": 0.9, "latex": "\\left(a_{i j}\\right)"}, {"category_id": 13, "poly": [747, 299, 781, 299, 781, 329, 747, 329], "score": 0.9, "latex": "\\Lambda_{i}"}, {"category_id": 13, "poly": [593, 1838, 617, 1838, 617, 1863, 593, 1863], "score": 0.9, "latex": "S"}, {"category_id": 13, "poly": [199, 418, 218, 418, 218, 443, 199, 443], "score": 0.9, "latex": "k"}, {"category_id": 13, "poly": [324, 603, 344, 603, 344, 619, 324, 619], "score": 0.89, "latex": "{\\boldsymbol{n}}"}, {"category_id": 14, "poly": [552, 1601, 1145, 1601, 1145, 1648, 552, 1648], "score": 0.89, "latex": "\\epsilon_{\\ell}(\\lambda)\\,S_{\\lambda^{(\\ell)},0}=\\sigma_{\\ell}S_{\\lambda0}=\\epsilon_{\\ell}(0)\\,e^{2\\pi\\mathrm{i}\\,Q_{j}(\\lambda)}S_{\\lambda0}"}, {"category_id": 13, "poly": [1364, 1319, 1396, 1319, 1396, 1339, 1364, 1339], "score": 0.89, "latex": "\\sigma_{\\ell}"}, {"category_id": 13, "poly": [767, 905, 790, 905, 790, 930, 767, 930], "score": 0.88, "latex": "S"}, {"category_id": 14, "poly": [664, 664, 1036, 664, 1036, 702, 664, 702], "score": 0.88, "latex": "\\operatorname*{gcd}(n a Q_{j}(j)+1,n)=1\\ ."}, {"category_id": 13, "poly": [1325, 1270, 1352, 1270, 1352, 1295, 1325, 1295], "score": 0.88, "latex": "C"}, {"category_id": 13, "poly": [1156, 555, 1171, 555, 1171, 585, 1156, 585], "score": 0.88, "latex": "j"}, {"category_id": 13, "poly": [978, 1838, 1000, 1838, 1000, 1863, 978, 1863], "score": 0.88, "latex": "J"}, {"category_id": 13, "poly": [1246, 781, 1336, 781, 1336, 807, 1246, 807], "score": 0.87, "latex": "a\\in\\mathbb{Z}"}, {"category_id": 13, "poly": [1285, 207, 1492, 207, 1492, 244, 1285, 244], "score": 0.87, "latex": "\\mathrm{ch}_{\\Lambda_{1}},\\ldots,\\mathrm{ch}_{\\Lambda_{r}}"}, {"category_id": 13, "poly": [607, 1351, 623, 1351, 623, 1381, 607, 1381], "score": 0.85, "latex": "j"}, {"category_id": 13, "poly": [1480, 259, 1500, 259, 1500, 284, 1480, 284], "score": 0.84, "latex": "k"}, {"category_id": 13, "poly": [199, 211, 251, 211, 251, 245, 199, 245], "score": 0.84, "latex": "\\mathrm{ch}_{\\overline{{{\\mu}}}}"}, {"category_id": 13, "poly": [287, 914, 308, 914, 308, 930, 287, 930], "score": 0.82, "latex": "{\\boldsymbol{n}}"}, {"category_id": 15, "poly": [196.0, 199.0, 198.0, 199.0, 198.0, 254.0, 196.0, 254.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [252.0, 199.0, 311.0, 199.0, 311.0, 254.0, 252.0, 254.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [356.0, 199.0, 1284.0, 199.0, 1284.0, 254.0, 356.0, 254.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1493.0, 199.0, 1506.0, 199.0, 1506.0, 254.0, 1493.0, 254.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [192.0, 245.0, 589.0, 245.0, 589.0, 296.0, 192.0, 296.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [845.0, 245.0, 1217.0, 245.0, 1217.0, 296.0, 845.0, 296.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1287.0, 245.0, 1479.0, 245.0, 1479.0, 296.0, 1287.0, 296.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1501.0, 245.0, 1508.0, 245.0, 1508.0, 296.0, 1501.0, 296.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [195.0, 292.0, 516.0, 292.0, 516.0, 336.0, 195.0, 336.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [562.0, 292.0, 746.0, 292.0, 746.0, 336.0, 562.0, 336.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [782.0, 292.0, 1145.0, 292.0, 1145.0, 336.0, 782.0, 336.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1331.0, 292.0, 1504.0, 292.0, 1504.0, 336.0, 1331.0, 336.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [195.0, 332.0, 1007.0, 332.0, 1007.0, 376.0, 195.0, 376.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1072.0, 332.0, 1111.0, 332.0, 1111.0, 376.0, 1072.0, 376.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1368.0, 332.0, 1504.0, 332.0, 1504.0, 376.0, 1368.0, 376.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [195.0, 372.0, 862.0, 372.0, 862.0, 414.0, 195.0, 414.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [936.0, 372.0, 1292.0, 372.0, 1292.0, 414.0, 936.0, 414.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1356.0, 372.0, 1503.0, 372.0, 1503.0, 414.0, 1356.0, 414.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [196.0, 414.0, 198.0, 414.0, 198.0, 453.0, 196.0, 453.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [219.0, 414.0, 599.0, 414.0, 599.0, 453.0, 219.0, 453.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [197.0, 729.0, 883.0, 729.0, 883.0, 780.0, 197.0, 780.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1101.0, 729.0, 1442.0, 729.0, 1442.0, 780.0, 1101.0, 780.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1501.0, 729.0, 1505.0, 729.0, 1505.0, 780.0, 1501.0, 780.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [195.0, 776.0, 241.0, 776.0, 241.0, 818.0, 195.0, 818.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [313.0, 776.0, 1093.0, 776.0, 1093.0, 818.0, 313.0, 818.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1226.0, 776.0, 1245.0, 776.0, 1245.0, 818.0, 1226.0, 818.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1337.0, 776.0, 1505.0, 776.0, 1505.0, 818.0, 1337.0, 818.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [193.0, 813.0, 320.0, 813.0, 320.0, 864.0, 193.0, 864.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [539.0, 813.0, 635.0, 813.0, 635.0, 864.0, 539.0, 864.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [761.0, 813.0, 1511.0, 813.0, 1511.0, 864.0, 761.0, 864.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [192.0, 856.0, 653.0, 856.0, 653.0, 905.0, 192.0, 905.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [711.0, 856.0, 1163.0, 856.0, 1163.0, 905.0, 711.0, 905.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1500.0, 856.0, 1504.0, 856.0, 1504.0, 905.0, 1500.0, 905.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [199.0, 897.0, 286.0, 897.0, 286.0, 944.0, 199.0, 944.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [309.0, 897.0, 526.0, 897.0, 526.0, 944.0, 309.0, 944.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [679.0, 897.0, 766.0, 897.0, 766.0, 944.0, 679.0, 944.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [791.0, 897.0, 955.0, 897.0, 955.0, 944.0, 791.0, 944.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [265.0, 939.0, 1503.0, 939.0, 1503.0, 981.0, 265.0, 981.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [193.0, 979.0, 1423.0, 979.0, 1423.0, 1023.0, 193.0, 1023.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1492.0, 979.0, 1502.0, 979.0, 1502.0, 1023.0, 1492.0, 1023.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [199.0, 1021.0, 593.0, 1021.0, 593.0, 1057.0, 199.0, 1057.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [262.0, 1262.0, 1324.0, 1262.0, 1324.0, 1307.0, 262.0, 1307.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1353.0, 1262.0, 1503.0, 1262.0, 1503.0, 1307.0, 1353.0, 1307.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [194.0, 1305.0, 1363.0, 1305.0, 1363.0, 1346.0, 194.0, 1346.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1397.0, 1305.0, 1505.0, 1305.0, 1505.0, 1346.0, 1397.0, 1346.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [193.0, 1337.0, 269.0, 1337.0, 269.0, 1394.0, 193.0, 1394.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [321.0, 1337.0, 606.0, 1337.0, 606.0, 1394.0, 321.0, 1394.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [624.0, 1337.0, 936.0, 1337.0, 936.0, 1394.0, 624.0, 1394.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1138.0, 1337.0, 1508.0, 1337.0, 1508.0, 1394.0, 1138.0, 1394.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [257.0, 1131.0, 605.0, 1131.0, 605.0, 1192.0, 257.0, 1192.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [674.0, 1131.0, 1512.0, 1131.0, 1512.0, 1192.0, 674.0, 1192.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [197.0, 1186.0, 1506.0, 1186.0, 1506.0, 1229.0, 197.0, 1229.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [201.0, 1230.0, 1342.0, 1230.0, 1342.0, 1265.0, 201.0, 1265.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [263.0, 1057.0, 1503.0, 1057.0, 1503.0, 1102.0, 263.0, 1102.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [200.0, 1102.0, 1046.0, 1102.0, 1046.0, 1141.0, 200.0, 1141.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [191.0, 1490.0, 881.0, 1490.0, 881.0, 1537.0, 191.0, 1537.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1050.0, 1490.0, 1190.0, 1490.0, 1190.0, 1537.0, 1050.0, 1537.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1260.0, 1490.0, 1504.0, 1490.0, 1504.0, 1537.0, 1260.0, 1537.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [199.0, 1535.0, 1139.0, 1535.0, 1139.0, 1573.0, 199.0, 1573.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1209.0, 1535.0, 1467.0, 1535.0, 1467.0, 1573.0, 1209.0, 1573.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [261.0, 1911.0, 1508.0, 1911.0, 1508.0, 1956.0, 261.0, 1956.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [195.0, 1950.0, 1180.0, 1950.0, 1180.0, 1999.0, 195.0, 1999.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [264.0, 550.0, 1155.0, 550.0, 1155.0, 590.0, 264.0, 590.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1172.0, 550.0, 1502.0, 550.0, 1502.0, 590.0, 1172.0, 590.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [197.0, 587.0, 323.0, 587.0, 323.0, 629.0, 197.0, 629.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [345.0, 587.0, 666.0, 587.0, 666.0, 629.0, 345.0, 629.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [959.0, 587.0, 1109.0, 587.0, 1109.0, 629.0, 959.0, 629.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [197.0, 1830.0, 298.0, 1830.0, 298.0, 1876.0, 197.0, 1876.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [512.0, 1830.0, 592.0, 1830.0, 592.0, 1876.0, 512.0, 1876.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [618.0, 1830.0, 977.0, 1830.0, 977.0, 1876.0, 618.0, 1876.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1001.0, 1830.0, 1506.0, 1830.0, 1506.0, 1876.0, 1001.0, 1876.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [372.0, 1870.0, 477.0, 1870.0, 477.0, 1916.0, 372.0, 1916.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [582.0, 1870.0, 596.0, 1870.0, 596.0, 1916.0, 582.0, 1916.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [193.0, 1677.0, 270.0, 1677.0, 270.0, 1724.0, 193.0, 1724.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [591.0, 1677.0, 708.0, 1677.0, 708.0, 1724.0, 591.0, 1724.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [201.0, 492.0, 919.0, 492.0, 919.0, 526.0, 201.0, 526.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [201.0, 492.0, 919.0, 492.0, 919.0, 526.0, 201.0, 526.0], "score": 1.0, "text": ""}] | {"preproc_blocks": [{"type": "text", "bbox": [70, 70, 541, 160], "lines": [{"bbox": [71, 71, 542, 91], "spans": [{"bbox": [71, 75, 90, 88], "score": 0.84, "content": "\\mathrm{ch}_{\\overline{{{\\mu}}}}", "type": "inline_equation", "height": 13, "width": 19}, {"bbox": [90, 71, 111, 91], "score": 1.0, "content": " for ", "type": "text"}, {"bbox": [112, 75, 127, 86], "score": 0.92, "content": "X_{r}", "type": "inline_equation", "height": 11, "width": 15}, {"bbox": [128, 71, 462, 91], "score": 1.0, "content": " can be written as a polynomial in the fundamental characters ", "type": "text"}, {"bbox": [462, 74, 537, 87], "score": 0.87, "content": "\\mathrm{ch}_{\\Lambda_{1}},\\ldots,\\mathrm{ch}_{\\Lambda_{r}}", "type": "inline_equation", "height": 13, "width": 75}, {"bbox": [537, 71, 542, 91], "score": 1.0, "content": ",", "type": "text"}], "index": 0}, {"bbox": [69, 88, 540, 106], "spans": [{"bbox": [69, 88, 212, 106], "score": 1.0, "content": "we know from (2.1b) that ", "type": "text"}, {"bbox": [212, 92, 303, 105], "score": 0.93, "content": "\\Gamma=\\{\\Lambda_{1},\\dots,\\Lambda_{r}\\}", "type": "inline_equation", "height": 13, "width": 91}, {"bbox": [304, 88, 438, 106], "score": 1.0, "content": " is a fusion-generator for ", "type": "text"}, {"bbox": [438, 88, 462, 103], "score": 0.92, "content": "X_{r}^{(1)}", "type": "inline_equation", "height": 15, "width": 24}, {"bbox": [463, 88, 532, 106], "score": 1.0, "content": "at any level ", "type": "text"}, {"bbox": [532, 93, 540, 102], "score": 0.84, "content": "k", "type": "inline_equation", "height": 9, "width": 8}], "index": 1}, {"bbox": [70, 105, 541, 120], "spans": [{"bbox": [70, 105, 185, 120], "score": 1.0, "content": "sufficiently large that ", "type": "text"}, {"bbox": [186, 108, 201, 119], "score": 0.92, "content": "P_{+}", "type": "inline_equation", "height": 11, "width": 15}, {"bbox": [202, 105, 268, 120], "score": 1.0, "content": " contains all ", "type": "text"}, {"bbox": [268, 107, 281, 118], "score": 0.9, "content": "\\Lambda_{i}", "type": "inline_equation", "height": 11, "width": 13}, {"bbox": [281, 105, 412, 120], "score": 1.0, "content": " (in other words, for any ", "type": "text"}, {"bbox": [412, 105, 478, 119], "score": 0.91, "content": "k\\geq\\operatorname*{max}_{i}a_{i}^{\\vee}", "type": "inline_equation", "height": 14, "width": 66}, {"bbox": [479, 105, 541, 120], "score": 1.0, "content": "). In fact, it", "type": "text"}], "index": 2}, {"bbox": [70, 119, 541, 135], "spans": [{"bbox": [70, 119, 362, 135], "score": 1.0, "content": "is easy to show [18] that a fusion-generator valid for any ", "type": "text"}, {"bbox": [362, 122, 385, 134], "score": 0.93, "content": "X_{r,k}", "type": "inline_equation", "height": 12, "width": 23}, {"bbox": [385, 119, 399, 135], "score": 1.0, "content": " is ", "type": "text"}, {"bbox": [400, 120, 492, 133], "score": 0.92, "content": "\\{\\Lambda_{1},\\ldots,\\Lambda_{r}\\}\\cap{\\cal P}_{+}", "type": "inline_equation", "height": 13, "width": 92}, {"bbox": [492, 119, 541, 135], "score": 1.0, "content": ". Smaller", "type": "text"}], "index": 3}, {"bbox": [70, 133, 541, 149], "spans": [{"bbox": [70, 133, 310, 149], "score": 1.0, "content": "fusion-generators usually exist \u2014 for example ", "type": "text"}, {"bbox": [310, 135, 336, 147], "score": 0.94, "content": "\\{\\Lambda_{1}\\}", "type": "inline_equation", "height": 12, "width": 26}, {"bbox": [336, 133, 465, 149], "score": 1.0, "content": " is a fusion-generator for ", "type": "text"}, {"bbox": [465, 135, 487, 148], "score": 0.91, "content": "A_{8,k}", "type": "inline_equation", "height": 13, "width": 22}, {"bbox": [488, 133, 541, 149], "score": 1.0, "content": " whenever", "type": "text"}], "index": 4}, {"bbox": [71, 149, 215, 163], "spans": [{"bbox": [71, 150, 78, 159], "score": 0.9, "content": "k", "type": "inline_equation", "height": 9, "width": 7}, {"bbox": [78, 149, 215, 163], "score": 1.0, "content": " is even and coprime to 3.", "type": "text"}], "index": 5}], "index": 2.5}, {"type": "text", "bbox": [72, 173, 331, 188], "lines": [{"bbox": [72, 177, 330, 189], "spans": [{"bbox": [72, 177, 330, 189], "score": 1.0, "content": "2.3. Standard constructions of fusion-symmetries", "type": "text"}], "index": 6}], "index": 6}, {"type": "text", "bbox": [70, 194, 540, 225], "lines": [{"bbox": [95, 198, 540, 212], "spans": [{"bbox": [95, 198, 415, 212], "score": 1.0, "content": "Simple-currents are a large source of fusion-symmetries. Let ", "type": "text"}, {"bbox": [416, 199, 421, 210], "score": 0.88, "content": "j", "type": "inline_equation", "height": 11, "width": 5}, {"bbox": [421, 198, 540, 212], "score": 1.0, "content": " be any simple-current", "type": "text"}], "index": 7}, {"bbox": [70, 211, 399, 226], "spans": [{"bbox": [70, 211, 116, 226], "score": 1.0, "content": "of order ", "type": "text"}, {"bbox": [116, 217, 123, 222], "score": 0.89, "content": "{\\boldsymbol{n}}", "type": "inline_equation", "height": 5, "width": 7}, {"bbox": [124, 211, 239, 226], "score": 1.0, "content": ". Choose any number ", "type": "text"}, {"bbox": [240, 212, 344, 225], "score": 0.93, "content": "a\\in\\{0,1,\\ldots,n-1\\}", "type": "inline_equation", "height": 13, "width": 104}, {"bbox": [345, 211, 399, 226], "score": 1.0, "content": " such that", "type": "text"}], "index": 8}], "index": 7.5}, {"type": "interline_equation", "bbox": [239, 239, 372, 252], "lines": [{"bbox": [239, 239, 372, 252], "spans": [{"bbox": [239, 239, 372, 252], "score": 0.88, "content": "\\operatorname*{gcd}(n a Q_{j}(j)+1,n)=1\\ .", "type": "interline_equation"}], "index": 9}], "index": 9}, {"type": "text", "bbox": [70, 261, 541, 336], "lines": [{"bbox": [70, 262, 540, 280], "spans": [{"bbox": [70, 262, 317, 280], "score": 1.0, "content": "Any solution to this defines a fusion-symmetry ", "type": "text"}, {"bbox": [318, 264, 396, 276], "score": 0.93, "content": "\\lambda\\mapsto J^{n a Q_{j}\\,(\\lambda)}\\lambda", "type": "inline_equation", "height": 12, "width": 78}, {"bbox": [396, 262, 519, 280], "score": 1.0, "content": ", which we shall denote ", "type": "text"}, {"bbox": [519, 266, 540, 279], "score": 0.91, "content": "\\pi[a]", "type": "inline_equation", "height": 13, "width": 21}], "index": 10}, {"bbox": [70, 279, 541, 294], "spans": [{"bbox": [70, 279, 86, 294], "score": 1.0, "content": "or ", "type": "text"}, {"bbox": [87, 280, 112, 293], "score": 0.93, "content": "\\pi_{j}[a]", "type": "inline_equation", "height": 13, "width": 25}, {"bbox": [112, 279, 393, 294], "score": 1.0, "content": ". Note that from (2.2b), (2.5b) and (2.5c) that any ", "type": "text"}, {"bbox": [393, 280, 441, 293], "score": 0.92, "content": "\\pi\\,=\\,\\pi[a]", "type": "inline_equation", "height": 13, "width": 48}, {"bbox": [441, 279, 448, 294], "score": 1.0, "content": ", ", "type": "text"}, {"bbox": [448, 281, 480, 290], "score": 0.87, "content": "a\\in\\mathbb{Z}", "type": "inline_equation", "height": 9, "width": 32}, {"bbox": [481, 279, 541, 294], "score": 1.0, "content": ", obeys the", "type": "text"}], "index": 11}, {"bbox": [69, 292, 543, 311], "spans": [{"bbox": [69, 292, 115, 311], "score": 1.0, "content": "relation ", "type": "text"}, {"bbox": [115, 295, 193, 309], "score": 0.94, "content": "N_{\\pi\\lambda,\\pi\\mu}^{\\pi\\nu}=\\ N_{\\lambda\\mu}^{\\nu}", "type": "inline_equation", "height": 14, "width": 78}, {"bbox": [194, 292, 228, 311], "score": 1.0, "content": " when ", "type": "text"}, {"bbox": [228, 295, 273, 309], "score": 0.94, "content": "N_{\\lambda\\mu}^{\\nu}\\neq0", "type": "inline_equation", "height": 14, "width": 45}, {"bbox": [273, 292, 543, 311], "score": 1.0, "content": " (it would in fact be a fusion-endomorphism \u2014 see", "type": "text"}], "index": 12}, {"bbox": [69, 308, 539, 325], "spans": [{"bbox": [69, 308, 235, 325], "score": 1.0, "content": "\u00a72.2); the \u2018gcd\u2019 condition forces ", "type": "text"}, {"bbox": [235, 311, 255, 323], "score": 0.92, "content": "\\pi[a]", "type": "inline_equation", "height": 12, "width": 20}, {"bbox": [255, 308, 418, 325], "score": 1.0, "content": " to be a permutation. Choosing ", "type": "text"}, {"bbox": [419, 309, 539, 324], "score": 0.92, "content": "b\\equiv-a\\,(n a Q_{j}(j)\\!+\\!1)^{-1}", "type": "inline_equation", "height": 15, "width": 120}], "index": 13}, {"bbox": [71, 322, 343, 339], "spans": [{"bbox": [71, 322, 102, 339], "score": 1.0, "content": "(mod ", "type": "text"}, {"bbox": [103, 329, 110, 334], "score": 0.82, "content": "{\\boldsymbol{n}}", "type": "inline_equation", "height": 5, "width": 7}, {"bbox": [111, 322, 189, 339], "score": 1.0, "content": "), we find that ", "type": "text"}, {"bbox": [189, 324, 244, 337], "score": 0.94, "content": "(\\pi[a],\\pi[b])", "type": "inline_equation", "height": 13, "width": 55}, {"bbox": [244, 322, 275, 339], "score": 1.0, "content": " is an ", "type": "text"}, {"bbox": [276, 325, 284, 334], "score": 0.88, "content": "S", "type": "inline_equation", "height": 9, "width": 8}, {"bbox": [284, 322, 343, 339], "score": 1.0, "content": "-symmetry.", "type": "text"}], "index": 14}], "index": 12}, {"type": "text", "bbox": [71, 336, 541, 378], "lines": [{"bbox": [95, 338, 541, 353], "spans": [{"bbox": [95, 338, 541, 353], "score": 1.0, "content": "When the group of simple-currents is not cyclic, this construction can be generalised", "type": "text"}], "index": 15}, {"bbox": [69, 352, 540, 368], "spans": [{"bbox": [69, 352, 512, 368], "score": 1.0, "content": "in a natural way, and the resulting fusion-symmetry will be parametrised by a matrix ", "type": "text"}, {"bbox": [512, 353, 536, 366], "score": 0.9, "content": "\\left(a_{i j}\\right)", "type": "inline_equation", "height": 13, "width": 24}, {"bbox": [537, 352, 540, 368], "score": 1.0, "content": ".", "type": "text"}], "index": 16}, {"bbox": [71, 367, 213, 380], "spans": [{"bbox": [71, 367, 213, 380], "score": 1.0, "content": "We will meet these in 3.4.", "type": "text"}], "index": 17}], "index": 16}, {"type": "text", "bbox": [70, 380, 541, 408], "lines": [{"bbox": [94, 380, 541, 396], "spans": [{"bbox": [94, 380, 541, 396], "score": 1.0, "content": "We will call these simple-current automorphisms. The first examples of these were", "type": "text"}], "index": 18}, {"bbox": [72, 396, 376, 410], "spans": [{"bbox": [72, 396, 376, 410], "score": 1.0, "content": "found by Bernard [2], and were generalised further in [31].", "type": "text"}], "index": 19}], "index": 18.5}, {"type": "text", "bbox": [70, 409, 541, 453], "lines": [{"bbox": [92, 407, 544, 429], "spans": [{"bbox": [92, 407, 217, 429], "score": 1.0, "content": "For any affine algebra ", "type": "text"}, {"bbox": [218, 410, 242, 424], "score": 0.93, "content": "X_{r}^{(1)}", "type": "inline_equation", "height": 14, "width": 24}, {"bbox": [242, 407, 544, 429], "score": 1.0, "content": "and any sufficiently high level, we will see in the next", "type": "text"}], "index": 20}, {"bbox": [70, 426, 542, 442], "spans": [{"bbox": [70, 426, 542, 442], "score": 1.0, "content": "section that its fusion-symmetries consist entirely of simple-current automorphisms and", "type": "text"}], "index": 21}, {"bbox": [72, 442, 483, 455], "spans": [{"bbox": [72, 442, 483, 455], "score": 1.0, "content": "conjugations. For this reason, any other fusion-symmetry is called exceptional.", "type": "text"}], "index": 22}], "index": 21}, {"type": "text", "bbox": [70, 453, 541, 497], "lines": [{"bbox": [94, 454, 541, 470], "spans": [{"bbox": [94, 454, 476, 470], "score": 1.0, "content": "There is another general construction of fusion-symmetries, generalising ", "type": "text"}, {"bbox": [477, 457, 486, 466], "score": 0.88, "content": "C", "type": "inline_equation", "height": 9, "width": 9}, {"bbox": [487, 454, 541, 470], "score": 1.0, "content": ", although", "type": "text"}], "index": 23}, {"bbox": [69, 469, 541, 484], "spans": [{"bbox": [69, 469, 490, 484], "score": 1.0, "content": "it yields few new examples for the affine fusion rings. If the Galois automorphism ", "type": "text"}, {"bbox": [491, 474, 502, 482], "score": 0.89, "content": "\\sigma_{\\ell}", "type": "inline_equation", "height": 8, "width": 11}, {"bbox": [502, 469, 541, 484], "score": 1.0, "content": "is such", "type": "text"}], "index": 24}, {"bbox": [69, 481, 542, 501], "spans": [{"bbox": [69, 481, 96, 501], "score": 1.0, "content": "that ", "type": "text"}, {"bbox": [97, 483, 115, 495], "score": 0.91, "content": "0^{(\\ell)}", "type": "inline_equation", "height": 12, "width": 18}, {"bbox": [115, 481, 218, 501], "score": 1.0, "content": " is a simple-current ", "type": "text"}, {"bbox": [218, 486, 224, 497], "score": 0.85, "content": "j", "type": "inline_equation", "height": 11, "width": 6}, {"bbox": [224, 481, 336, 501], "score": 1.0, "content": " \u2014 equivalently, that ", "type": "text"}, {"bbox": [337, 484, 409, 497], "score": 0.94, "content": "\\sigma_{\\ell}(S_{00}^{2})=S_{00}^{2}", "type": "inline_equation", "height": 13, "width": 72}, {"bbox": [409, 481, 542, 501], "score": 1.0, "content": " \u2014 then the permutation", "type": "text"}], "index": 25}], "index": 24}, {"type": "interline_equation", "bbox": [257, 509, 354, 524], "lines": [{"bbox": [257, 509, 354, 524], "spans": [{"bbox": [257, 509, 354, 524], "score": 0.93, "content": "\\pi\\{\\ell\\}:\\lambda\\mapsto J(\\lambda^{(\\ell)})", "type": "interline_equation"}], "index": 26}], "index": 26}, {"type": "text", "bbox": [69, 534, 540, 564], "lines": [{"bbox": [68, 536, 541, 553], "spans": [{"bbox": [68, 536, 317, 553], "score": 1.0, "content": "is a fusion-symmetry. The simplest example is ", "type": "text"}, {"bbox": [317, 538, 377, 551], "score": 0.96, "content": "\\pi\\{-1\\}=C", "type": "inline_equation", "height": 13, "width": 60}, {"bbox": [378, 536, 428, 553], "score": 1.0, "content": ". We call ", "type": "text"}, {"bbox": [428, 538, 453, 551], "score": 0.93, "content": "\\pi\\{\\ell\\}", "type": "inline_equation", "height": 13, "width": 25}, {"bbox": [453, 536, 541, 553], "score": 1.0, "content": " a Galois fusion-", "type": "text"}], "index": 27}, {"bbox": [71, 552, 528, 566], "spans": [{"bbox": [71, 552, 410, 566], "score": 1.0, "content": "symmetry. A special case of these was given in [13]. To see that ", "type": "text"}, {"bbox": [410, 552, 434, 565], "score": 0.93, "content": "\\pi\\{\\ell\\}", "type": "inline_equation", "height": 13, "width": 24}, {"bbox": [435, 552, 528, 566], "score": 1.0, "content": " works, note from", "type": "text"}], "index": 28}], "index": 27.5}, {"type": "interline_equation", "bbox": [198, 576, 412, 593], "lines": [{"bbox": [198, 576, 412, 593], "spans": [{"bbox": [198, 576, 412, 593], "score": 0.89, "content": "\\epsilon_{\\ell}(\\lambda)\\,S_{\\lambda^{(\\ell)},0}=\\sigma_{\\ell}S_{\\lambda0}=\\epsilon_{\\ell}(0)\\,e^{2\\pi\\mathrm{i}\\,Q_{j}(\\lambda)}S_{\\lambda0}", "type": "interline_equation"}], "index": 29}], "index": 29}, {"type": "text", "bbox": [70, 603, 254, 619], "lines": [{"bbox": [69, 603, 254, 620], "spans": [{"bbox": [69, 603, 97, 620], "score": 1.0, "content": "that ", "type": "text"}, {"bbox": [97, 606, 212, 620], "score": 0.93, "content": "\\epsilon_{\\ell}(\\lambda)\\,\\epsilon_{\\ell}(0)=e^{2\\pi\\mathrm{i}\\,Q_{j}(\\lambda)}", "type": "inline_equation", "height": 14, "width": 115}, {"bbox": [212, 603, 254, 620], "score": 1.0, "content": ". Hence", "type": "text"}], "index": 30}], "index": 30}, {"type": "interline_equation", "bbox": [116, 631, 493, 648], "lines": [{"bbox": [116, 631, 493, 648], "spans": [{"bbox": [116, 631, 493, 648], "score": 0.91, "content": "S_{J\\lambda^{(\\ell)},\\mu}=e^{2\\pi\\mathrm{i}\\,Q_{j}(\\mu)}\\epsilon_{\\ell}(\\lambda)\\,\\sigma_{\\ell}(S_{\\lambda\\mu})=e^{2\\pi\\mathrm{i}\\,Q_{j}(\\mu)}\\,\\epsilon_{\\ell}(\\lambda)\\,\\epsilon_{\\ell}(\\mu)\\,S_{\\lambda,\\mu^{(\\ell)}}=S_{\\lambda,J\\mu^{(\\ell)}}", "type": "interline_equation"}], "index": 31}], "index": 31}, {"type": "text", "bbox": [70, 657, 542, 686], "lines": [{"bbox": [70, 658, 542, 675], "spans": [{"bbox": [70, 658, 107, 675], "score": 1.0, "content": "and so ", "type": "text"}, {"bbox": [107, 660, 183, 673], "score": 0.93, "content": "(\\pi\\{\\ell\\},\\pi\\{\\ell\\}^{-1})", "type": "inline_equation", "height": 13, "width": 76}, {"bbox": [184, 658, 213, 675], "score": 1.0, "content": " is an ", "type": "text"}, {"bbox": [213, 661, 222, 670], "score": 0.9, "content": "S", "type": "inline_equation", "height": 9, "width": 9}, {"bbox": [222, 658, 351, 675], "score": 1.0, "content": "-symmetry. Incidentally, ", "type": "text"}, {"bbox": [352, 661, 360, 670], "score": 0.88, "content": "J", "type": "inline_equation", "height": 9, "width": 8}, {"bbox": [360, 658, 542, 675], "score": 1.0, "content": " will always be order 1 or 2 because", "type": "text"}], "index": 32}, {"bbox": [70, 673, 214, 689], "spans": [{"bbox": [70, 675, 133, 688], "score": 0.92, "content": "2\\,Q_{j}(\\lambda)\\in\\mathbb{Z}", "type": "inline_equation", "height": 13, "width": 63}, {"bbox": [133, 673, 171, 689], "score": 1.0, "content": " for all ", "type": "text"}, {"bbox": [172, 676, 209, 687], "score": 0.92, "content": "\\lambda\\in P_{+}", "type": "inline_equation", "height": 11, "width": 37}, {"bbox": [209, 673, 214, 689], "score": 1.0, "content": ".", "type": "text"}], "index": 33}], "index": 32.5}, {"type": "text", "bbox": [70, 687, 542, 715], "lines": [{"bbox": [93, 687, 542, 704], "spans": [{"bbox": [93, 687, 542, 704], "score": 1.0, "content": "Simple-currents (2.2), the Galois action (2.3), and the corresponding fusion-symmetries", "type": "text"}], "index": 34}, {"bbox": [70, 702, 424, 719], "spans": [{"bbox": [70, 702, 424, 719], "score": 1.0, "content": "have analogues in arbitrary (i.e. not necessarily affine) fusion rings.", "type": "text"}], "index": 35}], "index": 34.5}], "layout_bboxes": [], "page_idx": 7, "page_size": [612.0, 792.0], "_layout_tree": [], "images": [], "tables": [], "interline_equations": [{"type": "interline_equation", "bbox": [239, 239, 372, 252], "lines": [{"bbox": [239, 239, 372, 252], "spans": [{"bbox": [239, 239, 372, 252], "score": 0.88, "content": "\\operatorname*{gcd}(n a Q_{j}(j)+1,n)=1\\ .", "type": "interline_equation"}], "index": 9}], "index": 9}, {"type": "interline_equation", "bbox": [257, 509, 354, 524], "lines": [{"bbox": [257, 509, 354, 524], "spans": [{"bbox": [257, 509, 354, 524], "score": 0.93, "content": "\\pi\\{\\ell\\}:\\lambda\\mapsto J(\\lambda^{(\\ell)})", "type": "interline_equation"}], "index": 26}], "index": 26}, {"type": "interline_equation", "bbox": [198, 576, 412, 593], "lines": [{"bbox": [198, 576, 412, 593], "spans": [{"bbox": [198, 576, 412, 593], "score": 0.89, "content": "\\epsilon_{\\ell}(\\lambda)\\,S_{\\lambda^{(\\ell)},0}=\\sigma_{\\ell}S_{\\lambda0}=\\epsilon_{\\ell}(0)\\,e^{2\\pi\\mathrm{i}\\,Q_{j}(\\lambda)}S_{\\lambda0}", "type": "interline_equation"}], "index": 29}], "index": 29}, {"type": "interline_equation", "bbox": [116, 631, 493, 648], "lines": [{"bbox": [116, 631, 493, 648], "spans": [{"bbox": [116, 631, 493, 648], "score": 0.91, "content": "S_{J\\lambda^{(\\ell)},\\mu}=e^{2\\pi\\mathrm{i}\\,Q_{j}(\\mu)}\\epsilon_{\\ell}(\\lambda)\\,\\sigma_{\\ell}(S_{\\lambda\\mu})=e^{2\\pi\\mathrm{i}\\,Q_{j}(\\mu)}\\,\\epsilon_{\\ell}(\\lambda)\\,\\epsilon_{\\ell}(\\mu)\\,S_{\\lambda,\\mu^{(\\ell)}}=S_{\\lambda,J\\mu^{(\\ell)}}", "type": "interline_equation"}], "index": 31}], "index": 31}], "discarded_blocks": [], "need_drop": false, "drop_reason": [], "para_blocks": [{"type": "text", "bbox": [70, 70, 541, 160], "lines": [], "index": 2.5, "page_num": "page_7", "page_size": [612.0, 792.0], "bbox_fs": [69, 71, 542, 163], "lines_deleted": true}, {"type": "text", "bbox": [72, 173, 331, 188], "lines": [{"bbox": [72, 177, 330, 189], "spans": [{"bbox": [72, 177, 330, 189], "score": 1.0, "content": "2.3. Standard constructions of fusion-symmetries", "type": "text"}], "index": 6}], "index": 6, "page_num": "page_7", "page_size": [612.0, 792.0], "bbox_fs": [72, 177, 330, 189]}, {"type": "text", "bbox": [70, 194, 540, 225], "lines": [{"bbox": [95, 198, 540, 212], "spans": [{"bbox": [95, 198, 415, 212], "score": 1.0, "content": "Simple-currents are a large source of fusion-symmetries. Let ", "type": "text"}, {"bbox": [416, 199, 421, 210], "score": 0.88, "content": "j", "type": "inline_equation", "height": 11, "width": 5}, {"bbox": [421, 198, 540, 212], "score": 1.0, "content": " be any simple-current", "type": "text"}], "index": 7}, {"bbox": [70, 211, 399, 226], "spans": [{"bbox": [70, 211, 116, 226], "score": 1.0, "content": "of order ", "type": "text"}, {"bbox": [116, 217, 123, 222], "score": 0.89, "content": "{\\boldsymbol{n}}", "type": "inline_equation", "height": 5, "width": 7}, {"bbox": [124, 211, 239, 226], "score": 1.0, "content": ". Choose any number ", "type": "text"}, {"bbox": [240, 212, 344, 225], "score": 0.93, "content": "a\\in\\{0,1,\\ldots,n-1\\}", "type": "inline_equation", "height": 13, "width": 104}, {"bbox": [345, 211, 399, 226], "score": 1.0, "content": " such that", "type": "text"}], "index": 8}], "index": 7.5, "page_num": "page_7", "page_size": [612.0, 792.0], "bbox_fs": [70, 198, 540, 226]}, {"type": "interline_equation", "bbox": [239, 239, 372, 252], "lines": [{"bbox": [239, 239, 372, 252], "spans": [{"bbox": [239, 239, 372, 252], "score": 0.88, "content": "\\operatorname*{gcd}(n a Q_{j}(j)+1,n)=1\\ .", "type": "interline_equation"}], "index": 9}], "index": 9, "page_num": "page_7", "page_size": [612.0, 792.0]}, {"type": "text", "bbox": [70, 261, 541, 336], "lines": [{"bbox": [70, 262, 540, 280], "spans": [{"bbox": [70, 262, 317, 280], "score": 1.0, "content": "Any solution to this defines a fusion-symmetry ", "type": "text"}, {"bbox": [318, 264, 396, 276], "score": 0.93, "content": "\\lambda\\mapsto J^{n a Q_{j}\\,(\\lambda)}\\lambda", "type": "inline_equation", "height": 12, "width": 78}, {"bbox": [396, 262, 519, 280], "score": 1.0, "content": ", which we shall denote ", "type": "text"}, {"bbox": [519, 266, 540, 279], "score": 0.91, "content": "\\pi[a]", "type": "inline_equation", "height": 13, "width": 21}], "index": 10}, {"bbox": [70, 279, 541, 294], "spans": [{"bbox": [70, 279, 86, 294], "score": 1.0, "content": "or ", "type": "text"}, {"bbox": [87, 280, 112, 293], "score": 0.93, "content": "\\pi_{j}[a]", "type": "inline_equation", "height": 13, "width": 25}, {"bbox": [112, 279, 393, 294], "score": 1.0, "content": ". Note that from (2.2b), (2.5b) and (2.5c) that any ", "type": "text"}, {"bbox": [393, 280, 441, 293], "score": 0.92, "content": "\\pi\\,=\\,\\pi[a]", "type": "inline_equation", "height": 13, "width": 48}, {"bbox": [441, 279, 448, 294], "score": 1.0, "content": ", ", "type": "text"}, {"bbox": [448, 281, 480, 290], "score": 0.87, "content": "a\\in\\mathbb{Z}", "type": "inline_equation", "height": 9, "width": 32}, {"bbox": [481, 279, 541, 294], "score": 1.0, "content": ", obeys the", "type": "text"}], "index": 11}, {"bbox": [69, 292, 543, 311], "spans": [{"bbox": [69, 292, 115, 311], "score": 1.0, "content": "relation ", "type": "text"}, {"bbox": [115, 295, 193, 309], "score": 0.94, "content": "N_{\\pi\\lambda,\\pi\\mu}^{\\pi\\nu}=\\ N_{\\lambda\\mu}^{\\nu}", "type": "inline_equation", "height": 14, "width": 78}, {"bbox": [194, 292, 228, 311], "score": 1.0, "content": " when ", "type": "text"}, {"bbox": [228, 295, 273, 309], "score": 0.94, "content": "N_{\\lambda\\mu}^{\\nu}\\neq0", "type": "inline_equation", "height": 14, "width": 45}, {"bbox": [273, 292, 543, 311], "score": 1.0, "content": " (it would in fact be a fusion-endomorphism \u2014 see", "type": "text"}], "index": 12}, {"bbox": [69, 308, 539, 325], "spans": [{"bbox": [69, 308, 235, 325], "score": 1.0, "content": "\u00a72.2); the \u2018gcd\u2019 condition forces ", "type": "text"}, {"bbox": [235, 311, 255, 323], "score": 0.92, "content": "\\pi[a]", "type": "inline_equation", "height": 12, "width": 20}, {"bbox": [255, 308, 418, 325], "score": 1.0, "content": " to be a permutation. Choosing ", "type": "text"}, {"bbox": [419, 309, 539, 324], "score": 0.92, "content": "b\\equiv-a\\,(n a Q_{j}(j)\\!+\\!1)^{-1}", "type": "inline_equation", "height": 15, "width": 120}], "index": 13}, {"bbox": [71, 322, 343, 339], "spans": [{"bbox": [71, 322, 102, 339], "score": 1.0, "content": "(mod ", "type": "text"}, {"bbox": [103, 329, 110, 334], "score": 0.82, "content": "{\\boldsymbol{n}}", "type": "inline_equation", "height": 5, "width": 7}, {"bbox": [111, 322, 189, 339], "score": 1.0, "content": "), we find that ", "type": "text"}, {"bbox": [189, 324, 244, 337], "score": 0.94, "content": "(\\pi[a],\\pi[b])", "type": "inline_equation", "height": 13, "width": 55}, {"bbox": [244, 322, 275, 339], "score": 1.0, "content": " is an ", "type": "text"}, {"bbox": [276, 325, 284, 334], "score": 0.88, "content": "S", "type": "inline_equation", "height": 9, "width": 8}, {"bbox": [284, 322, 343, 339], "score": 1.0, "content": "-symmetry.", "type": "text"}], "index": 14}], "index": 12, "page_num": "page_7", "page_size": [612.0, 792.0], "bbox_fs": [69, 262, 543, 339]}, {"type": "text", "bbox": [71, 336, 541, 378], "lines": [{"bbox": [95, 338, 541, 353], "spans": [{"bbox": [95, 338, 541, 353], "score": 1.0, "content": "When the group of simple-currents is not cyclic, this construction can be generalised", "type": "text"}], "index": 15}, {"bbox": [69, 352, 540, 368], "spans": [{"bbox": [69, 352, 512, 368], "score": 1.0, "content": "in a natural way, and the resulting fusion-symmetry will be parametrised by a matrix ", "type": "text"}, {"bbox": [512, 353, 536, 366], "score": 0.9, "content": "\\left(a_{i j}\\right)", "type": "inline_equation", "height": 13, "width": 24}, {"bbox": [537, 352, 540, 368], "score": 1.0, "content": ".", "type": "text"}], "index": 16}, {"bbox": [71, 367, 213, 380], "spans": [{"bbox": [71, 367, 213, 380], "score": 1.0, "content": "We will meet these in 3.4.", "type": "text"}], "index": 17}], "index": 16, "page_num": "page_7", "page_size": [612.0, 792.0], "bbox_fs": [69, 338, 541, 380]}, {"type": "text", "bbox": [70, 380, 541, 408], "lines": [{"bbox": [94, 380, 541, 396], "spans": [{"bbox": [94, 380, 541, 396], "score": 1.0, "content": "We will call these simple-current automorphisms. The first examples of these were", "type": "text"}], "index": 18}, {"bbox": [72, 396, 376, 410], "spans": [{"bbox": [72, 396, 376, 410], "score": 1.0, "content": "found by Bernard [2], and were generalised further in [31].", "type": "text"}], "index": 19}], "index": 18.5, "page_num": "page_7", "page_size": [612.0, 792.0], "bbox_fs": [72, 380, 541, 410]}, {"type": "text", "bbox": [70, 409, 541, 453], "lines": [{"bbox": [92, 407, 544, 429], "spans": [{"bbox": [92, 407, 217, 429], "score": 1.0, "content": "For any affine algebra ", "type": "text"}, {"bbox": [218, 410, 242, 424], "score": 0.93, "content": "X_{r}^{(1)}", "type": "inline_equation", "height": 14, "width": 24}, {"bbox": [242, 407, 544, 429], "score": 1.0, "content": "and any sufficiently high level, we will see in the next", "type": "text"}], "index": 20}, {"bbox": [70, 426, 542, 442], "spans": [{"bbox": [70, 426, 542, 442], "score": 1.0, "content": "section that its fusion-symmetries consist entirely of simple-current automorphisms and", "type": "text"}], "index": 21}, {"bbox": [72, 442, 483, 455], "spans": [{"bbox": [72, 442, 483, 455], "score": 1.0, "content": "conjugations. For this reason, any other fusion-symmetry is called exceptional.", "type": "text"}], "index": 22}], "index": 21, "page_num": "page_7", "page_size": [612.0, 792.0], "bbox_fs": [70, 407, 544, 455]}, {"type": "text", "bbox": [70, 453, 541, 497], "lines": [{"bbox": [94, 454, 541, 470], "spans": [{"bbox": [94, 454, 476, 470], "score": 1.0, "content": "There is another general construction of fusion-symmetries, generalising ", "type": "text"}, {"bbox": [477, 457, 486, 466], "score": 0.88, "content": "C", "type": "inline_equation", "height": 9, "width": 9}, {"bbox": [487, 454, 541, 470], "score": 1.0, "content": ", although", "type": "text"}], "index": 23}, {"bbox": [69, 469, 541, 484], "spans": [{"bbox": [69, 469, 490, 484], "score": 1.0, "content": "it yields few new examples for the affine fusion rings. If the Galois automorphism ", "type": "text"}, {"bbox": [491, 474, 502, 482], "score": 0.89, "content": "\\sigma_{\\ell}", "type": "inline_equation", "height": 8, "width": 11}, {"bbox": [502, 469, 541, 484], "score": 1.0, "content": "is such", "type": "text"}], "index": 24}, {"bbox": [69, 481, 542, 501], "spans": [{"bbox": [69, 481, 96, 501], "score": 1.0, "content": "that ", "type": "text"}, {"bbox": [97, 483, 115, 495], "score": 0.91, "content": "0^{(\\ell)}", "type": "inline_equation", "height": 12, "width": 18}, {"bbox": [115, 481, 218, 501], "score": 1.0, "content": " is a simple-current ", "type": "text"}, {"bbox": [218, 486, 224, 497], "score": 0.85, "content": "j", "type": "inline_equation", "height": 11, "width": 6}, {"bbox": [224, 481, 336, 501], "score": 1.0, "content": " \u2014 equivalently, that ", "type": "text"}, {"bbox": [337, 484, 409, 497], "score": 0.94, "content": "\\sigma_{\\ell}(S_{00}^{2})=S_{00}^{2}", "type": "inline_equation", "height": 13, "width": 72}, {"bbox": [409, 481, 542, 501], "score": 1.0, "content": " \u2014 then the permutation", "type": "text"}], "index": 25}], "index": 24, "page_num": "page_7", "page_size": [612.0, 792.0], "bbox_fs": [69, 454, 542, 501]}, {"type": "interline_equation", "bbox": [257, 509, 354, 524], "lines": [{"bbox": [257, 509, 354, 524], "spans": [{"bbox": [257, 509, 354, 524], "score": 0.93, "content": "\\pi\\{\\ell\\}:\\lambda\\mapsto J(\\lambda^{(\\ell)})", "type": "interline_equation"}], "index": 26}], "index": 26, "page_num": "page_7", "page_size": [612.0, 792.0]}, {"type": "text", "bbox": [69, 534, 540, 564], "lines": [{"bbox": [68, 536, 541, 553], "spans": [{"bbox": [68, 536, 317, 553], "score": 1.0, "content": "is a fusion-symmetry. The simplest example is ", "type": "text"}, {"bbox": [317, 538, 377, 551], "score": 0.96, "content": "\\pi\\{-1\\}=C", "type": "inline_equation", "height": 13, "width": 60}, {"bbox": [378, 536, 428, 553], "score": 1.0, "content": ". We call ", "type": "text"}, {"bbox": [428, 538, 453, 551], "score": 0.93, "content": "\\pi\\{\\ell\\}", "type": "inline_equation", "height": 13, "width": 25}, {"bbox": [453, 536, 541, 553], "score": 1.0, "content": " a Galois fusion-", "type": "text"}], "index": 27}, {"bbox": [71, 552, 528, 566], "spans": [{"bbox": [71, 552, 410, 566], "score": 1.0, "content": "symmetry. A special case of these was given in [13]. To see that ", "type": "text"}, {"bbox": [410, 552, 434, 565], "score": 0.93, "content": "\\pi\\{\\ell\\}", "type": "inline_equation", "height": 13, "width": 24}, {"bbox": [435, 552, 528, 566], "score": 1.0, "content": " works, note from", "type": "text"}], "index": 28}], "index": 27.5, "page_num": "page_7", "page_size": [612.0, 792.0], "bbox_fs": [68, 536, 541, 566]}, {"type": "interline_equation", "bbox": [198, 576, 412, 593], "lines": [{"bbox": [198, 576, 412, 593], "spans": [{"bbox": [198, 576, 412, 593], "score": 0.89, "content": "\\epsilon_{\\ell}(\\lambda)\\,S_{\\lambda^{(\\ell)},0}=\\sigma_{\\ell}S_{\\lambda0}=\\epsilon_{\\ell}(0)\\,e^{2\\pi\\mathrm{i}\\,Q_{j}(\\lambda)}S_{\\lambda0}", "type": "interline_equation"}], "index": 29}], "index": 29, "page_num": "page_7", "page_size": [612.0, 792.0]}, {"type": "text", "bbox": [70, 603, 254, 619], "lines": [{"bbox": [69, 603, 254, 620], "spans": [{"bbox": [69, 603, 97, 620], "score": 1.0, "content": "that ", "type": "text"}, {"bbox": [97, 606, 212, 620], "score": 0.93, "content": "\\epsilon_{\\ell}(\\lambda)\\,\\epsilon_{\\ell}(0)=e^{2\\pi\\mathrm{i}\\,Q_{j}(\\lambda)}", "type": "inline_equation", "height": 14, "width": 115}, {"bbox": [212, 603, 254, 620], "score": 1.0, "content": ". Hence", "type": "text"}], "index": 30}], "index": 30, "page_num": "page_7", "page_size": [612.0, 792.0], "bbox_fs": [69, 603, 254, 620]}, {"type": "interline_equation", "bbox": [116, 631, 493, 648], "lines": [{"bbox": [116, 631, 493, 648], "spans": [{"bbox": [116, 631, 493, 648], "score": 0.91, "content": "S_{J\\lambda^{(\\ell)},\\mu}=e^{2\\pi\\mathrm{i}\\,Q_{j}(\\mu)}\\epsilon_{\\ell}(\\lambda)\\,\\sigma_{\\ell}(S_{\\lambda\\mu})=e^{2\\pi\\mathrm{i}\\,Q_{j}(\\mu)}\\,\\epsilon_{\\ell}(\\lambda)\\,\\epsilon_{\\ell}(\\mu)\\,S_{\\lambda,\\mu^{(\\ell)}}=S_{\\lambda,J\\mu^{(\\ell)}}", "type": "interline_equation"}], "index": 31}], "index": 31, "page_num": "page_7", "page_size": [612.0, 792.0]}, {"type": "text", "bbox": [70, 657, 542, 686], "lines": [{"bbox": [70, 658, 542, 675], "spans": [{"bbox": [70, 658, 107, 675], "score": 1.0, "content": "and so ", "type": "text"}, {"bbox": [107, 660, 183, 673], "score": 0.93, "content": "(\\pi\\{\\ell\\},\\pi\\{\\ell\\}^{-1})", "type": "inline_equation", "height": 13, "width": 76}, {"bbox": [184, 658, 213, 675], "score": 1.0, "content": " is an ", "type": "text"}, {"bbox": [213, 661, 222, 670], "score": 0.9, "content": "S", "type": "inline_equation", "height": 9, "width": 9}, {"bbox": [222, 658, 351, 675], "score": 1.0, "content": "-symmetry. Incidentally, ", "type": "text"}, {"bbox": [352, 661, 360, 670], "score": 0.88, "content": "J", "type": "inline_equation", "height": 9, "width": 8}, {"bbox": [360, 658, 542, 675], "score": 1.0, "content": " will always be order 1 or 2 because", "type": "text"}], "index": 32}, {"bbox": [70, 673, 214, 689], "spans": [{"bbox": [70, 675, 133, 688], "score": 0.92, "content": "2\\,Q_{j}(\\lambda)\\in\\mathbb{Z}", "type": "inline_equation", "height": 13, "width": 63}, {"bbox": [133, 673, 171, 689], "score": 1.0, "content": " for all ", "type": "text"}, {"bbox": [172, 676, 209, 687], "score": 0.92, "content": "\\lambda\\in P_{+}", "type": "inline_equation", "height": 11, "width": 37}, {"bbox": [209, 673, 214, 689], "score": 1.0, "content": ".", "type": "text"}], "index": 33}], "index": 32.5, "page_num": "page_7", "page_size": [612.0, 792.0], "bbox_fs": [70, 658, 542, 689]}, {"type": "text", "bbox": [70, 687, 542, 715], "lines": [{"bbox": [93, 687, 542, 704], "spans": [{"bbox": [93, 687, 542, 704], "score": 1.0, "content": "Simple-currents (2.2), the Galois action (2.3), and the corresponding fusion-symmetries", "type": "text"}], "index": 34}, {"bbox": [70, 702, 424, 719], "spans": [{"bbox": [70, 702, 424, 719], "score": 1.0, "content": "have analogues in arbitrary (i.e. not necessarily affine) fusion rings.", "type": "text"}], "index": 35}], "index": 34.5, "page_num": "page_7", "page_size": [612.0, 792.0], "bbox_fs": [70, 687, 542, 719]}]} |
|
0002044v1 | 3 | Charge-conjugation is the order 2 permutation of $$P_{+}$$ given by $$C\lambda\,=\,^{t}\lambda$$ , the weight
contragredient to $$\lambda$$ . For instance $$C0=0$$ . It has the basic property that
and $$S^{2}=C$$ . $$C$$ corresponds to a symmetry of the (unextended) Dynkin diagram of $$X_{r}$$ ,
as we will see next section.
Related to $$C$$ are all the other symmetries of the unextended Dynkin diagram. We
call these conjugations. The only $$X_{r}^{(1)}$$ with nontrivial conjugations other than charge-
conjugation are $$D_{e v e n}^{(1)}$$ .
Another important symmetry of the matrix $$S$$ is called simple-currents. Any weight
$$j\in P_{+}$$ with q-dimension $$\mathcal{D}(j)=1$$ , is called a simple-current. To any such weight $$j$$ is
associated a permutation $$J$$ of $$P_{+}$$ and a function $$Q_{j}:P_{+}\to\mathbb{Q}$$ , such that $$J0=j$$ and
The simple-currents form an abelian group, given by composition of the permutations $$J$$ .
All simple-currents for the affine algebras were classified in [12], and with one unimpor-
tant exception ( $${E}_{8}^{(1)}$$ at level 2) correspond to symmetries of the extended Coxeter–Dynkin
diagram of $$X_{r}^{(1)}$$ . The simplest proof would use the methods of Proposition 4.1 below. For
a more intrinsically algebraic interpretation of these simple-currents, see [25] where their
group is denoted $$W_{0}^{+}$$ .
Evaluating $$S_{J\lambda,j^{\prime}}$$ in two ways gives the useful
and hence the reciprocity $$Q_{j}(j^{\prime})=Q_{j^{\prime}}(j)$$ .
For each $$X_{r}$$ , the inner products $$(\lambda|\mu)$$ of weights are rational; let $$N$$ denote the least
common denominator. E.g. for $$A_{r}$$ this is $$N=r+1$$ , while for $$E_{8}$$ it is $$N=1$$ . Choose any
integer $$\ell$$ coprime to $$\kappa N$$ . Then for any $$\lambda\in P_{+}$$ there is a unique weight $$\lambda^{(\ell)}\in P_{+}$$ , coroot
$$\alpha$$ , and (finite) Weyl element $$\omega$$ such that
This is simply the statement that the affine Weyl orbit of $$\ell\left(\lambda+\rho\right)$$ intersects the set $$P_{+}+\rho$$
at precisely one point (namely $$\lambda^{(\ell)}+\rho)$$ . Write $$\epsilon_{\ell}^{\prime}(\lambda)=\operatorname*{det}\omega=\pm1$$ . Then [16]
This has an obvious interpretation as a Galois automorphism [4]: the field generated over
$$\mathbb{Q}$$ by all entries $$S_{\lambda\mu}$$ lies in the cyclotomic field $$\mathbb{Q}[\xi_{4N\kappa}]$$ where $$\xi_{n}$$ denotes the root of unity
$$\exp[2\pi\mathrm{i}/n]$$ ; for any $$\sigma_{\ell}\in{\mathrm{Gal}}(\mathbb{Q}[\xi_{4N\kappa}]/\mathbb{Q})\cong\mathbb{Z}_{4N\kappa}^{\times}$$ , there will be a function $$\epsilon_{\ell}:P_{+}\to\{\pm1\}$$
such that
| <p>Charge-conjugation is the order 2 permutation of $$P_{+}$$ given by $$C\lambda\,=\,^{t}\lambda$$ , the weight
contragredient to $$\lambda$$ . For instance $$C0=0$$ . It has the basic property that</p>
<p>and $$S^{2}=C$$ . $$C$$ corresponds to a symmetry of the (unextended) Dynkin diagram of $$X_{r}$$ ,
as we will see next section.</p>
<p>Related to $$C$$ are all the other symmetries of the unextended Dynkin diagram. We
call these conjugations. The only $$X_{r}^{(1)}$$ with nontrivial conjugations other than charge-
conjugation are $$D_{e v e n}^{(1)}$$ .</p>
<p>Another important symmetry of the matrix $$S$$ is called simple-currents. Any weight
$$j\in P_{+}$$ with q-dimension $$\mathcal{D}(j)=1$$ , is called a simple-current. To any such weight $$j$$ is
associated a permutation $$J$$ of $$P_{+}$$ and a function $$Q_{j}:P_{+}\to\mathbb{Q}$$ , such that $$J0=j$$ and</p>
<p>The simple-currents form an abelian group, given by composition of the permutations $$J$$ .</p>
<p>All simple-currents for the affine algebras were classified in [12], and with one unimpor-
tant exception ( $${E}_{8}^{(1)}$$ at level 2) correspond to symmetries of the extended Coxeter–Dynkin
diagram of $$X_{r}^{(1)}$$ . The simplest proof would use the methods of Proposition 4.1 below. For
a more intrinsically algebraic interpretation of these simple-currents, see [25] where their
group is denoted $$W_{0}^{+}$$ .</p>
<p>Evaluating $$S_{J\lambda,j^{\prime}}$$ in two ways gives the useful</p>
<p>and hence the reciprocity $$Q_{j}(j^{\prime})=Q_{j^{\prime}}(j)$$ .</p>
<p>For each $$X_{r}$$ , the inner products $$(\lambda|\mu)$$ of weights are rational; let $$N$$ denote the least
common denominator. E.g. for $$A_{r}$$ this is $$N=r+1$$ , while for $$E_{8}$$ it is $$N=1$$ . Choose any
integer $$\ell$$ coprime to $$\kappa N$$ . Then for any $$\lambda\in P_{+}$$ there is a unique weight $$\lambda^{(\ell)}\in P_{+}$$ , coroot
$$\alpha$$ , and (finite) Weyl element $$\omega$$ such that</p>
<p>This is simply the statement that the affine Weyl orbit of $$\ell\left(\lambda+\rho\right)$$ intersects the set $$P_{+}+\rho$$
at precisely one point (namely $$\lambda^{(\ell)}+\rho)$$ . Write $$\epsilon_{\ell}^{\prime}(\lambda)=\operatorname*{det}\omega=\pm1$$ . Then [16]</p>
<p>This has an obvious interpretation as a Galois automorphism [4]: the field generated over
$$\mathbb{Q}$$ by all entries $$S_{\lambda\mu}$$ lies in the cyclotomic field $$\mathbb{Q}[\xi_{4N\kappa}]$$ where $$\xi_{n}$$ denotes the root of unity
$$\exp[2\pi\mathrm{i}/n]$$ ; for any $$\sigma_{\ell}\in{\mathrm{Gal}}(\mathbb{Q}[\xi_{4N\kappa}]/\mathbb{Q})\cong\mathbb{Z}_{4N\kappa}^{\times}$$ , there will be a function $$\epsilon_{\ell}:P_{+}\to\{\pm1\}$$
such that</p>
| [{"type": "text", "coordinates": [70, 70, 540, 100], "content": "Charge-conjugation is the order 2 permutation of $$P_{+}$$ given by $$C\\lambda\\,=\\,^{t}\\lambda$$ , the weight\ncontragredient to $$\\lambda$$ . For instance $$C0=0$$ . It has the basic property that", "block_type": "text", "index": 1}, {"type": "interline_equation", "coordinates": [250, 117, 361, 132], "content": "", "block_type": "interline_equation", "index": 2}, {"type": "text", "coordinates": [70, 143, 540, 172], "content": "and $$S^{2}=C$$ . $$C$$ corresponds to a symmetry of the (unextended) Dynkin diagram of $$X_{r}$$ ,\nas we will see next section.", "block_type": "text", "index": 3}, {"type": "text", "coordinates": [70, 173, 541, 219], "content": "Related to $$C$$ are all the other symmetries of the unextended Dynkin diagram. We\ncall these conjugations. The only $$X_{r}^{(1)}$$ with nontrivial conjugations other than charge-\nconjugation are $$D_{e v e n}^{(1)}$$ .", "block_type": "text", "index": 4}, {"type": "text", "coordinates": [70, 219, 541, 263], "content": "Another important symmetry of the matrix $$S$$ is called simple-currents. Any weight\n$$j\\in P_{+}$$ with q-dimension $$\\mathcal{D}(j)=1$$ , is called a simple-current. To any such weight $$j$$ is\nassociated a permutation $$J$$ of $$P_{+}$$ and a function $$Q_{j}:P_{+}\\to\\mathbb{Q}$$ , such that $$J0=j$$ and", "block_type": "text", "index": 5}, {"type": "interline_equation", "coordinates": [235, 278, 376, 293], "content": "", "block_type": "interline_equation", "index": 6}, {"type": "text", "coordinates": [70, 306, 538, 320], "content": "The simple-currents form an abelian group, given by composition of the permutations $$J$$ .", "block_type": "text", "index": 7}, {"type": "text", "coordinates": [70, 321, 541, 397], "content": "All simple-currents for the affine algebras were classified in [12], and with one unimpor-\ntant exception ( $${E}_{8}^{(1)}$$ at level 2) correspond to symmetries of the extended Coxeter\u2013Dynkin\ndiagram of $$X_{r}^{(1)}$$ . The simplest proof would use the methods of Proposition 4.1 below. For\na more intrinsically algebraic interpretation of these simple-currents, see [25] where their\ngroup is denoted $$W_{0}^{+}$$ .", "block_type": "text", "index": 8}, {"type": "text", "coordinates": [94, 397, 338, 412], "content": "Evaluating $$S_{J\\lambda,j^{\\prime}}$$ in two ways gives the useful", "block_type": "text", "index": 9}, {"type": "interline_equation", "coordinates": [201, 426, 409, 443], "content": "", "block_type": "interline_equation", "index": 10}, {"type": "text", "coordinates": [70, 455, 294, 469], "content": "and hence the reciprocity $$Q_{j}(j^{\\prime})=Q_{j^{\\prime}}(j)$$ .", "block_type": "text", "index": 11}, {"type": "text", "coordinates": [70, 470, 541, 527], "content": "For each $$X_{r}$$ , the inner products $$(\\lambda|\\mu)$$ of weights are rational; let $$N$$ denote the least\ncommon denominator. E.g. for $$A_{r}$$ this is $$N=r+1$$ , while for $$E_{8}$$ it is $$N=1$$ . Choose any\ninteger $$\\ell$$ coprime to $$\\kappa N$$ . Then for any $$\\lambda\\in P_{+}$$ there is a unique weight $$\\lambda^{(\\ell)}\\in P_{+}$$ , coroot\n$$\\alpha$$ , and (finite) Weyl element $$\\omega$$ such that", "block_type": "text", "index": 12}, {"type": "interline_equation", "coordinates": [228, 541, 383, 557], "content": "", "block_type": "interline_equation", "index": 13}, {"type": "text", "coordinates": [70, 570, 541, 600], "content": "This is simply the statement that the affine Weyl orbit of $$\\ell\\left(\\lambda+\\rho\\right)$$ intersects the set $$P_{+}+\\rho$$\nat precisely one point (namely $$\\lambda^{(\\ell)}+\\rho)$$ . Write $$\\epsilon_{\\ell}^{\\prime}(\\lambda)=\\operatorname*{det}\\omega=\\pm1$$ . Then [16]", "block_type": "text", "index": 14}, {"type": "interline_equation", "coordinates": [236, 614, 374, 631], "content": "", "block_type": "interline_equation", "index": 15}, {"type": "text", "coordinates": [68, 642, 541, 699], "content": "This has an obvious interpretation as a Galois automorphism [4]: the field generated over\n$$\\mathbb{Q}$$ by all entries $$S_{\\lambda\\mu}$$ lies in the cyclotomic field $$\\mathbb{Q}[\\xi_{4N\\kappa}]$$ where $$\\xi_{n}$$ denotes the root of unity\n$$\\exp[2\\pi\\mathrm{i}/n]$$ ; for any $$\\sigma_{\\ell}\\in{\\mathrm{Gal}}(\\mathbb{Q}[\\xi_{4N\\kappa}]/\\mathbb{Q})\\cong\\mathbb{Z}_{4N\\kappa}^{\\times}$$ , there will be a function $$\\epsilon_{\\ell}:P_{+}\\to\\{\\pm1\\}$$\nsuch that", "block_type": "text", "index": 16}, {"type": "interline_equation", "coordinates": [204, 701, 407, 718], "content": "", "block_type": "interline_equation", "index": 17}] | [{"type": "text", "coordinates": [95, 72, 360, 90], "content": "Charge-conjugation is the order 2 permutation of ", "score": 1.0, "index": 1}, {"type": "inline_equation", "coordinates": [360, 75, 376, 87], "content": "P_{+}", "score": 0.93, "index": 2}, {"type": "text", "coordinates": [376, 72, 429, 90], "content": " given by ", "score": 1.0, "index": 3}, {"type": "inline_equation", "coordinates": [430, 74, 476, 84], "content": "C\\lambda\\,=\\,^{t}\\lambda", "score": 0.93, "index": 4}, {"type": "text", "coordinates": [477, 72, 542, 90], "content": ", the weight", "score": 1.0, "index": 5}, {"type": "text", "coordinates": [70, 88, 165, 104], "content": "contragredient to ", "score": 1.0, "index": 6}, {"type": "inline_equation", "coordinates": [165, 90, 172, 99], "content": "\\lambda", "score": 0.88, "index": 7}, {"type": "text", "coordinates": [173, 88, 248, 104], "content": ". For instance ", "score": 1.0, "index": 8}, {"type": "inline_equation", "coordinates": [248, 90, 286, 99], "content": "C0=0", "score": 0.93, "index": 9}, {"type": "text", "coordinates": [286, 88, 452, 104], "content": ". It has the basic property that", "score": 1.0, "index": 10}, {"type": "interline_equation", "coordinates": [250, 117, 361, 132], "content": "S_{C\\lambda,\\mu}=S_{\\lambda,C\\mu}=S_{\\lambda\\mu}^{*}", "score": 0.93, "index": 11}, {"type": "text", "coordinates": [70, 145, 95, 162], "content": "and ", "score": 1.0, "index": 12}, {"type": "inline_equation", "coordinates": [95, 146, 136, 156], "content": "S^{2}=C", "score": 0.92, "index": 13}, {"type": "text", "coordinates": [136, 145, 145, 162], "content": ". ", "score": 1.0, "index": 14}, {"type": "inline_equation", "coordinates": [146, 148, 155, 157], "content": "C", "score": 0.89, "index": 15}, {"type": "text", "coordinates": [156, 145, 520, 162], "content": " corresponds to a symmetry of the (unextended) Dynkin diagram of ", "score": 1.0, "index": 16}, {"type": "inline_equation", "coordinates": [520, 148, 536, 159], "content": "X_{r}", "score": 0.91, "index": 17}, {"type": "text", "coordinates": [537, 145, 540, 162], "content": ",", "score": 1.0, "index": 18}, {"type": "text", "coordinates": [71, 161, 212, 174], "content": "as we will see next section.", "score": 1.0, "index": 19}, {"type": "text", "coordinates": [94, 174, 155, 190], "content": "Related to ", "score": 1.0, "index": 20}, {"type": "inline_equation", "coordinates": [155, 177, 165, 185], "content": "C", "score": 0.9, "index": 21}, {"type": "text", "coordinates": [165, 174, 540, 190], "content": " are all the other symmetries of the unextended Dynkin diagram. We", "score": 1.0, "index": 22}, {"type": "text", "coordinates": [68, 186, 256, 209], "content": "call these conjugations. The only ", "score": 1.0, "index": 23}, {"type": "inline_equation", "coordinates": [256, 188, 280, 203], "content": "X_{r}^{(1)}", "score": 0.93, "index": 24}, {"type": "text", "coordinates": [281, 186, 542, 209], "content": "with nontrivial conjugations other than charge-", "score": 1.0, "index": 25}, {"type": "text", "coordinates": [70, 203, 156, 226], "content": "conjugation are ", "score": 1.0, "index": 26}, {"type": "inline_equation", "coordinates": [156, 204, 187, 219], "content": "D_{e v e n}^{(1)}", "score": 0.92, "index": 27}, {"type": "text", "coordinates": [187, 203, 192, 226], "content": ".", "score": 1.0, "index": 28}, {"type": "text", "coordinates": [95, 221, 330, 236], "content": "Another important symmetry of the matrix ", "score": 1.0, "index": 29}, {"type": "inline_equation", "coordinates": [330, 223, 339, 232], "content": "S", "score": 0.9, "index": 30}, {"type": "text", "coordinates": [339, 221, 541, 236], "content": " is called simple-currents. Any weight", "score": 1.0, "index": 31}, {"type": "inline_equation", "coordinates": [71, 238, 110, 249], "content": "j\\in P_{+}", "score": 0.93, "index": 32}, {"type": "text", "coordinates": [110, 236, 210, 250], "content": " with q-dimension ", "score": 1.0, "index": 33}, {"type": "inline_equation", "coordinates": [210, 237, 260, 249], "content": "\\mathcal{D}(j)=1", "score": 0.94, "index": 34}, {"type": "text", "coordinates": [261, 236, 520, 250], "content": ", is called a simple-current. To any such weight ", "score": 1.0, "index": 35}, {"type": "inline_equation", "coordinates": [520, 238, 527, 249], "content": "j", "score": 0.88, "index": 36}, {"type": "text", "coordinates": [527, 236, 541, 250], "content": " is", "score": 1.0, "index": 37}, {"type": "text", "coordinates": [71, 250, 206, 264], "content": "associated a permutation ", "score": 1.0, "index": 38}, {"type": "inline_equation", "coordinates": [207, 252, 214, 261], "content": "J", "score": 0.9, "index": 39}, {"type": "text", "coordinates": [215, 250, 231, 264], "content": " of ", "score": 1.0, "index": 40}, {"type": "inline_equation", "coordinates": [232, 252, 248, 263], "content": "P_{+}", "score": 0.92, "index": 41}, {"type": "text", "coordinates": [248, 250, 331, 264], "content": " and a function ", "score": 1.0, "index": 42}, {"type": "inline_equation", "coordinates": [332, 252, 400, 264], "content": "Q_{j}:P_{+}\\to\\mathbb{Q}", "score": 0.93, "index": 43}, {"type": "text", "coordinates": [401, 250, 459, 264], "content": ", such that ", "score": 1.0, "index": 44}, {"type": "inline_equation", "coordinates": [460, 252, 495, 263], "content": "J0=j", "score": 0.94, "index": 45}, {"type": "text", "coordinates": [496, 250, 520, 264], "content": " and", "score": 1.0, "index": 46}, {"type": "interline_equation", "coordinates": [235, 278, 376, 293], "content": "S_{J\\lambda,\\mu}=\\exp[2\\pi\\mathrm{i}\\,Q_{j}(\\mu)]\\,S_{\\lambda\\mu}", "score": 0.93, "index": 47}, {"type": "text", "coordinates": [71, 308, 525, 323], "content": "The simple-currents form an abelian group, given by composition of the permutations ", "score": 1.0, "index": 48}, {"type": "inline_equation", "coordinates": [525, 310, 533, 319], "content": "J", "score": 0.9, "index": 49}, {"type": "text", "coordinates": [533, 308, 537, 323], "content": ".", "score": 1.0, "index": 50}, {"type": "text", "coordinates": [94, 322, 541, 338], "content": "All simple-currents for the affine algebras were classified in [12], and with one unimpor-", "score": 1.0, "index": 51}, {"type": "text", "coordinates": [69, 334, 154, 358], "content": "tant exception (", "score": 1.0, "index": 52}, {"type": "inline_equation", "coordinates": [154, 336, 176, 353], "content": "{E}_{8}^{(1)}", "score": 0.92, "index": 53}, {"type": "text", "coordinates": [177, 334, 541, 358], "content": "at level 2) correspond to symmetries of the extended Coxeter\u2013Dynkin", "score": 1.0, "index": 54}, {"type": "text", "coordinates": [69, 353, 130, 372], "content": "diagram of ", "score": 1.0, "index": 55}, {"type": "inline_equation", "coordinates": [131, 354, 154, 368], "content": "X_{r}^{(1)}", "score": 0.93, "index": 56}, {"type": "text", "coordinates": [155, 353, 542, 372], "content": ". The simplest proof would use the methods of Proposition 4.1 below. For", "score": 1.0, "index": 57}, {"type": "text", "coordinates": [70, 371, 540, 385], "content": "a more intrinsically algebraic interpretation of these simple-currents, see [25] where their", "score": 1.0, "index": 58}, {"type": "text", "coordinates": [69, 384, 162, 402], "content": "group is denoted ", "score": 1.0, "index": 59}, {"type": "inline_equation", "coordinates": [162, 385, 183, 398], "content": "W_{0}^{+}", "score": 0.93, "index": 60}, {"type": "text", "coordinates": [184, 384, 188, 402], "content": ".", "score": 1.0, "index": 61}, {"type": "text", "coordinates": [95, 399, 155, 414], "content": "Evaluating ", "score": 1.0, "index": 62}, {"type": "inline_equation", "coordinates": [155, 401, 185, 413], "content": "S_{J\\lambda,j^{\\prime}}", "score": 0.93, "index": 63}, {"type": "text", "coordinates": [186, 399, 336, 414], "content": " in two ways gives the useful", "score": 1.0, "index": 64}, {"type": "interline_equation", "coordinates": [201, 426, 409, 443], "content": "Q_{j^{\\prime}}(J\\lambda)\\equiv Q_{j}(j^{\\prime})+Q_{j^{\\prime}}(\\lambda)\\qquad(\\mathrm{mod}\\ 1)", "score": 0.89, "index": 65}, {"type": "text", "coordinates": [70, 457, 208, 472], "content": "and hence the reciprocity ", "score": 1.0, "index": 66}, {"type": "inline_equation", "coordinates": [208, 458, 289, 471], "content": "Q_{j}(j^{\\prime})=Q_{j^{\\prime}}(j)", "score": 0.93, "index": 67}, {"type": "text", "coordinates": [290, 457, 293, 472], "content": ".", "score": 1.0, "index": 68}, {"type": "text", "coordinates": [94, 471, 143, 487], "content": "For each ", "score": 1.0, "index": 69}, {"type": "inline_equation", "coordinates": [144, 473, 159, 484], "content": "X_{r}", "score": 0.91, "index": 70}, {"type": "text", "coordinates": [159, 471, 267, 487], "content": ", the inner products ", "score": 1.0, "index": 71}, {"type": "inline_equation", "coordinates": [268, 473, 295, 485], "content": "(\\lambda|\\mu)", "score": 0.93, "index": 72}, {"type": "text", "coordinates": [295, 471, 441, 487], "content": " of weights are rational; let ", "score": 1.0, "index": 73}, {"type": "inline_equation", "coordinates": [441, 473, 452, 482], "content": "N", "score": 0.89, "index": 74}, {"type": "text", "coordinates": [452, 471, 541, 487], "content": " denote the least", "score": 1.0, "index": 75}, {"type": "text", "coordinates": [69, 484, 235, 502], "content": "common denominator. E.g. for ", "score": 1.0, "index": 76}, {"type": "inline_equation", "coordinates": [235, 488, 250, 498], "content": "A_{r}", "score": 0.92, "index": 77}, {"type": "text", "coordinates": [250, 484, 288, 502], "content": " this is ", "score": 1.0, "index": 78}, {"type": "inline_equation", "coordinates": [288, 488, 341, 497], "content": "N=r+1", "score": 0.9, "index": 79}, {"type": "text", "coordinates": [341, 484, 396, 502], "content": ", while for ", "score": 1.0, "index": 80}, {"type": "inline_equation", "coordinates": [396, 487, 411, 498], "content": "E_{8}", "score": 0.86, "index": 81}, {"type": "text", "coordinates": [411, 484, 437, 502], "content": " it is ", "score": 1.0, "index": 82}, {"type": "inline_equation", "coordinates": [438, 488, 471, 497], "content": "N=1", "score": 0.92, "index": 83}, {"type": "text", "coordinates": [471, 484, 541, 502], "content": ". Choose any", "score": 1.0, "index": 84}, {"type": "text", "coordinates": [69, 499, 110, 515], "content": "integer ", "score": 1.0, "index": 85}, {"type": "inline_equation", "coordinates": [111, 502, 116, 511], "content": "\\ell", "score": 0.89, "index": 86}, {"type": "text", "coordinates": [117, 499, 179, 515], "content": "coprime to ", "score": 1.0, "index": 87}, {"type": "inline_equation", "coordinates": [180, 502, 198, 511], "content": "\\kappa N", "score": 0.91, "index": 88}, {"type": "text", "coordinates": [198, 499, 278, 515], "content": ". Then for any ", "score": 1.0, "index": 89}, {"type": "inline_equation", "coordinates": [279, 502, 316, 514], "content": "\\lambda\\in P_{+}", "score": 0.94, "index": 90}, {"type": "text", "coordinates": [316, 499, 449, 515], "content": " there is a unique weight ", "score": 1.0, "index": 91}, {"type": "inline_equation", "coordinates": [449, 500, 499, 514], "content": "\\lambda^{(\\ell)}\\in P_{+}", "score": 0.93, "index": 92}, {"type": "text", "coordinates": [500, 499, 542, 515], "content": ", coroot", "score": 1.0, "index": 93}, {"type": "inline_equation", "coordinates": [71, 520, 79, 525], "content": "\\alpha", "score": 0.85, "index": 94}, {"type": "text", "coordinates": [80, 514, 223, 529], "content": ", and (finite) Weyl element ", "score": 1.0, "index": 95}, {"type": "inline_equation", "coordinates": [223, 520, 232, 525], "content": "\\omega", "score": 0.89, "index": 96}, {"type": "text", "coordinates": [232, 514, 286, 529], "content": " such that", "score": 1.0, "index": 97}, {"type": "interline_equation", "coordinates": [228, 541, 383, 557], "content": "\\ell\\left(\\lambda+\\rho\\right)=\\omega(\\lambda^{\\left(\\ell\\right)}+\\rho)+\\kappa\\alpha\\;.", "score": 0.91, "index": 98}, {"type": "text", "coordinates": [70, 572, 369, 589], "content": "This is simply the statement that the affine Weyl orbit of ", "score": 1.0, "index": 99}, {"type": "inline_equation", "coordinates": [370, 573, 412, 586], "content": "\\ell\\left(\\lambda+\\rho\\right)", "score": 0.93, "index": 100}, {"type": "text", "coordinates": [412, 572, 505, 589], "content": " intersects the set ", "score": 1.0, "index": 101}, {"type": "inline_equation", "coordinates": [505, 575, 540, 586], "content": "P_{+}+\\rho", "score": 0.93, "index": 102}, {"type": "text", "coordinates": [70, 587, 234, 603], "content": "at precisely one point (namely ", "score": 1.0, "index": 103}, {"type": "inline_equation", "coordinates": [234, 587, 277, 600], "content": "\\lambda^{(\\ell)}+\\rho)", "score": 0.93, "index": 104}, {"type": "text", "coordinates": [277, 587, 320, 603], "content": ". Write ", "score": 1.0, "index": 105}, {"type": "inline_equation", "coordinates": [320, 587, 420, 601], "content": "\\epsilon_{\\ell}^{\\prime}(\\lambda)=\\operatorname*{det}\\omega=\\pm1", "score": 0.92, "index": 106}, {"type": "text", "coordinates": [421, 587, 479, 603], "content": ". Then [16]", "score": 1.0, "index": 107}, {"type": "interline_equation", "coordinates": [236, 614, 374, 631], "content": "\\epsilon_{\\ell}^{\\prime}(\\lambda)\\,S_{\\lambda^{(\\ell)},\\mu}=\\epsilon_{\\ell}^{\\prime}(\\mu)\\,S_{\\lambda,\\mu^{(\\ell)}}", "score": 0.93, "index": 108}, {"type": "text", "coordinates": [71, 644, 541, 661], "content": "This has an obvious interpretation as a Galois automorphism [4]: the field generated over", "score": 1.0, "index": 109}, {"type": "inline_equation", "coordinates": [71, 661, 81, 672], "content": "\\mathbb{Q}", "score": 0.88, "index": 110}, {"type": "text", "coordinates": [81, 659, 154, 675], "content": " by all entries ", "score": 1.0, "index": 111}, {"type": "inline_equation", "coordinates": [154, 661, 174, 673], "content": "S_{\\lambda\\mu}", "score": 0.92, "index": 112}, {"type": "text", "coordinates": [174, 659, 316, 675], "content": " lies in the cyclotomic field ", "score": 1.0, "index": 113}, {"type": "inline_equation", "coordinates": [316, 660, 357, 673], "content": "\\mathbb{Q}[\\xi_{4N\\kappa}]", "score": 0.92, "index": 114}, {"type": "text", "coordinates": [358, 659, 395, 675], "content": " where ", "score": 1.0, "index": 115}, {"type": "inline_equation", "coordinates": [395, 661, 407, 672], "content": "\\xi_{n}", "score": 0.92, "index": 116}, {"type": "text", "coordinates": [407, 659, 540, 675], "content": " denotes the root of unity", "score": 1.0, "index": 117}, {"type": "inline_equation", "coordinates": [71, 674, 127, 687], "content": "\\exp[2\\pi\\mathrm{i}/n]", "score": 0.92, "index": 118}, {"type": "text", "coordinates": [127, 671, 173, 692], "content": "; for any ", "score": 1.0, "index": 119}, {"type": "inline_equation", "coordinates": [173, 674, 327, 687], "content": "\\sigma_{\\ell}\\in{\\mathrm{Gal}}(\\mathbb{Q}[\\xi_{4N\\kappa}]/\\mathbb{Q})\\cong\\mathbb{Z}_{4N\\kappa}^{\\times}", "score": 0.91, "index": 120}, {"type": "text", "coordinates": [327, 671, 458, 692], "content": ", there will be a function ", "score": 1.0, "index": 121}, {"type": "inline_equation", "coordinates": [459, 675, 540, 687], "content": "\\epsilon_{\\ell}:P_{+}\\to\\{\\pm1\\}", "score": 0.94, "index": 122}, {"type": "text", "coordinates": [71, 688, 122, 701], "content": "such that", "score": 1.0, "index": 123}, {"type": "interline_equation", "coordinates": [204, 701, 407, 718], "content": "\\sigma_{\\ell}\\bigl(S_{\\lambda\\mu}\\bigr)=\\epsilon_{\\ell}\\bigl(\\lambda\\bigr)\\,S_{\\lambda^{(\\ell)},\\mu}=\\epsilon_{\\ell}\\bigl(\\mu\\bigr)\\,S_{\\lambda,\\mu^{(\\ell)}}\\ .", "score": 0.91, "index": 124}] | [] | [{"type": "block", "coordinates": [250, 117, 361, 132], "content": "", "caption": ""}, {"type": "block", "coordinates": [235, 278, 376, 293], "content": "", "caption": ""}, {"type": "block", "coordinates": [201, 426, 409, 443], "content": "", "caption": ""}, {"type": "block", "coordinates": [228, 541, 383, 557], "content": "", "caption": ""}, {"type": "block", "coordinates": [236, 614, 374, 631], "content": "", "caption": ""}, {"type": "block", "coordinates": [204, 701, 407, 718], "content": "", "caption": ""}, {"type": "inline", "coordinates": [360, 75, 376, 87], "content": "P_{+}", "caption": ""}, {"type": "inline", "coordinates": [430, 74, 476, 84], "content": "C\\lambda\\,=\\,^{t}\\lambda", "caption": ""}, {"type": "inline", "coordinates": [165, 90, 172, 99], "content": "\\lambda", "caption": ""}, {"type": "inline", "coordinates": [248, 90, 286, 99], "content": "C0=0", "caption": ""}, {"type": "inline", "coordinates": [95, 146, 136, 156], "content": "S^{2}=C", "caption": ""}, {"type": "inline", "coordinates": [146, 148, 155, 157], "content": "C", "caption": ""}, {"type": "inline", "coordinates": [520, 148, 536, 159], "content": "X_{r}", "caption": ""}, {"type": "inline", "coordinates": [155, 177, 165, 185], "content": "C", "caption": ""}, {"type": "inline", "coordinates": [256, 188, 280, 203], "content": "X_{r}^{(1)}", "caption": ""}, {"type": "inline", "coordinates": [156, 204, 187, 219], "content": "D_{e v e n}^{(1)}", "caption": ""}, {"type": "inline", "coordinates": [330, 223, 339, 232], "content": "S", "caption": ""}, {"type": "inline", "coordinates": [71, 238, 110, 249], "content": "j\\in P_{+}", "caption": ""}, {"type": "inline", "coordinates": [210, 237, 260, 249], "content": "\\mathcal{D}(j)=1", "caption": ""}, {"type": "inline", "coordinates": [520, 238, 527, 249], "content": "j", "caption": ""}, {"type": "inline", "coordinates": [207, 252, 214, 261], "content": "J", "caption": ""}, {"type": "inline", "coordinates": [232, 252, 248, 263], "content": "P_{+}", "caption": ""}, {"type": "inline", "coordinates": [332, 252, 400, 264], "content": "Q_{j}:P_{+}\\to\\mathbb{Q}", "caption": ""}, {"type": "inline", "coordinates": [460, 252, 495, 263], "content": "J0=j", "caption": ""}, {"type": "inline", "coordinates": [525, 310, 533, 319], "content": "J", "caption": ""}, {"type": "inline", "coordinates": [154, 336, 176, 353], "content": "{E}_{8}^{(1)}", "caption": ""}, {"type": "inline", "coordinates": [131, 354, 154, 368], "content": "X_{r}^{(1)}", "caption": ""}, {"type": "inline", "coordinates": [162, 385, 183, 398], "content": "W_{0}^{+}", "caption": ""}, {"type": "inline", "coordinates": [155, 401, 185, 413], "content": "S_{J\\lambda,j^{\\prime}}", "caption": ""}, {"type": "inline", "coordinates": [208, 458, 289, 471], "content": "Q_{j}(j^{\\prime})=Q_{j^{\\prime}}(j)", "caption": ""}, {"type": "inline", "coordinates": [144, 473, 159, 484], "content": "X_{r}", "caption": ""}, {"type": "inline", "coordinates": [268, 473, 295, 485], "content": "(\\lambda|\\mu)", "caption": ""}, {"type": "inline", "coordinates": [441, 473, 452, 482], "content": "N", "caption": ""}, {"type": "inline", "coordinates": [235, 488, 250, 498], "content": "A_{r}", "caption": ""}, {"type": "inline", "coordinates": [288, 488, 341, 497], "content": "N=r+1", "caption": ""}, {"type": "inline", "coordinates": [396, 487, 411, 498], "content": "E_{8}", "caption": ""}, {"type": "inline", "coordinates": [438, 488, 471, 497], "content": "N=1", "caption": ""}, {"type": "inline", "coordinates": [111, 502, 116, 511], "content": "\\ell", "caption": ""}, {"type": "inline", "coordinates": [180, 502, 198, 511], "content": "\\kappa N", "caption": ""}, {"type": "inline", "coordinates": [279, 502, 316, 514], "content": "\\lambda\\in P_{+}", "caption": ""}, {"type": "inline", "coordinates": [449, 500, 499, 514], "content": "\\lambda^{(\\ell)}\\in P_{+}", "caption": ""}, {"type": "inline", "coordinates": [71, 520, 79, 525], "content": "\\alpha", "caption": ""}, {"type": "inline", "coordinates": [223, 520, 232, 525], "content": "\\omega", "caption": ""}, {"type": "inline", "coordinates": [370, 573, 412, 586], "content": "\\ell\\left(\\lambda+\\rho\\right)", "caption": ""}, {"type": "inline", "coordinates": [505, 575, 540, 586], "content": "P_{+}+\\rho", "caption": ""}, {"type": "inline", "coordinates": [234, 587, 277, 600], "content": "\\lambda^{(\\ell)}+\\rho)", "caption": ""}, {"type": "inline", "coordinates": [320, 587, 420, 601], "content": "\\epsilon_{\\ell}^{\\prime}(\\lambda)=\\operatorname*{det}\\omega=\\pm1", "caption": ""}, {"type": "inline", "coordinates": [71, 661, 81, 672], "content": "\\mathbb{Q}", "caption": ""}, {"type": "inline", "coordinates": [154, 661, 174, 673], "content": "S_{\\lambda\\mu}", "caption": ""}, {"type": "inline", "coordinates": [316, 660, 357, 673], "content": "\\mathbb{Q}[\\xi_{4N\\kappa}]", "caption": ""}, {"type": "inline", "coordinates": [395, 661, 407, 672], "content": "\\xi_{n}", "caption": ""}, {"type": "inline", "coordinates": [71, 674, 127, 687], "content": "\\exp[2\\pi\\mathrm{i}/n]", "caption": ""}, {"type": "inline", "coordinates": [173, 674, 327, 687], "content": "\\sigma_{\\ell}\\in{\\mathrm{Gal}}(\\mathbb{Q}[\\xi_{4N\\kappa}]/\\mathbb{Q})\\cong\\mathbb{Z}_{4N\\kappa}^{\\times}", "caption": ""}, {"type": "inline", "coordinates": [459, 675, 540, 687], "content": "\\epsilon_{\\ell}:P_{+}\\to\\{\\pm1\\}", "caption": ""}] | [] | [612.0, 792.0] | [{"type": "text", "text": "Charge-conjugation is the order 2 permutation of $P_{+}$ given by $C\\lambda\\,=\\,^{t}\\lambda$ , the weight contragredient to $\\lambda$ . For instance $C0=0$ . It has the basic property that ", "page_idx": 3}, {"type": "equation", "text": "$$\nS_{C\\lambda,\\mu}=S_{\\lambda,C\\mu}=S_{\\lambda\\mu}^{*}\n$$", "text_format": "latex", "page_idx": 3}, {"type": "text", "text": "and $S^{2}=C$ . $C$ corresponds to a symmetry of the (unextended) Dynkin diagram of $X_{r}$ , as we will see next section. ", "page_idx": 3}, {"type": "text", "text": "Related to $C$ are all the other symmetries of the unextended Dynkin diagram. We call these conjugations. The only $X_{r}^{(1)}$ with nontrivial conjugations other than chargeconjugation are $D_{e v e n}^{(1)}$ . ", "page_idx": 3}, {"type": "text", "text": "Another important symmetry of the matrix $S$ is called simple-currents. Any weight $j\\in P_{+}$ with q-dimension $\\mathcal{D}(j)=1$ , is called a simple-current. To any such weight $j$ is associated a permutation $J$ of $P_{+}$ and a function $Q_{j}:P_{+}\\to\\mathbb{Q}$ , such that $J0=j$ and ", "page_idx": 3}, {"type": "equation", "text": "$$\nS_{J\\lambda,\\mu}=\\exp[2\\pi\\mathrm{i}\\,Q_{j}(\\mu)]\\,S_{\\lambda\\mu}\n$$", "text_format": "latex", "page_idx": 3}, {"type": "text", "text": "The simple-currents form an abelian group, given by composition of the permutations $J$ . ", "page_idx": 3}, {"type": "text", "text": "All simple-currents for the affine algebras were classified in [12], and with one unimportant exception ( ${E}_{8}^{(1)}$ at level 2) correspond to symmetries of the extended Coxeter\u2013Dynkin diagram of $X_{r}^{(1)}$ . The simplest proof would use the methods of Proposition 4.1 below. For a more intrinsically algebraic interpretation of these simple-currents, see [25] where their group is denoted $W_{0}^{+}$ . ", "page_idx": 3}, {"type": "text", "text": "Evaluating $S_{J\\lambda,j^{\\prime}}$ in two ways gives the useful ", "page_idx": 3}, {"type": "equation", "text": "$$\nQ_{j^{\\prime}}(J\\lambda)\\equiv Q_{j}(j^{\\prime})+Q_{j^{\\prime}}(\\lambda)\\qquad(\\mathrm{mod}\\ 1)\n$$", "text_format": "latex", "page_idx": 3}, {"type": "text", "text": "and hence the reciprocity $Q_{j}(j^{\\prime})=Q_{j^{\\prime}}(j)$ . ", "page_idx": 3}, {"type": "text", "text": "For each $X_{r}$ , the inner products $(\\lambda|\\mu)$ of weights are rational; let $N$ denote the least common denominator. E.g. for $A_{r}$ this is $N=r+1$ , while for $E_{8}$ it is $N=1$ . Choose any integer $\\ell$ coprime to $\\kappa N$ . Then for any $\\lambda\\in P_{+}$ there is a unique weight $\\lambda^{(\\ell)}\\in P_{+}$ , coroot $\\alpha$ , and (finite) Weyl element $\\omega$ such that ", "page_idx": 3}, {"type": "equation", "text": "$$\n\\ell\\left(\\lambda+\\rho\\right)=\\omega(\\lambda^{\\left(\\ell\\right)}+\\rho)+\\kappa\\alpha\\;.\n$$", "text_format": "latex", "page_idx": 3}, {"type": "text", "text": "This is simply the statement that the affine Weyl orbit of $\\ell\\left(\\lambda+\\rho\\right)$ intersects the set $P_{+}+\\rho$ at precisely one point (namely $\\lambda^{(\\ell)}+\\rho)$ . Write $\\epsilon_{\\ell}^{\\prime}(\\lambda)=\\operatorname*{det}\\omega=\\pm1$ . Then [16] ", "page_idx": 3}, {"type": "equation", "text": "$$\n\\epsilon_{\\ell}^{\\prime}(\\lambda)\\,S_{\\lambda^{(\\ell)},\\mu}=\\epsilon_{\\ell}^{\\prime}(\\mu)\\,S_{\\lambda,\\mu^{(\\ell)}}\n$$", "text_format": "latex", "page_idx": 3}, {"type": "text", "text": "This has an obvious interpretation as a Galois automorphism [4]: the field generated over $\\mathbb{Q}$ by all entries $S_{\\lambda\\mu}$ lies in the cyclotomic field $\\mathbb{Q}[\\xi_{4N\\kappa}]$ where $\\xi_{n}$ denotes the root of unity $\\exp[2\\pi\\mathrm{i}/n]$ ; for any $\\sigma_{\\ell}\\in{\\mathrm{Gal}}(\\mathbb{Q}[\\xi_{4N\\kappa}]/\\mathbb{Q})\\cong\\mathbb{Z}_{4N\\kappa}^{\\times}$ , there will be a function $\\epsilon_{\\ell}:P_{+}\\to\\{\\pm1\\}$ such that ", "page_idx": 3}, {"type": "equation", "text": "$$\n\\sigma_{\\ell}\\bigl(S_{\\lambda\\mu}\\bigr)=\\epsilon_{\\ell}\\bigl(\\lambda\\bigr)\\,S_{\\lambda^{(\\ell)},\\mu}=\\epsilon_{\\ell}\\bigl(\\mu\\bigr)\\,S_{\\lambda,\\mu^{(\\ell)}}\\ .\n$$", "text_format": "latex", "page_idx": 3}] | [{"category_id": 1, "poly": [196, 892, 1503, 892, 1503, 1104, 196, 1104], "score": 0.98}, {"category_id": 1, "poly": [196, 1306, 1504, 1306, 1504, 1465, 196, 1465], "score": 0.978}, {"category_id": 1, "poly": [191, 1785, 1503, 1785, 1503, 1943, 191, 1943], "score": 0.974}, {"category_id": 1, "poly": [196, 481, 1503, 481, 1503, 609, 196, 609], "score": 0.971}, {"category_id": 1, "poly": [195, 610, 1503, 610, 1503, 731, 195, 731], "score": 0.97}, {"category_id": 1, "poly": [196, 1584, 1505, 1584, 1505, 1669, 196, 1669], "score": 0.967}, {"category_id": 1, "poly": [196, 197, 1501, 197, 1501, 280, 196, 280], "score": 0.956}, {"category_id": 1, "poly": [197, 398, 1501, 398, 1501, 479, 197, 479], "score": 0.955}, {"category_id": 8, "poly": [630, 1498, 1064, 1498, 1064, 1551, 630, 1551], "score": 0.937}, {"category_id": 8, "poly": [650, 765, 1049, 765, 1049, 816, 650, 816], "score": 0.929}, {"category_id": 8, "poly": [691, 317, 1006, 317, 1006, 368, 691, 368], "score": 0.929}, {"category_id": 1, "poly": [197, 1264, 819, 1264, 819, 1305, 197, 1305], "score": 0.927}, {"category_id": 8, "poly": [653, 1702, 1044, 1702, 1044, 1756, 653, 1756], "score": 0.925}, {"category_id": 8, "poly": [565, 1945, 1132, 1945, 1132, 1994, 565, 1994], "score": 0.922}, {"category_id": 8, "poly": [558, 1179, 1141, 1179, 1141, 1231, 558, 1231], "score": 0.918}, {"category_id": 1, "poly": [195, 850, 1495, 850, 1495, 891, 195, 891], "score": 0.916}, {"category_id": 9, "poly": [1416, 768, 1501, 768, 1501, 809, 1416, 809], "score": 0.903}, {"category_id": 9, "poly": [1411, 320, 1501, 320, 1501, 360, 1411, 360], "score": 0.9}, {"category_id": 9, "poly": [1412, 1705, 1500, 1705, 1500, 1746, 1412, 1746], "score": 0.897}, {"category_id": 1, "poly": [262, 1105, 939, 1105, 939, 1146, 262, 1146], "score": 0.866}, {"category_id": 9, "poly": [1415, 1183, 1500, 1183, 1500, 1224, 1415, 1224], "score": 0.825}, {"category_id": 9, "poly": [1415, 1948, 1500, 1948, 1500, 1987, 1415, 1987], "score": 0.668}, {"category_id": 9, "poly": [1416, 1947, 1501, 1947, 1501, 1987, 1416, 1987], "score": 0.485}, {"category_id": 9, "poly": [1416, 1183, 1501, 1183, 1501, 1224, 1416, 1224], "score": 0.265}, {"category_id": 13, "poly": [775, 1396, 879, 1396, 879, 1428, 775, 1428], "score": 0.94, "latex": "\\lambda\\in P_{+}"}, {"category_id": 13, "poly": [586, 659, 724, 659, 724, 693, 586, 693], "score": 0.94, "latex": "\\mathcal{D}(j)=1"}, {"category_id": 13, "poly": [1275, 1875, 1500, 1875, 1500, 1910, 1275, 1910], "score": 0.94, "latex": "\\epsilon_{\\ell}:P_{+}\\to\\{\\pm1\\}"}, {"category_id": 13, "poly": [1278, 701, 1377, 701, 1377, 732, 1278, 732], "score": 0.94, "latex": "J0=j"}, {"category_id": 13, "poly": [1404, 1598, 1500, 1598, 1500, 1629, 1404, 1629], "score": 0.93, "latex": "P_{+}+\\rho"}, {"category_id": 13, "poly": [923, 701, 1113, 701, 1113, 735, 923, 735], "score": 0.93, "latex": "Q_{j}:P_{+}\\to\\mathbb{Q}"}, {"category_id": 13, "poly": [199, 662, 306, 662, 306, 693, 199, 693], "score": 0.93, "latex": "j\\in P_{+}"}, {"category_id": 13, "poly": [1249, 1389, 1388, 1389, 1388, 1428, 1249, 1428], "score": 0.93, "latex": "\\lambda^{(\\ell)}\\in P_{+}"}, {"category_id": 13, "poly": [745, 1314, 820, 1314, 820, 1348, 745, 1348], "score": 0.93, "latex": "(\\lambda|\\mu)"}, {"category_id": 13, "poly": [579, 1274, 805, 1274, 805, 1310, 579, 1310], "score": 0.93, "latex": "Q_{j}(j^{\\prime})=Q_{j^{\\prime}}(j)"}, {"category_id": 13, "poly": [1195, 208, 1324, 208, 1324, 236, 1195, 236], "score": 0.93, "latex": "C\\lambda\\,=\\,^{t}\\lambda"}, {"category_id": 14, "poly": [654, 773, 1046, 773, 1046, 815, 654, 815], "score": 0.93, "latex": "S_{J\\lambda,\\mu}=\\exp[2\\pi\\mathrm{i}\\,Q_{j}(\\mu)]\\,S_{\\lambda\\mu}"}, {"category_id": 14, "poly": [695, 325, 1004, 325, 1004, 369, 695, 369], "score": 0.93, "latex": "S_{C\\lambda,\\mu}=S_{\\lambda,C\\mu}=S_{\\lambda\\mu}^{*}"}, {"category_id": 13, "poly": [691, 252, 796, 252, 796, 276, 691, 276], "score": 0.93, "latex": "C0=0"}, {"category_id": 13, "poly": [452, 1070, 511, 1070, 511, 1108, 452, 1108], "score": 0.93, "latex": "W_{0}^{+}"}, {"category_id": 13, "poly": [433, 1115, 516, 1115, 516, 1149, 433, 1149], "score": 0.93, "latex": "S_{J\\lambda,j^{\\prime}}"}, {"category_id": 13, "poly": [713, 524, 780, 524, 780, 564, 713, 564], "score": 0.93, "latex": "X_{r}^{(1)}"}, {"category_id": 13, "poly": [1002, 211, 1046, 211, 1046, 243, 1002, 243], "score": 0.93, "latex": "P_{+}"}, {"category_id": 13, "poly": [364, 984, 430, 984, 430, 1024, 364, 1024], "score": 0.93, "latex": "X_{r}^{(1)}"}, {"category_id": 13, "poly": [1028, 1593, 1145, 1593, 1145, 1629, 1028, 1629], "score": 0.93, "latex": "\\ell\\left(\\lambda+\\rho\\right)"}, {"category_id": 13, "poly": [651, 1631, 771, 1631, 771, 1669, 651, 1669], "score": 0.93, "latex": "\\lambda^{(\\ell)}+\\rho)"}, {"category_id": 14, "poly": [657, 1707, 1040, 1707, 1040, 1755, 657, 1755], "score": 0.93, "latex": "\\epsilon_{\\ell}^{\\prime}(\\lambda)\\,S_{\\lambda^{(\\ell)},\\mu}=\\epsilon_{\\ell}^{\\prime}(\\mu)\\,S_{\\lambda,\\mu^{(\\ell)}}"}, {"category_id": 13, "poly": [645, 702, 689, 702, 689, 733, 645, 733], "score": 0.92, "latex": "P_{+}"}, {"category_id": 13, "poly": [880, 1836, 994, 1836, 994, 1870, 880, 1870], "score": 0.92, "latex": "\\mathbb{Q}[\\xi_{4N\\kappa}]"}, {"category_id": 13, "poly": [435, 569, 521, 569, 521, 609, 435, 609], "score": 0.92, "latex": "D_{e v e n}^{(1)}"}, {"category_id": 13, "poly": [430, 1838, 485, 1838, 485, 1872, 430, 1872], "score": 0.92, "latex": "S_{\\lambda\\mu}"}, {"category_id": 13, "poly": [198, 1874, 353, 1874, 353, 1910, 198, 1910], "score": 0.92, "latex": "\\exp[2\\pi\\mathrm{i}/n]"}, {"category_id": 13, "poly": [891, 1633, 1169, 1633, 1169, 1670, 891, 1670], "score": 0.92, "latex": "\\epsilon_{\\ell}^{\\prime}(\\lambda)=\\operatorname*{det}\\omega=\\pm1"}, {"category_id": 13, "poly": [265, 408, 378, 408, 378, 436, 265, 436], "score": 0.92, "latex": "S^{2}=C"}, {"category_id": 13, "poly": [655, 1356, 696, 1356, 696, 1385, 655, 1385], "score": 0.92, "latex": "A_{r}"}, {"category_id": 13, "poly": [429, 936, 491, 936, 491, 981, 429, 981], "score": 0.92, "latex": "{E}_{8}^{(1)}"}, {"category_id": 13, "poly": [1099, 1838, 1131, 1838, 1131, 1869, 1099, 1869], "score": 0.92, "latex": "\\xi_{n}"}, {"category_id": 13, "poly": [1217, 1356, 1310, 1356, 1310, 1381, 1217, 1381], "score": 0.92, "latex": "N=1"}, {"category_id": 13, "poly": [400, 1316, 443, 1316, 443, 1346, 400, 1346], "score": 0.91, "latex": "X_{r}"}, {"category_id": 13, "poly": [1447, 413, 1491, 413, 1491, 442, 1447, 442], "score": 0.91, "latex": "X_{r}"}, {"category_id": 14, "poly": [634, 1505, 1066, 1505, 1066, 1549, 634, 1549], "score": 0.91, "latex": "\\ell\\left(\\lambda+\\rho\\right)=\\omega(\\lambda^{\\left(\\ell\\right)}+\\rho)+\\kappa\\alpha\\;."}, {"category_id": 14, "poly": [568, 1949, 1132, 1949, 1132, 1995, 568, 1995], "score": 0.91, "latex": "\\sigma_{\\ell}\\bigl(S_{\\lambda\\mu}\\bigr)=\\epsilon_{\\ell}\\bigl(\\lambda\\bigr)\\,S_{\\lambda^{(\\ell)},\\mu}=\\epsilon_{\\ell}\\bigl(\\mu\\bigr)\\,S_{\\lambda,\\mu^{(\\ell)}}\\ ."}, {"category_id": 13, "poly": [500, 1396, 551, 1396, 551, 1420, 500, 1420], "score": 0.91, "latex": "\\kappa N"}, {"category_id": 13, "poly": [482, 1873, 909, 1873, 909, 1911, 482, 1911], "score": 0.91, "latex": "\\sigma_{\\ell}\\in{\\mathrm{Gal}}(\\mathbb{Q}[\\xi_{4N\\kappa}]/\\mathbb{Q})\\cong\\mathbb{Z}_{4N\\kappa}^{\\times}"}, {"category_id": 13, "poly": [1460, 863, 1482, 863, 1482, 887, 1460, 887], "score": 0.9, "latex": "J"}, {"category_id": 13, "poly": [802, 1356, 948, 1356, 948, 1383, 802, 1383], "score": 0.9, "latex": "N=r+1"}, {"category_id": 13, "poly": [433, 492, 459, 492, 459, 516, 433, 516], "score": 0.9, "latex": "C"}, {"category_id": 13, "poly": [919, 621, 942, 621, 942, 646, 919, 646], "score": 0.9, "latex": "S"}, {"category_id": 13, "poly": [575, 702, 597, 702, 597, 726, 575, 726], "score": 0.9, "latex": "J"}, {"category_id": 14, "poly": [561, 1185, 1138, 1185, 1138, 1231, 561, 1231], "score": 0.89, "latex": "Q_{j^{\\prime}}(J\\lambda)\\equiv Q_{j}(j^{\\prime})+Q_{j^{\\prime}}(\\lambda)\\qquad(\\mathrm{mod}\\ 1)"}, {"category_id": 13, "poly": [1226, 1316, 1256, 1316, 1256, 1340, 1226, 1340], "score": 0.89, "latex": "N"}, {"category_id": 13, "poly": [406, 412, 433, 412, 433, 437, 406, 437], "score": 0.89, "latex": "C"}, {"category_id": 13, "poly": [622, 1445, 645, 1445, 645, 1460, 622, 1460], "score": 0.89, "latex": "\\omega"}, {"category_id": 13, "poly": [309, 1396, 324, 1396, 324, 1421, 309, 1421], "score": 0.89, "latex": "\\ell"}, {"category_id": 13, "poly": [198, 1838, 226, 1838, 226, 1868, 198, 1868], "score": 0.88, "latex": "\\mathbb{Q}"}, {"category_id": 13, "poly": [460, 251, 480, 251, 480, 275, 460, 275], "score": 0.88, "latex": "\\lambda"}, {"category_id": 13, "poly": [1447, 662, 1464, 662, 1464, 692, 1447, 692], "score": 0.88, "latex": "j"}, {"category_id": 13, "poly": [1102, 1355, 1143, 1355, 1143, 1386, 1102, 1386], "score": 0.86, "latex": "E_{8}"}, {"category_id": 13, "poly": [199, 1445, 222, 1445, 222, 1460, 199, 1460], "score": 0.85, "latex": "\\alpha"}, {"category_id": 15, "poly": [263.0, 895.0, 1503.0, 895.0, 1503.0, 941.0, 263.0, 941.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [193.0, 928.0, 428.0, 928.0, 428.0, 997.0, 193.0, 997.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [492.0, 928.0, 1505.0, 928.0, 1505.0, 997.0, 492.0, 997.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [194.0, 981.0, 363.0, 981.0, 363.0, 1034.0, 194.0, 1034.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [431.0, 981.0, 1508.0, 981.0, 1508.0, 1034.0, 431.0, 1034.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [196.0, 1033.0, 1502.0, 1033.0, 1502.0, 1072.0, 196.0, 1072.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [194.0, 1069.0, 451.0, 1069.0, 451.0, 1118.0, 194.0, 1118.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [512.0, 1069.0, 524.0, 1069.0, 524.0, 1118.0, 512.0, 1118.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [262.0, 1311.0, 399.0, 1311.0, 399.0, 1353.0, 262.0, 1353.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [444.0, 1311.0, 744.0, 1311.0, 744.0, 1353.0, 444.0, 1353.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [821.0, 1311.0, 1225.0, 1311.0, 1225.0, 1353.0, 821.0, 1353.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1257.0, 1311.0, 1504.0, 1311.0, 1504.0, 1353.0, 1257.0, 1353.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [194.0, 1346.0, 654.0, 1346.0, 654.0, 1395.0, 194.0, 1395.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [697.0, 1346.0, 801.0, 1346.0, 801.0, 1395.0, 697.0, 1395.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [949.0, 1346.0, 1101.0, 1346.0, 1101.0, 1395.0, 949.0, 1395.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1144.0, 1346.0, 1216.0, 1346.0, 1216.0, 1395.0, 1144.0, 1395.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1311.0, 1346.0, 1503.0, 1346.0, 1503.0, 1395.0, 1311.0, 1395.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [194.0, 1388.0, 308.0, 1388.0, 308.0, 1433.0, 194.0, 1433.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [325.0, 1388.0, 499.0, 1388.0, 499.0, 1433.0, 325.0, 1433.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [552.0, 1388.0, 774.0, 1388.0, 774.0, 1433.0, 552.0, 1433.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [880.0, 1388.0, 1248.0, 1388.0, 1248.0, 1433.0, 880.0, 1433.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1389.0, 1388.0, 1507.0, 1388.0, 1507.0, 1433.0, 1389.0, 1433.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [223.0, 1430.0, 621.0, 1430.0, 621.0, 1472.0, 223.0, 1472.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [646.0, 1430.0, 797.0, 1430.0, 797.0, 1472.0, 646.0, 1472.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [198.0, 1791.0, 1503.0, 1791.0, 1503.0, 1837.0, 198.0, 1837.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [227.0, 1832.0, 429.0, 1832.0, 429.0, 1877.0, 227.0, 1877.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [486.0, 1832.0, 879.0, 1832.0, 879.0, 1877.0, 486.0, 1877.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [995.0, 1832.0, 1098.0, 1832.0, 1098.0, 1877.0, 995.0, 1877.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1132.0, 1832.0, 1502.0, 1832.0, 1502.0, 1877.0, 1132.0, 1877.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [193.0, 1864.0, 197.0, 1864.0, 197.0, 1924.0, 193.0, 1924.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [354.0, 1864.0, 481.0, 1864.0, 481.0, 1924.0, 354.0, 1924.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [910.0, 1864.0, 1274.0, 1864.0, 1274.0, 1924.0, 910.0, 1924.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1501.0, 1864.0, 1505.0, 1864.0, 1505.0, 1924.0, 1501.0, 1924.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [198.0, 1912.0, 340.0, 1912.0, 340.0, 1949.0, 198.0, 1949.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [262.0, 485.0, 432.0, 485.0, 432.0, 528.0, 262.0, 528.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [460.0, 485.0, 1502.0, 485.0, 1502.0, 528.0, 460.0, 528.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [191.0, 518.0, 712.0, 518.0, 712.0, 581.0, 191.0, 581.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [781.0, 518.0, 1506.0, 518.0, 1506.0, 581.0, 781.0, 581.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [195.0, 564.0, 434.0, 564.0, 434.0, 630.0, 195.0, 630.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [522.0, 564.0, 536.0, 564.0, 536.0, 630.0, 522.0, 630.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [264.0, 615.0, 918.0, 615.0, 918.0, 658.0, 264.0, 658.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [943.0, 615.0, 1503.0, 615.0, 1503.0, 658.0, 943.0, 658.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [195.0, 658.0, 198.0, 658.0, 198.0, 697.0, 195.0, 697.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [307.0, 658.0, 585.0, 658.0, 585.0, 697.0, 307.0, 697.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [725.0, 658.0, 1446.0, 658.0, 1446.0, 697.0, 725.0, 697.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1465.0, 658.0, 1503.0, 658.0, 1503.0, 697.0, 1465.0, 697.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [199.0, 697.0, 574.0, 697.0, 574.0, 735.0, 199.0, 735.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [598.0, 697.0, 644.0, 697.0, 644.0, 735.0, 598.0, 735.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [690.0, 697.0, 922.0, 697.0, 922.0, 735.0, 690.0, 735.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1114.0, 697.0, 1277.0, 697.0, 1277.0, 735.0, 1114.0, 735.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1378.0, 697.0, 1447.0, 697.0, 1447.0, 735.0, 1378.0, 735.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [196.0, 1589.0, 1027.0, 1589.0, 1027.0, 1637.0, 196.0, 1637.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1146.0, 1589.0, 1403.0, 1589.0, 1403.0, 1637.0, 1146.0, 1637.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1501.0, 1589.0, 1507.0, 1589.0, 1507.0, 1637.0, 1501.0, 1637.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [196.0, 1631.0, 650.0, 1631.0, 650.0, 1676.0, 196.0, 1676.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [772.0, 1631.0, 890.0, 1631.0, 890.0, 1676.0, 772.0, 1676.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1170.0, 1631.0, 1332.0, 1631.0, 1332.0, 1676.0, 1170.0, 1676.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [265.0, 201.0, 1001.0, 201.0, 1001.0, 251.0, 265.0, 251.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1047.0, 201.0, 1194.0, 201.0, 1194.0, 251.0, 1047.0, 251.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1325.0, 201.0, 1506.0, 201.0, 1506.0, 251.0, 1325.0, 251.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [197.0, 246.0, 459.0, 246.0, 459.0, 290.0, 197.0, 290.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [481.0, 246.0, 690.0, 246.0, 690.0, 290.0, 481.0, 290.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [797.0, 246.0, 1258.0, 246.0, 1258.0, 290.0, 797.0, 290.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [197.0, 403.0, 264.0, 403.0, 264.0, 450.0, 197.0, 450.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [379.0, 403.0, 405.0, 403.0, 405.0, 450.0, 379.0, 450.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [434.0, 403.0, 1446.0, 403.0, 1446.0, 450.0, 434.0, 450.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1492.0, 403.0, 1501.0, 403.0, 1501.0, 450.0, 1492.0, 450.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [198.0, 448.0, 589.0, 448.0, 589.0, 484.0, 198.0, 484.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [197.0, 1271.0, 578.0, 1271.0, 578.0, 1313.0, 197.0, 1313.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [806.0, 1271.0, 814.0, 1271.0, 814.0, 1313.0, 806.0, 1313.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [199.0, 857.0, 1459.0, 857.0, 1459.0, 898.0, 199.0, 898.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1483.0, 857.0, 1493.0, 857.0, 1493.0, 898.0, 1483.0, 898.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [266.0, 1109.0, 432.0, 1109.0, 432.0, 1151.0, 266.0, 1151.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [517.0, 1109.0, 935.0, 1109.0, 935.0, 1151.0, 517.0, 1151.0], "score": 1.0, "text": ""}] | {"preproc_blocks": [{"type": "text", "bbox": [70, 70, 540, 100], "lines": [{"bbox": [95, 72, 542, 90], "spans": [{"bbox": [95, 72, 360, 90], "score": 1.0, "content": "Charge-conjugation is the order 2 permutation of ", "type": "text"}, {"bbox": [360, 75, 376, 87], "score": 0.93, "content": "P_{+}", "type": "inline_equation", "height": 12, "width": 16}, {"bbox": [376, 72, 429, 90], "score": 1.0, "content": " given by ", "type": "text"}, {"bbox": [430, 74, 476, 84], "score": 0.93, "content": "C\\lambda\\,=\\,^{t}\\lambda", "type": "inline_equation", "height": 10, "width": 46}, {"bbox": [477, 72, 542, 90], "score": 1.0, "content": ", the weight", "type": "text"}], "index": 0}, {"bbox": [70, 88, 452, 104], "spans": [{"bbox": [70, 88, 165, 104], "score": 1.0, "content": "contragredient to ", "type": "text"}, {"bbox": [165, 90, 172, 99], "score": 0.88, "content": "\\lambda", "type": "inline_equation", "height": 9, "width": 7}, {"bbox": [173, 88, 248, 104], "score": 1.0, "content": ". For instance ", "type": "text"}, {"bbox": [248, 90, 286, 99], "score": 0.93, "content": "C0=0", "type": "inline_equation", "height": 9, "width": 38}, {"bbox": [286, 88, 452, 104], "score": 1.0, "content": ". It has the basic property that", "type": "text"}], "index": 1}], "index": 0.5}, {"type": "interline_equation", "bbox": [250, 117, 361, 132], "lines": [{"bbox": [250, 117, 361, 132], "spans": [{"bbox": [250, 117, 361, 132], "score": 0.93, "content": "S_{C\\lambda,\\mu}=S_{\\lambda,C\\mu}=S_{\\lambda\\mu}^{*}", "type": "interline_equation"}], "index": 2}], "index": 2}, {"type": "text", "bbox": [70, 143, 540, 172], "lines": [{"bbox": [70, 145, 540, 162], "spans": [{"bbox": [70, 145, 95, 162], "score": 1.0, "content": "and ", "type": "text"}, {"bbox": [95, 146, 136, 156], "score": 0.92, "content": "S^{2}=C", "type": "inline_equation", "height": 10, "width": 41}, {"bbox": [136, 145, 145, 162], "score": 1.0, "content": ". ", "type": "text"}, {"bbox": [146, 148, 155, 157], "score": 0.89, "content": "C", "type": "inline_equation", "height": 9, "width": 9}, {"bbox": [156, 145, 520, 162], "score": 1.0, "content": " corresponds to a symmetry of the (unextended) Dynkin diagram of ", "type": "text"}, {"bbox": [520, 148, 536, 159], "score": 0.91, "content": "X_{r}", "type": "inline_equation", "height": 11, "width": 16}, {"bbox": [537, 145, 540, 162], "score": 1.0, "content": ",", "type": "text"}], "index": 3}, {"bbox": [71, 161, 212, 174], "spans": [{"bbox": [71, 161, 212, 174], "score": 1.0, "content": "as we will see next section.", "type": "text"}], "index": 4}], "index": 3.5}, {"type": "text", "bbox": [70, 173, 541, 219], "lines": [{"bbox": [94, 174, 540, 190], "spans": [{"bbox": [94, 174, 155, 190], "score": 1.0, "content": "Related to ", "type": "text"}, {"bbox": [155, 177, 165, 185], "score": 0.9, "content": "C", "type": "inline_equation", "height": 8, "width": 10}, {"bbox": [165, 174, 540, 190], "score": 1.0, "content": " are all the other symmetries of the unextended Dynkin diagram. We", "type": "text"}], "index": 5}, {"bbox": [68, 186, 542, 209], "spans": [{"bbox": [68, 186, 256, 209], "score": 1.0, "content": "call these conjugations. The only ", "type": "text"}, {"bbox": [256, 188, 280, 203], "score": 0.93, "content": "X_{r}^{(1)}", "type": "inline_equation", "height": 15, "width": 24}, {"bbox": [281, 186, 542, 209], "score": 1.0, "content": "with nontrivial conjugations other than charge-", "type": "text"}], "index": 6}, {"bbox": [70, 203, 192, 226], "spans": [{"bbox": [70, 203, 156, 226], "score": 1.0, "content": "conjugation are ", "type": "text"}, {"bbox": [156, 204, 187, 219], "score": 0.92, "content": "D_{e v e n}^{(1)}", "type": "inline_equation", "height": 15, "width": 31}, {"bbox": [187, 203, 192, 226], "score": 1.0, "content": ".", "type": "text"}], "index": 7}], "index": 6}, {"type": "text", "bbox": [70, 219, 541, 263], "lines": [{"bbox": [95, 221, 541, 236], "spans": [{"bbox": [95, 221, 330, 236], "score": 1.0, "content": "Another important symmetry of the matrix ", "type": "text"}, {"bbox": [330, 223, 339, 232], "score": 0.9, "content": "S", "type": "inline_equation", "height": 9, "width": 9}, {"bbox": [339, 221, 541, 236], "score": 1.0, "content": " is called simple-currents. Any weight", "type": "text"}], "index": 8}, {"bbox": [71, 236, 541, 250], "spans": [{"bbox": [71, 238, 110, 249], "score": 0.93, "content": "j\\in P_{+}", "type": "inline_equation", "height": 11, "width": 39}, {"bbox": [110, 236, 210, 250], "score": 1.0, "content": " with q-dimension ", "type": "text"}, {"bbox": [210, 237, 260, 249], "score": 0.94, "content": "\\mathcal{D}(j)=1", "type": "inline_equation", "height": 12, "width": 50}, {"bbox": [261, 236, 520, 250], "score": 1.0, "content": ", is called a simple-current. To any such weight ", "type": "text"}, {"bbox": [520, 238, 527, 249], "score": 0.88, "content": "j", "type": "inline_equation", "height": 11, "width": 7}, {"bbox": [527, 236, 541, 250], "score": 1.0, "content": " is", "type": "text"}], "index": 9}, {"bbox": [71, 250, 520, 264], "spans": [{"bbox": [71, 250, 206, 264], "score": 1.0, "content": "associated a permutation ", "type": "text"}, {"bbox": [207, 252, 214, 261], "score": 0.9, "content": "J", "type": "inline_equation", "height": 9, "width": 7}, {"bbox": [215, 250, 231, 264], "score": 1.0, "content": " of ", "type": "text"}, {"bbox": [232, 252, 248, 263], "score": 0.92, "content": "P_{+}", "type": "inline_equation", "height": 11, "width": 16}, {"bbox": [248, 250, 331, 264], "score": 1.0, "content": " and a function ", "type": "text"}, {"bbox": [332, 252, 400, 264], "score": 0.93, "content": "Q_{j}:P_{+}\\to\\mathbb{Q}", "type": "inline_equation", "height": 12, "width": 68}, {"bbox": [401, 250, 459, 264], "score": 1.0, "content": ", such that ", "type": "text"}, {"bbox": [460, 252, 495, 263], "score": 0.94, "content": "J0=j", "type": "inline_equation", "height": 11, "width": 35}, {"bbox": [496, 250, 520, 264], "score": 1.0, "content": " and", "type": "text"}], "index": 10}], "index": 9}, {"type": "interline_equation", "bbox": [235, 278, 376, 293], "lines": [{"bbox": [235, 278, 376, 293], "spans": [{"bbox": [235, 278, 376, 293], "score": 0.93, "content": "S_{J\\lambda,\\mu}=\\exp[2\\pi\\mathrm{i}\\,Q_{j}(\\mu)]\\,S_{\\lambda\\mu}", "type": "interline_equation"}], "index": 11}], "index": 11}, {"type": "text", "bbox": [70, 306, 538, 320], "lines": [{"bbox": [71, 308, 537, 323], "spans": [{"bbox": [71, 308, 525, 323], "score": 1.0, "content": "The simple-currents form an abelian group, given by composition of the permutations ", "type": "text"}, {"bbox": [525, 310, 533, 319], "score": 0.9, "content": "J", "type": "inline_equation", "height": 9, "width": 8}, {"bbox": [533, 308, 537, 323], "score": 1.0, "content": ".", "type": "text"}], "index": 12}], "index": 12}, {"type": "text", "bbox": [70, 321, 541, 397], "lines": [{"bbox": [94, 322, 541, 338], "spans": [{"bbox": [94, 322, 541, 338], "score": 1.0, "content": "All simple-currents for the affine algebras were classified in [12], and with one unimpor-", "type": "text"}], "index": 13}, {"bbox": [69, 334, 541, 358], "spans": [{"bbox": [69, 334, 154, 358], "score": 1.0, "content": "tant exception (", "type": "text"}, {"bbox": [154, 336, 176, 353], "score": 0.92, "content": "{E}_{8}^{(1)}", "type": "inline_equation", "height": 17, "width": 22}, {"bbox": [177, 334, 541, 358], "score": 1.0, "content": "at level 2) correspond to symmetries of the extended Coxeter\u2013Dynkin", "type": "text"}], "index": 14}, {"bbox": [69, 353, 542, 372], "spans": [{"bbox": [69, 353, 130, 372], "score": 1.0, "content": "diagram of ", "type": "text"}, {"bbox": [131, 354, 154, 368], "score": 0.93, "content": "X_{r}^{(1)}", "type": "inline_equation", "height": 14, "width": 23}, {"bbox": [155, 353, 542, 372], "score": 1.0, "content": ". The simplest proof would use the methods of Proposition 4.1 below. For", "type": "text"}], "index": 15}, {"bbox": [70, 371, 540, 385], "spans": [{"bbox": [70, 371, 540, 385], "score": 1.0, "content": "a more intrinsically algebraic interpretation of these simple-currents, see [25] where their", "type": "text"}], "index": 16}, {"bbox": [69, 384, 188, 402], "spans": [{"bbox": [69, 384, 162, 402], "score": 1.0, "content": "group is denoted ", "type": "text"}, {"bbox": [162, 385, 183, 398], "score": 0.93, "content": "W_{0}^{+}", "type": "inline_equation", "height": 13, "width": 21}, {"bbox": [184, 384, 188, 402], "score": 1.0, "content": ".", "type": "text"}], "index": 17}], "index": 15}, {"type": "text", "bbox": [94, 397, 338, 412], "lines": [{"bbox": [95, 399, 336, 414], "spans": [{"bbox": [95, 399, 155, 414], "score": 1.0, "content": "Evaluating ", "type": "text"}, {"bbox": [155, 401, 185, 413], "score": 0.93, "content": "S_{J\\lambda,j^{\\prime}}", "type": "inline_equation", "height": 12, "width": 30}, {"bbox": [186, 399, 336, 414], "score": 1.0, "content": " in two ways gives the useful", "type": "text"}], "index": 18}], "index": 18}, {"type": "interline_equation", "bbox": [201, 426, 409, 443], "lines": [{"bbox": [201, 426, 409, 443], "spans": [{"bbox": [201, 426, 409, 443], "score": 0.89, "content": "Q_{j^{\\prime}}(J\\lambda)\\equiv Q_{j}(j^{\\prime})+Q_{j^{\\prime}}(\\lambda)\\qquad(\\mathrm{mod}\\ 1)", "type": "interline_equation"}], "index": 19}], "index": 19}, {"type": "text", "bbox": [70, 455, 294, 469], "lines": [{"bbox": [70, 457, 293, 472], "spans": [{"bbox": [70, 457, 208, 472], "score": 1.0, "content": "and hence the reciprocity ", "type": "text"}, {"bbox": [208, 458, 289, 471], "score": 0.93, "content": "Q_{j}(j^{\\prime})=Q_{j^{\\prime}}(j)", "type": "inline_equation", "height": 13, "width": 81}, {"bbox": [290, 457, 293, 472], "score": 1.0, "content": ".", "type": "text"}], "index": 20}], "index": 20}, {"type": "text", "bbox": [70, 470, 541, 527], "lines": [{"bbox": [94, 471, 541, 487], "spans": [{"bbox": [94, 471, 143, 487], "score": 1.0, "content": "For each ", "type": "text"}, {"bbox": [144, 473, 159, 484], "score": 0.91, "content": "X_{r}", "type": "inline_equation", "height": 11, "width": 15}, {"bbox": [159, 471, 267, 487], "score": 1.0, "content": ", the inner products ", "type": "text"}, {"bbox": [268, 473, 295, 485], "score": 0.93, "content": "(\\lambda|\\mu)", "type": "inline_equation", "height": 12, "width": 27}, {"bbox": [295, 471, 441, 487], "score": 1.0, "content": " of weights are rational; let ", "type": "text"}, {"bbox": [441, 473, 452, 482], "score": 0.89, "content": "N", "type": "inline_equation", "height": 9, "width": 11}, {"bbox": [452, 471, 541, 487], "score": 1.0, "content": " denote the least", "type": "text"}], "index": 21}, {"bbox": [69, 484, 541, 502], "spans": [{"bbox": [69, 484, 235, 502], "score": 1.0, "content": "common denominator. E.g. for ", "type": "text"}, {"bbox": [235, 488, 250, 498], "score": 0.92, "content": "A_{r}", "type": "inline_equation", "height": 10, "width": 15}, {"bbox": [250, 484, 288, 502], "score": 1.0, "content": " this is ", "type": "text"}, {"bbox": [288, 488, 341, 497], "score": 0.9, "content": "N=r+1", "type": "inline_equation", "height": 9, "width": 53}, {"bbox": [341, 484, 396, 502], "score": 1.0, "content": ", while for ", "type": "text"}, {"bbox": [396, 487, 411, 498], "score": 0.86, "content": "E_{8}", "type": "inline_equation", "height": 11, "width": 15}, {"bbox": [411, 484, 437, 502], "score": 1.0, "content": " it is ", "type": "text"}, {"bbox": [438, 488, 471, 497], "score": 0.92, "content": "N=1", "type": "inline_equation", "height": 9, "width": 33}, {"bbox": [471, 484, 541, 502], "score": 1.0, "content": ". Choose any", "type": "text"}], "index": 22}, {"bbox": [69, 499, 542, 515], "spans": [{"bbox": [69, 499, 110, 515], "score": 1.0, "content": "integer ", "type": "text"}, {"bbox": [111, 502, 116, 511], "score": 0.89, "content": "\\ell", "type": "inline_equation", "height": 9, "width": 5}, {"bbox": [117, 499, 179, 515], "score": 1.0, "content": "coprime to ", "type": "text"}, {"bbox": [180, 502, 198, 511], "score": 0.91, "content": "\\kappa N", "type": "inline_equation", "height": 9, "width": 18}, {"bbox": [198, 499, 278, 515], "score": 1.0, "content": ". Then for any ", "type": "text"}, {"bbox": [279, 502, 316, 514], "score": 0.94, "content": "\\lambda\\in P_{+}", "type": "inline_equation", "height": 12, "width": 37}, {"bbox": [316, 499, 449, 515], "score": 1.0, "content": " there is a unique weight ", "type": "text"}, {"bbox": [449, 500, 499, 514], "score": 0.93, "content": "\\lambda^{(\\ell)}\\in P_{+}", "type": "inline_equation", "height": 14, "width": 50}, {"bbox": [500, 499, 542, 515], "score": 1.0, "content": ", coroot", "type": "text"}], "index": 23}, {"bbox": [71, 514, 286, 529], "spans": [{"bbox": [71, 520, 79, 525], "score": 0.85, "content": "\\alpha", "type": "inline_equation", "height": 5, "width": 8}, {"bbox": [80, 514, 223, 529], "score": 1.0, "content": ", and (finite) Weyl element ", "type": "text"}, {"bbox": [223, 520, 232, 525], "score": 0.89, "content": "\\omega", "type": "inline_equation", "height": 5, "width": 9}, {"bbox": [232, 514, 286, 529], "score": 1.0, "content": " such that", "type": "text"}], "index": 24}], "index": 22.5}, {"type": "interline_equation", "bbox": [228, 541, 383, 557], "lines": [{"bbox": [228, 541, 383, 557], "spans": [{"bbox": [228, 541, 383, 557], "score": 0.91, "content": "\\ell\\left(\\lambda+\\rho\\right)=\\omega(\\lambda^{\\left(\\ell\\right)}+\\rho)+\\kappa\\alpha\\;.", "type": "interline_equation"}], "index": 25}], "index": 25}, {"type": "text", "bbox": [70, 570, 541, 600], "lines": [{"bbox": [70, 572, 540, 589], "spans": [{"bbox": [70, 572, 369, 589], "score": 1.0, "content": "This is simply the statement that the affine Weyl orbit of ", "type": "text"}, {"bbox": [370, 573, 412, 586], "score": 0.93, "content": "\\ell\\left(\\lambda+\\rho\\right)", "type": "inline_equation", "height": 13, "width": 42}, {"bbox": [412, 572, 505, 589], "score": 1.0, "content": " intersects the set ", "type": "text"}, {"bbox": [505, 575, 540, 586], "score": 0.93, "content": "P_{+}+\\rho", "type": "inline_equation", "height": 11, "width": 35}], "index": 26}, {"bbox": [70, 587, 479, 603], "spans": [{"bbox": [70, 587, 234, 603], "score": 1.0, "content": "at precisely one point (namely ", "type": "text"}, {"bbox": [234, 587, 277, 600], "score": 0.93, "content": "\\lambda^{(\\ell)}+\\rho)", "type": "inline_equation", "height": 13, "width": 43}, {"bbox": [277, 587, 320, 603], "score": 1.0, "content": ". Write ", "type": "text"}, {"bbox": [320, 587, 420, 601], "score": 0.92, "content": "\\epsilon_{\\ell}^{\\prime}(\\lambda)=\\operatorname*{det}\\omega=\\pm1", "type": "inline_equation", "height": 14, "width": 100}, {"bbox": [421, 587, 479, 603], "score": 1.0, "content": ". Then [16]", "type": "text"}], "index": 27}], "index": 26.5}, {"type": "interline_equation", "bbox": [236, 614, 374, 631], "lines": [{"bbox": [236, 614, 374, 631], "spans": [{"bbox": [236, 614, 374, 631], "score": 0.93, "content": "\\epsilon_{\\ell}^{\\prime}(\\lambda)\\,S_{\\lambda^{(\\ell)},\\mu}=\\epsilon_{\\ell}^{\\prime}(\\mu)\\,S_{\\lambda,\\mu^{(\\ell)}}", "type": "interline_equation"}], "index": 28}], "index": 28}, {"type": "text", "bbox": [68, 642, 541, 699], "lines": [{"bbox": [71, 644, 541, 661], "spans": [{"bbox": [71, 644, 541, 661], "score": 1.0, "content": "This has an obvious interpretation as a Galois automorphism [4]: the field generated over", "type": "text"}], "index": 29}, {"bbox": [71, 659, 540, 675], "spans": [{"bbox": [71, 661, 81, 672], "score": 0.88, "content": "\\mathbb{Q}", "type": "inline_equation", "height": 11, "width": 10}, {"bbox": [81, 659, 154, 675], "score": 1.0, "content": " by all entries ", "type": "text"}, {"bbox": [154, 661, 174, 673], "score": 0.92, "content": "S_{\\lambda\\mu}", "type": "inline_equation", "height": 12, "width": 20}, {"bbox": [174, 659, 316, 675], "score": 1.0, "content": " lies in the cyclotomic field ", "type": "text"}, {"bbox": [316, 660, 357, 673], "score": 0.92, "content": "\\mathbb{Q}[\\xi_{4N\\kappa}]", "type": "inline_equation", "height": 13, "width": 41}, {"bbox": [358, 659, 395, 675], "score": 1.0, "content": " where ", "type": "text"}, {"bbox": [395, 661, 407, 672], "score": 0.92, "content": "\\xi_{n}", "type": "inline_equation", "height": 11, "width": 12}, {"bbox": [407, 659, 540, 675], "score": 1.0, "content": " denotes the root of unity", "type": "text"}], "index": 30}, {"bbox": [71, 671, 540, 692], "spans": [{"bbox": [71, 674, 127, 687], "score": 0.92, "content": "\\exp[2\\pi\\mathrm{i}/n]", "type": "inline_equation", "height": 13, "width": 56}, {"bbox": [127, 671, 173, 692], "score": 1.0, "content": "; for any ", "type": "text"}, {"bbox": [173, 674, 327, 687], "score": 0.91, "content": "\\sigma_{\\ell}\\in{\\mathrm{Gal}}(\\mathbb{Q}[\\xi_{4N\\kappa}]/\\mathbb{Q})\\cong\\mathbb{Z}_{4N\\kappa}^{\\times}", "type": "inline_equation", "height": 13, "width": 154}, {"bbox": [327, 671, 458, 692], "score": 1.0, "content": ", there will be a function ", "type": "text"}, {"bbox": [459, 675, 540, 687], "score": 0.94, "content": "\\epsilon_{\\ell}:P_{+}\\to\\{\\pm1\\}", "type": "inline_equation", "height": 12, "width": 81}], "index": 31}, {"bbox": [71, 688, 122, 701], "spans": [{"bbox": [71, 688, 122, 701], "score": 1.0, "content": "such that", "type": "text"}], "index": 32}], "index": 30.5}, {"type": "interline_equation", "bbox": [204, 701, 407, 718], "lines": [{"bbox": [204, 701, 407, 718], "spans": [{"bbox": [204, 701, 407, 718], "score": 0.91, "content": "\\sigma_{\\ell}\\bigl(S_{\\lambda\\mu}\\bigr)=\\epsilon_{\\ell}\\bigl(\\lambda\\bigr)\\,S_{\\lambda^{(\\ell)},\\mu}=\\epsilon_{\\ell}\\bigl(\\mu\\bigr)\\,S_{\\lambda,\\mu^{(\\ell)}}\\ .", "type": "interline_equation"}], "index": 33}], "index": 33}], "layout_bboxes": [], "page_idx": 3, "page_size": [612.0, 792.0], "_layout_tree": [], "images": [], "tables": [], "interline_equations": [{"type": "interline_equation", "bbox": [250, 117, 361, 132], "lines": [{"bbox": [250, 117, 361, 132], "spans": [{"bbox": [250, 117, 361, 132], "score": 0.93, "content": "S_{C\\lambda,\\mu}=S_{\\lambda,C\\mu}=S_{\\lambda\\mu}^{*}", "type": "interline_equation"}], "index": 2}], "index": 2}, {"type": "interline_equation", "bbox": [235, 278, 376, 293], "lines": [{"bbox": [235, 278, 376, 293], "spans": [{"bbox": [235, 278, 376, 293], "score": 0.93, "content": "S_{J\\lambda,\\mu}=\\exp[2\\pi\\mathrm{i}\\,Q_{j}(\\mu)]\\,S_{\\lambda\\mu}", "type": "interline_equation"}], "index": 11}], "index": 11}, {"type": "interline_equation", "bbox": [201, 426, 409, 443], "lines": [{"bbox": [201, 426, 409, 443], "spans": [{"bbox": [201, 426, 409, 443], "score": 0.89, "content": "Q_{j^{\\prime}}(J\\lambda)\\equiv Q_{j}(j^{\\prime})+Q_{j^{\\prime}}(\\lambda)\\qquad(\\mathrm{mod}\\ 1)", "type": "interline_equation"}], "index": 19}], "index": 19}, {"type": "interline_equation", "bbox": [228, 541, 383, 557], "lines": [{"bbox": [228, 541, 383, 557], "spans": [{"bbox": [228, 541, 383, 557], "score": 0.91, "content": "\\ell\\left(\\lambda+\\rho\\right)=\\omega(\\lambda^{\\left(\\ell\\right)}+\\rho)+\\kappa\\alpha\\;.", "type": "interline_equation"}], "index": 25}], "index": 25}, {"type": "interline_equation", "bbox": [236, 614, 374, 631], "lines": [{"bbox": [236, 614, 374, 631], "spans": [{"bbox": [236, 614, 374, 631], "score": 0.93, "content": "\\epsilon_{\\ell}^{\\prime}(\\lambda)\\,S_{\\lambda^{(\\ell)},\\mu}=\\epsilon_{\\ell}^{\\prime}(\\mu)\\,S_{\\lambda,\\mu^{(\\ell)}}", "type": "interline_equation"}], "index": 28}], "index": 28}, {"type": "interline_equation", "bbox": [204, 701, 407, 718], "lines": [{"bbox": [204, 701, 407, 718], "spans": [{"bbox": [204, 701, 407, 718], "score": 0.91, "content": "\\sigma_{\\ell}\\bigl(S_{\\lambda\\mu}\\bigr)=\\epsilon_{\\ell}\\bigl(\\lambda\\bigr)\\,S_{\\lambda^{(\\ell)},\\mu}=\\epsilon_{\\ell}\\bigl(\\mu\\bigr)\\,S_{\\lambda,\\mu^{(\\ell)}}\\ .", "type": "interline_equation"}], "index": 33}], "index": 33}], "discarded_blocks": [], "need_drop": false, "drop_reason": [], "para_blocks": [{"type": "text", "bbox": [70, 70, 540, 100], "lines": [{"bbox": [95, 72, 542, 90], "spans": [{"bbox": [95, 72, 360, 90], "score": 1.0, "content": "Charge-conjugation is the order 2 permutation of ", "type": "text"}, {"bbox": [360, 75, 376, 87], "score": 0.93, "content": "P_{+}", "type": "inline_equation", "height": 12, "width": 16}, {"bbox": [376, 72, 429, 90], "score": 1.0, "content": " given by ", "type": "text"}, {"bbox": [430, 74, 476, 84], "score": 0.93, "content": "C\\lambda\\,=\\,^{t}\\lambda", "type": "inline_equation", "height": 10, "width": 46}, {"bbox": [477, 72, 542, 90], "score": 1.0, "content": ", the weight", "type": "text"}], "index": 0}, {"bbox": [70, 88, 452, 104], "spans": [{"bbox": [70, 88, 165, 104], "score": 1.0, "content": "contragredient to ", "type": "text"}, {"bbox": [165, 90, 172, 99], "score": 0.88, "content": "\\lambda", "type": "inline_equation", "height": 9, "width": 7}, {"bbox": [173, 88, 248, 104], "score": 1.0, "content": ". For instance ", "type": "text"}, {"bbox": [248, 90, 286, 99], "score": 0.93, "content": "C0=0", "type": "inline_equation", "height": 9, "width": 38}, {"bbox": [286, 88, 452, 104], "score": 1.0, "content": ". It has the basic property that", "type": "text"}], "index": 1}], "index": 0.5, "page_num": "page_3", "page_size": [612.0, 792.0], "bbox_fs": [70, 72, 542, 104]}, {"type": "interline_equation", "bbox": [250, 117, 361, 132], "lines": [{"bbox": [250, 117, 361, 132], "spans": [{"bbox": [250, 117, 361, 132], "score": 0.93, "content": "S_{C\\lambda,\\mu}=S_{\\lambda,C\\mu}=S_{\\lambda\\mu}^{*}", "type": "interline_equation"}], "index": 2}], "index": 2, "page_num": "page_3", "page_size": [612.0, 792.0]}, {"type": "text", "bbox": [70, 143, 540, 172], "lines": [{"bbox": [70, 145, 540, 162], "spans": [{"bbox": [70, 145, 95, 162], "score": 1.0, "content": "and ", "type": "text"}, {"bbox": [95, 146, 136, 156], "score": 0.92, "content": "S^{2}=C", "type": "inline_equation", "height": 10, "width": 41}, {"bbox": [136, 145, 145, 162], "score": 1.0, "content": ". ", "type": "text"}, {"bbox": [146, 148, 155, 157], "score": 0.89, "content": "C", "type": "inline_equation", "height": 9, "width": 9}, {"bbox": [156, 145, 520, 162], "score": 1.0, "content": " corresponds to a symmetry of the (unextended) Dynkin diagram of ", "type": "text"}, {"bbox": [520, 148, 536, 159], "score": 0.91, "content": "X_{r}", "type": "inline_equation", "height": 11, "width": 16}, {"bbox": [537, 145, 540, 162], "score": 1.0, "content": ",", "type": "text"}], "index": 3}, {"bbox": [71, 161, 212, 174], "spans": [{"bbox": [71, 161, 212, 174], "score": 1.0, "content": "as we will see next section.", "type": "text"}], "index": 4}], "index": 3.5, "page_num": "page_3", "page_size": [612.0, 792.0], "bbox_fs": [70, 145, 540, 174]}, {"type": "text", "bbox": [70, 173, 541, 219], "lines": [{"bbox": [94, 174, 540, 190], "spans": [{"bbox": [94, 174, 155, 190], "score": 1.0, "content": "Related to ", "type": "text"}, {"bbox": [155, 177, 165, 185], "score": 0.9, "content": "C", "type": "inline_equation", "height": 8, "width": 10}, {"bbox": [165, 174, 540, 190], "score": 1.0, "content": " are all the other symmetries of the unextended Dynkin diagram. We", "type": "text"}], "index": 5}, {"bbox": [68, 186, 542, 209], "spans": [{"bbox": [68, 186, 256, 209], "score": 1.0, "content": "call these conjugations. The only ", "type": "text"}, {"bbox": [256, 188, 280, 203], "score": 0.93, "content": "X_{r}^{(1)}", "type": "inline_equation", "height": 15, "width": 24}, {"bbox": [281, 186, 542, 209], "score": 1.0, "content": "with nontrivial conjugations other than charge-", "type": "text"}], "index": 6}, {"bbox": [70, 203, 192, 226], "spans": [{"bbox": [70, 203, 156, 226], "score": 1.0, "content": "conjugation are ", "type": "text"}, {"bbox": [156, 204, 187, 219], "score": 0.92, "content": "D_{e v e n}^{(1)}", "type": "inline_equation", "height": 15, "width": 31}, {"bbox": [187, 203, 192, 226], "score": 1.0, "content": ".", "type": "text"}], "index": 7}], "index": 6, "page_num": "page_3", "page_size": [612.0, 792.0], "bbox_fs": [68, 174, 542, 226]}, {"type": "text", "bbox": [70, 219, 541, 263], "lines": [{"bbox": [95, 221, 541, 236], "spans": [{"bbox": [95, 221, 330, 236], "score": 1.0, "content": "Another important symmetry of the matrix ", "type": "text"}, {"bbox": [330, 223, 339, 232], "score": 0.9, "content": "S", "type": "inline_equation", "height": 9, "width": 9}, {"bbox": [339, 221, 541, 236], "score": 1.0, "content": " is called simple-currents. Any weight", "type": "text"}], "index": 8}, {"bbox": [71, 236, 541, 250], "spans": [{"bbox": [71, 238, 110, 249], "score": 0.93, "content": "j\\in P_{+}", "type": "inline_equation", "height": 11, "width": 39}, {"bbox": [110, 236, 210, 250], "score": 1.0, "content": " with q-dimension ", "type": "text"}, {"bbox": [210, 237, 260, 249], "score": 0.94, "content": "\\mathcal{D}(j)=1", "type": "inline_equation", "height": 12, "width": 50}, {"bbox": [261, 236, 520, 250], "score": 1.0, "content": ", is called a simple-current. To any such weight ", "type": "text"}, {"bbox": [520, 238, 527, 249], "score": 0.88, "content": "j", "type": "inline_equation", "height": 11, "width": 7}, {"bbox": [527, 236, 541, 250], "score": 1.0, "content": " is", "type": "text"}], "index": 9}, {"bbox": [71, 250, 520, 264], "spans": [{"bbox": [71, 250, 206, 264], "score": 1.0, "content": "associated a permutation ", "type": "text"}, {"bbox": [207, 252, 214, 261], "score": 0.9, "content": "J", "type": "inline_equation", "height": 9, "width": 7}, {"bbox": [215, 250, 231, 264], "score": 1.0, "content": " of ", "type": "text"}, {"bbox": [232, 252, 248, 263], "score": 0.92, "content": "P_{+}", "type": "inline_equation", "height": 11, "width": 16}, {"bbox": [248, 250, 331, 264], "score": 1.0, "content": " and a function ", "type": "text"}, {"bbox": [332, 252, 400, 264], "score": 0.93, "content": "Q_{j}:P_{+}\\to\\mathbb{Q}", "type": "inline_equation", "height": 12, "width": 68}, {"bbox": [401, 250, 459, 264], "score": 1.0, "content": ", such that ", "type": "text"}, {"bbox": [460, 252, 495, 263], "score": 0.94, "content": "J0=j", "type": "inline_equation", "height": 11, "width": 35}, {"bbox": [496, 250, 520, 264], "score": 1.0, "content": " and", "type": "text"}], "index": 10}], "index": 9, "page_num": "page_3", "page_size": [612.0, 792.0], "bbox_fs": [71, 221, 541, 264]}, {"type": "interline_equation", "bbox": [235, 278, 376, 293], "lines": [{"bbox": [235, 278, 376, 293], "spans": [{"bbox": [235, 278, 376, 293], "score": 0.93, "content": "S_{J\\lambda,\\mu}=\\exp[2\\pi\\mathrm{i}\\,Q_{j}(\\mu)]\\,S_{\\lambda\\mu}", "type": "interline_equation"}], "index": 11}], "index": 11, "page_num": "page_3", "page_size": [612.0, 792.0]}, {"type": "text", "bbox": [70, 306, 538, 320], "lines": [{"bbox": [71, 308, 537, 323], "spans": [{"bbox": [71, 308, 525, 323], "score": 1.0, "content": "The simple-currents form an abelian group, given by composition of the permutations ", "type": "text"}, {"bbox": [525, 310, 533, 319], "score": 0.9, "content": "J", "type": "inline_equation", "height": 9, "width": 8}, {"bbox": [533, 308, 537, 323], "score": 1.0, "content": ".", "type": "text"}], "index": 12}], "index": 12, "page_num": "page_3", "page_size": [612.0, 792.0], "bbox_fs": [71, 308, 537, 323]}, {"type": "text", "bbox": [70, 321, 541, 397], "lines": [{"bbox": [94, 322, 541, 338], "spans": [{"bbox": [94, 322, 541, 338], "score": 1.0, "content": "All simple-currents for the affine algebras were classified in [12], and with one unimpor-", "type": "text"}], "index": 13}, {"bbox": [69, 334, 541, 358], "spans": [{"bbox": [69, 334, 154, 358], "score": 1.0, "content": "tant exception (", "type": "text"}, {"bbox": [154, 336, 176, 353], "score": 0.92, "content": "{E}_{8}^{(1)}", "type": "inline_equation", "height": 17, "width": 22}, {"bbox": [177, 334, 541, 358], "score": 1.0, "content": "at level 2) correspond to symmetries of the extended Coxeter\u2013Dynkin", "type": "text"}], "index": 14}, {"bbox": [69, 353, 542, 372], "spans": [{"bbox": [69, 353, 130, 372], "score": 1.0, "content": "diagram of ", "type": "text"}, {"bbox": [131, 354, 154, 368], "score": 0.93, "content": "X_{r}^{(1)}", "type": "inline_equation", "height": 14, "width": 23}, {"bbox": [155, 353, 542, 372], "score": 1.0, "content": ". The simplest proof would use the methods of Proposition 4.1 below. For", "type": "text"}], "index": 15}, {"bbox": [70, 371, 540, 385], "spans": [{"bbox": [70, 371, 540, 385], "score": 1.0, "content": "a more intrinsically algebraic interpretation of these simple-currents, see [25] where their", "type": "text"}], "index": 16}, {"bbox": [69, 384, 188, 402], "spans": [{"bbox": [69, 384, 162, 402], "score": 1.0, "content": "group is denoted ", "type": "text"}, {"bbox": [162, 385, 183, 398], "score": 0.93, "content": "W_{0}^{+}", "type": "inline_equation", "height": 13, "width": 21}, {"bbox": [184, 384, 188, 402], "score": 1.0, "content": ".", "type": "text"}], "index": 17}], "index": 15, "page_num": "page_3", "page_size": [612.0, 792.0], "bbox_fs": [69, 322, 542, 402]}, {"type": "text", "bbox": [94, 397, 338, 412], "lines": [{"bbox": [95, 399, 336, 414], "spans": [{"bbox": [95, 399, 155, 414], "score": 1.0, "content": "Evaluating ", "type": "text"}, {"bbox": [155, 401, 185, 413], "score": 0.93, "content": "S_{J\\lambda,j^{\\prime}}", "type": "inline_equation", "height": 12, "width": 30}, {"bbox": [186, 399, 336, 414], "score": 1.0, "content": " in two ways gives the useful", "type": "text"}], "index": 18}], "index": 18, "page_num": "page_3", "page_size": [612.0, 792.0], "bbox_fs": [95, 399, 336, 414]}, {"type": "interline_equation", "bbox": [201, 426, 409, 443], "lines": [{"bbox": [201, 426, 409, 443], "spans": [{"bbox": [201, 426, 409, 443], "score": 0.89, "content": "Q_{j^{\\prime}}(J\\lambda)\\equiv Q_{j}(j^{\\prime})+Q_{j^{\\prime}}(\\lambda)\\qquad(\\mathrm{mod}\\ 1)", "type": "interline_equation"}], "index": 19}], "index": 19, "page_num": "page_3", "page_size": [612.0, 792.0]}, {"type": "text", "bbox": [70, 455, 294, 469], "lines": [{"bbox": [70, 457, 293, 472], "spans": [{"bbox": [70, 457, 208, 472], "score": 1.0, "content": "and hence the reciprocity ", "type": "text"}, {"bbox": [208, 458, 289, 471], "score": 0.93, "content": "Q_{j}(j^{\\prime})=Q_{j^{\\prime}}(j)", "type": "inline_equation", "height": 13, "width": 81}, {"bbox": [290, 457, 293, 472], "score": 1.0, "content": ".", "type": "text"}], "index": 20}], "index": 20, "page_num": "page_3", "page_size": [612.0, 792.0], "bbox_fs": [70, 457, 293, 472]}, {"type": "text", "bbox": [70, 470, 541, 527], "lines": [{"bbox": [94, 471, 541, 487], "spans": [{"bbox": [94, 471, 143, 487], "score": 1.0, "content": "For each ", "type": "text"}, {"bbox": [144, 473, 159, 484], "score": 0.91, "content": "X_{r}", "type": "inline_equation", "height": 11, "width": 15}, {"bbox": [159, 471, 267, 487], "score": 1.0, "content": ", the inner products ", "type": "text"}, {"bbox": [268, 473, 295, 485], "score": 0.93, "content": "(\\lambda|\\mu)", "type": "inline_equation", "height": 12, "width": 27}, {"bbox": [295, 471, 441, 487], "score": 1.0, "content": " of weights are rational; let ", "type": "text"}, {"bbox": [441, 473, 452, 482], "score": 0.89, "content": "N", "type": "inline_equation", "height": 9, "width": 11}, {"bbox": [452, 471, 541, 487], "score": 1.0, "content": " denote the least", "type": "text"}], "index": 21}, {"bbox": [69, 484, 541, 502], "spans": [{"bbox": [69, 484, 235, 502], "score": 1.0, "content": "common denominator. E.g. for ", "type": "text"}, {"bbox": [235, 488, 250, 498], "score": 0.92, "content": "A_{r}", "type": "inline_equation", "height": 10, "width": 15}, {"bbox": [250, 484, 288, 502], "score": 1.0, "content": " this is ", "type": "text"}, {"bbox": [288, 488, 341, 497], "score": 0.9, "content": "N=r+1", "type": "inline_equation", "height": 9, "width": 53}, {"bbox": [341, 484, 396, 502], "score": 1.0, "content": ", while for ", "type": "text"}, {"bbox": [396, 487, 411, 498], "score": 0.86, "content": "E_{8}", "type": "inline_equation", "height": 11, "width": 15}, {"bbox": [411, 484, 437, 502], "score": 1.0, "content": " it is ", "type": "text"}, {"bbox": [438, 488, 471, 497], "score": 0.92, "content": "N=1", "type": "inline_equation", "height": 9, "width": 33}, {"bbox": [471, 484, 541, 502], "score": 1.0, "content": ". Choose any", "type": "text"}], "index": 22}, {"bbox": [69, 499, 542, 515], "spans": [{"bbox": [69, 499, 110, 515], "score": 1.0, "content": "integer ", "type": "text"}, {"bbox": [111, 502, 116, 511], "score": 0.89, "content": "\\ell", "type": "inline_equation", "height": 9, "width": 5}, {"bbox": [117, 499, 179, 515], "score": 1.0, "content": "coprime to ", "type": "text"}, {"bbox": [180, 502, 198, 511], "score": 0.91, "content": "\\kappa N", "type": "inline_equation", "height": 9, "width": 18}, {"bbox": [198, 499, 278, 515], "score": 1.0, "content": ". Then for any ", "type": "text"}, {"bbox": [279, 502, 316, 514], "score": 0.94, "content": "\\lambda\\in P_{+}", "type": "inline_equation", "height": 12, "width": 37}, {"bbox": [316, 499, 449, 515], "score": 1.0, "content": " there is a unique weight ", "type": "text"}, {"bbox": [449, 500, 499, 514], "score": 0.93, "content": "\\lambda^{(\\ell)}\\in P_{+}", "type": "inline_equation", "height": 14, "width": 50}, {"bbox": [500, 499, 542, 515], "score": 1.0, "content": ", coroot", "type": "text"}], "index": 23}, {"bbox": [71, 514, 286, 529], "spans": [{"bbox": [71, 520, 79, 525], "score": 0.85, "content": "\\alpha", "type": "inline_equation", "height": 5, "width": 8}, {"bbox": [80, 514, 223, 529], "score": 1.0, "content": ", and (finite) Weyl element ", "type": "text"}, {"bbox": [223, 520, 232, 525], "score": 0.89, "content": "\\omega", "type": "inline_equation", "height": 5, "width": 9}, {"bbox": [232, 514, 286, 529], "score": 1.0, "content": " such that", "type": "text"}], "index": 24}], "index": 22.5, "page_num": "page_3", "page_size": [612.0, 792.0], "bbox_fs": [69, 471, 542, 529]}, {"type": "interline_equation", "bbox": [228, 541, 383, 557], "lines": [{"bbox": [228, 541, 383, 557], "spans": [{"bbox": [228, 541, 383, 557], "score": 0.91, "content": "\\ell\\left(\\lambda+\\rho\\right)=\\omega(\\lambda^{\\left(\\ell\\right)}+\\rho)+\\kappa\\alpha\\;.", "type": "interline_equation"}], "index": 25}], "index": 25, "page_num": "page_3", "page_size": [612.0, 792.0]}, {"type": "text", "bbox": [70, 570, 541, 600], "lines": [{"bbox": [70, 572, 540, 589], "spans": [{"bbox": [70, 572, 369, 589], "score": 1.0, "content": "This is simply the statement that the affine Weyl orbit of ", "type": "text"}, {"bbox": [370, 573, 412, 586], "score": 0.93, "content": "\\ell\\left(\\lambda+\\rho\\right)", "type": "inline_equation", "height": 13, "width": 42}, {"bbox": [412, 572, 505, 589], "score": 1.0, "content": " intersects the set ", "type": "text"}, {"bbox": [505, 575, 540, 586], "score": 0.93, "content": "P_{+}+\\rho", "type": "inline_equation", "height": 11, "width": 35}], "index": 26}, {"bbox": [70, 587, 479, 603], "spans": [{"bbox": [70, 587, 234, 603], "score": 1.0, "content": "at precisely one point (namely ", "type": "text"}, {"bbox": [234, 587, 277, 600], "score": 0.93, "content": "\\lambda^{(\\ell)}+\\rho)", "type": "inline_equation", "height": 13, "width": 43}, {"bbox": [277, 587, 320, 603], "score": 1.0, "content": ". Write ", "type": "text"}, {"bbox": [320, 587, 420, 601], "score": 0.92, "content": "\\epsilon_{\\ell}^{\\prime}(\\lambda)=\\operatorname*{det}\\omega=\\pm1", "type": "inline_equation", "height": 14, "width": 100}, {"bbox": [421, 587, 479, 603], "score": 1.0, "content": ". Then [16]", "type": "text"}], "index": 27}], "index": 26.5, "page_num": "page_3", "page_size": [612.0, 792.0], "bbox_fs": [70, 572, 540, 603]}, {"type": "interline_equation", "bbox": [236, 614, 374, 631], "lines": [{"bbox": [236, 614, 374, 631], "spans": [{"bbox": [236, 614, 374, 631], "score": 0.93, "content": "\\epsilon_{\\ell}^{\\prime}(\\lambda)\\,S_{\\lambda^{(\\ell)},\\mu}=\\epsilon_{\\ell}^{\\prime}(\\mu)\\,S_{\\lambda,\\mu^{(\\ell)}}", "type": "interline_equation"}], "index": 28}], "index": 28, "page_num": "page_3", "page_size": [612.0, 792.0]}, {"type": "text", "bbox": [68, 642, 541, 699], "lines": [{"bbox": [71, 644, 541, 661], "spans": [{"bbox": [71, 644, 541, 661], "score": 1.0, "content": "This has an obvious interpretation as a Galois automorphism [4]: the field generated over", "type": "text"}], "index": 29}, {"bbox": [71, 659, 540, 675], "spans": [{"bbox": [71, 661, 81, 672], "score": 0.88, "content": "\\mathbb{Q}", "type": "inline_equation", "height": 11, "width": 10}, {"bbox": [81, 659, 154, 675], "score": 1.0, "content": " by all entries ", "type": "text"}, {"bbox": [154, 661, 174, 673], "score": 0.92, "content": "S_{\\lambda\\mu}", "type": "inline_equation", "height": 12, "width": 20}, {"bbox": [174, 659, 316, 675], "score": 1.0, "content": " lies in the cyclotomic field ", "type": "text"}, {"bbox": [316, 660, 357, 673], "score": 0.92, "content": "\\mathbb{Q}[\\xi_{4N\\kappa}]", "type": "inline_equation", "height": 13, "width": 41}, {"bbox": [358, 659, 395, 675], "score": 1.0, "content": " where ", "type": "text"}, {"bbox": [395, 661, 407, 672], "score": 0.92, "content": "\\xi_{n}", "type": "inline_equation", "height": 11, "width": 12}, {"bbox": [407, 659, 540, 675], "score": 1.0, "content": " denotes the root of unity", "type": "text"}], "index": 30}, {"bbox": [71, 671, 540, 692], "spans": [{"bbox": [71, 674, 127, 687], "score": 0.92, "content": "\\exp[2\\pi\\mathrm{i}/n]", "type": "inline_equation", "height": 13, "width": 56}, {"bbox": [127, 671, 173, 692], "score": 1.0, "content": "; for any ", "type": "text"}, {"bbox": [173, 674, 327, 687], "score": 0.91, "content": "\\sigma_{\\ell}\\in{\\mathrm{Gal}}(\\mathbb{Q}[\\xi_{4N\\kappa}]/\\mathbb{Q})\\cong\\mathbb{Z}_{4N\\kappa}^{\\times}", "type": "inline_equation", "height": 13, "width": 154}, {"bbox": [327, 671, 458, 692], "score": 1.0, "content": ", there will be a function ", "type": "text"}, {"bbox": [459, 675, 540, 687], "score": 0.94, "content": "\\epsilon_{\\ell}:P_{+}\\to\\{\\pm1\\}", "type": "inline_equation", "height": 12, "width": 81}], "index": 31}, {"bbox": [71, 688, 122, 701], "spans": [{"bbox": [71, 688, 122, 701], "score": 1.0, "content": "such that", "type": "text"}], "index": 32}], "index": 30.5, "page_num": "page_3", "page_size": [612.0, 792.0], "bbox_fs": [71, 644, 541, 701]}, {"type": "interline_equation", "bbox": [204, 701, 407, 718], "lines": [{"bbox": [204, 701, 407, 718], "spans": [{"bbox": [204, 701, 407, 718], "score": 0.91, "content": "\\sigma_{\\ell}\\bigl(S_{\\lambda\\mu}\\bigr)=\\epsilon_{\\ell}\\bigl(\\lambda\\bigr)\\,S_{\\lambda^{(\\ell)},\\mu}=\\epsilon_{\\ell}\\bigl(\\mu\\bigr)\\,S_{\\lambda,\\mu^{(\\ell)}}\\ .", "type": "interline_equation"}], "index": 33}], "index": 33, "page_num": "page_3", "page_size": [612.0, 792.0]}]} |
|
0002044v1 | 10 | whose diagram is the transpose of that for $$\lambda$$ . (For this purpose the algebra $$C_{1}$$ may be
identified with $$A_{1}$$ .) For example, $$\tau\Lambda_{a}=a\tilde{\Lambda}_{1}$$ , where we use tilde’s to denote the quantities
of $$C_{k,r}$$ . In fact, $$\tau:P_{+}(C_{r,k})\rightarrow P_{+}(C_{k,r})$$ is a bijection. Then
This rank-level duality for $$C_{r}^{(1)}$$ is especially interesting, as it defines a fusion ring iso-
morphism $$\mathcal{R}(C_{r,k})\cong\mathcal{R}(C_{k,r})$$ (see §5). When $$k=r$$ , we get a nontrivial fusion-symmetry:
$$\pi_{\mathrm{rld}}\lambda\,{\overset{\mathrm{def}}{=}}\,\tau\lambda$$ .
The only fusion product we need is
valid for $$i<r$$ and $$k\geq2$$ . The following character formula (2.1b) will also be used:
where $$\lambda^{+}(\ell)=(\lambda+\rho)(\ell)$$ as before.
Theorem 3.C. The fusion-symmetries for $$C_{r}^{(1)}$$ level $$k$$ , when $$k\neq r$$ and either $$k$$ or
$$r$$ is even, are $$\pi[1]^{i}$$ for $$i\in\{0,1\}$$ . When $$k\neq r$$ but both $$k$$ and $$r$$ are odd, then there is no
nontrivial fusion-symmetry. When $$k=r$$ , they are $$\pi[1]^{i}\,\pi_{\mathrm{rld}}^{j}$$ $$\mathit{\Pi}_{k}$$ even) or $$\pi[1]^{i}$$ ( $$\mathit{k}$$ odd), for
$$i,j\in\{0,1\}$$ .
When $$r=k$$ is even, $$A(C_{r,k})\cong\mathbb{Z}_{2}\times\mathbb{Z}_{2}$$ .
3.4. The algebra $$D_{r}^{(1)},\,r\geq4$$
A weight $$\lambda$$ of $$P_{+}$$ satisfies $$k=\lambda_{0}\!+\!\lambda_{1}\!+\!2\lambda_{2}\!+\!\cdot\!\cdot\!+\!2\lambda_{r-2}\!+\!\lambda_{r-1}\!+\!\lambda_{r}$$ , and $$\kappa=k{+}2r{-}2$$ .
For any $$r$$ , there are the conjugations $$C_{0}=i d$$ . and $$C_{1}\lambda=(\lambda_{0},\lambda_{1},.\dots,\lambda_{r-2},\lambda_{r},\lambda_{r-1})$$ . The
charge-conjugation $$C$$ equals $$C_{1}$$ for odd $$r$$ , and $$C_{0}$$ for even $$r$$ . When $$r=4$$ there are four
additional conjugations; these six $$C_{i}$$ correspond to all permutations of the $${D}_{4}^{(1)}$$ Dynkin
labels $$\lambda_{1},\lambda_{3},\lambda_{4}$$ .
There are three non-trivial simple-currents, $$J_{v}$$ , $$J_{s}$$ and $$J_{v}J_{s}$$ . Explicitly, we have
$$J_{v}\lambda=\left(\lambda_{1},\lambda_{0},\lambda_{2},...\,,\lambda_{r-2},\lambda_{r},\lambda_{r-1}\right)$$ with $$Q_{v}(\lambda)=(\lambda_{r-1}+\lambda_{r})/2$$ , and
with $$\begin{array}{r}{Q_{s}(\lambda)=(2\sum_{j=1}^{r-2}j\lambda_{j}\!-\!(r\!-\!2)\lambda_{r-1}\!-\!r\lambda_{r})/4}\end{array}$$ . From this we compute $$Q_{s}(J_{s}0)=-r k/4$$ .
The fusion products we need are
| <p>whose diagram is the transpose of that for $$\lambda$$ . (For this purpose the algebra $$C_{1}$$ may be
identified with $$A_{1}$$ .) For example, $$\tau\Lambda_{a}=a\tilde{\Lambda}_{1}$$ , where we use tilde’s to denote the quantities
of $$C_{k,r}$$ . In fact, $$\tau:P_{+}(C_{r,k})\rightarrow P_{+}(C_{k,r})$$ is a bijection. Then</p>
<p>This rank-level duality for $$C_{r}^{(1)}$$ is especially interesting, as it defines a fusion ring iso-
morphism $$\mathcal{R}(C_{r,k})\cong\mathcal{R}(C_{k,r})$$ (see §5). When $$k=r$$ , we get a nontrivial fusion-symmetry:
$$\pi_{\mathrm{rld}}\lambda\,{\overset{\mathrm{def}}{=}}\,\tau\lambda$$ .</p>
<p>The only fusion product we need is</p>
<p>valid for $$i<r$$ and $$k\geq2$$ . The following character formula (2.1b) will also be used:</p>
<p>where $$\lambda^{+}(\ell)=(\lambda+\rho)(\ell)$$ as before.</p>
<p>Theorem 3.C. The fusion-symmetries for $$C_{r}^{(1)}$$ level $$k$$ , when $$k\neq r$$ and either $$k$$ or
$$r$$ is even, are $$\pi[1]^{i}$$ for $$i\in\{0,1\}$$ . When $$k\neq r$$ but both $$k$$ and $$r$$ are odd, then there is no
nontrivial fusion-symmetry. When $$k=r$$ , they are $$\pi[1]^{i}\,\pi_{\mathrm{rld}}^{j}$$ $$\mathit{\Pi}_{k}$$ even) or $$\pi[1]^{i}$$ ( $$\mathit{k}$$ odd), for
$$i,j\in\{0,1\}$$ .</p>
<p>When $$r=k$$ is even, $$A(C_{r,k})\cong\mathbb{Z}_{2}\times\mathbb{Z}_{2}$$ .</p>
<p>3.4. The algebra $$D_{r}^{(1)},\,r\geq4$$</p>
<p>A weight $$\lambda$$ of $$P_{+}$$ satisfies $$k=\lambda_{0}\!+\!\lambda_{1}\!+\!2\lambda_{2}\!+\!\cdot\!\cdot\!+\!2\lambda_{r-2}\!+\!\lambda_{r-1}\!+\!\lambda_{r}$$ , and $$\kappa=k{+}2r{-}2$$ .
For any $$r$$ , there are the conjugations $$C_{0}=i d$$ . and $$C_{1}\lambda=(\lambda_{0},\lambda_{1},.\dots,\lambda_{r-2},\lambda_{r},\lambda_{r-1})$$ . The
charge-conjugation $$C$$ equals $$C_{1}$$ for odd $$r$$ , and $$C_{0}$$ for even $$r$$ . When $$r=4$$ there are four
additional conjugations; these six $$C_{i}$$ correspond to all permutations of the $${D}_{4}^{(1)}$$ Dynkin
labels $$\lambda_{1},\lambda_{3},\lambda_{4}$$ .</p>
<p>There are three non-trivial simple-currents, $$J_{v}$$ , $$J_{s}$$ and $$J_{v}J_{s}$$ . Explicitly, we have
$$J_{v}\lambda=\left(\lambda_{1},\lambda_{0},\lambda_{2},...\,,\lambda_{r-2},\lambda_{r},\lambda_{r-1}\right)$$ with $$Q_{v}(\lambda)=(\lambda_{r-1}+\lambda_{r})/2$$ , and</p>
<p>with $$\begin{array}{r}{Q_{s}(\lambda)=(2\sum_{j=1}^{r-2}j\lambda_{j}\!-\!(r\!-\!2)\lambda_{r-1}\!-\!r\lambda_{r})/4}\end{array}$$ . From this we compute $$Q_{s}(J_{s}0)=-r k/4$$ .
The fusion products we need are</p>
| [{"type": "text", "coordinates": [70, 70, 542, 115], "content": "whose diagram is the transpose of that for $$\\lambda$$ . (For this purpose the algebra $$C_{1}$$ may be\nidentified with $$A_{1}$$ .) For example, $$\\tau\\Lambda_{a}=a\\tilde{\\Lambda}_{1}$$ , where we use tilde\u2019s to denote the quantities\nof $$C_{k,r}$$ . In fact, $$\\tau:P_{+}(C_{r,k})\\rightarrow P_{+}(C_{k,r})$$ is a bijection. Then", "block_type": "text", "index": 1}, {"type": "interline_equation", "coordinates": [267, 129, 344, 146], "content": "", "block_type": "interline_equation", "index": 2}, {"type": "text", "coordinates": [70, 158, 541, 205], "content": "This rank-level duality for $$C_{r}^{(1)}$$ is especially interesting, as it defines a fusion ring iso-\nmorphism $$\\mathcal{R}(C_{r,k})\\cong\\mathcal{R}(C_{k,r})$$ (see \u00a75). When $$k=r$$ , we get a nontrivial fusion-symmetry:\n$$\\pi_{\\mathrm{rld}}\\lambda\\,{\\overset{\\mathrm{def}}{=}}\\,\\tau\\lambda$$ .", "block_type": "text", "index": 3}, {"type": "text", "coordinates": [95, 207, 282, 221], "content": "The only fusion product we need is", "block_type": "text", "index": 4}, {"type": "interline_equation", "coordinates": [201, 234, 406, 251], "content": "", "block_type": "interline_equation", "index": 5}, {"type": "text", "coordinates": [71, 262, 505, 277], "content": "valid for $$i<r$$ and $$k\\geq2$$ . The following character formula (2.1b) will also be used:", "block_type": "text", "index": 6}, {"type": "interline_equation", "coordinates": [209, 289, 401, 329], "content": "", "block_type": "interline_equation", "index": 7}, {"type": "text", "coordinates": [70, 339, 258, 355], "content": "where $$\\lambda^{+}(\\ell)=(\\lambda+\\rho)(\\ell)$$ as before.", "block_type": "text", "index": 8}, {"type": "text", "coordinates": [70, 361, 542, 421], "content": "Theorem 3.C. The fusion-symmetries for $$C_{r}^{(1)}$$ level $$k$$ , when $$k\\neq r$$ and either $$k$$ or\n$$r$$ is even, are $$\\pi[1]^{i}$$ for $$i\\in\\{0,1\\}$$ . When $$k\\neq r$$ but both $$k$$ and $$r$$ are odd, then there is no\nnontrivial fusion-symmetry. When $$k=r$$ , they are $$\\pi[1]^{i}\\,\\pi_{\\mathrm{rld}}^{j}$$ $$\\mathit{\\Pi}_{k}$$ even) or $$\\pi[1]^{i}$$ ( $$\\mathit{k}$$ odd), for\n$$i,j\\in\\{0,1\\}$$ .", "block_type": "text", "index": 9}, {"type": "text", "coordinates": [94, 427, 306, 443], "content": "When $$r=k$$ is even, $$A(C_{r,k})\\cong\\mathbb{Z}_{2}\\times\\mathbb{Z}_{2}$$ .", "block_type": "text", "index": 10}, {"type": "text", "coordinates": [71, 456, 221, 474], "content": "3.4. The algebra $$D_{r}^{(1)},\\,r\\geq4$$", "block_type": "text", "index": 11}, {"type": "text", "coordinates": [70, 479, 541, 554], "content": "A weight $$\\lambda$$ of $$P_{+}$$ satisfies $$k=\\lambda_{0}\\!+\\!\\lambda_{1}\\!+\\!2\\lambda_{2}\\!+\\!\\cdot\\!\\cdot\\!+\\!2\\lambda_{r-2}\\!+\\!\\lambda_{r-1}\\!+\\!\\lambda_{r}$$ , and $$\\kappa=k{+}2r{-}2$$ .\nFor any $$r$$ , there are the conjugations $$C_{0}=i d$$ . and $$C_{1}\\lambda=(\\lambda_{0},\\lambda_{1},.\\dots,\\lambda_{r-2},\\lambda_{r},\\lambda_{r-1})$$ . The\ncharge-conjugation $$C$$ equals $$C_{1}$$ for odd $$r$$ , and $$C_{0}$$ for even $$r$$ . When $$r=4$$ there are four\nadditional conjugations; these six $$C_{i}$$ correspond to all permutations of the $${D}_{4}^{(1)}$$ Dynkin\nlabels $$\\lambda_{1},\\lambda_{3},\\lambda_{4}$$ .", "block_type": "text", "index": 12}, {"type": "text", "coordinates": [70, 554, 541, 584], "content": "There are three non-trivial simple-currents, $$J_{v}$$ , $$J_{s}$$ and $$J_{v}J_{s}$$ . Explicitly, we have\n$$J_{v}\\lambda=\\left(\\lambda_{1},\\lambda_{0},\\lambda_{2},...\\,,\\lambda_{r-2},\\lambda_{r},\\lambda_{r-1}\\right)$$ with $$Q_{v}(\\lambda)=(\\lambda_{r-1}+\\lambda_{r})/2$$ , and", "block_type": "text", "index": 13}, {"type": "interline_equation", "coordinates": [174, 596, 430, 627], "content": "", "block_type": "interline_equation", "index": 14}, {"type": "text", "coordinates": [69, 639, 541, 669], "content": "with $$\\begin{array}{r}{Q_{s}(\\lambda)=(2\\sum_{j=1}^{r-2}j\\lambda_{j}\\!-\\!(r\\!-\\!2)\\lambda_{r-1}\\!-\\!r\\lambda_{r})/4}\\end{array}$$ . From this we compute $$Q_{s}(J_{s}0)=-r k/4$$ .\nThe fusion products we need are", "block_type": "text", "index": 15}] | [{"type": "text", "coordinates": [72, 74, 303, 88], "content": "whose diagram is the transpose of that for ", "score": 1.0, "index": 1}, {"type": "inline_equation", "coordinates": [303, 75, 311, 84], "content": "\\lambda", "score": 0.88, "index": 2}, {"type": "text", "coordinates": [311, 74, 481, 88], "content": ". (For this purpose the algebra ", "score": 1.0, "index": 3}, {"type": "inline_equation", "coordinates": [482, 75, 495, 86], "content": "C_{1}", "score": 0.92, "index": 4}, {"type": "text", "coordinates": [496, 74, 541, 88], "content": " may be", "score": 1.0, "index": 5}, {"type": "text", "coordinates": [70, 87, 149, 103], "content": "identified with ", "score": 1.0, "index": 6}, {"type": "inline_equation", "coordinates": [149, 90, 164, 101], "content": "A_{1}", "score": 0.91, "index": 7}, {"type": "text", "coordinates": [164, 87, 246, 103], "content": ".) For example,", "score": 1.0, "index": 8}, {"type": "inline_equation", "coordinates": [247, 87, 304, 101], "content": "\\tau\\Lambda_{a}=a\\tilde{\\Lambda}_{1}", "score": 0.94, "index": 9}, {"type": "text", "coordinates": [304, 87, 541, 103], "content": ", where we use tilde\u2019s to denote the quantities", "score": 1.0, "index": 10}, {"type": "text", "coordinates": [70, 102, 84, 117], "content": "of ", "score": 1.0, "index": 11}, {"type": "inline_equation", "coordinates": [85, 104, 107, 117], "content": "C_{k,r}", "score": 0.93, "index": 12}, {"type": "text", "coordinates": [107, 102, 157, 117], "content": ". In fact, ", "score": 1.0, "index": 13}, {"type": "inline_equation", "coordinates": [157, 103, 286, 117], "content": "\\tau:P_{+}(C_{r,k})\\rightarrow P_{+}(C_{k,r})", "score": 0.94, "index": 14}, {"type": "text", "coordinates": [286, 102, 394, 117], "content": " is a bijection. Then", "score": 1.0, "index": 15}, {"type": "interline_equation", "coordinates": [267, 129, 344, 146], "content": "\\tilde{S}_{\\tau\\lambda,\\tau\\mu}=S_{\\lambda\\mu}\\ .", "score": 0.91, "index": 16}, {"type": "text", "coordinates": [93, 159, 234, 178], "content": "This rank-level duality for ", "score": 1.0, "index": 17}, {"type": "inline_equation", "coordinates": [234, 158, 257, 174], "content": "C_{r}^{(1)}", "score": 0.91, "index": 18}, {"type": "text", "coordinates": [258, 159, 540, 178], "content": "is especially interesting, as it defines a fusion ring iso-", "score": 1.0, "index": 19}, {"type": "text", "coordinates": [71, 176, 127, 191], "content": "morphism ", "score": 1.0, "index": 20}, {"type": "inline_equation", "coordinates": [127, 176, 225, 190], "content": "\\mathcal{R}(C_{r,k})\\cong\\mathcal{R}(C_{k,r})", "score": 0.91, "index": 21}, {"type": "text", "coordinates": [226, 176, 311, 191], "content": " (see \u00a75). When ", "score": 1.0, "index": 22}, {"type": "inline_equation", "coordinates": [312, 176, 341, 188], "content": "k=r", "score": 0.89, "index": 23}, {"type": "text", "coordinates": [342, 176, 540, 191], "content": ", we get a nontrivial fusion-symmetry:", "score": 1.0, "index": 24}, {"type": "inline_equation", "coordinates": [71, 192, 128, 208], "content": "\\pi_{\\mathrm{rld}}\\lambda\\,{\\overset{\\mathrm{def}}{=}}\\,\\tau\\lambda", "score": 0.92, "index": 25}, {"type": "text", "coordinates": [129, 189, 134, 210], "content": ".", "score": 1.0, "index": 26}, {"type": "text", "coordinates": [95, 209, 281, 223], "content": "The only fusion product we need is", "score": 1.0, "index": 27}, {"type": "interline_equation", "coordinates": [201, 234, 406, 251], "content": "\\Lambda_{1}\\sqcup\\Lambda_{i}=\\Lambda_{i-1}\\sqcup\\Lambda_{i+1}\\sqcup\\left(\\Lambda_{1}+\\Lambda_{i}\\right)\\,,", "score": 0.72, "index": 28}, {"type": "text", "coordinates": [70, 263, 118, 281], "content": "valid for ", "score": 1.0, "index": 29}, {"type": "inline_equation", "coordinates": [118, 267, 144, 276], "content": "i<r", "score": 0.9, "index": 30}, {"type": "text", "coordinates": [145, 263, 171, 281], "content": " and ", "score": 1.0, "index": 31}, {"type": "inline_equation", "coordinates": [171, 264, 200, 277], "content": "k\\geq2", "score": 0.9, "index": 32}, {"type": "text", "coordinates": [201, 263, 506, 281], "content": ". The following character formula (2.1b) will also be used:", "score": 1.0, "index": 33}, {"type": "interline_equation", "coordinates": [209, 289, 401, 329], "content": "\\chi_{\\Lambda_{1}}[\\lambda]={\\frac{S_{\\Lambda_{1}\\lambda}}{S_{0\\lambda}}}=2\\sum_{\\ell=1}^{r}\\cos(\\pi{\\frac{\\lambda^{+}(\\ell)}{\\kappa}})~,", "score": 0.93, "index": 34}, {"type": "text", "coordinates": [71, 341, 105, 357], "content": "where ", "score": 1.0, "index": 35}, {"type": "inline_equation", "coordinates": [105, 342, 203, 356], "content": "\\lambda^{+}(\\ell)=(\\lambda+\\rho)(\\ell)", "score": 0.92, "index": 36}, {"type": "text", "coordinates": [203, 341, 257, 357], "content": " as before.", "score": 1.0, "index": 37}, {"type": "text", "coordinates": [93, 362, 324, 381], "content": "Theorem 3.C. The fusion-symmetries for ", "score": 1.0, "index": 38}, {"type": "inline_equation", "coordinates": [325, 362, 348, 378], "content": "C_{r}^{(1)}", "score": 0.9, "index": 39}, {"type": "text", "coordinates": [348, 362, 378, 381], "content": "level ", "score": 1.0, "index": 40}, {"type": "inline_equation", "coordinates": [378, 365, 387, 377], "content": "k", "score": 0.75, "index": 41}, {"type": "text", "coordinates": [387, 362, 424, 381], "content": ", when ", "score": 1.0, "index": 42}, {"type": "inline_equation", "coordinates": [424, 365, 455, 379], "content": "k\\neq r", "score": 0.9, "index": 43}, {"type": "text", "coordinates": [456, 362, 516, 381], "content": " and either ", "score": 1.0, "index": 44}, {"type": "inline_equation", "coordinates": [516, 366, 524, 377], "content": "k", "score": 0.69, "index": 45}, {"type": "text", "coordinates": [525, 362, 542, 381], "content": " or", "score": 1.0, "index": 46}, {"type": "inline_equation", "coordinates": [71, 385, 78, 391], "content": "r", "score": 0.66, "index": 47}, {"type": "text", "coordinates": [78, 380, 146, 394], "content": " is even, are ", "score": 1.0, "index": 48}, {"type": "inline_equation", "coordinates": [146, 379, 171, 393], "content": "\\pi[1]^{i}", "score": 0.9, "index": 49}, {"type": "text", "coordinates": [171, 380, 193, 394], "content": " for ", "score": 1.0, "index": 50}, {"type": "inline_equation", "coordinates": [193, 379, 243, 394], "content": "i\\in\\{0,1\\}", "score": 0.93, "index": 51}, {"type": "text", "coordinates": [243, 380, 286, 394], "content": ". When ", "score": 1.0, "index": 52}, {"type": "inline_equation", "coordinates": [286, 380, 317, 393], "content": "k\\neq r", "score": 0.91, "index": 53}, {"type": "text", "coordinates": [317, 380, 365, 394], "content": " but both ", "score": 1.0, "index": 54}, {"type": "inline_equation", "coordinates": [365, 380, 373, 391], "content": "k", "score": 0.77, "index": 55}, {"type": "text", "coordinates": [374, 380, 399, 394], "content": " and ", "score": 1.0, "index": 56}, {"type": "inline_equation", "coordinates": [399, 382, 407, 391], "content": "r", "score": 0.69, "index": 57}, {"type": "text", "coordinates": [407, 380, 541, 394], "content": " are odd, then there is no", "score": 1.0, "index": 58}, {"type": "text", "coordinates": [70, 394, 255, 410], "content": "nontrivial fusion-symmetry. When ", "score": 1.0, "index": 59}, {"type": "inline_equation", "coordinates": [255, 394, 285, 406], "content": "k=r", "score": 0.88, "index": 60}, {"type": "text", "coordinates": [285, 394, 337, 410], "content": ", they are ", "score": 1.0, "index": 61}, {"type": "inline_equation", "coordinates": [337, 392, 384, 409], "content": "\\pi[1]^{i}\\,\\pi_{\\mathrm{rld}}^{j}", "score": 0.91, "index": 62}, {"type": "text", "coordinates": [384, 394, 390, 410], "content": " ", "score": 1.0, "index": 63}, {"type": "inline_equation", "coordinates": [391, 393, 399, 406], "content": "\\mathit{\\Pi}_{k}", "score": 0.6, "index": 64}, {"type": "text", "coordinates": [400, 394, 449, 410], "content": " even) or ", "score": 1.0, "index": 65}, {"type": "inline_equation", "coordinates": [450, 393, 475, 408], "content": "\\pi[1]^{i}", "score": 0.79, "index": 66}, {"type": "text", "coordinates": [475, 394, 482, 410], "content": " (", "score": 1.0, "index": 67}, {"type": "inline_equation", "coordinates": [483, 394, 491, 406], "content": "\\mathit{k}", "score": 0.43, "index": 68}, {"type": "text", "coordinates": [491, 394, 542, 410], "content": " odd), for", "score": 1.0, "index": 69}, {"type": "inline_equation", "coordinates": [71, 409, 131, 422], "content": "i,j\\in\\{0,1\\}", "score": 0.91, "index": 70}, {"type": "text", "coordinates": [131, 407, 136, 423], "content": ".", "score": 1.0, "index": 71}, {"type": "text", "coordinates": [95, 429, 129, 444], "content": "When ", "score": 1.0, "index": 72}, {"type": "inline_equation", "coordinates": [130, 431, 159, 441], "content": "r=k", "score": 0.88, "index": 73}, {"type": "text", "coordinates": [159, 429, 204, 444], "content": " is even, ", "score": 1.0, "index": 74}, {"type": "inline_equation", "coordinates": [205, 429, 303, 444], "content": "A(C_{r,k})\\cong\\mathbb{Z}_{2}\\times\\mathbb{Z}_{2}", "score": 0.91, "index": 75}, {"type": "text", "coordinates": [303, 429, 305, 444], "content": ".", "score": 1.0, "index": 76}, {"type": "text", "coordinates": [70, 456, 160, 476], "content": "3.4. The algebra ", "score": 1.0, "index": 77}, {"type": "inline_equation", "coordinates": [161, 458, 219, 474], "content": "D_{r}^{(1)},\\,r\\geq4", "score": 0.3, "index": 78}, {"type": "text", "coordinates": [94, 481, 144, 497], "content": "A weight ", "score": 1.0, "index": 79}, {"type": "inline_equation", "coordinates": [144, 483, 151, 493], "content": "\\lambda", "score": 0.81, "index": 80}, {"type": "text", "coordinates": [151, 481, 166, 497], "content": " of ", "score": 1.0, "index": 81}, {"type": "inline_equation", "coordinates": [166, 484, 182, 496], "content": "P_{+}", "score": 0.89, "index": 82}, {"type": "text", "coordinates": [182, 481, 227, 497], "content": " satisfies", "score": 1.0, "index": 83}, {"type": "inline_equation", "coordinates": [228, 483, 438, 495], "content": "k=\\lambda_{0}\\!+\\!\\lambda_{1}\\!+\\!2\\lambda_{2}\\!+\\!\\cdot\\!\\cdot\\!+\\!2\\lambda_{r-2}\\!+\\!\\lambda_{r-1}\\!+\\!\\lambda_{r}", "score": 0.88, "index": 84}, {"type": "text", "coordinates": [439, 481, 467, 497], "content": ", and ", "score": 1.0, "index": 85}, {"type": "inline_equation", "coordinates": [468, 484, 536, 494], "content": "\\kappa=k{+}2r{-}2", "score": 0.91, "index": 86}, {"type": "text", "coordinates": [537, 481, 540, 497], "content": ".", "score": 1.0, "index": 87}, {"type": "text", "coordinates": [69, 495, 114, 513], "content": "For any ", "score": 1.0, "index": 88}, {"type": "inline_equation", "coordinates": [114, 501, 120, 507], "content": "r", "score": 0.82, "index": 89}, {"type": "text", "coordinates": [121, 495, 265, 513], "content": ", there are the conjugations ", "score": 1.0, "index": 90}, {"type": "inline_equation", "coordinates": [266, 498, 307, 509], "content": "C_{0}=i d", "score": 0.92, "index": 91}, {"type": "text", "coordinates": [307, 495, 335, 513], "content": ". and ", "score": 1.0, "index": 92}, {"type": "inline_equation", "coordinates": [335, 498, 510, 510], "content": "C_{1}\\lambda=(\\lambda_{0},\\lambda_{1},.\\dots,\\lambda_{r-2},\\lambda_{r},\\lambda_{r-1})", "score": 0.91, "index": 93}, {"type": "text", "coordinates": [511, 495, 541, 513], "content": ". The", "score": 1.0, "index": 94}, {"type": "text", "coordinates": [70, 511, 173, 527], "content": "charge-conjugation ", "score": 1.0, "index": 95}, {"type": "inline_equation", "coordinates": [174, 513, 183, 522], "content": "C", "score": 0.87, "index": 96}, {"type": "text", "coordinates": [184, 511, 223, 527], "content": " equals ", "score": 1.0, "index": 97}, {"type": "inline_equation", "coordinates": [223, 513, 237, 524], "content": "C_{1}", "score": 0.91, "index": 98}, {"type": "text", "coordinates": [238, 511, 284, 527], "content": " for odd ", "score": 1.0, "index": 99}, {"type": "inline_equation", "coordinates": [284, 516, 290, 522], "content": "r", "score": 0.87, "index": 100}, {"type": "text", "coordinates": [291, 511, 321, 527], "content": ", and ", "score": 1.0, "index": 101}, {"type": "inline_equation", "coordinates": [321, 513, 335, 524], "content": "C_{0}", "score": 0.92, "index": 102}, {"type": "text", "coordinates": [335, 511, 385, 527], "content": " for even ", "score": 1.0, "index": 103}, {"type": "inline_equation", "coordinates": [385, 516, 391, 522], "content": "r", "score": 0.88, "index": 104}, {"type": "text", "coordinates": [391, 511, 434, 527], "content": ". When ", "score": 1.0, "index": 105}, {"type": "inline_equation", "coordinates": [435, 513, 464, 522], "content": "r=4", "score": 0.9, "index": 106}, {"type": "text", "coordinates": [464, 511, 541, 527], "content": " there are four", "score": 1.0, "index": 107}, {"type": "text", "coordinates": [69, 526, 252, 542], "content": "additional conjugations; these six ", "score": 1.0, "index": 108}, {"type": "inline_equation", "coordinates": [253, 529, 265, 540], "content": "C_{i}", "score": 0.91, "index": 109}, {"type": "text", "coordinates": [265, 526, 473, 542], "content": " correspond to all permutations of the ", "score": 1.0, "index": 110}, {"type": "inline_equation", "coordinates": [473, 524, 496, 541], "content": "{D}_{4}^{(1)}", "score": 0.94, "index": 111}, {"type": "text", "coordinates": [497, 526, 541, 542], "content": "Dynkin", "score": 1.0, "index": 112}, {"type": "text", "coordinates": [71, 542, 104, 557], "content": "labels ", "score": 1.0, "index": 113}, {"type": "inline_equation", "coordinates": [105, 543, 153, 554], "content": "\\lambda_{1},\\lambda_{3},\\lambda_{4}", "score": 0.92, "index": 114}, {"type": "text", "coordinates": [153, 542, 156, 557], "content": ".", "score": 1.0, "index": 115}, {"type": "text", "coordinates": [93, 554, 335, 572], "content": "There are three non-trivial simple-currents, ", "score": 1.0, "index": 116}, {"type": "inline_equation", "coordinates": [335, 557, 347, 568], "content": "J_{v}", "score": 0.84, "index": 117}, {"type": "text", "coordinates": [348, 554, 356, 572], "content": ", ", "score": 1.0, "index": 118}, {"type": "inline_equation", "coordinates": [357, 558, 369, 568], "content": "J_{s}", "score": 0.81, "index": 119}, {"type": "text", "coordinates": [369, 554, 399, 572], "content": " and ", "score": 1.0, "index": 120}, {"type": "inline_equation", "coordinates": [399, 558, 423, 568], "content": "J_{v}J_{s}", "score": 0.91, "index": 121}, {"type": "text", "coordinates": [424, 554, 541, 572], "content": ". Explicitly, we have", "score": 1.0, "index": 122}, {"type": "inline_equation", "coordinates": [71, 571, 262, 584], "content": "J_{v}\\lambda=\\left(\\lambda_{1},\\lambda_{0},\\lambda_{2},...\\,,\\lambda_{r-2},\\lambda_{r},\\lambda_{r-1}\\right)", "score": 0.91, "index": 123}, {"type": "text", "coordinates": [263, 570, 293, 586], "content": " with ", "score": 1.0, "index": 124}, {"type": "inline_equation", "coordinates": [293, 571, 414, 584], "content": "Q_{v}(\\lambda)=(\\lambda_{r-1}+\\lambda_{r})/2", "score": 0.9, "index": 125}, {"type": "text", "coordinates": [414, 570, 442, 586], "content": ", and", "score": 1.0, "index": 126}, {"type": "interline_equation", "coordinates": [174, 596, 430, 627], "content": "J_{s}\\lambda={\\left\\{\\begin{array}{l l}{(\\lambda_{r},\\lambda_{r-1},\\lambda_{r-2},\\ldots,\\lambda_{1},\\lambda_{0})}&{{\\mathrm{if~}}r{\\mathrm{~is~even}},}\\\\ {(\\lambda_{r-1},\\lambda_{r},\\lambda_{r-2},\\ldots,\\lambda_{1},\\lambda_{0})}&{{\\mathrm{if~}}r{\\mathrm{~is~odd}},}\\end{array}\\right.}", "score": 0.87, "index": 127}, {"type": "text", "coordinates": [69, 641, 97, 660], "content": "with ", "score": 1.0, "index": 128}, {"type": "inline_equation", "coordinates": [97, 639, 320, 658], "content": "\\begin{array}{r}{Q_{s}(\\lambda)=(2\\sum_{j=1}^{r-2}j\\lambda_{j}\\!-\\!(r\\!-\\!2)\\lambda_{r-1}\\!-\\!r\\lambda_{r})/4}\\end{array}", "score": 0.91, "index": 129}, {"type": "text", "coordinates": [321, 641, 444, 660], "content": ". From this we compute", "score": 1.0, "index": 130}, {"type": "inline_equation", "coordinates": [444, 642, 536, 656], "content": "Q_{s}(J_{s}0)=-r k/4", "score": 0.91, "index": 131}, {"type": "text", "coordinates": [536, 641, 541, 660], "content": ".", "score": 1.0, "index": 132}, {"type": "text", "coordinates": [94, 657, 268, 672], "content": "The fusion products we need are", "score": 1.0, "index": 133}] | [] | [{"type": "block", "coordinates": [267, 129, 344, 146], "content": "", "caption": ""}, {"type": "block", "coordinates": [201, 234, 406, 251], "content": "", "caption": ""}, {"type": "block", "coordinates": [209, 289, 401, 329], "content": "", "caption": ""}, {"type": "block", "coordinates": [174, 596, 430, 627], "content": "", "caption": ""}, {"type": "inline", "coordinates": [303, 75, 311, 84], "content": "\\lambda", "caption": ""}, {"type": "inline", "coordinates": [482, 75, 495, 86], "content": "C_{1}", "caption": ""}, {"type": "inline", "coordinates": [149, 90, 164, 101], "content": "A_{1}", "caption": ""}, {"type": "inline", "coordinates": [247, 87, 304, 101], "content": "\\tau\\Lambda_{a}=a\\tilde{\\Lambda}_{1}", "caption": ""}, {"type": "inline", "coordinates": [85, 104, 107, 117], "content": "C_{k,r}", "caption": ""}, {"type": "inline", "coordinates": [157, 103, 286, 117], "content": "\\tau:P_{+}(C_{r,k})\\rightarrow P_{+}(C_{k,r})", "caption": ""}, {"type": "inline", "coordinates": [234, 158, 257, 174], "content": "C_{r}^{(1)}", "caption": ""}, {"type": "inline", "coordinates": [127, 176, 225, 190], "content": "\\mathcal{R}(C_{r,k})\\cong\\mathcal{R}(C_{k,r})", "caption": ""}, {"type": "inline", "coordinates": [312, 176, 341, 188], "content": "k=r", "caption": ""}, {"type": "inline", "coordinates": [71, 192, 128, 208], "content": "\\pi_{\\mathrm{rld}}\\lambda\\,{\\overset{\\mathrm{def}}{=}}\\,\\tau\\lambda", "caption": ""}, {"type": "inline", "coordinates": [118, 267, 144, 276], "content": "i<r", "caption": ""}, {"type": "inline", "coordinates": [171, 264, 200, 277], "content": "k\\geq2", "caption": ""}, {"type": "inline", "coordinates": [105, 342, 203, 356], "content": "\\lambda^{+}(\\ell)=(\\lambda+\\rho)(\\ell)", "caption": ""}, {"type": "inline", "coordinates": [325, 362, 348, 378], "content": "C_{r}^{(1)}", "caption": ""}, {"type": "inline", "coordinates": [378, 365, 387, 377], "content": "k", "caption": ""}, {"type": "inline", "coordinates": [424, 365, 455, 379], "content": "k\\neq r", "caption": ""}, {"type": "inline", "coordinates": [516, 366, 524, 377], "content": "k", "caption": ""}, {"type": "inline", "coordinates": [71, 385, 78, 391], "content": "r", "caption": ""}, {"type": "inline", "coordinates": [146, 379, 171, 393], "content": "\\pi[1]^{i}", "caption": ""}, {"type": "inline", "coordinates": [193, 379, 243, 394], "content": "i\\in\\{0,1\\}", "caption": ""}, {"type": "inline", "coordinates": [286, 380, 317, 393], "content": "k\\neq r", "caption": ""}, {"type": "inline", "coordinates": [365, 380, 373, 391], "content": "k", "caption": ""}, {"type": "inline", "coordinates": [399, 382, 407, 391], "content": "r", "caption": ""}, {"type": "inline", "coordinates": [255, 394, 285, 406], "content": "k=r", "caption": ""}, {"type": "inline", "coordinates": [337, 392, 384, 409], "content": "\\pi[1]^{i}\\,\\pi_{\\mathrm{rld}}^{j}", "caption": ""}, {"type": "inline", "coordinates": [391, 393, 399, 406], "content": "\\mathit{\\Pi}_{k}", "caption": ""}, {"type": "inline", "coordinates": [450, 393, 475, 408], "content": "\\pi[1]^{i}", "caption": ""}, {"type": "inline", "coordinates": [483, 394, 491, 406], "content": "\\mathit{k}", "caption": ""}, {"type": "inline", "coordinates": [71, 409, 131, 422], "content": "i,j\\in\\{0,1\\}", "caption": ""}, {"type": "inline", "coordinates": [130, 431, 159, 441], "content": "r=k", "caption": ""}, {"type": "inline", "coordinates": [205, 429, 303, 444], "content": "A(C_{r,k})\\cong\\mathbb{Z}_{2}\\times\\mathbb{Z}_{2}", "caption": ""}, {"type": "inline", "coordinates": [161, 458, 219, 474], "content": "D_{r}^{(1)},\\,r\\geq4", "caption": ""}, {"type": "inline", "coordinates": [144, 483, 151, 493], "content": "\\lambda", "caption": ""}, {"type": "inline", "coordinates": [166, 484, 182, 496], "content": "P_{+}", "caption": ""}, {"type": "inline", "coordinates": [228, 483, 438, 495], "content": "k=\\lambda_{0}\\!+\\!\\lambda_{1}\\!+\\!2\\lambda_{2}\\!+\\!\\cdot\\!\\cdot\\!+\\!2\\lambda_{r-2}\\!+\\!\\lambda_{r-1}\\!+\\!\\lambda_{r}", "caption": ""}, {"type": "inline", "coordinates": [468, 484, 536, 494], "content": "\\kappa=k{+}2r{-}2", "caption": ""}, {"type": "inline", "coordinates": [114, 501, 120, 507], "content": "r", "caption": ""}, {"type": "inline", "coordinates": [266, 498, 307, 509], "content": "C_{0}=i d", "caption": ""}, {"type": "inline", "coordinates": [335, 498, 510, 510], "content": "C_{1}\\lambda=(\\lambda_{0},\\lambda_{1},.\\dots,\\lambda_{r-2},\\lambda_{r},\\lambda_{r-1})", "caption": ""}, {"type": "inline", "coordinates": [174, 513, 183, 522], "content": "C", "caption": ""}, {"type": "inline", "coordinates": [223, 513, 237, 524], "content": "C_{1}", "caption": ""}, {"type": "inline", "coordinates": [284, 516, 290, 522], "content": "r", "caption": ""}, {"type": "inline", "coordinates": [321, 513, 335, 524], "content": "C_{0}", "caption": ""}, {"type": "inline", "coordinates": [385, 516, 391, 522], "content": "r", "caption": ""}, {"type": "inline", "coordinates": [435, 513, 464, 522], "content": "r=4", "caption": ""}, {"type": "inline", "coordinates": [253, 529, 265, 540], "content": "C_{i}", "caption": ""}, {"type": "inline", "coordinates": [473, 524, 496, 541], "content": "{D}_{4}^{(1)}", "caption": ""}, {"type": "inline", "coordinates": [105, 543, 153, 554], "content": "\\lambda_{1},\\lambda_{3},\\lambda_{4}", "caption": ""}, {"type": "inline", "coordinates": [335, 557, 347, 568], "content": "J_{v}", "caption": ""}, {"type": "inline", "coordinates": [357, 558, 369, 568], "content": "J_{s}", "caption": ""}, {"type": "inline", "coordinates": [399, 558, 423, 568], "content": "J_{v}J_{s}", "caption": ""}, {"type": "inline", "coordinates": [71, 571, 262, 584], "content": "J_{v}\\lambda=\\left(\\lambda_{1},\\lambda_{0},\\lambda_{2},...\\,,\\lambda_{r-2},\\lambda_{r},\\lambda_{r-1}\\right)", "caption": ""}, {"type": "inline", "coordinates": [293, 571, 414, 584], "content": "Q_{v}(\\lambda)=(\\lambda_{r-1}+\\lambda_{r})/2", "caption": ""}, {"type": "inline", "coordinates": [97, 639, 320, 658], "content": "\\begin{array}{r}{Q_{s}(\\lambda)=(2\\sum_{j=1}^{r-2}j\\lambda_{j}\\!-\\!(r\\!-\\!2)\\lambda_{r-1}\\!-\\!r\\lambda_{r})/4}\\end{array}", "caption": ""}, {"type": "inline", "coordinates": [444, 642, 536, 656], "content": "Q_{s}(J_{s}0)=-r k/4", "caption": ""}] | [] | [612.0, 792.0] | [{"type": "text", "text": "", "page_idx": 10}, {"type": "equation", "text": "$$\n\\tilde{S}_{\\tau\\lambda,\\tau\\mu}=S_{\\lambda\\mu}\\ .\n$$", "text_format": "latex", "page_idx": 10}, {"type": "text", "text": "This rank-level duality for $C_{r}^{(1)}$ is especially interesting, as it defines a fusion ring isomorphism $\\mathcal{R}(C_{r,k})\\cong\\mathcal{R}(C_{k,r})$ (see \u00a75). When $k=r$ , we get a nontrivial fusion-symmetry: $\\pi_{\\mathrm{rld}}\\lambda\\,{\\overset{\\mathrm{def}}{=}}\\,\\tau\\lambda$ . ", "page_idx": 10}, {"type": "text", "text": "The only fusion product we need is ", "page_idx": 10}, {"type": "equation", "text": "$$\n\\Lambda_{1}\\sqcup\\Lambda_{i}=\\Lambda_{i-1}\\sqcup\\Lambda_{i+1}\\sqcup\\left(\\Lambda_{1}+\\Lambda_{i}\\right)\\,,\n$$", "text_format": "latex", "page_idx": 10}, {"type": "text", "text": "valid for $i<r$ and $k\\geq2$ . The following character formula (2.1b) will also be used: ", "page_idx": 10}, {"type": "equation", "text": "$$\n\\chi_{\\Lambda_{1}}[\\lambda]={\\frac{S_{\\Lambda_{1}\\lambda}}{S_{0\\lambda}}}=2\\sum_{\\ell=1}^{r}\\cos(\\pi{\\frac{\\lambda^{+}(\\ell)}{\\kappa}})~,\n$$", "text_format": "latex", "page_idx": 10}, {"type": "text", "text": "where $\\lambda^{+}(\\ell)=(\\lambda+\\rho)(\\ell)$ as before. ", "page_idx": 10}, {"type": "text", "text": "Theorem 3.C. The fusion-symmetries for $C_{r}^{(1)}$ level $k$ , when $k\\neq r$ and either $k$ or $r$ is even, are $\\pi[1]^{i}$ for $i\\in\\{0,1\\}$ . When $k\\neq r$ but both $k$ and $r$ are odd, then there is no nontrivial fusion-symmetry. When $k=r$ , they are $\\pi[1]^{i}\\,\\pi_{\\mathrm{rld}}^{j}$ $\\mathit{\\Pi}_{k}$ even) or $\\pi[1]^{i}$ ( $\\mathit{k}$ odd), for $i,j\\in\\{0,1\\}$ . ", "page_idx": 10}, {"type": "text", "text": "When $r=k$ is even, $A(C_{r,k})\\cong\\mathbb{Z}_{2}\\times\\mathbb{Z}_{2}$ . ", "page_idx": 10}, {"type": "text", "text": "3.4. The algebra $D_{r}^{(1)},\\,r\\geq4$ ", "page_idx": 10}, {"type": "text", "text": "A weight $\\lambda$ of $P_{+}$ satisfies $k=\\lambda_{0}\\!+\\!\\lambda_{1}\\!+\\!2\\lambda_{2}\\!+\\!\\cdot\\!\\cdot\\!+\\!2\\lambda_{r-2}\\!+\\!\\lambda_{r-1}\\!+\\!\\lambda_{r}$ , and $\\kappa=k{+}2r{-}2$ . For any $r$ , there are the conjugations $C_{0}=i d$ . and $C_{1}\\lambda=(\\lambda_{0},\\lambda_{1},.\\dots,\\lambda_{r-2},\\lambda_{r},\\lambda_{r-1})$ . The charge-conjugation $C$ equals $C_{1}$ for odd $r$ , and $C_{0}$ for even $r$ . When $r=4$ there are four additional conjugations; these six $C_{i}$ correspond to all permutations of the ${D}_{4}^{(1)}$ Dynkin labels $\\lambda_{1},\\lambda_{3},\\lambda_{4}$ . ", "page_idx": 10}, {"type": "text", "text": "There are three non-trivial simple-currents, $J_{v}$ , $J_{s}$ and $J_{v}J_{s}$ . Explicitly, we have $J_{v}\\lambda=\\left(\\lambda_{1},\\lambda_{0},\\lambda_{2},...\\,,\\lambda_{r-2},\\lambda_{r},\\lambda_{r-1}\\right)$ with $Q_{v}(\\lambda)=(\\lambda_{r-1}+\\lambda_{r})/2$ , and ", "page_idx": 10}, {"type": "equation", "text": "$$\nJ_{s}\\lambda={\\left\\{\\begin{array}{l l}{(\\lambda_{r},\\lambda_{r-1},\\lambda_{r-2},\\ldots,\\lambda_{1},\\lambda_{0})}&{{\\mathrm{if~}}r{\\mathrm{~is~even}},}\\\\ {(\\lambda_{r-1},\\lambda_{r},\\lambda_{r-2},\\ldots,\\lambda_{1},\\lambda_{0})}&{{\\mathrm{if~}}r{\\mathrm{~is~odd}},}\\end{array}\\right.}\n$$", "text_format": "latex", "page_idx": 10}, {"type": "text", "text": "with $\\begin{array}{r}{Q_{s}(\\lambda)=(2\\sum_{j=1}^{r-2}j\\lambda_{j}\\!-\\!(r\\!-\\!2)\\lambda_{r-1}\\!-\\!r\\lambda_{r})/4}\\end{array}$ . From this we compute $Q_{s}(J_{s}0)=-r k/4$ . The fusion products we need are ", "page_idx": 10}] | [{"category_id": 1, "poly": [197, 1333, 1505, 1333, 1505, 1539, 197, 1539], "score": 0.976}, {"category_id": 1, "poly": [196, 1004, 1507, 1004, 1507, 1172, 196, 1172], "score": 0.974}, {"category_id": 1, "poly": [195, 196, 1506, 196, 1506, 321, 195, 321], "score": 0.971}, {"category_id": 1, "poly": [195, 439, 1505, 439, 1505, 571, 195, 571], "score": 0.966}, {"category_id": 1, "poly": [197, 1540, 1503, 1540, 1503, 1623, 197, 1623], "score": 0.952}, {"category_id": 8, "poly": [578, 804, 1118, 804, 1118, 911, 578, 911], "score": 0.948}, {"category_id": 8, "poly": [485, 1650, 1198, 1650, 1198, 1743, 485, 1743], "score": 0.946}, {"category_id": 1, "poly": [195, 943, 717, 943, 717, 987, 195, 987], "score": 0.943}, {"category_id": 1, "poly": [193, 1775, 1503, 1775, 1503, 1859, 193, 1859], "score": 0.941}, {"category_id": 1, "poly": [198, 728, 1404, 728, 1404, 771, 198, 771], "score": 0.936}, {"category_id": 8, "poly": [564, 647, 1135, 647, 1135, 699, 564, 699], "score": 0.935}, {"category_id": 1, "poly": [262, 1187, 852, 1187, 852, 1232, 262, 1232], "score": 0.923}, {"category_id": 8, "poly": [740, 355, 957, 355, 957, 407, 740, 407], "score": 0.921}, {"category_id": 1, "poly": [265, 576, 784, 576, 784, 616, 265, 616], "score": 0.919}, {"category_id": 8, "poly": [568, 1891, 1120, 1891, 1120, 1992, 568, 1992], "score": 0.908}, {"category_id": 9, "poly": [1429, 835, 1501, 835, 1501, 874, 1429, 874], "score": 0.883}, {"category_id": 2, "poly": [832, 2030, 867, 2030, 867, 2062, 832, 2062], "score": 0.825}, {"category_id": 1, "poly": [264, 1825, 749, 1825, 749, 1860, 264, 1860], "score": 0.584}, {"category_id": 1, "poly": [198, 1269, 616, 1269, 616, 1317, 198, 1317], "score": 0.536}, {"category_id": 0, "poly": [198, 1269, 616, 1269, 616, 1317, 198, 1317], "score": 0.442}, {"category_id": 2, "poly": [831, 2030, 866, 2030, 866, 2062, 831, 2062], "score": 0.321}, {"category_id": 13, "poly": [687, 244, 846, 244, 846, 281, 687, 281], "score": 0.94, "latex": "\\tau\\Lambda_{a}=a\\tilde{\\Lambda}_{1}"}, {"category_id": 13, "poly": [438, 288, 796, 288, 796, 325, 438, 325], "score": 0.94, "latex": "\\tau:P_{+}(C_{r,k})\\rightarrow P_{+}(C_{k,r})"}, {"category_id": 13, "poly": [1316, 1458, 1380, 1458, 1380, 1503, 1316, 1503], "score": 0.94, "latex": "{D}_{4}^{(1)}"}, {"category_id": 14, "poly": [581, 805, 1116, 805, 1116, 914, 581, 914], "score": 0.93, "latex": "\\chi_{\\Lambda_{1}}[\\lambda]={\\frac{S_{\\Lambda_{1}\\lambda}}{S_{0\\lambda}}}=2\\sum_{\\ell=1}^{r}\\cos(\\pi{\\frac{\\lambda^{+}(\\ell)}{\\kappa}})~,"}, {"category_id": 13, "poly": [237, 291, 298, 291, 298, 325, 237, 325], "score": 0.93, "latex": "C_{k,r}"}, {"category_id": 13, "poly": [538, 1055, 676, 1055, 676, 1095, 538, 1095], "score": 0.93, "latex": "i\\in\\{0,1\\}"}, {"category_id": 13, "poly": [1339, 211, 1377, 211, 1377, 240, 1339, 240], "score": 0.92, "latex": "C_{1}"}, {"category_id": 13, "poly": [893, 1426, 931, 1426, 931, 1456, 893, 1456], "score": 0.92, "latex": "C_{0}"}, {"category_id": 13, "poly": [292, 1510, 426, 1510, 426, 1541, 292, 1541], "score": 0.92, "latex": "\\lambda_{1},\\lambda_{3},\\lambda_{4}"}, {"category_id": 13, "poly": [739, 1386, 853, 1386, 853, 1416, 739, 1416], "score": 0.92, "latex": "C_{0}=i d"}, {"category_id": 13, "poly": [199, 535, 358, 535, 358, 578, 199, 578], "score": 0.92, "latex": "\\pi_{\\mathrm{rld}}\\lambda\\,{\\overset{\\mathrm{def}}{=}}\\,\\tau\\lambda"}, {"category_id": 13, "poly": [294, 952, 564, 952, 564, 989, 294, 989], "score": 0.92, "latex": "\\lambda^{+}(\\ell)=(\\lambda+\\rho)(\\ell)"}, {"category_id": 13, "poly": [652, 440, 716, 440, 716, 485, 652, 485], "score": 0.91, "latex": "C_{r}^{(1)}"}, {"category_id": 13, "poly": [1236, 1785, 1490, 1785, 1490, 1824, 1236, 1824], "score": 0.91, "latex": "Q_{s}(J_{s}0)=-r k/4"}, {"category_id": 13, "poly": [933, 1385, 1419, 1385, 1419, 1419, 933, 1419], "score": 0.91, "latex": "C_{1}\\lambda=(\\lambda_{0},\\lambda_{1},.\\dots,\\lambda_{r-2},\\lambda_{r},\\lambda_{r-1})"}, {"category_id": 13, "poly": [1110, 1550, 1177, 1550, 1177, 1579, 1110, 1579], "score": 0.91, "latex": "J_{v}J_{s}"}, {"category_id": 13, "poly": [658, 1950, 813, 1950, 813, 1990, 658, 1990], "score": 0.91, "latex": "\\Lambda_{r}=\\Lambda_{r-1}"}, {"category_id": 13, "poly": [570, 1193, 842, 1193, 842, 1235, 570, 1235], "score": 0.91, "latex": "A(C_{r,k})\\cong\\mathbb{Z}_{2}\\times\\mathbb{Z}_{2}"}, {"category_id": 13, "poly": [938, 1090, 1067, 1090, 1067, 1137, 938, 1137], "score": 0.91, "latex": "\\pi[1]^{i}\\,\\pi_{\\mathrm{rld}}^{j}"}, {"category_id": 13, "poly": [855, 1899, 928, 1899, 928, 1940, 855, 1940], "score": 0.91, "latex": "\\Lambda_{i+1}"}, {"category_id": 13, "poly": [198, 1137, 365, 1137, 365, 1174, 198, 1174], "score": 0.91, "latex": "i,j\\in\\{0,1\\}"}, {"category_id": 13, "poly": [354, 491, 627, 491, 627, 529, 354, 529], "score": 0.91, "latex": "\\mathcal{R}(C_{r,k})\\cong\\mathcal{R}(C_{k,r})"}, {"category_id": 13, "poly": [1300, 1345, 1491, 1345, 1491, 1373, 1300, 1373], "score": 0.91, "latex": "\\kappa=k{+}2r{-}2"}, {"category_id": 13, "poly": [703, 1470, 737, 1470, 737, 1500, 703, 1500], "score": 0.91, "latex": "C_{i}"}, {"category_id": 13, "poly": [796, 1056, 881, 1056, 881, 1093, 796, 1093], "score": 0.91, "latex": "k\\neq r"}, {"category_id": 13, "poly": [271, 1777, 891, 1777, 891, 1830, 271, 1830], "score": 0.91, "latex": "\\begin{array}{r}{Q_{s}(\\lambda)=(2\\sum_{j=1}^{r-2}j\\lambda_{j}\\!-\\!(r\\!-\\!2)\\lambda_{r-1}\\!-\\!r\\lambda_{r})/4}\\end{array}"}, {"category_id": 14, "poly": [743, 360, 958, 360, 958, 406, 743, 406], "score": 0.91, "latex": "\\tilde{S}_{\\tau\\lambda,\\tau\\mu}=S_{\\lambda\\mu}\\ ."}, {"category_id": 13, "poly": [198, 1587, 730, 1587, 730, 1623, 198, 1623], "score": 0.91, "latex": "J_{v}\\lambda=\\left(\\lambda_{1},\\lambda_{0},\\lambda_{2},...\\,,\\lambda_{r-2},\\lambda_{r},\\lambda_{r-1}\\right)"}, {"category_id": 13, "poly": [416, 251, 456, 251, 456, 281, 416, 281], "score": 0.91, "latex": "A_{1}"}, {"category_id": 13, "poly": [622, 1426, 661, 1426, 661, 1456, 622, 1456], "score": 0.91, "latex": "C_{1}"}, {"category_id": 13, "poly": [1180, 1016, 1266, 1016, 1266, 1053, 1180, 1053], "score": 0.9, "latex": "k\\neq r"}, {"category_id": 13, "poly": [903, 1006, 968, 1006, 968, 1051, 903, 1051], "score": 0.9, "latex": "C_{r}^{(1)}"}, {"category_id": 13, "poly": [815, 1587, 1150, 1587, 1150, 1623, 815, 1623], "score": 0.9, "latex": "Q_{v}(\\lambda)=(\\lambda_{r-1}+\\lambda_{r})/2"}, {"category_id": 13, "poly": [476, 736, 558, 736, 558, 771, 476, 771], "score": 0.9, "latex": "k\\geq2"}, {"category_id": 13, "poly": [1209, 1427, 1289, 1427, 1289, 1451, 1209, 1451], "score": 0.9, "latex": "r=4"}, {"category_id": 13, "poly": [330, 743, 402, 743, 402, 767, 330, 767], "score": 0.9, "latex": "i<r"}, {"category_id": 13, "poly": [407, 1054, 475, 1054, 475, 1094, 407, 1094], "score": 0.9, "latex": "\\pi[1]^{i}"}, {"category_id": 13, "poly": [976, 1898, 1115, 1898, 1115, 1941, 976, 1941], "score": 0.9, "latex": "\\left({\\Lambda_{1}+\\Lambda_{i}}\\right)"}, {"category_id": 13, "poly": [662, 1898, 809, 1898, 809, 1940, 662, 1940], "score": 0.9, "latex": "\\Lambda_{i}=\\Lambda_{i-1}"}, {"category_id": 13, "poly": [570, 1950, 613, 1950, 613, 1988, 570, 1988], "score": 0.89, "latex": "\\Lambda_{1}"}, {"category_id": 13, "poly": [463, 1345, 507, 1345, 507, 1378, 463, 1378], "score": 0.89, "latex": "P_{+}"}, {"category_id": 13, "poly": [867, 490, 949, 490, 949, 523, 867, 523], "score": 0.89, "latex": "k=r"}, {"category_id": 13, "poly": [861, 1949, 1005, 1949, 1005, 1991, 861, 1991], "score": 0.88, "latex": "(\\Lambda_{1}+\\Lambda_{r})"}, {"category_id": 13, "poly": [710, 1097, 792, 1097, 792, 1129, 710, 1129], "score": 0.88, "latex": "k=r"}, {"category_id": 13, "poly": [634, 1344, 1219, 1344, 1219, 1377, 634, 1377], "score": 0.88, "latex": "k=\\lambda_{0}\\!+\\!\\lambda_{1}\\!+\\!2\\lambda_{2}\\!+\\!\\cdot\\!\\cdot\\!+\\!2\\lambda_{r-2}\\!+\\!\\lambda_{r-1}\\!+\\!\\lambda_{r}"}, {"category_id": 13, "poly": [843, 211, 864, 211, 864, 235, 843, 235], "score": 0.88, "latex": "\\lambda"}, {"category_id": 13, "poly": [1071, 1435, 1087, 1435, 1087, 1451, 1071, 1451], "score": 0.88, "latex": "r"}, {"category_id": 13, "poly": [362, 1198, 442, 1198, 442, 1226, 362, 1226], "score": 0.88, "latex": "r=k"}, {"category_id": 13, "poly": [791, 1435, 808, 1435, 808, 1451, 791, 1451], "score": 0.87, "latex": "r"}, {"category_id": 13, "poly": [484, 1426, 511, 1426, 511, 1451, 484, 1451], "score": 0.87, "latex": "C"}, {"category_id": 14, "poly": [485, 1656, 1196, 1656, 1196, 1744, 485, 1744], "score": 0.87, "latex": "J_{s}\\lambda={\\left\\{\\begin{array}{l l}{(\\lambda_{r},\\lambda_{r-1},\\lambda_{r-2},\\ldots,\\lambda_{1},\\lambda_{0})}&{{\\mathrm{if~}}r{\\mathrm{~is~even}},}\\\\ {(\\lambda_{r-1},\\lambda_{r},\\lambda_{r-2},\\ldots,\\lambda_{1},\\lambda_{0})}&{{\\mathrm{if~}}r{\\mathrm{~is~odd}},}\\end{array}\\right.}"}, {"category_id": 13, "poly": [573, 1899, 616, 1899, 616, 1938, 573, 1938], "score": 0.84, "latex": "\\Lambda_{1}"}, {"category_id": 13, "poly": [932, 1549, 966, 1549, 966, 1580, 932, 1580], "score": 0.84, "latex": "J_{v}"}, {"category_id": 13, "poly": [318, 1394, 336, 1394, 336, 1410, 318, 1410], "score": 0.82, "latex": "r"}, {"category_id": 13, "poly": [401, 1344, 421, 1344, 421, 1371, 401, 1371], "score": 0.81, "latex": "\\lambda"}, {"category_id": 13, "poly": [992, 1550, 1025, 1550, 1025, 1579, 992, 1579], "score": 0.81, "latex": "J_{s}"}, {"category_id": 13, "poly": [1250, 1092, 1320, 1092, 1320, 1135, 1250, 1135], "score": 0.79, "latex": "\\pi[1]^{i}"}, {"category_id": 13, "poly": [1015, 1057, 1038, 1057, 1038, 1087, 1015, 1087], "score": 0.77, "latex": "k"}, {"category_id": 13, "poly": [850, 656, 923, 656, 923, 698, 850, 698], "score": 0.76, "latex": "\\Lambda_{i+1}"}, {"category_id": 13, "poly": [1052, 1016, 1075, 1016, 1075, 1049, 1052, 1049], "score": 0.75, "latex": "k"}, {"category_id": 14, "poly": [561, 651, 1129, 651, 1129, 699, 561, 699], "score": 0.72, "latex": "\\Lambda_{1}\\sqcup\\Lambda_{i}=\\Lambda_{i-1}\\sqcup\\Lambda_{i+1}\\sqcup\\left(\\Lambda_{1}+\\Lambda_{i}\\right)\\,,"}, {"category_id": 13, "poly": [971, 656, 1112, 656, 1112, 698, 971, 698], "score": 0.71, "latex": "\\left({\\Lambda_{1}+\\Lambda_{i}}\\right)"}, {"category_id": 13, "poly": [1111, 1062, 1131, 1062, 1131, 1087, 1111, 1087], "score": 0.69, "latex": "r"}, {"category_id": 13, "poly": [1436, 1017, 1458, 1017, 1458, 1048, 1436, 1048], "score": 0.69, "latex": "k"}, {"category_id": 13, "poly": [199, 1070, 217, 1070, 217, 1087, 199, 1087], "score": 0.66, "latex": "r"}, {"category_id": 13, "poly": [1087, 1094, 1111, 1094, 1111, 1129, 1087, 1129], "score": 0.6, "latex": "\\mathit{\\Pi}_{k}"}, {"category_id": 13, "poly": [447, 1274, 512, 1274, 512, 1316, 447, 1316], "score": 0.59, "latex": "D_{r}^{(1)}"}, {"category_id": 13, "poly": [566, 656, 607, 656, 607, 695, 566, 695], "score": 0.54, "latex": "\\Lambda_{1}"}, {"category_id": 13, "poly": [531, 1281, 611, 1281, 611, 1316, 531, 1316], "score": 0.47, "latex": "r\\geq4"}, {"category_id": 13, "poly": [652, 654, 805, 654, 805, 697, 652, 697], "score": 0.45, "latex": "\\Lambda_{i}=\\Lambda_{i-1}"}, {"category_id": 13, "poly": [1342, 1096, 1365, 1096, 1365, 1129, 1342, 1129], "score": 0.43, "latex": "\\mathit{k}"}, {"category_id": 13, "poly": [448, 1274, 611, 1274, 611, 1318, 448, 1318], "score": 0.3, "latex": "D_{r}^{(1)},\\,r\\geq4"}, {"category_id": 13, "poly": [488, 1658, 1004, 1658, 1004, 1744, 488, 1744], "score": 0.28, "latex": "J_{s}\\lambda=\\left\\{\\begin{array}{l l}{(\\lambda_{r},\\lambda_{r-1},\\lambda_{r-2},...,\\lambda_{1},\\lambda_{0})}\\\\ {(\\lambda_{r-1},\\lambda_{r},\\lambda_{r-2},...,\\lambda_{1},\\lambda_{0})}\\end{array}\\right."}, {"category_id": 15, "poly": [263.0, 1337.0, 400.0, 1337.0, 400.0, 1383.0, 263.0, 1383.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [422.0, 1337.0, 462.0, 1337.0, 462.0, 1383.0, 422.0, 1383.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [508.0, 1337.0, 633.0, 1337.0, 633.0, 1383.0, 508.0, 1383.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1220.0, 1337.0, 1299.0, 1337.0, 1299.0, 1383.0, 1220.0, 1383.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1492.0, 1337.0, 1502.0, 1337.0, 1502.0, 1383.0, 1492.0, 1383.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [194.0, 1375.0, 317.0, 1375.0, 317.0, 1426.0, 194.0, 1426.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [337.0, 1375.0, 738.0, 1375.0, 738.0, 1426.0, 337.0, 1426.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [854.0, 1375.0, 932.0, 1375.0, 932.0, 1426.0, 854.0, 1426.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1420.0, 1375.0, 1505.0, 1375.0, 1505.0, 1426.0, 1420.0, 1426.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [197.0, 1420.0, 483.0, 1420.0, 483.0, 1465.0, 197.0, 1465.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [512.0, 1420.0, 621.0, 1420.0, 621.0, 1465.0, 512.0, 1465.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [662.0, 1420.0, 790.0, 1420.0, 790.0, 1465.0, 662.0, 1465.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [809.0, 1420.0, 892.0, 1420.0, 892.0, 1465.0, 809.0, 1465.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [932.0, 1420.0, 1070.0, 1420.0, 1070.0, 1465.0, 932.0, 1465.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1088.0, 1420.0, 1208.0, 1420.0, 1208.0, 1465.0, 1088.0, 1465.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1290.0, 1420.0, 1504.0, 1420.0, 1504.0, 1465.0, 1290.0, 1465.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [194.0, 1463.0, 702.0, 1463.0, 702.0, 1508.0, 194.0, 1508.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [738.0, 1463.0, 1315.0, 1463.0, 1315.0, 1508.0, 738.0, 1508.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1381.0, 1463.0, 1504.0, 1463.0, 1504.0, 1508.0, 1381.0, 1508.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [198.0, 1506.0, 291.0, 1506.0, 291.0, 1548.0, 198.0, 1548.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [427.0, 1506.0, 436.0, 1506.0, 436.0, 1548.0, 427.0, 1548.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [261.0, 1007.0, 902.0, 1007.0, 902.0, 1060.0, 261.0, 1060.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [969.0, 1007.0, 1051.0, 1007.0, 1051.0, 1060.0, 969.0, 1060.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1076.0, 1007.0, 1179.0, 1007.0, 1179.0, 1060.0, 1076.0, 1060.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1267.0, 1007.0, 1435.0, 1007.0, 1435.0, 1060.0, 1267.0, 1060.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1459.0, 1007.0, 1508.0, 1007.0, 1508.0, 1060.0, 1459.0, 1060.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [196.0, 1056.0, 198.0, 1056.0, 198.0, 1095.0, 196.0, 1095.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [218.0, 1056.0, 406.0, 1056.0, 406.0, 1095.0, 218.0, 1095.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [476.0, 1056.0, 537.0, 1056.0, 537.0, 1095.0, 476.0, 1095.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [677.0, 1056.0, 795.0, 1056.0, 795.0, 1095.0, 677.0, 1095.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [882.0, 1056.0, 1014.0, 1056.0, 1014.0, 1095.0, 882.0, 1095.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1039.0, 1056.0, 1110.0, 1056.0, 1110.0, 1095.0, 1039.0, 1095.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1132.0, 1056.0, 1503.0, 1056.0, 1503.0, 1095.0, 1132.0, 1095.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [197.0, 1096.0, 709.0, 1096.0, 709.0, 1140.0, 197.0, 1140.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [793.0, 1096.0, 937.0, 1096.0, 937.0, 1140.0, 793.0, 1140.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1068.0, 1096.0, 1086.0, 1096.0, 1086.0, 1140.0, 1068.0, 1140.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1112.0, 1096.0, 1249.0, 1096.0, 1249.0, 1140.0, 1112.0, 1140.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1321.0, 1096.0, 1341.0, 1096.0, 1341.0, 1140.0, 1321.0, 1140.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1366.0, 1096.0, 1506.0, 1096.0, 1506.0, 1140.0, 1366.0, 1140.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [195.0, 1133.0, 197.0, 1133.0, 197.0, 1177.0, 195.0, 1177.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [366.0, 1133.0, 378.0, 1133.0, 378.0, 1177.0, 366.0, 1177.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [201.0, 206.0, 842.0, 206.0, 842.0, 246.0, 201.0, 246.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [865.0, 206.0, 1338.0, 206.0, 1338.0, 246.0, 865.0, 246.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1378.0, 206.0, 1503.0, 206.0, 1503.0, 246.0, 1378.0, 246.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [196.0, 244.0, 415.0, 244.0, 415.0, 288.0, 196.0, 288.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [457.0, 244.0, 686.0, 244.0, 686.0, 288.0, 457.0, 288.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [847.0, 244.0, 1505.0, 244.0, 1505.0, 288.0, 847.0, 288.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [196.0, 285.0, 236.0, 285.0, 236.0, 327.0, 196.0, 327.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [299.0, 285.0, 437.0, 285.0, 437.0, 327.0, 299.0, 327.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [797.0, 285.0, 1097.0, 285.0, 1097.0, 327.0, 797.0, 327.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [260.0, 443.0, 651.0, 443.0, 651.0, 496.0, 260.0, 496.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [717.0, 443.0, 1501.0, 443.0, 1501.0, 496.0, 717.0, 496.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [199.0, 491.0, 353.0, 491.0, 353.0, 531.0, 199.0, 531.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [628.0, 491.0, 866.0, 491.0, 866.0, 531.0, 628.0, 531.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [950.0, 491.0, 1501.0, 491.0, 1501.0, 531.0, 950.0, 531.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [195.0, 527.0, 198.0, 527.0, 198.0, 585.0, 195.0, 585.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [359.0, 527.0, 374.0, 527.0, 374.0, 585.0, 359.0, 585.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [260.0, 1539.0, 931.0, 1539.0, 931.0, 1590.0, 260.0, 1590.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [967.0, 1539.0, 991.0, 1539.0, 991.0, 1590.0, 967.0, 1590.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1026.0, 1539.0, 1109.0, 1539.0, 1109.0, 1590.0, 1026.0, 1590.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1178.0, 1539.0, 1505.0, 1539.0, 1505.0, 1590.0, 1178.0, 1590.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [731.0, 1584.0, 814.0, 1584.0, 814.0, 1629.0, 731.0, 1629.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1151.0, 1584.0, 1229.0, 1584.0, 1229.0, 1629.0, 1151.0, 1629.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [198.0, 948.0, 293.0, 948.0, 293.0, 992.0, 198.0, 992.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [565.0, 948.0, 715.0, 948.0, 715.0, 992.0, 565.0, 992.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [194.0, 1781.0, 270.0, 1781.0, 270.0, 1836.0, 194.0, 1836.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [892.0, 1781.0, 1235.0, 1781.0, 1235.0, 1836.0, 892.0, 1836.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1491.0, 1781.0, 1503.0, 1781.0, 1503.0, 1836.0, 1491.0, 1836.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [262.0, 1826.0, 747.0, 1826.0, 747.0, 1867.0, 262.0, 1867.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [196.0, 733.0, 329.0, 733.0, 329.0, 782.0, 196.0, 782.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [403.0, 733.0, 475.0, 733.0, 475.0, 782.0, 403.0, 782.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [559.0, 733.0, 1406.0, 733.0, 1406.0, 782.0, 559.0, 782.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [264.0, 1194.0, 361.0, 1194.0, 361.0, 1234.0, 264.0, 1234.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [443.0, 1194.0, 569.0, 1194.0, 569.0, 1234.0, 443.0, 1234.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [843.0, 1194.0, 849.0, 1194.0, 849.0, 1234.0, 843.0, 1234.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [266.0, 583.0, 781.0, 583.0, 781.0, 620.0, 266.0, 620.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [828.0, 2033.0, 871.0, 2033.0, 871.0, 2070.0, 828.0, 2070.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [267.0, 1826.0, 743.0, 1826.0, 743.0, 1863.0, 267.0, 1863.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [195.0, 1269.0, 446.0, 1269.0, 446.0, 1324.0, 195.0, 1324.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [612.0, 1269.0, 619.0, 1269.0, 619.0, 1324.0, 612.0, 1324.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [195.0, 1269.0, 446.0, 1269.0, 446.0, 1324.0, 195.0, 1324.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [612.0, 1269.0, 619.0, 1269.0, 619.0, 1324.0, 612.0, 1324.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [830.0, 2033.0, 871.0, 2033.0, 871.0, 2070.0, 830.0, 2070.0], "score": 1.0, "text": ""}] | {"preproc_blocks": [{"type": "text", "bbox": [70, 70, 542, 115], "lines": [{"bbox": [72, 74, 541, 88], "spans": [{"bbox": [72, 74, 303, 88], "score": 1.0, "content": "whose diagram is the transpose of that for ", "type": "text"}, {"bbox": [303, 75, 311, 84], "score": 0.88, "content": "\\lambda", "type": "inline_equation", "height": 9, "width": 8}, {"bbox": [311, 74, 481, 88], "score": 1.0, "content": ". (For this purpose the algebra ", "type": "text"}, {"bbox": [482, 75, 495, 86], "score": 0.92, "content": "C_{1}", "type": "inline_equation", "height": 11, "width": 13}, {"bbox": [496, 74, 541, 88], "score": 1.0, "content": " may be", "type": "text"}], "index": 0}, {"bbox": [70, 87, 541, 103], "spans": [{"bbox": [70, 87, 149, 103], "score": 1.0, "content": "identified with ", "type": "text"}, {"bbox": [149, 90, 164, 101], "score": 0.91, "content": "A_{1}", "type": "inline_equation", "height": 11, "width": 15}, {"bbox": [164, 87, 246, 103], "score": 1.0, "content": ".) For example,", "type": "text"}, {"bbox": [247, 87, 304, 101], "score": 0.94, "content": "\\tau\\Lambda_{a}=a\\tilde{\\Lambda}_{1}", "type": "inline_equation", "height": 14, "width": 57}, {"bbox": [304, 87, 541, 103], "score": 1.0, "content": ", where we use tilde\u2019s to denote the quantities", "type": "text"}], "index": 1}, {"bbox": [70, 102, 394, 117], "spans": [{"bbox": [70, 102, 84, 117], "score": 1.0, "content": "of ", "type": "text"}, {"bbox": [85, 104, 107, 117], "score": 0.93, "content": "C_{k,r}", "type": "inline_equation", "height": 13, "width": 22}, {"bbox": [107, 102, 157, 117], "score": 1.0, "content": ". In fact, ", "type": "text"}, {"bbox": [157, 103, 286, 117], "score": 0.94, "content": "\\tau:P_{+}(C_{r,k})\\rightarrow P_{+}(C_{k,r})", "type": "inline_equation", "height": 14, "width": 129}, {"bbox": [286, 102, 394, 117], "score": 1.0, "content": " is a bijection. Then", "type": "text"}], "index": 2}], "index": 1}, {"type": "interline_equation", "bbox": [267, 129, 344, 146], "lines": [{"bbox": [267, 129, 344, 146], "spans": [{"bbox": [267, 129, 344, 146], "score": 0.91, "content": "\\tilde{S}_{\\tau\\lambda,\\tau\\mu}=S_{\\lambda\\mu}\\ .", "type": "interline_equation"}], "index": 3}], "index": 3}, {"type": "text", "bbox": [70, 158, 541, 205], "lines": [{"bbox": [93, 158, 540, 178], "spans": [{"bbox": [93, 159, 234, 178], "score": 1.0, "content": "This rank-level duality for ", "type": "text"}, {"bbox": [234, 158, 257, 174], "score": 0.91, "content": "C_{r}^{(1)}", "type": "inline_equation", "height": 16, "width": 23}, {"bbox": [258, 159, 540, 178], "score": 1.0, "content": "is especially interesting, as it defines a fusion ring iso-", "type": "text"}], "index": 4}, {"bbox": [71, 176, 540, 191], "spans": [{"bbox": [71, 176, 127, 191], "score": 1.0, "content": "morphism ", "type": "text"}, {"bbox": [127, 176, 225, 190], "score": 0.91, "content": "\\mathcal{R}(C_{r,k})\\cong\\mathcal{R}(C_{k,r})", "type": "inline_equation", "height": 14, "width": 98}, {"bbox": [226, 176, 311, 191], "score": 1.0, "content": " (see \u00a75). When ", "type": "text"}, {"bbox": [312, 176, 341, 188], "score": 0.89, "content": "k=r", "type": "inline_equation", "height": 12, "width": 29}, {"bbox": [342, 176, 540, 191], "score": 1.0, "content": ", we get a nontrivial fusion-symmetry:", "type": "text"}], "index": 5}, {"bbox": [71, 189, 134, 210], "spans": [{"bbox": [71, 192, 128, 208], "score": 0.92, "content": "\\pi_{\\mathrm{rld}}\\lambda\\,{\\overset{\\mathrm{def}}{=}}\\,\\tau\\lambda", "type": "inline_equation", "height": 16, "width": 57}, {"bbox": [129, 189, 134, 210], "score": 1.0, "content": ".", "type": "text"}], "index": 6}], "index": 5}, {"type": "text", "bbox": [95, 207, 282, 221], "lines": [{"bbox": [95, 209, 281, 223], "spans": [{"bbox": [95, 209, 281, 223], "score": 1.0, "content": "The only fusion product we need is", "type": "text"}], "index": 7}], "index": 7}, {"type": "interline_equation", "bbox": [201, 234, 406, 251], "lines": [{"bbox": [201, 234, 406, 251], "spans": [{"bbox": [201, 234, 406, 251], "score": 0.72, "content": "\\Lambda_{1}\\sqcup\\Lambda_{i}=\\Lambda_{i-1}\\sqcup\\Lambda_{i+1}\\sqcup\\left(\\Lambda_{1}+\\Lambda_{i}\\right)\\,,", "type": "interline_equation"}], "index": 8}], "index": 8}, {"type": "text", "bbox": [71, 262, 505, 277], "lines": [{"bbox": [70, 263, 506, 281], "spans": [{"bbox": [70, 263, 118, 281], "score": 1.0, "content": "valid for ", "type": "text"}, {"bbox": [118, 267, 144, 276], "score": 0.9, "content": "i<r", "type": "inline_equation", "height": 9, "width": 26}, {"bbox": [145, 263, 171, 281], "score": 1.0, "content": " and ", "type": "text"}, {"bbox": [171, 264, 200, 277], "score": 0.9, "content": "k\\geq2", "type": "inline_equation", "height": 13, "width": 29}, {"bbox": [201, 263, 506, 281], "score": 1.0, "content": ". The following character formula (2.1b) will also be used:", "type": "text"}], "index": 9}], "index": 9}, {"type": "interline_equation", "bbox": [209, 289, 401, 329], "lines": [{"bbox": [209, 289, 401, 329], "spans": [{"bbox": [209, 289, 401, 329], "score": 0.93, "content": "\\chi_{\\Lambda_{1}}[\\lambda]={\\frac{S_{\\Lambda_{1}\\lambda}}{S_{0\\lambda}}}=2\\sum_{\\ell=1}^{r}\\cos(\\pi{\\frac{\\lambda^{+}(\\ell)}{\\kappa}})~,", "type": "interline_equation"}], "index": 10}], "index": 10}, {"type": "text", "bbox": [70, 339, 258, 355], "lines": [{"bbox": [71, 341, 257, 357], "spans": [{"bbox": [71, 341, 105, 357], "score": 1.0, "content": "where ", "type": "text"}, {"bbox": [105, 342, 203, 356], "score": 0.92, "content": "\\lambda^{+}(\\ell)=(\\lambda+\\rho)(\\ell)", "type": "inline_equation", "height": 14, "width": 98}, {"bbox": [203, 341, 257, 357], "score": 1.0, "content": " as before.", "type": "text"}], "index": 11}], "index": 11}, {"type": "text", "bbox": [70, 361, 542, 421], "lines": [{"bbox": [93, 362, 542, 381], "spans": [{"bbox": [93, 362, 324, 381], "score": 1.0, "content": "Theorem 3.C. The fusion-symmetries for ", "type": "text"}, {"bbox": [325, 362, 348, 378], "score": 0.9, "content": "C_{r}^{(1)}", "type": "inline_equation", "height": 16, "width": 23}, {"bbox": [348, 362, 378, 381], "score": 1.0, "content": "level ", "type": "text"}, {"bbox": [378, 365, 387, 377], "score": 0.75, "content": "k", "type": "inline_equation", "height": 12, "width": 9}, {"bbox": [387, 362, 424, 381], "score": 1.0, "content": ", when ", "type": "text"}, {"bbox": [424, 365, 455, 379], "score": 0.9, "content": "k\\neq r", "type": "inline_equation", "height": 14, "width": 31}, {"bbox": [456, 362, 516, 381], "score": 1.0, "content": " and either ", "type": "text"}, {"bbox": [516, 366, 524, 377], "score": 0.69, "content": "k", "type": "inline_equation", "height": 11, "width": 8}, {"bbox": [525, 362, 542, 381], "score": 1.0, "content": " or", "type": "text"}], "index": 12}, {"bbox": [71, 379, 541, 394], "spans": [{"bbox": [71, 385, 78, 391], "score": 0.66, "content": "r", "type": "inline_equation", "height": 6, "width": 7}, {"bbox": [78, 380, 146, 394], "score": 1.0, "content": " is even, are ", "type": "text"}, {"bbox": [146, 379, 171, 393], "score": 0.9, "content": "\\pi[1]^{i}", "type": "inline_equation", "height": 14, "width": 25}, {"bbox": [171, 380, 193, 394], "score": 1.0, "content": " for ", "type": "text"}, {"bbox": [193, 379, 243, 394], "score": 0.93, "content": "i\\in\\{0,1\\}", "type": "inline_equation", "height": 15, "width": 50}, {"bbox": [243, 380, 286, 394], "score": 1.0, "content": ". When ", "type": "text"}, {"bbox": [286, 380, 317, 393], "score": 0.91, "content": "k\\neq r", "type": "inline_equation", "height": 13, "width": 31}, {"bbox": [317, 380, 365, 394], "score": 1.0, "content": " but both ", "type": "text"}, {"bbox": [365, 380, 373, 391], "score": 0.77, "content": "k", "type": "inline_equation", "height": 11, "width": 8}, {"bbox": [374, 380, 399, 394], "score": 1.0, "content": " and ", "type": "text"}, {"bbox": [399, 382, 407, 391], "score": 0.69, "content": "r", "type": "inline_equation", "height": 9, "width": 8}, {"bbox": [407, 380, 541, 394], "score": 1.0, "content": " are odd, then there is no", "type": "text"}], "index": 13}, {"bbox": [70, 392, 542, 410], "spans": [{"bbox": [70, 394, 255, 410], "score": 1.0, "content": "nontrivial fusion-symmetry. When ", "type": "text"}, {"bbox": [255, 394, 285, 406], "score": 0.88, "content": "k=r", "type": "inline_equation", "height": 12, "width": 30}, {"bbox": [285, 394, 337, 410], "score": 1.0, "content": ", they are ", "type": "text"}, {"bbox": [337, 392, 384, 409], "score": 0.91, "content": "\\pi[1]^{i}\\,\\pi_{\\mathrm{rld}}^{j}", "type": "inline_equation", "height": 17, "width": 47}, {"bbox": [384, 394, 390, 410], "score": 1.0, "content": " ", "type": "text"}, {"bbox": [391, 393, 399, 406], "score": 0.6, "content": "\\mathit{\\Pi}_{k}", "type": "inline_equation", "height": 13, "width": 8}, {"bbox": [400, 394, 449, 410], "score": 1.0, "content": " even) or ", "type": "text"}, {"bbox": [450, 393, 475, 408], "score": 0.79, "content": "\\pi[1]^{i}", "type": "inline_equation", "height": 15, "width": 25}, {"bbox": [475, 394, 482, 410], "score": 1.0, "content": " (", "type": "text"}, {"bbox": [483, 394, 491, 406], "score": 0.43, "content": "\\mathit{k}", "type": "inline_equation", "height": 12, "width": 8}, {"bbox": [491, 394, 542, 410], "score": 1.0, "content": " odd), for", "type": "text"}], "index": 14}, {"bbox": [71, 407, 136, 423], "spans": [{"bbox": [71, 409, 131, 422], "score": 0.91, "content": "i,j\\in\\{0,1\\}", "type": "inline_equation", "height": 13, "width": 60}, {"bbox": [131, 407, 136, 423], "score": 1.0, "content": ".", "type": "text"}], "index": 15}], "index": 13.5}, {"type": "text", "bbox": [94, 427, 306, 443], "lines": [{"bbox": [95, 429, 305, 444], "spans": [{"bbox": [95, 429, 129, 444], "score": 1.0, "content": "When ", "type": "text"}, {"bbox": [130, 431, 159, 441], "score": 0.88, "content": "r=k", "type": "inline_equation", "height": 10, "width": 29}, {"bbox": [159, 429, 204, 444], "score": 1.0, "content": " is even, ", "type": "text"}, {"bbox": [205, 429, 303, 444], "score": 0.91, "content": "A(C_{r,k})\\cong\\mathbb{Z}_{2}\\times\\mathbb{Z}_{2}", "type": "inline_equation", "height": 15, "width": 98}, {"bbox": [303, 429, 305, 444], "score": 1.0, "content": ".", "type": "text"}], "index": 16}], "index": 16}, {"type": "text", "bbox": [71, 456, 221, 474], "lines": [{"bbox": [70, 456, 219, 476], "spans": [{"bbox": [70, 456, 160, 476], "score": 1.0, "content": "3.4. The algebra ", "type": "text"}, {"bbox": [161, 458, 219, 474], "score": 0.3, "content": "D_{r}^{(1)},\\,r\\geq4", "type": "inline_equation", "height": 16, "width": 58}], "index": 17}], "index": 17}, {"type": "text", "bbox": [70, 479, 541, 554], "lines": [{"bbox": [94, 481, 540, 497], "spans": [{"bbox": [94, 481, 144, 497], "score": 1.0, "content": "A weight ", "type": "text"}, {"bbox": [144, 483, 151, 493], "score": 0.81, "content": "\\lambda", "type": "inline_equation", "height": 10, "width": 7}, {"bbox": [151, 481, 166, 497], "score": 1.0, "content": " of ", "type": "text"}, {"bbox": [166, 484, 182, 496], "score": 0.89, "content": "P_{+}", "type": "inline_equation", "height": 12, "width": 16}, {"bbox": [182, 481, 227, 497], "score": 1.0, "content": " satisfies", "type": "text"}, {"bbox": [228, 483, 438, 495], "score": 0.88, "content": "k=\\lambda_{0}\\!+\\!\\lambda_{1}\\!+\\!2\\lambda_{2}\\!+\\!\\cdot\\!\\cdot\\!+\\!2\\lambda_{r-2}\\!+\\!\\lambda_{r-1}\\!+\\!\\lambda_{r}", "type": "inline_equation", "height": 12, "width": 210}, {"bbox": [439, 481, 467, 497], "score": 1.0, "content": ", and ", "type": "text"}, {"bbox": [468, 484, 536, 494], "score": 0.91, "content": "\\kappa=k{+}2r{-}2", "type": "inline_equation", "height": 10, "width": 68}, {"bbox": [537, 481, 540, 497], "score": 1.0, "content": ".", "type": "text"}], "index": 18}, {"bbox": [69, 495, 541, 513], "spans": [{"bbox": [69, 495, 114, 513], "score": 1.0, "content": "For any ", "type": "text"}, {"bbox": [114, 501, 120, 507], "score": 0.82, "content": "r", "type": "inline_equation", "height": 6, "width": 6}, {"bbox": [121, 495, 265, 513], "score": 1.0, "content": ", there are the conjugations ", "type": "text"}, {"bbox": [266, 498, 307, 509], "score": 0.92, "content": "C_{0}=i d", "type": "inline_equation", "height": 11, "width": 41}, {"bbox": [307, 495, 335, 513], "score": 1.0, "content": ". and ", "type": "text"}, {"bbox": [335, 498, 510, 510], "score": 0.91, "content": "C_{1}\\lambda=(\\lambda_{0},\\lambda_{1},.\\dots,\\lambda_{r-2},\\lambda_{r},\\lambda_{r-1})", "type": "inline_equation", "height": 12, "width": 175}, {"bbox": [511, 495, 541, 513], "score": 1.0, "content": ". The", "type": "text"}], "index": 19}, {"bbox": [70, 511, 541, 527], "spans": [{"bbox": [70, 511, 173, 527], "score": 1.0, "content": "charge-conjugation ", "type": "text"}, {"bbox": [174, 513, 183, 522], "score": 0.87, "content": "C", "type": "inline_equation", "height": 9, "width": 9}, {"bbox": [184, 511, 223, 527], "score": 1.0, "content": " equals ", "type": "text"}, {"bbox": [223, 513, 237, 524], "score": 0.91, "content": "C_{1}", "type": "inline_equation", "height": 11, "width": 14}, {"bbox": [238, 511, 284, 527], "score": 1.0, "content": " for odd ", "type": "text"}, {"bbox": [284, 516, 290, 522], "score": 0.87, "content": "r", "type": "inline_equation", "height": 6, "width": 6}, {"bbox": [291, 511, 321, 527], "score": 1.0, "content": ", and ", "type": "text"}, {"bbox": [321, 513, 335, 524], "score": 0.92, "content": "C_{0}", "type": "inline_equation", "height": 11, "width": 14}, {"bbox": [335, 511, 385, 527], "score": 1.0, "content": " for even ", "type": "text"}, {"bbox": [385, 516, 391, 522], "score": 0.88, "content": "r", "type": "inline_equation", "height": 6, "width": 6}, {"bbox": [391, 511, 434, 527], "score": 1.0, "content": ". When ", "type": "text"}, {"bbox": [435, 513, 464, 522], "score": 0.9, "content": "r=4", "type": "inline_equation", "height": 9, "width": 29}, {"bbox": [464, 511, 541, 527], "score": 1.0, "content": " there are four", "type": "text"}], "index": 20}, {"bbox": [69, 524, 541, 542], "spans": [{"bbox": [69, 526, 252, 542], "score": 1.0, "content": "additional conjugations; these six ", "type": "text"}, {"bbox": [253, 529, 265, 540], "score": 0.91, "content": "C_{i}", "type": "inline_equation", "height": 11, "width": 12}, {"bbox": [265, 526, 473, 542], "score": 1.0, "content": " correspond to all permutations of the ", "type": "text"}, {"bbox": [473, 524, 496, 541], "score": 0.94, "content": "{D}_{4}^{(1)}", "type": "inline_equation", "height": 17, "width": 23}, {"bbox": [497, 526, 541, 542], "score": 1.0, "content": "Dynkin", "type": "text"}], "index": 21}, {"bbox": [71, 542, 156, 557], "spans": [{"bbox": [71, 542, 104, 557], "score": 1.0, "content": "labels ", "type": "text"}, {"bbox": [105, 543, 153, 554], "score": 0.92, "content": "\\lambda_{1},\\lambda_{3},\\lambda_{4}", "type": "inline_equation", "height": 11, "width": 48}, {"bbox": [153, 542, 156, 557], "score": 1.0, "content": ".", "type": "text"}], "index": 22}], "index": 20}, {"type": "text", "bbox": [70, 554, 541, 584], "lines": [{"bbox": [93, 554, 541, 572], "spans": [{"bbox": [93, 554, 335, 572], "score": 1.0, "content": "There are three non-trivial simple-currents, ", "type": "text"}, {"bbox": [335, 557, 347, 568], "score": 0.84, "content": "J_{v}", "type": "inline_equation", "height": 11, "width": 12}, {"bbox": [348, 554, 356, 572], "score": 1.0, "content": ", ", "type": "text"}, {"bbox": [357, 558, 369, 568], "score": 0.81, "content": "J_{s}", "type": "inline_equation", "height": 10, "width": 12}, {"bbox": [369, 554, 399, 572], "score": 1.0, "content": " and ", "type": "text"}, {"bbox": [399, 558, 423, 568], "score": 0.91, "content": "J_{v}J_{s}", "type": "inline_equation", "height": 10, "width": 24}, {"bbox": [424, 554, 541, 572], "score": 1.0, "content": ". Explicitly, we have", "type": "text"}], "index": 23}, {"bbox": [71, 570, 442, 586], "spans": [{"bbox": [71, 571, 262, 584], "score": 0.91, "content": "J_{v}\\lambda=\\left(\\lambda_{1},\\lambda_{0},\\lambda_{2},...\\,,\\lambda_{r-2},\\lambda_{r},\\lambda_{r-1}\\right)", "type": "inline_equation", "height": 13, "width": 191}, {"bbox": [263, 570, 293, 586], "score": 1.0, "content": " with ", "type": "text"}, {"bbox": [293, 571, 414, 584], "score": 0.9, "content": "Q_{v}(\\lambda)=(\\lambda_{r-1}+\\lambda_{r})/2", "type": "inline_equation", "height": 13, "width": 121}, {"bbox": [414, 570, 442, 586], "score": 1.0, "content": ", and", "type": "text"}], "index": 24}], "index": 23.5}, {"type": "interline_equation", "bbox": [174, 596, 430, 627], "lines": [{"bbox": [174, 596, 430, 627], "spans": [{"bbox": [174, 596, 430, 627], "score": 0.87, "content": "J_{s}\\lambda={\\left\\{\\begin{array}{l l}{(\\lambda_{r},\\lambda_{r-1},\\lambda_{r-2},\\ldots,\\lambda_{1},\\lambda_{0})}&{{\\mathrm{if~}}r{\\mathrm{~is~even}},}\\\\ {(\\lambda_{r-1},\\lambda_{r},\\lambda_{r-2},\\ldots,\\lambda_{1},\\lambda_{0})}&{{\\mathrm{if~}}r{\\mathrm{~is~odd}},}\\end{array}\\right.}", "type": "interline_equation"}], "index": 25}], "index": 25}, {"type": "text", "bbox": [69, 639, 541, 669], "lines": [{"bbox": [69, 639, 541, 660], "spans": [{"bbox": [69, 641, 97, 660], "score": 1.0, "content": "with ", "type": "text"}, {"bbox": [97, 639, 320, 658], "score": 0.91, "content": "\\begin{array}{r}{Q_{s}(\\lambda)=(2\\sum_{j=1}^{r-2}j\\lambda_{j}\\!-\\!(r\\!-\\!2)\\lambda_{r-1}\\!-\\!r\\lambda_{r})/4}\\end{array}", "type": "inline_equation", "height": 19, "width": 223}, {"bbox": [321, 641, 444, 660], "score": 1.0, "content": ". From this we compute", "type": "text"}, {"bbox": [444, 642, 536, 656], "score": 0.91, "content": "Q_{s}(J_{s}0)=-r k/4", "type": "inline_equation", "height": 14, "width": 92}, {"bbox": [536, 641, 541, 660], "score": 1.0, "content": ".", "type": "text"}], "index": 26}, {"bbox": [94, 657, 268, 672], "spans": [{"bbox": [94, 657, 268, 672], "score": 1.0, "content": "The fusion products we need are", "type": "text"}], "index": 27}], "index": 26.5}], "layout_bboxes": [], "page_idx": 10, "page_size": [612.0, 792.0], "_layout_tree": [], "images": [], "tables": [], "interline_equations": [{"type": "interline_equation", "bbox": [267, 129, 344, 146], "lines": [{"bbox": [267, 129, 344, 146], "spans": [{"bbox": [267, 129, 344, 146], "score": 0.91, "content": "\\tilde{S}_{\\tau\\lambda,\\tau\\mu}=S_{\\lambda\\mu}\\ .", "type": "interline_equation"}], "index": 3}], "index": 3}, {"type": "interline_equation", "bbox": [201, 234, 406, 251], "lines": [{"bbox": [201, 234, 406, 251], "spans": [{"bbox": [201, 234, 406, 251], "score": 0.72, "content": "\\Lambda_{1}\\sqcup\\Lambda_{i}=\\Lambda_{i-1}\\sqcup\\Lambda_{i+1}\\sqcup\\left(\\Lambda_{1}+\\Lambda_{i}\\right)\\,,", "type": "interline_equation"}], "index": 8}], "index": 8}, {"type": "interline_equation", "bbox": [209, 289, 401, 329], "lines": [{"bbox": [209, 289, 401, 329], "spans": [{"bbox": [209, 289, 401, 329], "score": 0.93, "content": "\\chi_{\\Lambda_{1}}[\\lambda]={\\frac{S_{\\Lambda_{1}\\lambda}}{S_{0\\lambda}}}=2\\sum_{\\ell=1}^{r}\\cos(\\pi{\\frac{\\lambda^{+}(\\ell)}{\\kappa}})~,", "type": "interline_equation"}], "index": 10}], "index": 10}, {"type": "interline_equation", "bbox": [174, 596, 430, 627], "lines": [{"bbox": [174, 596, 430, 627], "spans": [{"bbox": [174, 596, 430, 627], "score": 0.87, "content": "J_{s}\\lambda={\\left\\{\\begin{array}{l l}{(\\lambda_{r},\\lambda_{r-1},\\lambda_{r-2},\\ldots,\\lambda_{1},\\lambda_{0})}&{{\\mathrm{if~}}r{\\mathrm{~is~even}},}\\\\ {(\\lambda_{r-1},\\lambda_{r},\\lambda_{r-2},\\ldots,\\lambda_{1},\\lambda_{0})}&{{\\mathrm{if~}}r{\\mathrm{~is~odd}},}\\end{array}\\right.}", "type": "interline_equation"}], "index": 25}], "index": 25}], "discarded_blocks": [{"type": "discarded", "bbox": [299, 730, 312, 742], "lines": [{"bbox": [298, 731, 313, 745], "spans": [{"bbox": [298, 731, 313, 745], "score": 1.0, "content": "11", "type": "text"}]}]}], "need_drop": false, "drop_reason": [], "para_blocks": [{"type": "text", "bbox": [70, 70, 542, 115], "lines": [], "index": 1, "page_num": "page_10", "page_size": [612.0, 792.0], "bbox_fs": [70, 74, 541, 117], "lines_deleted": true}, {"type": "interline_equation", "bbox": [267, 129, 344, 146], "lines": [{"bbox": [267, 129, 344, 146], "spans": [{"bbox": [267, 129, 344, 146], "score": 0.91, "content": "\\tilde{S}_{\\tau\\lambda,\\tau\\mu}=S_{\\lambda\\mu}\\ .", "type": "interline_equation"}], "index": 3}], "index": 3, "page_num": "page_10", "page_size": [612.0, 792.0]}, {"type": "text", "bbox": [70, 158, 541, 205], "lines": [{"bbox": [93, 158, 540, 178], "spans": [{"bbox": [93, 159, 234, 178], "score": 1.0, "content": "This rank-level duality for ", "type": "text"}, {"bbox": [234, 158, 257, 174], "score": 0.91, "content": "C_{r}^{(1)}", "type": "inline_equation", "height": 16, "width": 23}, {"bbox": [258, 159, 540, 178], "score": 1.0, "content": "is especially interesting, as it defines a fusion ring iso-", "type": "text"}], "index": 4}, {"bbox": [71, 176, 540, 191], "spans": [{"bbox": [71, 176, 127, 191], "score": 1.0, "content": "morphism ", "type": "text"}, {"bbox": [127, 176, 225, 190], "score": 0.91, "content": "\\mathcal{R}(C_{r,k})\\cong\\mathcal{R}(C_{k,r})", "type": "inline_equation", "height": 14, "width": 98}, {"bbox": [226, 176, 311, 191], "score": 1.0, "content": " (see \u00a75). When ", "type": "text"}, {"bbox": [312, 176, 341, 188], "score": 0.89, "content": "k=r", "type": "inline_equation", "height": 12, "width": 29}, {"bbox": [342, 176, 540, 191], "score": 1.0, "content": ", we get a nontrivial fusion-symmetry:", "type": "text"}], "index": 5}, {"bbox": [71, 189, 134, 210], "spans": [{"bbox": [71, 192, 128, 208], "score": 0.92, "content": "\\pi_{\\mathrm{rld}}\\lambda\\,{\\overset{\\mathrm{def}}{=}}\\,\\tau\\lambda", "type": "inline_equation", "height": 16, "width": 57}, {"bbox": [129, 189, 134, 210], "score": 1.0, "content": ".", "type": "text"}], "index": 6}], "index": 5, "page_num": "page_10", "page_size": [612.0, 792.0], "bbox_fs": [71, 158, 540, 210]}, {"type": "text", "bbox": [95, 207, 282, 221], "lines": [{"bbox": [95, 209, 281, 223], "spans": [{"bbox": [95, 209, 281, 223], "score": 1.0, "content": "The only fusion product we need is", "type": "text"}], "index": 7}], "index": 7, "page_num": "page_10", "page_size": [612.0, 792.0], "bbox_fs": [95, 209, 281, 223]}, {"type": "interline_equation", "bbox": [201, 234, 406, 251], "lines": [{"bbox": [201, 234, 406, 251], "spans": [{"bbox": [201, 234, 406, 251], "score": 0.72, "content": "\\Lambda_{1}\\sqcup\\Lambda_{i}=\\Lambda_{i-1}\\sqcup\\Lambda_{i+1}\\sqcup\\left(\\Lambda_{1}+\\Lambda_{i}\\right)\\,,", "type": "interline_equation"}], "index": 8}], "index": 8, "page_num": "page_10", "page_size": [612.0, 792.0]}, {"type": "text", "bbox": [71, 262, 505, 277], "lines": [{"bbox": [70, 263, 506, 281], "spans": [{"bbox": [70, 263, 118, 281], "score": 1.0, "content": "valid for ", "type": "text"}, {"bbox": [118, 267, 144, 276], "score": 0.9, "content": "i<r", "type": "inline_equation", "height": 9, "width": 26}, {"bbox": [145, 263, 171, 281], "score": 1.0, "content": " and ", "type": "text"}, {"bbox": [171, 264, 200, 277], "score": 0.9, "content": "k\\geq2", "type": "inline_equation", "height": 13, "width": 29}, {"bbox": [201, 263, 506, 281], "score": 1.0, "content": ". The following character formula (2.1b) will also be used:", "type": "text"}], "index": 9}], "index": 9, "page_num": "page_10", "page_size": [612.0, 792.0], "bbox_fs": [70, 263, 506, 281]}, {"type": "interline_equation", "bbox": [209, 289, 401, 329], "lines": [{"bbox": [209, 289, 401, 329], "spans": [{"bbox": [209, 289, 401, 329], "score": 0.93, "content": "\\chi_{\\Lambda_{1}}[\\lambda]={\\frac{S_{\\Lambda_{1}\\lambda}}{S_{0\\lambda}}}=2\\sum_{\\ell=1}^{r}\\cos(\\pi{\\frac{\\lambda^{+}(\\ell)}{\\kappa}})~,", "type": "interline_equation"}], "index": 10}], "index": 10, "page_num": "page_10", "page_size": [612.0, 792.0]}, {"type": "text", "bbox": [70, 339, 258, 355], "lines": [{"bbox": [71, 341, 257, 357], "spans": [{"bbox": [71, 341, 105, 357], "score": 1.0, "content": "where ", "type": "text"}, {"bbox": [105, 342, 203, 356], "score": 0.92, "content": "\\lambda^{+}(\\ell)=(\\lambda+\\rho)(\\ell)", "type": "inline_equation", "height": 14, "width": 98}, {"bbox": [203, 341, 257, 357], "score": 1.0, "content": " as before.", "type": "text"}], "index": 11}], "index": 11, "page_num": "page_10", "page_size": [612.0, 792.0], "bbox_fs": [71, 341, 257, 357]}, {"type": "text", "bbox": [70, 361, 542, 421], "lines": [{"bbox": [93, 362, 542, 381], "spans": [{"bbox": [93, 362, 324, 381], "score": 1.0, "content": "Theorem 3.C. The fusion-symmetries for ", "type": "text"}, {"bbox": [325, 362, 348, 378], "score": 0.9, "content": "C_{r}^{(1)}", "type": "inline_equation", "height": 16, "width": 23}, {"bbox": [348, 362, 378, 381], "score": 1.0, "content": "level ", "type": "text"}, {"bbox": [378, 365, 387, 377], "score": 0.75, "content": "k", "type": "inline_equation", "height": 12, "width": 9}, {"bbox": [387, 362, 424, 381], "score": 1.0, "content": ", when ", "type": "text"}, {"bbox": [424, 365, 455, 379], "score": 0.9, "content": "k\\neq r", "type": "inline_equation", "height": 14, "width": 31}, {"bbox": [456, 362, 516, 381], "score": 1.0, "content": " and either ", "type": "text"}, {"bbox": [516, 366, 524, 377], "score": 0.69, "content": "k", "type": "inline_equation", "height": 11, "width": 8}, {"bbox": [525, 362, 542, 381], "score": 1.0, "content": " or", "type": "text"}], "index": 12}, {"bbox": [71, 379, 541, 394], "spans": [{"bbox": [71, 385, 78, 391], "score": 0.66, "content": "r", "type": "inline_equation", "height": 6, "width": 7}, {"bbox": [78, 380, 146, 394], "score": 1.0, "content": " is even, are ", "type": "text"}, {"bbox": [146, 379, 171, 393], "score": 0.9, "content": "\\pi[1]^{i}", "type": "inline_equation", "height": 14, "width": 25}, {"bbox": [171, 380, 193, 394], "score": 1.0, "content": " for ", "type": "text"}, {"bbox": [193, 379, 243, 394], "score": 0.93, "content": "i\\in\\{0,1\\}", "type": "inline_equation", "height": 15, "width": 50}, {"bbox": [243, 380, 286, 394], "score": 1.0, "content": ". When ", "type": "text"}, {"bbox": [286, 380, 317, 393], "score": 0.91, "content": "k\\neq r", "type": "inline_equation", "height": 13, "width": 31}, {"bbox": [317, 380, 365, 394], "score": 1.0, "content": " but both ", "type": "text"}, {"bbox": [365, 380, 373, 391], "score": 0.77, "content": "k", "type": "inline_equation", "height": 11, "width": 8}, {"bbox": [374, 380, 399, 394], "score": 1.0, "content": " and ", "type": "text"}, {"bbox": [399, 382, 407, 391], "score": 0.69, "content": "r", "type": "inline_equation", "height": 9, "width": 8}, {"bbox": [407, 380, 541, 394], "score": 1.0, "content": " are odd, then there is no", "type": "text"}], "index": 13}, {"bbox": [70, 392, 542, 410], "spans": [{"bbox": [70, 394, 255, 410], "score": 1.0, "content": "nontrivial fusion-symmetry. When ", "type": "text"}, {"bbox": [255, 394, 285, 406], "score": 0.88, "content": "k=r", "type": "inline_equation", "height": 12, "width": 30}, {"bbox": [285, 394, 337, 410], "score": 1.0, "content": ", they are ", "type": "text"}, {"bbox": [337, 392, 384, 409], "score": 0.91, "content": "\\pi[1]^{i}\\,\\pi_{\\mathrm{rld}}^{j}", "type": "inline_equation", "height": 17, "width": 47}, {"bbox": [384, 394, 390, 410], "score": 1.0, "content": " ", "type": "text"}, {"bbox": [391, 393, 399, 406], "score": 0.6, "content": "\\mathit{\\Pi}_{k}", "type": "inline_equation", "height": 13, "width": 8}, {"bbox": [400, 394, 449, 410], "score": 1.0, "content": " even) or ", "type": "text"}, {"bbox": [450, 393, 475, 408], "score": 0.79, "content": "\\pi[1]^{i}", "type": "inline_equation", "height": 15, "width": 25}, {"bbox": [475, 394, 482, 410], "score": 1.0, "content": " (", "type": "text"}, {"bbox": [483, 394, 491, 406], "score": 0.43, "content": "\\mathit{k}", "type": "inline_equation", "height": 12, "width": 8}, {"bbox": [491, 394, 542, 410], "score": 1.0, "content": " odd), for", "type": "text"}], "index": 14}, {"bbox": [71, 407, 136, 423], "spans": [{"bbox": [71, 409, 131, 422], "score": 0.91, "content": "i,j\\in\\{0,1\\}", "type": "inline_equation", "height": 13, "width": 60}, {"bbox": [131, 407, 136, 423], "score": 1.0, "content": ".", "type": "text"}], "index": 15}], "index": 13.5, "page_num": "page_10", "page_size": [612.0, 792.0], "bbox_fs": [70, 362, 542, 423]}, {"type": "text", "bbox": [94, 427, 306, 443], "lines": [{"bbox": [95, 429, 305, 444], "spans": [{"bbox": [95, 429, 129, 444], "score": 1.0, "content": "When ", "type": "text"}, {"bbox": [130, 431, 159, 441], "score": 0.88, "content": "r=k", "type": "inline_equation", "height": 10, "width": 29}, {"bbox": [159, 429, 204, 444], "score": 1.0, "content": " is even, ", "type": "text"}, {"bbox": [205, 429, 303, 444], "score": 0.91, "content": "A(C_{r,k})\\cong\\mathbb{Z}_{2}\\times\\mathbb{Z}_{2}", "type": "inline_equation", "height": 15, "width": 98}, {"bbox": [303, 429, 305, 444], "score": 1.0, "content": ".", "type": "text"}], "index": 16}], "index": 16, "page_num": "page_10", "page_size": [612.0, 792.0], "bbox_fs": [95, 429, 305, 444]}, {"type": "text", "bbox": [71, 456, 221, 474], "lines": [{"bbox": [70, 456, 219, 476], "spans": [{"bbox": [70, 456, 160, 476], "score": 1.0, "content": "3.4. The algebra ", "type": "text"}, {"bbox": [161, 458, 219, 474], "score": 0.3, "content": "D_{r}^{(1)},\\,r\\geq4", "type": "inline_equation", "height": 16, "width": 58}], "index": 17}], "index": 17, "page_num": "page_10", "page_size": [612.0, 792.0], "bbox_fs": [70, 456, 219, 476]}, {"type": "text", "bbox": [70, 479, 541, 554], "lines": [{"bbox": [94, 481, 540, 497], "spans": [{"bbox": [94, 481, 144, 497], "score": 1.0, "content": "A weight ", "type": "text"}, {"bbox": [144, 483, 151, 493], "score": 0.81, "content": "\\lambda", "type": "inline_equation", "height": 10, "width": 7}, {"bbox": [151, 481, 166, 497], "score": 1.0, "content": " of ", "type": "text"}, {"bbox": [166, 484, 182, 496], "score": 0.89, "content": "P_{+}", "type": "inline_equation", "height": 12, "width": 16}, {"bbox": [182, 481, 227, 497], "score": 1.0, "content": " satisfies", "type": "text"}, {"bbox": [228, 483, 438, 495], "score": 0.88, "content": "k=\\lambda_{0}\\!+\\!\\lambda_{1}\\!+\\!2\\lambda_{2}\\!+\\!\\cdot\\!\\cdot\\!+\\!2\\lambda_{r-2}\\!+\\!\\lambda_{r-1}\\!+\\!\\lambda_{r}", "type": "inline_equation", "height": 12, "width": 210}, {"bbox": [439, 481, 467, 497], "score": 1.0, "content": ", and ", "type": "text"}, {"bbox": [468, 484, 536, 494], "score": 0.91, "content": "\\kappa=k{+}2r{-}2", "type": "inline_equation", "height": 10, "width": 68}, {"bbox": [537, 481, 540, 497], "score": 1.0, "content": ".", "type": "text"}], "index": 18}, {"bbox": [69, 495, 541, 513], "spans": [{"bbox": [69, 495, 114, 513], "score": 1.0, "content": "For any ", "type": "text"}, {"bbox": [114, 501, 120, 507], "score": 0.82, "content": "r", "type": "inline_equation", "height": 6, "width": 6}, {"bbox": [121, 495, 265, 513], "score": 1.0, "content": ", there are the conjugations ", "type": "text"}, {"bbox": [266, 498, 307, 509], "score": 0.92, "content": "C_{0}=i d", "type": "inline_equation", "height": 11, "width": 41}, {"bbox": [307, 495, 335, 513], "score": 1.0, "content": ". and ", "type": "text"}, {"bbox": [335, 498, 510, 510], "score": 0.91, "content": "C_{1}\\lambda=(\\lambda_{0},\\lambda_{1},.\\dots,\\lambda_{r-2},\\lambda_{r},\\lambda_{r-1})", "type": "inline_equation", "height": 12, "width": 175}, {"bbox": [511, 495, 541, 513], "score": 1.0, "content": ". The", "type": "text"}], "index": 19}, {"bbox": [70, 511, 541, 527], "spans": [{"bbox": [70, 511, 173, 527], "score": 1.0, "content": "charge-conjugation ", "type": "text"}, {"bbox": [174, 513, 183, 522], "score": 0.87, "content": "C", "type": "inline_equation", "height": 9, "width": 9}, {"bbox": [184, 511, 223, 527], "score": 1.0, "content": " equals ", "type": "text"}, {"bbox": [223, 513, 237, 524], "score": 0.91, "content": "C_{1}", "type": "inline_equation", "height": 11, "width": 14}, {"bbox": [238, 511, 284, 527], "score": 1.0, "content": " for odd ", "type": "text"}, {"bbox": [284, 516, 290, 522], "score": 0.87, "content": "r", "type": "inline_equation", "height": 6, "width": 6}, {"bbox": [291, 511, 321, 527], "score": 1.0, "content": ", and ", "type": "text"}, {"bbox": [321, 513, 335, 524], "score": 0.92, "content": "C_{0}", "type": "inline_equation", "height": 11, "width": 14}, {"bbox": [335, 511, 385, 527], "score": 1.0, "content": " for even ", "type": "text"}, {"bbox": [385, 516, 391, 522], "score": 0.88, "content": "r", "type": "inline_equation", "height": 6, "width": 6}, {"bbox": [391, 511, 434, 527], "score": 1.0, "content": ". When ", "type": "text"}, {"bbox": [435, 513, 464, 522], "score": 0.9, "content": "r=4", "type": "inline_equation", "height": 9, "width": 29}, {"bbox": [464, 511, 541, 527], "score": 1.0, "content": " there are four", "type": "text"}], "index": 20}, {"bbox": [69, 524, 541, 542], "spans": [{"bbox": [69, 526, 252, 542], "score": 1.0, "content": "additional conjugations; these six ", "type": "text"}, {"bbox": [253, 529, 265, 540], "score": 0.91, "content": "C_{i}", "type": "inline_equation", "height": 11, "width": 12}, {"bbox": [265, 526, 473, 542], "score": 1.0, "content": " correspond to all permutations of the ", "type": "text"}, {"bbox": [473, 524, 496, 541], "score": 0.94, "content": "{D}_{4}^{(1)}", "type": "inline_equation", "height": 17, "width": 23}, {"bbox": [497, 526, 541, 542], "score": 1.0, "content": "Dynkin", "type": "text"}], "index": 21}, {"bbox": [71, 542, 156, 557], "spans": [{"bbox": [71, 542, 104, 557], "score": 1.0, "content": "labels ", "type": "text"}, {"bbox": [105, 543, 153, 554], "score": 0.92, "content": "\\lambda_{1},\\lambda_{3},\\lambda_{4}", "type": "inline_equation", "height": 11, "width": 48}, {"bbox": [153, 542, 156, 557], "score": 1.0, "content": ".", "type": "text"}], "index": 22}], "index": 20, "page_num": "page_10", "page_size": [612.0, 792.0], "bbox_fs": [69, 481, 541, 557]}, {"type": "text", "bbox": [70, 554, 541, 584], "lines": [{"bbox": [93, 554, 541, 572], "spans": [{"bbox": [93, 554, 335, 572], "score": 1.0, "content": "There are three non-trivial simple-currents, ", "type": "text"}, {"bbox": [335, 557, 347, 568], "score": 0.84, "content": "J_{v}", "type": "inline_equation", "height": 11, "width": 12}, {"bbox": [348, 554, 356, 572], "score": 1.0, "content": ", ", "type": "text"}, {"bbox": [357, 558, 369, 568], "score": 0.81, "content": "J_{s}", "type": "inline_equation", "height": 10, "width": 12}, {"bbox": [369, 554, 399, 572], "score": 1.0, "content": " and ", "type": "text"}, {"bbox": [399, 558, 423, 568], "score": 0.91, "content": "J_{v}J_{s}", "type": "inline_equation", "height": 10, "width": 24}, {"bbox": [424, 554, 541, 572], "score": 1.0, "content": ". Explicitly, we have", "type": "text"}], "index": 23}, {"bbox": [71, 570, 442, 586], "spans": [{"bbox": [71, 571, 262, 584], "score": 0.91, "content": "J_{v}\\lambda=\\left(\\lambda_{1},\\lambda_{0},\\lambda_{2},...\\,,\\lambda_{r-2},\\lambda_{r},\\lambda_{r-1}\\right)", "type": "inline_equation", "height": 13, "width": 191}, {"bbox": [263, 570, 293, 586], "score": 1.0, "content": " with ", "type": "text"}, {"bbox": [293, 571, 414, 584], "score": 0.9, "content": "Q_{v}(\\lambda)=(\\lambda_{r-1}+\\lambda_{r})/2", "type": "inline_equation", "height": 13, "width": 121}, {"bbox": [414, 570, 442, 586], "score": 1.0, "content": ", and", "type": "text"}], "index": 24}], "index": 23.5, "page_num": "page_10", "page_size": [612.0, 792.0], "bbox_fs": [71, 554, 541, 586]}, {"type": "interline_equation", "bbox": [174, 596, 430, 627], "lines": [{"bbox": [174, 596, 430, 627], "spans": [{"bbox": [174, 596, 430, 627], "score": 0.87, "content": "J_{s}\\lambda={\\left\\{\\begin{array}{l l}{(\\lambda_{r},\\lambda_{r-1},\\lambda_{r-2},\\ldots,\\lambda_{1},\\lambda_{0})}&{{\\mathrm{if~}}r{\\mathrm{~is~even}},}\\\\ {(\\lambda_{r-1},\\lambda_{r},\\lambda_{r-2},\\ldots,\\lambda_{1},\\lambda_{0})}&{{\\mathrm{if~}}r{\\mathrm{~is~odd}},}\\end{array}\\right.}", "type": "interline_equation"}], "index": 25}], "index": 25, "page_num": "page_10", "page_size": [612.0, 792.0]}, {"type": "text", "bbox": [69, 639, 541, 669], "lines": [{"bbox": [69, 639, 541, 660], "spans": [{"bbox": [69, 641, 97, 660], "score": 1.0, "content": "with ", "type": "text"}, {"bbox": [97, 639, 320, 658], "score": 0.91, "content": "\\begin{array}{r}{Q_{s}(\\lambda)=(2\\sum_{j=1}^{r-2}j\\lambda_{j}\\!-\\!(r\\!-\\!2)\\lambda_{r-1}\\!-\\!r\\lambda_{r})/4}\\end{array}", "type": "inline_equation", "height": 19, "width": 223}, {"bbox": [321, 641, 444, 660], "score": 1.0, "content": ". From this we compute", "type": "text"}, {"bbox": [444, 642, 536, 656], "score": 0.91, "content": "Q_{s}(J_{s}0)=-r k/4", "type": "inline_equation", "height": 14, "width": 92}, {"bbox": [536, 641, 541, 660], "score": 1.0, "content": ".", "type": "text"}], "index": 26}, {"bbox": [94, 657, 268, 672], "spans": [{"bbox": [94, 657, 268, 672], "score": 1.0, "content": "The fusion products we need are", "type": "text"}], "index": 27}], "index": 26.5, "page_num": "page_10", "page_size": [612.0, 792.0], "bbox_fs": [69, 639, 541, 672]}]} |
|
0002044v1 | 12 | $${D}_{4}^{(1)}$$ at $$k=2$$ . Finally, when both $$k=2$$ and $$r>4$$ , any fusion-symmetry $$\pi$$ can be written
as $$\pi=C_{1}^{a}\,\pi_{v}^{b}\,\pi\{m\}$$ for $$a,b\in\{0,1\}$$ and any $$m\in\mathbb{Z}_{2r}^{\times}$$ , $$1\leq m<r$$ .
$$\pi_{v}$$ here refers to the simple-current automorphism $$\pi[2]$$ or 10 00 ], for r odd/even.
When $$k\,=\,1$$ , $$A(D_{e v e n,1})\cong{\mathfrak{S}}_{3}$$ , corresponding to any permutation of $$\Lambda_{1},\Lambda_{r-1},\Lambda_{r}$$ , and
$$A(D_{o d d,1})\:=\:\langle{C_{1}}\rangle\:\cong\:\mathbb{Z}_{2}$$ . When $$r\,>\,4$$ , $${\cal A}(D_{r,2})\,\cong\,(\mathbb{Z}_{2r}^{\times}/\{\pm1\})\,\times\,\mathbb{Z}_{2}\,\times\,\mathbb{Z}_{2}$$ or $$\mathbb{Z}_{r}^{\times}\times\mathbb{Z}_{2}$$
for $$r$$ even/odd. $$A(D_{4,2})$$ has 24 elements, and any element can be written uniquely as
$$C_{i}\,\pi\,\left[\begin{array}{l l}{a}&{0}\\ {0}&{d}\end{array}\right]$$
# 3.5. The algebra $$E_{6}^{(1)}$$
A weight $$\lambda$$ of $$P_{+}$$ satisfies $$k=\lambda_{0}\!+\!\lambda_{1}\!+\!2\lambda_{2}\!+\!3\lambda_{3}\!+\!2\lambda_{4}\!+\!\lambda_{5}\!+\!2\lambda_{6}$$ and $$\kappa=k\!+\!12$$ . The
charge-conjugation acts as $$C\lambda=(\lambda_{0},\lambda_{5},\lambda_{4},\lambda_{3},\lambda_{2},\lambda_{1},\lambda_{6})$$ . The order 3 simple-current $$J$$
is given by $$J\lambda=(\lambda_{5},\lambda_{0},\lambda_{6},\lambda_{3},\lambda_{2},\lambda_{1},\lambda_{4})$$ with $$Q(\lambda)=(-\lambda_{1}+\lambda_{2}-\lambda_{4}+\lambda_{5})/3$$ .
The fusion products we need can be derived from [29] using (2.4):
where the outer subscript on any summand denotes the smallest level where that sum-
mand appears (it will also appear at all larger levels). So for example $$\Lambda_{1}\boxtimes\Lambda_{1}$$ equals
$$\Lambda_{2}$$ + $$\Lambda_{5}$$ + $$(2\Lambda_{1})$$ for any $$k\geq2$$ , but equals $$\Lambda_{5}$$ at $$k\,=\,1$$ . A similar convention is used
in (3.7) and elsewhere for higher fusion multiplicities (the number of subscripts used will
equal the numerical value of the fusion coefficient).
Theorem 3.E6. The fusion-symmetries of $$E_{6}^{(1)}$$ are $$C^{i}\,\pi[a]$$ , for any $$i\in\{0,1\}$$ and
any $$a\in\{0,1,2\}$$ for which $$a k\not\equiv1$$ (mod 3).
# 3.6. The algebra E7(1)
A weight $$\lambda$$ in $$P_{+}$$ satisfies $$k\,=\,\lambda_{0}+2\lambda_{1}+3\lambda_{2}+4\lambda_{3}+3\lambda_{4}+2\lambda_{5}+\lambda_{6}+2\lambda_{7}$$ , and
$$\kappa\,=\,k\,+\,18$$ . The charge-conjugation is trivial, but there is a simple-current $$J$$ given by
$$J\lambda=(\lambda_{6},\lambda_{5},...\,,\lambda_{1},\lambda_{0},\lambda_{7})$$ . It has $$Q(\lambda)=(\lambda_{4}+\lambda_{6}+\lambda_{7})/2$$ .
The only fusion products we need can be obtained from [29] and (2.4):
$$\Lambda_{6}$$ × $$\Lambda_{6}=(0)_{1}$$ + $$(\Lambda_{1})_{2}$$ + $$(\Lambda_{5})_{2}$$ + $$(2\Lambda_{6})_{2}$$
$$\Lambda_{1}$$ × $$\Lambda_{6}=(\Lambda_{6})_{2}$$ + $$(\Lambda_{7})_{2}$$ + $$(\Lambda_{1}+\Lambda_{6})_{3}$$
$$\Lambda_{5}$$ × $$\Lambda_{6}=(\Lambda_{4})_{3}$$ + $$(\Lambda_{6})_{2}$$ + $$(\Lambda_{7})_{2}$$ + $$(\Lambda_{1}+\Lambda_{6})_{3}$$ + $$(\Lambda_{5}+\Lambda_{6})_{3}$$
$$\Lambda_{6}$$ × $$(2\Lambda_{6})=(\Lambda_{6})_{2}$$ + $$(\Lambda_{1}+\Lambda_{6})_{3}$$ + $$(3\Lambda_{6})_{3}$$ + $$(\Lambda_{5}+\Lambda_{6})_{3}$$
$$\Lambda_{4}$$ × $$\Lambda_{6}=(\Lambda_{2})_{3}$$ + $$(\Lambda_{3})_{4}$$ + $$(\Lambda_{5})_{3}$$ + $$(\Lambda_{1}+\Lambda_{5})_{4}$$ + $$(\Lambda_{4}+\Lambda_{6})_{4}$$ + $$(\Lambda_{6}+\Lambda_{7})_{3}$$
$$\Lambda_{6}$$ × $$\Lambda_{7}=(\Lambda_{1})_{2}$$ + $$(\Lambda_{2})_{3}$$ + $$(\Lambda_{5})_{2}$$ + $$(\Lambda_{6}+\Lambda_{7})_{3}$$
$$\Lambda_{6}$$ × $$(\Lambda_{5}+\Lambda_{6})=(\Lambda_{5})_{3}$$ + $$(2\Lambda_{5})_{4}$$ + $$(2\Lambda_{6})_{3}$$ + $$(\Lambda_{6}+\Lambda_{7})_{3}$$ + $$(\Lambda_{1}+\Lambda_{5})_{4}$$
+ $$(\Lambda_{4}+\Lambda_{6})_{4}$$ + $$(\Lambda_{1}+2\Lambda_{6})_{4}$$ + $$(\Lambda_{5}+2\Lambda_{6})_{4}$$
| <p>$${D}_{4}^{(1)}$$ at $$k=2$$ . Finally, when both $$k=2$$ and $$r>4$$ , any fusion-symmetry $$\pi$$ can be written
as $$\pi=C_{1}^{a}\,\pi_{v}^{b}\,\pi\{m\}$$ for $$a,b\in\{0,1\}$$ and any $$m\in\mathbb{Z}_{2r}^{\times}$$ , $$1\leq m<r$$ .</p>
<p>$$\pi_{v}$$ here refers to the simple-current automorphism $$\pi[2]$$ or 10 00 ], for r odd/even.
When $$k\,=\,1$$ , $$A(D_{e v e n,1})\cong{\mathfrak{S}}_{3}$$ , corresponding to any permutation of $$\Lambda_{1},\Lambda_{r-1},\Lambda_{r}$$ , and
$$A(D_{o d d,1})\:=\:\langle{C_{1}}\rangle\:\cong\:\mathbb{Z}_{2}$$ . When $$r\,>\,4$$ , $${\cal A}(D_{r,2})\,\cong\,(\mathbb{Z}_{2r}^{\times}/\{\pm1\})\,\times\,\mathbb{Z}_{2}\,\times\,\mathbb{Z}_{2}$$ or $$\mathbb{Z}_{r}^{\times}\times\mathbb{Z}_{2}$$
for $$r$$ even/odd. $$A(D_{4,2})$$ has 24 elements, and any element can be written uniquely as
$$C_{i}\,\pi\,\left[\begin{array}{l l}{a}&{0}\\ {0}&{d}\end{array}\right]$$</p>
<h1>3.5. The algebra $$E_{6}^{(1)}$$</h1>
<p>A weight $$\lambda$$ of $$P_{+}$$ satisfies $$k=\lambda_{0}\!+\!\lambda_{1}\!+\!2\lambda_{2}\!+\!3\lambda_{3}\!+\!2\lambda_{4}\!+\!\lambda_{5}\!+\!2\lambda_{6}$$ and $$\kappa=k\!+\!12$$ . The
charge-conjugation acts as $$C\lambda=(\lambda_{0},\lambda_{5},\lambda_{4},\lambda_{3},\lambda_{2},\lambda_{1},\lambda_{6})$$ . The order 3 simple-current $$J$$
is given by $$J\lambda=(\lambda_{5},\lambda_{0},\lambda_{6},\lambda_{3},\lambda_{2},\lambda_{1},\lambda_{4})$$ with $$Q(\lambda)=(-\lambda_{1}+\lambda_{2}-\lambda_{4}+\lambda_{5})/3$$ .</p>
<p>The fusion products we need can be derived from [29] using (2.4):</p>
<p>where the outer subscript on any summand denotes the smallest level where that sum-
mand appears (it will also appear at all larger levels). So for example $$\Lambda_{1}\boxtimes\Lambda_{1}$$ equals
$$\Lambda_{2}$$ + $$\Lambda_{5}$$ + $$(2\Lambda_{1})$$ for any $$k\geq2$$ , but equals $$\Lambda_{5}$$ at $$k\,=\,1$$ . A similar convention is used
in (3.7) and elsewhere for higher fusion multiplicities (the number of subscripts used will
equal the numerical value of the fusion coefficient).</p>
<p>Theorem 3.E6. The fusion-symmetries of $$E_{6}^{(1)}$$ are $$C^{i}\,\pi[a]$$ , for any $$i\in\{0,1\}$$ and
any $$a\in\{0,1,2\}$$ for which $$a k\not\equiv1$$ (mod 3).</p>
<h1>3.6. The algebra E7(1)</h1>
<p>A weight $$\lambda$$ in $$P_{+}$$ satisfies $$k\,=\,\lambda_{0}+2\lambda_{1}+3\lambda_{2}+4\lambda_{3}+3\lambda_{4}+2\lambda_{5}+\lambda_{6}+2\lambda_{7}$$ , and
$$\kappa\,=\,k\,+\,18$$ . The charge-conjugation is trivial, but there is a simple-current $$J$$ given by
$$J\lambda=(\lambda_{6},\lambda_{5},...\,,\lambda_{1},\lambda_{0},\lambda_{7})$$ . It has $$Q(\lambda)=(\lambda_{4}+\lambda_{6}+\lambda_{7})/2$$ .</p>
<p>The only fusion products we need can be obtained from [29] and (2.4):</p>
<p>$$\Lambda_{6}$$ × $$\Lambda_{6}=(0)_{1}$$ + $$(\Lambda_{1})_{2}$$ + $$(\Lambda_{5})_{2}$$ + $$(2\Lambda_{6})_{2}$$
$$\Lambda_{1}$$ × $$\Lambda_{6}=(\Lambda_{6})_{2}$$ + $$(\Lambda_{7})_{2}$$ + $$(\Lambda_{1}+\Lambda_{6})_{3}$$
$$\Lambda_{5}$$ × $$\Lambda_{6}=(\Lambda_{4})_{3}$$ + $$(\Lambda_{6})_{2}$$ + $$(\Lambda_{7})_{2}$$ + $$(\Lambda_{1}+\Lambda_{6})_{3}$$ + $$(\Lambda_{5}+\Lambda_{6})_{3}$$
$$\Lambda_{6}$$ × $$(2\Lambda_{6})=(\Lambda_{6})_{2}$$ + $$(\Lambda_{1}+\Lambda_{6})_{3}$$ + $$(3\Lambda_{6})_{3}$$ + $$(\Lambda_{5}+\Lambda_{6})_{3}$$
$$\Lambda_{4}$$ × $$\Lambda_{6}=(\Lambda_{2})_{3}$$ + $$(\Lambda_{3})_{4}$$ + $$(\Lambda_{5})_{3}$$ + $$(\Lambda_{1}+\Lambda_{5})_{4}$$ + $$(\Lambda_{4}+\Lambda_{6})_{4}$$ + $$(\Lambda_{6}+\Lambda_{7})_{3}$$
$$\Lambda_{6}$$ × $$\Lambda_{7}=(\Lambda_{1})_{2}$$ + $$(\Lambda_{2})_{3}$$ + $$(\Lambda_{5})_{2}$$ + $$(\Lambda_{6}+\Lambda_{7})_{3}$$
$$\Lambda_{6}$$ × $$(\Lambda_{5}+\Lambda_{6})=(\Lambda_{5})_{3}$$ + $$(2\Lambda_{5})_{4}$$ + $$(2\Lambda_{6})_{3}$$ + $$(\Lambda_{6}+\Lambda_{7})_{3}$$ + $$(\Lambda_{1}+\Lambda_{5})_{4}$$
+ $$(\Lambda_{4}+\Lambda_{6})_{4}$$ + $$(\Lambda_{1}+2\Lambda_{6})_{4}$$ + $$(\Lambda_{5}+2\Lambda_{6})_{4}$$</p>
| [{"type": "text", "coordinates": [69, 69, 542, 102], "content": "$${D}_{4}^{(1)}$$ at $$k=2$$ . Finally, when both $$k=2$$ and $$r>4$$ , any fusion-symmetry $$\\pi$$ can be written\nas $$\\pi=C_{1}^{a}\\,\\pi_{v}^{b}\\,\\pi\\{m\\}$$ for $$a,b\\in\\{0,1\\}$$ and any $$m\\in\\mathbb{Z}_{2r}^{\\times}$$ , $$1\\leq m<r$$ .", "block_type": "text", "index": 1}, {"type": "text", "coordinates": [70, 106, 541, 204], "content": "$$\\pi_{v}$$ here refers to the simple-current automorphism $$\\pi[2]$$ or 10 00 ], for r odd/even.\nWhen $$k\\,=\\,1$$ , $$A(D_{e v e n,1})\\cong{\\mathfrak{S}}_{3}$$ , corresponding to any permutation of $$\\Lambda_{1},\\Lambda_{r-1},\\Lambda_{r}$$ , and\n$$A(D_{o d d,1})\\:=\\:\\langle{C_{1}}\\rangle\\:\\cong\\:\\mathbb{Z}_{2}$$ . When $$r\\,>\\,4$$ , $${\\cal A}(D_{r,2})\\,\\cong\\,(\\mathbb{Z}_{2r}^{\\times}/\\{\\pm1\\})\\,\\times\\,\\mathbb{Z}_{2}\\,\\times\\,\\mathbb{Z}_{2}$$ or $$\\mathbb{Z}_{r}^{\\times}\\times\\mathbb{Z}_{2}$$\nfor $$r$$ even/odd. $$A(D_{4,2})$$ has 24 elements, and any element can be written uniquely as\n$$C_{i}\\,\\pi\\,\\left[\\begin{array}{l l}{a}&{0}\\\\ {0}&{d}\\end{array}\\right]$$", "block_type": "text", "index": 2}, {"type": "title", "coordinates": [70, 216, 183, 232], "content": "3.5. The algebra $$E_{6}^{(1)}$$", "block_type": "title", "index": 3}, {"type": "text", "coordinates": [70, 237, 541, 280], "content": "A weight $$\\lambda$$ of $$P_{+}$$ satisfies $$k=\\lambda_{0}\\!+\\!\\lambda_{1}\\!+\\!2\\lambda_{2}\\!+\\!3\\lambda_{3}\\!+\\!2\\lambda_{4}\\!+\\!\\lambda_{5}\\!+\\!2\\lambda_{6}$$ and $$\\kappa=k\\!+\\!12$$ . The\ncharge-conjugation acts as $$C\\lambda=(\\lambda_{0},\\lambda_{5},\\lambda_{4},\\lambda_{3},\\lambda_{2},\\lambda_{1},\\lambda_{6})$$ . The order 3 simple-current $$J$$\nis given by $$J\\lambda=(\\lambda_{5},\\lambda_{0},\\lambda_{6},\\lambda_{3},\\lambda_{2},\\lambda_{1},\\lambda_{4})$$ with $$Q(\\lambda)=(-\\lambda_{1}+\\lambda_{2}-\\lambda_{4}+\\lambda_{5})/3$$ .", "block_type": "text", "index": 4}, {"type": "text", "coordinates": [96, 281, 443, 295], "content": "The fusion products we need can be derived from [29] using (2.4):", "block_type": "text", "index": 5}, {"type": "interline_equation", "coordinates": [282, 354, 416, 370], "content": "", "block_type": "interline_equation", "index": 6}, {"type": "text", "coordinates": [70, 372, 541, 445], "content": "where the outer subscript on any summand denotes the smallest level where that sum-\nmand appears (it will also appear at all larger levels). So for example $$\\Lambda_{1}\\boxtimes\\Lambda_{1}$$ equals\n$$\\Lambda_{2}$$ + $$\\Lambda_{5}$$ + $$(2\\Lambda_{1})$$ for any $$k\\geq2$$ , but equals $$\\Lambda_{5}$$ at $$k\\,=\\,1$$ . A similar convention is used\nin (3.7) and elsewhere for higher fusion multiplicities (the number of subscripts used will\nequal the numerical value of the fusion coefficient).", "block_type": "text", "index": 7}, {"type": "text", "coordinates": [71, 450, 542, 482], "content": "Theorem 3.E6. The fusion-symmetries of $$E_{6}^{(1)}$$ are $$C^{i}\\,\\pi[a]$$ , for any $$i\\in\\{0,1\\}$$ and\nany $$a\\in\\{0,1,2\\}$$ for which $$a k\\not\\equiv1$$ (mod 3).", "block_type": "text", "index": 8}, {"type": "title", "coordinates": [71, 491, 183, 507], "content": "3.6. The algebra E7(1)", "block_type": "title", "index": 9}, {"type": "text", "coordinates": [70, 512, 542, 556], "content": "A weight $$\\lambda$$ in $$P_{+}$$ satisfies $$k\\,=\\,\\lambda_{0}+2\\lambda_{1}+3\\lambda_{2}+4\\lambda_{3}+3\\lambda_{4}+2\\lambda_{5}+\\lambda_{6}+2\\lambda_{7}$$ , and\n$$\\kappa\\,=\\,k\\,+\\,18$$ . The charge-conjugation is trivial, but there is a simple-current $$J$$ given by\n$$J\\lambda=(\\lambda_{6},\\lambda_{5},...\\,,\\lambda_{1},\\lambda_{0},\\lambda_{7})$$ . It has $$Q(\\lambda)=(\\lambda_{4}+\\lambda_{6}+\\lambda_{7})/2$$ .", "block_type": "text", "index": 10}, {"type": "text", "coordinates": [94, 556, 468, 570], "content": "The only fusion products we need can be obtained from [29] and (2.4):", "block_type": "text", "index": 11}, {"type": "text", "coordinates": [82, 573, 530, 716], "content": "$$\\Lambda_{6}$$ \u00d7 $$\\Lambda_{6}=(0)_{1}$$ + $$(\\Lambda_{1})_{2}$$ + $$(\\Lambda_{5})_{2}$$ + $$(2\\Lambda_{6})_{2}$$\n$$\\Lambda_{1}$$ \u00d7 $$\\Lambda_{6}=(\\Lambda_{6})_{2}$$ + $$(\\Lambda_{7})_{2}$$ + $$(\\Lambda_{1}+\\Lambda_{6})_{3}$$\n$$\\Lambda_{5}$$ \u00d7 $$\\Lambda_{6}=(\\Lambda_{4})_{3}$$ + $$(\\Lambda_{6})_{2}$$ + $$(\\Lambda_{7})_{2}$$ + $$(\\Lambda_{1}+\\Lambda_{6})_{3}$$ + $$(\\Lambda_{5}+\\Lambda_{6})_{3}$$\n$$\\Lambda_{6}$$ \u00d7 $$(2\\Lambda_{6})=(\\Lambda_{6})_{2}$$ + $$(\\Lambda_{1}+\\Lambda_{6})_{3}$$ + $$(3\\Lambda_{6})_{3}$$ + $$(\\Lambda_{5}+\\Lambda_{6})_{3}$$\n$$\\Lambda_{4}$$ \u00d7 $$\\Lambda_{6}=(\\Lambda_{2})_{3}$$ + $$(\\Lambda_{3})_{4}$$ + $$(\\Lambda_{5})_{3}$$ + $$(\\Lambda_{1}+\\Lambda_{5})_{4}$$ + $$(\\Lambda_{4}+\\Lambda_{6})_{4}$$ + $$(\\Lambda_{6}+\\Lambda_{7})_{3}$$\n$$\\Lambda_{6}$$ \u00d7 $$\\Lambda_{7}=(\\Lambda_{1})_{2}$$ + $$(\\Lambda_{2})_{3}$$ + $$(\\Lambda_{5})_{2}$$ + $$(\\Lambda_{6}+\\Lambda_{7})_{3}$$\n$$\\Lambda_{6}$$ \u00d7 $$(\\Lambda_{5}+\\Lambda_{6})=(\\Lambda_{5})_{3}$$ + $$(2\\Lambda_{5})_{4}$$ + $$(2\\Lambda_{6})_{3}$$ + $$(\\Lambda_{6}+\\Lambda_{7})_{3}$$ + $$(\\Lambda_{1}+\\Lambda_{5})_{4}$$\n+ $$(\\Lambda_{4}+\\Lambda_{6})_{4}$$ + $$(\\Lambda_{1}+2\\Lambda_{6})_{4}$$ + $$(\\Lambda_{5}+2\\Lambda_{6})_{4}$$", "block_type": "text", "index": 12}] | [{"type": "inline_equation", "coordinates": [71, 70, 95, 88], "content": "{D}_{4}^{(1)}", "score": 0.9, "index": 1}, {"type": "text", "coordinates": [95, 67, 112, 92], "content": "at ", "score": 1.0, "index": 2}, {"type": "inline_equation", "coordinates": [112, 74, 142, 86], "content": "k=2", "score": 0.86, "index": 3}, {"type": "text", "coordinates": [142, 67, 249, 92], "content": ". Finally, when both", "score": 1.0, "index": 4}, {"type": "inline_equation", "coordinates": [250, 74, 280, 86], "content": "k=2", "score": 0.9, "index": 5}, {"type": "text", "coordinates": [280, 67, 306, 92], "content": " and ", "score": 1.0, "index": 6}, {"type": "inline_equation", "coordinates": [306, 74, 335, 86], "content": "r>4", "score": 0.87, "index": 7}, {"type": "text", "coordinates": [335, 67, 454, 92], "content": ", any fusion-symmetry ", "score": 1.0, "index": 8}, {"type": "inline_equation", "coordinates": [454, 77, 463, 85], "content": "\\pi", "score": 0.63, "index": 9}, {"type": "text", "coordinates": [463, 67, 544, 92], "content": " can be written", "score": 1.0, "index": 10}, {"type": "text", "coordinates": [70, 86, 86, 106], "content": "as ", "score": 1.0, "index": 11}, {"type": "inline_equation", "coordinates": [86, 87, 171, 102], "content": "\\pi=C_{1}^{a}\\,\\pi_{v}^{b}\\,\\pi\\{m\\}", "score": 0.89, "index": 12}, {"type": "text", "coordinates": [172, 86, 194, 106], "content": " for ", "score": 1.0, "index": 13}, {"type": "inline_equation", "coordinates": [194, 88, 255, 102], "content": "a,b\\in\\{0,1\\}", "score": 0.91, "index": 14}, {"type": "text", "coordinates": [256, 86, 305, 106], "content": " and any ", "score": 1.0, "index": 15}, {"type": "inline_equation", "coordinates": [305, 87, 349, 102], "content": "m\\in\\mathbb{Z}_{2r}^{\\times}", "score": 0.9, "index": 16}, {"type": "text", "coordinates": [349, 86, 356, 106], "content": ", ", "score": 1.0, "index": 17}, {"type": "inline_equation", "coordinates": [356, 88, 411, 102], "content": "1\\leq m<r", "score": 0.9, "index": 18}, {"type": "text", "coordinates": [412, 86, 418, 106], "content": ".", "score": 1.0, "index": 19}, {"type": "inline_equation", "coordinates": [95, 116, 108, 127], "content": "\\pi_{v}", "score": 0.82, "index": 20}, {"type": "text", "coordinates": [108, 110, 367, 133], "content": " here refers to the simple-current automorphism ", "score": 1.0, "index": 21}, {"type": "inline_equation", "coordinates": [367, 113, 389, 128], "content": "\\pi[2]", "score": 0.26, "index": 22}, {"type": "text", "coordinates": [389, 110, 406, 133], "content": " or", "score": 1.0, "index": 23}, {"type": "text", "coordinates": [420, 105, 545, 141], "content": " 10 00 ], for r odd/even.", "score": 1.0, "index": 24}, {"type": "text", "coordinates": [70, 133, 106, 150], "content": "When ", "score": 1.0, "index": 25}, {"type": "inline_equation", "coordinates": [106, 134, 139, 146], "content": "k\\,=\\,1", "score": 0.86, "index": 26}, {"type": "text", "coordinates": [140, 133, 147, 150], "content": ", ", "score": 1.0, "index": 27}, {"type": "inline_equation", "coordinates": [147, 133, 239, 148], "content": "A(D_{e v e n,1})\\cong{\\mathfrak{S}}_{3}", "score": 0.9, "index": 28}, {"type": "text", "coordinates": [239, 133, 447, 150], "content": ", corresponding to any permutation of ", "score": 1.0, "index": 29}, {"type": "inline_equation", "coordinates": [447, 134, 512, 147], "content": "\\Lambda_{1},\\Lambda_{r-1},\\Lambda_{r}", "score": 0.93, "index": 30}, {"type": "text", "coordinates": [512, 133, 542, 150], "content": ", and", "score": 1.0, "index": 31}, {"type": "inline_equation", "coordinates": [71, 148, 200, 163], "content": "A(D_{o d d,1})\\:=\\:\\langle{C_{1}}\\rangle\\:\\cong\\:\\mathbb{Z}_{2}", "score": 0.92, "index": 32}, {"type": "text", "coordinates": [201, 148, 248, 166], "content": ". When ", "score": 1.0, "index": 33}, {"type": "inline_equation", "coordinates": [248, 149, 282, 161], "content": "r\\,>\\,4", "score": 0.85, "index": 34}, {"type": "text", "coordinates": [282, 148, 290, 166], "content": ", ", "score": 1.0, "index": 35}, {"type": "inline_equation", "coordinates": [290, 147, 473, 163], "content": "{\\cal A}(D_{r,2})\\,\\cong\\,(\\mathbb{Z}_{2r}^{\\times}/\\{\\pm1\\})\\,\\times\\,\\mathbb{Z}_{2}\\,\\times\\,\\mathbb{Z}_{2}", "score": 0.91, "index": 36}, {"type": "text", "coordinates": [473, 148, 492, 166], "content": " or ", "score": 1.0, "index": 37}, {"type": "inline_equation", "coordinates": [493, 148, 540, 162], "content": "\\mathbb{Z}_{r}^{\\times}\\times\\mathbb{Z}_{2}", "score": 0.91, "index": 38}, {"type": "text", "coordinates": [70, 163, 90, 178], "content": "for ", "score": 1.0, "index": 39}, {"type": "inline_equation", "coordinates": [90, 166, 97, 174], "content": "r", "score": 0.65, "index": 40}, {"type": "text", "coordinates": [97, 163, 162, 178], "content": " even/odd. ", "score": 1.0, "index": 41}, {"type": "inline_equation", "coordinates": [162, 163, 204, 177], "content": "A(D_{4,2})", "score": 0.92, "index": 42}, {"type": "text", "coordinates": [205, 163, 541, 178], "content": " has 24 elements, and any element can be written uniquely as", "score": 1.0, "index": 43}, {"type": "inline_equation", "coordinates": [71, 176, 137, 208], "content": "C_{i}\\,\\pi\\,\\left[\\begin{array}{l l}{a}&{0}\\\\ {0}&{d}\\end{array}\\right]", "score": 0.89, "index": 44}, {"type": "text", "coordinates": [68, 217, 160, 237], "content": "3.5. The algebra ", "score": 1.0, "index": 45}, {"type": "inline_equation", "coordinates": [161, 217, 183, 234], "content": "E_{6}^{(1)}", "score": 0.9, "index": 46}, {"type": "text", "coordinates": [95, 239, 144, 255], "content": "A weight ", "score": 1.0, "index": 47}, {"type": "inline_equation", "coordinates": [144, 240, 152, 250], "content": "\\lambda", "score": 0.8, "index": 48}, {"type": "text", "coordinates": [153, 239, 167, 255], "content": " of ", "score": 1.0, "index": 49}, {"type": "inline_equation", "coordinates": [167, 240, 183, 253], "content": "P_{+}", "score": 0.9, "index": 50}, {"type": "text", "coordinates": [184, 239, 228, 255], "content": " satisfies", "score": 1.0, "index": 51}, {"type": "inline_equation", "coordinates": [228, 240, 432, 252], "content": "k=\\lambda_{0}\\!+\\!\\lambda_{1}\\!+\\!2\\lambda_{2}\\!+\\!3\\lambda_{3}\\!+\\!2\\lambda_{4}\\!+\\!\\lambda_{5}\\!+\\!2\\lambda_{6}", "score": 0.89, "index": 52}, {"type": "text", "coordinates": [432, 239, 457, 255], "content": " and ", "score": 1.0, "index": 53}, {"type": "inline_equation", "coordinates": [457, 241, 510, 251], "content": "\\kappa=k\\!+\\!12", "score": 0.92, "index": 54}, {"type": "text", "coordinates": [511, 239, 541, 255], "content": ". The", "score": 1.0, "index": 55}, {"type": "text", "coordinates": [72, 253, 213, 269], "content": "charge-conjugation acts as ", "score": 1.0, "index": 56}, {"type": "inline_equation", "coordinates": [213, 253, 375, 267], "content": "C\\lambda=(\\lambda_{0},\\lambda_{5},\\lambda_{4},\\lambda_{3},\\lambda_{2},\\lambda_{1},\\lambda_{6})", "score": 0.89, "index": 57}, {"type": "text", "coordinates": [376, 253, 531, 269], "content": ". The order 3 simple-current ", "score": 1.0, "index": 58}, {"type": "inline_equation", "coordinates": [531, 256, 540, 265], "content": "J", "score": 0.87, "index": 59}, {"type": "text", "coordinates": [69, 268, 131, 284], "content": "is given by ", "score": 1.0, "index": 60}, {"type": "inline_equation", "coordinates": [131, 268, 290, 282], "content": "J\\lambda=(\\lambda_{5},\\lambda_{0},\\lambda_{6},\\lambda_{3},\\lambda_{2},\\lambda_{1},\\lambda_{4})", "score": 0.92, "index": 61}, {"type": "text", "coordinates": [290, 268, 319, 284], "content": " with", "score": 1.0, "index": 62}, {"type": "inline_equation", "coordinates": [320, 267, 487, 282], "content": "Q(\\lambda)=(-\\lambda_{1}+\\lambda_{2}-\\lambda_{4}+\\lambda_{5})/3", "score": 0.91, "index": 63}, {"type": "text", "coordinates": [487, 268, 490, 284], "content": ".", "score": 1.0, "index": 64}, {"type": "text", "coordinates": [95, 282, 440, 297], "content": "The fusion products we need can be derived from [29] using (2.4):", "score": 1.0, "index": 65}, {"type": "interline_equation", "coordinates": [282, 354, 416, 370], "content": "(\\Lambda_{1}+\\Lambda_{2})_{3}\\sqcup(\\Lambda_{1}+\\Lambda_{5})_{2}", "score": 0.38, "index": 66}, {"type": "text", "coordinates": [70, 374, 540, 390], "content": "where the outer subscript on any summand denotes the smallest level where that sum-", "score": 1.0, "index": 67}, {"type": "text", "coordinates": [70, 389, 455, 403], "content": "mand appears (it will also appear at all larger levels). So for example ", "score": 1.0, "index": 68}, {"type": "inline_equation", "coordinates": [456, 388, 502, 402], "content": "\\Lambda_{1}\\boxtimes\\Lambda_{1}", "score": 0.36, "index": 69}, {"type": "text", "coordinates": [503, 389, 541, 403], "content": " equals", "score": 1.0, "index": 70}, {"type": "inline_equation", "coordinates": [71, 404, 85, 416], "content": "\\Lambda_{2}", "score": 0.86, "index": 71}, {"type": "text", "coordinates": [86, 402, 102, 420], "content": " + ", "score": 1.0, "index": 72}, {"type": "inline_equation", "coordinates": [102, 403, 117, 416], "content": "\\Lambda_{5}", "score": 0.86, "index": 73}, {"type": "text", "coordinates": [118, 402, 135, 420], "content": " + ", "score": 1.0, "index": 74}, {"type": "inline_equation", "coordinates": [135, 403, 164, 417], "content": "(2\\Lambda_{1})", "score": 0.87, "index": 75}, {"type": "text", "coordinates": [165, 402, 210, 420], "content": " for any ", "score": 1.0, "index": 76}, {"type": "inline_equation", "coordinates": [211, 403, 244, 416], "content": "k\\geq2", "score": 0.91, "index": 77}, {"type": "text", "coordinates": [244, 402, 311, 420], "content": ", but equals ", "score": 1.0, "index": 78}, {"type": "inline_equation", "coordinates": [311, 403, 326, 416], "content": "\\Lambda_{5}", "score": 0.88, "index": 79}, {"type": "text", "coordinates": [326, 402, 344, 420], "content": " at ", "score": 1.0, "index": 80}, {"type": "inline_equation", "coordinates": [344, 403, 378, 415], "content": "k\\,=\\,1", "score": 0.91, "index": 81}, {"type": "text", "coordinates": [378, 402, 542, 420], "content": ". A similar convention is used", "score": 1.0, "index": 82}, {"type": "text", "coordinates": [70, 418, 541, 433], "content": "in (3.7) and elsewhere for higher fusion multiplicities (the number of subscripts used will", "score": 1.0, "index": 83}, {"type": "text", "coordinates": [71, 433, 339, 447], "content": "equal the numerical value of the fusion coefficient).", "score": 1.0, "index": 84}, {"type": "text", "coordinates": [90, 450, 329, 475], "content": "Theorem 3.E6. The fusion-symmetries of ", "score": 1.0, "index": 85}, {"type": "inline_equation", "coordinates": [330, 450, 353, 468], "content": "E_{6}^{(1)}", "score": 0.92, "index": 86}, {"type": "text", "coordinates": [353, 450, 377, 475], "content": "are ", "score": 1.0, "index": 87}, {"type": "inline_equation", "coordinates": [378, 452, 414, 468], "content": "C^{i}\\,\\pi[a]", "score": 0.9, "index": 88}, {"type": "text", "coordinates": [415, 450, 465, 475], "content": ", for any ", "score": 1.0, "index": 89}, {"type": "inline_equation", "coordinates": [465, 453, 516, 468], "content": "i\\in\\{0,1\\}", "score": 0.92, "index": 90}, {"type": "text", "coordinates": [516, 450, 542, 475], "content": " and", "score": 1.0, "index": 91}, {"type": "text", "coordinates": [71, 467, 93, 485], "content": "any ", "score": 1.0, "index": 92}, {"type": "inline_equation", "coordinates": [94, 468, 156, 482], "content": "a\\in\\{0,1,2\\}", "score": 0.93, "index": 93}, {"type": "text", "coordinates": [156, 467, 212, 485], "content": " for which ", "score": 1.0, "index": 94}, {"type": "inline_equation", "coordinates": [212, 468, 248, 482], "content": "a k\\not\\equiv1", "score": 0.74, "index": 95}, {"type": "text", "coordinates": [249, 467, 299, 485], "content": " (mod 3).", "score": 1.0, "index": 96}, {"type": "text", "coordinates": [68, 491, 186, 512], "content": "3.6. The algebra E7(1)", "score": 1.0, "index": 97}, {"type": "text", "coordinates": [94, 514, 146, 529], "content": "A weight", "score": 1.0, "index": 98}, {"type": "inline_equation", "coordinates": [147, 514, 156, 526], "content": "\\lambda", "score": 0.8, "index": 99}, {"type": "text", "coordinates": [156, 514, 174, 529], "content": " in ", "score": 1.0, "index": 100}, {"type": "inline_equation", "coordinates": [174, 514, 191, 528], "content": "P_{+}", "score": 0.89, "index": 101}, {"type": "text", "coordinates": [191, 514, 239, 529], "content": " satisfies ", "score": 1.0, "index": 102}, {"type": "inline_equation", "coordinates": [239, 514, 511, 527], "content": "k\\,=\\,\\lambda_{0}+2\\lambda_{1}+3\\lambda_{2}+4\\lambda_{3}+3\\lambda_{4}+2\\lambda_{5}+\\lambda_{6}+2\\lambda_{7}", "score": 0.88, "index": 103}, {"type": "text", "coordinates": [512, 514, 542, 529], "content": ", and", "score": 1.0, "index": 104}, {"type": "inline_equation", "coordinates": [71, 528, 132, 541], "content": "\\kappa\\,=\\,k\\,+\\,18", "score": 0.91, "index": 105}, {"type": "text", "coordinates": [132, 529, 481, 545], "content": ". The charge-conjugation is trivial, but there is a simple-current ", "score": 1.0, "index": 106}, {"type": "inline_equation", "coordinates": [482, 531, 490, 540], "content": "J", "score": 0.84, "index": 107}, {"type": "text", "coordinates": [491, 529, 541, 545], "content": " given by", "score": 1.0, "index": 108}, {"type": "inline_equation", "coordinates": [71, 542, 216, 557], "content": "J\\lambda=(\\lambda_{6},\\lambda_{5},...\\,,\\lambda_{1},\\lambda_{0},\\lambda_{7})", "score": 0.91, "index": 109}, {"type": "text", "coordinates": [216, 543, 258, 559], "content": ". It has ", "score": 1.0, "index": 110}, {"type": "inline_equation", "coordinates": [258, 542, 388, 557], "content": "Q(\\lambda)=(\\lambda_{4}+\\lambda_{6}+\\lambda_{7})/2", "score": 0.92, "index": 111}, {"type": "text", "coordinates": [388, 543, 392, 559], "content": ".", "score": 1.0, "index": 112}, {"type": "text", "coordinates": [96, 558, 465, 572], "content": "The only fusion products we need can be obtained from [29] and (2.4):", "score": 1.0, "index": 113}, {"type": "inline_equation", "coordinates": [120, 576, 135, 590], "content": "\\Lambda_{6}", "score": 0.87, "index": 114}, {"type": "text", "coordinates": [136, 575, 151, 592], "content": " \u00d7", "score": 1.0, "index": 115}, {"type": "inline_equation", "coordinates": [152, 575, 202, 591], "content": "\\Lambda_{6}=(0)_{1}", "score": 0.93, "index": 116}, {"type": "text", "coordinates": [203, 575, 219, 592], "content": " + ", "score": 1.0, "index": 117}, {"type": "inline_equation", "coordinates": [220, 576, 249, 591], "content": "(\\Lambda_{1})_{2}", "score": 0.92, "index": 118}, {"type": "text", "coordinates": [249, 575, 266, 592], "content": " + ", "score": 1.0, "index": 119}, {"type": "inline_equation", "coordinates": [266, 575, 295, 591], "content": "(\\Lambda_{5})_{2}", "score": 0.91, "index": 120}, {"type": "text", "coordinates": [296, 575, 313, 592], "content": " + ", "score": 1.0, "index": 121}, {"type": "inline_equation", "coordinates": [313, 575, 348, 591], "content": "(2\\Lambda_{6})_{2}", "score": 0.87, "index": 122}, {"type": "inline_equation", "coordinates": [120, 594, 135, 608], "content": "\\Lambda_{1}", "score": 0.9, "index": 123}, {"type": "text", "coordinates": [136, 594, 151, 610], "content": " \u00d7", "score": 1.0, "index": 124}, {"type": "inline_equation", "coordinates": [152, 594, 210, 609], "content": "\\Lambda_{6}=(\\Lambda_{6})_{2}", "score": 0.93, "index": 125}, {"type": "text", "coordinates": [210, 594, 227, 610], "content": " + ", "score": 1.0, "index": 126}, {"type": "inline_equation", "coordinates": [227, 594, 257, 609], "content": "(\\Lambda_{7})_{2}", "score": 0.92, "index": 127}, {"type": "text", "coordinates": [257, 594, 273, 610], "content": " + ", "score": 1.0, "index": 128}, {"type": "inline_equation", "coordinates": [274, 594, 332, 609], "content": "(\\Lambda_{1}+\\Lambda_{6})_{3}", "score": 0.9, "index": 129}, {"type": "inline_equation", "coordinates": [120, 612, 135, 626], "content": "\\Lambda_{5}", "score": 0.89, "index": 130}, {"type": "text", "coordinates": [136, 611, 151, 627], "content": "\u00d7", "score": 1.0, "index": 131}, {"type": "inline_equation", "coordinates": [152, 612, 210, 627], "content": "\\Lambda_{6}=(\\Lambda_{4})_{3}", "score": 0.94, "index": 132}, {"type": "text", "coordinates": [210, 611, 227, 627], "content": " + ", "score": 1.0, "index": 133}, {"type": "inline_equation", "coordinates": [227, 612, 257, 627], "content": "(\\Lambda_{6})_{2}", "score": 0.92, "index": 134}, {"type": "text", "coordinates": [257, 611, 273, 627], "content": " + ", "score": 1.0, "index": 135}, {"type": "inline_equation", "coordinates": [274, 612, 303, 627], "content": "(\\Lambda_{7})_{2}", "score": 0.93, "index": 136}, {"type": "text", "coordinates": [303, 611, 320, 627], "content": " + ", "score": 1.0, "index": 137}, {"type": "inline_equation", "coordinates": [321, 612, 378, 627], "content": "(\\Lambda_{1}+\\Lambda_{6})_{3}", "score": 0.92, "index": 138}, {"type": "text", "coordinates": [379, 611, 395, 627], "content": " + ", "score": 1.0, "index": 139}, {"type": "inline_equation", "coordinates": [395, 612, 453, 627], "content": "(\\Lambda_{5}+\\Lambda_{6})_{3}", "score": 0.86, "index": 140}, {"type": "inline_equation", "coordinates": [105, 630, 120, 644], "content": "\\Lambda_{6}", "score": 0.86, "index": 141}, {"type": "text", "coordinates": [120, 630, 137, 646], "content": " \u00d7 ", "score": 1.0, "index": 142}, {"type": "inline_equation", "coordinates": [137, 630, 210, 645], "content": "(2\\Lambda_{6})=(\\Lambda_{6})_{2}", "score": 0.92, "index": 143}, {"type": "text", "coordinates": [210, 630, 227, 646], "content": " + ", "score": 1.0, "index": 144}, {"type": "inline_equation", "coordinates": [227, 630, 285, 645], "content": "(\\Lambda_{1}+\\Lambda_{6})_{3}", "score": 0.92, "index": 145}, {"type": "text", "coordinates": [285, 630, 302, 646], "content": " + ", "score": 1.0, "index": 146}, {"type": "inline_equation", "coordinates": [302, 630, 338, 645], "content": "(3\\Lambda_{6})_{3}", "score": 0.93, "index": 147}, {"type": "text", "coordinates": [338, 630, 354, 646], "content": " + ", "score": 1.0, "index": 148}, {"type": "inline_equation", "coordinates": [355, 630, 412, 645], "content": "(\\Lambda_{5}+\\Lambda_{6})_{3}", "score": 0.89, "index": 149}, {"type": "inline_equation", "coordinates": [120, 648, 136, 662], "content": "\\Lambda_{4}", "score": 0.88, "index": 150}, {"type": "text", "coordinates": [136, 647, 151, 664], "content": " \u00d7", "score": 1.0, "index": 151}, {"type": "inline_equation", "coordinates": [152, 648, 210, 663], "content": "\\Lambda_{6}=(\\Lambda_{2})_{3}", "score": 0.92, "index": 152}, {"type": "text", "coordinates": [210, 647, 227, 664], "content": " + ", "score": 1.0, "index": 153}, {"type": "inline_equation", "coordinates": [227, 647, 257, 663], "content": "(\\Lambda_{3})_{4}", "score": 0.91, "index": 154}, {"type": "text", "coordinates": [257, 647, 273, 664], "content": " + ", "score": 1.0, "index": 155}, {"type": "inline_equation", "coordinates": [274, 647, 303, 663], "content": "(\\Lambda_{5})_{3}", "score": 0.92, "index": 156}, {"type": "text", "coordinates": [304, 647, 320, 664], "content": " + ", "score": 1.0, "index": 157}, {"type": "inline_equation", "coordinates": [320, 647, 378, 663], "content": "(\\Lambda_{1}+\\Lambda_{5})_{4}", "score": 0.92, "index": 158}, {"type": "text", "coordinates": [379, 647, 395, 664], "content": " + ", "score": 1.0, "index": 159}, {"type": "inline_equation", "coordinates": [395, 647, 453, 663], "content": "(\\Lambda_{4}+\\Lambda_{6})_{4}", "score": 0.88, "index": 160}, {"type": "text", "coordinates": [453, 647, 470, 664], "content": " + ", "score": 1.0, "index": 161}, {"type": "inline_equation", "coordinates": [470, 647, 528, 663], "content": "(\\Lambda_{6}+\\Lambda_{7})_{3}", "score": 0.85, "index": 162}, {"type": "inline_equation", "coordinates": [120, 666, 136, 680], "content": "\\Lambda_{6}", "score": 0.89, "index": 163}, {"type": "text", "coordinates": [136, 665, 151, 682], "content": " \u00d7", "score": 1.0, "index": 164}, {"type": "inline_equation", "coordinates": [152, 666, 210, 680], "content": "\\Lambda_{7}=(\\Lambda_{1})_{2}", "score": 0.94, "index": 165}, {"type": "text", "coordinates": [210, 665, 227, 682], "content": " + ", "score": 1.0, "index": 166}, {"type": "inline_equation", "coordinates": [227, 666, 257, 680], "content": "(\\Lambda_{2})_{3}", "score": 0.92, "index": 167}, {"type": "text", "coordinates": [257, 665, 273, 682], "content": " + ", "score": 1.0, "index": 168}, {"type": "inline_equation", "coordinates": [274, 666, 303, 680], "content": "(\\Lambda_{5})_{2}", "score": 0.93, "index": 169}, {"type": "text", "coordinates": [304, 665, 320, 682], "content": " + ", "score": 1.0, "index": 170}, {"type": "inline_equation", "coordinates": [320, 666, 378, 680], "content": "(\\Lambda_{6}+\\Lambda_{7})_{3}", "score": 0.91, "index": 171}, {"type": "inline_equation", "coordinates": [82, 683, 98, 698], "content": "\\Lambda_{6}", "score": 0.86, "index": 172}, {"type": "text", "coordinates": [98, 684, 115, 699], "content": " \u00d7 ", "score": 1.0, "index": 173}, {"type": "inline_equation", "coordinates": [115, 683, 210, 698], "content": "(\\Lambda_{5}+\\Lambda_{6})=(\\Lambda_{5})_{3}", "score": 0.92, "index": 174}, {"type": "text", "coordinates": [211, 684, 227, 699], "content": " + ", "score": 1.0, "index": 175}, {"type": "inline_equation", "coordinates": [227, 683, 263, 698], "content": "(2\\Lambda_{5})_{4}", "score": 0.93, "index": 176}, {"type": "text", "coordinates": [263, 684, 280, 699], "content": " + ", "score": 1.0, "index": 177}, {"type": "inline_equation", "coordinates": [280, 683, 315, 698], "content": "(2\\Lambda_{6})_{3}", "score": 0.92, "index": 178}, {"type": "text", "coordinates": [316, 684, 332, 699], "content": " + ", "score": 1.0, "index": 179}, {"type": "inline_equation", "coordinates": [332, 683, 390, 698], "content": "(\\Lambda_{6}+\\Lambda_{7})_{3}", "score": 0.93, "index": 180}, {"type": "text", "coordinates": [390, 684, 407, 699], "content": " + ", "score": 1.0, "index": 181}, {"type": "inline_equation", "coordinates": [407, 683, 465, 698], "content": "(\\Lambda_{1}+\\Lambda_{5})_{4}", "score": 0.9, "index": 182}, {"type": "text", "coordinates": [183, 700, 199, 718], "content": "+ ", "score": 1.0, "index": 183}, {"type": "inline_equation", "coordinates": [199, 701, 257, 716], "content": "(\\Lambda_{4}+\\Lambda_{6})_{4}", "score": 0.93, "index": 184}, {"type": "text", "coordinates": [257, 700, 273, 718], "content": " + ", "score": 1.0, "index": 185}, {"type": "inline_equation", "coordinates": [274, 701, 338, 716], "content": "(\\Lambda_{1}+2\\Lambda_{6})_{4}", "score": 0.93, "index": 186}, {"type": "text", "coordinates": [338, 700, 354, 718], "content": " + ", "score": 1.0, "index": 187}, {"type": "inline_equation", "coordinates": [355, 701, 419, 716], "content": "(\\Lambda_{5}+2\\Lambda_{6})_{4}", "score": 0.89, "index": 188}] | [] | [{"type": "block", "coordinates": [282, 354, 416, 370], "content": "", "caption": ""}, {"type": "inline", "coordinates": [71, 70, 95, 88], "content": "{D}_{4}^{(1)}", "caption": ""}, {"type": "inline", "coordinates": [112, 74, 142, 86], "content": "k=2", "caption": ""}, {"type": "inline", "coordinates": [250, 74, 280, 86], "content": "k=2", "caption": ""}, {"type": "inline", "coordinates": [306, 74, 335, 86], "content": "r>4", "caption": ""}, {"type": "inline", "coordinates": [454, 77, 463, 85], "content": "\\pi", "caption": ""}, {"type": "inline", "coordinates": [86, 87, 171, 102], "content": "\\pi=C_{1}^{a}\\,\\pi_{v}^{b}\\,\\pi\\{m\\}", "caption": ""}, {"type": "inline", "coordinates": [194, 88, 255, 102], "content": "a,b\\in\\{0,1\\}", "caption": ""}, {"type": "inline", "coordinates": [305, 87, 349, 102], "content": "m\\in\\mathbb{Z}_{2r}^{\\times}", "caption": ""}, {"type": "inline", "coordinates": [356, 88, 411, 102], "content": "1\\leq m<r", "caption": ""}, {"type": "inline", "coordinates": [95, 116, 108, 127], "content": "\\pi_{v}", "caption": ""}, {"type": "inline", "coordinates": [367, 113, 389, 128], "content": "\\pi[2]", "caption": ""}, {"type": "inline", "coordinates": [106, 134, 139, 146], "content": "k\\,=\\,1", "caption": ""}, {"type": "inline", "coordinates": [147, 133, 239, 148], "content": "A(D_{e v e n,1})\\cong{\\mathfrak{S}}_{3}", "caption": ""}, {"type": "inline", "coordinates": [447, 134, 512, 147], "content": "\\Lambda_{1},\\Lambda_{r-1},\\Lambda_{r}", "caption": ""}, {"type": "inline", "coordinates": [71, 148, 200, 163], "content": "A(D_{o d d,1})\\:=\\:\\langle{C_{1}}\\rangle\\:\\cong\\:\\mathbb{Z}_{2}", "caption": ""}, {"type": "inline", "coordinates": [248, 149, 282, 161], "content": "r\\,>\\,4", "caption": ""}, {"type": "inline", "coordinates": [290, 147, 473, 163], "content": "{\\cal A}(D_{r,2})\\,\\cong\\,(\\mathbb{Z}_{2r}^{\\times}/\\{\\pm1\\})\\,\\times\\,\\mathbb{Z}_{2}\\,\\times\\,\\mathbb{Z}_{2}", "caption": ""}, {"type": "inline", "coordinates": [493, 148, 540, 162], "content": "\\mathbb{Z}_{r}^{\\times}\\times\\mathbb{Z}_{2}", "caption": ""}, {"type": "inline", "coordinates": [90, 166, 97, 174], "content": "r", "caption": ""}, {"type": "inline", "coordinates": [162, 163, 204, 177], "content": "A(D_{4,2})", "caption": ""}, {"type": "inline", "coordinates": [71, 176, 137, 208], "content": "C_{i}\\,\\pi\\,\\left[\\begin{array}{l l}{a}&{0}\\\\ {0}&{d}\\end{array}\\right]", "caption": ""}, {"type": "inline", "coordinates": [161, 217, 183, 234], "content": "E_{6}^{(1)}", "caption": ""}, {"type": "inline", "coordinates": [144, 240, 152, 250], "content": "\\lambda", "caption": ""}, {"type": "inline", "coordinates": [167, 240, 183, 253], "content": "P_{+}", "caption": ""}, {"type": "inline", "coordinates": [228, 240, 432, 252], "content": "k=\\lambda_{0}\\!+\\!\\lambda_{1}\\!+\\!2\\lambda_{2}\\!+\\!3\\lambda_{3}\\!+\\!2\\lambda_{4}\\!+\\!\\lambda_{5}\\!+\\!2\\lambda_{6}", "caption": ""}, {"type": "inline", "coordinates": [457, 241, 510, 251], "content": "\\kappa=k\\!+\\!12", "caption": ""}, {"type": "inline", "coordinates": [213, 253, 375, 267], "content": "C\\lambda=(\\lambda_{0},\\lambda_{5},\\lambda_{4},\\lambda_{3},\\lambda_{2},\\lambda_{1},\\lambda_{6})", "caption": ""}, {"type": "inline", "coordinates": [531, 256, 540, 265], "content": "J", "caption": ""}, {"type": "inline", "coordinates": [131, 268, 290, 282], "content": "J\\lambda=(\\lambda_{5},\\lambda_{0},\\lambda_{6},\\lambda_{3},\\lambda_{2},\\lambda_{1},\\lambda_{4})", "caption": ""}, {"type": "inline", "coordinates": [320, 267, 487, 282], "content": "Q(\\lambda)=(-\\lambda_{1}+\\lambda_{2}-\\lambda_{4}+\\lambda_{5})/3", "caption": ""}, {"type": "inline", "coordinates": [456, 388, 502, 402], "content": "\\Lambda_{1}\\boxtimes\\Lambda_{1}", "caption": ""}, {"type": "inline", "coordinates": [71, 404, 85, 416], "content": "\\Lambda_{2}", "caption": ""}, {"type": "inline", "coordinates": [102, 403, 117, 416], "content": "\\Lambda_{5}", "caption": ""}, {"type": "inline", "coordinates": [135, 403, 164, 417], "content": "(2\\Lambda_{1})", "caption": ""}, {"type": "inline", "coordinates": [211, 403, 244, 416], "content": "k\\geq2", "caption": ""}, {"type": "inline", "coordinates": [311, 403, 326, 416], "content": "\\Lambda_{5}", "caption": ""}, {"type": "inline", "coordinates": [344, 403, 378, 415], "content": "k\\,=\\,1", "caption": ""}, {"type": "inline", "coordinates": [330, 450, 353, 468], "content": "E_{6}^{(1)}", "caption": ""}, {"type": "inline", "coordinates": [378, 452, 414, 468], "content": "C^{i}\\,\\pi[a]", "caption": ""}, {"type": "inline", "coordinates": [465, 453, 516, 468], "content": "i\\in\\{0,1\\}", "caption": ""}, {"type": "inline", "coordinates": [94, 468, 156, 482], "content": "a\\in\\{0,1,2\\}", "caption": ""}, {"type": "inline", "coordinates": [212, 468, 248, 482], "content": "a k\\not\\equiv1", "caption": ""}, {"type": "inline", "coordinates": [147, 514, 156, 526], "content": "\\lambda", "caption": ""}, {"type": "inline", "coordinates": [174, 514, 191, 528], "content": "P_{+}", "caption": ""}, {"type": "inline", "coordinates": [239, 514, 511, 527], "content": "k\\,=\\,\\lambda_{0}+2\\lambda_{1}+3\\lambda_{2}+4\\lambda_{3}+3\\lambda_{4}+2\\lambda_{5}+\\lambda_{6}+2\\lambda_{7}", "caption": ""}, {"type": "inline", "coordinates": [71, 528, 132, 541], "content": "\\kappa\\,=\\,k\\,+\\,18", "caption": ""}, {"type": "inline", "coordinates": [482, 531, 490, 540], "content": "J", "caption": ""}, {"type": "inline", "coordinates": [71, 542, 216, 557], "content": "J\\lambda=(\\lambda_{6},\\lambda_{5},...\\,,\\lambda_{1},\\lambda_{0},\\lambda_{7})", "caption": ""}, {"type": "inline", "coordinates": [258, 542, 388, 557], "content": "Q(\\lambda)=(\\lambda_{4}+\\lambda_{6}+\\lambda_{7})/2", "caption": ""}, {"type": "inline", "coordinates": [120, 576, 135, 590], "content": "\\Lambda_{6}", "caption": ""}, {"type": "inline", "coordinates": [152, 575, 202, 591], "content": "\\Lambda_{6}=(0)_{1}", "caption": ""}, {"type": "inline", "coordinates": [220, 576, 249, 591], "content": "(\\Lambda_{1})_{2}", "caption": ""}, {"type": "inline", "coordinates": [266, 575, 295, 591], "content": "(\\Lambda_{5})_{2}", "caption": ""}, {"type": "inline", "coordinates": [313, 575, 348, 591], "content": "(2\\Lambda_{6})_{2}", "caption": ""}, {"type": "inline", "coordinates": [120, 594, 135, 608], "content": "\\Lambda_{1}", "caption": ""}, {"type": "inline", "coordinates": [152, 594, 210, 609], "content": "\\Lambda_{6}=(\\Lambda_{6})_{2}", "caption": ""}, {"type": "inline", "coordinates": [227, 594, 257, 609], "content": "(\\Lambda_{7})_{2}", "caption": ""}, {"type": "inline", "coordinates": [274, 594, 332, 609], "content": "(\\Lambda_{1}+\\Lambda_{6})_{3}", "caption": ""}, {"type": "inline", "coordinates": [120, 612, 135, 626], "content": "\\Lambda_{5}", "caption": ""}, {"type": "inline", "coordinates": [152, 612, 210, 627], "content": "\\Lambda_{6}=(\\Lambda_{4})_{3}", "caption": ""}, {"type": "inline", "coordinates": [227, 612, 257, 627], "content": "(\\Lambda_{6})_{2}", "caption": ""}, {"type": "inline", "coordinates": [274, 612, 303, 627], "content": "(\\Lambda_{7})_{2}", "caption": ""}, {"type": "inline", "coordinates": [321, 612, 378, 627], "content": "(\\Lambda_{1}+\\Lambda_{6})_{3}", "caption": ""}, {"type": "inline", "coordinates": [395, 612, 453, 627], "content": "(\\Lambda_{5}+\\Lambda_{6})_{3}", "caption": ""}, {"type": "inline", "coordinates": [105, 630, 120, 644], "content": "\\Lambda_{6}", "caption": ""}, {"type": "inline", "coordinates": [137, 630, 210, 645], "content": "(2\\Lambda_{6})=(\\Lambda_{6})_{2}", "caption": ""}, {"type": "inline", "coordinates": [227, 630, 285, 645], "content": "(\\Lambda_{1}+\\Lambda_{6})_{3}", "caption": ""}, {"type": "inline", "coordinates": [302, 630, 338, 645], "content": "(3\\Lambda_{6})_{3}", "caption": ""}, {"type": "inline", "coordinates": [355, 630, 412, 645], "content": "(\\Lambda_{5}+\\Lambda_{6})_{3}", "caption": ""}, {"type": "inline", "coordinates": [120, 648, 136, 662], "content": "\\Lambda_{4}", "caption": ""}, {"type": "inline", "coordinates": [152, 648, 210, 663], "content": "\\Lambda_{6}=(\\Lambda_{2})_{3}", "caption": ""}, {"type": "inline", "coordinates": [227, 647, 257, 663], "content": "(\\Lambda_{3})_{4}", "caption": ""}, {"type": "inline", "coordinates": [274, 647, 303, 663], "content": "(\\Lambda_{5})_{3}", "caption": ""}, {"type": "inline", "coordinates": [320, 647, 378, 663], "content": "(\\Lambda_{1}+\\Lambda_{5})_{4}", "caption": ""}, {"type": "inline", "coordinates": [395, 647, 453, 663], "content": "(\\Lambda_{4}+\\Lambda_{6})_{4}", "caption": ""}, {"type": "inline", "coordinates": [470, 647, 528, 663], "content": "(\\Lambda_{6}+\\Lambda_{7})_{3}", "caption": ""}, {"type": "inline", "coordinates": [120, 666, 136, 680], "content": "\\Lambda_{6}", "caption": ""}, {"type": "inline", "coordinates": [152, 666, 210, 680], "content": "\\Lambda_{7}=(\\Lambda_{1})_{2}", "caption": ""}, {"type": "inline", "coordinates": [227, 666, 257, 680], "content": "(\\Lambda_{2})_{3}", "caption": ""}, {"type": "inline", "coordinates": [274, 666, 303, 680], "content": "(\\Lambda_{5})_{2}", "caption": ""}, {"type": "inline", "coordinates": [320, 666, 378, 680], "content": "(\\Lambda_{6}+\\Lambda_{7})_{3}", "caption": ""}, {"type": "inline", "coordinates": [82, 683, 98, 698], "content": "\\Lambda_{6}", "caption": ""}, {"type": "inline", "coordinates": [115, 683, 210, 698], "content": "(\\Lambda_{5}+\\Lambda_{6})=(\\Lambda_{5})_{3}", "caption": ""}, {"type": "inline", "coordinates": [227, 683, 263, 698], "content": "(2\\Lambda_{5})_{4}", "caption": ""}, {"type": "inline", "coordinates": [280, 683, 315, 698], "content": "(2\\Lambda_{6})_{3}", "caption": ""}, {"type": "inline", "coordinates": [332, 683, 390, 698], "content": "(\\Lambda_{6}+\\Lambda_{7})_{3}", "caption": ""}, {"type": "inline", "coordinates": [407, 683, 465, 698], "content": "(\\Lambda_{1}+\\Lambda_{5})_{4}", "caption": ""}, {"type": "inline", "coordinates": [199, 701, 257, 716], "content": "(\\Lambda_{4}+\\Lambda_{6})_{4}", "caption": ""}, {"type": "inline", "coordinates": [274, 701, 338, 716], "content": "(\\Lambda_{1}+2\\Lambda_{6})_{4}", "caption": ""}, {"type": "inline", "coordinates": [355, 701, 419, 716], "content": "(\\Lambda_{5}+2\\Lambda_{6})_{4}", "caption": ""}] | [] | [612.0, 792.0] | [{"type": "text", "text": "", "page_idx": 12}, {"type": "text", "text": "$\\pi_{v}$ here refers to the simple-current automorphism $\\pi[2]$ or 10 00 ], for r odd/even. When $k\\,=\\,1$ , $A(D_{e v e n,1})\\cong{\\mathfrak{S}}_{3}$ , corresponding to any permutation of $\\Lambda_{1},\\Lambda_{r-1},\\Lambda_{r}$ , and $A(D_{o d d,1})\\:=\\:\\langle{C_{1}}\\rangle\\:\\cong\\:\\mathbb{Z}_{2}$ . When $r\\,>\\,4$ , ${\\cal A}(D_{r,2})\\,\\cong\\,(\\mathbb{Z}_{2r}^{\\times}/\\{\\pm1\\})\\,\\times\\,\\mathbb{Z}_{2}\\,\\times\\,\\mathbb{Z}_{2}$ or $\\mathbb{Z}_{r}^{\\times}\\times\\mathbb{Z}_{2}$ for $r$ even/odd. $A(D_{4,2})$ has 24 elements, and any element can be written uniquely as $C_{i}\\,\\pi\\,\\left[\\begin{array}{l l}{a}&{0}\\\\ {0}&{d}\\end{array}\\right]$ ", "page_idx": 12}, {"type": "text", "text": "3.5. The algebra $E_{6}^{(1)}$ ", "text_level": 1, "page_idx": 12}, {"type": "text", "text": "A weight $\\lambda$ of $P_{+}$ satisfies $k=\\lambda_{0}\\!+\\!\\lambda_{1}\\!+\\!2\\lambda_{2}\\!+\\!3\\lambda_{3}\\!+\\!2\\lambda_{4}\\!+\\!\\lambda_{5}\\!+\\!2\\lambda_{6}$ and $\\kappa=k\\!+\\!12$ . The charge-conjugation acts as $C\\lambda=(\\lambda_{0},\\lambda_{5},\\lambda_{4},\\lambda_{3},\\lambda_{2},\\lambda_{1},\\lambda_{6})$ . The order 3 simple-current $J$ is given by $J\\lambda=(\\lambda_{5},\\lambda_{0},\\lambda_{6},\\lambda_{3},\\lambda_{2},\\lambda_{1},\\lambda_{4})$ with $Q(\\lambda)=(-\\lambda_{1}+\\lambda_{2}-\\lambda_{4}+\\lambda_{5})/3$ . ", "page_idx": 12}, {"type": "text", "text": "The fusion products we need can be derived from [29] using (2.4): ", "page_idx": 12}, {"type": "equation", "text": "$$\n(\\Lambda_{1}+\\Lambda_{2})_{3}\\sqcup(\\Lambda_{1}+\\Lambda_{5})_{2}\n$$", "text_format": "latex", "page_idx": 12}, {"type": "text", "text": "where the outer subscript on any summand denotes the smallest level where that summand appears (it will also appear at all larger levels). So for example $\\Lambda_{1}\\boxtimes\\Lambda_{1}$ equals $\\Lambda_{2}$ + $\\Lambda_{5}$ + $(2\\Lambda_{1})$ for any $k\\geq2$ , but equals $\\Lambda_{5}$ at $k\\,=\\,1$ . A similar convention is used in (3.7) and elsewhere for higher fusion multiplicities (the number of subscripts used will equal the numerical value of the fusion coefficient). ", "page_idx": 12}, {"type": "text", "text": "Theorem 3.E6. The fusion-symmetries of $E_{6}^{(1)}$ are $C^{i}\\,\\pi[a]$ , for any $i\\in\\{0,1\\}$ and any $a\\in\\{0,1,2\\}$ for which $a k\\not\\equiv1$ (mod 3). ", "page_idx": 12}, {"type": "text", "text": "3.6. The algebra E7(1) ", "text_level": 1, "page_idx": 12}, {"type": "text", "text": "A weight $\\lambda$ in $P_{+}$ satisfies $k\\,=\\,\\lambda_{0}+2\\lambda_{1}+3\\lambda_{2}+4\\lambda_{3}+3\\lambda_{4}+2\\lambda_{5}+\\lambda_{6}+2\\lambda_{7}$ , and $\\kappa\\,=\\,k\\,+\\,18$ . The charge-conjugation is trivial, but there is a simple-current $J$ given by $J\\lambda=(\\lambda_{6},\\lambda_{5},...\\,,\\lambda_{1},\\lambda_{0},\\lambda_{7})$ . It has $Q(\\lambda)=(\\lambda_{4}+\\lambda_{6}+\\lambda_{7})/2$ . ", "page_idx": 12}, {"type": "text", "text": "The only fusion products we need can be obtained from [29] and (2.4): ", "page_idx": 12}, {"type": "text", "text": "$\\Lambda_{6}$ \u00d7 $\\Lambda_{6}=(0)_{1}$ + $(\\Lambda_{1})_{2}$ + $(\\Lambda_{5})_{2}$ + $(2\\Lambda_{6})_{2}$ $\\Lambda_{1}$ \u00d7 $\\Lambda_{6}=(\\Lambda_{6})_{2}$ + $(\\Lambda_{7})_{2}$ + $(\\Lambda_{1}+\\Lambda_{6})_{3}$ $\\Lambda_{5}$ \u00d7 $\\Lambda_{6}=(\\Lambda_{4})_{3}$ + $(\\Lambda_{6})_{2}$ + $(\\Lambda_{7})_{2}$ + $(\\Lambda_{1}+\\Lambda_{6})_{3}$ + $(\\Lambda_{5}+\\Lambda_{6})_{3}$ $\\Lambda_{6}$ \u00d7 $(2\\Lambda_{6})=(\\Lambda_{6})_{2}$ + $(\\Lambda_{1}+\\Lambda_{6})_{3}$ + $(3\\Lambda_{6})_{3}$ + $(\\Lambda_{5}+\\Lambda_{6})_{3}$ $\\Lambda_{4}$ \u00d7 $\\Lambda_{6}=(\\Lambda_{2})_{3}$ + $(\\Lambda_{3})_{4}$ + $(\\Lambda_{5})_{3}$ + $(\\Lambda_{1}+\\Lambda_{5})_{4}$ + $(\\Lambda_{4}+\\Lambda_{6})_{4}$ + $(\\Lambda_{6}+\\Lambda_{7})_{3}$ $\\Lambda_{6}$ \u00d7 $\\Lambda_{7}=(\\Lambda_{1})_{2}$ + $(\\Lambda_{2})_{3}$ + $(\\Lambda_{5})_{2}$ + $(\\Lambda_{6}+\\Lambda_{7})_{3}$ $\\Lambda_{6}$ \u00d7 $(\\Lambda_{5}+\\Lambda_{6})=(\\Lambda_{5})_{3}$ + $(2\\Lambda_{5})_{4}$ + $(2\\Lambda_{6})_{3}$ + $(\\Lambda_{6}+\\Lambda_{7})_{3}$ + $(\\Lambda_{1}+\\Lambda_{5})_{4}$ + $(\\Lambda_{4}+\\Lambda_{6})_{4}$ + $(\\Lambda_{1}+2\\Lambda_{6})_{4}$ + $(\\Lambda_{5}+2\\Lambda_{6})_{4}$ ", "page_idx": 12}] | [{"category_id": 1, "poly": [195, 1036, 1504, 1036, 1504, 1237, 195, 1237], "score": 0.981}, {"category_id": 1, "poly": [198, 1251, 1506, 1251, 1506, 1339, 198, 1339], "score": 0.963}, {"category_id": 1, "poly": [195, 660, 1505, 660, 1505, 780, 195, 780], "score": 0.956}, {"category_id": 1, "poly": [196, 1424, 1506, 1424, 1506, 1546, 196, 1546], "score": 0.952}, {"category_id": 1, "poly": [194, 193, 1506, 193, 1506, 284, 194, 284], "score": 0.945}, {"category_id": 8, "poly": [473, 831, 1001, 831, 1001, 877, 473, 877], "score": 0.929}, {"category_id": 8, "poly": [430, 982, 1158, 982, 1158, 1027, 430, 1027], "score": 0.922}, {"category_id": 1, "poly": [195, 295, 1504, 295, 1504, 568, 195, 568], "score": 0.92}, {"category_id": 1, "poly": [268, 782, 1232, 782, 1232, 821, 268, 821], "score": 0.913}, {"category_id": 9, "poly": [1412, 834, 1500, 834, 1500, 873, 1412, 873], "score": 0.892}, {"category_id": 9, "poly": [1412, 985, 1500, 985, 1500, 1023, 1412, 1023], "score": 0.88}, {"category_id": 2, "poly": [833, 2031, 869, 2031, 869, 2061, 833, 2061], "score": 0.878}, {"category_id": 9, "poly": [1416, 885, 1500, 885, 1500, 922, 1416, 922], "score": 0.876}, {"category_id": 8, "poly": [504, 1944, 1166, 1944, 1166, 1991, 504, 1991], "score": 0.859}, {"category_id": 8, "poly": [475, 883, 1036, 883, 1036, 925, 475, 925], "score": 0.851}, {"category_id": 1, "poly": [263, 1546, 1301, 1546, 1301, 1585, 263, 1585], "score": 0.825}, {"category_id": 8, "poly": [466, 932, 1265, 932, 1265, 975, 466, 975], "score": 0.813}, {"category_id": 9, "poly": [1417, 935, 1500, 935, 1500, 972, 1417, 972], "score": 0.726}, {"category_id": 0, "poly": [198, 1364, 511, 1364, 511, 1410, 198, 1410], "score": 0.644}, {"category_id": 0, "poly": [197, 602, 511, 602, 511, 646, 197, 646], "score": 0.643}, {"category_id": 1, "poly": [229, 1594, 1474, 1594, 1474, 1990, 229, 1990], "score": 0.388}, {"category_id": 1, "poly": [230, 1894, 1298, 1894, 1298, 1938, 230, 1938], "score": 0.382}, {"category_id": 9, "poly": [1418, 935, 1500, 935, 1500, 972, 1418, 972], "score": 0.335}, {"category_id": 1, "poly": [197, 602, 511, 602, 511, 646, 197, 646], "score": 0.316}, {"category_id": 1, "poly": [198, 1364, 511, 1364, 511, 1410, 198, 1410], "score": 0.295}, {"category_id": 8, "poly": [254, 1597, 1469, 1597, 1469, 1888, 254, 1888], "score": 0.267}, {"category_id": 13, "poly": [423, 1850, 585, 1850, 585, 1891, 423, 1891], "score": 0.94, "latex": "\\Lambda_{7}=(\\Lambda_{1})_{2}"}, {"category_id": 13, "poly": [1131, 299, 1252, 299, 1252, 370, 1131, 370], "score": 0.94, "latex": "\\pi[_{0}^{1}{\\bf\\Sigma}_{0}^{0}]"}, {"category_id": 13, "poly": [423, 1700, 585, 1700, 585, 1742, 423, 1742], "score": 0.94, "latex": "\\Lambda_{6}=(\\Lambda_{4})_{3}"}, {"category_id": 13, "poly": [1244, 374, 1423, 374, 1423, 411, 1244, 411], "score": 0.93, "latex": "\\Lambda_{1},\\Lambda_{r-1},\\Lambda_{r}"}, {"category_id": 13, "poly": [555, 1949, 715, 1949, 715, 1991, 555, 1991], "score": 0.93, "latex": "(\\Lambda_{4}+\\Lambda_{6})_{4}"}, {"category_id": 13, "poly": [423, 1650, 585, 1650, 585, 1692, 423, 1692], "score": 0.93, "latex": "\\Lambda_{6}=(\\Lambda_{6})_{2}"}, {"category_id": 13, "poly": [762, 1949, 939, 1949, 939, 1991, 762, 1991], "score": 0.93, "latex": "(\\Lambda_{1}+2\\Lambda_{6})_{4}"}, {"category_id": 13, "poly": [841, 1750, 939, 1750, 939, 1792, 841, 1792], "score": 0.93, "latex": "(3\\Lambda_{6})_{3}"}, {"category_id": 13, "poly": [262, 1300, 435, 1300, 435, 1340, 262, 1340], "score": 0.93, "latex": "a\\in\\{0,1,2\\}"}, {"category_id": 13, "poly": [762, 1850, 844, 1850, 844, 1891, 762, 1891], "score": 0.93, "latex": "(\\Lambda_{5})_{2}"}, {"category_id": 13, "poly": [762, 1700, 843, 1700, 843, 1742, 762, 1742], "score": 0.93, "latex": "(\\Lambda_{7})_{2}"}, {"category_id": 13, "poly": [633, 1899, 731, 1899, 731, 1941, 633, 1941], "score": 0.93, "latex": "(2\\Lambda_{5})_{4}"}, {"category_id": 13, "poly": [423, 1599, 563, 1599, 563, 1642, 423, 1642], "score": 0.93, "latex": "\\Lambda_{6}=(0)_{1}"}, {"category_id": 13, "poly": [924, 1899, 1085, 1899, 1085, 1941, 924, 1941], "score": 0.93, "latex": "(\\Lambda_{6}+\\Lambda_{7})_{3}"}, {"category_id": 13, "poly": [383, 1750, 585, 1750, 585, 1792, 383, 1792], "score": 0.92, "latex": "(2\\Lambda_{6})=(\\Lambda_{6})_{2}"}, {"category_id": 13, "poly": [633, 1750, 793, 1750, 793, 1792, 633, 1792], "score": 0.92, "latex": "(\\Lambda_{1}+\\Lambda_{6})_{3}"}, {"category_id": 13, "poly": [633, 1850, 714, 1850, 714, 1891, 633, 1891], "score": 0.92, "latex": "(\\Lambda_{2})_{3}"}, {"category_id": 13, "poly": [718, 1508, 1079, 1508, 1079, 1549, 718, 1549], "score": 0.92, "latex": "Q(\\lambda)=(\\lambda_{4}+\\lambda_{6}+\\lambda_{7})/2"}, {"category_id": 13, "poly": [365, 745, 806, 745, 806, 784, 365, 784], "score": 0.92, "latex": "J\\lambda=(\\lambda_{5},\\lambda_{0},\\lambda_{6},\\lambda_{3},\\lambda_{2},\\lambda_{1},\\lambda_{4})"}, {"category_id": 13, "poly": [1293, 1260, 1434, 1260, 1434, 1301, 1293, 1301], "score": 0.92, "latex": "i\\in\\{0,1\\}"}, {"category_id": 13, "poly": [633, 1700, 714, 1700, 714, 1742, 633, 1742], "score": 0.92, "latex": "(\\Lambda_{6})_{2}"}, {"category_id": 13, "poly": [423, 1800, 585, 1800, 585, 1842, 423, 1842], "score": 0.92, "latex": "\\Lambda_{6}=(\\Lambda_{2})_{3}"}, {"category_id": 13, "poly": [560, 936, 723, 936, 723, 978, 560, 978], "score": 0.92, "latex": "\\Lambda_{2}=(\\Lambda_{3})_{3}"}, {"category_id": 13, "poly": [780, 1899, 877, 1899, 877, 1941, 780, 1941], "score": 0.92, "latex": "(2\\Lambda_{6})_{3}"}, {"category_id": 13, "poly": [199, 412, 558, 412, 558, 453, 199, 453], "score": 0.92, "latex": "A(D_{o d d,1})\\:=\\:\\langle{C_{1}}\\rangle\\:\\cong\\:\\mathbb{Z}_{2}"}, {"category_id": 13, "poly": [321, 1899, 586, 1899, 586, 1941, 321, 1941], "score": 0.92, "latex": "(\\Lambda_{5}+\\Lambda_{6})=(\\Lambda_{5})_{3}"}, {"category_id": 13, "poly": [771, 936, 852, 936, 852, 978, 771, 978], "score": 0.92, "latex": "(\\Lambda_{6})_{2}"}, {"category_id": 13, "poly": [451, 454, 569, 454, 569, 493, 451, 493], "score": 0.92, "latex": "A(D_{4,2})"}, {"category_id": 13, "poly": [633, 1650, 714, 1650, 714, 1692, 633, 1692], "score": 0.92, "latex": "(\\Lambda_{7})_{2}"}, {"category_id": 13, "poly": [891, 1799, 1052, 1799, 1052, 1842, 891, 1842], "score": 0.92, "latex": "(\\Lambda_{1}+\\Lambda_{5})_{4}"}, {"category_id": 13, "poly": [892, 1700, 1052, 1700, 1052, 1742, 892, 1742], "score": 0.92, "latex": "(\\Lambda_{1}+\\Lambda_{6})_{3}"}, {"category_id": 13, "poly": [1271, 671, 1419, 671, 1419, 699, 1271, 699], "score": 0.92, "latex": "\\kappa=k\\!+\\!12"}, {"category_id": 13, "poly": [612, 1600, 693, 1600, 693, 1642, 612, 1642], "score": 0.92, "latex": "(\\Lambda_{1})_{2}"}, {"category_id": 13, "poly": [749, 886, 831, 886, 831, 928, 749, 928], "score": 0.92, "latex": "(\\Lambda_{6})_{2}"}, {"category_id": 13, "poly": [917, 1251, 981, 1251, 981, 1302, 917, 1302], "score": 0.92, "latex": "E_{6}^{(1)}"}, {"category_id": 13, "poly": [762, 1799, 844, 1799, 844, 1842, 762, 1842], "score": 0.92, "latex": "(\\Lambda_{5})_{3}"}, {"category_id": 13, "poly": [198, 1508, 601, 1508, 601, 1549, 198, 1549], "score": 0.91, "latex": "J\\lambda=(\\lambda_{6},\\lambda_{5},...\\,,\\lambda_{1},\\lambda_{0},\\lambda_{7})"}, {"category_id": 13, "poly": [1370, 413, 1500, 413, 1500, 452, 1370, 452], "score": 0.91, "latex": "\\mathbb{Z}_{r}^{\\times}\\times\\mathbb{Z}_{2}"}, {"category_id": 13, "poly": [540, 245, 711, 245, 711, 286, 540, 286], "score": 0.91, "latex": "a,b\\in\\{0,1\\}"}, {"category_id": 13, "poly": [633, 1799, 715, 1799, 715, 1842, 633, 1842], "score": 0.91, "latex": "(\\Lambda_{3})_{4}"}, {"category_id": 13, "poly": [561, 886, 702, 886, 702, 928, 561, 928], "score": 0.91, "latex": "\\Lambda_{5}=(0)_{1}"}, {"category_id": 13, "poly": [891, 1850, 1052, 1850, 1052, 1891, 891, 1891], "score": 0.91, "latex": "(\\Lambda_{6}+\\Lambda_{7})_{3}"}, {"category_id": 13, "poly": [771, 835, 852, 835, 852, 878, 771, 878], "score": 0.91, "latex": "(\\Lambda_{5})_{1}"}, {"category_id": 13, "poly": [808, 411, 1314, 411, 1314, 453, 808, 453], "score": 0.91, "latex": "{\\cal A}(D_{r,2})\\,\\cong\\,(\\mathbb{Z}_{2r}^{\\times}/\\{\\pm1\\})\\,\\times\\,\\mathbb{Z}_{2}\\,\\times\\,\\mathbb{Z}_{2}"}, {"category_id": 13, "poly": [741, 1599, 822, 1599, 822, 1642, 741, 1642], "score": 0.91, "latex": "(\\Lambda_{5})_{2}"}, {"category_id": 13, "poly": [889, 744, 1354, 744, 1354, 785, 889, 785], "score": 0.91, "latex": "Q(\\lambda)=(-\\lambda_{1}+\\lambda_{2}-\\lambda_{4}+\\lambda_{5})/3"}, {"category_id": 13, "poly": [198, 1469, 368, 1469, 368, 1504, 198, 1504], "score": 0.91, "latex": "\\kappa\\,=\\,k\\,+\\,18"}, {"category_id": 13, "poly": [958, 1122, 1050, 1122, 1050, 1155, 958, 1155], "score": 0.91, "latex": "k\\,=\\,1"}, {"category_id": 13, "poly": [587, 1121, 678, 1121, 678, 1158, 587, 1158], "score": 0.91, "latex": "k\\geq2"}, {"category_id": 13, "poly": [695, 207, 779, 207, 779, 239, 695, 239], "score": 0.9, "latex": "k=2"}, {"category_id": 13, "poly": [466, 667, 511, 667, 511, 704, 466, 704], "score": 0.9, "latex": "P_{+}"}, {"category_id": 13, "poly": [1050, 1258, 1152, 1258, 1152, 1301, 1050, 1301], "score": 0.9, "latex": "C^{i}\\,\\pi[a]"}, {"category_id": 13, "poly": [849, 244, 971, 244, 971, 285, 849, 285], "score": 0.9, "latex": "m\\in\\mathbb{Z}_{2r}^{\\times}"}, {"category_id": 13, "poly": [762, 1650, 923, 1650, 923, 1692, 762, 1692], "score": 0.9, "latex": "(\\Lambda_{1}+\\Lambda_{6})_{3}"}, {"category_id": 13, "poly": [448, 1367, 511, 1367, 511, 1416, 448, 1416], "score": 0.9, "latex": "{E}_{7}^{(1)}"}, {"category_id": 13, "poly": [410, 372, 665, 372, 665, 413, 410, 413], "score": 0.9, "latex": "A(D_{e v e n,1})\\cong{\\mathfrak{S}}_{3}"}, {"category_id": 13, "poly": [990, 247, 1144, 247, 1144, 284, 990, 284], "score": 0.9, "latex": "1\\leq m<r"}, {"category_id": 13, "poly": [336, 1651, 377, 1651, 377, 1689, 336, 1689], "score": 0.9, "latex": "\\Lambda_{1}"}, {"category_id": 13, "poly": [199, 197, 264, 197, 264, 246, 199, 246], "score": 0.9, "latex": "{D}_{4}^{(1)}"}, {"category_id": 13, "poly": [448, 605, 511, 605, 511, 652, 448, 652], "score": 0.9, "latex": "E_{6}^{(1)}"}, {"category_id": 13, "poly": [1133, 1898, 1293, 1898, 1293, 1941, 1133, 1941], "score": 0.9, "latex": "(\\Lambda_{1}+\\Lambda_{5})_{4}"}, {"category_id": 13, "poly": [485, 1430, 531, 1430, 531, 1468, 485, 1468], "score": 0.89, "latex": "P_{+}"}, {"category_id": 13, "poly": [594, 705, 1044, 705, 1044, 744, 594, 744], "score": 0.89, "latex": "C\\lambda=(\\lambda_{0},\\lambda_{5},\\lambda_{4},\\lambda_{3},\\lambda_{2},\\lambda_{1},\\lambda_{6})"}, {"category_id": 13, "poly": [635, 667, 1201, 667, 1201, 702, 635, 702], "score": 0.89, "latex": "k=\\lambda_{0}\\!+\\!\\lambda_{1}\\!+\\!2\\lambda_{2}\\!+\\!3\\lambda_{3}\\!+\\!2\\lambda_{4}\\!+\\!\\lambda_{5}\\!+\\!2\\lambda_{6}"}, {"category_id": 13, "poly": [520, 986, 739, 986, 739, 1029, 520, 1029], "score": 0.89, "latex": "(2\\Lambda_{1})=(3\\Lambda_{1})_{3}"}, {"category_id": 13, "poly": [987, 1949, 1164, 1949, 1164, 1991, 987, 1991], "score": 0.89, "latex": "(\\Lambda_{5}+2\\Lambda_{6})_{4}"}, {"category_id": 13, "poly": [560, 835, 723, 835, 723, 878, 560, 878], "score": 0.89, "latex": "\\Lambda_{1}=(\\Lambda_{2})_{2}"}, {"category_id": 13, "poly": [335, 1700, 377, 1700, 377, 1739, 335, 1739], "score": 0.89, "latex": "\\Lambda_{5}"}, {"category_id": 13, "poly": [241, 243, 477, 243, 477, 286, 241, 286], "score": 0.89, "latex": "\\pi=C_{1}^{a}\\,\\pi_{v}^{b}\\,\\pi\\{m\\}"}, {"category_id": 13, "poly": [335, 1850, 378, 1850, 378, 1889, 335, 1889], "score": 0.89, "latex": "\\Lambda_{6}"}, {"category_id": 13, "poly": [879, 886, 1039, 886, 1039, 928, 879, 928], "score": 0.89, "latex": "(\\Lambda_{1}+\\Lambda_{5})_{2}"}, {"category_id": 13, "poly": [198, 490, 383, 490, 383, 579, 198, 579], "score": 0.89, "latex": "C_{i}\\,\\pi\\,\\left[\\begin{array}{l l}{a}&{0}\\\\ {0}&{d}\\end{array}\\right]"}, {"category_id": 13, "poly": [987, 1750, 1147, 1750, 1147, 1792, 987, 1792], "score": 0.89, "latex": "(\\Lambda_{5}+\\Lambda_{6})_{3}"}, {"category_id": 13, "poly": [1099, 1799, 1260, 1799, 1260, 1842, 1099, 1842], "score": 0.88, "latex": "(\\Lambda_{4}+\\Lambda_{6})_{4}"}, {"category_id": 13, "poly": [666, 1430, 1422, 1430, 1422, 1466, 666, 1466], "score": 0.88, "latex": "k\\,=\\,\\lambda_{0}+2\\lambda_{1}+3\\lambda_{2}+4\\lambda_{3}+3\\lambda_{4}+2\\lambda_{5}+\\lambda_{6}+2\\lambda_{7}"}, {"category_id": 13, "poly": [865, 1122, 906, 1122, 906, 1158, 865, 1158], "score": 0.88, "latex": "\\Lambda_{5}"}, {"category_id": 13, "poly": [899, 936, 1060, 936, 1060, 978, 899, 978], "score": 0.88, "latex": "(\\Lambda_{1}+\\Lambda_{2})_{3}"}, {"category_id": 13, "poly": [335, 1800, 378, 1800, 378, 1839, 335, 1839], "score": 0.88, "latex": "\\Lambda_{4}"}, {"category_id": 13, "poly": [851, 208, 931, 208, 931, 240, 851, 240], "score": 0.87, "latex": "r>4"}, {"category_id": 13, "poly": [377, 1120, 458, 1120, 458, 1160, 377, 1160], "score": 0.87, "latex": "(2\\Lambda_{1})"}, {"category_id": 13, "poly": [871, 1599, 968, 1599, 968, 1642, 871, 1642], "score": 0.87, "latex": "(2\\Lambda_{6})_{2}"}, {"category_id": 13, "poly": [335, 1600, 377, 1600, 377, 1640, 335, 1640], "score": 0.87, "latex": "\\Lambda_{6}"}, {"category_id": 13, "poly": [1477, 712, 1500, 712, 1500, 737, 1477, 737], "score": 0.87, "latex": "J"}, {"category_id": 13, "poly": [292, 1750, 335, 1750, 335, 1790, 292, 1790], "score": 0.86, "latex": "\\Lambda_{6}"}, {"category_id": 13, "poly": [1099, 1700, 1260, 1700, 1260, 1742, 1099, 1742], "score": 0.86, "latex": "(\\Lambda_{5}+\\Lambda_{6})_{3}"}, {"category_id": 13, "poly": [297, 373, 388, 373, 388, 407, 297, 407], "score": 0.86, "latex": "k\\,=\\,1"}, {"category_id": 13, "poly": [285, 1120, 327, 1120, 327, 1158, 285, 1158], "score": 0.86, "latex": "\\Lambda_{5}"}, {"category_id": 13, "poly": [230, 1899, 273, 1899, 273, 1939, 230, 1939], "score": 0.86, "latex": "\\Lambda_{6}"}, {"category_id": 13, "poly": [900, 836, 998, 836, 998, 878, 900, 878], "score": 0.86, "latex": "(2\\Lambda_{1})_{2}"}, {"category_id": 13, "poly": [313, 207, 396, 207, 396, 239, 313, 239], "score": 0.86, "latex": "k=2"}, {"category_id": 13, "poly": [199, 1123, 238, 1123, 238, 1158, 199, 1158], "score": 0.86, "latex": "\\Lambda_{2}"}, {"category_id": 13, "poly": [1307, 1799, 1467, 1799, 1467, 1843, 1307, 1843], "score": 0.85, "latex": "(\\Lambda_{6}+\\Lambda_{7})_{3}"}, {"category_id": 13, "poly": [691, 415, 785, 415, 785, 448, 691, 448], "score": 0.85, "latex": "r\\,>\\,4"}, {"category_id": 13, "poly": [1339, 1475, 1363, 1475, 1363, 1501, 1339, 1501], "score": 0.84, "latex": "J"}, {"category_id": 13, "poly": [472, 936, 515, 936, 515, 975, 472, 975], "score": 0.84, "latex": "\\Lambda_{1}"}, {"category_id": 13, "poly": [264, 324, 301, 324, 301, 353, 264, 353], "score": 0.82, "latex": "\\pi_{v}"}, {"category_id": 13, "poly": [787, 985, 946, 985, 946, 1029, 787, 1029], "score": 0.82, "latex": "(\\Lambda_{1}+\\Lambda_{2})_{3}"}, {"category_id": 13, "poly": [401, 667, 424, 667, 424, 697, 401, 697], "score": 0.8, "latex": "\\lambda"}, {"category_id": 13, "poly": [409, 1430, 434, 1430, 434, 1462, 409, 1462], "score": 0.8, "latex": "\\lambda"}, {"category_id": 13, "poly": [1266, 1080, 1308, 1080, 1308, 1118, 1266, 1118], "score": 0.79, "latex": "\\Lambda_{1}"}, {"category_id": 13, "poly": [591, 1302, 691, 1302, 691, 1339, 591, 1339], "score": 0.74, "latex": "a k\\not\\equiv1"}, {"category_id": 13, "poly": [472, 887, 515, 887, 515, 926, 472, 926], "score": 0.73, "latex": "\\Lambda_{1}"}, {"category_id": 13, "poly": [430, 986, 471, 986, 471, 1025, 430, 1025], "score": 0.72, "latex": "\\Lambda_{1}"}, {"category_id": 13, "poly": [472, 836, 515, 836, 515, 875, 472, 875], "score": 0.67, "latex": "\\Lambda_{1}"}, {"category_id": 13, "poly": [1355, 1080, 1397, 1080, 1397, 1117, 1355, 1117], "score": 0.67, "latex": "\\Lambda_{1}"}, {"category_id": 13, "poly": [252, 462, 271, 462, 271, 485, 252, 485], "score": 0.65, "latex": "r"}, {"category_id": 13, "poly": [1324, 325, 1344, 325, 1344, 349, 1324, 349], "score": 0.64, "latex": "r"}, {"category_id": 13, "poly": [1263, 215, 1287, 215, 1287, 238, 1263, 238], "score": 0.63, "latex": "\\pi"}, {"category_id": 13, "poly": [1107, 935, 1268, 935, 1268, 978, 1107, 978], "score": 0.62, "latex": "(\\Lambda_{1}+\\Lambda_{5})_{2}"}, {"category_id": 13, "poly": [995, 985, 1156, 985, 1156, 1029, 995, 1029], "score": 0.54, "latex": "(\\Lambda_{1}+\\Lambda_{5})_{2}"}, {"category_id": 13, "poly": [1022, 325, 1044, 325, 1044, 349, 1022, 349], "score": 0.51, "latex": "\\pi"}, {"category_id": 14, "poly": [785, 984, 1156, 984, 1156, 1029, 785, 1029], "score": 0.38, "latex": "(\\Lambda_{1}+\\Lambda_{2})_{3}\\sqcup(\\Lambda_{1}+\\Lambda_{5})_{2}"}, {"category_id": 13, "poly": [1268, 1079, 1397, 1079, 1397, 1118, 1268, 1118], "score": 0.36, "latex": "\\Lambda_{1}\\boxtimes\\Lambda_{1}"}, {"category_id": 13, "poly": [1022, 315, 1081, 315, 1081, 357, 1022, 357], "score": 0.26, "latex": "\\pi[2]"}, {"category_id": 15, "poly": [196.0, 1041.0, 1501.0, 1041.0, 1501.0, 1086.0, 196.0, 1086.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [196.0, 1083.0, 1265.0, 1083.0, 1265.0, 1122.0, 196.0, 1122.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1398.0, 1083.0, 1503.0, 1083.0, 1503.0, 1122.0, 1398.0, 1122.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [196.0, 1118.0, 198.0, 1118.0, 198.0, 1168.0, 196.0, 1168.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [239.0, 1118.0, 284.0, 1118.0, 284.0, 1168.0, 239.0, 1168.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [328.0, 1118.0, 376.0, 1118.0, 376.0, 1168.0, 328.0, 1168.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [459.0, 1118.0, 586.0, 1118.0, 586.0, 1168.0, 459.0, 1168.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [679.0, 1118.0, 864.0, 1118.0, 864.0, 1168.0, 679.0, 1168.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [907.0, 1118.0, 957.0, 1118.0, 957.0, 1168.0, 907.0, 1168.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1051.0, 1118.0, 1506.0, 1118.0, 1506.0, 1168.0, 1051.0, 1168.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [195.0, 1162.0, 1504.0, 1162.0, 1504.0, 1204.0, 195.0, 1204.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [199.0, 1204.0, 943.0, 1204.0, 943.0, 1243.0, 199.0, 1243.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [252.0, 1250.0, 916.0, 1250.0, 916.0, 1321.0, 252.0, 1321.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [982.0, 1250.0, 1049.0, 1250.0, 1049.0, 1321.0, 982.0, 1321.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1153.0, 1250.0, 1292.0, 1250.0, 1292.0, 1321.0, 1153.0, 1321.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1435.0, 1250.0, 1506.0, 1250.0, 1506.0, 1321.0, 1435.0, 1321.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [199.0, 1299.0, 261.0, 1299.0, 261.0, 1348.0, 199.0, 1348.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [436.0, 1299.0, 590.0, 1299.0, 590.0, 1348.0, 436.0, 1348.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [692.0, 1299.0, 832.0, 1299.0, 832.0, 1348.0, 692.0, 1348.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [264.0, 666.0, 400.0, 666.0, 400.0, 709.0, 264.0, 709.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [425.0, 666.0, 465.0, 666.0, 465.0, 709.0, 425.0, 709.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [512.0, 666.0, 634.0, 666.0, 634.0, 709.0, 512.0, 709.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1202.0, 666.0, 1270.0, 666.0, 1270.0, 709.0, 1202.0, 709.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1420.0, 666.0, 1505.0, 666.0, 1505.0, 709.0, 1420.0, 709.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [202.0, 705.0, 593.0, 705.0, 593.0, 748.0, 202.0, 748.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1045.0, 705.0, 1476.0, 705.0, 1476.0, 748.0, 1045.0, 748.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1501.0, 705.0, 1504.0, 705.0, 1504.0, 748.0, 1501.0, 748.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [193.0, 746.0, 364.0, 746.0, 364.0, 789.0, 193.0, 789.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [807.0, 746.0, 888.0, 746.0, 888.0, 789.0, 807.0, 789.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1355.0, 746.0, 1363.0, 746.0, 1363.0, 789.0, 1355.0, 789.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [262.0, 1430.0, 408.0, 1430.0, 408.0, 1471.0, 262.0, 1471.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [435.0, 1430.0, 484.0, 1430.0, 484.0, 1471.0, 435.0, 1471.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [532.0, 1430.0, 665.0, 1430.0, 665.0, 1471.0, 532.0, 1471.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1423.0, 1430.0, 1506.0, 1430.0, 1506.0, 1471.0, 1423.0, 1471.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [195.0, 1470.0, 197.0, 1470.0, 197.0, 1514.0, 195.0, 1514.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [369.0, 1470.0, 1338.0, 1470.0, 1338.0, 1514.0, 369.0, 1514.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1364.0, 1470.0, 1503.0, 1470.0, 1503.0, 1514.0, 1364.0, 1514.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [196.0, 1509.0, 197.0, 1509.0, 197.0, 1554.0, 196.0, 1554.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [602.0, 1509.0, 717.0, 1509.0, 717.0, 1554.0, 602.0, 1554.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1080.0, 1509.0, 1089.0, 1509.0, 1089.0, 1554.0, 1080.0, 1554.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [194.0, 188.0, 198.0, 188.0, 198.0, 256.0, 194.0, 256.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [265.0, 188.0, 312.0, 188.0, 312.0, 256.0, 265.0, 256.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [397.0, 188.0, 694.0, 188.0, 694.0, 256.0, 397.0, 256.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [780.0, 188.0, 850.0, 188.0, 850.0, 256.0, 780.0, 256.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [932.0, 188.0, 1262.0, 188.0, 1262.0, 256.0, 932.0, 256.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1288.0, 188.0, 1512.0, 188.0, 1512.0, 256.0, 1288.0, 256.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [196.0, 241.0, 240.0, 241.0, 240.0, 295.0, 196.0, 295.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [478.0, 241.0, 539.0, 241.0, 539.0, 295.0, 478.0, 295.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [712.0, 241.0, 848.0, 241.0, 848.0, 295.0, 712.0, 295.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [972.0, 241.0, 989.0, 241.0, 989.0, 295.0, 972.0, 295.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1145.0, 241.0, 1162.0, 241.0, 1162.0, 295.0, 1145.0, 295.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [258.0, 307.0, 263.0, 307.0, 263.0, 372.0, 258.0, 372.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [302.0, 307.0, 1021.0, 307.0, 1021.0, 372.0, 302.0, 372.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1082.0, 307.0, 1130.0, 307.0, 1130.0, 372.0, 1082.0, 372.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [196.0, 370.0, 296.0, 370.0, 296.0, 418.0, 196.0, 418.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [389.0, 370.0, 409.0, 370.0, 409.0, 418.0, 389.0, 418.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [666.0, 370.0, 1243.0, 370.0, 1243.0, 418.0, 666.0, 418.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1424.0, 370.0, 1506.0, 370.0, 1506.0, 418.0, 1424.0, 418.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [198.0, 413.0, 198.0, 413.0, 198.0, 462.0, 198.0, 462.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [559.0, 413.0, 690.0, 413.0, 690.0, 462.0, 559.0, 462.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [786.0, 413.0, 807.0, 413.0, 807.0, 462.0, 786.0, 462.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1315.0, 413.0, 1369.0, 413.0, 1369.0, 462.0, 1315.0, 462.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1501.0, 413.0, 1506.0, 413.0, 1506.0, 462.0, 1501.0, 462.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [196.0, 453.0, 251.0, 453.0, 251.0, 496.0, 196.0, 496.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [272.0, 453.0, 450.0, 453.0, 450.0, 496.0, 272.0, 496.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [570.0, 453.0, 1504.0, 453.0, 1504.0, 496.0, 570.0, 496.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [384.0, 533.0, 388.0, 533.0, 388.0, 572.0, 384.0, 572.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1168.0, 293.0, 1515.0, 293.0, 1515.0, 393.5, 1168.0, 393.5], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [266.0, 786.0, 1223.0, 786.0, 1223.0, 825.0, 266.0, 825.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [829.0, 2033.0, 872.0, 2033.0, 872.0, 2070.0, 829.0, 2070.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [268.0, 1552.0, 1294.0, 1552.0, 1294.0, 1589.0, 268.0, 1589.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [190.75, 1364.0, 518.75, 1364.0, 518.75, 1422.5, 190.75, 1422.5], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [189.0, 603.0, 447.0, 603.0, 447.0, 661.0, 189.0, 661.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [512.0, 603.0, 519.0, 603.0, 519.0, 661.0, 512.0, 661.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [378.0, 1599.0, 422.0, 1599.0, 422.0, 1646.0, 378.0, 1646.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [564.0, 1599.0, 611.0, 1599.0, 611.0, 1646.0, 564.0, 1646.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [694.0, 1599.0, 740.0, 1599.0, 740.0, 1646.0, 694.0, 1646.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [823.0, 1599.0, 870.0, 1599.0, 870.0, 1646.0, 823.0, 1646.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [969.0, 1599.0, 969.0, 1599.0, 969.0, 1646.0, 969.0, 1646.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [378.0, 1651.0, 422.0, 1651.0, 422.0, 1695.0, 378.0, 1695.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [586.0, 1651.0, 632.0, 1651.0, 632.0, 1695.0, 586.0, 1695.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [715.0, 1651.0, 761.0, 1651.0, 761.0, 1695.0, 715.0, 1695.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [924.0, 1651.0, 924.0, 1651.0, 924.0, 1695.0, 924.0, 1695.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [378.0, 1699.0, 422.0, 1699.0, 422.0, 1744.0, 378.0, 1744.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [586.0, 1699.0, 632.0, 1699.0, 632.0, 1744.0, 586.0, 1744.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [715.0, 1699.0, 761.0, 1699.0, 761.0, 1744.0, 715.0, 1744.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [844.0, 1699.0, 891.0, 1699.0, 891.0, 1744.0, 844.0, 1744.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1053.0, 1699.0, 1098.0, 1699.0, 1098.0, 1744.0, 1053.0, 1744.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1261.0, 1699.0, 1261.0, 1699.0, 1261.0, 1744.0, 1261.0, 1744.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [336.0, 1750.0, 382.0, 1750.0, 382.0, 1795.0, 336.0, 1795.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [586.0, 1750.0, 632.0, 1750.0, 632.0, 1795.0, 586.0, 1795.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [794.0, 1750.0, 840.0, 1750.0, 840.0, 1795.0, 794.0, 1795.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [940.0, 1750.0, 986.0, 1750.0, 986.0, 1795.0, 940.0, 1795.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1148.0, 1750.0, 1149.0, 1750.0, 1149.0, 1795.0, 1148.0, 1795.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [379.0, 1798.0, 422.0, 1798.0, 422.0, 1847.0, 379.0, 1847.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [586.0, 1798.0, 632.0, 1798.0, 632.0, 1847.0, 586.0, 1847.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [716.0, 1798.0, 761.0, 1798.0, 761.0, 1847.0, 716.0, 1847.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [845.0, 1798.0, 890.0, 1798.0, 890.0, 1847.0, 845.0, 1847.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1053.0, 1798.0, 1098.0, 1798.0, 1098.0, 1847.0, 1053.0, 1847.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1261.0, 1798.0, 1306.0, 1798.0, 1306.0, 1847.0, 1261.0, 1847.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1468.0, 1798.0, 1468.0, 1798.0, 1468.0, 1847.0, 1468.0, 1847.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [379.0, 1848.0, 422.0, 1848.0, 422.0, 1895.0, 379.0, 1895.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [586.0, 1848.0, 632.0, 1848.0, 632.0, 1895.0, 586.0, 1895.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [715.0, 1848.0, 761.0, 1848.0, 761.0, 1895.0, 715.0, 1895.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [845.0, 1848.0, 890.0, 1848.0, 890.0, 1895.0, 845.0, 1895.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1053.0, 1848.0, 1055.0, 1848.0, 1055.0, 1895.0, 1053.0, 1895.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [274.0, 1900.0, 320.0, 1900.0, 320.0, 1944.0, 274.0, 1944.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [587.0, 1900.0, 632.0, 1900.0, 632.0, 1944.0, 587.0, 1944.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [732.0, 1900.0, 779.0, 1900.0, 779.0, 1944.0, 732.0, 1944.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [878.0, 1900.0, 923.0, 1900.0, 923.0, 1944.0, 878.0, 1944.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1086.0, 1900.0, 1132.0, 1900.0, 1132.0, 1944.0, 1086.0, 1944.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [510.0, 1947.0, 554.0, 1947.0, 554.0, 1995.0, 510.0, 1995.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [716.0, 1947.0, 761.0, 1947.0, 761.0, 1995.0, 716.0, 1995.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [940.0, 1947.0, 986.0, 1947.0, 986.0, 1995.0, 940.0, 1995.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [274.0, 1902.0, 320.0, 1902.0, 320.0, 1944.0, 274.0, 1944.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [587.0, 1902.0, 632.0, 1902.0, 632.0, 1944.0, 587.0, 1944.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [732.0, 1902.0, 779.0, 1902.0, 779.0, 1944.0, 732.0, 1944.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [878.0, 1902.0, 923.0, 1902.0, 923.0, 1944.0, 878.0, 1944.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1086.0, 1902.0, 1132.0, 1902.0, 1132.0, 1944.0, 1086.0, 1944.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [189.0, 603.0, 447.0, 603.0, 447.0, 661.0, 189.0, 661.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [512.0, 603.0, 519.0, 603.0, 519.0, 661.0, 512.0, 661.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [190.75, 1364.0, 518.75, 1364.0, 518.75, 1422.5, 190.75, 1422.5], "score": 1.0, "text": ""}] | {"preproc_blocks": [{"type": "text", "bbox": [69, 69, 542, 102], "lines": [{"bbox": [71, 67, 544, 92], "spans": [{"bbox": [71, 70, 95, 88], "score": 0.9, "content": "{D}_{4}^{(1)}", "type": "inline_equation", "height": 18, "width": 24}, {"bbox": [95, 67, 112, 92], "score": 1.0, "content": "at ", "type": "text"}, {"bbox": [112, 74, 142, 86], "score": 0.86, "content": "k=2", "type": "inline_equation", "height": 12, "width": 30}, {"bbox": [142, 67, 249, 92], "score": 1.0, "content": ". Finally, when both", "type": "text"}, {"bbox": [250, 74, 280, 86], "score": 0.9, "content": "k=2", "type": "inline_equation", "height": 12, "width": 30}, {"bbox": [280, 67, 306, 92], "score": 1.0, "content": " and ", "type": "text"}, {"bbox": [306, 74, 335, 86], "score": 0.87, "content": "r>4", "type": "inline_equation", "height": 12, "width": 29}, {"bbox": [335, 67, 454, 92], "score": 1.0, "content": ", any fusion-symmetry ", "type": "text"}, {"bbox": [454, 77, 463, 85], "score": 0.63, "content": "\\pi", "type": "inline_equation", "height": 8, "width": 9}, {"bbox": [463, 67, 544, 92], "score": 1.0, "content": " can be written", "type": "text"}], "index": 0}, {"bbox": [70, 86, 418, 106], "spans": [{"bbox": [70, 86, 86, 106], "score": 1.0, "content": "as ", "type": "text"}, {"bbox": [86, 87, 171, 102], "score": 0.89, "content": "\\pi=C_{1}^{a}\\,\\pi_{v}^{b}\\,\\pi\\{m\\}", "type": "inline_equation", "height": 15, "width": 85}, {"bbox": [172, 86, 194, 106], "score": 1.0, "content": " for ", "type": "text"}, {"bbox": [194, 88, 255, 102], "score": 0.91, "content": "a,b\\in\\{0,1\\}", "type": "inline_equation", "height": 14, "width": 61}, {"bbox": [256, 86, 305, 106], "score": 1.0, "content": " and any ", "type": "text"}, {"bbox": [305, 87, 349, 102], "score": 0.9, "content": "m\\in\\mathbb{Z}_{2r}^{\\times}", "type": "inline_equation", "height": 15, "width": 44}, {"bbox": [349, 86, 356, 106], "score": 1.0, "content": ", ", "type": "text"}, {"bbox": [356, 88, 411, 102], "score": 0.9, "content": "1\\leq m<r", "type": "inline_equation", "height": 14, "width": 55}, {"bbox": [412, 86, 418, 106], "score": 1.0, "content": ".", "type": "text"}], "index": 1}], "index": 0.5}, {"type": "text", "bbox": [70, 106, 541, 204], "lines": [{"bbox": [95, 105, 545, 141], "spans": [{"bbox": [95, 116, 108, 127], "score": 0.82, "content": "\\pi_{v}", "type": "inline_equation", "height": 11, "width": 13}, {"bbox": [108, 110, 367, 133], "score": 1.0, "content": " here refers to the simple-current automorphism ", "type": "text"}, {"bbox": [367, 113, 389, 128], "score": 0.26, "content": "\\pi[2]", "type": "inline_equation", "height": 15, "width": 22}, {"bbox": [389, 110, 406, 133], "score": 1.0, "content": " or", "type": "text"}, {"bbox": [420, 105, 545, 141], "score": 1.0, "content": " 10 00 ], for r odd/even.", "type": "text"}], "index": 2}, {"bbox": [70, 133, 542, 150], "spans": [{"bbox": [70, 133, 106, 150], "score": 1.0, "content": "When ", "type": "text"}, {"bbox": [106, 134, 139, 146], "score": 0.86, "content": "k\\,=\\,1", "type": "inline_equation", "height": 12, "width": 33}, {"bbox": [140, 133, 147, 150], "score": 1.0, "content": ", ", "type": "text"}, {"bbox": [147, 133, 239, 148], "score": 0.9, "content": "A(D_{e v e n,1})\\cong{\\mathfrak{S}}_{3}", "type": "inline_equation", "height": 15, "width": 92}, {"bbox": [239, 133, 447, 150], "score": 1.0, "content": ", corresponding to any permutation of ", "type": "text"}, {"bbox": [447, 134, 512, 147], "score": 0.93, "content": "\\Lambda_{1},\\Lambda_{r-1},\\Lambda_{r}", "type": "inline_equation", "height": 13, "width": 65}, {"bbox": [512, 133, 542, 150], "score": 1.0, "content": ", and", "type": "text"}], "index": 3}, {"bbox": [71, 147, 540, 166], "spans": [{"bbox": [71, 148, 200, 163], "score": 0.92, "content": "A(D_{o d d,1})\\:=\\:\\langle{C_{1}}\\rangle\\:\\cong\\:\\mathbb{Z}_{2}", "type": "inline_equation", "height": 15, "width": 129}, {"bbox": [201, 148, 248, 166], "score": 1.0, "content": ". When ", "type": "text"}, {"bbox": [248, 149, 282, 161], "score": 0.85, "content": "r\\,>\\,4", "type": "inline_equation", "height": 12, "width": 34}, {"bbox": [282, 148, 290, 166], "score": 1.0, "content": ", ", "type": "text"}, {"bbox": [290, 147, 473, 163], "score": 0.91, "content": "{\\cal A}(D_{r,2})\\,\\cong\\,(\\mathbb{Z}_{2r}^{\\times}/\\{\\pm1\\})\\,\\times\\,\\mathbb{Z}_{2}\\,\\times\\,\\mathbb{Z}_{2}", "type": "inline_equation", "height": 16, "width": 183}, {"bbox": [473, 148, 492, 166], "score": 1.0, "content": " or ", "type": "text"}, {"bbox": [493, 148, 540, 162], "score": 0.91, "content": "\\mathbb{Z}_{r}^{\\times}\\times\\mathbb{Z}_{2}", "type": "inline_equation", "height": 14, "width": 47}], "index": 4}, {"bbox": [70, 163, 541, 178], "spans": [{"bbox": [70, 163, 90, 178], "score": 1.0, "content": "for ", "type": "text"}, {"bbox": [90, 166, 97, 174], "score": 0.65, "content": "r", "type": "inline_equation", "height": 8, "width": 7}, {"bbox": [97, 163, 162, 178], "score": 1.0, "content": " even/odd. ", "type": "text"}, {"bbox": [162, 163, 204, 177], "score": 0.92, "content": "A(D_{4,2})", "type": "inline_equation", "height": 14, "width": 42}, {"bbox": [205, 163, 541, 178], "score": 1.0, "content": " has 24 elements, and any element can be written uniquely as", "type": "text"}], "index": 5}, {"bbox": [71, 176, 137, 208], "spans": [{"bbox": [71, 176, 137, 208], "score": 0.89, "content": "C_{i}\\,\\pi\\,\\left[\\begin{array}{l l}{a}&{0}\\\\ {0}&{d}\\end{array}\\right]", "type": "inline_equation", "height": 32, "width": 66}], "index": 6}], "index": 4}, {"type": "title", "bbox": [70, 216, 183, 232], "lines": [{"bbox": [68, 217, 183, 237], "spans": [{"bbox": [68, 217, 160, 237], "score": 1.0, "content": "3.5. The algebra ", "type": "text"}, {"bbox": [161, 217, 183, 234], "score": 0.9, "content": "E_{6}^{(1)}", "type": "inline_equation", "height": 17, "width": 22}], "index": 7}], "index": 7}, {"type": "text", "bbox": [70, 237, 541, 280], "lines": [{"bbox": [95, 239, 541, 255], "spans": [{"bbox": [95, 239, 144, 255], "score": 1.0, "content": "A weight ", "type": "text"}, {"bbox": [144, 240, 152, 250], "score": 0.8, "content": "\\lambda", "type": "inline_equation", "height": 10, "width": 8}, {"bbox": [153, 239, 167, 255], "score": 1.0, "content": " of ", "type": "text"}, {"bbox": [167, 240, 183, 253], "score": 0.9, "content": "P_{+}", "type": "inline_equation", "height": 13, "width": 16}, {"bbox": [184, 239, 228, 255], "score": 1.0, "content": " satisfies", "type": "text"}, {"bbox": [228, 240, 432, 252], "score": 0.89, "content": "k=\\lambda_{0}\\!+\\!\\lambda_{1}\\!+\\!2\\lambda_{2}\\!+\\!3\\lambda_{3}\\!+\\!2\\lambda_{4}\\!+\\!\\lambda_{5}\\!+\\!2\\lambda_{6}", "type": "inline_equation", "height": 12, "width": 204}, {"bbox": [432, 239, 457, 255], "score": 1.0, "content": " and ", "type": "text"}, {"bbox": [457, 241, 510, 251], "score": 0.92, "content": "\\kappa=k\\!+\\!12", "type": "inline_equation", "height": 10, "width": 53}, {"bbox": [511, 239, 541, 255], "score": 1.0, "content": ". The", "type": "text"}], "index": 8}, {"bbox": [72, 253, 540, 269], "spans": [{"bbox": [72, 253, 213, 269], "score": 1.0, "content": "charge-conjugation acts as ", "type": "text"}, {"bbox": [213, 253, 375, 267], "score": 0.89, "content": "C\\lambda=(\\lambda_{0},\\lambda_{5},\\lambda_{4},\\lambda_{3},\\lambda_{2},\\lambda_{1},\\lambda_{6})", "type": "inline_equation", "height": 14, "width": 162}, {"bbox": [376, 253, 531, 269], "score": 1.0, "content": ". The order 3 simple-current ", "type": "text"}, {"bbox": [531, 256, 540, 265], "score": 0.87, "content": "J", "type": "inline_equation", "height": 9, "width": 9}], "index": 9}, {"bbox": [69, 267, 490, 284], "spans": [{"bbox": [69, 268, 131, 284], "score": 1.0, "content": "is given by ", "type": "text"}, {"bbox": [131, 268, 290, 282], "score": 0.92, "content": "J\\lambda=(\\lambda_{5},\\lambda_{0},\\lambda_{6},\\lambda_{3},\\lambda_{2},\\lambda_{1},\\lambda_{4})", "type": "inline_equation", "height": 14, "width": 159}, {"bbox": [290, 268, 319, 284], "score": 1.0, "content": " with", "type": "text"}, {"bbox": [320, 267, 487, 282], "score": 0.91, "content": "Q(\\lambda)=(-\\lambda_{1}+\\lambda_{2}-\\lambda_{4}+\\lambda_{5})/3", "type": "inline_equation", "height": 15, "width": 167}, {"bbox": [487, 268, 490, 284], "score": 1.0, "content": ".", "type": "text"}], "index": 10}], "index": 9}, {"type": "text", "bbox": [96, 281, 443, 295], "lines": [{"bbox": [95, 282, 440, 297], "spans": [{"bbox": [95, 282, 440, 297], "score": 1.0, "content": "The fusion products we need can be derived from [29] using (2.4):", "type": "text"}], "index": 11}], "index": 11}, {"type": "interline_equation", "bbox": [282, 354, 416, 370], "lines": [{"bbox": [282, 354, 416, 370], "spans": [{"bbox": [282, 354, 416, 370], "score": 0.38, "content": "(\\Lambda_{1}+\\Lambda_{2})_{3}\\sqcup(\\Lambda_{1}+\\Lambda_{5})_{2}", "type": "interline_equation"}], "index": 12}], "index": 12}, {"type": "text", "bbox": [70, 372, 541, 445], "lines": [{"bbox": [70, 374, 540, 390], "spans": [{"bbox": [70, 374, 540, 390], "score": 1.0, "content": "where the outer subscript on any summand denotes the smallest level where that sum-", "type": "text"}], "index": 13}, {"bbox": [70, 388, 541, 403], "spans": [{"bbox": [70, 389, 455, 403], "score": 1.0, "content": "mand appears (it will also appear at all larger levels). So for example ", "type": "text"}, {"bbox": [456, 388, 502, 402], "score": 0.36, "content": "\\Lambda_{1}\\boxtimes\\Lambda_{1}", "type": "inline_equation", "height": 14, "width": 46}, {"bbox": [503, 389, 541, 403], "score": 1.0, "content": " equals", "type": "text"}], "index": 14}, {"bbox": [71, 402, 542, 420], "spans": [{"bbox": [71, 404, 85, 416], "score": 0.86, "content": "\\Lambda_{2}", "type": "inline_equation", "height": 12, "width": 14}, {"bbox": [86, 402, 102, 420], "score": 1.0, "content": " + ", "type": "text"}, {"bbox": [102, 403, 117, 416], "score": 0.86, "content": "\\Lambda_{5}", "type": "inline_equation", "height": 13, "width": 15}, {"bbox": [118, 402, 135, 420], "score": 1.0, "content": " + ", "type": "text"}, {"bbox": [135, 403, 164, 417], "score": 0.87, "content": "(2\\Lambda_{1})", "type": "inline_equation", "height": 14, "width": 29}, {"bbox": [165, 402, 210, 420], "score": 1.0, "content": " for any ", "type": "text"}, {"bbox": [211, 403, 244, 416], "score": 0.91, "content": "k\\geq2", "type": "inline_equation", "height": 13, "width": 33}, {"bbox": [244, 402, 311, 420], "score": 1.0, "content": ", but equals ", "type": "text"}, {"bbox": [311, 403, 326, 416], "score": 0.88, "content": "\\Lambda_{5}", "type": "inline_equation", "height": 13, "width": 15}, {"bbox": [326, 402, 344, 420], "score": 1.0, "content": " at ", "type": "text"}, {"bbox": [344, 403, 378, 415], "score": 0.91, "content": "k\\,=\\,1", "type": "inline_equation", "height": 12, "width": 34}, {"bbox": [378, 402, 542, 420], "score": 1.0, "content": ". A similar convention is used", "type": "text"}], "index": 15}, {"bbox": [70, 418, 541, 433], "spans": [{"bbox": [70, 418, 541, 433], "score": 1.0, "content": "in (3.7) and elsewhere for higher fusion multiplicities (the number of subscripts used will", "type": "text"}], "index": 16}, {"bbox": [71, 433, 339, 447], "spans": [{"bbox": [71, 433, 339, 447], "score": 1.0, "content": "equal the numerical value of the fusion coefficient).", "type": "text"}], "index": 17}], "index": 15}, {"type": "text", "bbox": [71, 450, 542, 482], "lines": [{"bbox": [90, 450, 542, 475], "spans": [{"bbox": [90, 450, 329, 475], "score": 1.0, "content": "Theorem 3.E6. The fusion-symmetries of ", "type": "text"}, {"bbox": [330, 450, 353, 468], "score": 0.92, "content": "E_{6}^{(1)}", "type": "inline_equation", "height": 18, "width": 23}, {"bbox": [353, 450, 377, 475], "score": 1.0, "content": "are ", "type": "text"}, {"bbox": [378, 452, 414, 468], "score": 0.9, "content": "C^{i}\\,\\pi[a]", "type": "inline_equation", "height": 16, "width": 36}, {"bbox": [415, 450, 465, 475], "score": 1.0, "content": ", for any ", "type": "text"}, {"bbox": [465, 453, 516, 468], "score": 0.92, "content": "i\\in\\{0,1\\}", "type": "inline_equation", "height": 15, "width": 51}, {"bbox": [516, 450, 542, 475], "score": 1.0, "content": " and", "type": "text"}], "index": 18}, {"bbox": [71, 467, 299, 485], "spans": [{"bbox": [71, 467, 93, 485], "score": 1.0, "content": "any ", "type": "text"}, {"bbox": [94, 468, 156, 482], "score": 0.93, "content": "a\\in\\{0,1,2\\}", "type": "inline_equation", "height": 14, "width": 62}, {"bbox": [156, 467, 212, 485], "score": 1.0, "content": " for which ", "type": "text"}, {"bbox": [212, 468, 248, 482], "score": 0.74, "content": "a k\\not\\equiv1", "type": "inline_equation", "height": 14, "width": 36}, {"bbox": [249, 467, 299, 485], "score": 1.0, "content": " (mod 3).", "type": "text"}], "index": 19}], "index": 18.5}, {"type": "title", "bbox": [71, 491, 183, 507], "lines": [{"bbox": [68, 491, 186, 512], "spans": [{"bbox": [68, 491, 186, 512], "score": 1.0, "content": "3.6. The algebra E7(1)", "type": "text"}], "index": 20}], "index": 20}, {"type": "text", "bbox": [70, 512, 542, 556], "lines": [{"bbox": [94, 514, 542, 529], "spans": [{"bbox": [94, 514, 146, 529], "score": 1.0, "content": "A weight", "type": "text"}, {"bbox": [147, 514, 156, 526], "score": 0.8, "content": "\\lambda", "type": "inline_equation", "height": 12, "width": 9}, {"bbox": [156, 514, 174, 529], "score": 1.0, "content": " in ", "type": "text"}, {"bbox": [174, 514, 191, 528], "score": 0.89, "content": "P_{+}", "type": "inline_equation", "height": 14, "width": 17}, {"bbox": [191, 514, 239, 529], "score": 1.0, "content": " satisfies ", "type": "text"}, {"bbox": [239, 514, 511, 527], "score": 0.88, "content": "k\\,=\\,\\lambda_{0}+2\\lambda_{1}+3\\lambda_{2}+4\\lambda_{3}+3\\lambda_{4}+2\\lambda_{5}+\\lambda_{6}+2\\lambda_{7}", "type": "inline_equation", "height": 13, "width": 272}, {"bbox": [512, 514, 542, 529], "score": 1.0, "content": ", and", "type": "text"}], "index": 21}, {"bbox": [71, 528, 541, 545], "spans": [{"bbox": [71, 528, 132, 541], "score": 0.91, "content": "\\kappa\\,=\\,k\\,+\\,18", "type": "inline_equation", "height": 13, "width": 61}, {"bbox": [132, 529, 481, 545], "score": 1.0, "content": ". The charge-conjugation is trivial, but there is a simple-current ", "type": "text"}, {"bbox": [482, 531, 490, 540], "score": 0.84, "content": "J", "type": "inline_equation", "height": 9, "width": 8}, {"bbox": [491, 529, 541, 545], "score": 1.0, "content": " given by", "type": "text"}], "index": 22}, {"bbox": [71, 542, 392, 559], "spans": [{"bbox": [71, 542, 216, 557], "score": 0.91, "content": "J\\lambda=(\\lambda_{6},\\lambda_{5},...\\,,\\lambda_{1},\\lambda_{0},\\lambda_{7})", "type": "inline_equation", "height": 15, "width": 145}, {"bbox": [216, 543, 258, 559], "score": 1.0, "content": ". It has ", "type": "text"}, {"bbox": [258, 542, 388, 557], "score": 0.92, "content": "Q(\\lambda)=(\\lambda_{4}+\\lambda_{6}+\\lambda_{7})/2", "type": "inline_equation", "height": 15, "width": 130}, {"bbox": [388, 543, 392, 559], "score": 1.0, "content": ".", "type": "text"}], "index": 23}], "index": 22}, {"type": "text", "bbox": [94, 556, 468, 570], "lines": [{"bbox": [96, 558, 465, 572], "spans": [{"bbox": [96, 558, 465, 572], "score": 1.0, "content": "The only fusion products we need can be obtained from [29] and (2.4):", "type": "text"}], "index": 24}], "index": 24}, {"type": "text", "bbox": [82, 573, 530, 716], "lines": [{"bbox": [120, 575, 348, 592], "spans": [{"bbox": [120, 576, 135, 590], "score": 0.87, "content": "\\Lambda_{6}", "type": "inline_equation", "height": 14, "width": 15}, {"bbox": [136, 575, 151, 592], "score": 1.0, "content": " \u00d7", "type": "text"}, {"bbox": [152, 575, 202, 591], "score": 0.93, "content": "\\Lambda_{6}=(0)_{1}", "type": "inline_equation", "height": 16, "width": 50}, {"bbox": [203, 575, 219, 592], "score": 1.0, "content": " + ", "type": "text"}, {"bbox": [220, 576, 249, 591], "score": 0.92, "content": "(\\Lambda_{1})_{2}", "type": "inline_equation", "height": 15, "width": 29}, {"bbox": [249, 575, 266, 592], "score": 1.0, "content": " + ", "type": "text"}, {"bbox": [266, 575, 295, 591], "score": 0.91, "content": "(\\Lambda_{5})_{2}", "type": "inline_equation", "height": 16, "width": 29}, {"bbox": [296, 575, 313, 592], "score": 1.0, "content": " + ", "type": "text"}, {"bbox": [313, 575, 348, 591], "score": 0.87, "content": "(2\\Lambda_{6})_{2}", "type": "inline_equation", "height": 16, "width": 35}], "index": 25}, {"bbox": [120, 594, 332, 610], "spans": [{"bbox": [120, 594, 135, 608], "score": 0.9, "content": "\\Lambda_{1}", "type": "inline_equation", "height": 14, "width": 15}, {"bbox": [136, 594, 151, 610], "score": 1.0, "content": " \u00d7", "type": "text"}, {"bbox": [152, 594, 210, 609], "score": 0.93, "content": "\\Lambda_{6}=(\\Lambda_{6})_{2}", "type": "inline_equation", "height": 15, "width": 58}, {"bbox": [210, 594, 227, 610], "score": 1.0, "content": " + ", "type": "text"}, {"bbox": [227, 594, 257, 609], "score": 0.92, "content": "(\\Lambda_{7})_{2}", "type": "inline_equation", "height": 15, "width": 30}, {"bbox": [257, 594, 273, 610], "score": 1.0, "content": " + ", "type": "text"}, {"bbox": [274, 594, 332, 609], "score": 0.9, "content": "(\\Lambda_{1}+\\Lambda_{6})_{3}", "type": "inline_equation", "height": 15, "width": 58}], "index": 26}, {"bbox": [120, 611, 453, 627], "spans": [{"bbox": [120, 612, 135, 626], "score": 0.89, "content": "\\Lambda_{5}", "type": "inline_equation", "height": 14, "width": 15}, {"bbox": [136, 611, 151, 627], "score": 1.0, "content": "\u00d7", "type": "text"}, {"bbox": [152, 612, 210, 627], "score": 0.94, "content": "\\Lambda_{6}=(\\Lambda_{4})_{3}", "type": "inline_equation", "height": 15, "width": 58}, {"bbox": [210, 611, 227, 627], "score": 1.0, "content": " + ", "type": "text"}, {"bbox": [227, 612, 257, 627], "score": 0.92, "content": "(\\Lambda_{6})_{2}", "type": "inline_equation", "height": 15, "width": 30}, {"bbox": [257, 611, 273, 627], "score": 1.0, "content": " + ", "type": "text"}, {"bbox": [274, 612, 303, 627], "score": 0.93, "content": "(\\Lambda_{7})_{2}", "type": "inline_equation", "height": 15, "width": 29}, {"bbox": [303, 611, 320, 627], "score": 1.0, "content": " + ", "type": "text"}, {"bbox": [321, 612, 378, 627], "score": 0.92, "content": "(\\Lambda_{1}+\\Lambda_{6})_{3}", "type": "inline_equation", "height": 15, "width": 57}, {"bbox": [379, 611, 395, 627], "score": 1.0, "content": " + ", "type": "text"}, {"bbox": [395, 612, 453, 627], "score": 0.86, "content": "(\\Lambda_{5}+\\Lambda_{6})_{3}", "type": "inline_equation", "height": 15, "width": 58}], "index": 27}, {"bbox": [105, 630, 412, 646], "spans": [{"bbox": [105, 630, 120, 644], "score": 0.86, "content": "\\Lambda_{6}", "type": "inline_equation", "height": 14, "width": 15}, {"bbox": [120, 630, 137, 646], "score": 1.0, "content": " \u00d7 ", "type": "text"}, {"bbox": [137, 630, 210, 645], "score": 0.92, "content": "(2\\Lambda_{6})=(\\Lambda_{6})_{2}", "type": "inline_equation", "height": 15, "width": 73}, {"bbox": [210, 630, 227, 646], "score": 1.0, "content": " + ", "type": "text"}, {"bbox": [227, 630, 285, 645], "score": 0.92, "content": "(\\Lambda_{1}+\\Lambda_{6})_{3}", "type": "inline_equation", "height": 15, "width": 58}, {"bbox": [285, 630, 302, 646], "score": 1.0, "content": " + ", "type": "text"}, {"bbox": [302, 630, 338, 645], "score": 0.93, "content": "(3\\Lambda_{6})_{3}", "type": "inline_equation", "height": 15, "width": 36}, {"bbox": [338, 630, 354, 646], "score": 1.0, "content": " + ", "type": "text"}, {"bbox": [355, 630, 412, 645], "score": 0.89, "content": "(\\Lambda_{5}+\\Lambda_{6})_{3}", "type": "inline_equation", "height": 15, "width": 57}], "index": 28}, {"bbox": [120, 647, 528, 664], "spans": [{"bbox": [120, 648, 136, 662], "score": 0.88, "content": "\\Lambda_{4}", "type": "inline_equation", "height": 14, "width": 16}, {"bbox": [136, 647, 151, 664], "score": 1.0, "content": " \u00d7", "type": "text"}, {"bbox": [152, 648, 210, 663], "score": 0.92, "content": "\\Lambda_{6}=(\\Lambda_{2})_{3}", "type": "inline_equation", "height": 15, "width": 58}, {"bbox": [210, 647, 227, 664], "score": 1.0, "content": " + ", "type": "text"}, {"bbox": [227, 647, 257, 663], "score": 0.91, "content": "(\\Lambda_{3})_{4}", "type": "inline_equation", "height": 16, "width": 30}, {"bbox": [257, 647, 273, 664], "score": 1.0, "content": " + ", "type": "text"}, {"bbox": [274, 647, 303, 663], "score": 0.92, "content": "(\\Lambda_{5})_{3}", "type": "inline_equation", "height": 16, "width": 29}, {"bbox": [304, 647, 320, 664], "score": 1.0, "content": " + ", "type": "text"}, {"bbox": [320, 647, 378, 663], "score": 0.92, "content": "(\\Lambda_{1}+\\Lambda_{5})_{4}", "type": "inline_equation", "height": 16, "width": 58}, {"bbox": [379, 647, 395, 664], "score": 1.0, "content": " + ", "type": "text"}, {"bbox": [395, 647, 453, 663], "score": 0.88, "content": "(\\Lambda_{4}+\\Lambda_{6})_{4}", "type": "inline_equation", "height": 16, "width": 58}, {"bbox": [453, 647, 470, 664], "score": 1.0, "content": " + ", "type": "text"}, {"bbox": [470, 647, 528, 663], "score": 0.85, "content": "(\\Lambda_{6}+\\Lambda_{7})_{3}", "type": "inline_equation", "height": 16, "width": 58}], "index": 29}, {"bbox": [120, 665, 378, 682], "spans": [{"bbox": [120, 666, 136, 680], "score": 0.89, "content": "\\Lambda_{6}", "type": "inline_equation", "height": 14, "width": 16}, {"bbox": [136, 665, 151, 682], "score": 1.0, "content": " \u00d7", "type": "text"}, {"bbox": [152, 666, 210, 680], "score": 0.94, "content": "\\Lambda_{7}=(\\Lambda_{1})_{2}", "type": "inline_equation", "height": 14, "width": 58}, {"bbox": [210, 665, 227, 682], "score": 1.0, "content": " + ", "type": "text"}, {"bbox": [227, 666, 257, 680], "score": 0.92, "content": "(\\Lambda_{2})_{3}", "type": "inline_equation", "height": 14, "width": 30}, {"bbox": [257, 665, 273, 682], "score": 1.0, "content": " + ", "type": "text"}, {"bbox": [274, 666, 303, 680], "score": 0.93, "content": "(\\Lambda_{5})_{2}", "type": "inline_equation", "height": 14, "width": 29}, {"bbox": [304, 665, 320, 682], "score": 1.0, "content": " + ", "type": "text"}, {"bbox": [320, 666, 378, 680], "score": 0.91, "content": "(\\Lambda_{6}+\\Lambda_{7})_{3}", "type": "inline_equation", "height": 14, "width": 58}], "index": 30}, {"bbox": [82, 683, 465, 699], "spans": [{"bbox": [82, 683, 98, 698], "score": 0.86, "content": "\\Lambda_{6}", "type": "inline_equation", "height": 15, "width": 16}, {"bbox": [98, 684, 115, 699], "score": 1.0, "content": " \u00d7 ", "type": "text"}, {"bbox": [115, 683, 210, 698], "score": 0.92, "content": "(\\Lambda_{5}+\\Lambda_{6})=(\\Lambda_{5})_{3}", "type": "inline_equation", "height": 15, "width": 95}, {"bbox": [211, 684, 227, 699], "score": 1.0, "content": " + ", "type": "text"}, {"bbox": [227, 683, 263, 698], "score": 0.93, "content": "(2\\Lambda_{5})_{4}", "type": "inline_equation", "height": 15, "width": 36}, {"bbox": [263, 684, 280, 699], "score": 1.0, "content": " + ", "type": "text"}, {"bbox": [280, 683, 315, 698], "score": 0.92, "content": "(2\\Lambda_{6})_{3}", "type": "inline_equation", "height": 15, "width": 35}, {"bbox": [316, 684, 332, 699], "score": 1.0, "content": " + ", "type": "text"}, {"bbox": [332, 683, 390, 698], "score": 0.93, "content": "(\\Lambda_{6}+\\Lambda_{7})_{3}", "type": "inline_equation", "height": 15, "width": 58}, {"bbox": [390, 684, 407, 699], "score": 1.0, "content": " + ", "type": "text"}, {"bbox": [407, 683, 465, 698], "score": 0.9, "content": "(\\Lambda_{1}+\\Lambda_{5})_{4}", "type": "inline_equation", "height": 15, "width": 58}], "index": 31}, {"bbox": [183, 700, 419, 718], "spans": [{"bbox": [183, 700, 199, 718], "score": 1.0, "content": "+ ", "type": "text"}, {"bbox": [199, 701, 257, 716], "score": 0.93, "content": "(\\Lambda_{4}+\\Lambda_{6})_{4}", "type": "inline_equation", "height": 15, "width": 58}, {"bbox": [257, 700, 273, 718], "score": 1.0, "content": " + ", "type": "text"}, {"bbox": [274, 701, 338, 716], "score": 0.93, "content": "(\\Lambda_{1}+2\\Lambda_{6})_{4}", "type": "inline_equation", "height": 15, "width": 64}, {"bbox": [338, 700, 354, 718], "score": 1.0, "content": " + ", "type": "text"}, {"bbox": [355, 701, 419, 716], "score": 0.89, "content": "(\\Lambda_{5}+2\\Lambda_{6})_{4}", "type": "inline_equation", "height": 15, "width": 64}], "index": 32}], "index": 28.5}], "layout_bboxes": [], "page_idx": 12, "page_size": [612.0, 792.0], "_layout_tree": [], "images": [], "tables": [], "interline_equations": [{"type": "interline_equation", "bbox": [282, 354, 416, 370], "lines": [{"bbox": [282, 354, 416, 370], "spans": [{"bbox": [282, 354, 416, 370], "score": 0.38, "content": "(\\Lambda_{1}+\\Lambda_{2})_{3}\\sqcup(\\Lambda_{1}+\\Lambda_{5})_{2}", "type": "interline_equation"}], "index": 12}], "index": 12}], "discarded_blocks": [{"type": "discarded", "bbox": [299, 731, 312, 741], "lines": [{"bbox": [298, 731, 313, 745], "spans": [{"bbox": [298, 731, 313, 745], "score": 1.0, "content": "13", "type": "text"}]}]}], "need_drop": false, "drop_reason": [], "para_blocks": [{"type": "text", "bbox": [69, 69, 542, 102], "lines": [], "index": 0.5, "page_num": "page_12", "page_size": [612.0, 792.0], "bbox_fs": [70, 67, 544, 106], "lines_deleted": true}, {"type": "text", "bbox": [70, 106, 541, 204], "lines": [{"bbox": [95, 105, 545, 141], "spans": [{"bbox": [95, 116, 108, 127], "score": 0.82, "content": "\\pi_{v}", "type": "inline_equation", "height": 11, "width": 13}, {"bbox": [108, 110, 367, 133], "score": 1.0, "content": " here refers to the simple-current automorphism ", "type": "text"}, {"bbox": [367, 113, 389, 128], "score": 0.26, "content": "\\pi[2]", "type": "inline_equation", "height": 15, "width": 22}, {"bbox": [389, 110, 406, 133], "score": 1.0, "content": " or", "type": "text"}, {"bbox": [420, 105, 545, 141], "score": 1.0, "content": " 10 00 ], for r odd/even.", "type": "text"}], "index": 2}, {"bbox": [70, 133, 542, 150], "spans": [{"bbox": [70, 133, 106, 150], "score": 1.0, "content": "When ", "type": "text"}, {"bbox": [106, 134, 139, 146], "score": 0.86, "content": "k\\,=\\,1", "type": "inline_equation", "height": 12, "width": 33}, {"bbox": [140, 133, 147, 150], "score": 1.0, "content": ", ", "type": "text"}, {"bbox": [147, 133, 239, 148], "score": 0.9, "content": "A(D_{e v e n,1})\\cong{\\mathfrak{S}}_{3}", "type": "inline_equation", "height": 15, "width": 92}, {"bbox": [239, 133, 447, 150], "score": 1.0, "content": ", corresponding to any permutation of ", "type": "text"}, {"bbox": [447, 134, 512, 147], "score": 0.93, "content": "\\Lambda_{1},\\Lambda_{r-1},\\Lambda_{r}", "type": "inline_equation", "height": 13, "width": 65}, {"bbox": [512, 133, 542, 150], "score": 1.0, "content": ", and", "type": "text"}], "index": 3}, {"bbox": [71, 147, 540, 166], "spans": [{"bbox": [71, 148, 200, 163], "score": 0.92, "content": "A(D_{o d d,1})\\:=\\:\\langle{C_{1}}\\rangle\\:\\cong\\:\\mathbb{Z}_{2}", "type": "inline_equation", "height": 15, "width": 129}, {"bbox": [201, 148, 248, 166], "score": 1.0, "content": ". When ", "type": "text"}, {"bbox": [248, 149, 282, 161], "score": 0.85, "content": "r\\,>\\,4", "type": "inline_equation", "height": 12, "width": 34}, {"bbox": [282, 148, 290, 166], "score": 1.0, "content": ", ", "type": "text"}, {"bbox": [290, 147, 473, 163], "score": 0.91, "content": "{\\cal A}(D_{r,2})\\,\\cong\\,(\\mathbb{Z}_{2r}^{\\times}/\\{\\pm1\\})\\,\\times\\,\\mathbb{Z}_{2}\\,\\times\\,\\mathbb{Z}_{2}", "type": "inline_equation", "height": 16, "width": 183}, {"bbox": [473, 148, 492, 166], "score": 1.0, "content": " or ", "type": "text"}, {"bbox": [493, 148, 540, 162], "score": 0.91, "content": "\\mathbb{Z}_{r}^{\\times}\\times\\mathbb{Z}_{2}", "type": "inline_equation", "height": 14, "width": 47}], "index": 4}, {"bbox": [70, 163, 541, 178], "spans": [{"bbox": [70, 163, 90, 178], "score": 1.0, "content": "for ", "type": "text"}, {"bbox": [90, 166, 97, 174], "score": 0.65, "content": "r", "type": "inline_equation", "height": 8, "width": 7}, {"bbox": [97, 163, 162, 178], "score": 1.0, "content": " even/odd. ", "type": "text"}, {"bbox": [162, 163, 204, 177], "score": 0.92, "content": "A(D_{4,2})", "type": "inline_equation", "height": 14, "width": 42}, {"bbox": [205, 163, 541, 178], "score": 1.0, "content": " has 24 elements, and any element can be written uniquely as", "type": "text"}], "index": 5}, {"bbox": [71, 176, 137, 208], "spans": [{"bbox": [71, 176, 137, 208], "score": 0.89, "content": "C_{i}\\,\\pi\\,\\left[\\begin{array}{l l}{a}&{0}\\\\ {0}&{d}\\end{array}\\right]", "type": "inline_equation", "height": 32, "width": 66}], "index": 6}], "index": 4, "page_num": "page_12", "page_size": [612.0, 792.0], "bbox_fs": [70, 105, 545, 208]}, {"type": "title", "bbox": [70, 216, 183, 232], "lines": [{"bbox": [68, 217, 183, 237], "spans": [{"bbox": [68, 217, 160, 237], "score": 1.0, "content": "3.5. The algebra ", "type": "text"}, {"bbox": [161, 217, 183, 234], "score": 0.9, "content": "E_{6}^{(1)}", "type": "inline_equation", "height": 17, "width": 22}], "index": 7}], "index": 7, "page_num": "page_12", "page_size": [612.0, 792.0]}, {"type": "text", "bbox": [70, 237, 541, 280], "lines": [{"bbox": [95, 239, 541, 255], "spans": [{"bbox": [95, 239, 144, 255], "score": 1.0, "content": "A weight ", "type": "text"}, {"bbox": [144, 240, 152, 250], "score": 0.8, "content": "\\lambda", "type": "inline_equation", "height": 10, "width": 8}, {"bbox": [153, 239, 167, 255], "score": 1.0, "content": " of ", "type": "text"}, {"bbox": [167, 240, 183, 253], "score": 0.9, "content": "P_{+}", "type": "inline_equation", "height": 13, "width": 16}, {"bbox": [184, 239, 228, 255], "score": 1.0, "content": " satisfies", "type": "text"}, {"bbox": [228, 240, 432, 252], "score": 0.89, "content": "k=\\lambda_{0}\\!+\\!\\lambda_{1}\\!+\\!2\\lambda_{2}\\!+\\!3\\lambda_{3}\\!+\\!2\\lambda_{4}\\!+\\!\\lambda_{5}\\!+\\!2\\lambda_{6}", "type": "inline_equation", "height": 12, "width": 204}, {"bbox": [432, 239, 457, 255], "score": 1.0, "content": " and ", "type": "text"}, {"bbox": [457, 241, 510, 251], "score": 0.92, "content": "\\kappa=k\\!+\\!12", "type": "inline_equation", "height": 10, "width": 53}, {"bbox": [511, 239, 541, 255], "score": 1.0, "content": ". The", "type": "text"}], "index": 8}, {"bbox": [72, 253, 540, 269], "spans": [{"bbox": [72, 253, 213, 269], "score": 1.0, "content": "charge-conjugation acts as ", "type": "text"}, {"bbox": [213, 253, 375, 267], "score": 0.89, "content": "C\\lambda=(\\lambda_{0},\\lambda_{5},\\lambda_{4},\\lambda_{3},\\lambda_{2},\\lambda_{1},\\lambda_{6})", "type": "inline_equation", "height": 14, "width": 162}, {"bbox": [376, 253, 531, 269], "score": 1.0, "content": ". The order 3 simple-current ", "type": "text"}, {"bbox": [531, 256, 540, 265], "score": 0.87, "content": "J", "type": "inline_equation", "height": 9, "width": 9}], "index": 9}, {"bbox": [69, 267, 490, 284], "spans": [{"bbox": [69, 268, 131, 284], "score": 1.0, "content": "is given by ", "type": "text"}, {"bbox": [131, 268, 290, 282], "score": 0.92, "content": "J\\lambda=(\\lambda_{5},\\lambda_{0},\\lambda_{6},\\lambda_{3},\\lambda_{2},\\lambda_{1},\\lambda_{4})", "type": "inline_equation", "height": 14, "width": 159}, {"bbox": [290, 268, 319, 284], "score": 1.0, "content": " with", "type": "text"}, {"bbox": [320, 267, 487, 282], "score": 0.91, "content": "Q(\\lambda)=(-\\lambda_{1}+\\lambda_{2}-\\lambda_{4}+\\lambda_{5})/3", "type": "inline_equation", "height": 15, "width": 167}, {"bbox": [487, 268, 490, 284], "score": 1.0, "content": ".", "type": "text"}], "index": 10}], "index": 9, "page_num": "page_12", "page_size": [612.0, 792.0], "bbox_fs": [69, 239, 541, 284]}, {"type": "text", "bbox": [96, 281, 443, 295], "lines": [{"bbox": [95, 282, 440, 297], "spans": [{"bbox": [95, 282, 440, 297], "score": 1.0, "content": "The fusion products we need can be derived from [29] using (2.4):", "type": "text"}], "index": 11}], "index": 11, "page_num": "page_12", "page_size": [612.0, 792.0], "bbox_fs": [95, 282, 440, 297]}, {"type": "interline_equation", "bbox": [282, 354, 416, 370], "lines": [{"bbox": [282, 354, 416, 370], "spans": [{"bbox": [282, 354, 416, 370], "score": 0.38, "content": "(\\Lambda_{1}+\\Lambda_{2})_{3}\\sqcup(\\Lambda_{1}+\\Lambda_{5})_{2}", "type": "interline_equation"}], "index": 12}], "index": 12, "page_num": "page_12", "page_size": [612.0, 792.0]}, {"type": "text", "bbox": [70, 372, 541, 445], "lines": [{"bbox": [70, 374, 540, 390], "spans": [{"bbox": [70, 374, 540, 390], "score": 1.0, "content": "where the outer subscript on any summand denotes the smallest level where that sum-", "type": "text"}], "index": 13}, {"bbox": [70, 388, 541, 403], "spans": [{"bbox": [70, 389, 455, 403], "score": 1.0, "content": "mand appears (it will also appear at all larger levels). So for example ", "type": "text"}, {"bbox": [456, 388, 502, 402], "score": 0.36, "content": "\\Lambda_{1}\\boxtimes\\Lambda_{1}", "type": "inline_equation", "height": 14, "width": 46}, {"bbox": [503, 389, 541, 403], "score": 1.0, "content": " equals", "type": "text"}], "index": 14}, {"bbox": [71, 402, 542, 420], "spans": [{"bbox": [71, 404, 85, 416], "score": 0.86, "content": "\\Lambda_{2}", "type": "inline_equation", "height": 12, "width": 14}, {"bbox": [86, 402, 102, 420], "score": 1.0, "content": " + ", "type": "text"}, {"bbox": [102, 403, 117, 416], "score": 0.86, "content": "\\Lambda_{5}", "type": "inline_equation", "height": 13, "width": 15}, {"bbox": [118, 402, 135, 420], "score": 1.0, "content": " + ", "type": "text"}, {"bbox": [135, 403, 164, 417], "score": 0.87, "content": "(2\\Lambda_{1})", "type": "inline_equation", "height": 14, "width": 29}, {"bbox": [165, 402, 210, 420], "score": 1.0, "content": " for any ", "type": "text"}, {"bbox": [211, 403, 244, 416], "score": 0.91, "content": "k\\geq2", "type": "inline_equation", "height": 13, "width": 33}, {"bbox": [244, 402, 311, 420], "score": 1.0, "content": ", but equals ", "type": "text"}, {"bbox": [311, 403, 326, 416], "score": 0.88, "content": "\\Lambda_{5}", "type": "inline_equation", "height": 13, "width": 15}, {"bbox": [326, 402, 344, 420], "score": 1.0, "content": " at ", "type": "text"}, {"bbox": [344, 403, 378, 415], "score": 0.91, "content": "k\\,=\\,1", "type": "inline_equation", "height": 12, "width": 34}, {"bbox": [378, 402, 542, 420], "score": 1.0, "content": ". A similar convention is used", "type": "text"}], "index": 15}, {"bbox": [70, 418, 541, 433], "spans": [{"bbox": [70, 418, 541, 433], "score": 1.0, "content": "in (3.7) and elsewhere for higher fusion multiplicities (the number of subscripts used will", "type": "text"}], "index": 16}, {"bbox": [71, 433, 339, 447], "spans": [{"bbox": [71, 433, 339, 447], "score": 1.0, "content": "equal the numerical value of the fusion coefficient).", "type": "text"}], "index": 17}], "index": 15, "page_num": "page_12", "page_size": [612.0, 792.0], "bbox_fs": [70, 374, 542, 447]}, {"type": "text", "bbox": [71, 450, 542, 482], "lines": [{"bbox": [90, 450, 542, 475], "spans": [{"bbox": [90, 450, 329, 475], "score": 1.0, "content": "Theorem 3.E6. The fusion-symmetries of ", "type": "text"}, {"bbox": [330, 450, 353, 468], "score": 0.92, "content": "E_{6}^{(1)}", "type": "inline_equation", "height": 18, "width": 23}, {"bbox": [353, 450, 377, 475], "score": 1.0, "content": "are ", "type": "text"}, {"bbox": [378, 452, 414, 468], "score": 0.9, "content": "C^{i}\\,\\pi[a]", "type": "inline_equation", "height": 16, "width": 36}, {"bbox": [415, 450, 465, 475], "score": 1.0, "content": ", for any ", "type": "text"}, {"bbox": [465, 453, 516, 468], "score": 0.92, "content": "i\\in\\{0,1\\}", "type": "inline_equation", "height": 15, "width": 51}, {"bbox": [516, 450, 542, 475], "score": 1.0, "content": " and", "type": "text"}], "index": 18}, {"bbox": [71, 467, 299, 485], "spans": [{"bbox": [71, 467, 93, 485], "score": 1.0, "content": "any ", "type": "text"}, {"bbox": [94, 468, 156, 482], "score": 0.93, "content": "a\\in\\{0,1,2\\}", "type": "inline_equation", "height": 14, "width": 62}, {"bbox": [156, 467, 212, 485], "score": 1.0, "content": " for which ", "type": "text"}, {"bbox": [212, 468, 248, 482], "score": 0.74, "content": "a k\\not\\equiv1", "type": "inline_equation", "height": 14, "width": 36}, {"bbox": [249, 467, 299, 485], "score": 1.0, "content": " (mod 3).", "type": "text"}], "index": 19}], "index": 18.5, "page_num": "page_12", "page_size": [612.0, 792.0], "bbox_fs": [71, 450, 542, 485]}, {"type": "title", "bbox": [71, 491, 183, 507], "lines": [{"bbox": [68, 491, 186, 512], "spans": [{"bbox": [68, 491, 186, 512], "score": 1.0, "content": "3.6. The algebra E7(1)", "type": "text"}], "index": 20}], "index": 20, "page_num": "page_12", "page_size": [612.0, 792.0]}, {"type": "text", "bbox": [70, 512, 542, 556], "lines": [{"bbox": [94, 514, 542, 529], "spans": [{"bbox": [94, 514, 146, 529], "score": 1.0, "content": "A weight", "type": "text"}, {"bbox": [147, 514, 156, 526], "score": 0.8, "content": "\\lambda", "type": "inline_equation", "height": 12, "width": 9}, {"bbox": [156, 514, 174, 529], "score": 1.0, "content": " in ", "type": "text"}, {"bbox": [174, 514, 191, 528], "score": 0.89, "content": "P_{+}", "type": "inline_equation", "height": 14, "width": 17}, {"bbox": [191, 514, 239, 529], "score": 1.0, "content": " satisfies ", "type": "text"}, {"bbox": [239, 514, 511, 527], "score": 0.88, "content": "k\\,=\\,\\lambda_{0}+2\\lambda_{1}+3\\lambda_{2}+4\\lambda_{3}+3\\lambda_{4}+2\\lambda_{5}+\\lambda_{6}+2\\lambda_{7}", "type": "inline_equation", "height": 13, "width": 272}, {"bbox": [512, 514, 542, 529], "score": 1.0, "content": ", and", "type": "text"}], "index": 21}, {"bbox": [71, 528, 541, 545], "spans": [{"bbox": [71, 528, 132, 541], "score": 0.91, "content": "\\kappa\\,=\\,k\\,+\\,18", "type": "inline_equation", "height": 13, "width": 61}, {"bbox": [132, 529, 481, 545], "score": 1.0, "content": ". The charge-conjugation is trivial, but there is a simple-current ", "type": "text"}, {"bbox": [482, 531, 490, 540], "score": 0.84, "content": "J", "type": "inline_equation", "height": 9, "width": 8}, {"bbox": [491, 529, 541, 545], "score": 1.0, "content": " given by", "type": "text"}], "index": 22}, {"bbox": [71, 542, 392, 559], "spans": [{"bbox": [71, 542, 216, 557], "score": 0.91, "content": "J\\lambda=(\\lambda_{6},\\lambda_{5},...\\,,\\lambda_{1},\\lambda_{0},\\lambda_{7})", "type": "inline_equation", "height": 15, "width": 145}, {"bbox": [216, 543, 258, 559], "score": 1.0, "content": ". It has ", "type": "text"}, {"bbox": [258, 542, 388, 557], "score": 0.92, "content": "Q(\\lambda)=(\\lambda_{4}+\\lambda_{6}+\\lambda_{7})/2", "type": "inline_equation", "height": 15, "width": 130}, {"bbox": [388, 543, 392, 559], "score": 1.0, "content": ".", "type": "text"}], "index": 23}], "index": 22, "page_num": "page_12", "page_size": [612.0, 792.0], "bbox_fs": [71, 514, 542, 559]}, {"type": "text", "bbox": [94, 556, 468, 570], "lines": [{"bbox": [96, 558, 465, 572], "spans": [{"bbox": [96, 558, 465, 572], "score": 1.0, "content": "The only fusion products we need can be obtained from [29] and (2.4):", "type": "text"}], "index": 24}], "index": 24, "page_num": "page_12", "page_size": [612.0, 792.0], "bbox_fs": [96, 558, 465, 572]}, {"type": "text", "bbox": [82, 573, 530, 716], "lines": [{"bbox": [120, 575, 348, 592], "spans": [{"bbox": [120, 576, 135, 590], "score": 0.87, "content": "\\Lambda_{6}", "type": "inline_equation", "height": 14, "width": 15}, {"bbox": [136, 575, 151, 592], "score": 1.0, "content": " \u00d7", "type": "text"}, {"bbox": [152, 575, 202, 591], "score": 0.93, "content": "\\Lambda_{6}=(0)_{1}", "type": "inline_equation", "height": 16, "width": 50}, {"bbox": [203, 575, 219, 592], "score": 1.0, "content": " + ", "type": "text"}, {"bbox": [220, 576, 249, 591], "score": 0.92, "content": "(\\Lambda_{1})_{2}", "type": "inline_equation", "height": 15, "width": 29}, {"bbox": [249, 575, 266, 592], "score": 1.0, "content": " + ", "type": "text"}, {"bbox": [266, 575, 295, 591], "score": 0.91, "content": "(\\Lambda_{5})_{2}", "type": "inline_equation", "height": 16, "width": 29}, {"bbox": [296, 575, 313, 592], "score": 1.0, "content": " + ", "type": "text"}, {"bbox": [313, 575, 348, 591], "score": 0.87, "content": "(2\\Lambda_{6})_{2}", "type": "inline_equation", "height": 16, "width": 35}], "index": 25}, {"bbox": [120, 594, 332, 610], "spans": [{"bbox": [120, 594, 135, 608], "score": 0.9, "content": "\\Lambda_{1}", "type": "inline_equation", "height": 14, "width": 15}, {"bbox": [136, 594, 151, 610], "score": 1.0, "content": " \u00d7", "type": "text"}, {"bbox": [152, 594, 210, 609], "score": 0.93, "content": "\\Lambda_{6}=(\\Lambda_{6})_{2}", "type": "inline_equation", "height": 15, "width": 58}, {"bbox": [210, 594, 227, 610], "score": 1.0, "content": " + ", "type": "text"}, {"bbox": [227, 594, 257, 609], "score": 0.92, "content": "(\\Lambda_{7})_{2}", "type": "inline_equation", "height": 15, "width": 30}, {"bbox": [257, 594, 273, 610], "score": 1.0, "content": " + ", "type": "text"}, {"bbox": [274, 594, 332, 609], "score": 0.9, "content": "(\\Lambda_{1}+\\Lambda_{6})_{3}", "type": "inline_equation", "height": 15, "width": 58}], "index": 26}, {"bbox": [120, 611, 453, 627], "spans": [{"bbox": [120, 612, 135, 626], "score": 0.89, "content": "\\Lambda_{5}", "type": "inline_equation", "height": 14, "width": 15}, {"bbox": [136, 611, 151, 627], "score": 1.0, "content": "\u00d7", "type": "text"}, {"bbox": [152, 612, 210, 627], "score": 0.94, "content": "\\Lambda_{6}=(\\Lambda_{4})_{3}", "type": "inline_equation", "height": 15, "width": 58}, {"bbox": [210, 611, 227, 627], "score": 1.0, "content": " + ", "type": "text"}, {"bbox": [227, 612, 257, 627], "score": 0.92, "content": "(\\Lambda_{6})_{2}", "type": "inline_equation", "height": 15, "width": 30}, {"bbox": [257, 611, 273, 627], "score": 1.0, "content": " + ", "type": "text"}, {"bbox": [274, 612, 303, 627], "score": 0.93, "content": "(\\Lambda_{7})_{2}", "type": "inline_equation", "height": 15, "width": 29}, {"bbox": [303, 611, 320, 627], "score": 1.0, "content": " + ", "type": "text"}, {"bbox": [321, 612, 378, 627], "score": 0.92, "content": "(\\Lambda_{1}+\\Lambda_{6})_{3}", "type": "inline_equation", "height": 15, "width": 57}, {"bbox": [379, 611, 395, 627], "score": 1.0, "content": " + ", "type": "text"}, {"bbox": [395, 612, 453, 627], "score": 0.86, "content": "(\\Lambda_{5}+\\Lambda_{6})_{3}", "type": "inline_equation", "height": 15, "width": 58}], "index": 27}, {"bbox": [105, 630, 412, 646], "spans": [{"bbox": [105, 630, 120, 644], "score": 0.86, "content": "\\Lambda_{6}", "type": "inline_equation", "height": 14, "width": 15}, {"bbox": [120, 630, 137, 646], "score": 1.0, "content": " \u00d7 ", "type": "text"}, {"bbox": [137, 630, 210, 645], "score": 0.92, "content": "(2\\Lambda_{6})=(\\Lambda_{6})_{2}", "type": "inline_equation", "height": 15, "width": 73}, {"bbox": [210, 630, 227, 646], "score": 1.0, "content": " + ", "type": "text"}, {"bbox": [227, 630, 285, 645], "score": 0.92, "content": "(\\Lambda_{1}+\\Lambda_{6})_{3}", "type": "inline_equation", "height": 15, "width": 58}, {"bbox": [285, 630, 302, 646], "score": 1.0, "content": " + ", "type": "text"}, {"bbox": [302, 630, 338, 645], "score": 0.93, "content": "(3\\Lambda_{6})_{3}", "type": "inline_equation", "height": 15, "width": 36}, {"bbox": [338, 630, 354, 646], "score": 1.0, "content": " + ", "type": "text"}, {"bbox": [355, 630, 412, 645], "score": 0.89, "content": "(\\Lambda_{5}+\\Lambda_{6})_{3}", "type": "inline_equation", "height": 15, "width": 57}], "index": 28}, {"bbox": [120, 647, 528, 664], "spans": [{"bbox": [120, 648, 136, 662], "score": 0.88, "content": "\\Lambda_{4}", "type": "inline_equation", "height": 14, "width": 16}, {"bbox": [136, 647, 151, 664], "score": 1.0, "content": " \u00d7", "type": "text"}, {"bbox": [152, 648, 210, 663], "score": 0.92, "content": "\\Lambda_{6}=(\\Lambda_{2})_{3}", "type": "inline_equation", "height": 15, "width": 58}, {"bbox": [210, 647, 227, 664], "score": 1.0, "content": " + ", "type": "text"}, {"bbox": [227, 647, 257, 663], "score": 0.91, "content": "(\\Lambda_{3})_{4}", "type": "inline_equation", "height": 16, "width": 30}, {"bbox": [257, 647, 273, 664], "score": 1.0, "content": " + ", "type": "text"}, {"bbox": [274, 647, 303, 663], "score": 0.92, "content": "(\\Lambda_{5})_{3}", "type": "inline_equation", "height": 16, "width": 29}, {"bbox": [304, 647, 320, 664], "score": 1.0, "content": " + ", "type": "text"}, {"bbox": [320, 647, 378, 663], "score": 0.92, "content": "(\\Lambda_{1}+\\Lambda_{5})_{4}", "type": "inline_equation", "height": 16, "width": 58}, {"bbox": [379, 647, 395, 664], "score": 1.0, "content": " + ", "type": "text"}, {"bbox": [395, 647, 453, 663], "score": 0.88, "content": "(\\Lambda_{4}+\\Lambda_{6})_{4}", "type": "inline_equation", "height": 16, "width": 58}, {"bbox": [453, 647, 470, 664], "score": 1.0, "content": " + ", "type": "text"}, {"bbox": [470, 647, 528, 663], "score": 0.85, "content": "(\\Lambda_{6}+\\Lambda_{7})_{3}", "type": "inline_equation", "height": 16, "width": 58}], "index": 29}, {"bbox": [120, 665, 378, 682], "spans": [{"bbox": [120, 666, 136, 680], "score": 0.89, "content": "\\Lambda_{6}", "type": "inline_equation", "height": 14, "width": 16}, {"bbox": [136, 665, 151, 682], "score": 1.0, "content": " \u00d7", "type": "text"}, {"bbox": [152, 666, 210, 680], "score": 0.94, "content": "\\Lambda_{7}=(\\Lambda_{1})_{2}", "type": "inline_equation", "height": 14, "width": 58}, {"bbox": [210, 665, 227, 682], "score": 1.0, "content": " + ", "type": "text"}, {"bbox": [227, 666, 257, 680], "score": 0.92, "content": "(\\Lambda_{2})_{3}", "type": "inline_equation", "height": 14, "width": 30}, {"bbox": [257, 665, 273, 682], "score": 1.0, "content": " + ", "type": "text"}, {"bbox": [274, 666, 303, 680], "score": 0.93, "content": "(\\Lambda_{5})_{2}", "type": "inline_equation", "height": 14, "width": 29}, {"bbox": [304, 665, 320, 682], "score": 1.0, "content": " + ", "type": "text"}, {"bbox": [320, 666, 378, 680], "score": 0.91, "content": "(\\Lambda_{6}+\\Lambda_{7})_{3}", "type": "inline_equation", "height": 14, "width": 58}], "index": 30}, {"bbox": [82, 683, 465, 699], "spans": [{"bbox": [82, 683, 98, 698], "score": 0.86, "content": "\\Lambda_{6}", "type": "inline_equation", "height": 15, "width": 16}, {"bbox": [98, 684, 115, 699], "score": 1.0, "content": " \u00d7 ", "type": "text"}, {"bbox": [115, 683, 210, 698], "score": 0.92, "content": "(\\Lambda_{5}+\\Lambda_{6})=(\\Lambda_{5})_{3}", "type": "inline_equation", "height": 15, "width": 95}, {"bbox": [211, 684, 227, 699], "score": 1.0, "content": " + ", "type": "text"}, {"bbox": [227, 683, 263, 698], "score": 0.93, "content": "(2\\Lambda_{5})_{4}", "type": "inline_equation", "height": 15, "width": 36}, {"bbox": [263, 684, 280, 699], "score": 1.0, "content": " + ", "type": "text"}, {"bbox": [280, 683, 315, 698], "score": 0.92, "content": "(2\\Lambda_{6})_{3}", "type": "inline_equation", "height": 15, "width": 35}, {"bbox": [316, 684, 332, 699], "score": 1.0, "content": " + ", "type": "text"}, {"bbox": [332, 683, 390, 698], "score": 0.93, "content": "(\\Lambda_{6}+\\Lambda_{7})_{3}", "type": "inline_equation", "height": 15, "width": 58}, {"bbox": [390, 684, 407, 699], "score": 1.0, "content": " + ", "type": "text"}, {"bbox": [407, 683, 465, 698], "score": 0.9, "content": "(\\Lambda_{1}+\\Lambda_{5})_{4}", "type": "inline_equation", "height": 15, "width": 58}], "index": 31}, {"bbox": [183, 700, 419, 718], "spans": [{"bbox": [183, 700, 199, 718], "score": 1.0, "content": "+ ", "type": "text"}, {"bbox": [199, 701, 257, 716], "score": 0.93, "content": "(\\Lambda_{4}+\\Lambda_{6})_{4}", "type": "inline_equation", "height": 15, "width": 58}, {"bbox": [257, 700, 273, 718], "score": 1.0, "content": " + ", "type": "text"}, {"bbox": [274, 701, 338, 716], "score": 0.93, "content": "(\\Lambda_{1}+2\\Lambda_{6})_{4}", "type": "inline_equation", "height": 15, "width": 64}, {"bbox": [338, 700, 354, 718], "score": 1.0, "content": " + ", "type": "text"}, {"bbox": [355, 701, 419, 716], "score": 0.89, "content": "(\\Lambda_{5}+2\\Lambda_{6})_{4}", "type": "inline_equation", "height": 15, "width": 64}], "index": 32}], "index": 28.5, "page_num": "page_12", "page_size": [612.0, 792.0], "bbox_fs": [82, 575, 528, 718]}]} |
|
0002044v1 | 8 | Our main task in this paper is to find and construct all fusion-symmetries for the
affine algebras $$X_{r}^{(1)}$$ , for simple $$X_{r}$$ . In this section we state the results, and in the next
section we prove the completeness of our lists. Recall the simple-current automorphism
$$\pi[a]$$ and Galois automorphism $$\pi\{\ell\}$$ defined in §2.3, and the notation $$\kappa=k\!+\!h^{\vee}$$ . It will be
convenient to write $$X{_{r,k}}^{,}$$ for $$\cdot X_{r}^{(1)}$$ and level $$k'$$ . We write $$_S$$ for the group of symmetries
of the extended Dynkin diagram.
# 3.1. The algebra $$A_{r}^{(1)}$$ , $$r\geq1$$
Define $$\overline{r}\,=\,r\,+\,1$$ and $$\;n\;=\;k\,+\,{\overline{{r}}}$$ . The level $$k$$ highest weights of $$A_{r}^{(1)}$$ constitute
the set $$P_{+}$$ of $$\overline{r}$$ -tuples $$\lambda\,=\,(\lambda_{0},.\,.\,.\,,\lambda_{r})$$ of non-negative integers obeying $$\textstyle\sum_{i=0}^{r}\lambda_{i}\;=\;k$$ .
The Dynkin diagram symmetries form the dihedral group $$\boldsymbol{S}\;=\;\mathfrak{D}_{r+1}$$ ; it is generated
by the charge-conjugation $$C$$ and simple-current $$J$$ given by $$C\lambda\,=\,(\lambda_{0},\lambda_{r},\lambda_{r-1},\ldots,\lambda_{1})$$
and $$J\lambda=\left(\lambda_{r},\lambda_{0},\lambda_{1},.\dots,\lambda_{r-1}\right)$$ , with $$Q_{J^{a}}(\lambda)=a\,t(\lambda)/\overline{{r}}$$ for $$\begin{array}{r}{t(\lambda)\overset{\mathrm{def}}{=}\sum_{j=1}^{r}j\lambda_{j}}\end{array}$$ . Note that
$$C=i d$$ . for $${A}_{1}^{(1)}$$ .
The Kac-Peterson relation (2.1b) for $$A_{r,k}$$ takes the form
where $$s_{(\lambda)}\big(x_{1},\ldots,x_{r+1}\big)$$ is the Schur polynomial (see e.g. [27]) corresponding to the parti-
tion $$(\lambda(1),\ldots,\lambda(\overline{{r}}))$$ , and where $$\textstyle\nu(\ell)=\sum_{i=\ell}^{r}\nu_{i}$$ for any weight $$\nu$$ . In other words, $$S_{\lambda\mu}/S_{0\mu}$$
is the Schur polynomial corresponding to $$\lambda$$ , evaluated at roots of 1 determined by $$\mu$$ .
The fusion (derived from the Pieri rule and (2.4))
valid for $$k\geq2$$ and $$1\leq\ell<r$$ , will be useful.
There are no exceptional fusion-symmetries for $$A_{r}^{(1)}$$ :
Theorem 3.A. The fusion-symmetries for $$A_{r}^{(1)}$$ level $$k$$ are $$C^{i}\pi[a]$$ , for $$i\in\{0,1\}$$ and
any integer $$0\leq a\leq r$$ for which $$1+k a$$ is coprime to $$r+1$$ .
To avoid redundancies in the Theorem, for $$r\,=\,1$$ or $$k\,=\,1$$ take $$i\,=\,0$$ only. If we
write $${\overline{{r}}}\,=\,r^{\prime}r^{\prime\prime}$$ , where $$r^{\prime}$$ is coprime to $$k$$ and $$r^{\prime\prime}|k^{\infty}$$ , then the number of simple-current
automorphisms will exactly equal $$r^{\prime\prime}{\cdot}\varphi(r^{\prime})$$ , where $$\varphi$$ is the Euler totient. The $$\pi[a]$$ commute
with each other, and with $$C$$ .
For example, for $$A_{1,k}$$ when $$k$$ is odd, there is no nontrivial fusion-symmetry. When $$k$$
is even, there is exactly one, sending $$\lambda=\lambda_{1}\Lambda_{1}$$ to $$\lambda$$ (for $$\lambda_{1}$$ even) or $$J\lambda=(k-\lambda_{1})\Lambda_{1}$$ (for
$$\lambda_{1}$$ odd). For $$A_{2,k}$$ , there are either six or four fusion-symmetries, depending on whether
or not 3 divides $$k$$ .
| <p>Our main task in this paper is to find and construct all fusion-symmetries for the
affine algebras $$X_{r}^{(1)}$$ , for simple $$X_{r}$$ . In this section we state the results, and in the next
section we prove the completeness of our lists. Recall the simple-current automorphism
$$\pi[a]$$ and Galois automorphism $$\pi\{\ell\}$$ defined in §2.3, and the notation $$\kappa=k\!+\!h^{\vee}$$ . It will be
convenient to write $$X{_{r,k}}^{,}$$ for $$\cdot X_{r}^{(1)}$$ and level $$k'$$ . We write $$_S$$ for the group of symmetries
of the extended Dynkin diagram.</p>
<h1>3.1. The algebra $$A_{r}^{(1)}$$ , $$r\geq1$$</h1>
<p>Define $$\overline{r}\,=\,r\,+\,1$$ and $$\;n\;=\;k\,+\,{\overline{{r}}}$$ . The level $$k$$ highest weights of $$A_{r}^{(1)}$$ constitute
the set $$P_{+}$$ of $$\overline{r}$$ -tuples $$\lambda\,=\,(\lambda_{0},.\,.\,.\,,\lambda_{r})$$ of non-negative integers obeying $$\textstyle\sum_{i=0}^{r}\lambda_{i}\;=\;k$$ .
The Dynkin diagram symmetries form the dihedral group $$\boldsymbol{S}\;=\;\mathfrak{D}_{r+1}$$ ; it is generated
by the charge-conjugation $$C$$ and simple-current $$J$$ given by $$C\lambda\,=\,(\lambda_{0},\lambda_{r},\lambda_{r-1},\ldots,\lambda_{1})$$
and $$J\lambda=\left(\lambda_{r},\lambda_{0},\lambda_{1},.\dots,\lambda_{r-1}\right)$$ , with $$Q_{J^{a}}(\lambda)=a\,t(\lambda)/\overline{{r}}$$ for $$\begin{array}{r}{t(\lambda)\overset{\mathrm{def}}{=}\sum_{j=1}^{r}j\lambda_{j}}\end{array}$$ . Note that
$$C=i d$$ . for $${A}_{1}^{(1)}$$ .</p>
<p>The Kac-Peterson relation (2.1b) for $$A_{r,k}$$ takes the form</p>
<p>where $$s_{(\lambda)}\big(x_{1},\ldots,x_{r+1}\big)$$ is the Schur polynomial (see e.g. [27]) corresponding to the parti-
tion $$(\lambda(1),\ldots,\lambda(\overline{{r}}))$$ , and where $$\textstyle\nu(\ell)=\sum_{i=\ell}^{r}\nu_{i}$$ for any weight $$\nu$$ . In other words, $$S_{\lambda\mu}/S_{0\mu}$$
is the Schur polynomial corresponding to $$\lambda$$ , evaluated at roots of 1 determined by $$\mu$$ .</p>
<p>The fusion (derived from the Pieri rule and (2.4))</p>
<p>valid for $$k\geq2$$ and $$1\leq\ell<r$$ , will be useful.</p>
<p>There are no exceptional fusion-symmetries for $$A_{r}^{(1)}$$ :</p>
<p>Theorem 3.A. The fusion-symmetries for $$A_{r}^{(1)}$$ level $$k$$ are $$C^{i}\pi[a]$$ , for $$i\in\{0,1\}$$ and
any integer $$0\leq a\leq r$$ for which $$1+k a$$ is coprime to $$r+1$$ .</p>
<p>To avoid redundancies in the Theorem, for $$r\,=\,1$$ or $$k\,=\,1$$ take $$i\,=\,0$$ only. If we
write $${\overline{{r}}}\,=\,r^{\prime}r^{\prime\prime}$$ , where $$r^{\prime}$$ is coprime to $$k$$ and $$r^{\prime\prime}|k^{\infty}$$ , then the number of simple-current
automorphisms will exactly equal $$r^{\prime\prime}{\cdot}\varphi(r^{\prime})$$ , where $$\varphi$$ is the Euler totient. The $$\pi[a]$$ commute
with each other, and with $$C$$ .</p>
<p>For example, for $$A_{1,k}$$ when $$k$$ is odd, there is no nontrivial fusion-symmetry. When $$k$$
is even, there is exactly one, sending $$\lambda=\lambda_{1}\Lambda_{1}$$ to $$\lambda$$ (for $$\lambda_{1}$$ even) or $$J\lambda=(k-\lambda_{1})\Lambda_{1}$$ (for
$$\lambda_{1}$$ odd). For $$A_{2,k}$$ , there are either six or four fusion-symmetries, depending on whether
or not 3 divides $$k$$ .</p>
| [{"type": "text", "coordinates": [70, 99, 542, 191], "content": "Our main task in this paper is to find and construct all fusion-symmetries for the\naffine algebras $$X_{r}^{(1)}$$ , for simple $$X_{r}$$ . In this section we state the results, and in the next\nsection we prove the completeness of our lists. Recall the simple-current automorphism\n$$\\pi[a]$$ and Galois automorphism $$\\pi\\{\\ell\\}$$ defined in \u00a72.3, and the notation $$\\kappa=k\\!+\\!h^{\\vee}$$ . It will be\nconvenient to write $$X{_{r,k}}^{,}$$ for $$\\cdot X_{r}^{(1)}$$ and level $$k'$$ . We write $$_S$$ for the group of symmetries\nof the extended Dynkin diagram.", "block_type": "text", "index": 1}, {"type": "title", "coordinates": [71, 203, 218, 221], "content": "3.1. The algebra $$A_{r}^{(1)}$$ , $$r\\geq1$$", "block_type": "title", "index": 2}, {"type": "text", "coordinates": [69, 228, 541, 323], "content": "Define $$\\overline{r}\\,=\\,r\\,+\\,1$$ and $$\\;n\\;=\\;k\\,+\\,{\\overline{{r}}}$$ . The level $$k$$ highest weights of $$A_{r}^{(1)}$$ constitute\nthe set $$P_{+}$$ of $$\\overline{r}$$ -tuples $$\\lambda\\,=\\,(\\lambda_{0},.\\,.\\,.\\,,\\lambda_{r})$$ of non-negative integers obeying $$\\textstyle\\sum_{i=0}^{r}\\lambda_{i}\\;=\\;k$$ .\nThe Dynkin diagram symmetries form the dihedral group $$\\boldsymbol{S}\\;=\\;\\mathfrak{D}_{r+1}$$ ; it is generated\nby the charge-conjugation $$C$$ and simple-current $$J$$ given by $$C\\lambda\\,=\\,(\\lambda_{0},\\lambda_{r},\\lambda_{r-1},\\ldots,\\lambda_{1})$$\nand $$J\\lambda=\\left(\\lambda_{r},\\lambda_{0},\\lambda_{1},.\\dots,\\lambda_{r-1}\\right)$$ , with $$Q_{J^{a}}(\\lambda)=a\\,t(\\lambda)/\\overline{{r}}$$ for $$\\begin{array}{r}{t(\\lambda)\\overset{\\mathrm{def}}{=}\\sum_{j=1}^{r}j\\lambda_{j}}\\end{array}$$ . Note that\n$$C=i d$$ . for $${A}_{1}^{(1)}$$ .", "block_type": "text", "index": 3}, {"type": "text", "coordinates": [95, 324, 394, 339], "content": "The Kac-Peterson relation (2.1b) for $$A_{r,k}$$ takes the form", "block_type": "text", "index": 4}, {"type": "interline_equation", "coordinates": [87, 352, 487, 383], "content": "", "block_type": "interline_equation", "index": 5}, {"type": "text", "coordinates": [70, 395, 540, 439], "content": "where $$s_{(\\lambda)}\\big(x_{1},\\ldots,x_{r+1}\\big)$$ is the Schur polynomial (see e.g. [27]) corresponding to the parti-\ntion $$(\\lambda(1),\\ldots,\\lambda(\\overline{{r}}))$$ , and where $$\\textstyle\\nu(\\ell)=\\sum_{i=\\ell}^{r}\\nu_{i}$$ for any weight $$\\nu$$ . In other words, $$S_{\\lambda\\mu}/S_{0\\mu}$$\nis the Schur polynomial corresponding to $$\\lambda$$ , evaluated at roots of 1 determined by $$\\mu$$ .", "block_type": "text", "index": 6}, {"type": "text", "coordinates": [94, 439, 357, 453], "content": "The fusion (derived from the Pieri rule and (2.4))", "block_type": "text", "index": 7}, {"type": "interline_equation", "coordinates": [223, 467, 386, 484], "content": "", "block_type": "interline_equation", "index": 8}, {"type": "text", "coordinates": [71, 496, 304, 510], "content": "valid for $$k\\geq2$$ and $$1\\leq\\ell<r$$ , will be useful.", "block_type": "text", "index": 9}, {"type": "text", "coordinates": [95, 512, 371, 527], "content": "There are no exceptional fusion-symmetries for $$A_{r}^{(1)}$$ :", "block_type": "text", "index": 10}, {"type": "text", "coordinates": [70, 533, 542, 565], "content": "Theorem 3.A. The fusion-symmetries for $$A_{r}^{(1)}$$ level $$k$$ are $$C^{i}\\pi[a]$$ , for $$i\\in\\{0,1\\}$$ and\nany integer $$0\\leq a\\leq r$$ for which $$1+k a$$ is coprime to $$r+1$$ .", "block_type": "text", "index": 11}, {"type": "text", "coordinates": [70, 571, 541, 628], "content": "To avoid redundancies in the Theorem, for $$r\\,=\\,1$$ or $$k\\,=\\,1$$ take $$i\\,=\\,0$$ only. If we\nwrite $${\\overline{{r}}}\\,=\\,r^{\\prime}r^{\\prime\\prime}$$ , where $$r^{\\prime}$$ is coprime to $$k$$ and $$r^{\\prime\\prime}|k^{\\infty}$$ , then the number of simple-current\nautomorphisms will exactly equal $$r^{\\prime\\prime}{\\cdot}\\varphi(r^{\\prime})$$ , where $$\\varphi$$ is the Euler totient. The $$\\pi[a]$$ commute\nwith each other, and with $$C$$ .", "block_type": "text", "index": 12}, {"type": "text", "coordinates": [70, 630, 541, 686], "content": "For example, for $$A_{1,k}$$ when $$k$$ is odd, there is no nontrivial fusion-symmetry. When $$k$$\nis even, there is exactly one, sending $$\\lambda=\\lambda_{1}\\Lambda_{1}$$ to $$\\lambda$$ (for $$\\lambda_{1}$$ even) or $$J\\lambda=(k-\\lambda_{1})\\Lambda_{1}$$ (for\n$$\\lambda_{1}$$ odd). For $$A_{2,k}$$ , there are either six or four fusion-symmetries, depending on whether\nor not 3 divides $$k$$ .", "block_type": "text", "index": 13}] | [{"type": "text", "coordinates": [95, 102, 541, 117], "content": "Our main task in this paper is to find and construct all fusion-symmetries for the", "score": 1.0, "index": 1}, {"type": "text", "coordinates": [69, 113, 151, 135], "content": "affine algebras ", "score": 1.0, "index": 2}, {"type": "inline_equation", "coordinates": [151, 116, 174, 130], "content": "X_{r}^{(1)}", "score": 0.94, "index": 3}, {"type": "text", "coordinates": [175, 113, 239, 135], "content": ", for simple ", "score": 1.0, "index": 4}, {"type": "inline_equation", "coordinates": [239, 120, 255, 131], "content": "X_{r}", "score": 0.92, "index": 5}, {"type": "text", "coordinates": [255, 113, 544, 135], "content": ". In this section we state the results, and in the next", "score": 1.0, "index": 6}, {"type": "text", "coordinates": [70, 132, 542, 148], "content": "section we prove the completeness of our lists. Recall the simple-current automorphism", "score": 1.0, "index": 7}, {"type": "inline_equation", "coordinates": [71, 148, 92, 161], "content": "\\pi[a]", "score": 0.92, "index": 8}, {"type": "text", "coordinates": [92, 146, 231, 162], "content": " and Galois automorphism ", "score": 1.0, "index": 9}, {"type": "inline_equation", "coordinates": [231, 148, 256, 161], "content": "\\pi\\{\\ell\\}", "score": 0.91, "index": 10}, {"type": "text", "coordinates": [257, 146, 429, 162], "content": " defined in \u00a72.3, and the notation ", "score": 1.0, "index": 11}, {"type": "inline_equation", "coordinates": [429, 148, 484, 159], "content": "\\kappa=k\\!+\\!h^{\\vee}", "score": 0.94, "index": 12}, {"type": "text", "coordinates": [485, 146, 541, 162], "content": ". It will be", "score": 1.0, "index": 13}, {"type": "text", "coordinates": [68, 163, 178, 178], "content": "convenient to write ", "score": 1.0, "index": 14}, {"type": "inline_equation", "coordinates": [179, 164, 206, 178], "content": "X{_{r,k}}^{,}", "score": 0.86, "index": 15}, {"type": "text", "coordinates": [206, 163, 230, 178], "content": " for ", "score": 1.0, "index": 16}, {"type": "inline_equation", "coordinates": [231, 161, 255, 176], "content": "\\cdot X_{r}^{(1)}", "score": 0.9, "index": 17}, {"type": "text", "coordinates": [257, 163, 310, 178], "content": "and level ", "score": 1.0, "index": 18}, {"type": "inline_equation", "coordinates": [310, 165, 320, 174], "content": "k'", "score": 0.62, "index": 19}, {"type": "text", "coordinates": [321, 163, 380, 178], "content": ". We write ", "score": 1.0, "index": 20}, {"type": "inline_equation", "coordinates": [381, 166, 389, 174], "content": "_S", "score": 0.91, "index": 21}, {"type": "text", "coordinates": [389, 163, 541, 178], "content": " for the group of symmetries", "score": 1.0, "index": 22}, {"type": "text", "coordinates": [70, 177, 245, 192], "content": "of the extended Dynkin diagram.", "score": 1.0, "index": 23}, {"type": "text", "coordinates": [69, 202, 160, 225], "content": "3.1. The algebra ", "score": 1.0, "index": 24}, {"type": "inline_equation", "coordinates": [161, 205, 183, 221], "content": "A_{r}^{(1)}", "score": 0.48, "index": 25}, {"type": "text", "coordinates": [183, 202, 189, 225], "content": ", ", "score": 1.0, "index": 26}, {"type": "inline_equation", "coordinates": [190, 208, 218, 221], "content": "r\\geq1", "score": 0.48, "index": 27}, {"type": "text", "coordinates": [93, 228, 133, 247], "content": "Define ", "score": 1.0, "index": 28}, {"type": "inline_equation", "coordinates": [133, 232, 190, 243], "content": "\\overline{r}\\,=\\,r\\,+\\,1", "score": 0.89, "index": 29}, {"type": "text", "coordinates": [190, 228, 219, 247], "content": " and ", "score": 1.0, "index": 30}, {"type": "inline_equation", "coordinates": [219, 233, 277, 243], "content": "\\;n\\;=\\;k\\,+\\,{\\overline{{r}}}", "score": 0.92, "index": 31}, {"type": "text", "coordinates": [278, 228, 345, 247], "content": ". The level ", "score": 1.0, "index": 32}, {"type": "inline_equation", "coordinates": [345, 234, 352, 243], "content": "k", "score": 0.87, "index": 33}, {"type": "text", "coordinates": [353, 228, 459, 247], "content": " highest weights of ", "score": 1.0, "index": 34}, {"type": "inline_equation", "coordinates": [460, 228, 482, 244], "content": "A_{r}^{(1)}", "score": 0.91, "index": 35}, {"type": "text", "coordinates": [483, 228, 542, 247], "content": "constitute", "score": 1.0, "index": 36}, {"type": "text", "coordinates": [70, 245, 112, 262], "content": "the set ", "score": 1.0, "index": 37}, {"type": "inline_equation", "coordinates": [113, 246, 129, 259], "content": "P_{+}", "score": 0.89, "index": 38}, {"type": "text", "coordinates": [129, 245, 148, 262], "content": " of ", "score": 1.0, "index": 39}, {"type": "inline_equation", "coordinates": [148, 247, 155, 257], "content": "\\overline{r}", "score": 0.75, "index": 40}, {"type": "text", "coordinates": [156, 245, 195, 262], "content": "-tuples ", "score": 1.0, "index": 41}, {"type": "inline_equation", "coordinates": [195, 246, 284, 259], "content": "\\lambda\\,=\\,(\\lambda_{0},.\\,.\\,.\\,,\\lambda_{r})", "score": 0.91, "index": 42}, {"type": "text", "coordinates": [284, 245, 466, 262], "content": " of non-negative integers obeying", "score": 1.0, "index": 43}, {"type": "inline_equation", "coordinates": [467, 245, 537, 261], "content": "\\textstyle\\sum_{i=0}^{r}\\lambda_{i}\\;=\\;k", "score": 0.91, "index": 44}, {"type": "text", "coordinates": [537, 245, 541, 262], "content": ".", "score": 1.0, "index": 45}, {"type": "text", "coordinates": [70, 259, 392, 276], "content": "The Dynkin diagram symmetries form the dihedral group ", "score": 1.0, "index": 46}, {"type": "inline_equation", "coordinates": [392, 261, 451, 274], "content": "\\boldsymbol{S}\\;=\\;\\mathfrak{D}_{r+1}", "score": 0.91, "index": 47}, {"type": "text", "coordinates": [451, 259, 542, 276], "content": "; it is generated", "score": 1.0, "index": 48}, {"type": "text", "coordinates": [70, 274, 213, 290], "content": "by the charge-conjugation ", "score": 1.0, "index": 49}, {"type": "inline_equation", "coordinates": [214, 275, 224, 285], "content": "C", "score": 0.83, "index": 50}, {"type": "text", "coordinates": [225, 274, 332, 290], "content": " and simple-current ", "score": 1.0, "index": 51}, {"type": "inline_equation", "coordinates": [333, 276, 341, 285], "content": "J", "score": 0.88, "index": 52}, {"type": "text", "coordinates": [341, 274, 395, 290], "content": " given by ", "score": 1.0, "index": 53}, {"type": "inline_equation", "coordinates": [395, 274, 540, 288], "content": "C\\lambda\\,=\\,(\\lambda_{0},\\lambda_{r},\\lambda_{r-1},\\ldots,\\lambda_{1})", "score": 0.89, "index": 54}, {"type": "text", "coordinates": [69, 291, 94, 309], "content": "and ", "score": 1.0, "index": 55}, {"type": "inline_equation", "coordinates": [95, 292, 235, 306], "content": "J\\lambda=\\left(\\lambda_{r},\\lambda_{0},\\lambda_{1},.\\dots,\\lambda_{r-1}\\right)", "score": 0.92, "index": 56}, {"type": "text", "coordinates": [235, 291, 270, 309], "content": ", with ", "score": 1.0, "index": 57}, {"type": "inline_equation", "coordinates": [270, 293, 366, 306], "content": "Q_{J^{a}}(\\lambda)=a\\,t(\\lambda)/\\overline{{r}}", "score": 0.92, "index": 58}, {"type": "text", "coordinates": [367, 291, 388, 309], "content": " for ", "score": 1.0, "index": 59}, {"type": "inline_equation", "coordinates": [389, 290, 478, 308], "content": "\\begin{array}{r}{t(\\lambda)\\overset{\\mathrm{def}}{=}\\sum_{j=1}^{r}j\\lambda_{j}}\\end{array}", "score": 0.92, "index": 60}, {"type": "text", "coordinates": [479, 291, 542, 309], "content": ". Note that", "score": 1.0, "index": 61}, {"type": "inline_equation", "coordinates": [71, 313, 108, 322], "content": "C=i d", "score": 0.88, "index": 62}, {"type": "text", "coordinates": [108, 310, 132, 325], "content": ". for ", "score": 1.0, "index": 63}, {"type": "inline_equation", "coordinates": [132, 309, 154, 325], "content": "{A}_{1}^{(1)}", "score": 0.93, "index": 64}, {"type": "text", "coordinates": [155, 310, 159, 325], "content": ".", "score": 1.0, "index": 65}, {"type": "text", "coordinates": [94, 325, 290, 341], "content": "The Kac-Peterson relation (2.1b) for ", "score": 1.0, "index": 66}, {"type": "inline_equation", "coordinates": [290, 328, 313, 340], "content": "A_{r,k}", "score": 0.92, "index": 67}, {"type": "text", "coordinates": [313, 325, 393, 341], "content": " takes the form", "score": 1.0, "index": 68}, {"type": "interline_equation", "coordinates": [87, 352, 487, 383], "content": "\\frac{S_{\\lambda\\mu}}{S_{0\\mu}}=\\exp[-2\\pi\\mathrm{i}\\frac{t(\\lambda)\\,t(\\mu)}{\\kappa\\,\\overline{{r}}}]\\,\\,s_{(\\lambda)}(\\exp[-2\\pi\\mathrm{i}\\frac{(\\mu+\\rho)(1)}{\\kappa},\\ldots,\\exp[-2\\pi\\mathrm{i}\\frac{(\\mu+\\rho)(\\overline{{r}})}{\\kappa}]\\,\\ \\", "score": 0.85, "index": 69}, {"type": "text", "coordinates": [71, 397, 105, 414], "content": "where ", "score": 1.0, "index": 70}, {"type": "inline_equation", "coordinates": [105, 399, 197, 412], "content": "s_{(\\lambda)}\\big(x_{1},\\ldots,x_{r+1}\\big)", "score": 0.92, "index": 71}, {"type": "text", "coordinates": [198, 397, 540, 414], "content": " is the Schur polynomial (see e.g. [27]) corresponding to the parti-", "score": 1.0, "index": 72}, {"type": "text", "coordinates": [69, 411, 96, 430], "content": "tion ", "score": 1.0, "index": 73}, {"type": "inline_equation", "coordinates": [96, 413, 176, 426], "content": "(\\lambda(1),\\ldots,\\lambda(\\overline{{r}}))", "score": 0.9, "index": 74}, {"type": "text", "coordinates": [176, 411, 239, 430], "content": ", and where ", "score": 1.0, "index": 75}, {"type": "inline_equation", "coordinates": [239, 411, 317, 427], "content": "\\textstyle\\nu(\\ell)=\\sum_{i=\\ell}^{r}\\nu_{i}", "score": 0.94, "index": 76}, {"type": "text", "coordinates": [317, 411, 397, 430], "content": " for any weight ", "score": 1.0, "index": 77}, {"type": "inline_equation", "coordinates": [397, 415, 405, 423], "content": "\\nu", "score": 0.72, "index": 78}, {"type": "text", "coordinates": [405, 411, 495, 430], "content": ". In other words, ", "score": 1.0, "index": 79}, {"type": "inline_equation", "coordinates": [495, 414, 539, 426], "content": "S_{\\lambda\\mu}/S_{0\\mu}", "score": 0.94, "index": 80}, {"type": "text", "coordinates": [69, 425, 289, 443], "content": "is the Schur polynomial corresponding to", "score": 1.0, "index": 81}, {"type": "inline_equation", "coordinates": [290, 428, 298, 438], "content": "\\lambda", "score": 0.81, "index": 82}, {"type": "text", "coordinates": [298, 425, 505, 443], "content": ", evaluated at roots of 1 determined by ", "score": 1.0, "index": 83}, {"type": "inline_equation", "coordinates": [506, 432, 513, 440], "content": "\\mu", "score": 0.89, "index": 84}, {"type": "text", "coordinates": [514, 425, 519, 443], "content": ".", "score": 1.0, "index": 85}, {"type": "text", "coordinates": [96, 441, 355, 455], "content": "The fusion (derived from the Pieri rule and (2.4))", "score": 1.0, "index": 86}, {"type": "interline_equation", "coordinates": [223, 467, 386, 484], "content": "\\Lambda_{1}\\mathinner{\\left[\\boxtimes\\right]}\\Lambda_{\\ell}=\\Lambda_{\\ell+1}\\mathinner{\\left[\\textstyle{\\ H}\\right.\\left(\\Lambda_{1}+\\Lambda_{\\ell}\\right)\\,,}", "score": 0.55, "index": 87}, {"type": "text", "coordinates": [71, 498, 118, 511], "content": "valid for ", "score": 1.0, "index": 88}, {"type": "inline_equation", "coordinates": [118, 500, 147, 511], "content": "k\\geq2", "score": 0.92, "index": 89}, {"type": "text", "coordinates": [147, 498, 173, 511], "content": " and ", "score": 1.0, "index": 90}, {"type": "inline_equation", "coordinates": [174, 499, 223, 511], "content": "1\\leq\\ell<r", "score": 0.9, "index": 91}, {"type": "text", "coordinates": [224, 498, 302, 511], "content": ", will be useful.", "score": 1.0, "index": 92}, {"type": "text", "coordinates": [93, 512, 344, 529], "content": "There are no exceptional fusion-symmetries for ", "score": 1.0, "index": 93}, {"type": "inline_equation", "coordinates": [345, 510, 367, 527], "content": "A_{r}^{(1)}", "score": 0.91, "index": 94}, {"type": "text", "coordinates": [367, 512, 372, 529], "content": ":", "score": 1.0, "index": 95}, {"type": "text", "coordinates": [93, 534, 323, 554], "content": "Theorem 3.A. The fusion-symmetries for ", "score": 1.0, "index": 96}, {"type": "inline_equation", "coordinates": [323, 533, 346, 550], "content": "A_{r}^{(1)}", "score": 0.91, "index": 97}, {"type": "text", "coordinates": [347, 534, 375, 554], "content": "level", "score": 1.0, "index": 98}, {"type": "inline_equation", "coordinates": [375, 537, 384, 549], "content": "k", "score": 0.72, "index": 99}, {"type": "text", "coordinates": [384, 534, 407, 554], "content": " are ", "score": 1.0, "index": 100}, {"type": "inline_equation", "coordinates": [407, 536, 442, 551], "content": "C^{i}\\pi[a]", "score": 0.92, "index": 101}, {"type": "text", "coordinates": [442, 534, 467, 554], "content": ", for ", "score": 1.0, "index": 102}, {"type": "inline_equation", "coordinates": [467, 537, 517, 551], "content": "i\\in\\{0,1\\}", "score": 0.92, "index": 103}, {"type": "text", "coordinates": [517, 534, 543, 554], "content": " and", "score": 1.0, "index": 104}, {"type": "text", "coordinates": [72, 551, 133, 568], "content": "any integer ", "score": 1.0, "index": 105}, {"type": "inline_equation", "coordinates": [134, 553, 184, 565], "content": "0\\leq a\\leq r", "score": 0.86, "index": 106}, {"type": "text", "coordinates": [185, 551, 240, 568], "content": " for which ", "score": 1.0, "index": 107}, {"type": "inline_equation", "coordinates": [240, 552, 275, 564], "content": "1+k a", "score": 0.88, "index": 108}, {"type": "text", "coordinates": [275, 551, 350, 568], "content": " is coprime to ", "score": 1.0, "index": 109}, {"type": "inline_equation", "coordinates": [350, 552, 378, 564], "content": "r+1", "score": 0.9, "index": 110}, {"type": "text", "coordinates": [378, 551, 383, 568], "content": ".", "score": 1.0, "index": 111}, {"type": "text", "coordinates": [94, 574, 329, 587], "content": "To avoid redundancies in the Theorem, for ", "score": 1.0, "index": 112}, {"type": "inline_equation", "coordinates": [330, 574, 362, 584], "content": "r\\,=\\,1", "score": 0.89, "index": 113}, {"type": "text", "coordinates": [362, 574, 381, 587], "content": " or ", "score": 1.0, "index": 114}, {"type": "inline_equation", "coordinates": [381, 573, 414, 585], "content": "k\\,=\\,1", "score": 0.89, "index": 115}, {"type": "text", "coordinates": [415, 574, 444, 587], "content": " take ", "score": 1.0, "index": 116}, {"type": "inline_equation", "coordinates": [445, 574, 475, 585], "content": "i\\,=\\,0", "score": 0.88, "index": 117}, {"type": "text", "coordinates": [476, 574, 541, 587], "content": " only. If we", "score": 1.0, "index": 118}, {"type": "text", "coordinates": [72, 588, 102, 601], "content": "write ", "score": 1.0, "index": 119}, {"type": "inline_equation", "coordinates": [102, 589, 149, 599], "content": "{\\overline{{r}}}\\,=\\,r^{\\prime}r^{\\prime\\prime}", "score": 0.91, "index": 120}, {"type": "text", "coordinates": [149, 588, 191, 601], "content": ", where ", "score": 1.0, "index": 121}, {"type": "inline_equation", "coordinates": [192, 589, 201, 598], "content": "r^{\\prime}", "score": 0.9, "index": 122}, {"type": "text", "coordinates": [201, 588, 280, 601], "content": " is coprime to ", "score": 1.0, "index": 123}, {"type": "inline_equation", "coordinates": [280, 590, 287, 599], "content": "k", "score": 0.89, "index": 124}, {"type": "text", "coordinates": [288, 588, 315, 601], "content": " and ", "score": 1.0, "index": 125}, {"type": "inline_equation", "coordinates": [316, 588, 348, 601], "content": "r^{\\prime\\prime}|k^{\\infty}", "score": 0.92, "index": 126}, {"type": "text", "coordinates": [348, 588, 541, 601], "content": ", then the number of simple-current", "score": 1.0, "index": 127}, {"type": "text", "coordinates": [70, 602, 246, 617], "content": "automorphisms will exactly equal ", "score": 1.0, "index": 128}, {"type": "inline_equation", "coordinates": [246, 603, 289, 616], "content": "r^{\\prime\\prime}{\\cdot}\\varphi(r^{\\prime})", "score": 0.93, "index": 129}, {"type": "text", "coordinates": [290, 602, 329, 617], "content": ", where ", "score": 1.0, "index": 130}, {"type": "inline_equation", "coordinates": [329, 605, 338, 615], "content": "\\varphi", "score": 0.81, "index": 131}, {"type": "text", "coordinates": [338, 602, 468, 617], "content": " is the Euler totient. The ", "score": 1.0, "index": 132}, {"type": "inline_equation", "coordinates": [468, 601, 489, 616], "content": "\\pi[a]", "score": 0.92, "index": 133}, {"type": "text", "coordinates": [489, 602, 542, 617], "content": " commute", "score": 1.0, "index": 134}, {"type": "text", "coordinates": [72, 617, 210, 630], "content": "with each other, and with ", "score": 1.0, "index": 135}, {"type": "inline_equation", "coordinates": [210, 618, 220, 627], "content": "C", "score": 0.89, "index": 136}, {"type": "text", "coordinates": [220, 617, 224, 630], "content": ".", "score": 1.0, "index": 137}, {"type": "text", "coordinates": [95, 631, 184, 646], "content": "For example, for ", "score": 1.0, "index": 138}, {"type": "inline_equation", "coordinates": [185, 633, 207, 645], "content": "A_{1,k}", "score": 0.93, "index": 139}, {"type": "text", "coordinates": [207, 631, 241, 646], "content": " when ", "score": 1.0, "index": 140}, {"type": "inline_equation", "coordinates": [242, 633, 248, 641], "content": "k", "score": 0.89, "index": 141}, {"type": "text", "coordinates": [249, 631, 532, 646], "content": " is odd, there is no nontrivial fusion-symmetry. When ", "score": 1.0, "index": 142}, {"type": "inline_equation", "coordinates": [532, 633, 540, 642], "content": "k", "score": 0.83, "index": 143}, {"type": "text", "coordinates": [69, 645, 265, 661], "content": "is even, there is exactly one, sending ", "score": 1.0, "index": 144}, {"type": "inline_equation", "coordinates": [266, 647, 315, 658], "content": "\\lambda=\\lambda_{1}\\Lambda_{1}", "score": 0.93, "index": 145}, {"type": "text", "coordinates": [315, 645, 333, 661], "content": " to ", "score": 1.0, "index": 146}, {"type": "inline_equation", "coordinates": [333, 647, 340, 656], "content": "\\lambda", "score": 0.87, "index": 147}, {"type": "text", "coordinates": [340, 645, 366, 661], "content": " (for ", "score": 1.0, "index": 148}, {"type": "inline_equation", "coordinates": [367, 647, 379, 658], "content": "\\lambda_{1}", "score": 0.9, "index": 149}, {"type": "text", "coordinates": [379, 645, 429, 661], "content": " even) or ", "score": 1.0, "index": 150}, {"type": "inline_equation", "coordinates": [429, 646, 516, 659], "content": "J\\lambda=(k-\\lambda_{1})\\Lambda_{1}", "score": 0.93, "index": 151}, {"type": "text", "coordinates": [517, 645, 541, 661], "content": " (for", "score": 1.0, "index": 152}, {"type": "inline_equation", "coordinates": [71, 662, 83, 672], "content": "\\lambda_{1}", "score": 0.89, "index": 153}, {"type": "text", "coordinates": [84, 659, 144, 675], "content": " odd). For ", "score": 1.0, "index": 154}, {"type": "inline_equation", "coordinates": [145, 662, 167, 674], "content": "A_{2,k}", "score": 0.93, "index": 155}, {"type": "text", "coordinates": [167, 659, 541, 675], "content": ", there are either six or four fusion-symmetries, depending on whether", "score": 1.0, "index": 156}, {"type": "text", "coordinates": [70, 674, 157, 689], "content": "or not 3 divides ", "score": 1.0, "index": 157}, {"type": "inline_equation", "coordinates": [158, 676, 164, 685], "content": "k", "score": 0.9, "index": 158}, {"type": "text", "coordinates": [165, 674, 169, 689], "content": ".", "score": 1.0, "index": 159}] | [] | [{"type": "block", "coordinates": [87, 352, 487, 383], "content": "", "caption": ""}, {"type": "block", "coordinates": [223, 467, 386, 484], "content": "", "caption": ""}, {"type": "inline", "coordinates": [151, 116, 174, 130], "content": "X_{r}^{(1)}", "caption": ""}, {"type": "inline", "coordinates": [239, 120, 255, 131], "content": "X_{r}", "caption": ""}, {"type": "inline", "coordinates": [71, 148, 92, 161], "content": "\\pi[a]", "caption": ""}, {"type": "inline", "coordinates": [231, 148, 256, 161], "content": "\\pi\\{\\ell\\}", "caption": ""}, {"type": "inline", "coordinates": [429, 148, 484, 159], "content": "\\kappa=k\\!+\\!h^{\\vee}", "caption": ""}, {"type": "inline", "coordinates": [179, 164, 206, 178], "content": "X{_{r,k}}^{,}", "caption": ""}, {"type": "inline", "coordinates": [231, 161, 255, 176], "content": "\\cdot X_{r}^{(1)}", "caption": ""}, {"type": "inline", "coordinates": [310, 165, 320, 174], "content": "k'", "caption": ""}, {"type": "inline", "coordinates": [381, 166, 389, 174], "content": "_S", "caption": ""}, {"type": "inline", "coordinates": [161, 205, 183, 221], "content": "A_{r}^{(1)}", "caption": ""}, {"type": "inline", "coordinates": [190, 208, 218, 221], "content": "r\\geq1", "caption": ""}, {"type": "inline", "coordinates": [133, 232, 190, 243], "content": "\\overline{r}\\,=\\,r\\,+\\,1", "caption": ""}, {"type": "inline", "coordinates": [219, 233, 277, 243], "content": "\\;n\\;=\\;k\\,+\\,{\\overline{{r}}}", "caption": ""}, {"type": "inline", "coordinates": [345, 234, 352, 243], "content": "k", "caption": ""}, {"type": "inline", "coordinates": [460, 228, 482, 244], "content": "A_{r}^{(1)}", "caption": ""}, {"type": "inline", "coordinates": [113, 246, 129, 259], "content": "P_{+}", "caption": ""}, {"type": "inline", "coordinates": [148, 247, 155, 257], "content": "\\overline{r}", "caption": ""}, {"type": "inline", "coordinates": [195, 246, 284, 259], "content": "\\lambda\\,=\\,(\\lambda_{0},.\\,.\\,.\\,,\\lambda_{r})", "caption": ""}, {"type": "inline", "coordinates": [467, 245, 537, 261], "content": "\\textstyle\\sum_{i=0}^{r}\\lambda_{i}\\;=\\;k", "caption": ""}, {"type": "inline", "coordinates": [392, 261, 451, 274], "content": "\\boldsymbol{S}\\;=\\;\\mathfrak{D}_{r+1}", "caption": ""}, {"type": "inline", "coordinates": [214, 275, 224, 285], "content": "C", "caption": ""}, {"type": "inline", "coordinates": [333, 276, 341, 285], "content": "J", "caption": ""}, {"type": "inline", "coordinates": [395, 274, 540, 288], "content": "C\\lambda\\,=\\,(\\lambda_{0},\\lambda_{r},\\lambda_{r-1},\\ldots,\\lambda_{1})", "caption": ""}, {"type": "inline", "coordinates": [95, 292, 235, 306], "content": "J\\lambda=\\left(\\lambda_{r},\\lambda_{0},\\lambda_{1},.\\dots,\\lambda_{r-1}\\right)", "caption": ""}, {"type": "inline", "coordinates": [270, 293, 366, 306], "content": "Q_{J^{a}}(\\lambda)=a\\,t(\\lambda)/\\overline{{r}}", "caption": ""}, {"type": "inline", "coordinates": [389, 290, 478, 308], "content": "\\begin{array}{r}{t(\\lambda)\\overset{\\mathrm{def}}{=}\\sum_{j=1}^{r}j\\lambda_{j}}\\end{array}", "caption": ""}, {"type": "inline", "coordinates": [71, 313, 108, 322], "content": "C=i d", "caption": ""}, {"type": "inline", "coordinates": [132, 309, 154, 325], "content": "{A}_{1}^{(1)}", "caption": ""}, {"type": "inline", "coordinates": [290, 328, 313, 340], "content": "A_{r,k}", "caption": ""}, {"type": "inline", "coordinates": [105, 399, 197, 412], "content": "s_{(\\lambda)}\\big(x_{1},\\ldots,x_{r+1}\\big)", "caption": ""}, {"type": "inline", "coordinates": [96, 413, 176, 426], "content": "(\\lambda(1),\\ldots,\\lambda(\\overline{{r}}))", "caption": ""}, {"type": "inline", "coordinates": [239, 411, 317, 427], "content": "\\textstyle\\nu(\\ell)=\\sum_{i=\\ell}^{r}\\nu_{i}", "caption": ""}, {"type": "inline", "coordinates": [397, 415, 405, 423], "content": "\\nu", "caption": ""}, {"type": "inline", "coordinates": [495, 414, 539, 426], "content": "S_{\\lambda\\mu}/S_{0\\mu}", "caption": ""}, {"type": "inline", "coordinates": [290, 428, 298, 438], "content": "\\lambda", "caption": ""}, {"type": "inline", "coordinates": [506, 432, 513, 440], "content": "\\mu", "caption": ""}, {"type": "inline", "coordinates": [118, 500, 147, 511], "content": "k\\geq2", "caption": ""}, {"type": "inline", "coordinates": [174, 499, 223, 511], "content": "1\\leq\\ell<r", "caption": ""}, {"type": "inline", "coordinates": [345, 510, 367, 527], "content": "A_{r}^{(1)}", "caption": ""}, {"type": "inline", "coordinates": [323, 533, 346, 550], "content": "A_{r}^{(1)}", "caption": ""}, {"type": "inline", "coordinates": [375, 537, 384, 549], "content": "k", "caption": ""}, {"type": "inline", "coordinates": [407, 536, 442, 551], "content": "C^{i}\\pi[a]", "caption": ""}, {"type": "inline", "coordinates": [467, 537, 517, 551], "content": "i\\in\\{0,1\\}", "caption": ""}, {"type": "inline", "coordinates": [134, 553, 184, 565], "content": "0\\leq a\\leq r", "caption": ""}, {"type": "inline", "coordinates": [240, 552, 275, 564], "content": "1+k a", "caption": ""}, {"type": "inline", "coordinates": [350, 552, 378, 564], "content": "r+1", "caption": ""}, {"type": "inline", "coordinates": [330, 574, 362, 584], "content": "r\\,=\\,1", "caption": ""}, {"type": "inline", "coordinates": [381, 573, 414, 585], "content": "k\\,=\\,1", "caption": ""}, {"type": "inline", "coordinates": [445, 574, 475, 585], "content": "i\\,=\\,0", "caption": ""}, {"type": "inline", "coordinates": [102, 589, 149, 599], "content": "{\\overline{{r}}}\\,=\\,r^{\\prime}r^{\\prime\\prime}", "caption": ""}, {"type": "inline", "coordinates": [192, 589, 201, 598], "content": "r^{\\prime}", "caption": ""}, {"type": "inline", "coordinates": [280, 590, 287, 599], "content": "k", "caption": ""}, {"type": "inline", "coordinates": [316, 588, 348, 601], "content": "r^{\\prime\\prime}|k^{\\infty}", "caption": ""}, {"type": "inline", "coordinates": [246, 603, 289, 616], "content": "r^{\\prime\\prime}{\\cdot}\\varphi(r^{\\prime})", "caption": ""}, {"type": "inline", "coordinates": [329, 605, 338, 615], "content": "\\varphi", "caption": ""}, {"type": "inline", "coordinates": [468, 601, 489, 616], "content": "\\pi[a]", "caption": ""}, {"type": "inline", "coordinates": [210, 618, 220, 627], "content": "C", "caption": ""}, {"type": "inline", "coordinates": [185, 633, 207, 645], "content": "A_{1,k}", "caption": ""}, {"type": "inline", "coordinates": [242, 633, 248, 641], "content": "k", "caption": ""}, {"type": "inline", "coordinates": [532, 633, 540, 642], "content": "k", "caption": ""}, {"type": "inline", "coordinates": [266, 647, 315, 658], "content": "\\lambda=\\lambda_{1}\\Lambda_{1}", "caption": ""}, {"type": "inline", "coordinates": [333, 647, 340, 656], "content": "\\lambda", "caption": ""}, {"type": "inline", "coordinates": [367, 647, 379, 658], "content": "\\lambda_{1}", "caption": ""}, {"type": "inline", "coordinates": [429, 646, 516, 659], "content": "J\\lambda=(k-\\lambda_{1})\\Lambda_{1}", "caption": ""}, {"type": "inline", "coordinates": [71, 662, 83, 672], "content": "\\lambda_{1}", "caption": ""}, {"type": "inline", "coordinates": [145, 662, 167, 674], "content": "A_{2,k}", "caption": ""}, {"type": "inline", "coordinates": [158, 676, 164, 685], "content": "k", "caption": ""}] | [] | [612.0, 792.0] | [{"type": "text", "text": "Our main task in this paper is to find and construct all fusion-symmetries for the affine algebras $X_{r}^{(1)}$ , for simple $X_{r}$ . In this section we state the results, and in the next section we prove the completeness of our lists. Recall the simple-current automorphism $\\pi[a]$ and Galois automorphism $\\pi\\{\\ell\\}$ defined in \u00a72.3, and the notation $\\kappa=k\\!+\\!h^{\\vee}$ . It will be convenient to write $X{_{r,k}}^{,}$ for $\\cdot X_{r}^{(1)}$ and level $k'$ . We write $_S$ for the group of symmetries of the extended Dynkin diagram. ", "page_idx": 8}, {"type": "text", "text": "3.1. The algebra $A_{r}^{(1)}$ , $r\\geq1$ ", "text_level": 1, "page_idx": 8}, {"type": "text", "text": "Define $\\overline{r}\\,=\\,r\\,+\\,1$ and $\\;n\\;=\\;k\\,+\\,{\\overline{{r}}}$ . The level $k$ highest weights of $A_{r}^{(1)}$ constitute the set $P_{+}$ of $\\overline{r}$ -tuples $\\lambda\\,=\\,(\\lambda_{0},.\\,.\\,.\\,,\\lambda_{r})$ of non-negative integers obeying $\\textstyle\\sum_{i=0}^{r}\\lambda_{i}\\;=\\;k$ . The Dynkin diagram symmetries form the dihedral group $\\boldsymbol{S}\\;=\\;\\mathfrak{D}_{r+1}$ ; it is generated by the charge-conjugation $C$ and simple-current $J$ given by $C\\lambda\\,=\\,(\\lambda_{0},\\lambda_{r},\\lambda_{r-1},\\ldots,\\lambda_{1})$ and $J\\lambda=\\left(\\lambda_{r},\\lambda_{0},\\lambda_{1},.\\dots,\\lambda_{r-1}\\right)$ , with $Q_{J^{a}}(\\lambda)=a\\,t(\\lambda)/\\overline{{r}}$ for $\\begin{array}{r}{t(\\lambda)\\overset{\\mathrm{def}}{=}\\sum_{j=1}^{r}j\\lambda_{j}}\\end{array}$ . Note that $C=i d$ . for ${A}_{1}^{(1)}$ . ", "page_idx": 8}, {"type": "text", "text": "The Kac-Peterson relation (2.1b) for $A_{r,k}$ takes the form ", "page_idx": 8}, {"type": "equation", "text": "$$\n\\frac{S_{\\lambda\\mu}}{S_{0\\mu}}=\\exp[-2\\pi\\mathrm{i}\\frac{t(\\lambda)\\,t(\\mu)}{\\kappa\\,\\overline{{r}}}]\\,\\,s_{(\\lambda)}(\\exp[-2\\pi\\mathrm{i}\\frac{(\\mu+\\rho)(1)}{\\kappa},\\ldots,\\exp[-2\\pi\\mathrm{i}\\frac{(\\mu+\\rho)(\\overline{{r}})}{\\kappa}]\\,\\ \\\n$$", "text_format": "latex", "page_idx": 8}, {"type": "text", "text": "where $s_{(\\lambda)}\\big(x_{1},\\ldots,x_{r+1}\\big)$ is the Schur polynomial (see e.g. [27]) corresponding to the partition $(\\lambda(1),\\ldots,\\lambda(\\overline{{r}}))$ , and where $\\textstyle\\nu(\\ell)=\\sum_{i=\\ell}^{r}\\nu_{i}$ for any weight $\\nu$ . In other words, $S_{\\lambda\\mu}/S_{0\\mu}$ is the Schur polynomial corresponding to $\\lambda$ , evaluated at roots of 1 determined by $\\mu$ . ", "page_idx": 8}, {"type": "text", "text": "The fusion (derived from the Pieri rule and (2.4)) ", "page_idx": 8}, {"type": "equation", "text": "$$\n\\Lambda_{1}\\mathinner{\\left[\\boxtimes\\right]}\\Lambda_{\\ell}=\\Lambda_{\\ell+1}\\mathinner{\\left[\\textstyle{\\ H}\\right.\\left(\\Lambda_{1}+\\Lambda_{\\ell}\\right)\\,,}\n$$", "text_format": "latex", "page_idx": 8}, {"type": "text", "text": "valid for $k\\geq2$ and $1\\leq\\ell<r$ , will be useful. ", "page_idx": 8}, {"type": "text", "text": "There are no exceptional fusion-symmetries for $A_{r}^{(1)}$ : ", "page_idx": 8}, {"type": "text", "text": "Theorem 3.A. The fusion-symmetries for $A_{r}^{(1)}$ level $k$ are $C^{i}\\pi[a]$ , for $i\\in\\{0,1\\}$ and any integer $0\\leq a\\leq r$ for which $1+k a$ is coprime to $r+1$ . ", "page_idx": 8}, {"type": "text", "text": "To avoid redundancies in the Theorem, for $r\\,=\\,1$ or $k\\,=\\,1$ take $i\\,=\\,0$ only. If we write ${\\overline{{r}}}\\,=\\,r^{\\prime}r^{\\prime\\prime}$ , where $r^{\\prime}$ is coprime to $k$ and $r^{\\prime\\prime}|k^{\\infty}$ , then the number of simple-current automorphisms will exactly equal $r^{\\prime\\prime}{\\cdot}\\varphi(r^{\\prime})$ , where $\\varphi$ is the Euler totient. The $\\pi[a]$ commute with each other, and with $C$ . ", "page_idx": 8}, {"type": "text", "text": "For example, for $A_{1,k}$ when $k$ is odd, there is no nontrivial fusion-symmetry. When $k$ is even, there is exactly one, sending $\\lambda=\\lambda_{1}\\Lambda_{1}$ to $\\lambda$ (for $\\lambda_{1}$ even) or $J\\lambda=(k-\\lambda_{1})\\Lambda_{1}$ (for $\\lambda_{1}$ odd). For $A_{2,k}$ , there are either six or four fusion-symmetries, depending on whether or not 3 divides $k$ . ", "page_idx": 8}] | [{"category_id": 1, "poly": [196, 276, 1507, 276, 1507, 532, 196, 532], "score": 0.986}, {"category_id": 1, "poly": [194, 634, 1504, 634, 1504, 898, 194, 898], "score": 0.981}, {"category_id": 1, "poly": [195, 1750, 1503, 1750, 1503, 1908, 195, 1908], "score": 0.974}, {"category_id": 1, "poly": [197, 1587, 1504, 1587, 1504, 1747, 197, 1747], "score": 0.973}, {"category_id": 1, "poly": [195, 1099, 1502, 1099, 1502, 1220, 195, 1220], "score": 0.962}, {"category_id": 1, "poly": [197, 1483, 1506, 1483, 1506, 1570, 197, 1570], "score": 0.953}, {"category_id": 8, "poly": [240, 972, 1392, 972, 1392, 1065, 240, 1065], "score": 0.943}, {"category_id": 8, "poly": [622, 1294, 1076, 1294, 1076, 1344, 622, 1344], "score": 0.926}, {"category_id": 1, "poly": [198, 1379, 845, 1379, 845, 1419, 198, 1419], "score": 0.923}, {"category_id": 1, "poly": [265, 900, 1095, 900, 1095, 943, 265, 943], "score": 0.916}, {"category_id": 1, "poly": [262, 1221, 992, 1221, 992, 1260, 262, 1260], "score": 0.908}, {"category_id": 0, "poly": [199, 565, 607, 565, 607, 615, 199, 615], "score": 0.884}, {"category_id": 9, "poly": [1429, 1001, 1500, 1001, 1500, 1042, 1429, 1042], "score": 0.866}, {"category_id": 2, "poly": [557, 199, 1140, 199, 1140, 237, 557, 237], "score": 0.736}, {"category_id": 1, "poly": [264, 1423, 1032, 1423, 1032, 1465, 264, 1465], "score": 0.699}, {"category_id": 13, "poly": [1377, 1150, 1498, 1150, 1498, 1186, 1377, 1186], "score": 0.94, "latex": "S_{\\lambda\\mu}/S_{0\\mu}"}, {"category_id": 13, "poly": [1194, 412, 1347, 412, 1347, 442, 1194, 442], "score": 0.94, "latex": "\\kappa=k\\!+\\!h^{\\vee}"}, {"category_id": 13, "poly": [666, 1143, 881, 1143, 881, 1187, 666, 1187], "score": 0.94, "latex": "\\textstyle\\nu(\\ell)=\\sum_{i=\\ell}^{r}\\nu_{i}"}, {"category_id": 13, "poly": [421, 324, 486, 324, 486, 363, 421, 363], "score": 0.94, "latex": "X_{r}^{(1)}"}, {"category_id": 13, "poly": [1194, 1796, 1436, 1796, 1436, 1832, 1194, 1832], "score": 0.93, "latex": "J\\lambda=(k-\\lambda_{1})\\Lambda_{1}"}, {"category_id": 13, "poly": [686, 1677, 805, 1677, 805, 1712, 686, 1712], "score": 0.93, "latex": "r^{\\prime\\prime}{\\cdot}\\varphi(r^{\\prime})"}, {"category_id": 13, "poly": [739, 1799, 875, 1799, 875, 1828, 739, 1828], "score": 0.93, "latex": "\\lambda=\\lambda_{1}\\Lambda_{1}"}, {"category_id": 13, "poly": [369, 860, 430, 860, 430, 905, 369, 905], "score": 0.93, "latex": "{A}_{1}^{(1)}"}, {"category_id": 13, "poly": [514, 1759, 576, 1759, 576, 1793, 514, 1793], "score": 0.93, "latex": "A_{1,k}"}, {"category_id": 13, "poly": [403, 1839, 465, 1839, 465, 1873, 403, 1873], "score": 0.93, "latex": "A_{2,k}"}, {"category_id": 13, "poly": [1132, 1491, 1229, 1491, 1229, 1532, 1132, 1532], "score": 0.92, "latex": "C^{i}\\pi[a]"}, {"category_id": 13, "poly": [808, 912, 870, 912, 870, 945, 808, 945], "score": 0.92, "latex": "A_{r,k}"}, {"category_id": 13, "poly": [1299, 1492, 1437, 1492, 1437, 1533, 1299, 1533], "score": 0.92, "latex": "i\\in\\{0,1\\}"}, {"category_id": 13, "poly": [611, 649, 772, 649, 772, 677, 611, 677], "score": 0.92, "latex": "\\;n\\;=\\;k\\,+\\,{\\overline{{r}}}"}, {"category_id": 13, "poly": [666, 336, 709, 336, 709, 365, 666, 365], "score": 0.92, "latex": "X_{r}"}, {"category_id": 13, "poly": [294, 1109, 549, 1109, 549, 1147, 294, 1147], "score": 0.92, "latex": "s_{(\\lambda)}\\big(x_{1},\\ldots,x_{r+1}\\big)"}, {"category_id": 13, "poly": [330, 1391, 410, 1391, 410, 1420, 330, 1420], "score": 0.92, "latex": "k\\geq2"}, {"category_id": 13, "poly": [199, 413, 256, 413, 256, 448, 199, 448], "score": 0.92, "latex": "\\pi[a]"}, {"category_id": 13, "poly": [878, 1635, 968, 1635, 968, 1671, 878, 1671], "score": 0.92, "latex": "r^{\\prime\\prime}|k^{\\infty}"}, {"category_id": 13, "poly": [752, 816, 1019, 816, 1019, 852, 752, 852], "score": 0.92, "latex": "Q_{J^{a}}(\\lambda)=a\\,t(\\lambda)/\\overline{{r}}"}, {"category_id": 13, "poly": [1302, 1672, 1360, 1672, 1360, 1712, 1302, 1712], "score": 0.92, "latex": "\\pi[a]"}, {"category_id": 13, "poly": [264, 813, 653, 813, 653, 852, 264, 852], "score": 0.92, "latex": "J\\lambda=\\left(\\lambda_{r},\\lambda_{0},\\lambda_{1},.\\dots,\\lambda_{r-1}\\right)"}, {"category_id": 13, "poly": [1081, 806, 1330, 806, 1330, 858, 1081, 858], "score": 0.92, "latex": "\\begin{array}{r}{t(\\lambda)\\overset{\\mathrm{def}}{=}\\sum_{j=1}^{r}j\\lambda_{j}}\\end{array}"}, {"category_id": 13, "poly": [644, 413, 713, 413, 713, 448, 644, 448], "score": 0.91, "latex": "\\pi\\{\\ell\\}"}, {"category_id": 13, "poly": [286, 1637, 414, 1637, 414, 1664, 286, 1664], "score": 0.91, "latex": "{\\overline{{r}}}\\,=\\,r^{\\prime}r^{\\prime\\prime}"}, {"category_id": 13, "poly": [1298, 682, 1493, 682, 1493, 725, 1298, 725], "score": 0.91, "latex": "\\textstyle\\sum_{i=0}^{r}\\lambda_{i}\\;=\\;k"}, {"category_id": 13, "poly": [544, 685, 790, 685, 790, 722, 544, 722], "score": 0.91, "latex": "\\lambda\\,=\\,(\\lambda_{0},.\\,.\\,.\\,,\\lambda_{r})"}, {"category_id": 13, "poly": [1091, 727, 1253, 727, 1253, 762, 1091, 762], "score": 0.91, "latex": "\\boldsymbol{S}\\;=\\;\\mathfrak{D}_{r+1}"}, {"category_id": 13, "poly": [959, 1418, 1021, 1418, 1021, 1464, 959, 1464], "score": 0.91, "latex": "A_{r}^{(1)}"}, {"category_id": 13, "poly": [899, 1483, 963, 1483, 963, 1529, 899, 1529], "score": 0.91, "latex": "A_{r}^{(1)}"}, {"category_id": 13, "poly": [1059, 462, 1082, 462, 1082, 486, 1059, 486], "score": 0.91, "latex": "_S"}, {"category_id": 13, "poly": [1278, 635, 1341, 635, 1341, 678, 1278, 678], "score": 0.91, "latex": "A_{r}^{(1)}"}, {"category_id": 13, "poly": [642, 449, 710, 449, 710, 489, 642, 489], "score": 0.9, "latex": "\\cdot X_{r}^{(1)}"}, {"category_id": 13, "poly": [484, 1388, 622, 1388, 622, 1420, 484, 1420], "score": 0.9, "latex": "1\\leq\\ell<r"}, {"category_id": 13, "poly": [268, 1149, 490, 1149, 490, 1185, 268, 1185], "score": 0.9, "latex": "(\\lambda(1),\\ldots,\\lambda(\\overline{{r}}))"}, {"category_id": 13, "poly": [439, 1879, 458, 1879, 458, 1904, 439, 1904], "score": 0.9, "latex": "k"}, {"category_id": 13, "poly": [974, 1535, 1051, 1535, 1051, 1567, 974, 1567], "score": 0.9, "latex": "r+1"}, {"category_id": 13, "poly": [1020, 1799, 1054, 1799, 1054, 1828, 1020, 1828], "score": 0.9, "latex": "\\lambda_{1}"}, {"category_id": 13, "poly": [534, 1637, 559, 1637, 559, 1663, 534, 1663], "score": 0.9, "latex": "r^{\\prime}"}, {"category_id": 13, "poly": [1060, 1594, 1152, 1594, 1152, 1625, 1060, 1625], "score": 0.89, "latex": "k\\,=\\,1"}, {"category_id": 13, "poly": [314, 685, 360, 685, 360, 722, 314, 722], "score": 0.89, "latex": "P_{+}"}, {"category_id": 13, "poly": [586, 1719, 612, 1719, 612, 1744, 586, 1744], "score": 0.89, "latex": "C"}, {"category_id": 13, "poly": [1406, 1201, 1427, 1201, 1427, 1223, 1406, 1223], "score": 0.89, "latex": "\\mu"}, {"category_id": 13, "poly": [199, 1839, 233, 1839, 233, 1868, 199, 1868], "score": 0.89, "latex": "\\lambda_{1}"}, {"category_id": 13, "poly": [673, 1759, 691, 1759, 691, 1783, 673, 1783], "score": 0.89, "latex": "k"}, {"category_id": 13, "poly": [1099, 763, 1501, 763, 1501, 801, 1099, 801], "score": 0.89, "latex": "C\\lambda\\,=\\,(\\lambda_{0},\\lambda_{r},\\lambda_{r-1},\\ldots,\\lambda_{1})"}, {"category_id": 13, "poly": [372, 646, 529, 646, 529, 677, 372, 677], "score": 0.89, "latex": "\\overline{r}\\,=\\,r\\,+\\,1"}, {"category_id": 13, "poly": [779, 1639, 799, 1639, 799, 1664, 779, 1664], "score": 0.89, "latex": "k"}, {"category_id": 13, "poly": [917, 1595, 1006, 1595, 1006, 1624, 917, 1624], "score": 0.89, "latex": "r\\,=\\,1"}, {"category_id": 13, "poly": [669, 1535, 765, 1535, 765, 1567, 669, 1567], "score": 0.88, "latex": "1+k a"}, {"category_id": 13, "poly": [1237, 1595, 1322, 1595, 1322, 1626, 1237, 1626], "score": 0.88, "latex": "i\\,=\\,0"}, {"category_id": 13, "poly": [199, 872, 300, 872, 300, 897, 199, 897], "score": 0.88, "latex": "C=i d"}, {"category_id": 13, "poly": [925, 769, 948, 769, 948, 794, 925, 794], "score": 0.88, "latex": "J"}, {"category_id": 13, "poly": [961, 650, 980, 650, 980, 675, 961, 675], "score": 0.87, "latex": "k"}, {"category_id": 13, "poly": [926, 1799, 946, 1799, 946, 1823, 926, 1823], "score": 0.87, "latex": "\\lambda"}, {"category_id": 13, "poly": [373, 1538, 513, 1538, 513, 1570, 373, 1570], "score": 0.86, "latex": "0\\leq a\\leq r"}, {"category_id": 13, "poly": [498, 457, 573, 457, 573, 495, 498, 495], "score": 0.86, "latex": "X{_{r,k}}^{,}"}, {"category_id": 14, "poly": [242, 980, 1353, 980, 1353, 1064, 242, 1064], "score": 0.85, "latex": "\\frac{S_{\\lambda\\mu}}{S_{0\\mu}}=\\exp[-2\\pi\\mathrm{i}\\frac{t(\\lambda)\\,t(\\mu)}{\\kappa\\,\\overline{{r}}}]\\,\\,s_{(\\lambda)}(\\exp[-2\\pi\\mathrm{i}\\frac{(\\mu+\\rho)(1)}{\\kappa},\\ldots,\\exp[-2\\pi\\mathrm{i}\\frac{(\\mu+\\rho)(\\overline{{r}})}{\\kappa}]\\,\\ \\"}, {"category_id": 13, "poly": [595, 764, 624, 764, 624, 794, 595, 794], "score": 0.83, "latex": "C"}, {"category_id": 13, "poly": [1480, 1759, 1500, 1759, 1500, 1784, 1480, 1784], "score": 0.83, "latex": "k"}, {"category_id": 13, "poly": [915, 1681, 939, 1681, 939, 1710, 915, 1710], "score": 0.81, "latex": "\\varphi"}, {"category_id": 13, "poly": [806, 1189, 829, 1189, 829, 1218, 806, 1218], "score": 0.81, "latex": "\\lambda"}, {"category_id": 13, "poly": [413, 688, 433, 688, 433, 715, 413, 715], "score": 0.75, "latex": "\\overline{r}"}, {"category_id": 13, "poly": [1104, 1153, 1125, 1153, 1125, 1177, 1104, 1177], "score": 0.72, "latex": "\\nu"}, {"category_id": 13, "poly": [1044, 1494, 1068, 1494, 1068, 1526, 1044, 1526], "score": 0.72, "latex": "k"}, {"category_id": 13, "poly": [863, 461, 891, 461, 891, 486, 863, 486], "score": 0.62, "latex": "k'"}, {"category_id": 14, "poly": [621, 1298, 1073, 1298, 1073, 1345, 621, 1345], "score": 0.55, "latex": "\\Lambda_{1}\\mathinner{\\left[\\boxtimes\\right]}\\Lambda_{\\ell}=\\Lambda_{\\ell+1}\\mathinner{\\left[\\textstyle{\\ H}\\right.\\left(\\Lambda_{1}+\\Lambda_{\\ell}\\right)\\,,}"}, {"category_id": 13, "poly": [528, 579, 607, 579, 607, 615, 528, 615], "score": 0.48, "latex": "r\\geq1"}, {"category_id": 13, "poly": [448, 570, 509, 570, 509, 615, 448, 615], "score": 0.48, "latex": "A_{r}^{(1)}"}, {"category_id": 13, "poly": [623, 1304, 663, 1304, 663, 1341, 623, 1341], "score": 0.42, "latex": "\\Lambda_{1}"}, {"category_id": 13, "poly": [710, 1301, 864, 1301, 864, 1344, 710, 1344], "score": 0.37, "latex": "\\Lambda_{\\ell}=\\Lambda_{\\ell+1}"}, {"category_id": 13, "poly": [912, 1301, 1056, 1301, 1056, 1345, 912, 1345], "score": 0.31, "latex": "\\left(\\Lambda_{1}+\\Lambda_{\\ell}\\right)"}, {"category_id": 15, "poly": [264.0, 284.0, 1503.0, 284.0, 1503.0, 325.0, 264.0, 325.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [193.0, 314.0, 420.0, 314.0, 420.0, 376.0, 193.0, 376.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [487.0, 314.0, 665.0, 314.0, 665.0, 376.0, 487.0, 376.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [710.0, 314.0, 1513.0, 314.0, 1513.0, 376.0, 710.0, 376.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [197.0, 369.0, 1506.0, 369.0, 1506.0, 412.0, 197.0, 412.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [257.0, 408.0, 643.0, 408.0, 643.0, 450.0, 257.0, 450.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [714.0, 408.0, 1193.0, 408.0, 1193.0, 450.0, 714.0, 450.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1348.0, 408.0, 1504.0, 408.0, 1504.0, 450.0, 1348.0, 450.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [190.0, 453.0, 497.0, 453.0, 497.0, 495.0, 190.0, 495.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [574.0, 453.0, 641.0, 453.0, 641.0, 495.0, 574.0, 495.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [711.0, 453.0, 714.0, 453.0, 714.0, 495.0, 711.0, 495.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [715.0, 454.0, 862.0, 454.0, 862.0, 496.0, 715.0, 496.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [892.0, 454.0, 1058.0, 454.0, 1058.0, 496.0, 892.0, 496.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1083.0, 454.0, 1504.0, 454.0, 1504.0, 496.0, 1083.0, 496.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [196.0, 494.0, 681.0, 494.0, 681.0, 536.0, 196.0, 536.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [260.0, 635.0, 371.0, 635.0, 371.0, 688.0, 260.0, 688.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [530.0, 635.0, 610.0, 635.0, 610.0, 688.0, 530.0, 688.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [773.0, 635.0, 960.0, 635.0, 960.0, 688.0, 773.0, 688.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [981.0, 635.0, 1277.0, 635.0, 1277.0, 688.0, 981.0, 688.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1342.0, 635.0, 1507.0, 635.0, 1507.0, 688.0, 1342.0, 688.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [195.0, 682.0, 313.0, 682.0, 313.0, 730.0, 195.0, 730.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [361.0, 682.0, 412.0, 682.0, 412.0, 730.0, 361.0, 730.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [434.0, 682.0, 543.0, 682.0, 543.0, 730.0, 434.0, 730.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [791.0, 682.0, 1297.0, 682.0, 1297.0, 730.0, 791.0, 730.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1494.0, 682.0, 1504.0, 682.0, 1504.0, 730.0, 1494.0, 730.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [195.0, 722.0, 1090.0, 722.0, 1090.0, 769.0, 195.0, 769.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1254.0, 722.0, 1506.0, 722.0, 1506.0, 769.0, 1254.0, 769.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [197.0, 763.0, 594.0, 763.0, 594.0, 807.0, 197.0, 807.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [625.0, 763.0, 924.0, 763.0, 924.0, 807.0, 625.0, 807.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [949.0, 763.0, 1098.0, 763.0, 1098.0, 807.0, 949.0, 807.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1502.0, 763.0, 1506.0, 763.0, 1506.0, 807.0, 1502.0, 807.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [194.0, 809.0, 263.0, 809.0, 263.0, 861.0, 194.0, 861.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [654.0, 809.0, 751.0, 809.0, 751.0, 861.0, 654.0, 861.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1020.0, 809.0, 1080.0, 809.0, 1080.0, 861.0, 1020.0, 861.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1331.0, 809.0, 1507.0, 809.0, 1507.0, 861.0, 1331.0, 861.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [193.0, 862.0, 198.0, 862.0, 198.0, 903.0, 193.0, 903.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [301.0, 862.0, 368.0, 862.0, 368.0, 903.0, 301.0, 903.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [431.0, 862.0, 442.0, 862.0, 442.0, 903.0, 431.0, 903.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [264.0, 1755.0, 513.0, 1755.0, 513.0, 1795.0, 264.0, 1795.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [577.0, 1755.0, 672.0, 1755.0, 672.0, 1795.0, 577.0, 1795.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [692.0, 1755.0, 1479.0, 1755.0, 1479.0, 1795.0, 692.0, 1795.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1501.0, 1755.0, 1505.0, 1755.0, 1505.0, 1795.0, 1501.0, 1795.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [193.0, 1792.0, 738.0, 1792.0, 738.0, 1837.0, 193.0, 1837.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [876.0, 1792.0, 925.0, 1792.0, 925.0, 1837.0, 876.0, 1837.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [947.0, 1792.0, 1019.0, 1792.0, 1019.0, 1837.0, 947.0, 1837.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1055.0, 1792.0, 1193.0, 1792.0, 1193.0, 1837.0, 1055.0, 1837.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1437.0, 1792.0, 1503.0, 1792.0, 1503.0, 1837.0, 1437.0, 1837.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [195.0, 1831.0, 198.0, 1831.0, 198.0, 1877.0, 195.0, 1877.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [234.0, 1831.0, 402.0, 1831.0, 402.0, 1877.0, 234.0, 1877.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [466.0, 1831.0, 1503.0, 1831.0, 1503.0, 1877.0, 466.0, 1877.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [196.0, 1874.0, 438.0, 1874.0, 438.0, 1914.0, 196.0, 1914.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [459.0, 1874.0, 471.0, 1874.0, 471.0, 1914.0, 459.0, 1914.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [263.0, 1595.0, 916.0, 1595.0, 916.0, 1633.0, 263.0, 1633.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1007.0, 1595.0, 1059.0, 1595.0, 1059.0, 1633.0, 1007.0, 1633.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1153.0, 1595.0, 1236.0, 1595.0, 1236.0, 1633.0, 1153.0, 1633.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1323.0, 1595.0, 1503.0, 1595.0, 1503.0, 1633.0, 1323.0, 1633.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [200.0, 1634.0, 285.0, 1634.0, 285.0, 1672.0, 200.0, 1672.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [415.0, 1634.0, 533.0, 1634.0, 533.0, 1672.0, 415.0, 1672.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [560.0, 1634.0, 778.0, 1634.0, 778.0, 1672.0, 560.0, 1672.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [800.0, 1634.0, 877.0, 1634.0, 877.0, 1672.0, 800.0, 1672.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [969.0, 1634.0, 1504.0, 1634.0, 1504.0, 1672.0, 969.0, 1672.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [197.0, 1674.0, 685.0, 1674.0, 685.0, 1716.0, 197.0, 1716.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [806.0, 1674.0, 914.0, 1674.0, 914.0, 1716.0, 806.0, 1716.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [940.0, 1674.0, 1301.0, 1674.0, 1301.0, 1716.0, 940.0, 1716.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1361.0, 1674.0, 1506.0, 1674.0, 1506.0, 1716.0, 1361.0, 1716.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [200.0, 1714.0, 585.0, 1714.0, 585.0, 1752.0, 200.0, 1752.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [613.0, 1714.0, 623.0, 1714.0, 623.0, 1752.0, 613.0, 1752.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [198.0, 1104.0, 293.0, 1104.0, 293.0, 1151.0, 198.0, 1151.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [550.0, 1104.0, 1501.0, 1104.0, 1501.0, 1151.0, 550.0, 1151.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [193.0, 1142.0, 267.0, 1142.0, 267.0, 1195.0, 193.0, 1195.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [491.0, 1142.0, 665.0, 1142.0, 665.0, 1195.0, 491.0, 1195.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [882.0, 1142.0, 1103.0, 1142.0, 1103.0, 1195.0, 882.0, 1195.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1126.0, 1142.0, 1376.0, 1142.0, 1376.0, 1195.0, 1126.0, 1195.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1499.0, 1142.0, 1501.0, 1142.0, 1501.0, 1195.0, 1499.0, 1195.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [193.0, 1183.0, 805.0, 1183.0, 805.0, 1231.0, 193.0, 1231.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [830.0, 1183.0, 1405.0, 1183.0, 1405.0, 1231.0, 830.0, 1231.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1428.0, 1183.0, 1442.0, 1183.0, 1442.0, 1231.0, 1428.0, 1231.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [260.0, 1486.0, 898.0, 1486.0, 898.0, 1541.0, 260.0, 1541.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [964.0, 1486.0, 1043.0, 1486.0, 1043.0, 1541.0, 964.0, 1541.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1069.0, 1486.0, 1131.0, 1486.0, 1131.0, 1541.0, 1069.0, 1541.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1230.0, 1486.0, 1298.0, 1486.0, 1298.0, 1541.0, 1230.0, 1541.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1438.0, 1486.0, 1511.0, 1486.0, 1511.0, 1541.0, 1438.0, 1541.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [200.0, 1532.0, 372.0, 1532.0, 372.0, 1579.0, 200.0, 1579.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [514.0, 1532.0, 668.0, 1532.0, 668.0, 1579.0, 514.0, 1579.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [766.0, 1532.0, 973.0, 1532.0, 973.0, 1579.0, 766.0, 1579.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1052.0, 1532.0, 1064.0, 1532.0, 1064.0, 1579.0, 1052.0, 1579.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [199.0, 1386.0, 329.0, 1386.0, 329.0, 1422.0, 199.0, 1422.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [411.0, 1386.0, 483.0, 1386.0, 483.0, 1422.0, 411.0, 1422.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [623.0, 1386.0, 841.0, 1386.0, 841.0, 1422.0, 623.0, 1422.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [263.0, 904.0, 807.0, 904.0, 807.0, 948.0, 263.0, 948.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [871.0, 904.0, 1094.0, 904.0, 1094.0, 948.0, 871.0, 948.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [268.0, 1227.0, 987.0, 1227.0, 987.0, 1265.0, 268.0, 1265.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [192.0, 563.0, 447.0, 563.0, 447.0, 626.0, 192.0, 626.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [510.0, 563.0, 527.0, 563.0, 527.0, 626.0, 510.0, 626.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [608.0, 563.0, 614.0, 563.0, 614.0, 626.0, 608.0, 626.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [560.0, 205.0, 1139.0, 205.0, 1139.0, 241.0, 560.0, 241.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [259.0, 1424.0, 958.0, 1424.0, 958.0, 1472.0, 259.0, 1472.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1022.0, 1424.0, 1034.0, 1424.0, 1034.0, 1472.0, 1022.0, 1472.0], "score": 1.0, "text": ""}] | {"preproc_blocks": [{"type": "text", "bbox": [70, 99, 542, 191], "lines": [{"bbox": [95, 102, 541, 117], "spans": [{"bbox": [95, 102, 541, 117], "score": 1.0, "content": "Our main task in this paper is to find and construct all fusion-symmetries for the", "type": "text"}], "index": 0}, {"bbox": [69, 113, 544, 135], "spans": [{"bbox": [69, 113, 151, 135], "score": 1.0, "content": "affine algebras ", "type": "text"}, {"bbox": [151, 116, 174, 130], "score": 0.94, "content": "X_{r}^{(1)}", "type": "inline_equation", "height": 14, "width": 23}, {"bbox": [175, 113, 239, 135], "score": 1.0, "content": ", for simple ", "type": "text"}, {"bbox": [239, 120, 255, 131], "score": 0.92, "content": "X_{r}", "type": "inline_equation", "height": 11, "width": 16}, {"bbox": [255, 113, 544, 135], "score": 1.0, "content": ". In this section we state the results, and in the next", "type": "text"}], "index": 1}, {"bbox": [70, 132, 542, 148], "spans": [{"bbox": [70, 132, 542, 148], "score": 1.0, "content": "section we prove the completeness of our lists. Recall the simple-current automorphism", "type": "text"}], "index": 2}, {"bbox": [71, 146, 541, 162], "spans": [{"bbox": [71, 148, 92, 161], "score": 0.92, "content": "\\pi[a]", "type": "inline_equation", "height": 13, "width": 21}, {"bbox": [92, 146, 231, 162], "score": 1.0, "content": " and Galois automorphism ", "type": "text"}, {"bbox": [231, 148, 256, 161], "score": 0.91, "content": "\\pi\\{\\ell\\}", "type": "inline_equation", "height": 13, "width": 25}, {"bbox": [257, 146, 429, 162], "score": 1.0, "content": " defined in \u00a72.3, and the notation ", "type": "text"}, {"bbox": [429, 148, 484, 159], "score": 0.94, "content": "\\kappa=k\\!+\\!h^{\\vee}", "type": "inline_equation", "height": 11, "width": 55}, {"bbox": [485, 146, 541, 162], "score": 1.0, "content": ". It will be", "type": "text"}], "index": 3}, {"bbox": [68, 161, 541, 178], "spans": [{"bbox": [68, 163, 178, 178], "score": 1.0, "content": "convenient to write ", "type": "text"}, {"bbox": [179, 164, 206, 178], "score": 0.86, "content": "X{_{r,k}}^{,}", "type": "inline_equation", "height": 14, "width": 27}, {"bbox": [206, 163, 230, 178], "score": 1.0, "content": " for ", "type": "text"}, {"bbox": [231, 161, 255, 176], "score": 0.9, "content": "\\cdot X_{r}^{(1)}", "type": "inline_equation", "height": 15, "width": 24}, {"bbox": [257, 163, 310, 178], "score": 1.0, "content": "and level ", "type": "text"}, {"bbox": [310, 165, 320, 174], "score": 0.62, "content": "k'", "type": "inline_equation", "height": 9, "width": 10}, {"bbox": [321, 163, 380, 178], "score": 1.0, "content": ". We write ", "type": "text"}, {"bbox": [381, 166, 389, 174], "score": 0.91, "content": "_S", "type": "inline_equation", "height": 8, "width": 8}, {"bbox": [389, 163, 541, 178], "score": 1.0, "content": " for the group of symmetries", "type": "text"}], "index": 4}, {"bbox": [70, 177, 245, 192], "spans": [{"bbox": [70, 177, 245, 192], "score": 1.0, "content": "of the extended Dynkin diagram.", "type": "text"}], "index": 5}], "index": 2.5}, {"type": "title", "bbox": [71, 203, 218, 221], "lines": [{"bbox": [69, 202, 218, 225], "spans": [{"bbox": [69, 202, 160, 225], "score": 1.0, "content": "3.1. The algebra ", "type": "text"}, {"bbox": [161, 205, 183, 221], "score": 0.48, "content": "A_{r}^{(1)}", "type": "inline_equation", "height": 16, "width": 22}, {"bbox": [183, 202, 189, 225], "score": 1.0, "content": ", ", "type": "text"}, {"bbox": [190, 208, 218, 221], "score": 0.48, "content": "r\\geq1", "type": "inline_equation", "height": 13, "width": 28}], "index": 6}], "index": 6}, {"type": "text", "bbox": [69, 228, 541, 323], "lines": [{"bbox": [93, 228, 542, 247], "spans": [{"bbox": [93, 228, 133, 247], "score": 1.0, "content": "Define ", "type": "text"}, {"bbox": [133, 232, 190, 243], "score": 0.89, "content": "\\overline{r}\\,=\\,r\\,+\\,1", "type": "inline_equation", "height": 11, "width": 57}, {"bbox": [190, 228, 219, 247], "score": 1.0, "content": " and ", "type": "text"}, {"bbox": [219, 233, 277, 243], "score": 0.92, "content": "\\;n\\;=\\;k\\,+\\,{\\overline{{r}}}", "type": "inline_equation", "height": 10, "width": 58}, {"bbox": [278, 228, 345, 247], "score": 1.0, "content": ". The level ", "type": "text"}, {"bbox": [345, 234, 352, 243], "score": 0.87, "content": "k", "type": "inline_equation", "height": 9, "width": 7}, {"bbox": [353, 228, 459, 247], "score": 1.0, "content": " highest weights of ", "type": "text"}, {"bbox": [460, 228, 482, 244], "score": 0.91, "content": "A_{r}^{(1)}", "type": "inline_equation", "height": 16, "width": 22}, {"bbox": [483, 228, 542, 247], "score": 1.0, "content": "constitute", "type": "text"}], "index": 7}, {"bbox": [70, 245, 541, 262], "spans": [{"bbox": [70, 245, 112, 262], "score": 1.0, "content": "the set ", "type": "text"}, {"bbox": [113, 246, 129, 259], "score": 0.89, "content": "P_{+}", "type": "inline_equation", "height": 13, "width": 16}, {"bbox": [129, 245, 148, 262], "score": 1.0, "content": " of ", "type": "text"}, {"bbox": [148, 247, 155, 257], "score": 0.75, "content": "\\overline{r}", "type": "inline_equation", "height": 10, "width": 7}, {"bbox": [156, 245, 195, 262], "score": 1.0, "content": "-tuples ", "type": "text"}, {"bbox": [195, 246, 284, 259], "score": 0.91, "content": "\\lambda\\,=\\,(\\lambda_{0},.\\,.\\,.\\,,\\lambda_{r})", "type": "inline_equation", "height": 13, "width": 89}, {"bbox": [284, 245, 466, 262], "score": 1.0, "content": " of non-negative integers obeying", "type": "text"}, {"bbox": [467, 245, 537, 261], "score": 0.91, "content": "\\textstyle\\sum_{i=0}^{r}\\lambda_{i}\\;=\\;k", "type": "inline_equation", "height": 16, "width": 70}, {"bbox": [537, 245, 541, 262], "score": 1.0, "content": ".", "type": "text"}], "index": 8}, {"bbox": [70, 259, 542, 276], "spans": [{"bbox": [70, 259, 392, 276], "score": 1.0, "content": "The Dynkin diagram symmetries form the dihedral group ", "type": "text"}, {"bbox": [392, 261, 451, 274], "score": 0.91, "content": "\\boldsymbol{S}\\;=\\;\\mathfrak{D}_{r+1}", "type": "inline_equation", "height": 13, "width": 59}, {"bbox": [451, 259, 542, 276], "score": 1.0, "content": "; it is generated", "type": "text"}], "index": 9}, {"bbox": [70, 274, 540, 290], "spans": [{"bbox": [70, 274, 213, 290], "score": 1.0, "content": "by the charge-conjugation ", "type": "text"}, {"bbox": [214, 275, 224, 285], "score": 0.83, "content": "C", "type": "inline_equation", "height": 10, "width": 10}, {"bbox": [225, 274, 332, 290], "score": 1.0, "content": " and simple-current ", "type": "text"}, {"bbox": [333, 276, 341, 285], "score": 0.88, "content": "J", "type": "inline_equation", "height": 9, "width": 8}, {"bbox": [341, 274, 395, 290], "score": 1.0, "content": " given by ", "type": "text"}, {"bbox": [395, 274, 540, 288], "score": 0.89, "content": "C\\lambda\\,=\\,(\\lambda_{0},\\lambda_{r},\\lambda_{r-1},\\ldots,\\lambda_{1})", "type": "inline_equation", "height": 14, "width": 145}], "index": 10}, {"bbox": [69, 290, 542, 309], "spans": [{"bbox": [69, 291, 94, 309], "score": 1.0, "content": "and ", "type": "text"}, {"bbox": [95, 292, 235, 306], "score": 0.92, "content": "J\\lambda=\\left(\\lambda_{r},\\lambda_{0},\\lambda_{1},.\\dots,\\lambda_{r-1}\\right)", "type": "inline_equation", "height": 14, "width": 140}, {"bbox": [235, 291, 270, 309], "score": 1.0, "content": ", with ", "type": "text"}, {"bbox": [270, 293, 366, 306], "score": 0.92, "content": "Q_{J^{a}}(\\lambda)=a\\,t(\\lambda)/\\overline{{r}}", "type": "inline_equation", "height": 13, "width": 96}, {"bbox": [367, 291, 388, 309], "score": 1.0, "content": " for ", "type": "text"}, {"bbox": [389, 290, 478, 308], "score": 0.92, "content": "\\begin{array}{r}{t(\\lambda)\\overset{\\mathrm{def}}{=}\\sum_{j=1}^{r}j\\lambda_{j}}\\end{array}", "type": "inline_equation", "height": 18, "width": 89}, {"bbox": [479, 291, 542, 309], "score": 1.0, "content": ". Note that", "type": "text"}], "index": 11}, {"bbox": [71, 309, 159, 325], "spans": [{"bbox": [71, 313, 108, 322], "score": 0.88, "content": "C=i d", "type": "inline_equation", "height": 9, "width": 37}, {"bbox": [108, 310, 132, 325], "score": 1.0, "content": ". for ", "type": "text"}, {"bbox": [132, 309, 154, 325], "score": 0.93, "content": "{A}_{1}^{(1)}", "type": "inline_equation", "height": 16, "width": 22}, {"bbox": [155, 310, 159, 325], "score": 1.0, "content": ".", "type": "text"}], "index": 12}], "index": 9.5}, {"type": "text", "bbox": [95, 324, 394, 339], "lines": [{"bbox": [94, 325, 393, 341], "spans": [{"bbox": [94, 325, 290, 341], "score": 1.0, "content": "The Kac-Peterson relation (2.1b) for ", "type": "text"}, {"bbox": [290, 328, 313, 340], "score": 0.92, "content": "A_{r,k}", "type": "inline_equation", "height": 12, "width": 23}, {"bbox": [313, 325, 393, 341], "score": 1.0, "content": " takes the form", "type": "text"}], "index": 13}], "index": 13}, {"type": "interline_equation", "bbox": [87, 352, 487, 383], "lines": [{"bbox": [87, 352, 487, 383], "spans": [{"bbox": [87, 352, 487, 383], "score": 0.85, "content": "\\frac{S_{\\lambda\\mu}}{S_{0\\mu}}=\\exp[-2\\pi\\mathrm{i}\\frac{t(\\lambda)\\,t(\\mu)}{\\kappa\\,\\overline{{r}}}]\\,\\,s_{(\\lambda)}(\\exp[-2\\pi\\mathrm{i}\\frac{(\\mu+\\rho)(1)}{\\kappa},\\ldots,\\exp[-2\\pi\\mathrm{i}\\frac{(\\mu+\\rho)(\\overline{{r}})}{\\kappa}]\\,\\ \\", "type": "interline_equation"}], "index": 14}], "index": 14}, {"type": "text", "bbox": [70, 395, 540, 439], "lines": [{"bbox": [71, 397, 540, 414], "spans": [{"bbox": [71, 397, 105, 414], "score": 1.0, "content": "where ", "type": "text"}, {"bbox": [105, 399, 197, 412], "score": 0.92, "content": "s_{(\\lambda)}\\big(x_{1},\\ldots,x_{r+1}\\big)", "type": "inline_equation", "height": 13, "width": 92}, {"bbox": [198, 397, 540, 414], "score": 1.0, "content": " is the Schur polynomial (see e.g. [27]) corresponding to the parti-", "type": "text"}], "index": 15}, {"bbox": [69, 411, 539, 430], "spans": [{"bbox": [69, 411, 96, 430], "score": 1.0, "content": "tion ", "type": "text"}, {"bbox": [96, 413, 176, 426], "score": 0.9, "content": "(\\lambda(1),\\ldots,\\lambda(\\overline{{r}}))", "type": "inline_equation", "height": 13, "width": 80}, {"bbox": [176, 411, 239, 430], "score": 1.0, "content": ", and where ", "type": "text"}, {"bbox": [239, 411, 317, 427], "score": 0.94, "content": "\\textstyle\\nu(\\ell)=\\sum_{i=\\ell}^{r}\\nu_{i}", "type": "inline_equation", "height": 16, "width": 78}, {"bbox": [317, 411, 397, 430], "score": 1.0, "content": " for any weight ", "type": "text"}, {"bbox": [397, 415, 405, 423], "score": 0.72, "content": "\\nu", "type": "inline_equation", "height": 8, "width": 8}, {"bbox": [405, 411, 495, 430], "score": 1.0, "content": ". In other words, ", "type": "text"}, {"bbox": [495, 414, 539, 426], "score": 0.94, "content": "S_{\\lambda\\mu}/S_{0\\mu}", "type": "inline_equation", "height": 12, "width": 44}], "index": 16}, {"bbox": [69, 425, 519, 443], "spans": [{"bbox": [69, 425, 289, 443], "score": 1.0, "content": "is the Schur polynomial corresponding to", "type": "text"}, {"bbox": [290, 428, 298, 438], "score": 0.81, "content": "\\lambda", "type": "inline_equation", "height": 10, "width": 8}, {"bbox": [298, 425, 505, 443], "score": 1.0, "content": ", evaluated at roots of 1 determined by ", "type": "text"}, {"bbox": [506, 432, 513, 440], "score": 0.89, "content": "\\mu", "type": "inline_equation", "height": 8, "width": 7}, {"bbox": [514, 425, 519, 443], "score": 1.0, "content": ".", "type": "text"}], "index": 17}], "index": 16}, {"type": "text", "bbox": [94, 439, 357, 453], "lines": [{"bbox": [96, 441, 355, 455], "spans": [{"bbox": [96, 441, 355, 455], "score": 1.0, "content": "The fusion (derived from the Pieri rule and (2.4))", "type": "text"}], "index": 18}], "index": 18}, {"type": "interline_equation", "bbox": [223, 467, 386, 484], "lines": [{"bbox": [223, 467, 386, 484], "spans": [{"bbox": [223, 467, 386, 484], "score": 0.55, "content": "\\Lambda_{1}\\mathinner{\\left[\\boxtimes\\right]}\\Lambda_{\\ell}=\\Lambda_{\\ell+1}\\mathinner{\\left[\\textstyle{\\ H}\\right.\\left(\\Lambda_{1}+\\Lambda_{\\ell}\\right)\\,,}", "type": "interline_equation"}], "index": 19}], "index": 19}, {"type": "text", "bbox": [71, 496, 304, 510], "lines": [{"bbox": [71, 498, 302, 511], "spans": [{"bbox": [71, 498, 118, 511], "score": 1.0, "content": "valid for ", "type": "text"}, {"bbox": [118, 500, 147, 511], "score": 0.92, "content": "k\\geq2", "type": "inline_equation", "height": 11, "width": 29}, {"bbox": [147, 498, 173, 511], "score": 1.0, "content": " and ", "type": "text"}, {"bbox": [174, 499, 223, 511], "score": 0.9, "content": "1\\leq\\ell<r", "type": "inline_equation", "height": 12, "width": 49}, {"bbox": [224, 498, 302, 511], "score": 1.0, "content": ", will be useful.", "type": "text"}], "index": 20}], "index": 20}, {"type": "text", "bbox": [95, 512, 371, 527], "lines": [{"bbox": [93, 510, 372, 529], "spans": [{"bbox": [93, 512, 344, 529], "score": 1.0, "content": "There are no exceptional fusion-symmetries for ", "type": "text"}, {"bbox": [345, 510, 367, 527], "score": 0.91, "content": "A_{r}^{(1)}", "type": "inline_equation", "height": 17, "width": 22}, {"bbox": [367, 512, 372, 529], "score": 1.0, "content": ":", "type": "text"}], "index": 21}], "index": 21}, {"type": "text", "bbox": [70, 533, 542, 565], "lines": [{"bbox": [93, 533, 543, 554], "spans": [{"bbox": [93, 534, 323, 554], "score": 1.0, "content": "Theorem 3.A. The fusion-symmetries for ", "type": "text"}, {"bbox": [323, 533, 346, 550], "score": 0.91, "content": "A_{r}^{(1)}", "type": "inline_equation", "height": 17, "width": 23}, {"bbox": [347, 534, 375, 554], "score": 1.0, "content": "level", "type": "text"}, {"bbox": [375, 537, 384, 549], "score": 0.72, "content": "k", "type": "inline_equation", "height": 12, "width": 9}, {"bbox": [384, 534, 407, 554], "score": 1.0, "content": " are ", "type": "text"}, {"bbox": [407, 536, 442, 551], "score": 0.92, "content": "C^{i}\\pi[a]", "type": "inline_equation", "height": 15, "width": 35}, {"bbox": [442, 534, 467, 554], "score": 1.0, "content": ", for ", "type": "text"}, {"bbox": [467, 537, 517, 551], "score": 0.92, "content": "i\\in\\{0,1\\}", "type": "inline_equation", "height": 14, "width": 50}, {"bbox": [517, 534, 543, 554], "score": 1.0, "content": " and", "type": "text"}], "index": 22}, {"bbox": [72, 551, 383, 568], "spans": [{"bbox": [72, 551, 133, 568], "score": 1.0, "content": "any integer ", "type": "text"}, {"bbox": [134, 553, 184, 565], "score": 0.86, "content": "0\\leq a\\leq r", "type": "inline_equation", "height": 12, "width": 50}, {"bbox": [185, 551, 240, 568], "score": 1.0, "content": " for which ", "type": "text"}, {"bbox": [240, 552, 275, 564], "score": 0.88, "content": "1+k a", "type": "inline_equation", "height": 12, "width": 35}, {"bbox": [275, 551, 350, 568], "score": 1.0, "content": " is coprime to ", "type": "text"}, {"bbox": [350, 552, 378, 564], "score": 0.9, "content": "r+1", "type": "inline_equation", "height": 12, "width": 28}, {"bbox": [378, 551, 383, 568], "score": 1.0, "content": ".", "type": "text"}], "index": 23}], "index": 22.5}, {"type": "text", "bbox": [70, 571, 541, 628], "lines": [{"bbox": [94, 573, 541, 587], "spans": [{"bbox": [94, 574, 329, 587], "score": 1.0, "content": "To avoid redundancies in the Theorem, for ", "type": "text"}, {"bbox": [330, 574, 362, 584], "score": 0.89, "content": "r\\,=\\,1", "type": "inline_equation", "height": 10, "width": 32}, {"bbox": [362, 574, 381, 587], "score": 1.0, "content": " or ", "type": "text"}, {"bbox": [381, 573, 414, 585], "score": 0.89, "content": "k\\,=\\,1", "type": "inline_equation", "height": 12, "width": 33}, {"bbox": [415, 574, 444, 587], "score": 1.0, "content": " take ", "type": "text"}, {"bbox": [445, 574, 475, 585], "score": 0.88, "content": "i\\,=\\,0", "type": "inline_equation", "height": 11, "width": 30}, {"bbox": [476, 574, 541, 587], "score": 1.0, "content": " only. If we", "type": "text"}], "index": 24}, {"bbox": [72, 588, 541, 601], "spans": [{"bbox": [72, 588, 102, 601], "score": 1.0, "content": "write ", "type": "text"}, {"bbox": [102, 589, 149, 599], "score": 0.91, "content": "{\\overline{{r}}}\\,=\\,r^{\\prime}r^{\\prime\\prime}", "type": "inline_equation", "height": 10, "width": 47}, {"bbox": [149, 588, 191, 601], "score": 1.0, "content": ", where ", "type": "text"}, {"bbox": [192, 589, 201, 598], "score": 0.9, "content": "r^{\\prime}", "type": "inline_equation", "height": 9, "width": 9}, {"bbox": [201, 588, 280, 601], "score": 1.0, "content": " is coprime to ", "type": "text"}, {"bbox": [280, 590, 287, 599], "score": 0.89, "content": "k", "type": "inline_equation", "height": 9, "width": 7}, {"bbox": [288, 588, 315, 601], "score": 1.0, "content": " and ", "type": "text"}, {"bbox": [316, 588, 348, 601], "score": 0.92, "content": "r^{\\prime\\prime}|k^{\\infty}", "type": "inline_equation", "height": 13, "width": 32}, {"bbox": [348, 588, 541, 601], "score": 1.0, "content": ", then the number of simple-current", "type": "text"}], "index": 25}, {"bbox": [70, 601, 542, 617], "spans": [{"bbox": [70, 602, 246, 617], "score": 1.0, "content": "automorphisms will exactly equal ", "type": "text"}, {"bbox": [246, 603, 289, 616], "score": 0.93, "content": "r^{\\prime\\prime}{\\cdot}\\varphi(r^{\\prime})", "type": "inline_equation", "height": 13, "width": 43}, {"bbox": [290, 602, 329, 617], "score": 1.0, "content": ", where ", "type": "text"}, {"bbox": [329, 605, 338, 615], "score": 0.81, "content": "\\varphi", "type": "inline_equation", "height": 10, "width": 9}, {"bbox": [338, 602, 468, 617], "score": 1.0, "content": " is the Euler totient. The ", "type": "text"}, {"bbox": [468, 601, 489, 616], "score": 0.92, "content": "\\pi[a]", "type": "inline_equation", "height": 15, "width": 21}, {"bbox": [489, 602, 542, 617], "score": 1.0, "content": " commute", "type": "text"}], "index": 26}, {"bbox": [72, 617, 224, 630], "spans": [{"bbox": [72, 617, 210, 630], "score": 1.0, "content": "with each other, and with ", "type": "text"}, {"bbox": [210, 618, 220, 627], "score": 0.89, "content": "C", "type": "inline_equation", "height": 9, "width": 10}, {"bbox": [220, 617, 224, 630], "score": 1.0, "content": ".", "type": "text"}], "index": 27}], "index": 25.5}, {"type": "text", "bbox": [70, 630, 541, 686], "lines": [{"bbox": [95, 631, 540, 646], "spans": [{"bbox": [95, 631, 184, 646], "score": 1.0, "content": "For example, for ", "type": "text"}, {"bbox": [185, 633, 207, 645], "score": 0.93, "content": "A_{1,k}", "type": "inline_equation", "height": 12, "width": 22}, {"bbox": [207, 631, 241, 646], "score": 1.0, "content": " when ", "type": "text"}, {"bbox": [242, 633, 248, 641], "score": 0.89, "content": "k", "type": "inline_equation", "height": 8, "width": 6}, {"bbox": [249, 631, 532, 646], "score": 1.0, "content": " is odd, there is no nontrivial fusion-symmetry. When ", "type": "text"}, {"bbox": [532, 633, 540, 642], "score": 0.83, "content": "k", "type": "inline_equation", "height": 9, "width": 8}], "index": 28}, {"bbox": [69, 645, 541, 661], "spans": [{"bbox": [69, 645, 265, 661], "score": 1.0, "content": "is even, there is exactly one, sending ", "type": "text"}, {"bbox": [266, 647, 315, 658], "score": 0.93, "content": "\\lambda=\\lambda_{1}\\Lambda_{1}", "type": "inline_equation", "height": 11, "width": 49}, {"bbox": [315, 645, 333, 661], "score": 1.0, "content": " to ", "type": "text"}, {"bbox": [333, 647, 340, 656], "score": 0.87, "content": "\\lambda", "type": "inline_equation", "height": 9, "width": 7}, {"bbox": [340, 645, 366, 661], "score": 1.0, "content": " (for ", "type": "text"}, {"bbox": [367, 647, 379, 658], "score": 0.9, "content": "\\lambda_{1}", "type": "inline_equation", "height": 11, "width": 12}, {"bbox": [379, 645, 429, 661], "score": 1.0, "content": " even) or ", "type": "text"}, {"bbox": [429, 646, 516, 659], "score": 0.93, "content": "J\\lambda=(k-\\lambda_{1})\\Lambda_{1}", "type": "inline_equation", "height": 13, "width": 87}, {"bbox": [517, 645, 541, 661], "score": 1.0, "content": " (for", "type": "text"}], "index": 29}, {"bbox": [71, 659, 541, 675], "spans": [{"bbox": [71, 662, 83, 672], "score": 0.89, "content": "\\lambda_{1}", "type": "inline_equation", "height": 10, "width": 12}, {"bbox": [84, 659, 144, 675], "score": 1.0, "content": " odd). For ", "type": "text"}, {"bbox": [145, 662, 167, 674], "score": 0.93, "content": "A_{2,k}", "type": "inline_equation", "height": 12, "width": 22}, {"bbox": [167, 659, 541, 675], "score": 1.0, "content": ", there are either six or four fusion-symmetries, depending on whether", "type": "text"}], "index": 30}, {"bbox": [70, 674, 169, 689], "spans": [{"bbox": [70, 674, 157, 689], "score": 1.0, "content": "or not 3 divides ", "type": "text"}, {"bbox": [158, 676, 164, 685], "score": 0.9, "content": "k", "type": "inline_equation", "height": 9, "width": 6}, {"bbox": [165, 674, 169, 689], "score": 1.0, "content": ".", "type": "text"}], "index": 31}], "index": 29.5}], "layout_bboxes": [], "page_idx": 8, "page_size": [612.0, 792.0], "_layout_tree": [], "images": [], "tables": [], "interline_equations": [{"type": "interline_equation", "bbox": [87, 352, 487, 383], "lines": [{"bbox": [87, 352, 487, 383], "spans": [{"bbox": [87, 352, 487, 383], "score": 0.85, "content": "\\frac{S_{\\lambda\\mu}}{S_{0\\mu}}=\\exp[-2\\pi\\mathrm{i}\\frac{t(\\lambda)\\,t(\\mu)}{\\kappa\\,\\overline{{r}}}]\\,\\,s_{(\\lambda)}(\\exp[-2\\pi\\mathrm{i}\\frac{(\\mu+\\rho)(1)}{\\kappa},\\ldots,\\exp[-2\\pi\\mathrm{i}\\frac{(\\mu+\\rho)(\\overline{{r}})}{\\kappa}]\\,\\ \\", "type": "interline_equation"}], "index": 14}], "index": 14}, {"type": "interline_equation", "bbox": [223, 467, 386, 484], "lines": [{"bbox": [223, 467, 386, 484], "spans": [{"bbox": [223, 467, 386, 484], "score": 0.55, "content": "\\Lambda_{1}\\mathinner{\\left[\\boxtimes\\right]}\\Lambda_{\\ell}=\\Lambda_{\\ell+1}\\mathinner{\\left[\\textstyle{\\ H}\\right.\\left(\\Lambda_{1}+\\Lambda_{\\ell}\\right)\\,,}", "type": "interline_equation"}], "index": 19}], "index": 19}], "discarded_blocks": [{"type": "discarded", "bbox": [200, 71, 410, 85], "lines": [{"bbox": [201, 73, 410, 86], "spans": [{"bbox": [201, 73, 410, 86], "score": 1.0, "content": "3. Data for the Affine Algebras.", "type": "text"}]}]}], "need_drop": false, "drop_reason": [], "para_blocks": [{"type": "text", "bbox": [70, 99, 542, 191], "lines": [{"bbox": [95, 102, 541, 117], "spans": [{"bbox": [95, 102, 541, 117], "score": 1.0, "content": "Our main task in this paper is to find and construct all fusion-symmetries for the", "type": "text"}], "index": 0}, {"bbox": [69, 113, 544, 135], "spans": [{"bbox": [69, 113, 151, 135], "score": 1.0, "content": "affine algebras ", "type": "text"}, {"bbox": [151, 116, 174, 130], "score": 0.94, "content": "X_{r}^{(1)}", "type": "inline_equation", "height": 14, "width": 23}, {"bbox": [175, 113, 239, 135], "score": 1.0, "content": ", for simple ", "type": "text"}, {"bbox": [239, 120, 255, 131], "score": 0.92, "content": "X_{r}", "type": "inline_equation", "height": 11, "width": 16}, {"bbox": [255, 113, 544, 135], "score": 1.0, "content": ". In this section we state the results, and in the next", "type": "text"}], "index": 1}, {"bbox": [70, 132, 542, 148], "spans": [{"bbox": [70, 132, 542, 148], "score": 1.0, "content": "section we prove the completeness of our lists. Recall the simple-current automorphism", "type": "text"}], "index": 2}, {"bbox": [71, 146, 541, 162], "spans": [{"bbox": [71, 148, 92, 161], "score": 0.92, "content": "\\pi[a]", "type": "inline_equation", "height": 13, "width": 21}, {"bbox": [92, 146, 231, 162], "score": 1.0, "content": " and Galois automorphism ", "type": "text"}, {"bbox": [231, 148, 256, 161], "score": 0.91, "content": "\\pi\\{\\ell\\}", "type": "inline_equation", "height": 13, "width": 25}, {"bbox": [257, 146, 429, 162], "score": 1.0, "content": " defined in \u00a72.3, and the notation ", "type": "text"}, {"bbox": [429, 148, 484, 159], "score": 0.94, "content": "\\kappa=k\\!+\\!h^{\\vee}", "type": "inline_equation", "height": 11, "width": 55}, {"bbox": [485, 146, 541, 162], "score": 1.0, "content": ". It will be", "type": "text"}], "index": 3}, {"bbox": [68, 161, 541, 178], "spans": [{"bbox": [68, 163, 178, 178], "score": 1.0, "content": "convenient to write ", "type": "text"}, {"bbox": [179, 164, 206, 178], "score": 0.86, "content": "X{_{r,k}}^{,}", "type": "inline_equation", "height": 14, "width": 27}, {"bbox": [206, 163, 230, 178], "score": 1.0, "content": " for ", "type": "text"}, {"bbox": [231, 161, 255, 176], "score": 0.9, "content": "\\cdot X_{r}^{(1)}", "type": "inline_equation", "height": 15, "width": 24}, {"bbox": [257, 163, 310, 178], "score": 1.0, "content": "and level ", "type": "text"}, {"bbox": [310, 165, 320, 174], "score": 0.62, "content": "k'", "type": "inline_equation", "height": 9, "width": 10}, {"bbox": [321, 163, 380, 178], "score": 1.0, "content": ". We write ", "type": "text"}, {"bbox": [381, 166, 389, 174], "score": 0.91, "content": "_S", "type": "inline_equation", "height": 8, "width": 8}, {"bbox": [389, 163, 541, 178], "score": 1.0, "content": " for the group of symmetries", "type": "text"}], "index": 4}, {"bbox": [70, 177, 245, 192], "spans": [{"bbox": [70, 177, 245, 192], "score": 1.0, "content": "of the extended Dynkin diagram.", "type": "text"}], "index": 5}], "index": 2.5, "page_num": "page_8", "page_size": [612.0, 792.0], "bbox_fs": [68, 102, 544, 192]}, {"type": "title", "bbox": [71, 203, 218, 221], "lines": [{"bbox": [69, 202, 218, 225], "spans": [{"bbox": [69, 202, 160, 225], "score": 1.0, "content": "3.1. The algebra ", "type": "text"}, {"bbox": [161, 205, 183, 221], "score": 0.48, "content": "A_{r}^{(1)}", "type": "inline_equation", "height": 16, "width": 22}, {"bbox": [183, 202, 189, 225], "score": 1.0, "content": ", ", "type": "text"}, {"bbox": [190, 208, 218, 221], "score": 0.48, "content": "r\\geq1", "type": "inline_equation", "height": 13, "width": 28}], "index": 6}], "index": 6, "page_num": "page_8", "page_size": [612.0, 792.0]}, {"type": "text", "bbox": [69, 228, 541, 323], "lines": [{"bbox": [93, 228, 542, 247], "spans": [{"bbox": [93, 228, 133, 247], "score": 1.0, "content": "Define ", "type": "text"}, {"bbox": [133, 232, 190, 243], "score": 0.89, "content": "\\overline{r}\\,=\\,r\\,+\\,1", "type": "inline_equation", "height": 11, "width": 57}, {"bbox": [190, 228, 219, 247], "score": 1.0, "content": " and ", "type": "text"}, {"bbox": [219, 233, 277, 243], "score": 0.92, "content": "\\;n\\;=\\;k\\,+\\,{\\overline{{r}}}", "type": "inline_equation", "height": 10, "width": 58}, {"bbox": [278, 228, 345, 247], "score": 1.0, "content": ". The level ", "type": "text"}, {"bbox": [345, 234, 352, 243], "score": 0.87, "content": "k", "type": "inline_equation", "height": 9, "width": 7}, {"bbox": [353, 228, 459, 247], "score": 1.0, "content": " highest weights of ", "type": "text"}, {"bbox": [460, 228, 482, 244], "score": 0.91, "content": "A_{r}^{(1)}", "type": "inline_equation", "height": 16, "width": 22}, {"bbox": [483, 228, 542, 247], "score": 1.0, "content": "constitute", "type": "text"}], "index": 7}, {"bbox": [70, 245, 541, 262], "spans": [{"bbox": [70, 245, 112, 262], "score": 1.0, "content": "the set ", "type": "text"}, {"bbox": [113, 246, 129, 259], "score": 0.89, "content": "P_{+}", "type": "inline_equation", "height": 13, "width": 16}, {"bbox": [129, 245, 148, 262], "score": 1.0, "content": " of ", "type": "text"}, {"bbox": [148, 247, 155, 257], "score": 0.75, "content": "\\overline{r}", "type": "inline_equation", "height": 10, "width": 7}, {"bbox": [156, 245, 195, 262], "score": 1.0, "content": "-tuples ", "type": "text"}, {"bbox": [195, 246, 284, 259], "score": 0.91, "content": "\\lambda\\,=\\,(\\lambda_{0},.\\,.\\,.\\,,\\lambda_{r})", "type": "inline_equation", "height": 13, "width": 89}, {"bbox": [284, 245, 466, 262], "score": 1.0, "content": " of non-negative integers obeying", "type": "text"}, {"bbox": [467, 245, 537, 261], "score": 0.91, "content": "\\textstyle\\sum_{i=0}^{r}\\lambda_{i}\\;=\\;k", "type": "inline_equation", "height": 16, "width": 70}, {"bbox": [537, 245, 541, 262], "score": 1.0, "content": ".", "type": "text"}], "index": 8}, {"bbox": [70, 259, 542, 276], "spans": [{"bbox": [70, 259, 392, 276], "score": 1.0, "content": "The Dynkin diagram symmetries form the dihedral group ", "type": "text"}, {"bbox": [392, 261, 451, 274], "score": 0.91, "content": "\\boldsymbol{S}\\;=\\;\\mathfrak{D}_{r+1}", "type": "inline_equation", "height": 13, "width": 59}, {"bbox": [451, 259, 542, 276], "score": 1.0, "content": "; it is generated", "type": "text"}], "index": 9}, {"bbox": [70, 274, 540, 290], "spans": [{"bbox": [70, 274, 213, 290], "score": 1.0, "content": "by the charge-conjugation ", "type": "text"}, {"bbox": [214, 275, 224, 285], "score": 0.83, "content": "C", "type": "inline_equation", "height": 10, "width": 10}, {"bbox": [225, 274, 332, 290], "score": 1.0, "content": " and simple-current ", "type": "text"}, {"bbox": [333, 276, 341, 285], "score": 0.88, "content": "J", "type": "inline_equation", "height": 9, "width": 8}, {"bbox": [341, 274, 395, 290], "score": 1.0, "content": " given by ", "type": "text"}, {"bbox": [395, 274, 540, 288], "score": 0.89, "content": "C\\lambda\\,=\\,(\\lambda_{0},\\lambda_{r},\\lambda_{r-1},\\ldots,\\lambda_{1})", "type": "inline_equation", "height": 14, "width": 145}], "index": 10}, {"bbox": [69, 290, 542, 309], "spans": [{"bbox": [69, 291, 94, 309], "score": 1.0, "content": "and ", "type": "text"}, {"bbox": [95, 292, 235, 306], "score": 0.92, "content": "J\\lambda=\\left(\\lambda_{r},\\lambda_{0},\\lambda_{1},.\\dots,\\lambda_{r-1}\\right)", "type": "inline_equation", "height": 14, "width": 140}, {"bbox": [235, 291, 270, 309], "score": 1.0, "content": ", with ", "type": "text"}, {"bbox": [270, 293, 366, 306], "score": 0.92, "content": "Q_{J^{a}}(\\lambda)=a\\,t(\\lambda)/\\overline{{r}}", "type": "inline_equation", "height": 13, "width": 96}, {"bbox": [367, 291, 388, 309], "score": 1.0, "content": " for ", "type": "text"}, {"bbox": [389, 290, 478, 308], "score": 0.92, "content": "\\begin{array}{r}{t(\\lambda)\\overset{\\mathrm{def}}{=}\\sum_{j=1}^{r}j\\lambda_{j}}\\end{array}", "type": "inline_equation", "height": 18, "width": 89}, {"bbox": [479, 291, 542, 309], "score": 1.0, "content": ". Note that", "type": "text"}], "index": 11}, {"bbox": [71, 309, 159, 325], "spans": [{"bbox": [71, 313, 108, 322], "score": 0.88, "content": "C=i d", "type": "inline_equation", "height": 9, "width": 37}, {"bbox": [108, 310, 132, 325], "score": 1.0, "content": ". for ", "type": "text"}, {"bbox": [132, 309, 154, 325], "score": 0.93, "content": "{A}_{1}^{(1)}", "type": "inline_equation", "height": 16, "width": 22}, {"bbox": [155, 310, 159, 325], "score": 1.0, "content": ".", "type": "text"}], "index": 12}], "index": 9.5, "page_num": "page_8", "page_size": [612.0, 792.0], "bbox_fs": [69, 228, 542, 325]}, {"type": "text", "bbox": [95, 324, 394, 339], "lines": [{"bbox": [94, 325, 393, 341], "spans": [{"bbox": [94, 325, 290, 341], "score": 1.0, "content": "The Kac-Peterson relation (2.1b) for ", "type": "text"}, {"bbox": [290, 328, 313, 340], "score": 0.92, "content": "A_{r,k}", "type": "inline_equation", "height": 12, "width": 23}, {"bbox": [313, 325, 393, 341], "score": 1.0, "content": " takes the form", "type": "text"}], "index": 13}], "index": 13, "page_num": "page_8", "page_size": [612.0, 792.0], "bbox_fs": [94, 325, 393, 341]}, {"type": "interline_equation", "bbox": [87, 352, 487, 383], "lines": [{"bbox": [87, 352, 487, 383], "spans": [{"bbox": [87, 352, 487, 383], "score": 0.85, "content": "\\frac{S_{\\lambda\\mu}}{S_{0\\mu}}=\\exp[-2\\pi\\mathrm{i}\\frac{t(\\lambda)\\,t(\\mu)}{\\kappa\\,\\overline{{r}}}]\\,\\,s_{(\\lambda)}(\\exp[-2\\pi\\mathrm{i}\\frac{(\\mu+\\rho)(1)}{\\kappa},\\ldots,\\exp[-2\\pi\\mathrm{i}\\frac{(\\mu+\\rho)(\\overline{{r}})}{\\kappa}]\\,\\ \\", "type": "interline_equation"}], "index": 14}], "index": 14, "page_num": "page_8", "page_size": [612.0, 792.0]}, {"type": "text", "bbox": [70, 395, 540, 439], "lines": [{"bbox": [71, 397, 540, 414], "spans": [{"bbox": [71, 397, 105, 414], "score": 1.0, "content": "where ", "type": "text"}, {"bbox": [105, 399, 197, 412], "score": 0.92, "content": "s_{(\\lambda)}\\big(x_{1},\\ldots,x_{r+1}\\big)", "type": "inline_equation", "height": 13, "width": 92}, {"bbox": [198, 397, 540, 414], "score": 1.0, "content": " is the Schur polynomial (see e.g. [27]) corresponding to the parti-", "type": "text"}], "index": 15}, {"bbox": [69, 411, 539, 430], "spans": [{"bbox": [69, 411, 96, 430], "score": 1.0, "content": "tion ", "type": "text"}, {"bbox": [96, 413, 176, 426], "score": 0.9, "content": "(\\lambda(1),\\ldots,\\lambda(\\overline{{r}}))", "type": "inline_equation", "height": 13, "width": 80}, {"bbox": [176, 411, 239, 430], "score": 1.0, "content": ", and where ", "type": "text"}, {"bbox": [239, 411, 317, 427], "score": 0.94, "content": "\\textstyle\\nu(\\ell)=\\sum_{i=\\ell}^{r}\\nu_{i}", "type": "inline_equation", "height": 16, "width": 78}, {"bbox": [317, 411, 397, 430], "score": 1.0, "content": " for any weight ", "type": "text"}, {"bbox": [397, 415, 405, 423], "score": 0.72, "content": "\\nu", "type": "inline_equation", "height": 8, "width": 8}, {"bbox": [405, 411, 495, 430], "score": 1.0, "content": ". In other words, ", "type": "text"}, {"bbox": [495, 414, 539, 426], "score": 0.94, "content": "S_{\\lambda\\mu}/S_{0\\mu}", "type": "inline_equation", "height": 12, "width": 44}], "index": 16}, {"bbox": [69, 425, 519, 443], "spans": [{"bbox": [69, 425, 289, 443], "score": 1.0, "content": "is the Schur polynomial corresponding to", "type": "text"}, {"bbox": [290, 428, 298, 438], "score": 0.81, "content": "\\lambda", "type": "inline_equation", "height": 10, "width": 8}, {"bbox": [298, 425, 505, 443], "score": 1.0, "content": ", evaluated at roots of 1 determined by ", "type": "text"}, {"bbox": [506, 432, 513, 440], "score": 0.89, "content": "\\mu", "type": "inline_equation", "height": 8, "width": 7}, {"bbox": [514, 425, 519, 443], "score": 1.0, "content": ".", "type": "text"}], "index": 17}], "index": 16, "page_num": "page_8", "page_size": [612.0, 792.0], "bbox_fs": [69, 397, 540, 443]}, {"type": "text", "bbox": [94, 439, 357, 453], "lines": [{"bbox": [96, 441, 355, 455], "spans": [{"bbox": [96, 441, 355, 455], "score": 1.0, "content": "The fusion (derived from the Pieri rule and (2.4))", "type": "text"}], "index": 18}], "index": 18, "page_num": "page_8", "page_size": [612.0, 792.0], "bbox_fs": [96, 441, 355, 455]}, {"type": "interline_equation", "bbox": [223, 467, 386, 484], "lines": [{"bbox": [223, 467, 386, 484], "spans": [{"bbox": [223, 467, 386, 484], "score": 0.55, "content": "\\Lambda_{1}\\mathinner{\\left[\\boxtimes\\right]}\\Lambda_{\\ell}=\\Lambda_{\\ell+1}\\mathinner{\\left[\\textstyle{\\ H}\\right.\\left(\\Lambda_{1}+\\Lambda_{\\ell}\\right)\\,,}", "type": "interline_equation"}], "index": 19}], "index": 19, "page_num": "page_8", "page_size": [612.0, 792.0]}, {"type": "text", "bbox": [71, 496, 304, 510], "lines": [{"bbox": [71, 498, 302, 511], "spans": [{"bbox": [71, 498, 118, 511], "score": 1.0, "content": "valid for ", "type": "text"}, {"bbox": [118, 500, 147, 511], "score": 0.92, "content": "k\\geq2", "type": "inline_equation", "height": 11, "width": 29}, {"bbox": [147, 498, 173, 511], "score": 1.0, "content": " and ", "type": "text"}, {"bbox": [174, 499, 223, 511], "score": 0.9, "content": "1\\leq\\ell<r", "type": "inline_equation", "height": 12, "width": 49}, {"bbox": [224, 498, 302, 511], "score": 1.0, "content": ", will be useful.", "type": "text"}], "index": 20}], "index": 20, "page_num": "page_8", "page_size": [612.0, 792.0], "bbox_fs": [71, 498, 302, 511]}, {"type": "text", "bbox": [95, 512, 371, 527], "lines": [{"bbox": [93, 510, 372, 529], "spans": [{"bbox": [93, 512, 344, 529], "score": 1.0, "content": "There are no exceptional fusion-symmetries for ", "type": "text"}, {"bbox": [345, 510, 367, 527], "score": 0.91, "content": "A_{r}^{(1)}", "type": "inline_equation", "height": 17, "width": 22}, {"bbox": [367, 512, 372, 529], "score": 1.0, "content": ":", "type": "text"}], "index": 21}], "index": 21, "page_num": "page_8", "page_size": [612.0, 792.0], "bbox_fs": [93, 510, 372, 529]}, {"type": "text", "bbox": [70, 533, 542, 565], "lines": [{"bbox": [93, 533, 543, 554], "spans": [{"bbox": [93, 534, 323, 554], "score": 1.0, "content": "Theorem 3.A. The fusion-symmetries for ", "type": "text"}, {"bbox": [323, 533, 346, 550], "score": 0.91, "content": "A_{r}^{(1)}", "type": "inline_equation", "height": 17, "width": 23}, {"bbox": [347, 534, 375, 554], "score": 1.0, "content": "level", "type": "text"}, {"bbox": [375, 537, 384, 549], "score": 0.72, "content": "k", "type": "inline_equation", "height": 12, "width": 9}, {"bbox": [384, 534, 407, 554], "score": 1.0, "content": " are ", "type": "text"}, {"bbox": [407, 536, 442, 551], "score": 0.92, "content": "C^{i}\\pi[a]", "type": "inline_equation", "height": 15, "width": 35}, {"bbox": [442, 534, 467, 554], "score": 1.0, "content": ", for ", "type": "text"}, {"bbox": [467, 537, 517, 551], "score": 0.92, "content": "i\\in\\{0,1\\}", "type": "inline_equation", "height": 14, "width": 50}, {"bbox": [517, 534, 543, 554], "score": 1.0, "content": " and", "type": "text"}], "index": 22}, {"bbox": [72, 551, 383, 568], "spans": [{"bbox": [72, 551, 133, 568], "score": 1.0, "content": "any integer ", "type": "text"}, {"bbox": [134, 553, 184, 565], "score": 0.86, "content": "0\\leq a\\leq r", "type": "inline_equation", "height": 12, "width": 50}, {"bbox": [185, 551, 240, 568], "score": 1.0, "content": " for which ", "type": "text"}, {"bbox": [240, 552, 275, 564], "score": 0.88, "content": "1+k a", "type": "inline_equation", "height": 12, "width": 35}, {"bbox": [275, 551, 350, 568], "score": 1.0, "content": " is coprime to ", "type": "text"}, {"bbox": [350, 552, 378, 564], "score": 0.9, "content": "r+1", "type": "inline_equation", "height": 12, "width": 28}, {"bbox": [378, 551, 383, 568], "score": 1.0, "content": ".", "type": "text"}], "index": 23}], "index": 22.5, "page_num": "page_8", "page_size": [612.0, 792.0], "bbox_fs": [72, 533, 543, 568]}, {"type": "text", "bbox": [70, 571, 541, 628], "lines": [{"bbox": [94, 573, 541, 587], "spans": [{"bbox": [94, 574, 329, 587], "score": 1.0, "content": "To avoid redundancies in the Theorem, for ", "type": "text"}, {"bbox": [330, 574, 362, 584], "score": 0.89, "content": "r\\,=\\,1", "type": "inline_equation", "height": 10, "width": 32}, {"bbox": [362, 574, 381, 587], "score": 1.0, "content": " or ", "type": "text"}, {"bbox": [381, 573, 414, 585], "score": 0.89, "content": "k\\,=\\,1", "type": "inline_equation", "height": 12, "width": 33}, {"bbox": [415, 574, 444, 587], "score": 1.0, "content": " take ", "type": "text"}, {"bbox": [445, 574, 475, 585], "score": 0.88, "content": "i\\,=\\,0", "type": "inline_equation", "height": 11, "width": 30}, {"bbox": [476, 574, 541, 587], "score": 1.0, "content": " only. If we", "type": "text"}], "index": 24}, {"bbox": [72, 588, 541, 601], "spans": [{"bbox": [72, 588, 102, 601], "score": 1.0, "content": "write ", "type": "text"}, {"bbox": [102, 589, 149, 599], "score": 0.91, "content": "{\\overline{{r}}}\\,=\\,r^{\\prime}r^{\\prime\\prime}", "type": "inline_equation", "height": 10, "width": 47}, {"bbox": [149, 588, 191, 601], "score": 1.0, "content": ", where ", "type": "text"}, {"bbox": [192, 589, 201, 598], "score": 0.9, "content": "r^{\\prime}", "type": "inline_equation", "height": 9, "width": 9}, {"bbox": [201, 588, 280, 601], "score": 1.0, "content": " is coprime to ", "type": "text"}, {"bbox": [280, 590, 287, 599], "score": 0.89, "content": "k", "type": "inline_equation", "height": 9, "width": 7}, {"bbox": [288, 588, 315, 601], "score": 1.0, "content": " and ", "type": "text"}, {"bbox": [316, 588, 348, 601], "score": 0.92, "content": "r^{\\prime\\prime}|k^{\\infty}", "type": "inline_equation", "height": 13, "width": 32}, {"bbox": [348, 588, 541, 601], "score": 1.0, "content": ", then the number of simple-current", "type": "text"}], "index": 25}, {"bbox": [70, 601, 542, 617], "spans": [{"bbox": [70, 602, 246, 617], "score": 1.0, "content": "automorphisms will exactly equal ", "type": "text"}, {"bbox": [246, 603, 289, 616], "score": 0.93, "content": "r^{\\prime\\prime}{\\cdot}\\varphi(r^{\\prime})", "type": "inline_equation", "height": 13, "width": 43}, {"bbox": [290, 602, 329, 617], "score": 1.0, "content": ", where ", "type": "text"}, {"bbox": [329, 605, 338, 615], "score": 0.81, "content": "\\varphi", "type": "inline_equation", "height": 10, "width": 9}, {"bbox": [338, 602, 468, 617], "score": 1.0, "content": " is the Euler totient. The ", "type": "text"}, {"bbox": [468, 601, 489, 616], "score": 0.92, "content": "\\pi[a]", "type": "inline_equation", "height": 15, "width": 21}, {"bbox": [489, 602, 542, 617], "score": 1.0, "content": " commute", "type": "text"}], "index": 26}, {"bbox": [72, 617, 224, 630], "spans": [{"bbox": [72, 617, 210, 630], "score": 1.0, "content": "with each other, and with ", "type": "text"}, {"bbox": [210, 618, 220, 627], "score": 0.89, "content": "C", "type": "inline_equation", "height": 9, "width": 10}, {"bbox": [220, 617, 224, 630], "score": 1.0, "content": ".", "type": "text"}], "index": 27}], "index": 25.5, "page_num": "page_8", "page_size": [612.0, 792.0], "bbox_fs": [70, 573, 542, 630]}, {"type": "text", "bbox": [70, 630, 541, 686], "lines": [{"bbox": [95, 631, 540, 646], "spans": [{"bbox": [95, 631, 184, 646], "score": 1.0, "content": "For example, for ", "type": "text"}, {"bbox": [185, 633, 207, 645], "score": 0.93, "content": "A_{1,k}", "type": "inline_equation", "height": 12, "width": 22}, {"bbox": [207, 631, 241, 646], "score": 1.0, "content": " when ", "type": "text"}, {"bbox": [242, 633, 248, 641], "score": 0.89, "content": "k", "type": "inline_equation", "height": 8, "width": 6}, {"bbox": [249, 631, 532, 646], "score": 1.0, "content": " is odd, there is no nontrivial fusion-symmetry. When ", "type": "text"}, {"bbox": [532, 633, 540, 642], "score": 0.83, "content": "k", "type": "inline_equation", "height": 9, "width": 8}], "index": 28}, {"bbox": [69, 645, 541, 661], "spans": [{"bbox": [69, 645, 265, 661], "score": 1.0, "content": "is even, there is exactly one, sending ", "type": "text"}, {"bbox": [266, 647, 315, 658], "score": 0.93, "content": "\\lambda=\\lambda_{1}\\Lambda_{1}", "type": "inline_equation", "height": 11, "width": 49}, {"bbox": [315, 645, 333, 661], "score": 1.0, "content": " to ", "type": "text"}, {"bbox": [333, 647, 340, 656], "score": 0.87, "content": "\\lambda", "type": "inline_equation", "height": 9, "width": 7}, {"bbox": [340, 645, 366, 661], "score": 1.0, "content": " (for ", "type": "text"}, {"bbox": [367, 647, 379, 658], "score": 0.9, "content": "\\lambda_{1}", "type": "inline_equation", "height": 11, "width": 12}, {"bbox": [379, 645, 429, 661], "score": 1.0, "content": " even) or ", "type": "text"}, {"bbox": [429, 646, 516, 659], "score": 0.93, "content": "J\\lambda=(k-\\lambda_{1})\\Lambda_{1}", "type": "inline_equation", "height": 13, "width": 87}, {"bbox": [517, 645, 541, 661], "score": 1.0, "content": " (for", "type": "text"}], "index": 29}, {"bbox": [71, 659, 541, 675], "spans": [{"bbox": [71, 662, 83, 672], "score": 0.89, "content": "\\lambda_{1}", "type": "inline_equation", "height": 10, "width": 12}, {"bbox": [84, 659, 144, 675], "score": 1.0, "content": " odd). For ", "type": "text"}, {"bbox": [145, 662, 167, 674], "score": 0.93, "content": "A_{2,k}", "type": "inline_equation", "height": 12, "width": 22}, {"bbox": [167, 659, 541, 675], "score": 1.0, "content": ", there are either six or four fusion-symmetries, depending on whether", "type": "text"}], "index": 30}, {"bbox": [70, 674, 169, 689], "spans": [{"bbox": [70, 674, 157, 689], "score": 1.0, "content": "or not 3 divides ", "type": "text"}, {"bbox": [158, 676, 164, 685], "score": 0.9, "content": "k", "type": "inline_equation", "height": 9, "width": 6}, {"bbox": [165, 674, 169, 689], "score": 1.0, "content": ".", "type": "text"}], "index": 31}], "index": 29.5, "page_num": "page_8", "page_size": [612.0, 792.0], "bbox_fs": [69, 631, 541, 689]}]} |
|
0002044v1 | 9 | 3.2. The algebra $$B_{r}^{(1)}$$ , $$r\geq3$$
A weight $$\lambda$$ in $$P_{+}$$ satisfies $$k=\lambda_{0}+\lambda_{1}+2\lambda_{2}+\cdot\cdot\cdot+2\lambda_{r-1}+\lambda_{r}$$ , and $$\kappa=k+2r-1$$ .
The charge-conjugation is trivial, but there is a simple-current: $$J\lambda=\left(\lambda_{1},\lambda_{0},\lambda_{2},.\ldots,\lambda_{r}\right)$$ .
It has $$Q(\lambda)=\lambda_{r}/2$$ .
The only fusion products we need are
for all $$1\leq i<r-1$$ , $$k>2$$ , and $$0<\ell<k$$ , where we drop $$\mathrm{\Delta}^{\prime}\Lambda_{r-1}+(\ell-2)\Lambda_{r}{}^{\prime}$$ if $$\ell=1$$ . We
will also use the character formula (2.1b)
where $$\lambda^{+}(\ell)=(\lambda+\rho)(\ell)$$ and
For $$k\,=\,2$$ ( $$\kappa\,=\,2r+1$$ ) there are several Galois fusion-symmetries — one for each
Galois automorphism, since S020 = 41κ is rational. In particular, define $$\gamma^{i}=\gamma^{\kappa-i}=\Lambda_{i}$$ for
$$i\,=\,1,2,\dots,r\,-\,1$$ , and $$\gamma^{r}\,=\,\gamma^{r+1}\,=\,2\Lambda_{r}$$ . Then for any $${\boldsymbol{\mathit{\varepsilon}}}^{\prime}{\boldsymbol{\mathit{m}}}$$ coprime to $$\kappa$$ , $$\pi\{m\}$$ fixes $$0$$
and $$J$$ , sends $$\gamma^{a}$$ to $$\gamma^{m a}$$ (where the superscript is taken mod $$\kappa$$ ), and stabilises $$\{\Lambda_{r},J\Lambda_{r}\}$$
$$(\pi\{m\}\Lambda_{r}=\Lambda_{r}$$ iff the Jacobi symbol $$\Bigl(\frac{\kappa}{m}\Bigr)$$ equals $$+1$$ ).
Why is $$k=2$$ so special here? One reason is that rank-level duality associates $$B_{r,2}$$ with
$$\mathrm{u}(1)_{2r+1}$$ , and it is easy to confirm that $$\widehat{\mathrm{u(1)}}$$ has a rich variety of fusion-symmetries (and
modular invariants) coming from its si mple-currents. Also, the $$B_{r,2}$$ matrix $$S$$ formally
looks like the character table of the dihedral group and for some $$r$$ actually equals the
Kac-Peterson matrix $$S$$ associated to the dihedral group $${\mathfrak{D}}_{{\sqrt{\kappa}}}$$ twisted by an appropriate 3-
cocycle [5] — finite group modular data tends to have significantly more modular invariants
and fusion-symmetries than e.g. affine modular data.
Theorem 3.B. The fusion-symmetries of $$B_{r}^{(1)}$$ level $$k$$ for $$k\ \neq\ 2$$ are $$\pi[1]^{i}$$ where
$$i\in\{0,1\}$$ . For $$k=2$$ a fusion-symmetry will equal $$\pi[1]^{i}\,\pi\{m\}$$ for $$i\in\{0,1\}$$ and $$m\in\mathbb{Z}_{\kappa}^{\times}$$ ,
$$1\leq m\leq r$$ .
When $$k=1$$ , $$\pi[1]$$ is trivial. We have $$\mathcal{F}(B_{r,2})\cong\mathbb{Z}_{2}\times(\mathbb{Z}_{2r+1}^{\times}/\{\pm1\}).$$
3.3. The algebra $$C_{r}^{(1)}$$ , $$r\geq2$$
A weight $$\lambda$$ of $$P_{+}$$ satisfies $$k=\lambda_{0}+\lambda_{1}+\cdot\cdot\cdot+\lambda_{r}$$ and $$\kappa=k+r+1$$ . Charge-conjugation
$$C$$ again is trivial, and there is a simple-current $$J$$ defined by $$J\lambda=\left(\lambda_{r},\lambda_{r-1},\ldots,\lambda_{1},\lambda_{0}\right)$$ ,
with $$\begin{array}{r}{Q(\lambda)=(\sum_{j=1}^{r}j\lambda_{j})/2}\end{array}$$ .
Choose any $$\lambda\:\in\:P_{+}$$ . The Young diagram for $$\lambda$$ is defined in the usual way: for
$$1\leq\ell\leq r$$ , the $$\ell$$ th row consists of $$\begin{array}{r}{\lambda(\ell)\overset{\mathrm{def}}{=}\sum_{i=\ell}^{r}\lambda_{i}}\end{array}$$ boxes. Let $$\tau\lambda$$ denote the $$C_{k,r}$$ weight
| <p>3.2. The algebra $$B_{r}^{(1)}$$ , $$r\geq3$$</p>
<p>A weight $$\lambda$$ in $$P_{+}$$ satisfies $$k=\lambda_{0}+\lambda_{1}+2\lambda_{2}+\cdot\cdot\cdot+2\lambda_{r-1}+\lambda_{r}$$ , and $$\kappa=k+2r-1$$ .
The charge-conjugation is trivial, but there is a simple-current: $$J\lambda=\left(\lambda_{1},\lambda_{0},\lambda_{2},.\ldots,\lambda_{r}\right)$$ .
It has $$Q(\lambda)=\lambda_{r}/2$$ .</p>
<p>The only fusion products we need are</p>
<p>for all $$1\leq i<r-1$$ , $$k>2$$ , and $$0<\ell<k$$ , where we drop $$\mathrm{\Delta}^{\prime}\Lambda_{r-1}+(\ell-2)\Lambda_{r}{}^{\prime}$$ if $$\ell=1$$ . We
will also use the character formula (2.1b)</p>
<p>where $$\lambda^{+}(\ell)=(\lambda+\rho)(\ell)$$ and</p>
<p>For $$k\,=\,2$$ ( $$\kappa\,=\,2r+1$$ ) there are several Galois fusion-symmetries — one for each
Galois automorphism, since S020 = 41κ is rational. In particular, define $$\gamma^{i}=\gamma^{\kappa-i}=\Lambda_{i}$$ for
$$i\,=\,1,2,\dots,r\,-\,1$$ , and $$\gamma^{r}\,=\,\gamma^{r+1}\,=\,2\Lambda_{r}$$ . Then for any $${\boldsymbol{\mathit{\varepsilon}}}^{\prime}{\boldsymbol{\mathit{m}}}$$ coprime to $$\kappa$$ , $$\pi\{m\}$$ fixes $$0$$
and $$J$$ , sends $$\gamma^{a}$$ to $$\gamma^{m a}$$ (where the superscript is taken mod $$\kappa$$ ), and stabilises $$\{\Lambda_{r},J\Lambda_{r}\}$$
$$(\pi\{m\}\Lambda_{r}=\Lambda_{r}$$ iff the Jacobi symbol $$\Bigl(\frac{\kappa}{m}\Bigr)$$ equals $$+1$$ ).</p>
<p>Why is $$k=2$$ so special here? One reason is that rank-level duality associates $$B_{r,2}$$ with
$$\mathrm{u}(1)_{2r+1}$$ , and it is easy to confirm that $$\widehat{\mathrm{u(1)}}$$ has a rich variety of fusion-symmetries (and
modular invariants) coming from its si mple-currents. Also, the $$B_{r,2}$$ matrix $$S$$ formally
looks like the character table of the dihedral group and for some $$r$$ actually equals the
Kac-Peterson matrix $$S$$ associated to the dihedral group $${\mathfrak{D}}_{{\sqrt{\kappa}}}$$ twisted by an appropriate 3-
cocycle [5] — finite group modular data tends to have significantly more modular invariants
and fusion-symmetries than e.g. affine modular data.</p>
<p>Theorem 3.B. The fusion-symmetries of $$B_{r}^{(1)}$$ level $$k$$ for $$k\ \neq\ 2$$ are $$\pi[1]^{i}$$ where
$$i\in\{0,1\}$$ . For $$k=2$$ a fusion-symmetry will equal $$\pi[1]^{i}\,\pi\{m\}$$ for $$i\in\{0,1\}$$ and $$m\in\mathbb{Z}_{\kappa}^{\times}$$ ,
$$1\leq m\leq r$$ .</p>
<p>When $$k=1$$ , $$\pi[1]$$ is trivial. We have $$\mathcal{F}(B_{r,2})\cong\mathbb{Z}_{2}\times(\mathbb{Z}_{2r+1}^{\times}/\{\pm1\}).$$</p>
<p>3.3. The algebra $$C_{r}^{(1)}$$ , $$r\geq2$$</p>
<p>A weight $$\lambda$$ of $$P_{+}$$ satisfies $$k=\lambda_{0}+\lambda_{1}+\cdot\cdot\cdot+\lambda_{r}$$ and $$\kappa=k+r+1$$ . Charge-conjugation
$$C$$ again is trivial, and there is a simple-current $$J$$ defined by $$J\lambda=\left(\lambda_{r},\lambda_{r-1},\ldots,\lambda_{1},\lambda_{0}\right)$$ ,
with $$\begin{array}{r}{Q(\lambda)=(\sum_{j=1}^{r}j\lambda_{j})/2}\end{array}$$ .</p>
<p>Choose any $$\lambda\:\in\:P_{+}$$ . The Young diagram for $$\lambda$$ is defined in the usual way: for
$$1\leq\ell\leq r$$ , the $$\ell$$ th row consists of $$\begin{array}{r}{\lambda(\ell)\overset{\mathrm{def}}{=}\sum_{i=\ell}^{r}\lambda_{i}}\end{array}$$ boxes. Let $$\tau\lambda$$ denote the $$C_{k,r}$$ weight</p>
| [{"type": "text", "coordinates": [70, 69, 221, 86], "content": "3.2. The algebra $$B_{r}^{(1)}$$ , $$r\\geq3$$", "block_type": "text", "index": 1}, {"type": "text", "coordinates": [70, 92, 542, 136], "content": "A weight $$\\lambda$$ in $$P_{+}$$ satisfies $$k=\\lambda_{0}+\\lambda_{1}+2\\lambda_{2}+\\cdot\\cdot\\cdot+2\\lambda_{r-1}+\\lambda_{r}$$ , and $$\\kappa=k+2r-1$$ .\nThe charge-conjugation is trivial, but there is a simple-current: $$J\\lambda=\\left(\\lambda_{1},\\lambda_{0},\\lambda_{2},.\\ldots,\\lambda_{r}\\right)$$ .\nIt has $$Q(\\lambda)=\\lambda_{r}/2$$ .", "block_type": "text", "index": 2}, {"type": "text", "coordinates": [94, 137, 294, 151], "content": "The only fusion products we need are", "block_type": "text", "index": 3}, {"type": "text", "coordinates": [69, 205, 541, 235], "content": "for all $$1\\leq i<r-1$$ , $$k>2$$ , and $$0<\\ell<k$$ , where we drop $$\\mathrm{\\Delta}^{\\prime}\\Lambda_{r-1}+(\\ell-2)\\Lambda_{r}{}^{\\prime}$$ if $$\\ell=1$$ . We\nwill also use the character formula (2.1b)", "block_type": "text", "index": 4}, {"type": "interline_equation", "coordinates": [195, 246, 415, 285], "content": "", "block_type": "interline_equation", "index": 5}, {"type": "text", "coordinates": [70, 295, 227, 310], "content": "where $$\\lambda^{+}(\\ell)=(\\lambda+\\rho)(\\ell)$$ and", "block_type": "text", "index": 6}, {"type": "interline_equation", "coordinates": [249, 309, 362, 349], "content": "", "block_type": "interline_equation", "index": 7}, {"type": "text", "coordinates": [70, 353, 541, 426], "content": "For $$k\\,=\\,2$$ ( $$\\kappa\\,=\\,2r+1$$ ) there are several Galois fusion-symmetries \u2014 one for each\nGalois automorphism, since S020 = 41\u03ba is rational. In particular, define $$\\gamma^{i}=\\gamma^{\\kappa-i}=\\Lambda_{i}$$ for\n$$i\\,=\\,1,2,\\dots,r\\,-\\,1$$ , and $$\\gamma^{r}\\,=\\,\\gamma^{r+1}\\,=\\,2\\Lambda_{r}$$ . Then for any $${\\boldsymbol{\\mathit{\\varepsilon}}}^{\\prime}{\\boldsymbol{\\mathit{m}}}$$ coprime to $$\\kappa$$ , $$\\pi\\{m\\}$$ fixes $$0$$\nand $$J$$ , sends $$\\gamma^{a}$$ to $$\\gamma^{m a}$$ (where the superscript is taken mod $$\\kappa$$ ), and stabilises $$\\{\\Lambda_{r},J\\Lambda_{r}\\}$$\n$$(\\pi\\{m\\}\\Lambda_{r}=\\Lambda_{r}$$ iff the Jacobi symbol $$\\Bigl(\\frac{\\kappa}{m}\\Bigr)$$ equals $$+1$$ ).", "block_type": "text", "index": 8}, {"type": "text", "coordinates": [70, 426, 541, 530], "content": "Why is $$k=2$$ so special here? One reason is that rank-level duality associates $$B_{r,2}$$ with\n$$\\mathrm{u}(1)_{2r+1}$$ , and it is easy to confirm that $$\\widehat{\\mathrm{u(1)}}$$ has a rich variety of fusion-symmetries (and\nmodular invariants) coming from its si mple-currents. Also, the $$B_{r,2}$$ matrix $$S$$ formally\nlooks like the character table of the dihedral group and for some $$r$$ actually equals the\nKac-Peterson matrix $$S$$ associated to the dihedral group $${\\mathfrak{D}}_{{\\sqrt{\\kappa}}}$$ twisted by an appropriate 3-\ncocycle [5] \u2014 finite group modular data tends to have significantly more modular invariants\nand fusion-symmetries than e.g. affine modular data.", "block_type": "text", "index": 9}, {"type": "text", "coordinates": [70, 535, 542, 581], "content": "Theorem 3.B. The fusion-symmetries of $$B_{r}^{(1)}$$ level $$k$$ for $$k\\ \\neq\\ 2$$ are $$\\pi[1]^{i}$$ where\n$$i\\in\\{0,1\\}$$ . For $$k=2$$ a fusion-symmetry will equal $$\\pi[1]^{i}\\,\\pi\\{m\\}$$ for $$i\\in\\{0,1\\}$$ and $$m\\in\\mathbb{Z}_{\\kappa}^{\\times}$$ ,\n$$1\\leq m\\leq r$$ .", "block_type": "text", "index": 10}, {"type": "text", "coordinates": [93, 586, 451, 604], "content": "When $$k=1$$ , $$\\pi[1]$$ is trivial. We have $$\\mathcal{F}(B_{r,2})\\cong\\mathbb{Z}_{2}\\times(\\mathbb{Z}_{2r+1}^{\\times}/\\{\\pm1\\}).$$", "block_type": "text", "index": 11}, {"type": "text", "coordinates": [71, 616, 220, 633], "content": "3.3. The algebra $$C_{r}^{(1)}$$ , $$r\\geq2$$", "block_type": "text", "index": 12}, {"type": "text", "coordinates": [71, 639, 541, 683], "content": "A weight $$\\lambda$$ of $$P_{+}$$ satisfies $$k=\\lambda_{0}+\\lambda_{1}+\\cdot\\cdot\\cdot+\\lambda_{r}$$ and $$\\kappa=k+r+1$$ . Charge-conjugation\n$$C$$ again is trivial, and there is a simple-current $$J$$ defined by $$J\\lambda=\\left(\\lambda_{r},\\lambda_{r-1},\\ldots,\\lambda_{1},\\lambda_{0}\\right)$$ ,\nwith $$\\begin{array}{r}{Q(\\lambda)=(\\sum_{j=1}^{r}j\\lambda_{j})/2}\\end{array}$$ .", "block_type": "text", "index": 13}, {"type": "text", "coordinates": [70, 683, 540, 716], "content": "Choose any $$\\lambda\\:\\in\\:P_{+}$$ . The Young diagram for $$\\lambda$$ is defined in the usual way: for\n$$1\\leq\\ell\\leq r$$ , the $$\\ell$$ th row consists of $$\\begin{array}{r}{\\lambda(\\ell)\\overset{\\mathrm{def}}{=}\\sum_{i=\\ell}^{r}\\lambda_{i}}\\end{array}$$ boxes. Let $$\\tau\\lambda$$ denote the $$C_{k,r}$$ weight", "block_type": "text", "index": 14}] | [{"type": "text", "coordinates": [68, 67, 160, 92], "content": "3.2. The algebra ", "score": 1.0, "index": 1}, {"type": "inline_equation", "coordinates": [161, 72, 183, 86], "content": "B_{r}^{(1)}", "score": 0.73, "index": 2}, {"type": "text", "coordinates": [184, 67, 190, 92], "content": ", ", "score": 1.0, "index": 3}, {"type": "inline_equation", "coordinates": [190, 77, 219, 87], "content": "r\\geq3", "score": 0.74, "index": 4}, {"type": "text", "coordinates": [95, 95, 145, 110], "content": "A weight ", "score": 1.0, "index": 5}, {"type": "inline_equation", "coordinates": [145, 96, 154, 106], "content": "\\lambda", "score": 0.8, "index": 6}, {"type": "text", "coordinates": [154, 95, 170, 110], "content": " in ", "score": 1.0, "index": 7}, {"type": "inline_equation", "coordinates": [171, 96, 187, 109], "content": "P_{+}", "score": 0.9, "index": 8}, {"type": "text", "coordinates": [187, 95, 233, 110], "content": " satisfies", "score": 1.0, "index": 9}, {"type": "inline_equation", "coordinates": [234, 95, 429, 108], "content": "k=\\lambda_{0}+\\lambda_{1}+2\\lambda_{2}+\\cdot\\cdot\\cdot+2\\lambda_{r-1}+\\lambda_{r}", "score": 0.91, "index": 10}, {"type": "text", "coordinates": [430, 95, 459, 110], "content": ", and ", "score": 1.0, "index": 11}, {"type": "inline_equation", "coordinates": [459, 96, 537, 107], "content": "\\kappa=k+2r-1", "score": 0.9, "index": 12}, {"type": "text", "coordinates": [537, 95, 541, 110], "content": ".", "score": 1.0, "index": 13}, {"type": "text", "coordinates": [70, 109, 408, 125], "content": "The charge-conjugation is trivial, but there is a simple-current: ", "score": 1.0, "index": 14}, {"type": "inline_equation", "coordinates": [408, 109, 536, 123], "content": "J\\lambda=\\left(\\lambda_{1},\\lambda_{0},\\lambda_{2},.\\ldots,\\lambda_{r}\\right)", "score": 0.91, "index": 15}, {"type": "text", "coordinates": [536, 109, 541, 125], "content": ".", "score": 1.0, "index": 16}, {"type": "text", "coordinates": [69, 123, 105, 140], "content": "It has ", "score": 1.0, "index": 17}, {"type": "inline_equation", "coordinates": [105, 123, 172, 138], "content": "Q(\\lambda)=\\lambda_{r}/2", "score": 0.92, "index": 18}, {"type": "text", "coordinates": [172, 123, 176, 140], "content": ".", "score": 1.0, "index": 19}, {"type": "text", "coordinates": [95, 138, 294, 152], "content": "The only fusion products we need are", "score": 1.0, "index": 20}, {"type": "text", "coordinates": [70, 208, 105, 223], "content": "for all ", "score": 1.0, "index": 21}, {"type": "inline_equation", "coordinates": [106, 209, 175, 221], "content": "1\\leq i<r-1", "score": 0.83, "index": 22}, {"type": "text", "coordinates": [175, 208, 180, 223], "content": ",", "score": 1.0, "index": 23}, {"type": "inline_equation", "coordinates": [181, 208, 210, 221], "content": "k>2", "score": 0.68, "index": 24}, {"type": "text", "coordinates": [211, 208, 240, 223], "content": ", and ", "score": 1.0, "index": 25}, {"type": "inline_equation", "coordinates": [240, 208, 290, 221], "content": "0<\\ell<k", "score": 0.91, "index": 26}, {"type": "text", "coordinates": [291, 208, 378, 223], "content": ", where we drop ", "score": 1.0, "index": 27}, {"type": "inline_equation", "coordinates": [379, 208, 473, 222], "content": "\\mathrm{\\Delta}^{\\prime}\\Lambda_{r-1}+(\\ell-2)\\Lambda_{r}{}^{\\prime}", "score": 0.91, "index": 28}, {"type": "text", "coordinates": [473, 208, 487, 223], "content": " if ", "score": 1.0, "index": 29}, {"type": "inline_equation", "coordinates": [487, 209, 514, 219], "content": "\\ell=1", "score": 0.87, "index": 30}, {"type": "text", "coordinates": [515, 208, 541, 223], "content": ". We", "score": 1.0, "index": 31}, {"type": "text", "coordinates": [71, 223, 288, 238], "content": "will also use the character formula (2.1b)", "score": 1.0, "index": 32}, {"type": "interline_equation", "coordinates": [195, 246, 415, 285], "content": "\\chi_{\\Lambda_{1}}[\\lambda]={\\frac{S_{\\Lambda_{1}\\lambda}}{S_{0\\lambda}}}=2\\sum_{\\ell=1}^{r}\\cos(2\\pi{\\frac{\\lambda^{+}(\\ell)}{\\kappa}})+1~,", "score": 0.94, "index": 33}, {"type": "text", "coordinates": [72, 297, 105, 312], "content": "where ", "score": 1.0, "index": 34}, {"type": "inline_equation", "coordinates": [106, 298, 203, 311], "content": "\\lambda^{+}(\\ell)=(\\lambda+\\rho)(\\ell)", "score": 0.94, "index": 35}, {"type": "text", "coordinates": [203, 297, 227, 312], "content": " and", "score": 1.0, "index": 36}, {"type": "interline_equation", "coordinates": [249, 309, 362, 349], "content": "\\lambda(\\ell)=\\sum_{i=\\ell}^{r-1}\\lambda_{i}+\\frac{1}{2}\\lambda_{r}\\ .", "score": 0.94, "index": 37}, {"type": "text", "coordinates": [93, 354, 117, 371], "content": "For ", "score": 1.0, "index": 38}, {"type": "inline_equation", "coordinates": [117, 358, 150, 367], "content": "k\\,=\\,2", "score": 0.89, "index": 39}, {"type": "text", "coordinates": [150, 354, 158, 371], "content": " (", "score": 1.0, "index": 40}, {"type": "inline_equation", "coordinates": [158, 357, 219, 368], "content": "\\kappa\\,=\\,2r+1", "score": 0.69, "index": 41}, {"type": "text", "coordinates": [220, 354, 541, 371], "content": ") there are several Galois fusion-symmetries \u2014 one for each", "score": 1.0, "index": 42}, {"type": "text", "coordinates": [69, 368, 272, 388], "content": "Galois automorphism, since S020 = 41\u03ba ", "score": 1.0, "index": 43}, {"type": "text", "coordinates": [267, 369, 441, 387], "content": "is rational. In particular, define ", "score": 1.0, "index": 44}, {"type": "inline_equation", "coordinates": [441, 371, 521, 384], "content": "\\gamma^{i}=\\gamma^{\\kappa-i}=\\Lambda_{i}", "score": 0.94, "index": 45}, {"type": "text", "coordinates": [521, 369, 541, 387], "content": " for", "score": 1.0, "index": 46}, {"type": "inline_equation", "coordinates": [71, 387, 166, 398], "content": "i\\,=\\,1,2,\\dots,r\\,-\\,1", "score": 0.9, "index": 47}, {"type": "text", "coordinates": [166, 383, 198, 402], "content": ", and ", "score": 1.0, "index": 48}, {"type": "inline_equation", "coordinates": [198, 385, 293, 398], "content": "\\gamma^{r}\\,=\\,\\gamma^{r+1}\\,=\\,2\\Lambda_{r}", "score": 0.92, "index": 49}, {"type": "text", "coordinates": [293, 383, 378, 402], "content": ". Then for any ", "score": 1.0, "index": 50}, {"type": "inline_equation", "coordinates": [379, 390, 389, 396], "content": "{\\boldsymbol{\\mathit{\\varepsilon}}}^{\\prime}{\\boldsymbol{\\mathit{m}}}", "score": 0.85, "index": 51}, {"type": "text", "coordinates": [390, 383, 455, 402], "content": " coprime to ", "score": 1.0, "index": 52}, {"type": "inline_equation", "coordinates": [456, 390, 463, 396], "content": "\\kappa", "score": 0.69, "index": 53}, {"type": "text", "coordinates": [463, 383, 470, 402], "content": ", ", "score": 1.0, "index": 54}, {"type": "inline_equation", "coordinates": [471, 386, 501, 398], "content": "\\pi\\{m\\}", "score": 0.93, "index": 55}, {"type": "text", "coordinates": [501, 383, 533, 402], "content": " fixes ", "score": 1.0, "index": 56}, {"type": "inline_equation", "coordinates": [533, 387, 540, 396], "content": "0", "score": 0.39, "index": 57}, {"type": "text", "coordinates": [71, 399, 95, 414], "content": "and ", "score": 1.0, "index": 58}, {"type": "inline_equation", "coordinates": [95, 401, 103, 410], "content": "J", "score": 0.89, "index": 59}, {"type": "text", "coordinates": [103, 399, 142, 414], "content": ", sends ", "score": 1.0, "index": 60}, {"type": "inline_equation", "coordinates": [142, 401, 155, 412], "content": "\\gamma^{a}", "score": 0.91, "index": 61}, {"type": "text", "coordinates": [155, 399, 173, 414], "content": " to ", "score": 1.0, "index": 62}, {"type": "inline_equation", "coordinates": [174, 401, 195, 412], "content": "\\gamma^{m a}", "score": 0.91, "index": 63}, {"type": "text", "coordinates": [196, 399, 393, 414], "content": " (where the superscript is taken mod ", "score": 1.0, "index": 64}, {"type": "inline_equation", "coordinates": [393, 404, 401, 410], "content": "\\kappa", "score": 0.84, "index": 65}, {"type": "text", "coordinates": [401, 399, 487, 414], "content": "), and stabilises ", "score": 1.0, "index": 66}, {"type": "inline_equation", "coordinates": [487, 400, 540, 413], "content": "\\{\\Lambda_{r},J\\Lambda_{r}\\}", "score": 0.93, "index": 67}, {"type": "inline_equation", "coordinates": [72, 415, 149, 427], "content": "(\\pi\\{m\\}\\Lambda_{r}=\\Lambda_{r}", "score": 0.89, "index": 68}, {"type": "text", "coordinates": [149, 412, 266, 429], "content": " iff the Jacobi symbol ", "score": 1.0, "index": 69}, {"type": "inline_equation", "coordinates": [266, 414, 286, 428], "content": "\\Bigl(\\frac{\\kappa}{m}\\Bigr)", "score": 0.88, "index": 70}, {"type": "text", "coordinates": [287, 412, 326, 429], "content": " equals ", "score": 1.0, "index": 71}, {"type": "inline_equation", "coordinates": [327, 416, 342, 425], "content": "+1", "score": 0.54, "index": 72}, {"type": "text", "coordinates": [343, 412, 351, 429], "content": ").", "score": 1.0, "index": 73}, {"type": "text", "coordinates": [94, 427, 133, 443], "content": "Why is", "score": 1.0, "index": 74}, {"type": "inline_equation", "coordinates": [134, 430, 162, 438], "content": "k=2", "score": 0.91, "index": 75}, {"type": "text", "coordinates": [163, 427, 491, 443], "content": " so special here? One reason is that rank-level duality associates", "score": 1.0, "index": 76}, {"type": "inline_equation", "coordinates": [492, 430, 513, 442], "content": "B_{r,2}", "score": 0.95, "index": 77}, {"type": "text", "coordinates": [514, 427, 541, 443], "content": " with", "score": 1.0, "index": 78}, {"type": "inline_equation", "coordinates": [71, 447, 115, 459], "content": "\\mathrm{u}(1)_{2r+1}", "score": 0.93, "index": 79}, {"type": "text", "coordinates": [116, 445, 281, 460], "content": ", and it is easy to confirm that", "score": 1.0, "index": 80}, {"type": "inline_equation", "coordinates": [281, 442, 304, 459], "content": "\\widehat{\\mathrm{u(1)}}", "score": 0.9, "index": 81}, {"type": "text", "coordinates": [304, 445, 541, 460], "content": " has a rich variety of fusion-symmetries (and", "score": 1.0, "index": 82}, {"type": "text", "coordinates": [72, 460, 415, 474], "content": "modular invariants) coming from its si mple-currents. Also, the ", "score": 1.0, "index": 83}, {"type": "inline_equation", "coordinates": [416, 461, 438, 474], "content": "B_{r,2}", "score": 0.92, "index": 84}, {"type": "text", "coordinates": [438, 460, 483, 474], "content": " matrix ", "score": 1.0, "index": 85}, {"type": "inline_equation", "coordinates": [483, 461, 491, 470], "content": "S", "score": 0.89, "index": 86}, {"type": "text", "coordinates": [492, 460, 540, 474], "content": " formally", "score": 1.0, "index": 87}, {"type": "text", "coordinates": [70, 473, 427, 488], "content": "looks like the character table of the dihedral group and for some ", "score": 1.0, "index": 88}, {"type": "inline_equation", "coordinates": [427, 479, 434, 484], "content": "r", "score": 0.8, "index": 89}, {"type": "text", "coordinates": [434, 473, 541, 488], "content": " actually equals the", "score": 1.0, "index": 90}, {"type": "text", "coordinates": [69, 487, 182, 504], "content": "Kac-Peterson matrix ", "score": 1.0, "index": 91}, {"type": "inline_equation", "coordinates": [183, 490, 191, 499], "content": "S", "score": 0.89, "index": 92}, {"type": "text", "coordinates": [191, 487, 363, 504], "content": " associated to the dihedral group", "score": 1.0, "index": 93}, {"type": "inline_equation", "coordinates": [364, 488, 389, 504], "content": "{\\mathfrak{D}}_{{\\sqrt{\\kappa}}}", "score": 0.91, "index": 94}, {"type": "text", "coordinates": [390, 487, 541, 504], "content": " twisted by an appropriate 3-", "score": 1.0, "index": 95}, {"type": "text", "coordinates": [69, 503, 541, 518], "content": "cocycle [5] \u2014 finite group modular data tends to have significantly more modular invariants", "score": 1.0, "index": 96}, {"type": "text", "coordinates": [70, 517, 349, 532], "content": "and fusion-symmetries than e.g. affine modular data.", "score": 1.0, "index": 97}, {"type": "text", "coordinates": [93, 537, 326, 556], "content": "Theorem 3.B. The fusion-symmetries of ", "score": 1.0, "index": 98}, {"type": "inline_equation", "coordinates": [327, 536, 350, 552], "content": "B_{r}^{(1)}", "score": 0.9, "index": 99}, {"type": "text", "coordinates": [351, 537, 383, 556], "content": "level ", "score": 1.0, "index": 100}, {"type": "inline_equation", "coordinates": [383, 539, 392, 551], "content": "k", "score": 0.71, "index": 101}, {"type": "text", "coordinates": [392, 537, 416, 556], "content": " for ", "score": 1.0, "index": 102}, {"type": "inline_equation", "coordinates": [416, 539, 453, 553], "content": "k\\ \\neq\\ 2", "score": 0.9, "index": 103}, {"type": "text", "coordinates": [453, 537, 479, 556], "content": " are ", "score": 1.0, "index": 104}, {"type": "inline_equation", "coordinates": [479, 539, 504, 553], "content": "\\pi[1]^{i}", "score": 0.91, "index": 105}, {"type": "text", "coordinates": [505, 537, 542, 556], "content": " where", "score": 1.0, "index": 106}, {"type": "inline_equation", "coordinates": [71, 555, 120, 568], "content": "i\\in\\{0,1\\}", "score": 0.93, "index": 107}, {"type": "text", "coordinates": [120, 553, 151, 570], "content": ". For ", "score": 1.0, "index": 108}, {"type": "inline_equation", "coordinates": [151, 556, 181, 565], "content": "k=2", "score": 0.88, "index": 109}, {"type": "text", "coordinates": [181, 553, 338, 570], "content": " a fusion-symmetry will equal ", "score": 1.0, "index": 110}, {"type": "inline_equation", "coordinates": [339, 553, 395, 568], "content": "\\pi[1]^{i}\\,\\pi\\{m\\}", "score": 0.93, "index": 111}, {"type": "text", "coordinates": [396, 553, 417, 570], "content": " for ", "score": 1.0, "index": 112}, {"type": "inline_equation", "coordinates": [417, 554, 467, 568], "content": "i\\in\\{0,1\\}", "score": 0.92, "index": 113}, {"type": "text", "coordinates": [468, 553, 493, 570], "content": " and ", "score": 1.0, "index": 114}, {"type": "inline_equation", "coordinates": [493, 554, 536, 568], "content": "m\\in\\mathbb{Z}_{\\kappa}^{\\times}", "score": 0.91, "index": 115}, {"type": "text", "coordinates": [536, 553, 539, 570], "content": ",", "score": 1.0, "index": 116}, {"type": "inline_equation", "coordinates": [71, 570, 126, 581], "content": "1\\leq m\\leq r", "score": 0.88, "index": 117}, {"type": "text", "coordinates": [126, 568, 131, 585], "content": ".", "score": 1.0, "index": 118}, {"type": "text", "coordinates": [95, 587, 129, 606], "content": "When ", "score": 1.0, "index": 119}, {"type": "inline_equation", "coordinates": [130, 591, 159, 600], "content": "k=1", "score": 0.59, "index": 120}, {"type": "text", "coordinates": [159, 587, 165, 606], "content": ", ", "score": 1.0, "index": 121}, {"type": "inline_equation", "coordinates": [165, 589, 186, 603], "content": "\\pi[1]", "score": 0.41, "index": 122}, {"type": "text", "coordinates": [187, 587, 290, 606], "content": " is trivial. We have ", "score": 1.0, "index": 123}, {"type": "inline_equation", "coordinates": [290, 588, 449, 604], "content": "\\mathcal{F}(B_{r,2})\\cong\\mathbb{Z}_{2}\\times(\\mathbb{Z}_{2r+1}^{\\times}/\\{\\pm1\\}).", "score": 0.92, "index": 124}, {"type": "text", "coordinates": [68, 613, 160, 638], "content": "3.3. The algebra ", "score": 1.0, "index": 125}, {"type": "inline_equation", "coordinates": [161, 618, 183, 633], "content": "C_{r}^{(1)}", "score": 0.75, "index": 126}, {"type": "text", "coordinates": [183, 613, 190, 638], "content": ", ", "score": 1.0, "index": 127}, {"type": "inline_equation", "coordinates": [190, 623, 218, 633], "content": "r\\geq2", "score": 0.66, "index": 128}, {"type": "text", "coordinates": [96, 642, 144, 656], "content": "A weight ", "score": 1.0, "index": 129}, {"type": "inline_equation", "coordinates": [144, 643, 152, 653], "content": "\\lambda", "score": 0.82, "index": 130}, {"type": "text", "coordinates": [153, 642, 167, 656], "content": " of ", "score": 1.0, "index": 131}, {"type": "inline_equation", "coordinates": [167, 644, 183, 655], "content": "P_{+}", "score": 0.9, "index": 132}, {"type": "text", "coordinates": [183, 642, 230, 656], "content": " satisfies ", "score": 1.0, "index": 133}, {"type": "inline_equation", "coordinates": [230, 642, 339, 654], "content": "k=\\lambda_{0}+\\lambda_{1}+\\cdot\\cdot\\cdot+\\lambda_{r}", "score": 0.92, "index": 134}, {"type": "text", "coordinates": [339, 642, 364, 656], "content": " and ", "score": 1.0, "index": 135}, {"type": "inline_equation", "coordinates": [364, 642, 429, 653], "content": "\\kappa=k+r+1", "score": 0.9, "index": 136}, {"type": "text", "coordinates": [430, 642, 540, 656], "content": ". Charge-conjugation", "score": 1.0, "index": 137}, {"type": "inline_equation", "coordinates": [71, 658, 81, 667], "content": "C", "score": 0.83, "index": 138}, {"type": "text", "coordinates": [81, 656, 325, 671], "content": " again is trivial, and there is a simple-current ", "score": 1.0, "index": 139}, {"type": "inline_equation", "coordinates": [325, 658, 334, 667], "content": "J", "score": 0.88, "index": 140}, {"type": "text", "coordinates": [334, 656, 396, 671], "content": " defined by ", "score": 1.0, "index": 141}, {"type": "inline_equation", "coordinates": [396, 657, 536, 670], "content": "J\\lambda=\\left(\\lambda_{r},\\lambda_{r-1},\\ldots,\\lambda_{1},\\lambda_{0}\\right)", "score": 0.9, "index": 142}, {"type": "text", "coordinates": [536, 656, 540, 671], "content": ",", "score": 1.0, "index": 143}, {"type": "text", "coordinates": [70, 669, 98, 688], "content": "with ", "score": 1.0, "index": 144}, {"type": "inline_equation", "coordinates": [99, 671, 213, 686], "content": "\\begin{array}{r}{Q(\\lambda)=(\\sum_{j=1}^{r}j\\lambda_{j})/2}\\end{array}", "score": 0.92, "index": 145}, {"type": "text", "coordinates": [214, 669, 217, 688], "content": ".", "score": 1.0, "index": 146}, {"type": "text", "coordinates": [94, 683, 162, 702], "content": "Choose any ", "score": 1.0, "index": 147}, {"type": "inline_equation", "coordinates": [162, 686, 205, 698], "content": "\\lambda\\:\\in\\:P_{+}", "score": 0.88, "index": 148}, {"type": "text", "coordinates": [206, 683, 352, 702], "content": ". The Young diagram for ", "score": 1.0, "index": 149}, {"type": "inline_equation", "coordinates": [352, 686, 360, 695], "content": "\\lambda", "score": 0.83, "index": 150}, {"type": "text", "coordinates": [360, 683, 541, 702], "content": " is defined in the usual way: for", "score": 1.0, "index": 151}, {"type": "inline_equation", "coordinates": [71, 704, 123, 715], "content": "1\\leq\\ell\\leq r", "score": 0.89, "index": 152}, {"type": "text", "coordinates": [124, 699, 151, 719], "content": ", the ", "score": 1.0, "index": 153}, {"type": "inline_equation", "coordinates": [151, 704, 157, 713], "content": "\\ell", "score": 0.54, "index": 154}, {"type": "text", "coordinates": [157, 699, 254, 719], "content": "th row consists of ", "score": 1.0, "index": 155}, {"type": "inline_equation", "coordinates": [254, 700, 335, 717], "content": "\\begin{array}{r}{\\lambda(\\ell)\\overset{\\mathrm{def}}{=}\\sum_{i=\\ell}^{r}\\lambda_{i}}\\end{array}", "score": 0.93, "index": 156}, {"type": "text", "coordinates": [336, 699, 400, 719], "content": " boxes. Let ", "score": 1.0, "index": 157}, {"type": "inline_equation", "coordinates": [401, 704, 415, 713], "content": "\\tau\\lambda", "score": 0.9, "index": 158}, {"type": "text", "coordinates": [415, 699, 479, 719], "content": " denote the ", "score": 1.0, "index": 159}, {"type": "inline_equation", "coordinates": [479, 704, 501, 717], "content": "C_{k,r}", "score": 0.93, "index": 160}, {"type": "text", "coordinates": [501, 699, 541, 719], "content": " weight", "score": 1.0, "index": 161}] | [] | [{"type": "block", "coordinates": [195, 246, 415, 285], "content": "", "caption": ""}, {"type": "block", "coordinates": [249, 309, 362, 349], "content": "", "caption": ""}, {"type": "inline", "coordinates": [161, 72, 183, 86], "content": "B_{r}^{(1)}", "caption": ""}, {"type": "inline", "coordinates": [190, 77, 219, 87], "content": "r\\geq3", "caption": ""}, {"type": "inline", "coordinates": [145, 96, 154, 106], "content": "\\lambda", "caption": ""}, {"type": "inline", "coordinates": [171, 96, 187, 109], "content": "P_{+}", "caption": ""}, {"type": "inline", "coordinates": [234, 95, 429, 108], "content": "k=\\lambda_{0}+\\lambda_{1}+2\\lambda_{2}+\\cdot\\cdot\\cdot+2\\lambda_{r-1}+\\lambda_{r}", "caption": ""}, {"type": "inline", "coordinates": [459, 96, 537, 107], "content": "\\kappa=k+2r-1", "caption": ""}, {"type": "inline", "coordinates": [408, 109, 536, 123], "content": "J\\lambda=\\left(\\lambda_{1},\\lambda_{0},\\lambda_{2},.\\ldots,\\lambda_{r}\\right)", "caption": ""}, {"type": "inline", "coordinates": [105, 123, 172, 138], "content": "Q(\\lambda)=\\lambda_{r}/2", "caption": ""}, {"type": "inline", "coordinates": [106, 209, 175, 221], "content": "1\\leq i<r-1", "caption": ""}, {"type": "inline", "coordinates": [181, 208, 210, 221], "content": "k>2", "caption": ""}, {"type": "inline", "coordinates": [240, 208, 290, 221], "content": "0<\\ell<k", "caption": ""}, {"type": "inline", "coordinates": [379, 208, 473, 222], "content": "\\mathrm{\\Delta}^{\\prime}\\Lambda_{r-1}+(\\ell-2)\\Lambda_{r}{}^{\\prime}", "caption": ""}, {"type": "inline", "coordinates": [487, 209, 514, 219], "content": "\\ell=1", "caption": ""}, {"type": "inline", "coordinates": [106, 298, 203, 311], "content": "\\lambda^{+}(\\ell)=(\\lambda+\\rho)(\\ell)", "caption": ""}, {"type": "inline", "coordinates": [117, 358, 150, 367], "content": "k\\,=\\,2", "caption": ""}, {"type": "inline", "coordinates": [158, 357, 219, 368], "content": "\\kappa\\,=\\,2r+1", "caption": ""}, {"type": "inline", "coordinates": [441, 371, 521, 384], "content": "\\gamma^{i}=\\gamma^{\\kappa-i}=\\Lambda_{i}", "caption": ""}, {"type": "inline", "coordinates": [71, 387, 166, 398], "content": "i\\,=\\,1,2,\\dots,r\\,-\\,1", "caption": ""}, {"type": "inline", "coordinates": [198, 385, 293, 398], "content": "\\gamma^{r}\\,=\\,\\gamma^{r+1}\\,=\\,2\\Lambda_{r}", "caption": ""}, {"type": "inline", "coordinates": [379, 390, 389, 396], "content": "{\\boldsymbol{\\mathit{\\varepsilon}}}^{\\prime}{\\boldsymbol{\\mathit{m}}}", "caption": ""}, {"type": "inline", "coordinates": [456, 390, 463, 396], "content": "\\kappa", "caption": ""}, {"type": "inline", "coordinates": [471, 386, 501, 398], "content": "\\pi\\{m\\}", "caption": ""}, {"type": "inline", "coordinates": [533, 387, 540, 396], "content": "0", "caption": ""}, {"type": "inline", "coordinates": [95, 401, 103, 410], "content": "J", "caption": ""}, {"type": "inline", "coordinates": [142, 401, 155, 412], "content": "\\gamma^{a}", "caption": ""}, {"type": "inline", "coordinates": [174, 401, 195, 412], "content": "\\gamma^{m a}", "caption": ""}, {"type": "inline", "coordinates": [393, 404, 401, 410], "content": "\\kappa", "caption": ""}, {"type": "inline", "coordinates": [487, 400, 540, 413], "content": "\\{\\Lambda_{r},J\\Lambda_{r}\\}", "caption": ""}, {"type": "inline", "coordinates": [72, 415, 149, 427], "content": "(\\pi\\{m\\}\\Lambda_{r}=\\Lambda_{r}", "caption": ""}, {"type": "inline", "coordinates": [266, 414, 286, 428], "content": "\\Bigl(\\frac{\\kappa}{m}\\Bigr)", "caption": ""}, {"type": "inline", "coordinates": [327, 416, 342, 425], "content": "+1", "caption": ""}, {"type": "inline", "coordinates": [134, 430, 162, 438], "content": "k=2", "caption": ""}, {"type": "inline", "coordinates": [492, 430, 513, 442], "content": "B_{r,2}", "caption": ""}, {"type": "inline", "coordinates": [71, 447, 115, 459], "content": "\\mathrm{u}(1)_{2r+1}", "caption": ""}, {"type": "inline", "coordinates": [281, 442, 304, 459], "content": "\\widehat{\\mathrm{u(1)}}", "caption": ""}, {"type": "inline", "coordinates": [416, 461, 438, 474], "content": "B_{r,2}", "caption": ""}, {"type": "inline", "coordinates": [483, 461, 491, 470], "content": "S", "caption": ""}, {"type": "inline", "coordinates": [427, 479, 434, 484], "content": "r", "caption": ""}, {"type": "inline", "coordinates": [183, 490, 191, 499], "content": "S", "caption": ""}, {"type": "inline", "coordinates": [364, 488, 389, 504], "content": "{\\mathfrak{D}}_{{\\sqrt{\\kappa}}}", "caption": ""}, {"type": "inline", "coordinates": [327, 536, 350, 552], "content": "B_{r}^{(1)}", "caption": ""}, {"type": "inline", "coordinates": [383, 539, 392, 551], "content": "k", "caption": ""}, {"type": "inline", "coordinates": [416, 539, 453, 553], "content": "k\\ \\neq\\ 2", "caption": ""}, {"type": "inline", "coordinates": [479, 539, 504, 553], "content": "\\pi[1]^{i}", "caption": ""}, {"type": "inline", "coordinates": [71, 555, 120, 568], "content": "i\\in\\{0,1\\}", "caption": ""}, {"type": "inline", "coordinates": [151, 556, 181, 565], "content": "k=2", "caption": ""}, {"type": "inline", "coordinates": [339, 553, 395, 568], "content": "\\pi[1]^{i}\\,\\pi\\{m\\}", "caption": ""}, {"type": "inline", "coordinates": [417, 554, 467, 568], "content": "i\\in\\{0,1\\}", "caption": ""}, {"type": "inline", "coordinates": [493, 554, 536, 568], "content": "m\\in\\mathbb{Z}_{\\kappa}^{\\times}", "caption": ""}, {"type": "inline", "coordinates": [71, 570, 126, 581], "content": "1\\leq m\\leq r", "caption": ""}, {"type": "inline", "coordinates": [130, 591, 159, 600], "content": "k=1", "caption": ""}, {"type": "inline", "coordinates": [165, 589, 186, 603], "content": "\\pi[1]", "caption": ""}, {"type": "inline", "coordinates": [290, 588, 449, 604], "content": "\\mathcal{F}(B_{r,2})\\cong\\mathbb{Z}_{2}\\times(\\mathbb{Z}_{2r+1}^{\\times}/\\{\\pm1\\}).", "caption": ""}, {"type": "inline", "coordinates": [161, 618, 183, 633], "content": "C_{r}^{(1)}", "caption": ""}, {"type": "inline", "coordinates": [190, 623, 218, 633], "content": "r\\geq2", "caption": ""}, {"type": "inline", "coordinates": [144, 643, 152, 653], "content": "\\lambda", "caption": ""}, {"type": "inline", "coordinates": [167, 644, 183, 655], "content": "P_{+}", "caption": ""}, {"type": "inline", "coordinates": [230, 642, 339, 654], "content": "k=\\lambda_{0}+\\lambda_{1}+\\cdot\\cdot\\cdot+\\lambda_{r}", "caption": ""}, {"type": "inline", "coordinates": [364, 642, 429, 653], "content": "\\kappa=k+r+1", "caption": ""}, {"type": "inline", "coordinates": [71, 658, 81, 667], "content": "C", "caption": ""}, {"type": "inline", "coordinates": [325, 658, 334, 667], "content": "J", "caption": ""}, {"type": "inline", "coordinates": [396, 657, 536, 670], "content": "J\\lambda=\\left(\\lambda_{r},\\lambda_{r-1},\\ldots,\\lambda_{1},\\lambda_{0}\\right)", "caption": ""}, {"type": "inline", "coordinates": [99, 671, 213, 686], "content": "\\begin{array}{r}{Q(\\lambda)=(\\sum_{j=1}^{r}j\\lambda_{j})/2}\\end{array}", "caption": ""}, {"type": "inline", "coordinates": [162, 686, 205, 698], "content": "\\lambda\\:\\in\\:P_{+}", "caption": ""}, {"type": "inline", "coordinates": [352, 686, 360, 695], "content": "\\lambda", "caption": ""}, {"type": "inline", "coordinates": [71, 704, 123, 715], "content": "1\\leq\\ell\\leq r", "caption": ""}, {"type": "inline", "coordinates": [151, 704, 157, 713], "content": "\\ell", "caption": ""}, {"type": "inline", "coordinates": [254, 700, 335, 717], "content": "\\begin{array}{r}{\\lambda(\\ell)\\overset{\\mathrm{def}}{=}\\sum_{i=\\ell}^{r}\\lambda_{i}}\\end{array}", "caption": ""}, {"type": "inline", "coordinates": [401, 704, 415, 713], "content": "\\tau\\lambda", "caption": ""}, {"type": "inline", "coordinates": [479, 704, 501, 717], "content": "C_{k,r}", "caption": ""}] | [] | [612.0, 792.0] | [{"type": "text", "text": "3.2. The algebra $B_{r}^{(1)}$ , $r\\geq3$ ", "page_idx": 9}, {"type": "text", "text": "A weight $\\lambda$ in $P_{+}$ satisfies $k=\\lambda_{0}+\\lambda_{1}+2\\lambda_{2}+\\cdot\\cdot\\cdot+2\\lambda_{r-1}+\\lambda_{r}$ , and $\\kappa=k+2r-1$ . The charge-conjugation is trivial, but there is a simple-current: $J\\lambda=\\left(\\lambda_{1},\\lambda_{0},\\lambda_{2},.\\ldots,\\lambda_{r}\\right)$ . It has $Q(\\lambda)=\\lambda_{r}/2$ . ", "page_idx": 9}, {"type": "text", "text": "The only fusion products we need are ", "page_idx": 9}, {"type": "text", "text": "for all $1\\leq i<r-1$ , $k>2$ , and $0<\\ell<k$ , where we drop $\\mathrm{\\Delta}^{\\prime}\\Lambda_{r-1}+(\\ell-2)\\Lambda_{r}{}^{\\prime}$ if $\\ell=1$ . We will also use the character formula (2.1b) ", "page_idx": 9}, {"type": "equation", "text": "$$\n\\chi_{\\Lambda_{1}}[\\lambda]={\\frac{S_{\\Lambda_{1}\\lambda}}{S_{0\\lambda}}}=2\\sum_{\\ell=1}^{r}\\cos(2\\pi{\\frac{\\lambda^{+}(\\ell)}{\\kappa}})+1~,\n$$", "text_format": "latex", "page_idx": 9}, {"type": "text", "text": "where $\\lambda^{+}(\\ell)=(\\lambda+\\rho)(\\ell)$ and ", "page_idx": 9}, {"type": "equation", "text": "$$\n\\lambda(\\ell)=\\sum_{i=\\ell}^{r-1}\\lambda_{i}+\\frac{1}{2}\\lambda_{r}\\ .\n$$", "text_format": "latex", "page_idx": 9}, {"type": "text", "text": "For $k\\,=\\,2$ ( $\\kappa\\,=\\,2r+1$ ) there are several Galois fusion-symmetries \u2014 one for each Galois automorphism, since S020 = 41\u03ba is rational. In particular, define $\\gamma^{i}=\\gamma^{\\kappa-i}=\\Lambda_{i}$ for $i\\,=\\,1,2,\\dots,r\\,-\\,1$ , and $\\gamma^{r}\\,=\\,\\gamma^{r+1}\\,=\\,2\\Lambda_{r}$ . Then for any ${\\boldsymbol{\\mathit{\\varepsilon}}}^{\\prime}{\\boldsymbol{\\mathit{m}}}$ coprime to $\\kappa$ , $\\pi\\{m\\}$ fixes $0$ and $J$ , sends $\\gamma^{a}$ to $\\gamma^{m a}$ (where the superscript is taken mod $\\kappa$ ), and stabilises $\\{\\Lambda_{r},J\\Lambda_{r}\\}$ $(\\pi\\{m\\}\\Lambda_{r}=\\Lambda_{r}$ iff the Jacobi symbol $\\Bigl(\\frac{\\kappa}{m}\\Bigr)$ equals $+1$ ). ", "page_idx": 9}, {"type": "text", "text": "Why is $k=2$ so special here? One reason is that rank-level duality associates $B_{r,2}$ with $\\mathrm{u}(1)_{2r+1}$ , and it is easy to confirm that $\\widehat{\\mathrm{u(1)}}$ has a rich variety of fusion-symmetries (and modular invariants) coming from its si mple-currents. Also, the $B_{r,2}$ matrix $S$ formally looks like the character table of the dihedral group and for some $r$ actually equals the Kac-Peterson matrix $S$ associated to the dihedral group ${\\mathfrak{D}}_{{\\sqrt{\\kappa}}}$ twisted by an appropriate 3- cocycle [5] \u2014 finite group modular data tends to have significantly more modular invariants and fusion-symmetries than e.g. affine modular data. ", "page_idx": 9}, {"type": "text", "text": "Theorem 3.B. The fusion-symmetries of $B_{r}^{(1)}$ level $k$ for $k\\ \\neq\\ 2$ are $\\pi[1]^{i}$ where $i\\in\\{0,1\\}$ . For $k=2$ a fusion-symmetry will equal $\\pi[1]^{i}\\,\\pi\\{m\\}$ for $i\\in\\{0,1\\}$ and $m\\in\\mathbb{Z}_{\\kappa}^{\\times}$ , $1\\leq m\\leq r$ . ", "page_idx": 9}, {"type": "text", "text": "When $k=1$ , $\\pi[1]$ is trivial. We have $\\mathcal{F}(B_{r,2})\\cong\\mathbb{Z}_{2}\\times(\\mathbb{Z}_{2r+1}^{\\times}/\\{\\pm1\\}).$ ", "page_idx": 9}, {"type": "text", "text": "3.3. The algebra $C_{r}^{(1)}$ , $r\\geq2$ ", "page_idx": 9}, {"type": "text", "text": "A weight $\\lambda$ of $P_{+}$ satisfies $k=\\lambda_{0}+\\lambda_{1}+\\cdot\\cdot\\cdot+\\lambda_{r}$ and $\\kappa=k+r+1$ . Charge-conjugation $C$ again is trivial, and there is a simple-current $J$ defined by $J\\lambda=\\left(\\lambda_{r},\\lambda_{r-1},\\ldots,\\lambda_{1},\\lambda_{0}\\right)$ , with $\\begin{array}{r}{Q(\\lambda)=(\\sum_{j=1}^{r}j\\lambda_{j})/2}\\end{array}$ . ", "page_idx": 9}, {"type": "text", "text": "Choose any $\\lambda\\:\\in\\:P_{+}$ . The Young diagram for $\\lambda$ is defined in the usual way: for $1\\leq\\ell\\leq r$ , the $\\ell$ th row consists of $\\begin{array}{r}{\\lambda(\\ell)\\overset{\\mathrm{def}}{=}\\sum_{i=\\ell}^{r}\\lambda_{i}}\\end{array}$ boxes. Let $\\tau\\lambda$ denote the $C_{k,r}$ weight whose diagram is the transpose of that for $\\lambda$ . (For this purpose the algebra $C_{1}$ may be identified with $A_{1}$ .) For example, $\\tau\\Lambda_{a}=a\\tilde{\\Lambda}_{1}$ , where we use tilde\u2019s to denote the quantities of $C_{k,r}$ . In fact, $\\tau:P_{+}(C_{r,k})\\rightarrow P_{+}(C_{k,r})$ is a bijection. Then ", "page_idx": 9}] | [{"category_id": 1, "poly": [196, 1185, 1505, 1185, 1505, 1474, 196, 1474], "score": 0.985}, {"category_id": 1, "poly": [196, 983, 1505, 983, 1505, 1185, 196, 1185], "score": 0.983}, {"category_id": 1, "poly": [195, 1488, 1506, 1488, 1506, 1616, 195, 1616], "score": 0.966}, {"category_id": 1, "poly": [194, 572, 1505, 572, 1505, 655, 194, 655], "score": 0.965}, {"category_id": 1, "poly": [198, 1777, 1504, 1777, 1504, 1899, 198, 1899], "score": 0.961}, {"category_id": 1, "poly": [195, 257, 1506, 257, 1506, 378, 195, 378], "score": 0.953}, {"category_id": 1, "poly": [196, 1899, 1501, 1899, 1501, 1991, 196, 1991], "score": 0.951}, {"category_id": 8, "poly": [541, 685, 1158, 685, 1158, 790, 541, 790], "score": 0.95}, {"category_id": 8, "poly": [691, 861, 1004, 861, 1004, 967, 691, 967], "score": 0.944}, {"category_id": 1, "poly": [195, 820, 632, 820, 632, 863, 195, 863], "score": 0.943}, {"category_id": 8, "poly": [439, 444, 1263, 444, 1263, 546, 439, 546], "score": 0.9}, {"category_id": 1, "poly": [263, 381, 819, 381, 819, 420, 263, 420], "score": 0.89}, {"category_id": 9, "poly": [1428, 714, 1501, 714, 1501, 754, 1428, 754], "score": 0.882}, {"category_id": 2, "poly": [833, 2030, 870, 2030, 870, 2062, 833, 2062], "score": 0.88}, {"category_id": 1, "poly": [197, 192, 614, 192, 614, 241, 197, 241], "score": 0.863}, {"category_id": 1, "poly": [261, 1629, 1255, 1629, 1255, 1678, 261, 1678], "score": 0.751}, {"category_id": 1, "poly": [198, 1712, 613, 1712, 613, 1761, 198, 1761], "score": 0.751}, {"category_id": 8, "poly": [261, 1629, 1255, 1629, 1255, 1678, 261, 1678], "score": 0.319}, {"category_id": 13, "poly": [1367, 1195, 1427, 1195, 1427, 1229, 1367, 1229], "score": 0.95, "latex": "B_{r,2}"}, {"category_id": 13, "poly": [295, 829, 564, 829, 564, 866, 295, 866], "score": 0.94, "latex": "\\lambda^{+}(\\ell)=(\\lambda+\\rho)(\\ell)"}, {"category_id": 13, "poly": [1226, 1032, 1448, 1032, 1448, 1068, 1226, 1068], "score": 0.94, "latex": "\\gamma^{i}=\\gamma^{\\kappa-i}=\\Lambda_{i}"}, {"category_id": 14, "poly": [542, 685, 1154, 685, 1154, 794, 542, 794], "score": 0.94, "latex": "\\chi_{\\Lambda_{1}}[\\lambda]={\\frac{S_{\\Lambda_{1}\\lambda}}{S_{0\\lambda}}}=2\\sum_{\\ell=1}^{r}\\cos(2\\pi{\\frac{\\lambda^{+}(\\ell)}{\\kappa}})+1~,"}, {"category_id": 14, "poly": [694, 861, 1006, 861, 1006, 972, 694, 972], "score": 0.94, "latex": "\\lambda(\\ell)=\\sum_{i=\\ell}^{r-1}\\lambda_{i}+\\frac{1}{2}\\lambda_{r}\\ ."}, {"category_id": 13, "poly": [1354, 1113, 1500, 1113, 1500, 1148, 1354, 1148], "score": 0.93, "latex": "\\{\\Lambda_{r},J\\Lambda_{r}\\}"}, {"category_id": 13, "poly": [199, 1544, 335, 1544, 335, 1579, 199, 1579], "score": 0.93, "latex": "i\\in\\{0,1\\}"}, {"category_id": 13, "poly": [708, 1945, 933, 1945, 933, 1992, 708, 1992], "score": 0.93, "latex": "\\begin{array}{r}{\\lambda(\\ell)\\overset{\\mathrm{def}}{=}\\sum_{i=\\ell}^{r}\\lambda_{i}}\\end{array}"}, {"category_id": 13, "poly": [942, 1537, 1099, 1537, 1099, 1579, 942, 1579], "score": 0.93, "latex": "\\pi[1]^{i}\\,\\pi\\{m\\}"}, {"category_id": 13, "poly": [1332, 1958, 1393, 1958, 1393, 1992, 1332, 1992], "score": 0.93, "latex": "C_{k,r}"}, {"category_id": 13, "poly": [199, 1242, 322, 1242, 322, 1276, 199, 1276], "score": 0.93, "latex": "\\mathrm{u}(1)_{2r+1}"}, {"category_id": 13, "poly": [1309, 1074, 1392, 1074, 1392, 1108, 1309, 1108], "score": 0.93, "latex": "\\pi\\{m\\}"}, {"category_id": 13, "poly": [294, 344, 479, 344, 479, 384, 294, 384], "score": 0.92, "latex": "Q(\\lambda)=\\lambda_{r}/2"}, {"category_id": 13, "poly": [275, 1865, 594, 1865, 594, 1907, 275, 1907], "score": 0.92, "latex": "\\begin{array}{r}{Q(\\lambda)=(\\sum_{j=1}^{r}j\\lambda_{j})/2}\\end{array}"}, {"category_id": 13, "poly": [1161, 1539, 1299, 1539, 1299, 1579, 1161, 1579], "score": 0.92, "latex": "i\\in\\{0,1\\}"}, {"category_id": 13, "poly": [1156, 1283, 1217, 1283, 1217, 1317, 1156, 1317], "score": 0.92, "latex": "B_{r,2}"}, {"category_id": 13, "poly": [551, 1072, 814, 1072, 814, 1107, 551, 1107], "score": 0.92, "latex": "\\gamma^{r}\\,=\\,\\gamma^{r+1}\\,=\\,2\\Lambda_{r}"}, {"category_id": 13, "poly": [613, 1031, 743, 1031, 743, 1071, 613, 1071], "score": 0.92, "latex": "\\begin{array}{r}{S_{00}^{2}=\\frac{1}{4\\kappa}}\\end{array}"}, {"category_id": 13, "poly": [640, 1785, 943, 1785, 943, 1819, 640, 1819], "score": 0.92, "latex": "k=\\lambda_{0}+\\lambda_{1}+\\cdot\\cdot\\cdot+\\lambda_{r}"}, {"category_id": 13, "poly": [807, 1635, 1249, 1635, 1249, 1680, 807, 1680], "score": 0.92, "latex": "\\mathcal{F}(B_{r,2})\\cong\\mathbb{Z}_{2}\\times(\\mathbb{Z}_{2r+1}^{\\times}/\\{\\pm1\\})."}, {"category_id": 13, "poly": [765, 453, 837, 453, 837, 494, 765, 494], "score": 0.92, "latex": "\\Lambda_{i+1}"}, {"category_id": 13, "poly": [1053, 578, 1314, 578, 1314, 619, 1053, 619], "score": 0.91, "latex": "\\mathrm{\\Delta}^{\\prime}\\Lambda_{r-1}+(\\ell-2)\\Lambda_{r}{}^{\\prime}"}, {"category_id": 13, "poly": [668, 580, 808, 580, 808, 614, 668, 614], "score": 0.91, "latex": "0<\\ell<k"}, {"category_id": 13, "poly": [396, 1116, 432, 1116, 432, 1146, 396, 1146], "score": 0.91, "latex": "\\gamma^{a}"}, {"category_id": 13, "poly": [1012, 1358, 1083, 1358, 1083, 1400, 1012, 1400], "score": 0.91, "latex": "{\\mathfrak{D}}_{{\\sqrt{\\kappa}}}"}, {"category_id": 13, "poly": [484, 1115, 544, 1115, 544, 1146, 484, 1146], "score": 0.91, "latex": "\\gamma^{m a}"}, {"category_id": 13, "poly": [1136, 304, 1490, 304, 1490, 344, 1136, 344], "score": 0.91, "latex": "J\\lambda=\\left(\\lambda_{1},\\lambda_{0},\\lambda_{2},.\\ldots,\\lambda_{r}\\right)"}, {"category_id": 13, "poly": [1332, 1498, 1402, 1498, 1402, 1538, 1332, 1538], "score": 0.91, "latex": "\\pi[1]^{i}"}, {"category_id": 13, "poly": [650, 265, 1194, 265, 1194, 302, 650, 302], "score": 0.91, "latex": "k=\\lambda_{0}+\\lambda_{1}+2\\lambda_{2}+\\cdot\\cdot\\cdot+2\\lambda_{r-1}+\\lambda_{r}"}, {"category_id": 13, "poly": [373, 1195, 452, 1195, 452, 1219, 373, 1219], "score": 0.91, "latex": "k=2"}, {"category_id": 13, "poly": [1372, 1539, 1489, 1539, 1489, 1578, 1372, 1578], "score": 0.91, "latex": "m\\in\\mathbb{Z}_{\\kappa}^{\\times}"}, {"category_id": 13, "poly": [466, 1789, 510, 1789, 510, 1821, 466, 1821], "score": 0.9, "latex": "P_{+}"}, {"category_id": 13, "poly": [909, 1490, 974, 1490, 974, 1535, 909, 1535], "score": 0.9, "latex": "B_{r}^{(1)}"}, {"category_id": 13, "poly": [1013, 1784, 1194, 1784, 1194, 1816, 1013, 1816], "score": 0.9, "latex": "\\kappa=k+r+1"}, {"category_id": 13, "poly": [783, 1230, 846, 1230, 846, 1277, 783, 1277], "score": 0.9, "latex": "\\widehat{\\mathrm{u(1)}}"}, {"category_id": 13, "poly": [1114, 1958, 1154, 1958, 1154, 1983, 1114, 1983], "score": 0.9, "latex": "\\tau\\lambda"}, {"category_id": 13, "poly": [1158, 1499, 1260, 1499, 1260, 1537, 1158, 1537], "score": 0.9, "latex": "k\\ \\neq\\ 2"}, {"category_id": 13, "poly": [475, 267, 520, 267, 520, 303, 475, 303], "score": 0.9, "latex": "P_{+}"}, {"category_id": 13, "poly": [1101, 1826, 1490, 1826, 1490, 1862, 1101, 1862], "score": 0.9, "latex": "J\\lambda=\\left(\\lambda_{r},\\lambda_{r-1},\\ldots,\\lambda_{1},\\lambda_{0}\\right)"}, {"category_id": 13, "poly": [199, 1075, 462, 1075, 462, 1107, 199, 1107], "score": 0.9, "latex": "i\\,=\\,1,2,\\dots,r\\,-\\,1"}, {"category_id": 13, "poly": [1277, 269, 1492, 269, 1492, 299, 1277, 299], "score": 0.9, "latex": "\\kappa=k+2r-1"}, {"category_id": 13, "poly": [776, 503, 933, 503, 933, 545, 776, 545], "score": 0.89, "latex": "(\\Lambda_{1}+\\ell\\Lambda_{r})"}, {"category_id": 13, "poly": [199, 1956, 344, 1956, 344, 1987, 199, 1987], "score": 0.89, "latex": "1\\leq\\ell\\leq r"}, {"category_id": 13, "poly": [884, 452, 1025, 452, 1025, 495, 884, 495], "score": 0.89, "latex": "\\left({\\Lambda_{1}+\\Lambda_{i}}\\right)"}, {"category_id": 13, "poly": [509, 1363, 532, 1363, 532, 1388, 509, 1388], "score": 0.89, "latex": "S"}, {"category_id": 13, "poly": [1343, 1283, 1366, 1283, 1366, 1308, 1343, 1308], "score": 0.89, "latex": "S"}, {"category_id": 13, "poly": [202, 1153, 414, 1153, 414, 1188, 202, 1188], "score": 0.89, "latex": "(\\pi\\{m\\}\\Lambda_{r}=\\Lambda_{r}"}, {"category_id": 13, "poly": [327, 996, 417, 996, 417, 1021, 327, 1021], "score": 0.89, "latex": "k\\,=\\,2"}, {"category_id": 13, "poly": [265, 1115, 287, 1115, 287, 1140, 265, 1140], "score": 0.89, "latex": "J"}, {"category_id": 13, "poly": [571, 452, 719, 452, 719, 494, 571, 494], "score": 0.88, "latex": "\\Lambda_{i}=\\Lambda_{i-1}"}, {"category_id": 13, "poly": [199, 1586, 351, 1586, 351, 1615, 199, 1615], "score": 0.88, "latex": "1\\leq m\\leq r"}, {"category_id": 13, "poly": [452, 1907, 572, 1907, 572, 1941, 452, 1941], "score": 0.88, "latex": "\\lambda\\:\\in\\:P_{+}"}, {"category_id": 13, "poly": [422, 1546, 503, 1546, 503, 1571, 422, 1571], "score": 0.88, "latex": "k=2"}, {"category_id": 13, "poly": [530, 503, 727, 503, 727, 545, 530, 545], "score": 0.88, "latex": "(\\ell\\Lambda_{r})=(\\ell\\Lambda_{r})"}, {"category_id": 13, "poly": [740, 1152, 797, 1152, 797, 1191, 740, 1191], "score": 0.88, "latex": "\\Bigl(\\frac{\\kappa}{m}\\Bigr)"}, {"category_id": 13, "poly": [905, 1829, 928, 1829, 928, 1854, 905, 1854], "score": 0.88, "latex": "J"}, {"category_id": 13, "poly": [983, 503, 1256, 503, 1256, 545, 983, 545], "score": 0.87, "latex": "(\\Lambda_{r-1}+(\\ell-2)\\Lambda_{r})"}, {"category_id": 13, "poly": [1354, 583, 1430, 583, 1430, 611, 1354, 611], "score": 0.87, "latex": "\\ell=1"}, {"category_id": 13, "poly": [1053, 1085, 1083, 1085, 1083, 1101, 1053, 1101], "score": 0.85, "latex": "{\\boldsymbol{\\mathit{\\varepsilon}}}^{\\prime}{\\boldsymbol{\\mathit{m}}}"}, {"category_id": 13, "poly": [1094, 1124, 1115, 1124, 1115, 1140, 1094, 1140], "score": 0.84, "latex": "\\kappa"}, {"category_id": 13, "poly": [199, 1829, 226, 1829, 226, 1854, 199, 1854], "score": 0.83, "latex": "C"}, {"category_id": 13, "poly": [980, 1908, 1001, 1908, 1001, 1933, 980, 1933], "score": 0.83, "latex": "\\lambda"}, {"category_id": 13, "poly": [295, 581, 487, 581, 487, 616, 295, 616], "score": 0.83, "latex": "1\\leq i<r-1"}, {"category_id": 13, "poly": [402, 1787, 424, 1787, 424, 1814, 402, 1814], "score": 0.82, "latex": "\\lambda"}, {"category_id": 13, "poly": [405, 267, 428, 267, 428, 296, 405, 296], "score": 0.8, "latex": "\\lambda"}, {"category_id": 13, "poly": [1188, 1331, 1206, 1331, 1206, 1347, 1188, 1347], "score": 0.8, "latex": "r"}, {"category_id": 13, "poly": [448, 1717, 510, 1717, 510, 1760, 448, 1760], "score": 0.75, "latex": "C_{r}^{(1)}"}, {"category_id": 13, "poly": [530, 214, 609, 214, 609, 242, 530, 242], "score": 0.74, "latex": "r\\geq3"}, {"category_id": 13, "poly": [448, 200, 511, 200, 511, 241, 448, 241], "score": 0.73, "latex": "B_{r}^{(1)}"}, {"category_id": 13, "poly": [1066, 1499, 1089, 1499, 1089, 1532, 1066, 1532], "score": 0.71, "latex": "k"}, {"category_id": 13, "poly": [483, 454, 526, 454, 526, 492, 483, 492], "score": 0.7, "latex": "\\Lambda_{1}"}, {"category_id": 13, "poly": [440, 994, 611, 994, 611, 1024, 440, 1024], "score": 0.69, "latex": "\\kappa\\,=\\,2r+1"}, {"category_id": 13, "poly": [1267, 1085, 1287, 1085, 1287, 1100, 1267, 1100], "score": 0.69, "latex": "\\kappa"}, {"category_id": 13, "poly": [503, 580, 586, 580, 586, 614, 503, 614], "score": 0.68, "latex": "k>2"}, {"category_id": 13, "poly": [530, 1731, 608, 1731, 608, 1760, 530, 1760], "score": 0.66, "latex": "r\\geq2"}, {"category_id": 13, "poly": [362, 1644, 443, 1644, 443, 1668, 362, 1668], "score": 0.59, "latex": "k=1"}, {"category_id": 13, "poly": [440, 504, 482, 504, 482, 542, 440, 542], "score": 0.55, "latex": "\\Lambda_{1}"}, {"category_id": 13, "poly": [421, 1957, 437, 1957, 437, 1982, 421, 1982], "score": 0.54, "latex": "\\ell"}, {"category_id": 13, "poly": [909, 1156, 952, 1156, 952, 1183, 909, 1183], "score": 0.54, "latex": "+1"}, {"category_id": 13, "poly": [461, 1638, 519, 1638, 519, 1677, 461, 1677], "score": 0.41, "latex": "\\pi[1]"}, {"category_id": 13, "poly": [1483, 1077, 1500, 1077, 1500, 1101, 1483, 1101], "score": 0.39, "latex": "0"}, {"category_id": 13, "poly": [461, 1653, 482, 1653, 482, 1671, 461, 1671], "score": 0.35, "latex": "\\pi"}, {"category_id": 15, "poly": [262.0, 1187.0, 372.0, 1187.0, 372.0, 1232.0, 262.0, 1232.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [453.0, 1187.0, 1366.0, 1187.0, 1366.0, 1232.0, 453.0, 1232.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1428.0, 1187.0, 1504.0, 1187.0, 1504.0, 1232.0, 1428.0, 1232.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [323.0, 1238.0, 782.0, 1238.0, 782.0, 1279.0, 323.0, 1279.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [847.0, 1238.0, 1504.0, 1238.0, 1504.0, 1279.0, 847.0, 1279.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [200.0, 1279.0, 1155.0, 1279.0, 1155.0, 1317.0, 200.0, 1317.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1218.0, 1279.0, 1342.0, 1279.0, 1342.0, 1317.0, 1218.0, 1317.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1367.0, 1279.0, 1501.0, 1279.0, 1501.0, 1317.0, 1367.0, 1317.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [196.0, 1316.0, 1187.0, 1316.0, 1187.0, 1357.0, 196.0, 1357.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1207.0, 1316.0, 1504.0, 1316.0, 1504.0, 1357.0, 1207.0, 1357.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [194.0, 1355.0, 508.0, 1355.0, 508.0, 1401.0, 194.0, 1401.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [533.0, 1355.0, 1011.0, 1355.0, 1011.0, 1401.0, 533.0, 1401.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1084.0, 1355.0, 1504.0, 1355.0, 1504.0, 1401.0, 1084.0, 1401.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [194.0, 1398.0, 1505.0, 1398.0, 1505.0, 1439.0, 194.0, 1439.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [196.0, 1437.0, 971.0, 1437.0, 971.0, 1478.0, 196.0, 1478.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [261.0, 986.0, 326.0, 986.0, 326.0, 1032.0, 261.0, 1032.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [418.0, 986.0, 439.0, 986.0, 439.0, 1032.0, 418.0, 1032.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [612.0, 986.0, 1505.0, 986.0, 1505.0, 1032.0, 612.0, 1032.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [744.0, 1027.0, 1225.0, 1027.0, 1225.0, 1075.0, 744.0, 1075.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1449.0, 1027.0, 1505.0, 1027.0, 1505.0, 1075.0, 1449.0, 1075.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [191.0, 1064.0, 198.0, 1064.0, 198.0, 1117.0, 191.0, 1117.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [463.0, 1064.0, 550.0, 1064.0, 550.0, 1117.0, 463.0, 1117.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [815.0, 1064.0, 1052.0, 1064.0, 1052.0, 1117.0, 815.0, 1117.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1084.0, 1064.0, 1266.0, 1064.0, 1266.0, 1117.0, 1084.0, 1117.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1288.0, 1064.0, 1308.0, 1064.0, 1308.0, 1117.0, 1288.0, 1117.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1393.0, 1064.0, 1482.0, 1064.0, 1482.0, 1117.0, 1393.0, 1117.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1501.0, 1064.0, 1510.0, 1064.0, 1510.0, 1117.0, 1501.0, 1117.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [199.0, 1111.0, 264.0, 1111.0, 264.0, 1150.0, 199.0, 1150.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [288.0, 1111.0, 395.0, 1111.0, 395.0, 1150.0, 288.0, 1150.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [433.0, 1111.0, 483.0, 1111.0, 483.0, 1150.0, 433.0, 1150.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [545.0, 1111.0, 1093.0, 1111.0, 1093.0, 1150.0, 545.0, 1150.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1116.0, 1111.0, 1353.0, 1111.0, 1353.0, 1150.0, 1116.0, 1150.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1501.0, 1111.0, 1502.0, 1111.0, 1502.0, 1150.0, 1501.0, 1150.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [199.0, 1147.0, 201.0, 1147.0, 201.0, 1194.0, 199.0, 1194.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [415.0, 1147.0, 739.0, 1147.0, 739.0, 1194.0, 415.0, 1194.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [798.0, 1147.0, 908.0, 1147.0, 908.0, 1194.0, 798.0, 1194.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [953.0, 1147.0, 977.0, 1147.0, 977.0, 1194.0, 953.0, 1194.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [194.0, 1024.5, 757.0, 1024.5, 757.0, 1079.5, 194.0, 1079.5], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [261.0, 1492.0, 908.0, 1492.0, 908.0, 1545.0, 261.0, 1545.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [975.0, 1492.0, 1065.0, 1492.0, 1065.0, 1545.0, 975.0, 1545.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1090.0, 1492.0, 1157.0, 1492.0, 1157.0, 1545.0, 1090.0, 1545.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1261.0, 1492.0, 1331.0, 1492.0, 1331.0, 1545.0, 1261.0, 1545.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1403.0, 1492.0, 1507.0, 1492.0, 1507.0, 1545.0, 1403.0, 1545.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [194.0, 1538.0, 198.0, 1538.0, 198.0, 1585.0, 194.0, 1585.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [336.0, 1538.0, 421.0, 1538.0, 421.0, 1585.0, 336.0, 1585.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [504.0, 1538.0, 941.0, 1538.0, 941.0, 1585.0, 504.0, 1585.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1100.0, 1538.0, 1160.0, 1538.0, 1160.0, 1585.0, 1100.0, 1585.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1300.0, 1538.0, 1371.0, 1538.0, 1371.0, 1585.0, 1300.0, 1585.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1490.0, 1538.0, 1499.0, 1538.0, 1499.0, 1585.0, 1490.0, 1585.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [196.0, 1579.0, 198.0, 1579.0, 198.0, 1625.0, 196.0, 1625.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [352.0, 1579.0, 366.0, 1579.0, 366.0, 1625.0, 352.0, 1625.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [197.0, 579.0, 294.0, 579.0, 294.0, 622.0, 197.0, 622.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [488.0, 579.0, 502.0, 579.0, 502.0, 622.0, 488.0, 622.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [587.0, 579.0, 667.0, 579.0, 667.0, 622.0, 587.0, 622.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [809.0, 579.0, 1052.0, 579.0, 1052.0, 622.0, 809.0, 622.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1315.0, 579.0, 1353.0, 579.0, 1353.0, 622.0, 1315.0, 622.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1431.0, 579.0, 1504.0, 579.0, 1504.0, 622.0, 1431.0, 622.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [198.0, 622.0, 800.0, 622.0, 800.0, 662.0, 198.0, 662.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [267.0, 1785.0, 401.0, 1785.0, 401.0, 1824.0, 267.0, 1824.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [425.0, 1785.0, 465.0, 1785.0, 465.0, 1824.0, 425.0, 1824.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [511.0, 1785.0, 639.0, 1785.0, 639.0, 1824.0, 511.0, 1824.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [944.0, 1785.0, 1012.0, 1785.0, 1012.0, 1824.0, 944.0, 1824.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1195.0, 1785.0, 1501.0, 1785.0, 1501.0, 1824.0, 1195.0, 1824.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [227.0, 1823.0, 904.0, 1823.0, 904.0, 1866.0, 227.0, 1866.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [929.0, 1823.0, 1100.0, 1823.0, 1100.0, 1866.0, 929.0, 1866.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1491.0, 1823.0, 1501.0, 1823.0, 1501.0, 1866.0, 1491.0, 1866.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [197.0, 1860.0, 274.0, 1860.0, 274.0, 1912.0, 197.0, 1912.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [595.0, 1860.0, 605.0, 1860.0, 605.0, 1912.0, 595.0, 1912.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [264.0, 265.0, 404.0, 265.0, 404.0, 308.0, 264.0, 308.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [429.0, 265.0, 474.0, 265.0, 474.0, 308.0, 429.0, 308.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [521.0, 265.0, 649.0, 265.0, 649.0, 308.0, 521.0, 308.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1195.0, 265.0, 1276.0, 265.0, 1276.0, 308.0, 1195.0, 308.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1493.0, 265.0, 1503.0, 265.0, 1503.0, 308.0, 1493.0, 308.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [197.0, 304.0, 1135.0, 304.0, 1135.0, 349.0, 197.0, 349.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1491.0, 304.0, 1503.0, 304.0, 1503.0, 349.0, 1491.0, 349.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [194.0, 342.0, 293.0, 342.0, 293.0, 389.0, 194.0, 389.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [480.0, 342.0, 491.0, 342.0, 491.0, 389.0, 480.0, 389.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [263.0, 1898.0, 451.0, 1898.0, 451.0, 1950.0, 263.0, 1950.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [573.0, 1898.0, 979.0, 1898.0, 979.0, 1950.0, 573.0, 1950.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1002.0, 1898.0, 1503.0, 1898.0, 1503.0, 1950.0, 1002.0, 1950.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [193.0, 1943.0, 198.0, 1943.0, 198.0, 1999.0, 193.0, 1999.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [345.0, 1943.0, 420.0, 1943.0, 420.0, 1999.0, 345.0, 1999.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [438.0, 1943.0, 707.0, 1943.0, 707.0, 1999.0, 438.0, 1999.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [934.0, 1943.0, 1113.0, 1943.0, 1113.0, 1999.0, 934.0, 1999.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1155.0, 1943.0, 1331.0, 1943.0, 1331.0, 1999.0, 1155.0, 1999.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1394.0, 1943.0, 1503.0, 1943.0, 1503.0, 1999.0, 1394.0, 1999.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [200.0, 826.0, 294.0, 826.0, 294.0, 868.0, 200.0, 868.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [565.0, 826.0, 631.0, 826.0, 631.0, 868.0, 565.0, 868.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [266.0, 386.0, 817.0, 386.0, 817.0, 423.0, 266.0, 423.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [829.0, 2033.0, 872.0, 2033.0, 872.0, 2071.0, 829.0, 2071.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [189.0, 188.0, 447.0, 188.0, 447.0, 256.0, 189.0, 256.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [512.0, 188.0, 529.0, 188.0, 529.0, 256.0, 512.0, 256.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [610.0, 188.0, 623.0, 188.0, 623.0, 256.0, 610.0, 256.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [265.0, 1631.0, 361.0, 1631.0, 361.0, 1684.0, 265.0, 1684.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [444.0, 1631.0, 460.0, 1631.0, 460.0, 1684.0, 444.0, 1684.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [520.0, 1631.0, 806.0, 1631.0, 806.0, 1684.0, 520.0, 1684.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1250.0, 1631.0, 1254.0, 1631.0, 1254.0, 1684.0, 1250.0, 1684.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [189.0, 1705.0, 447.0, 1705.0, 447.0, 1773.0, 189.0, 1773.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [511.0, 1705.0, 529.0, 1705.0, 529.0, 1773.0, 511.0, 1773.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [609.0, 1705.0, 622.0, 1705.0, 622.0, 1773.0, 609.0, 1773.0], "score": 1.0, "text": ""}] | {"preproc_blocks": [{"type": "text", "bbox": [70, 69, 221, 86], "lines": [{"bbox": [68, 67, 219, 92], "spans": [{"bbox": [68, 67, 160, 92], "score": 1.0, "content": "3.2. The algebra ", "type": "text"}, {"bbox": [161, 72, 183, 86], "score": 0.73, "content": "B_{r}^{(1)}", "type": "inline_equation", "height": 14, "width": 22}, {"bbox": [184, 67, 190, 92], "score": 1.0, "content": ", ", "type": "text"}, {"bbox": [190, 77, 219, 87], "score": 0.74, "content": "r\\geq3", "type": "inline_equation", "height": 10, "width": 29}], "index": 0}], "index": 0}, {"type": "text", "bbox": [70, 92, 542, 136], "lines": [{"bbox": [95, 95, 541, 110], "spans": [{"bbox": [95, 95, 145, 110], "score": 1.0, "content": "A weight ", "type": "text"}, {"bbox": [145, 96, 154, 106], "score": 0.8, "content": "\\lambda", "type": "inline_equation", "height": 10, "width": 9}, {"bbox": [154, 95, 170, 110], "score": 1.0, "content": " in ", "type": "text"}, {"bbox": [171, 96, 187, 109], "score": 0.9, "content": "P_{+}", "type": "inline_equation", "height": 13, "width": 16}, {"bbox": [187, 95, 233, 110], "score": 1.0, "content": " satisfies", "type": "text"}, {"bbox": [234, 95, 429, 108], "score": 0.91, "content": "k=\\lambda_{0}+\\lambda_{1}+2\\lambda_{2}+\\cdot\\cdot\\cdot+2\\lambda_{r-1}+\\lambda_{r}", "type": "inline_equation", "height": 13, "width": 195}, {"bbox": [430, 95, 459, 110], "score": 1.0, "content": ", and ", "type": "text"}, {"bbox": [459, 96, 537, 107], "score": 0.9, "content": "\\kappa=k+2r-1", "type": "inline_equation", "height": 11, "width": 78}, {"bbox": [537, 95, 541, 110], "score": 1.0, "content": ".", "type": "text"}], "index": 1}, {"bbox": [70, 109, 541, 125], "spans": [{"bbox": [70, 109, 408, 125], "score": 1.0, "content": "The charge-conjugation is trivial, but there is a simple-current: ", "type": "text"}, {"bbox": [408, 109, 536, 123], "score": 0.91, "content": "J\\lambda=\\left(\\lambda_{1},\\lambda_{0},\\lambda_{2},.\\ldots,\\lambda_{r}\\right)", "type": "inline_equation", "height": 14, "width": 128}, {"bbox": [536, 109, 541, 125], "score": 1.0, "content": ".", "type": "text"}], "index": 2}, {"bbox": [69, 123, 176, 140], "spans": [{"bbox": [69, 123, 105, 140], "score": 1.0, "content": "It has ", "type": "text"}, {"bbox": [105, 123, 172, 138], "score": 0.92, "content": "Q(\\lambda)=\\lambda_{r}/2", "type": "inline_equation", "height": 15, "width": 67}, {"bbox": [172, 123, 176, 140], "score": 1.0, "content": ".", "type": "text"}], "index": 3}], "index": 2}, {"type": "text", "bbox": [94, 137, 294, 151], "lines": [{"bbox": [95, 138, 294, 152], "spans": [{"bbox": [95, 138, 294, 152], "score": 1.0, "content": "The only fusion products we need are", "type": "text"}], "index": 4}], "index": 4}, {"type": "text", "bbox": [69, 205, 541, 235], "lines": [{"bbox": [70, 208, 541, 223], "spans": [{"bbox": [70, 208, 105, 223], "score": 1.0, "content": "for all ", "type": "text"}, {"bbox": [106, 209, 175, 221], "score": 0.83, "content": "1\\leq i<r-1", "type": "inline_equation", "height": 12, "width": 69}, {"bbox": [175, 208, 180, 223], "score": 1.0, "content": ",", "type": "text"}, {"bbox": [181, 208, 210, 221], "score": 0.68, "content": "k>2", "type": "inline_equation", "height": 13, "width": 29}, {"bbox": [211, 208, 240, 223], "score": 1.0, "content": ", and ", "type": "text"}, {"bbox": [240, 208, 290, 221], "score": 0.91, "content": "0<\\ell<k", "type": "inline_equation", "height": 13, "width": 50}, {"bbox": [291, 208, 378, 223], "score": 1.0, "content": ", where we drop ", "type": "text"}, {"bbox": [379, 208, 473, 222], "score": 0.91, "content": "\\mathrm{\\Delta}^{\\prime}\\Lambda_{r-1}+(\\ell-2)\\Lambda_{r}{}^{\\prime}", "type": "inline_equation", "height": 14, "width": 94}, {"bbox": [473, 208, 487, 223], "score": 1.0, "content": " if ", "type": "text"}, {"bbox": [487, 209, 514, 219], "score": 0.87, "content": "\\ell=1", "type": "inline_equation", "height": 10, "width": 27}, {"bbox": [515, 208, 541, 223], "score": 1.0, "content": ". We", "type": "text"}], "index": 5}, {"bbox": [71, 223, 288, 238], "spans": [{"bbox": [71, 223, 288, 238], "score": 1.0, "content": "will also use the character formula (2.1b)", "type": "text"}], "index": 6}], "index": 5.5}, {"type": "interline_equation", "bbox": [195, 246, 415, 285], "lines": [{"bbox": [195, 246, 415, 285], "spans": [{"bbox": [195, 246, 415, 285], "score": 0.94, "content": "\\chi_{\\Lambda_{1}}[\\lambda]={\\frac{S_{\\Lambda_{1}\\lambda}}{S_{0\\lambda}}}=2\\sum_{\\ell=1}^{r}\\cos(2\\pi{\\frac{\\lambda^{+}(\\ell)}{\\kappa}})+1~,", "type": "interline_equation"}], "index": 7}], "index": 7}, {"type": "text", "bbox": [70, 295, 227, 310], "lines": [{"bbox": [72, 297, 227, 312], "spans": [{"bbox": [72, 297, 105, 312], "score": 1.0, "content": "where ", "type": "text"}, {"bbox": [106, 298, 203, 311], "score": 0.94, "content": "\\lambda^{+}(\\ell)=(\\lambda+\\rho)(\\ell)", "type": "inline_equation", "height": 13, "width": 97}, {"bbox": [203, 297, 227, 312], "score": 1.0, "content": " and", "type": "text"}], "index": 8}], "index": 8}, {"type": "interline_equation", "bbox": [249, 309, 362, 349], "lines": [{"bbox": [249, 309, 362, 349], "spans": [{"bbox": [249, 309, 362, 349], "score": 0.94, "content": "\\lambda(\\ell)=\\sum_{i=\\ell}^{r-1}\\lambda_{i}+\\frac{1}{2}\\lambda_{r}\\ .", "type": "interline_equation"}], "index": 9}], "index": 9}, {"type": "text", "bbox": [70, 353, 541, 426], "lines": [{"bbox": [93, 354, 541, 371], "spans": [{"bbox": [93, 354, 117, 371], "score": 1.0, "content": "For ", "type": "text"}, {"bbox": [117, 358, 150, 367], "score": 0.89, "content": "k\\,=\\,2", "type": "inline_equation", "height": 9, "width": 33}, {"bbox": [150, 354, 158, 371], "score": 1.0, "content": " (", "type": "text"}, {"bbox": [158, 357, 219, 368], "score": 0.69, "content": "\\kappa\\,=\\,2r+1", "type": "inline_equation", "height": 11, "width": 61}, {"bbox": [220, 354, 541, 371], "score": 1.0, "content": ") there are several Galois fusion-symmetries \u2014 one for each", "type": "text"}], "index": 10}, {"bbox": [69, 368, 541, 388], "spans": [{"bbox": [69, 368, 272, 388], "score": 1.0, "content": "Galois automorphism, since S020 = 41\u03ba ", "type": "text"}, {"bbox": [267, 369, 441, 387], "score": 1.0, "content": "is rational. In particular, define ", "type": "text"}, {"bbox": [441, 371, 521, 384], "score": 0.94, "content": "\\gamma^{i}=\\gamma^{\\kappa-i}=\\Lambda_{i}", "type": "inline_equation", "height": 13, "width": 80}, {"bbox": [521, 369, 541, 387], "score": 1.0, "content": " for", "type": "text"}], "index": 11}, {"bbox": [71, 383, 540, 402], "spans": [{"bbox": [71, 387, 166, 398], "score": 0.9, "content": "i\\,=\\,1,2,\\dots,r\\,-\\,1", "type": "inline_equation", "height": 11, "width": 95}, {"bbox": [166, 383, 198, 402], "score": 1.0, "content": ", and ", "type": "text"}, {"bbox": [198, 385, 293, 398], "score": 0.92, "content": "\\gamma^{r}\\,=\\,\\gamma^{r+1}\\,=\\,2\\Lambda_{r}", "type": "inline_equation", "height": 13, "width": 95}, {"bbox": [293, 383, 378, 402], "score": 1.0, "content": ". Then for any ", "type": "text"}, {"bbox": [379, 390, 389, 396], "score": 0.85, "content": "{\\boldsymbol{\\mathit{\\varepsilon}}}^{\\prime}{\\boldsymbol{\\mathit{m}}}", "type": "inline_equation", "height": 6, "width": 10}, {"bbox": [390, 383, 455, 402], "score": 1.0, "content": " coprime to ", "type": "text"}, {"bbox": [456, 390, 463, 396], "score": 0.69, "content": "\\kappa", "type": "inline_equation", "height": 6, "width": 7}, {"bbox": [463, 383, 470, 402], "score": 1.0, "content": ", ", "type": "text"}, {"bbox": [471, 386, 501, 398], "score": 0.93, "content": "\\pi\\{m\\}", "type": "inline_equation", "height": 12, "width": 30}, {"bbox": [501, 383, 533, 402], "score": 1.0, "content": " fixes ", "type": "text"}, {"bbox": [533, 387, 540, 396], "score": 0.39, "content": "0", "type": "inline_equation", "height": 9, "width": 7}], "index": 12}, {"bbox": [71, 399, 540, 414], "spans": [{"bbox": [71, 399, 95, 414], "score": 1.0, "content": "and ", "type": "text"}, {"bbox": [95, 401, 103, 410], "score": 0.89, "content": "J", "type": "inline_equation", "height": 9, "width": 8}, {"bbox": [103, 399, 142, 414], "score": 1.0, "content": ", sends ", "type": "text"}, {"bbox": [142, 401, 155, 412], "score": 0.91, "content": "\\gamma^{a}", "type": "inline_equation", "height": 11, "width": 13}, {"bbox": [155, 399, 173, 414], "score": 1.0, "content": " to ", "type": "text"}, {"bbox": [174, 401, 195, 412], "score": 0.91, "content": "\\gamma^{m a}", "type": "inline_equation", "height": 11, "width": 21}, {"bbox": [196, 399, 393, 414], "score": 1.0, "content": " (where the superscript is taken mod ", "type": "text"}, {"bbox": [393, 404, 401, 410], "score": 0.84, "content": "\\kappa", "type": "inline_equation", "height": 6, "width": 8}, {"bbox": [401, 399, 487, 414], "score": 1.0, "content": "), and stabilises ", "type": "text"}, {"bbox": [487, 400, 540, 413], "score": 0.93, "content": "\\{\\Lambda_{r},J\\Lambda_{r}\\}", "type": "inline_equation", "height": 13, "width": 53}], "index": 13}, {"bbox": [72, 412, 351, 429], "spans": [{"bbox": [72, 415, 149, 427], "score": 0.89, "content": "(\\pi\\{m\\}\\Lambda_{r}=\\Lambda_{r}", "type": "inline_equation", "height": 12, "width": 77}, {"bbox": [149, 412, 266, 429], "score": 1.0, "content": " iff the Jacobi symbol ", "type": "text"}, {"bbox": [266, 414, 286, 428], "score": 0.88, "content": "\\Bigl(\\frac{\\kappa}{m}\\Bigr)", "type": "inline_equation", "height": 14, "width": 20}, {"bbox": [287, 412, 326, 429], "score": 1.0, "content": " equals ", "type": "text"}, {"bbox": [327, 416, 342, 425], "score": 0.54, "content": "+1", "type": "inline_equation", "height": 9, "width": 15}, {"bbox": [343, 412, 351, 429], "score": 1.0, "content": ").", "type": "text"}], "index": 14}], "index": 12}, {"type": "text", "bbox": [70, 426, 541, 530], "lines": [{"bbox": [94, 427, 541, 443], "spans": [{"bbox": [94, 427, 133, 443], "score": 1.0, "content": "Why is", "type": "text"}, {"bbox": [134, 430, 162, 438], "score": 0.91, "content": "k=2", "type": "inline_equation", "height": 8, "width": 28}, {"bbox": [163, 427, 491, 443], "score": 1.0, "content": " so special here? One reason is that rank-level duality associates", "type": "text"}, {"bbox": [492, 430, 513, 442], "score": 0.95, "content": "B_{r,2}", "type": "inline_equation", "height": 12, "width": 21}, {"bbox": [514, 427, 541, 443], "score": 1.0, "content": " with", "type": "text"}], "index": 15}, {"bbox": [71, 442, 541, 460], "spans": [{"bbox": [71, 447, 115, 459], "score": 0.93, "content": "\\mathrm{u}(1)_{2r+1}", "type": "inline_equation", "height": 12, "width": 44}, {"bbox": [116, 445, 281, 460], "score": 1.0, "content": ", and it is easy to confirm that", "type": "text"}, {"bbox": [281, 442, 304, 459], "score": 0.9, "content": "\\widehat{\\mathrm{u(1)}}", "type": "inline_equation", "height": 17, "width": 23}, {"bbox": [304, 445, 541, 460], "score": 1.0, "content": " has a rich variety of fusion-symmetries (and", "type": "text"}], "index": 16}, {"bbox": [72, 460, 540, 474], "spans": [{"bbox": [72, 460, 415, 474], "score": 1.0, "content": "modular invariants) coming from its si mple-currents. Also, the ", "type": "text"}, {"bbox": [416, 461, 438, 474], "score": 0.92, "content": "B_{r,2}", "type": "inline_equation", "height": 13, "width": 22}, {"bbox": [438, 460, 483, 474], "score": 1.0, "content": " matrix ", "type": "text"}, {"bbox": [483, 461, 491, 470], "score": 0.89, "content": "S", "type": "inline_equation", "height": 9, "width": 8}, {"bbox": [492, 460, 540, 474], "score": 1.0, "content": " formally", "type": "text"}], "index": 17}, {"bbox": [70, 473, 541, 488], "spans": [{"bbox": [70, 473, 427, 488], "score": 1.0, "content": "looks like the character table of the dihedral group and for some ", "type": "text"}, {"bbox": [427, 479, 434, 484], "score": 0.8, "content": "r", "type": "inline_equation", "height": 5, "width": 7}, {"bbox": [434, 473, 541, 488], "score": 1.0, "content": " actually equals the", "type": "text"}], "index": 18}, {"bbox": [69, 487, 541, 504], "spans": [{"bbox": [69, 487, 182, 504], "score": 1.0, "content": "Kac-Peterson matrix ", "type": "text"}, {"bbox": [183, 490, 191, 499], "score": 0.89, "content": "S", "type": "inline_equation", "height": 9, "width": 8}, {"bbox": [191, 487, 363, 504], "score": 1.0, "content": " associated to the dihedral group", "type": "text"}, {"bbox": [364, 488, 389, 504], "score": 0.91, "content": "{\\mathfrak{D}}_{{\\sqrt{\\kappa}}}", "type": "inline_equation", "height": 16, "width": 25}, {"bbox": [390, 487, 541, 504], "score": 1.0, "content": " twisted by an appropriate 3-", "type": "text"}], "index": 19}, {"bbox": [69, 503, 541, 518], "spans": [{"bbox": [69, 503, 541, 518], "score": 1.0, "content": "cocycle [5] \u2014 finite group modular data tends to have significantly more modular invariants", "type": "text"}], "index": 20}, {"bbox": [70, 517, 349, 532], "spans": [{"bbox": [70, 517, 349, 532], "score": 1.0, "content": "and fusion-symmetries than e.g. affine modular data.", "type": "text"}], "index": 21}], "index": 18}, {"type": "text", "bbox": [70, 535, 542, 581], "lines": [{"bbox": [93, 536, 542, 556], "spans": [{"bbox": [93, 537, 326, 556], "score": 1.0, "content": "Theorem 3.B. The fusion-symmetries of ", "type": "text"}, {"bbox": [327, 536, 350, 552], "score": 0.9, "content": "B_{r}^{(1)}", "type": "inline_equation", "height": 16, "width": 23}, {"bbox": [351, 537, 383, 556], "score": 1.0, "content": "level ", "type": "text"}, {"bbox": [383, 539, 392, 551], "score": 0.71, "content": "k", "type": "inline_equation", "height": 12, "width": 9}, {"bbox": [392, 537, 416, 556], "score": 1.0, "content": " for ", "type": "text"}, {"bbox": [416, 539, 453, 553], "score": 0.9, "content": "k\\ \\neq\\ 2", "type": "inline_equation", "height": 14, "width": 37}, {"bbox": [453, 537, 479, 556], "score": 1.0, "content": " are ", "type": "text"}, {"bbox": [479, 539, 504, 553], "score": 0.91, "content": "\\pi[1]^{i}", "type": "inline_equation", "height": 14, "width": 25}, {"bbox": [505, 537, 542, 556], "score": 1.0, "content": " where", "type": "text"}], "index": 22}, {"bbox": [71, 553, 539, 570], "spans": [{"bbox": [71, 555, 120, 568], "score": 0.93, "content": "i\\in\\{0,1\\}", "type": "inline_equation", "height": 13, "width": 49}, {"bbox": [120, 553, 151, 570], "score": 1.0, "content": ". For ", "type": "text"}, {"bbox": [151, 556, 181, 565], "score": 0.88, "content": "k=2", "type": "inline_equation", "height": 9, "width": 30}, {"bbox": [181, 553, 338, 570], "score": 1.0, "content": " a fusion-symmetry will equal ", "type": "text"}, {"bbox": [339, 553, 395, 568], "score": 0.93, "content": "\\pi[1]^{i}\\,\\pi\\{m\\}", "type": "inline_equation", "height": 15, "width": 56}, {"bbox": [396, 553, 417, 570], "score": 1.0, "content": " for ", "type": "text"}, {"bbox": [417, 554, 467, 568], "score": 0.92, "content": "i\\in\\{0,1\\}", "type": "inline_equation", "height": 14, "width": 50}, {"bbox": [468, 553, 493, 570], "score": 1.0, "content": " and ", "type": "text"}, {"bbox": [493, 554, 536, 568], "score": 0.91, "content": "m\\in\\mathbb{Z}_{\\kappa}^{\\times}", "type": "inline_equation", "height": 14, "width": 43}, {"bbox": [536, 553, 539, 570], "score": 1.0, "content": ",", "type": "text"}], "index": 23}, {"bbox": [71, 568, 131, 585], "spans": [{"bbox": [71, 570, 126, 581], "score": 0.88, "content": "1\\leq m\\leq r", "type": "inline_equation", "height": 11, "width": 55}, {"bbox": [126, 568, 131, 585], "score": 1.0, "content": ".", "type": "text"}], "index": 24}], "index": 23}, {"type": "text", "bbox": [93, 586, 451, 604], "lines": [{"bbox": [95, 587, 449, 606], "spans": [{"bbox": [95, 587, 129, 606], "score": 1.0, "content": "When ", "type": "text"}, {"bbox": [130, 591, 159, 600], "score": 0.59, "content": "k=1", "type": "inline_equation", "height": 9, "width": 29}, {"bbox": [159, 587, 165, 606], "score": 1.0, "content": ", ", "type": "text"}, {"bbox": [165, 589, 186, 603], "score": 0.41, "content": "\\pi[1]", "type": "inline_equation", "height": 14, "width": 21}, {"bbox": [187, 587, 290, 606], "score": 1.0, "content": " is trivial. We have ", "type": "text"}, {"bbox": [290, 588, 449, 604], "score": 0.92, "content": "\\mathcal{F}(B_{r,2})\\cong\\mathbb{Z}_{2}\\times(\\mathbb{Z}_{2r+1}^{\\times}/\\{\\pm1\\}).", "type": "inline_equation", "height": 16, "width": 159}], "index": 25}], "index": 25}, {"type": "text", "bbox": [71, 616, 220, 633], "lines": [{"bbox": [68, 613, 218, 638], "spans": [{"bbox": [68, 613, 160, 638], "score": 1.0, "content": "3.3. The algebra ", "type": "text"}, {"bbox": [161, 618, 183, 633], "score": 0.75, "content": "C_{r}^{(1)}", "type": "inline_equation", "height": 15, "width": 22}, {"bbox": [183, 613, 190, 638], "score": 1.0, "content": ", ", "type": "text"}, {"bbox": [190, 623, 218, 633], "score": 0.66, "content": "r\\geq2", "type": "inline_equation", "height": 10, "width": 28}], "index": 26}], "index": 26}, {"type": "text", "bbox": [71, 639, 541, 683], "lines": [{"bbox": [96, 642, 540, 656], "spans": [{"bbox": [96, 642, 144, 656], "score": 1.0, "content": "A weight ", "type": "text"}, {"bbox": [144, 643, 152, 653], "score": 0.82, "content": "\\lambda", "type": "inline_equation", "height": 10, "width": 8}, {"bbox": [153, 642, 167, 656], "score": 1.0, "content": " of ", "type": "text"}, {"bbox": [167, 644, 183, 655], "score": 0.9, "content": "P_{+}", "type": "inline_equation", "height": 11, "width": 16}, {"bbox": [183, 642, 230, 656], "score": 1.0, "content": " satisfies ", "type": "text"}, {"bbox": [230, 642, 339, 654], "score": 0.92, "content": "k=\\lambda_{0}+\\lambda_{1}+\\cdot\\cdot\\cdot+\\lambda_{r}", "type": "inline_equation", "height": 12, "width": 109}, {"bbox": [339, 642, 364, 656], "score": 1.0, "content": " and ", "type": "text"}, {"bbox": [364, 642, 429, 653], "score": 0.9, "content": "\\kappa=k+r+1", "type": "inline_equation", "height": 11, "width": 65}, {"bbox": [430, 642, 540, 656], "score": 1.0, "content": ". Charge-conjugation", "type": "text"}], "index": 27}, {"bbox": [71, 656, 540, 671], "spans": [{"bbox": [71, 658, 81, 667], "score": 0.83, "content": "C", "type": "inline_equation", "height": 9, "width": 10}, {"bbox": [81, 656, 325, 671], "score": 1.0, "content": " again is trivial, and there is a simple-current ", "type": "text"}, {"bbox": [325, 658, 334, 667], "score": 0.88, "content": "J", "type": "inline_equation", "height": 9, "width": 9}, {"bbox": [334, 656, 396, 671], "score": 1.0, "content": " defined by ", "type": "text"}, {"bbox": [396, 657, 536, 670], "score": 0.9, "content": "J\\lambda=\\left(\\lambda_{r},\\lambda_{r-1},\\ldots,\\lambda_{1},\\lambda_{0}\\right)", "type": "inline_equation", "height": 13, "width": 140}, {"bbox": [536, 656, 540, 671], "score": 1.0, "content": ",", "type": "text"}], "index": 28}, {"bbox": [70, 669, 217, 688], "spans": [{"bbox": [70, 669, 98, 688], "score": 1.0, "content": "with ", "type": "text"}, {"bbox": [99, 671, 213, 686], "score": 0.92, "content": "\\begin{array}{r}{Q(\\lambda)=(\\sum_{j=1}^{r}j\\lambda_{j})/2}\\end{array}", "type": "inline_equation", "height": 15, "width": 114}, {"bbox": [214, 669, 217, 688], "score": 1.0, "content": ".", "type": "text"}], "index": 29}], "index": 28}, {"type": "text", "bbox": [70, 683, 540, 716], "lines": [{"bbox": [94, 683, 541, 702], "spans": [{"bbox": [94, 683, 162, 702], "score": 1.0, "content": "Choose any ", "type": "text"}, {"bbox": [162, 686, 205, 698], "score": 0.88, "content": "\\lambda\\:\\in\\:P_{+}", "type": "inline_equation", "height": 12, "width": 43}, {"bbox": [206, 683, 352, 702], "score": 1.0, "content": ". The Young diagram for ", "type": "text"}, {"bbox": [352, 686, 360, 695], "score": 0.83, "content": "\\lambda", "type": "inline_equation", "height": 9, "width": 8}, {"bbox": [360, 683, 541, 702], "score": 1.0, "content": " is defined in the usual way: for", "type": "text"}], "index": 30}, {"bbox": [71, 699, 541, 719], "spans": [{"bbox": [71, 704, 123, 715], "score": 0.89, "content": "1\\leq\\ell\\leq r", "type": "inline_equation", "height": 11, "width": 52}, {"bbox": [124, 699, 151, 719], "score": 1.0, "content": ", the ", "type": "text"}, {"bbox": [151, 704, 157, 713], "score": 0.54, "content": "\\ell", "type": "inline_equation", "height": 9, "width": 6}, {"bbox": [157, 699, 254, 719], "score": 1.0, "content": "th row consists of ", "type": "text"}, {"bbox": [254, 700, 335, 717], "score": 0.93, "content": "\\begin{array}{r}{\\lambda(\\ell)\\overset{\\mathrm{def}}{=}\\sum_{i=\\ell}^{r}\\lambda_{i}}\\end{array}", "type": "inline_equation", "height": 17, "width": 81}, {"bbox": [336, 699, 400, 719], "score": 1.0, "content": " boxes. Let ", "type": "text"}, {"bbox": [401, 704, 415, 713], "score": 0.9, "content": "\\tau\\lambda", "type": "inline_equation", "height": 9, "width": 14}, {"bbox": [415, 699, 479, 719], "score": 1.0, "content": " denote the ", "type": "text"}, {"bbox": [479, 704, 501, 717], "score": 0.93, "content": "C_{k,r}", "type": "inline_equation", "height": 13, "width": 22}, {"bbox": [501, 699, 541, 719], "score": 1.0, "content": " weight", "type": "text"}], "index": 31}], "index": 30.5}], "layout_bboxes": [], "page_idx": 9, "page_size": [612.0, 792.0], "_layout_tree": [], "images": [], "tables": [], "interline_equations": [{"type": "interline_equation", "bbox": [195, 246, 415, 285], "lines": [{"bbox": [195, 246, 415, 285], "spans": [{"bbox": [195, 246, 415, 285], "score": 0.94, "content": "\\chi_{\\Lambda_{1}}[\\lambda]={\\frac{S_{\\Lambda_{1}\\lambda}}{S_{0\\lambda}}}=2\\sum_{\\ell=1}^{r}\\cos(2\\pi{\\frac{\\lambda^{+}(\\ell)}{\\kappa}})+1~,", "type": "interline_equation"}], "index": 7}], "index": 7}, {"type": "interline_equation", "bbox": [249, 309, 362, 349], "lines": [{"bbox": [249, 309, 362, 349], "spans": [{"bbox": [249, 309, 362, 349], "score": 0.94, "content": "\\lambda(\\ell)=\\sum_{i=\\ell}^{r-1}\\lambda_{i}+\\frac{1}{2}\\lambda_{r}\\ .", "type": "interline_equation"}], "index": 9}], "index": 9}], "discarded_blocks": [{"type": "discarded", "bbox": [299, 730, 313, 742], "lines": [{"bbox": [298, 731, 313, 745], "spans": [{"bbox": [298, 731, 313, 745], "score": 1.0, "content": "10", "type": "text"}]}]}], "need_drop": false, "drop_reason": [], "para_blocks": [{"type": "text", "bbox": [70, 69, 221, 86], "lines": [{"bbox": [68, 67, 219, 92], "spans": [{"bbox": [68, 67, 160, 92], "score": 1.0, "content": "3.2. The algebra ", "type": "text"}, {"bbox": [161, 72, 183, 86], "score": 0.73, "content": "B_{r}^{(1)}", "type": "inline_equation", "height": 14, "width": 22}, {"bbox": [184, 67, 190, 92], "score": 1.0, "content": ", ", "type": "text"}, {"bbox": [190, 77, 219, 87], "score": 0.74, "content": "r\\geq3", "type": "inline_equation", "height": 10, "width": 29}], "index": 0}], "index": 0, "page_num": "page_9", "page_size": [612.0, 792.0], "bbox_fs": [68, 67, 219, 92]}, {"type": "text", "bbox": [70, 92, 542, 136], "lines": [{"bbox": [95, 95, 541, 110], "spans": [{"bbox": [95, 95, 145, 110], "score": 1.0, "content": "A weight ", "type": "text"}, {"bbox": [145, 96, 154, 106], "score": 0.8, "content": "\\lambda", "type": "inline_equation", "height": 10, "width": 9}, {"bbox": [154, 95, 170, 110], "score": 1.0, "content": " in ", "type": "text"}, {"bbox": [171, 96, 187, 109], "score": 0.9, "content": "P_{+}", "type": "inline_equation", "height": 13, "width": 16}, {"bbox": [187, 95, 233, 110], "score": 1.0, "content": " satisfies", "type": "text"}, {"bbox": [234, 95, 429, 108], "score": 0.91, "content": "k=\\lambda_{0}+\\lambda_{1}+2\\lambda_{2}+\\cdot\\cdot\\cdot+2\\lambda_{r-1}+\\lambda_{r}", "type": "inline_equation", "height": 13, "width": 195}, {"bbox": [430, 95, 459, 110], "score": 1.0, "content": ", and ", "type": "text"}, {"bbox": [459, 96, 537, 107], "score": 0.9, "content": "\\kappa=k+2r-1", "type": "inline_equation", "height": 11, "width": 78}, {"bbox": [537, 95, 541, 110], "score": 1.0, "content": ".", "type": "text"}], "index": 1}, {"bbox": [70, 109, 541, 125], "spans": [{"bbox": [70, 109, 408, 125], "score": 1.0, "content": "The charge-conjugation is trivial, but there is a simple-current: ", "type": "text"}, {"bbox": [408, 109, 536, 123], "score": 0.91, "content": "J\\lambda=\\left(\\lambda_{1},\\lambda_{0},\\lambda_{2},.\\ldots,\\lambda_{r}\\right)", "type": "inline_equation", "height": 14, "width": 128}, {"bbox": [536, 109, 541, 125], "score": 1.0, "content": ".", "type": "text"}], "index": 2}, {"bbox": [69, 123, 176, 140], "spans": [{"bbox": [69, 123, 105, 140], "score": 1.0, "content": "It has ", "type": "text"}, {"bbox": [105, 123, 172, 138], "score": 0.92, "content": "Q(\\lambda)=\\lambda_{r}/2", "type": "inline_equation", "height": 15, "width": 67}, {"bbox": [172, 123, 176, 140], "score": 1.0, "content": ".", "type": "text"}], "index": 3}], "index": 2, "page_num": "page_9", "page_size": [612.0, 792.0], "bbox_fs": [69, 95, 541, 140]}, {"type": "text", "bbox": [94, 137, 294, 151], "lines": [{"bbox": [95, 138, 294, 152], "spans": [{"bbox": [95, 138, 294, 152], "score": 1.0, "content": "The only fusion products we need are", "type": "text"}], "index": 4}], "index": 4, "page_num": "page_9", "page_size": [612.0, 792.0], "bbox_fs": [95, 138, 294, 152]}, {"type": "text", "bbox": [69, 205, 541, 235], "lines": [{"bbox": [70, 208, 541, 223], "spans": [{"bbox": [70, 208, 105, 223], "score": 1.0, "content": "for all ", "type": "text"}, {"bbox": [106, 209, 175, 221], "score": 0.83, "content": "1\\leq i<r-1", "type": "inline_equation", "height": 12, "width": 69}, {"bbox": [175, 208, 180, 223], "score": 1.0, "content": ",", "type": "text"}, {"bbox": [181, 208, 210, 221], "score": 0.68, "content": "k>2", "type": "inline_equation", "height": 13, "width": 29}, {"bbox": [211, 208, 240, 223], "score": 1.0, "content": ", and ", "type": "text"}, {"bbox": [240, 208, 290, 221], "score": 0.91, "content": "0<\\ell<k", "type": "inline_equation", "height": 13, "width": 50}, {"bbox": [291, 208, 378, 223], "score": 1.0, "content": ", where we drop ", "type": "text"}, {"bbox": [379, 208, 473, 222], "score": 0.91, "content": "\\mathrm{\\Delta}^{\\prime}\\Lambda_{r-1}+(\\ell-2)\\Lambda_{r}{}^{\\prime}", "type": "inline_equation", "height": 14, "width": 94}, {"bbox": [473, 208, 487, 223], "score": 1.0, "content": " if ", "type": "text"}, {"bbox": [487, 209, 514, 219], "score": 0.87, "content": "\\ell=1", "type": "inline_equation", "height": 10, "width": 27}, {"bbox": [515, 208, 541, 223], "score": 1.0, "content": ". We", "type": "text"}], "index": 5}, {"bbox": [71, 223, 288, 238], "spans": [{"bbox": [71, 223, 288, 238], "score": 1.0, "content": "will also use the character formula (2.1b)", "type": "text"}], "index": 6}], "index": 5.5, "page_num": "page_9", "page_size": [612.0, 792.0], "bbox_fs": [70, 208, 541, 238]}, {"type": "interline_equation", "bbox": [195, 246, 415, 285], "lines": [{"bbox": [195, 246, 415, 285], "spans": [{"bbox": [195, 246, 415, 285], "score": 0.94, "content": "\\chi_{\\Lambda_{1}}[\\lambda]={\\frac{S_{\\Lambda_{1}\\lambda}}{S_{0\\lambda}}}=2\\sum_{\\ell=1}^{r}\\cos(2\\pi{\\frac{\\lambda^{+}(\\ell)}{\\kappa}})+1~,", "type": "interline_equation"}], "index": 7}], "index": 7, "page_num": "page_9", "page_size": [612.0, 792.0]}, {"type": "text", "bbox": [70, 295, 227, 310], "lines": [{"bbox": [72, 297, 227, 312], "spans": [{"bbox": [72, 297, 105, 312], "score": 1.0, "content": "where ", "type": "text"}, {"bbox": [106, 298, 203, 311], "score": 0.94, "content": "\\lambda^{+}(\\ell)=(\\lambda+\\rho)(\\ell)", "type": "inline_equation", "height": 13, "width": 97}, {"bbox": [203, 297, 227, 312], "score": 1.0, "content": " and", "type": "text"}], "index": 8}], "index": 8, "page_num": "page_9", "page_size": [612.0, 792.0], "bbox_fs": [72, 297, 227, 312]}, {"type": "interline_equation", "bbox": [249, 309, 362, 349], "lines": [{"bbox": [249, 309, 362, 349], "spans": [{"bbox": [249, 309, 362, 349], "score": 0.94, "content": "\\lambda(\\ell)=\\sum_{i=\\ell}^{r-1}\\lambda_{i}+\\frac{1}{2}\\lambda_{r}\\ .", "type": "interline_equation"}], "index": 9}], "index": 9, "page_num": "page_9", "page_size": [612.0, 792.0]}, {"type": "text", "bbox": [70, 353, 541, 426], "lines": [{"bbox": [93, 354, 541, 371], "spans": [{"bbox": [93, 354, 117, 371], "score": 1.0, "content": "For ", "type": "text"}, {"bbox": [117, 358, 150, 367], "score": 0.89, "content": "k\\,=\\,2", "type": "inline_equation", "height": 9, "width": 33}, {"bbox": [150, 354, 158, 371], "score": 1.0, "content": " (", "type": "text"}, {"bbox": [158, 357, 219, 368], "score": 0.69, "content": "\\kappa\\,=\\,2r+1", "type": "inline_equation", "height": 11, "width": 61}, {"bbox": [220, 354, 541, 371], "score": 1.0, "content": ") there are several Galois fusion-symmetries \u2014 one for each", "type": "text"}], "index": 10}, {"bbox": [69, 368, 541, 388], "spans": [{"bbox": [69, 368, 272, 388], "score": 1.0, "content": "Galois automorphism, since S020 = 41\u03ba ", "type": "text"}, {"bbox": [267, 369, 441, 387], "score": 1.0, "content": "is rational. In particular, define ", "type": "text"}, {"bbox": [441, 371, 521, 384], "score": 0.94, "content": "\\gamma^{i}=\\gamma^{\\kappa-i}=\\Lambda_{i}", "type": "inline_equation", "height": 13, "width": 80}, {"bbox": [521, 369, 541, 387], "score": 1.0, "content": " for", "type": "text"}], "index": 11}, {"bbox": [71, 383, 540, 402], "spans": [{"bbox": [71, 387, 166, 398], "score": 0.9, "content": "i\\,=\\,1,2,\\dots,r\\,-\\,1", "type": "inline_equation", "height": 11, "width": 95}, {"bbox": [166, 383, 198, 402], "score": 1.0, "content": ", and ", "type": "text"}, {"bbox": [198, 385, 293, 398], "score": 0.92, "content": "\\gamma^{r}\\,=\\,\\gamma^{r+1}\\,=\\,2\\Lambda_{r}", "type": "inline_equation", "height": 13, "width": 95}, {"bbox": [293, 383, 378, 402], "score": 1.0, "content": ". Then for any ", "type": "text"}, {"bbox": [379, 390, 389, 396], "score": 0.85, "content": "{\\boldsymbol{\\mathit{\\varepsilon}}}^{\\prime}{\\boldsymbol{\\mathit{m}}}", "type": "inline_equation", "height": 6, "width": 10}, {"bbox": [390, 383, 455, 402], "score": 1.0, "content": " coprime to ", "type": "text"}, {"bbox": [456, 390, 463, 396], "score": 0.69, "content": "\\kappa", "type": "inline_equation", "height": 6, "width": 7}, {"bbox": [463, 383, 470, 402], "score": 1.0, "content": ", ", "type": "text"}, {"bbox": [471, 386, 501, 398], "score": 0.93, "content": "\\pi\\{m\\}", "type": "inline_equation", "height": 12, "width": 30}, {"bbox": [501, 383, 533, 402], "score": 1.0, "content": " fixes ", "type": "text"}, {"bbox": [533, 387, 540, 396], "score": 0.39, "content": "0", "type": "inline_equation", "height": 9, "width": 7}], "index": 12}, {"bbox": [71, 399, 540, 414], "spans": [{"bbox": [71, 399, 95, 414], "score": 1.0, "content": "and ", "type": "text"}, {"bbox": [95, 401, 103, 410], "score": 0.89, "content": "J", "type": "inline_equation", "height": 9, "width": 8}, {"bbox": [103, 399, 142, 414], "score": 1.0, "content": ", sends ", "type": "text"}, {"bbox": [142, 401, 155, 412], "score": 0.91, "content": "\\gamma^{a}", "type": "inline_equation", "height": 11, "width": 13}, {"bbox": [155, 399, 173, 414], "score": 1.0, "content": " to ", "type": "text"}, {"bbox": [174, 401, 195, 412], "score": 0.91, "content": "\\gamma^{m a}", "type": "inline_equation", "height": 11, "width": 21}, {"bbox": [196, 399, 393, 414], "score": 1.0, "content": " (where the superscript is taken mod ", "type": "text"}, {"bbox": [393, 404, 401, 410], "score": 0.84, "content": "\\kappa", "type": "inline_equation", "height": 6, "width": 8}, {"bbox": [401, 399, 487, 414], "score": 1.0, "content": "), and stabilises ", "type": "text"}, {"bbox": [487, 400, 540, 413], "score": 0.93, "content": "\\{\\Lambda_{r},J\\Lambda_{r}\\}", "type": "inline_equation", "height": 13, "width": 53}], "index": 13}, {"bbox": [72, 412, 351, 429], "spans": [{"bbox": [72, 415, 149, 427], "score": 0.89, "content": "(\\pi\\{m\\}\\Lambda_{r}=\\Lambda_{r}", "type": "inline_equation", "height": 12, "width": 77}, {"bbox": [149, 412, 266, 429], "score": 1.0, "content": " iff the Jacobi symbol ", "type": "text"}, {"bbox": [266, 414, 286, 428], "score": 0.88, "content": "\\Bigl(\\frac{\\kappa}{m}\\Bigr)", "type": "inline_equation", "height": 14, "width": 20}, {"bbox": [287, 412, 326, 429], "score": 1.0, "content": " equals ", "type": "text"}, {"bbox": [327, 416, 342, 425], "score": 0.54, "content": "+1", "type": "inline_equation", "height": 9, "width": 15}, {"bbox": [343, 412, 351, 429], "score": 1.0, "content": ").", "type": "text"}], "index": 14}], "index": 12, "page_num": "page_9", "page_size": [612.0, 792.0], "bbox_fs": [69, 354, 541, 429]}, {"type": "text", "bbox": [70, 426, 541, 530], "lines": [{"bbox": [94, 427, 541, 443], "spans": [{"bbox": [94, 427, 133, 443], "score": 1.0, "content": "Why is", "type": "text"}, {"bbox": [134, 430, 162, 438], "score": 0.91, "content": "k=2", "type": "inline_equation", "height": 8, "width": 28}, {"bbox": [163, 427, 491, 443], "score": 1.0, "content": " so special here? One reason is that rank-level duality associates", "type": "text"}, {"bbox": [492, 430, 513, 442], "score": 0.95, "content": "B_{r,2}", "type": "inline_equation", "height": 12, "width": 21}, {"bbox": [514, 427, 541, 443], "score": 1.0, "content": " with", "type": "text"}], "index": 15}, {"bbox": [71, 442, 541, 460], "spans": [{"bbox": [71, 447, 115, 459], "score": 0.93, "content": "\\mathrm{u}(1)_{2r+1}", "type": "inline_equation", "height": 12, "width": 44}, {"bbox": [116, 445, 281, 460], "score": 1.0, "content": ", and it is easy to confirm that", "type": "text"}, {"bbox": [281, 442, 304, 459], "score": 0.9, "content": "\\widehat{\\mathrm{u(1)}}", "type": "inline_equation", "height": 17, "width": 23}, {"bbox": [304, 445, 541, 460], "score": 1.0, "content": " has a rich variety of fusion-symmetries (and", "type": "text"}], "index": 16}, {"bbox": [72, 460, 540, 474], "spans": [{"bbox": [72, 460, 415, 474], "score": 1.0, "content": "modular invariants) coming from its si mple-currents. Also, the ", "type": "text"}, {"bbox": [416, 461, 438, 474], "score": 0.92, "content": "B_{r,2}", "type": "inline_equation", "height": 13, "width": 22}, {"bbox": [438, 460, 483, 474], "score": 1.0, "content": " matrix ", "type": "text"}, {"bbox": [483, 461, 491, 470], "score": 0.89, "content": "S", "type": "inline_equation", "height": 9, "width": 8}, {"bbox": [492, 460, 540, 474], "score": 1.0, "content": " formally", "type": "text"}], "index": 17}, {"bbox": [70, 473, 541, 488], "spans": [{"bbox": [70, 473, 427, 488], "score": 1.0, "content": "looks like the character table of the dihedral group and for some ", "type": "text"}, {"bbox": [427, 479, 434, 484], "score": 0.8, "content": "r", "type": "inline_equation", "height": 5, "width": 7}, {"bbox": [434, 473, 541, 488], "score": 1.0, "content": " actually equals the", "type": "text"}], "index": 18}, {"bbox": [69, 487, 541, 504], "spans": [{"bbox": [69, 487, 182, 504], "score": 1.0, "content": "Kac-Peterson matrix ", "type": "text"}, {"bbox": [183, 490, 191, 499], "score": 0.89, "content": "S", "type": "inline_equation", "height": 9, "width": 8}, {"bbox": [191, 487, 363, 504], "score": 1.0, "content": " associated to the dihedral group", "type": "text"}, {"bbox": [364, 488, 389, 504], "score": 0.91, "content": "{\\mathfrak{D}}_{{\\sqrt{\\kappa}}}", "type": "inline_equation", "height": 16, "width": 25}, {"bbox": [390, 487, 541, 504], "score": 1.0, "content": " twisted by an appropriate 3-", "type": "text"}], "index": 19}, {"bbox": [69, 503, 541, 518], "spans": [{"bbox": [69, 503, 541, 518], "score": 1.0, "content": "cocycle [5] \u2014 finite group modular data tends to have significantly more modular invariants", "type": "text"}], "index": 20}, {"bbox": [70, 517, 349, 532], "spans": [{"bbox": [70, 517, 349, 532], "score": 1.0, "content": "and fusion-symmetries than e.g. affine modular data.", "type": "text"}], "index": 21}], "index": 18, "page_num": "page_9", "page_size": [612.0, 792.0], "bbox_fs": [69, 427, 541, 532]}, {"type": "text", "bbox": [70, 535, 542, 581], "lines": [{"bbox": [93, 536, 542, 556], "spans": [{"bbox": [93, 537, 326, 556], "score": 1.0, "content": "Theorem 3.B. The fusion-symmetries of ", "type": "text"}, {"bbox": [327, 536, 350, 552], "score": 0.9, "content": "B_{r}^{(1)}", "type": "inline_equation", "height": 16, "width": 23}, {"bbox": [351, 537, 383, 556], "score": 1.0, "content": "level ", "type": "text"}, {"bbox": [383, 539, 392, 551], "score": 0.71, "content": "k", "type": "inline_equation", "height": 12, "width": 9}, {"bbox": [392, 537, 416, 556], "score": 1.0, "content": " for ", "type": "text"}, {"bbox": [416, 539, 453, 553], "score": 0.9, "content": "k\\ \\neq\\ 2", "type": "inline_equation", "height": 14, "width": 37}, {"bbox": [453, 537, 479, 556], "score": 1.0, "content": " are ", "type": "text"}, {"bbox": [479, 539, 504, 553], "score": 0.91, "content": "\\pi[1]^{i}", "type": "inline_equation", "height": 14, "width": 25}, {"bbox": [505, 537, 542, 556], "score": 1.0, "content": " where", "type": "text"}], "index": 22}, {"bbox": [71, 553, 539, 570], "spans": [{"bbox": [71, 555, 120, 568], "score": 0.93, "content": "i\\in\\{0,1\\}", "type": "inline_equation", "height": 13, "width": 49}, {"bbox": [120, 553, 151, 570], "score": 1.0, "content": ". For ", "type": "text"}, {"bbox": [151, 556, 181, 565], "score": 0.88, "content": "k=2", "type": "inline_equation", "height": 9, "width": 30}, {"bbox": [181, 553, 338, 570], "score": 1.0, "content": " a fusion-symmetry will equal ", "type": "text"}, {"bbox": [339, 553, 395, 568], "score": 0.93, "content": "\\pi[1]^{i}\\,\\pi\\{m\\}", "type": "inline_equation", "height": 15, "width": 56}, {"bbox": [396, 553, 417, 570], "score": 1.0, "content": " for ", "type": "text"}, {"bbox": [417, 554, 467, 568], "score": 0.92, "content": "i\\in\\{0,1\\}", "type": "inline_equation", "height": 14, "width": 50}, {"bbox": [468, 553, 493, 570], "score": 1.0, "content": " and ", "type": "text"}, {"bbox": [493, 554, 536, 568], "score": 0.91, "content": "m\\in\\mathbb{Z}_{\\kappa}^{\\times}", "type": "inline_equation", "height": 14, "width": 43}, {"bbox": [536, 553, 539, 570], "score": 1.0, "content": ",", "type": "text"}], "index": 23}, {"bbox": [71, 568, 131, 585], "spans": [{"bbox": [71, 570, 126, 581], "score": 0.88, "content": "1\\leq m\\leq r", "type": "inline_equation", "height": 11, "width": 55}, {"bbox": [126, 568, 131, 585], "score": 1.0, "content": ".", "type": "text"}], "index": 24}], "index": 23, "page_num": "page_9", "page_size": [612.0, 792.0], "bbox_fs": [71, 536, 542, 585]}, {"type": "text", "bbox": [93, 586, 451, 604], "lines": [{"bbox": [95, 587, 449, 606], "spans": [{"bbox": [95, 587, 129, 606], "score": 1.0, "content": "When ", "type": "text"}, {"bbox": [130, 591, 159, 600], "score": 0.59, "content": "k=1", "type": "inline_equation", "height": 9, "width": 29}, {"bbox": [159, 587, 165, 606], "score": 1.0, "content": ", ", "type": "text"}, {"bbox": [165, 589, 186, 603], "score": 0.41, "content": "\\pi[1]", "type": "inline_equation", "height": 14, "width": 21}, {"bbox": [187, 587, 290, 606], "score": 1.0, "content": " is trivial. We have ", "type": "text"}, {"bbox": [290, 588, 449, 604], "score": 0.92, "content": "\\mathcal{F}(B_{r,2})\\cong\\mathbb{Z}_{2}\\times(\\mathbb{Z}_{2r+1}^{\\times}/\\{\\pm1\\}).", "type": "inline_equation", "height": 16, "width": 159}], "index": 25}], "index": 25, "page_num": "page_9", "page_size": [612.0, 792.0], "bbox_fs": [95, 587, 449, 606]}, {"type": "text", "bbox": [71, 616, 220, 633], "lines": [{"bbox": [68, 613, 218, 638], "spans": [{"bbox": [68, 613, 160, 638], "score": 1.0, "content": "3.3. The algebra ", "type": "text"}, {"bbox": [161, 618, 183, 633], "score": 0.75, "content": "C_{r}^{(1)}", "type": "inline_equation", "height": 15, "width": 22}, {"bbox": [183, 613, 190, 638], "score": 1.0, "content": ", ", "type": "text"}, {"bbox": [190, 623, 218, 633], "score": 0.66, "content": "r\\geq2", "type": "inline_equation", "height": 10, "width": 28}], "index": 26}], "index": 26, "page_num": "page_9", "page_size": [612.0, 792.0], "bbox_fs": [68, 613, 218, 638]}, {"type": "text", "bbox": [71, 639, 541, 683], "lines": [{"bbox": [96, 642, 540, 656], "spans": [{"bbox": [96, 642, 144, 656], "score": 1.0, "content": "A weight ", "type": "text"}, {"bbox": [144, 643, 152, 653], "score": 0.82, "content": "\\lambda", "type": "inline_equation", "height": 10, "width": 8}, {"bbox": [153, 642, 167, 656], "score": 1.0, "content": " of ", "type": "text"}, {"bbox": [167, 644, 183, 655], "score": 0.9, "content": "P_{+}", "type": "inline_equation", "height": 11, "width": 16}, {"bbox": [183, 642, 230, 656], "score": 1.0, "content": " satisfies ", "type": "text"}, {"bbox": [230, 642, 339, 654], "score": 0.92, "content": "k=\\lambda_{0}+\\lambda_{1}+\\cdot\\cdot\\cdot+\\lambda_{r}", "type": "inline_equation", "height": 12, "width": 109}, {"bbox": [339, 642, 364, 656], "score": 1.0, "content": " and ", "type": "text"}, {"bbox": [364, 642, 429, 653], "score": 0.9, "content": "\\kappa=k+r+1", "type": "inline_equation", "height": 11, "width": 65}, {"bbox": [430, 642, 540, 656], "score": 1.0, "content": ". Charge-conjugation", "type": "text"}], "index": 27}, {"bbox": [71, 656, 540, 671], "spans": [{"bbox": [71, 658, 81, 667], "score": 0.83, "content": "C", "type": "inline_equation", "height": 9, "width": 10}, {"bbox": [81, 656, 325, 671], "score": 1.0, "content": " again is trivial, and there is a simple-current ", "type": "text"}, {"bbox": [325, 658, 334, 667], "score": 0.88, "content": "J", "type": "inline_equation", "height": 9, "width": 9}, {"bbox": [334, 656, 396, 671], "score": 1.0, "content": " defined by ", "type": "text"}, {"bbox": [396, 657, 536, 670], "score": 0.9, "content": "J\\lambda=\\left(\\lambda_{r},\\lambda_{r-1},\\ldots,\\lambda_{1},\\lambda_{0}\\right)", "type": "inline_equation", "height": 13, "width": 140}, {"bbox": [536, 656, 540, 671], "score": 1.0, "content": ",", "type": "text"}], "index": 28}, {"bbox": [70, 669, 217, 688], "spans": [{"bbox": [70, 669, 98, 688], "score": 1.0, "content": "with ", "type": "text"}, {"bbox": [99, 671, 213, 686], "score": 0.92, "content": "\\begin{array}{r}{Q(\\lambda)=(\\sum_{j=1}^{r}j\\lambda_{j})/2}\\end{array}", "type": "inline_equation", "height": 15, "width": 114}, {"bbox": [214, 669, 217, 688], "score": 1.0, "content": ".", "type": "text"}], "index": 29}], "index": 28, "page_num": "page_9", "page_size": [612.0, 792.0], "bbox_fs": [70, 642, 540, 688]}, {"type": "text", "bbox": [70, 683, 540, 716], "lines": [{"bbox": [94, 683, 541, 702], "spans": [{"bbox": [94, 683, 162, 702], "score": 1.0, "content": "Choose any ", "type": "text"}, {"bbox": [162, 686, 205, 698], "score": 0.88, "content": "\\lambda\\:\\in\\:P_{+}", "type": "inline_equation", "height": 12, "width": 43}, {"bbox": [206, 683, 352, 702], "score": 1.0, "content": ". The Young diagram for ", "type": "text"}, {"bbox": [352, 686, 360, 695], "score": 0.83, "content": "\\lambda", "type": "inline_equation", "height": 9, "width": 8}, {"bbox": [360, 683, 541, 702], "score": 1.0, "content": " is defined in the usual way: for", "type": "text"}], "index": 30}, {"bbox": [71, 699, 541, 719], "spans": [{"bbox": [71, 704, 123, 715], "score": 0.89, "content": "1\\leq\\ell\\leq r", "type": "inline_equation", "height": 11, "width": 52}, {"bbox": [124, 699, 151, 719], "score": 1.0, "content": ", the ", "type": "text"}, {"bbox": [151, 704, 157, 713], "score": 0.54, "content": "\\ell", "type": "inline_equation", "height": 9, "width": 6}, {"bbox": [157, 699, 254, 719], "score": 1.0, "content": "th row consists of ", "type": "text"}, {"bbox": [254, 700, 335, 717], "score": 0.93, "content": "\\begin{array}{r}{\\lambda(\\ell)\\overset{\\mathrm{def}}{=}\\sum_{i=\\ell}^{r}\\lambda_{i}}\\end{array}", "type": "inline_equation", "height": 17, "width": 81}, {"bbox": [336, 699, 400, 719], "score": 1.0, "content": " boxes. Let ", "type": "text"}, {"bbox": [401, 704, 415, 713], "score": 0.9, "content": "\\tau\\lambda", "type": "inline_equation", "height": 9, "width": 14}, {"bbox": [415, 699, 479, 719], "score": 1.0, "content": " denote the ", "type": "text"}, {"bbox": [479, 704, 501, 717], "score": 0.93, "content": "C_{k,r}", "type": "inline_equation", "height": 13, "width": 22}, {"bbox": [501, 699, 541, 719], "score": 1.0, "content": " weight", "type": "text"}], "index": 31}, {"bbox": [72, 74, 541, 88], "spans": [{"bbox": [72, 74, 303, 88], "score": 1.0, "content": "whose diagram is the transpose of that for ", "type": "text", "cross_page": true}, {"bbox": [303, 75, 311, 84], "score": 0.88, "content": "\\lambda", "type": "inline_equation", "height": 9, "width": 8, "cross_page": true}, {"bbox": [311, 74, 481, 88], "score": 1.0, "content": ". (For this purpose the algebra ", "type": "text", "cross_page": true}, {"bbox": [482, 75, 495, 86], "score": 0.92, "content": "C_{1}", "type": "inline_equation", "height": 11, "width": 13, "cross_page": true}, {"bbox": [496, 74, 541, 88], "score": 1.0, "content": " may be", "type": "text", "cross_page": true}], "index": 0}, {"bbox": [70, 87, 541, 103], "spans": [{"bbox": [70, 87, 149, 103], "score": 1.0, "content": "identified with ", "type": "text", "cross_page": true}, {"bbox": [149, 90, 164, 101], "score": 0.91, "content": "A_{1}", "type": "inline_equation", "height": 11, "width": 15, "cross_page": true}, {"bbox": [164, 87, 246, 103], "score": 1.0, "content": ".) For example,", "type": "text", "cross_page": true}, {"bbox": [247, 87, 304, 101], "score": 0.94, "content": "\\tau\\Lambda_{a}=a\\tilde{\\Lambda}_{1}", "type": "inline_equation", "height": 14, "width": 57, "cross_page": true}, {"bbox": [304, 87, 541, 103], "score": 1.0, "content": ", where we use tilde\u2019s to denote the quantities", "type": "text", "cross_page": true}], "index": 1}, {"bbox": [70, 102, 394, 117], "spans": [{"bbox": [70, 102, 84, 117], "score": 1.0, "content": "of ", "type": "text", "cross_page": true}, {"bbox": [85, 104, 107, 117], "score": 0.93, "content": "C_{k,r}", "type": "inline_equation", "height": 13, "width": 22, "cross_page": true}, {"bbox": [107, 102, 157, 117], "score": 1.0, "content": ". In fact, ", "type": "text", "cross_page": true}, {"bbox": [157, 103, 286, 117], "score": 0.94, "content": "\\tau:P_{+}(C_{r,k})\\rightarrow P_{+}(C_{k,r})", "type": "inline_equation", "height": 14, "width": 129, "cross_page": true}, {"bbox": [286, 102, 394, 117], "score": 1.0, "content": " is a bijection. Then", "type": "text", "cross_page": true}], "index": 2}], "index": 30.5, "page_num": "page_9", "page_size": [612.0, 792.0], "bbox_fs": [71, 683, 541, 719]}]} |
|
0002044v1 | 14 | There are Galois fusion-symmetries at levels $$k=3$$ and 4. In particular, for $$k=3$$ we
have the fusion-symmetry $$\pi_{3}=\pi\{5\}$$ which interchanges both $$\Lambda_{2}\leftrightarrow\Lambda_{4}$$ and $$\Lambda_{1}\leftrightarrow3\Lambda_{4}$$ ,
and fixes the other five weights in $$P_{+}$$ . The exceptional $$\pi_{3}$$ was found independently
in [34,14]. For $$k\,=\,4$$ we get a fusion-symmetry of order 4, which we will call $$\pi_{4}$$ . It
fixes 0, $$\Lambda_{2}+\Lambda_{4}$$ , $$\Lambda_{3}+\Lambda_{4}$$ , and $$2\Lambda_{4}$$ , and permutes $$\Lambda_{4}\;\mapsto\;\Lambda_{1}\;\mapsto\;2\Lambda_{1}\;\mapsto\;4\Lambda_{4}\;\mapsto\;\Lambda_{4}$$ ,
$$\Lambda_{2}\mapsto2\Lambda_{3}\mapsto3\Lambda_{4}\mapsto\Lambda_{3}\mapsto\Lambda_{2}$$ , and $$\Lambda_{1}\!+\!\Lambda_{3}\mapsto\Lambda_{3}\!+\!2\Lambda_{4}\mapsto\Lambda_{1}\!+\!\Lambda_{4}\mapsto\Lambda_{1}+2\Lambda_{4}\mapsto\Lambda_{1}\!+\!\Lambda_{3}$$ .
Its square $$\pi_{4}^{2}$$ equals the fusion-symmetry $$\pi\{5\}$$ .
The only fusion products we need can be obtained from [29] and (2.4):
$$\Lambda_{4}$$ × $$\Lambda_{4}=(0)_{1}$$ + $$(\Lambda_{1})_{2}$$ + $$(\Lambda_{3})_{2}$$ + $$(\Lambda_{4})_{1}$$ + $$(2\Lambda_{4})_{2}$$
$$\Lambda_{1}$$ × $$\Lambda_{4}=(\Lambda_{3})_{2}$$ + $$(\Lambda_{4})_{2}$$ + $$(\Lambda_{1}+\Lambda_{4})_{3}$$
$$\Lambda_{3}$$ × $$\Lambda_{4}=(\Lambda_{1})_{2}$$ + $$(\Lambda_{2})_{3}$$ + $$(\Lambda_{3})_{2}$$ + $$(\Lambda_{4})_{2}$$ + $$(\Lambda_{1}+\Lambda_{4})_{3}$$ + $$(\Lambda_{3}+\Lambda_{4})_{3}$$ + $$(2\Lambda_{4})_{2}$$
$$(2\Lambda_{4})$$ × $$\Lambda_{4}=(\Lambda_{3})_{2}$$ + $$(\Lambda_{4})_{2}$$ + $$(2\Lambda_{4})_{2}$$ + $$(3\Lambda_{4})_{3}$$ + $$(\Lambda_{1}+\Lambda_{4})_{3}$$ + $$(\Lambda_{3}+\Lambda_{4})_{3}$$
Theorem 3.F4. The only nontrivial fusion-symmetries of $${F}_{4}^{(1)}$$ are $$\pi_{3}$$ at level 3, and
$$\pi_{4}^{i}$$ for $$1\leq i\leq3$$ , which occur at level 4.
# 3.9. The algebra $${G_{2}^{(1)}}$$
A weight $$\lambda$$ in $$P_{+}$$ satisfies $$k=\lambda_{0}+2\lambda_{1}+\lambda_{2}$$ , and $$\kappa=k+4$$ . The conjugations and
simple-currents are all trivial.
Again there are nontrivial Galois fusion-symmetries. At $$k=3$$ , we have the order 3
fusion-symmetry $$\pi_{3}=\pi\{4\}$$ sending $$\Lambda_{1}\mapsto3\Lambda_{2}\mapsto\Lambda_{2}\mapsto\Lambda_{1}$$ , and fixing the remaining three
weights. It was found in [14]. At $$k=4$$ , we have $$\pi_{4}=\pi\{5\}$$ permuting both $$\Lambda_{1}\leftrightarrow4\Lambda_{2}$$
and $$2\Lambda_{1}\leftrightarrow\Lambda_{2}$$ , and fixing the other five weights. It was found independently in [34,14],
and in $$\S5$$ we will see that it is closely related to the $$\pi_{3}$$ of $$F_{4,3}$$ .
The only fusion products we will need can be obtained from [29] and (2.4):
$$\Lambda_{2}$$ × $$\Lambda_{2}=(0)_{1}$$ + $$(\Lambda_{1})_{2}$$ + $$(\Lambda_{2})_{1}$$ + $$(2\Lambda_{2})_{2}$$
$$\Lambda_{2}$$ × $$\Lambda_{2}$$ × $$\Lambda_{2}=(0)_{1}$$ + $$2\,\pmb{\nabla}\,(\Lambda_{1})_{22}$$ + $$4\,\pmb{\mathrm{{E}}}\left(\Lambda_{2}\right)_{1122}$$ + $$3\,\pm\,(2\Lambda_{2})_{222}$$ + $$2\,\Xi\,(\Lambda_{1}+\Lambda_{2})_{33}$$ + $$(3\Lambda_{2})_{3}$$
Theorem 3.G2. The only nontrivial fusion-symmetries for $${G_{2}^{(1)}}$$ are $$(\pi_{3})^{\pm1}$$ at $$k=3$$ ,
and $$\pi_{4}$$ at $$k=4$$ .
# 4. The Arguments
The fundamental reason the classification of fusion-symmetries for the affine algebras
is so accessible is (2.1b), which reduces the problem to studying Lie group characters at
elements of finite order. These values have been studied by a number of people — see e.g.
[22,28] — and the resulting combinatorics is often quite pretty.
Lemma 2.2 implies that a fusion-symmetry $$\pi$$ preserves q-dimensions: $${\mathcal{D}}(\lambda)={\mathcal{D}}(\pi\lambda)$$
$$\forall\lambda\in P_{+}$$ . In this subsection we use that to find a weight $$\Lambda_{\star}$$ for each algebra which must
be essentially fixed by $$\pi$$ .
| <p>There are Galois fusion-symmetries at levels $$k=3$$ and 4. In particular, for $$k=3$$ we
have the fusion-symmetry $$\pi_{3}=\pi\{5\}$$ which interchanges both $$\Lambda_{2}\leftrightarrow\Lambda_{4}$$ and $$\Lambda_{1}\leftrightarrow3\Lambda_{4}$$ ,
and fixes the other five weights in $$P_{+}$$ . The exceptional $$\pi_{3}$$ was found independently
in [34,14]. For $$k\,=\,4$$ we get a fusion-symmetry of order 4, which we will call $$\pi_{4}$$ . It
fixes 0, $$\Lambda_{2}+\Lambda_{4}$$ , $$\Lambda_{3}+\Lambda_{4}$$ , and $$2\Lambda_{4}$$ , and permutes $$\Lambda_{4}\;\mapsto\;\Lambda_{1}\;\mapsto\;2\Lambda_{1}\;\mapsto\;4\Lambda_{4}\;\mapsto\;\Lambda_{4}$$ ,
$$\Lambda_{2}\mapsto2\Lambda_{3}\mapsto3\Lambda_{4}\mapsto\Lambda_{3}\mapsto\Lambda_{2}$$ , and $$\Lambda_{1}\!+\!\Lambda_{3}\mapsto\Lambda_{3}\!+\!2\Lambda_{4}\mapsto\Lambda_{1}\!+\!\Lambda_{4}\mapsto\Lambda_{1}+2\Lambda_{4}\mapsto\Lambda_{1}\!+\!\Lambda_{3}$$ .
Its square $$\pi_{4}^{2}$$ equals the fusion-symmetry $$\pi\{5\}$$ .</p>
<p>The only fusion products we need can be obtained from [29] and (2.4):</p>
<p>$$\Lambda_{4}$$ × $$\Lambda_{4}=(0)_{1}$$ + $$(\Lambda_{1})_{2}$$ + $$(\Lambda_{3})_{2}$$ + $$(\Lambda_{4})_{1}$$ + $$(2\Lambda_{4})_{2}$$
$$\Lambda_{1}$$ × $$\Lambda_{4}=(\Lambda_{3})_{2}$$ + $$(\Lambda_{4})_{2}$$ + $$(\Lambda_{1}+\Lambda_{4})_{3}$$
$$\Lambda_{3}$$ × $$\Lambda_{4}=(\Lambda_{1})_{2}$$ + $$(\Lambda_{2})_{3}$$ + $$(\Lambda_{3})_{2}$$ + $$(\Lambda_{4})_{2}$$ + $$(\Lambda_{1}+\Lambda_{4})_{3}$$ + $$(\Lambda_{3}+\Lambda_{4})_{3}$$ + $$(2\Lambda_{4})_{2}$$
$$(2\Lambda_{4})$$ × $$\Lambda_{4}=(\Lambda_{3})_{2}$$ + $$(\Lambda_{4})_{2}$$ + $$(2\Lambda_{4})_{2}$$ + $$(3\Lambda_{4})_{3}$$ + $$(\Lambda_{1}+\Lambda_{4})_{3}$$ + $$(\Lambda_{3}+\Lambda_{4})_{3}$$</p>
<p>Theorem 3.F4. The only nontrivial fusion-symmetries of $${F}_{4}^{(1)}$$ are $$\pi_{3}$$ at level 3, and
$$\pi_{4}^{i}$$ for $$1\leq i\leq3$$ , which occur at level 4.</p>
<h1>3.9. The algebra $${G_{2}^{(1)}}$$</h1>
<p>A weight $$\lambda$$ in $$P_{+}$$ satisfies $$k=\lambda_{0}+2\lambda_{1}+\lambda_{2}$$ , and $$\kappa=k+4$$ . The conjugations and
simple-currents are all trivial.</p>
<p>Again there are nontrivial Galois fusion-symmetries. At $$k=3$$ , we have the order 3
fusion-symmetry $$\pi_{3}=\pi\{4\}$$ sending $$\Lambda_{1}\mapsto3\Lambda_{2}\mapsto\Lambda_{2}\mapsto\Lambda_{1}$$ , and fixing the remaining three
weights. It was found in [14]. At $$k=4$$ , we have $$\pi_{4}=\pi\{5\}$$ permuting both $$\Lambda_{1}\leftrightarrow4\Lambda_{2}$$
and $$2\Lambda_{1}\leftrightarrow\Lambda_{2}$$ , and fixing the other five weights. It was found independently in [34,14],
and in $$\S5$$ we will see that it is closely related to the $$\pi_{3}$$ of $$F_{4,3}$$ .</p>
<p>The only fusion products we will need can be obtained from [29] and (2.4):</p>
<p>$$\Lambda_{2}$$ × $$\Lambda_{2}=(0)_{1}$$ + $$(\Lambda_{1})_{2}$$ + $$(\Lambda_{2})_{1}$$ + $$(2\Lambda_{2})_{2}$$
$$\Lambda_{2}$$ × $$\Lambda_{2}$$ × $$\Lambda_{2}=(0)_{1}$$ + $$2\,\pmb{\nabla}\,(\Lambda_{1})_{22}$$ + $$4\,\pmb{\mathrm{{E}}}\left(\Lambda_{2}\right)_{1122}$$ + $$3\,\pm\,(2\Lambda_{2})_{222}$$ + $$2\,\Xi\,(\Lambda_{1}+\Lambda_{2})_{33}$$ + $$(3\Lambda_{2})_{3}$$</p>
<p>Theorem 3.G2. The only nontrivial fusion-symmetries for $${G_{2}^{(1)}}$$ are $$(\pi_{3})^{\pm1}$$ at $$k=3$$ ,
and $$\pi_{4}$$ at $$k=4$$ .</p>
<h1>4. The Arguments</h1>
<p>The fundamental reason the classification of fusion-symmetries for the affine algebras
is so accessible is (2.1b), which reduces the problem to studying Lie group characters at
elements of finite order. These values have been studied by a number of people — see e.g.
[22,28] — and the resulting combinatorics is often quite pretty.</p>
<p>Lemma 2.2 implies that a fusion-symmetry $$\pi$$ preserves q-dimensions: $${\mathcal{D}}(\lambda)={\mathcal{D}}(\pi\lambda)$$
$$\forall\lambda\in P_{+}$$ . In this subsection we use that to find a weight $$\Lambda_{\star}$$ for each algebra which must
be essentially fixed by $$\pi$$ .</p>
| [{"type": "text", "coordinates": [70, 70, 541, 172], "content": "There are Galois fusion-symmetries at levels $$k=3$$ and 4. In particular, for $$k=3$$ we\nhave the fusion-symmetry $$\\pi_{3}=\\pi\\{5\\}$$ which interchanges both $$\\Lambda_{2}\\leftrightarrow\\Lambda_{4}$$ and $$\\Lambda_{1}\\leftrightarrow3\\Lambda_{4}$$ ,\nand fixes the other five weights in $$P_{+}$$ . The exceptional $$\\pi_{3}$$ was found independently\nin [34,14]. For $$k\\,=\\,4$$ we get a fusion-symmetry of order 4, which we will call $$\\pi_{4}$$ . It\nfixes 0, $$\\Lambda_{2}+\\Lambda_{4}$$ , $$\\Lambda_{3}+\\Lambda_{4}$$ , and $$2\\Lambda_{4}$$ , and permutes $$\\Lambda_{4}\\;\\mapsto\\;\\Lambda_{1}\\;\\mapsto\\;2\\Lambda_{1}\\;\\mapsto\\;4\\Lambda_{4}\\;\\mapsto\\;\\Lambda_{4}$$ ,\n$$\\Lambda_{2}\\mapsto2\\Lambda_{3}\\mapsto3\\Lambda_{4}\\mapsto\\Lambda_{3}\\mapsto\\Lambda_{2}$$ , and $$\\Lambda_{1}\\!+\\!\\Lambda_{3}\\mapsto\\Lambda_{3}\\!+\\!2\\Lambda_{4}\\mapsto\\Lambda_{1}\\!+\\!\\Lambda_{4}\\mapsto\\Lambda_{1}+2\\Lambda_{4}\\mapsto\\Lambda_{1}\\!+\\!\\Lambda_{3}$$ .\nIts square $$\\pi_{4}^{2}$$ equals the fusion-symmetry $$\\pi\\{5\\}$$ .", "block_type": "text", "index": 1}, {"type": "text", "coordinates": [95, 172, 467, 186], "content": "The only fusion products we need can be obtained from [29] and (2.4):", "block_type": "text", "index": 2}, {"type": "text", "coordinates": [86, 197, 531, 270], "content": "$$\\Lambda_{4}$$ \u00d7 $$\\Lambda_{4}=(0)_{1}$$ + $$(\\Lambda_{1})_{2}$$ + $$(\\Lambda_{3})_{2}$$ + $$(\\Lambda_{4})_{1}$$ + $$(2\\Lambda_{4})_{2}$$\n$$\\Lambda_{1}$$ \u00d7 $$\\Lambda_{4}=(\\Lambda_{3})_{2}$$ + $$(\\Lambda_{4})_{2}$$ + $$(\\Lambda_{1}+\\Lambda_{4})_{3}$$\n$$\\Lambda_{3}$$ \u00d7 $$\\Lambda_{4}=(\\Lambda_{1})_{2}$$ + $$(\\Lambda_{2})_{3}$$ + $$(\\Lambda_{3})_{2}$$ + $$(\\Lambda_{4})_{2}$$ + $$(\\Lambda_{1}+\\Lambda_{4})_{3}$$ + $$(\\Lambda_{3}+\\Lambda_{4})_{3}$$ + $$(2\\Lambda_{4})_{2}$$\n$$(2\\Lambda_{4})$$ \u00d7 $$\\Lambda_{4}=(\\Lambda_{3})_{2}$$ + $$(\\Lambda_{4})_{2}$$ + $$(2\\Lambda_{4})_{2}$$ + $$(3\\Lambda_{4})_{3}$$ + $$(\\Lambda_{1}+\\Lambda_{4})_{3}$$ + $$(\\Lambda_{3}+\\Lambda_{4})_{3}$$", "block_type": "text", "index": 3}, {"type": "text", "coordinates": [71, 282, 542, 312], "content": "Theorem 3.F4. The only nontrivial fusion-symmetries of $${F}_{4}^{(1)}$$ are $$\\pi_{3}$$ at level 3, and\n$$\\pi_{4}^{i}$$ for $$1\\leq i\\leq3$$ , which occur at level 4.", "block_type": "text", "index": 4}, {"type": "title", "coordinates": [71, 326, 183, 343], "content": "3.9. The algebra $${G_{2}^{(1)}}$$", "block_type": "title", "index": 5}, {"type": "text", "coordinates": [70, 350, 541, 378], "content": "A weight $$\\lambda$$ in $$P_{+}$$ satisfies $$k=\\lambda_{0}+2\\lambda_{1}+\\lambda_{2}$$ , and $$\\kappa=k+4$$ . The conjugations and\nsimple-currents are all trivial.", "block_type": "text", "index": 6}, {"type": "text", "coordinates": [70, 379, 541, 451], "content": "Again there are nontrivial Galois fusion-symmetries. At $$k=3$$ , we have the order 3\nfusion-symmetry $$\\pi_{3}=\\pi\\{4\\}$$ sending $$\\Lambda_{1}\\mapsto3\\Lambda_{2}\\mapsto\\Lambda_{2}\\mapsto\\Lambda_{1}$$ , and fixing the remaining three\nweights. It was found in [14]. At $$k=4$$ , we have $$\\pi_{4}=\\pi\\{5\\}$$ permuting both $$\\Lambda_{1}\\leftrightarrow4\\Lambda_{2}$$\nand $$2\\Lambda_{1}\\leftrightarrow\\Lambda_{2}$$ , and fixing the other five weights. It was found independently in [34,14],\nand in $$\\S5$$ we will see that it is closely related to the $$\\pi_{3}$$ of $$F_{4,3}$$ .", "block_type": "text", "index": 7}, {"type": "text", "coordinates": [95, 451, 490, 466], "content": "The only fusion products we will need can be obtained from [29] and (2.4):", "block_type": "text", "index": 8}, {"type": "text", "coordinates": [66, 477, 545, 513], "content": "$$\\Lambda_{2}$$ \u00d7 $$\\Lambda_{2}=(0)_{1}$$ + $$(\\Lambda_{1})_{2}$$ + $$(\\Lambda_{2})_{1}$$ + $$(2\\Lambda_{2})_{2}$$\n$$\\Lambda_{2}$$ \u00d7 $$\\Lambda_{2}$$ \u00d7 $$\\Lambda_{2}=(0)_{1}$$ + $$2\\,\\pmb{\\nabla}\\,(\\Lambda_{1})_{22}$$ + $$4\\,\\pmb{\\mathrm{{E}}}\\left(\\Lambda_{2}\\right)_{1122}$$ + $$3\\,\\pm\\,(2\\Lambda_{2})_{222}$$ + $$2\\,\\Xi\\,(\\Lambda_{1}+\\Lambda_{2})_{33}$$ + $$(3\\Lambda_{2})_{3}$$", "block_type": "text", "index": 9}, {"type": "text", "coordinates": [70, 525, 542, 556], "content": "Theorem 3.G2. The only nontrivial fusion-symmetries for $${G_{2}^{(1)}}$$ are $$(\\pi_{3})^{\\pm1}$$ at $$k=3$$ ,\nand $$\\pi_{4}$$ at $$k=4$$ .", "block_type": "text", "index": 10}, {"type": "title", "coordinates": [249, 583, 362, 598], "content": "4. The Arguments", "block_type": "title", "index": 11}, {"type": "text", "coordinates": [70, 612, 541, 669], "content": "The fundamental reason the classification of fusion-symmetries for the affine algebras\nis so accessible is (2.1b), which reduces the problem to studying Lie group characters at\nelements of finite order. These values have been studied by a number of people \u2014 see e.g.\n[22,28] \u2014 and the resulting combinatorics is often quite pretty.", "block_type": "text", "index": 12}, {"type": "text", "coordinates": [69, 670, 540, 713], "content": "Lemma 2.2 implies that a fusion-symmetry $$\\pi$$ preserves q-dimensions: $${\\mathcal{D}}(\\lambda)={\\mathcal{D}}(\\pi\\lambda)$$\n$$\\forall\\lambda\\in P_{+}$$ . In this subsection we use that to find a weight $$\\Lambda_{\\star}$$ for each algebra which must\nbe essentially fixed by $$\\pi$$ .", "block_type": "text", "index": 13}] | [{"type": "text", "coordinates": [94, 73, 330, 88], "content": "There are Galois fusion-symmetries at levels ", "score": 1.0, "index": 1}, {"type": "inline_equation", "coordinates": [331, 75, 360, 84], "content": "k=3", "score": 0.91, "index": 2}, {"type": "text", "coordinates": [360, 73, 492, 88], "content": " and 4. In particular, for ", "score": 1.0, "index": 3}, {"type": "inline_equation", "coordinates": [493, 75, 522, 84], "content": "k=3", "score": 0.91, "index": 4}, {"type": "text", "coordinates": [522, 73, 541, 88], "content": " we", "score": 1.0, "index": 5}, {"type": "text", "coordinates": [70, 87, 212, 104], "content": "have the fusion-symmetry ", "score": 1.0, "index": 6}, {"type": "inline_equation", "coordinates": [212, 89, 268, 101], "content": "\\pi_{3}=\\pi\\{5\\}", "score": 0.94, "index": 7}, {"type": "text", "coordinates": [268, 87, 405, 104], "content": " which interchanges both ", "score": 1.0, "index": 8}, {"type": "inline_equation", "coordinates": [405, 90, 453, 100], "content": "\\Lambda_{2}\\leftrightarrow\\Lambda_{4}", "score": 0.92, "index": 9}, {"type": "text", "coordinates": [454, 87, 481, 104], "content": " and ", "score": 1.0, "index": 10}, {"type": "inline_equation", "coordinates": [482, 90, 536, 101], "content": "\\Lambda_{1}\\leftrightarrow3\\Lambda_{4}", "score": 0.91, "index": 11}, {"type": "text", "coordinates": [537, 87, 540, 104], "content": ",", "score": 1.0, "index": 12}, {"type": "text", "coordinates": [70, 101, 265, 118], "content": "and fixes the other five weights in ", "score": 1.0, "index": 13}, {"type": "inline_equation", "coordinates": [265, 104, 281, 116], "content": "P_{+}", "score": 0.92, "index": 14}, {"type": "text", "coordinates": [282, 101, 387, 118], "content": ". The exceptional ", "score": 1.0, "index": 15}, {"type": "inline_equation", "coordinates": [387, 108, 399, 115], "content": "\\pi_{3}", "score": 0.88, "index": 16}, {"type": "text", "coordinates": [399, 101, 540, 118], "content": " was found independently", "score": 1.0, "index": 17}, {"type": "text", "coordinates": [69, 116, 156, 132], "content": "in [34,14]. For ", "score": 1.0, "index": 18}, {"type": "inline_equation", "coordinates": [156, 118, 191, 128], "content": "k\\,=\\,4", "score": 0.87, "index": 19}, {"type": "text", "coordinates": [191, 116, 505, 132], "content": " we get a fusion-symmetry of order 4, which we will call ", "score": 1.0, "index": 20}, {"type": "inline_equation", "coordinates": [505, 122, 517, 129], "content": "\\pi_{4}", "score": 0.79, "index": 21}, {"type": "text", "coordinates": [518, 116, 542, 132], "content": ". It", "score": 1.0, "index": 22}, {"type": "text", "coordinates": [69, 130, 114, 146], "content": "fixes 0, ", "score": 1.0, "index": 23}, {"type": "inline_equation", "coordinates": [115, 131, 160, 144], "content": "\\Lambda_{2}+\\Lambda_{4}", "score": 0.87, "index": 24}, {"type": "text", "coordinates": [161, 130, 168, 146], "content": ", ", "score": 1.0, "index": 25}, {"type": "inline_equation", "coordinates": [169, 131, 214, 144], "content": "\\Lambda_{3}+\\Lambda_{4}", "score": 0.87, "index": 26}, {"type": "text", "coordinates": [215, 130, 248, 146], "content": ", and ", "score": 1.0, "index": 27}, {"type": "inline_equation", "coordinates": [248, 131, 269, 144], "content": "2\\Lambda_{4}", "score": 0.88, "index": 28}, {"type": "text", "coordinates": [269, 130, 356, 146], "content": ", and permutes ", "score": 1.0, "index": 29}, {"type": "inline_equation", "coordinates": [356, 132, 536, 144], "content": "\\Lambda_{4}\\;\\mapsto\\;\\Lambda_{1}\\;\\mapsto\\;2\\Lambda_{1}\\;\\mapsto\\;4\\Lambda_{4}\\;\\mapsto\\;\\Lambda_{4}", "score": 0.92, "index": 30}, {"type": "text", "coordinates": [537, 130, 541, 146], "content": ",", "score": 1.0, "index": 31}, {"type": "inline_equation", "coordinates": [71, 145, 226, 158], "content": "\\Lambda_{2}\\mapsto2\\Lambda_{3}\\mapsto3\\Lambda_{4}\\mapsto\\Lambda_{3}\\mapsto\\Lambda_{2}", "score": 0.92, "index": 32}, {"type": "text", "coordinates": [227, 145, 256, 160], "content": ", and ", "score": 1.0, "index": 33}, {"type": "inline_equation", "coordinates": [256, 146, 536, 158], "content": "\\Lambda_{1}\\!+\\!\\Lambda_{3}\\mapsto\\Lambda_{3}\\!+\\!2\\Lambda_{4}\\mapsto\\Lambda_{1}\\!+\\!\\Lambda_{4}\\mapsto\\Lambda_{1}+2\\Lambda_{4}\\mapsto\\Lambda_{1}\\!+\\!\\Lambda_{3}", "score": 0.81, "index": 34}, {"type": "text", "coordinates": [537, 145, 540, 160], "content": ".", "score": 1.0, "index": 35}, {"type": "text", "coordinates": [70, 159, 126, 174], "content": "Its square ", "score": 1.0, "index": 36}, {"type": "inline_equation", "coordinates": [126, 159, 140, 173], "content": "\\pi_{4}^{2}", "score": 0.89, "index": 37}, {"type": "text", "coordinates": [140, 159, 290, 174], "content": " equals the fusion-symmetry ", "score": 1.0, "index": 38}, {"type": "inline_equation", "coordinates": [290, 159, 317, 173], "content": "\\pi\\{5\\}", "score": 0.92, "index": 39}, {"type": "text", "coordinates": [317, 159, 321, 174], "content": ".", "score": 1.0, "index": 40}, {"type": "text", "coordinates": [95, 173, 466, 189], "content": "The only fusion products we need can be obtained from [29] and (2.4):", "score": 1.0, "index": 41}, {"type": "inline_equation", "coordinates": [97, 201, 112, 215], "content": "\\Lambda_{4}", "score": 0.85, "index": 42}, {"type": "text", "coordinates": [113, 200, 128, 217], "content": " \u00d7", "score": 1.0, "index": 43}, {"type": "inline_equation", "coordinates": [128, 200, 179, 216], "content": "\\Lambda_{4}=(0)_{1}", "score": 0.92, "index": 44}, {"type": "text", "coordinates": [180, 200, 196, 217], "content": " + ", "score": 1.0, "index": 45}, {"type": "inline_equation", "coordinates": [196, 201, 226, 216], "content": "(\\Lambda_{1})_{2}", "score": 0.9, "index": 46}, {"type": "text", "coordinates": [226, 200, 243, 217], "content": " + ", "score": 1.0, "index": 47}, {"type": "inline_equation", "coordinates": [243, 200, 272, 216], "content": "(\\Lambda_{3})_{2}", "score": 0.9, "index": 48}, {"type": "text", "coordinates": [273, 200, 289, 217], "content": " + ", "score": 1.0, "index": 49}, {"type": "inline_equation", "coordinates": [290, 200, 318, 216], "content": "(\\Lambda_{4})_{1}", "score": 0.85, "index": 50}, {"type": "text", "coordinates": [319, 200, 336, 217], "content": " + ", "score": 1.0, "index": 51}, {"type": "inline_equation", "coordinates": [336, 201, 371, 216], "content": "(2\\Lambda_{4})_{2}", "score": 0.8, "index": 52}, {"type": "inline_equation", "coordinates": [97, 219, 112, 233], "content": "\\Lambda_{1}", "score": 0.88, "index": 53}, {"type": "text", "coordinates": [112, 220, 128, 235], "content": " \u00d7", "score": 1.0, "index": 54}, {"type": "inline_equation", "coordinates": [129, 219, 187, 234], "content": "\\Lambda_{4}=(\\Lambda_{3})_{2}", "score": 0.92, "index": 55}, {"type": "text", "coordinates": [187, 220, 204, 235], "content": " + ", "score": 1.0, "index": 56}, {"type": "inline_equation", "coordinates": [204, 219, 234, 234], "content": "(\\Lambda_{4})_{2}", "score": 0.9, "index": 57}, {"type": "text", "coordinates": [234, 220, 250, 235], "content": " + ", "score": 1.0, "index": 58}, {"type": "inline_equation", "coordinates": [250, 219, 309, 234], "content": "(\\Lambda_{1}+\\Lambda_{4})_{3}", "score": 0.88, "index": 59}, {"type": "inline_equation", "coordinates": [97, 237, 112, 251], "content": "\\Lambda_{3}", "score": 0.88, "index": 60}, {"type": "text", "coordinates": [113, 237, 128, 253], "content": " \u00d7", "score": 1.0, "index": 61}, {"type": "inline_equation", "coordinates": [128, 236, 187, 252], "content": "\\Lambda_{4}=(\\Lambda_{1})_{2}", "score": 0.93, "index": 62}, {"type": "text", "coordinates": [187, 237, 204, 253], "content": " + ", "score": 1.0, "index": 63}, {"type": "inline_equation", "coordinates": [204, 236, 234, 252], "content": "(\\Lambda_{2})_{3}", "score": 0.92, "index": 64}, {"type": "text", "coordinates": [234, 237, 250, 253], "content": " + ", "score": 1.0, "index": 65}, {"type": "inline_equation", "coordinates": [251, 236, 280, 252], "content": "(\\Lambda_{3})_{2}", "score": 0.92, "index": 66}, {"type": "text", "coordinates": [280, 237, 297, 253], "content": " + ", "score": 1.0, "index": 67}, {"type": "inline_equation", "coordinates": [297, 236, 326, 252], "content": "(\\Lambda_{4})_{2}", "score": 0.92, "index": 68}, {"type": "text", "coordinates": [327, 237, 343, 253], "content": " + ", "score": 1.0, "index": 69}, {"type": "inline_equation", "coordinates": [344, 236, 402, 252], "content": "(\\Lambda_{1}+\\Lambda_{4})_{3}", "score": 0.91, "index": 70}, {"type": "text", "coordinates": [402, 237, 418, 253], "content": " + ", "score": 1.0, "index": 71}, {"type": "inline_equation", "coordinates": [419, 236, 476, 252], "content": "(\\Lambda_{3}+\\Lambda_{4})_{3}", "score": 0.91, "index": 72}, {"type": "text", "coordinates": [477, 237, 493, 253], "content": " + ", "score": 1.0, "index": 73}, {"type": "inline_equation", "coordinates": [493, 236, 529, 252], "content": "(2\\Lambda_{4})_{2}", "score": 0.88, "index": 74}, {"type": "inline_equation", "coordinates": [82, 254, 111, 270], "content": "(2\\Lambda_{4})", "score": 0.88, "index": 75}, {"type": "text", "coordinates": [112, 254, 128, 271], "content": " \u00d7", "score": 1.0, "index": 76}, {"type": "inline_equation", "coordinates": [128, 254, 187, 270], "content": "\\Lambda_{4}=(\\Lambda_{3})_{2}", "score": 0.93, "index": 77}, {"type": "text", "coordinates": [187, 254, 204, 271], "content": " + ", "score": 1.0, "index": 78}, {"type": "inline_equation", "coordinates": [204, 254, 234, 270], "content": "(\\Lambda_{4})_{2}", "score": 0.91, "index": 79}, {"type": "text", "coordinates": [234, 254, 251, 271], "content": " + ", "score": 1.0, "index": 80}, {"type": "inline_equation", "coordinates": [251, 254, 286, 270], "content": "(2\\Lambda_{4})_{2}", "score": 0.91, "index": 81}, {"type": "text", "coordinates": [286, 254, 303, 271], "content": " + ", "score": 1.0, "index": 82}, {"type": "inline_equation", "coordinates": [304, 254, 339, 270], "content": "(3\\Lambda_{4})_{3}", "score": 0.91, "index": 83}, {"type": "text", "coordinates": [339, 254, 355, 271], "content": " + ", "score": 1.0, "index": 84}, {"type": "inline_equation", "coordinates": [356, 254, 414, 270], "content": "(\\Lambda_{1}+\\Lambda_{4})_{3}", "score": 0.9, "index": 85}, {"type": "text", "coordinates": [414, 254, 430, 271], "content": " + ", "score": 1.0, "index": 86}, {"type": "inline_equation", "coordinates": [431, 254, 488, 270], "content": "(\\Lambda_{3}+\\Lambda_{4})_{3}", "score": 0.85, "index": 87}, {"type": "text", "coordinates": [90, 281, 403, 306], "content": "Theorem 3.F4. The only nontrivial fusion-symmetries of ", "score": 1.0, "index": 88}, {"type": "inline_equation", "coordinates": [403, 282, 427, 300], "content": "{F}_{4}^{(1)}", "score": 0.92, "index": 89}, {"type": "text", "coordinates": [427, 281, 449, 306], "content": "are ", "score": 1.0, "index": 90}, {"type": "inline_equation", "coordinates": [449, 287, 463, 299], "content": "\\pi_{3}", "score": 0.83, "index": 91}, {"type": "text", "coordinates": [464, 281, 542, 306], "content": " at level 3, and", "score": 1.0, "index": 92}, {"type": "inline_equation", "coordinates": [70, 299, 84, 314], "content": "\\pi_{4}^{i}", "score": 0.9, "index": 93}, {"type": "text", "coordinates": [84, 300, 105, 315], "content": " for", "score": 1.0, "index": 94}, {"type": "inline_equation", "coordinates": [106, 300, 156, 313], "content": "1\\leq i\\leq3", "score": 0.88, "index": 95}, {"type": "text", "coordinates": [156, 300, 281, 315], "content": ", which occur at level 4.", "score": 1.0, "index": 96}, {"type": "text", "coordinates": [67, 328, 160, 348], "content": "3.9. The algebra ", "score": 1.0, "index": 97}, {"type": "inline_equation", "coordinates": [161, 327, 183, 345], "content": "{G_{2}^{(1)}}", "score": 0.91, "index": 98}, {"type": "text", "coordinates": [93, 352, 146, 368], "content": "A weight ", "score": 1.0, "index": 99}, {"type": "inline_equation", "coordinates": [146, 353, 154, 363], "content": "\\lambda", "score": 0.8, "index": 100}, {"type": "text", "coordinates": [155, 352, 172, 368], "content": " in ", "score": 1.0, "index": 101}, {"type": "inline_equation", "coordinates": [172, 353, 188, 366], "content": "P_{+}", "score": 0.9, "index": 102}, {"type": "text", "coordinates": [188, 352, 235, 368], "content": " satisfies ", "score": 1.0, "index": 103}, {"type": "inline_equation", "coordinates": [236, 352, 333, 365], "content": "k=\\lambda_{0}+2\\lambda_{1}+\\lambda_{2}", "score": 0.92, "index": 104}, {"type": "text", "coordinates": [334, 352, 364, 368], "content": ", and ", "score": 1.0, "index": 105}, {"type": "inline_equation", "coordinates": [364, 354, 416, 364], "content": "\\kappa=k+4", "score": 0.9, "index": 106}, {"type": "text", "coordinates": [416, 352, 542, 368], "content": ". The conjugations and", "score": 1.0, "index": 107}, {"type": "text", "coordinates": [71, 367, 228, 381], "content": "simple-currents are all trivial.", "score": 1.0, "index": 108}, {"type": "text", "coordinates": [95, 381, 396, 396], "content": "Again there are nontrivial Galois fusion-symmetries. At ", "score": 1.0, "index": 109}, {"type": "inline_equation", "coordinates": [396, 383, 427, 392], "content": "k=3", "score": 0.89, "index": 110}, {"type": "text", "coordinates": [427, 381, 541, 396], "content": ", we have the order 3", "score": 1.0, "index": 111}, {"type": "text", "coordinates": [69, 394, 160, 411], "content": "fusion-symmetry", "score": 1.0, "index": 112}, {"type": "inline_equation", "coordinates": [161, 396, 215, 409], "content": "\\pi_{3}=\\pi\\{4\\}", "score": 0.92, "index": 113}, {"type": "text", "coordinates": [216, 394, 259, 411], "content": " sending", "score": 1.0, "index": 114}, {"type": "inline_equation", "coordinates": [260, 397, 377, 408], "content": "\\Lambda_{1}\\mapsto3\\Lambda_{2}\\mapsto\\Lambda_{2}\\mapsto\\Lambda_{1}", "score": 0.92, "index": 115}, {"type": "text", "coordinates": [378, 394, 541, 411], "content": ", and fixing the remaining three", "score": 1.0, "index": 116}, {"type": "text", "coordinates": [71, 409, 252, 425], "content": "weights. It was found in [14]. At ", "score": 1.0, "index": 117}, {"type": "inline_equation", "coordinates": [252, 410, 284, 421], "content": "k=4", "score": 0.87, "index": 118}, {"type": "text", "coordinates": [285, 409, 338, 425], "content": ", we have ", "score": 1.0, "index": 119}, {"type": "inline_equation", "coordinates": [338, 411, 394, 423], "content": "\\pi_{4}=\\pi\\{5\\}", "score": 0.93, "index": 120}, {"type": "text", "coordinates": [394, 409, 485, 425], "content": " permuting both ", "score": 1.0, "index": 121}, {"type": "inline_equation", "coordinates": [485, 412, 540, 423], "content": "\\Lambda_{1}\\leftrightarrow4\\Lambda_{2}", "score": 0.91, "index": 122}, {"type": "text", "coordinates": [70, 423, 94, 439], "content": "and ", "score": 1.0, "index": 123}, {"type": "inline_equation", "coordinates": [94, 424, 149, 437], "content": "2\\Lambda_{1}\\leftrightarrow\\Lambda_{2}", "score": 0.92, "index": 124}, {"type": "text", "coordinates": [150, 423, 541, 439], "content": ", and fixing the other five weights. It was found independently in [34,14],", "score": 1.0, "index": 125}, {"type": "text", "coordinates": [70, 437, 108, 455], "content": "and in ", "score": 1.0, "index": 126}, {"type": "inline_equation", "coordinates": [108, 438, 120, 452], "content": "\\S5", "score": 0.39, "index": 127}, {"type": "text", "coordinates": [121, 437, 345, 455], "content": " we will see that it is closely related to the", "score": 1.0, "index": 128}, {"type": "inline_equation", "coordinates": [345, 440, 359, 451], "content": "\\pi_{3}", "score": 0.84, "index": 129}, {"type": "text", "coordinates": [360, 437, 375, 455], "content": " of", "score": 1.0, "index": 130}, {"type": "inline_equation", "coordinates": [376, 438, 397, 453], "content": "F_{4,3}", "score": 0.91, "index": 131}, {"type": "text", "coordinates": [398, 437, 401, 455], "content": ".", "score": 1.0, "index": 132}, {"type": "text", "coordinates": [95, 452, 489, 468], "content": "The only fusion products we will need can be obtained from [29] and (2.4):", "score": 1.0, "index": 133}, {"type": "inline_equation", "coordinates": [98, 479, 114, 493], "content": "\\Lambda_{2}", "score": 0.87, "index": 134}, {"type": "text", "coordinates": [114, 479, 130, 497], "content": " \u00d7 ", "score": 1.0, "index": 135}, {"type": "inline_equation", "coordinates": [130, 479, 181, 495], "content": "\\Lambda_{2}=(0)_{1}", "score": 0.93, "index": 136}, {"type": "text", "coordinates": [181, 479, 198, 497], "content": " + ", "score": 1.0, "index": 137}, {"type": "inline_equation", "coordinates": [198, 479, 227, 495], "content": "(\\Lambda_{1})_{2}", "score": 0.91, "index": 138}, {"type": "text", "coordinates": [228, 479, 244, 497], "content": " + ", "score": 1.0, "index": 139}, {"type": "inline_equation", "coordinates": [244, 479, 273, 495], "content": "(\\Lambda_{2})_{1}", "score": 0.91, "index": 140}, {"type": "text", "coordinates": [274, 479, 291, 497], "content": " + ", "score": 1.0, "index": 141}, {"type": "inline_equation", "coordinates": [291, 479, 326, 495], "content": "(2\\Lambda_{2})_{2}", "score": 0.89, "index": 142}, {"type": "inline_equation", "coordinates": [66, 497, 82, 511], "content": "\\Lambda_{2}", "score": 0.88, "index": 143}, {"type": "text", "coordinates": [82, 497, 97, 516], "content": " \u00d7", "score": 1.0, "index": 144}, {"type": "inline_equation", "coordinates": [98, 498, 114, 511], "content": "\\Lambda_{2}", "score": 0.9, "index": 145}, {"type": "text", "coordinates": [114, 497, 129, 516], "content": " \u00d7", "score": 1.0, "index": 146}, {"type": "inline_equation", "coordinates": [130, 497, 180, 513], "content": "\\Lambda_{2}=(0)_{1}", "score": 0.94, "index": 147}, {"type": "text", "coordinates": [181, 497, 197, 516], "content": " + ", "score": 1.0, "index": 148}, {"type": "inline_equation", "coordinates": [197, 497, 246, 513], "content": "2\\,\\pmb{\\nabla}\\,(\\Lambda_{1})_{22}", "score": 0.91, "index": 149}, {"type": "text", "coordinates": [246, 497, 262, 516], "content": " +", "score": 1.0, "index": 150}, {"type": "inline_equation", "coordinates": [263, 497, 321, 513], "content": "4\\,\\pmb{\\mathrm{{E}}}\\left(\\Lambda_{2}\\right)_{1122}", "score": 0.87, "index": 151}, {"type": "text", "coordinates": [322, 497, 338, 516], "content": " + ", "score": 1.0, "index": 152}, {"type": "inline_equation", "coordinates": [338, 497, 398, 513], "content": "3\\,\\pm\\,(2\\Lambda_{2})_{222}", "score": 0.89, "index": 153}, {"type": "text", "coordinates": [398, 497, 414, 516], "content": " + ", "score": 1.0, "index": 154}, {"type": "inline_equation", "coordinates": [414, 497, 491, 513], "content": "2\\,\\Xi\\,(\\Lambda_{1}+\\Lambda_{2})_{33}", "score": 0.89, "index": 155}, {"type": "text", "coordinates": [492, 497, 509, 516], "content": " + ", "score": 1.0, "index": 156}, {"type": "inline_equation", "coordinates": [509, 497, 544, 513], "content": "(3\\Lambda_{2})_{3}", "score": 0.89, "index": 157}, {"type": "text", "coordinates": [91, 522, 408, 548], "content": "Theorem 3.G2. The only nontrivial fusion-symmetries for", "score": 1.0, "index": 158}, {"type": "inline_equation", "coordinates": [409, 525, 432, 543], "content": "{G_{2}^{(1)}}", "score": 0.92, "index": 159}, {"type": "text", "coordinates": [433, 522, 455, 548], "content": "are ", "score": 1.0, "index": 160}, {"type": "inline_equation", "coordinates": [455, 527, 490, 543], "content": "(\\pi_{3})^{\\pm1}", "score": 0.91, "index": 161}, {"type": "text", "coordinates": [491, 522, 506, 548], "content": " at ", "score": 1.0, "index": 162}, {"type": "inline_equation", "coordinates": [506, 528, 537, 541], "content": "k=3", "score": 0.87, "index": 163}, {"type": "text", "coordinates": [537, 522, 543, 548], "content": ",", "score": 1.0, "index": 164}, {"type": "text", "coordinates": [72, 544, 93, 557], "content": "and", "score": 1.0, "index": 165}, {"type": "inline_equation", "coordinates": [93, 544, 107, 556], "content": "\\pi_{4}", "score": 0.84, "index": 166}, {"type": "text", "coordinates": [108, 544, 124, 557], "content": " at ", "score": 1.0, "index": 167}, {"type": "inline_equation", "coordinates": [124, 543, 155, 555], "content": "k=4", "score": 0.89, "index": 168}, {"type": "text", "coordinates": [155, 544, 160, 557], "content": ".", "score": 1.0, "index": 169}, {"type": "text", "coordinates": [249, 585, 362, 599], "content": "4. The Arguments", "score": 1.0, "index": 170}, {"type": "text", "coordinates": [95, 614, 540, 628], "content": "The fundamental reason the classification of fusion-symmetries for the affine algebras", "score": 1.0, "index": 171}, {"type": "text", "coordinates": [69, 628, 541, 642], "content": "is so accessible is (2.1b), which reduces the problem to studying Lie group characters at", "score": 1.0, "index": 172}, {"type": "text", "coordinates": [70, 641, 541, 659], "content": "elements of finite order. These values have been studied by a number of people \u2014 see e.g.", "score": 1.0, "index": 173}, {"type": "text", "coordinates": [71, 656, 401, 673], "content": "[22,28] \u2014 and the resulting combinatorics is often quite pretty.", "score": 1.0, "index": 174}, {"type": "text", "coordinates": [93, 671, 325, 686], "content": "Lemma 2.2 implies that a fusion-symmetry ", "score": 1.0, "index": 175}, {"type": "inline_equation", "coordinates": [325, 677, 332, 682], "content": "\\pi", "score": 0.87, "index": 176}, {"type": "text", "coordinates": [333, 671, 464, 686], "content": " preserves q-dimensions: ", "score": 1.0, "index": 177}, {"type": "inline_equation", "coordinates": [464, 673, 540, 685], "content": "{\\mathcal{D}}(\\lambda)={\\mathcal{D}}(\\pi\\lambda)", "score": 0.94, "index": 178}, {"type": "inline_equation", "coordinates": [70, 688, 116, 699], "content": "\\forall\\lambda\\in P_{+}", "score": 0.92, "index": 179}, {"type": "text", "coordinates": [116, 686, 373, 701], "content": ". In this subsection we use that to find a weight ", "score": 1.0, "index": 180}, {"type": "inline_equation", "coordinates": [374, 688, 387, 698], "content": "\\Lambda_{\\star}", "score": 0.92, "index": 181}, {"type": "text", "coordinates": [388, 686, 540, 701], "content": "for each algebra which must", "score": 1.0, "index": 182}, {"type": "text", "coordinates": [70, 700, 190, 715], "content": "be essentially fixed by ", "score": 1.0, "index": 183}, {"type": "inline_equation", "coordinates": [190, 705, 198, 711], "content": "\\pi", "score": 0.88, "index": 184}, {"type": "text", "coordinates": [198, 700, 203, 715], "content": ".", "score": 1.0, "index": 185}] | [] | [{"type": "inline", "coordinates": [331, 75, 360, 84], "content": "k=3", "caption": ""}, {"type": "inline", "coordinates": [493, 75, 522, 84], "content": "k=3", "caption": ""}, {"type": "inline", "coordinates": [212, 89, 268, 101], "content": "\\pi_{3}=\\pi\\{5\\}", "caption": ""}, {"type": "inline", "coordinates": [405, 90, 453, 100], "content": "\\Lambda_{2}\\leftrightarrow\\Lambda_{4}", "caption": ""}, {"type": "inline", "coordinates": [482, 90, 536, 101], "content": "\\Lambda_{1}\\leftrightarrow3\\Lambda_{4}", "caption": ""}, {"type": "inline", "coordinates": [265, 104, 281, 116], "content": "P_{+}", "caption": ""}, {"type": "inline", "coordinates": [387, 108, 399, 115], "content": "\\pi_{3}", "caption": ""}, {"type": "inline", "coordinates": [156, 118, 191, 128], "content": "k\\,=\\,4", "caption": ""}, {"type": "inline", "coordinates": [505, 122, 517, 129], "content": "\\pi_{4}", "caption": ""}, {"type": "inline", "coordinates": [115, 131, 160, 144], "content": "\\Lambda_{2}+\\Lambda_{4}", "caption": ""}, {"type": "inline", "coordinates": [169, 131, 214, 144], "content": "\\Lambda_{3}+\\Lambda_{4}", "caption": ""}, {"type": "inline", "coordinates": [248, 131, 269, 144], "content": "2\\Lambda_{4}", "caption": ""}, {"type": "inline", "coordinates": [356, 132, 536, 144], "content": "\\Lambda_{4}\\;\\mapsto\\;\\Lambda_{1}\\;\\mapsto\\;2\\Lambda_{1}\\;\\mapsto\\;4\\Lambda_{4}\\;\\mapsto\\;\\Lambda_{4}", "caption": ""}, {"type": "inline", "coordinates": [71, 145, 226, 158], "content": "\\Lambda_{2}\\mapsto2\\Lambda_{3}\\mapsto3\\Lambda_{4}\\mapsto\\Lambda_{3}\\mapsto\\Lambda_{2}", "caption": ""}, {"type": "inline", "coordinates": [256, 146, 536, 158], "content": "\\Lambda_{1}\\!+\\!\\Lambda_{3}\\mapsto\\Lambda_{3}\\!+\\!2\\Lambda_{4}\\mapsto\\Lambda_{1}\\!+\\!\\Lambda_{4}\\mapsto\\Lambda_{1}+2\\Lambda_{4}\\mapsto\\Lambda_{1}\\!+\\!\\Lambda_{3}", "caption": ""}, {"type": "inline", "coordinates": [126, 159, 140, 173], "content": "\\pi_{4}^{2}", "caption": ""}, {"type": "inline", "coordinates": [290, 159, 317, 173], "content": "\\pi\\{5\\}", "caption": ""}, {"type": "inline", "coordinates": [97, 201, 112, 215], "content": "\\Lambda_{4}", "caption": ""}, {"type": "inline", "coordinates": [128, 200, 179, 216], "content": "\\Lambda_{4}=(0)_{1}", "caption": ""}, {"type": "inline", "coordinates": [196, 201, 226, 216], "content": "(\\Lambda_{1})_{2}", "caption": ""}, {"type": "inline", "coordinates": [243, 200, 272, 216], "content": "(\\Lambda_{3})_{2}", "caption": ""}, {"type": "inline", "coordinates": [290, 200, 318, 216], "content": "(\\Lambda_{4})_{1}", "caption": ""}, {"type": "inline", "coordinates": [336, 201, 371, 216], "content": "(2\\Lambda_{4})_{2}", "caption": ""}, {"type": "inline", "coordinates": [97, 219, 112, 233], "content": "\\Lambda_{1}", "caption": ""}, {"type": "inline", "coordinates": [129, 219, 187, 234], "content": "\\Lambda_{4}=(\\Lambda_{3})_{2}", "caption": ""}, {"type": "inline", "coordinates": [204, 219, 234, 234], "content": "(\\Lambda_{4})_{2}", "caption": ""}, {"type": "inline", "coordinates": [250, 219, 309, 234], "content": "(\\Lambda_{1}+\\Lambda_{4})_{3}", "caption": ""}, {"type": "inline", "coordinates": [97, 237, 112, 251], "content": "\\Lambda_{3}", "caption": ""}, {"type": "inline", "coordinates": [128, 236, 187, 252], "content": "\\Lambda_{4}=(\\Lambda_{1})_{2}", "caption": ""}, {"type": "inline", "coordinates": [204, 236, 234, 252], "content": "(\\Lambda_{2})_{3}", "caption": ""}, {"type": "inline", "coordinates": [251, 236, 280, 252], "content": "(\\Lambda_{3})_{2}", "caption": ""}, {"type": "inline", "coordinates": [297, 236, 326, 252], "content": "(\\Lambda_{4})_{2}", "caption": ""}, {"type": "inline", "coordinates": [344, 236, 402, 252], "content": "(\\Lambda_{1}+\\Lambda_{4})_{3}", "caption": ""}, {"type": "inline", "coordinates": [419, 236, 476, 252], "content": "(\\Lambda_{3}+\\Lambda_{4})_{3}", "caption": ""}, {"type": "inline", "coordinates": [493, 236, 529, 252], "content": "(2\\Lambda_{4})_{2}", "caption": ""}, {"type": "inline", "coordinates": [82, 254, 111, 270], "content": "(2\\Lambda_{4})", "caption": ""}, {"type": "inline", "coordinates": [128, 254, 187, 270], "content": "\\Lambda_{4}=(\\Lambda_{3})_{2}", "caption": ""}, {"type": "inline", "coordinates": [204, 254, 234, 270], "content": "(\\Lambda_{4})_{2}", "caption": ""}, {"type": "inline", "coordinates": [251, 254, 286, 270], "content": "(2\\Lambda_{4})_{2}", "caption": ""}, {"type": "inline", "coordinates": [304, 254, 339, 270], "content": "(3\\Lambda_{4})_{3}", "caption": ""}, {"type": "inline", "coordinates": [356, 254, 414, 270], "content": "(\\Lambda_{1}+\\Lambda_{4})_{3}", "caption": ""}, {"type": "inline", "coordinates": [431, 254, 488, 270], "content": "(\\Lambda_{3}+\\Lambda_{4})_{3}", "caption": ""}, {"type": "inline", "coordinates": [403, 282, 427, 300], "content": "{F}_{4}^{(1)}", "caption": ""}, {"type": "inline", "coordinates": [449, 287, 463, 299], "content": "\\pi_{3}", "caption": ""}, {"type": "inline", "coordinates": [70, 299, 84, 314], "content": "\\pi_{4}^{i}", "caption": ""}, {"type": "inline", "coordinates": [106, 300, 156, 313], "content": "1\\leq i\\leq3", "caption": ""}, {"type": "inline", "coordinates": [161, 327, 183, 345], "content": "{G_{2}^{(1)}}", "caption": ""}, {"type": "inline", "coordinates": [146, 353, 154, 363], "content": "\\lambda", "caption": ""}, {"type": "inline", "coordinates": [172, 353, 188, 366], "content": "P_{+}", "caption": ""}, {"type": "inline", "coordinates": [236, 352, 333, 365], "content": "k=\\lambda_{0}+2\\lambda_{1}+\\lambda_{2}", "caption": ""}, {"type": "inline", "coordinates": [364, 354, 416, 364], "content": "\\kappa=k+4", "caption": ""}, {"type": "inline", "coordinates": [396, 383, 427, 392], "content": "k=3", "caption": ""}, {"type": "inline", "coordinates": [161, 396, 215, 409], "content": "\\pi_{3}=\\pi\\{4\\}", "caption": ""}, {"type": "inline", "coordinates": [260, 397, 377, 408], "content": "\\Lambda_{1}\\mapsto3\\Lambda_{2}\\mapsto\\Lambda_{2}\\mapsto\\Lambda_{1}", "caption": ""}, {"type": "inline", "coordinates": [252, 410, 284, 421], "content": "k=4", "caption": ""}, {"type": "inline", "coordinates": [338, 411, 394, 423], "content": "\\pi_{4}=\\pi\\{5\\}", "caption": ""}, {"type": "inline", "coordinates": [485, 412, 540, 423], "content": "\\Lambda_{1}\\leftrightarrow4\\Lambda_{2}", "caption": ""}, {"type": "inline", "coordinates": [94, 424, 149, 437], "content": "2\\Lambda_{1}\\leftrightarrow\\Lambda_{2}", "caption": ""}, {"type": "inline", "coordinates": [108, 438, 120, 452], "content": "\\S5", "caption": ""}, {"type": "inline", "coordinates": [345, 440, 359, 451], "content": "\\pi_{3}", "caption": ""}, {"type": "inline", "coordinates": [376, 438, 397, 453], "content": "F_{4,3}", "caption": ""}, {"type": "inline", "coordinates": [98, 479, 114, 493], "content": "\\Lambda_{2}", "caption": ""}, {"type": "inline", "coordinates": [130, 479, 181, 495], "content": "\\Lambda_{2}=(0)_{1}", "caption": ""}, {"type": "inline", "coordinates": [198, 479, 227, 495], "content": "(\\Lambda_{1})_{2}", "caption": ""}, {"type": "inline", "coordinates": [244, 479, 273, 495], "content": "(\\Lambda_{2})_{1}", "caption": ""}, {"type": "inline", "coordinates": [291, 479, 326, 495], "content": "(2\\Lambda_{2})_{2}", "caption": ""}, {"type": "inline", "coordinates": [66, 497, 82, 511], "content": "\\Lambda_{2}", "caption": ""}, {"type": "inline", "coordinates": [98, 498, 114, 511], "content": "\\Lambda_{2}", "caption": ""}, {"type": "inline", "coordinates": [130, 497, 180, 513], "content": "\\Lambda_{2}=(0)_{1}", "caption": ""}, {"type": "inline", "coordinates": [197, 497, 246, 513], "content": "2\\,\\pmb{\\nabla}\\,(\\Lambda_{1})_{22}", "caption": ""}, {"type": "inline", "coordinates": [263, 497, 321, 513], "content": "4\\,\\pmb{\\mathrm{{E}}}\\left(\\Lambda_{2}\\right)_{1122}", "caption": ""}, {"type": "inline", "coordinates": [338, 497, 398, 513], "content": "3\\,\\pm\\,(2\\Lambda_{2})_{222}", "caption": ""}, {"type": "inline", "coordinates": [414, 497, 491, 513], "content": "2\\,\\Xi\\,(\\Lambda_{1}+\\Lambda_{2})_{33}", "caption": ""}, {"type": "inline", "coordinates": [509, 497, 544, 513], "content": "(3\\Lambda_{2})_{3}", "caption": ""}, {"type": "inline", "coordinates": [409, 525, 432, 543], "content": "{G_{2}^{(1)}}", "caption": ""}, {"type": "inline", "coordinates": [455, 527, 490, 543], "content": "(\\pi_{3})^{\\pm1}", "caption": ""}, {"type": "inline", "coordinates": [506, 528, 537, 541], "content": "k=3", "caption": ""}, {"type": "inline", "coordinates": [93, 544, 107, 556], "content": "\\pi_{4}", "caption": ""}, {"type": "inline", "coordinates": [124, 543, 155, 555], "content": "k=4", "caption": ""}, {"type": "inline", "coordinates": [325, 677, 332, 682], "content": "\\pi", "caption": ""}, {"type": "inline", "coordinates": [464, 673, 540, 685], "content": "{\\mathcal{D}}(\\lambda)={\\mathcal{D}}(\\pi\\lambda)", "caption": ""}, {"type": "inline", "coordinates": [70, 688, 116, 699], "content": "\\forall\\lambda\\in P_{+}", "caption": ""}, {"type": "inline", "coordinates": [374, 688, 387, 698], "content": "\\Lambda_{\\star}", "caption": ""}, {"type": "inline", "coordinates": [190, 705, 198, 711], "content": "\\pi", "caption": ""}] | [] | [612.0, 792.0] | [{"type": "text", "text": "There are Galois fusion-symmetries at levels $k=3$ and 4. In particular, for $k=3$ we have the fusion-symmetry $\\pi_{3}=\\pi\\{5\\}$ which interchanges both $\\Lambda_{2}\\leftrightarrow\\Lambda_{4}$ and $\\Lambda_{1}\\leftrightarrow3\\Lambda_{4}$ , and fixes the other five weights in $P_{+}$ . The exceptional $\\pi_{3}$ was found independently in [34,14]. For $k\\,=\\,4$ we get a fusion-symmetry of order 4, which we will call $\\pi_{4}$ . It fixes 0, $\\Lambda_{2}+\\Lambda_{4}$ , $\\Lambda_{3}+\\Lambda_{4}$ , and $2\\Lambda_{4}$ , and permutes $\\Lambda_{4}\\;\\mapsto\\;\\Lambda_{1}\\;\\mapsto\\;2\\Lambda_{1}\\;\\mapsto\\;4\\Lambda_{4}\\;\\mapsto\\;\\Lambda_{4}$ , $\\Lambda_{2}\\mapsto2\\Lambda_{3}\\mapsto3\\Lambda_{4}\\mapsto\\Lambda_{3}\\mapsto\\Lambda_{2}$ , and $\\Lambda_{1}\\!+\\!\\Lambda_{3}\\mapsto\\Lambda_{3}\\!+\\!2\\Lambda_{4}\\mapsto\\Lambda_{1}\\!+\\!\\Lambda_{4}\\mapsto\\Lambda_{1}+2\\Lambda_{4}\\mapsto\\Lambda_{1}\\!+\\!\\Lambda_{3}$ . Its square $\\pi_{4}^{2}$ equals the fusion-symmetry $\\pi\\{5\\}$ . ", "page_idx": 14}, {"type": "text", "text": "The only fusion products we need can be obtained from [29] and (2.4): ", "page_idx": 14}, {"type": "text", "text": "$\\Lambda_{4}$ \u00d7 $\\Lambda_{4}=(0)_{1}$ + $(\\Lambda_{1})_{2}$ + $(\\Lambda_{3})_{2}$ + $(\\Lambda_{4})_{1}$ + $(2\\Lambda_{4})_{2}$ $\\Lambda_{1}$ \u00d7 $\\Lambda_{4}=(\\Lambda_{3})_{2}$ + $(\\Lambda_{4})_{2}$ + $(\\Lambda_{1}+\\Lambda_{4})_{3}$ $\\Lambda_{3}$ \u00d7 $\\Lambda_{4}=(\\Lambda_{1})_{2}$ + $(\\Lambda_{2})_{3}$ + $(\\Lambda_{3})_{2}$ + $(\\Lambda_{4})_{2}$ + $(\\Lambda_{1}+\\Lambda_{4})_{3}$ + $(\\Lambda_{3}+\\Lambda_{4})_{3}$ + $(2\\Lambda_{4})_{2}$ $(2\\Lambda_{4})$ \u00d7 $\\Lambda_{4}=(\\Lambda_{3})_{2}$ + $(\\Lambda_{4})_{2}$ + $(2\\Lambda_{4})_{2}$ + $(3\\Lambda_{4})_{3}$ + $(\\Lambda_{1}+\\Lambda_{4})_{3}$ + $(\\Lambda_{3}+\\Lambda_{4})_{3}$ ", "page_idx": 14}, {"type": "text", "text": "Theorem 3.F4. The only nontrivial fusion-symmetries of ${F}_{4}^{(1)}$ are $\\pi_{3}$ at level 3, and $\\pi_{4}^{i}$ for $1\\leq i\\leq3$ , which occur at level 4. ", "page_idx": 14}, {"type": "text", "text": "3.9. The algebra ${G_{2}^{(1)}}$ ", "text_level": 1, "page_idx": 14}, {"type": "text", "text": "A weight $\\lambda$ in $P_{+}$ satisfies $k=\\lambda_{0}+2\\lambda_{1}+\\lambda_{2}$ , and $\\kappa=k+4$ . The conjugations and simple-currents are all trivial. ", "page_idx": 14}, {"type": "text", "text": "Again there are nontrivial Galois fusion-symmetries. At $k=3$ , we have the order 3 fusion-symmetry $\\pi_{3}=\\pi\\{4\\}$ sending $\\Lambda_{1}\\mapsto3\\Lambda_{2}\\mapsto\\Lambda_{2}\\mapsto\\Lambda_{1}$ , and fixing the remaining three weights. It was found in [14]. At $k=4$ , we have $\\pi_{4}=\\pi\\{5\\}$ permuting both $\\Lambda_{1}\\leftrightarrow4\\Lambda_{2}$ and $2\\Lambda_{1}\\leftrightarrow\\Lambda_{2}$ , and fixing the other five weights. It was found independently in [34,14], and in $\\S5$ we will see that it is closely related to the $\\pi_{3}$ of $F_{4,3}$ . ", "page_idx": 14}, {"type": "text", "text": "The only fusion products we will need can be obtained from [29] and (2.4): ", "page_idx": 14}, {"type": "text", "text": "$\\Lambda_{2}$ \u00d7 $\\Lambda_{2}=(0)_{1}$ + $(\\Lambda_{1})_{2}$ + $(\\Lambda_{2})_{1}$ + $(2\\Lambda_{2})_{2}$ $\\Lambda_{2}$ \u00d7 $\\Lambda_{2}$ \u00d7 $\\Lambda_{2}=(0)_{1}$ + $2\\,\\pmb{\\nabla}\\,(\\Lambda_{1})_{22}$ + $4\\,\\pmb{\\mathrm{{E}}}\\left(\\Lambda_{2}\\right)_{1122}$ + $3\\,\\pm\\,(2\\Lambda_{2})_{222}$ + $2\\,\\Xi\\,(\\Lambda_{1}+\\Lambda_{2})_{33}$ + $(3\\Lambda_{2})_{3}$ ", "page_idx": 14}, {"type": "text", "text": "Theorem 3.G2. The only nontrivial fusion-symmetries for ${G_{2}^{(1)}}$ are $(\\pi_{3})^{\\pm1}$ at $k=3$ , and $\\pi_{4}$ at $k=4$ . ", "page_idx": 14}, {"type": "text", "text": "4. The Arguments ", "text_level": 1, "page_idx": 14}, {"type": "text", "text": "The fundamental reason the classification of fusion-symmetries for the affine algebras is so accessible is (2.1b), which reduces the problem to studying Lie group characters at elements of finite order. These values have been studied by a number of people \u2014 see e.g. [22,28] \u2014 and the resulting combinatorics is often quite pretty. ", "page_idx": 14}, {"type": "text", "text": "Lemma 2.2 implies that a fusion-symmetry $\\pi$ preserves q-dimensions: ${\\mathcal{D}}(\\lambda)={\\mathcal{D}}(\\pi\\lambda)$ $\\forall\\lambda\\in P_{+}$ . In this subsection we use that to find a weight $\\Lambda_{\\star}$ for each algebra which must be essentially fixed by $\\pi$ . ", "page_idx": 14}] | [{"category_id": 1, "poly": [195, 197, 1505, 197, 1505, 478, 195, 478], "score": 0.983}, {"category_id": 1, "poly": [195, 1701, 1503, 1701, 1503, 1861, 195, 1861], "score": 0.976}, {"category_id": 1, "poly": [196, 1055, 1505, 1055, 1505, 1253, 196, 1253], "score": 0.974}, {"category_id": 1, "poly": [194, 1863, 1502, 1863, 1502, 1982, 194, 1982], "score": 0.965}, {"category_id": 1, "poly": [198, 785, 1506, 785, 1506, 869, 198, 869], "score": 0.952}, {"category_id": 1, "poly": [195, 974, 1504, 974, 1504, 1052, 195, 1052], "score": 0.934}, {"category_id": 1, "poly": [265, 479, 1299, 479, 1299, 519, 265, 519], "score": 0.89}, {"category_id": 0, "poly": [694, 1621, 1007, 1621, 1007, 1662, 694, 1662], "score": 0.883}, {"category_id": 1, "poly": [264, 1254, 1362, 1254, 1362, 1295, 264, 1295], "score": 0.879}, {"category_id": 1, "poly": [195, 1459, 1507, 1459, 1507, 1546, 195, 1546], "score": 0.877}, {"category_id": 2, "poly": [833, 2030, 869, 2030, 869, 2062, 833, 2062], "score": 0.866}, {"category_id": 1, "poly": [241, 549, 1476, 549, 1476, 750, 241, 750], "score": 0.805}, {"category_id": 1, "poly": [186, 1325, 1514, 1325, 1514, 1426, 186, 1426], "score": 0.645}, {"category_id": 0, "poly": [198, 908, 510, 908, 510, 954, 198, 954], "score": 0.614}, {"category_id": 1, "poly": [198, 908, 510, 908, 510, 954, 198, 954], "score": 0.355}, {"category_id": 13, "poly": [1291, 1870, 1500, 1870, 1500, 1905, 1291, 1905], "score": 0.94, "latex": "{\\mathcal{D}}(\\lambda)={\\mathcal{D}}(\\pi\\lambda)"}, {"category_id": 13, "poly": [590, 248, 746, 248, 746, 283, 590, 283], "score": 0.94, "latex": "\\pi_{3}=\\pi\\{5\\}"}, {"category_id": 13, "poly": [362, 1383, 502, 1383, 502, 1425, 362, 1425], "score": 0.94, "latex": "\\Lambda_{2}=(0)_{1}"}, {"category_id": 13, "poly": [940, 1143, 1095, 1143, 1095, 1177, 940, 1177], "score": 0.93, "latex": "\\pi_{4}=\\pi\\{5\\}"}, {"category_id": 13, "poly": [358, 708, 521, 708, 521, 750, 358, 750], "score": 0.93, "latex": "\\Lambda_{4}=(\\Lambda_{3})_{2}"}, {"category_id": 13, "poly": [363, 1332, 503, 1332, 503, 1375, 363, 1375], "score": 0.93, "latex": "\\Lambda_{2}=(0)_{1}"}, {"category_id": 13, "poly": [358, 658, 521, 658, 521, 700, 358, 700], "score": 0.93, "latex": "\\Lambda_{4}=(\\Lambda_{1})_{2}"}, {"category_id": 13, "poly": [738, 291, 783, 291, 783, 323, 738, 323], "score": 0.92, "latex": "P_{+}"}, {"category_id": 13, "poly": [448, 1101, 599, 1101, 599, 1137, 448, 1137], "score": 0.92, "latex": "\\pi_{3}=\\pi\\{4\\}"}, {"category_id": 13, "poly": [358, 558, 499, 558, 499, 601, 358, 601], "score": 0.92, "latex": "\\Lambda_{4}=(0)_{1}"}, {"category_id": 13, "poly": [263, 1178, 416, 1178, 416, 1215, 263, 1215], "score": 0.92, "latex": "2\\Lambda_{1}\\leftrightarrow\\Lambda_{2}"}, {"category_id": 13, "poly": [1122, 784, 1187, 784, 1187, 834, 1122, 834], "score": 0.92, "latex": "{F}_{4}^{(1)}"}, {"category_id": 13, "poly": [359, 609, 521, 609, 521, 651, 359, 651], "score": 0.92, "latex": "\\Lambda_{4}=(\\Lambda_{3})_{2}"}, {"category_id": 13, "poly": [1127, 251, 1261, 251, 1261, 280, 1127, 280], "score": 0.92, "latex": "\\Lambda_{2}\\leftrightarrow\\Lambda_{4}"}, {"category_id": 13, "poly": [991, 368, 1491, 368, 1491, 400, 991, 400], "score": 0.92, "latex": "\\Lambda_{4}\\;\\mapsto\\;\\Lambda_{1}\\;\\mapsto\\;2\\Lambda_{1}\\;\\mapsto\\;4\\Lambda_{4}\\;\\mapsto\\;\\Lambda_{4}"}, {"category_id": 13, "poly": [1039, 1912, 1077, 1912, 1077, 1941, 1039, 1941], "score": 0.92, "latex": "\\Lambda_{\\star}"}, {"category_id": 13, "poly": [827, 658, 908, 658, 908, 700, 827, 700], "score": 0.92, "latex": "(\\Lambda_{4})_{2}"}, {"category_id": 13, "poly": [807, 442, 881, 442, 881, 483, 807, 483], "score": 0.92, "latex": "\\pi\\{5\\}"}, {"category_id": 13, "poly": [198, 405, 630, 405, 630, 440, 198, 440], "score": 0.92, "latex": "\\Lambda_{2}\\mapsto2\\Lambda_{3}\\mapsto3\\Lambda_{4}\\mapsto\\Lambda_{3}\\mapsto\\Lambda_{2}"}, {"category_id": 13, "poly": [656, 980, 927, 980, 927, 1015, 656, 1015], "score": 0.92, "latex": "k=\\lambda_{0}+2\\lambda_{1}+\\lambda_{2}"}, {"category_id": 13, "poly": [197, 1912, 323, 1912, 323, 1944, 197, 1944], "score": 0.92, "latex": "\\forall\\lambda\\in P_{+}"}, {"category_id": 13, "poly": [723, 1104, 1049, 1104, 1049, 1135, 723, 1135], "score": 0.92, "latex": "\\Lambda_{1}\\mapsto3\\Lambda_{2}\\mapsto\\Lambda_{2}\\mapsto\\Lambda_{1}"}, {"category_id": 13, "poly": [698, 658, 779, 658, 779, 700, 698, 700], "score": 0.92, "latex": "(\\Lambda_{3})_{2}"}, {"category_id": 13, "poly": [569, 658, 650, 658, 650, 700, 569, 700], "score": 0.92, "latex": "(\\Lambda_{2})_{3}"}, {"category_id": 13, "poly": [1137, 1459, 1202, 1459, 1202, 1510, 1137, 1510], "score": 0.92, "latex": "{G_{2}^{(1)}}"}, {"category_id": 13, "poly": [1164, 657, 1324, 657, 1324, 700, 1164, 700], "score": 0.91, "latex": "(\\Lambda_{3}+\\Lambda_{4})_{3}"}, {"category_id": 13, "poly": [1349, 1145, 1500, 1145, 1500, 1175, 1349, 1175], "score": 0.91, "latex": "\\Lambda_{1}\\leftrightarrow4\\Lambda_{2}"}, {"category_id": 13, "poly": [920, 211, 1000, 211, 1000, 236, 920, 236], "score": 0.91, "latex": "k=3"}, {"category_id": 13, "poly": [549, 1383, 685, 1383, 685, 1425, 549, 1425], "score": 0.91, "latex": "2\\,\\pmb{\\nabla}\\,(\\Lambda_{1})_{22}"}, {"category_id": 13, "poly": [568, 708, 650, 708, 650, 750, 568, 750], "score": 0.91, "latex": "(\\Lambda_{4})_{2}"}, {"category_id": 13, "poly": [699, 708, 796, 708, 796, 750, 699, 750], "score": 0.91, "latex": "(2\\Lambda_{4})_{2}"}, {"category_id": 13, "poly": [1339, 250, 1491, 250, 1491, 281, 1339, 281], "score": 0.91, "latex": "\\Lambda_{1}\\leftrightarrow3\\Lambda_{4}"}, {"category_id": 13, "poly": [1370, 211, 1451, 211, 1451, 236, 1370, 236], "score": 0.91, "latex": "k=3"}, {"category_id": 13, "poly": [956, 658, 1117, 658, 1117, 700, 956, 700], "score": 0.91, "latex": "(\\Lambda_{1}+\\Lambda_{4})_{3}"}, {"category_id": 13, "poly": [551, 1332, 633, 1332, 633, 1375, 551, 1375], "score": 0.91, "latex": "(\\Lambda_{1})_{2}"}, {"category_id": 13, "poly": [1045, 1219, 1105, 1219, 1105, 1259, 1045, 1259], "score": 0.91, "latex": "F_{4,3}"}, {"category_id": 13, "poly": [845, 708, 942, 708, 942, 750, 845, 750], "score": 0.91, "latex": "(3\\Lambda_{4})_{3}"}, {"category_id": 13, "poly": [448, 909, 511, 909, 511, 960, 448, 960], "score": 0.91, "latex": "{G_{2}^{(1)}}"}, {"category_id": 13, "poly": [680, 1333, 761, 1333, 761, 1375, 680, 1375], "score": 0.91, "latex": "(\\Lambda_{2})_{1}"}, {"category_id": 13, "poly": [1266, 1464, 1363, 1464, 1363, 1509, 1266, 1509], "score": 0.91, "latex": "(\\pi_{3})^{\\pm1}"}, {"category_id": 13, "poly": [1013, 985, 1157, 985, 1157, 1013, 1013, 1013], "score": 0.9, "latex": "\\kappa=k+4"}, {"category_id": 13, "poly": [568, 609, 650, 609, 650, 651, 568, 651], "score": 0.9, "latex": "(\\Lambda_{4})_{2}"}, {"category_id": 13, "poly": [989, 707, 1150, 707, 1150, 750, 989, 750], "score": 0.9, "latex": "(\\Lambda_{1}+\\Lambda_{4})_{3}"}, {"category_id": 13, "poly": [547, 559, 628, 559, 628, 601, 547, 601], "score": 0.9, "latex": "(\\Lambda_{1})_{2}"}, {"category_id": 13, "poly": [197, 831, 235, 831, 235, 874, 197, 874], "score": 0.9, "latex": "\\pi_{4}^{i}"}, {"category_id": 13, "poly": [676, 558, 758, 558, 758, 601, 676, 601], "score": 0.9, "latex": "(\\Lambda_{3})_{2}"}, {"category_id": 13, "poly": [479, 981, 523, 981, 523, 1017, 479, 1017], "score": 0.9, "latex": "P_{+}"}, {"category_id": 13, "poly": [273, 1384, 317, 1384, 317, 1422, 273, 1422], "score": 0.9, "latex": "\\Lambda_{2}"}, {"category_id": 13, "poly": [811, 1333, 907, 1333, 907, 1375, 811, 1375], "score": 0.89, "latex": "(2\\Lambda_{2})_{2}"}, {"category_id": 13, "poly": [1101, 1065, 1187, 1065, 1187, 1090, 1101, 1090], "score": 0.89, "latex": "k=3"}, {"category_id": 13, "poly": [1415, 1382, 1512, 1382, 1512, 1425, 1415, 1425], "score": 0.89, "latex": "(3\\Lambda_{2})_{3}"}, {"category_id": 13, "poly": [351, 442, 390, 442, 390, 483, 351, 483], "score": 0.89, "latex": "\\pi_{4}^{2}"}, {"category_id": 13, "poly": [347, 1510, 431, 1510, 431, 1542, 347, 1542], "score": 0.89, "latex": "k=4"}, {"category_id": 13, "poly": [1152, 1382, 1366, 1382, 1366, 1425, 1152, 1425], "score": 0.89, "latex": "2\\,\\Xi\\,(\\Lambda_{1}+\\Lambda_{2})_{33}"}, {"category_id": 13, "poly": [940, 1383, 1106, 1383, 1106, 1425, 940, 1425], "score": 0.89, "latex": "3\\,\\pm\\,(2\\Lambda_{2})_{222}"}, {"category_id": 13, "poly": [270, 659, 313, 659, 313, 698, 270, 698], "score": 0.88, "latex": "\\Lambda_{3}"}, {"category_id": 13, "poly": [295, 834, 434, 834, 434, 872, 295, 872], "score": 0.88, "latex": "1\\leq i\\leq3"}, {"category_id": 13, "poly": [1372, 657, 1470, 657, 1470, 700, 1372, 700], "score": 0.88, "latex": "(2\\Lambda_{4})_{2}"}, {"category_id": 13, "poly": [1076, 300, 1110, 300, 1110, 320, 1076, 320], "score": 0.88, "latex": "\\pi_{3}"}, {"category_id": 13, "poly": [697, 609, 859, 609, 859, 651, 697, 651], "score": 0.88, "latex": "(\\Lambda_{1}+\\Lambda_{4})_{3}"}, {"category_id": 13, "poly": [185, 1383, 228, 1383, 228, 1422, 185, 1422], "score": 0.88, "latex": "\\Lambda_{2}"}, {"category_id": 13, "poly": [230, 708, 311, 708, 311, 750, 230, 750], "score": 0.88, "latex": "(2\\Lambda_{4})"}, {"category_id": 13, "poly": [690, 364, 748, 364, 748, 401, 690, 401], "score": 0.88, "latex": "2\\Lambda_{4}"}, {"category_id": 13, "poly": [530, 1961, 551, 1961, 551, 1976, 530, 1976], "score": 0.88, "latex": "\\pi"}, {"category_id": 13, "poly": [270, 609, 312, 609, 312, 648, 270, 648], "score": 0.88, "latex": "\\Lambda_{1}"}, {"category_id": 13, "poly": [731, 1383, 894, 1383, 894, 1425, 731, 1425], "score": 0.87, "latex": "4\\,\\pmb{\\mathrm{{E}}}\\left(\\Lambda_{2}\\right)_{1122}"}, {"category_id": 13, "poly": [702, 1140, 791, 1140, 791, 1172, 702, 1172], "score": 0.87, "latex": "k=4"}, {"category_id": 13, "poly": [904, 1881, 924, 1881, 924, 1896, 904, 1896], "score": 0.87, "latex": "\\pi"}, {"category_id": 13, "poly": [1408, 1469, 1492, 1469, 1492, 1504, 1408, 1504], "score": 0.87, "latex": "k=3"}, {"category_id": 13, "poly": [435, 330, 531, 330, 531, 356, 435, 356], "score": 0.87, "latex": "k\\,=\\,4"}, {"category_id": 13, "poly": [320, 364, 447, 364, 447, 401, 320, 401], "score": 0.87, "latex": "\\Lambda_{2}+\\Lambda_{4}"}, {"category_id": 13, "poly": [274, 1333, 317, 1333, 317, 1372, 274, 1372], "score": 0.87, "latex": "\\Lambda_{2}"}, {"category_id": 13, "poly": [470, 364, 597, 364, 597, 401, 470, 401], "score": 0.87, "latex": "\\Lambda_{3}+\\Lambda_{4}"}, {"category_id": 13, "poly": [806, 558, 886, 558, 886, 601, 806, 601], "score": 0.85, "latex": "(\\Lambda_{4})_{1}"}, {"category_id": 13, "poly": [1198, 708, 1357, 708, 1357, 750, 1198, 750], "score": 0.85, "latex": "(\\Lambda_{3}+\\Lambda_{4})_{3}"}, {"category_id": 13, "poly": [270, 559, 313, 559, 313, 598, 270, 598], "score": 0.85, "latex": "\\Lambda_{4}"}, {"category_id": 13, "poly": [261, 1512, 299, 1512, 299, 1545, 261, 1545], "score": 0.84, "latex": "\\pi_{4}"}, {"category_id": 13, "poly": [961, 1223, 999, 1223, 999, 1255, 961, 1255], "score": 0.84, "latex": "\\pi_{3}"}, {"category_id": 13, "poly": [1249, 799, 1288, 799, 1288, 831, 1249, 831], "score": 0.83, "latex": "\\pi_{3}"}, {"category_id": 13, "poly": [713, 408, 1491, 408, 1491, 440, 713, 440], "score": 0.81, "latex": "\\Lambda_{1}\\!+\\!\\Lambda_{3}\\mapsto\\Lambda_{3}\\!+\\!2\\Lambda_{4}\\mapsto\\Lambda_{1}\\!+\\!\\Lambda_{4}\\mapsto\\Lambda_{1}+2\\Lambda_{4}\\mapsto\\Lambda_{1}\\!+\\!\\Lambda_{3}"}, {"category_id": 13, "poly": [407, 981, 430, 981, 430, 1011, 407, 1011], "score": 0.8, "latex": "\\lambda"}, {"category_id": 13, "poly": [936, 559, 1033, 559, 1033, 601, 936, 601], "score": 0.8, "latex": "(2\\Lambda_{4})_{2}"}, {"category_id": 13, "poly": [1404, 340, 1438, 340, 1438, 360, 1404, 360], "score": 0.79, "latex": "\\pi_{4}"}, {"category_id": 13, "poly": [301, 1219, 336, 1219, 336, 1256, 301, 1256], "score": 0.39, "latex": "\\S5"}, {"category_id": 15, "poly": [263.0, 204.0, 919.0, 204.0, 919.0, 247.0, 263.0, 247.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1001.0, 204.0, 1369.0, 204.0, 1369.0, 247.0, 1001.0, 247.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1452.0, 204.0, 1505.0, 204.0, 1505.0, 247.0, 1452.0, 247.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [195.0, 242.0, 589.0, 242.0, 589.0, 290.0, 195.0, 290.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [747.0, 242.0, 1126.0, 242.0, 1126.0, 290.0, 747.0, 290.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1262.0, 242.0, 1338.0, 242.0, 1338.0, 290.0, 1262.0, 290.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1492.0, 242.0, 1502.0, 242.0, 1502.0, 290.0, 1492.0, 290.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [195.0, 282.0, 737.0, 282.0, 737.0, 330.0, 195.0, 330.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [784.0, 282.0, 1075.0, 282.0, 1075.0, 330.0, 784.0, 330.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1111.0, 282.0, 1502.0, 282.0, 1502.0, 330.0, 1111.0, 330.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [193.0, 323.0, 434.0, 323.0, 434.0, 369.0, 193.0, 369.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [532.0, 323.0, 1403.0, 323.0, 1403.0, 369.0, 532.0, 369.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1439.0, 323.0, 1507.0, 323.0, 1507.0, 369.0, 1439.0, 369.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [194.0, 363.0, 319.0, 363.0, 319.0, 407.0, 194.0, 407.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [448.0, 363.0, 469.0, 363.0, 469.0, 407.0, 448.0, 407.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [598.0, 363.0, 689.0, 363.0, 689.0, 407.0, 598.0, 407.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [749.0, 363.0, 990.0, 363.0, 990.0, 407.0, 749.0, 407.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1492.0, 363.0, 1504.0, 363.0, 1504.0, 407.0, 1492.0, 407.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [196.0, 403.0, 197.0, 403.0, 197.0, 446.0, 196.0, 446.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [631.0, 403.0, 712.0, 403.0, 712.0, 446.0, 631.0, 446.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1492.0, 403.0, 1502.0, 403.0, 1502.0, 446.0, 1492.0, 446.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [195.0, 443.0, 350.0, 443.0, 350.0, 486.0, 195.0, 486.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [391.0, 443.0, 806.0, 443.0, 806.0, 486.0, 391.0, 486.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [882.0, 443.0, 893.0, 443.0, 893.0, 486.0, 882.0, 486.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [264.0, 1707.0, 1502.0, 1707.0, 1502.0, 1746.0, 264.0, 1746.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [193.0, 1747.0, 1503.0, 1747.0, 1503.0, 1786.0, 193.0, 1786.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [196.0, 1782.0, 1505.0, 1782.0, 1505.0, 1831.0, 196.0, 1831.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [199.0, 1824.0, 1116.0, 1824.0, 1116.0, 1870.0, 199.0, 1870.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [266.0, 1061.0, 1100.0, 1061.0, 1100.0, 1100.0, 266.0, 1100.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1188.0, 1061.0, 1505.0, 1061.0, 1505.0, 1100.0, 1188.0, 1100.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [194.0, 1097.0, 447.0, 1097.0, 447.0, 1142.0, 194.0, 1142.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [600.0, 1097.0, 722.0, 1097.0, 722.0, 1142.0, 600.0, 1142.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1050.0, 1097.0, 1505.0, 1097.0, 1505.0, 1142.0, 1050.0, 1142.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [199.0, 1138.0, 701.0, 1138.0, 701.0, 1182.0, 199.0, 1182.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [792.0, 1138.0, 939.0, 1138.0, 939.0, 1182.0, 792.0, 1182.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1096.0, 1138.0, 1348.0, 1138.0, 1348.0, 1182.0, 1096.0, 1182.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1501.0, 1138.0, 1504.0, 1138.0, 1504.0, 1182.0, 1501.0, 1182.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [196.0, 1176.0, 262.0, 1176.0, 262.0, 1222.0, 196.0, 1222.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [417.0, 1176.0, 1504.0, 1176.0, 1504.0, 1222.0, 417.0, 1222.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [195.0, 1214.0, 300.0, 1214.0, 300.0, 1264.0, 195.0, 1264.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [337.0, 1214.0, 960.0, 1214.0, 960.0, 1264.0, 337.0, 1264.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1000.0, 1214.0, 1044.0, 1214.0, 1044.0, 1264.0, 1000.0, 1264.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1106.0, 1214.0, 1116.0, 1214.0, 1116.0, 1264.0, 1106.0, 1264.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [260.0, 1866.0, 903.0, 1866.0, 903.0, 1907.0, 260.0, 1907.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [925.0, 1866.0, 1290.0, 1866.0, 1290.0, 1907.0, 925.0, 1907.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1501.0, 1866.0, 1501.0, 1866.0, 1501.0, 1907.0, 1501.0, 1907.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [195.0, 1906.0, 196.0, 1906.0, 196.0, 1949.0, 195.0, 1949.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [324.0, 1906.0, 1038.0, 1906.0, 1038.0, 1949.0, 324.0, 1949.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1078.0, 1906.0, 1502.0, 1906.0, 1502.0, 1949.0, 1078.0, 1949.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [197.0, 1946.0, 529.0, 1946.0, 529.0, 1988.0, 197.0, 1988.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [552.0, 1946.0, 564.0, 1946.0, 564.0, 1988.0, 552.0, 1988.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [250.0, 781.0, 1121.0, 781.0, 1121.0, 851.0, 250.0, 851.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1188.0, 781.0, 1248.0, 781.0, 1248.0, 851.0, 1188.0, 851.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1289.0, 781.0, 1508.0, 781.0, 1508.0, 851.0, 1289.0, 851.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [236.0, 836.0, 294.0, 836.0, 294.0, 876.0, 236.0, 876.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [435.0, 836.0, 782.0, 836.0, 782.0, 876.0, 435.0, 876.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [261.0, 978.0, 406.0, 978.0, 406.0, 1023.0, 261.0, 1023.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [431.0, 978.0, 478.0, 978.0, 478.0, 1023.0, 431.0, 1023.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [524.0, 978.0, 655.0, 978.0, 655.0, 1023.0, 524.0, 1023.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [928.0, 978.0, 1012.0, 978.0, 1012.0, 1023.0, 928.0, 1023.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1158.0, 978.0, 1506.0, 978.0, 1506.0, 1023.0, 1158.0, 1023.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [198.0, 1021.0, 634.0, 1021.0, 634.0, 1060.0, 198.0, 1060.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [265.0, 481.0, 1297.0, 481.0, 1297.0, 525.0, 265.0, 525.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [694.0, 1626.0, 1007.0, 1626.0, 1007.0, 1664.0, 694.0, 1664.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [264.0, 1258.0, 1361.0, 1258.0, 1361.0, 1301.0, 264.0, 1301.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [254.0, 1451.0, 1136.0, 1451.0, 1136.0, 1523.0, 254.0, 1523.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1203.0, 1451.0, 1265.0, 1451.0, 1265.0, 1523.0, 1203.0, 1523.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1364.0, 1451.0, 1407.0, 1451.0, 1407.0, 1523.0, 1364.0, 1523.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1493.0, 1451.0, 1510.0, 1451.0, 1510.0, 1523.0, 1493.0, 1523.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [201.0, 1513.0, 260.0, 1513.0, 260.0, 1549.0, 201.0, 1549.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [300.0, 1513.0, 346.0, 1513.0, 346.0, 1549.0, 300.0, 1549.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [432.0, 1513.0, 445.0, 1513.0, 445.0, 1549.0, 432.0, 1549.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [829.0, 2033.0, 872.0, 2033.0, 872.0, 2070.0, 829.0, 2070.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [314.0, 557.0, 357.0, 557.0, 357.0, 605.0, 314.0, 605.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [500.0, 557.0, 546.0, 557.0, 546.0, 605.0, 500.0, 605.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [629.0, 557.0, 675.0, 557.0, 675.0, 605.0, 629.0, 605.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [759.0, 557.0, 805.0, 557.0, 805.0, 605.0, 759.0, 605.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [887.0, 557.0, 935.0, 557.0, 935.0, 605.0, 887.0, 605.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [313.0, 612.0, 358.0, 612.0, 358.0, 654.0, 313.0, 654.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [522.0, 612.0, 567.0, 612.0, 567.0, 654.0, 522.0, 654.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [651.0, 612.0, 696.0, 612.0, 696.0, 654.0, 651.0, 654.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [860.0, 612.0, 860.0, 612.0, 860.0, 654.0, 860.0, 654.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [314.0, 659.0, 357.0, 659.0, 357.0, 705.0, 314.0, 705.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [522.0, 659.0, 568.0, 659.0, 568.0, 705.0, 522.0, 705.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [651.0, 659.0, 697.0, 659.0, 697.0, 705.0, 651.0, 705.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [780.0, 659.0, 826.0, 659.0, 826.0, 705.0, 780.0, 705.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [909.0, 659.0, 955.0, 659.0, 955.0, 705.0, 909.0, 705.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1118.0, 659.0, 1163.0, 659.0, 1163.0, 705.0, 1118.0, 705.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1325.0, 659.0, 1371.0, 659.0, 1371.0, 705.0, 1325.0, 705.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [312.0, 707.0, 357.0, 707.0, 357.0, 754.0, 312.0, 754.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [522.0, 707.0, 567.0, 707.0, 567.0, 754.0, 522.0, 754.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [651.0, 707.0, 698.0, 707.0, 698.0, 754.0, 651.0, 754.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [797.0, 707.0, 844.0, 707.0, 844.0, 754.0, 797.0, 754.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [943.0, 707.0, 988.0, 707.0, 988.0, 754.0, 943.0, 754.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1151.0, 707.0, 1197.0, 707.0, 1197.0, 754.0, 1151.0, 754.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1358.0, 707.0, 1358.0, 707.0, 1358.0, 754.0, 1358.0, 754.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [318.0, 1333.0, 362.0, 1333.0, 362.0, 1383.0, 318.0, 1383.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [504.0, 1333.0, 550.0, 1333.0, 550.0, 1383.0, 504.0, 1383.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [634.0, 1333.0, 679.0, 1333.0, 679.0, 1383.0, 634.0, 1383.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [762.0, 1333.0, 810.0, 1333.0, 810.0, 1383.0, 762.0, 1383.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [908.0, 1333.0, 908.0, 1333.0, 908.0, 1383.0, 908.0, 1383.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [229.0, 1382.0, 272.0, 1382.0, 272.0, 1434.0, 229.0, 1434.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [318.0, 1382.0, 361.0, 1382.0, 361.0, 1434.0, 318.0, 1434.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [503.0, 1382.0, 548.0, 1382.0, 548.0, 1434.0, 503.0, 1434.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [686.0, 1382.0, 730.0, 1382.0, 730.0, 1434.0, 686.0, 1434.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [895.0, 1382.0, 939.0, 1382.0, 939.0, 1434.0, 895.0, 1434.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1107.0, 1382.0, 1151.0, 1382.0, 1151.0, 1434.0, 1107.0, 1434.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1367.0, 1382.0, 1414.0, 1382.0, 1414.0, 1434.0, 1367.0, 1434.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1513.0, 1382.0, 1513.0, 1382.0, 1513.0, 1434.0, 1513.0, 1434.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [188.0, 912.0, 447.0, 912.0, 447.0, 967.0, 188.0, 967.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [512.0, 912.0, 520.0, 912.0, 520.0, 967.0, 512.0, 967.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [188.0, 912.0, 447.0, 912.0, 447.0, 967.0, 188.0, 967.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [512.0, 912.0, 520.0, 912.0, 520.0, 967.0, 512.0, 967.0], "score": 1.0, "text": ""}] | {"preproc_blocks": [{"type": "text", "bbox": [70, 70, 541, 172], "lines": [{"bbox": [94, 73, 541, 88], "spans": [{"bbox": [94, 73, 330, 88], "score": 1.0, "content": "There are Galois fusion-symmetries at levels ", "type": "text"}, {"bbox": [331, 75, 360, 84], "score": 0.91, "content": "k=3", "type": "inline_equation", "height": 9, "width": 29}, {"bbox": [360, 73, 492, 88], "score": 1.0, "content": " and 4. In particular, for ", "type": "text"}, {"bbox": [493, 75, 522, 84], "score": 0.91, "content": "k=3", "type": "inline_equation", "height": 9, "width": 29}, {"bbox": [522, 73, 541, 88], "score": 1.0, "content": " we", "type": "text"}], "index": 0}, {"bbox": [70, 87, 540, 104], "spans": [{"bbox": [70, 87, 212, 104], "score": 1.0, "content": "have the fusion-symmetry ", "type": "text"}, {"bbox": [212, 89, 268, 101], "score": 0.94, "content": "\\pi_{3}=\\pi\\{5\\}", "type": "inline_equation", "height": 12, "width": 56}, {"bbox": [268, 87, 405, 104], "score": 1.0, "content": " which interchanges both ", "type": "text"}, {"bbox": [405, 90, 453, 100], "score": 0.92, "content": "\\Lambda_{2}\\leftrightarrow\\Lambda_{4}", "type": "inline_equation", "height": 10, "width": 48}, {"bbox": [454, 87, 481, 104], "score": 1.0, "content": " and ", "type": "text"}, {"bbox": [482, 90, 536, 101], "score": 0.91, "content": "\\Lambda_{1}\\leftrightarrow3\\Lambda_{4}", "type": "inline_equation", "height": 11, "width": 54}, {"bbox": [537, 87, 540, 104], "score": 1.0, "content": ",", "type": "text"}], "index": 1}, {"bbox": [70, 101, 540, 118], "spans": [{"bbox": [70, 101, 265, 118], "score": 1.0, "content": "and fixes the other five weights in ", "type": "text"}, {"bbox": [265, 104, 281, 116], "score": 0.92, "content": "P_{+}", "type": "inline_equation", "height": 12, "width": 16}, {"bbox": [282, 101, 387, 118], "score": 1.0, "content": ". The exceptional ", "type": "text"}, {"bbox": [387, 108, 399, 115], "score": 0.88, "content": "\\pi_{3}", "type": "inline_equation", "height": 7, "width": 12}, {"bbox": [399, 101, 540, 118], "score": 1.0, "content": " was found independently", "type": "text"}], "index": 2}, {"bbox": [69, 116, 542, 132], "spans": [{"bbox": [69, 116, 156, 132], "score": 1.0, "content": "in [34,14]. For ", "type": "text"}, {"bbox": [156, 118, 191, 128], "score": 0.87, "content": "k\\,=\\,4", "type": "inline_equation", "height": 10, "width": 35}, {"bbox": [191, 116, 505, 132], "score": 1.0, "content": " we get a fusion-symmetry of order 4, which we will call ", "type": "text"}, {"bbox": [505, 122, 517, 129], "score": 0.79, "content": "\\pi_{4}", "type": "inline_equation", "height": 7, "width": 12}, {"bbox": [518, 116, 542, 132], "score": 1.0, "content": ". It", "type": "text"}], "index": 3}, {"bbox": [69, 130, 541, 146], "spans": [{"bbox": [69, 130, 114, 146], "score": 1.0, "content": "fixes 0, ", "type": "text"}, {"bbox": [115, 131, 160, 144], "score": 0.87, "content": "\\Lambda_{2}+\\Lambda_{4}", "type": "inline_equation", "height": 13, "width": 45}, {"bbox": [161, 130, 168, 146], "score": 1.0, "content": ", ", "type": "text"}, {"bbox": [169, 131, 214, 144], "score": 0.87, "content": "\\Lambda_{3}+\\Lambda_{4}", "type": "inline_equation", "height": 13, "width": 45}, {"bbox": [215, 130, 248, 146], "score": 1.0, "content": ", and ", "type": "text"}, {"bbox": [248, 131, 269, 144], "score": 0.88, "content": "2\\Lambda_{4}", "type": "inline_equation", "height": 13, "width": 21}, {"bbox": [269, 130, 356, 146], "score": 1.0, "content": ", and permutes ", "type": "text"}, {"bbox": [356, 132, 536, 144], "score": 0.92, "content": "\\Lambda_{4}\\;\\mapsto\\;\\Lambda_{1}\\;\\mapsto\\;2\\Lambda_{1}\\;\\mapsto\\;4\\Lambda_{4}\\;\\mapsto\\;\\Lambda_{4}", "type": "inline_equation", "height": 12, "width": 180}, {"bbox": [537, 130, 541, 146], "score": 1.0, "content": ",", "type": "text"}], "index": 4}, {"bbox": [71, 145, 540, 160], "spans": [{"bbox": [71, 145, 226, 158], "score": 0.92, "content": "\\Lambda_{2}\\mapsto2\\Lambda_{3}\\mapsto3\\Lambda_{4}\\mapsto\\Lambda_{3}\\mapsto\\Lambda_{2}", "type": "inline_equation", "height": 13, "width": 155}, {"bbox": [227, 145, 256, 160], "score": 1.0, "content": ", and ", "type": "text"}, {"bbox": [256, 146, 536, 158], "score": 0.81, "content": "\\Lambda_{1}\\!+\\!\\Lambda_{3}\\mapsto\\Lambda_{3}\\!+\\!2\\Lambda_{4}\\mapsto\\Lambda_{1}\\!+\\!\\Lambda_{4}\\mapsto\\Lambda_{1}+2\\Lambda_{4}\\mapsto\\Lambda_{1}\\!+\\!\\Lambda_{3}", "type": "inline_equation", "height": 12, "width": 280}, {"bbox": [537, 145, 540, 160], "score": 1.0, "content": ".", "type": "text"}], "index": 5}, {"bbox": [70, 159, 321, 174], "spans": [{"bbox": [70, 159, 126, 174], "score": 1.0, "content": "Its square ", "type": "text"}, {"bbox": [126, 159, 140, 173], "score": 0.89, "content": "\\pi_{4}^{2}", "type": "inline_equation", "height": 14, "width": 14}, {"bbox": [140, 159, 290, 174], "score": 1.0, "content": " equals the fusion-symmetry ", "type": "text"}, {"bbox": [290, 159, 317, 173], "score": 0.92, "content": "\\pi\\{5\\}", "type": "inline_equation", "height": 14, "width": 27}, {"bbox": [317, 159, 321, 174], "score": 1.0, "content": ".", "type": "text"}], "index": 6}], "index": 3}, {"type": "text", "bbox": [95, 172, 467, 186], "lines": [{"bbox": [95, 173, 466, 189], "spans": [{"bbox": [95, 173, 466, 189], "score": 1.0, "content": "The only fusion products we need can be obtained from [29] and (2.4):", "type": "text"}], "index": 7}], "index": 7}, {"type": "text", "bbox": [86, 197, 531, 270], "lines": [{"bbox": [97, 200, 371, 217], "spans": [{"bbox": [97, 201, 112, 215], "score": 0.85, "content": "\\Lambda_{4}", "type": "inline_equation", "height": 14, "width": 15}, {"bbox": [113, 200, 128, 217], "score": 1.0, "content": " \u00d7", "type": "text"}, {"bbox": [128, 200, 179, 216], "score": 0.92, "content": "\\Lambda_{4}=(0)_{1}", "type": "inline_equation", "height": 16, "width": 51}, {"bbox": [180, 200, 196, 217], "score": 1.0, "content": " + ", "type": "text"}, {"bbox": [196, 201, 226, 216], "score": 0.9, "content": "(\\Lambda_{1})_{2}", "type": "inline_equation", "height": 15, "width": 30}, {"bbox": [226, 200, 243, 217], "score": 1.0, "content": " + ", "type": "text"}, {"bbox": [243, 200, 272, 216], "score": 0.9, "content": "(\\Lambda_{3})_{2}", "type": "inline_equation", "height": 16, "width": 29}, {"bbox": [273, 200, 289, 217], "score": 1.0, "content": " + ", "type": "text"}, {"bbox": [290, 200, 318, 216], "score": 0.85, "content": "(\\Lambda_{4})_{1}", "type": "inline_equation", "height": 16, "width": 28}, {"bbox": [319, 200, 336, 217], "score": 1.0, "content": " + ", "type": "text"}, {"bbox": [336, 201, 371, 216], "score": 0.8, "content": "(2\\Lambda_{4})_{2}", "type": "inline_equation", "height": 15, "width": 35}], "index": 8}, {"bbox": [97, 219, 309, 235], "spans": [{"bbox": [97, 219, 112, 233], "score": 0.88, "content": "\\Lambda_{1}", "type": "inline_equation", "height": 14, "width": 15}, {"bbox": [112, 220, 128, 235], "score": 1.0, "content": " \u00d7", "type": "text"}, {"bbox": [129, 219, 187, 234], "score": 0.92, "content": "\\Lambda_{4}=(\\Lambda_{3})_{2}", "type": "inline_equation", "height": 15, "width": 58}, {"bbox": [187, 220, 204, 235], "score": 1.0, "content": " + ", "type": "text"}, {"bbox": [204, 219, 234, 234], "score": 0.9, "content": "(\\Lambda_{4})_{2}", "type": "inline_equation", "height": 15, "width": 30}, {"bbox": [234, 220, 250, 235], "score": 1.0, "content": " + ", "type": "text"}, {"bbox": [250, 219, 309, 234], "score": 0.88, "content": "(\\Lambda_{1}+\\Lambda_{4})_{3}", "type": "inline_equation", "height": 15, "width": 59}], "index": 9}, {"bbox": [97, 236, 529, 253], "spans": [{"bbox": [97, 237, 112, 251], "score": 0.88, "content": "\\Lambda_{3}", "type": "inline_equation", "height": 14, "width": 15}, {"bbox": [113, 237, 128, 253], "score": 1.0, "content": " \u00d7", "type": "text"}, {"bbox": [128, 236, 187, 252], "score": 0.93, "content": "\\Lambda_{4}=(\\Lambda_{1})_{2}", "type": "inline_equation", "height": 16, "width": 59}, {"bbox": [187, 237, 204, 253], "score": 1.0, "content": " + ", "type": "text"}, {"bbox": [204, 236, 234, 252], "score": 0.92, "content": "(\\Lambda_{2})_{3}", "type": "inline_equation", "height": 16, "width": 30}, {"bbox": [234, 237, 250, 253], "score": 1.0, "content": " + ", "type": "text"}, {"bbox": [251, 236, 280, 252], "score": 0.92, "content": "(\\Lambda_{3})_{2}", "type": "inline_equation", "height": 16, "width": 29}, {"bbox": [280, 237, 297, 253], "score": 1.0, "content": " + ", "type": "text"}, {"bbox": [297, 236, 326, 252], "score": 0.92, "content": "(\\Lambda_{4})_{2}", "type": "inline_equation", "height": 16, "width": 29}, {"bbox": [327, 237, 343, 253], "score": 1.0, "content": " + ", "type": "text"}, {"bbox": [344, 236, 402, 252], "score": 0.91, "content": "(\\Lambda_{1}+\\Lambda_{4})_{3}", "type": "inline_equation", "height": 16, "width": 58}, {"bbox": [402, 237, 418, 253], "score": 1.0, "content": " + ", "type": "text"}, {"bbox": [419, 236, 476, 252], "score": 0.91, "content": "(\\Lambda_{3}+\\Lambda_{4})_{3}", "type": "inline_equation", "height": 16, "width": 57}, {"bbox": [477, 237, 493, 253], "score": 1.0, "content": " + ", "type": "text"}, {"bbox": [493, 236, 529, 252], "score": 0.88, "content": "(2\\Lambda_{4})_{2}", "type": "inline_equation", "height": 16, "width": 36}], "index": 10}, {"bbox": [82, 254, 488, 271], "spans": [{"bbox": [82, 254, 111, 270], "score": 0.88, "content": "(2\\Lambda_{4})", "type": "inline_equation", "height": 16, "width": 29}, {"bbox": [112, 254, 128, 271], "score": 1.0, "content": " \u00d7", "type": "text"}, {"bbox": [128, 254, 187, 270], "score": 0.93, "content": "\\Lambda_{4}=(\\Lambda_{3})_{2}", "type": "inline_equation", "height": 16, "width": 59}, {"bbox": [187, 254, 204, 271], "score": 1.0, "content": " + ", "type": "text"}, {"bbox": [204, 254, 234, 270], "score": 0.91, "content": "(\\Lambda_{4})_{2}", "type": "inline_equation", "height": 16, "width": 30}, {"bbox": [234, 254, 251, 271], "score": 1.0, "content": " + ", "type": "text"}, {"bbox": [251, 254, 286, 270], "score": 0.91, "content": "(2\\Lambda_{4})_{2}", "type": "inline_equation", "height": 16, "width": 35}, {"bbox": [286, 254, 303, 271], "score": 1.0, "content": " + ", "type": "text"}, {"bbox": [304, 254, 339, 270], "score": 0.91, "content": "(3\\Lambda_{4})_{3}", "type": "inline_equation", "height": 16, "width": 35}, {"bbox": [339, 254, 355, 271], "score": 1.0, "content": " + ", "type": "text"}, {"bbox": [356, 254, 414, 270], "score": 0.9, "content": "(\\Lambda_{1}+\\Lambda_{4})_{3}", "type": "inline_equation", "height": 16, "width": 58}, {"bbox": [414, 254, 430, 271], "score": 1.0, "content": " + ", "type": "text"}, {"bbox": [431, 254, 488, 270], "score": 0.85, "content": "(\\Lambda_{3}+\\Lambda_{4})_{3}", "type": "inline_equation", "height": 16, "width": 57}], "index": 11}], "index": 9.5}, {"type": "text", "bbox": [71, 282, 542, 312], "lines": [{"bbox": [90, 281, 542, 306], "spans": [{"bbox": [90, 281, 403, 306], "score": 1.0, "content": "Theorem 3.F4. The only nontrivial fusion-symmetries of ", "type": "text"}, {"bbox": [403, 282, 427, 300], "score": 0.92, "content": "{F}_{4}^{(1)}", "type": "inline_equation", "height": 18, "width": 24}, {"bbox": [427, 281, 449, 306], "score": 1.0, "content": "are ", "type": "text"}, {"bbox": [449, 287, 463, 299], "score": 0.83, "content": "\\pi_{3}", "type": "inline_equation", "height": 12, "width": 14}, {"bbox": [464, 281, 542, 306], "score": 1.0, "content": " at level 3, and", "type": "text"}], "index": 12}, {"bbox": [70, 299, 281, 315], "spans": [{"bbox": [70, 299, 84, 314], "score": 0.9, "content": "\\pi_{4}^{i}", "type": "inline_equation", "height": 15, "width": 14}, {"bbox": [84, 300, 105, 315], "score": 1.0, "content": " for", "type": "text"}, {"bbox": [106, 300, 156, 313], "score": 0.88, "content": "1\\leq i\\leq3", "type": "inline_equation", "height": 13, "width": 50}, {"bbox": [156, 300, 281, 315], "score": 1.0, "content": ", which occur at level 4.", "type": "text"}], "index": 13}], "index": 12.5}, {"type": "title", "bbox": [71, 326, 183, 343], "lines": [{"bbox": [67, 327, 183, 348], "spans": [{"bbox": [67, 328, 160, 348], "score": 1.0, "content": "3.9. The algebra ", "type": "text"}, {"bbox": [161, 327, 183, 345], "score": 0.91, "content": "{G_{2}^{(1)}}", "type": "inline_equation", "height": 18, "width": 22}], "index": 14}], "index": 14}, {"type": "text", "bbox": [70, 350, 541, 378], "lines": [{"bbox": [93, 352, 542, 368], "spans": [{"bbox": [93, 352, 146, 368], "score": 1.0, "content": "A weight ", "type": "text"}, {"bbox": [146, 353, 154, 363], "score": 0.8, "content": "\\lambda", "type": "inline_equation", "height": 10, "width": 8}, {"bbox": [155, 352, 172, 368], "score": 1.0, "content": " in ", "type": "text"}, {"bbox": [172, 353, 188, 366], "score": 0.9, "content": "P_{+}", "type": "inline_equation", "height": 13, "width": 16}, {"bbox": [188, 352, 235, 368], "score": 1.0, "content": " satisfies ", "type": "text"}, {"bbox": [236, 352, 333, 365], "score": 0.92, "content": "k=\\lambda_{0}+2\\lambda_{1}+\\lambda_{2}", "type": "inline_equation", "height": 13, "width": 97}, {"bbox": [334, 352, 364, 368], "score": 1.0, "content": ", and ", "type": "text"}, {"bbox": [364, 354, 416, 364], "score": 0.9, "content": "\\kappa=k+4", "type": "inline_equation", "height": 10, "width": 52}, {"bbox": [416, 352, 542, 368], "score": 1.0, "content": ". The conjugations and", "type": "text"}], "index": 15}, {"bbox": [71, 367, 228, 381], "spans": [{"bbox": [71, 367, 228, 381], "score": 1.0, "content": "simple-currents are all trivial.", "type": "text"}], "index": 16}], "index": 15.5}, {"type": "text", "bbox": [70, 379, 541, 451], "lines": [{"bbox": [95, 381, 541, 396], "spans": [{"bbox": [95, 381, 396, 396], "score": 1.0, "content": "Again there are nontrivial Galois fusion-symmetries. At ", "type": "text"}, {"bbox": [396, 383, 427, 392], "score": 0.89, "content": "k=3", "type": "inline_equation", "height": 9, "width": 31}, {"bbox": [427, 381, 541, 396], "score": 1.0, "content": ", we have the order 3", "type": "text"}], "index": 17}, {"bbox": [69, 394, 541, 411], "spans": [{"bbox": [69, 394, 160, 411], "score": 1.0, "content": "fusion-symmetry", "type": "text"}, {"bbox": [161, 396, 215, 409], "score": 0.92, "content": "\\pi_{3}=\\pi\\{4\\}", "type": "inline_equation", "height": 13, "width": 54}, {"bbox": [216, 394, 259, 411], "score": 1.0, "content": " sending", "type": "text"}, {"bbox": [260, 397, 377, 408], "score": 0.92, "content": "\\Lambda_{1}\\mapsto3\\Lambda_{2}\\mapsto\\Lambda_{2}\\mapsto\\Lambda_{1}", "type": "inline_equation", "height": 11, "width": 117}, {"bbox": [378, 394, 541, 411], "score": 1.0, "content": ", and fixing the remaining three", "type": "text"}], "index": 18}, {"bbox": [71, 409, 540, 425], "spans": [{"bbox": [71, 409, 252, 425], "score": 1.0, "content": "weights. It was found in [14]. At ", "type": "text"}, {"bbox": [252, 410, 284, 421], "score": 0.87, "content": "k=4", "type": "inline_equation", "height": 11, "width": 32}, {"bbox": [285, 409, 338, 425], "score": 1.0, "content": ", we have ", "type": "text"}, {"bbox": [338, 411, 394, 423], "score": 0.93, "content": "\\pi_{4}=\\pi\\{5\\}", "type": "inline_equation", "height": 12, "width": 56}, {"bbox": [394, 409, 485, 425], "score": 1.0, "content": " permuting both ", "type": "text"}, {"bbox": [485, 412, 540, 423], "score": 0.91, "content": "\\Lambda_{1}\\leftrightarrow4\\Lambda_{2}", "type": "inline_equation", "height": 11, "width": 55}], "index": 19}, {"bbox": [70, 423, 541, 439], "spans": [{"bbox": [70, 423, 94, 439], "score": 1.0, "content": "and ", "type": "text"}, {"bbox": [94, 424, 149, 437], "score": 0.92, "content": "2\\Lambda_{1}\\leftrightarrow\\Lambda_{2}", "type": "inline_equation", "height": 13, "width": 55}, {"bbox": [150, 423, 541, 439], "score": 1.0, "content": ", and fixing the other five weights. It was found independently in [34,14],", "type": "text"}], "index": 20}, {"bbox": [70, 437, 401, 455], "spans": [{"bbox": [70, 437, 108, 455], "score": 1.0, "content": "and in ", "type": "text"}, {"bbox": [108, 438, 120, 452], "score": 0.39, "content": "\\S5", "type": "inline_equation", "height": 14, "width": 12}, {"bbox": [121, 437, 345, 455], "score": 1.0, "content": " we will see that it is closely related to the", "type": "text"}, {"bbox": [345, 440, 359, 451], "score": 0.84, "content": "\\pi_{3}", "type": "inline_equation", "height": 11, "width": 14}, {"bbox": [360, 437, 375, 455], "score": 1.0, "content": " of", "type": "text"}, {"bbox": [376, 438, 397, 453], "score": 0.91, "content": "F_{4,3}", "type": "inline_equation", "height": 15, "width": 21}, {"bbox": [398, 437, 401, 455], "score": 1.0, "content": ".", "type": "text"}], "index": 21}], "index": 19}, {"type": "text", "bbox": [95, 451, 490, 466], "lines": [{"bbox": [95, 452, 489, 468], "spans": [{"bbox": [95, 452, 489, 468], "score": 1.0, "content": "The only fusion products we will need can be obtained from [29] and (2.4):", "type": "text"}], "index": 22}], "index": 22}, {"type": "text", "bbox": [66, 477, 545, 513], "lines": [{"bbox": [98, 479, 326, 497], "spans": [{"bbox": [98, 479, 114, 493], "score": 0.87, "content": "\\Lambda_{2}", "type": "inline_equation", "height": 14, "width": 16}, {"bbox": [114, 479, 130, 497], "score": 1.0, "content": " \u00d7 ", "type": "text"}, {"bbox": [130, 479, 181, 495], "score": 0.93, "content": "\\Lambda_{2}=(0)_{1}", "type": "inline_equation", "height": 16, "width": 51}, {"bbox": [181, 479, 198, 497], "score": 1.0, "content": " + ", "type": "text"}, {"bbox": [198, 479, 227, 495], "score": 0.91, "content": "(\\Lambda_{1})_{2}", "type": "inline_equation", "height": 16, "width": 29}, {"bbox": [228, 479, 244, 497], "score": 1.0, "content": " + ", "type": "text"}, {"bbox": [244, 479, 273, 495], "score": 0.91, "content": "(\\Lambda_{2})_{1}", "type": "inline_equation", "height": 16, "width": 29}, {"bbox": [274, 479, 291, 497], "score": 1.0, "content": " + ", "type": "text"}, {"bbox": [291, 479, 326, 495], "score": 0.89, "content": "(2\\Lambda_{2})_{2}", "type": "inline_equation", "height": 16, "width": 35}], "index": 23}, {"bbox": [66, 497, 544, 516], "spans": [{"bbox": [66, 497, 82, 511], "score": 0.88, "content": "\\Lambda_{2}", "type": "inline_equation", "height": 14, "width": 16}, {"bbox": [82, 497, 97, 516], "score": 1.0, "content": " \u00d7", "type": "text"}, {"bbox": [98, 498, 114, 511], "score": 0.9, "content": "\\Lambda_{2}", "type": "inline_equation", "height": 13, "width": 16}, {"bbox": [114, 497, 129, 516], "score": 1.0, "content": " \u00d7", "type": "text"}, {"bbox": [130, 497, 180, 513], "score": 0.94, "content": "\\Lambda_{2}=(0)_{1}", "type": "inline_equation", "height": 16, "width": 50}, {"bbox": [181, 497, 197, 516], "score": 1.0, "content": " + ", "type": "text"}, {"bbox": [197, 497, 246, 513], "score": 0.91, "content": "2\\,\\pmb{\\nabla}\\,(\\Lambda_{1})_{22}", "type": "inline_equation", "height": 16, "width": 49}, {"bbox": [246, 497, 262, 516], "score": 1.0, "content": " +", "type": "text"}, {"bbox": [263, 497, 321, 513], "score": 0.87, "content": "4\\,\\pmb{\\mathrm{{E}}}\\left(\\Lambda_{2}\\right)_{1122}", "type": "inline_equation", "height": 16, "width": 58}, {"bbox": [322, 497, 338, 516], "score": 1.0, "content": " + ", "type": "text"}, {"bbox": [338, 497, 398, 513], "score": 0.89, "content": "3\\,\\pm\\,(2\\Lambda_{2})_{222}", "type": "inline_equation", "height": 16, "width": 60}, {"bbox": [398, 497, 414, 516], "score": 1.0, "content": " + ", "type": "text"}, {"bbox": [414, 497, 491, 513], "score": 0.89, "content": "2\\,\\Xi\\,(\\Lambda_{1}+\\Lambda_{2})_{33}", "type": "inline_equation", "height": 16, "width": 77}, {"bbox": [492, 497, 509, 516], "score": 1.0, "content": " + ", "type": "text"}, {"bbox": [509, 497, 544, 513], "score": 0.89, "content": "(3\\Lambda_{2})_{3}", "type": "inline_equation", "height": 16, "width": 35}], "index": 24}], "index": 23.5}, {"type": "text", "bbox": [70, 525, 542, 556], "lines": [{"bbox": [91, 522, 543, 548], "spans": [{"bbox": [91, 522, 408, 548], "score": 1.0, "content": "Theorem 3.G2. The only nontrivial fusion-symmetries for", "type": "text"}, {"bbox": [409, 525, 432, 543], "score": 0.92, "content": "{G_{2}^{(1)}}", "type": "inline_equation", "height": 18, "width": 23}, {"bbox": [433, 522, 455, 548], "score": 1.0, "content": "are ", "type": "text"}, {"bbox": [455, 527, 490, 543], "score": 0.91, "content": "(\\pi_{3})^{\\pm1}", "type": "inline_equation", "height": 16, "width": 35}, {"bbox": [491, 522, 506, 548], "score": 1.0, "content": " at ", "type": "text"}, {"bbox": [506, 528, 537, 541], "score": 0.87, "content": "k=3", "type": "inline_equation", "height": 13, "width": 31}, {"bbox": [537, 522, 543, 548], "score": 1.0, "content": ",", "type": "text"}], "index": 25}, {"bbox": [72, 543, 160, 557], "spans": [{"bbox": [72, 544, 93, 557], "score": 1.0, "content": "and", "type": "text"}, {"bbox": [93, 544, 107, 556], "score": 0.84, "content": "\\pi_{4}", "type": "inline_equation", "height": 12, "width": 14}, {"bbox": [108, 544, 124, 557], "score": 1.0, "content": " at ", "type": "text"}, {"bbox": [124, 543, 155, 555], "score": 0.89, "content": "k=4", "type": "inline_equation", "height": 12, "width": 31}, {"bbox": [155, 544, 160, 557], "score": 1.0, "content": ".", "type": "text"}], "index": 26}], "index": 25.5}, {"type": "title", "bbox": [249, 583, 362, 598], "lines": [{"bbox": [249, 585, 362, 599], "spans": [{"bbox": [249, 585, 362, 599], "score": 1.0, "content": "4. The Arguments", "type": "text"}], "index": 27}], "index": 27}, {"type": "text", "bbox": [70, 612, 541, 669], "lines": [{"bbox": [95, 614, 540, 628], "spans": [{"bbox": [95, 614, 540, 628], "score": 1.0, "content": "The fundamental reason the classification of fusion-symmetries for the affine algebras", "type": "text"}], "index": 28}, {"bbox": [69, 628, 541, 642], "spans": [{"bbox": [69, 628, 541, 642], "score": 1.0, "content": "is so accessible is (2.1b), which reduces the problem to studying Lie group characters at", "type": "text"}], "index": 29}, {"bbox": [70, 641, 541, 659], "spans": [{"bbox": [70, 641, 541, 659], "score": 1.0, "content": "elements of finite order. These values have been studied by a number of people \u2014 see e.g.", "type": "text"}], "index": 30}, {"bbox": [71, 656, 401, 673], "spans": [{"bbox": [71, 656, 401, 673], "score": 1.0, "content": "[22,28] \u2014 and the resulting combinatorics is often quite pretty.", "type": "text"}], "index": 31}], "index": 29.5}, {"type": "text", "bbox": [69, 670, 540, 713], "lines": [{"bbox": [93, 671, 540, 686], "spans": [{"bbox": [93, 671, 325, 686], "score": 1.0, "content": "Lemma 2.2 implies that a fusion-symmetry ", "type": "text"}, {"bbox": [325, 677, 332, 682], "score": 0.87, "content": "\\pi", "type": "inline_equation", "height": 5, "width": 7}, {"bbox": [333, 671, 464, 686], "score": 1.0, "content": " preserves q-dimensions: ", "type": "text"}, {"bbox": [464, 673, 540, 685], "score": 0.94, "content": "{\\mathcal{D}}(\\lambda)={\\mathcal{D}}(\\pi\\lambda)", "type": "inline_equation", "height": 12, "width": 76}], "index": 32}, {"bbox": [70, 686, 540, 701], "spans": [{"bbox": [70, 688, 116, 699], "score": 0.92, "content": "\\forall\\lambda\\in P_{+}", "type": "inline_equation", "height": 11, "width": 46}, {"bbox": [116, 686, 373, 701], "score": 1.0, "content": ". In this subsection we use that to find a weight ", "type": "text"}, {"bbox": [374, 688, 387, 698], "score": 0.92, "content": "\\Lambda_{\\star}", "type": "inline_equation", "height": 10, "width": 13}, {"bbox": [388, 686, 540, 701], "score": 1.0, "content": "for each algebra which must", "type": "text"}], "index": 33}, {"bbox": [70, 700, 203, 715], "spans": [{"bbox": [70, 700, 190, 715], "score": 1.0, "content": "be essentially fixed by ", "type": "text"}, {"bbox": [190, 705, 198, 711], "score": 0.88, "content": "\\pi", "type": "inline_equation", "height": 6, "width": 8}, {"bbox": [198, 700, 203, 715], "score": 1.0, "content": ".", "type": "text"}], "index": 34}], "index": 33}], "layout_bboxes": [], "page_idx": 14, "page_size": [612.0, 792.0], "_layout_tree": [], "images": [], "tables": [], "interline_equations": [], "discarded_blocks": [{"type": "discarded", "bbox": [299, 730, 312, 742], "lines": [{"bbox": [298, 731, 313, 745], "spans": [{"bbox": [298, 731, 313, 745], "score": 1.0, "content": "15", "type": "text"}]}]}], "need_drop": false, "drop_reason": [], "para_blocks": [{"type": "text", "bbox": [70, 70, 541, 172], "lines": [{"bbox": [94, 73, 541, 88], "spans": [{"bbox": [94, 73, 330, 88], "score": 1.0, "content": "There are Galois fusion-symmetries at levels ", "type": "text"}, {"bbox": [331, 75, 360, 84], "score": 0.91, "content": "k=3", "type": "inline_equation", "height": 9, "width": 29}, {"bbox": [360, 73, 492, 88], "score": 1.0, "content": " and 4. In particular, for ", "type": "text"}, {"bbox": [493, 75, 522, 84], "score": 0.91, "content": "k=3", "type": "inline_equation", "height": 9, "width": 29}, {"bbox": [522, 73, 541, 88], "score": 1.0, "content": " we", "type": "text"}], "index": 0}, {"bbox": [70, 87, 540, 104], "spans": [{"bbox": [70, 87, 212, 104], "score": 1.0, "content": "have the fusion-symmetry ", "type": "text"}, {"bbox": [212, 89, 268, 101], "score": 0.94, "content": "\\pi_{3}=\\pi\\{5\\}", "type": "inline_equation", "height": 12, "width": 56}, {"bbox": [268, 87, 405, 104], "score": 1.0, "content": " which interchanges both ", "type": "text"}, {"bbox": [405, 90, 453, 100], "score": 0.92, "content": "\\Lambda_{2}\\leftrightarrow\\Lambda_{4}", "type": "inline_equation", "height": 10, "width": 48}, {"bbox": [454, 87, 481, 104], "score": 1.0, "content": " and ", "type": "text"}, {"bbox": [482, 90, 536, 101], "score": 0.91, "content": "\\Lambda_{1}\\leftrightarrow3\\Lambda_{4}", "type": "inline_equation", "height": 11, "width": 54}, {"bbox": [537, 87, 540, 104], "score": 1.0, "content": ",", "type": "text"}], "index": 1}, {"bbox": [70, 101, 540, 118], "spans": [{"bbox": [70, 101, 265, 118], "score": 1.0, "content": "and fixes the other five weights in ", "type": "text"}, {"bbox": [265, 104, 281, 116], "score": 0.92, "content": "P_{+}", "type": "inline_equation", "height": 12, "width": 16}, {"bbox": [282, 101, 387, 118], "score": 1.0, "content": ". The exceptional ", "type": "text"}, {"bbox": [387, 108, 399, 115], "score": 0.88, "content": "\\pi_{3}", "type": "inline_equation", "height": 7, "width": 12}, {"bbox": [399, 101, 540, 118], "score": 1.0, "content": " was found independently", "type": "text"}], "index": 2}, {"bbox": [69, 116, 542, 132], "spans": [{"bbox": [69, 116, 156, 132], "score": 1.0, "content": "in [34,14]. For ", "type": "text"}, {"bbox": [156, 118, 191, 128], "score": 0.87, "content": "k\\,=\\,4", "type": "inline_equation", "height": 10, "width": 35}, {"bbox": [191, 116, 505, 132], "score": 1.0, "content": " we get a fusion-symmetry of order 4, which we will call ", "type": "text"}, {"bbox": [505, 122, 517, 129], "score": 0.79, "content": "\\pi_{4}", "type": "inline_equation", "height": 7, "width": 12}, {"bbox": [518, 116, 542, 132], "score": 1.0, "content": ". It", "type": "text"}], "index": 3}, {"bbox": [69, 130, 541, 146], "spans": [{"bbox": [69, 130, 114, 146], "score": 1.0, "content": "fixes 0, ", "type": "text"}, {"bbox": [115, 131, 160, 144], "score": 0.87, "content": "\\Lambda_{2}+\\Lambda_{4}", "type": "inline_equation", "height": 13, "width": 45}, {"bbox": [161, 130, 168, 146], "score": 1.0, "content": ", ", "type": "text"}, {"bbox": [169, 131, 214, 144], "score": 0.87, "content": "\\Lambda_{3}+\\Lambda_{4}", "type": "inline_equation", "height": 13, "width": 45}, {"bbox": [215, 130, 248, 146], "score": 1.0, "content": ", and ", "type": "text"}, {"bbox": [248, 131, 269, 144], "score": 0.88, "content": "2\\Lambda_{4}", "type": "inline_equation", "height": 13, "width": 21}, {"bbox": [269, 130, 356, 146], "score": 1.0, "content": ", and permutes ", "type": "text"}, {"bbox": [356, 132, 536, 144], "score": 0.92, "content": "\\Lambda_{4}\\;\\mapsto\\;\\Lambda_{1}\\;\\mapsto\\;2\\Lambda_{1}\\;\\mapsto\\;4\\Lambda_{4}\\;\\mapsto\\;\\Lambda_{4}", "type": "inline_equation", "height": 12, "width": 180}, {"bbox": [537, 130, 541, 146], "score": 1.0, "content": ",", "type": "text"}], "index": 4}, {"bbox": [71, 145, 540, 160], "spans": [{"bbox": [71, 145, 226, 158], "score": 0.92, "content": "\\Lambda_{2}\\mapsto2\\Lambda_{3}\\mapsto3\\Lambda_{4}\\mapsto\\Lambda_{3}\\mapsto\\Lambda_{2}", "type": "inline_equation", "height": 13, "width": 155}, {"bbox": [227, 145, 256, 160], "score": 1.0, "content": ", and ", "type": "text"}, {"bbox": [256, 146, 536, 158], "score": 0.81, "content": "\\Lambda_{1}\\!+\\!\\Lambda_{3}\\mapsto\\Lambda_{3}\\!+\\!2\\Lambda_{4}\\mapsto\\Lambda_{1}\\!+\\!\\Lambda_{4}\\mapsto\\Lambda_{1}+2\\Lambda_{4}\\mapsto\\Lambda_{1}\\!+\\!\\Lambda_{3}", "type": "inline_equation", "height": 12, "width": 280}, {"bbox": [537, 145, 540, 160], "score": 1.0, "content": ".", "type": "text"}], "index": 5}, {"bbox": [70, 159, 321, 174], "spans": [{"bbox": [70, 159, 126, 174], "score": 1.0, "content": "Its square ", "type": "text"}, {"bbox": [126, 159, 140, 173], "score": 0.89, "content": "\\pi_{4}^{2}", "type": "inline_equation", "height": 14, "width": 14}, {"bbox": [140, 159, 290, 174], "score": 1.0, "content": " equals the fusion-symmetry ", "type": "text"}, {"bbox": [290, 159, 317, 173], "score": 0.92, "content": "\\pi\\{5\\}", "type": "inline_equation", "height": 14, "width": 27}, {"bbox": [317, 159, 321, 174], "score": 1.0, "content": ".", "type": "text"}], "index": 6}], "index": 3, "page_num": "page_14", "page_size": [612.0, 792.0], "bbox_fs": [69, 73, 542, 174]}, {"type": "text", "bbox": [95, 172, 467, 186], "lines": [{"bbox": [95, 173, 466, 189], "spans": [{"bbox": [95, 173, 466, 189], "score": 1.0, "content": "The only fusion products we need can be obtained from [29] and (2.4):", "type": "text"}], "index": 7}], "index": 7, "page_num": "page_14", "page_size": [612.0, 792.0], "bbox_fs": [95, 173, 466, 189]}, {"type": "text", "bbox": [86, 197, 531, 270], "lines": [{"bbox": [97, 200, 371, 217], "spans": [{"bbox": [97, 201, 112, 215], "score": 0.85, "content": "\\Lambda_{4}", "type": "inline_equation", "height": 14, "width": 15}, {"bbox": [113, 200, 128, 217], "score": 1.0, "content": " \u00d7", "type": "text"}, {"bbox": [128, 200, 179, 216], "score": 0.92, "content": "\\Lambda_{4}=(0)_{1}", "type": "inline_equation", "height": 16, "width": 51}, {"bbox": [180, 200, 196, 217], "score": 1.0, "content": " + ", "type": "text"}, {"bbox": [196, 201, 226, 216], "score": 0.9, "content": "(\\Lambda_{1})_{2}", "type": "inline_equation", "height": 15, "width": 30}, {"bbox": [226, 200, 243, 217], "score": 1.0, "content": " + ", "type": "text"}, {"bbox": [243, 200, 272, 216], "score": 0.9, "content": "(\\Lambda_{3})_{2}", "type": "inline_equation", "height": 16, "width": 29}, {"bbox": [273, 200, 289, 217], "score": 1.0, "content": " + ", "type": "text"}, {"bbox": [290, 200, 318, 216], "score": 0.85, "content": "(\\Lambda_{4})_{1}", "type": "inline_equation", "height": 16, "width": 28}, {"bbox": [319, 200, 336, 217], "score": 1.0, "content": " + ", "type": "text"}, {"bbox": [336, 201, 371, 216], "score": 0.8, "content": "(2\\Lambda_{4})_{2}", "type": "inline_equation", "height": 15, "width": 35}], "index": 8}, {"bbox": [97, 219, 309, 235], "spans": [{"bbox": [97, 219, 112, 233], "score": 0.88, "content": "\\Lambda_{1}", "type": "inline_equation", "height": 14, "width": 15}, {"bbox": [112, 220, 128, 235], "score": 1.0, "content": " \u00d7", "type": "text"}, {"bbox": [129, 219, 187, 234], "score": 0.92, "content": "\\Lambda_{4}=(\\Lambda_{3})_{2}", "type": "inline_equation", "height": 15, "width": 58}, {"bbox": [187, 220, 204, 235], "score": 1.0, "content": " + ", "type": "text"}, {"bbox": [204, 219, 234, 234], "score": 0.9, "content": "(\\Lambda_{4})_{2}", "type": "inline_equation", "height": 15, "width": 30}, {"bbox": [234, 220, 250, 235], "score": 1.0, "content": " + ", "type": "text"}, {"bbox": [250, 219, 309, 234], "score": 0.88, "content": "(\\Lambda_{1}+\\Lambda_{4})_{3}", "type": "inline_equation", "height": 15, "width": 59}], "index": 9}, {"bbox": [97, 236, 529, 253], "spans": [{"bbox": [97, 237, 112, 251], "score": 0.88, "content": "\\Lambda_{3}", "type": "inline_equation", "height": 14, "width": 15}, {"bbox": [113, 237, 128, 253], "score": 1.0, "content": " \u00d7", "type": "text"}, {"bbox": [128, 236, 187, 252], "score": 0.93, "content": "\\Lambda_{4}=(\\Lambda_{1})_{2}", "type": "inline_equation", "height": 16, "width": 59}, {"bbox": [187, 237, 204, 253], "score": 1.0, "content": " + ", "type": "text"}, {"bbox": [204, 236, 234, 252], "score": 0.92, "content": "(\\Lambda_{2})_{3}", "type": "inline_equation", "height": 16, "width": 30}, {"bbox": [234, 237, 250, 253], "score": 1.0, "content": " + ", "type": "text"}, {"bbox": [251, 236, 280, 252], "score": 0.92, "content": "(\\Lambda_{3})_{2}", "type": "inline_equation", "height": 16, "width": 29}, {"bbox": [280, 237, 297, 253], "score": 1.0, "content": " + ", "type": "text"}, {"bbox": [297, 236, 326, 252], "score": 0.92, "content": "(\\Lambda_{4})_{2}", "type": "inline_equation", "height": 16, "width": 29}, {"bbox": [327, 237, 343, 253], "score": 1.0, "content": " + ", "type": "text"}, {"bbox": [344, 236, 402, 252], "score": 0.91, "content": "(\\Lambda_{1}+\\Lambda_{4})_{3}", "type": "inline_equation", "height": 16, "width": 58}, {"bbox": [402, 237, 418, 253], "score": 1.0, "content": " + ", "type": "text"}, {"bbox": [419, 236, 476, 252], "score": 0.91, "content": "(\\Lambda_{3}+\\Lambda_{4})_{3}", "type": "inline_equation", "height": 16, "width": 57}, {"bbox": [477, 237, 493, 253], "score": 1.0, "content": " + ", "type": "text"}, {"bbox": [493, 236, 529, 252], "score": 0.88, "content": "(2\\Lambda_{4})_{2}", "type": "inline_equation", "height": 16, "width": 36}], "index": 10}, {"bbox": [82, 254, 488, 271], "spans": [{"bbox": [82, 254, 111, 270], "score": 0.88, "content": "(2\\Lambda_{4})", "type": "inline_equation", "height": 16, "width": 29}, {"bbox": [112, 254, 128, 271], "score": 1.0, "content": " \u00d7", "type": "text"}, {"bbox": [128, 254, 187, 270], "score": 0.93, "content": "\\Lambda_{4}=(\\Lambda_{3})_{2}", "type": "inline_equation", "height": 16, "width": 59}, {"bbox": [187, 254, 204, 271], "score": 1.0, "content": " + ", "type": "text"}, {"bbox": [204, 254, 234, 270], "score": 0.91, "content": "(\\Lambda_{4})_{2}", "type": "inline_equation", "height": 16, "width": 30}, {"bbox": [234, 254, 251, 271], "score": 1.0, "content": " + ", "type": "text"}, {"bbox": [251, 254, 286, 270], "score": 0.91, "content": "(2\\Lambda_{4})_{2}", "type": "inline_equation", "height": 16, "width": 35}, {"bbox": [286, 254, 303, 271], "score": 1.0, "content": " + ", "type": "text"}, {"bbox": [304, 254, 339, 270], "score": 0.91, "content": "(3\\Lambda_{4})_{3}", "type": "inline_equation", "height": 16, "width": 35}, {"bbox": [339, 254, 355, 271], "score": 1.0, "content": " + ", "type": "text"}, {"bbox": [356, 254, 414, 270], "score": 0.9, "content": "(\\Lambda_{1}+\\Lambda_{4})_{3}", "type": "inline_equation", "height": 16, "width": 58}, {"bbox": [414, 254, 430, 271], "score": 1.0, "content": " + ", "type": "text"}, {"bbox": [431, 254, 488, 270], "score": 0.85, "content": "(\\Lambda_{3}+\\Lambda_{4})_{3}", "type": "inline_equation", "height": 16, "width": 57}], "index": 11}], "index": 9.5, "page_num": "page_14", "page_size": [612.0, 792.0], "bbox_fs": [82, 200, 529, 271]}, {"type": "text", "bbox": [71, 282, 542, 312], "lines": [{"bbox": [90, 281, 542, 306], "spans": [{"bbox": [90, 281, 403, 306], "score": 1.0, "content": "Theorem 3.F4. The only nontrivial fusion-symmetries of ", "type": "text"}, {"bbox": [403, 282, 427, 300], "score": 0.92, "content": "{F}_{4}^{(1)}", "type": "inline_equation", "height": 18, "width": 24}, {"bbox": [427, 281, 449, 306], "score": 1.0, "content": "are ", "type": "text"}, {"bbox": [449, 287, 463, 299], "score": 0.83, "content": "\\pi_{3}", "type": "inline_equation", "height": 12, "width": 14}, {"bbox": [464, 281, 542, 306], "score": 1.0, "content": " at level 3, and", "type": "text"}], "index": 12}, {"bbox": [70, 299, 281, 315], "spans": [{"bbox": [70, 299, 84, 314], "score": 0.9, "content": "\\pi_{4}^{i}", "type": "inline_equation", "height": 15, "width": 14}, {"bbox": [84, 300, 105, 315], "score": 1.0, "content": " for", "type": "text"}, {"bbox": [106, 300, 156, 313], "score": 0.88, "content": "1\\leq i\\leq3", "type": "inline_equation", "height": 13, "width": 50}, {"bbox": [156, 300, 281, 315], "score": 1.0, "content": ", which occur at level 4.", "type": "text"}], "index": 13}], "index": 12.5, "page_num": "page_14", "page_size": [612.0, 792.0], "bbox_fs": [70, 281, 542, 315]}, {"type": "title", "bbox": [71, 326, 183, 343], "lines": [{"bbox": [67, 327, 183, 348], "spans": [{"bbox": [67, 328, 160, 348], "score": 1.0, "content": "3.9. The algebra ", "type": "text"}, {"bbox": [161, 327, 183, 345], "score": 0.91, "content": "{G_{2}^{(1)}}", "type": "inline_equation", "height": 18, "width": 22}], "index": 14}], "index": 14, "page_num": "page_14", "page_size": [612.0, 792.0]}, {"type": "text", "bbox": [70, 350, 541, 378], "lines": [{"bbox": [93, 352, 542, 368], "spans": [{"bbox": [93, 352, 146, 368], "score": 1.0, "content": "A weight ", "type": "text"}, {"bbox": [146, 353, 154, 363], "score": 0.8, "content": "\\lambda", "type": "inline_equation", "height": 10, "width": 8}, {"bbox": [155, 352, 172, 368], "score": 1.0, "content": " in ", "type": "text"}, {"bbox": [172, 353, 188, 366], "score": 0.9, "content": "P_{+}", "type": "inline_equation", "height": 13, "width": 16}, {"bbox": [188, 352, 235, 368], "score": 1.0, "content": " satisfies ", "type": "text"}, {"bbox": [236, 352, 333, 365], "score": 0.92, "content": "k=\\lambda_{0}+2\\lambda_{1}+\\lambda_{2}", "type": "inline_equation", "height": 13, "width": 97}, {"bbox": [334, 352, 364, 368], "score": 1.0, "content": ", and ", "type": "text"}, {"bbox": [364, 354, 416, 364], "score": 0.9, "content": "\\kappa=k+4", "type": "inline_equation", "height": 10, "width": 52}, {"bbox": [416, 352, 542, 368], "score": 1.0, "content": ". The conjugations and", "type": "text"}], "index": 15}, {"bbox": [71, 367, 228, 381], "spans": [{"bbox": [71, 367, 228, 381], "score": 1.0, "content": "simple-currents are all trivial.", "type": "text"}], "index": 16}], "index": 15.5, "page_num": "page_14", "page_size": [612.0, 792.0], "bbox_fs": [71, 352, 542, 381]}, {"type": "text", "bbox": [70, 379, 541, 451], "lines": [{"bbox": [95, 381, 541, 396], "spans": [{"bbox": [95, 381, 396, 396], "score": 1.0, "content": "Again there are nontrivial Galois fusion-symmetries. At ", "type": "text"}, {"bbox": [396, 383, 427, 392], "score": 0.89, "content": "k=3", "type": "inline_equation", "height": 9, "width": 31}, {"bbox": [427, 381, 541, 396], "score": 1.0, "content": ", we have the order 3", "type": "text"}], "index": 17}, {"bbox": [69, 394, 541, 411], "spans": [{"bbox": [69, 394, 160, 411], "score": 1.0, "content": "fusion-symmetry", "type": "text"}, {"bbox": [161, 396, 215, 409], "score": 0.92, "content": "\\pi_{3}=\\pi\\{4\\}", "type": "inline_equation", "height": 13, "width": 54}, {"bbox": [216, 394, 259, 411], "score": 1.0, "content": " sending", "type": "text"}, {"bbox": [260, 397, 377, 408], "score": 0.92, "content": "\\Lambda_{1}\\mapsto3\\Lambda_{2}\\mapsto\\Lambda_{2}\\mapsto\\Lambda_{1}", "type": "inline_equation", "height": 11, "width": 117}, {"bbox": [378, 394, 541, 411], "score": 1.0, "content": ", and fixing the remaining three", "type": "text"}], "index": 18}, {"bbox": [71, 409, 540, 425], "spans": [{"bbox": [71, 409, 252, 425], "score": 1.0, "content": "weights. It was found in [14]. At ", "type": "text"}, {"bbox": [252, 410, 284, 421], "score": 0.87, "content": "k=4", "type": "inline_equation", "height": 11, "width": 32}, {"bbox": [285, 409, 338, 425], "score": 1.0, "content": ", we have ", "type": "text"}, {"bbox": [338, 411, 394, 423], "score": 0.93, "content": "\\pi_{4}=\\pi\\{5\\}", "type": "inline_equation", "height": 12, "width": 56}, {"bbox": [394, 409, 485, 425], "score": 1.0, "content": " permuting both ", "type": "text"}, {"bbox": [485, 412, 540, 423], "score": 0.91, "content": "\\Lambda_{1}\\leftrightarrow4\\Lambda_{2}", "type": "inline_equation", "height": 11, "width": 55}], "index": 19}, {"bbox": [70, 423, 541, 439], "spans": [{"bbox": [70, 423, 94, 439], "score": 1.0, "content": "and ", "type": "text"}, {"bbox": [94, 424, 149, 437], "score": 0.92, "content": "2\\Lambda_{1}\\leftrightarrow\\Lambda_{2}", "type": "inline_equation", "height": 13, "width": 55}, {"bbox": [150, 423, 541, 439], "score": 1.0, "content": ", and fixing the other five weights. It was found independently in [34,14],", "type": "text"}], "index": 20}, {"bbox": [70, 437, 401, 455], "spans": [{"bbox": [70, 437, 108, 455], "score": 1.0, "content": "and in ", "type": "text"}, {"bbox": [108, 438, 120, 452], "score": 0.39, "content": "\\S5", "type": "inline_equation", "height": 14, "width": 12}, {"bbox": [121, 437, 345, 455], "score": 1.0, "content": " we will see that it is closely related to the", "type": "text"}, {"bbox": [345, 440, 359, 451], "score": 0.84, "content": "\\pi_{3}", "type": "inline_equation", "height": 11, "width": 14}, {"bbox": [360, 437, 375, 455], "score": 1.0, "content": " of", "type": "text"}, {"bbox": [376, 438, 397, 453], "score": 0.91, "content": "F_{4,3}", "type": "inline_equation", "height": 15, "width": 21}, {"bbox": [398, 437, 401, 455], "score": 1.0, "content": ".", "type": "text"}], "index": 21}], "index": 19, "page_num": "page_14", "page_size": [612.0, 792.0], "bbox_fs": [69, 381, 541, 455]}, {"type": "text", "bbox": [95, 451, 490, 466], "lines": [{"bbox": [95, 452, 489, 468], "spans": [{"bbox": [95, 452, 489, 468], "score": 1.0, "content": "The only fusion products we will need can be obtained from [29] and (2.4):", "type": "text"}], "index": 22}], "index": 22, "page_num": "page_14", "page_size": [612.0, 792.0], "bbox_fs": [95, 452, 489, 468]}, {"type": "text", "bbox": [66, 477, 545, 513], "lines": [{"bbox": [98, 479, 326, 497], "spans": [{"bbox": [98, 479, 114, 493], "score": 0.87, "content": "\\Lambda_{2}", "type": "inline_equation", "height": 14, "width": 16}, {"bbox": [114, 479, 130, 497], "score": 1.0, "content": " \u00d7 ", "type": "text"}, {"bbox": [130, 479, 181, 495], "score": 0.93, "content": "\\Lambda_{2}=(0)_{1}", "type": "inline_equation", "height": 16, "width": 51}, {"bbox": [181, 479, 198, 497], "score": 1.0, "content": " + ", "type": "text"}, {"bbox": [198, 479, 227, 495], "score": 0.91, "content": "(\\Lambda_{1})_{2}", "type": "inline_equation", "height": 16, "width": 29}, {"bbox": [228, 479, 244, 497], "score": 1.0, "content": " + ", "type": "text"}, {"bbox": [244, 479, 273, 495], "score": 0.91, "content": "(\\Lambda_{2})_{1}", "type": "inline_equation", "height": 16, "width": 29}, {"bbox": [274, 479, 291, 497], "score": 1.0, "content": " + ", "type": "text"}, {"bbox": [291, 479, 326, 495], "score": 0.89, "content": "(2\\Lambda_{2})_{2}", "type": "inline_equation", "height": 16, "width": 35}], "index": 23}, {"bbox": [66, 497, 544, 516], "spans": [{"bbox": [66, 497, 82, 511], "score": 0.88, "content": "\\Lambda_{2}", "type": "inline_equation", "height": 14, "width": 16}, {"bbox": [82, 497, 97, 516], "score": 1.0, "content": " \u00d7", "type": "text"}, {"bbox": [98, 498, 114, 511], "score": 0.9, "content": "\\Lambda_{2}", "type": "inline_equation", "height": 13, "width": 16}, {"bbox": [114, 497, 129, 516], "score": 1.0, "content": " \u00d7", "type": "text"}, {"bbox": [130, 497, 180, 513], "score": 0.94, "content": "\\Lambda_{2}=(0)_{1}", "type": "inline_equation", "height": 16, "width": 50}, {"bbox": [181, 497, 197, 516], "score": 1.0, "content": " + ", "type": "text"}, {"bbox": [197, 497, 246, 513], "score": 0.91, "content": "2\\,\\pmb{\\nabla}\\,(\\Lambda_{1})_{22}", "type": "inline_equation", "height": 16, "width": 49}, {"bbox": [246, 497, 262, 516], "score": 1.0, "content": " +", "type": "text"}, {"bbox": [263, 497, 321, 513], "score": 0.87, "content": "4\\,\\pmb{\\mathrm{{E}}}\\left(\\Lambda_{2}\\right)_{1122}", "type": "inline_equation", "height": 16, "width": 58}, {"bbox": [322, 497, 338, 516], "score": 1.0, "content": " + ", "type": "text"}, {"bbox": [338, 497, 398, 513], "score": 0.89, "content": "3\\,\\pm\\,(2\\Lambda_{2})_{222}", "type": "inline_equation", "height": 16, "width": 60}, {"bbox": [398, 497, 414, 516], "score": 1.0, "content": " + ", "type": "text"}, {"bbox": [414, 497, 491, 513], "score": 0.89, "content": "2\\,\\Xi\\,(\\Lambda_{1}+\\Lambda_{2})_{33}", "type": "inline_equation", "height": 16, "width": 77}, {"bbox": [492, 497, 509, 516], "score": 1.0, "content": " + ", "type": "text"}, {"bbox": [509, 497, 544, 513], "score": 0.89, "content": "(3\\Lambda_{2})_{3}", "type": "inline_equation", "height": 16, "width": 35}], "index": 24}], "index": 23.5, "page_num": "page_14", "page_size": [612.0, 792.0], "bbox_fs": [66, 479, 544, 516]}, {"type": "text", "bbox": [70, 525, 542, 556], "lines": [{"bbox": [91, 522, 543, 548], "spans": [{"bbox": [91, 522, 408, 548], "score": 1.0, "content": "Theorem 3.G2. The only nontrivial fusion-symmetries for", "type": "text"}, {"bbox": [409, 525, 432, 543], "score": 0.92, "content": "{G_{2}^{(1)}}", "type": "inline_equation", "height": 18, "width": 23}, {"bbox": [433, 522, 455, 548], "score": 1.0, "content": "are ", "type": "text"}, {"bbox": [455, 527, 490, 543], "score": 0.91, "content": "(\\pi_{3})^{\\pm1}", "type": "inline_equation", "height": 16, "width": 35}, {"bbox": [491, 522, 506, 548], "score": 1.0, "content": " at ", "type": "text"}, {"bbox": [506, 528, 537, 541], "score": 0.87, "content": "k=3", "type": "inline_equation", "height": 13, "width": 31}, {"bbox": [537, 522, 543, 548], "score": 1.0, "content": ",", "type": "text"}], "index": 25}, {"bbox": [72, 543, 160, 557], "spans": [{"bbox": [72, 544, 93, 557], "score": 1.0, "content": "and", "type": "text"}, {"bbox": [93, 544, 107, 556], "score": 0.84, "content": "\\pi_{4}", "type": "inline_equation", "height": 12, "width": 14}, {"bbox": [108, 544, 124, 557], "score": 1.0, "content": " at ", "type": "text"}, {"bbox": [124, 543, 155, 555], "score": 0.89, "content": "k=4", "type": "inline_equation", "height": 12, "width": 31}, {"bbox": [155, 544, 160, 557], "score": 1.0, "content": ".", "type": "text"}], "index": 26}], "index": 25.5, "page_num": "page_14", "page_size": [612.0, 792.0], "bbox_fs": [72, 522, 543, 557]}, {"type": "title", "bbox": [249, 583, 362, 598], "lines": [{"bbox": [249, 585, 362, 599], "spans": [{"bbox": [249, 585, 362, 599], "score": 1.0, "content": "4. The Arguments", "type": "text"}], "index": 27}], "index": 27, "page_num": "page_14", "page_size": [612.0, 792.0]}, {"type": "text", "bbox": [70, 612, 541, 669], "lines": [{"bbox": [95, 614, 540, 628], "spans": [{"bbox": [95, 614, 540, 628], "score": 1.0, "content": "The fundamental reason the classification of fusion-symmetries for the affine algebras", "type": "text"}], "index": 28}, {"bbox": [69, 628, 541, 642], "spans": [{"bbox": [69, 628, 541, 642], "score": 1.0, "content": "is so accessible is (2.1b), which reduces the problem to studying Lie group characters at", "type": "text"}], "index": 29}, {"bbox": [70, 641, 541, 659], "spans": [{"bbox": [70, 641, 541, 659], "score": 1.0, "content": "elements of finite order. These values have been studied by a number of people \u2014 see e.g.", "type": "text"}], "index": 30}, {"bbox": [71, 656, 401, 673], "spans": [{"bbox": [71, 656, 401, 673], "score": 1.0, "content": "[22,28] \u2014 and the resulting combinatorics is often quite pretty.", "type": "text"}], "index": 31}], "index": 29.5, "page_num": "page_14", "page_size": [612.0, 792.0], "bbox_fs": [69, 614, 541, 673]}, {"type": "text", "bbox": [69, 670, 540, 713], "lines": [{"bbox": [93, 671, 540, 686], "spans": [{"bbox": [93, 671, 325, 686], "score": 1.0, "content": "Lemma 2.2 implies that a fusion-symmetry ", "type": "text"}, {"bbox": [325, 677, 332, 682], "score": 0.87, "content": "\\pi", "type": "inline_equation", "height": 5, "width": 7}, {"bbox": [333, 671, 464, 686], "score": 1.0, "content": " preserves q-dimensions: ", "type": "text"}, {"bbox": [464, 673, 540, 685], "score": 0.94, "content": "{\\mathcal{D}}(\\lambda)={\\mathcal{D}}(\\pi\\lambda)", "type": "inline_equation", "height": 12, "width": 76}], "index": 32}, {"bbox": [70, 686, 540, 701], "spans": [{"bbox": [70, 688, 116, 699], "score": 0.92, "content": "\\forall\\lambda\\in P_{+}", "type": "inline_equation", "height": 11, "width": 46}, {"bbox": [116, 686, 373, 701], "score": 1.0, "content": ". In this subsection we use that to find a weight ", "type": "text"}, {"bbox": [374, 688, 387, 698], "score": 0.92, "content": "\\Lambda_{\\star}", "type": "inline_equation", "height": 10, "width": 13}, {"bbox": [388, 686, 540, 701], "score": 1.0, "content": "for each algebra which must", "type": "text"}], "index": 33}, {"bbox": [70, 700, 203, 715], "spans": [{"bbox": [70, 700, 190, 715], "score": 1.0, "content": "be essentially fixed by ", "type": "text"}, {"bbox": [190, 705, 198, 711], "score": 0.88, "content": "\\pi", "type": "inline_equation", "height": 6, "width": 8}, {"bbox": [198, 700, 203, 715], "score": 1.0, "content": ".", "type": "text"}], "index": 34}], "index": 33, "page_num": "page_14", "page_size": [612.0, 792.0], "bbox_fs": [70, 671, 540, 715]}]} |
|
0002044v1 | 15 | 4.1. $$q$$ -dimensions
The most basic properties obeyed by the q-dimensions $$\begin{array}{r}{\mathcal{D}(\lambda)=\frac{S_{\lambda0}}{S_{00}}}\end{array}$$ are that $$\mathcal{D}(\lambda)\geq1$$ ,
and $$\mathcal{D}(s\lambda)=\mathcal{D}(\lambda)$$ for any $$s\in S$$ . Recall that $$\boldsymbol{S}$$ is the symmetry group of the extended
Dynkin diagram of $$X_{r}^{(1)}$$ , and that $$s\in S$$ acts on $$P_{+}$$ by permuting the Dynkin labels.
The argument yielding Proposition 4.1 below relies heavily on the following observa-
tion. Use (2.1c) to extend the domain of $$\mathcal{D}$$ from $$P_{+}$$ to the fundamental chamber $$C_{+}$$ :
Choose any $$a,b\in C_{+}$$ . Then a straightforward calculation from (2.1c) gives
for $$0<t<1$$ . This means that for all $$0<t<1$$ ,
Proposition 4.1 [17,18]. For the following algebras $$X_{r}^{(1)}$$ and levels $$k$$ , and choices
of weight $$\Lambda_{\star}$$ , $$\mathcal{D}(\lambda)=\mathcal{D}(\Lambda_{\star})$$ implies $$\lambda\in{\mathcal{S}}\Lambda_{\star}$$ :
(a) For A(r1) any level $$k$$ , where $$\Lambda_{\star}=\Lambda_{1}$$ ;
(b) For Br(1) any level $$k\neq2$$ , where $$\Lambda_{\star}=\Lambda_{1}$$ ;
(c) For Cr(1) any level $$k$$ (except for $$(r,k)=(2,3)$$ or $$(3,2).$$ ), where $$\Lambda_{\star}=\Lambda_{1}$$ ;
(d) For $$D_{r}^{(1)}$$ any level $$k\neq2$$ , where $$\Lambda_{\star}=\Lambda_{1}$$ ;
(e6) For E6(1) any level $$k$$ , where $$\Lambda_{\star}=\Lambda_{1}$$ ;
(e7) For $${E}_{7}^{(1)}$$ any level $$k\neq3$$ , where $$\Lambda_{\star}=\Lambda_{6}$$ ;
(e8) For E8(1) any level $$k\neq1,4$$ , where $$\Lambda_{\star}=\Lambda_{1}$$ ;
(f4) For $${F}_{4}^{(1)}$$ any level $$k\neq3,4$$ , where $$\Lambda_{\star}=\Lambda_{4}$$ ;
(g2) For G(21) level any $$k\neq3,4$$ , where $$\Lambda_{\star}=\Lambda_{2}$$ .
The missing cases are: $$B_{r,2}$$ where $${\mathcal{D}}(\Lambda_{1})={\mathcal{D}}(\Lambda_{2})=\cdots={\mathcal{D}}(\Lambda_{r-1})={\mathcal{D}}(2\Lambda_{r});$$
$$D_{r,2}$$ where $${\mathcal{D}}(\Lambda_{1})=\cdots={\mathcal{D}}(\Lambda_{r-2})$$ ;
$$C_{2,3}$$ where $${\mathcal{D}}(\Lambda_{2})={\mathcal{D}}(3\Lambda_{1})={\mathcal{D}}(\Lambda_{1})$$ , and its rank-level dual $$C_{3,2}$$ ;
$$E_{7,3}$$ where $${\mathcal{D}}(\Lambda_{1})={\mathcal{D}}(\Lambda_{2})={\mathcal{D}}(\Lambda_{6})$$ ;
$$E_{8,1}$$ where $$\Lambda_{1}\notin P_{+}=\{0\}$$ , and $$E_{8,4}$$ where $${\mathcal{D}}(\Lambda_{1})={\mathcal{D}}(\Lambda_{6})$$ ;
$$F_{4,3}$$ where $${\mathcal{D}}(\Lambda_{2})={\mathcal{D}}(\Lambda_{4})$$ , and $$F_{4,4}$$ where $$\mathcal{D}(\Lambda_{1})=\mathcal{D}(2\Lambda_{1})=\mathcal{D}(4\Lambda_{4})=\mathcal{D}(\Lambda_{4})$$ ;
$$G_{2,3}$$ where $$\mathcal{D}(\Lambda_{1})=\mathcal{D}(\Lambda_{2})=\mathcal{D}(3\Lambda_{2})$$ , and $$G_{2,4}$$ where $$\mathcal{D}(\Lambda_{2})=\mathcal{D}(2\Lambda_{1})$$ .
The weight $$\Lambda_{\star}$$ singled out by Proposition 4.1 (i.e. $$\Lambda_{\star}=\Lambda_{1}$$ for $$A_{r}^{(1)}$$ , ..., $$\Lambda_{\star}=\Lambda_{2}$$ for
$$G_{2}^{(1)})$$ is the nonzero weight with smallest Weyl dimension. What we find is that, for all
but the smallest levels (see [18, Table 3]), $$\Lambda_{\star}$$ will also have the smallest q-dimension after
the simple-currents.
| <p>4.1. $$q$$ -dimensions</p>
<p>The most basic properties obeyed by the q-dimensions $$\begin{array}{r}{\mathcal{D}(\lambda)=\frac{S_{\lambda0}}{S_{00}}}\end{array}$$ are that $$\mathcal{D}(\lambda)\geq1$$ ,
and $$\mathcal{D}(s\lambda)=\mathcal{D}(\lambda)$$ for any $$s\in S$$ . Recall that $$\boldsymbol{S}$$ is the symmetry group of the extended
Dynkin diagram of $$X_{r}^{(1)}$$ , and that $$s\in S$$ acts on $$P_{+}$$ by permuting the Dynkin labels.</p>
<p>The argument yielding Proposition 4.1 below relies heavily on the following observa-
tion. Use (2.1c) to extend the domain of $$\mathcal{D}$$ from $$P_{+}$$ to the fundamental chamber $$C_{+}$$ :</p>
<p>Choose any $$a,b\in C_{+}$$ . Then a straightforward calculation from (2.1c) gives</p>
<p>for $$0<t<1$$ . This means that for all $$0<t<1$$ ,</p>
<p>Proposition 4.1 [17,18]. For the following algebras $$X_{r}^{(1)}$$ and levels $$k$$ , and choices
of weight $$\Lambda_{\star}$$ , $$\mathcal{D}(\lambda)=\mathcal{D}(\Lambda_{\star})$$ implies $$\lambda\in{\mathcal{S}}\Lambda_{\star}$$ :</p>
<p>(a) For A(r1) any level $$k$$ , where $$\Lambda_{\star}=\Lambda_{1}$$ ;
(b) For Br(1) any level $$k\neq2$$ , where $$\Lambda_{\star}=\Lambda_{1}$$ ;
(c) For Cr(1) any level $$k$$ (except for $$(r,k)=(2,3)$$ or $$(3,2).$$ ), where $$\Lambda_{\star}=\Lambda_{1}$$ ;
(d) For $$D_{r}^{(1)}$$ any level $$k\neq2$$ , where $$\Lambda_{\star}=\Lambda_{1}$$ ;
(e6) For E6(1) any level $$k$$ , where $$\Lambda_{\star}=\Lambda_{1}$$ ;
(e7) For $${E}_{7}^{(1)}$$ any level $$k\neq3$$ , where $$\Lambda_{\star}=\Lambda_{6}$$ ;
(e8) For E8(1) any level $$k\neq1,4$$ , where $$\Lambda_{\star}=\Lambda_{1}$$ ;
(f4) For $${F}_{4}^{(1)}$$ any level $$k\neq3,4$$ , where $$\Lambda_{\star}=\Lambda_{4}$$ ;
(g2) For G(21) level any $$k\neq3,4$$ , where $$\Lambda_{\star}=\Lambda_{2}$$ .</p>
<p>The missing cases are: $$B_{r,2}$$ where $${\mathcal{D}}(\Lambda_{1})={\mathcal{D}}(\Lambda_{2})=\cdots={\mathcal{D}}(\Lambda_{r-1})={\mathcal{D}}(2\Lambda_{r});$$
$$D_{r,2}$$ where $${\mathcal{D}}(\Lambda_{1})=\cdots={\mathcal{D}}(\Lambda_{r-2})$$ ;
$$C_{2,3}$$ where $${\mathcal{D}}(\Lambda_{2})={\mathcal{D}}(3\Lambda_{1})={\mathcal{D}}(\Lambda_{1})$$ , and its rank-level dual $$C_{3,2}$$ ;
$$E_{7,3}$$ where $${\mathcal{D}}(\Lambda_{1})={\mathcal{D}}(\Lambda_{2})={\mathcal{D}}(\Lambda_{6})$$ ;
$$E_{8,1}$$ where $$\Lambda_{1}\notin P_{+}=\{0\}$$ , and $$E_{8,4}$$ where $${\mathcal{D}}(\Lambda_{1})={\mathcal{D}}(\Lambda_{6})$$ ;
$$F_{4,3}$$ where $${\mathcal{D}}(\Lambda_{2})={\mathcal{D}}(\Lambda_{4})$$ , and $$F_{4,4}$$ where $$\mathcal{D}(\Lambda_{1})=\mathcal{D}(2\Lambda_{1})=\mathcal{D}(4\Lambda_{4})=\mathcal{D}(\Lambda_{4})$$ ;
$$G_{2,3}$$ where $$\mathcal{D}(\Lambda_{1})=\mathcal{D}(\Lambda_{2})=\mathcal{D}(3\Lambda_{2})$$ , and $$G_{2,4}$$ where $$\mathcal{D}(\Lambda_{2})=\mathcal{D}(2\Lambda_{1})$$ .</p>
<p>The weight $$\Lambda_{\star}$$ singled out by Proposition 4.1 (i.e. $$\Lambda_{\star}=\Lambda_{1}$$ for $$A_{r}^{(1)}$$ , ..., $$\Lambda_{\star}=\Lambda_{2}$$ for
$$G_{2}^{(1)})$$ is the nonzero weight with smallest Weyl dimension. What we find is that, for all
but the smallest levels (see [18, Table 3]), $$\Lambda_{\star}$$ will also have the smallest q-dimension after
the simple-currents.</p>
| [{"type": "text", "coordinates": [71, 71, 167, 86], "content": "4.1. $$q$$ -dimensions", "block_type": "text", "index": 1}, {"type": "text", "coordinates": [70, 92, 541, 138], "content": "The most basic properties obeyed by the q-dimensions $$\\begin{array}{r}{\\mathcal{D}(\\lambda)=\\frac{S_{\\lambda0}}{S_{00}}}\\end{array}$$ are that $$\\mathcal{D}(\\lambda)\\geq1$$ ,\nand $$\\mathcal{D}(s\\lambda)=\\mathcal{D}(\\lambda)$$ for any $$s\\in S$$ . Recall that $$\\boldsymbol{S}$$ is the symmetry group of the extended\nDynkin diagram of $$X_{r}^{(1)}$$ , and that $$s\\in S$$ acts on $$P_{+}$$ by permuting the Dynkin labels.", "block_type": "text", "index": 2}, {"type": "text", "coordinates": [70, 138, 541, 167], "content": "The argument yielding Proposition 4.1 below relies heavily on the following observa-\ntion. Use (2.1c) to extend the domain of $$\\mathcal{D}$$ from $$P_{+}$$ to the fundamental chamber $$C_{+}$$ :", "block_type": "text", "index": 3}, {"type": "interline_equation", "coordinates": [173, 181, 438, 218], "content": "", "block_type": "interline_equation", "index": 4}, {"type": "text", "coordinates": [70, 228, 468, 244], "content": "Choose any $$a,b\\in C_{+}$$ . Then a straightforward calculation from (2.1c) gives", "block_type": "text", "index": 5}, {"type": "interline_equation", "coordinates": [159, 257, 453, 286], "content": "", "block_type": "interline_equation", "index": 6}, {"type": "text", "coordinates": [70, 296, 324, 311], "content": "for $$0<t<1$$ . This means that for all $$0<t<1$$ ,", "block_type": "text", "index": 7}, {"type": "interline_equation", "coordinates": [207, 325, 404, 340], "content": "", "block_type": "interline_equation", "index": 8}, {"type": "text", "coordinates": [71, 360, 542, 390], "content": "Proposition 4.1 [17,18]. For the following algebras $$X_{r}^{(1)}$$ and levels $$k$$ , and choices\nof weight $$\\Lambda_{\\star}$$ , $$\\mathcal{D}(\\lambda)=\\mathcal{D}(\\Lambda_{\\star})$$ implies $$\\lambda\\in{\\mathcal{S}}\\Lambda_{\\star}$$ :", "block_type": "text", "index": 9}, {"type": "text", "coordinates": [70, 392, 479, 542], "content": "(a) For A(r1) any level $$k$$ , where $$\\Lambda_{\\star}=\\Lambda_{1}$$ ;\n(b) For Br(1) any level $$k\\neq2$$ , where $$\\Lambda_{\\star}=\\Lambda_{1}$$ ;\n(c) For Cr(1) any level $$k$$ (except for $$(r,k)=(2,3)$$ or $$(3,2).$$ ), where $$\\Lambda_{\\star}=\\Lambda_{1}$$ ;\n(d) For $$D_{r}^{(1)}$$ any level $$k\\neq2$$ , where $$\\Lambda_{\\star}=\\Lambda_{1}$$ ;\n(e6) For E6(1) any level $$k$$ , where $$\\Lambda_{\\star}=\\Lambda_{1}$$ ;\n(e7) For $${E}_{7}^{(1)}$$ any level $$k\\neq3$$ , where $$\\Lambda_{\\star}=\\Lambda_{6}$$ ;\n(e8) For E8(1) any level $$k\\neq1,4$$ , where $$\\Lambda_{\\star}=\\Lambda_{1}$$ ;\n(f4) For $${F}_{4}^{(1)}$$ any level $$k\\neq3,4$$ , where $$\\Lambda_{\\star}=\\Lambda_{4}$$ ;\n(g2) For G(21) level any $$k\\neq3,4$$ , where $$\\Lambda_{\\star}=\\Lambda_{2}$$ .", "block_type": "text", "index": 10}, {"type": "text", "coordinates": [93, 547, 521, 650], "content": "The missing cases are: $$B_{r,2}$$ where $${\\mathcal{D}}(\\Lambda_{1})={\\mathcal{D}}(\\Lambda_{2})=\\cdots={\\mathcal{D}}(\\Lambda_{r-1})={\\mathcal{D}}(2\\Lambda_{r});$$\n$$D_{r,2}$$ where $${\\mathcal{D}}(\\Lambda_{1})=\\cdots={\\mathcal{D}}(\\Lambda_{r-2})$$ ;\n$$C_{2,3}$$ where $${\\mathcal{D}}(\\Lambda_{2})={\\mathcal{D}}(3\\Lambda_{1})={\\mathcal{D}}(\\Lambda_{1})$$ , and its rank-level dual $$C_{3,2}$$ ;\n$$E_{7,3}$$ where $${\\mathcal{D}}(\\Lambda_{1})={\\mathcal{D}}(\\Lambda_{2})={\\mathcal{D}}(\\Lambda_{6})$$ ;\n$$E_{8,1}$$ where $$\\Lambda_{1}\\notin P_{+}=\\{0\\}$$ , and $$E_{8,4}$$ where $${\\mathcal{D}}(\\Lambda_{1})={\\mathcal{D}}(\\Lambda_{6})$$ ;\n$$F_{4,3}$$ where $${\\mathcal{D}}(\\Lambda_{2})={\\mathcal{D}}(\\Lambda_{4})$$ , and $$F_{4,4}$$ where $$\\mathcal{D}(\\Lambda_{1})=\\mathcal{D}(2\\Lambda_{1})=\\mathcal{D}(4\\Lambda_{4})=\\mathcal{D}(\\Lambda_{4})$$ ;\n$$G_{2,3}$$ where $$\\mathcal{D}(\\Lambda_{1})=\\mathcal{D}(\\Lambda_{2})=\\mathcal{D}(3\\Lambda_{2})$$ , and $$G_{2,4}$$ where $$\\mathcal{D}(\\Lambda_{2})=\\mathcal{D}(2\\Lambda_{1})$$ .", "block_type": "text", "index": 11}, {"type": "text", "coordinates": [70, 654, 541, 715], "content": "The weight $$\\Lambda_{\\star}$$ singled out by Proposition 4.1 (i.e. $$\\Lambda_{\\star}=\\Lambda_{1}$$ for $$A_{r}^{(1)}$$ , ..., $$\\Lambda_{\\star}=\\Lambda_{2}$$ for\n$$G_{2}^{(1)})$$ is the nonzero weight with smallest Weyl dimension. What we find is that, for all\nbut the smallest levels (see [18, Table 3]), $$\\Lambda_{\\star}$$ will also have the smallest q-dimension after\nthe simple-currents.", "block_type": "text", "index": 12}] | [{"type": "text", "coordinates": [70, 74, 97, 87], "content": "4.1. ", "score": 1.0, "index": 1}, {"type": "inline_equation", "coordinates": [97, 79, 102, 87], "content": "q", "score": 0.35, "index": 2}, {"type": "text", "coordinates": [103, 74, 167, 87], "content": "-dimensions", "score": 1.0, "index": 3}, {"type": "text", "coordinates": [92, 91, 379, 112], "content": "The most basic properties obeyed by the q-dimensions ", "score": 1.0, "index": 4}, {"type": "inline_equation", "coordinates": [380, 95, 440, 111], "content": "\\begin{array}{r}{\\mathcal{D}(\\lambda)=\\frac{S_{\\lambda0}}{S_{00}}}\\end{array}", "score": 0.96, "index": 5}, {"type": "text", "coordinates": [440, 91, 488, 112], "content": " are that ", "score": 1.0, "index": 6}, {"type": "inline_equation", "coordinates": [488, 96, 536, 109], "content": "\\mathcal{D}(\\lambda)\\geq1", "score": 0.94, "index": 7}, {"type": "text", "coordinates": [537, 91, 542, 112], "content": ",", "score": 1.0, "index": 8}, {"type": "text", "coordinates": [70, 108, 95, 125], "content": "and ", "score": 1.0, "index": 9}, {"type": "inline_equation", "coordinates": [95, 110, 170, 123], "content": "\\mathcal{D}(s\\lambda)=\\mathcal{D}(\\lambda)", "score": 0.94, "index": 10}, {"type": "text", "coordinates": [170, 108, 216, 125], "content": " for any ", "score": 1.0, "index": 11}, {"type": "inline_equation", "coordinates": [217, 111, 246, 120], "content": "s\\in S", "score": 0.92, "index": 12}, {"type": "text", "coordinates": [247, 108, 319, 125], "content": ". Recall that ", "score": 1.0, "index": 13}, {"type": "inline_equation", "coordinates": [320, 111, 328, 120], "content": "\\boldsymbol{S}", "score": 0.89, "index": 14}, {"type": "text", "coordinates": [329, 108, 541, 125], "content": " is the symmetry group of the extended", "score": 1.0, "index": 15}, {"type": "text", "coordinates": [70, 124, 173, 142], "content": "Dynkin diagram of ", "score": 1.0, "index": 16}, {"type": "inline_equation", "coordinates": [174, 123, 198, 138], "content": "X_{r}^{(1)}", "score": 0.93, "index": 17}, {"type": "text", "coordinates": [198, 124, 254, 142], "content": ", and that ", "score": 1.0, "index": 18}, {"type": "inline_equation", "coordinates": [254, 128, 282, 137], "content": "s\\in S", "score": 0.92, "index": 19}, {"type": "text", "coordinates": [283, 124, 327, 142], "content": " acts on ", "score": 1.0, "index": 20}, {"type": "inline_equation", "coordinates": [327, 128, 343, 140], "content": "P_{+}", "score": 0.93, "index": 21}, {"type": "text", "coordinates": [343, 124, 519, 142], "content": " by permuting the Dynkin labels.", "score": 1.0, "index": 22}, {"type": "text", "coordinates": [93, 140, 540, 156], "content": "The argument yielding Proposition 4.1 below relies heavily on the following observa-", "score": 1.0, "index": 23}, {"type": "text", "coordinates": [71, 155, 287, 169], "content": "tion. Use (2.1c) to extend the domain of ", "score": 1.0, "index": 24}, {"type": "inline_equation", "coordinates": [288, 156, 298, 165], "content": "\\mathcal{D}", "score": 0.91, "index": 25}, {"type": "text", "coordinates": [298, 155, 329, 169], "content": " from ", "score": 1.0, "index": 26}, {"type": "inline_equation", "coordinates": [329, 156, 345, 168], "content": "P_{+}", "score": 0.92, "index": 27}, {"type": "text", "coordinates": [345, 155, 501, 169], "content": " to the fundamental chamber ", "score": 1.0, "index": 28}, {"type": "inline_equation", "coordinates": [501, 156, 518, 168], "content": "C_{+}", "score": 0.92, "index": 29}, {"type": "text", "coordinates": [518, 155, 522, 169], "content": ":", "score": 1.0, "index": 30}, {"type": "interline_equation", "coordinates": [173, 181, 438, 218], "content": "C_{+}\\stackrel{\\mathrm{def}}{=}\\{\\sum_{i=0}^{r}x_{i}\\Lambda_{i}\\left|\\right.x_{i}\\in\\mathbb{R},\\ x_{i}>-1,\\ \\sum_{i=0}^{r}x_{i}a_{i}^{\\vee}=k\\}\\ .", "score": 0.94, "index": 31}, {"type": "text", "coordinates": [71, 231, 135, 246], "content": "Choose any ", "score": 1.0, "index": 32}, {"type": "inline_equation", "coordinates": [136, 234, 183, 245], "content": "a,b\\in C_{+}", "score": 0.94, "index": 33}, {"type": "text", "coordinates": [184, 231, 467, 246], "content": ". Then a straightforward calculation from (2.1c) gives", "score": 1.0, "index": 34}, {"type": "interline_equation", "coordinates": [159, 257, 453, 286], "content": "\\frac{d}{d t}\\mathcal{D}(t a+(1-t)b)=0\\quad\\Longrightarrow\\quad\\frac{d^{2}}{d t^{2}}\\mathcal{D}(t a+(1-t)b)<0", "score": 0.92, "index": 35}, {"type": "text", "coordinates": [70, 298, 89, 313], "content": "for ", "score": 1.0, "index": 36}, {"type": "inline_equation", "coordinates": [90, 301, 138, 309], "content": "0<t<1", "score": 0.91, "index": 37}, {"type": "text", "coordinates": [138, 298, 271, 313], "content": ". This means that for all ", "score": 1.0, "index": 38}, {"type": "inline_equation", "coordinates": [271, 301, 320, 310], "content": "0<t<1", "score": 0.88, "index": 39}, {"type": "text", "coordinates": [320, 298, 324, 313], "content": ",", "score": 1.0, "index": 40}, {"type": "interline_equation", "coordinates": [207, 325, 404, 340], "content": "{\\mathcal{D}}(t a+(1-t)b)>\\operatorname*{min}\\{{\\mathcal{D}}(a),\\,{\\mathcal{D}}(b)\\}~.", "score": 0.88, "index": 41}, {"type": "text", "coordinates": [91, 360, 380, 380], "content": "Proposition 4.1 [17,18]. For the following algebras ", "score": 1.0, "index": 42}, {"type": "inline_equation", "coordinates": [380, 360, 406, 376], "content": "X_{r}^{(1)}", "score": 0.91, "index": 43}, {"type": "text", "coordinates": [406, 360, 464, 380], "content": "and levels ", "score": 1.0, "index": 44}, {"type": "inline_equation", "coordinates": [464, 364, 472, 375], "content": "k", "score": 0.79, "index": 45}, {"type": "text", "coordinates": [472, 360, 543, 380], "content": ", and choices", "score": 1.0, "index": 46}, {"type": "text", "coordinates": [71, 378, 122, 394], "content": "of weight ", "score": 1.0, "index": 47}, {"type": "inline_equation", "coordinates": [122, 380, 136, 391], "content": "\\Lambda_{\\star}", "score": 0.89, "index": 48}, {"type": "text", "coordinates": [137, 378, 144, 394], "content": ", ", "score": 1.0, "index": 49}, {"type": "inline_equation", "coordinates": [144, 379, 218, 392], "content": "\\mathcal{D}(\\lambda)=\\mathcal{D}(\\Lambda_{\\star})", "score": 0.92, "index": 50}, {"type": "text", "coordinates": [219, 378, 263, 394], "content": " implies ", "score": 1.0, "index": 51}, {"type": "inline_equation", "coordinates": [263, 378, 308, 390], "content": "\\lambda\\in{\\mathcal{S}}\\Lambda_{\\star}", "score": 0.9, "index": 52}, {"type": "text", "coordinates": [308, 378, 314, 394], "content": ":", "score": 1.0, "index": 53}, {"type": "text", "coordinates": [72, 392, 142, 409], "content": "(a) For A(r1)", "score": 1.0, "index": 54}, {"type": "text", "coordinates": [142, 394, 192, 409], "content": "any level ", "score": 1.0, "index": 55}, {"type": "inline_equation", "coordinates": [193, 396, 200, 406], "content": "k", "score": 0.77, "index": 56}, {"type": "text", "coordinates": [201, 394, 241, 409], "content": ", where ", "score": 1.0, "index": 57}, {"type": "inline_equation", "coordinates": [241, 394, 285, 408], "content": "\\Lambda_{\\star}=\\Lambda_{1}", "score": 0.92, "index": 58}, {"type": "text", "coordinates": [286, 394, 290, 409], "content": ";", "score": 1.0, "index": 59}, {"type": "text", "coordinates": [72, 409, 142, 425], "content": "(b) For Br(1)", "score": 1.0, "index": 60}, {"type": "text", "coordinates": [142, 412, 193, 425], "content": "any level ", "score": 1.0, "index": 61}, {"type": "inline_equation", "coordinates": [194, 411, 223, 425], "content": "k\\neq2", "score": 0.91, "index": 62}, {"type": "text", "coordinates": [223, 412, 263, 425], "content": ", where ", "score": 1.0, "index": 63}, {"type": "inline_equation", "coordinates": [264, 411, 308, 424], "content": "\\Lambda_{\\star}=\\Lambda_{1}", "score": 0.91, "index": 64}, {"type": "text", "coordinates": [308, 412, 312, 425], "content": ";", "score": 1.0, "index": 65}, {"type": "text", "coordinates": [72, 424, 144, 443], "content": "(c) For Cr(1)", "score": 1.0, "index": 66}, {"type": "text", "coordinates": [143, 427, 193, 442], "content": "any level ", "score": 1.0, "index": 67}, {"type": "inline_equation", "coordinates": [193, 428, 201, 439], "content": "k", "score": 0.78, "index": 68}, {"type": "text", "coordinates": [202, 427, 264, 442], "content": " (except for ", "score": 1.0, "index": 69}, {"type": "inline_equation", "coordinates": [264, 427, 334, 442], "content": "(r,k)=(2,3)", "score": 0.92, "index": 70}, {"type": "text", "coordinates": [334, 427, 353, 442], "content": " or ", "score": 1.0, "index": 71}, {"type": "inline_equation", "coordinates": [353, 428, 380, 442], "content": "(3,2).", "score": 0.52, "index": 72}, {"type": "text", "coordinates": [381, 427, 425, 442], "content": "), where ", "score": 1.0, "index": 73}, {"type": "inline_equation", "coordinates": [426, 428, 470, 441], "content": "\\Lambda_{\\star}=\\Lambda_{1}", "score": 0.91, "index": 74}, {"type": "text", "coordinates": [470, 427, 474, 442], "content": ";", "score": 1.0, "index": 75}, {"type": "text", "coordinates": [71, 444, 117, 458], "content": "(d) For ", "score": 1.0, "index": 76}, {"type": "inline_equation", "coordinates": [117, 442, 141, 457], "content": "D_{r}^{(1)}", "score": 0.92, "index": 77}, {"type": "text", "coordinates": [143, 445, 194, 459], "content": "any level ", "score": 1.0, "index": 78}, {"type": "inline_equation", "coordinates": [194, 444, 224, 458], "content": "k\\neq2", "score": 0.91, "index": 79}, {"type": "text", "coordinates": [224, 445, 264, 459], "content": ", where ", "score": 1.0, "index": 80}, {"type": "inline_equation", "coordinates": [264, 444, 308, 458], "content": "\\Lambda_{\\star}=\\Lambda_{1}", "score": 0.91, "index": 81}, {"type": "text", "coordinates": [309, 445, 314, 459], "content": ";", "score": 1.0, "index": 82}, {"type": "text", "coordinates": [65, 457, 144, 477], "content": "(e6) For E6(1)", "score": 1.0, "index": 83}, {"type": "text", "coordinates": [143, 462, 193, 476], "content": "any level ", "score": 1.0, "index": 84}, {"type": "inline_equation", "coordinates": [193, 462, 201, 473], "content": "k", "score": 0.78, "index": 85}, {"type": "text", "coordinates": [201, 462, 241, 476], "content": ", where ", "score": 1.0, "index": 86}, {"type": "inline_equation", "coordinates": [242, 461, 286, 474], "content": "\\Lambda_{\\star}=\\Lambda_{1}", "score": 0.92, "index": 87}, {"type": "text", "coordinates": [286, 462, 291, 476], "content": ";", "score": 1.0, "index": 88}, {"type": "text", "coordinates": [67, 475, 117, 493], "content": "(e7) For ", "score": 1.0, "index": 89}, {"type": "inline_equation", "coordinates": [117, 475, 140, 492], "content": "{E}_{7}^{(1)}", "score": 0.89, "index": 90}, {"type": "text", "coordinates": [144, 478, 193, 493], "content": "any level ", "score": 1.0, "index": 91}, {"type": "inline_equation", "coordinates": [193, 478, 223, 492], "content": "k\\neq3", "score": 0.91, "index": 92}, {"type": "text", "coordinates": [223, 478, 263, 493], "content": ", where ", "score": 1.0, "index": 93}, {"type": "inline_equation", "coordinates": [264, 478, 308, 491], "content": "\\Lambda_{\\star}=\\Lambda_{6}", "score": 0.91, "index": 94}, {"type": "text", "coordinates": [308, 478, 312, 493], "content": ";", "score": 1.0, "index": 95}, {"type": "text", "coordinates": [63, 489, 146, 516], "content": "(e8) For E8(1)", "score": 1.0, "index": 96}, {"type": "text", "coordinates": [143, 495, 193, 509], "content": "any level ", "score": 1.0, "index": 97}, {"type": "inline_equation", "coordinates": [193, 495, 235, 509], "content": "k\\neq1,4", "score": 0.9, "index": 98}, {"type": "text", "coordinates": [235, 495, 275, 509], "content": ", where ", "score": 1.0, "index": 99}, {"type": "inline_equation", "coordinates": [275, 495, 319, 508], "content": "\\Lambda_{\\star}=\\Lambda_{1}", "score": 0.92, "index": 100}, {"type": "text", "coordinates": [320, 495, 324, 509], "content": ";", "score": 1.0, "index": 101}, {"type": "text", "coordinates": [70, 511, 117, 526], "content": "(f4) For ", "score": 1.0, "index": 102}, {"type": "inline_equation", "coordinates": [117, 510, 140, 526], "content": "{F}_{4}^{(1)}", "score": 0.91, "index": 103}, {"type": "text", "coordinates": [143, 512, 193, 526], "content": "any level ", "score": 1.0, "index": 104}, {"type": "inline_equation", "coordinates": [194, 513, 235, 525], "content": "k\\neq3,4", "score": 0.89, "index": 105}, {"type": "text", "coordinates": [235, 512, 274, 526], "content": ", where ", "score": 1.0, "index": 106}, {"type": "inline_equation", "coordinates": [275, 511, 319, 525], "content": "\\Lambda_{\\star}=\\Lambda_{4}", "score": 0.92, "index": 107}, {"type": "text", "coordinates": [320, 512, 324, 526], "content": ";", "score": 1.0, "index": 108}, {"type": "text", "coordinates": [64, 523, 146, 549], "content": "(g2) For G(21)", "score": 1.0, "index": 109}, {"type": "text", "coordinates": [142, 527, 193, 544], "content": "level any ", "score": 1.0, "index": 110}, {"type": "inline_equation", "coordinates": [194, 529, 235, 542], "content": "k\\neq3,4", "score": 0.89, "index": 111}, {"type": "text", "coordinates": [235, 527, 274, 544], "content": ", where ", "score": 1.0, "index": 112}, {"type": "inline_equation", "coordinates": [275, 528, 319, 542], "content": "\\Lambda_{\\star}=\\Lambda_{2}", "score": 0.92, "index": 113}, {"type": "text", "coordinates": [320, 527, 324, 544], "content": ".", "score": 1.0, "index": 114}, {"type": "text", "coordinates": [94, 550, 216, 566], "content": "The missing cases are: ", "score": 1.0, "index": 115}, {"type": "inline_equation", "coordinates": [217, 551, 239, 564], "content": "B_{r,2}", "score": 0.89, "index": 116}, {"type": "text", "coordinates": [239, 550, 276, 566], "content": " where ", "score": 1.0, "index": 117}, {"type": "inline_equation", "coordinates": [277, 551, 505, 564], "content": "{\\mathcal{D}}(\\Lambda_{1})={\\mathcal{D}}(\\Lambda_{2})=\\cdots={\\mathcal{D}}(\\Lambda_{r-1})={\\mathcal{D}}(2\\Lambda_{r});", "score": 0.87, "index": 118}, {"type": "inline_equation", "coordinates": [95, 567, 117, 579], "content": "D_{r,2}", "score": 0.92, "index": 119}, {"type": "text", "coordinates": [118, 564, 155, 580], "content": " where ", "score": 1.0, "index": 120}, {"type": "inline_equation", "coordinates": [156, 565, 279, 578], "content": "{\\mathcal{D}}(\\Lambda_{1})=\\cdots={\\mathcal{D}}(\\Lambda_{r-2})", "score": 0.91, "index": 121}, {"type": "text", "coordinates": [280, 564, 285, 580], "content": ";", "score": 1.0, "index": 122}, {"type": "inline_equation", "coordinates": [95, 581, 117, 593], "content": "C_{2,3}", "score": 0.92, "index": 123}, {"type": "text", "coordinates": [117, 578, 155, 596], "content": " where ", "score": 1.0, "index": 124}, {"type": "inline_equation", "coordinates": [155, 580, 290, 593], "content": "{\\mathcal{D}}(\\Lambda_{2})={\\mathcal{D}}(3\\Lambda_{1})={\\mathcal{D}}(\\Lambda_{1})", "score": 0.92, "index": 125}, {"type": "text", "coordinates": [291, 578, 419, 596], "content": ", and its rank-level dual ", "score": 1.0, "index": 126}, {"type": "inline_equation", "coordinates": [419, 579, 441, 593], "content": "C_{3,2}", "score": 0.9, "index": 127}, {"type": "text", "coordinates": [441, 578, 446, 596], "content": ";", "score": 1.0, "index": 128}, {"type": "inline_equation", "coordinates": [95, 595, 117, 608], "content": "E_{7,3}", "score": 0.92, "index": 129}, {"type": "text", "coordinates": [117, 593, 155, 608], "content": " where ", "score": 1.0, "index": 130}, {"type": "inline_equation", "coordinates": [155, 594, 285, 607], "content": "{\\mathcal{D}}(\\Lambda_{1})={\\mathcal{D}}(\\Lambda_{2})={\\mathcal{D}}(\\Lambda_{6})", "score": 0.92, "index": 131}, {"type": "text", "coordinates": [286, 593, 290, 608], "content": ";", "score": 1.0, "index": 132}, {"type": "inline_equation", "coordinates": [95, 610, 117, 622], "content": "E_{8,1}", "score": 0.92, "index": 133}, {"type": "text", "coordinates": [117, 607, 155, 622], "content": " where ", "score": 1.0, "index": 134}, {"type": "inline_equation", "coordinates": [155, 609, 234, 622], "content": "\\Lambda_{1}\\notin P_{+}=\\{0\\}", "score": 0.92, "index": 135}, {"type": "text", "coordinates": [234, 607, 263, 622], "content": ", and ", "score": 1.0, "index": 136}, {"type": "inline_equation", "coordinates": [264, 610, 286, 622], "content": "E_{8,4}", "score": 0.93, "index": 137}, {"type": "text", "coordinates": [286, 607, 324, 622], "content": " where ", "score": 1.0, "index": 138}, {"type": "inline_equation", "coordinates": [324, 609, 405, 621], "content": "{\\mathcal{D}}(\\Lambda_{1})={\\mathcal{D}}(\\Lambda_{6})", "score": 0.93, "index": 139}, {"type": "text", "coordinates": [406, 607, 410, 622], "content": ";", "score": 1.0, "index": 140}, {"type": "inline_equation", "coordinates": [95, 624, 115, 636], "content": "F_{4,3}", "score": 0.92, "index": 141}, {"type": "text", "coordinates": [116, 622, 154, 637], "content": " where ", "score": 1.0, "index": 142}, {"type": "inline_equation", "coordinates": [155, 623, 236, 636], "content": "{\\mathcal{D}}(\\Lambda_{2})={\\mathcal{D}}(\\Lambda_{4})", "score": 0.92, "index": 143}, {"type": "text", "coordinates": [236, 622, 265, 637], "content": ", and ", "score": 1.0, "index": 144}, {"type": "inline_equation", "coordinates": [266, 624, 286, 636], "content": "F_{4,4}", "score": 0.92, "index": 145}, {"type": "text", "coordinates": [287, 622, 324, 637], "content": " where ", "score": 1.0, "index": 146}, {"type": "inline_equation", "coordinates": [325, 623, 516, 636], "content": "\\mathcal{D}(\\Lambda_{1})=\\mathcal{D}(2\\Lambda_{1})=\\mathcal{D}(4\\Lambda_{4})=\\mathcal{D}(\\Lambda_{4})", "score": 0.91, "index": 147}, {"type": "text", "coordinates": [516, 622, 519, 637], "content": ";", "score": 1.0, "index": 148}, {"type": "inline_equation", "coordinates": [95, 639, 118, 651], "content": "G_{2,3}", "score": 0.92, "index": 149}, {"type": "text", "coordinates": [118, 636, 155, 653], "content": " where ", "score": 1.0, "index": 150}, {"type": "inline_equation", "coordinates": [156, 638, 292, 650], "content": "\\mathcal{D}(\\Lambda_{1})=\\mathcal{D}(\\Lambda_{2})=\\mathcal{D}(3\\Lambda_{2})", "score": 0.91, "index": 151}, {"type": "text", "coordinates": [293, 636, 321, 653], "content": ", and ", "score": 1.0, "index": 152}, {"type": "inline_equation", "coordinates": [322, 638, 344, 651], "content": "G_{2,4}", "score": 0.91, "index": 153}, {"type": "text", "coordinates": [345, 636, 383, 653], "content": " where ", "score": 1.0, "index": 154}, {"type": "inline_equation", "coordinates": [383, 637, 470, 650], "content": "\\mathcal{D}(\\Lambda_{2})=\\mathcal{D}(2\\Lambda_{1})", "score": 0.92, "index": 155}, {"type": "text", "coordinates": [470, 636, 475, 653], "content": ".", "score": 1.0, "index": 156}, {"type": "text", "coordinates": [92, 654, 158, 673], "content": "The weight ", "score": 1.0, "index": 157}, {"type": "inline_equation", "coordinates": [158, 659, 172, 669], "content": "\\Lambda_{\\star}", "score": 0.91, "index": 158}, {"type": "text", "coordinates": [172, 654, 362, 673], "content": "singled out by Proposition 4.1 (i.e. ", "score": 1.0, "index": 159}, {"type": "inline_equation", "coordinates": [362, 659, 407, 669], "content": "\\Lambda_{\\star}=\\Lambda_{1}", "score": 0.94, "index": 160}, {"type": "text", "coordinates": [407, 654, 429, 673], "content": " for ", "score": 1.0, "index": 161}, {"type": "inline_equation", "coordinates": [429, 655, 451, 669], "content": "A_{r}^{(1)}", "score": 0.9, "index": 162}, {"type": "text", "coordinates": [452, 654, 476, 673], "content": ", ..., ", "score": 1.0, "index": 163}, {"type": "inline_equation", "coordinates": [477, 659, 521, 669], "content": "\\Lambda_{\\star}=\\Lambda_{2}", "score": 0.86, "index": 164}, {"type": "text", "coordinates": [521, 654, 542, 673], "content": " for", "score": 1.0, "index": 165}, {"type": "inline_equation", "coordinates": [71, 671, 97, 687], "content": "G_{2}^{(1)})", "score": 0.89, "index": 166}, {"type": "text", "coordinates": [97, 669, 543, 691], "content": " is the nonzero weight with smallest Weyl dimension. What we find is that, for all", "score": 1.0, "index": 167}, {"type": "text", "coordinates": [69, 687, 290, 703], "content": "but the smallest levels (see [18, Table 3]), ", "score": 1.0, "index": 168}, {"type": "inline_equation", "coordinates": [291, 690, 305, 700], "content": "\\Lambda_{\\star}", "score": 0.91, "index": 169}, {"type": "text", "coordinates": [305, 687, 541, 703], "content": "will also have the smallest q-dimension after", "score": 1.0, "index": 170}, {"type": "text", "coordinates": [70, 702, 176, 718], "content": "the simple-currents.", "score": 1.0, "index": 171}] | [] | [{"type": "block", "coordinates": [173, 181, 438, 218], "content": "", "caption": ""}, {"type": "block", "coordinates": [159, 257, 453, 286], "content": "", "caption": ""}, {"type": "block", "coordinates": [207, 325, 404, 340], "content": "", "caption": ""}, {"type": "inline", "coordinates": [97, 79, 102, 87], "content": "q", "caption": ""}, {"type": "inline", "coordinates": [380, 95, 440, 111], "content": "\\begin{array}{r}{\\mathcal{D}(\\lambda)=\\frac{S_{\\lambda0}}{S_{00}}}\\end{array}", "caption": ""}, {"type": "inline", "coordinates": [488, 96, 536, 109], "content": "\\mathcal{D}(\\lambda)\\geq1", "caption": ""}, {"type": "inline", "coordinates": [95, 110, 170, 123], "content": "\\mathcal{D}(s\\lambda)=\\mathcal{D}(\\lambda)", "caption": ""}, {"type": "inline", "coordinates": [217, 111, 246, 120], "content": "s\\in S", "caption": ""}, {"type": "inline", "coordinates": [320, 111, 328, 120], "content": "\\boldsymbol{S}", "caption": ""}, {"type": "inline", "coordinates": [174, 123, 198, 138], "content": "X_{r}^{(1)}", "caption": ""}, {"type": "inline", "coordinates": [254, 128, 282, 137], "content": "s\\in S", "caption": ""}, {"type": "inline", "coordinates": [327, 128, 343, 140], "content": "P_{+}", "caption": ""}, {"type": "inline", "coordinates": [288, 156, 298, 165], "content": "\\mathcal{D}", "caption": ""}, {"type": "inline", "coordinates": [329, 156, 345, 168], "content": "P_{+}", "caption": ""}, {"type": "inline", "coordinates": [501, 156, 518, 168], "content": "C_{+}", "caption": ""}, {"type": "inline", "coordinates": [136, 234, 183, 245], "content": "a,b\\in C_{+}", "caption": ""}, {"type": "inline", "coordinates": [90, 301, 138, 309], "content": "0<t<1", "caption": ""}, {"type": "inline", "coordinates": [271, 301, 320, 310], "content": "0<t<1", "caption": ""}, {"type": "inline", "coordinates": [380, 360, 406, 376], "content": "X_{r}^{(1)}", "caption": ""}, {"type": "inline", "coordinates": [464, 364, 472, 375], "content": "k", "caption": ""}, {"type": "inline", "coordinates": [122, 380, 136, 391], "content": "\\Lambda_{\\star}", "caption": ""}, {"type": "inline", "coordinates": [144, 379, 218, 392], "content": "\\mathcal{D}(\\lambda)=\\mathcal{D}(\\Lambda_{\\star})", "caption": ""}, {"type": "inline", "coordinates": [263, 378, 308, 390], "content": "\\lambda\\in{\\mathcal{S}}\\Lambda_{\\star}", "caption": ""}, {"type": "inline", "coordinates": [193, 396, 200, 406], "content": "k", "caption": ""}, {"type": "inline", "coordinates": [241, 394, 285, 408], "content": "\\Lambda_{\\star}=\\Lambda_{1}", "caption": ""}, {"type": "inline", "coordinates": [194, 411, 223, 425], "content": "k\\neq2", "caption": ""}, {"type": "inline", "coordinates": [264, 411, 308, 424], "content": "\\Lambda_{\\star}=\\Lambda_{1}", "caption": ""}, {"type": "inline", "coordinates": [193, 428, 201, 439], "content": "k", "caption": ""}, {"type": "inline", "coordinates": [264, 427, 334, 442], "content": "(r,k)=(2,3)", "caption": ""}, {"type": "inline", "coordinates": [353, 428, 380, 442], "content": "(3,2).", "caption": ""}, {"type": "inline", "coordinates": [426, 428, 470, 441], "content": "\\Lambda_{\\star}=\\Lambda_{1}", "caption": ""}, {"type": "inline", "coordinates": [117, 442, 141, 457], "content": "D_{r}^{(1)}", "caption": ""}, {"type": "inline", "coordinates": [194, 444, 224, 458], "content": "k\\neq2", "caption": ""}, {"type": "inline", "coordinates": [264, 444, 308, 458], "content": "\\Lambda_{\\star}=\\Lambda_{1}", "caption": ""}, {"type": "inline", "coordinates": [193, 462, 201, 473], "content": "k", "caption": ""}, {"type": "inline", "coordinates": [242, 461, 286, 474], "content": "\\Lambda_{\\star}=\\Lambda_{1}", "caption": ""}, {"type": "inline", "coordinates": [117, 475, 140, 492], "content": "{E}_{7}^{(1)}", "caption": ""}, {"type": "inline", "coordinates": [193, 478, 223, 492], "content": "k\\neq3", "caption": ""}, {"type": "inline", "coordinates": [264, 478, 308, 491], "content": "\\Lambda_{\\star}=\\Lambda_{6}", "caption": ""}, {"type": "inline", "coordinates": [193, 495, 235, 509], "content": "k\\neq1,4", "caption": ""}, {"type": "inline", "coordinates": [275, 495, 319, 508], "content": "\\Lambda_{\\star}=\\Lambda_{1}", "caption": ""}, {"type": "inline", "coordinates": [117, 510, 140, 526], "content": "{F}_{4}^{(1)}", "caption": ""}, {"type": "inline", "coordinates": [194, 513, 235, 525], "content": "k\\neq3,4", "caption": ""}, {"type": "inline", "coordinates": [275, 511, 319, 525], "content": "\\Lambda_{\\star}=\\Lambda_{4}", "caption": ""}, {"type": "inline", "coordinates": [194, 529, 235, 542], "content": "k\\neq3,4", "caption": ""}, {"type": "inline", "coordinates": [275, 528, 319, 542], "content": "\\Lambda_{\\star}=\\Lambda_{2}", "caption": ""}, {"type": "inline", "coordinates": [217, 551, 239, 564], "content": "B_{r,2}", "caption": ""}, {"type": "inline", "coordinates": [277, 551, 505, 564], "content": "{\\mathcal{D}}(\\Lambda_{1})={\\mathcal{D}}(\\Lambda_{2})=\\cdots={\\mathcal{D}}(\\Lambda_{r-1})={\\mathcal{D}}(2\\Lambda_{r});", "caption": ""}, {"type": "inline", "coordinates": [95, 567, 117, 579], "content": "D_{r,2}", "caption": ""}, {"type": "inline", "coordinates": [156, 565, 279, 578], "content": "{\\mathcal{D}}(\\Lambda_{1})=\\cdots={\\mathcal{D}}(\\Lambda_{r-2})", "caption": ""}, {"type": "inline", "coordinates": [95, 581, 117, 593], "content": "C_{2,3}", "caption": ""}, {"type": "inline", "coordinates": [155, 580, 290, 593], "content": "{\\mathcal{D}}(\\Lambda_{2})={\\mathcal{D}}(3\\Lambda_{1})={\\mathcal{D}}(\\Lambda_{1})", "caption": ""}, {"type": "inline", "coordinates": [419, 579, 441, 593], "content": "C_{3,2}", "caption": ""}, {"type": "inline", "coordinates": [95, 595, 117, 608], "content": "E_{7,3}", "caption": ""}, {"type": "inline", "coordinates": [155, 594, 285, 607], "content": "{\\mathcal{D}}(\\Lambda_{1})={\\mathcal{D}}(\\Lambda_{2})={\\mathcal{D}}(\\Lambda_{6})", "caption": ""}, {"type": "inline", "coordinates": [95, 610, 117, 622], "content": "E_{8,1}", "caption": ""}, {"type": "inline", "coordinates": [155, 609, 234, 622], "content": "\\Lambda_{1}\\notin P_{+}=\\{0\\}", "caption": ""}, {"type": "inline", "coordinates": [264, 610, 286, 622], "content": "E_{8,4}", "caption": ""}, {"type": "inline", "coordinates": [324, 609, 405, 621], "content": "{\\mathcal{D}}(\\Lambda_{1})={\\mathcal{D}}(\\Lambda_{6})", "caption": ""}, {"type": "inline", "coordinates": [95, 624, 115, 636], "content": "F_{4,3}", "caption": ""}, {"type": "inline", "coordinates": [155, 623, 236, 636], "content": "{\\mathcal{D}}(\\Lambda_{2})={\\mathcal{D}}(\\Lambda_{4})", "caption": ""}, {"type": "inline", "coordinates": [266, 624, 286, 636], "content": "F_{4,4}", "caption": ""}, {"type": "inline", "coordinates": [325, 623, 516, 636], "content": "\\mathcal{D}(\\Lambda_{1})=\\mathcal{D}(2\\Lambda_{1})=\\mathcal{D}(4\\Lambda_{4})=\\mathcal{D}(\\Lambda_{4})", "caption": ""}, {"type": "inline", "coordinates": [95, 639, 118, 651], "content": "G_{2,3}", "caption": ""}, {"type": "inline", "coordinates": [156, 638, 292, 650], "content": "\\mathcal{D}(\\Lambda_{1})=\\mathcal{D}(\\Lambda_{2})=\\mathcal{D}(3\\Lambda_{2})", "caption": ""}, {"type": "inline", "coordinates": [322, 638, 344, 651], "content": "G_{2,4}", "caption": ""}, {"type": "inline", "coordinates": [383, 637, 470, 650], "content": "\\mathcal{D}(\\Lambda_{2})=\\mathcal{D}(2\\Lambda_{1})", "caption": ""}, {"type": "inline", "coordinates": [158, 659, 172, 669], "content": "\\Lambda_{\\star}", "caption": ""}, {"type": "inline", "coordinates": [362, 659, 407, 669], "content": "\\Lambda_{\\star}=\\Lambda_{1}", "caption": ""}, {"type": "inline", "coordinates": [429, 655, 451, 669], "content": "A_{r}^{(1)}", "caption": ""}, {"type": "inline", "coordinates": [477, 659, 521, 669], "content": "\\Lambda_{\\star}=\\Lambda_{2}", "caption": ""}, {"type": "inline", "coordinates": [71, 671, 97, 687], "content": "G_{2}^{(1)})", "caption": ""}, {"type": "inline", "coordinates": [291, 690, 305, 700], "content": "\\Lambda_{\\star}", "caption": ""}] | [] | [612.0, 792.0] | [{"type": "text", "text": "4.1. $q$ -dimensions ", "page_idx": 15}, {"type": "text", "text": "The most basic properties obeyed by the q-dimensions $\\begin{array}{r}{\\mathcal{D}(\\lambda)=\\frac{S_{\\lambda0}}{S_{00}}}\\end{array}$ are that $\\mathcal{D}(\\lambda)\\geq1$ , and $\\mathcal{D}(s\\lambda)=\\mathcal{D}(\\lambda)$ for any $s\\in S$ . Recall that $\\boldsymbol{S}$ is the symmetry group of the extended Dynkin diagram of $X_{r}^{(1)}$ , and that $s\\in S$ acts on $P_{+}$ by permuting the Dynkin labels. ", "page_idx": 15}, {"type": "text", "text": "The argument yielding Proposition 4.1 below relies heavily on the following observation. Use (2.1c) to extend the domain of $\\mathcal{D}$ from $P_{+}$ to the fundamental chamber $C_{+}$ : ", "page_idx": 15}, {"type": "equation", "text": "$$\nC_{+}\\stackrel{\\mathrm{def}}{=}\\{\\sum_{i=0}^{r}x_{i}\\Lambda_{i}\\left|\\right.x_{i}\\in\\mathbb{R},\\ x_{i}>-1,\\ \\sum_{i=0}^{r}x_{i}a_{i}^{\\vee}=k\\}\\ .\n$$", "text_format": "latex", "page_idx": 15}, {"type": "text", "text": "Choose any $a,b\\in C_{+}$ . Then a straightforward calculation from (2.1c) gives ", "page_idx": 15}, {"type": "equation", "text": "$$\n\\frac{d}{d t}\\mathcal{D}(t a+(1-t)b)=0\\quad\\Longrightarrow\\quad\\frac{d^{2}}{d t^{2}}\\mathcal{D}(t a+(1-t)b)<0\n$$", "text_format": "latex", "page_idx": 15}, {"type": "text", "text": "for $0<t<1$ . This means that for all $0<t<1$ , ", "page_idx": 15}, {"type": "equation", "text": "$$\n{\\mathcal{D}}(t a+(1-t)b)>\\operatorname*{min}\\{{\\mathcal{D}}(a),\\,{\\mathcal{D}}(b)\\}~.\n$$", "text_format": "latex", "page_idx": 15}, {"type": "text", "text": "Proposition 4.1 [17,18]. For the following algebras $X_{r}^{(1)}$ and levels $k$ , and choices of weight $\\Lambda_{\\star}$ , $\\mathcal{D}(\\lambda)=\\mathcal{D}(\\Lambda_{\\star})$ implies $\\lambda\\in{\\mathcal{S}}\\Lambda_{\\star}$ : ", "page_idx": 15}, {"type": "text", "text": "(a) For A(r1) any level $k$ , where $\\Lambda_{\\star}=\\Lambda_{1}$ ; (b) For Br(1) any level $k\\neq2$ , where $\\Lambda_{\\star}=\\Lambda_{1}$ ; (c) For Cr(1) any level $k$ (except for $(r,k)=(2,3)$ or $(3,2).$ ), where $\\Lambda_{\\star}=\\Lambda_{1}$ ; (d) For $D_{r}^{(1)}$ any level $k\\neq2$ , where $\\Lambda_{\\star}=\\Lambda_{1}$ ; (e6) For E6(1) any level $k$ , where $\\Lambda_{\\star}=\\Lambda_{1}$ ; (e7) For ${E}_{7}^{(1)}$ any level $k\\neq3$ , where $\\Lambda_{\\star}=\\Lambda_{6}$ ; (e8) For E8(1) any level $k\\neq1,4$ , where $\\Lambda_{\\star}=\\Lambda_{1}$ ; (f4) For ${F}_{4}^{(1)}$ any level $k\\neq3,4$ , where $\\Lambda_{\\star}=\\Lambda_{4}$ ; (g2) For G(21) level any $k\\neq3,4$ , where $\\Lambda_{\\star}=\\Lambda_{2}$ . ", "page_idx": 15}, {"type": "text", "text": "The missing cases are: $B_{r,2}$ where ${\\mathcal{D}}(\\Lambda_{1})={\\mathcal{D}}(\\Lambda_{2})=\\cdots={\\mathcal{D}}(\\Lambda_{r-1})={\\mathcal{D}}(2\\Lambda_{r});$ $D_{r,2}$ where ${\\mathcal{D}}(\\Lambda_{1})=\\cdots={\\mathcal{D}}(\\Lambda_{r-2})$ ; \n$C_{2,3}$ where ${\\mathcal{D}}(\\Lambda_{2})={\\mathcal{D}}(3\\Lambda_{1})={\\mathcal{D}}(\\Lambda_{1})$ , and its rank-level dual $C_{3,2}$ ; \n$E_{7,3}$ where ${\\mathcal{D}}(\\Lambda_{1})={\\mathcal{D}}(\\Lambda_{2})={\\mathcal{D}}(\\Lambda_{6})$ ; \n$E_{8,1}$ where $\\Lambda_{1}\\notin P_{+}=\\{0\\}$ , and $E_{8,4}$ where ${\\mathcal{D}}(\\Lambda_{1})={\\mathcal{D}}(\\Lambda_{6})$ ; \n$F_{4,3}$ where ${\\mathcal{D}}(\\Lambda_{2})={\\mathcal{D}}(\\Lambda_{4})$ , and $F_{4,4}$ where $\\mathcal{D}(\\Lambda_{1})=\\mathcal{D}(2\\Lambda_{1})=\\mathcal{D}(4\\Lambda_{4})=\\mathcal{D}(\\Lambda_{4})$ ; \n$G_{2,3}$ where $\\mathcal{D}(\\Lambda_{1})=\\mathcal{D}(\\Lambda_{2})=\\mathcal{D}(3\\Lambda_{2})$ , and $G_{2,4}$ where $\\mathcal{D}(\\Lambda_{2})=\\mathcal{D}(2\\Lambda_{1})$ . ", "page_idx": 15}, {"type": "text", "text": "The weight $\\Lambda_{\\star}$ singled out by Proposition 4.1 (i.e. $\\Lambda_{\\star}=\\Lambda_{1}$ for $A_{r}^{(1)}$ , ..., $\\Lambda_{\\star}=\\Lambda_{2}$ for $G_{2}^{(1)})$ is the nonzero weight with smallest Weyl dimension. What we find is that, for all but the smallest levels (see [18, Table 3]), $\\Lambda_{\\star}$ will also have the smallest q-dimension after the simple-currents. ", "page_idx": 15}] | [{"category_id": 1, "poly": [195, 1817, 1505, 1817, 1505, 1988, 195, 1988], "score": 0.977}, {"category_id": 1, "poly": [197, 256, 1505, 256, 1505, 384, 197, 384], "score": 0.961}, {"category_id": 8, "poly": [437, 712, 1266, 712, 1266, 797, 437, 797], "score": 0.949}, {"category_id": 8, "poly": [477, 499, 1215, 499, 1215, 606, 477, 606], "score": 0.944}, {"category_id": 1, "poly": [196, 636, 1300, 636, 1300, 680, 196, 680], "score": 0.939}, {"category_id": 1, "poly": [197, 385, 1504, 385, 1504, 466, 197, 466], "score": 0.937}, {"category_id": 1, "poly": [195, 824, 900, 824, 900, 865, 195, 865], "score": 0.91}, {"category_id": 1, "poly": [198, 1000, 1506, 1000, 1506, 1086, 198, 1086], "score": 0.893}, {"category_id": 9, "poly": [1428, 902, 1501, 902, 1501, 943, 1428, 943], "score": 0.882}, {"category_id": 2, "poly": [833, 2031, 869, 2031, 869, 2062, 833, 2062], "score": 0.876}, {"category_id": 8, "poly": [574, 897, 1124, 897, 1124, 948, 574, 948], "score": 0.869}, {"category_id": 1, "poly": [260, 1520, 1449, 1520, 1449, 1808, 260, 1808], "score": 0.852}, {"category_id": 1, "poly": [196, 1090, 1331, 1090, 1331, 1508, 196, 1508], "score": 0.799}, {"category_id": 1, "poly": [198, 199, 464, 199, 464, 239, 198, 239], "score": 0.755}, {"category_id": 13, "poly": [1056, 264, 1223, 264, 1223, 309, 1056, 309], "score": 0.96, "latex": "\\begin{array}{r}{\\mathcal{D}(\\lambda)=\\frac{S_{\\lambda0}}{S_{00}}}\\end{array}"}, {"category_id": 14, "poly": [481, 503, 1218, 503, 1218, 608, 481, 608], "score": 0.94, "latex": "C_{+}\\stackrel{\\mathrm{def}}{=}\\{\\sum_{i=0}^{r}x_{i}\\Lambda_{i}\\left|\\right.x_{i}\\in\\mathbb{R},\\ x_{i}>-1,\\ \\sum_{i=0}^{r}x_{i}a_{i}^{\\vee}=k\\}\\ ."}, {"category_id": 13, "poly": [1008, 1832, 1131, 1832, 1131, 1861, 1008, 1861], "score": 0.94, "latex": "\\Lambda_{\\star}=\\Lambda_{1}"}, {"category_id": 13, "poly": [265, 308, 473, 308, 473, 343, 265, 343], "score": 0.94, "latex": "\\mathcal{D}(s\\lambda)=\\mathcal{D}(\\lambda)"}, {"category_id": 13, "poly": [1357, 269, 1491, 269, 1491, 304, 1357, 304], "score": 0.94, "latex": "\\mathcal{D}(\\lambda)\\geq1"}, {"category_id": 13, "poly": [378, 650, 511, 650, 511, 682, 378, 682], "score": 0.94, "latex": "a,b\\in C_{+}"}, {"category_id": 13, "poly": [734, 1695, 795, 1695, 795, 1729, 734, 1729], "score": 0.93, "latex": "E_{8,4}"}, {"category_id": 13, "poly": [901, 1693, 1127, 1693, 1127, 1727, 901, 1727], "score": 0.93, "latex": "{\\mathcal{D}}(\\Lambda_{1})={\\mathcal{D}}(\\Lambda_{6})"}, {"category_id": 13, "poly": [484, 344, 550, 344, 550, 386, 484, 386], "score": 0.93, "latex": "X_{r}^{(1)}"}, {"category_id": 13, "poly": [911, 358, 954, 358, 954, 389, 911, 389], "score": 0.93, "latex": "P_{+}"}, {"category_id": 13, "poly": [736, 1188, 928, 1188, 928, 1229, 736, 1229], "score": 0.92, "latex": "(r,k)=(2,3)"}, {"category_id": 13, "poly": [401, 1053, 608, 1053, 608, 1090, 401, 1090], "score": 0.92, "latex": "\\mathcal{D}(\\lambda)=\\mathcal{D}(\\Lambda_{\\star})"}, {"category_id": 13, "poly": [433, 1652, 794, 1652, 794, 1688, 433, 1688], "score": 0.92, "latex": "{\\mathcal{D}}(\\Lambda_{1})={\\mathcal{D}}(\\Lambda_{2})={\\mathcal{D}}(\\Lambda_{6})"}, {"category_id": 13, "poly": [432, 1612, 808, 1612, 808, 1648, 432, 1648], "score": 0.92, "latex": "{\\mathcal{D}}(\\Lambda_{2})={\\mathcal{D}}(3\\Lambda_{1})={\\mathcal{D}}(\\Lambda_{1})"}, {"category_id": 13, "poly": [431, 1732, 657, 1732, 657, 1768, 431, 1768], "score": 0.92, "latex": "{\\mathcal{D}}(\\Lambda_{2})={\\mathcal{D}}(\\Lambda_{4})"}, {"category_id": 13, "poly": [707, 357, 786, 357, 786, 383, 707, 383], "score": 0.92, "latex": "s\\in S"}, {"category_id": 13, "poly": [327, 1138, 391, 1138, 391, 1178, 327, 1178], "score": 0.92, "latex": "B_{r}^{(1)}"}, {"category_id": 14, "poly": [442, 716, 1259, 716, 1259, 797, 442, 797], "score": 0.92, "latex": "\\frac{d}{d t}\\mathcal{D}(t a+(1-t)b)=0\\quad\\Longrightarrow\\quad\\frac{d^{2}}{d t^{2}}\\mathcal{D}(t a+(1-t)b)<0"}, {"category_id": 13, "poly": [327, 1185, 390, 1185, 390, 1225, 327, 1225], "score": 0.92, "latex": "C_{r}^{(1)}"}, {"category_id": 13, "poly": [265, 1735, 322, 1735, 322, 1769, 265, 1769], "score": 0.92, "latex": "F_{4,3}"}, {"category_id": 13, "poly": [671, 1097, 794, 1097, 794, 1134, 671, 1134], "score": 0.92, "latex": "\\Lambda_{\\star}=\\Lambda_{1}"}, {"category_id": 13, "poly": [1394, 436, 1440, 436, 1440, 468, 1394, 468], "score": 0.92, "latex": "C_{+}"}, {"category_id": 13, "poly": [432, 1693, 651, 1693, 651, 1728, 432, 1728], "score": 0.92, "latex": "\\Lambda_{1}\\notin P_{+}=\\{0\\}"}, {"category_id": 13, "poly": [673, 1282, 795, 1282, 795, 1319, 673, 1319], "score": 0.92, "latex": "\\Lambda_{\\star}=\\Lambda_{1}"}, {"category_id": 13, "poly": [603, 310, 686, 310, 686, 336, 603, 336], "score": 0.92, "latex": "s\\in S"}, {"category_id": 13, "poly": [265, 1575, 327, 1575, 327, 1609, 265, 1609], "score": 0.92, "latex": "D_{r,2}"}, {"category_id": 13, "poly": [266, 1775, 328, 1775, 328, 1809, 266, 1809], "score": 0.92, "latex": "G_{2,3}"}, {"category_id": 13, "poly": [265, 1695, 326, 1695, 326, 1729, 265, 1729], "score": 0.92, "latex": "E_{8,1}"}, {"category_id": 13, "poly": [764, 1469, 888, 1469, 888, 1506, 764, 1506], "score": 0.92, "latex": "\\Lambda_{\\star}=\\Lambda_{2}"}, {"category_id": 13, "poly": [915, 436, 959, 436, 959, 468, 915, 468], "score": 0.92, "latex": "P_{+}"}, {"category_id": 13, "poly": [327, 1230, 392, 1230, 392, 1271, 327, 1271], "score": 0.92, "latex": "D_{r}^{(1)}"}, {"category_id": 13, "poly": [765, 1376, 888, 1376, 888, 1413, 765, 1413], "score": 0.92, "latex": "\\Lambda_{\\star}=\\Lambda_{1}"}, {"category_id": 13, "poly": [764, 1422, 888, 1422, 888, 1459, 764, 1459], "score": 0.92, "latex": "\\Lambda_{\\star}=\\Lambda_{4}"}, {"category_id": 13, "poly": [265, 1655, 326, 1655, 326, 1689, 265, 1689], "score": 0.92, "latex": "E_{7,3}"}, {"category_id": 13, "poly": [328, 1464, 390, 1464, 390, 1509, 328, 1509], "score": 0.92, "latex": "{G}_{2}^{(1)}"}, {"category_id": 13, "poly": [328, 1091, 388, 1091, 388, 1132, 328, 1132], "score": 0.92, "latex": "A_{r}^{(1)}"}, {"category_id": 13, "poly": [266, 1615, 325, 1615, 325, 1649, 266, 1649], "score": 0.92, "latex": "C_{2,3}"}, {"category_id": 13, "poly": [739, 1735, 797, 1735, 797, 1769, 739, 1769], "score": 0.92, "latex": "F_{4,4}"}, {"category_id": 13, "poly": [1065, 1772, 1307, 1772, 1307, 1808, 1065, 1808], "score": 0.92, "latex": "\\mathcal{D}(\\Lambda_{2})=\\mathcal{D}(2\\Lambda_{1})"}, {"category_id": 13, "poly": [800, 436, 828, 436, 828, 460, 800, 460], "score": 0.91, "latex": "\\mathcal{D}"}, {"category_id": 13, "poly": [434, 1572, 777, 1572, 777, 1608, 434, 1608], "score": 0.91, "latex": "{\\mathcal{D}}(\\Lambda_{1})=\\cdots={\\mathcal{D}}(\\Lambda_{r-2})"}, {"category_id": 13, "poly": [1058, 1000, 1128, 1000, 1128, 1046, 1058, 1046], "score": 0.91, "latex": "X_{r}^{(1)}"}, {"category_id": 13, "poly": [434, 1773, 813, 1773, 813, 1808, 434, 1808], "score": 0.91, "latex": "\\mathcal{D}(\\Lambda_{1})=\\mathcal{D}(\\Lambda_{2})=\\mathcal{D}(3\\Lambda_{2})"}, {"category_id": 13, "poly": [903, 1732, 1435, 1732, 1435, 1768, 903, 1768], "score": 0.91, "latex": "\\mathcal{D}(\\Lambda_{1})=\\mathcal{D}(2\\Lambda_{1})=\\mathcal{D}(4\\Lambda_{4})=\\mathcal{D}(\\Lambda_{4})"}, {"category_id": 13, "poly": [736, 1236, 858, 1236, 858, 1273, 736, 1273], "score": 0.91, "latex": "\\Lambda_{\\star}=\\Lambda_{1}"}, {"category_id": 13, "poly": [734, 1329, 857, 1329, 857, 1366, 734, 1366], "score": 0.91, "latex": "\\Lambda_{\\star}=\\Lambda_{6}"}, {"category_id": 13, "poly": [540, 1235, 623, 1235, 623, 1274, 540, 1274], "score": 0.91, "latex": "k\\neq2"}, {"category_id": 13, "poly": [440, 1832, 478, 1832, 478, 1861, 440, 1861], "score": 0.91, "latex": "\\Lambda_{\\star}"}, {"category_id": 13, "poly": [539, 1143, 621, 1143, 621, 1181, 539, 1181], "score": 0.91, "latex": "k\\neq2"}, {"category_id": 13, "poly": [734, 1143, 856, 1143, 856, 1180, 734, 1180], "score": 0.91, "latex": "\\Lambda_{\\star}=\\Lambda_{1}"}, {"category_id": 13, "poly": [538, 1329, 621, 1329, 621, 1367, 538, 1367], "score": 0.91, "latex": "k\\neq3"}, {"category_id": 13, "poly": [250, 837, 384, 837, 384, 861, 250, 861], "score": 0.91, "latex": "0<t<1"}, {"category_id": 13, "poly": [327, 1417, 390, 1417, 390, 1462, 327, 1462], "score": 0.91, "latex": "{F}_{4}^{(1)}"}, {"category_id": 13, "poly": [895, 1774, 958, 1774, 958, 1809, 895, 1809], "score": 0.91, "latex": "G_{2,4}"}, {"category_id": 13, "poly": [809, 1918, 848, 1918, 848, 1947, 809, 1947], "score": 0.91, "latex": "\\Lambda_{\\star}"}, {"category_id": 13, "poly": [1184, 1190, 1306, 1190, 1306, 1226, 1184, 1226], "score": 0.91, "latex": "\\Lambda_{\\star}=\\Lambda_{1}"}, {"category_id": 13, "poly": [1194, 1820, 1255, 1820, 1255, 1860, 1194, 1860], "score": 0.9, "latex": "A_{r}^{(1)}"}, {"category_id": 13, "poly": [733, 1050, 856, 1050, 856, 1086, 733, 1086], "score": 0.9, "latex": "\\lambda\\in{\\mathcal{S}}\\Lambda_{\\star}"}, {"category_id": 13, "poly": [1165, 1611, 1226, 1611, 1226, 1649, 1165, 1649], "score": 0.9, "latex": "C_{3,2}"}, {"category_id": 13, "poly": [538, 1377, 653, 1377, 653, 1414, 538, 1414], "score": 0.9, "latex": "k\\neq1,4"}, {"category_id": 13, "poly": [327, 1370, 391, 1370, 391, 1415, 327, 1415], "score": 0.9, "latex": "{E}_{8}^{(1)}"}, {"category_id": 13, "poly": [539, 1471, 653, 1471, 653, 1507, 539, 1507], "score": 0.89, "latex": "k\\neq3,4"}, {"category_id": 13, "poly": [603, 1533, 664, 1533, 664, 1569, 603, 1569], "score": 0.89, "latex": "B_{r,2}"}, {"category_id": 13, "poly": [539, 1425, 653, 1425, 653, 1460, 539, 1460], "score": 0.89, "latex": "k\\neq3,4"}, {"category_id": 13, "poly": [889, 310, 913, 310, 913, 335, 889, 335], "score": 0.89, "latex": "\\boldsymbol{S}"}, {"category_id": 13, "poly": [327, 1322, 391, 1322, 391, 1369, 327, 1369], "score": 0.89, "latex": "{E}_{7}^{(1)}"}, {"category_id": 13, "poly": [340, 1057, 380, 1057, 380, 1087, 340, 1087], "score": 0.89, "latex": "\\Lambda_{\\star}"}, {"category_id": 13, "poly": [199, 1866, 270, 1866, 270, 1911, 199, 1911], "score": 0.89, "latex": "G_{2}^{(1)})"}, {"category_id": 13, "poly": [327, 1276, 391, 1276, 391, 1321, 327, 1321], "score": 0.88, "latex": "E_{6}^{(1)}"}, {"category_id": 13, "poly": [754, 837, 889, 837, 889, 862, 754, 862], "score": 0.88, "latex": "0<t<1"}, {"category_id": 14, "poly": [576, 904, 1124, 904, 1124, 947, 576, 947], "score": 0.88, "latex": "{\\mathcal{D}}(t a+(1-t)b)>\\operatorname*{min}\\{{\\mathcal{D}}(a),\\,{\\mathcal{D}}(b)\\}~."}, {"category_id": 13, "poly": [770, 1531, 1405, 1531, 1405, 1569, 770, 1569], "score": 0.87, "latex": "{\\mathcal{D}}(\\Lambda_{1})={\\mathcal{D}}(\\Lambda_{2})=\\cdots={\\mathcal{D}}(\\Lambda_{r-1})={\\mathcal{D}}(2\\Lambda_{r});"}, {"category_id": 13, "poly": [1325, 1832, 1448, 1832, 1448, 1861, 1325, 1861], "score": 0.86, "latex": "\\Lambda_{\\star}=\\Lambda_{2}"}, {"category_id": 13, "poly": [1290, 1012, 1312, 1012, 1312, 1043, 1290, 1043], "score": 0.79, "latex": "k"}, {"category_id": 13, "poly": [538, 1284, 560, 1284, 560, 1315, 538, 1315], "score": 0.78, "latex": "k"}, {"category_id": 13, "poly": [538, 1191, 561, 1191, 561, 1222, 538, 1222], "score": 0.78, "latex": "k"}, {"category_id": 13, "poly": [537, 1100, 558, 1100, 558, 1129, 537, 1129], "score": 0.77, "latex": "k"}, {"category_id": 13, "poly": [982, 1189, 1058, 1189, 1058, 1229, 982, 1229], "score": 0.52, "latex": "(3,2)."}, {"category_id": 13, "poly": [271, 220, 286, 220, 286, 242, 271, 242], "score": 0.35, "latex": "q"}, {"category_id": 15, "poly": [257.0, 1818.0, 439.0, 1818.0, 439.0, 1870.0, 257.0, 1870.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [479.0, 1818.0, 1007.0, 1818.0, 1007.0, 1870.0, 479.0, 1870.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1132.0, 1818.0, 1193.0, 1818.0, 1193.0, 1870.0, 1132.0, 1870.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1256.0, 1818.0, 1324.0, 1818.0, 1324.0, 1870.0, 1256.0, 1870.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1449.0, 1818.0, 1508.0, 1818.0, 1508.0, 1870.0, 1449.0, 1870.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [198.0, 1860.0, 198.0, 1860.0, 198.0, 1921.0, 198.0, 1921.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [271.0, 1860.0, 1510.0, 1860.0, 1510.0, 1921.0, 271.0, 1921.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [192.0, 1910.0, 808.0, 1910.0, 808.0, 1955.0, 192.0, 1955.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [849.0, 1910.0, 1504.0, 1910.0, 1504.0, 1955.0, 849.0, 1955.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [195.0, 1952.0, 490.0, 1952.0, 490.0, 1997.0, 195.0, 1997.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [258.0, 254.0, 1055.0, 254.0, 1055.0, 313.0, 258.0, 313.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1224.0, 254.0, 1356.0, 254.0, 1356.0, 313.0, 1224.0, 313.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1492.0, 254.0, 1508.0, 254.0, 1508.0, 313.0, 1492.0, 313.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [195.0, 301.0, 264.0, 301.0, 264.0, 348.0, 195.0, 348.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [474.0, 301.0, 602.0, 301.0, 602.0, 348.0, 474.0, 348.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [687.0, 301.0, 888.0, 301.0, 888.0, 348.0, 687.0, 348.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [914.0, 301.0, 1505.0, 301.0, 1505.0, 348.0, 914.0, 348.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [195.0, 346.0, 483.0, 346.0, 483.0, 397.0, 195.0, 397.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [551.0, 346.0, 706.0, 346.0, 706.0, 397.0, 551.0, 397.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [787.0, 346.0, 910.0, 346.0, 910.0, 397.0, 787.0, 397.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [955.0, 346.0, 1444.0, 346.0, 1444.0, 397.0, 955.0, 397.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1153.0, 282.0, 1219.0, 282.0, 1219.0, 311.0, 1153.0, 311.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [199.0, 642.0, 377.0, 642.0, 377.0, 686.0, 199.0, 686.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [512.0, 642.0, 1299.0, 642.0, 1299.0, 686.0, 512.0, 686.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [261.0, 389.0, 1501.0, 389.0, 1501.0, 434.0, 261.0, 434.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [198.0, 431.0, 799.0, 431.0, 799.0, 472.0, 198.0, 472.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [829.0, 431.0, 914.0, 431.0, 914.0, 472.0, 829.0, 472.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [960.0, 431.0, 1393.0, 431.0, 1393.0, 472.0, 960.0, 472.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1441.0, 431.0, 1451.0, 431.0, 1451.0, 472.0, 1441.0, 472.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [196.0, 828.0, 249.0, 828.0, 249.0, 870.0, 196.0, 870.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [385.0, 828.0, 753.0, 828.0, 753.0, 870.0, 385.0, 870.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [890.0, 828.0, 900.0, 828.0, 900.0, 870.0, 890.0, 870.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [255.0, 1001.0, 1057.0, 1001.0, 1057.0, 1057.0, 255.0, 1057.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1129.0, 1001.0, 1289.0, 1001.0, 1289.0, 1057.0, 1129.0, 1057.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1313.0, 1001.0, 1510.0, 1001.0, 1510.0, 1057.0, 1313.0, 1057.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [199.0, 1052.0, 339.0, 1052.0, 339.0, 1097.0, 199.0, 1097.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [381.0, 1052.0, 400.0, 1052.0, 400.0, 1097.0, 381.0, 1097.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [609.0, 1052.0, 732.0, 1052.0, 732.0, 1097.0, 609.0, 1097.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [857.0, 1052.0, 873.0, 1052.0, 873.0, 1097.0, 857.0, 1097.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [829.0, 2033.0, 872.0, 2033.0, 872.0, 2070.0, 829.0, 2070.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [262.0, 1528.0, 602.0, 1528.0, 602.0, 1574.0, 262.0, 1574.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [665.0, 1528.0, 769.0, 1528.0, 769.0, 1574.0, 665.0, 1574.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1406.0, 1528.0, 1410.0, 1528.0, 1410.0, 1574.0, 1406.0, 1574.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [328.0, 1568.0, 433.0, 1568.0, 433.0, 1613.0, 328.0, 1613.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [778.0, 1568.0, 793.0, 1568.0, 793.0, 1613.0, 778.0, 1613.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [261.0, 1606.0, 265.0, 1606.0, 265.0, 1656.0, 261.0, 1656.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [326.0, 1606.0, 431.0, 1606.0, 431.0, 1656.0, 326.0, 1656.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [809.0, 1606.0, 1164.0, 1606.0, 1164.0, 1656.0, 809.0, 1656.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1227.0, 1606.0, 1241.0, 1606.0, 1241.0, 1656.0, 1227.0, 1656.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [327.0, 1649.0, 432.0, 1649.0, 432.0, 1691.0, 327.0, 1691.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [795.0, 1649.0, 808.0, 1649.0, 808.0, 1691.0, 795.0, 1691.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [327.0, 1688.0, 431.0, 1688.0, 431.0, 1730.0, 327.0, 1730.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [652.0, 1688.0, 733.0, 1688.0, 733.0, 1730.0, 652.0, 1730.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [796.0, 1688.0, 900.0, 1688.0, 900.0, 1730.0, 796.0, 1730.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1128.0, 1688.0, 1140.0, 1688.0, 1140.0, 1730.0, 1128.0, 1730.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [323.0, 1730.0, 430.0, 1730.0, 430.0, 1772.0, 323.0, 1772.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [658.0, 1730.0, 738.0, 1730.0, 738.0, 1772.0, 658.0, 1772.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [798.0, 1730.0, 902.0, 1730.0, 902.0, 1772.0, 798.0, 1772.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1436.0, 1730.0, 1444.0, 1730.0, 1444.0, 1772.0, 1436.0, 1772.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [262.0, 1769.0, 265.0, 1769.0, 265.0, 1815.0, 262.0, 1815.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [329.0, 1769.0, 433.0, 1769.0, 433.0, 1815.0, 329.0, 1815.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [814.0, 1769.0, 894.0, 1769.0, 894.0, 1815.0, 814.0, 1815.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [959.0, 1769.0, 1064.0, 1769.0, 1064.0, 1815.0, 959.0, 1815.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1308.0, 1769.0, 1320.0, 1769.0, 1320.0, 1815.0, 1308.0, 1815.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [397.0, 1095.0, 536.0, 1095.0, 536.0, 1137.0, 397.0, 1137.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [559.0, 1095.0, 670.0, 1095.0, 670.0, 1137.0, 559.0, 1137.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [795.0, 1095.0, 807.0, 1095.0, 807.0, 1137.0, 795.0, 1137.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [397.0, 1145.0, 538.0, 1145.0, 538.0, 1183.0, 397.0, 1183.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [622.0, 1145.0, 733.0, 1145.0, 733.0, 1183.0, 622.0, 1183.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [857.0, 1145.0, 869.0, 1145.0, 869.0, 1183.0, 857.0, 1183.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [398.0, 1188.0, 537.0, 1188.0, 537.0, 1229.0, 398.0, 1229.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [562.0, 1188.0, 735.0, 1188.0, 735.0, 1229.0, 562.0, 1229.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [929.0, 1188.0, 981.0, 1188.0, 981.0, 1229.0, 929.0, 1229.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1059.0, 1188.0, 1183.0, 1188.0, 1183.0, 1229.0, 1059.0, 1229.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1307.0, 1188.0, 1318.0, 1188.0, 1318.0, 1229.0, 1307.0, 1229.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [198.0, 1234.0, 326.0, 1234.0, 326.0, 1273.0, 198.0, 1273.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [393.0, 1234.0, 396.0, 1234.0, 396.0, 1273.0, 393.0, 1273.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [399.0, 1238.0, 539.0, 1238.0, 539.0, 1277.0, 399.0, 1277.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [624.0, 1238.0, 735.0, 1238.0, 735.0, 1277.0, 624.0, 1277.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [859.0, 1238.0, 873.0, 1238.0, 873.0, 1277.0, 859.0, 1277.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [399.0, 1284.0, 537.0, 1284.0, 537.0, 1323.0, 399.0, 1323.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [561.0, 1284.0, 672.0, 1284.0, 672.0, 1323.0, 561.0, 1323.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [796.0, 1284.0, 809.0, 1284.0, 809.0, 1323.0, 796.0, 1323.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [188.0, 1320.0, 326.0, 1320.0, 326.0, 1372.0, 188.0, 1372.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [401.0, 1328.0, 537.0, 1328.0, 537.0, 1370.0, 401.0, 1370.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [622.0, 1328.0, 733.0, 1328.0, 733.0, 1370.0, 622.0, 1370.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [858.0, 1328.0, 869.0, 1328.0, 869.0, 1370.0, 858.0, 1370.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [399.0, 1377.0, 537.0, 1377.0, 537.0, 1416.0, 399.0, 1416.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [654.0, 1377.0, 764.0, 1377.0, 764.0, 1416.0, 654.0, 1416.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [889.0, 1377.0, 900.0, 1377.0, 900.0, 1416.0, 889.0, 1416.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [195.0, 1422.0, 326.0, 1422.0, 326.0, 1463.0, 195.0, 1463.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [399.0, 1424.0, 538.0, 1424.0, 538.0, 1462.0, 399.0, 1462.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [654.0, 1424.0, 763.0, 1424.0, 763.0, 1462.0, 654.0, 1462.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [889.0, 1424.0, 900.0, 1424.0, 900.0, 1462.0, 889.0, 1462.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [396.0, 1464.0, 538.0, 1464.0, 538.0, 1513.0, 396.0, 1513.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [654.0, 1464.0, 763.0, 1464.0, 763.0, 1513.0, 654.0, 1513.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [889.0, 1464.0, 900.0, 1464.0, 900.0, 1513.0, 889.0, 1513.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [202.75, 1089.0, 395.75, 1089.0, 395.75, 1137.5, 202.75, 1137.5], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [200.0, 1136.5, 395.0, 1136.5, 395.0, 1181.5, 200.0, 1181.5], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [200.0, 1180.0, 401.0, 1180.0, 401.0, 1232.5, 200.0, 1232.5], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [182.0, 1270.5, 401.0, 1270.5, 401.0, 1326.5, 182.0, 1326.5], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [176.0, 1360.0, 408.0, 1360.0, 408.0, 1435.0, 176.0, 1435.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [326.0, 1414.5, 393.0, 1414.5, 393.0, 1445.5, 326.0, 1445.5], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [179.0, 1455.5, 408.0, 1455.5, 408.0, 1525.0, 179.0, 1525.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [197.0, 206.0, 270.0, 206.0, 270.0, 242.0, 197.0, 242.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [287.0, 206.0, 464.0, 206.0, 464.0, 242.0, 287.0, 242.0], "score": 1.0, "text": ""}] | {"preproc_blocks": [{"type": "text", "bbox": [71, 71, 167, 86], "lines": [{"bbox": [70, 74, 167, 87], "spans": [{"bbox": [70, 74, 97, 87], "score": 1.0, "content": "4.1. ", "type": "text"}, {"bbox": [97, 79, 102, 87], "score": 0.35, "content": "q", "type": "inline_equation", "height": 8, "width": 5}, {"bbox": [103, 74, 167, 87], "score": 1.0, "content": "-dimensions", "type": "text"}], "index": 0}], "index": 0}, {"type": "text", "bbox": [70, 92, 541, 138], "lines": [{"bbox": [92, 91, 542, 112], "spans": [{"bbox": [92, 91, 379, 112], "score": 1.0, "content": "The most basic properties obeyed by the q-dimensions ", "type": "text"}, {"bbox": [380, 95, 440, 111], "score": 0.96, "content": "\\begin{array}{r}{\\mathcal{D}(\\lambda)=\\frac{S_{\\lambda0}}{S_{00}}}\\end{array}", "type": "inline_equation", "height": 16, "width": 60}, {"bbox": [440, 91, 488, 112], "score": 1.0, "content": " are that ", "type": "text"}, {"bbox": [488, 96, 536, 109], "score": 0.94, "content": "\\mathcal{D}(\\lambda)\\geq1", "type": "inline_equation", "height": 13, "width": 48}, {"bbox": [537, 91, 542, 112], "score": 1.0, "content": ",", "type": "text"}], "index": 1}, {"bbox": [70, 108, 541, 125], "spans": [{"bbox": [70, 108, 95, 125], "score": 1.0, "content": "and ", "type": "text"}, {"bbox": [95, 110, 170, 123], "score": 0.94, "content": "\\mathcal{D}(s\\lambda)=\\mathcal{D}(\\lambda)", "type": "inline_equation", "height": 13, "width": 75}, {"bbox": [170, 108, 216, 125], "score": 1.0, "content": " for any ", "type": "text"}, {"bbox": [217, 111, 246, 120], "score": 0.92, "content": "s\\in S", "type": "inline_equation", "height": 9, "width": 29}, {"bbox": [247, 108, 319, 125], "score": 1.0, "content": ". Recall that ", "type": "text"}, {"bbox": [320, 111, 328, 120], "score": 0.89, "content": "\\boldsymbol{S}", "type": "inline_equation", "height": 9, "width": 8}, {"bbox": [329, 108, 541, 125], "score": 1.0, "content": " is the symmetry group of the extended", "type": "text"}], "index": 2}, {"bbox": [70, 123, 519, 142], "spans": [{"bbox": [70, 124, 173, 142], "score": 1.0, "content": "Dynkin diagram of ", "type": "text"}, {"bbox": [174, 123, 198, 138], "score": 0.93, "content": "X_{r}^{(1)}", "type": "inline_equation", "height": 15, "width": 24}, {"bbox": [198, 124, 254, 142], "score": 1.0, "content": ", and that ", "type": "text"}, {"bbox": [254, 128, 282, 137], "score": 0.92, "content": "s\\in S", "type": "inline_equation", "height": 9, "width": 28}, {"bbox": [283, 124, 327, 142], "score": 1.0, "content": " acts on ", "type": "text"}, {"bbox": [327, 128, 343, 140], "score": 0.93, "content": "P_{+}", "type": "inline_equation", "height": 12, "width": 16}, {"bbox": [343, 124, 519, 142], "score": 1.0, "content": " by permuting the Dynkin labels.", "type": "text"}], "index": 3}], "index": 2}, {"type": "text", "bbox": [70, 138, 541, 167], "lines": [{"bbox": [93, 140, 540, 156], "spans": [{"bbox": [93, 140, 540, 156], "score": 1.0, "content": "The argument yielding Proposition 4.1 below relies heavily on the following observa-", "type": "text"}], "index": 4}, {"bbox": [71, 155, 522, 169], "spans": [{"bbox": [71, 155, 287, 169], "score": 1.0, "content": "tion. Use (2.1c) to extend the domain of ", "type": "text"}, {"bbox": [288, 156, 298, 165], "score": 0.91, "content": "\\mathcal{D}", "type": "inline_equation", "height": 9, "width": 10}, {"bbox": [298, 155, 329, 169], "score": 1.0, "content": " from ", "type": "text"}, {"bbox": [329, 156, 345, 168], "score": 0.92, "content": "P_{+}", "type": "inline_equation", "height": 12, "width": 16}, {"bbox": [345, 155, 501, 169], "score": 1.0, "content": " to the fundamental chamber ", "type": "text"}, {"bbox": [501, 156, 518, 168], "score": 0.92, "content": "C_{+}", "type": "inline_equation", "height": 12, "width": 17}, {"bbox": [518, 155, 522, 169], "score": 1.0, "content": ":", "type": "text"}], "index": 5}], "index": 4.5}, {"type": "interline_equation", "bbox": [173, 181, 438, 218], "lines": [{"bbox": [173, 181, 438, 218], "spans": [{"bbox": [173, 181, 438, 218], "score": 0.94, "content": "C_{+}\\stackrel{\\mathrm{def}}{=}\\{\\sum_{i=0}^{r}x_{i}\\Lambda_{i}\\left|\\right.x_{i}\\in\\mathbb{R},\\ x_{i}>-1,\\ \\sum_{i=0}^{r}x_{i}a_{i}^{\\vee}=k\\}\\ .", "type": "interline_equation"}], "index": 6}], "index": 6}, {"type": "text", "bbox": [70, 228, 468, 244], "lines": [{"bbox": [71, 231, 467, 246], "spans": [{"bbox": [71, 231, 135, 246], "score": 1.0, "content": "Choose any ", "type": "text"}, {"bbox": [136, 234, 183, 245], "score": 0.94, "content": "a,b\\in C_{+}", "type": "inline_equation", "height": 11, "width": 47}, {"bbox": [184, 231, 467, 246], "score": 1.0, "content": ". Then a straightforward calculation from (2.1c) gives", "type": "text"}], "index": 7}], "index": 7}, {"type": "interline_equation", "bbox": [159, 257, 453, 286], "lines": [{"bbox": [159, 257, 453, 286], "spans": [{"bbox": [159, 257, 453, 286], "score": 0.92, "content": "\\frac{d}{d t}\\mathcal{D}(t a+(1-t)b)=0\\quad\\Longrightarrow\\quad\\frac{d^{2}}{d t^{2}}\\mathcal{D}(t a+(1-t)b)<0", "type": "interline_equation"}], "index": 8}], "index": 8}, {"type": "text", "bbox": [70, 296, 324, 311], "lines": [{"bbox": [70, 298, 324, 313], "spans": [{"bbox": [70, 298, 89, 313], "score": 1.0, "content": "for ", "type": "text"}, {"bbox": [90, 301, 138, 309], "score": 0.91, "content": "0<t<1", "type": "inline_equation", "height": 8, "width": 48}, {"bbox": [138, 298, 271, 313], "score": 1.0, "content": ". This means that for all ", "type": "text"}, {"bbox": [271, 301, 320, 310], "score": 0.88, "content": "0<t<1", "type": "inline_equation", "height": 9, "width": 49}, {"bbox": [320, 298, 324, 313], "score": 1.0, "content": ",", "type": "text"}], "index": 9}], "index": 9}, {"type": "interline_equation", "bbox": [207, 325, 404, 340], "lines": [{"bbox": [207, 325, 404, 340], "spans": [{"bbox": [207, 325, 404, 340], "score": 0.88, "content": "{\\mathcal{D}}(t a+(1-t)b)>\\operatorname*{min}\\{{\\mathcal{D}}(a),\\,{\\mathcal{D}}(b)\\}~.", "type": "interline_equation"}], "index": 10}], "index": 10}, {"type": "text", "bbox": [71, 360, 542, 390], "lines": [{"bbox": [91, 360, 543, 380], "spans": [{"bbox": [91, 360, 380, 380], "score": 1.0, "content": "Proposition 4.1 [17,18]. For the following algebras ", "type": "text"}, {"bbox": [380, 360, 406, 376], "score": 0.91, "content": "X_{r}^{(1)}", "type": "inline_equation", "height": 16, "width": 26}, {"bbox": [406, 360, 464, 380], "score": 1.0, "content": "and levels ", "type": "text"}, {"bbox": [464, 364, 472, 375], "score": 0.79, "content": "k", "type": "inline_equation", "height": 11, "width": 8}, {"bbox": [472, 360, 543, 380], "score": 1.0, "content": ", and choices", "type": "text"}], "index": 11}, {"bbox": [71, 378, 314, 394], "spans": [{"bbox": [71, 378, 122, 394], "score": 1.0, "content": "of weight ", "type": "text"}, {"bbox": [122, 380, 136, 391], "score": 0.89, "content": "\\Lambda_{\\star}", "type": "inline_equation", "height": 11, "width": 14}, {"bbox": [137, 378, 144, 394], "score": 1.0, "content": ", ", "type": "text"}, {"bbox": [144, 379, 218, 392], "score": 0.92, "content": "\\mathcal{D}(\\lambda)=\\mathcal{D}(\\Lambda_{\\star})", "type": "inline_equation", "height": 13, "width": 74}, {"bbox": [219, 378, 263, 394], "score": 1.0, "content": " implies ", "type": "text"}, {"bbox": [263, 378, 308, 390], "score": 0.9, "content": "\\lambda\\in{\\mathcal{S}}\\Lambda_{\\star}", "type": "inline_equation", "height": 12, "width": 45}, {"bbox": [308, 378, 314, 394], "score": 1.0, "content": ":", "type": "text"}], "index": 12}], "index": 11.5}, {"type": "text", "bbox": [70, 392, 479, 542], "lines": [{"bbox": [72, 392, 290, 409], "spans": [{"bbox": [72, 392, 142, 409], "score": 1.0, "content": "(a) For A(r1)", "type": "text"}, {"bbox": [142, 394, 192, 409], "score": 1.0, "content": "any level ", "type": "text"}, {"bbox": [193, 396, 200, 406], "score": 0.77, "content": "k", "type": "inline_equation", "height": 10, "width": 7}, {"bbox": [201, 394, 241, 409], "score": 1.0, "content": ", where ", "type": "text"}, {"bbox": [241, 394, 285, 408], "score": 0.92, "content": "\\Lambda_{\\star}=\\Lambda_{1}", "type": "inline_equation", "height": 14, "width": 44}, {"bbox": [286, 394, 290, 409], "score": 1.0, "content": ";", "type": "text"}], "index": 13}, {"bbox": [72, 409, 312, 425], "spans": [{"bbox": [72, 409, 142, 425], "score": 1.0, "content": "(b) For Br(1)", "type": "text"}, {"bbox": [142, 412, 193, 425], "score": 1.0, "content": "any level ", "type": "text"}, {"bbox": [194, 411, 223, 425], "score": 0.91, "content": "k\\neq2", "type": "inline_equation", "height": 14, "width": 29}, {"bbox": [223, 412, 263, 425], "score": 1.0, "content": ", where ", "type": "text"}, {"bbox": [264, 411, 308, 424], "score": 0.91, "content": "\\Lambda_{\\star}=\\Lambda_{1}", "type": "inline_equation", "height": 13, "width": 44}, {"bbox": [308, 412, 312, 425], "score": 1.0, "content": ";", "type": "text"}], "index": 14}, {"bbox": [72, 424, 474, 443], "spans": [{"bbox": [72, 424, 144, 443], "score": 1.0, "content": "(c) For Cr(1)", "type": "text"}, {"bbox": [143, 427, 193, 442], "score": 1.0, "content": "any level ", "type": "text"}, {"bbox": [193, 428, 201, 439], "score": 0.78, "content": "k", "type": "inline_equation", "height": 11, "width": 8}, {"bbox": [202, 427, 264, 442], "score": 1.0, "content": " (except for ", "type": "text"}, {"bbox": [264, 427, 334, 442], "score": 0.92, "content": "(r,k)=(2,3)", "type": "inline_equation", "height": 15, "width": 70}, {"bbox": [334, 427, 353, 442], "score": 1.0, "content": " or ", "type": "text"}, {"bbox": [353, 428, 380, 442], "score": 0.52, "content": "(3,2).", "type": "inline_equation", "height": 14, "width": 27}, {"bbox": [381, 427, 425, 442], "score": 1.0, "content": "), where ", "type": "text"}, {"bbox": [426, 428, 470, 441], "score": 0.91, "content": "\\Lambda_{\\star}=\\Lambda_{1}", "type": "inline_equation", "height": 13, "width": 44}, {"bbox": [470, 427, 474, 442], "score": 1.0, "content": ";", "type": "text"}], "index": 15}, {"bbox": [71, 442, 314, 459], "spans": [{"bbox": [71, 444, 117, 458], "score": 1.0, "content": "(d) For ", "type": "text"}, {"bbox": [117, 442, 141, 457], "score": 0.92, "content": "D_{r}^{(1)}", "type": "inline_equation", "height": 15, "width": 24}, {"bbox": [143, 445, 194, 459], "score": 1.0, "content": "any level ", "type": "text"}, {"bbox": [194, 444, 224, 458], "score": 0.91, "content": "k\\neq2", "type": "inline_equation", "height": 14, "width": 30}, {"bbox": [224, 445, 264, 459], "score": 1.0, "content": ", where ", "type": "text"}, {"bbox": [264, 444, 308, 458], "score": 0.91, "content": "\\Lambda_{\\star}=\\Lambda_{1}", "type": "inline_equation", "height": 14, "width": 44}, {"bbox": [309, 445, 314, 459], "score": 1.0, "content": ";", "type": "text"}], "index": 16}, {"bbox": [65, 457, 291, 477], "spans": [{"bbox": [65, 457, 144, 477], "score": 1.0, "content": "(e6) For E6(1)", "type": "text"}, {"bbox": [143, 462, 193, 476], "score": 1.0, "content": "any level ", "type": "text"}, {"bbox": [193, 462, 201, 473], "score": 0.78, "content": "k", "type": "inline_equation", "height": 11, "width": 8}, {"bbox": [201, 462, 241, 476], "score": 1.0, "content": ", where ", "type": "text"}, {"bbox": [242, 461, 286, 474], "score": 0.92, "content": "\\Lambda_{\\star}=\\Lambda_{1}", "type": "inline_equation", "height": 13, "width": 44}, {"bbox": [286, 462, 291, 476], "score": 1.0, "content": ";", "type": "text"}], "index": 17}, {"bbox": [67, 475, 312, 493], "spans": [{"bbox": [67, 475, 117, 493], "score": 1.0, "content": "(e7) For ", "type": "text"}, {"bbox": [117, 475, 140, 492], "score": 0.89, "content": "{E}_{7}^{(1)}", "type": "inline_equation", "height": 17, "width": 23}, {"bbox": [144, 478, 193, 493], "score": 1.0, "content": "any level ", "type": "text"}, {"bbox": [193, 478, 223, 492], "score": 0.91, "content": "k\\neq3", "type": "inline_equation", "height": 14, "width": 30}, {"bbox": [223, 478, 263, 493], "score": 1.0, "content": ", where ", "type": "text"}, {"bbox": [264, 478, 308, 491], "score": 0.91, "content": "\\Lambda_{\\star}=\\Lambda_{6}", "type": "inline_equation", "height": 13, "width": 44}, {"bbox": [308, 478, 312, 493], "score": 1.0, "content": ";", "type": "text"}], "index": 18}, {"bbox": [63, 489, 324, 516], "spans": [{"bbox": [63, 489, 146, 516], "score": 1.0, "content": "(e8) For E8(1)", "type": "text"}, {"bbox": [143, 495, 193, 509], "score": 1.0, "content": "any level ", "type": "text"}, {"bbox": [193, 495, 235, 509], "score": 0.9, "content": "k\\neq1,4", "type": "inline_equation", "height": 14, "width": 42}, {"bbox": [235, 495, 275, 509], "score": 1.0, "content": ", where ", "type": "text"}, {"bbox": [275, 495, 319, 508], "score": 0.92, "content": "\\Lambda_{\\star}=\\Lambda_{1}", "type": "inline_equation", "height": 13, "width": 44}, {"bbox": [320, 495, 324, 509], "score": 1.0, "content": ";", "type": "text"}], "index": 19}, {"bbox": [70, 510, 324, 526], "spans": [{"bbox": [70, 511, 117, 526], "score": 1.0, "content": "(f4) For ", "type": "text"}, {"bbox": [117, 510, 140, 526], "score": 0.91, "content": "{F}_{4}^{(1)}", "type": "inline_equation", "height": 16, "width": 23}, {"bbox": [143, 512, 193, 526], "score": 1.0, "content": "any level ", "type": "text"}, {"bbox": [194, 513, 235, 525], "score": 0.89, "content": "k\\neq3,4", "type": "inline_equation", "height": 12, "width": 41}, {"bbox": [235, 512, 274, 526], "score": 1.0, "content": ", where ", "type": "text"}, {"bbox": [275, 511, 319, 525], "score": 0.92, "content": "\\Lambda_{\\star}=\\Lambda_{4}", "type": "inline_equation", "height": 14, "width": 44}, {"bbox": [320, 512, 324, 526], "score": 1.0, "content": ";", "type": "text"}], "index": 20}, {"bbox": [64, 523, 324, 549], "spans": [{"bbox": [64, 523, 146, 549], "score": 1.0, "content": "(g2) For G(21)", "type": "text"}, {"bbox": [142, 527, 193, 544], "score": 1.0, "content": "level any ", "type": "text"}, {"bbox": [194, 529, 235, 542], "score": 0.89, "content": "k\\neq3,4", "type": "inline_equation", "height": 13, "width": 41}, {"bbox": [235, 527, 274, 544], "score": 1.0, "content": ", where ", "type": "text"}, {"bbox": [275, 528, 319, 542], "score": 0.92, "content": "\\Lambda_{\\star}=\\Lambda_{2}", "type": "inline_equation", "height": 14, "width": 44}, {"bbox": [320, 527, 324, 544], "score": 1.0, "content": ".", "type": "text"}], "index": 21}], "index": 17}, {"type": "text", "bbox": [93, 547, 521, 650], "lines": [{"bbox": [94, 550, 505, 566], "spans": [{"bbox": [94, 550, 216, 566], "score": 1.0, "content": "The missing cases are: ", "type": "text"}, {"bbox": [217, 551, 239, 564], "score": 0.89, "content": "B_{r,2}", "type": "inline_equation", "height": 13, "width": 22}, {"bbox": [239, 550, 276, 566], "score": 1.0, "content": " where ", "type": "text"}, {"bbox": [277, 551, 505, 564], "score": 0.87, "content": "{\\mathcal{D}}(\\Lambda_{1})={\\mathcal{D}}(\\Lambda_{2})=\\cdots={\\mathcal{D}}(\\Lambda_{r-1})={\\mathcal{D}}(2\\Lambda_{r});", "type": "inline_equation", "height": 13, "width": 228}], "index": 22}, {"bbox": [95, 564, 285, 580], "spans": [{"bbox": [95, 567, 117, 579], "score": 0.92, "content": "D_{r,2}", "type": "inline_equation", "height": 12, "width": 22}, {"bbox": [118, 564, 155, 580], "score": 1.0, "content": " where ", "type": "text"}, {"bbox": [156, 565, 279, 578], "score": 0.91, "content": "{\\mathcal{D}}(\\Lambda_{1})=\\cdots={\\mathcal{D}}(\\Lambda_{r-2})", "type": "inline_equation", "height": 13, "width": 123}, {"bbox": [280, 564, 285, 580], "score": 1.0, "content": ";", "type": "text"}], "index": 23}, {"bbox": [95, 578, 446, 596], "spans": [{"bbox": [95, 581, 117, 593], "score": 0.92, "content": "C_{2,3}", "type": "inline_equation", "height": 12, "width": 22}, {"bbox": [117, 578, 155, 596], "score": 1.0, "content": " where ", "type": "text"}, {"bbox": [155, 580, 290, 593], "score": 0.92, "content": "{\\mathcal{D}}(\\Lambda_{2})={\\mathcal{D}}(3\\Lambda_{1})={\\mathcal{D}}(\\Lambda_{1})", "type": "inline_equation", "height": 13, "width": 135}, {"bbox": [291, 578, 419, 596], "score": 1.0, "content": ", and its rank-level dual ", "type": "text"}, {"bbox": [419, 579, 441, 593], "score": 0.9, "content": "C_{3,2}", "type": "inline_equation", "height": 14, "width": 22}, {"bbox": [441, 578, 446, 596], "score": 1.0, "content": ";", "type": "text"}], "index": 24}, {"bbox": [95, 593, 290, 608], "spans": [{"bbox": [95, 595, 117, 608], "score": 0.92, "content": "E_{7,3}", "type": "inline_equation", "height": 13, "width": 22}, {"bbox": [117, 593, 155, 608], "score": 1.0, "content": " where ", "type": "text"}, {"bbox": [155, 594, 285, 607], "score": 0.92, "content": "{\\mathcal{D}}(\\Lambda_{1})={\\mathcal{D}}(\\Lambda_{2})={\\mathcal{D}}(\\Lambda_{6})", "type": "inline_equation", "height": 13, "width": 130}, {"bbox": [286, 593, 290, 608], "score": 1.0, "content": ";", "type": "text"}], "index": 25}, {"bbox": [95, 607, 410, 622], "spans": [{"bbox": [95, 610, 117, 622], "score": 0.92, "content": "E_{8,1}", "type": "inline_equation", "height": 12, "width": 22}, {"bbox": [117, 607, 155, 622], "score": 1.0, "content": " where ", "type": "text"}, {"bbox": [155, 609, 234, 622], "score": 0.92, "content": "\\Lambda_{1}\\notin P_{+}=\\{0\\}", "type": "inline_equation", "height": 13, "width": 79}, {"bbox": [234, 607, 263, 622], "score": 1.0, "content": ", and ", "type": "text"}, {"bbox": [264, 610, 286, 622], "score": 0.93, "content": "E_{8,4}", "type": "inline_equation", "height": 12, "width": 22}, {"bbox": [286, 607, 324, 622], "score": 1.0, "content": " where ", "type": "text"}, {"bbox": [324, 609, 405, 621], "score": 0.93, "content": "{\\mathcal{D}}(\\Lambda_{1})={\\mathcal{D}}(\\Lambda_{6})", "type": "inline_equation", "height": 12, "width": 81}, {"bbox": [406, 607, 410, 622], "score": 1.0, "content": ";", "type": "text"}], "index": 26}, {"bbox": [95, 622, 519, 637], "spans": [{"bbox": [95, 624, 115, 636], "score": 0.92, "content": "F_{4,3}", "type": "inline_equation", "height": 12, "width": 20}, {"bbox": [116, 622, 154, 637], "score": 1.0, "content": " where ", "type": "text"}, {"bbox": [155, 623, 236, 636], "score": 0.92, "content": "{\\mathcal{D}}(\\Lambda_{2})={\\mathcal{D}}(\\Lambda_{4})", "type": "inline_equation", "height": 13, "width": 81}, {"bbox": [236, 622, 265, 637], "score": 1.0, "content": ", and ", "type": "text"}, {"bbox": [266, 624, 286, 636], "score": 0.92, "content": "F_{4,4}", "type": "inline_equation", "height": 12, "width": 20}, {"bbox": [287, 622, 324, 637], "score": 1.0, "content": " where ", "type": "text"}, {"bbox": [325, 623, 516, 636], "score": 0.91, "content": "\\mathcal{D}(\\Lambda_{1})=\\mathcal{D}(2\\Lambda_{1})=\\mathcal{D}(4\\Lambda_{4})=\\mathcal{D}(\\Lambda_{4})", "type": "inline_equation", "height": 13, "width": 191}, {"bbox": [516, 622, 519, 637], "score": 1.0, "content": ";", "type": "text"}], "index": 27}, {"bbox": [95, 636, 475, 653], "spans": [{"bbox": [95, 639, 118, 651], "score": 0.92, "content": "G_{2,3}", "type": "inline_equation", "height": 12, "width": 23}, {"bbox": [118, 636, 155, 653], "score": 1.0, "content": " where ", "type": "text"}, {"bbox": [156, 638, 292, 650], "score": 0.91, "content": "\\mathcal{D}(\\Lambda_{1})=\\mathcal{D}(\\Lambda_{2})=\\mathcal{D}(3\\Lambda_{2})", "type": "inline_equation", "height": 12, "width": 136}, {"bbox": [293, 636, 321, 653], "score": 1.0, "content": ", and ", "type": "text"}, {"bbox": [322, 638, 344, 651], "score": 0.91, "content": "G_{2,4}", "type": "inline_equation", "height": 13, "width": 22}, {"bbox": [345, 636, 383, 653], "score": 1.0, "content": " where ", "type": "text"}, {"bbox": [383, 637, 470, 650], "score": 0.92, "content": "\\mathcal{D}(\\Lambda_{2})=\\mathcal{D}(2\\Lambda_{1})", "type": "inline_equation", "height": 13, "width": 87}, {"bbox": [470, 636, 475, 653], "score": 1.0, "content": ".", "type": "text"}], "index": 28}], "index": 25}, {"type": "text", "bbox": [70, 654, 541, 715], "lines": [{"bbox": [92, 654, 542, 673], "spans": [{"bbox": [92, 654, 158, 673], "score": 1.0, "content": "The weight ", "type": "text"}, {"bbox": [158, 659, 172, 669], "score": 0.91, "content": "\\Lambda_{\\star}", "type": "inline_equation", "height": 10, "width": 14}, {"bbox": [172, 654, 362, 673], "score": 1.0, "content": "singled out by Proposition 4.1 (i.e. ", "type": "text"}, {"bbox": [362, 659, 407, 669], "score": 0.94, "content": "\\Lambda_{\\star}=\\Lambda_{1}", "type": "inline_equation", "height": 10, "width": 45}, {"bbox": [407, 654, 429, 673], "score": 1.0, "content": " for ", "type": "text"}, {"bbox": [429, 655, 451, 669], "score": 0.9, "content": "A_{r}^{(1)}", "type": "inline_equation", "height": 14, "width": 22}, {"bbox": [452, 654, 476, 673], "score": 1.0, "content": ", ..., ", "type": "text"}, {"bbox": [477, 659, 521, 669], "score": 0.86, "content": "\\Lambda_{\\star}=\\Lambda_{2}", "type": "inline_equation", "height": 10, "width": 44}, {"bbox": [521, 654, 542, 673], "score": 1.0, "content": " for", "type": "text"}], "index": 29}, {"bbox": [71, 669, 543, 691], "spans": [{"bbox": [71, 671, 97, 687], "score": 0.89, "content": "G_{2}^{(1)})", "type": "inline_equation", "height": 16, "width": 26}, {"bbox": [97, 669, 543, 691], "score": 1.0, "content": " is the nonzero weight with smallest Weyl dimension. What we find is that, for all", "type": "text"}], "index": 30}, {"bbox": [69, 687, 541, 703], "spans": [{"bbox": [69, 687, 290, 703], "score": 1.0, "content": "but the smallest levels (see [18, Table 3]), ", "type": "text"}, {"bbox": [291, 690, 305, 700], "score": 0.91, "content": "\\Lambda_{\\star}", "type": "inline_equation", "height": 10, "width": 14}, {"bbox": [305, 687, 541, 703], "score": 1.0, "content": "will also have the smallest q-dimension after", "type": "text"}], "index": 31}, {"bbox": [70, 702, 176, 718], "spans": [{"bbox": [70, 702, 176, 718], "score": 1.0, "content": "the simple-currents.", "type": "text"}], "index": 32}], "index": 30.5}], "layout_bboxes": [], "page_idx": 15, "page_size": [612.0, 792.0], "_layout_tree": [], "images": [], "tables": [], "interline_equations": [{"type": "interline_equation", "bbox": [173, 181, 438, 218], "lines": [{"bbox": [173, 181, 438, 218], "spans": [{"bbox": [173, 181, 438, 218], "score": 0.94, "content": "C_{+}\\stackrel{\\mathrm{def}}{=}\\{\\sum_{i=0}^{r}x_{i}\\Lambda_{i}\\left|\\right.x_{i}\\in\\mathbb{R},\\ x_{i}>-1,\\ \\sum_{i=0}^{r}x_{i}a_{i}^{\\vee}=k\\}\\ .", "type": "interline_equation"}], "index": 6}], "index": 6}, {"type": "interline_equation", "bbox": [159, 257, 453, 286], "lines": [{"bbox": [159, 257, 453, 286], "spans": [{"bbox": [159, 257, 453, 286], "score": 0.92, "content": "\\frac{d}{d t}\\mathcal{D}(t a+(1-t)b)=0\\quad\\Longrightarrow\\quad\\frac{d^{2}}{d t^{2}}\\mathcal{D}(t a+(1-t)b)<0", "type": "interline_equation"}], "index": 8}], "index": 8}, {"type": "interline_equation", "bbox": [207, 325, 404, 340], "lines": [{"bbox": [207, 325, 404, 340], "spans": [{"bbox": [207, 325, 404, 340], "score": 0.88, "content": "{\\mathcal{D}}(t a+(1-t)b)>\\operatorname*{min}\\{{\\mathcal{D}}(a),\\,{\\mathcal{D}}(b)\\}~.", "type": "interline_equation"}], "index": 10}], "index": 10}], "discarded_blocks": [{"type": "discarded", "bbox": [299, 731, 312, 742], "lines": [{"bbox": [298, 731, 313, 745], "spans": [{"bbox": [298, 731, 313, 745], "score": 1.0, "content": "16", "type": "text"}]}]}], "need_drop": false, "drop_reason": [], "para_blocks": [{"type": "text", "bbox": [71, 71, 167, 86], "lines": [{"bbox": [70, 74, 167, 87], "spans": [{"bbox": [70, 74, 97, 87], "score": 1.0, "content": "4.1. ", "type": "text"}, {"bbox": [97, 79, 102, 87], "score": 0.35, "content": "q", "type": "inline_equation", "height": 8, "width": 5}, {"bbox": [103, 74, 167, 87], "score": 1.0, "content": "-dimensions", "type": "text"}], "index": 0}], "index": 0, "page_num": "page_15", "page_size": [612.0, 792.0], "bbox_fs": [70, 74, 167, 87]}, {"type": "text", "bbox": [70, 92, 541, 138], "lines": [{"bbox": [92, 91, 542, 112], "spans": [{"bbox": [92, 91, 379, 112], "score": 1.0, "content": "The most basic properties obeyed by the q-dimensions ", "type": "text"}, {"bbox": [380, 95, 440, 111], "score": 0.96, "content": "\\begin{array}{r}{\\mathcal{D}(\\lambda)=\\frac{S_{\\lambda0}}{S_{00}}}\\end{array}", "type": "inline_equation", "height": 16, "width": 60}, {"bbox": [440, 91, 488, 112], "score": 1.0, "content": " are that ", "type": "text"}, {"bbox": [488, 96, 536, 109], "score": 0.94, "content": "\\mathcal{D}(\\lambda)\\geq1", "type": "inline_equation", "height": 13, "width": 48}, {"bbox": [537, 91, 542, 112], "score": 1.0, "content": ",", "type": "text"}], "index": 1}, {"bbox": [70, 108, 541, 125], "spans": [{"bbox": [70, 108, 95, 125], "score": 1.0, "content": "and ", "type": "text"}, {"bbox": [95, 110, 170, 123], "score": 0.94, "content": "\\mathcal{D}(s\\lambda)=\\mathcal{D}(\\lambda)", "type": "inline_equation", "height": 13, "width": 75}, {"bbox": [170, 108, 216, 125], "score": 1.0, "content": " for any ", "type": "text"}, {"bbox": [217, 111, 246, 120], "score": 0.92, "content": "s\\in S", "type": "inline_equation", "height": 9, "width": 29}, {"bbox": [247, 108, 319, 125], "score": 1.0, "content": ". Recall that ", "type": "text"}, {"bbox": [320, 111, 328, 120], "score": 0.89, "content": "\\boldsymbol{S}", "type": "inline_equation", "height": 9, "width": 8}, {"bbox": [329, 108, 541, 125], "score": 1.0, "content": " is the symmetry group of the extended", "type": "text"}], "index": 2}, {"bbox": [70, 123, 519, 142], "spans": [{"bbox": [70, 124, 173, 142], "score": 1.0, "content": "Dynkin diagram of ", "type": "text"}, {"bbox": [174, 123, 198, 138], "score": 0.93, "content": "X_{r}^{(1)}", "type": "inline_equation", "height": 15, "width": 24}, {"bbox": [198, 124, 254, 142], "score": 1.0, "content": ", and that ", "type": "text"}, {"bbox": [254, 128, 282, 137], "score": 0.92, "content": "s\\in S", "type": "inline_equation", "height": 9, "width": 28}, {"bbox": [283, 124, 327, 142], "score": 1.0, "content": " acts on ", "type": "text"}, {"bbox": [327, 128, 343, 140], "score": 0.93, "content": "P_{+}", "type": "inline_equation", "height": 12, "width": 16}, {"bbox": [343, 124, 519, 142], "score": 1.0, "content": " by permuting the Dynkin labels.", "type": "text"}], "index": 3}], "index": 2, "page_num": "page_15", "page_size": [612.0, 792.0], "bbox_fs": [70, 91, 542, 142]}, {"type": "text", "bbox": [70, 138, 541, 167], "lines": [{"bbox": [93, 140, 540, 156], "spans": [{"bbox": [93, 140, 540, 156], "score": 1.0, "content": "The argument yielding Proposition 4.1 below relies heavily on the following observa-", "type": "text"}], "index": 4}, {"bbox": [71, 155, 522, 169], "spans": [{"bbox": [71, 155, 287, 169], "score": 1.0, "content": "tion. Use (2.1c) to extend the domain of ", "type": "text"}, {"bbox": [288, 156, 298, 165], "score": 0.91, "content": "\\mathcal{D}", "type": "inline_equation", "height": 9, "width": 10}, {"bbox": [298, 155, 329, 169], "score": 1.0, "content": " from ", "type": "text"}, {"bbox": [329, 156, 345, 168], "score": 0.92, "content": "P_{+}", "type": "inline_equation", "height": 12, "width": 16}, {"bbox": [345, 155, 501, 169], "score": 1.0, "content": " to the fundamental chamber ", "type": "text"}, {"bbox": [501, 156, 518, 168], "score": 0.92, "content": "C_{+}", "type": "inline_equation", "height": 12, "width": 17}, {"bbox": [518, 155, 522, 169], "score": 1.0, "content": ":", "type": "text"}], "index": 5}], "index": 4.5, "page_num": "page_15", "page_size": [612.0, 792.0], "bbox_fs": [71, 140, 540, 169]}, {"type": "interline_equation", "bbox": [173, 181, 438, 218], "lines": [{"bbox": [173, 181, 438, 218], "spans": [{"bbox": [173, 181, 438, 218], "score": 0.94, "content": "C_{+}\\stackrel{\\mathrm{def}}{=}\\{\\sum_{i=0}^{r}x_{i}\\Lambda_{i}\\left|\\right.x_{i}\\in\\mathbb{R},\\ x_{i}>-1,\\ \\sum_{i=0}^{r}x_{i}a_{i}^{\\vee}=k\\}\\ .", "type": "interline_equation"}], "index": 6}], "index": 6, "page_num": "page_15", "page_size": [612.0, 792.0]}, {"type": "text", "bbox": [70, 228, 468, 244], "lines": [{"bbox": [71, 231, 467, 246], "spans": [{"bbox": [71, 231, 135, 246], "score": 1.0, "content": "Choose any ", "type": "text"}, {"bbox": [136, 234, 183, 245], "score": 0.94, "content": "a,b\\in C_{+}", "type": "inline_equation", "height": 11, "width": 47}, {"bbox": [184, 231, 467, 246], "score": 1.0, "content": ". Then a straightforward calculation from (2.1c) gives", "type": "text"}], "index": 7}], "index": 7, "page_num": "page_15", "page_size": [612.0, 792.0], "bbox_fs": [71, 231, 467, 246]}, {"type": "interline_equation", "bbox": [159, 257, 453, 286], "lines": [{"bbox": [159, 257, 453, 286], "spans": [{"bbox": [159, 257, 453, 286], "score": 0.92, "content": "\\frac{d}{d t}\\mathcal{D}(t a+(1-t)b)=0\\quad\\Longrightarrow\\quad\\frac{d^{2}}{d t^{2}}\\mathcal{D}(t a+(1-t)b)<0", "type": "interline_equation"}], "index": 8}], "index": 8, "page_num": "page_15", "page_size": [612.0, 792.0]}, {"type": "text", "bbox": [70, 296, 324, 311], "lines": [{"bbox": [70, 298, 324, 313], "spans": [{"bbox": [70, 298, 89, 313], "score": 1.0, "content": "for ", "type": "text"}, {"bbox": [90, 301, 138, 309], "score": 0.91, "content": "0<t<1", "type": "inline_equation", "height": 8, "width": 48}, {"bbox": [138, 298, 271, 313], "score": 1.0, "content": ". This means that for all ", "type": "text"}, {"bbox": [271, 301, 320, 310], "score": 0.88, "content": "0<t<1", "type": "inline_equation", "height": 9, "width": 49}, {"bbox": [320, 298, 324, 313], "score": 1.0, "content": ",", "type": "text"}], "index": 9}], "index": 9, "page_num": "page_15", "page_size": [612.0, 792.0], "bbox_fs": [70, 298, 324, 313]}, {"type": "interline_equation", "bbox": [207, 325, 404, 340], "lines": [{"bbox": [207, 325, 404, 340], "spans": [{"bbox": [207, 325, 404, 340], "score": 0.88, "content": "{\\mathcal{D}}(t a+(1-t)b)>\\operatorname*{min}\\{{\\mathcal{D}}(a),\\,{\\mathcal{D}}(b)\\}~.", "type": "interline_equation"}], "index": 10}], "index": 10, "page_num": "page_15", "page_size": [612.0, 792.0]}, {"type": "text", "bbox": [71, 360, 542, 390], "lines": [{"bbox": [91, 360, 543, 380], "spans": [{"bbox": [91, 360, 380, 380], "score": 1.0, "content": "Proposition 4.1 [17,18]. For the following algebras ", "type": "text"}, {"bbox": [380, 360, 406, 376], "score": 0.91, "content": "X_{r}^{(1)}", "type": "inline_equation", "height": 16, "width": 26}, {"bbox": [406, 360, 464, 380], "score": 1.0, "content": "and levels ", "type": "text"}, {"bbox": [464, 364, 472, 375], "score": 0.79, "content": "k", "type": "inline_equation", "height": 11, "width": 8}, {"bbox": [472, 360, 543, 380], "score": 1.0, "content": ", and choices", "type": "text"}], "index": 11}, {"bbox": [71, 378, 314, 394], "spans": [{"bbox": [71, 378, 122, 394], "score": 1.0, "content": "of weight ", "type": "text"}, {"bbox": [122, 380, 136, 391], "score": 0.89, "content": "\\Lambda_{\\star}", "type": "inline_equation", "height": 11, "width": 14}, {"bbox": [137, 378, 144, 394], "score": 1.0, "content": ", ", "type": "text"}, {"bbox": [144, 379, 218, 392], "score": 0.92, "content": "\\mathcal{D}(\\lambda)=\\mathcal{D}(\\Lambda_{\\star})", "type": "inline_equation", "height": 13, "width": 74}, {"bbox": [219, 378, 263, 394], "score": 1.0, "content": " implies ", "type": "text"}, {"bbox": [263, 378, 308, 390], "score": 0.9, "content": "\\lambda\\in{\\mathcal{S}}\\Lambda_{\\star}", "type": "inline_equation", "height": 12, "width": 45}, {"bbox": [308, 378, 314, 394], "score": 1.0, "content": ":", "type": "text"}], "index": 12}], "index": 11.5, "page_num": "page_15", "page_size": [612.0, 792.0], "bbox_fs": [71, 360, 543, 394]}, {"type": "text", "bbox": [70, 392, 479, 542], "lines": [{"bbox": [72, 392, 290, 409], "spans": [{"bbox": [72, 392, 142, 409], "score": 1.0, "content": "(a) For A(r1)", "type": "text"}, {"bbox": [142, 394, 192, 409], "score": 1.0, "content": "any level ", "type": "text"}, {"bbox": [193, 396, 200, 406], "score": 0.77, "content": "k", "type": "inline_equation", "height": 10, "width": 7}, {"bbox": [201, 394, 241, 409], "score": 1.0, "content": ", where ", "type": "text"}, {"bbox": [241, 394, 285, 408], "score": 0.92, "content": "\\Lambda_{\\star}=\\Lambda_{1}", "type": "inline_equation", "height": 14, "width": 44}, {"bbox": [286, 394, 290, 409], "score": 1.0, "content": ";", "type": "text"}], "index": 13}, {"bbox": [72, 409, 312, 425], "spans": [{"bbox": [72, 409, 142, 425], "score": 1.0, "content": "(b) For Br(1)", "type": "text"}, {"bbox": [142, 412, 193, 425], "score": 1.0, "content": "any level ", "type": "text"}, {"bbox": [194, 411, 223, 425], "score": 0.91, "content": "k\\neq2", "type": "inline_equation", "height": 14, "width": 29}, {"bbox": [223, 412, 263, 425], "score": 1.0, "content": ", where ", "type": "text"}, {"bbox": [264, 411, 308, 424], "score": 0.91, "content": "\\Lambda_{\\star}=\\Lambda_{1}", "type": "inline_equation", "height": 13, "width": 44}, {"bbox": [308, 412, 312, 425], "score": 1.0, "content": ";", "type": "text"}], "index": 14}, {"bbox": [72, 424, 474, 443], "spans": [{"bbox": [72, 424, 144, 443], "score": 1.0, "content": "(c) For Cr(1)", "type": "text"}, {"bbox": [143, 427, 193, 442], "score": 1.0, "content": "any level ", "type": "text"}, {"bbox": [193, 428, 201, 439], "score": 0.78, "content": "k", "type": "inline_equation", "height": 11, "width": 8}, {"bbox": [202, 427, 264, 442], "score": 1.0, "content": " (except for ", "type": "text"}, {"bbox": [264, 427, 334, 442], "score": 0.92, "content": "(r,k)=(2,3)", "type": "inline_equation", "height": 15, "width": 70}, {"bbox": [334, 427, 353, 442], "score": 1.0, "content": " or ", "type": "text"}, {"bbox": [353, 428, 380, 442], "score": 0.52, "content": "(3,2).", "type": "inline_equation", "height": 14, "width": 27}, {"bbox": [381, 427, 425, 442], "score": 1.0, "content": "), where ", "type": "text"}, {"bbox": [426, 428, 470, 441], "score": 0.91, "content": "\\Lambda_{\\star}=\\Lambda_{1}", "type": "inline_equation", "height": 13, "width": 44}, {"bbox": [470, 427, 474, 442], "score": 1.0, "content": ";", "type": "text"}], "index": 15}, {"bbox": [71, 442, 314, 459], "spans": [{"bbox": [71, 444, 117, 458], "score": 1.0, "content": "(d) For ", "type": "text"}, {"bbox": [117, 442, 141, 457], "score": 0.92, "content": "D_{r}^{(1)}", "type": "inline_equation", "height": 15, "width": 24}, {"bbox": [143, 445, 194, 459], "score": 1.0, "content": "any level ", "type": "text"}, {"bbox": [194, 444, 224, 458], "score": 0.91, "content": "k\\neq2", "type": "inline_equation", "height": 14, "width": 30}, {"bbox": [224, 445, 264, 459], "score": 1.0, "content": ", where ", "type": "text"}, {"bbox": [264, 444, 308, 458], "score": 0.91, "content": "\\Lambda_{\\star}=\\Lambda_{1}", "type": "inline_equation", "height": 14, "width": 44}, {"bbox": [309, 445, 314, 459], "score": 1.0, "content": ";", "type": "text"}], "index": 16}, {"bbox": [65, 457, 291, 477], "spans": [{"bbox": [65, 457, 144, 477], "score": 1.0, "content": "(e6) For E6(1)", "type": "text"}, {"bbox": [143, 462, 193, 476], "score": 1.0, "content": "any level ", "type": "text"}, {"bbox": [193, 462, 201, 473], "score": 0.78, "content": "k", "type": "inline_equation", "height": 11, "width": 8}, {"bbox": [201, 462, 241, 476], "score": 1.0, "content": ", where ", "type": "text"}, {"bbox": [242, 461, 286, 474], "score": 0.92, "content": "\\Lambda_{\\star}=\\Lambda_{1}", "type": "inline_equation", "height": 13, "width": 44}, {"bbox": [286, 462, 291, 476], "score": 1.0, "content": ";", "type": "text"}], "index": 17}, {"bbox": [67, 475, 312, 493], "spans": [{"bbox": [67, 475, 117, 493], "score": 1.0, "content": "(e7) For ", "type": "text"}, {"bbox": [117, 475, 140, 492], "score": 0.89, "content": "{E}_{7}^{(1)}", "type": "inline_equation", "height": 17, "width": 23}, {"bbox": [144, 478, 193, 493], "score": 1.0, "content": "any level ", "type": "text"}, {"bbox": [193, 478, 223, 492], "score": 0.91, "content": "k\\neq3", "type": "inline_equation", "height": 14, "width": 30}, {"bbox": [223, 478, 263, 493], "score": 1.0, "content": ", where ", "type": "text"}, {"bbox": [264, 478, 308, 491], "score": 0.91, "content": "\\Lambda_{\\star}=\\Lambda_{6}", "type": "inline_equation", "height": 13, "width": 44}, {"bbox": [308, 478, 312, 493], "score": 1.0, "content": ";", "type": "text"}], "index": 18}, {"bbox": [63, 489, 324, 516], "spans": [{"bbox": [63, 489, 146, 516], "score": 1.0, "content": "(e8) For E8(1)", "type": "text"}, {"bbox": [143, 495, 193, 509], "score": 1.0, "content": "any level ", "type": "text"}, {"bbox": [193, 495, 235, 509], "score": 0.9, "content": "k\\neq1,4", "type": "inline_equation", "height": 14, "width": 42}, {"bbox": [235, 495, 275, 509], "score": 1.0, "content": ", where ", "type": "text"}, {"bbox": [275, 495, 319, 508], "score": 0.92, "content": "\\Lambda_{\\star}=\\Lambda_{1}", "type": "inline_equation", "height": 13, "width": 44}, {"bbox": [320, 495, 324, 509], "score": 1.0, "content": ";", "type": "text"}], "index": 19}, {"bbox": [70, 510, 324, 526], "spans": [{"bbox": [70, 511, 117, 526], "score": 1.0, "content": "(f4) For ", "type": "text"}, {"bbox": [117, 510, 140, 526], "score": 0.91, "content": "{F}_{4}^{(1)}", "type": "inline_equation", "height": 16, "width": 23}, {"bbox": [143, 512, 193, 526], "score": 1.0, "content": "any level ", "type": "text"}, {"bbox": [194, 513, 235, 525], "score": 0.89, "content": "k\\neq3,4", "type": "inline_equation", "height": 12, "width": 41}, {"bbox": [235, 512, 274, 526], "score": 1.0, "content": ", where ", "type": "text"}, {"bbox": [275, 511, 319, 525], "score": 0.92, "content": "\\Lambda_{\\star}=\\Lambda_{4}", "type": "inline_equation", "height": 14, "width": 44}, {"bbox": [320, 512, 324, 526], "score": 1.0, "content": ";", "type": "text"}], "index": 20}, {"bbox": [64, 523, 324, 549], "spans": [{"bbox": [64, 523, 146, 549], "score": 1.0, "content": "(g2) For G(21)", "type": "text"}, {"bbox": [142, 527, 193, 544], "score": 1.0, "content": "level any ", "type": "text"}, {"bbox": [194, 529, 235, 542], "score": 0.89, "content": "k\\neq3,4", "type": "inline_equation", "height": 13, "width": 41}, {"bbox": [235, 527, 274, 544], "score": 1.0, "content": ", where ", "type": "text"}, {"bbox": [275, 528, 319, 542], "score": 0.92, "content": "\\Lambda_{\\star}=\\Lambda_{2}", "type": "inline_equation", "height": 14, "width": 44}, {"bbox": [320, 527, 324, 544], "score": 1.0, "content": ".", "type": "text"}], "index": 21}], "index": 17, "page_num": "page_15", "page_size": [612.0, 792.0], "bbox_fs": [63, 392, 474, 549]}, {"type": "list", "bbox": [93, 547, 521, 650], "lines": [{"bbox": [94, 550, 505, 566], "spans": [{"bbox": [94, 550, 216, 566], "score": 1.0, "content": "The missing cases are: ", "type": "text"}, {"bbox": [217, 551, 239, 564], "score": 0.89, "content": "B_{r,2}", "type": "inline_equation", "height": 13, "width": 22}, {"bbox": [239, 550, 276, 566], "score": 1.0, "content": " where ", "type": "text"}, {"bbox": [277, 551, 505, 564], "score": 0.87, "content": "{\\mathcal{D}}(\\Lambda_{1})={\\mathcal{D}}(\\Lambda_{2})=\\cdots={\\mathcal{D}}(\\Lambda_{r-1})={\\mathcal{D}}(2\\Lambda_{r});", "type": "inline_equation", "height": 13, "width": 228}], "index": 22}, {"bbox": [95, 564, 285, 580], "spans": [{"bbox": [95, 567, 117, 579], "score": 0.92, "content": "D_{r,2}", "type": "inline_equation", "height": 12, "width": 22}, {"bbox": [118, 564, 155, 580], "score": 1.0, "content": " where ", "type": "text"}, {"bbox": [156, 565, 279, 578], "score": 0.91, "content": "{\\mathcal{D}}(\\Lambda_{1})=\\cdots={\\mathcal{D}}(\\Lambda_{r-2})", "type": "inline_equation", "height": 13, "width": 123}, {"bbox": [280, 564, 285, 580], "score": 1.0, "content": ";", "type": "text"}], "index": 23, "is_list_end_line": true}, {"bbox": [95, 578, 446, 596], "spans": [{"bbox": [95, 581, 117, 593], "score": 0.92, "content": "C_{2,3}", "type": "inline_equation", "height": 12, "width": 22}, {"bbox": [117, 578, 155, 596], "score": 1.0, "content": " where ", "type": "text"}, {"bbox": [155, 580, 290, 593], "score": 0.92, "content": "{\\mathcal{D}}(\\Lambda_{2})={\\mathcal{D}}(3\\Lambda_{1})={\\mathcal{D}}(\\Lambda_{1})", "type": "inline_equation", "height": 13, "width": 135}, {"bbox": [291, 578, 419, 596], "score": 1.0, "content": ", and its rank-level dual ", "type": "text"}, {"bbox": [419, 579, 441, 593], "score": 0.9, "content": "C_{3,2}", "type": "inline_equation", "height": 14, "width": 22}, {"bbox": [441, 578, 446, 596], "score": 1.0, "content": ";", "type": "text"}], "index": 24, "is_list_start_line": true, "is_list_end_line": true}, {"bbox": [95, 593, 290, 608], "spans": [{"bbox": [95, 595, 117, 608], "score": 0.92, "content": "E_{7,3}", "type": "inline_equation", "height": 13, "width": 22}, {"bbox": [117, 593, 155, 608], "score": 1.0, "content": " where ", "type": "text"}, {"bbox": [155, 594, 285, 607], "score": 0.92, "content": "{\\mathcal{D}}(\\Lambda_{1})={\\mathcal{D}}(\\Lambda_{2})={\\mathcal{D}}(\\Lambda_{6})", "type": "inline_equation", "height": 13, "width": 130}, {"bbox": [286, 593, 290, 608], "score": 1.0, "content": ";", "type": "text"}], "index": 25, "is_list_start_line": true, "is_list_end_line": true}, {"bbox": [95, 607, 410, 622], "spans": [{"bbox": [95, 610, 117, 622], "score": 0.92, "content": "E_{8,1}", "type": "inline_equation", "height": 12, "width": 22}, {"bbox": [117, 607, 155, 622], "score": 1.0, "content": " where ", "type": "text"}, {"bbox": [155, 609, 234, 622], "score": 0.92, "content": "\\Lambda_{1}\\notin P_{+}=\\{0\\}", "type": "inline_equation", "height": 13, "width": 79}, {"bbox": [234, 607, 263, 622], "score": 1.0, "content": ", and ", "type": "text"}, {"bbox": [264, 610, 286, 622], "score": 0.93, "content": "E_{8,4}", "type": "inline_equation", "height": 12, "width": 22}, {"bbox": [286, 607, 324, 622], "score": 1.0, "content": " where ", "type": "text"}, {"bbox": [324, 609, 405, 621], "score": 0.93, "content": "{\\mathcal{D}}(\\Lambda_{1})={\\mathcal{D}}(\\Lambda_{6})", "type": "inline_equation", "height": 12, "width": 81}, {"bbox": [406, 607, 410, 622], "score": 1.0, "content": ";", "type": "text"}], "index": 26, "is_list_start_line": true, "is_list_end_line": true}, {"bbox": [95, 622, 519, 637], "spans": [{"bbox": [95, 624, 115, 636], "score": 0.92, "content": "F_{4,3}", "type": "inline_equation", "height": 12, "width": 20}, {"bbox": [116, 622, 154, 637], "score": 1.0, "content": " where ", "type": "text"}, {"bbox": [155, 623, 236, 636], "score": 0.92, "content": "{\\mathcal{D}}(\\Lambda_{2})={\\mathcal{D}}(\\Lambda_{4})", "type": "inline_equation", "height": 13, "width": 81}, {"bbox": [236, 622, 265, 637], "score": 1.0, "content": ", and ", "type": "text"}, {"bbox": [266, 624, 286, 636], "score": 0.92, "content": "F_{4,4}", "type": "inline_equation", "height": 12, "width": 20}, {"bbox": [287, 622, 324, 637], "score": 1.0, "content": " where ", "type": "text"}, {"bbox": [325, 623, 516, 636], "score": 0.91, "content": "\\mathcal{D}(\\Lambda_{1})=\\mathcal{D}(2\\Lambda_{1})=\\mathcal{D}(4\\Lambda_{4})=\\mathcal{D}(\\Lambda_{4})", "type": "inline_equation", "height": 13, "width": 191}, {"bbox": [516, 622, 519, 637], "score": 1.0, "content": ";", "type": "text"}], "index": 27, "is_list_start_line": true, "is_list_end_line": true}, {"bbox": [95, 636, 475, 653], "spans": [{"bbox": [95, 639, 118, 651], "score": 0.92, "content": "G_{2,3}", "type": "inline_equation", "height": 12, "width": 23}, {"bbox": [118, 636, 155, 653], "score": 1.0, "content": " where ", "type": "text"}, {"bbox": [156, 638, 292, 650], "score": 0.91, "content": "\\mathcal{D}(\\Lambda_{1})=\\mathcal{D}(\\Lambda_{2})=\\mathcal{D}(3\\Lambda_{2})", "type": "inline_equation", "height": 12, "width": 136}, {"bbox": [293, 636, 321, 653], "score": 1.0, "content": ", and ", "type": "text"}, {"bbox": [322, 638, 344, 651], "score": 0.91, "content": "G_{2,4}", "type": "inline_equation", "height": 13, "width": 22}, {"bbox": [345, 636, 383, 653], "score": 1.0, "content": " where ", "type": "text"}, {"bbox": [383, 637, 470, 650], "score": 0.92, "content": "\\mathcal{D}(\\Lambda_{2})=\\mathcal{D}(2\\Lambda_{1})", "type": "inline_equation", "height": 13, "width": 87}, {"bbox": [470, 636, 475, 653], "score": 1.0, "content": ".", "type": "text"}], "index": 28, "is_list_start_line": true, "is_list_end_line": true}], "index": 25, "page_num": "page_15", "page_size": [612.0, 792.0], "bbox_fs": [94, 550, 519, 653]}, {"type": "text", "bbox": [70, 654, 541, 715], "lines": [{"bbox": [92, 654, 542, 673], "spans": [{"bbox": [92, 654, 158, 673], "score": 1.0, "content": "The weight ", "type": "text"}, {"bbox": [158, 659, 172, 669], "score": 0.91, "content": "\\Lambda_{\\star}", "type": "inline_equation", "height": 10, "width": 14}, {"bbox": [172, 654, 362, 673], "score": 1.0, "content": "singled out by Proposition 4.1 (i.e. ", "type": "text"}, {"bbox": [362, 659, 407, 669], "score": 0.94, "content": "\\Lambda_{\\star}=\\Lambda_{1}", "type": "inline_equation", "height": 10, "width": 45}, {"bbox": [407, 654, 429, 673], "score": 1.0, "content": " for ", "type": "text"}, {"bbox": [429, 655, 451, 669], "score": 0.9, "content": "A_{r}^{(1)}", "type": "inline_equation", "height": 14, "width": 22}, {"bbox": [452, 654, 476, 673], "score": 1.0, "content": ", ..., ", "type": "text"}, {"bbox": [477, 659, 521, 669], "score": 0.86, "content": "\\Lambda_{\\star}=\\Lambda_{2}", "type": "inline_equation", "height": 10, "width": 44}, {"bbox": [521, 654, 542, 673], "score": 1.0, "content": " for", "type": "text"}], "index": 29}, {"bbox": [71, 669, 543, 691], "spans": [{"bbox": [71, 671, 97, 687], "score": 0.89, "content": "G_{2}^{(1)})", "type": "inline_equation", "height": 16, "width": 26}, {"bbox": [97, 669, 543, 691], "score": 1.0, "content": " is the nonzero weight with smallest Weyl dimension. What we find is that, for all", "type": "text"}], "index": 30}, {"bbox": [69, 687, 541, 703], "spans": [{"bbox": [69, 687, 290, 703], "score": 1.0, "content": "but the smallest levels (see [18, Table 3]), ", "type": "text"}, {"bbox": [291, 690, 305, 700], "score": 0.91, "content": "\\Lambda_{\\star}", "type": "inline_equation", "height": 10, "width": 14}, {"bbox": [305, 687, 541, 703], "score": 1.0, "content": "will also have the smallest q-dimension after", "type": "text"}], "index": 31}, {"bbox": [70, 702, 176, 718], "spans": [{"bbox": [70, 702, 176, 718], "score": 1.0, "content": "the simple-currents.", "type": "text"}], "index": 32}], "index": 30.5, "page_num": "page_15", "page_size": [612.0, 792.0], "bbox_fs": [69, 654, 543, 718]}]} |
|
0002044v1 | 16 | The complete proof of Proposition 4.1 is given in [18], but to illustrate the ideas we
will sketch here the most interesting $$(A_{r}^{(1)})$$ and the most difficult $$(E_{8}^{(1)})$$ cases.
Consider first $$A_{r,k}$$ . By choosing $$a\!-\!b=\Lambda_{i}-\Lambda_{j}$$ in (4.1), we get that either $$\lambda=k\Lambda_{\ell}$$ for
some $$\ell$$ , in which case $$\lambda$$ is a simple-current and (for $$k\neq1$$ ) $$D(\lambda)<\mathcal{D}(\Lambda_{1})$$ , or $$\mathcal{D}(\lambda)\ge\mathcal{D}(\Lambda_{\ell})$$
for some $$\ell$$ , with equality iff $$\lambda\in S\Lambda_{\ell}$$ . But then rank-level duality $$A_{r,k}\leftrightarrow A_{k-1,r+1}$$ (defined
as for $$C_{r,k}$$ , and which is exact for $$A_{r,k}$$ q-dimensions) and (4.1) with $$a-b=\widetilde{\Lambda_{0}}-\widetilde{\Lambda_{1}}$$ give
us $$\mathcal{D}(\Lambda_{\ell})\,=\,\widetilde{\mathcal{D}}(\ell\widetilde{\Lambda_{1}})\,\geq\,\widetilde{\mathcal{D}}(\widetilde{\Lambda_{1}})\,=\,\mathcal{D}(\Lambda_{1})$$ , with equality iff $$\ell\,=\,1$$ or $$r$$ . Com bining these
results yields Proposition 4.1(a).
For $$E_{8,k}$$ , run through each $$a\mathrm{~-~}b\mathrm{~=~}a_{j}^{\vee}\Lambda_{i}\mathrm{~-~}a_{i}^{\vee}\Lambda_{j}$$ to reduce the proof to comparing
$$\mathcal{D}(\Lambda_{1})$$ with $$\textstyle\mathcal{D}(\frac{k}{a_{i}^{\vee}}\Lambda_{i})$$ for $$i\neq0$$ , or $$\mathcal{D}(\Lambda_{i})$$ for $$i\neq0,1$$ (the argument in [18] unnecessarily
complicated things by restricting to integral weights). Standard arguments (see [18] for
details) quickly show that the q-dimension $$\textstyle\mathcal{D}(\frac{k}{a_{i}^{\vee}}\Lambda_{i})$$ monotonically increases with $$k$$ to $$\infty$$ ,
while $$\mathcal{D}(\Lambda_{i})$$ monotonically increases with $$k$$ to the Weyl dimension of $$\Lambda_{i}$$ . The proof of
Proposition 4.1(e8) then reduces to a short computation.
# 4.2. The $$A$$ -series argument
Recall that $$\overline{r}\,=\,r\,+\,1$$ . Proposition 4.1(a) tells us that $$\pi\Lambda_{1}\,=\,C^{a}J^{b}\Lambda_{1}$$ , for some
$$a,b$$ . Hitting $$\pi$$ with $$C^{a}$$ , we can assume without loss of generality that $$a\;=\;0$$ . Write
$$\pi(J0)=J^{c}0$$ ; then $$\pi$$ can be a permutation of $$P_{+}$$ only if $$c$$ is coprime to $$\overline{r}$$ .
If $$k=1$$ then $$P_{+}=\{0,J0,\dots,J^{r}0\}$$ so $$\pi=\pi[c-1]$$ . Thus we can assume $$k\geq2$$ .
Useful is the coefficient of $$\lambda$$ in the tensor product $$\Lambda_{1}\otimes\cdot\cdot\otimes\Lambda_{1}$$ ( $$\ell\,\mathrm{times})$$ : it is 0 unless
$$t(\lambda)=\ell$$ , in which case the coefficient is $$\frac{\ell!}{h(\lambda)}$$ (to get this, compare (3.1) above with [27,
p.114]) — we equate here the fundamental weights $$\Lambda_{\overline{{r}}}$$ and $$\Lambda_{0}$$ , so e.g. $$^{\star}{\frac{k}{r}}\Lambda_{\overline{{r}}}^{\ \ \,}{}^{\ ,}$$ equals $$\mathrm{\Delta}^{\prime}0^{\circ}$$ when
$$\overline{r}$$ divides $$k$$ . Here, $$h(\lambda)=\prod h(x)$$ is the product of the hook-lengths of the Young diagram
corresponding to $$\lambda$$ . Equation (2.4) tells us that as long as $$t(\lambda)=\ell\leq k$$ , the number $$\frac{\ell!}{h(\lambda)}$$
will also be the coefficient of $$N_{\lambda}$$ in the fusion power $$(N_{\Lambda_{1}})^{\ell}$$ . Note that $$J0=k\Lambda_{1}$$ is the
only simple-current appearing in the fusion product $$\Lambda_{1}$$ × · · · × $$\Lambda_{1}$$ ( $$k$$ times). Thus the
only nontrivial simple-current appearing in the fusion $$\pi\Lambda_{1}$$ × · · · × $$\pi\Lambda_{1}$$ will be $$J^{b k}J0$$ (0
will appear iff $$\overline{r}$$ divides $$k$$ ). Hence $$b k+1\equiv c$$ (mod $$\overline{r}$$ ) must be coprime to $$\overline{r}$$ . This is
precisely the condition needed for $$\pi[b]$$ to be a simple-current automorphism.
In other words, it suffices to consider $$\pi\Lambda_{1}=\Lambda_{1}$$ and hence $$\pi[J0]=J0$$ . We are done if
$$r=1$$ , so assume $$r\geq2$$ . From the $$\Lambda_{1}$$ × $$\Lambda_{1}$$ fusion, we get that $$\pi\Lambda_{2}\in\{\Lambda_{2},2\Lambda_{1}\}$$ . Note that
$$k\Lambda_{1}$$ occurs (with multiplicity 1) in the tensor and fusion product of $$2\Lambda_{1}$$ with $$k-2\;\Lambda_{1}\,{}^{\prime}\mathrm{s}$$ s,
but that it doesn’t in the tensor (hence fusion) product of $$\Lambda_{2}$$ with $$k-2~\Lambda_{1}$$ ’s (recall that
$$k\Lambda_{1}\succ(k-2)\Lambda_{1}+\Lambda_{2}$$ in the usual partial order on weights). Since $$\Lambda_{2}$$ × $$\Lambda_{1}$$ × · · · × $$\Lambda_{1}$$
does not contain $$J0$$ , $$(\pi\Lambda_{2})\boxtimes(\pi\Lambda_{1})\boxtimes\dots\boxtimes(\pi\Lambda_{1})$$ should also avoid $$\pi(J0)\,=\,J0$$ , and
thus $$\pi\Lambda_{2}$$ cannot equal $$2\Lambda_{1}$$ .
Thus we know $$\pi\Lambda_{2}=\Lambda_{2}$$ . The remaining $$\pi\Lambda_{\ell}=\Lambda_{\ell}$$ follow quickly from induction: if
$$\pi\Lambda_{\ell}=\Lambda_{\ell}$$ for some $$2\leq\ell<r$$ , then the fusion $$\Lambda_{1}\boxtimes\Lambda_{\ell}$$ tells us $$\pi\Lambda_{\ell+1}\in\{\Lambda_{\ell+1},\Lambda_{1}+\Lambda_{\ell}\}$$ .
But $$h(\Lambda_{1}+\Lambda_{\ell})=(\ell+1)!/\ell$$ and $$h(\Lambda_{\ell+1})=(\ell+1)!$$ , so $$\pi\Lambda_{\ell+1}=\Lambda_{\ell+1}$$ . Thus $$\pi$$ fixes all
fundamental weights, and since these comprise a fusion-generator (see the discussion at
the end of §2.2) we know that $$\pi$$ must fix everything in $$P_{+}$$ .
| <p>The complete proof of Proposition 4.1 is given in [18], but to illustrate the ideas we
will sketch here the most interesting $$(A_{r}^{(1)})$$ and the most difficult $$(E_{8}^{(1)})$$ cases.</p>
<p>Consider first $$A_{r,k}$$ . By choosing $$a\!-\!b=\Lambda_{i}-\Lambda_{j}$$ in (4.1), we get that either $$\lambda=k\Lambda_{\ell}$$ for
some $$\ell$$ , in which case $$\lambda$$ is a simple-current and (for $$k\neq1$$ ) $$D(\lambda)<\mathcal{D}(\Lambda_{1})$$ , or $$\mathcal{D}(\lambda)\ge\mathcal{D}(\Lambda_{\ell})$$
for some $$\ell$$ , with equality iff $$\lambda\in S\Lambda_{\ell}$$ . But then rank-level duality $$A_{r,k}\leftrightarrow A_{k-1,r+1}$$ (defined
as for $$C_{r,k}$$ , and which is exact for $$A_{r,k}$$ q-dimensions) and (4.1) with $$a-b=\widetilde{\Lambda_{0}}-\widetilde{\Lambda_{1}}$$ give
us $$\mathcal{D}(\Lambda_{\ell})\,=\,\widetilde{\mathcal{D}}(\ell\widetilde{\Lambda_{1}})\,\geq\,\widetilde{\mathcal{D}}(\widetilde{\Lambda_{1}})\,=\,\mathcal{D}(\Lambda_{1})$$ , with equality iff $$\ell\,=\,1$$ or $$r$$ . Com bining these
results yields Proposition 4.1(a).</p>
<p>For $$E_{8,k}$$ , run through each $$a\mathrm{~-~}b\mathrm{~=~}a_{j}^{\vee}\Lambda_{i}\mathrm{~-~}a_{i}^{\vee}\Lambda_{j}$$ to reduce the proof to comparing
$$\mathcal{D}(\Lambda_{1})$$ with $$\textstyle\mathcal{D}(\frac{k}{a_{i}^{\vee}}\Lambda_{i})$$ for $$i\neq0$$ , or $$\mathcal{D}(\Lambda_{i})$$ for $$i\neq0,1$$ (the argument in [18] unnecessarily
complicated things by restricting to integral weights). Standard arguments (see [18] for
details) quickly show that the q-dimension $$\textstyle\mathcal{D}(\frac{k}{a_{i}^{\vee}}\Lambda_{i})$$ monotonically increases with $$k$$ to $$\infty$$ ,
while $$\mathcal{D}(\Lambda_{i})$$ monotonically increases with $$k$$ to the Weyl dimension of $$\Lambda_{i}$$ . The proof of
Proposition 4.1(e8) then reduces to a short computation.</p>
<h1>4.2. The $$A$$ -series argument</h1>
<p>Recall that $$\overline{r}\,=\,r\,+\,1$$ . Proposition 4.1(a) tells us that $$\pi\Lambda_{1}\,=\,C^{a}J^{b}\Lambda_{1}$$ , for some
$$a,b$$ . Hitting $$\pi$$ with $$C^{a}$$ , we can assume without loss of generality that $$a\;=\;0$$ . Write
$$\pi(J0)=J^{c}0$$ ; then $$\pi$$ can be a permutation of $$P_{+}$$ only if $$c$$ is coprime to $$\overline{r}$$ .</p>
<p>If $$k=1$$ then $$P_{+}=\{0,J0,\dots,J^{r}0\}$$ so $$\pi=\pi[c-1]$$ . Thus we can assume $$k\geq2$$ .</p>
<p>Useful is the coefficient of $$\lambda$$ in the tensor product $$\Lambda_{1}\otimes\cdot\cdot\otimes\Lambda_{1}$$ ( $$\ell\,\mathrm{times})$$ : it is 0 unless
$$t(\lambda)=\ell$$ , in which case the coefficient is $$\frac{\ell!}{h(\lambda)}$$ (to get this, compare (3.1) above with [27,
p.114]) — we equate here the fundamental weights $$\Lambda_{\overline{{r}}}$$ and $$\Lambda_{0}$$ , so e.g. $$^{\star}{\frac{k}{r}}\Lambda_{\overline{{r}}}^{\ \ \,}{}^{\ ,}$$ equals $$\mathrm{\Delta}^{\prime}0^{\circ}$$ when
$$\overline{r}$$ divides $$k$$ . Here, $$h(\lambda)=\prod h(x)$$ is the product of the hook-lengths of the Young diagram
corresponding to $$\lambda$$ . Equation (2.4) tells us that as long as $$t(\lambda)=\ell\leq k$$ , the number $$\frac{\ell!}{h(\lambda)}$$
will also be the coefficient of $$N_{\lambda}$$ in the fusion power $$(N_{\Lambda_{1}})^{\ell}$$ . Note that $$J0=k\Lambda_{1}$$ is the
only simple-current appearing in the fusion product $$\Lambda_{1}$$ × · · · × $$\Lambda_{1}$$ ( $$k$$ times). Thus the
only nontrivial simple-current appearing in the fusion $$\pi\Lambda_{1}$$ × · · · × $$\pi\Lambda_{1}$$ will be $$J^{b k}J0$$ (0
will appear iff $$\overline{r}$$ divides $$k$$ ). Hence $$b k+1\equiv c$$ (mod $$\overline{r}$$ ) must be coprime to $$\overline{r}$$ . This is
precisely the condition needed for $$\pi[b]$$ to be a simple-current automorphism.</p>
<p>In other words, it suffices to consider $$\pi\Lambda_{1}=\Lambda_{1}$$ and hence $$\pi[J0]=J0$$ . We are done if
$$r=1$$ , so assume $$r\geq2$$ . From the $$\Lambda_{1}$$ × $$\Lambda_{1}$$ fusion, we get that $$\pi\Lambda_{2}\in\{\Lambda_{2},2\Lambda_{1}\}$$ . Note that
$$k\Lambda_{1}$$ occurs (with multiplicity 1) in the tensor and fusion product of $$2\Lambda_{1}$$ with $$k-2\;\Lambda_{1}\,{}^{\prime}\mathrm{s}$$ s,
but that it doesn’t in the tensor (hence fusion) product of $$\Lambda_{2}$$ with $$k-2~\Lambda_{1}$$ ’s (recall that
$$k\Lambda_{1}\succ(k-2)\Lambda_{1}+\Lambda_{2}$$ in the usual partial order on weights). Since $$\Lambda_{2}$$ × $$\Lambda_{1}$$ × · · · × $$\Lambda_{1}$$
does not contain $$J0$$ , $$(\pi\Lambda_{2})\boxtimes(\pi\Lambda_{1})\boxtimes\dots\boxtimes(\pi\Lambda_{1})$$ should also avoid $$\pi(J0)\,=\,J0$$ , and
thus $$\pi\Lambda_{2}$$ cannot equal $$2\Lambda_{1}$$ .</p>
<p>Thus we know $$\pi\Lambda_{2}=\Lambda_{2}$$ . The remaining $$\pi\Lambda_{\ell}=\Lambda_{\ell}$$ follow quickly from induction: if
$$\pi\Lambda_{\ell}=\Lambda_{\ell}$$ for some $$2\leq\ell<r$$ , then the fusion $$\Lambda_{1}\boxtimes\Lambda_{\ell}$$ tells us $$\pi\Lambda_{\ell+1}\in\{\Lambda_{\ell+1},\Lambda_{1}+\Lambda_{\ell}\}$$ .
But $$h(\Lambda_{1}+\Lambda_{\ell})=(\ell+1)!/\ell$$ and $$h(\Lambda_{\ell+1})=(\ell+1)!$$ , so $$\pi\Lambda_{\ell+1}=\Lambda_{\ell+1}$$ . Thus $$\pi$$ fixes all
fundamental weights, and since these comprise a fusion-generator (see the discussion at
the end of §2.2) we know that $$\pi$$ must fix everything in $$P_{+}$$ .</p>
| [{"type": "text", "coordinates": [71, 70, 542, 102], "content": "The complete proof of Proposition 4.1 is given in [18], but to illustrate the ideas we\nwill sketch here the most interesting $$(A_{r}^{(1)})$$ and the most difficult $$(E_{8}^{(1)})$$ cases.", "block_type": "text", "index": 1}, {"type": "text", "coordinates": [70, 103, 541, 192], "content": "Consider first $$A_{r,k}$$ . By choosing $$a\\!-\\!b=\\Lambda_{i}-\\Lambda_{j}$$ in (4.1), we get that either $$\\lambda=k\\Lambda_{\\ell}$$ for\nsome $$\\ell$$ , in which case $$\\lambda$$ is a simple-current and (for $$k\\neq1$$ ) $$D(\\lambda)<\\mathcal{D}(\\Lambda_{1})$$ , or $$\\mathcal{D}(\\lambda)\\ge\\mathcal{D}(\\Lambda_{\\ell})$$\nfor some $$\\ell$$ , with equality iff $$\\lambda\\in S\\Lambda_{\\ell}$$ . But then rank-level duality $$A_{r,k}\\leftrightarrow A_{k-1,r+1}$$ (defined\nas for $$C_{r,k}$$ , and which is exact for $$A_{r,k}$$ q-dimensions) and (4.1) with $$a-b=\\widetilde{\\Lambda_{0}}-\\widetilde{\\Lambda_{1}}$$ give\nus $$\\mathcal{D}(\\Lambda_{\\ell})\\,=\\,\\widetilde{\\mathcal{D}}(\\ell\\widetilde{\\Lambda_{1}})\\,\\geq\\,\\widetilde{\\mathcal{D}}(\\widetilde{\\Lambda_{1}})\\,=\\,\\mathcal{D}(\\Lambda_{1})$$ , with equality iff $$\\ell\\,=\\,1$$ or $$r$$ . Com bining these\nresults yields Proposition 4.1(a).", "block_type": "text", "index": 2}, {"type": "text", "coordinates": [70, 193, 541, 288], "content": "For $$E_{8,k}$$ , run through each $$a\\mathrm{~-~}b\\mathrm{~=~}a_{j}^{\\vee}\\Lambda_{i}\\mathrm{~-~}a_{i}^{\\vee}\\Lambda_{j}$$ to reduce the proof to comparing\n$$\\mathcal{D}(\\Lambda_{1})$$ with $$\\textstyle\\mathcal{D}(\\frac{k}{a_{i}^{\\vee}}\\Lambda_{i})$$ for $$i\\neq0$$ , or $$\\mathcal{D}(\\Lambda_{i})$$ for $$i\\neq0,1$$ (the argument in [18] unnecessarily\ncomplicated things by restricting to integral weights). Standard arguments (see [18] for\ndetails) quickly show that the q-dimension $$\\textstyle\\mathcal{D}(\\frac{k}{a_{i}^{\\vee}}\\Lambda_{i})$$ monotonically increases with $$k$$ to $$\\infty$$ ,\nwhile $$\\mathcal{D}(\\Lambda_{i})$$ monotonically increases with $$k$$ to the Weyl dimension of $$\\Lambda_{i}$$ . The proof of\nProposition 4.1(e8) then reduces to a short computation.", "block_type": "text", "index": 3}, {"type": "title", "coordinates": [72, 301, 218, 316], "content": "4.2. The $$A$$ -series argument", "block_type": "title", "index": 4}, {"type": "text", "coordinates": [70, 323, 541, 366], "content": "Recall that $$\\overline{r}\\,=\\,r\\,+\\,1$$ . Proposition 4.1(a) tells us that $$\\pi\\Lambda_{1}\\,=\\,C^{a}J^{b}\\Lambda_{1}$$ , for some\n$$a,b$$ . Hitting $$\\pi$$ with $$C^{a}$$ , we can assume without loss of generality that $$a\\;=\\;0$$ . Write\n$$\\pi(J0)=J^{c}0$$ ; then $$\\pi$$ can be a permutation of $$P_{+}$$ only if $$c$$ is coprime to $$\\overline{r}$$ .", "block_type": "text", "index": 5}, {"type": "text", "coordinates": [88, 365, 518, 380], "content": "If $$k=1$$ then $$P_{+}=\\{0,J0,\\dots,J^{r}0\\}$$ so $$\\pi=\\pi[c-1]$$ . Thus we can assume $$k\\geq2$$ .", "block_type": "text", "index": 6}, {"type": "text", "coordinates": [69, 381, 541, 530], "content": "Useful is the coefficient of $$\\lambda$$ in the tensor product $$\\Lambda_{1}\\otimes\\cdot\\cdot\\otimes\\Lambda_{1}$$ ( $$\\ell\\,\\mathrm{times})$$ : it is 0 unless\n$$t(\\lambda)=\\ell$$ , in which case the coefficient is $$\\frac{\\ell!}{h(\\lambda)}$$ (to get this, compare (3.1) above with [27,\np.114]) \u2014 we equate here the fundamental weights $$\\Lambda_{\\overline{{r}}}$$ and $$\\Lambda_{0}$$ , so e.g. $$^{\\star}{\\frac{k}{r}}\\Lambda_{\\overline{{r}}}^{\\ \\ \\,}{}^{\\ ,}$$ equals $$\\mathrm{\\Delta}^{\\prime}0^{\\circ}$$ when\n$$\\overline{r}$$ divides $$k$$ . Here, $$h(\\lambda)=\\prod h(x)$$ is the product of the hook-lengths of the Young diagram\ncorresponding to $$\\lambda$$ . Equation (2.4) tells us that as long as $$t(\\lambda)=\\ell\\leq k$$ , the number $$\\frac{\\ell!}{h(\\lambda)}$$\nwill also be the coefficient of $$N_{\\lambda}$$ in the fusion power $$(N_{\\Lambda_{1}})^{\\ell}$$ . Note that $$J0=k\\Lambda_{1}$$ is the\nonly simple-current appearing in the fusion product $$\\Lambda_{1}$$ \u00d7 \u00b7 \u00b7 \u00b7 \u00d7 $$\\Lambda_{1}$$ ( $$k$$ times). Thus the\nonly nontrivial simple-current appearing in the fusion $$\\pi\\Lambda_{1}$$ \u00d7 \u00b7 \u00b7 \u00b7 \u00d7 $$\\pi\\Lambda_{1}$$ will be $$J^{b k}J0$$ (0\nwill appear iff $$\\overline{r}$$ divides $$k$$ ). Hence $$b k+1\\equiv c$$ (mod $$\\overline{r}$$ ) must be coprime to $$\\overline{r}$$ . This is\nprecisely the condition needed for $$\\pi[b]$$ to be a simple-current automorphism.", "block_type": "text", "index": 7}, {"type": "text", "coordinates": [70, 531, 541, 631], "content": "In other words, it suffices to consider $$\\pi\\Lambda_{1}=\\Lambda_{1}$$ and hence $$\\pi[J0]=J0$$ . We are done if\n$$r=1$$ , so assume $$r\\geq2$$ . From the $$\\Lambda_{1}$$ \u00d7 $$\\Lambda_{1}$$ fusion, we get that $$\\pi\\Lambda_{2}\\in\\{\\Lambda_{2},2\\Lambda_{1}\\}$$ . Note that\n$$k\\Lambda_{1}$$ occurs (with multiplicity 1) in the tensor and fusion product of $$2\\Lambda_{1}$$ with $$k-2\\;\\Lambda_{1}\\,{}^{\\prime}\\mathrm{s}$$ s,\nbut that it doesn\u2019t in the tensor (hence fusion) product of $$\\Lambda_{2}$$ with $$k-2~\\Lambda_{1}$$ \u2019s (recall that\n$$k\\Lambda_{1}\\succ(k-2)\\Lambda_{1}+\\Lambda_{2}$$ in the usual partial order on weights). Since $$\\Lambda_{2}$$ \u00d7 $$\\Lambda_{1}$$ \u00d7 \u00b7 \u00b7 \u00b7 \u00d7 $$\\Lambda_{1}$$\ndoes not contain $$J0$$ , $$(\\pi\\Lambda_{2})\\boxtimes(\\pi\\Lambda_{1})\\boxtimes\\dots\\boxtimes(\\pi\\Lambda_{1})$$ should also avoid $$\\pi(J0)\\,=\\,J0$$ , and\nthus $$\\pi\\Lambda_{2}$$ cannot equal $$2\\Lambda_{1}$$ .", "block_type": "text", "index": 8}, {"type": "text", "coordinates": [70, 632, 541, 703], "content": "Thus we know $$\\pi\\Lambda_{2}=\\Lambda_{2}$$ . The remaining $$\\pi\\Lambda_{\\ell}=\\Lambda_{\\ell}$$ follow quickly from induction: if\n$$\\pi\\Lambda_{\\ell}=\\Lambda_{\\ell}$$ for some $$2\\leq\\ell<r$$ , then the fusion $$\\Lambda_{1}\\boxtimes\\Lambda_{\\ell}$$ tells us $$\\pi\\Lambda_{\\ell+1}\\in\\{\\Lambda_{\\ell+1},\\Lambda_{1}+\\Lambda_{\\ell}\\}$$ .\nBut $$h(\\Lambda_{1}+\\Lambda_{\\ell})=(\\ell+1)!/\\ell$$ and $$h(\\Lambda_{\\ell+1})=(\\ell+1)!$$ , so $$\\pi\\Lambda_{\\ell+1}=\\Lambda_{\\ell+1}$$ . Thus $$\\pi$$ fixes all\nfundamental weights, and since these comprise a fusion-generator (see the discussion at\nthe end of \u00a72.2) we know that $$\\pi$$ must fix everything in $$P_{+}$$ .", "block_type": "text", "index": 9}] | [{"type": "text", "coordinates": [95, 74, 541, 88], "content": "The complete proof of Proposition 4.1 is given in [18], but to illustrate the ideas we", "score": 1.0, "index": 1}, {"type": "text", "coordinates": [68, 85, 264, 106], "content": "will sketch here the most interesting ", "score": 1.0, "index": 2}, {"type": "inline_equation", "coordinates": [265, 88, 296, 104], "content": "(A_{r}^{(1)})", "score": 0.88, "index": 3}, {"type": "text", "coordinates": [297, 85, 416, 106], "content": " and the most difficult ", "score": 1.0, "index": 4}, {"type": "inline_equation", "coordinates": [417, 88, 449, 104], "content": "(E_{8}^{(1)})", "score": 0.92, "index": 5}, {"type": "text", "coordinates": [449, 85, 484, 106], "content": " cases.", "score": 1.0, "index": 6}, {"type": "text", "coordinates": [94, 104, 167, 121], "content": "Consider first", "score": 1.0, "index": 7}, {"type": "inline_equation", "coordinates": [168, 106, 190, 119], "content": "A_{r,k}", "score": 0.92, "index": 8}, {"type": "text", "coordinates": [190, 104, 263, 121], "content": ". By choosing ", "score": 1.0, "index": 9}, {"type": "inline_equation", "coordinates": [264, 106, 339, 119], "content": "a\\!-\\!b=\\Lambda_{i}-\\Lambda_{j}", "score": 0.91, "index": 10}, {"type": "text", "coordinates": [339, 104, 479, 121], "content": " in (4.1), we get that either ", "score": 1.0, "index": 11}, {"type": "inline_equation", "coordinates": [479, 106, 522, 117], "content": "\\lambda=k\\Lambda_{\\ell}", "score": 0.93, "index": 12}, {"type": "text", "coordinates": [522, 104, 542, 121], "content": "for", "score": 1.0, "index": 13}, {"type": "text", "coordinates": [70, 119, 100, 135], "content": "some ", "score": 1.0, "index": 14}, {"type": "inline_equation", "coordinates": [100, 121, 106, 129], "content": "\\ell", "score": 0.86, "index": 15}, {"type": "text", "coordinates": [106, 119, 182, 135], "content": ", in which case ", "score": 1.0, "index": 16}, {"type": "inline_equation", "coordinates": [182, 120, 190, 130], "content": "\\lambda", "score": 0.88, "index": 17}, {"type": "text", "coordinates": [190, 119, 335, 135], "content": " is a simple-current and (for ", "score": 1.0, "index": 18}, {"type": "inline_equation", "coordinates": [335, 120, 364, 132], "content": "k\\neq1", "score": 0.9, "index": 19}, {"type": "text", "coordinates": [364, 119, 371, 135], "content": ") ", "score": 1.0, "index": 20}, {"type": "inline_equation", "coordinates": [371, 120, 446, 133], "content": "D(\\lambda)<\\mathcal{D}(\\Lambda_{1})", "score": 0.93, "index": 21}, {"type": "text", "coordinates": [446, 119, 465, 135], "content": ", or ", "score": 1.0, "index": 22}, {"type": "inline_equation", "coordinates": [465, 120, 540, 133], "content": "\\mathcal{D}(\\lambda)\\ge\\mathcal{D}(\\Lambda_{\\ell})", "score": 0.93, "index": 23}, {"type": "text", "coordinates": [70, 132, 117, 150], "content": "for some ", "score": 1.0, "index": 24}, {"type": "inline_equation", "coordinates": [117, 135, 123, 144], "content": "\\ell", "score": 0.87, "index": 25}, {"type": "text", "coordinates": [123, 132, 213, 150], "content": ", with equality iff", "score": 1.0, "index": 26}, {"type": "inline_equation", "coordinates": [214, 135, 256, 146], "content": "\\lambda\\in S\\Lambda_{\\ell}", "score": 0.91, "index": 27}, {"type": "text", "coordinates": [257, 132, 407, 150], "content": ". But then rank-level duality ", "score": 1.0, "index": 28}, {"type": "inline_equation", "coordinates": [407, 135, 494, 147], "content": "A_{r,k}\\leftrightarrow A_{k-1,r+1}", "score": 0.92, "index": 29}, {"type": "text", "coordinates": [495, 132, 541, 150], "content": " (defined", "score": 1.0, "index": 30}, {"type": "text", "coordinates": [71, 151, 104, 165], "content": "as for ", "score": 1.0, "index": 31}, {"type": "inline_equation", "coordinates": [104, 152, 126, 164], "content": "C_{r,k}", "score": 0.92, "index": 32}, {"type": "text", "coordinates": [126, 151, 251, 165], "content": ", and which is exact for ", "score": 1.0, "index": 33}, {"type": "inline_equation", "coordinates": [252, 152, 273, 164], "content": "A_{r,k}", "score": 0.91, "index": 34}, {"type": "text", "coordinates": [273, 151, 432, 165], "content": " q-dimensions) and (4.1) with ", "score": 1.0, "index": 35}, {"type": "inline_equation", "coordinates": [432, 148, 515, 162], "content": "a-b=\\widetilde{\\Lambda_{0}}-\\widetilde{\\Lambda_{1}}", "score": 0.94, "index": 36}, {"type": "text", "coordinates": [515, 151, 540, 165], "content": " give", "score": 1.0, "index": 37}, {"type": "text", "coordinates": [70, 165, 87, 182], "content": "us ", "score": 1.0, "index": 38}, {"type": "inline_equation", "coordinates": [87, 165, 282, 180], "content": "\\mathcal{D}(\\Lambda_{\\ell})\\,=\\,\\widetilde{\\mathcal{D}}(\\ell\\widetilde{\\Lambda_{1}})\\,\\geq\\,\\widetilde{\\mathcal{D}}(\\widetilde{\\Lambda_{1}})\\,=\\,\\mathcal{D}(\\Lambda_{1})", "score": 0.94, "index": 39}, {"type": "text", "coordinates": [282, 165, 380, 182], "content": ", with equality iff", "score": 1.0, "index": 40}, {"type": "inline_equation", "coordinates": [380, 168, 412, 177], "content": "\\ell\\,=\\,1", "score": 0.92, "index": 41}, {"type": "text", "coordinates": [412, 165, 432, 182], "content": " or ", "score": 1.0, "index": 42}, {"type": "inline_equation", "coordinates": [433, 171, 439, 177], "content": "r", "score": 0.86, "index": 43}, {"type": "text", "coordinates": [439, 165, 541, 182], "content": ". Com bining these", "score": 1.0, "index": 44}, {"type": "text", "coordinates": [71, 181, 243, 196], "content": "results yields Proposition 4.1(a).", "score": 1.0, "index": 45}, {"type": "text", "coordinates": [93, 194, 117, 212], "content": "For ", "score": 1.0, "index": 46}, {"type": "inline_equation", "coordinates": [117, 197, 140, 209], "content": "E_{8,k}", "score": 0.93, "index": 47}, {"type": "text", "coordinates": [140, 194, 244, 212], "content": ", run through each ", "score": 1.0, "index": 48}, {"type": "inline_equation", "coordinates": [244, 196, 357, 211], "content": "a\\mathrm{~-~}b\\mathrm{~=~}a_{j}^{\\vee}\\Lambda_{i}\\mathrm{~-~}a_{i}^{\\vee}\\Lambda_{j}", "score": 0.94, "index": 49}, {"type": "text", "coordinates": [358, 194, 541, 212], "content": " to reduce the proof to comparing", "score": 1.0, "index": 50}, {"type": "inline_equation", "coordinates": [71, 213, 104, 226], "content": "\\mathcal{D}(\\Lambda_{1})", "score": 0.93, "index": 51}, {"type": "text", "coordinates": [104, 209, 135, 232], "content": " with ", "score": 1.0, "index": 52}, {"type": "inline_equation", "coordinates": [136, 212, 181, 230], "content": "\\textstyle\\mathcal{D}(\\frac{k}{a_{i}^{\\vee}}\\Lambda_{i})", "score": 0.95, "index": 53}, {"type": "text", "coordinates": [182, 209, 204, 232], "content": " for ", "score": 1.0, "index": 54}, {"type": "inline_equation", "coordinates": [204, 214, 232, 225], "content": "i\\neq0", "score": 0.91, "index": 55}, {"type": "text", "coordinates": [233, 209, 255, 232], "content": ", or ", "score": 1.0, "index": 56}, {"type": "inline_equation", "coordinates": [255, 213, 286, 226], "content": "\\mathcal{D}(\\Lambda_{i})", "score": 0.94, "index": 57}, {"type": "text", "coordinates": [287, 209, 309, 232], "content": " for ", "score": 1.0, "index": 58}, {"type": "inline_equation", "coordinates": [309, 214, 349, 225], "content": "i\\neq0,1", "score": 0.93, "index": 59}, {"type": "text", "coordinates": [349, 209, 543, 232], "content": " (the argument in [18] unnecessarily", "score": 1.0, "index": 60}, {"type": "text", "coordinates": [71, 228, 540, 244], "content": "complicated things by restricting to integral weights). Standard arguments (see [18] for", "score": 1.0, "index": 61}, {"type": "text", "coordinates": [69, 241, 296, 262], "content": "details) quickly show that the q-dimension ", "score": 1.0, "index": 62}, {"type": "inline_equation", "coordinates": [297, 243, 342, 261], "content": "\\textstyle\\mathcal{D}(\\frac{k}{a_{i}^{\\vee}}\\Lambda_{i})", "score": 0.95, "index": 63}, {"type": "text", "coordinates": [342, 241, 499, 262], "content": " monotonically increases with ", "score": 1.0, "index": 64}, {"type": "inline_equation", "coordinates": [499, 245, 506, 254], "content": "k", "score": 0.89, "index": 65}, {"type": "text", "coordinates": [506, 241, 524, 262], "content": " to ", "score": 1.0, "index": 66}, {"type": "inline_equation", "coordinates": [524, 249, 536, 254], "content": "\\infty", "score": 0.84, "index": 67}, {"type": "text", "coordinates": [537, 241, 543, 262], "content": ",", "score": 1.0, "index": 68}, {"type": "text", "coordinates": [72, 261, 103, 275], "content": "while ", "score": 1.0, "index": 69}, {"type": "inline_equation", "coordinates": [104, 262, 135, 274], "content": "\\mathcal{D}(\\Lambda_{i})", "score": 0.94, "index": 70}, {"type": "text", "coordinates": [135, 261, 296, 275], "content": " monotonically increases with ", "score": 1.0, "index": 71}, {"type": "inline_equation", "coordinates": [297, 263, 304, 271], "content": "k", "score": 0.89, "index": 72}, {"type": "text", "coordinates": [304, 261, 448, 275], "content": " to the Weyl dimension of ", "score": 1.0, "index": 73}, {"type": "inline_equation", "coordinates": [448, 263, 461, 273], "content": "\\Lambda_{i}", "score": 0.92, "index": 74}, {"type": "text", "coordinates": [461, 261, 542, 275], "content": ". The proof of", "score": 1.0, "index": 75}, {"type": "text", "coordinates": [70, 276, 371, 290], "content": "Proposition 4.1(e8) then reduces to a short computation.", "score": 1.0, "index": 76}, {"type": "text", "coordinates": [71, 304, 120, 316], "content": "4.2. The ", "score": 1.0, "index": 77}, {"type": "inline_equation", "coordinates": [121, 306, 130, 314], "content": "A", "score": 0.33, "index": 78}, {"type": "text", "coordinates": [130, 304, 219, 316], "content": "-series argument", "score": 1.0, "index": 79}, {"type": "text", "coordinates": [93, 325, 159, 339], "content": "Recall that ", "score": 1.0, "index": 80}, {"type": "inline_equation", "coordinates": [159, 327, 215, 337], "content": "\\overline{r}\\,=\\,r\\,+\\,1", "score": 0.93, "index": 81}, {"type": "text", "coordinates": [216, 325, 401, 339], "content": ". Proposition 4.1(a) tells us that ", "score": 1.0, "index": 82}, {"type": "inline_equation", "coordinates": [401, 325, 484, 338], "content": "\\pi\\Lambda_{1}\\,=\\,C^{a}J^{b}\\Lambda_{1}", "score": 0.94, "index": 83}, {"type": "text", "coordinates": [484, 325, 541, 339], "content": ", for some", "score": 1.0, "index": 84}, {"type": "inline_equation", "coordinates": [71, 342, 88, 353], "content": "a,b", "score": 0.91, "index": 85}, {"type": "text", "coordinates": [89, 339, 144, 354], "content": ". Hitting ", "score": 1.0, "index": 86}, {"type": "inline_equation", "coordinates": [144, 345, 151, 350], "content": "\\pi", "score": 0.84, "index": 87}, {"type": "text", "coordinates": [152, 339, 185, 354], "content": " with ", "score": 1.0, "index": 88}, {"type": "inline_equation", "coordinates": [185, 342, 200, 350], "content": "C^{a}", "score": 0.9, "index": 89}, {"type": "text", "coordinates": [201, 339, 464, 354], "content": ", we can assume without loss of generality that ", "score": 1.0, "index": 90}, {"type": "inline_equation", "coordinates": [464, 342, 497, 351], "content": "a\\;=\\;0", "score": 0.91, "index": 91}, {"type": "text", "coordinates": [497, 339, 542, 354], "content": ". Write", "score": 1.0, "index": 92}, {"type": "inline_equation", "coordinates": [71, 355, 137, 368], "content": "\\pi(J0)=J^{c}0", "score": 0.92, "index": 93}, {"type": "text", "coordinates": [137, 353, 170, 369], "content": "; then ", "score": 1.0, "index": 94}, {"type": "inline_equation", "coordinates": [171, 359, 178, 365], "content": "\\pi", "score": 0.87, "index": 95}, {"type": "text", "coordinates": [178, 353, 312, 369], "content": " can be a permutation of ", "score": 1.0, "index": 96}, {"type": "inline_equation", "coordinates": [312, 356, 327, 367], "content": "P_{+}", "score": 0.92, "index": 97}, {"type": "text", "coordinates": [328, 353, 369, 369], "content": " only if ", "score": 1.0, "index": 98}, {"type": "inline_equation", "coordinates": [369, 359, 375, 365], "content": "c", "score": 0.88, "index": 99}, {"type": "text", "coordinates": [375, 353, 449, 369], "content": " is coprime to ", "score": 1.0, "index": 100}, {"type": "inline_equation", "coordinates": [450, 357, 456, 365], "content": "\\overline{r}", "score": 0.89, "index": 101}, {"type": "text", "coordinates": [456, 353, 461, 369], "content": ".", "score": 1.0, "index": 102}, {"type": "text", "coordinates": [93, 366, 106, 384], "content": "If ", "score": 1.0, "index": 103}, {"type": "inline_equation", "coordinates": [107, 370, 136, 379], "content": "k=1", "score": 0.92, "index": 104}, {"type": "text", "coordinates": [136, 366, 166, 384], "content": " then ", "score": 1.0, "index": 105}, {"type": "inline_equation", "coordinates": [167, 370, 281, 382], "content": "P_{+}=\\{0,J0,\\dots,J^{r}0\\}", "score": 0.93, "index": 106}, {"type": "text", "coordinates": [281, 366, 299, 384], "content": " so ", "score": 1.0, "index": 107}, {"type": "inline_equation", "coordinates": [299, 370, 363, 382], "content": "\\pi=\\pi[c-1]", "score": 0.94, "index": 108}, {"type": "text", "coordinates": [363, 366, 482, 384], "content": ". Thus we can assume ", "score": 1.0, "index": 109}, {"type": "inline_equation", "coordinates": [482, 370, 511, 381], "content": "k\\geq2", "score": 0.95, "index": 110}, {"type": "text", "coordinates": [511, 366, 516, 384], "content": ".", "score": 1.0, "index": 111}, {"type": "text", "coordinates": [93, 381, 230, 398], "content": "Useful is the coefficient of ", "score": 1.0, "index": 112}, {"type": "inline_equation", "coordinates": [231, 384, 238, 393], "content": "\\lambda", "score": 0.89, "index": 113}, {"type": "text", "coordinates": [238, 381, 353, 398], "content": " in the tensor product ", "score": 1.0, "index": 114}, {"type": "inline_equation", "coordinates": [353, 384, 419, 395], "content": "\\Lambda_{1}\\otimes\\cdot\\cdot\\otimes\\Lambda_{1}", "score": 0.91, "index": 115}, {"type": "text", "coordinates": [419, 381, 426, 398], "content": " (", "score": 1.0, "index": 116}, {"type": "inline_equation", "coordinates": [426, 384, 468, 396], "content": "\\ell\\,\\mathrm{times})", "score": 0.29, "index": 117}, {"type": "text", "coordinates": [468, 381, 541, 398], "content": ": it is 0 unless", "score": 1.0, "index": 118}, {"type": "inline_equation", "coordinates": [71, 398, 115, 411], "content": "t(\\lambda)=\\ell", "score": 0.93, "index": 119}, {"type": "text", "coordinates": [115, 393, 288, 419], "content": ", in which case the coefficient is", "score": 1.0, "index": 120}, {"type": "inline_equation", "coordinates": [288, 396, 309, 414], "content": "\\frac{\\ell!}{h(\\lambda)}", "score": 0.94, "index": 121}, {"type": "text", "coordinates": [309, 393, 543, 419], "content": " (to get this, compare (3.1) above with [27,", "score": 1.0, "index": 122}, {"type": "text", "coordinates": [70, 414, 334, 430], "content": "p.114]) \u2014 we equate here the fundamental weights ", "score": 1.0, "index": 123}, {"type": "inline_equation", "coordinates": [335, 416, 349, 427], "content": "\\Lambda_{\\overline{{r}}}", "score": 0.91, "index": 124}, {"type": "text", "coordinates": [349, 414, 373, 430], "content": " and", "score": 1.0, "index": 125}, {"type": "inline_equation", "coordinates": [374, 417, 388, 428], "content": "\\Lambda_{0}", "score": 0.9, "index": 126}, {"type": "text", "coordinates": [388, 414, 430, 430], "content": ", so e.g. ", "score": 1.0, "index": 127}, {"type": "inline_equation", "coordinates": [430, 414, 458, 430], "content": "^{\\star}{\\frac{k}{r}}\\Lambda_{\\overline{{r}}}^{\\ \\ \\,}{}^{\\ ,}", "score": 0.91, "index": 128}, {"type": "text", "coordinates": [458, 414, 498, 430], "content": " equals ", "score": 1.0, "index": 129}, {"type": "inline_equation", "coordinates": [498, 416, 509, 426], "content": "\\mathrm{\\Delta}^{\\prime}0^{\\circ}", "score": 0.39, "index": 130}, {"type": "text", "coordinates": [509, 414, 541, 430], "content": " when", "score": 1.0, "index": 131}, {"type": "inline_equation", "coordinates": [71, 432, 77, 440], "content": "\\overline{r}", "score": 0.86, "index": 132}, {"type": "text", "coordinates": [78, 429, 120, 445], "content": " divides ", "score": 1.0, "index": 133}, {"type": "inline_equation", "coordinates": [120, 431, 127, 440], "content": "k", "score": 0.89, "index": 134}, {"type": "text", "coordinates": [128, 429, 167, 445], "content": ". Here, ", "score": 1.0, "index": 135}, {"type": "inline_equation", "coordinates": [167, 430, 242, 443], "content": "h(\\lambda)=\\prod h(x)", "score": 0.95, "index": 136}, {"type": "text", "coordinates": [243, 429, 541, 445], "content": " is the product of the hook-lengths of the Young diagram", "score": 1.0, "index": 137}, {"type": "text", "coordinates": [70, 443, 162, 459], "content": "corresponding to ", "score": 1.0, "index": 138}, {"type": "inline_equation", "coordinates": [163, 446, 170, 454], "content": "\\lambda", "score": 0.88, "index": 139}, {"type": "text", "coordinates": [171, 443, 381, 459], "content": ". Equation (2.4) tells us that as long as ", "score": 1.0, "index": 140}, {"type": "inline_equation", "coordinates": [381, 444, 446, 457], "content": "t(\\lambda)=\\ell\\leq k", "score": 0.91, "index": 141}, {"type": "text", "coordinates": [447, 443, 517, 459], "content": ", the number", "score": 1.0, "index": 142}, {"type": "inline_equation", "coordinates": [518, 443, 539, 460], "content": "\\frac{\\ell!}{h(\\lambda)}", "score": 0.93, "index": 143}, {"type": "text", "coordinates": [69, 460, 226, 476], "content": "will also be the coefficient of ", "score": 1.0, "index": 144}, {"type": "inline_equation", "coordinates": [227, 463, 243, 474], "content": "N_{\\lambda}", "score": 0.93, "index": 145}, {"type": "text", "coordinates": [243, 460, 353, 476], "content": " in the fusion power ", "score": 1.0, "index": 146}, {"type": "inline_equation", "coordinates": [353, 461, 389, 475], "content": "(N_{\\Lambda_{1}})^{\\ell}", "score": 0.92, "index": 147}, {"type": "text", "coordinates": [389, 460, 454, 476], "content": ". Note that ", "score": 1.0, "index": 148}, {"type": "inline_equation", "coordinates": [454, 463, 506, 474], "content": "J0=k\\Lambda_{1}", "score": 0.92, "index": 149}, {"type": "text", "coordinates": [506, 460, 542, 476], "content": " is the", "score": 1.0, "index": 150}, {"type": "text", "coordinates": [70, 475, 348, 491], "content": "only simple-current appearing in the fusion product ", "score": 1.0, "index": 151}, {"type": "inline_equation", "coordinates": [348, 476, 362, 488], "content": "\\Lambda_{1}", "score": 0.73, "index": 152}, {"type": "text", "coordinates": [362, 475, 415, 491], "content": " \u00d7 \u00b7 \u00b7 \u00b7 \u00d7 ", "score": 1.0, "index": 153}, {"type": "inline_equation", "coordinates": [415, 475, 430, 488], "content": "\\Lambda_{1}", "score": 0.84, "index": 154}, {"type": "text", "coordinates": [430, 475, 438, 491], "content": " (", "score": 1.0, "index": 155}, {"type": "inline_equation", "coordinates": [439, 476, 446, 487], "content": "k", "score": 0.67, "index": 156}, {"type": "text", "coordinates": [446, 475, 542, 491], "content": " times). Thus the", "score": 1.0, "index": 157}, {"type": "text", "coordinates": [70, 489, 354, 505], "content": "only nontrivial simple-current appearing in the fusion ", "score": 1.0, "index": 158}, {"type": "inline_equation", "coordinates": [354, 489, 376, 502], "content": "\\pi\\Lambda_{1}", "score": 0.81, "index": 159}, {"type": "text", "coordinates": [376, 489, 429, 505], "content": " \u00d7 \u00b7 \u00b7 \u00b7 \u00d7 ", "score": 1.0, "index": 160}, {"type": "inline_equation", "coordinates": [429, 489, 451, 502], "content": "\\pi\\Lambda_{1}", "score": 0.87, "index": 161}, {"type": "text", "coordinates": [451, 489, 492, 505], "content": " will be", "score": 1.0, "index": 162}, {"type": "inline_equation", "coordinates": [493, 489, 525, 501], "content": "J^{b k}J0", "score": 0.83, "index": 163}, {"type": "text", "coordinates": [526, 489, 542, 505], "content": " (0", "score": 1.0, "index": 164}, {"type": "text", "coordinates": [72, 505, 150, 518], "content": "will appear iff", "score": 1.0, "index": 165}, {"type": "inline_equation", "coordinates": [151, 507, 157, 515], "content": "\\overline{r}", "score": 0.86, "index": 166}, {"type": "text", "coordinates": [158, 505, 203, 518], "content": " divides ", "score": 1.0, "index": 167}, {"type": "inline_equation", "coordinates": [203, 506, 210, 515], "content": "k", "score": 0.82, "index": 168}, {"type": "text", "coordinates": [210, 505, 262, 518], "content": "). Hence ", "score": 1.0, "index": 169}, {"type": "inline_equation", "coordinates": [263, 506, 322, 516], "content": "b k+1\\equiv c", "score": 0.89, "index": 170}, {"type": "text", "coordinates": [323, 505, 358, 518], "content": " (mod ", "score": 1.0, "index": 171}, {"type": "inline_equation", "coordinates": [359, 506, 366, 515], "content": "\\overline{r}", "score": 0.59, "index": 172}, {"type": "text", "coordinates": [366, 505, 484, 518], "content": ") must be coprime to ", "score": 1.0, "index": 173}, {"type": "inline_equation", "coordinates": [484, 506, 491, 515], "content": "\\overline{r}", "score": 0.76, "index": 174}, {"type": "text", "coordinates": [492, 505, 541, 518], "content": ". This is", "score": 1.0, "index": 175}, {"type": "text", "coordinates": [72, 520, 251, 533], "content": "precisely the condition needed for ", "score": 1.0, "index": 176}, {"type": "inline_equation", "coordinates": [251, 519, 271, 532], "content": "\\pi[b]", "score": 0.92, "index": 177}, {"type": "text", "coordinates": [271, 520, 472, 533], "content": " to be a simple-current automorphism.", "score": 1.0, "index": 178}, {"type": "text", "coordinates": [94, 533, 289, 547], "content": "In other words, it suffices to consider ", "score": 1.0, "index": 179}, {"type": "inline_equation", "coordinates": [289, 533, 340, 545], "content": "\\pi\\Lambda_{1}=\\Lambda_{1}", "score": 0.92, "index": 180}, {"type": "text", "coordinates": [340, 533, 398, 547], "content": " and hence ", "score": 1.0, "index": 181}, {"type": "inline_equation", "coordinates": [398, 532, 457, 546], "content": "\\pi[J0]=J0", "score": 0.92, "index": 182}, {"type": "text", "coordinates": [457, 533, 543, 547], "content": ". We are done if", "score": 1.0, "index": 183}, {"type": "inline_equation", "coordinates": [71, 550, 99, 558], "content": "r=1", "score": 0.89, "index": 184}, {"type": "text", "coordinates": [100, 547, 160, 563], "content": ", so assume ", "score": 1.0, "index": 185}, {"type": "inline_equation", "coordinates": [160, 549, 188, 560], "content": "r\\geq2", "score": 0.89, "index": 186}, {"type": "text", "coordinates": [189, 547, 246, 563], "content": ". From the ", "score": 1.0, "index": 187}, {"type": "inline_equation", "coordinates": [246, 547, 261, 560], "content": "\\Lambda_{1}", "score": 0.78, "index": 188}, {"type": "text", "coordinates": [261, 547, 277, 563], "content": " \u00d7", "score": 1.0, "index": 189}, {"type": "inline_equation", "coordinates": [278, 547, 293, 560], "content": "\\Lambda_{1}", "score": 0.77, "index": 190}, {"type": "text", "coordinates": [293, 547, 394, 563], "content": " fusion, we get that ", "score": 1.0, "index": 191}, {"type": "inline_equation", "coordinates": [394, 547, 481, 561], "content": "\\pi\\Lambda_{2}\\in\\{\\Lambda_{2},2\\Lambda_{1}\\}", "score": 0.91, "index": 192}, {"type": "text", "coordinates": [482, 547, 541, 563], "content": ". Note that", "score": 1.0, "index": 193}, {"type": "inline_equation", "coordinates": [71, 563, 91, 574], "content": "k\\Lambda_{1}", "score": 0.91, "index": 194}, {"type": "text", "coordinates": [92, 561, 431, 576], "content": " occurs (with multiplicity 1) in the tensor and fusion product of ", "score": 1.0, "index": 195}, {"type": "inline_equation", "coordinates": [431, 561, 452, 574], "content": "2\\Lambda_{1}", "score": 0.9, "index": 196}, {"type": "text", "coordinates": [452, 561, 482, 576], "content": " with ", "score": 1.0, "index": 197}, {"type": "inline_equation", "coordinates": [482, 561, 534, 574], "content": "k-2\\;\\Lambda_{1}\\,{}^{\\prime}\\mathrm{s}", "score": 0.69, "index": 198}, {"type": "text", "coordinates": [534, 561, 540, 576], "content": "s,", "score": 1.0, "index": 199}, {"type": "text", "coordinates": [70, 576, 378, 590], "content": "but that it doesn\u2019t in the tensor (hence fusion) product of ", "score": 1.0, "index": 200}, {"type": "inline_equation", "coordinates": [379, 576, 393, 588], "content": "\\Lambda_{2}", "score": 0.89, "index": 201}, {"type": "text", "coordinates": [393, 576, 423, 590], "content": " with ", "score": 1.0, "index": 202}, {"type": "inline_equation", "coordinates": [423, 575, 469, 588], "content": "k-2~\\Lambda_{1}", "score": 0.79, "index": 203}, {"type": "text", "coordinates": [470, 576, 541, 590], "content": "\u2019s (recall that", "score": 1.0, "index": 204}, {"type": "inline_equation", "coordinates": [71, 591, 186, 604], "content": "k\\Lambda_{1}\\succ(k-2)\\Lambda_{1}+\\Lambda_{2}", "score": 0.92, "index": 205}, {"type": "text", "coordinates": [187, 590, 425, 606], "content": " in the usual partial order on weights). Since ", "score": 1.0, "index": 206}, {"type": "inline_equation", "coordinates": [425, 590, 440, 603], "content": "\\Lambda_{2}", "score": 0.72, "index": 207}, {"type": "text", "coordinates": [440, 590, 456, 606], "content": " \u00d7", "score": 1.0, "index": 208}, {"type": "inline_equation", "coordinates": [457, 590, 472, 603], "content": "\\Lambda_{1}", "score": 0.74, "index": 209}, {"type": "text", "coordinates": [472, 590, 524, 606], "content": " \u00d7 \u00b7 \u00b7 \u00b7 \u00d7", "score": 1.0, "index": 210}, {"type": "inline_equation", "coordinates": [524, 589, 540, 603], "content": "\\Lambda_{1}", "score": 0.84, "index": 211}, {"type": "text", "coordinates": [69, 604, 163, 621], "content": "does not contain ", "score": 1.0, "index": 212}, {"type": "inline_equation", "coordinates": [164, 606, 178, 616], "content": "J0", "score": 0.8, "index": 213}, {"type": "text", "coordinates": [178, 604, 185, 621], "content": ", ", "score": 1.0, "index": 214}, {"type": "inline_equation", "coordinates": [185, 603, 348, 618], "content": "(\\pi\\Lambda_{2})\\boxtimes(\\pi\\Lambda_{1})\\boxtimes\\dots\\boxtimes(\\pi\\Lambda_{1})", "score": 0.25, "index": 215}, {"type": "text", "coordinates": [349, 604, 449, 621], "content": " should also avoid ", "score": 1.0, "index": 216}, {"type": "inline_equation", "coordinates": [449, 604, 513, 618], "content": "\\pi(J0)\\,=\\,J0", "score": 0.93, "index": 217}, {"type": "text", "coordinates": [513, 604, 542, 621], "content": ", and", "score": 1.0, "index": 218}, {"type": "text", "coordinates": [70, 618, 97, 634], "content": "thus ", "score": 1.0, "index": 219}, {"type": "inline_equation", "coordinates": [97, 621, 118, 631], "content": "\\pi\\Lambda_{2}", "score": 0.92, "index": 220}, {"type": "text", "coordinates": [119, 618, 192, 634], "content": " cannot equal ", "score": 1.0, "index": 221}, {"type": "inline_equation", "coordinates": [193, 619, 213, 632], "content": "2\\Lambda_{1}", "score": 0.9, "index": 222}, {"type": "text", "coordinates": [213, 618, 218, 634], "content": ".", "score": 1.0, "index": 223}, {"type": "text", "coordinates": [94, 632, 174, 649], "content": "Thus we know ", "score": 1.0, "index": 224}, {"type": "inline_equation", "coordinates": [174, 633, 226, 646], "content": "\\pi\\Lambda_{2}=\\Lambda_{2}", "score": 0.91, "index": 225}, {"type": "text", "coordinates": [226, 632, 315, 649], "content": ". The remaining ", "score": 1.0, "index": 226}, {"type": "inline_equation", "coordinates": [316, 633, 366, 646], "content": "\\pi\\Lambda_{\\ell}=\\Lambda_{\\ell}", "score": 0.92, "index": 227}, {"type": "text", "coordinates": [366, 632, 543, 649], "content": "follow quickly from induction: if", "score": 1.0, "index": 228}, {"type": "inline_equation", "coordinates": [71, 649, 121, 660], "content": "\\pi\\Lambda_{\\ell}=\\Lambda_{\\ell}", "score": 0.92, "index": 229}, {"type": "text", "coordinates": [121, 647, 173, 663], "content": "for some ", "score": 1.0, "index": 230}, {"type": "inline_equation", "coordinates": [173, 648, 224, 660], "content": "2\\leq\\ell<r", "score": 0.87, "index": 231}, {"type": "text", "coordinates": [225, 647, 314, 663], "content": ", then the fusion ", "score": 1.0, "index": 232}, {"type": "inline_equation", "coordinates": [314, 647, 360, 660], "content": "\\Lambda_{1}\\boxtimes\\Lambda_{\\ell}", "score": 0.44, "index": 233}, {"type": "text", "coordinates": [360, 647, 404, 663], "content": "tells us ", "score": 1.0, "index": 234}, {"type": "inline_equation", "coordinates": [405, 648, 537, 662], "content": "\\pi\\Lambda_{\\ell+1}\\in\\{\\Lambda_{\\ell+1},\\Lambda_{1}+\\Lambda_{\\ell}\\}", "score": 0.93, "index": 235}, {"type": "text", "coordinates": [537, 647, 541, 663], "content": ".", "score": 1.0, "index": 236}, {"type": "text", "coordinates": [70, 661, 95, 678], "content": "But ", "score": 1.0, "index": 237}, {"type": "inline_equation", "coordinates": [96, 662, 222, 675], "content": "h(\\Lambda_{1}+\\Lambda_{\\ell})=(\\ell+1)!/\\ell", "score": 0.92, "index": 238}, {"type": "text", "coordinates": [222, 661, 249, 678], "content": "and ", "score": 1.0, "index": 239}, {"type": "inline_equation", "coordinates": [250, 662, 347, 676], "content": "h(\\Lambda_{\\ell+1})=(\\ell+1)!", "score": 0.92, "index": 240}, {"type": "text", "coordinates": [348, 661, 370, 678], "content": ", so ", "score": 1.0, "index": 241}, {"type": "inline_equation", "coordinates": [371, 663, 446, 675], "content": "\\pi\\Lambda_{\\ell+1}=\\Lambda_{\\ell+1}", "score": 0.92, "index": 242}, {"type": "text", "coordinates": [446, 661, 487, 678], "content": ". Thus ", "score": 1.0, "index": 243}, {"type": "inline_equation", "coordinates": [487, 664, 495, 673], "content": "\\pi", "score": 0.72, "index": 244}, {"type": "text", "coordinates": [495, 661, 542, 678], "content": " fixes all", "score": 1.0, "index": 245}, {"type": "text", "coordinates": [70, 676, 542, 691], "content": "fundamental weights, and since these comprise a fusion-generator (see the discussion at", "score": 1.0, "index": 246}, {"type": "text", "coordinates": [70, 689, 231, 707], "content": "the end of \u00a72.2) we know that ", "score": 1.0, "index": 247}, {"type": "inline_equation", "coordinates": [232, 695, 240, 701], "content": "\\pi", "score": 0.67, "index": 248}, {"type": "text", "coordinates": [240, 689, 362, 707], "content": " must fix everything in ", "score": 1.0, "index": 249}, {"type": "inline_equation", "coordinates": [362, 692, 378, 704], "content": "P_{+}", "score": 0.9, "index": 250}, {"type": "text", "coordinates": [379, 689, 384, 707], "content": ".", "score": 1.0, "index": 251}] | [] | [{"type": "inline", "coordinates": [265, 88, 296, 104], "content": "(A_{r}^{(1)})", "caption": ""}, {"type": "inline", "coordinates": [417, 88, 449, 104], "content": "(E_{8}^{(1)})", "caption": ""}, {"type": "inline", "coordinates": [168, 106, 190, 119], "content": "A_{r,k}", "caption": ""}, {"type": "inline", "coordinates": [264, 106, 339, 119], "content": "a\\!-\\!b=\\Lambda_{i}-\\Lambda_{j}", "caption": ""}, {"type": "inline", "coordinates": [479, 106, 522, 117], "content": "\\lambda=k\\Lambda_{\\ell}", "caption": ""}, {"type": "inline", "coordinates": [100, 121, 106, 129], "content": "\\ell", "caption": ""}, {"type": "inline", "coordinates": [182, 120, 190, 130], "content": "\\lambda", "caption": ""}, {"type": "inline", "coordinates": [335, 120, 364, 132], "content": "k\\neq1", "caption": ""}, {"type": "inline", "coordinates": [371, 120, 446, 133], "content": "D(\\lambda)<\\mathcal{D}(\\Lambda_{1})", "caption": ""}, {"type": "inline", "coordinates": [465, 120, 540, 133], "content": "\\mathcal{D}(\\lambda)\\ge\\mathcal{D}(\\Lambda_{\\ell})", "caption": ""}, {"type": "inline", "coordinates": [117, 135, 123, 144], "content": "\\ell", "caption": ""}, {"type": "inline", "coordinates": [214, 135, 256, 146], "content": "\\lambda\\in S\\Lambda_{\\ell}", "caption": ""}, {"type": "inline", "coordinates": [407, 135, 494, 147], "content": "A_{r,k}\\leftrightarrow A_{k-1,r+1}", "caption": ""}, {"type": "inline", "coordinates": [104, 152, 126, 164], "content": "C_{r,k}", "caption": ""}, {"type": "inline", "coordinates": [252, 152, 273, 164], "content": "A_{r,k}", "caption": ""}, {"type": "inline", "coordinates": [432, 148, 515, 162], "content": "a-b=\\widetilde{\\Lambda_{0}}-\\widetilde{\\Lambda_{1}}", "caption": ""}, {"type": "inline", "coordinates": [87, 165, 282, 180], "content": "\\mathcal{D}(\\Lambda_{\\ell})\\,=\\,\\widetilde{\\mathcal{D}}(\\ell\\widetilde{\\Lambda_{1}})\\,\\geq\\,\\widetilde{\\mathcal{D}}(\\widetilde{\\Lambda_{1}})\\,=\\,\\mathcal{D}(\\Lambda_{1})", "caption": ""}, {"type": "inline", "coordinates": [380, 168, 412, 177], "content": "\\ell\\,=\\,1", "caption": ""}, {"type": "inline", "coordinates": [433, 171, 439, 177], "content": "r", "caption": ""}, {"type": "inline", "coordinates": [117, 197, 140, 209], "content": "E_{8,k}", "caption": ""}, {"type": "inline", "coordinates": [244, 196, 357, 211], "content": "a\\mathrm{~-~}b\\mathrm{~=~}a_{j}^{\\vee}\\Lambda_{i}\\mathrm{~-~}a_{i}^{\\vee}\\Lambda_{j}", "caption": ""}, {"type": "inline", "coordinates": [71, 213, 104, 226], "content": "\\mathcal{D}(\\Lambda_{1})", "caption": ""}, {"type": "inline", "coordinates": [136, 212, 181, 230], "content": "\\textstyle\\mathcal{D}(\\frac{k}{a_{i}^{\\vee}}\\Lambda_{i})", "caption": ""}, {"type": "inline", "coordinates": [204, 214, 232, 225], "content": "i\\neq0", "caption": ""}, {"type": "inline", "coordinates": [255, 213, 286, 226], "content": "\\mathcal{D}(\\Lambda_{i})", "caption": ""}, {"type": "inline", "coordinates": [309, 214, 349, 225], "content": "i\\neq0,1", "caption": ""}, {"type": "inline", "coordinates": [297, 243, 342, 261], "content": "\\textstyle\\mathcal{D}(\\frac{k}{a_{i}^{\\vee}}\\Lambda_{i})", "caption": ""}, {"type": "inline", "coordinates": [499, 245, 506, 254], "content": "k", "caption": ""}, {"type": "inline", "coordinates": [524, 249, 536, 254], "content": "\\infty", "caption": ""}, {"type": "inline", "coordinates": [104, 262, 135, 274], "content": "\\mathcal{D}(\\Lambda_{i})", "caption": ""}, {"type": "inline", "coordinates": [297, 263, 304, 271], "content": "k", "caption": ""}, {"type": "inline", "coordinates": [448, 263, 461, 273], "content": "\\Lambda_{i}", "caption": ""}, {"type": "inline", "coordinates": [121, 306, 130, 314], "content": "A", "caption": ""}, {"type": "inline", "coordinates": [159, 327, 215, 337], "content": "\\overline{r}\\,=\\,r\\,+\\,1", "caption": ""}, {"type": "inline", "coordinates": [401, 325, 484, 338], "content": "\\pi\\Lambda_{1}\\,=\\,C^{a}J^{b}\\Lambda_{1}", "caption": ""}, {"type": "inline", "coordinates": [71, 342, 88, 353], "content": "a,b", "caption": ""}, {"type": "inline", "coordinates": [144, 345, 151, 350], "content": "\\pi", "caption": ""}, {"type": "inline", "coordinates": [185, 342, 200, 350], "content": "C^{a}", "caption": ""}, {"type": "inline", "coordinates": [464, 342, 497, 351], "content": "a\\;=\\;0", "caption": ""}, {"type": "inline", "coordinates": [71, 355, 137, 368], "content": "\\pi(J0)=J^{c}0", "caption": ""}, {"type": "inline", "coordinates": [171, 359, 178, 365], "content": "\\pi", "caption": ""}, {"type": "inline", "coordinates": [312, 356, 327, 367], "content": "P_{+}", "caption": ""}, {"type": "inline", "coordinates": [369, 359, 375, 365], "content": "c", "caption": ""}, {"type": "inline", "coordinates": [450, 357, 456, 365], "content": "\\overline{r}", "caption": ""}, {"type": "inline", "coordinates": [107, 370, 136, 379], "content": "k=1", "caption": ""}, {"type": "inline", "coordinates": [167, 370, 281, 382], "content": "P_{+}=\\{0,J0,\\dots,J^{r}0\\}", "caption": ""}, {"type": "inline", "coordinates": [299, 370, 363, 382], "content": "\\pi=\\pi[c-1]", "caption": ""}, {"type": "inline", "coordinates": [482, 370, 511, 381], "content": "k\\geq2", "caption": ""}, {"type": "inline", "coordinates": [231, 384, 238, 393], "content": "\\lambda", "caption": ""}, {"type": "inline", "coordinates": [353, 384, 419, 395], "content": "\\Lambda_{1}\\otimes\\cdot\\cdot\\otimes\\Lambda_{1}", "caption": ""}, {"type": "inline", "coordinates": [426, 384, 468, 396], "content": "\\ell\\,\\mathrm{times})", "caption": ""}, {"type": "inline", "coordinates": [71, 398, 115, 411], "content": "t(\\lambda)=\\ell", "caption": ""}, {"type": "inline", "coordinates": [288, 396, 309, 414], "content": "\\frac{\\ell!}{h(\\lambda)}", "caption": ""}, {"type": "inline", "coordinates": [335, 416, 349, 427], "content": "\\Lambda_{\\overline{{r}}}", "caption": ""}, {"type": "inline", "coordinates": [374, 417, 388, 428], "content": "\\Lambda_{0}", "caption": ""}, {"type": "inline", "coordinates": [430, 414, 458, 430], "content": "^{\\star}{\\frac{k}{r}}\\Lambda_{\\overline{{r}}}^{\\ \\ \\,}{}^{\\ ,}", "caption": ""}, {"type": "inline", "coordinates": [498, 416, 509, 426], "content": "\\mathrm{\\Delta}^{\\prime}0^{\\circ}", "caption": ""}, {"type": "inline", "coordinates": [71, 432, 77, 440], "content": "\\overline{r}", "caption": ""}, {"type": "inline", "coordinates": [120, 431, 127, 440], "content": "k", "caption": ""}, {"type": "inline", "coordinates": [167, 430, 242, 443], "content": "h(\\lambda)=\\prod h(x)", "caption": ""}, {"type": "inline", "coordinates": [163, 446, 170, 454], "content": "\\lambda", "caption": ""}, {"type": "inline", "coordinates": [381, 444, 446, 457], "content": "t(\\lambda)=\\ell\\leq k", "caption": ""}, {"type": "inline", "coordinates": [518, 443, 539, 460], "content": "\\frac{\\ell!}{h(\\lambda)}", "caption": ""}, {"type": "inline", "coordinates": [227, 463, 243, 474], "content": "N_{\\lambda}", "caption": ""}, {"type": "inline", "coordinates": [353, 461, 389, 475], "content": "(N_{\\Lambda_{1}})^{\\ell}", "caption": ""}, {"type": "inline", "coordinates": [454, 463, 506, 474], "content": "J0=k\\Lambda_{1}", "caption": ""}, {"type": "inline", "coordinates": [348, 476, 362, 488], "content": "\\Lambda_{1}", "caption": ""}, {"type": "inline", "coordinates": [415, 475, 430, 488], "content": "\\Lambda_{1}", "caption": ""}, {"type": "inline", "coordinates": [439, 476, 446, 487], "content": "k", "caption": ""}, {"type": "inline", "coordinates": [354, 489, 376, 502], "content": "\\pi\\Lambda_{1}", "caption": ""}, {"type": "inline", "coordinates": [429, 489, 451, 502], "content": "\\pi\\Lambda_{1}", "caption": ""}, {"type": "inline", "coordinates": [493, 489, 525, 501], "content": "J^{b k}J0", "caption": ""}, {"type": "inline", "coordinates": [151, 507, 157, 515], "content": "\\overline{r}", "caption": ""}, {"type": "inline", "coordinates": [203, 506, 210, 515], "content": "k", "caption": ""}, {"type": "inline", "coordinates": [263, 506, 322, 516], "content": "b k+1\\equiv c", "caption": ""}, {"type": "inline", "coordinates": [359, 506, 366, 515], "content": "\\overline{r}", "caption": ""}, {"type": "inline", "coordinates": [484, 506, 491, 515], "content": "\\overline{r}", "caption": ""}, {"type": "inline", "coordinates": [251, 519, 271, 532], "content": "\\pi[b]", "caption": ""}, {"type": "inline", "coordinates": [289, 533, 340, 545], "content": "\\pi\\Lambda_{1}=\\Lambda_{1}", "caption": ""}, {"type": "inline", "coordinates": [398, 532, 457, 546], "content": "\\pi[J0]=J0", "caption": ""}, {"type": "inline", "coordinates": [71, 550, 99, 558], "content": "r=1", "caption": ""}, {"type": "inline", "coordinates": [160, 549, 188, 560], "content": "r\\geq2", "caption": ""}, {"type": "inline", "coordinates": [246, 547, 261, 560], "content": "\\Lambda_{1}", "caption": ""}, {"type": "inline", "coordinates": [278, 547, 293, 560], "content": "\\Lambda_{1}", "caption": ""}, {"type": "inline", "coordinates": [394, 547, 481, 561], "content": "\\pi\\Lambda_{2}\\in\\{\\Lambda_{2},2\\Lambda_{1}\\}", "caption": ""}, {"type": "inline", "coordinates": [71, 563, 91, 574], "content": "k\\Lambda_{1}", "caption": ""}, {"type": "inline", "coordinates": [431, 561, 452, 574], "content": "2\\Lambda_{1}", "caption": ""}, {"type": "inline", "coordinates": [482, 561, 534, 574], "content": "k-2\\;\\Lambda_{1}\\,{}^{\\prime}\\mathrm{s}", "caption": ""}, {"type": "inline", "coordinates": [379, 576, 393, 588], "content": "\\Lambda_{2}", "caption": ""}, {"type": "inline", "coordinates": [423, 575, 469, 588], "content": "k-2~\\Lambda_{1}", "caption": ""}, {"type": "inline", "coordinates": [71, 591, 186, 604], "content": "k\\Lambda_{1}\\succ(k-2)\\Lambda_{1}+\\Lambda_{2}", "caption": ""}, {"type": "inline", "coordinates": [425, 590, 440, 603], "content": "\\Lambda_{2}", "caption": ""}, {"type": "inline", "coordinates": [457, 590, 472, 603], "content": "\\Lambda_{1}", "caption": ""}, {"type": "inline", "coordinates": [524, 589, 540, 603], "content": "\\Lambda_{1}", "caption": ""}, {"type": "inline", "coordinates": [164, 606, 178, 616], "content": "J0", "caption": ""}, {"type": "inline", "coordinates": [185, 603, 348, 618], "content": "(\\pi\\Lambda_{2})\\boxtimes(\\pi\\Lambda_{1})\\boxtimes\\dots\\boxtimes(\\pi\\Lambda_{1})", "caption": ""}, {"type": "inline", "coordinates": [449, 604, 513, 618], "content": "\\pi(J0)\\,=\\,J0", "caption": ""}, {"type": "inline", "coordinates": [97, 621, 118, 631], "content": "\\pi\\Lambda_{2}", "caption": ""}, {"type": "inline", "coordinates": [193, 619, 213, 632], "content": "2\\Lambda_{1}", "caption": ""}, {"type": "inline", "coordinates": [174, 633, 226, 646], "content": "\\pi\\Lambda_{2}=\\Lambda_{2}", "caption": ""}, {"type": "inline", "coordinates": [316, 633, 366, 646], "content": "\\pi\\Lambda_{\\ell}=\\Lambda_{\\ell}", "caption": ""}, {"type": "inline", "coordinates": [71, 649, 121, 660], "content": "\\pi\\Lambda_{\\ell}=\\Lambda_{\\ell}", "caption": ""}, {"type": "inline", "coordinates": [173, 648, 224, 660], "content": "2\\leq\\ell<r", "caption": ""}, {"type": "inline", "coordinates": [314, 647, 360, 660], "content": "\\Lambda_{1}\\boxtimes\\Lambda_{\\ell}", "caption": ""}, {"type": "inline", "coordinates": [405, 648, 537, 662], "content": "\\pi\\Lambda_{\\ell+1}\\in\\{\\Lambda_{\\ell+1},\\Lambda_{1}+\\Lambda_{\\ell}\\}", "caption": ""}, {"type": "inline", "coordinates": [96, 662, 222, 675], "content": "h(\\Lambda_{1}+\\Lambda_{\\ell})=(\\ell+1)!/\\ell", "caption": ""}, {"type": "inline", "coordinates": [250, 662, 347, 676], "content": "h(\\Lambda_{\\ell+1})=(\\ell+1)!", "caption": ""}, {"type": "inline", "coordinates": [371, 663, 446, 675], "content": "\\pi\\Lambda_{\\ell+1}=\\Lambda_{\\ell+1}", "caption": ""}, {"type": "inline", "coordinates": [487, 664, 495, 673], "content": "\\pi", "caption": ""}, {"type": "inline", "coordinates": [232, 695, 240, 701], "content": "\\pi", "caption": ""}, {"type": "inline", "coordinates": [362, 692, 378, 704], "content": "P_{+}", "caption": ""}] | [] | [612.0, 792.0] | [{"type": "text", "text": "The complete proof of Proposition 4.1 is given in [18], but to illustrate the ideas we will sketch here the most interesting $(A_{r}^{(1)})$ and the most difficult $(E_{8}^{(1)})$ cases. ", "page_idx": 16}, {"type": "text", "text": "Consider first $A_{r,k}$ . By choosing $a\\!-\\!b=\\Lambda_{i}-\\Lambda_{j}$ in (4.1), we get that either $\\lambda=k\\Lambda_{\\ell}$ for some $\\ell$ , in which case $\\lambda$ is a simple-current and (for $k\\neq1$ ) $D(\\lambda)<\\mathcal{D}(\\Lambda_{1})$ , or $\\mathcal{D}(\\lambda)\\ge\\mathcal{D}(\\Lambda_{\\ell})$ for some $\\ell$ , with equality iff $\\lambda\\in S\\Lambda_{\\ell}$ . But then rank-level duality $A_{r,k}\\leftrightarrow A_{k-1,r+1}$ (defined as for $C_{r,k}$ , and which is exact for $A_{r,k}$ q-dimensions) and (4.1) with $a-b=\\widetilde{\\Lambda_{0}}-\\widetilde{\\Lambda_{1}}$ give us $\\mathcal{D}(\\Lambda_{\\ell})\\,=\\,\\widetilde{\\mathcal{D}}(\\ell\\widetilde{\\Lambda_{1}})\\,\\geq\\,\\widetilde{\\mathcal{D}}(\\widetilde{\\Lambda_{1}})\\,=\\,\\mathcal{D}(\\Lambda_{1})$ , with equality iff $\\ell\\,=\\,1$ or $r$ . Com bining these results yields Proposition 4.1(a). ", "page_idx": 16}, {"type": "text", "text": "For $E_{8,k}$ , run through each $a\\mathrm{~-~}b\\mathrm{~=~}a_{j}^{\\vee}\\Lambda_{i}\\mathrm{~-~}a_{i}^{\\vee}\\Lambda_{j}$ to reduce the proof to comparing $\\mathcal{D}(\\Lambda_{1})$ with $\\textstyle\\mathcal{D}(\\frac{k}{a_{i}^{\\vee}}\\Lambda_{i})$ for $i\\neq0$ , or $\\mathcal{D}(\\Lambda_{i})$ for $i\\neq0,1$ (the argument in [18] unnecessarily complicated things by restricting to integral weights). Standard arguments (see [18] for details) quickly show that the q-dimension $\\textstyle\\mathcal{D}(\\frac{k}{a_{i}^{\\vee}}\\Lambda_{i})$ monotonically increases with $k$ to $\\infty$ , while $\\mathcal{D}(\\Lambda_{i})$ monotonically increases with $k$ to the Weyl dimension of $\\Lambda_{i}$ . The proof of Proposition 4.1(e8) then reduces to a short computation. ", "page_idx": 16}, {"type": "text", "text": "4.2. The $A$ -series argument ", "text_level": 1, "page_idx": 16}, {"type": "text", "text": "Recall that $\\overline{r}\\,=\\,r\\,+\\,1$ . Proposition 4.1(a) tells us that $\\pi\\Lambda_{1}\\,=\\,C^{a}J^{b}\\Lambda_{1}$ , for some $a,b$ . Hitting $\\pi$ with $C^{a}$ , we can assume without loss of generality that $a\\;=\\;0$ . Write $\\pi(J0)=J^{c}0$ ; then $\\pi$ can be a permutation of $P_{+}$ only if $c$ is coprime to $\\overline{r}$ . ", "page_idx": 16}, {"type": "text", "text": "If $k=1$ then $P_{+}=\\{0,J0,\\dots,J^{r}0\\}$ so $\\pi=\\pi[c-1]$ . Thus we can assume $k\\geq2$ . ", "page_idx": 16}, {"type": "text", "text": "Useful is the coefficient of $\\lambda$ in the tensor product $\\Lambda_{1}\\otimes\\cdot\\cdot\\otimes\\Lambda_{1}$ ( $\\ell\\,\\mathrm{times})$ : it is 0 unless $t(\\lambda)=\\ell$ , in which case the coefficient is $\\frac{\\ell!}{h(\\lambda)}$ (to get this, compare (3.1) above with [27, p.114]) \u2014 we equate here the fundamental weights $\\Lambda_{\\overline{{r}}}$ and $\\Lambda_{0}$ , so e.g. $^{\\star}{\\frac{k}{r}}\\Lambda_{\\overline{{r}}}^{\\ \\ \\,}{}^{\\ ,}$ equals $\\mathrm{\\Delta}^{\\prime}0^{\\circ}$ when $\\overline{r}$ divides $k$ . Here, $h(\\lambda)=\\prod h(x)$ is the product of the hook-lengths of the Young diagram corresponding to $\\lambda$ . Equation (2.4) tells us that as long as $t(\\lambda)=\\ell\\leq k$ , the number $\\frac{\\ell!}{h(\\lambda)}$ will also be the coefficient of $N_{\\lambda}$ in the fusion power $(N_{\\Lambda_{1}})^{\\ell}$ . Note that $J0=k\\Lambda_{1}$ is the only simple-current appearing in the fusion product $\\Lambda_{1}$ \u00d7 \u00b7 \u00b7 \u00b7 \u00d7 $\\Lambda_{1}$ ( $k$ times). Thus the only nontrivial simple-current appearing in the fusion $\\pi\\Lambda_{1}$ \u00d7 \u00b7 \u00b7 \u00b7 \u00d7 $\\pi\\Lambda_{1}$ will be $J^{b k}J0$ (0 will appear iff $\\overline{r}$ divides $k$ ). Hence $b k+1\\equiv c$ (mod $\\overline{r}$ ) must be coprime to $\\overline{r}$ . This is precisely the condition needed for $\\pi[b]$ to be a simple-current automorphism. ", "page_idx": 16}, {"type": "text", "text": "In other words, it suffices to consider $\\pi\\Lambda_{1}=\\Lambda_{1}$ and hence $\\pi[J0]=J0$ . We are done if $r=1$ , so assume $r\\geq2$ . From the $\\Lambda_{1}$ \u00d7 $\\Lambda_{1}$ fusion, we get that $\\pi\\Lambda_{2}\\in\\{\\Lambda_{2},2\\Lambda_{1}\\}$ . Note that $k\\Lambda_{1}$ occurs (with multiplicity 1) in the tensor and fusion product of $2\\Lambda_{1}$ with $k-2\\;\\Lambda_{1}\\,{}^{\\prime}\\mathrm{s}$ s, but that it doesn\u2019t in the tensor (hence fusion) product of $\\Lambda_{2}$ with $k-2~\\Lambda_{1}$ \u2019s (recall that $k\\Lambda_{1}\\succ(k-2)\\Lambda_{1}+\\Lambda_{2}$ in the usual partial order on weights). Since $\\Lambda_{2}$ \u00d7 $\\Lambda_{1}$ \u00d7 \u00b7 \u00b7 \u00b7 \u00d7 $\\Lambda_{1}$ does not contain $J0$ , $(\\pi\\Lambda_{2})\\boxtimes(\\pi\\Lambda_{1})\\boxtimes\\dots\\boxtimes(\\pi\\Lambda_{1})$ should also avoid $\\pi(J0)\\,=\\,J0$ , and thus $\\pi\\Lambda_{2}$ cannot equal $2\\Lambda_{1}$ . ", "page_idx": 16}, {"type": "text", "text": "Thus we know $\\pi\\Lambda_{2}=\\Lambda_{2}$ . The remaining $\\pi\\Lambda_{\\ell}=\\Lambda_{\\ell}$ follow quickly from induction: if $\\pi\\Lambda_{\\ell}=\\Lambda_{\\ell}$ for some $2\\leq\\ell<r$ , then the fusion $\\Lambda_{1}\\boxtimes\\Lambda_{\\ell}$ tells us $\\pi\\Lambda_{\\ell+1}\\in\\{\\Lambda_{\\ell+1},\\Lambda_{1}+\\Lambda_{\\ell}\\}$ . But $h(\\Lambda_{1}+\\Lambda_{\\ell})=(\\ell+1)!/\\ell$ and $h(\\Lambda_{\\ell+1})=(\\ell+1)!$ , so $\\pi\\Lambda_{\\ell+1}=\\Lambda_{\\ell+1}$ . Thus $\\pi$ fixes all fundamental weights, and since these comprise a fusion-generator (see the discussion at the end of \u00a72.2) we know that $\\pi$ must fix everything in $P_{+}$ . ", "page_idx": 16}] | [{"category_id": 1, "poly": [194, 1059, 1505, 1059, 1505, 1474, 194, 1474], "score": 0.982}, {"category_id": 1, "poly": [197, 288, 1504, 288, 1504, 536, 197, 536], "score": 0.982}, {"category_id": 1, "poly": [197, 538, 1505, 538, 1505, 800, 197, 800], "score": 0.982}, {"category_id": 1, "poly": [196, 1477, 1504, 1477, 1504, 1753, 196, 1753], "score": 0.979}, {"category_id": 1, "poly": [197, 1756, 1504, 1756, 1504, 1955, 197, 1955], "score": 0.977}, {"category_id": 1, "poly": [196, 898, 1505, 898, 1505, 1017, 196, 1017], "score": 0.959}, {"category_id": 1, "poly": [199, 197, 1506, 197, 1506, 285, 199, 285], "score": 0.95}, {"category_id": 0, "poly": [200, 838, 608, 838, 608, 878, 200, 878], "score": 0.877}, {"category_id": 2, "poly": [833, 2031, 868, 2031, 868, 2062, 833, 2062], "score": 0.841}, {"category_id": 1, "poly": [247, 1016, 1441, 1016, 1441, 1057, 247, 1057], "score": 0.549}, {"category_id": 1, "poly": [259, 1017, 1439, 1017, 1439, 1057, 259, 1057], "score": 0.492}, {"category_id": 13, "poly": [378, 589, 505, 589, 505, 639, 378, 639], "score": 0.95, "latex": "\\textstyle\\mathcal{D}(\\frac{k}{a_{i}^{\\vee}}\\Lambda_{i})"}, {"category_id": 13, "poly": [465, 1196, 674, 1196, 674, 1232, 465, 1232], "score": 0.95, "latex": "h(\\lambda)=\\prod h(x)"}, {"category_id": 13, "poly": [825, 677, 951, 677, 951, 726, 825, 726], "score": 0.95, "latex": "\\textstyle\\mathcal{D}(\\frac{k}{a_{i}^{\\vee}}\\Lambda_{i})"}, {"category_id": 13, "poly": [1340, 1030, 1421, 1030, 1421, 1059, 1340, 1059], "score": 0.95, "latex": "k\\geq2"}, {"category_id": 13, "poly": [833, 1028, 1009, 1028, 1009, 1063, 833, 1063], "score": 0.94, "latex": "\\pi=\\pi[c-1]"}, {"category_id": 13, "poly": [679, 546, 994, 546, 994, 587, 679, 587], "score": 0.94, "latex": "a\\mathrm{~-~}b\\mathrm{~=~}a_{j}^{\\vee}\\Lambda_{i}\\mathrm{~-~}a_{i}^{\\vee}\\Lambda_{j}"}, {"category_id": 13, "poly": [801, 1102, 860, 1102, 860, 1151, 801, 1151], "score": 0.94, "latex": "\\frac{\\ell!}{h(\\lambda)}"}, {"category_id": 13, "poly": [710, 593, 797, 593, 797, 628, 710, 628], "score": 0.94, "latex": "\\mathcal{D}(\\Lambda_{i})"}, {"category_id": 13, "poly": [289, 729, 375, 729, 375, 763, 289, 763], "score": 0.94, "latex": "\\mathcal{D}(\\Lambda_{i})"}, {"category_id": 13, "poly": [1201, 413, 1431, 413, 1431, 452, 1201, 452], "score": 0.94, "latex": "a-b=\\widetilde{\\Lambda_{0}}-\\widetilde{\\Lambda_{1}}"}, {"category_id": 13, "poly": [244, 459, 784, 459, 784, 502, 244, 502], "score": 0.94, "latex": "\\mathcal{D}(\\Lambda_{\\ell})\\,=\\,\\widetilde{\\mathcal{D}}(\\ell\\widetilde{\\Lambda_{1}})\\,\\geq\\,\\widetilde{\\mathcal{D}}(\\widetilde{\\Lambda_{1}})\\,=\\,\\mathcal{D}(\\Lambda_{1})"}, {"category_id": 13, "poly": [1115, 905, 1346, 905, 1346, 939, 1115, 939], "score": 0.94, "latex": "\\pi\\Lambda_{1}\\,=\\,C^{a}J^{b}\\Lambda_{1}"}, {"category_id": 13, "poly": [1294, 334, 1500, 334, 1500, 370, 1294, 370], "score": 0.93, "latex": "\\mathcal{D}(\\lambda)\\ge\\mathcal{D}(\\Lambda_{\\ell})"}, {"category_id": 13, "poly": [199, 1107, 321, 1107, 321, 1142, 199, 1142], "score": 0.93, "latex": "t(\\lambda)=\\ell"}, {"category_id": 13, "poly": [1249, 1679, 1425, 1679, 1425, 1719, 1249, 1719], "score": 0.93, "latex": "\\pi(J0)\\,=\\,J0"}, {"category_id": 13, "poly": [199, 593, 290, 593, 290, 628, 199, 628], "score": 0.93, "latex": "\\mathcal{D}(\\Lambda_{1})"}, {"category_id": 13, "poly": [1333, 297, 1451, 297, 1451, 326, 1333, 326], "score": 0.93, "latex": "\\lambda=k\\Lambda_{\\ell}"}, {"category_id": 13, "poly": [1439, 1232, 1499, 1232, 1499, 1280, 1439, 1280], "score": 0.93, "latex": "\\frac{\\ell!}{h(\\lambda)}"}, {"category_id": 13, "poly": [327, 549, 390, 549, 390, 583, 327, 583], "score": 0.93, "latex": "E_{8,k}"}, {"category_id": 13, "poly": [1125, 1801, 1492, 1801, 1492, 1839, 1125, 1839], "score": 0.93, "latex": "\\pi\\Lambda_{\\ell+1}\\in\\{\\Lambda_{\\ell+1},\\Lambda_{1}+\\Lambda_{\\ell}\\}"}, {"category_id": 13, "poly": [1032, 335, 1240, 335, 1240, 370, 1032, 370], "score": 0.93, "latex": "D(\\lambda)<\\mathcal{D}(\\Lambda_{1})"}, {"category_id": 13, "poly": [861, 595, 971, 595, 971, 626, 861, 626], "score": 0.93, "latex": "i\\neq0,1"}, {"category_id": 13, "poly": [631, 1288, 675, 1288, 675, 1317, 631, 1317], "score": 0.93, "latex": "N_{\\lambda}"}, {"category_id": 13, "poly": [464, 1028, 782, 1028, 782, 1063, 464, 1063], "score": 0.93, "latex": "P_{+}=\\{0,J0,\\dots,J^{r}0\\}"}, {"category_id": 13, "poly": [444, 911, 599, 911, 599, 937, 444, 937], "score": 0.93, "latex": "\\overline{r}\\,=\\,r\\,+\\,1"}, {"category_id": 13, "poly": [1132, 377, 1374, 377, 1374, 411, 1132, 411], "score": 0.92, "latex": "A_{r,k}\\leftrightarrow A_{k-1,r+1}"}, {"category_id": 13, "poly": [878, 1761, 1017, 1761, 1017, 1795, 878, 1795], "score": 0.92, "latex": "\\pi\\Lambda_{\\ell}=\\Lambda_{\\ell}"}, {"category_id": 13, "poly": [804, 1481, 946, 1481, 946, 1516, 804, 1516], "score": 0.92, "latex": "\\pi\\Lambda_{1}=\\Lambda_{1}"}, {"category_id": 13, "poly": [1058, 469, 1146, 469, 1146, 493, 1058, 493], "score": 0.92, "latex": "\\ell\\,=\\,1"}, {"category_id": 13, "poly": [199, 988, 382, 988, 382, 1023, 199, 1023], "score": 0.92, "latex": "\\pi(J0)=J^{c}0"}, {"category_id": 13, "poly": [298, 1030, 379, 1030, 379, 1054, 298, 1054], "score": 0.92, "latex": "k=1"}, {"category_id": 13, "poly": [868, 991, 911, 991, 911, 1022, 868, 1022], "score": 0.92, "latex": "P_{+}"}, {"category_id": 13, "poly": [1108, 1479, 1270, 1479, 1270, 1519, 1108, 1519], "score": 0.92, "latex": "\\pi[J0]=J0"}, {"category_id": 13, "poly": [1031, 1843, 1240, 1843, 1240, 1877, 1031, 1877], "score": 0.92, "latex": "\\pi\\Lambda_{\\ell+1}=\\Lambda_{\\ell+1}"}, {"category_id": 13, "poly": [695, 1840, 966, 1840, 966, 1878, 695, 1878], "score": 0.92, "latex": "h(\\Lambda_{\\ell+1})=(\\ell+1)!"}, {"category_id": 13, "poly": [1159, 245, 1248, 245, 1248, 291, 1159, 291], "score": 0.92, "latex": "(E_{8}^{(1)})"}, {"category_id": 13, "poly": [1247, 731, 1281, 731, 1281, 760, 1247, 760], "score": 0.92, "latex": "\\Lambda_{i}"}, {"category_id": 13, "poly": [290, 423, 350, 423, 350, 456, 290, 456], "score": 0.92, "latex": "C_{r,k}"}, {"category_id": 13, "poly": [272, 1726, 330, 1726, 330, 1755, 272, 1755], "score": 0.92, "latex": "\\pi\\Lambda_{2}"}, {"category_id": 13, "poly": [467, 297, 529, 297, 529, 331, 467, 331], "score": 0.92, "latex": "A_{r,k}"}, {"category_id": 13, "poly": [1263, 1287, 1406, 1287, 1406, 1317, 1263, 1317], "score": 0.92, "latex": "J0=k\\Lambda_{1}"}, {"category_id": 13, "poly": [198, 1805, 337, 1805, 337, 1835, 198, 1835], "score": 0.92, "latex": "\\pi\\Lambda_{\\ell}=\\Lambda_{\\ell}"}, {"category_id": 13, "poly": [199, 1644, 519, 1644, 519, 1678, 199, 1678], "score": 0.92, "latex": "k\\Lambda_{1}\\succ(k-2)\\Lambda_{1}+\\Lambda_{2}"}, {"category_id": 13, "poly": [982, 1281, 1081, 1281, 1081, 1320, 982, 1320], "score": 0.92, "latex": "(N_{\\Lambda_{1}})^{\\ell}"}, {"category_id": 13, "poly": [699, 1442, 754, 1442, 754, 1480, 699, 1480], "score": 0.92, "latex": "\\pi[b]"}, {"category_id": 13, "poly": [267, 1841, 618, 1841, 618, 1877, 267, 1877], "score": 0.92, "latex": "h(\\Lambda_{1}+\\Lambda_{\\ell})=(\\ell+1)!/\\ell"}, {"category_id": 13, "poly": [1290, 951, 1382, 951, 1382, 975, 1290, 975], "score": 0.91, "latex": "a\\;=\\;0"}, {"category_id": 13, "poly": [983, 1068, 1164, 1068, 1164, 1099, 983, 1099], "score": 0.91, "latex": "\\Lambda_{1}\\otimes\\cdot\\cdot\\otimes\\Lambda_{1}"}, {"category_id": 13, "poly": [1060, 1235, 1241, 1235, 1241, 1272, 1060, 1272], "score": 0.91, "latex": "t(\\lambda)=\\ell\\leq k"}, {"category_id": 13, "poly": [700, 423, 760, 423, 760, 457, 700, 457], "score": 0.91, "latex": "A_{r,k}"}, {"category_id": 13, "poly": [486, 1761, 629, 1761, 629, 1795, 486, 1795], "score": 0.91, "latex": "\\pi\\Lambda_{2}=\\Lambda_{2}"}, {"category_id": 13, "poly": [1097, 1521, 1338, 1521, 1338, 1559, 1097, 1559], "score": 0.91, "latex": "\\pi\\Lambda_{2}\\in\\{\\Lambda_{2},2\\Lambda_{1}\\}"}, {"category_id": 13, "poly": [734, 297, 942, 297, 942, 331, 734, 331], "score": 0.91, "latex": "a\\!-\\!b=\\Lambda_{i}-\\Lambda_{j}"}, {"category_id": 13, "poly": [569, 595, 647, 595, 647, 626, 569, 626], "score": 0.91, "latex": "i\\neq0"}, {"category_id": 13, "poly": [595, 377, 713, 377, 713, 407, 595, 407], "score": 0.91, "latex": "\\lambda\\in S\\Lambda_{\\ell}"}, {"category_id": 13, "poly": [931, 1158, 971, 1158, 971, 1188, 931, 1188], "score": 0.91, "latex": "\\Lambda_{\\overline{{r}}}"}, {"category_id": 13, "poly": [199, 1566, 255, 1566, 255, 1595, 199, 1595], "score": 0.91, "latex": "k\\Lambda_{1}"}, {"category_id": 13, "poly": [199, 950, 247, 950, 247, 981, 199, 981], "score": 0.91, "latex": "a,b"}, {"category_id": 13, "poly": [1197, 1152, 1273, 1152, 1273, 1196, 1197, 1196], "score": 0.91, "latex": "^{\\star}{\\frac{k}{r}}\\Lambda_{\\overline{{r}}}^{\\ \\ \\,}{}^{\\ ,}"}, {"category_id": 13, "poly": [932, 336, 1012, 336, 1012, 368, 932, 368], "score": 0.9, "latex": "k\\neq1"}, {"category_id": 13, "poly": [537, 1721, 593, 1721, 593, 1756, 537, 1756], "score": 0.9, "latex": "2\\Lambda_{1}"}, {"category_id": 13, "poly": [516, 950, 558, 950, 558, 974, 516, 974], "score": 0.9, "latex": "C^{a}"}, {"category_id": 13, "poly": [1039, 1159, 1078, 1159, 1078, 1189, 1039, 1189], "score": 0.9, "latex": "\\Lambda_{0}"}, {"category_id": 13, "poly": [1199, 1561, 1256, 1561, 1256, 1595, 1199, 1595], "score": 0.9, "latex": "2\\Lambda_{1}"}, {"category_id": 13, "poly": [1008, 1924, 1052, 1924, 1052, 1957, 1008, 1957], "score": 0.9, "latex": "P_{+}"}, {"category_id": 13, "poly": [336, 1199, 355, 1199, 355, 1224, 336, 1224], "score": 0.89, "latex": "k"}, {"category_id": 13, "poly": [1250, 993, 1268, 993, 1268, 1014, 1250, 1014], "score": 0.89, "latex": "\\overline{r}"}, {"category_id": 13, "poly": [642, 1069, 662, 1069, 662, 1093, 642, 1093], "score": 0.89, "latex": "\\lambda"}, {"category_id": 13, "poly": [1388, 683, 1407, 683, 1407, 707, 1388, 707], "score": 0.89, "latex": "k"}, {"category_id": 13, "poly": [199, 1528, 277, 1528, 277, 1552, 199, 1552], "score": 0.89, "latex": "r=1"}, {"category_id": 13, "poly": [1053, 1600, 1093, 1600, 1093, 1635, 1053, 1635], "score": 0.89, "latex": "\\Lambda_{2}"}, {"category_id": 13, "poly": [731, 1407, 897, 1407, 897, 1434, 731, 1434], "score": 0.89, "latex": "b k+1\\equiv c"}, {"category_id": 13, "poly": [446, 1525, 524, 1525, 524, 1556, 446, 1556], "score": 0.89, "latex": "r\\geq2"}, {"category_id": 13, "poly": [825, 731, 845, 731, 845, 755, 825, 755], "score": 0.89, "latex": "k"}, {"category_id": 13, "poly": [737, 245, 824, 245, 824, 290, 737, 290], "score": 0.88, "latex": "(A_{r}^{(1)})"}, {"category_id": 13, "poly": [453, 1239, 474, 1239, 474, 1263, 453, 1263], "score": 0.88, "latex": "\\lambda"}, {"category_id": 13, "poly": [1026, 999, 1042, 999, 1042, 1015, 1026, 1015], "score": 0.88, "latex": "c"}, {"category_id": 13, "poly": [508, 336, 529, 336, 529, 362, 508, 362], "score": 0.88, "latex": "\\lambda"}, {"category_id": 13, "poly": [475, 999, 496, 999, 496, 1014, 475, 1014], "score": 0.87, "latex": "\\pi"}, {"category_id": 13, "poly": [327, 377, 343, 377, 343, 401, 327, 401], "score": 0.87, "latex": "\\ell"}, {"category_id": 13, "poly": [1193, 1360, 1254, 1360, 1254, 1396, 1193, 1396], "score": 0.87, "latex": "\\pi\\Lambda_{1}"}, {"category_id": 13, "poly": [483, 1801, 624, 1801, 624, 1835, 483, 1835], "score": 0.87, "latex": "2\\leq\\ell<r"}, {"category_id": 13, "poly": [420, 1410, 438, 1410, 438, 1431, 420, 1431], "score": 0.86, "latex": "\\overline{r}"}, {"category_id": 13, "poly": [1203, 477, 1220, 477, 1220, 494, 1203, 494], "score": 0.86, "latex": "r"}, {"category_id": 13, "poly": [279, 337, 295, 337, 295, 361, 279, 361], "score": 0.86, "latex": "\\ell"}, {"category_id": 13, "poly": [199, 1202, 216, 1202, 216, 1223, 199, 1223], "score": 0.86, "latex": "\\overline{r}"}, {"category_id": 13, "poly": [1458, 1638, 1500, 1638, 1500, 1676, 1458, 1676], "score": 0.84, "latex": "\\Lambda_{1}"}, {"category_id": 13, "poly": [1155, 1320, 1196, 1320, 1196, 1356, 1155, 1356], "score": 0.84, "latex": "\\Lambda_{1}"}, {"category_id": 13, "poly": [1457, 692, 1491, 692, 1491, 707, 1457, 707], "score": 0.84, "latex": "\\infty"}, {"category_id": 13, "poly": [401, 959, 422, 959, 422, 974, 401, 974], "score": 0.84, "latex": "\\pi"}, {"category_id": 13, "poly": [1370, 1360, 1461, 1360, 1461, 1394, 1370, 1394], "score": 0.83, "latex": "J^{b k}J0"}, {"category_id": 13, "poly": [886, 1678, 971, 1678, 971, 1718, 886, 1718], "score": 0.83, "latex": "\\left(\\pi\\Lambda_{1}\\right)"}, {"category_id": 13, "poly": [565, 1407, 585, 1407, 585, 1432, 565, 1432], "score": 0.82, "latex": "k"}, {"category_id": 13, "poly": [986, 1360, 1046, 1360, 1046, 1396, 986, 1396], "score": 0.81, "latex": "\\pi\\Lambda_{1}"}, {"category_id": 13, "poly": [456, 1685, 496, 1685, 496, 1712, 456, 1712], "score": 0.8, "latex": "J0"}, {"category_id": 13, "poly": [1176, 1599, 1305, 1599, 1305, 1635, 1176, 1635], "score": 0.79, "latex": "k-2~\\Lambda_{1}"}, {"category_id": 13, "poly": [685, 1520, 726, 1520, 726, 1556, 685, 1556], "score": 0.78, "latex": "\\Lambda_{1}"}, {"category_id": 13, "poly": [773, 1520, 814, 1520, 814, 1556, 773, 1556], "score": 0.77, "latex": "\\Lambda_{1}"}, {"category_id": 13, "poly": [1347, 1406, 1366, 1406, 1366, 1432, 1347, 1432], "score": 0.76, "latex": "\\overline{r}"}, {"category_id": 13, "poly": [1270, 1639, 1312, 1639, 1312, 1676, 1270, 1676], "score": 0.74, "latex": "\\Lambda_{1}"}, {"category_id": 13, "poly": [968, 1324, 1007, 1324, 1007, 1356, 968, 1356], "score": 0.73, "latex": "\\Lambda_{1}"}, {"category_id": 13, "poly": [1182, 1639, 1223, 1639, 1223, 1676, 1182, 1676], "score": 0.72, "latex": "\\Lambda_{2}"}, {"category_id": 13, "poly": [1354, 1847, 1376, 1847, 1376, 1870, 1354, 1870], "score": 0.72, "latex": "\\pi"}, {"category_id": 13, "poly": [1341, 1559, 1485, 1559, 1485, 1596, 1341, 1596], "score": 0.69, "latex": "k-2\\;\\Lambda_{1}\\,{}^{\\prime}\\mathrm{s}"}, {"category_id": 13, "poly": [645, 1932, 667, 1932, 667, 1949, 645, 1949], "score": 0.67, "latex": "\\pi"}, {"category_id": 13, "poly": [1220, 1324, 1240, 1324, 1240, 1353, 1220, 1353], "score": 0.67, "latex": "k"}, {"category_id": 13, "poly": [874, 1799, 913, 1799, 913, 1835, 874, 1835], "score": 0.61, "latex": "\\Lambda_{1}"}, {"category_id": 13, "poly": [998, 1408, 1018, 1408, 1018, 1432, 998, 1432], "score": 0.59, "latex": "\\overline{r}"}, {"category_id": 13, "poly": [961, 1799, 1001, 1799, 1001, 1835, 961, 1835], "score": 0.57, "latex": "\\Lambda_{\\ell}"}, {"category_id": 13, "poly": [874, 1798, 1001, 1798, 1001, 1835, 874, 1835], "score": 0.44, "latex": "\\Lambda_{1}\\boxtimes\\Lambda_{\\ell}"}, {"category_id": 13, "poly": [1386, 1157, 1415, 1157, 1415, 1185, 1386, 1185], "score": 0.39, "latex": "\\mathrm{\\Delta}^{\\prime}0^{\\circ}"}, {"category_id": 13, "poly": [518, 1679, 601, 1679, 601, 1718, 518, 1718], "score": 0.39, "latex": "\\left(\\pi\\Lambda_{2}\\right)"}, {"category_id": 13, "poly": [652, 1677, 735, 1677, 735, 1718, 652, 1718], "score": 0.38, "latex": "\\left(\\pi\\Lambda_{1}\\right)"}, {"category_id": 13, "poly": [337, 850, 362, 850, 362, 874, 337, 874], "score": 0.33, "latex": "A"}, {"category_id": 13, "poly": [1187, 1068, 1201, 1068, 1201, 1094, 1187, 1094], "score": 0.32, "latex": "\\ell"}, {"category_id": 13, "poly": [1185, 1067, 1301, 1067, 1301, 1101, 1185, 1101], "score": 0.29, "latex": "\\ell\\,\\mathrm{times})"}, {"category_id": 13, "poly": [516, 1677, 969, 1677, 969, 1719, 516, 1719], "score": 0.25, "latex": "(\\pi\\Lambda_{2})\\boxtimes(\\pi\\Lambda_{1})\\boxtimes\\dots\\boxtimes(\\pi\\Lambda_{1})"}, {"category_id": 15, "poly": [260.0, 1059.0, 641.0, 1059.0, 641.0, 1106.0, 260.0, 1106.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [663.0, 1059.0, 982.0, 1059.0, 982.0, 1106.0, 663.0, 1106.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1165.0, 1059.0, 1184.0, 1059.0, 1184.0, 1106.0, 1165.0, 1106.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1302.0, 1059.0, 1504.0, 1059.0, 1504.0, 1106.0, 1302.0, 1106.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [188.0, 1094.0, 198.0, 1094.0, 198.0, 1164.0, 188.0, 1164.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [322.0, 1094.0, 800.0, 1094.0, 800.0, 1164.0, 322.0, 1164.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [861.0, 1094.0, 1511.0, 1094.0, 1511.0, 1164.0, 861.0, 1164.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [195.0, 1151.0, 930.0, 1151.0, 930.0, 1196.0, 195.0, 1196.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [972.0, 1151.0, 1038.0, 1151.0, 1038.0, 1196.0, 972.0, 1196.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1079.0, 1151.0, 1196.0, 1151.0, 1196.0, 1196.0, 1079.0, 1196.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1274.0, 1151.0, 1385.0, 1151.0, 1385.0, 1196.0, 1274.0, 1196.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1416.0, 1151.0, 1505.0, 1151.0, 1505.0, 1196.0, 1416.0, 1196.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [193.0, 1192.0, 198.0, 1192.0, 198.0, 1237.0, 193.0, 1237.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [217.0, 1192.0, 335.0, 1192.0, 335.0, 1237.0, 217.0, 1237.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [356.0, 1192.0, 464.0, 1192.0, 464.0, 1237.0, 356.0, 1237.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [675.0, 1192.0, 1505.0, 1192.0, 1505.0, 1237.0, 675.0, 1237.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [195.0, 1233.0, 452.0, 1233.0, 452.0, 1277.0, 195.0, 1277.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [475.0, 1233.0, 1059.0, 1233.0, 1059.0, 1277.0, 475.0, 1277.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1242.0, 1233.0, 1438.0, 1233.0, 1438.0, 1277.0, 1242.0, 1277.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [194.0, 1280.0, 630.0, 1280.0, 630.0, 1324.0, 194.0, 1324.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [676.0, 1280.0, 981.0, 1280.0, 981.0, 1324.0, 676.0, 1324.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1082.0, 1280.0, 1262.0, 1280.0, 1262.0, 1324.0, 1082.0, 1324.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1407.0, 1280.0, 1506.0, 1280.0, 1506.0, 1324.0, 1407.0, 1324.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [197.0, 1321.0, 967.0, 1321.0, 967.0, 1366.0, 197.0, 1366.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1008.0, 1321.0, 1154.0, 1321.0, 1154.0, 1366.0, 1008.0, 1366.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1197.0, 1321.0, 1219.0, 1321.0, 1219.0, 1366.0, 1197.0, 1366.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1241.0, 1321.0, 1506.0, 1321.0, 1506.0, 1366.0, 1241.0, 1366.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [195.0, 1360.0, 985.0, 1360.0, 985.0, 1403.0, 195.0, 1403.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1047.0, 1360.0, 1192.0, 1360.0, 1192.0, 1403.0, 1047.0, 1403.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1255.0, 1360.0, 1369.0, 1360.0, 1369.0, 1403.0, 1255.0, 1403.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1462.0, 1360.0, 1506.0, 1360.0, 1506.0, 1403.0, 1462.0, 1403.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [201.0, 1404.0, 419.0, 1404.0, 419.0, 1441.0, 201.0, 1441.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [439.0, 1404.0, 564.0, 1404.0, 564.0, 1441.0, 439.0, 1441.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [586.0, 1404.0, 730.0, 1404.0, 730.0, 1441.0, 586.0, 1441.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [898.0, 1404.0, 997.0, 1404.0, 997.0, 1441.0, 898.0, 1441.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1019.0, 1404.0, 1346.0, 1404.0, 1346.0, 1441.0, 1019.0, 1441.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1367.0, 1404.0, 1505.0, 1404.0, 1505.0, 1441.0, 1367.0, 1441.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [200.0, 1445.0, 698.0, 1445.0, 698.0, 1482.0, 200.0, 1482.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [755.0, 1445.0, 1312.0, 1445.0, 1312.0, 1482.0, 755.0, 1482.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1440.0, 1249.5, 1495.0, 1249.5, 1495.0, 1280.5, 1440.0, 1280.5], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1457.0, 1235.0, 1482.0, 1235.0, 1482.0, 1250.5, 1457.0, 1250.5], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [263.0, 289.0, 466.0, 289.0, 466.0, 337.0, 263.0, 337.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [530.0, 289.0, 733.0, 289.0, 733.0, 337.0, 530.0, 337.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [943.0, 289.0, 1332.0, 289.0, 1332.0, 337.0, 943.0, 337.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1452.0, 289.0, 1506.0, 289.0, 1506.0, 337.0, 1452.0, 337.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [195.0, 331.0, 278.0, 331.0, 278.0, 375.0, 195.0, 375.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [296.0, 331.0, 507.0, 331.0, 507.0, 375.0, 296.0, 375.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [530.0, 331.0, 931.0, 331.0, 931.0, 375.0, 530.0, 375.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1013.0, 331.0, 1031.0, 331.0, 1031.0, 375.0, 1013.0, 375.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1241.0, 331.0, 1293.0, 331.0, 1293.0, 375.0, 1241.0, 375.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1501.0, 331.0, 1501.0, 331.0, 1501.0, 375.0, 1501.0, 375.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [195.0, 368.0, 326.0, 368.0, 326.0, 417.0, 195.0, 417.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [344.0, 368.0, 594.0, 368.0, 594.0, 417.0, 344.0, 417.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [714.0, 368.0, 1131.0, 368.0, 1131.0, 417.0, 714.0, 417.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1375.0, 368.0, 1504.0, 368.0, 1504.0, 417.0, 1375.0, 417.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [198.0, 420.0, 289.0, 420.0, 289.0, 459.0, 198.0, 459.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [351.0, 420.0, 699.0, 420.0, 699.0, 459.0, 351.0, 459.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [761.0, 420.0, 1200.0, 420.0, 1200.0, 459.0, 761.0, 459.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1432.0, 420.0, 1501.0, 420.0, 1501.0, 459.0, 1432.0, 459.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [195.0, 459.0, 243.0, 459.0, 243.0, 508.0, 195.0, 508.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [785.0, 459.0, 1057.0, 459.0, 1057.0, 508.0, 785.0, 508.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1147.0, 459.0, 1202.0, 459.0, 1202.0, 508.0, 1147.0, 508.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1221.0, 459.0, 1504.0, 459.0, 1504.0, 508.0, 1221.0, 508.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [198.0, 504.0, 676.0, 504.0, 676.0, 546.0, 198.0, 546.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [260.0, 540.0, 326.0, 540.0, 326.0, 590.0, 260.0, 590.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [391.0, 540.0, 678.0, 540.0, 678.0, 590.0, 391.0, 590.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [995.0, 540.0, 1505.0, 540.0, 1505.0, 590.0, 995.0, 590.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [194.0, 583.0, 198.0, 583.0, 198.0, 645.0, 194.0, 645.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [291.0, 583.0, 377.0, 583.0, 377.0, 645.0, 291.0, 645.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [506.0, 583.0, 568.0, 583.0, 568.0, 645.0, 506.0, 645.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [648.0, 583.0, 709.0, 583.0, 709.0, 645.0, 648.0, 645.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [798.0, 583.0, 860.0, 583.0, 860.0, 645.0, 798.0, 645.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [972.0, 583.0, 1510.0, 583.0, 1510.0, 645.0, 972.0, 645.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [198.0, 636.0, 1502.0, 636.0, 1502.0, 680.0, 198.0, 680.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [193.0, 670.0, 824.0, 670.0, 824.0, 730.0, 193.0, 730.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [952.0, 670.0, 1387.0, 670.0, 1387.0, 730.0, 952.0, 730.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1408.0, 670.0, 1456.0, 670.0, 1456.0, 730.0, 1408.0, 730.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1492.0, 670.0, 1510.0, 670.0, 1510.0, 730.0, 1492.0, 730.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [200.0, 726.0, 288.0, 726.0, 288.0, 765.0, 200.0, 765.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [376.0, 726.0, 824.0, 726.0, 824.0, 765.0, 376.0, 765.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [846.0, 726.0, 1246.0, 726.0, 1246.0, 765.0, 846.0, 765.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1282.0, 726.0, 1507.0, 726.0, 1507.0, 765.0, 1282.0, 765.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [197.0, 767.0, 1031.0, 767.0, 1031.0, 806.0, 197.0, 806.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [262.0, 1481.0, 803.0, 1481.0, 803.0, 1522.0, 262.0, 1522.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [947.0, 1481.0, 1107.0, 1481.0, 1107.0, 1522.0, 947.0, 1522.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1271.0, 1481.0, 1509.0, 1481.0, 1509.0, 1522.0, 1271.0, 1522.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [196.0, 1522.0, 198.0, 1522.0, 198.0, 1564.0, 196.0, 1564.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [278.0, 1522.0, 445.0, 1522.0, 445.0, 1564.0, 278.0, 1564.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [525.0, 1522.0, 684.0, 1522.0, 684.0, 1564.0, 525.0, 1564.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [727.0, 1522.0, 772.0, 1522.0, 772.0, 1564.0, 727.0, 1564.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [815.0, 1522.0, 1096.0, 1522.0, 1096.0, 1564.0, 815.0, 1564.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1339.0, 1522.0, 1504.0, 1522.0, 1504.0, 1564.0, 1339.0, 1564.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [197.0, 1561.0, 198.0, 1561.0, 198.0, 1602.0, 197.0, 1602.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [256.0, 1561.0, 1198.0, 1561.0, 1198.0, 1602.0, 256.0, 1602.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1257.0, 1561.0, 1340.0, 1561.0, 1340.0, 1602.0, 1257.0, 1602.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1486.0, 1561.0, 1501.0, 1561.0, 1501.0, 1602.0, 1486.0, 1602.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [196.0, 1600.0, 1052.0, 1600.0, 1052.0, 1641.0, 196.0, 1641.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1094.0, 1600.0, 1175.0, 1600.0, 1175.0, 1641.0, 1094.0, 1641.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1306.0, 1600.0, 1504.0, 1600.0, 1504.0, 1641.0, 1306.0, 1641.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [194.0, 1639.0, 198.0, 1639.0, 198.0, 1684.0, 194.0, 1684.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [520.0, 1639.0, 1181.0, 1639.0, 1181.0, 1684.0, 520.0, 1684.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1224.0, 1639.0, 1269.0, 1639.0, 1269.0, 1684.0, 1224.0, 1684.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1313.0, 1639.0, 1457.0, 1639.0, 1457.0, 1684.0, 1313.0, 1684.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1501.0, 1639.0, 1501.0, 1639.0, 1501.0, 1684.0, 1501.0, 1684.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [193.0, 1678.0, 455.0, 1678.0, 455.0, 1725.0, 193.0, 1725.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [497.0, 1678.0, 515.0, 1678.0, 515.0, 1725.0, 497.0, 1725.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [972.0, 1678.0, 1248.0, 1678.0, 1248.0, 1725.0, 972.0, 1725.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1426.0, 1678.0, 1506.0, 1678.0, 1506.0, 1725.0, 1426.0, 1725.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [196.0, 1719.0, 271.0, 1719.0, 271.0, 1763.0, 196.0, 1763.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [331.0, 1719.0, 536.0, 1719.0, 536.0, 1763.0, 331.0, 1763.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [594.0, 1719.0, 607.0, 1719.0, 607.0, 1763.0, 594.0, 1763.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [263.0, 1757.0, 485.0, 1757.0, 485.0, 1804.0, 263.0, 1804.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [630.0, 1757.0, 877.0, 1757.0, 877.0, 1804.0, 630.0, 1804.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1018.0, 1757.0, 1509.0, 1757.0, 1509.0, 1804.0, 1018.0, 1804.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [195.0, 1798.0, 197.0, 1798.0, 197.0, 1843.0, 195.0, 1843.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [338.0, 1798.0, 482.0, 1798.0, 482.0, 1843.0, 338.0, 1843.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [625.0, 1798.0, 873.0, 1798.0, 873.0, 1843.0, 625.0, 1843.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1002.0, 1798.0, 1124.0, 1798.0, 1124.0, 1843.0, 1002.0, 1843.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1493.0, 1798.0, 1503.0, 1798.0, 1503.0, 1843.0, 1493.0, 1843.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [195.0, 1837.0, 266.0, 1837.0, 266.0, 1884.0, 195.0, 1884.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [619.0, 1837.0, 694.0, 1837.0, 694.0, 1884.0, 619.0, 1884.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [967.0, 1837.0, 1030.0, 1837.0, 1030.0, 1884.0, 967.0, 1884.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1241.0, 1837.0, 1353.0, 1837.0, 1353.0, 1884.0, 1241.0, 1884.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1377.0, 1837.0, 1506.0, 1837.0, 1506.0, 1884.0, 1377.0, 1884.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [197.0, 1879.0, 1506.0, 1879.0, 1506.0, 1922.0, 197.0, 1922.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [196.0, 1915.0, 644.0, 1915.0, 644.0, 1965.0, 196.0, 1965.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [668.0, 1915.0, 1007.0, 1915.0, 1007.0, 1965.0, 668.0, 1965.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1053.0, 1915.0, 1068.0, 1915.0, 1068.0, 1965.0, 1053.0, 1965.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [260.0, 903.0, 443.0, 903.0, 443.0, 944.0, 260.0, 944.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [600.0, 903.0, 1114.0, 903.0, 1114.0, 944.0, 600.0, 944.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1347.0, 903.0, 1505.0, 903.0, 1505.0, 944.0, 1347.0, 944.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [197.0, 944.0, 198.0, 944.0, 198.0, 986.0, 197.0, 986.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [248.0, 944.0, 400.0, 944.0, 400.0, 986.0, 248.0, 986.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [423.0, 944.0, 515.0, 944.0, 515.0, 986.0, 423.0, 986.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [559.0, 944.0, 1289.0, 944.0, 1289.0, 986.0, 559.0, 986.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1383.0, 944.0, 1507.0, 944.0, 1507.0, 986.0, 1383.0, 986.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [197.0, 983.0, 198.0, 983.0, 198.0, 1025.0, 197.0, 1025.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [383.0, 983.0, 474.0, 983.0, 474.0, 1025.0, 383.0, 1025.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [497.0, 983.0, 867.0, 983.0, 867.0, 1025.0, 497.0, 1025.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [912.0, 983.0, 1025.0, 983.0, 1025.0, 1025.0, 912.0, 1025.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1043.0, 983.0, 1249.0, 983.0, 1249.0, 1025.0, 1043.0, 1025.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1269.0, 983.0, 1281.0, 983.0, 1281.0, 1025.0, 1269.0, 1025.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [265.0, 206.0, 1505.0, 206.0, 1505.0, 247.0, 265.0, 247.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [191.0, 238.0, 736.0, 238.0, 736.0, 297.0, 191.0, 297.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [825.0, 238.0, 1158.0, 238.0, 1158.0, 297.0, 825.0, 297.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1249.0, 238.0, 1345.0, 238.0, 1345.0, 297.0, 1249.0, 297.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [199.0, 845.0, 336.0, 845.0, 336.0, 880.0, 199.0, 880.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [363.0, 845.0, 609.0, 845.0, 609.0, 880.0, 363.0, 880.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [828.0, 2033.0, 873.0, 2033.0, 873.0, 2069.0, 828.0, 2069.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [259.0, 1019.0, 297.0, 1019.0, 297.0, 1067.0, 259.0, 1067.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [380.0, 1019.0, 463.0, 1019.0, 463.0, 1067.0, 380.0, 1067.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [783.0, 1019.0, 832.0, 1019.0, 832.0, 1067.0, 783.0, 1067.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1010.0, 1019.0, 1339.0, 1019.0, 1339.0, 1067.0, 1010.0, 1067.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1422.0, 1019.0, 1434.0, 1019.0, 1434.0, 1067.0, 1422.0, 1067.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [260.0, 1019.0, 297.0, 1019.0, 297.0, 1068.0, 260.0, 1068.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [380.0, 1019.0, 463.0, 1019.0, 463.0, 1068.0, 380.0, 1068.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [783.0, 1019.0, 832.0, 1019.0, 832.0, 1068.0, 783.0, 1068.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1010.0, 1019.0, 1339.0, 1019.0, 1339.0, 1068.0, 1010.0, 1068.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1422.0, 1019.0, 1433.0, 1019.0, 1433.0, 1068.0, 1422.0, 1068.0], "score": 1.0, "text": ""}] | {"preproc_blocks": [{"type": "text", "bbox": [71, 70, 542, 102], "lines": [{"bbox": [95, 74, 541, 88], "spans": [{"bbox": [95, 74, 541, 88], "score": 1.0, "content": "The complete proof of Proposition 4.1 is given in [18], but to illustrate the ideas we", "type": "text"}], "index": 0}, {"bbox": [68, 85, 484, 106], "spans": [{"bbox": [68, 85, 264, 106], "score": 1.0, "content": "will sketch here the most interesting ", "type": "text"}, {"bbox": [265, 88, 296, 104], "score": 0.88, "content": "(A_{r}^{(1)})", "type": "inline_equation", "height": 16, "width": 31}, {"bbox": [297, 85, 416, 106], "score": 1.0, "content": " and the most difficult ", "type": "text"}, {"bbox": [417, 88, 449, 104], "score": 0.92, "content": "(E_{8}^{(1)})", "type": "inline_equation", "height": 16, "width": 32}, {"bbox": [449, 85, 484, 106], "score": 1.0, "content": " cases.", "type": "text"}], "index": 1}], "index": 0.5}, {"type": "text", "bbox": [70, 103, 541, 192], "lines": [{"bbox": [94, 104, 542, 121], "spans": [{"bbox": [94, 104, 167, 121], "score": 1.0, "content": "Consider first", "type": "text"}, {"bbox": [168, 106, 190, 119], "score": 0.92, "content": "A_{r,k}", "type": "inline_equation", "height": 13, "width": 22}, {"bbox": [190, 104, 263, 121], "score": 1.0, "content": ". By choosing ", "type": "text"}, {"bbox": [264, 106, 339, 119], "score": 0.91, "content": "a\\!-\\!b=\\Lambda_{i}-\\Lambda_{j}", "type": "inline_equation", "height": 13, "width": 75}, {"bbox": [339, 104, 479, 121], "score": 1.0, "content": " in (4.1), we get that either ", "type": "text"}, {"bbox": [479, 106, 522, 117], "score": 0.93, "content": "\\lambda=k\\Lambda_{\\ell}", "type": "inline_equation", "height": 11, "width": 43}, {"bbox": [522, 104, 542, 121], "score": 1.0, "content": "for", "type": "text"}], "index": 2}, {"bbox": [70, 119, 540, 135], "spans": [{"bbox": [70, 119, 100, 135], "score": 1.0, "content": "some ", "type": "text"}, {"bbox": [100, 121, 106, 129], "score": 0.86, "content": "\\ell", "type": "inline_equation", "height": 8, "width": 6}, {"bbox": [106, 119, 182, 135], "score": 1.0, "content": ", in which case ", "type": "text"}, {"bbox": [182, 120, 190, 130], "score": 0.88, "content": "\\lambda", "type": "inline_equation", "height": 10, "width": 8}, {"bbox": [190, 119, 335, 135], "score": 1.0, "content": " is a simple-current and (for ", "type": "text"}, {"bbox": [335, 120, 364, 132], "score": 0.9, "content": "k\\neq1", "type": "inline_equation", "height": 12, "width": 29}, {"bbox": [364, 119, 371, 135], "score": 1.0, "content": ") ", "type": "text"}, {"bbox": [371, 120, 446, 133], "score": 0.93, "content": "D(\\lambda)<\\mathcal{D}(\\Lambda_{1})", "type": "inline_equation", "height": 13, "width": 75}, {"bbox": [446, 119, 465, 135], "score": 1.0, "content": ", or ", "type": "text"}, {"bbox": [465, 120, 540, 133], "score": 0.93, "content": "\\mathcal{D}(\\lambda)\\ge\\mathcal{D}(\\Lambda_{\\ell})", "type": "inline_equation", "height": 13, "width": 75}], "index": 3}, {"bbox": [70, 132, 541, 150], "spans": [{"bbox": [70, 132, 117, 150], "score": 1.0, "content": "for some ", "type": "text"}, {"bbox": [117, 135, 123, 144], "score": 0.87, "content": "\\ell", "type": "inline_equation", "height": 9, "width": 6}, {"bbox": [123, 132, 213, 150], "score": 1.0, "content": ", with equality iff", "type": "text"}, {"bbox": [214, 135, 256, 146], "score": 0.91, "content": "\\lambda\\in S\\Lambda_{\\ell}", "type": "inline_equation", "height": 11, "width": 42}, {"bbox": [257, 132, 407, 150], "score": 1.0, "content": ". But then rank-level duality ", "type": "text"}, {"bbox": [407, 135, 494, 147], "score": 0.92, "content": "A_{r,k}\\leftrightarrow A_{k-1,r+1}", "type": "inline_equation", "height": 12, "width": 87}, {"bbox": [495, 132, 541, 150], "score": 1.0, "content": " (defined", "type": "text"}], "index": 4}, {"bbox": [71, 148, 540, 165], "spans": [{"bbox": [71, 151, 104, 165], "score": 1.0, "content": "as for ", "type": "text"}, {"bbox": [104, 152, 126, 164], "score": 0.92, "content": "C_{r,k}", "type": "inline_equation", "height": 12, "width": 22}, {"bbox": [126, 151, 251, 165], "score": 1.0, "content": ", and which is exact for ", "type": "text"}, {"bbox": [252, 152, 273, 164], "score": 0.91, "content": "A_{r,k}", "type": "inline_equation", "height": 12, "width": 21}, {"bbox": [273, 151, 432, 165], "score": 1.0, "content": " q-dimensions) and (4.1) with ", "type": "text"}, {"bbox": [432, 148, 515, 162], "score": 0.94, "content": "a-b=\\widetilde{\\Lambda_{0}}-\\widetilde{\\Lambda_{1}}", "type": "inline_equation", "height": 14, "width": 83}, {"bbox": [515, 151, 540, 165], "score": 1.0, "content": " give", "type": "text"}], "index": 5}, {"bbox": [70, 165, 541, 182], "spans": [{"bbox": [70, 165, 87, 182], "score": 1.0, "content": "us ", "type": "text"}, {"bbox": [87, 165, 282, 180], "score": 0.94, "content": "\\mathcal{D}(\\Lambda_{\\ell})\\,=\\,\\widetilde{\\mathcal{D}}(\\ell\\widetilde{\\Lambda_{1}})\\,\\geq\\,\\widetilde{\\mathcal{D}}(\\widetilde{\\Lambda_{1}})\\,=\\,\\mathcal{D}(\\Lambda_{1})", "type": "inline_equation", "height": 15, "width": 195}, {"bbox": [282, 165, 380, 182], "score": 1.0, "content": ", with equality iff", "type": "text"}, {"bbox": [380, 168, 412, 177], "score": 0.92, "content": "\\ell\\,=\\,1", "type": "inline_equation", "height": 9, "width": 32}, {"bbox": [412, 165, 432, 182], "score": 1.0, "content": " or ", "type": "text"}, {"bbox": [433, 171, 439, 177], "score": 0.86, "content": "r", "type": "inline_equation", "height": 6, "width": 6}, {"bbox": [439, 165, 541, 182], "score": 1.0, "content": ". Com bining these", "type": "text"}], "index": 6}, {"bbox": [71, 181, 243, 196], "spans": [{"bbox": [71, 181, 243, 196], "score": 1.0, "content": "results yields Proposition 4.1(a).", "type": "text"}], "index": 7}], "index": 4.5}, {"type": "text", "bbox": [70, 193, 541, 288], "lines": [{"bbox": [93, 194, 541, 212], "spans": [{"bbox": [93, 194, 117, 212], "score": 1.0, "content": "For ", "type": "text"}, {"bbox": [117, 197, 140, 209], "score": 0.93, "content": "E_{8,k}", "type": "inline_equation", "height": 12, "width": 23}, {"bbox": [140, 194, 244, 212], "score": 1.0, "content": ", run through each ", "type": "text"}, {"bbox": [244, 196, 357, 211], "score": 0.94, "content": "a\\mathrm{~-~}b\\mathrm{~=~}a_{j}^{\\vee}\\Lambda_{i}\\mathrm{~-~}a_{i}^{\\vee}\\Lambda_{j}", "type": "inline_equation", "height": 15, "width": 113}, {"bbox": [358, 194, 541, 212], "score": 1.0, "content": " to reduce the proof to comparing", "type": "text"}], "index": 8}, {"bbox": [71, 209, 543, 232], "spans": [{"bbox": [71, 213, 104, 226], "score": 0.93, "content": "\\mathcal{D}(\\Lambda_{1})", "type": "inline_equation", "height": 13, "width": 33}, {"bbox": [104, 209, 135, 232], "score": 1.0, "content": " with ", "type": "text"}, {"bbox": [136, 212, 181, 230], "score": 0.95, "content": "\\textstyle\\mathcal{D}(\\frac{k}{a_{i}^{\\vee}}\\Lambda_{i})", "type": "inline_equation", "height": 18, "width": 45}, {"bbox": [182, 209, 204, 232], "score": 1.0, "content": " for ", "type": "text"}, {"bbox": [204, 214, 232, 225], "score": 0.91, "content": "i\\neq0", "type": "inline_equation", "height": 11, "width": 28}, {"bbox": [233, 209, 255, 232], "score": 1.0, "content": ", or ", "type": "text"}, {"bbox": [255, 213, 286, 226], "score": 0.94, "content": "\\mathcal{D}(\\Lambda_{i})", "type": "inline_equation", "height": 13, "width": 31}, {"bbox": [287, 209, 309, 232], "score": 1.0, "content": " for ", "type": "text"}, {"bbox": [309, 214, 349, 225], "score": 0.93, "content": "i\\neq0,1", "type": "inline_equation", "height": 11, "width": 40}, {"bbox": [349, 209, 543, 232], "score": 1.0, "content": " (the argument in [18] unnecessarily", "type": "text"}], "index": 9}, {"bbox": [71, 228, 540, 244], "spans": [{"bbox": [71, 228, 540, 244], "score": 1.0, "content": "complicated things by restricting to integral weights). Standard arguments (see [18] for", "type": "text"}], "index": 10}, {"bbox": [69, 241, 543, 262], "spans": [{"bbox": [69, 241, 296, 262], "score": 1.0, "content": "details) quickly show that the q-dimension ", "type": "text"}, {"bbox": [297, 243, 342, 261], "score": 0.95, "content": "\\textstyle\\mathcal{D}(\\frac{k}{a_{i}^{\\vee}}\\Lambda_{i})", "type": "inline_equation", "height": 18, "width": 45}, {"bbox": [342, 241, 499, 262], "score": 1.0, "content": " monotonically increases with ", "type": "text"}, {"bbox": [499, 245, 506, 254], "score": 0.89, "content": "k", "type": "inline_equation", "height": 9, "width": 7}, {"bbox": [506, 241, 524, 262], "score": 1.0, "content": " to ", "type": "text"}, {"bbox": [524, 249, 536, 254], "score": 0.84, "content": "\\infty", "type": "inline_equation", "height": 5, "width": 12}, {"bbox": [537, 241, 543, 262], "score": 1.0, "content": ",", "type": "text"}], "index": 11}, {"bbox": [72, 261, 542, 275], "spans": [{"bbox": [72, 261, 103, 275], "score": 1.0, "content": "while ", "type": "text"}, {"bbox": [104, 262, 135, 274], "score": 0.94, "content": "\\mathcal{D}(\\Lambda_{i})", "type": "inline_equation", "height": 12, "width": 31}, {"bbox": [135, 261, 296, 275], "score": 1.0, "content": " monotonically increases with ", "type": "text"}, {"bbox": [297, 263, 304, 271], "score": 0.89, "content": "k", "type": "inline_equation", "height": 8, "width": 7}, {"bbox": [304, 261, 448, 275], "score": 1.0, "content": " to the Weyl dimension of ", "type": "text"}, {"bbox": [448, 263, 461, 273], "score": 0.92, "content": "\\Lambda_{i}", "type": "inline_equation", "height": 10, "width": 13}, {"bbox": [461, 261, 542, 275], "score": 1.0, "content": ". The proof of", "type": "text"}], "index": 12}, {"bbox": [70, 276, 371, 290], "spans": [{"bbox": [70, 276, 371, 290], "score": 1.0, "content": "Proposition 4.1(e8) then reduces to a short computation.", "type": "text"}], "index": 13}], "index": 10.5}, {"type": "title", "bbox": [72, 301, 218, 316], "lines": [{"bbox": [71, 304, 219, 316], "spans": [{"bbox": [71, 304, 120, 316], "score": 1.0, "content": "4.2. The ", "type": "text"}, {"bbox": [121, 306, 130, 314], "score": 0.33, "content": "A", "type": "inline_equation", "height": 8, "width": 9}, {"bbox": [130, 304, 219, 316], "score": 1.0, "content": "-series argument", "type": "text"}], "index": 14}], "index": 14}, {"type": "text", "bbox": [70, 323, 541, 366], "lines": [{"bbox": [93, 325, 541, 339], "spans": [{"bbox": [93, 325, 159, 339], "score": 1.0, "content": "Recall that ", "type": "text"}, {"bbox": [159, 327, 215, 337], "score": 0.93, "content": "\\overline{r}\\,=\\,r\\,+\\,1", "type": "inline_equation", "height": 10, "width": 56}, {"bbox": [216, 325, 401, 339], "score": 1.0, "content": ". Proposition 4.1(a) tells us that ", "type": "text"}, {"bbox": [401, 325, 484, 338], "score": 0.94, "content": "\\pi\\Lambda_{1}\\,=\\,C^{a}J^{b}\\Lambda_{1}", "type": "inline_equation", "height": 13, "width": 83}, {"bbox": [484, 325, 541, 339], "score": 1.0, "content": ", for some", "type": "text"}], "index": 15}, {"bbox": [71, 339, 542, 354], "spans": [{"bbox": [71, 342, 88, 353], "score": 0.91, "content": "a,b", "type": "inline_equation", "height": 11, "width": 17}, {"bbox": [89, 339, 144, 354], "score": 1.0, "content": ". Hitting ", "type": "text"}, {"bbox": [144, 345, 151, 350], "score": 0.84, "content": "\\pi", "type": "inline_equation", "height": 5, "width": 7}, {"bbox": [152, 339, 185, 354], "score": 1.0, "content": " with ", "type": "text"}, {"bbox": [185, 342, 200, 350], "score": 0.9, "content": "C^{a}", "type": "inline_equation", "height": 8, "width": 15}, {"bbox": [201, 339, 464, 354], "score": 1.0, "content": ", we can assume without loss of generality that ", "type": "text"}, {"bbox": [464, 342, 497, 351], "score": 0.91, "content": "a\\;=\\;0", "type": "inline_equation", "height": 9, "width": 33}, {"bbox": [497, 339, 542, 354], "score": 1.0, "content": ". Write", "type": "text"}], "index": 16}, {"bbox": [71, 353, 461, 369], "spans": [{"bbox": [71, 355, 137, 368], "score": 0.92, "content": "\\pi(J0)=J^{c}0", "type": "inline_equation", "height": 13, "width": 66}, {"bbox": [137, 353, 170, 369], "score": 1.0, "content": "; then ", "type": "text"}, {"bbox": [171, 359, 178, 365], "score": 0.87, "content": "\\pi", "type": "inline_equation", "height": 6, "width": 7}, {"bbox": [178, 353, 312, 369], "score": 1.0, "content": " can be a permutation of ", "type": "text"}, {"bbox": [312, 356, 327, 367], "score": 0.92, "content": "P_{+}", "type": "inline_equation", "height": 11, "width": 15}, {"bbox": [328, 353, 369, 369], "score": 1.0, "content": " only if ", "type": "text"}, {"bbox": [369, 359, 375, 365], "score": 0.88, "content": "c", "type": "inline_equation", "height": 6, "width": 6}, {"bbox": [375, 353, 449, 369], "score": 1.0, "content": " is coprime to ", "type": "text"}, {"bbox": [450, 357, 456, 365], "score": 0.89, "content": "\\overline{r}", "type": "inline_equation", "height": 8, "width": 6}, {"bbox": [456, 353, 461, 369], "score": 1.0, "content": ".", "type": "text"}], "index": 17}], "index": 16}, {"type": "text", "bbox": [88, 365, 518, 380], "lines": [{"bbox": [93, 366, 516, 384], "spans": [{"bbox": [93, 366, 106, 384], "score": 1.0, "content": "If ", "type": "text"}, {"bbox": [107, 370, 136, 379], "score": 0.92, "content": "k=1", "type": "inline_equation", "height": 9, "width": 29}, {"bbox": [136, 366, 166, 384], "score": 1.0, "content": " then ", "type": "text"}, {"bbox": [167, 370, 281, 382], "score": 0.93, "content": "P_{+}=\\{0,J0,\\dots,J^{r}0\\}", "type": "inline_equation", "height": 12, "width": 114}, {"bbox": [281, 366, 299, 384], "score": 1.0, "content": " so ", "type": "text"}, {"bbox": [299, 370, 363, 382], "score": 0.94, "content": "\\pi=\\pi[c-1]", "type": "inline_equation", "height": 12, "width": 64}, {"bbox": [363, 366, 482, 384], "score": 1.0, "content": ". Thus we can assume ", "type": "text"}, {"bbox": [482, 370, 511, 381], "score": 0.95, "content": "k\\geq2", "type": "inline_equation", "height": 11, "width": 29}, {"bbox": [511, 366, 516, 384], "score": 1.0, "content": ".", "type": "text"}], "index": 18}], "index": 18}, {"type": "text", "bbox": [69, 381, 541, 530], "lines": [{"bbox": [93, 381, 541, 398], "spans": [{"bbox": [93, 381, 230, 398], "score": 1.0, "content": "Useful is the coefficient of ", "type": "text"}, {"bbox": [231, 384, 238, 393], "score": 0.89, "content": "\\lambda", "type": "inline_equation", "height": 9, "width": 7}, {"bbox": [238, 381, 353, 398], "score": 1.0, "content": " in the tensor product ", "type": "text"}, {"bbox": [353, 384, 419, 395], "score": 0.91, "content": "\\Lambda_{1}\\otimes\\cdot\\cdot\\otimes\\Lambda_{1}", "type": "inline_equation", "height": 11, "width": 66}, {"bbox": [419, 381, 426, 398], "score": 1.0, "content": " (", "type": "text"}, {"bbox": [426, 384, 468, 396], "score": 0.29, "content": "\\ell\\,\\mathrm{times})", "type": "inline_equation", "height": 12, "width": 42}, {"bbox": [468, 381, 541, 398], "score": 1.0, "content": ": it is 0 unless", "type": "text"}], "index": 19}, {"bbox": [71, 393, 543, 419], "spans": [{"bbox": [71, 398, 115, 411], "score": 0.93, "content": "t(\\lambda)=\\ell", "type": "inline_equation", "height": 13, "width": 44}, {"bbox": [115, 393, 288, 419], "score": 1.0, "content": ", in which case the coefficient is", "type": "text"}, {"bbox": [288, 396, 309, 414], "score": 0.94, "content": "\\frac{\\ell!}{h(\\lambda)}", "type": "inline_equation", "height": 18, "width": 21}, {"bbox": [309, 393, 543, 419], "score": 1.0, "content": " (to get this, compare (3.1) above with [27,", "type": "text"}], "index": 20}, {"bbox": [70, 414, 541, 430], "spans": [{"bbox": [70, 414, 334, 430], "score": 1.0, "content": "p.114]) \u2014 we equate here the fundamental weights ", "type": "text"}, {"bbox": [335, 416, 349, 427], "score": 0.91, "content": "\\Lambda_{\\overline{{r}}}", "type": "inline_equation", "height": 11, "width": 14}, {"bbox": [349, 414, 373, 430], "score": 1.0, "content": " and", "type": "text"}, {"bbox": [374, 417, 388, 428], "score": 0.9, "content": "\\Lambda_{0}", "type": "inline_equation", "height": 11, "width": 14}, {"bbox": [388, 414, 430, 430], "score": 1.0, "content": ", so e.g. ", "type": "text"}, {"bbox": [430, 414, 458, 430], "score": 0.91, "content": "^{\\star}{\\frac{k}{r}}\\Lambda_{\\overline{{r}}}^{\\ \\ \\,}{}^{\\ ,}", "type": "inline_equation", "height": 16, "width": 28}, {"bbox": [458, 414, 498, 430], "score": 1.0, "content": " equals ", "type": "text"}, {"bbox": [498, 416, 509, 426], "score": 0.39, "content": "\\mathrm{\\Delta}^{\\prime}0^{\\circ}", "type": "inline_equation", "height": 10, "width": 11}, {"bbox": [509, 414, 541, 430], "score": 1.0, "content": " when", "type": "text"}], "index": 21}, {"bbox": [71, 429, 541, 445], "spans": [{"bbox": [71, 432, 77, 440], "score": 0.86, "content": "\\overline{r}", "type": "inline_equation", "height": 8, "width": 6}, {"bbox": [78, 429, 120, 445], "score": 1.0, "content": " divides ", "type": "text"}, {"bbox": [120, 431, 127, 440], "score": 0.89, "content": "k", "type": "inline_equation", "height": 9, "width": 7}, {"bbox": [128, 429, 167, 445], "score": 1.0, "content": ". Here, ", "type": "text"}, {"bbox": [167, 430, 242, 443], "score": 0.95, "content": "h(\\lambda)=\\prod h(x)", "type": "inline_equation", "height": 13, "width": 75}, {"bbox": [243, 429, 541, 445], "score": 1.0, "content": " is the product of the hook-lengths of the Young diagram", "type": "text"}], "index": 22}, {"bbox": [70, 443, 539, 460], "spans": [{"bbox": [70, 443, 162, 459], "score": 1.0, "content": "corresponding to ", "type": "text"}, {"bbox": [163, 446, 170, 454], "score": 0.88, "content": "\\lambda", "type": "inline_equation", "height": 8, "width": 7}, {"bbox": [171, 443, 381, 459], "score": 1.0, "content": ". Equation (2.4) tells us that as long as ", "type": "text"}, {"bbox": [381, 444, 446, 457], "score": 0.91, "content": "t(\\lambda)=\\ell\\leq k", "type": "inline_equation", "height": 13, "width": 65}, {"bbox": [447, 443, 517, 459], "score": 1.0, "content": ", the number", "type": "text"}, {"bbox": [518, 443, 539, 460], "score": 0.93, "content": "\\frac{\\ell!}{h(\\lambda)}", "type": "inline_equation", "height": 17, "width": 21}], "index": 23}, {"bbox": [69, 460, 542, 476], "spans": [{"bbox": [69, 460, 226, 476], "score": 1.0, "content": "will also be the coefficient of ", "type": "text"}, {"bbox": [227, 463, 243, 474], "score": 0.93, "content": "N_{\\lambda}", "type": "inline_equation", "height": 11, "width": 16}, {"bbox": [243, 460, 353, 476], "score": 1.0, "content": " in the fusion power ", "type": "text"}, {"bbox": [353, 461, 389, 475], "score": 0.92, "content": "(N_{\\Lambda_{1}})^{\\ell}", "type": "inline_equation", "height": 14, "width": 36}, {"bbox": [389, 460, 454, 476], "score": 1.0, "content": ". Note that ", "type": "text"}, {"bbox": [454, 463, 506, 474], "score": 0.92, "content": "J0=k\\Lambda_{1}", "type": "inline_equation", "height": 11, "width": 52}, {"bbox": [506, 460, 542, 476], "score": 1.0, "content": " is the", "type": "text"}], "index": 24}, {"bbox": [70, 475, 542, 491], "spans": [{"bbox": [70, 475, 348, 491], "score": 1.0, "content": "only simple-current appearing in the fusion product ", "type": "text"}, {"bbox": [348, 476, 362, 488], "score": 0.73, "content": "\\Lambda_{1}", "type": "inline_equation", "height": 12, "width": 14}, {"bbox": [362, 475, 415, 491], "score": 1.0, "content": " \u00d7 \u00b7 \u00b7 \u00b7 \u00d7 ", "type": "text"}, {"bbox": [415, 475, 430, 488], "score": 0.84, "content": "\\Lambda_{1}", "type": "inline_equation", "height": 13, "width": 15}, {"bbox": [430, 475, 438, 491], "score": 1.0, "content": " (", "type": "text"}, {"bbox": [439, 476, 446, 487], "score": 0.67, "content": "k", "type": "inline_equation", "height": 11, "width": 7}, {"bbox": [446, 475, 542, 491], "score": 1.0, "content": " times). Thus the", "type": "text"}], "index": 25}, {"bbox": [70, 489, 542, 505], "spans": [{"bbox": [70, 489, 354, 505], "score": 1.0, "content": "only nontrivial simple-current appearing in the fusion ", "type": "text"}, {"bbox": [354, 489, 376, 502], "score": 0.81, "content": "\\pi\\Lambda_{1}", "type": "inline_equation", "height": 13, "width": 22}, {"bbox": [376, 489, 429, 505], "score": 1.0, "content": " \u00d7 \u00b7 \u00b7 \u00b7 \u00d7 ", "type": "text"}, {"bbox": [429, 489, 451, 502], "score": 0.87, "content": "\\pi\\Lambda_{1}", "type": "inline_equation", "height": 13, "width": 22}, {"bbox": [451, 489, 492, 505], "score": 1.0, "content": " will be", "type": "text"}, {"bbox": [493, 489, 525, 501], "score": 0.83, "content": "J^{b k}J0", "type": "inline_equation", "height": 12, "width": 32}, {"bbox": [526, 489, 542, 505], "score": 1.0, "content": " (0", "type": "text"}], "index": 26}, {"bbox": [72, 505, 541, 518], "spans": [{"bbox": [72, 505, 150, 518], "score": 1.0, "content": "will appear iff", "type": "text"}, {"bbox": [151, 507, 157, 515], "score": 0.86, "content": "\\overline{r}", "type": "inline_equation", "height": 8, "width": 6}, {"bbox": [158, 505, 203, 518], "score": 1.0, "content": " divides ", "type": "text"}, {"bbox": [203, 506, 210, 515], "score": 0.82, "content": "k", "type": "inline_equation", "height": 9, "width": 7}, {"bbox": [210, 505, 262, 518], "score": 1.0, "content": "). Hence ", "type": "text"}, {"bbox": [263, 506, 322, 516], "score": 0.89, "content": "b k+1\\equiv c", "type": "inline_equation", "height": 10, "width": 59}, {"bbox": [323, 505, 358, 518], "score": 1.0, "content": " (mod ", "type": "text"}, {"bbox": [359, 506, 366, 515], "score": 0.59, "content": "\\overline{r}", "type": "inline_equation", "height": 9, "width": 7}, {"bbox": [366, 505, 484, 518], "score": 1.0, "content": ") must be coprime to ", "type": "text"}, {"bbox": [484, 506, 491, 515], "score": 0.76, "content": "\\overline{r}", "type": "inline_equation", "height": 9, "width": 7}, {"bbox": [492, 505, 541, 518], "score": 1.0, "content": ". This is", "type": "text"}], "index": 27}, {"bbox": [72, 519, 472, 533], "spans": [{"bbox": [72, 520, 251, 533], "score": 1.0, "content": "precisely the condition needed for ", "type": "text"}, {"bbox": [251, 519, 271, 532], "score": 0.92, "content": "\\pi[b]", "type": "inline_equation", "height": 13, "width": 20}, {"bbox": [271, 520, 472, 533], "score": 1.0, "content": " to be a simple-current automorphism.", "type": "text"}], "index": 28}], "index": 23.5}, {"type": "text", "bbox": [70, 531, 541, 631], "lines": [{"bbox": [94, 532, 543, 547], "spans": [{"bbox": [94, 533, 289, 547], "score": 1.0, "content": "In other words, it suffices to consider ", "type": "text"}, {"bbox": [289, 533, 340, 545], "score": 0.92, "content": "\\pi\\Lambda_{1}=\\Lambda_{1}", "type": "inline_equation", "height": 12, "width": 51}, {"bbox": [340, 533, 398, 547], "score": 1.0, "content": " and hence ", "type": "text"}, {"bbox": [398, 532, 457, 546], "score": 0.92, "content": "\\pi[J0]=J0", "type": "inline_equation", "height": 14, "width": 59}, {"bbox": [457, 533, 543, 547], "score": 1.0, "content": ". We are done if", "type": "text"}], "index": 29}, {"bbox": [71, 547, 541, 563], "spans": [{"bbox": [71, 550, 99, 558], "score": 0.89, "content": "r=1", "type": "inline_equation", "height": 8, "width": 28}, {"bbox": [100, 547, 160, 563], "score": 1.0, "content": ", so assume ", "type": "text"}, {"bbox": [160, 549, 188, 560], "score": 0.89, "content": "r\\geq2", "type": "inline_equation", "height": 11, "width": 28}, {"bbox": [189, 547, 246, 563], "score": 1.0, "content": ". From the ", "type": "text"}, {"bbox": [246, 547, 261, 560], "score": 0.78, "content": "\\Lambda_{1}", "type": "inline_equation", "height": 13, "width": 15}, {"bbox": [261, 547, 277, 563], "score": 1.0, "content": " \u00d7", "type": "text"}, {"bbox": [278, 547, 293, 560], "score": 0.77, "content": "\\Lambda_{1}", "type": "inline_equation", "height": 13, "width": 15}, {"bbox": [293, 547, 394, 563], "score": 1.0, "content": " fusion, we get that ", "type": "text"}, {"bbox": [394, 547, 481, 561], "score": 0.91, "content": "\\pi\\Lambda_{2}\\in\\{\\Lambda_{2},2\\Lambda_{1}\\}", "type": "inline_equation", "height": 14, "width": 87}, {"bbox": [482, 547, 541, 563], "score": 1.0, "content": ". Note that", "type": "text"}], "index": 30}, {"bbox": [71, 561, 540, 576], "spans": [{"bbox": [71, 563, 91, 574], "score": 0.91, "content": "k\\Lambda_{1}", "type": "inline_equation", "height": 11, "width": 20}, {"bbox": [92, 561, 431, 576], "score": 1.0, "content": " occurs (with multiplicity 1) in the tensor and fusion product of ", "type": "text"}, {"bbox": [431, 561, 452, 574], "score": 0.9, "content": "2\\Lambda_{1}", "type": "inline_equation", "height": 13, "width": 21}, {"bbox": [452, 561, 482, 576], "score": 1.0, "content": " with ", "type": "text"}, {"bbox": [482, 561, 534, 574], "score": 0.69, "content": "k-2\\;\\Lambda_{1}\\,{}^{\\prime}\\mathrm{s}", "type": "inline_equation", "height": 13, "width": 52}, {"bbox": [534, 561, 540, 576], "score": 1.0, "content": "s,", "type": "text"}], "index": 31}, {"bbox": [70, 575, 541, 590], "spans": [{"bbox": [70, 576, 378, 590], "score": 1.0, "content": "but that it doesn\u2019t in the tensor (hence fusion) product of ", "type": "text"}, {"bbox": [379, 576, 393, 588], "score": 0.89, "content": "\\Lambda_{2}", "type": "inline_equation", "height": 12, "width": 14}, {"bbox": [393, 576, 423, 590], "score": 1.0, "content": " with ", "type": "text"}, {"bbox": [423, 575, 469, 588], "score": 0.79, "content": "k-2~\\Lambda_{1}", "type": "inline_equation", "height": 13, "width": 46}, {"bbox": [470, 576, 541, 590], "score": 1.0, "content": "\u2019s (recall that", "type": "text"}], "index": 32}, {"bbox": [71, 589, 540, 606], "spans": [{"bbox": [71, 591, 186, 604], "score": 0.92, "content": "k\\Lambda_{1}\\succ(k-2)\\Lambda_{1}+\\Lambda_{2}", "type": "inline_equation", "height": 13, "width": 115}, {"bbox": [187, 590, 425, 606], "score": 1.0, "content": " in the usual partial order on weights). Since ", "type": "text"}, {"bbox": [425, 590, 440, 603], "score": 0.72, "content": "\\Lambda_{2}", "type": "inline_equation", "height": 13, "width": 15}, {"bbox": [440, 590, 456, 606], "score": 1.0, "content": " \u00d7", "type": "text"}, {"bbox": [457, 590, 472, 603], "score": 0.74, "content": "\\Lambda_{1}", "type": "inline_equation", "height": 13, "width": 15}, {"bbox": [472, 590, 524, 606], "score": 1.0, "content": " \u00d7 \u00b7 \u00b7 \u00b7 \u00d7", "type": "text"}, {"bbox": [524, 589, 540, 603], "score": 0.84, "content": "\\Lambda_{1}", "type": "inline_equation", "height": 14, "width": 16}], "index": 33}, {"bbox": [69, 603, 542, 621], "spans": [{"bbox": [69, 604, 163, 621], "score": 1.0, "content": "does not contain ", "type": "text"}, {"bbox": [164, 606, 178, 616], "score": 0.8, "content": "J0", "type": "inline_equation", "height": 10, "width": 14}, {"bbox": [178, 604, 185, 621], "score": 1.0, "content": ", ", "type": "text"}, {"bbox": [185, 603, 348, 618], "score": 0.25, "content": "(\\pi\\Lambda_{2})\\boxtimes(\\pi\\Lambda_{1})\\boxtimes\\dots\\boxtimes(\\pi\\Lambda_{1})", "type": "inline_equation", "height": 15, "width": 163}, {"bbox": [349, 604, 449, 621], "score": 1.0, "content": " should also avoid ", "type": "text"}, {"bbox": [449, 604, 513, 618], "score": 0.93, "content": "\\pi(J0)\\,=\\,J0", "type": "inline_equation", "height": 14, "width": 64}, {"bbox": [513, 604, 542, 621], "score": 1.0, "content": ", and", "type": "text"}], "index": 34}, {"bbox": [70, 618, 218, 634], "spans": [{"bbox": [70, 618, 97, 634], "score": 1.0, "content": "thus ", "type": "text"}, {"bbox": [97, 621, 118, 631], "score": 0.92, "content": "\\pi\\Lambda_{2}", "type": "inline_equation", "height": 10, "width": 21}, {"bbox": [119, 618, 192, 634], "score": 1.0, "content": " cannot equal ", "type": "text"}, {"bbox": [193, 619, 213, 632], "score": 0.9, "content": "2\\Lambda_{1}", "type": "inline_equation", "height": 13, "width": 20}, {"bbox": [213, 618, 218, 634], "score": 1.0, "content": ".", "type": "text"}], "index": 35}], "index": 32}, {"type": "text", "bbox": [70, 632, 541, 703], "lines": [{"bbox": [94, 632, 543, 649], "spans": [{"bbox": [94, 632, 174, 649], "score": 1.0, "content": "Thus we know ", "type": "text"}, {"bbox": [174, 633, 226, 646], "score": 0.91, "content": "\\pi\\Lambda_{2}=\\Lambda_{2}", "type": "inline_equation", "height": 13, "width": 52}, {"bbox": [226, 632, 315, 649], "score": 1.0, "content": ". The remaining ", "type": "text"}, {"bbox": [316, 633, 366, 646], "score": 0.92, "content": "\\pi\\Lambda_{\\ell}=\\Lambda_{\\ell}", "type": "inline_equation", "height": 13, "width": 50}, {"bbox": [366, 632, 543, 649], "score": 1.0, "content": "follow quickly from induction: if", "type": "text"}], "index": 36}, {"bbox": [71, 647, 541, 663], "spans": [{"bbox": [71, 649, 121, 660], "score": 0.92, "content": "\\pi\\Lambda_{\\ell}=\\Lambda_{\\ell}", "type": "inline_equation", "height": 11, "width": 50}, {"bbox": [121, 647, 173, 663], "score": 1.0, "content": "for some ", "type": "text"}, {"bbox": [173, 648, 224, 660], "score": 0.87, "content": "2\\leq\\ell<r", "type": "inline_equation", "height": 12, "width": 51}, {"bbox": [225, 647, 314, 663], "score": 1.0, "content": ", then the fusion ", "type": "text"}, {"bbox": [314, 647, 360, 660], "score": 0.44, "content": "\\Lambda_{1}\\boxtimes\\Lambda_{\\ell}", "type": "inline_equation", "height": 13, "width": 46}, {"bbox": [360, 647, 404, 663], "score": 1.0, "content": "tells us ", "type": "text"}, {"bbox": [405, 648, 537, 662], "score": 0.93, "content": "\\pi\\Lambda_{\\ell+1}\\in\\{\\Lambda_{\\ell+1},\\Lambda_{1}+\\Lambda_{\\ell}\\}", "type": "inline_equation", "height": 14, "width": 132}, {"bbox": [537, 647, 541, 663], "score": 1.0, "content": ".", "type": "text"}], "index": 37}, {"bbox": [70, 661, 542, 678], "spans": [{"bbox": [70, 661, 95, 678], "score": 1.0, "content": "But ", "type": "text"}, {"bbox": [96, 662, 222, 675], "score": 0.92, "content": "h(\\Lambda_{1}+\\Lambda_{\\ell})=(\\ell+1)!/\\ell", "type": "inline_equation", "height": 13, "width": 126}, {"bbox": [222, 661, 249, 678], "score": 1.0, "content": "and ", "type": "text"}, {"bbox": [250, 662, 347, 676], "score": 0.92, "content": "h(\\Lambda_{\\ell+1})=(\\ell+1)!", "type": "inline_equation", "height": 14, "width": 97}, {"bbox": [348, 661, 370, 678], "score": 1.0, "content": ", so ", "type": "text"}, {"bbox": [371, 663, 446, 675], "score": 0.92, "content": "\\pi\\Lambda_{\\ell+1}=\\Lambda_{\\ell+1}", "type": "inline_equation", "height": 12, "width": 75}, {"bbox": [446, 661, 487, 678], "score": 1.0, "content": ". Thus ", "type": "text"}, {"bbox": [487, 664, 495, 673], "score": 0.72, "content": "\\pi", "type": "inline_equation", "height": 9, "width": 8}, {"bbox": [495, 661, 542, 678], "score": 1.0, "content": " fixes all", "type": "text"}], "index": 38}, {"bbox": [70, 676, 542, 691], "spans": [{"bbox": [70, 676, 542, 691], "score": 1.0, "content": "fundamental weights, and since these comprise a fusion-generator (see the discussion at", "type": "text"}], "index": 39}, {"bbox": [70, 689, 384, 707], "spans": [{"bbox": [70, 689, 231, 707], "score": 1.0, "content": "the end of \u00a72.2) we know that ", "type": "text"}, {"bbox": [232, 695, 240, 701], "score": 0.67, "content": "\\pi", "type": "inline_equation", "height": 6, "width": 8}, {"bbox": [240, 689, 362, 707], "score": 1.0, "content": " must fix everything in ", "type": "text"}, {"bbox": [362, 692, 378, 704], "score": 0.9, "content": "P_{+}", "type": "inline_equation", "height": 12, "width": 16}, {"bbox": [379, 689, 384, 707], "score": 1.0, "content": ".", "type": "text"}], "index": 40}], "index": 38}], "layout_bboxes": [], "page_idx": 16, "page_size": [612.0, 792.0], "_layout_tree": [], "images": [], "tables": [], "interline_equations": [], "discarded_blocks": [{"type": "discarded", "bbox": [299, 731, 312, 742], "lines": [{"bbox": [298, 731, 314, 744], "spans": [{"bbox": [298, 731, 314, 744], "score": 1.0, "content": "17", "type": "text"}]}]}], "need_drop": false, "drop_reason": [], "para_blocks": [{"type": "text", "bbox": [71, 70, 542, 102], "lines": [{"bbox": [95, 74, 541, 88], "spans": [{"bbox": [95, 74, 541, 88], "score": 1.0, "content": "The complete proof of Proposition 4.1 is given in [18], but to illustrate the ideas we", "type": "text"}], "index": 0}, {"bbox": [68, 85, 484, 106], "spans": [{"bbox": [68, 85, 264, 106], "score": 1.0, "content": "will sketch here the most interesting ", "type": "text"}, {"bbox": [265, 88, 296, 104], "score": 0.88, "content": "(A_{r}^{(1)})", "type": "inline_equation", "height": 16, "width": 31}, {"bbox": [297, 85, 416, 106], "score": 1.0, "content": " and the most difficult ", "type": "text"}, {"bbox": [417, 88, 449, 104], "score": 0.92, "content": "(E_{8}^{(1)})", "type": "inline_equation", "height": 16, "width": 32}, {"bbox": [449, 85, 484, 106], "score": 1.0, "content": " cases.", "type": "text"}], "index": 1}], "index": 0.5, "page_num": "page_16", "page_size": [612.0, 792.0], "bbox_fs": [68, 74, 541, 106]}, {"type": "text", "bbox": [70, 103, 541, 192], "lines": [{"bbox": [94, 104, 542, 121], "spans": [{"bbox": [94, 104, 167, 121], "score": 1.0, "content": "Consider first", "type": "text"}, {"bbox": [168, 106, 190, 119], "score": 0.92, "content": "A_{r,k}", "type": "inline_equation", "height": 13, "width": 22}, {"bbox": [190, 104, 263, 121], "score": 1.0, "content": ". By choosing ", "type": "text"}, {"bbox": [264, 106, 339, 119], "score": 0.91, "content": "a\\!-\\!b=\\Lambda_{i}-\\Lambda_{j}", "type": "inline_equation", "height": 13, "width": 75}, {"bbox": [339, 104, 479, 121], "score": 1.0, "content": " in (4.1), we get that either ", "type": "text"}, {"bbox": [479, 106, 522, 117], "score": 0.93, "content": "\\lambda=k\\Lambda_{\\ell}", "type": "inline_equation", "height": 11, "width": 43}, {"bbox": [522, 104, 542, 121], "score": 1.0, "content": "for", "type": "text"}], "index": 2}, {"bbox": [70, 119, 540, 135], "spans": [{"bbox": [70, 119, 100, 135], "score": 1.0, "content": "some ", "type": "text"}, {"bbox": [100, 121, 106, 129], "score": 0.86, "content": "\\ell", "type": "inline_equation", "height": 8, "width": 6}, {"bbox": [106, 119, 182, 135], "score": 1.0, "content": ", in which case ", "type": "text"}, {"bbox": [182, 120, 190, 130], "score": 0.88, "content": "\\lambda", "type": "inline_equation", "height": 10, "width": 8}, {"bbox": [190, 119, 335, 135], "score": 1.0, "content": " is a simple-current and (for ", "type": "text"}, {"bbox": [335, 120, 364, 132], "score": 0.9, "content": "k\\neq1", "type": "inline_equation", "height": 12, "width": 29}, {"bbox": [364, 119, 371, 135], "score": 1.0, "content": ") ", "type": "text"}, {"bbox": [371, 120, 446, 133], "score": 0.93, "content": "D(\\lambda)<\\mathcal{D}(\\Lambda_{1})", "type": "inline_equation", "height": 13, "width": 75}, {"bbox": [446, 119, 465, 135], "score": 1.0, "content": ", or ", "type": "text"}, {"bbox": [465, 120, 540, 133], "score": 0.93, "content": "\\mathcal{D}(\\lambda)\\ge\\mathcal{D}(\\Lambda_{\\ell})", "type": "inline_equation", "height": 13, "width": 75}], "index": 3}, {"bbox": [70, 132, 541, 150], "spans": [{"bbox": [70, 132, 117, 150], "score": 1.0, "content": "for some ", "type": "text"}, {"bbox": [117, 135, 123, 144], "score": 0.87, "content": "\\ell", "type": "inline_equation", "height": 9, "width": 6}, {"bbox": [123, 132, 213, 150], "score": 1.0, "content": ", with equality iff", "type": "text"}, {"bbox": [214, 135, 256, 146], "score": 0.91, "content": "\\lambda\\in S\\Lambda_{\\ell}", "type": "inline_equation", "height": 11, "width": 42}, {"bbox": [257, 132, 407, 150], "score": 1.0, "content": ". But then rank-level duality ", "type": "text"}, {"bbox": [407, 135, 494, 147], "score": 0.92, "content": "A_{r,k}\\leftrightarrow A_{k-1,r+1}", "type": "inline_equation", "height": 12, "width": 87}, {"bbox": [495, 132, 541, 150], "score": 1.0, "content": " (defined", "type": "text"}], "index": 4}, {"bbox": [71, 148, 540, 165], "spans": [{"bbox": [71, 151, 104, 165], "score": 1.0, "content": "as for ", "type": "text"}, {"bbox": [104, 152, 126, 164], "score": 0.92, "content": "C_{r,k}", "type": "inline_equation", "height": 12, "width": 22}, {"bbox": [126, 151, 251, 165], "score": 1.0, "content": ", and which is exact for ", "type": "text"}, {"bbox": [252, 152, 273, 164], "score": 0.91, "content": "A_{r,k}", "type": "inline_equation", "height": 12, "width": 21}, {"bbox": [273, 151, 432, 165], "score": 1.0, "content": " q-dimensions) and (4.1) with ", "type": "text"}, {"bbox": [432, 148, 515, 162], "score": 0.94, "content": "a-b=\\widetilde{\\Lambda_{0}}-\\widetilde{\\Lambda_{1}}", "type": "inline_equation", "height": 14, "width": 83}, {"bbox": [515, 151, 540, 165], "score": 1.0, "content": " give", "type": "text"}], "index": 5}, {"bbox": [70, 165, 541, 182], "spans": [{"bbox": [70, 165, 87, 182], "score": 1.0, "content": "us ", "type": "text"}, {"bbox": [87, 165, 282, 180], "score": 0.94, "content": "\\mathcal{D}(\\Lambda_{\\ell})\\,=\\,\\widetilde{\\mathcal{D}}(\\ell\\widetilde{\\Lambda_{1}})\\,\\geq\\,\\widetilde{\\mathcal{D}}(\\widetilde{\\Lambda_{1}})\\,=\\,\\mathcal{D}(\\Lambda_{1})", "type": "inline_equation", "height": 15, "width": 195}, {"bbox": [282, 165, 380, 182], "score": 1.0, "content": ", with equality iff", "type": "text"}, {"bbox": [380, 168, 412, 177], "score": 0.92, "content": "\\ell\\,=\\,1", "type": "inline_equation", "height": 9, "width": 32}, {"bbox": [412, 165, 432, 182], "score": 1.0, "content": " or ", "type": "text"}, {"bbox": [433, 171, 439, 177], "score": 0.86, "content": "r", "type": "inline_equation", "height": 6, "width": 6}, {"bbox": [439, 165, 541, 182], "score": 1.0, "content": ". Com bining these", "type": "text"}], "index": 6}, {"bbox": [71, 181, 243, 196], "spans": [{"bbox": [71, 181, 243, 196], "score": 1.0, "content": "results yields Proposition 4.1(a).", "type": "text"}], "index": 7}], "index": 4.5, "page_num": "page_16", "page_size": [612.0, 792.0], "bbox_fs": [70, 104, 542, 196]}, {"type": "text", "bbox": [70, 193, 541, 288], "lines": [{"bbox": [93, 194, 541, 212], "spans": [{"bbox": [93, 194, 117, 212], "score": 1.0, "content": "For ", "type": "text"}, {"bbox": [117, 197, 140, 209], "score": 0.93, "content": "E_{8,k}", "type": "inline_equation", "height": 12, "width": 23}, {"bbox": [140, 194, 244, 212], "score": 1.0, "content": ", run through each ", "type": "text"}, {"bbox": [244, 196, 357, 211], "score": 0.94, "content": "a\\mathrm{~-~}b\\mathrm{~=~}a_{j}^{\\vee}\\Lambda_{i}\\mathrm{~-~}a_{i}^{\\vee}\\Lambda_{j}", "type": "inline_equation", "height": 15, "width": 113}, {"bbox": [358, 194, 541, 212], "score": 1.0, "content": " to reduce the proof to comparing", "type": "text"}], "index": 8}, {"bbox": [71, 209, 543, 232], "spans": [{"bbox": [71, 213, 104, 226], "score": 0.93, "content": "\\mathcal{D}(\\Lambda_{1})", "type": "inline_equation", "height": 13, "width": 33}, {"bbox": [104, 209, 135, 232], "score": 1.0, "content": " with ", "type": "text"}, {"bbox": [136, 212, 181, 230], "score": 0.95, "content": "\\textstyle\\mathcal{D}(\\frac{k}{a_{i}^{\\vee}}\\Lambda_{i})", "type": "inline_equation", "height": 18, "width": 45}, {"bbox": [182, 209, 204, 232], "score": 1.0, "content": " for ", "type": "text"}, {"bbox": [204, 214, 232, 225], "score": 0.91, "content": "i\\neq0", "type": "inline_equation", "height": 11, "width": 28}, {"bbox": [233, 209, 255, 232], "score": 1.0, "content": ", or ", "type": "text"}, {"bbox": [255, 213, 286, 226], "score": 0.94, "content": "\\mathcal{D}(\\Lambda_{i})", "type": "inline_equation", "height": 13, "width": 31}, {"bbox": [287, 209, 309, 232], "score": 1.0, "content": " for ", "type": "text"}, {"bbox": [309, 214, 349, 225], "score": 0.93, "content": "i\\neq0,1", "type": "inline_equation", "height": 11, "width": 40}, {"bbox": [349, 209, 543, 232], "score": 1.0, "content": " (the argument in [18] unnecessarily", "type": "text"}], "index": 9}, {"bbox": [71, 228, 540, 244], "spans": [{"bbox": [71, 228, 540, 244], "score": 1.0, "content": "complicated things by restricting to integral weights). Standard arguments (see [18] for", "type": "text"}], "index": 10}, {"bbox": [69, 241, 543, 262], "spans": [{"bbox": [69, 241, 296, 262], "score": 1.0, "content": "details) quickly show that the q-dimension ", "type": "text"}, {"bbox": [297, 243, 342, 261], "score": 0.95, "content": "\\textstyle\\mathcal{D}(\\frac{k}{a_{i}^{\\vee}}\\Lambda_{i})", "type": "inline_equation", "height": 18, "width": 45}, {"bbox": [342, 241, 499, 262], "score": 1.0, "content": " monotonically increases with ", "type": "text"}, {"bbox": [499, 245, 506, 254], "score": 0.89, "content": "k", "type": "inline_equation", "height": 9, "width": 7}, {"bbox": [506, 241, 524, 262], "score": 1.0, "content": " to ", "type": "text"}, {"bbox": [524, 249, 536, 254], "score": 0.84, "content": "\\infty", "type": "inline_equation", "height": 5, "width": 12}, {"bbox": [537, 241, 543, 262], "score": 1.0, "content": ",", "type": "text"}], "index": 11}, {"bbox": [72, 261, 542, 275], "spans": [{"bbox": [72, 261, 103, 275], "score": 1.0, "content": "while ", "type": "text"}, {"bbox": [104, 262, 135, 274], "score": 0.94, "content": "\\mathcal{D}(\\Lambda_{i})", "type": "inline_equation", "height": 12, "width": 31}, {"bbox": [135, 261, 296, 275], "score": 1.0, "content": " monotonically increases with ", "type": "text"}, {"bbox": [297, 263, 304, 271], "score": 0.89, "content": "k", "type": "inline_equation", "height": 8, "width": 7}, {"bbox": [304, 261, 448, 275], "score": 1.0, "content": " to the Weyl dimension of ", "type": "text"}, {"bbox": [448, 263, 461, 273], "score": 0.92, "content": "\\Lambda_{i}", "type": "inline_equation", "height": 10, "width": 13}, {"bbox": [461, 261, 542, 275], "score": 1.0, "content": ". The proof of", "type": "text"}], "index": 12}, {"bbox": [70, 276, 371, 290], "spans": [{"bbox": [70, 276, 371, 290], "score": 1.0, "content": "Proposition 4.1(e8) then reduces to a short computation.", "type": "text"}], "index": 13}], "index": 10.5, "page_num": "page_16", "page_size": [612.0, 792.0], "bbox_fs": [69, 194, 543, 290]}, {"type": "title", "bbox": [72, 301, 218, 316], "lines": [{"bbox": [71, 304, 219, 316], "spans": [{"bbox": [71, 304, 120, 316], "score": 1.0, "content": "4.2. The ", "type": "text"}, {"bbox": [121, 306, 130, 314], "score": 0.33, "content": "A", "type": "inline_equation", "height": 8, "width": 9}, {"bbox": [130, 304, 219, 316], "score": 1.0, "content": "-series argument", "type": "text"}], "index": 14}], "index": 14, "page_num": "page_16", "page_size": [612.0, 792.0]}, {"type": "text", "bbox": [70, 323, 541, 366], "lines": [{"bbox": [93, 325, 541, 339], "spans": [{"bbox": [93, 325, 159, 339], "score": 1.0, "content": "Recall that ", "type": "text"}, {"bbox": [159, 327, 215, 337], "score": 0.93, "content": "\\overline{r}\\,=\\,r\\,+\\,1", "type": "inline_equation", "height": 10, "width": 56}, {"bbox": [216, 325, 401, 339], "score": 1.0, "content": ". Proposition 4.1(a) tells us that ", "type": "text"}, {"bbox": [401, 325, 484, 338], "score": 0.94, "content": "\\pi\\Lambda_{1}\\,=\\,C^{a}J^{b}\\Lambda_{1}", "type": "inline_equation", "height": 13, "width": 83}, {"bbox": [484, 325, 541, 339], "score": 1.0, "content": ", for some", "type": "text"}], "index": 15}, {"bbox": [71, 339, 542, 354], "spans": [{"bbox": [71, 342, 88, 353], "score": 0.91, "content": "a,b", "type": "inline_equation", "height": 11, "width": 17}, {"bbox": [89, 339, 144, 354], "score": 1.0, "content": ". Hitting ", "type": "text"}, {"bbox": [144, 345, 151, 350], "score": 0.84, "content": "\\pi", "type": "inline_equation", "height": 5, "width": 7}, {"bbox": [152, 339, 185, 354], "score": 1.0, "content": " with ", "type": "text"}, {"bbox": [185, 342, 200, 350], "score": 0.9, "content": "C^{a}", "type": "inline_equation", "height": 8, "width": 15}, {"bbox": [201, 339, 464, 354], "score": 1.0, "content": ", we can assume without loss of generality that ", "type": "text"}, {"bbox": [464, 342, 497, 351], "score": 0.91, "content": "a\\;=\\;0", "type": "inline_equation", "height": 9, "width": 33}, {"bbox": [497, 339, 542, 354], "score": 1.0, "content": ". Write", "type": "text"}], "index": 16}, {"bbox": [71, 353, 461, 369], "spans": [{"bbox": [71, 355, 137, 368], "score": 0.92, "content": "\\pi(J0)=J^{c}0", "type": "inline_equation", "height": 13, "width": 66}, {"bbox": [137, 353, 170, 369], "score": 1.0, "content": "; then ", "type": "text"}, {"bbox": [171, 359, 178, 365], "score": 0.87, "content": "\\pi", "type": "inline_equation", "height": 6, "width": 7}, {"bbox": [178, 353, 312, 369], "score": 1.0, "content": " can be a permutation of ", "type": "text"}, {"bbox": [312, 356, 327, 367], "score": 0.92, "content": "P_{+}", "type": "inline_equation", "height": 11, "width": 15}, {"bbox": [328, 353, 369, 369], "score": 1.0, "content": " only if ", "type": "text"}, {"bbox": [369, 359, 375, 365], "score": 0.88, "content": "c", "type": "inline_equation", "height": 6, "width": 6}, {"bbox": [375, 353, 449, 369], "score": 1.0, "content": " is coprime to ", "type": "text"}, {"bbox": [450, 357, 456, 365], "score": 0.89, "content": "\\overline{r}", "type": "inline_equation", "height": 8, "width": 6}, {"bbox": [456, 353, 461, 369], "score": 1.0, "content": ".", "type": "text"}], "index": 17}], "index": 16, "page_num": "page_16", "page_size": [612.0, 792.0], "bbox_fs": [71, 325, 542, 369]}, {"type": "text", "bbox": [88, 365, 518, 380], "lines": [{"bbox": [93, 366, 516, 384], "spans": [{"bbox": [93, 366, 106, 384], "score": 1.0, "content": "If ", "type": "text"}, {"bbox": [107, 370, 136, 379], "score": 0.92, "content": "k=1", "type": "inline_equation", "height": 9, "width": 29}, {"bbox": [136, 366, 166, 384], "score": 1.0, "content": " then ", "type": "text"}, {"bbox": [167, 370, 281, 382], "score": 0.93, "content": "P_{+}=\\{0,J0,\\dots,J^{r}0\\}", "type": "inline_equation", "height": 12, "width": 114}, {"bbox": [281, 366, 299, 384], "score": 1.0, "content": " so ", "type": "text"}, {"bbox": [299, 370, 363, 382], "score": 0.94, "content": "\\pi=\\pi[c-1]", "type": "inline_equation", "height": 12, "width": 64}, {"bbox": [363, 366, 482, 384], "score": 1.0, "content": ". Thus we can assume ", "type": "text"}, {"bbox": [482, 370, 511, 381], "score": 0.95, "content": "k\\geq2", "type": "inline_equation", "height": 11, "width": 29}, {"bbox": [511, 366, 516, 384], "score": 1.0, "content": ".", "type": "text"}], "index": 18}], "index": 18, "page_num": "page_16", "page_size": [612.0, 792.0], "bbox_fs": [93, 366, 516, 384]}, {"type": "text", "bbox": [69, 381, 541, 530], "lines": [{"bbox": [93, 381, 541, 398], "spans": [{"bbox": [93, 381, 230, 398], "score": 1.0, "content": "Useful is the coefficient of ", "type": "text"}, {"bbox": [231, 384, 238, 393], "score": 0.89, "content": "\\lambda", "type": "inline_equation", "height": 9, "width": 7}, {"bbox": [238, 381, 353, 398], "score": 1.0, "content": " in the tensor product ", "type": "text"}, {"bbox": [353, 384, 419, 395], "score": 0.91, "content": "\\Lambda_{1}\\otimes\\cdot\\cdot\\otimes\\Lambda_{1}", "type": "inline_equation", "height": 11, "width": 66}, {"bbox": [419, 381, 426, 398], "score": 1.0, "content": " (", "type": "text"}, {"bbox": [426, 384, 468, 396], "score": 0.29, "content": "\\ell\\,\\mathrm{times})", "type": "inline_equation", "height": 12, "width": 42}, {"bbox": [468, 381, 541, 398], "score": 1.0, "content": ": it is 0 unless", "type": "text"}], "index": 19}, {"bbox": [71, 393, 543, 419], "spans": [{"bbox": [71, 398, 115, 411], "score": 0.93, "content": "t(\\lambda)=\\ell", "type": "inline_equation", "height": 13, "width": 44}, {"bbox": [115, 393, 288, 419], "score": 1.0, "content": ", in which case the coefficient is", "type": "text"}, {"bbox": [288, 396, 309, 414], "score": 0.94, "content": "\\frac{\\ell!}{h(\\lambda)}", "type": "inline_equation", "height": 18, "width": 21}, {"bbox": [309, 393, 543, 419], "score": 1.0, "content": " (to get this, compare (3.1) above with [27,", "type": "text"}], "index": 20}, {"bbox": [70, 414, 541, 430], "spans": [{"bbox": [70, 414, 334, 430], "score": 1.0, "content": "p.114]) \u2014 we equate here the fundamental weights ", "type": "text"}, {"bbox": [335, 416, 349, 427], "score": 0.91, "content": "\\Lambda_{\\overline{{r}}}", "type": "inline_equation", "height": 11, "width": 14}, {"bbox": [349, 414, 373, 430], "score": 1.0, "content": " and", "type": "text"}, {"bbox": [374, 417, 388, 428], "score": 0.9, "content": "\\Lambda_{0}", "type": "inline_equation", "height": 11, "width": 14}, {"bbox": [388, 414, 430, 430], "score": 1.0, "content": ", so e.g. ", "type": "text"}, {"bbox": [430, 414, 458, 430], "score": 0.91, "content": "^{\\star}{\\frac{k}{r}}\\Lambda_{\\overline{{r}}}^{\\ \\ \\,}{}^{\\ ,}", "type": "inline_equation", "height": 16, "width": 28}, {"bbox": [458, 414, 498, 430], "score": 1.0, "content": " equals ", "type": "text"}, {"bbox": [498, 416, 509, 426], "score": 0.39, "content": "\\mathrm{\\Delta}^{\\prime}0^{\\circ}", "type": "inline_equation", "height": 10, "width": 11}, {"bbox": [509, 414, 541, 430], "score": 1.0, "content": " when", "type": "text"}], "index": 21}, {"bbox": [71, 429, 541, 445], "spans": [{"bbox": [71, 432, 77, 440], "score": 0.86, "content": "\\overline{r}", "type": "inline_equation", "height": 8, "width": 6}, {"bbox": [78, 429, 120, 445], "score": 1.0, "content": " divides ", "type": "text"}, {"bbox": [120, 431, 127, 440], "score": 0.89, "content": "k", "type": "inline_equation", "height": 9, "width": 7}, {"bbox": [128, 429, 167, 445], "score": 1.0, "content": ". Here, ", "type": "text"}, {"bbox": [167, 430, 242, 443], "score": 0.95, "content": "h(\\lambda)=\\prod h(x)", "type": "inline_equation", "height": 13, "width": 75}, {"bbox": [243, 429, 541, 445], "score": 1.0, "content": " is the product of the hook-lengths of the Young diagram", "type": "text"}], "index": 22}, {"bbox": [70, 443, 539, 460], "spans": [{"bbox": [70, 443, 162, 459], "score": 1.0, "content": "corresponding to ", "type": "text"}, {"bbox": [163, 446, 170, 454], "score": 0.88, "content": "\\lambda", "type": "inline_equation", "height": 8, "width": 7}, {"bbox": [171, 443, 381, 459], "score": 1.0, "content": ". Equation (2.4) tells us that as long as ", "type": "text"}, {"bbox": [381, 444, 446, 457], "score": 0.91, "content": "t(\\lambda)=\\ell\\leq k", "type": "inline_equation", "height": 13, "width": 65}, {"bbox": [447, 443, 517, 459], "score": 1.0, "content": ", the number", "type": "text"}, {"bbox": [518, 443, 539, 460], "score": 0.93, "content": "\\frac{\\ell!}{h(\\lambda)}", "type": "inline_equation", "height": 17, "width": 21}], "index": 23}, {"bbox": [69, 460, 542, 476], "spans": [{"bbox": [69, 460, 226, 476], "score": 1.0, "content": "will also be the coefficient of ", "type": "text"}, {"bbox": [227, 463, 243, 474], "score": 0.93, "content": "N_{\\lambda}", "type": "inline_equation", "height": 11, "width": 16}, {"bbox": [243, 460, 353, 476], "score": 1.0, "content": " in the fusion power ", "type": "text"}, {"bbox": [353, 461, 389, 475], "score": 0.92, "content": "(N_{\\Lambda_{1}})^{\\ell}", "type": "inline_equation", "height": 14, "width": 36}, {"bbox": [389, 460, 454, 476], "score": 1.0, "content": ". Note that ", "type": "text"}, {"bbox": [454, 463, 506, 474], "score": 0.92, "content": "J0=k\\Lambda_{1}", "type": "inline_equation", "height": 11, "width": 52}, {"bbox": [506, 460, 542, 476], "score": 1.0, "content": " is the", "type": "text"}], "index": 24}, {"bbox": [70, 475, 542, 491], "spans": [{"bbox": [70, 475, 348, 491], "score": 1.0, "content": "only simple-current appearing in the fusion product ", "type": "text"}, {"bbox": [348, 476, 362, 488], "score": 0.73, "content": "\\Lambda_{1}", "type": "inline_equation", "height": 12, "width": 14}, {"bbox": [362, 475, 415, 491], "score": 1.0, "content": " \u00d7 \u00b7 \u00b7 \u00b7 \u00d7 ", "type": "text"}, {"bbox": [415, 475, 430, 488], "score": 0.84, "content": "\\Lambda_{1}", "type": "inline_equation", "height": 13, "width": 15}, {"bbox": [430, 475, 438, 491], "score": 1.0, "content": " (", "type": "text"}, {"bbox": [439, 476, 446, 487], "score": 0.67, "content": "k", "type": "inline_equation", "height": 11, "width": 7}, {"bbox": [446, 475, 542, 491], "score": 1.0, "content": " times). Thus the", "type": "text"}], "index": 25}, {"bbox": [70, 489, 542, 505], "spans": [{"bbox": [70, 489, 354, 505], "score": 1.0, "content": "only nontrivial simple-current appearing in the fusion ", "type": "text"}, {"bbox": [354, 489, 376, 502], "score": 0.81, "content": "\\pi\\Lambda_{1}", "type": "inline_equation", "height": 13, "width": 22}, {"bbox": [376, 489, 429, 505], "score": 1.0, "content": " \u00d7 \u00b7 \u00b7 \u00b7 \u00d7 ", "type": "text"}, {"bbox": [429, 489, 451, 502], "score": 0.87, "content": "\\pi\\Lambda_{1}", "type": "inline_equation", "height": 13, "width": 22}, {"bbox": [451, 489, 492, 505], "score": 1.0, "content": " will be", "type": "text"}, {"bbox": [493, 489, 525, 501], "score": 0.83, "content": "J^{b k}J0", "type": "inline_equation", "height": 12, "width": 32}, {"bbox": [526, 489, 542, 505], "score": 1.0, "content": " (0", "type": "text"}], "index": 26}, {"bbox": [72, 505, 541, 518], "spans": [{"bbox": [72, 505, 150, 518], "score": 1.0, "content": "will appear iff", "type": "text"}, {"bbox": [151, 507, 157, 515], "score": 0.86, "content": "\\overline{r}", "type": "inline_equation", "height": 8, "width": 6}, {"bbox": [158, 505, 203, 518], "score": 1.0, "content": " divides ", "type": "text"}, {"bbox": [203, 506, 210, 515], "score": 0.82, "content": "k", "type": "inline_equation", "height": 9, "width": 7}, {"bbox": [210, 505, 262, 518], "score": 1.0, "content": "). Hence ", "type": "text"}, {"bbox": [263, 506, 322, 516], "score": 0.89, "content": "b k+1\\equiv c", "type": "inline_equation", "height": 10, "width": 59}, {"bbox": [323, 505, 358, 518], "score": 1.0, "content": " (mod ", "type": "text"}, {"bbox": [359, 506, 366, 515], "score": 0.59, "content": "\\overline{r}", "type": "inline_equation", "height": 9, "width": 7}, {"bbox": [366, 505, 484, 518], "score": 1.0, "content": ") must be coprime to ", "type": "text"}, {"bbox": [484, 506, 491, 515], "score": 0.76, "content": "\\overline{r}", "type": "inline_equation", "height": 9, "width": 7}, {"bbox": [492, 505, 541, 518], "score": 1.0, "content": ". This is", "type": "text"}], "index": 27}, {"bbox": [72, 519, 472, 533], "spans": [{"bbox": [72, 520, 251, 533], "score": 1.0, "content": "precisely the condition needed for ", "type": "text"}, {"bbox": [251, 519, 271, 532], "score": 0.92, "content": "\\pi[b]", "type": "inline_equation", "height": 13, "width": 20}, {"bbox": [271, 520, 472, 533], "score": 1.0, "content": " to be a simple-current automorphism.", "type": "text"}], "index": 28}], "index": 23.5, "page_num": "page_16", "page_size": [612.0, 792.0], "bbox_fs": [69, 381, 543, 533]}, {"type": "text", "bbox": [70, 531, 541, 631], "lines": [{"bbox": [94, 532, 543, 547], "spans": [{"bbox": [94, 533, 289, 547], "score": 1.0, "content": "In other words, it suffices to consider ", "type": "text"}, {"bbox": [289, 533, 340, 545], "score": 0.92, "content": "\\pi\\Lambda_{1}=\\Lambda_{1}", "type": "inline_equation", "height": 12, "width": 51}, {"bbox": [340, 533, 398, 547], "score": 1.0, "content": " and hence ", "type": "text"}, {"bbox": [398, 532, 457, 546], "score": 0.92, "content": "\\pi[J0]=J0", "type": "inline_equation", "height": 14, "width": 59}, {"bbox": [457, 533, 543, 547], "score": 1.0, "content": ". We are done if", "type": "text"}], "index": 29}, {"bbox": [71, 547, 541, 563], "spans": [{"bbox": [71, 550, 99, 558], "score": 0.89, "content": "r=1", "type": "inline_equation", "height": 8, "width": 28}, {"bbox": [100, 547, 160, 563], "score": 1.0, "content": ", so assume ", "type": "text"}, {"bbox": [160, 549, 188, 560], "score": 0.89, "content": "r\\geq2", "type": "inline_equation", "height": 11, "width": 28}, {"bbox": [189, 547, 246, 563], "score": 1.0, "content": ". From the ", "type": "text"}, {"bbox": [246, 547, 261, 560], "score": 0.78, "content": "\\Lambda_{1}", "type": "inline_equation", "height": 13, "width": 15}, {"bbox": [261, 547, 277, 563], "score": 1.0, "content": " \u00d7", "type": "text"}, {"bbox": [278, 547, 293, 560], "score": 0.77, "content": "\\Lambda_{1}", "type": "inline_equation", "height": 13, "width": 15}, {"bbox": [293, 547, 394, 563], "score": 1.0, "content": " fusion, we get that ", "type": "text"}, {"bbox": [394, 547, 481, 561], "score": 0.91, "content": "\\pi\\Lambda_{2}\\in\\{\\Lambda_{2},2\\Lambda_{1}\\}", "type": "inline_equation", "height": 14, "width": 87}, {"bbox": [482, 547, 541, 563], "score": 1.0, "content": ". Note that", "type": "text"}], "index": 30}, {"bbox": [71, 561, 540, 576], "spans": [{"bbox": [71, 563, 91, 574], "score": 0.91, "content": "k\\Lambda_{1}", "type": "inline_equation", "height": 11, "width": 20}, {"bbox": [92, 561, 431, 576], "score": 1.0, "content": " occurs (with multiplicity 1) in the tensor and fusion product of ", "type": "text"}, {"bbox": [431, 561, 452, 574], "score": 0.9, "content": "2\\Lambda_{1}", "type": "inline_equation", "height": 13, "width": 21}, {"bbox": [452, 561, 482, 576], "score": 1.0, "content": " with ", "type": "text"}, {"bbox": [482, 561, 534, 574], "score": 0.69, "content": "k-2\\;\\Lambda_{1}\\,{}^{\\prime}\\mathrm{s}", "type": "inline_equation", "height": 13, "width": 52}, {"bbox": [534, 561, 540, 576], "score": 1.0, "content": "s,", "type": "text"}], "index": 31}, {"bbox": [70, 575, 541, 590], "spans": [{"bbox": [70, 576, 378, 590], "score": 1.0, "content": "but that it doesn\u2019t in the tensor (hence fusion) product of ", "type": "text"}, {"bbox": [379, 576, 393, 588], "score": 0.89, "content": "\\Lambda_{2}", "type": "inline_equation", "height": 12, "width": 14}, {"bbox": [393, 576, 423, 590], "score": 1.0, "content": " with ", "type": "text"}, {"bbox": [423, 575, 469, 588], "score": 0.79, "content": "k-2~\\Lambda_{1}", "type": "inline_equation", "height": 13, "width": 46}, {"bbox": [470, 576, 541, 590], "score": 1.0, "content": "\u2019s (recall that", "type": "text"}], "index": 32}, {"bbox": [71, 589, 540, 606], "spans": [{"bbox": [71, 591, 186, 604], "score": 0.92, "content": "k\\Lambda_{1}\\succ(k-2)\\Lambda_{1}+\\Lambda_{2}", "type": "inline_equation", "height": 13, "width": 115}, {"bbox": [187, 590, 425, 606], "score": 1.0, "content": " in the usual partial order on weights). Since ", "type": "text"}, {"bbox": [425, 590, 440, 603], "score": 0.72, "content": "\\Lambda_{2}", "type": "inline_equation", "height": 13, "width": 15}, {"bbox": [440, 590, 456, 606], "score": 1.0, "content": " \u00d7", "type": "text"}, {"bbox": [457, 590, 472, 603], "score": 0.74, "content": "\\Lambda_{1}", "type": "inline_equation", "height": 13, "width": 15}, {"bbox": [472, 590, 524, 606], "score": 1.0, "content": " \u00d7 \u00b7 \u00b7 \u00b7 \u00d7", "type": "text"}, {"bbox": [524, 589, 540, 603], "score": 0.84, "content": "\\Lambda_{1}", "type": "inline_equation", "height": 14, "width": 16}], "index": 33}, {"bbox": [69, 603, 542, 621], "spans": [{"bbox": [69, 604, 163, 621], "score": 1.0, "content": "does not contain ", "type": "text"}, {"bbox": [164, 606, 178, 616], "score": 0.8, "content": "J0", "type": "inline_equation", "height": 10, "width": 14}, {"bbox": [178, 604, 185, 621], "score": 1.0, "content": ", ", "type": "text"}, {"bbox": [185, 603, 348, 618], "score": 0.25, "content": "(\\pi\\Lambda_{2})\\boxtimes(\\pi\\Lambda_{1})\\boxtimes\\dots\\boxtimes(\\pi\\Lambda_{1})", "type": "inline_equation", "height": 15, "width": 163}, {"bbox": [349, 604, 449, 621], "score": 1.0, "content": " should also avoid ", "type": "text"}, {"bbox": [449, 604, 513, 618], "score": 0.93, "content": "\\pi(J0)\\,=\\,J0", "type": "inline_equation", "height": 14, "width": 64}, {"bbox": [513, 604, 542, 621], "score": 1.0, "content": ", and", "type": "text"}], "index": 34}, {"bbox": [70, 618, 218, 634], "spans": [{"bbox": [70, 618, 97, 634], "score": 1.0, "content": "thus ", "type": "text"}, {"bbox": [97, 621, 118, 631], "score": 0.92, "content": "\\pi\\Lambda_{2}", "type": "inline_equation", "height": 10, "width": 21}, {"bbox": [119, 618, 192, 634], "score": 1.0, "content": " cannot equal ", "type": "text"}, {"bbox": [193, 619, 213, 632], "score": 0.9, "content": "2\\Lambda_{1}", "type": "inline_equation", "height": 13, "width": 20}, {"bbox": [213, 618, 218, 634], "score": 1.0, "content": ".", "type": "text"}], "index": 35}], "index": 32, "page_num": "page_16", "page_size": [612.0, 792.0], "bbox_fs": [69, 532, 543, 634]}, {"type": "text", "bbox": [70, 632, 541, 703], "lines": [{"bbox": [94, 632, 543, 649], "spans": [{"bbox": [94, 632, 174, 649], "score": 1.0, "content": "Thus we know ", "type": "text"}, {"bbox": [174, 633, 226, 646], "score": 0.91, "content": "\\pi\\Lambda_{2}=\\Lambda_{2}", "type": "inline_equation", "height": 13, "width": 52}, {"bbox": [226, 632, 315, 649], "score": 1.0, "content": ". The remaining ", "type": "text"}, {"bbox": [316, 633, 366, 646], "score": 0.92, "content": "\\pi\\Lambda_{\\ell}=\\Lambda_{\\ell}", "type": "inline_equation", "height": 13, "width": 50}, {"bbox": [366, 632, 543, 649], "score": 1.0, "content": "follow quickly from induction: if", "type": "text"}], "index": 36}, {"bbox": [71, 647, 541, 663], "spans": [{"bbox": [71, 649, 121, 660], "score": 0.92, "content": "\\pi\\Lambda_{\\ell}=\\Lambda_{\\ell}", "type": "inline_equation", "height": 11, "width": 50}, {"bbox": [121, 647, 173, 663], "score": 1.0, "content": "for some ", "type": "text"}, {"bbox": [173, 648, 224, 660], "score": 0.87, "content": "2\\leq\\ell<r", "type": "inline_equation", "height": 12, "width": 51}, {"bbox": [225, 647, 314, 663], "score": 1.0, "content": ", then the fusion ", "type": "text"}, {"bbox": [314, 647, 360, 660], "score": 0.44, "content": "\\Lambda_{1}\\boxtimes\\Lambda_{\\ell}", "type": "inline_equation", "height": 13, "width": 46}, {"bbox": [360, 647, 404, 663], "score": 1.0, "content": "tells us ", "type": "text"}, {"bbox": [405, 648, 537, 662], "score": 0.93, "content": "\\pi\\Lambda_{\\ell+1}\\in\\{\\Lambda_{\\ell+1},\\Lambda_{1}+\\Lambda_{\\ell}\\}", "type": "inline_equation", "height": 14, "width": 132}, {"bbox": [537, 647, 541, 663], "score": 1.0, "content": ".", "type": "text"}], "index": 37}, {"bbox": [70, 661, 542, 678], "spans": [{"bbox": [70, 661, 95, 678], "score": 1.0, "content": "But ", "type": "text"}, {"bbox": [96, 662, 222, 675], "score": 0.92, "content": "h(\\Lambda_{1}+\\Lambda_{\\ell})=(\\ell+1)!/\\ell", "type": "inline_equation", "height": 13, "width": 126}, {"bbox": [222, 661, 249, 678], "score": 1.0, "content": "and ", "type": "text"}, {"bbox": [250, 662, 347, 676], "score": 0.92, "content": "h(\\Lambda_{\\ell+1})=(\\ell+1)!", "type": "inline_equation", "height": 14, "width": 97}, {"bbox": [348, 661, 370, 678], "score": 1.0, "content": ", so ", "type": "text"}, {"bbox": [371, 663, 446, 675], "score": 0.92, "content": "\\pi\\Lambda_{\\ell+1}=\\Lambda_{\\ell+1}", "type": "inline_equation", "height": 12, "width": 75}, {"bbox": [446, 661, 487, 678], "score": 1.0, "content": ". Thus ", "type": "text"}, {"bbox": [487, 664, 495, 673], "score": 0.72, "content": "\\pi", "type": "inline_equation", "height": 9, "width": 8}, {"bbox": [495, 661, 542, 678], "score": 1.0, "content": " fixes all", "type": "text"}], "index": 38}, {"bbox": [70, 676, 542, 691], "spans": [{"bbox": [70, 676, 542, 691], "score": 1.0, "content": "fundamental weights, and since these comprise a fusion-generator (see the discussion at", "type": "text"}], "index": 39}, {"bbox": [70, 689, 384, 707], "spans": [{"bbox": [70, 689, 231, 707], "score": 1.0, "content": "the end of \u00a72.2) we know that ", "type": "text"}, {"bbox": [232, 695, 240, 701], "score": 0.67, "content": "\\pi", "type": "inline_equation", "height": 6, "width": 8}, {"bbox": [240, 689, 362, 707], "score": 1.0, "content": " must fix everything in ", "type": "text"}, {"bbox": [362, 692, 378, 704], "score": 0.9, "content": "P_{+}", "type": "inline_equation", "height": 12, "width": 16}, {"bbox": [379, 689, 384, 707], "score": 1.0, "content": ".", "type": "text"}], "index": 40}], "index": 38, "page_num": "page_16", "page_size": [612.0, 792.0], "bbox_fs": [70, 632, 543, 707]}]} |
|
0002044v1 | 20 | # 5. Affine fusion ring isomorphisms
We conclude the paper with the determination of all isomorphisms among the affine
fusion rings $$\mathcal{R}(X_{r,k})$$ . Recall Definition 2.1 and the discussion in $$\S2.2$$ .
Theorem 5.1. The complete list of fusion ring isomorphisms $$\mathscr{R}(X_{r,k})\,\cong\,\mathscr{R}(Y_{s,m})$$
when $$X_{r,k}\neq Y_{s,m}$$ (where $$X_{r},Y_{s}$$ are simple) is:
rank-level duality $$\mathcal{R}(C_{r,k})\cong\mathcal{R}(C_{k,r})$$ for all $$r,k$$ , as well as $$\mathcal{R}(A_{1,k})\cong\mathcal{R}(C_{k,1})$$ ;
$$\mathcal{R}(B_{r,1})\cong\mathcal{R}(A_{1,2})\cong\mathcal{R}(C_{2,1})\cong\mathcal{R}(E_{8,2})$$ for all $$r\geq3$$ ;
$$\mathcal{R}(A_{3,1})\cong\mathcal{R}(D_{o d d,1})$$ ;
$$\mathcal{R}(D_{r,1})\cong\mathcal{R}(D_{s,1})$$ whenever $$r\equiv s$$ (mod 2);
$$\mathscr{R}(A_{2,1})\cong\mathscr{R}(E_{6,1})$$ and $$\mathcal{R}(A_{1,1})\cong\mathcal{R}(E_{7,1})$$ ;
$$\mathcal{R}(F_{4,1})\cong\mathcal{R}(G_{2,1})$$ , $$\mathcal{R}(F_{4,2})\cong\mathcal{R}(E_{8,3})$$ , and $$\mathcal{R}(F_{4,3})\cong\mathcal{R}(G_{2,4})$$ .
The isomorphism $$\mathcal{R}(A_{1,k})\cong\mathcal{R}(C_{k,1})$$ takes $$a\Lambda_{1}$$ to $$\widetilde{\Lambda}_{a}$$ . The isomorphism $$\mathcal{R}(F_{4,2})\cong$$
$$\mathcal{R}(E_{8,3})$$ was found in [14]; it relates $$\Lambda_{1}\leftrightarrow\tilde{\Lambda}_{8}$$ , $$2\Lambda_{4}\leftrightarrow\tilde{\Lambda}_{2}$$ , $$\Lambda_{3}\,\leftrightarrow\,\widetilde{\Lambda}_{1}$$ , $$\Lambda_{4}\leftrightarrow\tilde{\Lambda}_{7}$$ . The
isomorphism $$\mathcal{R}(F_{4,3})\,\cong\,\mathcal{R}(G_{2,4})$$ was found i n [34,14]; a corresponde nce which works is
$$\Lambda_{4}\leftrightarrow\widetilde{\Lambda}_{1}$$ , $$\Lambda_{1}\leftrightarrow2\widetilde{\Lambda}_{1}$$ , $$\Lambda_{3}\leftrightarrow3\widetilde{\Lambda}_{2}$$ , $$2\Lambda_{4}\leftrightarrow2\widetilde{\Lambda}_{2}$$ , $$\Lambda_{1}+\Lambda_{4}\leftrightarrow\widetilde{\Lambda}_{1}+2\widetilde{\Lambda}_{2}$$ , $$\Lambda_{2}\leftrightarrow4\widetilde{\Lambda}_{2}$$ , $$3\Lambda_{4}\leftrightarrow\widetilde{\Lambda}_{2}$$ ,
and $$\Lambda_{3}+\Lambda_{4}\leftrightarrow\tilde{\Lambda}_{1}+\tilde{\Lambda}_{2}$$ .
We will sket ch th e proof here. The idea is to compare invariants for the various fusion
rings, case by case. For example, suppose $$\mathcal{R}(A_{r,k})$$ and $$\mathcal{R}(A_{s,m})$$ are isomorphic. Then their
simple-current groups $$\mathbb{Z}_{r+1}$$ and $$\mathbb{Z}_{s+1}$$ must be isomorphic (since simple-currents must get
mapped to simple-currents), so $$r=s$$ . Now compare the numbers $$||P_{+}||$$ of highest-weights:
$$\big(\begin{array}{c}{{r+k}}\\ {{r}}\end{array}\big)=\big(\begin{array}{c}{{r+m}}\\ {{r}}\end{array}\big)$$ , which forces $$m=k$$ .
It is also quite useful here to know those weights with second smallest q-dimension.
This is a by-product of the proof of Proposition 4.1, and the complete answer is given in
[18, Table 3]. Here we will simply state that those weights in $$P_{+}^{k}(X_{r}^{(1)})$$ with second smallest
q-dimension are precisely the orbit $$S\Lambda_{\star}$$ , except for: $$A_{r,1}$$ ; $$B_{r,k}$$ for $$k\leq3$$ ; $$C_{2,2},C_{2,3},C_{3,2}$$ ;
$$D_{r,k}$$ for $$k\leq2$$ ; $$E_{6,k}$$ for $$k\leq2$$ ; and $$E_{7,k},E_{8,k},F_{4,k},G_{2,k}$$ for $$k\leq4$$ .
$$C_{r,k}$$ and $$B_{s,m}$$ both have two simple-currents, but their fusion rings can’t be isomorphic
(generically) because the orbit $$J^{i}\Lambda_{1}$$ has the second smallest q-dimension for both algebras
at generic rank/level, but the numbers $$Q_{j}(J^{i}\Lambda_{1})$$ for the two algebras are different.
Another useful invariant involves the set of integers $$\ell$$ coprime to $$\kappa N$$ for which $$0^{(\ell)}$$ is
a simple-current. For the classical algebras this is easy to find, using (2.1c): Up to a sign,
the q-dimension of $$0^{(\ell)}$$ ( $$\ell$$ coprime to $$2\kappa$$ ) for the algebras $$B_{r}^{(1)},C_{r}^{(1)},D_{r}^{(1)}$$ is, respectively,
| <h1>5. Affine fusion ring isomorphisms</h1>
<p>We conclude the paper with the determination of all isomorphisms among the affine
fusion rings $$\mathcal{R}(X_{r,k})$$ . Recall Definition 2.1 and the discussion in $$\S2.2$$ .</p>
<p>Theorem 5.1. The complete list of fusion ring isomorphisms $$\mathscr{R}(X_{r,k})\,\cong\,\mathscr{R}(Y_{s,m})$$
when $$X_{r,k}\neq Y_{s,m}$$ (where $$X_{r},Y_{s}$$ are simple) is:
rank-level duality $$\mathcal{R}(C_{r,k})\cong\mathcal{R}(C_{k,r})$$ for all $$r,k$$ , as well as $$\mathcal{R}(A_{1,k})\cong\mathcal{R}(C_{k,1})$$ ;
$$\mathcal{R}(B_{r,1})\cong\mathcal{R}(A_{1,2})\cong\mathcal{R}(C_{2,1})\cong\mathcal{R}(E_{8,2})$$ for all $$r\geq3$$ ;
$$\mathcal{R}(A_{3,1})\cong\mathcal{R}(D_{o d d,1})$$ ;
$$\mathcal{R}(D_{r,1})\cong\mathcal{R}(D_{s,1})$$ whenever $$r\equiv s$$ (mod 2);
$$\mathscr{R}(A_{2,1})\cong\mathscr{R}(E_{6,1})$$ and $$\mathcal{R}(A_{1,1})\cong\mathcal{R}(E_{7,1})$$ ;
$$\mathcal{R}(F_{4,1})\cong\mathcal{R}(G_{2,1})$$ , $$\mathcal{R}(F_{4,2})\cong\mathcal{R}(E_{8,3})$$ , and $$\mathcal{R}(F_{4,3})\cong\mathcal{R}(G_{2,4})$$ .</p>
<p>The isomorphism $$\mathcal{R}(A_{1,k})\cong\mathcal{R}(C_{k,1})$$ takes $$a\Lambda_{1}$$ to $$\widetilde{\Lambda}_{a}$$ . The isomorphism $$\mathcal{R}(F_{4,2})\cong$$
$$\mathcal{R}(E_{8,3})$$ was found in [14]; it relates $$\Lambda_{1}\leftrightarrow\tilde{\Lambda}_{8}$$ , $$2\Lambda_{4}\leftrightarrow\tilde{\Lambda}_{2}$$ , $$\Lambda_{3}\,\leftrightarrow\,\widetilde{\Lambda}_{1}$$ , $$\Lambda_{4}\leftrightarrow\tilde{\Lambda}_{7}$$ . The
isomorphism $$\mathcal{R}(F_{4,3})\,\cong\,\mathcal{R}(G_{2,4})$$ was found i n [34,14]; a corresponde nce which works is
$$\Lambda_{4}\leftrightarrow\widetilde{\Lambda}_{1}$$ , $$\Lambda_{1}\leftrightarrow2\widetilde{\Lambda}_{1}$$ , $$\Lambda_{3}\leftrightarrow3\widetilde{\Lambda}_{2}$$ , $$2\Lambda_{4}\leftrightarrow2\widetilde{\Lambda}_{2}$$ , $$\Lambda_{1}+\Lambda_{4}\leftrightarrow\widetilde{\Lambda}_{1}+2\widetilde{\Lambda}_{2}$$ , $$\Lambda_{2}\leftrightarrow4\widetilde{\Lambda}_{2}$$ , $$3\Lambda_{4}\leftrightarrow\widetilde{\Lambda}_{2}$$ ,
and $$\Lambda_{3}+\Lambda_{4}\leftrightarrow\tilde{\Lambda}_{1}+\tilde{\Lambda}_{2}$$ .</p>
<p>We will sket ch th e proof here. The idea is to compare invariants for the various fusion
rings, case by case. For example, suppose $$\mathcal{R}(A_{r,k})$$ and $$\mathcal{R}(A_{s,m})$$ are isomorphic. Then their
simple-current groups $$\mathbb{Z}_{r+1}$$ and $$\mathbb{Z}_{s+1}$$ must be isomorphic (since simple-currents must get
mapped to simple-currents), so $$r=s$$ . Now compare the numbers $$||P_{+}||$$ of highest-weights:
$$\big(\begin{array}{c}{{r+k}}\\ {{r}}\end{array}\big)=\big(\begin{array}{c}{{r+m}}\\ {{r}}\end{array}\big)$$ , which forces $$m=k$$ .</p>
<p>It is also quite useful here to know those weights with second smallest q-dimension.
This is a by-product of the proof of Proposition 4.1, and the complete answer is given in
[18, Table 3]. Here we will simply state that those weights in $$P_{+}^{k}(X_{r}^{(1)})$$ with second smallest
q-dimension are precisely the orbit $$S\Lambda_{\star}$$ , except for: $$A_{r,1}$$ ; $$B_{r,k}$$ for $$k\leq3$$ ; $$C_{2,2},C_{2,3},C_{3,2}$$ ;
$$D_{r,k}$$ for $$k\leq2$$ ; $$E_{6,k}$$ for $$k\leq2$$ ; and $$E_{7,k},E_{8,k},F_{4,k},G_{2,k}$$ for $$k\leq4$$ .</p>
<p>$$C_{r,k}$$ and $$B_{s,m}$$ both have two simple-currents, but their fusion rings can’t be isomorphic
(generically) because the orbit $$J^{i}\Lambda_{1}$$ has the second smallest q-dimension for both algebras
at generic rank/level, but the numbers $$Q_{j}(J^{i}\Lambda_{1})$$ for the two algebras are different.</p>
<p>Another useful invariant involves the set of integers $$\ell$$ coprime to $$\kappa N$$ for which $$0^{(\ell)}$$ is
a simple-current. For the classical algebras this is easy to find, using (2.1c): Up to a sign,
the q-dimension of $$0^{(\ell)}$$ ( $$\ell$$ coprime to $$2\kappa$$ ) for the algebras $$B_{r}^{(1)},C_{r}^{(1)},D_{r}^{(1)}$$ is, respectively,</p>
| [{"type": "title", "coordinates": [200, 71, 410, 86], "content": "5. Affine fusion ring isomorphisms", "block_type": "title", "index": 1}, {"type": "text", "coordinates": [70, 102, 542, 132], "content": "We conclude the paper with the determination of all isomorphisms among the affine\nfusion rings $$\\mathcal{R}(X_{r,k})$$ . Recall Definition 2.1 and the discussion in $$\\S2.2$$ .", "block_type": "text", "index": 2}, {"type": "text", "coordinates": [70, 138, 541, 259], "content": "Theorem 5.1. The complete list of fusion ring isomorphisms $$\\mathscr{R}(X_{r,k})\\,\\cong\\,\\mathscr{R}(Y_{s,m})$$\nwhen $$X_{r,k}\\neq Y_{s,m}$$ (where $$X_{r},Y_{s}$$ are simple) is:\nrank-level duality $$\\mathcal{R}(C_{r,k})\\cong\\mathcal{R}(C_{k,r})$$ for all $$r,k$$ , as well as $$\\mathcal{R}(A_{1,k})\\cong\\mathcal{R}(C_{k,1})$$ ;\n$$\\mathcal{R}(B_{r,1})\\cong\\mathcal{R}(A_{1,2})\\cong\\mathcal{R}(C_{2,1})\\cong\\mathcal{R}(E_{8,2})$$ for all $$r\\geq3$$ ;\n$$\\mathcal{R}(A_{3,1})\\cong\\mathcal{R}(D_{o d d,1})$$ ;\n$$\\mathcal{R}(D_{r,1})\\cong\\mathcal{R}(D_{s,1})$$ whenever $$r\\equiv s$$ (mod 2);\n$$\\mathscr{R}(A_{2,1})\\cong\\mathscr{R}(E_{6,1})$$ and $$\\mathcal{R}(A_{1,1})\\cong\\mathcal{R}(E_{7,1})$$ ;\n$$\\mathcal{R}(F_{4,1})\\cong\\mathcal{R}(G_{2,1})$$ , $$\\mathcal{R}(F_{4,2})\\cong\\mathcal{R}(E_{8,3})$$ , and $$\\mathcal{R}(F_{4,3})\\cong\\mathcal{R}(G_{2,4})$$ .", "block_type": "text", "index": 3}, {"type": "text", "coordinates": [70, 266, 541, 343], "content": "The isomorphism $$\\mathcal{R}(A_{1,k})\\cong\\mathcal{R}(C_{k,1})$$ takes $$a\\Lambda_{1}$$ to $$\\widetilde{\\Lambda}_{a}$$ . The isomorphism $$\\mathcal{R}(F_{4,2})\\cong$$\n$$\\mathcal{R}(E_{8,3})$$ was found in [14]; it relates $$\\Lambda_{1}\\leftrightarrow\\tilde{\\Lambda}_{8}$$ , $$2\\Lambda_{4}\\leftrightarrow\\tilde{\\Lambda}_{2}$$ , $$\\Lambda_{3}\\,\\leftrightarrow\\,\\widetilde{\\Lambda}_{1}$$ , $$\\Lambda_{4}\\leftrightarrow\\tilde{\\Lambda}_{7}$$ . The\nisomorphism $$\\mathcal{R}(F_{4,3})\\,\\cong\\,\\mathcal{R}(G_{2,4})$$ was found i n [34,14]; a corresponde nce which works is\n$$\\Lambda_{4}\\leftrightarrow\\widetilde{\\Lambda}_{1}$$ , $$\\Lambda_{1}\\leftrightarrow2\\widetilde{\\Lambda}_{1}$$ , $$\\Lambda_{3}\\leftrightarrow3\\widetilde{\\Lambda}_{2}$$ , $$2\\Lambda_{4}\\leftrightarrow2\\widetilde{\\Lambda}_{2}$$ , $$\\Lambda_{1}+\\Lambda_{4}\\leftrightarrow\\widetilde{\\Lambda}_{1}+2\\widetilde{\\Lambda}_{2}$$ , $$\\Lambda_{2}\\leftrightarrow4\\widetilde{\\Lambda}_{2}$$ , $$3\\Lambda_{4}\\leftrightarrow\\widetilde{\\Lambda}_{2}$$ ,\nand $$\\Lambda_{3}+\\Lambda_{4}\\leftrightarrow\\tilde{\\Lambda}_{1}+\\tilde{\\Lambda}_{2}$$ .", "block_type": "text", "index": 4}, {"type": "text", "coordinates": [70, 344, 541, 416], "content": "We will sket ch th e proof here. The idea is to compare invariants for the various fusion\nrings, case by case. For example, suppose $$\\mathcal{R}(A_{r,k})$$ and $$\\mathcal{R}(A_{s,m})$$ are isomorphic. Then their\nsimple-current groups $$\\mathbb{Z}_{r+1}$$ and $$\\mathbb{Z}_{s+1}$$ must be isomorphic (since simple-currents must get\nmapped to simple-currents), so $$r=s$$ . Now compare the numbers $$||P_{+}||$$ of highest-weights:\n$$\\big(\\begin{array}{c}{{r+k}}\\\\ {{r}}\\end{array}\\big)=\\big(\\begin{array}{c}{{r+m}}\\\\ {{r}}\\end{array}\\big)$$ , which forces $$m=k$$ .", "block_type": "text", "index": 5}, {"type": "text", "coordinates": [70, 416, 541, 490], "content": "It is also quite useful here to know those weights with second smallest q-dimension.\nThis is a by-product of the proof of Proposition 4.1, and the complete answer is given in\n[18, Table 3]. Here we will simply state that those weights in $$P_{+}^{k}(X_{r}^{(1)})$$ with second smallest\nq-dimension are precisely the orbit $$S\\Lambda_{\\star}$$ , except for: $$A_{r,1}$$ ; $$B_{r,k}$$ for $$k\\leq3$$ ; $$C_{2,2},C_{2,3},C_{3,2}$$ ;\n$$D_{r,k}$$ for $$k\\leq2$$ ; $$E_{6,k}$$ for $$k\\leq2$$ ; and $$E_{7,k},E_{8,k},F_{4,k},G_{2,k}$$ for $$k\\leq4$$ .", "block_type": "text", "index": 6}, {"type": "text", "coordinates": [71, 490, 541, 533], "content": "$$C_{r,k}$$ and $$B_{s,m}$$ both have two simple-currents, but their fusion rings can\u2019t be isomorphic\n(generically) because the orbit $$J^{i}\\Lambda_{1}$$ has the second smallest q-dimension for both algebras\nat generic rank/level, but the numbers $$Q_{j}(J^{i}\\Lambda_{1})$$ for the two algebras are different.", "block_type": "text", "index": 7}, {"type": "text", "coordinates": [70, 534, 541, 579], "content": "Another useful invariant involves the set of integers $$\\ell$$ coprime to $$\\kappa N$$ for which $$0^{(\\ell)}$$ is\na simple-current. For the classical algebras this is easy to find, using (2.1c): Up to a sign,\nthe q-dimension of $$0^{(\\ell)}$$ ( $$\\ell$$ coprime to $$2\\kappa$$ ) for the algebras $$B_{r}^{(1)},C_{r}^{(1)},D_{r}^{(1)}$$ is, respectively,", "block_type": "text", "index": 8}, {"type": "interline_equation", "coordinates": [145, 595, 464, 720], "content": "", "block_type": "interline_equation", "index": 9}] | [{"type": "text", "coordinates": [201, 74, 409, 88], "content": "5. Affine fusion ring isomorphisms", "score": 1.0, "index": 1}, {"type": "text", "coordinates": [94, 103, 541, 120], "content": "We conclude the paper with the determination of all isomorphisms among the affine", "score": 1.0, "index": 2}, {"type": "text", "coordinates": [72, 119, 135, 133], "content": "fusion rings ", "score": 1.0, "index": 3}, {"type": "inline_equation", "coordinates": [135, 120, 178, 133], "content": "\\mathcal{R}(X_{r,k})", "score": 0.93, "index": 4}, {"type": "text", "coordinates": [178, 119, 410, 133], "content": ". Recall Definition 2.1 and the discussion in ", "score": 1.0, "index": 5}, {"type": "inline_equation", "coordinates": [411, 119, 432, 132], "content": "\\S2.2", "score": 0.3, "index": 6}, {"type": "text", "coordinates": [433, 119, 435, 133], "content": ".", "score": 1.0, "index": 7}, {"type": "text", "coordinates": [94, 140, 434, 159], "content": "Theorem 5.1. The complete list of fusion ring isomorphisms ", "score": 1.0, "index": 8}, {"type": "inline_equation", "coordinates": [434, 143, 540, 156], "content": "\\mathscr{R}(X_{r,k})\\,\\cong\\,\\mathscr{R}(Y_{s,m})", "score": 0.92, "index": 9}, {"type": "text", "coordinates": [72, 156, 101, 172], "content": "when ", "score": 1.0, "index": 10}, {"type": "inline_equation", "coordinates": [101, 156, 164, 170], "content": "X_{r,k}\\neq Y_{s,m}", "score": 0.92, "index": 11}, {"type": "text", "coordinates": [164, 156, 206, 172], "content": " (where ", "score": 1.0, "index": 12}, {"type": "inline_equation", "coordinates": [206, 156, 240, 169], "content": "X_{r},Y_{s}", "score": 0.9, "index": 13}, {"type": "text", "coordinates": [240, 156, 321, 172], "content": " are simple) is:", "score": 1.0, "index": 14}, {"type": "text", "coordinates": [70, 169, 164, 187], "content": "rank-level duality ", "score": 1.0, "index": 15}, {"type": "inline_equation", "coordinates": [164, 171, 263, 185], "content": "\\mathcal{R}(C_{r,k})\\cong\\mathcal{R}(C_{k,r})", "score": 0.91, "index": 16}, {"type": "text", "coordinates": [263, 169, 302, 187], "content": " for all ", "score": 1.0, "index": 17}, {"type": "inline_equation", "coordinates": [303, 171, 321, 184], "content": "r,k", "score": 0.88, "index": 18}, {"type": "text", "coordinates": [321, 169, 382, 187], "content": ", as well as ", "score": 1.0, "index": 19}, {"type": "inline_equation", "coordinates": [383, 171, 483, 185], "content": "\\mathcal{R}(A_{1,k})\\cong\\mathcal{R}(C_{k,1})", "score": 0.92, "index": 20}, {"type": "text", "coordinates": [484, 169, 489, 187], "content": ";", "score": 1.0, "index": 21}, {"type": "inline_equation", "coordinates": [71, 185, 284, 200], "content": "\\mathcal{R}(B_{r,1})\\cong\\mathcal{R}(A_{1,2})\\cong\\mathcal{R}(C_{2,1})\\cong\\mathcal{R}(E_{8,2})", "score": 0.86, "index": 22}, {"type": "text", "coordinates": [284, 185, 323, 203], "content": " for all ", "score": 1.0, "index": 23}, {"type": "inline_equation", "coordinates": [323, 186, 352, 199], "content": "r\\geq3", "score": 0.89, "index": 24}, {"type": "text", "coordinates": [353, 185, 358, 203], "content": ";", "score": 1.0, "index": 25}, {"type": "inline_equation", "coordinates": [71, 200, 182, 214], "content": "\\mathcal{R}(A_{3,1})\\cong\\mathcal{R}(D_{o d d,1})", "score": 0.89, "index": 26}, {"type": "text", "coordinates": [182, 200, 188, 217], "content": ";", "score": 1.0, "index": 27}, {"type": "inline_equation", "coordinates": [71, 215, 171, 229], "content": "\\mathcal{R}(D_{r,1})\\cong\\mathcal{R}(D_{s,1})", "score": 0.9, "index": 28}, {"type": "text", "coordinates": [171, 214, 226, 231], "content": " whenever ", "score": 1.0, "index": 29}, {"type": "inline_equation", "coordinates": [226, 216, 255, 227], "content": "r\\equiv s", "score": 0.48, "index": 30}, {"type": "text", "coordinates": [256, 214, 307, 231], "content": " (mod 2);", "score": 1.0, "index": 31}, {"type": "inline_equation", "coordinates": [71, 230, 171, 244], "content": "\\mathscr{R}(A_{2,1})\\cong\\mathscr{R}(E_{6,1})", "score": 0.89, "index": 32}, {"type": "text", "coordinates": [171, 230, 197, 245], "content": " and ", "score": 1.0, "index": 33}, {"type": "inline_equation", "coordinates": [197, 229, 296, 244], "content": "\\mathcal{R}(A_{1,1})\\cong\\mathcal{R}(E_{7,1})", "score": 0.87, "index": 34}, {"type": "text", "coordinates": [296, 230, 302, 245], "content": ";", "score": 1.0, "index": 35}, {"type": "inline_equation", "coordinates": [71, 245, 169, 259], "content": "\\mathcal{R}(F_{4,1})\\cong\\mathcal{R}(G_{2,1})", "score": 0.89, "index": 36}, {"type": "text", "coordinates": [170, 244, 176, 261], "content": ", ", "score": 1.0, "index": 37}, {"type": "inline_equation", "coordinates": [177, 244, 275, 259], "content": "\\mathcal{R}(F_{4,2})\\cong\\mathcal{R}(E_{8,3})", "score": 0.85, "index": 38}, {"type": "text", "coordinates": [275, 244, 304, 261], "content": ", and", "score": 1.0, "index": 39}, {"type": "inline_equation", "coordinates": [305, 244, 405, 259], "content": "\\mathcal{R}(F_{4,3})\\cong\\mathcal{R}(G_{2,4})", "score": 0.9, "index": 40}, {"type": "text", "coordinates": [405, 244, 408, 261], "content": ".", "score": 1.0, "index": 41}, {"type": "text", "coordinates": [93, 267, 190, 285], "content": "The isomorphism ", "score": 1.0, "index": 42}, {"type": "inline_equation", "coordinates": [190, 269, 291, 284], "content": "\\mathcal{R}(A_{1,k})\\cong\\mathcal{R}(C_{k,1})", "score": 0.91, "index": 43}, {"type": "text", "coordinates": [292, 267, 326, 285], "content": " takes ", "score": 1.0, "index": 44}, {"type": "inline_equation", "coordinates": [326, 269, 347, 282], "content": "a\\Lambda_{1}", "score": 0.86, "index": 45}, {"type": "text", "coordinates": [348, 267, 365, 285], "content": " to", "score": 1.0, "index": 46}, {"type": "inline_equation", "coordinates": [366, 267, 381, 282], "content": "\\widetilde{\\Lambda}_{a}", "score": 0.9, "index": 47}, {"type": "text", "coordinates": [381, 267, 485, 285], "content": ". The isomorphism ", "score": 1.0, "index": 48}, {"type": "inline_equation", "coordinates": [486, 270, 541, 284], "content": "\\mathcal{R}(F_{4,2})\\cong", "score": 0.89, "index": 49}, {"type": "inline_equation", "coordinates": [71, 288, 113, 300], "content": "\\mathcal{R}(E_{8,3})", "score": 0.93, "index": 50}, {"type": "text", "coordinates": [113, 285, 272, 300], "content": " was found in [14]; it relates ", "score": 1.0, "index": 51}, {"type": "inline_equation", "coordinates": [272, 283, 323, 299], "content": "\\Lambda_{1}\\leftrightarrow\\tilde{\\Lambda}_{8}", "score": 0.89, "index": 52}, {"type": "text", "coordinates": [323, 285, 331, 300], "content": ", ", "score": 1.0, "index": 53}, {"type": "inline_equation", "coordinates": [331, 284, 388, 299], "content": "2\\Lambda_{4}\\leftrightarrow\\tilde{\\Lambda}_{2}", "score": 0.88, "index": 54}, {"type": "text", "coordinates": [389, 285, 396, 300], "content": ", ", "score": 1.0, "index": 55}, {"type": "inline_equation", "coordinates": [397, 285, 447, 299], "content": "\\Lambda_{3}\\,\\leftrightarrow\\,\\widetilde{\\Lambda}_{1}", "score": 0.93, "index": 56}, {"type": "text", "coordinates": [448, 285, 455, 300], "content": ", ", "score": 1.0, "index": 57}, {"type": "inline_equation", "coordinates": [456, 285, 506, 299], "content": "\\Lambda_{4}\\leftrightarrow\\tilde{\\Lambda}_{7}", "score": 0.93, "index": 58}, {"type": "text", "coordinates": [507, 285, 540, 300], "content": ". The", "score": 1.0, "index": 59}, {"type": "text", "coordinates": [70, 299, 142, 315], "content": "isomorphism ", "score": 1.0, "index": 60}, {"type": "inline_equation", "coordinates": [142, 300, 244, 314], "content": "\\mathcal{R}(F_{4,3})\\,\\cong\\,\\mathcal{R}(G_{2,4})", "score": 0.91, "index": 61}, {"type": "text", "coordinates": [244, 299, 542, 315], "content": " was found i n [34,14]; a corresponde nce which works is", "score": 1.0, "index": 62}, {"type": "inline_equation", "coordinates": [71, 315, 118, 330], "content": "\\Lambda_{4}\\leftrightarrow\\widetilde{\\Lambda}_{1}", "score": 0.92, "index": 63}, {"type": "text", "coordinates": [118, 315, 124, 331], "content": ", ", "score": 1.0, "index": 64}, {"type": "inline_equation", "coordinates": [124, 315, 177, 329], "content": "\\Lambda_{1}\\leftrightarrow2\\widetilde{\\Lambda}_{1}", "score": 0.88, "index": 65}, {"type": "text", "coordinates": [177, 315, 183, 331], "content": ", ", "score": 1.0, "index": 66}, {"type": "inline_equation", "coordinates": [184, 315, 236, 330], "content": "\\Lambda_{3}\\leftrightarrow3\\widetilde{\\Lambda}_{2}", "score": 0.87, "index": 67}, {"type": "text", "coordinates": [236, 315, 242, 331], "content": ",", "score": 1.0, "index": 68}, {"type": "inline_equation", "coordinates": [243, 314, 302, 329], "content": "2\\Lambda_{4}\\leftrightarrow2\\widetilde{\\Lambda}_{2}", "score": 0.9, "index": 69}, {"type": "text", "coordinates": [302, 315, 308, 331], "content": ", ", "score": 1.0, "index": 70}, {"type": "inline_equation", "coordinates": [308, 315, 417, 330], "content": "\\Lambda_{1}+\\Lambda_{4}\\leftrightarrow\\widetilde{\\Lambda}_{1}+2\\widetilde{\\Lambda}_{2}", "score": 0.89, "index": 71}, {"type": "text", "coordinates": [418, 315, 424, 331], "content": ", ", "score": 1.0, "index": 72}, {"type": "inline_equation", "coordinates": [424, 315, 477, 330], "content": "\\Lambda_{2}\\leftrightarrow4\\widetilde{\\Lambda}_{2}", "score": 0.9, "index": 73}, {"type": "text", "coordinates": [477, 315, 483, 331], "content": ", ", "score": 1.0, "index": 74}, {"type": "inline_equation", "coordinates": [484, 315, 536, 329], "content": "3\\Lambda_{4}\\leftrightarrow\\widetilde{\\Lambda}_{2}", "score": 0.93, "index": 75}, {"type": "text", "coordinates": [536, 315, 540, 331], "content": ",", "score": 1.0, "index": 76}, {"type": "text", "coordinates": [70, 329, 94, 345], "content": "and ", "score": 1.0, "index": 77}, {"type": "inline_equation", "coordinates": [95, 330, 197, 344], "content": "\\Lambda_{3}+\\Lambda_{4}\\leftrightarrow\\tilde{\\Lambda}_{1}+\\tilde{\\Lambda}_{2}", "score": 0.91, "index": 78}, {"type": "text", "coordinates": [198, 329, 201, 345], "content": ".", "score": 1.0, "index": 79}, {"type": "text", "coordinates": [95, 345, 540, 361], "content": "We will sket ch th e proof here. The idea is to compare invariants for the various fusion", "score": 1.0, "index": 80}, {"type": "text", "coordinates": [69, 359, 286, 376], "content": "rings, case by case. For example, suppose ", "score": 1.0, "index": 81}, {"type": "inline_equation", "coordinates": [286, 361, 328, 374], "content": "\\mathcal{R}(A_{r,k})", "score": 0.94, "index": 82}, {"type": "text", "coordinates": [328, 359, 353, 376], "content": " and ", "score": 1.0, "index": 83}, {"type": "inline_equation", "coordinates": [353, 361, 398, 374], "content": "\\mathcal{R}(A_{s,m})", "score": 0.94, "index": 84}, {"type": "text", "coordinates": [398, 359, 541, 376], "content": " are isomorphic. Then their", "score": 1.0, "index": 85}, {"type": "text", "coordinates": [69, 374, 188, 390], "content": "simple-current groups ", "score": 1.0, "index": 86}, {"type": "inline_equation", "coordinates": [188, 376, 214, 388], "content": "\\mathbb{Z}_{r+1}", "score": 0.92, "index": 87}, {"type": "text", "coordinates": [214, 374, 241, 390], "content": " and ", "score": 1.0, "index": 88}, {"type": "inline_equation", "coordinates": [241, 376, 266, 388], "content": "\\mathbb{Z}_{s+1}", "score": 0.93, "index": 89}, {"type": "text", "coordinates": [266, 374, 542, 390], "content": " must be isomorphic (since simple-currents must get", "score": 1.0, "index": 90}, {"type": "text", "coordinates": [70, 389, 235, 404], "content": "mapped to simple-currents), so ", "score": 1.0, "index": 91}, {"type": "inline_equation", "coordinates": [235, 394, 263, 399], "content": "r=s", "score": 0.88, "index": 92}, {"type": "text", "coordinates": [263, 389, 412, 404], "content": ". Now compare the numbers ", "score": 1.0, "index": 93}, {"type": "inline_equation", "coordinates": [412, 390, 440, 403], "content": "||P_{+}||", "score": 0.94, "index": 94}, {"type": "text", "coordinates": [440, 389, 541, 404], "content": "of highest-weights:", "score": 1.0, "index": 95}, {"type": "inline_equation", "coordinates": [72, 403, 150, 418], "content": "\\big(\\begin{array}{c}{{r+k}}\\\\ {{r}}\\end{array}\\big)=\\big(\\begin{array}{c}{{r+m}}\\\\ {{r}}\\end{array}\\big)", "score": 0.93, "index": 96}, {"type": "text", "coordinates": [150, 399, 224, 420], "content": ", which forces ", "score": 1.0, "index": 97}, {"type": "inline_equation", "coordinates": [225, 405, 258, 414], "content": "m=k", "score": 0.93, "index": 98}, {"type": "text", "coordinates": [258, 399, 264, 420], "content": ".", "score": 1.0, "index": 99}, {"type": "text", "coordinates": [93, 418, 540, 433], "content": "It is also quite useful here to know those weights with second smallest q-dimension.", "score": 1.0, "index": 100}, {"type": "text", "coordinates": [70, 432, 541, 448], "content": "This is a by-product of the proof of Proposition 4.1, and the complete answer is given in", "score": 1.0, "index": 101}, {"type": "text", "coordinates": [69, 442, 382, 466], "content": "[18, Table 3]. Here we will simply state that those weights in ", "score": 1.0, "index": 102}, {"type": "inline_equation", "coordinates": [382, 446, 431, 463], "content": "P_{+}^{k}(X_{r}^{(1)})", "score": 0.94, "index": 103}, {"type": "text", "coordinates": [431, 442, 543, 466], "content": " with second smallest", "score": 1.0, "index": 104}, {"type": "text", "coordinates": [69, 462, 258, 479], "content": "q-dimension are precisely the orbit ", "score": 1.0, "index": 105}, {"type": "inline_equation", "coordinates": [258, 465, 280, 475], "content": "S\\Lambda_{\\star}", "score": 0.92, "index": 106}, {"type": "text", "coordinates": [281, 462, 349, 479], "content": ", except for: ", "score": 1.0, "index": 107}, {"type": "inline_equation", "coordinates": [349, 465, 371, 477], "content": "A_{r,1}", "score": 0.84, "index": 108}, {"type": "text", "coordinates": [371, 462, 378, 479], "content": "; ", "score": 1.0, "index": 109}, {"type": "inline_equation", "coordinates": [378, 465, 401, 477], "content": "B_{r,k}", "score": 0.91, "index": 110}, {"type": "text", "coordinates": [401, 462, 423, 479], "content": " for ", "score": 1.0, "index": 111}, {"type": "inline_equation", "coordinates": [424, 465, 453, 475], "content": "k\\leq3", "score": 0.91, "index": 112}, {"type": "text", "coordinates": [453, 462, 460, 479], "content": "; ", "score": 1.0, "index": 113}, {"type": "inline_equation", "coordinates": [461, 465, 536, 477], "content": "C_{2,2},C_{2,3},C_{3,2}", "score": 0.93, "index": 114}, {"type": "text", "coordinates": [537, 462, 541, 479], "content": ";", "score": 1.0, "index": 115}, {"type": "inline_equation", "coordinates": [71, 479, 94, 491], "content": "D_{r,k}", "score": 0.92, "index": 116}, {"type": "text", "coordinates": [94, 478, 116, 492], "content": " for ", "score": 1.0, "index": 117}, {"type": "inline_equation", "coordinates": [116, 479, 145, 489], "content": "k\\leq2", "score": 0.9, "index": 118}, {"type": "text", "coordinates": [145, 478, 151, 492], "content": "; ", "score": 1.0, "index": 119}, {"type": "inline_equation", "coordinates": [152, 479, 174, 491], "content": "E_{6,k}", "score": 0.92, "index": 120}, {"type": "text", "coordinates": [175, 478, 196, 492], "content": " for ", "score": 1.0, "index": 121}, {"type": "inline_equation", "coordinates": [196, 479, 226, 489], "content": "k\\leq2", "score": 0.92, "index": 122}, {"type": "text", "coordinates": [226, 478, 255, 492], "content": "; and ", "score": 1.0, "index": 123}, {"type": "inline_equation", "coordinates": [255, 479, 360, 491], "content": "E_{7,k},E_{8,k},F_{4,k},G_{2,k}", "score": 0.93, "index": 124}, {"type": "text", "coordinates": [361, 478, 382, 492], "content": " for ", "score": 1.0, "index": 125}, {"type": "inline_equation", "coordinates": [383, 479, 412, 489], "content": "k\\leq4", "score": 0.92, "index": 126}, {"type": "text", "coordinates": [412, 478, 416, 492], "content": ".", "score": 1.0, "index": 127}, {"type": "inline_equation", "coordinates": [95, 494, 116, 506], "content": "C_{r,k}", "score": 0.93, "index": 128}, {"type": "text", "coordinates": [117, 492, 141, 506], "content": " and ", "score": 1.0, "index": 129}, {"type": "inline_equation", "coordinates": [141, 494, 167, 506], "content": "B_{s,m}", "score": 0.94, "index": 130}, {"type": "text", "coordinates": [167, 492, 540, 506], "content": " both have two simple-currents, but their fusion rings can\u2019t be isomorphic", "score": 1.0, "index": 131}, {"type": "text", "coordinates": [71, 506, 232, 521], "content": "(generically) because the orbit ", "score": 1.0, "index": 132}, {"type": "inline_equation", "coordinates": [232, 507, 257, 519], "content": "J^{i}\\Lambda_{1}", "score": 0.93, "index": 133}, {"type": "text", "coordinates": [258, 506, 540, 521], "content": " has the second smallest q-dimension for both algebras", "score": 1.0, "index": 134}, {"type": "text", "coordinates": [70, 522, 277, 535], "content": "at generic rank/level, but the numbers ", "score": 1.0, "index": 135}, {"type": "inline_equation", "coordinates": [277, 521, 327, 535], "content": "Q_{j}(J^{i}\\Lambda_{1})", "score": 0.95, "index": 136}, {"type": "text", "coordinates": [327, 522, 506, 535], "content": " for the two algebras are different.", "score": 1.0, "index": 137}, {"type": "text", "coordinates": [93, 534, 367, 551], "content": "Another useful invariant involves the set of integers ", "score": 1.0, "index": 138}, {"type": "inline_equation", "coordinates": [367, 537, 373, 546], "content": "\\ell", "score": 0.85, "index": 139}, {"type": "text", "coordinates": [373, 534, 435, 551], "content": "coprime to ", "score": 1.0, "index": 140}, {"type": "inline_equation", "coordinates": [435, 537, 453, 546], "content": "\\kappa N", "score": 0.89, "index": 141}, {"type": "text", "coordinates": [454, 534, 509, 551], "content": " for which ", "score": 1.0, "index": 142}, {"type": "inline_equation", "coordinates": [509, 535, 527, 546], "content": "0^{(\\ell)}", "score": 0.88, "index": 143}, {"type": "text", "coordinates": [528, 534, 542, 551], "content": " is", "score": 1.0, "index": 144}, {"type": "text", "coordinates": [70, 551, 539, 565], "content": "a simple-current. For the classical algebras this is easy to find, using (2.1c): Up to a sign,", "score": 1.0, "index": 145}, {"type": "text", "coordinates": [68, 561, 172, 583], "content": "the q-dimension of ", "score": 1.0, "index": 146}, {"type": "inline_equation", "coordinates": [172, 566, 190, 577], "content": "0^{(\\ell)}", "score": 0.91, "index": 147}, {"type": "text", "coordinates": [191, 561, 199, 583], "content": " (", "score": 1.0, "index": 148}, {"type": "inline_equation", "coordinates": [199, 568, 204, 577], "content": "\\ell", "score": 0.76, "index": 149}, {"type": "text", "coordinates": [205, 561, 267, 583], "content": "coprime to ", "score": 1.0, "index": 150}, {"type": "inline_equation", "coordinates": [268, 569, 281, 577], "content": "2\\kappa", "score": 0.78, "index": 151}, {"type": "text", "coordinates": [281, 561, 374, 583], "content": ") for the algebras ", "score": 1.0, "index": 152}, {"type": "inline_equation", "coordinates": [375, 564, 453, 579], "content": "B_{r}^{(1)},C_{r}^{(1)},D_{r}^{(1)}", "score": 0.94, "index": 153}, {"type": "text", "coordinates": [453, 561, 539, 583], "content": "is, respectively,", "score": 1.0, "index": 154}, {"type": "interline_equation", "coordinates": [145, 595, 464, 720], "content": "\\begin{array}{r l}&{\\displaystyle\\prod_{a=0}^{r-1}\\frac{\\sin(\\pi\\ell\\,(2a+1)/2\\kappa)}{\\sin(\\pi\\,(2a+1)/2\\kappa)}\\,\\prod_{b=1}^{2r-2}\\frac{\\sin(\\pi\\ell b/\\kappa)^{\\left[\\frac{2r-b}{2}\\right]}}{\\sin(\\pi b/\\kappa)^{\\left[\\frac{2r-b}{2}\\right]}}\\,\\,,}\\\\ &{\\displaystyle\\prod_{a=1}^{r-1}\\frac{\\sin(\\pi\\ell a/\\kappa)^{r-a}\\,\\sin(\\pi\\ell\\,(2a-1)/2\\kappa)^{r-a}}{\\sin(\\pi a/\\kappa)^{r-a}\\,\\sin(\\pi\\,(2a-1)/2\\kappa)^{r-a}}\\,\\prod_{b=r}^{2r-1}\\frac{\\sin(\\pi\\ell b/2\\kappa)}{\\sin(\\pi b/2\\kappa)}\\,\\,,}\\\\ &{\\displaystyle\\prod_{a=1}^{r-1}\\frac{\\sin(\\pi\\ell a/\\kappa)^{\\left[\\frac{2r-a+1}{2}\\right]}}{\\sin(\\pi a/\\kappa)^{\\left[\\frac{2r-a+1}{2}\\right]}}\\,\\prod_{b=r}^{2r-3}\\frac{\\sin(\\pi\\ell b/\\kappa)^{\\left[\\frac{2r-b-1}{2}\\right]}}{\\sin(\\pi b/\\kappa)^{\\left[\\frac{2r-b-1}{2}\\right]}}\\,\\,,}\\end{array}", "score": 0.94, "index": 155}] | [] | [{"type": "block", "coordinates": [145, 595, 464, 720], "content": "", "caption": ""}, {"type": "inline", "coordinates": [135, 120, 178, 133], "content": "\\mathcal{R}(X_{r,k})", "caption": ""}, {"type": "inline", "coordinates": [411, 119, 432, 132], "content": "\\S2.2", "caption": ""}, {"type": "inline", "coordinates": [434, 143, 540, 156], "content": "\\mathscr{R}(X_{r,k})\\,\\cong\\,\\mathscr{R}(Y_{s,m})", "caption": ""}, {"type": "inline", "coordinates": [101, 156, 164, 170], "content": "X_{r,k}\\neq Y_{s,m}", "caption": ""}, {"type": "inline", "coordinates": [206, 156, 240, 169], "content": "X_{r},Y_{s}", "caption": ""}, {"type": "inline", "coordinates": [164, 171, 263, 185], "content": "\\mathcal{R}(C_{r,k})\\cong\\mathcal{R}(C_{k,r})", "caption": ""}, {"type": "inline", "coordinates": [303, 171, 321, 184], "content": "r,k", "caption": ""}, {"type": "inline", "coordinates": [383, 171, 483, 185], "content": "\\mathcal{R}(A_{1,k})\\cong\\mathcal{R}(C_{k,1})", "caption": ""}, {"type": "inline", "coordinates": [71, 185, 284, 200], "content": "\\mathcal{R}(B_{r,1})\\cong\\mathcal{R}(A_{1,2})\\cong\\mathcal{R}(C_{2,1})\\cong\\mathcal{R}(E_{8,2})", "caption": ""}, {"type": "inline", "coordinates": [323, 186, 352, 199], "content": "r\\geq3", "caption": ""}, {"type": "inline", "coordinates": [71, 200, 182, 214], "content": "\\mathcal{R}(A_{3,1})\\cong\\mathcal{R}(D_{o d d,1})", "caption": ""}, {"type": "inline", "coordinates": [71, 215, 171, 229], "content": "\\mathcal{R}(D_{r,1})\\cong\\mathcal{R}(D_{s,1})", "caption": ""}, {"type": "inline", "coordinates": [226, 216, 255, 227], "content": "r\\equiv s", "caption": ""}, {"type": "inline", "coordinates": [71, 230, 171, 244], "content": "\\mathscr{R}(A_{2,1})\\cong\\mathscr{R}(E_{6,1})", "caption": ""}, {"type": "inline", "coordinates": [197, 229, 296, 244], "content": "\\mathcal{R}(A_{1,1})\\cong\\mathcal{R}(E_{7,1})", "caption": ""}, {"type": "inline", "coordinates": [71, 245, 169, 259], "content": "\\mathcal{R}(F_{4,1})\\cong\\mathcal{R}(G_{2,1})", "caption": ""}, {"type": "inline", "coordinates": [177, 244, 275, 259], "content": "\\mathcal{R}(F_{4,2})\\cong\\mathcal{R}(E_{8,3})", "caption": ""}, {"type": "inline", "coordinates": [305, 244, 405, 259], "content": "\\mathcal{R}(F_{4,3})\\cong\\mathcal{R}(G_{2,4})", "caption": ""}, {"type": "inline", "coordinates": [190, 269, 291, 284], "content": "\\mathcal{R}(A_{1,k})\\cong\\mathcal{R}(C_{k,1})", "caption": ""}, {"type": "inline", "coordinates": [326, 269, 347, 282], "content": "a\\Lambda_{1}", "caption": ""}, {"type": "inline", "coordinates": [366, 267, 381, 282], "content": "\\widetilde{\\Lambda}_{a}", "caption": ""}, {"type": "inline", "coordinates": [486, 270, 541, 284], "content": "\\mathcal{R}(F_{4,2})\\cong", "caption": ""}, {"type": "inline", "coordinates": [71, 288, 113, 300], "content": "\\mathcal{R}(E_{8,3})", "caption": ""}, {"type": "inline", "coordinates": [272, 283, 323, 299], "content": "\\Lambda_{1}\\leftrightarrow\\tilde{\\Lambda}_{8}", "caption": ""}, {"type": "inline", "coordinates": [331, 284, 388, 299], "content": "2\\Lambda_{4}\\leftrightarrow\\tilde{\\Lambda}_{2}", "caption": ""}, {"type": "inline", "coordinates": [397, 285, 447, 299], "content": "\\Lambda_{3}\\,\\leftrightarrow\\,\\widetilde{\\Lambda}_{1}", "caption": ""}, {"type": "inline", "coordinates": [456, 285, 506, 299], "content": "\\Lambda_{4}\\leftrightarrow\\tilde{\\Lambda}_{7}", "caption": ""}, {"type": "inline", "coordinates": [142, 300, 244, 314], "content": "\\mathcal{R}(F_{4,3})\\,\\cong\\,\\mathcal{R}(G_{2,4})", "caption": ""}, {"type": "inline", "coordinates": [71, 315, 118, 330], "content": "\\Lambda_{4}\\leftrightarrow\\widetilde{\\Lambda}_{1}", "caption": ""}, {"type": "inline", "coordinates": [124, 315, 177, 329], "content": "\\Lambda_{1}\\leftrightarrow2\\widetilde{\\Lambda}_{1}", "caption": ""}, {"type": "inline", "coordinates": [184, 315, 236, 330], "content": "\\Lambda_{3}\\leftrightarrow3\\widetilde{\\Lambda}_{2}", "caption": ""}, {"type": "inline", "coordinates": [243, 314, 302, 329], "content": "2\\Lambda_{4}\\leftrightarrow2\\widetilde{\\Lambda}_{2}", "caption": ""}, {"type": "inline", "coordinates": [308, 315, 417, 330], "content": "\\Lambda_{1}+\\Lambda_{4}\\leftrightarrow\\widetilde{\\Lambda}_{1}+2\\widetilde{\\Lambda}_{2}", "caption": ""}, {"type": "inline", "coordinates": [424, 315, 477, 330], "content": "\\Lambda_{2}\\leftrightarrow4\\widetilde{\\Lambda}_{2}", "caption": ""}, {"type": "inline", "coordinates": [484, 315, 536, 329], "content": "3\\Lambda_{4}\\leftrightarrow\\widetilde{\\Lambda}_{2}", "caption": ""}, {"type": "inline", "coordinates": [95, 330, 197, 344], "content": "\\Lambda_{3}+\\Lambda_{4}\\leftrightarrow\\tilde{\\Lambda}_{1}+\\tilde{\\Lambda}_{2}", "caption": ""}, {"type": "inline", "coordinates": [286, 361, 328, 374], "content": "\\mathcal{R}(A_{r,k})", "caption": ""}, {"type": "inline", "coordinates": [353, 361, 398, 374], "content": "\\mathcal{R}(A_{s,m})", "caption": ""}, {"type": "inline", "coordinates": [188, 376, 214, 388], "content": "\\mathbb{Z}_{r+1}", "caption": ""}, {"type": "inline", "coordinates": [241, 376, 266, 388], "content": "\\mathbb{Z}_{s+1}", "caption": ""}, {"type": "inline", "coordinates": [235, 394, 263, 399], "content": "r=s", "caption": ""}, {"type": "inline", "coordinates": [412, 390, 440, 403], "content": "||P_{+}||", "caption": ""}, {"type": "inline", "coordinates": [72, 403, 150, 418], "content": "\\big(\\begin{array}{c}{{r+k}}\\\\ {{r}}\\end{array}\\big)=\\big(\\begin{array}{c}{{r+m}}\\\\ {{r}}\\end{array}\\big)", "caption": ""}, {"type": "inline", "coordinates": [225, 405, 258, 414], "content": "m=k", "caption": ""}, {"type": "inline", "coordinates": [382, 446, 431, 463], "content": "P_{+}^{k}(X_{r}^{(1)})", "caption": ""}, {"type": "inline", "coordinates": [258, 465, 280, 475], "content": "S\\Lambda_{\\star}", "caption": ""}, {"type": "inline", "coordinates": [349, 465, 371, 477], "content": "A_{r,1}", "caption": ""}, {"type": "inline", "coordinates": [378, 465, 401, 477], "content": "B_{r,k}", "caption": ""}, {"type": "inline", "coordinates": [424, 465, 453, 475], "content": "k\\leq3", "caption": ""}, {"type": "inline", "coordinates": [461, 465, 536, 477], "content": "C_{2,2},C_{2,3},C_{3,2}", "caption": ""}, {"type": "inline", "coordinates": [71, 479, 94, 491], "content": "D_{r,k}", "caption": ""}, {"type": "inline", "coordinates": [116, 479, 145, 489], "content": "k\\leq2", "caption": ""}, {"type": "inline", "coordinates": [152, 479, 174, 491], "content": "E_{6,k}", "caption": ""}, {"type": "inline", "coordinates": [196, 479, 226, 489], "content": "k\\leq2", "caption": ""}, {"type": "inline", "coordinates": [255, 479, 360, 491], "content": "E_{7,k},E_{8,k},F_{4,k},G_{2,k}", "caption": ""}, {"type": "inline", "coordinates": [383, 479, 412, 489], "content": "k\\leq4", "caption": ""}, {"type": "inline", "coordinates": [95, 494, 116, 506], "content": "C_{r,k}", "caption": ""}, {"type": "inline", "coordinates": [141, 494, 167, 506], "content": "B_{s,m}", "caption": ""}, {"type": "inline", "coordinates": [232, 507, 257, 519], "content": "J^{i}\\Lambda_{1}", "caption": ""}, {"type": "inline", "coordinates": [277, 521, 327, 535], "content": "Q_{j}(J^{i}\\Lambda_{1})", "caption": ""}, {"type": "inline", "coordinates": [367, 537, 373, 546], "content": "\\ell", "caption": ""}, {"type": "inline", "coordinates": [435, 537, 453, 546], "content": "\\kappa N", "caption": ""}, {"type": "inline", "coordinates": [509, 535, 527, 546], "content": "0^{(\\ell)}", "caption": ""}, {"type": "inline", "coordinates": [172, 566, 190, 577], "content": "0^{(\\ell)}", "caption": ""}, {"type": "inline", "coordinates": [199, 568, 204, 577], "content": "\\ell", "caption": ""}, {"type": "inline", "coordinates": [268, 569, 281, 577], "content": "2\\kappa", "caption": ""}, {"type": "inline", "coordinates": [375, 564, 453, 579], "content": "B_{r}^{(1)},C_{r}^{(1)},D_{r}^{(1)}", "caption": ""}] | [] | [612.0, 792.0] | [{"type": "text", "text": "5. Affine fusion ring isomorphisms ", "text_level": 1, "page_idx": 20}, {"type": "text", "text": "We conclude the paper with the determination of all isomorphisms among the affine fusion rings $\\mathcal{R}(X_{r,k})$ . Recall Definition 2.1 and the discussion in $\\S2.2$ . ", "page_idx": 20}, {"type": "text", "text": "Theorem 5.1. The complete list of fusion ring isomorphisms $\\mathscr{R}(X_{r,k})\\,\\cong\\,\\mathscr{R}(Y_{s,m})$ when $X_{r,k}\\neq Y_{s,m}$ (where $X_{r},Y_{s}$ are simple) is: rank-level duality $\\mathcal{R}(C_{r,k})\\cong\\mathcal{R}(C_{k,r})$ for all $r,k$ , as well as $\\mathcal{R}(A_{1,k})\\cong\\mathcal{R}(C_{k,1})$ ; $\\mathcal{R}(B_{r,1})\\cong\\mathcal{R}(A_{1,2})\\cong\\mathcal{R}(C_{2,1})\\cong\\mathcal{R}(E_{8,2})$ for all $r\\geq3$ ; $\\mathcal{R}(A_{3,1})\\cong\\mathcal{R}(D_{o d d,1})$ ; $\\mathcal{R}(D_{r,1})\\cong\\mathcal{R}(D_{s,1})$ whenever $r\\equiv s$ (mod 2); $\\mathscr{R}(A_{2,1})\\cong\\mathscr{R}(E_{6,1})$ and $\\mathcal{R}(A_{1,1})\\cong\\mathcal{R}(E_{7,1})$ ; $\\mathcal{R}(F_{4,1})\\cong\\mathcal{R}(G_{2,1})$ , $\\mathcal{R}(F_{4,2})\\cong\\mathcal{R}(E_{8,3})$ , and $\\mathcal{R}(F_{4,3})\\cong\\mathcal{R}(G_{2,4})$ . ", "page_idx": 20}, {"type": "text", "text": "The isomorphism $\\mathcal{R}(A_{1,k})\\cong\\mathcal{R}(C_{k,1})$ takes $a\\Lambda_{1}$ to $\\widetilde{\\Lambda}_{a}$ . The isomorphism $\\mathcal{R}(F_{4,2})\\cong$ $\\mathcal{R}(E_{8,3})$ was found in [14]; it relates $\\Lambda_{1}\\leftrightarrow\\tilde{\\Lambda}_{8}$ , $2\\Lambda_{4}\\leftrightarrow\\tilde{\\Lambda}_{2}$ , $\\Lambda_{3}\\,\\leftrightarrow\\,\\widetilde{\\Lambda}_{1}$ , $\\Lambda_{4}\\leftrightarrow\\tilde{\\Lambda}_{7}$ . The isomorphism $\\mathcal{R}(F_{4,3})\\,\\cong\\,\\mathcal{R}(G_{2,4})$ was found i n [34,14]; a corresponde nce which works is $\\Lambda_{4}\\leftrightarrow\\widetilde{\\Lambda}_{1}$ , $\\Lambda_{1}\\leftrightarrow2\\widetilde{\\Lambda}_{1}$ , $\\Lambda_{3}\\leftrightarrow3\\widetilde{\\Lambda}_{2}$ , $2\\Lambda_{4}\\leftrightarrow2\\widetilde{\\Lambda}_{2}$ , $\\Lambda_{1}+\\Lambda_{4}\\leftrightarrow\\widetilde{\\Lambda}_{1}+2\\widetilde{\\Lambda}_{2}$ , $\\Lambda_{2}\\leftrightarrow4\\widetilde{\\Lambda}_{2}$ , $3\\Lambda_{4}\\leftrightarrow\\widetilde{\\Lambda}_{2}$ , and $\\Lambda_{3}+\\Lambda_{4}\\leftrightarrow\\tilde{\\Lambda}_{1}+\\tilde{\\Lambda}_{2}$ . ", "page_idx": 20}, {"type": "text", "text": "We will sket ch th e proof here. The idea is to compare invariants for the various fusion rings, case by case. For example, suppose $\\mathcal{R}(A_{r,k})$ and $\\mathcal{R}(A_{s,m})$ are isomorphic. Then their simple-current groups $\\mathbb{Z}_{r+1}$ and $\\mathbb{Z}_{s+1}$ must be isomorphic (since simple-currents must get mapped to simple-currents), so $r=s$ . Now compare the numbers $||P_{+}||$ of highest-weights: $\\big(\\begin{array}{c}{{r+k}}\\\\ {{r}}\\end{array}\\big)=\\big(\\begin{array}{c}{{r+m}}\\\\ {{r}}\\end{array}\\big)$ , which forces $m=k$ . ", "page_idx": 20}, {"type": "text", "text": "It is also quite useful here to know those weights with second smallest q-dimension. This is a by-product of the proof of Proposition 4.1, and the complete answer is given in [18, Table 3]. Here we will simply state that those weights in $P_{+}^{k}(X_{r}^{(1)})$ with second smallest q-dimension are precisely the orbit $S\\Lambda_{\\star}$ , except for: $A_{r,1}$ ; $B_{r,k}$ for $k\\leq3$ ; $C_{2,2},C_{2,3},C_{3,2}$ ; $D_{r,k}$ for $k\\leq2$ ; $E_{6,k}$ for $k\\leq2$ ; and $E_{7,k},E_{8,k},F_{4,k},G_{2,k}$ for $k\\leq4$ . ", "page_idx": 20}, {"type": "text", "text": "$C_{r,k}$ and $B_{s,m}$ both have two simple-currents, but their fusion rings can\u2019t be isomorphic (generically) because the orbit $J^{i}\\Lambda_{1}$ has the second smallest q-dimension for both algebras at generic rank/level, but the numbers $Q_{j}(J^{i}\\Lambda_{1})$ for the two algebras are different. ", "page_idx": 20}, {"type": "text", "text": "Another useful invariant involves the set of integers $\\ell$ coprime to $\\kappa N$ for which $0^{(\\ell)}$ is a simple-current. For the classical algebras this is easy to find, using (2.1c): Up to a sign, the q-dimension of $0^{(\\ell)}$ ( $\\ell$ coprime to $2\\kappa$ ) for the algebras $B_{r}^{(1)},C_{r}^{(1)},D_{r}^{(1)}$ is, respectively, ", "page_idx": 20}, {"type": "equation", "text": "$$\n\\begin{array}{r l}&{\\displaystyle\\prod_{a=0}^{r-1}\\frac{\\sin(\\pi\\ell\\,(2a+1)/2\\kappa)}{\\sin(\\pi\\,(2a+1)/2\\kappa)}\\,\\prod_{b=1}^{2r-2}\\frac{\\sin(\\pi\\ell b/\\kappa)^{\\left[\\frac{2r-b}{2}\\right]}}{\\sin(\\pi b/\\kappa)^{\\left[\\frac{2r-b}{2}\\right]}}\\,\\,,}\\\\ &{\\displaystyle\\prod_{a=1}^{r-1}\\frac{\\sin(\\pi\\ell a/\\kappa)^{r-a}\\,\\sin(\\pi\\ell\\,(2a-1)/2\\kappa)^{r-a}}{\\sin(\\pi a/\\kappa)^{r-a}\\,\\sin(\\pi\\,(2a-1)/2\\kappa)^{r-a}}\\,\\prod_{b=r}^{2r-1}\\frac{\\sin(\\pi\\ell b/2\\kappa)}{\\sin(\\pi b/2\\kappa)}\\,\\,,}\\\\ &{\\displaystyle\\prod_{a=1}^{r-1}\\frac{\\sin(\\pi\\ell a/\\kappa)^{\\left[\\frac{2r-a+1}{2}\\right]}}{\\sin(\\pi a/\\kappa)^{\\left[\\frac{2r-a+1}{2}\\right]}}\\,\\prod_{b=r}^{2r-3}\\frac{\\sin(\\pi\\ell b/\\kappa)^{\\left[\\frac{2r-b-1}{2}\\right]}}{\\sin(\\pi b/\\kappa)^{\\left[\\frac{2r-b-1}{2}\\right]}}\\,\\,,}\\end{array}\n$$", "text_format": "latex", "page_idx": 20}] | [{"category_id": 1, "poly": [197, 1158, 1504, 1158, 1504, 1362, 197, 1362], "score": 0.98}, {"category_id": 1, "poly": [197, 957, 1503, 957, 1503, 1156, 197, 1156], "score": 0.978}, {"category_id": 1, "poly": [197, 740, 1505, 740, 1505, 955, 197, 955], "score": 0.977}, {"category_id": 1, "poly": [197, 1485, 1505, 1485, 1505, 1611, 197, 1611], "score": 0.966}, {"category_id": 1, "poly": [198, 1363, 1504, 1363, 1504, 1482, 198, 1482], "score": 0.963}, {"category_id": 1, "poly": [196, 386, 1504, 386, 1504, 721, 196, 721], "score": 0.952}, {"category_id": 1, "poly": [197, 284, 1506, 284, 1506, 367, 197, 367], "score": 0.949}, {"category_id": 8, "poly": [402, 1647, 1292, 1647, 1292, 1997, 402, 1997], "score": 0.945}, {"category_id": 2, "poly": [830, 2031, 866, 2031, 866, 2062, 830, 2062], "score": 0.853}, {"category_id": 0, "poly": [558, 198, 1140, 198, 1140, 240, 558, 240], "score": 0.836}, {"category_id": 13, "poly": [771, 1449, 909, 1449, 909, 1487, 771, 1487], "score": 0.95, "latex": "Q_{j}(J^{i}\\Lambda_{1})"}, {"category_id": 13, "poly": [1063, 1240, 1198, 1240, 1198, 1288, 1063, 1288], "score": 0.94, "latex": "P_{+}^{k}(X_{r}^{(1)})"}, {"category_id": 13, "poly": [1042, 1568, 1260, 1568, 1260, 1611, 1042, 1611], "score": 0.94, "latex": "B_{r}^{(1)},C_{r}^{(1)},D_{r}^{(1)}"}, {"category_id": 13, "poly": [1147, 1085, 1223, 1085, 1223, 1120, 1147, 1120], "score": 0.94, "latex": "||P_{+}||"}, {"category_id": 13, "poly": [982, 1005, 1106, 1005, 1106, 1040, 982, 1040], "score": 0.94, "latex": "\\mathcal{R}(A_{s,m})"}, {"category_id": 14, "poly": [405, 1654, 1291, 1654, 1291, 2002, 405, 2002], "score": 0.94, "latex": "\\begin{array}{r l}&{\\displaystyle\\prod_{a=0}^{r-1}\\frac{\\sin(\\pi\\ell\\,(2a+1)/2\\kappa)}{\\sin(\\pi\\,(2a+1)/2\\kappa)}\\,\\prod_{b=1}^{2r-2}\\frac{\\sin(\\pi\\ell b/\\kappa)^{\\left[\\frac{2r-b}{2}\\right]}}{\\sin(\\pi b/\\kappa)^{\\left[\\frac{2r-b}{2}\\right]}}\\,\\,,}\\\\ &{\\displaystyle\\prod_{a=1}^{r-1}\\frac{\\sin(\\pi\\ell a/\\kappa)^{r-a}\\,\\sin(\\pi\\ell\\,(2a-1)/2\\kappa)^{r-a}}{\\sin(\\pi a/\\kappa)^{r-a}\\,\\sin(\\pi\\,(2a-1)/2\\kappa)^{r-a}}\\,\\prod_{b=r}^{2r-1}\\frac{\\sin(\\pi\\ell b/2\\kappa)}{\\sin(\\pi b/2\\kappa)}\\,\\,,}\\\\ &{\\displaystyle\\prod_{a=1}^{r-1}\\frac{\\sin(\\pi\\ell a/\\kappa)^{\\left[\\frac{2r-a+1}{2}\\right]}}{\\sin(\\pi a/\\kappa)^{\\left[\\frac{2r-a+1}{2}\\right]}}\\,\\prod_{b=r}^{2r-3}\\frac{\\sin(\\pi\\ell b/\\kappa)^{\\left[\\frac{2r-b-1}{2}\\right]}}{\\sin(\\pi b/\\kappa)^{\\left[\\frac{2r-b-1}{2}\\right]}}\\,\\,,}\\end{array}"}, {"category_id": 13, "poly": [394, 1373, 464, 1373, 464, 1407, 394, 1407], "score": 0.94, "latex": "B_{s,m}"}, {"category_id": 13, "poly": [797, 1005, 912, 1005, 912, 1040, 797, 1040], "score": 0.94, "latex": "\\mathcal{R}(A_{r,k})"}, {"category_id": 13, "poly": [711, 1332, 1002, 1332, 1002, 1366, 711, 1366], "score": 0.93, "latex": "E_{7,k},E_{8,k},F_{4,k},G_{2,k}"}, {"category_id": 13, "poly": [646, 1409, 716, 1409, 716, 1442, 646, 1442], "score": 0.93, "latex": "J^{i}\\Lambda_{1}"}, {"category_id": 13, "poly": [200, 1120, 417, 1120, 417, 1162, 200, 1162], "score": 0.93, "latex": "\\big(\\begin{array}{c}{{r+k}}\\\\ {{r}}\\end{array}\\big)=\\big(\\begin{array}{c}{{r+m}}\\\\ {{r}}\\end{array}\\big)"}, {"category_id": 13, "poly": [266, 1373, 324, 1373, 324, 1407, 266, 1407], "score": 0.93, "latex": "C_{r,k}"}, {"category_id": 13, "poly": [1267, 792, 1408, 792, 1408, 832, 1267, 832], "score": 0.93, "latex": "\\Lambda_{4}\\leftrightarrow\\tilde{\\Lambda}_{7}"}, {"category_id": 13, "poly": [199, 800, 314, 800, 314, 836, 199, 836], "score": 0.93, "latex": "\\mathcal{R}(E_{8,3})"}, {"category_id": 13, "poly": [1103, 792, 1244, 792, 1244, 832, 1103, 832], "score": 0.93, "latex": "\\Lambda_{3}\\,\\leftrightarrow\\,\\widetilde{\\Lambda}_{1}"}, {"category_id": 13, "poly": [671, 1047, 740, 1047, 740, 1079, 671, 1079], "score": 0.93, "latex": "\\mathbb{Z}_{s+1}"}, {"category_id": 13, "poly": [1345, 877, 1490, 877, 1490, 916, 1345, 916], "score": 0.93, "latex": "3\\Lambda_{4}\\leftrightarrow\\widetilde{\\Lambda}_{2}"}, {"category_id": 13, "poly": [625, 1127, 718, 1127, 718, 1151, 625, 1151], "score": 0.93, "latex": "m=k"}, {"category_id": 13, "poly": [377, 334, 496, 334, 496, 371, 377, 371], "score": 0.93, "latex": "\\mathcal{R}(X_{r,k})"}, {"category_id": 13, "poly": [1281, 1292, 1491, 1292, 1491, 1326, 1281, 1326], "score": 0.93, "latex": "C_{2,2},C_{2,3},C_{3,2}"}, {"category_id": 13, "poly": [524, 1046, 595, 1046, 595, 1079, 524, 1079], "score": 0.92, "latex": "\\mathbb{Z}_{r+1}"}, {"category_id": 13, "poly": [199, 1332, 262, 1332, 262, 1366, 199, 1366], "score": 0.92, "latex": "D_{r,k}"}, {"category_id": 13, "poly": [1064, 1332, 1145, 1332, 1145, 1361, 1064, 1361], "score": 0.92, "latex": "k\\leq4"}, {"category_id": 13, "poly": [423, 1332, 486, 1332, 486, 1366, 423, 1366], "score": 0.92, "latex": "E_{6,k}"}, {"category_id": 13, "poly": [547, 1332, 628, 1332, 628, 1361, 547, 1361], "score": 0.92, "latex": "k\\leq2"}, {"category_id": 13, "poly": [718, 1292, 780, 1292, 780, 1321, 718, 1321], "score": 0.92, "latex": "S\\Lambda_{\\star}"}, {"category_id": 13, "poly": [1208, 398, 1500, 398, 1500, 435, 1208, 435], "score": 0.92, "latex": "\\mathscr{R}(X_{r,k})\\,\\cong\\,\\mathscr{R}(Y_{s,m})"}, {"category_id": 13, "poly": [199, 876, 328, 876, 328, 917, 199, 917], "score": 0.92, "latex": "\\Lambda_{4}\\leftrightarrow\\widetilde{\\Lambda}_{1}"}, {"category_id": 13, "poly": [283, 434, 457, 434, 457, 474, 283, 474], "score": 0.92, "latex": "X_{r,k}\\neq Y_{s,m}"}, {"category_id": 13, "poly": [1064, 476, 1344, 476, 1344, 516, 1064, 516], "score": 0.92, "latex": "\\mathcal{R}(A_{1,k})\\cong\\mathcal{R}(C_{k,1})"}, {"category_id": 13, "poly": [264, 918, 549, 918, 549, 956, 264, 956], "score": 0.91, "latex": "\\Lambda_{3}+\\Lambda_{4}\\leftrightarrow\\tilde{\\Lambda}_{1}+\\tilde{\\Lambda}_{2}"}, {"category_id": 13, "poly": [530, 748, 811, 748, 811, 790, 530, 790], "score": 0.91, "latex": "\\mathcal{R}(A_{1,k})\\cong\\mathcal{R}(C_{k,1})"}, {"category_id": 13, "poly": [396, 835, 679, 835, 679, 874, 396, 874], "score": 0.91, "latex": "\\mathcal{R}(F_{4,3})\\,\\cong\\,\\mathcal{R}(G_{2,4})"}, {"category_id": 13, "poly": [1052, 1292, 1114, 1292, 1114, 1326, 1052, 1326], "score": 0.91, "latex": "B_{r,k}"}, {"category_id": 13, "poly": [457, 475, 732, 475, 732, 515, 457, 515], "score": 0.91, "latex": "\\mathcal{R}(C_{r,k})\\cong\\mathcal{R}(C_{k,r})"}, {"category_id": 13, "poly": [1178, 1292, 1260, 1292, 1260, 1321, 1178, 1321], "score": 0.91, "latex": "k\\leq3"}, {"category_id": 13, "poly": [480, 1574, 530, 1574, 530, 1605, 480, 1605], "score": 0.91, "latex": "0^{(\\ell)}"}, {"category_id": 13, "poly": [1180, 877, 1326, 877, 1326, 917, 1180, 917], "score": 0.9, "latex": "\\Lambda_{2}\\leftrightarrow4\\widetilde{\\Lambda}_{2}"}, {"category_id": 13, "poly": [574, 434, 668, 434, 668, 471, 574, 471], "score": 0.9, "latex": "X_{r},Y_{s}"}, {"category_id": 13, "poly": [198, 598, 475, 598, 475, 638, 198, 638], "score": 0.9, "latex": "\\mathcal{R}(D_{r,1})\\cong\\mathcal{R}(D_{s,1})"}, {"category_id": 13, "poly": [324, 1332, 404, 1332, 404, 1361, 324, 1361], "score": 0.9, "latex": "k\\leq2"}, {"category_id": 13, "poly": [848, 679, 1126, 679, 1126, 721, 848, 721], "score": 0.9, "latex": "\\mathcal{R}(F_{4,3})\\cong\\mathcal{R}(G_{2,4})"}, {"category_id": 13, "poly": [675, 873, 839, 873, 839, 916, 675, 916], "score": 0.9, "latex": "2\\Lambda_{4}\\leftrightarrow2\\widetilde{\\Lambda}_{2}"}, {"category_id": 13, "poly": [1017, 742, 1059, 742, 1059, 785, 1017, 785], "score": 0.9, "latex": "\\widetilde{\\Lambda}_{a}"}, {"category_id": 13, "poly": [198, 558, 506, 558, 506, 597, 198, 597], "score": 0.89, "latex": "\\mathcal{R}(A_{3,1})\\cong\\mathcal{R}(D_{o d d,1})"}, {"category_id": 13, "poly": [199, 639, 475, 639, 475, 679, 199, 679], "score": 0.89, "latex": "\\mathscr{R}(A_{2,1})\\cong\\mathscr{R}(E_{6,1})"}, {"category_id": 13, "poly": [857, 875, 1161, 875, 1161, 917, 857, 917], "score": 0.89, "latex": "\\Lambda_{1}+\\Lambda_{4}\\leftrightarrow\\widetilde{\\Lambda}_{1}+2\\widetilde{\\Lambda}_{2}"}, {"category_id": 13, "poly": [899, 517, 980, 517, 980, 553, 899, 553], "score": 0.89, "latex": "r\\geq3"}, {"category_id": 13, "poly": [757, 788, 898, 788, 898, 832, 757, 832], "score": 0.89, "latex": "\\Lambda_{1}\\leftrightarrow\\tilde{\\Lambda}_{8}"}, {"category_id": 13, "poly": [199, 681, 472, 681, 472, 721, 199, 721], "score": 0.89, "latex": "\\mathcal{R}(F_{4,1})\\cong\\mathcal{R}(G_{2,1})"}, {"category_id": 13, "poly": [1350, 751, 1505, 751, 1505, 789, 1350, 789], "score": 0.89, "latex": "\\mathcal{R}(F_{4,2})\\cong"}, {"category_id": 13, "poly": [1211, 1494, 1261, 1494, 1261, 1518, 1211, 1518], "score": 0.89, "latex": "\\kappa N"}, {"category_id": 13, "poly": [1416, 1488, 1466, 1488, 1466, 1519, 1416, 1519], "score": 0.88, "latex": "0^{(\\ell)}"}, {"category_id": 13, "poly": [921, 790, 1080, 790, 1080, 832, 921, 832], "score": 0.88, "latex": "2\\Lambda_{4}\\leftrightarrow\\tilde{\\Lambda}_{2}"}, {"category_id": 13, "poly": [347, 877, 493, 877, 493, 916, 347, 916], "score": 0.88, "latex": "\\Lambda_{1}\\leftrightarrow2\\widetilde{\\Lambda}_{1}"}, {"category_id": 13, "poly": [842, 476, 893, 476, 893, 513, 842, 513], "score": 0.88, "latex": "r,k"}, {"category_id": 13, "poly": [655, 1096, 731, 1096, 731, 1111, 655, 1111], "score": 0.88, "latex": "r=s"}, {"category_id": 13, "poly": [549, 638, 823, 638, 823, 679, 549, 679], "score": 0.87, "latex": "\\mathcal{R}(A_{1,1})\\cong\\mathcal{R}(E_{7,1})"}, {"category_id": 13, "poly": [512, 875, 657, 875, 657, 917, 512, 917], "score": 0.87, "latex": "\\Lambda_{3}\\leftrightarrow3\\widetilde{\\Lambda}_{2}"}, {"category_id": 13, "poly": [908, 749, 966, 749, 966, 785, 908, 785], "score": 0.86, "latex": "a\\Lambda_{1}"}, {"category_id": 13, "poly": [198, 516, 789, 516, 789, 556, 198, 556], "score": 0.86, "latex": "\\mathcal{R}(B_{r,1})\\cong\\mathcal{R}(A_{1,2})\\cong\\mathcal{R}(C_{2,1})\\cong\\mathcal{R}(E_{8,2})"}, {"category_id": 13, "poly": [492, 680, 764, 680, 764, 721, 492, 721], "score": 0.85, "latex": "\\mathcal{R}(F_{4,2})\\cong\\mathcal{R}(E_{8,3})"}, {"category_id": 13, "poly": [1021, 1494, 1037, 1494, 1037, 1518, 1021, 1518], "score": 0.85, "latex": "\\ell"}, {"category_id": 13, "poly": [972, 1292, 1031, 1292, 1031, 1326, 972, 1326], "score": 0.84, "latex": "A_{r,1}"}, {"category_id": 13, "poly": [745, 1581, 782, 1581, 782, 1605, 745, 1605], "score": 0.78, "latex": "2\\kappa"}, {"category_id": 13, "poly": [554, 1580, 569, 1580, 569, 1605, 554, 1605], "score": 0.76, "latex": "\\ell"}, {"category_id": 13, "poly": [630, 602, 711, 602, 711, 633, 630, 633], "score": 0.48, "latex": "r\\equiv s"}, {"category_id": 13, "poly": [1142, 331, 1202, 331, 1202, 368, 1142, 368], "score": 0.3, "latex": "\\S2.2"}, {"category_id": 15, "poly": [260.0, 1163.0, 1501.0, 1163.0, 1501.0, 1203.0, 260.0, 1203.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [197.0, 1201.0, 1504.0, 1201.0, 1504.0, 1246.0, 197.0, 1246.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [192.0, 1230.0, 1062.0, 1230.0, 1062.0, 1295.0, 192.0, 1295.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1199.0, 1230.0, 1509.0, 1230.0, 1509.0, 1295.0, 1199.0, 1295.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [194.0, 1285.0, 717.0, 1285.0, 717.0, 1331.0, 194.0, 1331.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [781.0, 1285.0, 971.0, 1285.0, 971.0, 1331.0, 781.0, 1331.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1032.0, 1285.0, 1051.0, 1285.0, 1051.0, 1331.0, 1032.0, 1331.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1115.0, 1285.0, 1177.0, 1285.0, 1177.0, 1331.0, 1115.0, 1331.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1261.0, 1285.0, 1280.0, 1285.0, 1280.0, 1331.0, 1261.0, 1331.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1492.0, 1285.0, 1504.0, 1285.0, 1504.0, 1331.0, 1492.0, 1331.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [263.0, 1328.0, 323.0, 1328.0, 323.0, 1368.0, 263.0, 1368.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [405.0, 1328.0, 422.0, 1328.0, 422.0, 1368.0, 405.0, 1368.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [487.0, 1328.0, 546.0, 1328.0, 546.0, 1368.0, 487.0, 1368.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [629.0, 1328.0, 710.0, 1328.0, 710.0, 1368.0, 629.0, 1368.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1003.0, 1328.0, 1063.0, 1328.0, 1063.0, 1368.0, 1003.0, 1368.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1146.0, 1328.0, 1158.0, 1328.0, 1158.0, 1368.0, 1146.0, 1368.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [264.0, 961.0, 1500.0, 961.0, 1500.0, 1004.0, 264.0, 1004.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [194.0, 999.0, 796.0, 999.0, 796.0, 1046.0, 194.0, 1046.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [913.0, 999.0, 981.0, 999.0, 981.0, 1046.0, 913.0, 1046.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1107.0, 999.0, 1503.0, 999.0, 1503.0, 1046.0, 1107.0, 1046.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [194.0, 1039.0, 523.0, 1039.0, 523.0, 1086.0, 194.0, 1086.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [596.0, 1039.0, 670.0, 1039.0, 670.0, 1086.0, 596.0, 1086.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [741.0, 1039.0, 1506.0, 1039.0, 1506.0, 1086.0, 741.0, 1086.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [195.0, 1083.0, 654.0, 1083.0, 654.0, 1123.0, 195.0, 1123.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [732.0, 1083.0, 1146.0, 1083.0, 1146.0, 1123.0, 732.0, 1123.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1224.0, 1083.0, 1503.0, 1083.0, 1503.0, 1123.0, 1224.0, 1123.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [418.0, 1111.0, 624.0, 1111.0, 624.0, 1167.0, 418.0, 1167.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [719.0, 1111.0, 734.0, 1111.0, 734.0, 1167.0, 719.0, 1167.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [203.0, 1116.5, 277.0, 1116.5, 277.0, 1147.5, 203.0, 1147.5], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [260.0, 743.0, 529.0, 743.0, 529.0, 794.0, 260.0, 794.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [812.0, 743.0, 907.0, 743.0, 907.0, 794.0, 812.0, 794.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [967.0, 743.0, 1016.0, 743.0, 1016.0, 794.0, 967.0, 794.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1060.0, 743.0, 1349.0, 743.0, 1349.0, 794.0, 1060.0, 794.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [197.0, 794.0, 198.0, 794.0, 198.0, 835.0, 197.0, 835.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [315.0, 794.0, 756.0, 794.0, 756.0, 835.0, 315.0, 835.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [899.0, 794.0, 920.0, 794.0, 920.0, 835.0, 899.0, 835.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1081.0, 794.0, 1102.0, 794.0, 1102.0, 835.0, 1081.0, 835.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1245.0, 794.0, 1266.0, 794.0, 1266.0, 835.0, 1245.0, 835.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1409.0, 794.0, 1502.0, 794.0, 1502.0, 835.0, 1409.0, 835.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [195.0, 833.0, 395.0, 833.0, 395.0, 877.0, 195.0, 877.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [680.0, 833.0, 1507.0, 833.0, 1507.0, 877.0, 680.0, 877.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [198.0, 877.0, 198.0, 877.0, 198.0, 921.0, 198.0, 921.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [329.0, 877.0, 346.0, 877.0, 346.0, 921.0, 329.0, 921.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [494.0, 877.0, 511.0, 877.0, 511.0, 921.0, 494.0, 921.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [658.0, 877.0, 674.0, 877.0, 674.0, 921.0, 658.0, 921.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [840.0, 877.0, 856.0, 877.0, 856.0, 921.0, 840.0, 921.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1162.0, 877.0, 1179.0, 877.0, 1179.0, 921.0, 1162.0, 921.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1327.0, 877.0, 1344.0, 877.0, 1344.0, 921.0, 1327.0, 921.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1491.0, 877.0, 1501.0, 877.0, 1501.0, 921.0, 1491.0, 921.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [197.0, 916.0, 263.0, 916.0, 263.0, 960.0, 197.0, 960.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [550.0, 916.0, 561.0, 916.0, 561.0, 960.0, 550.0, 960.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [261.0, 1484.0, 1020.0, 1484.0, 1020.0, 1531.0, 261.0, 1531.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1038.0, 1484.0, 1210.0, 1484.0, 1210.0, 1531.0, 1038.0, 1531.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1262.0, 1484.0, 1415.0, 1484.0, 1415.0, 1531.0, 1262.0, 1531.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1467.0, 1484.0, 1507.0, 1484.0, 1507.0, 1531.0, 1467.0, 1531.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [197.0, 1531.0, 1499.0, 1531.0, 1499.0, 1571.0, 197.0, 1571.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [190.0, 1561.0, 479.0, 1561.0, 479.0, 1621.0, 190.0, 1621.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [531.0, 1561.0, 553.0, 1561.0, 553.0, 1621.0, 531.0, 1621.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [570.0, 1561.0, 744.0, 1561.0, 744.0, 1621.0, 570.0, 1621.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [783.0, 1561.0, 1041.0, 1561.0, 1041.0, 1621.0, 783.0, 1621.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1261.0, 1561.0, 1499.0, 1561.0, 1499.0, 1621.0, 1261.0, 1621.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [265.0, 1369.0, 265.0, 1369.0, 265.0, 1407.0, 265.0, 1407.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [325.0, 1369.0, 393.0, 1369.0, 393.0, 1407.0, 325.0, 1407.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [465.0, 1369.0, 1501.0, 1369.0, 1501.0, 1407.0, 465.0, 1407.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [199.0, 1407.0, 645.0, 1407.0, 645.0, 1449.0, 199.0, 1449.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [717.0, 1407.0, 1501.0, 1407.0, 1501.0, 1449.0, 717.0, 1449.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [196.0, 1450.0, 770.0, 1450.0, 770.0, 1488.0, 196.0, 1488.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [910.0, 1450.0, 1408.0, 1450.0, 1408.0, 1488.0, 910.0, 1488.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [262.0, 390.0, 1207.0, 390.0, 1207.0, 442.0, 262.0, 442.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1501.0, 390.0, 1501.0, 390.0, 1501.0, 442.0, 1501.0, 442.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [200.0, 436.0, 282.0, 436.0, 282.0, 478.0, 200.0, 478.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [458.0, 436.0, 573.0, 436.0, 573.0, 478.0, 458.0, 478.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [669.0, 436.0, 894.0, 436.0, 894.0, 478.0, 669.0, 478.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [196.0, 472.0, 456.0, 472.0, 456.0, 522.0, 196.0, 522.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [733.0, 472.0, 841.0, 472.0, 841.0, 522.0, 733.0, 522.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [894.0, 472.0, 1063.0, 472.0, 1063.0, 522.0, 894.0, 522.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1345.0, 472.0, 1359.0, 472.0, 1359.0, 522.0, 1345.0, 522.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [196.0, 514.0, 197.0, 514.0, 197.0, 564.0, 196.0, 564.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [790.0, 514.0, 898.0, 514.0, 898.0, 564.0, 790.0, 564.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [981.0, 514.0, 997.0, 514.0, 997.0, 564.0, 981.0, 564.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [507.0, 556.0, 523.0, 556.0, 523.0, 603.0, 507.0, 603.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [194.0, 597.0, 197.0, 597.0, 197.0, 644.0, 194.0, 644.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [476.0, 597.0, 629.0, 597.0, 629.0, 644.0, 476.0, 644.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [712.0, 597.0, 853.0, 597.0, 853.0, 644.0, 712.0, 644.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [197.0, 641.0, 198.0, 641.0, 198.0, 683.0, 197.0, 683.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [476.0, 641.0, 548.0, 641.0, 548.0, 683.0, 476.0, 683.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [824.0, 641.0, 841.0, 641.0, 841.0, 683.0, 824.0, 683.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [197.0, 680.0, 198.0, 680.0, 198.0, 726.0, 197.0, 726.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [473.0, 680.0, 491.0, 680.0, 491.0, 726.0, 473.0, 726.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [765.0, 680.0, 847.0, 680.0, 847.0, 726.0, 765.0, 726.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1127.0, 680.0, 1135.0, 680.0, 1135.0, 726.0, 1127.0, 726.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [263.0, 288.0, 1505.0, 288.0, 1505.0, 334.0, 263.0, 334.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [200.0, 331.0, 376.0, 331.0, 376.0, 371.0, 200.0, 371.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [497.0, 331.0, 1141.0, 331.0, 1141.0, 371.0, 497.0, 371.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1203.0, 331.0, 1211.0, 331.0, 1211.0, 371.0, 1203.0, 371.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [829.0, 2033.0, 870.0, 2033.0, 870.0, 2070.0, 829.0, 2070.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [561.0, 207.0, 1138.0, 207.0, 1138.0, 246.0, 561.0, 246.0], "score": 1.0, "text": ""}] | {"preproc_blocks": [{"type": "title", "bbox": [200, 71, 410, 86], "lines": [{"bbox": [201, 74, 409, 88], "spans": [{"bbox": [201, 74, 409, 88], "score": 1.0, "content": "5. Affine fusion ring isomorphisms", "type": "text"}], "index": 0}], "index": 0}, {"type": "text", "bbox": [70, 102, 542, 132], "lines": [{"bbox": [94, 103, 541, 120], "spans": [{"bbox": [94, 103, 541, 120], "score": 1.0, "content": "We conclude the paper with the determination of all isomorphisms among the affine", "type": "text"}], "index": 1}, {"bbox": [72, 119, 435, 133], "spans": [{"bbox": [72, 119, 135, 133], "score": 1.0, "content": "fusion rings ", "type": "text"}, {"bbox": [135, 120, 178, 133], "score": 0.93, "content": "\\mathcal{R}(X_{r,k})", "type": "inline_equation", "height": 13, "width": 43}, {"bbox": [178, 119, 410, 133], "score": 1.0, "content": ". Recall Definition 2.1 and the discussion in ", "type": "text"}, {"bbox": [411, 119, 432, 132], "score": 0.3, "content": "\\S2.2", "type": "inline_equation", "height": 13, "width": 21}, {"bbox": [433, 119, 435, 133], "score": 1.0, "content": ".", "type": "text"}], "index": 2}], "index": 1.5}, {"type": "text", "bbox": [70, 138, 541, 259], "lines": [{"bbox": [94, 140, 540, 159], "spans": [{"bbox": [94, 140, 434, 159], "score": 1.0, "content": "Theorem 5.1. The complete list of fusion ring isomorphisms ", "type": "text"}, {"bbox": [434, 143, 540, 156], "score": 0.92, "content": "\\mathscr{R}(X_{r,k})\\,\\cong\\,\\mathscr{R}(Y_{s,m})", "type": "inline_equation", "height": 13, "width": 106}], "index": 3}, {"bbox": [72, 156, 321, 172], "spans": [{"bbox": [72, 156, 101, 172], "score": 1.0, "content": "when ", "type": "text"}, {"bbox": [101, 156, 164, 170], "score": 0.92, "content": "X_{r,k}\\neq Y_{s,m}", "type": "inline_equation", "height": 14, "width": 63}, {"bbox": [164, 156, 206, 172], "score": 1.0, "content": " (where ", "type": "text"}, {"bbox": [206, 156, 240, 169], "score": 0.9, "content": "X_{r},Y_{s}", "type": "inline_equation", "height": 13, "width": 34}, {"bbox": [240, 156, 321, 172], "score": 1.0, "content": " are simple) is:", "type": "text"}], "index": 4}, {"bbox": [70, 169, 489, 187], "spans": [{"bbox": [70, 169, 164, 187], "score": 1.0, "content": "rank-level duality ", "type": "text"}, {"bbox": [164, 171, 263, 185], "score": 0.91, "content": "\\mathcal{R}(C_{r,k})\\cong\\mathcal{R}(C_{k,r})", "type": "inline_equation", "height": 14, "width": 99}, {"bbox": [263, 169, 302, 187], "score": 1.0, "content": " for all ", "type": "text"}, {"bbox": [303, 171, 321, 184], "score": 0.88, "content": "r,k", "type": "inline_equation", "height": 13, "width": 18}, {"bbox": [321, 169, 382, 187], "score": 1.0, "content": ", as well as ", "type": "text"}, {"bbox": [383, 171, 483, 185], "score": 0.92, "content": "\\mathcal{R}(A_{1,k})\\cong\\mathcal{R}(C_{k,1})", "type": "inline_equation", "height": 14, "width": 100}, {"bbox": [484, 169, 489, 187], "score": 1.0, "content": ";", "type": "text"}], "index": 5}, {"bbox": [71, 185, 358, 203], "spans": [{"bbox": [71, 185, 284, 200], "score": 0.86, "content": "\\mathcal{R}(B_{r,1})\\cong\\mathcal{R}(A_{1,2})\\cong\\mathcal{R}(C_{2,1})\\cong\\mathcal{R}(E_{8,2})", "type": "inline_equation", "height": 15, "width": 213}, {"bbox": [284, 185, 323, 203], "score": 1.0, "content": " for all ", "type": "text"}, {"bbox": [323, 186, 352, 199], "score": 0.89, "content": "r\\geq3", "type": "inline_equation", "height": 13, "width": 29}, {"bbox": [353, 185, 358, 203], "score": 1.0, "content": ";", "type": "text"}], "index": 6}, {"bbox": [71, 200, 188, 217], "spans": [{"bbox": [71, 200, 182, 214], "score": 0.89, "content": "\\mathcal{R}(A_{3,1})\\cong\\mathcal{R}(D_{o d d,1})", "type": "inline_equation", "height": 14, "width": 111}, {"bbox": [182, 200, 188, 217], "score": 1.0, "content": ";", "type": "text"}], "index": 7}, {"bbox": [71, 214, 307, 231], "spans": [{"bbox": [71, 215, 171, 229], "score": 0.9, "content": "\\mathcal{R}(D_{r,1})\\cong\\mathcal{R}(D_{s,1})", "type": "inline_equation", "height": 14, "width": 100}, {"bbox": [171, 214, 226, 231], "score": 1.0, "content": " whenever ", "type": "text"}, {"bbox": [226, 216, 255, 227], "score": 0.48, "content": "r\\equiv s", "type": "inline_equation", "height": 11, "width": 29}, {"bbox": [256, 214, 307, 231], "score": 1.0, "content": " (mod 2);", "type": "text"}], "index": 8}, {"bbox": [71, 229, 302, 245], "spans": [{"bbox": [71, 230, 171, 244], "score": 0.89, "content": "\\mathscr{R}(A_{2,1})\\cong\\mathscr{R}(E_{6,1})", "type": "inline_equation", "height": 14, "width": 100}, {"bbox": [171, 230, 197, 245], "score": 1.0, "content": " and ", "type": "text"}, {"bbox": [197, 229, 296, 244], "score": 0.87, "content": "\\mathcal{R}(A_{1,1})\\cong\\mathcal{R}(E_{7,1})", "type": "inline_equation", "height": 15, "width": 99}, {"bbox": [296, 230, 302, 245], "score": 1.0, "content": ";", "type": "text"}], "index": 9}, {"bbox": [71, 244, 408, 261], "spans": [{"bbox": [71, 245, 169, 259], "score": 0.89, "content": "\\mathcal{R}(F_{4,1})\\cong\\mathcal{R}(G_{2,1})", "type": "inline_equation", "height": 14, "width": 98}, {"bbox": [170, 244, 176, 261], "score": 1.0, "content": ", ", "type": "text"}, {"bbox": [177, 244, 275, 259], "score": 0.85, "content": "\\mathcal{R}(F_{4,2})\\cong\\mathcal{R}(E_{8,3})", "type": "inline_equation", "height": 15, "width": 98}, {"bbox": [275, 244, 304, 261], "score": 1.0, "content": ", and", "type": "text"}, {"bbox": [305, 244, 405, 259], "score": 0.9, "content": "\\mathcal{R}(F_{4,3})\\cong\\mathcal{R}(G_{2,4})", "type": "inline_equation", "height": 15, "width": 100}, {"bbox": [405, 244, 408, 261], "score": 1.0, "content": ".", "type": "text"}], "index": 10}], "index": 6.5}, {"type": "text", "bbox": [70, 266, 541, 343], "lines": [{"bbox": [93, 267, 541, 285], "spans": [{"bbox": [93, 267, 190, 285], "score": 1.0, "content": "The isomorphism ", "type": "text"}, {"bbox": [190, 269, 291, 284], "score": 0.91, "content": "\\mathcal{R}(A_{1,k})\\cong\\mathcal{R}(C_{k,1})", "type": "inline_equation", "height": 15, "width": 101}, {"bbox": [292, 267, 326, 285], "score": 1.0, "content": " takes ", "type": "text"}, {"bbox": [326, 269, 347, 282], "score": 0.86, "content": "a\\Lambda_{1}", "type": "inline_equation", "height": 13, "width": 21}, {"bbox": [348, 267, 365, 285], "score": 1.0, "content": " to", "type": "text"}, {"bbox": [366, 267, 381, 282], "score": 0.9, "content": "\\widetilde{\\Lambda}_{a}", "type": "inline_equation", "height": 15, "width": 15}, {"bbox": [381, 267, 485, 285], "score": 1.0, "content": ". The isomorphism ", "type": "text"}, {"bbox": [486, 270, 541, 284], "score": 0.89, "content": "\\mathcal{R}(F_{4,2})\\cong", "type": "inline_equation", "height": 14, "width": 55}], "index": 11}, {"bbox": [71, 283, 540, 300], "spans": [{"bbox": [71, 288, 113, 300], "score": 0.93, "content": "\\mathcal{R}(E_{8,3})", "type": "inline_equation", "height": 12, "width": 42}, {"bbox": [113, 285, 272, 300], "score": 1.0, "content": " was found in [14]; it relates ", "type": "text"}, {"bbox": [272, 283, 323, 299], "score": 0.89, "content": "\\Lambda_{1}\\leftrightarrow\\tilde{\\Lambda}_{8}", "type": "inline_equation", "height": 16, "width": 51}, {"bbox": [323, 285, 331, 300], "score": 1.0, "content": ", ", "type": "text"}, {"bbox": [331, 284, 388, 299], "score": 0.88, "content": "2\\Lambda_{4}\\leftrightarrow\\tilde{\\Lambda}_{2}", "type": "inline_equation", "height": 15, "width": 57}, {"bbox": [389, 285, 396, 300], "score": 1.0, "content": ", ", "type": "text"}, {"bbox": [397, 285, 447, 299], "score": 0.93, "content": "\\Lambda_{3}\\,\\leftrightarrow\\,\\widetilde{\\Lambda}_{1}", "type": "inline_equation", "height": 14, "width": 50}, {"bbox": [448, 285, 455, 300], "score": 1.0, "content": ", ", "type": "text"}, {"bbox": [456, 285, 506, 299], "score": 0.93, "content": "\\Lambda_{4}\\leftrightarrow\\tilde{\\Lambda}_{7}", "type": "inline_equation", "height": 14, "width": 50}, {"bbox": [507, 285, 540, 300], "score": 1.0, "content": ". The", "type": "text"}], "index": 12}, {"bbox": [70, 299, 542, 315], "spans": [{"bbox": [70, 299, 142, 315], "score": 1.0, "content": "isomorphism ", "type": "text"}, {"bbox": [142, 300, 244, 314], "score": 0.91, "content": "\\mathcal{R}(F_{4,3})\\,\\cong\\,\\mathcal{R}(G_{2,4})", "type": "inline_equation", "height": 14, "width": 102}, {"bbox": [244, 299, 542, 315], "score": 1.0, "content": " was found i n [34,14]; a corresponde nce which works is", "type": "text"}], "index": 13}, {"bbox": [71, 314, 540, 331], "spans": [{"bbox": [71, 315, 118, 330], "score": 0.92, "content": "\\Lambda_{4}\\leftrightarrow\\widetilde{\\Lambda}_{1}", "type": "inline_equation", "height": 15, "width": 47}, {"bbox": [118, 315, 124, 331], "score": 1.0, "content": ", ", "type": "text"}, {"bbox": [124, 315, 177, 329], "score": 0.88, "content": "\\Lambda_{1}\\leftrightarrow2\\widetilde{\\Lambda}_{1}", "type": "inline_equation", "height": 14, "width": 53}, {"bbox": [177, 315, 183, 331], "score": 1.0, "content": ", ", "type": "text"}, {"bbox": [184, 315, 236, 330], "score": 0.87, "content": "\\Lambda_{3}\\leftrightarrow3\\widetilde{\\Lambda}_{2}", "type": "inline_equation", "height": 15, "width": 52}, {"bbox": [236, 315, 242, 331], "score": 1.0, "content": ",", "type": "text"}, {"bbox": [243, 314, 302, 329], "score": 0.9, "content": "2\\Lambda_{4}\\leftrightarrow2\\widetilde{\\Lambda}_{2}", "type": "inline_equation", "height": 15, "width": 59}, {"bbox": [302, 315, 308, 331], "score": 1.0, "content": ", ", "type": "text"}, {"bbox": [308, 315, 417, 330], "score": 0.89, "content": "\\Lambda_{1}+\\Lambda_{4}\\leftrightarrow\\widetilde{\\Lambda}_{1}+2\\widetilde{\\Lambda}_{2}", "type": "inline_equation", "height": 15, "width": 109}, {"bbox": [418, 315, 424, 331], "score": 1.0, "content": ", ", "type": "text"}, {"bbox": [424, 315, 477, 330], "score": 0.9, "content": "\\Lambda_{2}\\leftrightarrow4\\widetilde{\\Lambda}_{2}", "type": "inline_equation", "height": 15, "width": 53}, {"bbox": [477, 315, 483, 331], "score": 1.0, "content": ", ", "type": "text"}, {"bbox": [484, 315, 536, 329], "score": 0.93, "content": "3\\Lambda_{4}\\leftrightarrow\\widetilde{\\Lambda}_{2}", "type": "inline_equation", "height": 14, "width": 52}, {"bbox": [536, 315, 540, 331], "score": 1.0, "content": ",", "type": "text"}], "index": 14}, {"bbox": [70, 329, 201, 345], "spans": [{"bbox": [70, 329, 94, 345], "score": 1.0, "content": "and ", "type": "text"}, {"bbox": [95, 330, 197, 344], "score": 0.91, "content": "\\Lambda_{3}+\\Lambda_{4}\\leftrightarrow\\tilde{\\Lambda}_{1}+\\tilde{\\Lambda}_{2}", "type": "inline_equation", "height": 14, "width": 102}, {"bbox": [198, 329, 201, 345], "score": 1.0, "content": ".", "type": "text"}], "index": 15}], "index": 13}, {"type": "text", "bbox": [70, 344, 541, 416], "lines": [{"bbox": [95, 345, 540, 361], "spans": [{"bbox": [95, 345, 540, 361], "score": 1.0, "content": "We will sket ch th e proof here. The idea is to compare invariants for the various fusion", "type": "text"}], "index": 16}, {"bbox": [69, 359, 541, 376], "spans": [{"bbox": [69, 359, 286, 376], "score": 1.0, "content": "rings, case by case. For example, suppose ", "type": "text"}, {"bbox": [286, 361, 328, 374], "score": 0.94, "content": "\\mathcal{R}(A_{r,k})", "type": "inline_equation", "height": 13, "width": 42}, {"bbox": [328, 359, 353, 376], "score": 1.0, "content": " and ", "type": "text"}, {"bbox": [353, 361, 398, 374], "score": 0.94, "content": "\\mathcal{R}(A_{s,m})", "type": "inline_equation", "height": 13, "width": 45}, {"bbox": [398, 359, 541, 376], "score": 1.0, "content": " are isomorphic. Then their", "type": "text"}], "index": 17}, {"bbox": [69, 374, 542, 390], "spans": [{"bbox": [69, 374, 188, 390], "score": 1.0, "content": "simple-current groups ", "type": "text"}, {"bbox": [188, 376, 214, 388], "score": 0.92, "content": "\\mathbb{Z}_{r+1}", "type": "inline_equation", "height": 12, "width": 26}, {"bbox": [214, 374, 241, 390], "score": 1.0, "content": " and ", "type": "text"}, {"bbox": [241, 376, 266, 388], "score": 0.93, "content": "\\mathbb{Z}_{s+1}", "type": "inline_equation", "height": 12, "width": 25}, {"bbox": [266, 374, 542, 390], "score": 1.0, "content": " must be isomorphic (since simple-currents must get", "type": "text"}], "index": 18}, {"bbox": [70, 389, 541, 404], "spans": [{"bbox": [70, 389, 235, 404], "score": 1.0, "content": "mapped to simple-currents), so ", "type": "text"}, {"bbox": [235, 394, 263, 399], "score": 0.88, "content": "r=s", "type": "inline_equation", "height": 5, "width": 28}, {"bbox": [263, 389, 412, 404], "score": 1.0, "content": ". Now compare the numbers ", "type": "text"}, {"bbox": [412, 390, 440, 403], "score": 0.94, "content": "||P_{+}||", "type": "inline_equation", "height": 13, "width": 28}, {"bbox": [440, 389, 541, 404], "score": 1.0, "content": "of highest-weights:", "type": "text"}], "index": 19}, {"bbox": [72, 399, 264, 420], "spans": [{"bbox": [72, 403, 150, 418], "score": 0.93, "content": "\\big(\\begin{array}{c}{{r+k}}\\\\ {{r}}\\end{array}\\big)=\\big(\\begin{array}{c}{{r+m}}\\\\ {{r}}\\end{array}\\big)", "type": "inline_equation", "height": 15, "width": 78}, {"bbox": [150, 399, 224, 420], "score": 1.0, "content": ", which forces ", "type": "text"}, {"bbox": [225, 405, 258, 414], "score": 0.93, "content": "m=k", "type": "inline_equation", "height": 9, "width": 33}, {"bbox": [258, 399, 264, 420], "score": 1.0, "content": ".", "type": "text"}], "index": 20}], "index": 18}, {"type": "text", "bbox": [70, 416, 541, 490], "lines": [{"bbox": [93, 418, 540, 433], "spans": [{"bbox": [93, 418, 540, 433], "score": 1.0, "content": "It is also quite useful here to know those weights with second smallest q-dimension.", "type": "text"}], "index": 21}, {"bbox": [70, 432, 541, 448], "spans": [{"bbox": [70, 432, 541, 448], "score": 1.0, "content": "This is a by-product of the proof of Proposition 4.1, and the complete answer is given in", "type": "text"}], "index": 22}, {"bbox": [69, 442, 543, 466], "spans": [{"bbox": [69, 442, 382, 466], "score": 1.0, "content": "[18, Table 3]. Here we will simply state that those weights in ", "type": "text"}, {"bbox": [382, 446, 431, 463], "score": 0.94, "content": "P_{+}^{k}(X_{r}^{(1)})", "type": "inline_equation", "height": 17, "width": 49}, {"bbox": [431, 442, 543, 466], "score": 1.0, "content": " with second smallest", "type": "text"}], "index": 23}, {"bbox": [69, 462, 541, 479], "spans": [{"bbox": [69, 462, 258, 479], "score": 1.0, "content": "q-dimension are precisely the orbit ", "type": "text"}, {"bbox": [258, 465, 280, 475], "score": 0.92, "content": "S\\Lambda_{\\star}", "type": "inline_equation", "height": 10, "width": 22}, {"bbox": [281, 462, 349, 479], "score": 1.0, "content": ", except for: ", "type": "text"}, {"bbox": [349, 465, 371, 477], "score": 0.84, "content": "A_{r,1}", "type": "inline_equation", "height": 12, "width": 22}, {"bbox": [371, 462, 378, 479], "score": 1.0, "content": "; ", "type": "text"}, {"bbox": [378, 465, 401, 477], "score": 0.91, "content": "B_{r,k}", "type": "inline_equation", "height": 12, "width": 23}, {"bbox": [401, 462, 423, 479], "score": 1.0, "content": " for ", "type": "text"}, {"bbox": [424, 465, 453, 475], "score": 0.91, "content": "k\\leq3", "type": "inline_equation", "height": 10, "width": 29}, {"bbox": [453, 462, 460, 479], "score": 1.0, "content": "; ", "type": "text"}, {"bbox": [461, 465, 536, 477], "score": 0.93, "content": "C_{2,2},C_{2,3},C_{3,2}", "type": "inline_equation", "height": 12, "width": 75}, {"bbox": [537, 462, 541, 479], "score": 1.0, "content": ";", "type": "text"}], "index": 24}, {"bbox": [71, 478, 416, 492], "spans": [{"bbox": [71, 479, 94, 491], "score": 0.92, "content": "D_{r,k}", "type": "inline_equation", "height": 12, "width": 23}, {"bbox": [94, 478, 116, 492], "score": 1.0, "content": " for ", "type": "text"}, {"bbox": [116, 479, 145, 489], "score": 0.9, "content": "k\\leq2", "type": "inline_equation", "height": 10, "width": 29}, {"bbox": [145, 478, 151, 492], "score": 1.0, "content": "; ", "type": "text"}, {"bbox": [152, 479, 174, 491], "score": 0.92, "content": "E_{6,k}", "type": "inline_equation", "height": 12, "width": 22}, {"bbox": [175, 478, 196, 492], "score": 1.0, "content": " for ", "type": "text"}, {"bbox": [196, 479, 226, 489], "score": 0.92, "content": "k\\leq2", "type": "inline_equation", "height": 10, "width": 30}, {"bbox": [226, 478, 255, 492], "score": 1.0, "content": "; and ", "type": "text"}, {"bbox": [255, 479, 360, 491], "score": 0.93, "content": "E_{7,k},E_{8,k},F_{4,k},G_{2,k}", "type": "inline_equation", "height": 12, "width": 105}, {"bbox": [361, 478, 382, 492], "score": 1.0, "content": " for ", "type": "text"}, {"bbox": [383, 479, 412, 489], "score": 0.92, "content": "k\\leq4", "type": "inline_equation", "height": 10, "width": 29}, {"bbox": [412, 478, 416, 492], "score": 1.0, "content": ".", "type": "text"}], "index": 25}], "index": 23}, {"type": "text", "bbox": [71, 490, 541, 533], "lines": [{"bbox": [95, 492, 540, 506], "spans": [{"bbox": [95, 494, 116, 506], "score": 0.93, "content": "C_{r,k}", "type": "inline_equation", "height": 12, "width": 21}, {"bbox": [117, 492, 141, 506], "score": 1.0, "content": " and ", "type": "text"}, {"bbox": [141, 494, 167, 506], "score": 0.94, "content": "B_{s,m}", "type": "inline_equation", "height": 12, "width": 26}, {"bbox": [167, 492, 540, 506], "score": 1.0, "content": " both have two simple-currents, but their fusion rings can\u2019t be isomorphic", "type": "text"}], "index": 26}, {"bbox": [71, 506, 540, 521], "spans": [{"bbox": [71, 506, 232, 521], "score": 1.0, "content": "(generically) because the orbit ", "type": "text"}, {"bbox": [232, 507, 257, 519], "score": 0.93, "content": "J^{i}\\Lambda_{1}", "type": "inline_equation", "height": 12, "width": 25}, {"bbox": [258, 506, 540, 521], "score": 1.0, "content": " has the second smallest q-dimension for both algebras", "type": "text"}], "index": 27}, {"bbox": [70, 521, 506, 535], "spans": [{"bbox": [70, 522, 277, 535], "score": 1.0, "content": "at generic rank/level, but the numbers ", "type": "text"}, {"bbox": [277, 521, 327, 535], "score": 0.95, "content": "Q_{j}(J^{i}\\Lambda_{1})", "type": "inline_equation", "height": 14, "width": 50}, {"bbox": [327, 522, 506, 535], "score": 1.0, "content": " for the two algebras are different.", "type": "text"}], "index": 28}], "index": 27}, {"type": "text", "bbox": [70, 534, 541, 579], "lines": [{"bbox": [93, 534, 542, 551], "spans": [{"bbox": [93, 534, 367, 551], "score": 1.0, "content": "Another useful invariant involves the set of integers ", "type": "text"}, {"bbox": [367, 537, 373, 546], "score": 0.85, "content": "\\ell", "type": "inline_equation", "height": 9, "width": 6}, {"bbox": [373, 534, 435, 551], "score": 1.0, "content": "coprime to ", "type": "text"}, {"bbox": [435, 537, 453, 546], "score": 0.89, "content": "\\kappa N", "type": "inline_equation", "height": 9, "width": 18}, {"bbox": [454, 534, 509, 551], "score": 1.0, "content": " for which ", "type": "text"}, {"bbox": [509, 535, 527, 546], "score": 0.88, "content": "0^{(\\ell)}", "type": "inline_equation", "height": 11, "width": 18}, {"bbox": [528, 534, 542, 551], "score": 1.0, "content": " is", "type": "text"}], "index": 29}, {"bbox": [70, 551, 539, 565], "spans": [{"bbox": [70, 551, 539, 565], "score": 1.0, "content": "a simple-current. For the classical algebras this is easy to find, using (2.1c): Up to a sign,", "type": "text"}], "index": 30}, {"bbox": [68, 561, 539, 583], "spans": [{"bbox": [68, 561, 172, 583], "score": 1.0, "content": "the q-dimension of ", "type": "text"}, {"bbox": [172, 566, 190, 577], "score": 0.91, "content": "0^{(\\ell)}", "type": "inline_equation", "height": 11, "width": 18}, {"bbox": [191, 561, 199, 583], "score": 1.0, "content": " (", "type": "text"}, {"bbox": [199, 568, 204, 577], "score": 0.76, "content": "\\ell", "type": "inline_equation", "height": 9, "width": 5}, {"bbox": [205, 561, 267, 583], "score": 1.0, "content": "coprime to ", "type": "text"}, {"bbox": [268, 569, 281, 577], "score": 0.78, "content": "2\\kappa", "type": "inline_equation", "height": 8, "width": 13}, {"bbox": [281, 561, 374, 583], "score": 1.0, "content": ") for the algebras ", "type": "text"}, {"bbox": [375, 564, 453, 579], "score": 0.94, "content": "B_{r}^{(1)},C_{r}^{(1)},D_{r}^{(1)}", "type": "inline_equation", "height": 15, "width": 78}, {"bbox": [453, 561, 539, 583], "score": 1.0, "content": "is, respectively,", "type": "text"}], "index": 31}], "index": 30}, {"type": "interline_equation", "bbox": [145, 595, 464, 720], "lines": [{"bbox": [145, 595, 464, 720], "spans": [{"bbox": [145, 595, 464, 720], "score": 0.94, "content": "\\begin{array}{r l}&{\\displaystyle\\prod_{a=0}^{r-1}\\frac{\\sin(\\pi\\ell\\,(2a+1)/2\\kappa)}{\\sin(\\pi\\,(2a+1)/2\\kappa)}\\,\\prod_{b=1}^{2r-2}\\frac{\\sin(\\pi\\ell b/\\kappa)^{\\left[\\frac{2r-b}{2}\\right]}}{\\sin(\\pi b/\\kappa)^{\\left[\\frac{2r-b}{2}\\right]}}\\,\\,,}\\\\ &{\\displaystyle\\prod_{a=1}^{r-1}\\frac{\\sin(\\pi\\ell a/\\kappa)^{r-a}\\,\\sin(\\pi\\ell\\,(2a-1)/2\\kappa)^{r-a}}{\\sin(\\pi a/\\kappa)^{r-a}\\,\\sin(\\pi\\,(2a-1)/2\\kappa)^{r-a}}\\,\\prod_{b=r}^{2r-1}\\frac{\\sin(\\pi\\ell b/2\\kappa)}{\\sin(\\pi b/2\\kappa)}\\,\\,,}\\\\ &{\\displaystyle\\prod_{a=1}^{r-1}\\frac{\\sin(\\pi\\ell a/\\kappa)^{\\left[\\frac{2r-a+1}{2}\\right]}}{\\sin(\\pi a/\\kappa)^{\\left[\\frac{2r-a+1}{2}\\right]}}\\,\\prod_{b=r}^{2r-3}\\frac{\\sin(\\pi\\ell b/\\kappa)^{\\left[\\frac{2r-b-1}{2}\\right]}}{\\sin(\\pi b/\\kappa)^{\\left[\\frac{2r-b-1}{2}\\right]}}\\,\\,,}\\end{array}", "type": "interline_equation"}], "index": 32}], "index": 32}], "layout_bboxes": [], "page_idx": 20, "page_size": [612.0, 792.0], "_layout_tree": [], "images": [], "tables": [], "interline_equations": [{"type": "interline_equation", "bbox": [145, 595, 464, 720], "lines": [{"bbox": [145, 595, 464, 720], "spans": [{"bbox": [145, 595, 464, 720], "score": 0.94, "content": "\\begin{array}{r l}&{\\displaystyle\\prod_{a=0}^{r-1}\\frac{\\sin(\\pi\\ell\\,(2a+1)/2\\kappa)}{\\sin(\\pi\\,(2a+1)/2\\kappa)}\\,\\prod_{b=1}^{2r-2}\\frac{\\sin(\\pi\\ell b/\\kappa)^{\\left[\\frac{2r-b}{2}\\right]}}{\\sin(\\pi b/\\kappa)^{\\left[\\frac{2r-b}{2}\\right]}}\\,\\,,}\\\\ &{\\displaystyle\\prod_{a=1}^{r-1}\\frac{\\sin(\\pi\\ell a/\\kappa)^{r-a}\\,\\sin(\\pi\\ell\\,(2a-1)/2\\kappa)^{r-a}}{\\sin(\\pi a/\\kappa)^{r-a}\\,\\sin(\\pi\\,(2a-1)/2\\kappa)^{r-a}}\\,\\prod_{b=r}^{2r-1}\\frac{\\sin(\\pi\\ell b/2\\kappa)}{\\sin(\\pi b/2\\kappa)}\\,\\,,}\\\\ &{\\displaystyle\\prod_{a=1}^{r-1}\\frac{\\sin(\\pi\\ell a/\\kappa)^{\\left[\\frac{2r-a+1}{2}\\right]}}{\\sin(\\pi a/\\kappa)^{\\left[\\frac{2r-a+1}{2}\\right]}}\\,\\prod_{b=r}^{2r-3}\\frac{\\sin(\\pi\\ell b/\\kappa)^{\\left[\\frac{2r-b-1}{2}\\right]}}{\\sin(\\pi b/\\kappa)^{\\left[\\frac{2r-b-1}{2}\\right]}}\\,\\,,}\\end{array}", "type": "interline_equation"}], "index": 32}], "index": 32}], "discarded_blocks": [{"type": "discarded", "bbox": [298, 731, 311, 742], "lines": [{"bbox": [298, 731, 313, 745], "spans": [{"bbox": [298, 731, 313, 745], "score": 1.0, "content": "21", "type": "text"}]}]}], "need_drop": false, "drop_reason": [], "para_blocks": [{"type": "title", "bbox": [200, 71, 410, 86], "lines": [{"bbox": [201, 74, 409, 88], "spans": [{"bbox": [201, 74, 409, 88], "score": 1.0, "content": "5. Affine fusion ring isomorphisms", "type": "text"}], "index": 0}], "index": 0, "page_num": "page_20", "page_size": [612.0, 792.0]}, {"type": "text", "bbox": [70, 102, 542, 132], "lines": [{"bbox": [94, 103, 541, 120], "spans": [{"bbox": [94, 103, 541, 120], "score": 1.0, "content": "We conclude the paper with the determination of all isomorphisms among the affine", "type": "text"}], "index": 1}, {"bbox": [72, 119, 435, 133], "spans": [{"bbox": [72, 119, 135, 133], "score": 1.0, "content": "fusion rings ", "type": "text"}, {"bbox": [135, 120, 178, 133], "score": 0.93, "content": "\\mathcal{R}(X_{r,k})", "type": "inline_equation", "height": 13, "width": 43}, {"bbox": [178, 119, 410, 133], "score": 1.0, "content": ". Recall Definition 2.1 and the discussion in ", "type": "text"}, {"bbox": [411, 119, 432, 132], "score": 0.3, "content": "\\S2.2", "type": "inline_equation", "height": 13, "width": 21}, {"bbox": [433, 119, 435, 133], "score": 1.0, "content": ".", "type": "text"}], "index": 2}], "index": 1.5, "page_num": "page_20", "page_size": [612.0, 792.0], "bbox_fs": [72, 103, 541, 133]}, {"type": "text", "bbox": [70, 138, 541, 259], "lines": [{"bbox": [94, 140, 540, 159], "spans": [{"bbox": [94, 140, 434, 159], "score": 1.0, "content": "Theorem 5.1. The complete list of fusion ring isomorphisms ", "type": "text"}, {"bbox": [434, 143, 540, 156], "score": 0.92, "content": "\\mathscr{R}(X_{r,k})\\,\\cong\\,\\mathscr{R}(Y_{s,m})", "type": "inline_equation", "height": 13, "width": 106}], "index": 3}, {"bbox": [72, 156, 321, 172], "spans": [{"bbox": [72, 156, 101, 172], "score": 1.0, "content": "when ", "type": "text"}, {"bbox": [101, 156, 164, 170], "score": 0.92, "content": "X_{r,k}\\neq Y_{s,m}", "type": "inline_equation", "height": 14, "width": 63}, {"bbox": [164, 156, 206, 172], "score": 1.0, "content": " (where ", "type": "text"}, {"bbox": [206, 156, 240, 169], "score": 0.9, "content": "X_{r},Y_{s}", "type": "inline_equation", "height": 13, "width": 34}, {"bbox": [240, 156, 321, 172], "score": 1.0, "content": " are simple) is:", "type": "text"}], "index": 4}, {"bbox": [70, 169, 489, 187], "spans": [{"bbox": [70, 169, 164, 187], "score": 1.0, "content": "rank-level duality ", "type": "text"}, {"bbox": [164, 171, 263, 185], "score": 0.91, "content": "\\mathcal{R}(C_{r,k})\\cong\\mathcal{R}(C_{k,r})", "type": "inline_equation", "height": 14, "width": 99}, {"bbox": [263, 169, 302, 187], "score": 1.0, "content": " for all ", "type": "text"}, {"bbox": [303, 171, 321, 184], "score": 0.88, "content": "r,k", "type": "inline_equation", "height": 13, "width": 18}, {"bbox": [321, 169, 382, 187], "score": 1.0, "content": ", as well as ", "type": "text"}, {"bbox": [383, 171, 483, 185], "score": 0.92, "content": "\\mathcal{R}(A_{1,k})\\cong\\mathcal{R}(C_{k,1})", "type": "inline_equation", "height": 14, "width": 100}, {"bbox": [484, 169, 489, 187], "score": 1.0, "content": ";", "type": "text"}], "index": 5}, {"bbox": [71, 185, 358, 203], "spans": [{"bbox": [71, 185, 284, 200], "score": 0.86, "content": "\\mathcal{R}(B_{r,1})\\cong\\mathcal{R}(A_{1,2})\\cong\\mathcal{R}(C_{2,1})\\cong\\mathcal{R}(E_{8,2})", "type": "inline_equation", "height": 15, "width": 213}, {"bbox": [284, 185, 323, 203], "score": 1.0, "content": " for all ", "type": "text"}, {"bbox": [323, 186, 352, 199], "score": 0.89, "content": "r\\geq3", "type": "inline_equation", "height": 13, "width": 29}, {"bbox": [353, 185, 358, 203], "score": 1.0, "content": ";", "type": "text"}], "index": 6}, {"bbox": [71, 200, 188, 217], "spans": [{"bbox": [71, 200, 182, 214], "score": 0.89, "content": "\\mathcal{R}(A_{3,1})\\cong\\mathcal{R}(D_{o d d,1})", "type": "inline_equation", "height": 14, "width": 111}, {"bbox": [182, 200, 188, 217], "score": 1.0, "content": ";", "type": "text"}], "index": 7}, {"bbox": [71, 214, 307, 231], "spans": [{"bbox": [71, 215, 171, 229], "score": 0.9, "content": "\\mathcal{R}(D_{r,1})\\cong\\mathcal{R}(D_{s,1})", "type": "inline_equation", "height": 14, "width": 100}, {"bbox": [171, 214, 226, 231], "score": 1.0, "content": " whenever ", "type": "text"}, {"bbox": [226, 216, 255, 227], "score": 0.48, "content": "r\\equiv s", "type": "inline_equation", "height": 11, "width": 29}, {"bbox": [256, 214, 307, 231], "score": 1.0, "content": " (mod 2);", "type": "text"}], "index": 8}, {"bbox": [71, 229, 302, 245], "spans": [{"bbox": [71, 230, 171, 244], "score": 0.89, "content": "\\mathscr{R}(A_{2,1})\\cong\\mathscr{R}(E_{6,1})", "type": "inline_equation", "height": 14, "width": 100}, {"bbox": [171, 230, 197, 245], "score": 1.0, "content": " and ", "type": "text"}, {"bbox": [197, 229, 296, 244], "score": 0.87, "content": "\\mathcal{R}(A_{1,1})\\cong\\mathcal{R}(E_{7,1})", "type": "inline_equation", "height": 15, "width": 99}, {"bbox": [296, 230, 302, 245], "score": 1.0, "content": ";", "type": "text"}], "index": 9}, {"bbox": [71, 244, 408, 261], "spans": [{"bbox": [71, 245, 169, 259], "score": 0.89, "content": "\\mathcal{R}(F_{4,1})\\cong\\mathcal{R}(G_{2,1})", "type": "inline_equation", "height": 14, "width": 98}, {"bbox": [170, 244, 176, 261], "score": 1.0, "content": ", ", "type": "text"}, {"bbox": [177, 244, 275, 259], "score": 0.85, "content": "\\mathcal{R}(F_{4,2})\\cong\\mathcal{R}(E_{8,3})", "type": "inline_equation", "height": 15, "width": 98}, {"bbox": [275, 244, 304, 261], "score": 1.0, "content": ", and", "type": "text"}, {"bbox": [305, 244, 405, 259], "score": 0.9, "content": "\\mathcal{R}(F_{4,3})\\cong\\mathcal{R}(G_{2,4})", "type": "inline_equation", "height": 15, "width": 100}, {"bbox": [405, 244, 408, 261], "score": 1.0, "content": ".", "type": "text"}], "index": 10}], "index": 6.5, "page_num": "page_20", "page_size": [612.0, 792.0], "bbox_fs": [70, 140, 540, 261]}, {"type": "text", "bbox": [70, 266, 541, 343], "lines": [{"bbox": [93, 267, 541, 285], "spans": [{"bbox": [93, 267, 190, 285], "score": 1.0, "content": "The isomorphism ", "type": "text"}, {"bbox": [190, 269, 291, 284], "score": 0.91, "content": "\\mathcal{R}(A_{1,k})\\cong\\mathcal{R}(C_{k,1})", "type": "inline_equation", "height": 15, "width": 101}, {"bbox": [292, 267, 326, 285], "score": 1.0, "content": " takes ", "type": "text"}, {"bbox": [326, 269, 347, 282], "score": 0.86, "content": "a\\Lambda_{1}", "type": "inline_equation", "height": 13, "width": 21}, {"bbox": [348, 267, 365, 285], "score": 1.0, "content": " to", "type": "text"}, {"bbox": [366, 267, 381, 282], "score": 0.9, "content": "\\widetilde{\\Lambda}_{a}", "type": "inline_equation", "height": 15, "width": 15}, {"bbox": [381, 267, 485, 285], "score": 1.0, "content": ". The isomorphism ", "type": "text"}, {"bbox": [486, 270, 541, 284], "score": 0.89, "content": "\\mathcal{R}(F_{4,2})\\cong", "type": "inline_equation", "height": 14, "width": 55}], "index": 11}, {"bbox": [71, 283, 540, 300], "spans": [{"bbox": [71, 288, 113, 300], "score": 0.93, "content": "\\mathcal{R}(E_{8,3})", "type": "inline_equation", "height": 12, "width": 42}, {"bbox": [113, 285, 272, 300], "score": 1.0, "content": " was found in [14]; it relates ", "type": "text"}, {"bbox": [272, 283, 323, 299], "score": 0.89, "content": "\\Lambda_{1}\\leftrightarrow\\tilde{\\Lambda}_{8}", "type": "inline_equation", "height": 16, "width": 51}, {"bbox": [323, 285, 331, 300], "score": 1.0, "content": ", ", "type": "text"}, {"bbox": [331, 284, 388, 299], "score": 0.88, "content": "2\\Lambda_{4}\\leftrightarrow\\tilde{\\Lambda}_{2}", "type": "inline_equation", "height": 15, "width": 57}, {"bbox": [389, 285, 396, 300], "score": 1.0, "content": ", ", "type": "text"}, {"bbox": [397, 285, 447, 299], "score": 0.93, "content": "\\Lambda_{3}\\,\\leftrightarrow\\,\\widetilde{\\Lambda}_{1}", "type": "inline_equation", "height": 14, "width": 50}, {"bbox": [448, 285, 455, 300], "score": 1.0, "content": ", ", "type": "text"}, {"bbox": [456, 285, 506, 299], "score": 0.93, "content": "\\Lambda_{4}\\leftrightarrow\\tilde{\\Lambda}_{7}", "type": "inline_equation", "height": 14, "width": 50}, {"bbox": [507, 285, 540, 300], "score": 1.0, "content": ". The", "type": "text"}], "index": 12}, {"bbox": [70, 299, 542, 315], "spans": [{"bbox": [70, 299, 142, 315], "score": 1.0, "content": "isomorphism ", "type": "text"}, {"bbox": [142, 300, 244, 314], "score": 0.91, "content": "\\mathcal{R}(F_{4,3})\\,\\cong\\,\\mathcal{R}(G_{2,4})", "type": "inline_equation", "height": 14, "width": 102}, {"bbox": [244, 299, 542, 315], "score": 1.0, "content": " was found i n [34,14]; a corresponde nce which works is", "type": "text"}], "index": 13}, {"bbox": [71, 314, 540, 331], "spans": [{"bbox": [71, 315, 118, 330], "score": 0.92, "content": "\\Lambda_{4}\\leftrightarrow\\widetilde{\\Lambda}_{1}", "type": "inline_equation", "height": 15, "width": 47}, {"bbox": [118, 315, 124, 331], "score": 1.0, "content": ", ", "type": "text"}, {"bbox": [124, 315, 177, 329], "score": 0.88, "content": "\\Lambda_{1}\\leftrightarrow2\\widetilde{\\Lambda}_{1}", "type": "inline_equation", "height": 14, "width": 53}, {"bbox": [177, 315, 183, 331], "score": 1.0, "content": ", ", "type": "text"}, {"bbox": [184, 315, 236, 330], "score": 0.87, "content": "\\Lambda_{3}\\leftrightarrow3\\widetilde{\\Lambda}_{2}", "type": "inline_equation", "height": 15, "width": 52}, {"bbox": [236, 315, 242, 331], "score": 1.0, "content": ",", "type": "text"}, {"bbox": [243, 314, 302, 329], "score": 0.9, "content": "2\\Lambda_{4}\\leftrightarrow2\\widetilde{\\Lambda}_{2}", "type": "inline_equation", "height": 15, "width": 59}, {"bbox": [302, 315, 308, 331], "score": 1.0, "content": ", ", "type": "text"}, {"bbox": [308, 315, 417, 330], "score": 0.89, "content": "\\Lambda_{1}+\\Lambda_{4}\\leftrightarrow\\widetilde{\\Lambda}_{1}+2\\widetilde{\\Lambda}_{2}", "type": "inline_equation", "height": 15, "width": 109}, {"bbox": [418, 315, 424, 331], "score": 1.0, "content": ", ", "type": "text"}, {"bbox": [424, 315, 477, 330], "score": 0.9, "content": "\\Lambda_{2}\\leftrightarrow4\\widetilde{\\Lambda}_{2}", "type": "inline_equation", "height": 15, "width": 53}, {"bbox": [477, 315, 483, 331], "score": 1.0, "content": ", ", "type": "text"}, {"bbox": [484, 315, 536, 329], "score": 0.93, "content": "3\\Lambda_{4}\\leftrightarrow\\widetilde{\\Lambda}_{2}", "type": "inline_equation", "height": 14, "width": 52}, {"bbox": [536, 315, 540, 331], "score": 1.0, "content": ",", "type": "text"}], "index": 14}, {"bbox": [70, 329, 201, 345], "spans": [{"bbox": [70, 329, 94, 345], "score": 1.0, "content": "and ", "type": "text"}, {"bbox": [95, 330, 197, 344], "score": 0.91, "content": "\\Lambda_{3}+\\Lambda_{4}\\leftrightarrow\\tilde{\\Lambda}_{1}+\\tilde{\\Lambda}_{2}", "type": "inline_equation", "height": 14, "width": 102}, {"bbox": [198, 329, 201, 345], "score": 1.0, "content": ".", "type": "text"}], "index": 15}], "index": 13, "page_num": "page_20", "page_size": [612.0, 792.0], "bbox_fs": [70, 267, 542, 345]}, {"type": "text", "bbox": [70, 344, 541, 416], "lines": [{"bbox": [95, 345, 540, 361], "spans": [{"bbox": [95, 345, 540, 361], "score": 1.0, "content": "We will sket ch th e proof here. The idea is to compare invariants for the various fusion", "type": "text"}], "index": 16}, {"bbox": [69, 359, 541, 376], "spans": [{"bbox": [69, 359, 286, 376], "score": 1.0, "content": "rings, case by case. For example, suppose ", "type": "text"}, {"bbox": [286, 361, 328, 374], "score": 0.94, "content": "\\mathcal{R}(A_{r,k})", "type": "inline_equation", "height": 13, "width": 42}, {"bbox": [328, 359, 353, 376], "score": 1.0, "content": " and ", "type": "text"}, {"bbox": [353, 361, 398, 374], "score": 0.94, "content": "\\mathcal{R}(A_{s,m})", "type": "inline_equation", "height": 13, "width": 45}, {"bbox": [398, 359, 541, 376], "score": 1.0, "content": " are isomorphic. Then their", "type": "text"}], "index": 17}, {"bbox": [69, 374, 542, 390], "spans": [{"bbox": [69, 374, 188, 390], "score": 1.0, "content": "simple-current groups ", "type": "text"}, {"bbox": [188, 376, 214, 388], "score": 0.92, "content": "\\mathbb{Z}_{r+1}", "type": "inline_equation", "height": 12, "width": 26}, {"bbox": [214, 374, 241, 390], "score": 1.0, "content": " and ", "type": "text"}, {"bbox": [241, 376, 266, 388], "score": 0.93, "content": "\\mathbb{Z}_{s+1}", "type": "inline_equation", "height": 12, "width": 25}, {"bbox": [266, 374, 542, 390], "score": 1.0, "content": " must be isomorphic (since simple-currents must get", "type": "text"}], "index": 18}, {"bbox": [70, 389, 541, 404], "spans": [{"bbox": [70, 389, 235, 404], "score": 1.0, "content": "mapped to simple-currents), so ", "type": "text"}, {"bbox": [235, 394, 263, 399], "score": 0.88, "content": "r=s", "type": "inline_equation", "height": 5, "width": 28}, {"bbox": [263, 389, 412, 404], "score": 1.0, "content": ". Now compare the numbers ", "type": "text"}, {"bbox": [412, 390, 440, 403], "score": 0.94, "content": "||P_{+}||", "type": "inline_equation", "height": 13, "width": 28}, {"bbox": [440, 389, 541, 404], "score": 1.0, "content": "of highest-weights:", "type": "text"}], "index": 19}, {"bbox": [72, 399, 264, 420], "spans": [{"bbox": [72, 403, 150, 418], "score": 0.93, "content": "\\big(\\begin{array}{c}{{r+k}}\\\\ {{r}}\\end{array}\\big)=\\big(\\begin{array}{c}{{r+m}}\\\\ {{r}}\\end{array}\\big)", "type": "inline_equation", "height": 15, "width": 78}, {"bbox": [150, 399, 224, 420], "score": 1.0, "content": ", which forces ", "type": "text"}, {"bbox": [225, 405, 258, 414], "score": 0.93, "content": "m=k", "type": "inline_equation", "height": 9, "width": 33}, {"bbox": [258, 399, 264, 420], "score": 1.0, "content": ".", "type": "text"}], "index": 20}], "index": 18, "page_num": "page_20", "page_size": [612.0, 792.0], "bbox_fs": [69, 345, 542, 420]}, {"type": "text", "bbox": [70, 416, 541, 490], "lines": [{"bbox": [93, 418, 540, 433], "spans": [{"bbox": [93, 418, 540, 433], "score": 1.0, "content": "It is also quite useful here to know those weights with second smallest q-dimension.", "type": "text"}], "index": 21}, {"bbox": [70, 432, 541, 448], "spans": [{"bbox": [70, 432, 541, 448], "score": 1.0, "content": "This is a by-product of the proof of Proposition 4.1, and the complete answer is given in", "type": "text"}], "index": 22}, {"bbox": [69, 442, 543, 466], "spans": [{"bbox": [69, 442, 382, 466], "score": 1.0, "content": "[18, Table 3]. Here we will simply state that those weights in ", "type": "text"}, {"bbox": [382, 446, 431, 463], "score": 0.94, "content": "P_{+}^{k}(X_{r}^{(1)})", "type": "inline_equation", "height": 17, "width": 49}, {"bbox": [431, 442, 543, 466], "score": 1.0, "content": " with second smallest", "type": "text"}], "index": 23}, {"bbox": [69, 462, 541, 479], "spans": [{"bbox": [69, 462, 258, 479], "score": 1.0, "content": "q-dimension are precisely the orbit ", "type": "text"}, {"bbox": [258, 465, 280, 475], "score": 0.92, "content": "S\\Lambda_{\\star}", "type": "inline_equation", "height": 10, "width": 22}, {"bbox": [281, 462, 349, 479], "score": 1.0, "content": ", except for: ", "type": "text"}, {"bbox": [349, 465, 371, 477], "score": 0.84, "content": "A_{r,1}", "type": "inline_equation", "height": 12, "width": 22}, {"bbox": [371, 462, 378, 479], "score": 1.0, "content": "; ", "type": "text"}, {"bbox": [378, 465, 401, 477], "score": 0.91, "content": "B_{r,k}", "type": "inline_equation", "height": 12, "width": 23}, {"bbox": [401, 462, 423, 479], "score": 1.0, "content": " for ", "type": "text"}, {"bbox": [424, 465, 453, 475], "score": 0.91, "content": "k\\leq3", "type": "inline_equation", "height": 10, "width": 29}, {"bbox": [453, 462, 460, 479], "score": 1.0, "content": "; ", "type": "text"}, {"bbox": [461, 465, 536, 477], "score": 0.93, "content": "C_{2,2},C_{2,3},C_{3,2}", "type": "inline_equation", "height": 12, "width": 75}, {"bbox": [537, 462, 541, 479], "score": 1.0, "content": ";", "type": "text"}], "index": 24}, {"bbox": [71, 478, 416, 492], "spans": [{"bbox": [71, 479, 94, 491], "score": 0.92, "content": "D_{r,k}", "type": "inline_equation", "height": 12, "width": 23}, {"bbox": [94, 478, 116, 492], "score": 1.0, "content": " for ", "type": "text"}, {"bbox": [116, 479, 145, 489], "score": 0.9, "content": "k\\leq2", "type": "inline_equation", "height": 10, "width": 29}, {"bbox": [145, 478, 151, 492], "score": 1.0, "content": "; ", "type": "text"}, {"bbox": [152, 479, 174, 491], "score": 0.92, "content": "E_{6,k}", "type": "inline_equation", "height": 12, "width": 22}, {"bbox": [175, 478, 196, 492], "score": 1.0, "content": " for ", "type": "text"}, {"bbox": [196, 479, 226, 489], "score": 0.92, "content": "k\\leq2", "type": "inline_equation", "height": 10, "width": 30}, {"bbox": [226, 478, 255, 492], "score": 1.0, "content": "; and ", "type": "text"}, {"bbox": [255, 479, 360, 491], "score": 0.93, "content": "E_{7,k},E_{8,k},F_{4,k},G_{2,k}", "type": "inline_equation", "height": 12, "width": 105}, {"bbox": [361, 478, 382, 492], "score": 1.0, "content": " for ", "type": "text"}, {"bbox": [383, 479, 412, 489], "score": 0.92, "content": "k\\leq4", "type": "inline_equation", "height": 10, "width": 29}, {"bbox": [412, 478, 416, 492], "score": 1.0, "content": ".", "type": "text"}], "index": 25}], "index": 23, "page_num": "page_20", "page_size": [612.0, 792.0], "bbox_fs": [69, 418, 543, 492]}, {"type": "text", "bbox": [71, 490, 541, 533], "lines": [{"bbox": [95, 492, 540, 506], "spans": [{"bbox": [95, 494, 116, 506], "score": 0.93, "content": "C_{r,k}", "type": "inline_equation", "height": 12, "width": 21}, {"bbox": [117, 492, 141, 506], "score": 1.0, "content": " and ", "type": "text"}, {"bbox": [141, 494, 167, 506], "score": 0.94, "content": "B_{s,m}", "type": "inline_equation", "height": 12, "width": 26}, {"bbox": [167, 492, 540, 506], "score": 1.0, "content": " both have two simple-currents, but their fusion rings can\u2019t be isomorphic", "type": "text"}], "index": 26}, {"bbox": [71, 506, 540, 521], "spans": [{"bbox": [71, 506, 232, 521], "score": 1.0, "content": "(generically) because the orbit ", "type": "text"}, {"bbox": [232, 507, 257, 519], "score": 0.93, "content": "J^{i}\\Lambda_{1}", "type": "inline_equation", "height": 12, "width": 25}, {"bbox": [258, 506, 540, 521], "score": 1.0, "content": " has the second smallest q-dimension for both algebras", "type": "text"}], "index": 27}, {"bbox": [70, 521, 506, 535], "spans": [{"bbox": [70, 522, 277, 535], "score": 1.0, "content": "at generic rank/level, but the numbers ", "type": "text"}, {"bbox": [277, 521, 327, 535], "score": 0.95, "content": "Q_{j}(J^{i}\\Lambda_{1})", "type": "inline_equation", "height": 14, "width": 50}, {"bbox": [327, 522, 506, 535], "score": 1.0, "content": " for the two algebras are different.", "type": "text"}], "index": 28}], "index": 27, "page_num": "page_20", "page_size": [612.0, 792.0], "bbox_fs": [70, 492, 540, 535]}, {"type": "text", "bbox": [70, 534, 541, 579], "lines": [{"bbox": [93, 534, 542, 551], "spans": [{"bbox": [93, 534, 367, 551], "score": 1.0, "content": "Another useful invariant involves the set of integers ", "type": "text"}, {"bbox": [367, 537, 373, 546], "score": 0.85, "content": "\\ell", "type": "inline_equation", "height": 9, "width": 6}, {"bbox": [373, 534, 435, 551], "score": 1.0, "content": "coprime to ", "type": "text"}, {"bbox": [435, 537, 453, 546], "score": 0.89, "content": "\\kappa N", "type": "inline_equation", "height": 9, "width": 18}, {"bbox": [454, 534, 509, 551], "score": 1.0, "content": " for which ", "type": "text"}, {"bbox": [509, 535, 527, 546], "score": 0.88, "content": "0^{(\\ell)}", "type": "inline_equation", "height": 11, "width": 18}, {"bbox": [528, 534, 542, 551], "score": 1.0, "content": " is", "type": "text"}], "index": 29}, {"bbox": [70, 551, 539, 565], "spans": [{"bbox": [70, 551, 539, 565], "score": 1.0, "content": "a simple-current. For the classical algebras this is easy to find, using (2.1c): Up to a sign,", "type": "text"}], "index": 30}, {"bbox": [68, 561, 539, 583], "spans": [{"bbox": [68, 561, 172, 583], "score": 1.0, "content": "the q-dimension of ", "type": "text"}, {"bbox": [172, 566, 190, 577], "score": 0.91, "content": "0^{(\\ell)}", "type": "inline_equation", "height": 11, "width": 18}, {"bbox": [191, 561, 199, 583], "score": 1.0, "content": " (", "type": "text"}, {"bbox": [199, 568, 204, 577], "score": 0.76, "content": "\\ell", "type": "inline_equation", "height": 9, "width": 5}, {"bbox": [205, 561, 267, 583], "score": 1.0, "content": "coprime to ", "type": "text"}, {"bbox": [268, 569, 281, 577], "score": 0.78, "content": "2\\kappa", "type": "inline_equation", "height": 8, "width": 13}, {"bbox": [281, 561, 374, 583], "score": 1.0, "content": ") for the algebras ", "type": "text"}, {"bbox": [375, 564, 453, 579], "score": 0.94, "content": "B_{r}^{(1)},C_{r}^{(1)},D_{r}^{(1)}", "type": "inline_equation", "height": 15, "width": 78}, {"bbox": [453, 561, 539, 583], "score": 1.0, "content": "is, respectively,", "type": "text"}], "index": 31}], "index": 30, "page_num": "page_20", "page_size": [612.0, 792.0], "bbox_fs": [68, 534, 542, 583]}, {"type": "interline_equation", "bbox": [145, 595, 464, 720], "lines": [{"bbox": [145, 595, 464, 720], "spans": [{"bbox": [145, 595, 464, 720], "score": 0.94, "content": "\\begin{array}{r l}&{\\displaystyle\\prod_{a=0}^{r-1}\\frac{\\sin(\\pi\\ell\\,(2a+1)/2\\kappa)}{\\sin(\\pi\\,(2a+1)/2\\kappa)}\\,\\prod_{b=1}^{2r-2}\\frac{\\sin(\\pi\\ell b/\\kappa)^{\\left[\\frac{2r-b}{2}\\right]}}{\\sin(\\pi b/\\kappa)^{\\left[\\frac{2r-b}{2}\\right]}}\\,\\,,}\\\\ &{\\displaystyle\\prod_{a=1}^{r-1}\\frac{\\sin(\\pi\\ell a/\\kappa)^{r-a}\\,\\sin(\\pi\\ell\\,(2a-1)/2\\kappa)^{r-a}}{\\sin(\\pi a/\\kappa)^{r-a}\\,\\sin(\\pi\\,(2a-1)/2\\kappa)^{r-a}}\\,\\prod_{b=r}^{2r-1}\\frac{\\sin(\\pi\\ell b/2\\kappa)}{\\sin(\\pi b/2\\kappa)}\\,\\,,}\\\\ &{\\displaystyle\\prod_{a=1}^{r-1}\\frac{\\sin(\\pi\\ell a/\\kappa)^{\\left[\\frac{2r-a+1}{2}\\right]}}{\\sin(\\pi a/\\kappa)^{\\left[\\frac{2r-a+1}{2}\\right]}}\\,\\prod_{b=r}^{2r-3}\\frac{\\sin(\\pi\\ell b/\\kappa)^{\\left[\\frac{2r-b-1}{2}\\right]}}{\\sin(\\pi b/\\kappa)^{\\left[\\frac{2r-b-1}{2}\\right]}}\\,\\,,}\\end{array}", "type": "interline_equation"}], "index": 32}], "index": 32, "page_num": "page_20", "page_size": [612.0, 792.0]}]} |
|
0002044v1 | 19 | Next, note that we know from $$\Lambda_{1}$$ × $$\Lambda_{1}$$ that $$\pi\Lambda_{2}$$ is $$\Lambda_{2}$$ or $$2\Lambda_{1}$$ . As in $$\S4.2$$ , the fusion
$$(2\Lambda_{1})$$ × $$\Lambda_{1}$$ × · · · × $$\Lambda_{1}$$ ( $$k{-}2$$ times) contains the simple-current $$J_{v}0$$ , but $$\Lambda_{2}$$ × $$\Lambda_{1}$$ × · · · × $$\Lambda_{1}$$
( $$k-2$$ times) doesn’t, and thus $$\pi\Lambda_{2}=\Lambda_{2}$$ .
Assume $$\pi\Lambda_{\ell}=\Lambda_{\ell}$$ . Using the fusions $$\Lambda_{1}$$ × $$\Lambda_{\ell}$$ (for $$1<\ell<r-2$$ ), and noting that
equals 0 only when $$\ell\,=\,r+1\,-\,k/2$$ , we see that $$\pi\Lambda_{\ell+1}\;=\;\Lambda_{\ell+1}$$ except possibly for
$$\ell=r+1-k/2$$ (hence $$2r-2\geq k\geq4)$$ ). For that $$\ell$$ , use q-dimensions:
which is valid for these $$k$$ . So we also know $$\pi\Lambda_{i}=\Lambda_{i}$$ for all $$i\le r-2$$ , and we are done.
All that remains is $$D_{r,2}$$ . Recall the $$\lambda^{i}$$ defined in $$\S3.4$$ . Note that $$\mathcal{D}(\Lambda_{r})\;=\;\sqrt{r}$$ ,
$$\mathcal{D}(\lambda^{a})=2$$ , and $$S_{\lambda^{a}\lambda^{b}}/S_{0\lambda^{b}}=2\cos(\pi a b/r)$$ . For $$r\neq4$$ , the q-dimensions force $$\pi\Lambda_{1}=\lambda^{m}$$
and $$\pi^{\prime}\Lambda_{1}\,=\,\lambda^{m^{\prime}}$$ , and $$S_{\Lambda_{1}\Lambda_{1}}\,=\,S_{\lambda^{m}\lambda^{m^{\prime}}}$$ says $$m m^{\prime}\,\equiv\,\pm1$$ (mod $$2r$$ ). So without loss of
generality we may take $$m=m^{\prime}=1$$ . The rest of the argument is easy.
For $$D_{4,2}$$ , we can force $$\pi\Lambda_{1}=\Lambda_{1}$$ , and then eliminate $$\pi^{\prime}\Lambda_{1}=\Lambda_{r-1}$$ or $$\Lambda_{r}$$ by $$S_{\Lambda_{1}\Lambda_{1}}\ne$$
$$0=S_{\Lambda_{1}\Lambda_{r}}=S_{\Lambda_{1}\Lambda_{r-1}}$$ . The rest of the argument is as before.
4.6. The arguments for the exceptional algebras
The exceptional algebras follow quickly from the fusions (and Dynkin diagram sym-
metries) given in §§3.5-3.9.
For example, consider $$E_{6}^{(1)}$$ for $$k\geq2$$ . Proposition 4.1 tells us $$\pi\Lambda_{1}=C^{a}J^{b}\Lambda_{1}$$ for some
$$a,b$$ , and we know $$\pi^{\prime}J0\,=\,J^{c}0$$ for $$c=\pm1$$ . Hence from (2.7b) we get $$k b\not\equiv-1$$ (mod 3).
Hitting $$\pi$$ with $$\pi[-b]^{-1}C^{a}$$ , we need consider only $$\pi\Lambda_{1}=\Lambda_{1}$$ . It is now immediate that
$$\pi\Lambda_{5}=\Lambda_{5}$$ , by commuting $$\pi$$ with $$C$$ . From (3.6a) we get that $$\pi$$ must permute $$\Lambda_{2}$$ and $$2\Lambda_{1}$$ .
Compare (3.6c) with (3.6d): since for any $$k\geq2$$ they have different numbers of summands,
we find in fact that $$\pi$$ will fix both $$\Lambda_{2}$$ (hence $$\Lambda_{4}$$ ) and $$2\Lambda_{1}$$ . From (3.6b) we get that $$\pi$$
permutes $$\Lambda_{6}$$ and $$\Lambda_{1}+\Lambda_{5}$$ , and so (3.6d) now tells us $$\pi\Lambda_{6}=\Lambda_{6}$$ . Finally, (3.6c) implies (for
$$k\geq3$$ ) $$\pi\Lambda_{3}=\Lambda_{3}$$ (since $$C\pi=\pi C$$ ), and we are done for $$k\geq3$$ . Since $$\{\Lambda_{1},\Lambda_{2},\Lambda_{4},\Lambda_{5},\Lambda_{6}\}$$
is a fusion-generator for $$k=2$$ (see $$\S2.2)$$ , we are also done for $$k=2$$ .
For $${E}_{8}^{(1)}$$ when $$k\geq7$$ , (3.7a) tells us that $$\Lambda_{2},\Lambda_{7},2\Lambda_{1}$$ are permuted. For those $$k$$ , the
highest multiplicities in (3.7b)–(3.7d) are 3, 1, 2, respectively, so $$\Lambda_{2},\Lambda_{7},2\Lambda_{1}$$ must all be
fixed. The fusion product (3.7c) also tells us that $$\Lambda_{3},\Lambda_{6},\Lambda_{8},\Lambda_{1}+\Lambda_{7},2\Lambda_{7}$$ are permuted;
(3.7d) then says that the sets $$\{\Lambda_{6},\Lambda_{8}\}$$ , $$\{\Lambda_{3},\Lambda_{1}+\Lambda_{7},2\Lambda_{7}\}$$ , and $$\{2\Lambda_{2},\Lambda_{2}+\Lambda_{7},3\Lambda_{1},2\Lambda_{1}+$$
$$\Lambda_{2},2\Lambda_{1}+\Lambda_{7},4\Lambda_{1}\right\}$$ are stabilised. Now (3.7b) implies $$\Lambda_{3},\Lambda_{6},\Lambda_{8},2\Lambda_{7}$$ are all fixed, while
the set $$\{\Lambda_{4},\Lambda_{1}+\Lambda_{3}\}$$ is stabilised. Comparing $$(3.7\mathrm{e})$$ and (3.7f), we get that $$\Lambda_{4}$$ is fixed
and $$\Lambda_{5},\Lambda_{7}+\Lambda_{8}$$ are permuted. Finally, $$\left(3.7\mathrm{g}\right)$$ shows $$\Lambda_{5}$$ also is fixed. To do $${E}_{8}^{(1)}$$ when
$$k\leq6$$ , knowing q-dimensions really simplifies things.
| <p>Next, note that we know from $$\Lambda_{1}$$ × $$\Lambda_{1}$$ that $$\pi\Lambda_{2}$$ is $$\Lambda_{2}$$ or $$2\Lambda_{1}$$ . As in $$\S4.2$$ , the fusion
$$(2\Lambda_{1})$$ × $$\Lambda_{1}$$ × · · · × $$\Lambda_{1}$$ ( $$k{-}2$$ times) contains the simple-current $$J_{v}0$$ , but $$\Lambda_{2}$$ × $$\Lambda_{1}$$ × · · · × $$\Lambda_{1}$$
( $$k-2$$ times) doesn’t, and thus $$\pi\Lambda_{2}=\Lambda_{2}$$ .</p>
<p>Assume $$\pi\Lambda_{\ell}=\Lambda_{\ell}$$ . Using the fusions $$\Lambda_{1}$$ × $$\Lambda_{\ell}$$ (for $$1<\ell<r-2$$ ), and noting that</p>
<p>equals 0 only when $$\ell\,=\,r+1\,-\,k/2$$ , we see that $$\pi\Lambda_{\ell+1}\;=\;\Lambda_{\ell+1}$$ except possibly for
$$\ell=r+1-k/2$$ (hence $$2r-2\geq k\geq4)$$ ). For that $$\ell$$ , use q-dimensions:</p>
<p>which is valid for these $$k$$ . So we also know $$\pi\Lambda_{i}=\Lambda_{i}$$ for all $$i\le r-2$$ , and we are done.</p>
<p>All that remains is $$D_{r,2}$$ . Recall the $$\lambda^{i}$$ defined in $$\S3.4$$ . Note that $$\mathcal{D}(\Lambda_{r})\;=\;\sqrt{r}$$ ,
$$\mathcal{D}(\lambda^{a})=2$$ , and $$S_{\lambda^{a}\lambda^{b}}/S_{0\lambda^{b}}=2\cos(\pi a b/r)$$ . For $$r\neq4$$ , the q-dimensions force $$\pi\Lambda_{1}=\lambda^{m}$$
and $$\pi^{\prime}\Lambda_{1}\,=\,\lambda^{m^{\prime}}$$ , and $$S_{\Lambda_{1}\Lambda_{1}}\,=\,S_{\lambda^{m}\lambda^{m^{\prime}}}$$ says $$m m^{\prime}\,\equiv\,\pm1$$ (mod $$2r$$ ). So without loss of
generality we may take $$m=m^{\prime}=1$$ . The rest of the argument is easy.</p>
<p>For $$D_{4,2}$$ , we can force $$\pi\Lambda_{1}=\Lambda_{1}$$ , and then eliminate $$\pi^{\prime}\Lambda_{1}=\Lambda_{r-1}$$ or $$\Lambda_{r}$$ by $$S_{\Lambda_{1}\Lambda_{1}}\ne$$
$$0=S_{\Lambda_{1}\Lambda_{r}}=S_{\Lambda_{1}\Lambda_{r-1}}$$ . The rest of the argument is as before.</p>
<p>4.6. The arguments for the exceptional algebras</p>
<p>The exceptional algebras follow quickly from the fusions (and Dynkin diagram sym-
metries) given in §§3.5-3.9.</p>
<p>For example, consider $$E_{6}^{(1)}$$ for $$k\geq2$$ . Proposition 4.1 tells us $$\pi\Lambda_{1}=C^{a}J^{b}\Lambda_{1}$$ for some
$$a,b$$ , and we know $$\pi^{\prime}J0\,=\,J^{c}0$$ for $$c=\pm1$$ . Hence from (2.7b) we get $$k b\not\equiv-1$$ (mod 3).
Hitting $$\pi$$ with $$\pi[-b]^{-1}C^{a}$$ , we need consider only $$\pi\Lambda_{1}=\Lambda_{1}$$ . It is now immediate that
$$\pi\Lambda_{5}=\Lambda_{5}$$ , by commuting $$\pi$$ with $$C$$ . From (3.6a) we get that $$\pi$$ must permute $$\Lambda_{2}$$ and $$2\Lambda_{1}$$ .
Compare (3.6c) with (3.6d): since for any $$k\geq2$$ they have different numbers of summands,
we find in fact that $$\pi$$ will fix both $$\Lambda_{2}$$ (hence $$\Lambda_{4}$$ ) and $$2\Lambda_{1}$$ . From (3.6b) we get that $$\pi$$
permutes $$\Lambda_{6}$$ and $$\Lambda_{1}+\Lambda_{5}$$ , and so (3.6d) now tells us $$\pi\Lambda_{6}=\Lambda_{6}$$ . Finally, (3.6c) implies (for
$$k\geq3$$ ) $$\pi\Lambda_{3}=\Lambda_{3}$$ (since $$C\pi=\pi C$$ ), and we are done for $$k\geq3$$ . Since $$\{\Lambda_{1},\Lambda_{2},\Lambda_{4},\Lambda_{5},\Lambda_{6}\}$$
is a fusion-generator for $$k=2$$ (see $$\S2.2)$$ , we are also done for $$k=2$$ .</p>
<p>For $${E}_{8}^{(1)}$$ when $$k\geq7$$ , (3.7a) tells us that $$\Lambda_{2},\Lambda_{7},2\Lambda_{1}$$ are permuted. For those $$k$$ , the
highest multiplicities in (3.7b)–(3.7d) are 3, 1, 2, respectively, so $$\Lambda_{2},\Lambda_{7},2\Lambda_{1}$$ must all be
fixed. The fusion product (3.7c) also tells us that $$\Lambda_{3},\Lambda_{6},\Lambda_{8},\Lambda_{1}+\Lambda_{7},2\Lambda_{7}$$ are permuted;
(3.7d) then says that the sets $$\{\Lambda_{6},\Lambda_{8}\}$$ , $$\{\Lambda_{3},\Lambda_{1}+\Lambda_{7},2\Lambda_{7}\}$$ , and $$\{2\Lambda_{2},\Lambda_{2}+\Lambda_{7},3\Lambda_{1},2\Lambda_{1}+$$
$$\Lambda_{2},2\Lambda_{1}+\Lambda_{7},4\Lambda_{1}\right\}$$ are stabilised. Now (3.7b) implies $$\Lambda_{3},\Lambda_{6},\Lambda_{8},2\Lambda_{7}$$ are all fixed, while
the set $$\{\Lambda_{4},\Lambda_{1}+\Lambda_{3}\}$$ is stabilised. Comparing $$(3.7\mathrm{e})$$ and (3.7f), we get that $$\Lambda_{4}$$ is fixed
and $$\Lambda_{5},\Lambda_{7}+\Lambda_{8}$$ are permuted. Finally, $$\left(3.7\mathrm{g}\right)$$ shows $$\Lambda_{5}$$ also is fixed. To do $${E}_{8}^{(1)}$$ when
$$k\leq6$$ , knowing q-dimensions really simplifies things.</p>
| [{"type": "text", "coordinates": [71, 70, 569, 114], "content": "Next, note that we know from $$\\Lambda_{1}$$ \u00d7 $$\\Lambda_{1}$$ that $$\\pi\\Lambda_{2}$$ is $$\\Lambda_{2}$$ or $$2\\Lambda_{1}$$ . As in $$\\S4.2$$ , the fusion\n$$(2\\Lambda_{1})$$ \u00d7 $$\\Lambda_{1}$$ \u00d7 \u00b7 \u00b7 \u00b7 \u00d7 $$\\Lambda_{1}$$ ( $$k{-}2$$ times) contains the simple-current $$J_{v}0$$ , but $$\\Lambda_{2}$$ \u00d7 $$\\Lambda_{1}$$ \u00d7 \u00b7 \u00b7 \u00b7 \u00d7 $$\\Lambda_{1}$$\n( $$k-2$$ times) doesn\u2019t, and thus $$\\pi\\Lambda_{2}=\\Lambda_{2}$$ .", "block_type": "text", "index": 1}, {"type": "text", "coordinates": [93, 114, 527, 129], "content": "Assume $$\\pi\\Lambda_{\\ell}=\\Lambda_{\\ell}$$ . Using the fusions $$\\Lambda_{1}$$ \u00d7 $$\\Lambda_{\\ell}$$ (for $$1<\\ell<r-2$$ ), and noting that", "block_type": "text", "index": 2}, {"type": "interline_equation", "coordinates": [124, 142, 488, 171], "content": "", "block_type": "interline_equation", "index": 3}, {"type": "text", "coordinates": [69, 182, 541, 211], "content": "equals 0 only when $$\\ell\\,=\\,r+1\\,-\\,k/2$$ , we see that $$\\pi\\Lambda_{\\ell+1}\\;=\\;\\Lambda_{\\ell+1}$$ except possibly for\n$$\\ell=r+1-k/2$$ (hence $$2r-2\\geq k\\geq4)$$ ). For that $$\\ell$$ , use q-dimensions:", "block_type": "text", "index": 4}, {"type": "interline_equation", "coordinates": [205, 225, 405, 257], "content": "", "block_type": "interline_equation", "index": 5}, {"type": "text", "coordinates": [71, 267, 531, 282], "content": "which is valid for these $$k$$ . So we also know $$\\pi\\Lambda_{i}=\\Lambda_{i}$$ for all $$i\\le r-2$$ , and we are done.", "block_type": "text", "index": 6}, {"type": "text", "coordinates": [70, 284, 542, 342], "content": "All that remains is $$D_{r,2}$$ . Recall the $$\\lambda^{i}$$ defined in $$\\S3.4$$ . Note that $$\\mathcal{D}(\\Lambda_{r})\\;=\\;\\sqrt{r}$$ ,\n$$\\mathcal{D}(\\lambda^{a})=2$$ , and $$S_{\\lambda^{a}\\lambda^{b}}/S_{0\\lambda^{b}}=2\\cos(\\pi a b/r)$$ . For $$r\\neq4$$ , the q-dimensions force $$\\pi\\Lambda_{1}=\\lambda^{m}$$\nand $$\\pi^{\\prime}\\Lambda_{1}\\,=\\,\\lambda^{m^{\\prime}}$$ , and $$S_{\\Lambda_{1}\\Lambda_{1}}\\,=\\,S_{\\lambda^{m}\\lambda^{m^{\\prime}}}$$ says $$m m^{\\prime}\\,\\equiv\\,\\pm1$$ (mod $$2r$$ ). So without loss of\ngenerality we may take $$m=m^{\\prime}=1$$ . The rest of the argument is easy.", "block_type": "text", "index": 7}, {"type": "text", "coordinates": [70, 343, 541, 372], "content": "For $$D_{4,2}$$ , we can force $$\\pi\\Lambda_{1}=\\Lambda_{1}$$ , and then eliminate $$\\pi^{\\prime}\\Lambda_{1}=\\Lambda_{r-1}$$ or $$\\Lambda_{r}$$ by $$S_{\\Lambda_{1}\\Lambda_{1}}\\ne$$\n$$0=S_{\\Lambda_{1}\\Lambda_{r}}=S_{\\Lambda_{1}\\Lambda_{r-1}}$$ . The rest of the argument is as before.", "block_type": "text", "index": 8}, {"type": "text", "coordinates": [72, 385, 321, 399], "content": "4.6. The arguments for the exceptional algebras", "block_type": "text", "index": 9}, {"type": "text", "coordinates": [70, 406, 540, 436], "content": "The exceptional algebras follow quickly from the fusions (and Dynkin diagram sym-\nmetries) given in \u00a7\u00a73.5-3.9.", "block_type": "text", "index": 10}, {"type": "text", "coordinates": [70, 437, 541, 567], "content": "For example, consider $$E_{6}^{(1)}$$ for $$k\\geq2$$ . Proposition 4.1 tells us $$\\pi\\Lambda_{1}=C^{a}J^{b}\\Lambda_{1}$$ for some\n$$a,b$$ , and we know $$\\pi^{\\prime}J0\\,=\\,J^{c}0$$ for $$c=\\pm1$$ . Hence from (2.7b) we get $$k b\\not\\equiv-1$$ (mod 3).\nHitting $$\\pi$$ with $$\\pi[-b]^{-1}C^{a}$$ , we need consider only $$\\pi\\Lambda_{1}=\\Lambda_{1}$$ . It is now immediate that\n$$\\pi\\Lambda_{5}=\\Lambda_{5}$$ , by commuting $$\\pi$$ with $$C$$ . From (3.6a) we get that $$\\pi$$ must permute $$\\Lambda_{2}$$ and $$2\\Lambda_{1}$$ .\nCompare (3.6c) with (3.6d): since for any $$k\\geq2$$ they have different numbers of summands,\nwe find in fact that $$\\pi$$ will fix both $$\\Lambda_{2}$$ (hence $$\\Lambda_{4}$$ ) and $$2\\Lambda_{1}$$ . From (3.6b) we get that $$\\pi$$\npermutes $$\\Lambda_{6}$$ and $$\\Lambda_{1}+\\Lambda_{5}$$ , and so (3.6d) now tells us $$\\pi\\Lambda_{6}=\\Lambda_{6}$$ . Finally, (3.6c) implies (for\n$$k\\geq3$$ ) $$\\pi\\Lambda_{3}=\\Lambda_{3}$$ (since $$C\\pi=\\pi C$$ ), and we are done for $$k\\geq3$$ . Since $$\\{\\Lambda_{1},\\Lambda_{2},\\Lambda_{4},\\Lambda_{5},\\Lambda_{6}\\}$$\nis a fusion-generator for $$k=2$$ (see $$\\S2.2)$$ , we are also done for $$k=2$$ .", "block_type": "text", "index": 11}, {"type": "text", "coordinates": [70, 569, 542, 687], "content": "For $${E}_{8}^{(1)}$$ when $$k\\geq7$$ , (3.7a) tells us that $$\\Lambda_{2},\\Lambda_{7},2\\Lambda_{1}$$ are permuted. For those $$k$$ , the\nhighest multiplicities in (3.7b)\u2013(3.7d) are 3, 1, 2, respectively, so $$\\Lambda_{2},\\Lambda_{7},2\\Lambda_{1}$$ must all be\nfixed. The fusion product (3.7c) also tells us that $$\\Lambda_{3},\\Lambda_{6},\\Lambda_{8},\\Lambda_{1}+\\Lambda_{7},2\\Lambda_{7}$$ are permuted;\n(3.7d) then says that the sets $$\\{\\Lambda_{6},\\Lambda_{8}\\}$$ , $$\\{\\Lambda_{3},\\Lambda_{1}+\\Lambda_{7},2\\Lambda_{7}\\}$$ , and $$\\{2\\Lambda_{2},\\Lambda_{2}+\\Lambda_{7},3\\Lambda_{1},2\\Lambda_{1}+$$\n$$\\Lambda_{2},2\\Lambda_{1}+\\Lambda_{7},4\\Lambda_{1}\\right\\}$$ are stabilised. Now (3.7b) implies $$\\Lambda_{3},\\Lambda_{6},\\Lambda_{8},2\\Lambda_{7}$$ are all fixed, while\nthe set $$\\{\\Lambda_{4},\\Lambda_{1}+\\Lambda_{3}\\}$$ is stabilised. Comparing $$(3.7\\mathrm{e})$$ and (3.7f), we get that $$\\Lambda_{4}$$ is fixed\nand $$\\Lambda_{5},\\Lambda_{7}+\\Lambda_{8}$$ are permuted. Finally, $$\\left(3.7\\mathrm{g}\\right)$$ shows $$\\Lambda_{5}$$ also is fixed. To do $${E}_{8}^{(1)}$$ when\n$$k\\leq6$$ , knowing q-dimensions really simplifies things.", "block_type": "text", "index": 12}] | [{"type": "text", "coordinates": [93, 72, 255, 89], "content": "Next, note that we know from", "score": 1.0, "index": 1}, {"type": "inline_equation", "coordinates": [256, 73, 271, 86], "content": "\\Lambda_{1}", "score": 0.85, "index": 2}, {"type": "text", "coordinates": [271, 72, 287, 89], "content": " \u00d7 ", "score": 1.0, "index": 3}, {"type": "inline_equation", "coordinates": [288, 73, 302, 86], "content": "\\Lambda_{1}", "score": 0.84, "index": 4}, {"type": "text", "coordinates": [303, 72, 331, 89], "content": " that ", "score": 1.0, "index": 5}, {"type": "inline_equation", "coordinates": [331, 73, 353, 86], "content": "\\pi\\Lambda_{2}", "score": 0.9, "index": 6}, {"type": "text", "coordinates": [353, 72, 368, 89], "content": " is ", "score": 1.0, "index": 7}, {"type": "inline_equation", "coordinates": [368, 74, 382, 86], "content": "\\Lambda_{2}", "score": 0.88, "index": 8}, {"type": "text", "coordinates": [383, 72, 400, 89], "content": " or ", "score": 1.0, "index": 9}, {"type": "inline_equation", "coordinates": [400, 74, 420, 86], "content": "2\\Lambda_{1}", "score": 0.87, "index": 10}, {"type": "text", "coordinates": [420, 72, 459, 89], "content": ". As in ", "score": 1.0, "index": 11}, {"type": "inline_equation", "coordinates": [460, 73, 482, 87], "content": "\\S4.2", "score": 0.6, "index": 12}, {"type": "text", "coordinates": [482, 72, 541, 89], "content": ", the fusion", "score": 1.0, "index": 13}, {"type": "inline_equation", "coordinates": [71, 87, 100, 101], "content": "(2\\Lambda_{1})", "score": 0.84, "index": 14}, {"type": "text", "coordinates": [101, 86, 117, 104], "content": " \u00d7 ", "score": 1.0, "index": 15}, {"type": "inline_equation", "coordinates": [118, 87, 132, 100], "content": "\\Lambda_{1}", "score": 0.87, "index": 16}, {"type": "text", "coordinates": [133, 86, 185, 104], "content": " \u00d7 \u00b7 \u00b7 \u00b7 \u00d7 ", "score": 1.0, "index": 17}, {"type": "inline_equation", "coordinates": [185, 87, 200, 101], "content": "\\Lambda_{1}", "score": 0.85, "index": 18}, {"type": "text", "coordinates": [201, 86, 207, 104], "content": " (", "score": 1.0, "index": 19}, {"type": "inline_equation", "coordinates": [207, 88, 230, 100], "content": "k{-}2", "score": 0.53, "index": 20}, {"type": "text", "coordinates": [230, 86, 409, 104], "content": " times) contains the simple-current ", "score": 1.0, "index": 21}, {"type": "inline_equation", "coordinates": [409, 90, 428, 100], "content": "J_{v}0", "score": 0.91, "index": 22}, {"type": "text", "coordinates": [429, 86, 454, 104], "content": ", but", "score": 1.0, "index": 23}, {"type": "inline_equation", "coordinates": [455, 88, 469, 100], "content": "\\Lambda_{2}", "score": 0.88, "index": 24}, {"type": "text", "coordinates": [469, 86, 485, 104], "content": " \u00d7", "score": 1.0, "index": 25}, {"type": "inline_equation", "coordinates": [486, 87, 501, 100], "content": "\\Lambda_{1}", "score": 0.87, "index": 26}, {"type": "text", "coordinates": [501, 86, 553, 104], "content": " \u00d7 \u00b7 \u00b7 \u00b7 \u00d7", "score": 1.0, "index": 27}, {"type": "inline_equation", "coordinates": [554, 87, 569, 101], "content": "\\Lambda_{1}", "score": 0.86, "index": 28}, {"type": "text", "coordinates": [71, 101, 75, 118], "content": "(", "score": 1.0, "index": 29}, {"type": "inline_equation", "coordinates": [75, 102, 104, 114], "content": "k-2", "score": 0.68, "index": 30}, {"type": "text", "coordinates": [104, 101, 237, 118], "content": " times) doesn\u2019t, and thus ", "score": 1.0, "index": 31}, {"type": "inline_equation", "coordinates": [238, 102, 289, 115], "content": "\\pi\\Lambda_{2}=\\Lambda_{2}", "score": 0.92, "index": 32}, {"type": "text", "coordinates": [289, 101, 294, 118], "content": ".", "score": 1.0, "index": 33}, {"type": "text", "coordinates": [94, 115, 138, 134], "content": "Assume", "score": 1.0, "index": 34}, {"type": "inline_equation", "coordinates": [139, 117, 189, 129], "content": "\\pi\\Lambda_{\\ell}=\\Lambda_{\\ell}", "score": 0.9, "index": 35}, {"type": "text", "coordinates": [189, 115, 290, 134], "content": ". Using the fusions ", "score": 1.0, "index": 36}, {"type": "inline_equation", "coordinates": [290, 116, 304, 129], "content": "\\Lambda_{1}", "score": 0.83, "index": 37}, {"type": "text", "coordinates": [305, 115, 321, 134], "content": " \u00d7", "score": 1.0, "index": 38}, {"type": "inline_equation", "coordinates": [322, 116, 336, 129], "content": "\\Lambda_{\\ell}", "score": 0.77, "index": 39}, {"type": "text", "coordinates": [336, 115, 362, 134], "content": "(for ", "score": 1.0, "index": 40}, {"type": "inline_equation", "coordinates": [362, 117, 433, 129], "content": "1<\\ell<r-2", "score": 0.85, "index": 41}, {"type": "text", "coordinates": [433, 115, 528, 134], "content": "), and noting that", "score": 1.0, "index": 42}, {"type": "interline_equation", "coordinates": [124, 142, 488, 171], "content": "\\chi_{\\Lambda_{1}}[\\Lambda_{\\ell+1}]-\\chi_{\\Lambda_{1}}[\\Lambda_{1}+\\Lambda_{\\ell}]=4\\cos(\\pi\\,\\frac{2r-\\ell}{\\kappa})\\,\\{\\cos(\\pi\\,\\frac{\\ell}{\\kappa})-\\cos(\\pi\\,\\frac{\\ell+2}{\\kappa})\\}", "score": 0.92, "index": 43}, {"type": "text", "coordinates": [70, 183, 181, 201], "content": "equals 0 only when ", "score": 1.0, "index": 44}, {"type": "inline_equation", "coordinates": [182, 184, 275, 198], "content": "\\ell\\,=\\,r+1\\,-\\,k/2", "score": 0.91, "index": 45}, {"type": "text", "coordinates": [275, 183, 352, 201], "content": ", we see that ", "score": 1.0, "index": 46}, {"type": "inline_equation", "coordinates": [352, 184, 432, 198], "content": "\\pi\\Lambda_{\\ell+1}\\;=\\;\\Lambda_{\\ell+1}", "score": 0.91, "index": 47}, {"type": "text", "coordinates": [432, 183, 542, 201], "content": " except possibly for", "score": 1.0, "index": 48}, {"type": "inline_equation", "coordinates": [71, 200, 152, 212], "content": "\\ell=r+1-k/2", "score": 0.92, "index": 49}, {"type": "text", "coordinates": [152, 199, 193, 213], "content": " (hence ", "score": 1.0, "index": 50}, {"type": "inline_equation", "coordinates": [193, 199, 273, 211], "content": "2r-2\\geq k\\geq4)", "score": 0.85, "index": 51}, {"type": "text", "coordinates": [273, 199, 330, 213], "content": "). For that ", "score": 1.0, "index": 52}, {"type": "inline_equation", "coordinates": [330, 199, 337, 209], "content": "\\ell", "score": 0.81, "index": 53}, {"type": "text", "coordinates": [337, 199, 436, 213], "content": ", use q-dimensions:", "score": 1.0, "index": 54}, {"type": "interline_equation", "coordinates": [205, 225, 405, 257], "content": "\\frac{\\mathcal{D}(\\Lambda_{1}+\\Lambda_{\\ell})}{\\mathcal{D}(\\Lambda_{\\ell+1})}=\\frac{\\sin(2\\pi\\left(k-2\\right)/\\kappa)}{\\sin(2\\pi/\\kappa)}>1\\ ,", "score": 0.92, "index": 55}, {"type": "text", "coordinates": [70, 270, 195, 285], "content": "which is valid for these ", "score": 1.0, "index": 56}, {"type": "inline_equation", "coordinates": [195, 271, 202, 280], "content": "k", "score": 0.85, "index": 57}, {"type": "text", "coordinates": [203, 270, 299, 285], "content": ". So we also know ", "score": 1.0, "index": 58}, {"type": "inline_equation", "coordinates": [300, 271, 348, 282], "content": "\\pi\\Lambda_{i}=\\Lambda_{i}", "score": 0.92, "index": 59}, {"type": "text", "coordinates": [348, 270, 386, 285], "content": " for all ", "score": 1.0, "index": 60}, {"type": "inline_equation", "coordinates": [386, 270, 434, 282], "content": "i\\le r-2", "score": 0.88, "index": 61}, {"type": "text", "coordinates": [434, 270, 529, 285], "content": ", and we are done.", "score": 1.0, "index": 62}, {"type": "text", "coordinates": [94, 286, 203, 302], "content": "All that remains is ", "score": 1.0, "index": 63}, {"type": "inline_equation", "coordinates": [204, 289, 226, 301], "content": "D_{r,2}", "score": 0.91, "index": 64}, {"type": "text", "coordinates": [226, 286, 299, 302], "content": ". Recall the ", "score": 1.0, "index": 65}, {"type": "inline_equation", "coordinates": [299, 288, 310, 298], "content": "\\lambda^{i}", "score": 0.89, "index": 66}, {"type": "text", "coordinates": [311, 286, 374, 302], "content": " defined in ", "score": 1.0, "index": 67}, {"type": "inline_equation", "coordinates": [374, 287, 396, 300], "content": "\\S3.4", "score": 0.3, "index": 68}, {"type": "text", "coordinates": [396, 286, 466, 302], "content": ". Note that ", "score": 1.0, "index": 69}, {"type": "inline_equation", "coordinates": [466, 288, 537, 301], "content": "\\mathcal{D}(\\Lambda_{r})\\;=\\;\\sqrt{r}", "score": 0.92, "index": 70}, {"type": "text", "coordinates": [537, 286, 540, 302], "content": ",", "score": 1.0, "index": 71}, {"type": "inline_equation", "coordinates": [71, 303, 126, 315], "content": "\\mathcal{D}(\\lambda^{a})=2", "score": 0.93, "index": 72}, {"type": "text", "coordinates": [127, 299, 157, 318], "content": ", and ", "score": 1.0, "index": 73}, {"type": "inline_equation", "coordinates": [157, 302, 296, 315], "content": "S_{\\lambda^{a}\\lambda^{b}}/S_{0\\lambda^{b}}=2\\cos(\\pi a b/r)", "score": 0.91, "index": 74}, {"type": "text", "coordinates": [296, 299, 326, 318], "content": ". For ", "score": 1.0, "index": 75}, {"type": "inline_equation", "coordinates": [327, 303, 356, 315], "content": "r\\neq4", "score": 0.92, "index": 76}, {"type": "text", "coordinates": [356, 299, 484, 318], "content": ", the q-dimensions force ", "score": 1.0, "index": 77}, {"type": "inline_equation", "coordinates": [485, 303, 539, 314], "content": "\\pi\\Lambda_{1}=\\lambda^{m}", "score": 0.89, "index": 78}, {"type": "text", "coordinates": [68, 311, 95, 335], "content": "and ", "score": 1.0, "index": 79}, {"type": "inline_equation", "coordinates": [96, 315, 160, 329], "content": "\\pi^{\\prime}\\Lambda_{1}\\,=\\,\\lambda^{m^{\\prime}}", "score": 0.92, "index": 80}, {"type": "text", "coordinates": [160, 311, 193, 335], "content": ", and ", "score": 1.0, "index": 81}, {"type": "inline_equation", "coordinates": [193, 318, 281, 330], "content": "S_{\\Lambda_{1}\\Lambda_{1}}\\,=\\,S_{\\lambda^{m}\\lambda^{m^{\\prime}}}", "score": 0.92, "index": 82}, {"type": "text", "coordinates": [281, 311, 314, 335], "content": " says ", "score": 1.0, "index": 83}, {"type": "inline_equation", "coordinates": [315, 317, 375, 327], "content": "m m^{\\prime}\\,\\equiv\\,\\pm1", "score": 0.89, "index": 84}, {"type": "text", "coordinates": [375, 311, 412, 335], "content": " (mod ", "score": 1.0, "index": 85}, {"type": "inline_equation", "coordinates": [412, 316, 425, 327], "content": "2r", "score": 0.56, "index": 86}, {"type": "text", "coordinates": [425, 311, 545, 335], "content": "). So without loss of", "score": 1.0, "index": 87}, {"type": "text", "coordinates": [70, 329, 195, 346], "content": "generality we may take ", "score": 1.0, "index": 88}, {"type": "inline_equation", "coordinates": [195, 331, 258, 341], "content": "m=m^{\\prime}=1", "score": 0.91, "index": 89}, {"type": "text", "coordinates": [259, 329, 442, 346], "content": ". The rest of the argument is easy.", "score": 1.0, "index": 90}, {"type": "text", "coordinates": [92, 343, 117, 361], "content": "For ", "score": 1.0, "index": 91}, {"type": "inline_equation", "coordinates": [117, 347, 140, 359], "content": "D_{4,2}", "score": 0.92, "index": 92}, {"type": "text", "coordinates": [140, 343, 215, 361], "content": ", we can force ", "score": 1.0, "index": 93}, {"type": "inline_equation", "coordinates": [216, 347, 267, 357], "content": "\\pi\\Lambda_{1}=\\Lambda_{1}", "score": 0.94, "index": 94}, {"type": "text", "coordinates": [267, 343, 376, 361], "content": ", and then eliminate ", "score": 1.0, "index": 95}, {"type": "inline_equation", "coordinates": [376, 345, 443, 358], "content": "\\pi^{\\prime}\\Lambda_{1}=\\Lambda_{r-1}", "score": 0.91, "index": 96}, {"type": "text", "coordinates": [443, 343, 461, 361], "content": " or ", "score": 1.0, "index": 97}, {"type": "inline_equation", "coordinates": [461, 345, 475, 357], "content": "\\Lambda_{r}", "score": 0.89, "index": 98}, {"type": "text", "coordinates": [476, 343, 496, 361], "content": " by ", "score": 1.0, "index": 99}, {"type": "inline_equation", "coordinates": [496, 345, 542, 358], "content": "S_{\\Lambda_{1}\\Lambda_{1}}\\ne", "score": 0.89, "index": 100}, {"type": "inline_equation", "coordinates": [71, 361, 181, 373], "content": "0=S_{\\Lambda_{1}\\Lambda_{r}}=S_{\\Lambda_{1}\\Lambda_{r-1}}", "score": 0.92, "index": 101}, {"type": "text", "coordinates": [181, 358, 389, 375], "content": ". The rest of the argument is as before.", "score": 1.0, "index": 102}, {"type": "text", "coordinates": [71, 387, 322, 402], "content": "4.6. The arguments for the exceptional algebras", "score": 1.0, "index": 103}, {"type": "text", "coordinates": [94, 408, 540, 425], "content": "The exceptional algebras follow quickly from the fusions (and Dynkin diagram sym-", "score": 1.0, "index": 104}, {"type": "text", "coordinates": [71, 424, 213, 439], "content": "metries) given in \u00a7\u00a73.5-3.9.", "score": 1.0, "index": 105}, {"type": "text", "coordinates": [91, 435, 211, 459], "content": "For example, consider ", "score": 1.0, "index": 106}, {"type": "inline_equation", "coordinates": [212, 438, 234, 454], "content": "E_{6}^{(1)}", "score": 0.94, "index": 107}, {"type": "text", "coordinates": [234, 435, 254, 459], "content": "for", "score": 1.0, "index": 108}, {"type": "inline_equation", "coordinates": [255, 442, 284, 452], "content": "k\\geq2", "score": 0.91, "index": 109}, {"type": "text", "coordinates": [284, 435, 414, 459], "content": ". Proposition 4.1 tells us ", "score": 1.0, "index": 110}, {"type": "inline_equation", "coordinates": [414, 440, 492, 452], "content": "\\pi\\Lambda_{1}=C^{a}J^{b}\\Lambda_{1}", "score": 0.94, "index": 111}, {"type": "text", "coordinates": [492, 435, 544, 459], "content": " for some", "score": 1.0, "index": 112}, {"type": "inline_equation", "coordinates": [71, 456, 89, 467], "content": "a,b", "score": 0.88, "index": 113}, {"type": "text", "coordinates": [89, 454, 170, 469], "content": ", and we know ", "score": 1.0, "index": 114}, {"type": "inline_equation", "coordinates": [170, 455, 232, 466], "content": "\\pi^{\\prime}J0\\,=\\,J^{c}0", "score": 0.93, "index": 115}, {"type": "text", "coordinates": [232, 454, 254, 469], "content": " for ", "score": 1.0, "index": 116}, {"type": "inline_equation", "coordinates": [255, 457, 293, 466], "content": "c=\\pm1", "score": 0.91, "index": 117}, {"type": "text", "coordinates": [294, 454, 443, 469], "content": ". Hence from (2.7b) we get ", "score": 1.0, "index": 118}, {"type": "inline_equation", "coordinates": [443, 456, 489, 468], "content": "k b\\not\\equiv-1", "score": 0.9, "index": 119}, {"type": "text", "coordinates": [489, 454, 541, 469], "content": " (mod 3).", "score": 1.0, "index": 120}, {"type": "text", "coordinates": [71, 469, 113, 483], "content": "Hitting ", "score": 1.0, "index": 121}, {"type": "inline_equation", "coordinates": [114, 474, 121, 480], "content": "\\pi", "score": 0.77, "index": 122}, {"type": "text", "coordinates": [121, 469, 153, 483], "content": " with ", "score": 1.0, "index": 123}, {"type": "inline_equation", "coordinates": [154, 469, 210, 482], "content": "\\pi[-b]^{-1}C^{a}", "score": 0.94, "index": 124}, {"type": "text", "coordinates": [211, 469, 340, 483], "content": ", we need consider only ", "score": 1.0, "index": 125}, {"type": "inline_equation", "coordinates": [340, 470, 394, 481], "content": "\\pi\\Lambda_{1}=\\Lambda_{1}", "score": 0.93, "index": 126}, {"type": "text", "coordinates": [394, 469, 542, 483], "content": ". It is now immediate that", "score": 1.0, "index": 127}, {"type": "inline_equation", "coordinates": [71, 485, 122, 496], "content": "\\pi\\Lambda_{5}=\\Lambda_{5}", "score": 0.92, "index": 128}, {"type": "text", "coordinates": [122, 484, 206, 498], "content": ", by commuting ", "score": 1.0, "index": 129}, {"type": "inline_equation", "coordinates": [207, 488, 214, 494], "content": "\\pi", "score": 0.88, "index": 130}, {"type": "text", "coordinates": [214, 484, 244, 498], "content": " with ", "score": 1.0, "index": 131}, {"type": "inline_equation", "coordinates": [244, 485, 254, 494], "content": "C", "score": 0.9, "index": 132}, {"type": "text", "coordinates": [254, 484, 389, 498], "content": ". From (3.6a) we get that ", "score": 1.0, "index": 133}, {"type": "inline_equation", "coordinates": [389, 488, 397, 494], "content": "\\pi", "score": 0.87, "index": 134}, {"type": "text", "coordinates": [397, 484, 476, 498], "content": " must permute ", "score": 1.0, "index": 135}, {"type": "inline_equation", "coordinates": [476, 485, 490, 496], "content": "\\Lambda_{2}", "score": 0.91, "index": 136}, {"type": "text", "coordinates": [490, 484, 516, 498], "content": " and ", "score": 1.0, "index": 137}, {"type": "inline_equation", "coordinates": [516, 485, 536, 496], "content": "2\\Lambda_{1}", "score": 0.9, "index": 138}, {"type": "text", "coordinates": [536, 484, 540, 498], "content": ".", "score": 1.0, "index": 139}, {"type": "text", "coordinates": [71, 498, 288, 512], "content": "Compare (3.6c) with (3.6d): since for any", "score": 1.0, "index": 140}, {"type": "inline_equation", "coordinates": [289, 499, 318, 510], "content": "k\\geq2", "score": 0.92, "index": 141}, {"type": "text", "coordinates": [318, 498, 541, 512], "content": " they have different numbers of summands,", "score": 1.0, "index": 142}, {"type": "text", "coordinates": [71, 513, 180, 526], "content": "we find in fact that ", "score": 1.0, "index": 143}, {"type": "inline_equation", "coordinates": [180, 517, 187, 523], "content": "\\pi", "score": 0.86, "index": 144}, {"type": "text", "coordinates": [188, 513, 262, 526], "content": " will fix both ", "score": 1.0, "index": 145}, {"type": "inline_equation", "coordinates": [262, 514, 276, 525], "content": "\\Lambda_{2}", "score": 0.89, "index": 146}, {"type": "text", "coordinates": [277, 513, 319, 526], "content": " (hence ", "score": 1.0, "index": 147}, {"type": "inline_equation", "coordinates": [320, 514, 334, 525], "content": "\\Lambda_{4}", "score": 0.86, "index": 148}, {"type": "text", "coordinates": [334, 513, 366, 526], "content": ") and ", "score": 1.0, "index": 149}, {"type": "inline_equation", "coordinates": [367, 514, 387, 524], "content": "2\\Lambda_{1}", "score": 0.89, "index": 150}, {"type": "text", "coordinates": [387, 513, 532, 526], "content": ". From (3.6b) we get that ", "score": 1.0, "index": 151}, {"type": "inline_equation", "coordinates": [532, 517, 539, 523], "content": "\\pi", "score": 0.82, "index": 152}, {"type": "text", "coordinates": [70, 526, 122, 541], "content": "permutes ", "score": 1.0, "index": 153}, {"type": "inline_equation", "coordinates": [122, 528, 136, 538], "content": "\\Lambda_{6}", "score": 0.92, "index": 154}, {"type": "text", "coordinates": [137, 526, 162, 541], "content": " and ", "score": 1.0, "index": 155}, {"type": "inline_equation", "coordinates": [162, 528, 203, 539], "content": "\\Lambda_{1}+\\Lambda_{5}", "score": 0.93, "index": 156}, {"type": "text", "coordinates": [203, 526, 345, 541], "content": ", and so (3.6d) now tells us ", "score": 1.0, "index": 157}, {"type": "inline_equation", "coordinates": [345, 528, 396, 539], "content": "\\pi\\Lambda_{6}=\\Lambda_{6}", "score": 0.92, "index": 158}, {"type": "text", "coordinates": [396, 526, 541, 541], "content": ". Finally, (3.6c) implies (for", "score": 1.0, "index": 159}, {"type": "inline_equation", "coordinates": [71, 542, 101, 553], "content": "k\\geq3", "score": 0.88, "index": 160}, {"type": "text", "coordinates": [101, 540, 108, 555], "content": ") ", "score": 1.0, "index": 161}, {"type": "inline_equation", "coordinates": [109, 542, 160, 553], "content": "\\pi\\Lambda_{3}=\\Lambda_{3}", "score": 0.92, "index": 162}, {"type": "text", "coordinates": [160, 540, 198, 555], "content": " (since ", "score": 1.0, "index": 163}, {"type": "inline_equation", "coordinates": [198, 542, 248, 551], "content": "C\\pi=\\pi C", "score": 0.88, "index": 164}, {"type": "text", "coordinates": [249, 540, 367, 555], "content": "), and we are done for", "score": 1.0, "index": 165}, {"type": "inline_equation", "coordinates": [368, 542, 398, 553], "content": "k\\geq3", "score": 0.9, "index": 166}, {"type": "text", "coordinates": [398, 540, 437, 555], "content": ". Since ", "score": 1.0, "index": 167}, {"type": "inline_equation", "coordinates": [438, 542, 540, 554], "content": "\\{\\Lambda_{1},\\Lambda_{2},\\Lambda_{4},\\Lambda_{5},\\Lambda_{6}\\}", "score": 0.93, "index": 168}, {"type": "text", "coordinates": [69, 555, 199, 569], "content": "is a fusion-generator for ", "score": 1.0, "index": 169}, {"type": "inline_equation", "coordinates": [200, 557, 228, 565], "content": "k=2", "score": 0.91, "index": 170}, {"type": "text", "coordinates": [229, 555, 255, 569], "content": " (see ", "score": 1.0, "index": 171}, {"type": "inline_equation", "coordinates": [256, 555, 280, 568], "content": "\\S2.2)", "score": 0.39, "index": 172}, {"type": "text", "coordinates": [280, 555, 397, 569], "content": ", we are also done for ", "score": 1.0, "index": 173}, {"type": "inline_equation", "coordinates": [397, 556, 426, 566], "content": "k=2", "score": 0.9, "index": 174}, {"type": "text", "coordinates": [426, 555, 431, 569], "content": ".", "score": 1.0, "index": 175}, {"type": "text", "coordinates": [89, 564, 117, 589], "content": "For ", "score": 1.0, "index": 176}, {"type": "inline_equation", "coordinates": [117, 569, 139, 585], "content": "{E}_{8}^{(1)}", "score": 0.94, "index": 177}, {"type": "text", "coordinates": [140, 564, 174, 589], "content": "when ", "score": 1.0, "index": 178}, {"type": "inline_equation", "coordinates": [175, 573, 205, 584], "content": "k\\geq7", "score": 0.91, "index": 179}, {"type": "text", "coordinates": [205, 564, 313, 589], "content": ", (3.7a) tells us that ", "score": 1.0, "index": 180}, {"type": "inline_equation", "coordinates": [313, 571, 372, 585], "content": "\\Lambda_{2},\\Lambda_{7},2\\Lambda_{1}", "score": 0.91, "index": 181}, {"type": "text", "coordinates": [372, 564, 508, 589], "content": " are permuted. For those ", "score": 1.0, "index": 182}, {"type": "inline_equation", "coordinates": [508, 573, 515, 582], "content": "k", "score": 0.82, "index": 183}, {"type": "text", "coordinates": [516, 564, 545, 589], "content": ", the", "score": 1.0, "index": 184}, {"type": "text", "coordinates": [71, 586, 417, 601], "content": "highest multiplicities in (3.7b)\u2013(3.7d) are 3, 1, 2, respectively, so ", "score": 1.0, "index": 185}, {"type": "inline_equation", "coordinates": [417, 586, 475, 599], "content": "\\Lambda_{2},\\Lambda_{7},2\\Lambda_{1}", "score": 0.91, "index": 186}, {"type": "text", "coordinates": [476, 586, 541, 601], "content": " must all be", "score": 1.0, "index": 187}, {"type": "text", "coordinates": [70, 600, 336, 615], "content": "fixed. The fusion product (3.7c) also tells us that ", "score": 1.0, "index": 188}, {"type": "inline_equation", "coordinates": [337, 600, 462, 613], "content": "\\Lambda_{3},\\Lambda_{6},\\Lambda_{8},\\Lambda_{1}+\\Lambda_{7},2\\Lambda_{7}", "score": 0.92, "index": 189}, {"type": "text", "coordinates": [462, 600, 541, 615], "content": " are permuted;", "score": 1.0, "index": 190}, {"type": "text", "coordinates": [71, 615, 227, 630], "content": "(3.7d) then says that the sets ", "score": 1.0, "index": 191}, {"type": "inline_equation", "coordinates": [227, 615, 272, 628], "content": "\\{\\Lambda_{6},\\Lambda_{8}\\}", "score": 0.91, "index": 192}, {"type": "text", "coordinates": [273, 615, 279, 630], "content": ", ", "score": 1.0, "index": 193}, {"type": "inline_equation", "coordinates": [279, 615, 376, 628], "content": "\\{\\Lambda_{3},\\Lambda_{1}+\\Lambda_{7},2\\Lambda_{7}\\}", "score": 0.91, "index": 194}, {"type": "text", "coordinates": [377, 615, 406, 630], "content": ", and ", "score": 1.0, "index": 195}, {"type": "inline_equation", "coordinates": [406, 614, 541, 628], "content": "\\{2\\Lambda_{2},\\Lambda_{2}+\\Lambda_{7},3\\Lambda_{1},2\\Lambda_{1}+", "score": 0.9, "index": 196}, {"type": "inline_equation", "coordinates": [71, 630, 171, 642], "content": "\\Lambda_{2},2\\Lambda_{1}+\\Lambda_{7},4\\Lambda_{1}\\right\\}", "score": 0.9, "index": 197}, {"type": "text", "coordinates": [171, 630, 359, 643], "content": " are stabilised. Now (3.7b) implies ", "score": 1.0, "index": 198}, {"type": "inline_equation", "coordinates": [360, 629, 437, 642], "content": "\\Lambda_{3},\\Lambda_{6},\\Lambda_{8},2\\Lambda_{7}", "score": 0.91, "index": 199}, {"type": "text", "coordinates": [437, 630, 541, 643], "content": " are all fixed, while", "score": 1.0, "index": 200}, {"type": "text", "coordinates": [70, 644, 111, 659], "content": "the set ", "score": 1.0, "index": 201}, {"type": "inline_equation", "coordinates": [111, 644, 186, 657], "content": "\\{\\Lambda_{4},\\Lambda_{1}+\\Lambda_{3}\\}", "score": 0.92, "index": 202}, {"type": "text", "coordinates": [186, 644, 323, 659], "content": " is stabilised. Comparing ", "score": 1.0, "index": 203}, {"type": "inline_equation", "coordinates": [324, 643, 353, 657], "content": "(3.7\\mathrm{e})", "score": 0.25, "index": 204}, {"type": "text", "coordinates": [354, 644, 483, 659], "content": " and (3.7f), we get that ", "score": 1.0, "index": 205}, {"type": "inline_equation", "coordinates": [483, 643, 497, 656], "content": "\\Lambda_{4}", "score": 0.87, "index": 206}, {"type": "text", "coordinates": [498, 644, 541, 659], "content": " is fixed", "score": 1.0, "index": 207}, {"type": "text", "coordinates": [66, 656, 95, 680], "content": "and ", "score": 1.0, "index": 208}, {"type": "inline_equation", "coordinates": [95, 662, 157, 673], "content": "\\Lambda_{5},\\Lambda_{7}+\\Lambda_{8}", "score": 0.92, "index": 209}, {"type": "text", "coordinates": [158, 656, 287, 680], "content": " are permuted. Finally, ", "score": 1.0, "index": 210}, {"type": "inline_equation", "coordinates": [288, 660, 318, 673], "content": "\\left(3.7\\mathrm{g}\\right)", "score": 0.49, "index": 211}, {"type": "text", "coordinates": [319, 656, 357, 680], "content": " shows ", "score": 1.0, "index": 212}, {"type": "inline_equation", "coordinates": [357, 660, 371, 672], "content": "\\Lambda_{5}", "score": 0.88, "index": 213}, {"type": "text", "coordinates": [372, 656, 484, 680], "content": " also is fixed. To do ", "score": 1.0, "index": 214}, {"type": "inline_equation", "coordinates": [484, 658, 507, 674], "content": "{E}_{8}^{(1)}", "score": 0.93, "index": 215}, {"type": "text", "coordinates": [508, 656, 540, 680], "content": "when", "score": 1.0, "index": 216}, {"type": "inline_equation", "coordinates": [71, 676, 100, 687], "content": "k\\leq6", "score": 0.91, "index": 217}, {"type": "text", "coordinates": [100, 674, 348, 691], "content": ", knowing q-dimensions really simplifies things.", "score": 1.0, "index": 218}] | [] | [{"type": "block", "coordinates": [124, 142, 488, 171], "content": "", "caption": ""}, {"type": "block", "coordinates": [205, 225, 405, 257], "content": "", "caption": ""}, {"type": "inline", "coordinates": [256, 73, 271, 86], "content": "\\Lambda_{1}", "caption": ""}, {"type": "inline", "coordinates": [288, 73, 302, 86], "content": "\\Lambda_{1}", "caption": ""}, {"type": "inline", "coordinates": [331, 73, 353, 86], "content": "\\pi\\Lambda_{2}", "caption": ""}, {"type": "inline", "coordinates": [368, 74, 382, 86], "content": "\\Lambda_{2}", "caption": ""}, {"type": "inline", "coordinates": [400, 74, 420, 86], "content": "2\\Lambda_{1}", "caption": ""}, {"type": "inline", "coordinates": [460, 73, 482, 87], "content": "\\S4.2", "caption": ""}, {"type": "inline", "coordinates": [71, 87, 100, 101], "content": "(2\\Lambda_{1})", "caption": ""}, {"type": "inline", "coordinates": [118, 87, 132, 100], "content": "\\Lambda_{1}", "caption": ""}, {"type": "inline", "coordinates": [185, 87, 200, 101], "content": "\\Lambda_{1}", "caption": ""}, {"type": "inline", "coordinates": [207, 88, 230, 100], "content": "k{-}2", "caption": ""}, {"type": "inline", "coordinates": [409, 90, 428, 100], "content": "J_{v}0", "caption": ""}, {"type": "inline", "coordinates": [455, 88, 469, 100], "content": "\\Lambda_{2}", "caption": ""}, {"type": "inline", "coordinates": [486, 87, 501, 100], "content": "\\Lambda_{1}", "caption": ""}, {"type": "inline", "coordinates": [554, 87, 569, 101], "content": "\\Lambda_{1}", "caption": ""}, {"type": "inline", "coordinates": [75, 102, 104, 114], "content": "k-2", "caption": ""}, {"type": "inline", "coordinates": [238, 102, 289, 115], "content": "\\pi\\Lambda_{2}=\\Lambda_{2}", "caption": ""}, {"type": "inline", "coordinates": [139, 117, 189, 129], "content": "\\pi\\Lambda_{\\ell}=\\Lambda_{\\ell}", "caption": ""}, {"type": "inline", "coordinates": [290, 116, 304, 129], "content": "\\Lambda_{1}", "caption": ""}, {"type": "inline", "coordinates": [322, 116, 336, 129], "content": "\\Lambda_{\\ell}", "caption": ""}, {"type": "inline", "coordinates": [362, 117, 433, 129], "content": "1<\\ell<r-2", "caption": ""}, {"type": "inline", "coordinates": [182, 184, 275, 198], "content": "\\ell\\,=\\,r+1\\,-\\,k/2", "caption": ""}, {"type": "inline", "coordinates": [352, 184, 432, 198], "content": "\\pi\\Lambda_{\\ell+1}\\;=\\;\\Lambda_{\\ell+1}", "caption": ""}, {"type": "inline", "coordinates": [71, 200, 152, 212], "content": "\\ell=r+1-k/2", "caption": ""}, {"type": "inline", "coordinates": [193, 199, 273, 211], "content": "2r-2\\geq k\\geq4)", "caption": ""}, {"type": "inline", "coordinates": [330, 199, 337, 209], "content": "\\ell", "caption": ""}, {"type": "inline", "coordinates": [195, 271, 202, 280], "content": "k", "caption": ""}, {"type": "inline", "coordinates": [300, 271, 348, 282], "content": "\\pi\\Lambda_{i}=\\Lambda_{i}", "caption": ""}, {"type": "inline", "coordinates": [386, 270, 434, 282], "content": "i\\le r-2", "caption": ""}, {"type": "inline", "coordinates": [204, 289, 226, 301], "content": "D_{r,2}", "caption": ""}, {"type": "inline", "coordinates": [299, 288, 310, 298], "content": "\\lambda^{i}", "caption": ""}, {"type": "inline", "coordinates": [374, 287, 396, 300], "content": "\\S3.4", "caption": ""}, {"type": "inline", "coordinates": [466, 288, 537, 301], "content": "\\mathcal{D}(\\Lambda_{r})\\;=\\;\\sqrt{r}", "caption": ""}, {"type": "inline", "coordinates": [71, 303, 126, 315], "content": "\\mathcal{D}(\\lambda^{a})=2", "caption": ""}, {"type": "inline", "coordinates": [157, 302, 296, 315], "content": "S_{\\lambda^{a}\\lambda^{b}}/S_{0\\lambda^{b}}=2\\cos(\\pi a b/r)", "caption": ""}, {"type": "inline", "coordinates": [327, 303, 356, 315], "content": "r\\neq4", "caption": ""}, {"type": "inline", "coordinates": [485, 303, 539, 314], "content": "\\pi\\Lambda_{1}=\\lambda^{m}", "caption": ""}, {"type": "inline", "coordinates": [96, 315, 160, 329], "content": "\\pi^{\\prime}\\Lambda_{1}\\,=\\,\\lambda^{m^{\\prime}}", "caption": ""}, {"type": "inline", "coordinates": [193, 318, 281, 330], "content": "S_{\\Lambda_{1}\\Lambda_{1}}\\,=\\,S_{\\lambda^{m}\\lambda^{m^{\\prime}}}", "caption": ""}, {"type": "inline", "coordinates": [315, 317, 375, 327], "content": "m m^{\\prime}\\,\\equiv\\,\\pm1", "caption": ""}, {"type": "inline", "coordinates": [412, 316, 425, 327], "content": "2r", "caption": ""}, {"type": "inline", "coordinates": [195, 331, 258, 341], "content": "m=m^{\\prime}=1", "caption": ""}, {"type": "inline", "coordinates": [117, 347, 140, 359], "content": "D_{4,2}", "caption": ""}, {"type": "inline", "coordinates": [216, 347, 267, 357], "content": "\\pi\\Lambda_{1}=\\Lambda_{1}", "caption": ""}, {"type": "inline", "coordinates": [376, 345, 443, 358], "content": "\\pi^{\\prime}\\Lambda_{1}=\\Lambda_{r-1}", "caption": ""}, {"type": "inline", "coordinates": [461, 345, 475, 357], "content": "\\Lambda_{r}", "caption": ""}, {"type": "inline", "coordinates": [496, 345, 542, 358], "content": "S_{\\Lambda_{1}\\Lambda_{1}}\\ne", "caption": ""}, {"type": "inline", "coordinates": [71, 361, 181, 373], "content": "0=S_{\\Lambda_{1}\\Lambda_{r}}=S_{\\Lambda_{1}\\Lambda_{r-1}}", "caption": ""}, {"type": "inline", "coordinates": [212, 438, 234, 454], "content": "E_{6}^{(1)}", "caption": ""}, {"type": "inline", "coordinates": [255, 442, 284, 452], "content": "k\\geq2", "caption": ""}, {"type": "inline", "coordinates": [414, 440, 492, 452], "content": "\\pi\\Lambda_{1}=C^{a}J^{b}\\Lambda_{1}", "caption": ""}, {"type": "inline", "coordinates": [71, 456, 89, 467], "content": "a,b", "caption": ""}, {"type": "inline", "coordinates": [170, 455, 232, 466], "content": "\\pi^{\\prime}J0\\,=\\,J^{c}0", "caption": ""}, {"type": "inline", "coordinates": [255, 457, 293, 466], "content": "c=\\pm1", "caption": ""}, {"type": "inline", "coordinates": [443, 456, 489, 468], "content": "k b\\not\\equiv-1", "caption": ""}, {"type": "inline", "coordinates": [114, 474, 121, 480], "content": "\\pi", "caption": ""}, {"type": "inline", "coordinates": [154, 469, 210, 482], "content": "\\pi[-b]^{-1}C^{a}", "caption": ""}, {"type": "inline", "coordinates": [340, 470, 394, 481], "content": "\\pi\\Lambda_{1}=\\Lambda_{1}", "caption": ""}, {"type": "inline", "coordinates": [71, 485, 122, 496], "content": "\\pi\\Lambda_{5}=\\Lambda_{5}", "caption": ""}, {"type": "inline", "coordinates": [207, 488, 214, 494], "content": "\\pi", "caption": ""}, {"type": "inline", "coordinates": [244, 485, 254, 494], "content": "C", "caption": ""}, {"type": "inline", "coordinates": [389, 488, 397, 494], "content": "\\pi", "caption": ""}, {"type": "inline", "coordinates": [476, 485, 490, 496], "content": "\\Lambda_{2}", "caption": ""}, {"type": "inline", "coordinates": [516, 485, 536, 496], "content": "2\\Lambda_{1}", "caption": ""}, {"type": "inline", "coordinates": [289, 499, 318, 510], "content": "k\\geq2", "caption": ""}, {"type": "inline", "coordinates": [180, 517, 187, 523], "content": "\\pi", "caption": ""}, {"type": "inline", "coordinates": [262, 514, 276, 525], "content": "\\Lambda_{2}", "caption": ""}, {"type": "inline", "coordinates": [320, 514, 334, 525], "content": "\\Lambda_{4}", "caption": ""}, {"type": "inline", "coordinates": [367, 514, 387, 524], "content": "2\\Lambda_{1}", "caption": ""}, {"type": "inline", "coordinates": [532, 517, 539, 523], "content": "\\pi", "caption": ""}, {"type": "inline", "coordinates": [122, 528, 136, 538], "content": "\\Lambda_{6}", "caption": ""}, {"type": "inline", "coordinates": [162, 528, 203, 539], "content": "\\Lambda_{1}+\\Lambda_{5}", "caption": ""}, {"type": "inline", "coordinates": [345, 528, 396, 539], "content": "\\pi\\Lambda_{6}=\\Lambda_{6}", "caption": ""}, {"type": "inline", "coordinates": [71, 542, 101, 553], "content": "k\\geq3", "caption": ""}, {"type": "inline", "coordinates": [109, 542, 160, 553], "content": "\\pi\\Lambda_{3}=\\Lambda_{3}", "caption": ""}, {"type": "inline", "coordinates": [198, 542, 248, 551], "content": "C\\pi=\\pi C", "caption": ""}, {"type": "inline", "coordinates": [368, 542, 398, 553], "content": "k\\geq3", "caption": ""}, {"type": "inline", "coordinates": [438, 542, 540, 554], "content": "\\{\\Lambda_{1},\\Lambda_{2},\\Lambda_{4},\\Lambda_{5},\\Lambda_{6}\\}", "caption": ""}, {"type": "inline", "coordinates": [200, 557, 228, 565], "content": "k=2", "caption": ""}, {"type": "inline", "coordinates": [256, 555, 280, 568], "content": "\\S2.2)", "caption": ""}, {"type": "inline", "coordinates": [397, 556, 426, 566], "content": "k=2", "caption": ""}, {"type": "inline", "coordinates": [117, 569, 139, 585], "content": "{E}_{8}^{(1)}", "caption": ""}, {"type": "inline", "coordinates": [175, 573, 205, 584], "content": "k\\geq7", "caption": ""}, {"type": "inline", "coordinates": [313, 571, 372, 585], "content": "\\Lambda_{2},\\Lambda_{7},2\\Lambda_{1}", "caption": ""}, {"type": "inline", "coordinates": [508, 573, 515, 582], "content": "k", "caption": ""}, {"type": "inline", "coordinates": [417, 586, 475, 599], "content": "\\Lambda_{2},\\Lambda_{7},2\\Lambda_{1}", "caption": ""}, {"type": "inline", "coordinates": [337, 600, 462, 613], "content": "\\Lambda_{3},\\Lambda_{6},\\Lambda_{8},\\Lambda_{1}+\\Lambda_{7},2\\Lambda_{7}", "caption": ""}, {"type": "inline", "coordinates": [227, 615, 272, 628], "content": "\\{\\Lambda_{6},\\Lambda_{8}\\}", "caption": ""}, {"type": "inline", "coordinates": [279, 615, 376, 628], "content": "\\{\\Lambda_{3},\\Lambda_{1}+\\Lambda_{7},2\\Lambda_{7}\\}", "caption": ""}, {"type": "inline", "coordinates": [406, 614, 541, 628], "content": "\\{2\\Lambda_{2},\\Lambda_{2}+\\Lambda_{7},3\\Lambda_{1},2\\Lambda_{1}+", "caption": ""}, {"type": "inline", "coordinates": [71, 630, 171, 642], "content": "\\Lambda_{2},2\\Lambda_{1}+\\Lambda_{7},4\\Lambda_{1}\\right\\}", "caption": ""}, {"type": "inline", "coordinates": [360, 629, 437, 642], "content": "\\Lambda_{3},\\Lambda_{6},\\Lambda_{8},2\\Lambda_{7}", "caption": ""}, {"type": "inline", "coordinates": [111, 644, 186, 657], "content": "\\{\\Lambda_{4},\\Lambda_{1}+\\Lambda_{3}\\}", "caption": ""}, {"type": "inline", "coordinates": [324, 643, 353, 657], "content": "(3.7\\mathrm{e})", "caption": ""}, {"type": "inline", "coordinates": [483, 643, 497, 656], "content": "\\Lambda_{4}", "caption": ""}, {"type": "inline", "coordinates": [95, 662, 157, 673], "content": "\\Lambda_{5},\\Lambda_{7}+\\Lambda_{8}", "caption": ""}, {"type": "inline", "coordinates": [288, 660, 318, 673], "content": "\\left(3.7\\mathrm{g}\\right)", "caption": ""}, {"type": "inline", "coordinates": [357, 660, 371, 672], "content": "\\Lambda_{5}", "caption": ""}, {"type": "inline", "coordinates": [484, 658, 507, 674], "content": "{E}_{8}^{(1)}", "caption": ""}, {"type": "inline", "coordinates": [71, 676, 100, 687], "content": "k\\leq6", "caption": ""}] | [] | [612.0, 792.0] | [{"type": "text", "text": "Next, note that we know from $\\Lambda_{1}$ \u00d7 $\\Lambda_{1}$ that $\\pi\\Lambda_{2}$ is $\\Lambda_{2}$ or $2\\Lambda_{1}$ . As in $\\S4.2$ , the fusion $(2\\Lambda_{1})$ \u00d7 $\\Lambda_{1}$ \u00d7 \u00b7 \u00b7 \u00b7 \u00d7 $\\Lambda_{1}$ ( $k{-}2$ times) contains the simple-current $J_{v}0$ , but $\\Lambda_{2}$ \u00d7 $\\Lambda_{1}$ \u00d7 \u00b7 \u00b7 \u00b7 \u00d7 $\\Lambda_{1}$ ( $k-2$ times) doesn\u2019t, and thus $\\pi\\Lambda_{2}=\\Lambda_{2}$ . ", "page_idx": 19}, {"type": "text", "text": "Assume $\\pi\\Lambda_{\\ell}=\\Lambda_{\\ell}$ . Using the fusions $\\Lambda_{1}$ \u00d7 $\\Lambda_{\\ell}$ (for $1<\\ell<r-2$ ), and noting that ", "page_idx": 19}, {"type": "equation", "text": "$$\n\\chi_{\\Lambda_{1}}[\\Lambda_{\\ell+1}]-\\chi_{\\Lambda_{1}}[\\Lambda_{1}+\\Lambda_{\\ell}]=4\\cos(\\pi\\,\\frac{2r-\\ell}{\\kappa})\\,\\{\\cos(\\pi\\,\\frac{\\ell}{\\kappa})-\\cos(\\pi\\,\\frac{\\ell+2}{\\kappa})\\}\n$$", "text_format": "latex", "page_idx": 19}, {"type": "text", "text": "equals 0 only when $\\ell\\,=\\,r+1\\,-\\,k/2$ , we see that $\\pi\\Lambda_{\\ell+1}\\;=\\;\\Lambda_{\\ell+1}$ except possibly for $\\ell=r+1-k/2$ (hence $2r-2\\geq k\\geq4)$ ). For that $\\ell$ , use q-dimensions: ", "page_idx": 19}, {"type": "equation", "text": "$$\n\\frac{\\mathcal{D}(\\Lambda_{1}+\\Lambda_{\\ell})}{\\mathcal{D}(\\Lambda_{\\ell+1})}=\\frac{\\sin(2\\pi\\left(k-2\\right)/\\kappa)}{\\sin(2\\pi/\\kappa)}>1\\ ,\n$$", "text_format": "latex", "page_idx": 19}, {"type": "text", "text": "which is valid for these $k$ . So we also know $\\pi\\Lambda_{i}=\\Lambda_{i}$ for all $i\\le r-2$ , and we are done. ", "page_idx": 19}, {"type": "text", "text": "All that remains is $D_{r,2}$ . Recall the $\\lambda^{i}$ defined in $\\S3.4$ . Note that $\\mathcal{D}(\\Lambda_{r})\\;=\\;\\sqrt{r}$ , $\\mathcal{D}(\\lambda^{a})=2$ , and $S_{\\lambda^{a}\\lambda^{b}}/S_{0\\lambda^{b}}=2\\cos(\\pi a b/r)$ . For $r\\neq4$ , the q-dimensions force $\\pi\\Lambda_{1}=\\lambda^{m}$ and $\\pi^{\\prime}\\Lambda_{1}\\,=\\,\\lambda^{m^{\\prime}}$ , and $S_{\\Lambda_{1}\\Lambda_{1}}\\,=\\,S_{\\lambda^{m}\\lambda^{m^{\\prime}}}$ says $m m^{\\prime}\\,\\equiv\\,\\pm1$ (mod $2r$ ). So without loss of generality we may take $m=m^{\\prime}=1$ . The rest of the argument is easy. ", "page_idx": 19}, {"type": "text", "text": "For $D_{4,2}$ , we can force $\\pi\\Lambda_{1}=\\Lambda_{1}$ , and then eliminate $\\pi^{\\prime}\\Lambda_{1}=\\Lambda_{r-1}$ or $\\Lambda_{r}$ by $S_{\\Lambda_{1}\\Lambda_{1}}\\ne$ $0=S_{\\Lambda_{1}\\Lambda_{r}}=S_{\\Lambda_{1}\\Lambda_{r-1}}$ . The rest of the argument is as before. ", "page_idx": 19}, {"type": "text", "text": "4.6. The arguments for the exceptional algebras ", "page_idx": 19}, {"type": "text", "text": "The exceptional algebras follow quickly from the fusions (and Dynkin diagram symmetries) given in \u00a7\u00a73.5-3.9. ", "page_idx": 19}, {"type": "text", "text": "For example, consider $E_{6}^{(1)}$ for $k\\geq2$ . Proposition 4.1 tells us $\\pi\\Lambda_{1}=C^{a}J^{b}\\Lambda_{1}$ for some $a,b$ , and we know $\\pi^{\\prime}J0\\,=\\,J^{c}0$ for $c=\\pm1$ . Hence from (2.7b) we get $k b\\not\\equiv-1$ (mod 3). Hitting $\\pi$ with $\\pi[-b]^{-1}C^{a}$ , we need consider only $\\pi\\Lambda_{1}=\\Lambda_{1}$ . It is now immediate that $\\pi\\Lambda_{5}=\\Lambda_{5}$ , by commuting $\\pi$ with $C$ . From (3.6a) we get that $\\pi$ must permute $\\Lambda_{2}$ and $2\\Lambda_{1}$ . Compare (3.6c) with (3.6d): since for any $k\\geq2$ they have different numbers of summands, we find in fact that $\\pi$ will fix both $\\Lambda_{2}$ (hence $\\Lambda_{4}$ ) and $2\\Lambda_{1}$ . From (3.6b) we get that $\\pi$ permutes $\\Lambda_{6}$ and $\\Lambda_{1}+\\Lambda_{5}$ , and so (3.6d) now tells us $\\pi\\Lambda_{6}=\\Lambda_{6}$ . Finally, (3.6c) implies (for $k\\geq3$ ) $\\pi\\Lambda_{3}=\\Lambda_{3}$ (since $C\\pi=\\pi C$ ), and we are done for $k\\geq3$ . Since $\\{\\Lambda_{1},\\Lambda_{2},\\Lambda_{4},\\Lambda_{5},\\Lambda_{6}\\}$ is a fusion-generator for $k=2$ (see $\\S2.2)$ , we are also done for $k=2$ . ", "page_idx": 19}, {"type": "text", "text": "For ${E}_{8}^{(1)}$ when $k\\geq7$ , (3.7a) tells us that $\\Lambda_{2},\\Lambda_{7},2\\Lambda_{1}$ are permuted. For those $k$ , the highest multiplicities in (3.7b)\u2013(3.7d) are 3, 1, 2, respectively, so $\\Lambda_{2},\\Lambda_{7},2\\Lambda_{1}$ must all be fixed. The fusion product (3.7c) also tells us that $\\Lambda_{3},\\Lambda_{6},\\Lambda_{8},\\Lambda_{1}+\\Lambda_{7},2\\Lambda_{7}$ are permuted; (3.7d) then says that the sets $\\{\\Lambda_{6},\\Lambda_{8}\\}$ , $\\{\\Lambda_{3},\\Lambda_{1}+\\Lambda_{7},2\\Lambda_{7}\\}$ , and $\\{2\\Lambda_{2},\\Lambda_{2}+\\Lambda_{7},3\\Lambda_{1},2\\Lambda_{1}+$ $\\Lambda_{2},2\\Lambda_{1}+\\Lambda_{7},4\\Lambda_{1}\\right\\}$ are stabilised. Now (3.7b) implies $\\Lambda_{3},\\Lambda_{6},\\Lambda_{8},2\\Lambda_{7}$ are all fixed, while the set $\\{\\Lambda_{4},\\Lambda_{1}+\\Lambda_{3}\\}$ is stabilised. Comparing $(3.7\\mathrm{e})$ and (3.7f), we get that $\\Lambda_{4}$ is fixed and $\\Lambda_{5},\\Lambda_{7}+\\Lambda_{8}$ are permuted. Finally, $\\left(3.7\\mathrm{g}\\right)$ shows $\\Lambda_{5}$ also is fixed. To do ${E}_{8}^{(1)}$ when $k\\leq6$ , knowing q-dimensions really simplifies things. ", "page_idx": 19}] | [{"category_id": 1, "poly": [195, 1215, 1504, 1215, 1504, 1576, 195, 1576], "score": 0.984}, {"category_id": 1, "poly": [195, 1581, 1506, 1581, 1506, 1911, 195, 1911], "score": 0.983}, {"category_id": 1, "poly": [197, 791, 1507, 791, 1507, 952, 197, 952], "score": 0.97}, {"category_id": 1, "poly": [194, 506, 1504, 506, 1504, 588, 194, 588], "score": 0.965}, {"category_id": 8, "poly": [568, 619, 1130, 619, 1130, 714, 568, 714], "score": 0.949}, {"category_id": 1, "poly": [197, 953, 1504, 953, 1504, 1036, 197, 1036], "score": 0.946}, {"category_id": 1, "poly": [197, 1130, 1500, 1130, 1500, 1212, 197, 1212], "score": 0.938}, {"category_id": 8, "poly": [342, 391, 1358, 391, 1358, 477, 342, 477], "score": 0.935}, {"category_id": 1, "poly": [198, 197, 1583, 197, 1583, 318, 198, 318], "score": 0.927}, {"category_id": 1, "poly": [198, 742, 1475, 742, 1475, 785, 198, 785], "score": 0.911}, {"category_id": 2, "poly": [831, 2031, 869, 2031, 869, 2062, 831, 2062], "score": 0.87}, {"category_id": 1, "poly": [260, 319, 1466, 319, 1466, 361, 260, 361], "score": 0.862}, {"category_id": 1, "poly": [201, 1071, 894, 1071, 894, 1111, 201, 1111], "score": 0.525}, {"category_id": 0, "poly": [201, 1071, 894, 1071, 894, 1111, 201, 1111], "score": 0.485}, {"category_id": 13, "poly": [428, 1305, 586, 1305, 586, 1341, 428, 1341], "score": 0.94, "latex": "\\pi[-b]^{-1}C^{a}"}, {"category_id": 13, "poly": [326, 1583, 388, 1583, 388, 1627, 326, 1627], "score": 0.94, "latex": "{E}_{8}^{(1)}"}, {"category_id": 13, "poly": [600, 964, 742, 964, 742, 993, 600, 993], "score": 0.94, "latex": "\\pi\\Lambda_{1}=\\Lambda_{1}"}, {"category_id": 13, "poly": [1151, 1223, 1368, 1223, 1368, 1258, 1151, 1258], "score": 0.94, "latex": "\\pi\\Lambda_{1}=C^{a}J^{b}\\Lambda_{1}"}, {"category_id": 13, "poly": [589, 1217, 651, 1217, 651, 1262, 589, 1262], "score": 0.94, "latex": "E_{6}^{(1)}"}, {"category_id": 13, "poly": [452, 1468, 564, 1468, 564, 1498, 452, 1498], "score": 0.93, "latex": "\\Lambda_{1}+\\Lambda_{5}"}, {"category_id": 13, "poly": [199, 842, 352, 842, 352, 876, 199, 876], "score": 0.93, "latex": "\\mathcal{D}(\\lambda^{a})=2"}, {"category_id": 13, "poly": [474, 1266, 645, 1266, 645, 1295, 474, 1295], "score": 0.93, "latex": "\\pi^{\\prime}J0\\,=\\,J^{c}0"}, {"category_id": 13, "poly": [947, 1308, 1096, 1308, 1096, 1338, 947, 1338], "score": 0.93, "latex": "\\pi\\Lambda_{1}=\\Lambda_{1}"}, {"category_id": 13, "poly": [1347, 1828, 1411, 1828, 1411, 1874, 1347, 1874], "score": 0.93, "latex": "{E}_{8}^{(1)}"}, {"category_id": 13, "poly": [1217, 1506, 1501, 1506, 1501, 1541, 1217, 1541], "score": 0.93, "latex": "\\{\\Lambda_{1},\\Lambda_{2},\\Lambda_{4},\\Lambda_{5},\\Lambda_{6}\\}"}, {"category_id": 14, "poly": [570, 626, 1125, 626, 1125, 714, 570, 714], "score": 0.92, "latex": "\\frac{\\mathcal{D}(\\Lambda_{1}+\\Lambda_{\\ell})}{\\mathcal{D}(\\Lambda_{\\ell+1})}=\\frac{\\sin(2\\pi\\left(k-2\\right)/\\kappa)}{\\sin(2\\pi/\\kappa)}>1\\ ,"}, {"category_id": 14, "poly": [345, 397, 1356, 397, 1356, 477, 345, 477], "score": 0.92, "latex": "\\chi_{\\Lambda_{1}}[\\Lambda_{\\ell+1}]-\\chi_{\\Lambda_{1}}[\\Lambda_{1}+\\Lambda_{\\ell}]=4\\cos(\\pi\\,\\frac{2r-\\ell}{\\kappa})\\,\\{\\cos(\\pi\\,\\frac{\\ell}{\\kappa})-\\cos(\\pi\\,\\frac{\\ell+2}{\\kappa})\\}"}, {"category_id": 13, "poly": [937, 1669, 1284, 1669, 1284, 1705, 937, 1705], "score": 0.92, "latex": "\\Lambda_{3},\\Lambda_{6},\\Lambda_{8},\\Lambda_{1}+\\Lambda_{7},2\\Lambda_{7}"}, {"category_id": 13, "poly": [662, 285, 804, 285, 804, 320, 662, 320], "score": 0.92, "latex": "\\pi\\Lambda_{2}=\\Lambda_{2}"}, {"category_id": 13, "poly": [960, 1467, 1101, 1467, 1101, 1498, 960, 1498], "score": 0.92, "latex": "\\pi\\Lambda_{6}=\\Lambda_{6}"}, {"category_id": 13, "poly": [341, 1468, 380, 1468, 380, 1497, 341, 1497], "score": 0.92, "latex": "\\Lambda_{6}"}, {"category_id": 13, "poly": [265, 1839, 438, 1839, 438, 1871, 265, 1871], "score": 0.92, "latex": "\\Lambda_{5},\\Lambda_{7}+\\Lambda_{8}"}, {"category_id": 13, "poly": [834, 754, 967, 754, 967, 784, 834, 784], "score": 0.92, "latex": "\\pi\\Lambda_{i}=\\Lambda_{i}"}, {"category_id": 13, "poly": [303, 1508, 445, 1508, 445, 1537, 303, 1537], "score": 0.92, "latex": "\\pi\\Lambda_{3}=\\Lambda_{3}"}, {"category_id": 13, "poly": [311, 1791, 517, 1791, 517, 1827, 311, 1827], "score": 0.92, "latex": "\\{\\Lambda_{4},\\Lambda_{1}+\\Lambda_{3}\\}"}, {"category_id": 13, "poly": [198, 556, 423, 556, 423, 591, 198, 591], "score": 0.92, "latex": "\\ell=r+1-k/2"}, {"category_id": 13, "poly": [538, 884, 782, 884, 782, 917, 538, 917], "score": 0.92, "latex": "S_{\\Lambda_{1}\\Lambda_{1}}\\,=\\,S_{\\lambda^{m}\\lambda^{m^{\\prime}}}"}, {"category_id": 13, "poly": [199, 1349, 340, 1349, 340, 1379, 199, 1379], "score": 0.92, "latex": "\\pi\\Lambda_{5}=\\Lambda_{5}"}, {"category_id": 13, "poly": [267, 875, 445, 875, 445, 914, 267, 914], "score": 0.92, "latex": "\\pi^{\\prime}\\Lambda_{1}\\,=\\,\\lambda^{m^{\\prime}}"}, {"category_id": 13, "poly": [909, 844, 990, 844, 990, 875, 909, 875], "score": 0.92, "latex": "r\\neq4"}, {"category_id": 13, "poly": [803, 1388, 884, 1388, 884, 1418, 803, 1418], "score": 0.92, "latex": "k\\geq2"}, {"category_id": 13, "poly": [326, 964, 389, 964, 389, 998, 326, 998], "score": 0.92, "latex": "D_{4,2}"}, {"category_id": 13, "poly": [1296, 801, 1492, 801, 1492, 837, 1296, 837], "score": 0.92, "latex": "\\mathcal{D}(\\Lambda_{r})\\;=\\;\\sqrt{r}"}, {"category_id": 13, "poly": [199, 1003, 503, 1003, 503, 1038, 199, 1038], "score": 0.92, "latex": "0=S_{\\Lambda_{1}\\Lambda_{r}}=S_{\\Lambda_{1}\\Lambda_{r-1}}"}, {"category_id": 13, "poly": [487, 1594, 570, 1594, 570, 1623, 487, 1623], "score": 0.91, "latex": "k\\geq7"}, {"category_id": 13, "poly": [1047, 961, 1231, 961, 1231, 995, 1047, 995], "score": 0.91, "latex": "\\pi^{\\prime}\\Lambda_{1}=\\Lambda_{r-1}"}, {"category_id": 13, "poly": [776, 1709, 1047, 1709, 1047, 1747, 776, 1747], "score": 0.91, "latex": "\\{\\Lambda_{3},\\Lambda_{1}+\\Lambda_{7},2\\Lambda_{7}\\}"}, {"category_id": 13, "poly": [438, 841, 823, 841, 823, 876, 438, 876], "score": 0.91, "latex": "S_{\\lambda^{a}\\lambda^{b}}/S_{0\\lambda^{b}}=2\\cos(\\pi a b/r)"}, {"category_id": 13, "poly": [633, 1709, 758, 1709, 758, 1747, 633, 1747], "score": 0.91, "latex": "\\{\\Lambda_{6},\\Lambda_{8}\\}"}, {"category_id": 13, "poly": [709, 1270, 816, 1270, 816, 1295, 709, 1295], "score": 0.91, "latex": "c=\\pm1"}, {"category_id": 13, "poly": [1324, 1349, 1362, 1349, 1362, 1378, 1324, 1378], "score": 0.91, "latex": "\\Lambda_{2}"}, {"category_id": 13, "poly": [1138, 251, 1191, 251, 1191, 280, 1138, 280], "score": 0.91, "latex": "J_{v}0"}, {"category_id": 13, "poly": [544, 922, 719, 922, 719, 948, 544, 948], "score": 0.91, "latex": "m=m^{\\prime}=1"}, {"category_id": 13, "poly": [556, 1548, 636, 1548, 636, 1572, 556, 1572], "score": 0.91, "latex": "k=2"}, {"category_id": 13, "poly": [1161, 1628, 1322, 1628, 1322, 1665, 1161, 1665], "score": 0.91, "latex": "\\Lambda_{2},\\Lambda_{7},2\\Lambda_{1}"}, {"category_id": 13, "poly": [567, 804, 629, 804, 629, 838, 567, 838], "score": 0.91, "latex": "D_{r,2}"}, {"category_id": 13, "poly": [872, 1587, 1034, 1587, 1034, 1625, 872, 1625], "score": 0.91, "latex": "\\Lambda_{2},\\Lambda_{7},2\\Lambda_{1}"}, {"category_id": 13, "poly": [979, 513, 1200, 513, 1200, 551, 979, 551], "score": 0.91, "latex": "\\pi\\Lambda_{\\ell+1}\\;=\\;\\Lambda_{\\ell+1}"}, {"category_id": 13, "poly": [506, 512, 764, 512, 764, 551, 506, 551], "score": 0.91, "latex": "\\ell\\,=\\,r+1\\,-\\,k/2"}, {"category_id": 13, "poly": [199, 1880, 279, 1880, 279, 1909, 199, 1909], "score": 0.91, "latex": "k\\leq6"}, {"category_id": 13, "poly": [709, 1229, 790, 1229, 790, 1258, 709, 1258], "score": 0.91, "latex": "k\\geq2"}, {"category_id": 13, "poly": [1000, 1749, 1214, 1749, 1214, 1785, 1000, 1785], "score": 0.91, "latex": "\\Lambda_{3},\\Lambda_{6},\\Lambda_{8},2\\Lambda_{7}"}, {"category_id": 13, "poly": [1104, 1547, 1185, 1547, 1185, 1573, 1104, 1573], "score": 0.9, "latex": "k=2"}, {"category_id": 13, "poly": [680, 1349, 706, 1349, 706, 1374, 680, 1374], "score": 0.9, "latex": "C"}, {"category_id": 13, "poly": [199, 1751, 475, 1751, 475, 1786, 199, 1786], "score": 0.9, "latex": "\\Lambda_{2},2\\Lambda_{1}+\\Lambda_{7},4\\Lambda_{1}\\right\\}"}, {"category_id": 13, "poly": [1023, 1506, 1106, 1506, 1106, 1537, 1023, 1537], "score": 0.9, "latex": "k\\geq3"}, {"category_id": 13, "poly": [1130, 1707, 1504, 1707, 1504, 1746, 1130, 1746], "score": 0.9, "latex": "\\{2\\Lambda_{2},\\Lambda_{2}+\\Lambda_{7},3\\Lambda_{1},2\\Lambda_{1}+"}, {"category_id": 13, "poly": [921, 205, 982, 205, 982, 240, 921, 240], "score": 0.9, "latex": "\\pi\\Lambda_{2}"}, {"category_id": 13, "poly": [1233, 1268, 1359, 1268, 1359, 1300, 1233, 1300], "score": 0.9, "latex": "k b\\not\\equiv-1"}, {"category_id": 13, "poly": [387, 325, 525, 325, 525, 360, 387, 360], "score": 0.9, "latex": "\\pi\\Lambda_{\\ell}=\\Lambda_{\\ell}"}, {"category_id": 13, "poly": [1435, 1349, 1490, 1349, 1490, 1378, 1435, 1378], "score": 0.9, "latex": "2\\Lambda_{1}"}, {"category_id": 13, "poly": [730, 1429, 769, 1429, 769, 1459, 730, 1459], "score": 0.89, "latex": "\\Lambda_{2}"}, {"category_id": 13, "poly": [832, 800, 863, 800, 863, 828, 832, 828], "score": 0.89, "latex": "\\lambda^{i}"}, {"category_id": 13, "poly": [1348, 842, 1499, 842, 1499, 874, 1348, 874], "score": 0.89, "latex": "\\pi\\Lambda_{1}=\\lambda^{m}"}, {"category_id": 13, "poly": [1020, 1428, 1076, 1428, 1076, 1458, 1020, 1458], "score": 0.89, "latex": "2\\Lambda_{1}"}, {"category_id": 13, "poly": [875, 882, 1042, 882, 1042, 911, 875, 911], "score": 0.89, "latex": "m m^{\\prime}\\,\\equiv\\,\\pm1"}, {"category_id": 13, "poly": [1283, 959, 1322, 959, 1322, 993, 1283, 993], "score": 0.89, "latex": "\\Lambda_{r}"}, {"category_id": 13, "poly": [1379, 960, 1506, 960, 1506, 997, 1379, 997], "score": 0.89, "latex": "S_{\\Lambda_{1}\\Lambda_{1}}\\ne"}, {"category_id": 13, "poly": [552, 1507, 691, 1507, 691, 1533, 552, 1533], "score": 0.88, "latex": "C\\pi=\\pi C"}, {"category_id": 13, "poly": [1074, 751, 1206, 751, 1206, 784, 1074, 784], "score": 0.88, "latex": "i\\le r-2"}, {"category_id": 13, "poly": [575, 1358, 596, 1358, 596, 1373, 575, 1373], "score": 0.88, "latex": "\\pi"}, {"category_id": 13, "poly": [993, 1834, 1033, 1834, 1033, 1869, 993, 1869], "score": 0.88, "latex": "\\Lambda_{5}"}, {"category_id": 13, "poly": [199, 1508, 281, 1508, 281, 1537, 199, 1537], "score": 0.88, "latex": "k\\geq3"}, {"category_id": 13, "poly": [1024, 206, 1063, 206, 1063, 240, 1024, 240], "score": 0.88, "latex": "\\Lambda_{2}"}, {"category_id": 13, "poly": [199, 1267, 248, 1267, 248, 1299, 199, 1299], "score": 0.88, "latex": "a,b"}, {"category_id": 13, "poly": [1264, 247, 1304, 247, 1304, 280, 1264, 280], "score": 0.88, "latex": "\\Lambda_{2}"}, {"category_id": 13, "poly": [1350, 243, 1393, 243, 1393, 280, 1350, 280], "score": 0.87, "latex": "\\Lambda_{1}"}, {"category_id": 13, "poly": [1083, 1358, 1104, 1358, 1104, 1373, 1083, 1373], "score": 0.87, "latex": "\\pi"}, {"category_id": 13, "poly": [1344, 1788, 1383, 1788, 1383, 1824, 1344, 1824], "score": 0.87, "latex": "\\Lambda_{4}"}, {"category_id": 13, "poly": [1113, 208, 1168, 208, 1168, 240, 1113, 240], "score": 0.87, "latex": "2\\Lambda_{1}"}, {"category_id": 13, "poly": [328, 243, 369, 243, 369, 280, 328, 280], "score": 0.87, "latex": "\\Lambda_{1}"}, {"category_id": 13, "poly": [502, 1438, 522, 1438, 522, 1453, 502, 1453], "score": 0.86, "latex": "\\pi"}, {"category_id": 13, "poly": [889, 1428, 928, 1428, 928, 1459, 889, 1459], "score": 0.86, "latex": "\\Lambda_{4}"}, {"category_id": 13, "poly": [1539, 242, 1581, 242, 1581, 281, 1539, 281], "score": 0.86, "latex": "\\Lambda_{1}"}, {"category_id": 13, "poly": [712, 204, 753, 204, 753, 240, 712, 240], "score": 0.85, "latex": "\\Lambda_{1}"}, {"category_id": 13, "poly": [543, 754, 563, 754, 563, 780, 543, 780], "score": 0.85, "latex": "k"}, {"category_id": 13, "poly": [516, 243, 558, 243, 558, 281, 516, 281], "score": 0.85, "latex": "\\Lambda_{1}"}, {"category_id": 13, "poly": [538, 554, 759, 554, 759, 588, 538, 588], "score": 0.85, "latex": "2r-2\\geq k\\geq4)"}, {"category_id": 13, "poly": [1007, 325, 1204, 325, 1204, 360, 1007, 360], "score": 0.85, "latex": "1<\\ell<r-2"}, {"category_id": 13, "poly": [800, 204, 841, 204, 841, 240, 800, 240], "score": 0.84, "latex": "\\Lambda_{1}"}, {"category_id": 13, "poly": [199, 242, 280, 242, 280, 283, 199, 283], "score": 0.84, "latex": "(2\\Lambda_{1})"}, {"category_id": 13, "poly": [808, 324, 847, 324, 847, 360, 808, 360], "score": 0.83, "latex": "\\Lambda_{1}"}, {"category_id": 13, "poly": [1413, 1592, 1433, 1592, 1433, 1619, 1413, 1619], "score": 0.82, "latex": "k"}, {"category_id": 13, "poly": [1479, 1438, 1499, 1438, 1499, 1453, 1479, 1453], "score": 0.82, "latex": "\\pi"}, {"category_id": 13, "poly": [918, 553, 937, 553, 937, 583, 918, 583], "score": 0.81, "latex": "\\ell"}, {"category_id": 13, "poly": [317, 1318, 337, 1318, 337, 1334, 317, 1334], "score": 0.77, "latex": "\\pi"}, {"category_id": 13, "poly": [895, 324, 935, 324, 935, 360, 895, 360], "score": 0.77, "latex": "\\Lambda_{\\ell}"}, {"category_id": 13, "poly": [211, 286, 290, 286, 290, 319, 211, 319], "score": 0.68, "latex": "k-2"}, {"category_id": 13, "poly": [1278, 205, 1339, 205, 1339, 242, 1278, 242], "score": 0.6, "latex": "\\S4.2"}, {"category_id": 13, "poly": [1147, 879, 1182, 879, 1182, 910, 1147, 910], "score": 0.56, "latex": "2r"}, {"category_id": 13, "poly": [577, 245, 640, 245, 640, 280, 577, 280], "score": 0.53, "latex": "k{-}2"}, {"category_id": 13, "poly": [800, 1834, 886, 1834, 886, 1872, 800, 1872], "score": 0.49, "latex": "\\left(3.7\\mathrm{g}\\right)"}, {"category_id": 13, "poly": [712, 1542, 779, 1542, 779, 1580, 712, 1580], "score": 0.39, "latex": "\\S2.2)"}, {"category_id": 13, "poly": [1040, 798, 1100, 798, 1100, 835, 1040, 835], "score": 0.3, "latex": "\\S3.4"}, {"category_id": 13, "poly": [900, 1788, 983, 1788, 983, 1827, 900, 1827], "score": 0.25, "latex": "(3.7\\mathrm{e})"}, {"category_id": 15, "poly": [255.0, 1210.0, 588.0, 1210.0, 588.0, 1277.0, 255.0, 1277.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [652.0, 1210.0, 708.0, 1210.0, 708.0, 1277.0, 652.0, 1277.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [791.0, 1210.0, 1150.0, 1210.0, 1150.0, 1277.0, 791.0, 1277.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1369.0, 1210.0, 1513.0, 1210.0, 1513.0, 1277.0, 1369.0, 1277.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [198.0, 1262.0, 198.0, 1262.0, 198.0, 1305.0, 198.0, 1305.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [249.0, 1262.0, 473.0, 1262.0, 473.0, 1305.0, 249.0, 1305.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [646.0, 1262.0, 708.0, 1262.0, 708.0, 1305.0, 646.0, 1305.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [817.0, 1262.0, 1232.0, 1262.0, 1232.0, 1305.0, 817.0, 1305.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1360.0, 1262.0, 1503.0, 1262.0, 1503.0, 1305.0, 1360.0, 1305.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [198.0, 1303.0, 316.0, 1303.0, 316.0, 1344.0, 198.0, 1344.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [338.0, 1303.0, 427.0, 1303.0, 427.0, 1344.0, 338.0, 1344.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [587.0, 1303.0, 946.0, 1303.0, 946.0, 1344.0, 587.0, 1344.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1097.0, 1303.0, 1506.0, 1303.0, 1506.0, 1344.0, 1097.0, 1344.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [198.0, 1345.0, 198.0, 1345.0, 198.0, 1385.0, 198.0, 1385.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [341.0, 1345.0, 574.0, 1345.0, 574.0, 1385.0, 341.0, 1385.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [597.0, 1345.0, 679.0, 1345.0, 679.0, 1385.0, 597.0, 1385.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [707.0, 1345.0, 1082.0, 1345.0, 1082.0, 1385.0, 707.0, 1385.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1105.0, 1345.0, 1323.0, 1345.0, 1323.0, 1385.0, 1105.0, 1385.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1363.0, 1345.0, 1434.0, 1345.0, 1434.0, 1385.0, 1363.0, 1385.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1491.0, 1345.0, 1501.0, 1345.0, 1501.0, 1385.0, 1491.0, 1385.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [198.0, 1384.0, 802.0, 1384.0, 802.0, 1424.0, 198.0, 1424.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [885.0, 1384.0, 1503.0, 1384.0, 1503.0, 1424.0, 885.0, 1424.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [199.0, 1426.0, 501.0, 1426.0, 501.0, 1462.0, 199.0, 1462.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [523.0, 1426.0, 729.0, 1426.0, 729.0, 1462.0, 523.0, 1462.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [770.0, 1426.0, 888.0, 1426.0, 888.0, 1462.0, 770.0, 1462.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [929.0, 1426.0, 1019.0, 1426.0, 1019.0, 1462.0, 929.0, 1462.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1077.0, 1426.0, 1478.0, 1426.0, 1478.0, 1462.0, 1077.0, 1462.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1500.0, 1426.0, 1504.0, 1426.0, 1504.0, 1462.0, 1500.0, 1462.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [196.0, 1463.0, 340.0, 1463.0, 340.0, 1504.0, 196.0, 1504.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [381.0, 1463.0, 451.0, 1463.0, 451.0, 1504.0, 381.0, 1504.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [565.0, 1463.0, 959.0, 1463.0, 959.0, 1504.0, 565.0, 1504.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1102.0, 1463.0, 1504.0, 1463.0, 1504.0, 1504.0, 1102.0, 1504.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [193.0, 1502.0, 198.0, 1502.0, 198.0, 1544.0, 193.0, 1544.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [282.0, 1502.0, 302.0, 1502.0, 302.0, 1544.0, 282.0, 1544.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [446.0, 1502.0, 551.0, 1502.0, 551.0, 1544.0, 446.0, 1544.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [692.0, 1502.0, 1022.0, 1502.0, 1022.0, 1544.0, 692.0, 1544.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1107.0, 1502.0, 1216.0, 1502.0, 1216.0, 1544.0, 1107.0, 1544.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [192.0, 1542.0, 555.0, 1542.0, 555.0, 1581.0, 192.0, 1581.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [637.0, 1542.0, 711.0, 1542.0, 711.0, 1581.0, 637.0, 1581.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [780.0, 1542.0, 1103.0, 1542.0, 1103.0, 1581.0, 780.0, 1581.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1186.0, 1542.0, 1199.0, 1542.0, 1199.0, 1581.0, 1186.0, 1581.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [248.0, 1567.0, 325.0, 1567.0, 325.0, 1638.0, 248.0, 1638.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [389.0, 1567.0, 486.0, 1567.0, 486.0, 1638.0, 389.0, 1638.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [571.0, 1567.0, 871.0, 1567.0, 871.0, 1638.0, 571.0, 1638.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1035.0, 1567.0, 1412.0, 1567.0, 1412.0, 1638.0, 1035.0, 1638.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1434.0, 1567.0, 1516.0, 1567.0, 1516.0, 1638.0, 1434.0, 1638.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [198.0, 1628.0, 1160.0, 1628.0, 1160.0, 1670.0, 198.0, 1670.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1323.0, 1628.0, 1505.0, 1628.0, 1505.0, 1670.0, 1323.0, 1670.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [195.0, 1668.0, 936.0, 1668.0, 936.0, 1710.0, 195.0, 1710.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1285.0, 1668.0, 1505.0, 1668.0, 1505.0, 1710.0, 1285.0, 1710.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [199.0, 1709.0, 632.0, 1709.0, 632.0, 1750.0, 199.0, 1750.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [759.0, 1709.0, 775.0, 1709.0, 775.0, 1750.0, 759.0, 1750.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1048.0, 1709.0, 1129.0, 1709.0, 1129.0, 1750.0, 1048.0, 1750.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1505.0, 1709.0, 1505.0, 1709.0, 1505.0, 1750.0, 1505.0, 1750.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [476.0, 1750.0, 999.0, 1750.0, 999.0, 1788.0, 476.0, 1788.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1215.0, 1750.0, 1505.0, 1750.0, 1505.0, 1788.0, 1215.0, 1788.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [196.0, 1789.0, 310.0, 1789.0, 310.0, 1831.0, 196.0, 1831.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [518.0, 1789.0, 899.0, 1789.0, 899.0, 1831.0, 518.0, 1831.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [984.0, 1789.0, 1343.0, 1789.0, 1343.0, 1831.0, 984.0, 1831.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1384.0, 1789.0, 1505.0, 1789.0, 1505.0, 1831.0, 1384.0, 1831.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [186.0, 1824.0, 264.0, 1824.0, 264.0, 1891.0, 186.0, 1891.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [439.0, 1824.0, 799.0, 1824.0, 799.0, 1891.0, 439.0, 1891.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [887.0, 1824.0, 992.0, 1824.0, 992.0, 1891.0, 887.0, 1891.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1034.0, 1824.0, 1346.0, 1824.0, 1346.0, 1891.0, 1034.0, 1891.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1412.0, 1824.0, 1501.0, 1824.0, 1501.0, 1891.0, 1412.0, 1891.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [194.0, 1874.0, 198.0, 1874.0, 198.0, 1921.0, 194.0, 1921.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [280.0, 1874.0, 967.0, 1874.0, 967.0, 1921.0, 280.0, 1921.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [263.0, 795.0, 566.0, 795.0, 566.0, 840.0, 263.0, 840.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [630.0, 795.0, 831.0, 795.0, 831.0, 840.0, 630.0, 840.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [864.0, 795.0, 1039.0, 795.0, 1039.0, 840.0, 864.0, 840.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1101.0, 795.0, 1295.0, 795.0, 1295.0, 840.0, 1101.0, 840.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1493.0, 795.0, 1500.0, 795.0, 1500.0, 840.0, 1493.0, 840.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [197.0, 833.0, 198.0, 833.0, 198.0, 885.0, 197.0, 885.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [353.0, 833.0, 437.0, 833.0, 437.0, 885.0, 353.0, 885.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [824.0, 833.0, 908.0, 833.0, 908.0, 885.0, 824.0, 885.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [991.0, 833.0, 1347.0, 833.0, 1347.0, 885.0, 991.0, 885.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1500.0, 833.0, 1506.0, 833.0, 1506.0, 885.0, 1500.0, 885.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [190.0, 866.0, 266.0, 866.0, 266.0, 931.0, 190.0, 931.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [446.0, 866.0, 537.0, 866.0, 537.0, 931.0, 446.0, 931.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [783.0, 866.0, 874.0, 866.0, 874.0, 931.0, 783.0, 931.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1043.0, 866.0, 1146.0, 866.0, 1146.0, 931.0, 1043.0, 931.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1183.0, 866.0, 1515.0, 866.0, 1515.0, 931.0, 1183.0, 931.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [195.0, 916.0, 543.0, 916.0, 543.0, 963.0, 195.0, 963.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [720.0, 916.0, 1228.0, 916.0, 1228.0, 963.0, 720.0, 963.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [197.0, 511.0, 505.0, 511.0, 505.0, 560.0, 197.0, 560.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [765.0, 511.0, 978.0, 511.0, 978.0, 560.0, 765.0, 560.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1201.0, 511.0, 1506.0, 511.0, 1506.0, 560.0, 1201.0, 560.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [197.0, 553.0, 197.0, 553.0, 197.0, 594.0, 197.0, 594.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [424.0, 553.0, 537.0, 553.0, 537.0, 594.0, 424.0, 594.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [760.0, 553.0, 917.0, 553.0, 917.0, 594.0, 760.0, 594.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [938.0, 553.0, 1213.0, 553.0, 1213.0, 594.0, 938.0, 594.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [258.0, 953.0, 325.0, 953.0, 325.0, 1005.0, 258.0, 1005.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [390.0, 953.0, 599.0, 953.0, 599.0, 1005.0, 390.0, 1005.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [743.0, 953.0, 1046.0, 953.0, 1046.0, 1005.0, 743.0, 1005.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1232.0, 953.0, 1282.0, 953.0, 1282.0, 1005.0, 1232.0, 1005.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1323.0, 953.0, 1378.0, 953.0, 1378.0, 1005.0, 1323.0, 1005.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1507.0, 953.0, 1507.0, 953.0, 1507.0, 1005.0, 1507.0, 1005.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [197.0, 996.0, 198.0, 996.0, 198.0, 1043.0, 197.0, 1043.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [504.0, 996.0, 1081.0, 996.0, 1081.0, 1043.0, 504.0, 1043.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [263.0, 1135.0, 1502.0, 1135.0, 1502.0, 1182.0, 263.0, 1182.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [198.0, 1180.0, 594.0, 1180.0, 594.0, 1221.0, 198.0, 1221.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [261.0, 202.0, 711.0, 202.0, 711.0, 249.0, 261.0, 249.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [754.0, 202.0, 799.0, 202.0, 799.0, 249.0, 754.0, 249.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [842.0, 202.0, 920.0, 202.0, 920.0, 249.0, 842.0, 249.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [983.0, 202.0, 1023.0, 202.0, 1023.0, 249.0, 983.0, 249.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1064.0, 202.0, 1112.0, 202.0, 1112.0, 249.0, 1064.0, 249.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1169.0, 202.0, 1277.0, 202.0, 1277.0, 249.0, 1169.0, 249.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1340.0, 202.0, 1503.0, 202.0, 1503.0, 249.0, 1340.0, 249.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [196.0, 240.0, 198.0, 240.0, 198.0, 290.0, 196.0, 290.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [281.0, 240.0, 327.0, 240.0, 327.0, 290.0, 281.0, 290.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [370.0, 240.0, 515.0, 240.0, 515.0, 290.0, 370.0, 290.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [559.0, 240.0, 576.0, 240.0, 576.0, 290.0, 559.0, 290.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [641.0, 240.0, 1137.0, 240.0, 1137.0, 290.0, 641.0, 290.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1192.0, 240.0, 1263.0, 240.0, 1263.0, 290.0, 1192.0, 290.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1305.0, 240.0, 1349.0, 240.0, 1349.0, 290.0, 1305.0, 290.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1394.0, 240.0, 1538.0, 240.0, 1538.0, 290.0, 1394.0, 290.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1582.0, 240.0, 1582.0, 240.0, 1582.0, 290.0, 1582.0, 290.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [198.0, 283.0, 210.0, 283.0, 210.0, 328.0, 198.0, 328.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [291.0, 283.0, 661.0, 283.0, 661.0, 328.0, 291.0, 328.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [805.0, 283.0, 818.0, 283.0, 818.0, 328.0, 805.0, 328.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [197.0, 750.0, 542.0, 750.0, 542.0, 792.0, 197.0, 792.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [564.0, 750.0, 833.0, 750.0, 833.0, 792.0, 564.0, 792.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [968.0, 750.0, 1073.0, 750.0, 1073.0, 792.0, 968.0, 792.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1207.0, 750.0, 1470.0, 750.0, 1470.0, 792.0, 1207.0, 792.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [828.0, 2033.0, 872.0, 2033.0, 872.0, 2070.0, 828.0, 2070.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [263.0, 322.0, 386.0, 322.0, 386.0, 373.0, 263.0, 373.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [526.0, 322.0, 807.0, 322.0, 807.0, 373.0, 526.0, 373.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [848.0, 322.0, 894.0, 322.0, 894.0, 373.0, 848.0, 373.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [936.0, 322.0, 1006.0, 322.0, 1006.0, 373.0, 936.0, 373.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1205.0, 322.0, 1467.0, 322.0, 1467.0, 373.0, 1205.0, 373.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [198.0, 1077.0, 895.0, 1077.0, 895.0, 1117.0, 198.0, 1117.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [198.0, 1077.0, 895.0, 1077.0, 895.0, 1117.0, 198.0, 1117.0], "score": 1.0, "text": ""}] | {"preproc_blocks": [{"type": "text", "bbox": [71, 70, 569, 114], "lines": [{"bbox": [93, 72, 541, 89], "spans": [{"bbox": [93, 72, 255, 89], "score": 1.0, "content": "Next, note that we know from", "type": "text"}, {"bbox": [256, 73, 271, 86], "score": 0.85, "content": "\\Lambda_{1}", "type": "inline_equation", "height": 13, "width": 15}, {"bbox": [271, 72, 287, 89], "score": 1.0, "content": " \u00d7 ", "type": "text"}, {"bbox": [288, 73, 302, 86], "score": 0.84, "content": "\\Lambda_{1}", "type": "inline_equation", "height": 13, "width": 14}, {"bbox": [303, 72, 331, 89], "score": 1.0, "content": " that ", "type": "text"}, {"bbox": [331, 73, 353, 86], "score": 0.9, "content": "\\pi\\Lambda_{2}", "type": "inline_equation", "height": 13, "width": 22}, {"bbox": [353, 72, 368, 89], "score": 1.0, "content": " is ", "type": "text"}, {"bbox": [368, 74, 382, 86], "score": 0.88, "content": "\\Lambda_{2}", "type": "inline_equation", "height": 12, "width": 14}, {"bbox": [383, 72, 400, 89], "score": 1.0, "content": " or ", "type": "text"}, {"bbox": [400, 74, 420, 86], "score": 0.87, "content": "2\\Lambda_{1}", "type": "inline_equation", "height": 12, "width": 20}, {"bbox": [420, 72, 459, 89], "score": 1.0, "content": ". As in ", "type": "text"}, {"bbox": [460, 73, 482, 87], "score": 0.6, "content": "\\S4.2", "type": "inline_equation", "height": 14, "width": 22}, {"bbox": [482, 72, 541, 89], "score": 1.0, "content": ", the fusion", "type": "text"}], "index": 0}, {"bbox": [71, 86, 569, 104], "spans": [{"bbox": [71, 87, 100, 101], "score": 0.84, "content": "(2\\Lambda_{1})", "type": "inline_equation", "height": 14, "width": 29}, {"bbox": [101, 86, 117, 104], "score": 1.0, "content": " \u00d7 ", "type": "text"}, {"bbox": [118, 87, 132, 100], "score": 0.87, "content": "\\Lambda_{1}", "type": "inline_equation", "height": 13, "width": 14}, {"bbox": [133, 86, 185, 104], "score": 1.0, "content": " \u00d7 \u00b7 \u00b7 \u00b7 \u00d7 ", "type": "text"}, {"bbox": [185, 87, 200, 101], "score": 0.85, "content": "\\Lambda_{1}", "type": "inline_equation", "height": 14, "width": 15}, {"bbox": [201, 86, 207, 104], "score": 1.0, "content": " (", "type": "text"}, {"bbox": [207, 88, 230, 100], "score": 0.53, "content": "k{-}2", "type": "inline_equation", "height": 12, "width": 23}, {"bbox": [230, 86, 409, 104], "score": 1.0, "content": " times) contains the simple-current ", "type": "text"}, {"bbox": [409, 90, 428, 100], "score": 0.91, "content": "J_{v}0", "type": "inline_equation", "height": 10, "width": 19}, {"bbox": [429, 86, 454, 104], "score": 1.0, "content": ", but", "type": "text"}, {"bbox": [455, 88, 469, 100], "score": 0.88, "content": "\\Lambda_{2}", "type": "inline_equation", "height": 12, "width": 14}, {"bbox": [469, 86, 485, 104], "score": 1.0, "content": " \u00d7", "type": "text"}, {"bbox": [486, 87, 501, 100], "score": 0.87, "content": "\\Lambda_{1}", "type": "inline_equation", "height": 13, "width": 15}, {"bbox": [501, 86, 553, 104], "score": 1.0, "content": " \u00d7 \u00b7 \u00b7 \u00b7 \u00d7", "type": "text"}, {"bbox": [554, 87, 569, 101], "score": 0.86, "content": "\\Lambda_{1}", "type": "inline_equation", "height": 14, "width": 15}], "index": 1}, {"bbox": [71, 101, 294, 118], "spans": [{"bbox": [71, 101, 75, 118], "score": 1.0, "content": "(", "type": "text"}, {"bbox": [75, 102, 104, 114], "score": 0.68, "content": "k-2", "type": "inline_equation", "height": 12, "width": 29}, {"bbox": [104, 101, 237, 118], "score": 1.0, "content": " times) doesn\u2019t, and thus ", "type": "text"}, {"bbox": [238, 102, 289, 115], "score": 0.92, "content": "\\pi\\Lambda_{2}=\\Lambda_{2}", "type": "inline_equation", "height": 13, "width": 51}, {"bbox": [289, 101, 294, 118], "score": 1.0, "content": ".", "type": "text"}], "index": 2}], "index": 1}, {"type": "text", "bbox": [93, 114, 527, 129], "lines": [{"bbox": [94, 115, 528, 134], "spans": [{"bbox": [94, 115, 138, 134], "score": 1.0, "content": "Assume", "type": "text"}, {"bbox": [139, 117, 189, 129], "score": 0.9, "content": "\\pi\\Lambda_{\\ell}=\\Lambda_{\\ell}", "type": "inline_equation", "height": 12, "width": 50}, {"bbox": [189, 115, 290, 134], "score": 1.0, "content": ". Using the fusions ", "type": "text"}, {"bbox": [290, 116, 304, 129], "score": 0.83, "content": "\\Lambda_{1}", "type": "inline_equation", "height": 13, "width": 14}, {"bbox": [305, 115, 321, 134], "score": 1.0, "content": " \u00d7", "type": "text"}, {"bbox": [322, 116, 336, 129], "score": 0.77, "content": "\\Lambda_{\\ell}", "type": "inline_equation", "height": 13, "width": 14}, {"bbox": [336, 115, 362, 134], "score": 1.0, "content": "(for ", "type": "text"}, {"bbox": [362, 117, 433, 129], "score": 0.85, "content": "1<\\ell<r-2", "type": "inline_equation", "height": 12, "width": 71}, {"bbox": [433, 115, 528, 134], "score": 1.0, "content": "), and noting that", "type": "text"}], "index": 3}], "index": 3}, {"type": "interline_equation", "bbox": [124, 142, 488, 171], "lines": [{"bbox": [124, 142, 488, 171], "spans": [{"bbox": [124, 142, 488, 171], "score": 0.92, "content": "\\chi_{\\Lambda_{1}}[\\Lambda_{\\ell+1}]-\\chi_{\\Lambda_{1}}[\\Lambda_{1}+\\Lambda_{\\ell}]=4\\cos(\\pi\\,\\frac{2r-\\ell}{\\kappa})\\,\\{\\cos(\\pi\\,\\frac{\\ell}{\\kappa})-\\cos(\\pi\\,\\frac{\\ell+2}{\\kappa})\\}", "type": "interline_equation"}], "index": 4}], "index": 4}, {"type": "text", "bbox": [69, 182, 541, 211], "lines": [{"bbox": [70, 183, 542, 201], "spans": [{"bbox": [70, 183, 181, 201], "score": 1.0, "content": "equals 0 only when ", "type": "text"}, {"bbox": [182, 184, 275, 198], "score": 0.91, "content": "\\ell\\,=\\,r+1\\,-\\,k/2", "type": "inline_equation", "height": 14, "width": 93}, {"bbox": [275, 183, 352, 201], "score": 1.0, "content": ", we see that ", "type": "text"}, {"bbox": [352, 184, 432, 198], "score": 0.91, "content": "\\pi\\Lambda_{\\ell+1}\\;=\\;\\Lambda_{\\ell+1}", "type": "inline_equation", "height": 14, "width": 80}, {"bbox": [432, 183, 542, 201], "score": 1.0, "content": " except possibly for", "type": "text"}], "index": 5}, {"bbox": [71, 199, 436, 213], "spans": [{"bbox": [71, 200, 152, 212], "score": 0.92, "content": "\\ell=r+1-k/2", "type": "inline_equation", "height": 12, "width": 81}, {"bbox": [152, 199, 193, 213], "score": 1.0, "content": " (hence ", "type": "text"}, {"bbox": [193, 199, 273, 211], "score": 0.85, "content": "2r-2\\geq k\\geq4)", "type": "inline_equation", "height": 12, "width": 80}, {"bbox": [273, 199, 330, 213], "score": 1.0, "content": "). For that ", "type": "text"}, {"bbox": [330, 199, 337, 209], "score": 0.81, "content": "\\ell", "type": "inline_equation", "height": 10, "width": 7}, {"bbox": [337, 199, 436, 213], "score": 1.0, "content": ", use q-dimensions:", "type": "text"}], "index": 6}], "index": 5.5}, {"type": "interline_equation", "bbox": [205, 225, 405, 257], "lines": [{"bbox": [205, 225, 405, 257], "spans": [{"bbox": [205, 225, 405, 257], "score": 0.92, "content": "\\frac{\\mathcal{D}(\\Lambda_{1}+\\Lambda_{\\ell})}{\\mathcal{D}(\\Lambda_{\\ell+1})}=\\frac{\\sin(2\\pi\\left(k-2\\right)/\\kappa)}{\\sin(2\\pi/\\kappa)}>1\\ ,", "type": "interline_equation"}], "index": 7}], "index": 7}, {"type": "text", "bbox": [71, 267, 531, 282], "lines": [{"bbox": [70, 270, 529, 285], "spans": [{"bbox": [70, 270, 195, 285], "score": 1.0, "content": "which is valid for these ", "type": "text"}, {"bbox": [195, 271, 202, 280], "score": 0.85, "content": "k", "type": "inline_equation", "height": 9, "width": 7}, {"bbox": [203, 270, 299, 285], "score": 1.0, "content": ". So we also know ", "type": "text"}, {"bbox": [300, 271, 348, 282], "score": 0.92, "content": "\\pi\\Lambda_{i}=\\Lambda_{i}", "type": "inline_equation", "height": 11, "width": 48}, {"bbox": [348, 270, 386, 285], "score": 1.0, "content": " for all ", "type": "text"}, {"bbox": [386, 270, 434, 282], "score": 0.88, "content": "i\\le r-2", "type": "inline_equation", "height": 12, "width": 48}, {"bbox": [434, 270, 529, 285], "score": 1.0, "content": ", and we are done.", "type": "text"}], "index": 8}], "index": 8}, {"type": "text", "bbox": [70, 284, 542, 342], "lines": [{"bbox": [94, 286, 540, 302], "spans": [{"bbox": [94, 286, 203, 302], "score": 1.0, "content": "All that remains is ", "type": "text"}, {"bbox": [204, 289, 226, 301], "score": 0.91, "content": "D_{r,2}", "type": "inline_equation", "height": 12, "width": 22}, {"bbox": [226, 286, 299, 302], "score": 1.0, "content": ". Recall the ", "type": "text"}, {"bbox": [299, 288, 310, 298], "score": 0.89, "content": "\\lambda^{i}", "type": "inline_equation", "height": 10, "width": 11}, {"bbox": [311, 286, 374, 302], "score": 1.0, "content": " defined in ", "type": "text"}, {"bbox": [374, 287, 396, 300], "score": 0.3, "content": "\\S3.4", "type": "inline_equation", "height": 13, "width": 22}, {"bbox": [396, 286, 466, 302], "score": 1.0, "content": ". Note that ", "type": "text"}, {"bbox": [466, 288, 537, 301], "score": 0.92, "content": "\\mathcal{D}(\\Lambda_{r})\\;=\\;\\sqrt{r}", "type": "inline_equation", "height": 13, "width": 71}, {"bbox": [537, 286, 540, 302], "score": 1.0, "content": ",", "type": "text"}], "index": 9}, {"bbox": [71, 299, 539, 318], "spans": [{"bbox": [71, 303, 126, 315], "score": 0.93, "content": "\\mathcal{D}(\\lambda^{a})=2", "type": "inline_equation", "height": 12, "width": 55}, {"bbox": [127, 299, 157, 318], "score": 1.0, "content": ", and ", "type": "text"}, {"bbox": [157, 302, 296, 315], "score": 0.91, "content": "S_{\\lambda^{a}\\lambda^{b}}/S_{0\\lambda^{b}}=2\\cos(\\pi a b/r)", "type": "inline_equation", "height": 13, "width": 139}, {"bbox": [296, 299, 326, 318], "score": 1.0, "content": ". For ", "type": "text"}, {"bbox": [327, 303, 356, 315], "score": 0.92, "content": "r\\neq4", "type": "inline_equation", "height": 12, "width": 29}, {"bbox": [356, 299, 484, 318], "score": 1.0, "content": ", the q-dimensions force ", "type": "text"}, {"bbox": [485, 303, 539, 314], "score": 0.89, "content": "\\pi\\Lambda_{1}=\\lambda^{m}", "type": "inline_equation", "height": 11, "width": 54}], "index": 10}, {"bbox": [68, 311, 545, 335], "spans": [{"bbox": [68, 311, 95, 335], "score": 1.0, "content": "and ", "type": "text"}, {"bbox": [96, 315, 160, 329], "score": 0.92, "content": "\\pi^{\\prime}\\Lambda_{1}\\,=\\,\\lambda^{m^{\\prime}}", "type": "inline_equation", "height": 14, "width": 64}, {"bbox": [160, 311, 193, 335], "score": 1.0, "content": ", and ", "type": "text"}, {"bbox": [193, 318, 281, 330], "score": 0.92, "content": "S_{\\Lambda_{1}\\Lambda_{1}}\\,=\\,S_{\\lambda^{m}\\lambda^{m^{\\prime}}}", "type": "inline_equation", "height": 12, "width": 88}, {"bbox": [281, 311, 314, 335], "score": 1.0, "content": " says ", "type": "text"}, {"bbox": [315, 317, 375, 327], "score": 0.89, "content": "m m^{\\prime}\\,\\equiv\\,\\pm1", "type": "inline_equation", "height": 10, "width": 60}, {"bbox": [375, 311, 412, 335], "score": 1.0, "content": " (mod ", "type": "text"}, {"bbox": [412, 316, 425, 327], "score": 0.56, "content": "2r", "type": "inline_equation", "height": 11, "width": 13}, {"bbox": [425, 311, 545, 335], "score": 1.0, "content": "). So without loss of", "type": "text"}], "index": 11}, {"bbox": [70, 329, 442, 346], "spans": [{"bbox": [70, 329, 195, 346], "score": 1.0, "content": "generality we may take ", "type": "text"}, {"bbox": [195, 331, 258, 341], "score": 0.91, "content": "m=m^{\\prime}=1", "type": "inline_equation", "height": 10, "width": 63}, {"bbox": [259, 329, 442, 346], "score": 1.0, "content": ". The rest of the argument is easy.", "type": "text"}], "index": 12}], "index": 10.5}, {"type": "text", "bbox": [70, 343, 541, 372], "lines": [{"bbox": [92, 343, 542, 361], "spans": [{"bbox": [92, 343, 117, 361], "score": 1.0, "content": "For ", "type": "text"}, {"bbox": [117, 347, 140, 359], "score": 0.92, "content": "D_{4,2}", "type": "inline_equation", "height": 12, "width": 23}, {"bbox": [140, 343, 215, 361], "score": 1.0, "content": ", we can force ", "type": "text"}, {"bbox": [216, 347, 267, 357], "score": 0.94, "content": "\\pi\\Lambda_{1}=\\Lambda_{1}", "type": "inline_equation", "height": 10, "width": 51}, {"bbox": [267, 343, 376, 361], "score": 1.0, "content": ", and then eliminate ", "type": "text"}, {"bbox": [376, 345, 443, 358], "score": 0.91, "content": "\\pi^{\\prime}\\Lambda_{1}=\\Lambda_{r-1}", "type": "inline_equation", "height": 13, "width": 67}, {"bbox": [443, 343, 461, 361], "score": 1.0, "content": " or ", "type": "text"}, {"bbox": [461, 345, 475, 357], "score": 0.89, "content": "\\Lambda_{r}", "type": "inline_equation", "height": 12, "width": 14}, {"bbox": [476, 343, 496, 361], "score": 1.0, "content": " by ", "type": "text"}, {"bbox": [496, 345, 542, 358], "score": 0.89, "content": "S_{\\Lambda_{1}\\Lambda_{1}}\\ne", "type": "inline_equation", "height": 13, "width": 46}], "index": 13}, {"bbox": [71, 358, 389, 375], "spans": [{"bbox": [71, 361, 181, 373], "score": 0.92, "content": "0=S_{\\Lambda_{1}\\Lambda_{r}}=S_{\\Lambda_{1}\\Lambda_{r-1}}", "type": "inline_equation", "height": 12, "width": 110}, {"bbox": [181, 358, 389, 375], "score": 1.0, "content": ". The rest of the argument is as before.", "type": "text"}], "index": 14}], "index": 13.5}, {"type": "text", "bbox": [72, 385, 321, 399], "lines": [{"bbox": [71, 387, 322, 402], "spans": [{"bbox": [71, 387, 322, 402], "score": 1.0, "content": "4.6. The arguments for the exceptional algebras", "type": "text"}], "index": 15}], "index": 15}, {"type": "text", "bbox": [70, 406, 540, 436], "lines": [{"bbox": [94, 408, 540, 425], "spans": [{"bbox": [94, 408, 540, 425], "score": 1.0, "content": "The exceptional algebras follow quickly from the fusions (and Dynkin diagram sym-", "type": "text"}], "index": 16}, {"bbox": [71, 424, 213, 439], "spans": [{"bbox": [71, 424, 213, 439], "score": 1.0, "content": "metries) given in \u00a7\u00a73.5-3.9.", "type": "text"}], "index": 17}], "index": 16.5}, {"type": "text", "bbox": [70, 437, 541, 567], "lines": [{"bbox": [91, 435, 544, 459], "spans": [{"bbox": [91, 435, 211, 459], "score": 1.0, "content": "For example, consider ", "type": "text"}, {"bbox": [212, 438, 234, 454], "score": 0.94, "content": "E_{6}^{(1)}", "type": "inline_equation", "height": 16, "width": 22}, {"bbox": [234, 435, 254, 459], "score": 1.0, "content": "for", "type": "text"}, {"bbox": [255, 442, 284, 452], "score": 0.91, "content": "k\\geq2", "type": "inline_equation", "height": 10, "width": 29}, {"bbox": [284, 435, 414, 459], "score": 1.0, "content": ". Proposition 4.1 tells us ", "type": "text"}, {"bbox": [414, 440, 492, 452], "score": 0.94, "content": "\\pi\\Lambda_{1}=C^{a}J^{b}\\Lambda_{1}", "type": "inline_equation", "height": 12, "width": 78}, {"bbox": [492, 435, 544, 459], "score": 1.0, "content": " for some", "type": "text"}], "index": 18}, {"bbox": [71, 454, 541, 469], "spans": [{"bbox": [71, 456, 89, 467], "score": 0.88, "content": "a,b", "type": "inline_equation", "height": 11, "width": 18}, {"bbox": [89, 454, 170, 469], "score": 1.0, "content": ", and we know ", "type": "text"}, {"bbox": [170, 455, 232, 466], "score": 0.93, "content": "\\pi^{\\prime}J0\\,=\\,J^{c}0", "type": "inline_equation", "height": 11, "width": 62}, {"bbox": [232, 454, 254, 469], "score": 1.0, "content": " for ", "type": "text"}, {"bbox": [255, 457, 293, 466], "score": 0.91, "content": "c=\\pm1", "type": "inline_equation", "height": 9, "width": 38}, {"bbox": [294, 454, 443, 469], "score": 1.0, "content": ". Hence from (2.7b) we get ", "type": "text"}, {"bbox": [443, 456, 489, 468], "score": 0.9, "content": "k b\\not\\equiv-1", "type": "inline_equation", "height": 12, "width": 46}, {"bbox": [489, 454, 541, 469], "score": 1.0, "content": " (mod 3).", "type": "text"}], "index": 19}, {"bbox": [71, 469, 542, 483], "spans": [{"bbox": [71, 469, 113, 483], "score": 1.0, "content": "Hitting ", "type": "text"}, {"bbox": [114, 474, 121, 480], "score": 0.77, "content": "\\pi", "type": "inline_equation", "height": 6, "width": 7}, {"bbox": [121, 469, 153, 483], "score": 1.0, "content": " with ", "type": "text"}, {"bbox": [154, 469, 210, 482], "score": 0.94, "content": "\\pi[-b]^{-1}C^{a}", "type": "inline_equation", "height": 13, "width": 56}, {"bbox": [211, 469, 340, 483], "score": 1.0, "content": ", we need consider only ", "type": "text"}, {"bbox": [340, 470, 394, 481], "score": 0.93, "content": "\\pi\\Lambda_{1}=\\Lambda_{1}", "type": "inline_equation", "height": 11, "width": 54}, {"bbox": [394, 469, 542, 483], "score": 1.0, "content": ". It is now immediate that", "type": "text"}], "index": 20}, {"bbox": [71, 484, 540, 498], "spans": [{"bbox": [71, 485, 122, 496], "score": 0.92, "content": "\\pi\\Lambda_{5}=\\Lambda_{5}", "type": "inline_equation", "height": 11, "width": 51}, {"bbox": [122, 484, 206, 498], "score": 1.0, "content": ", by commuting ", "type": "text"}, {"bbox": [207, 488, 214, 494], "score": 0.88, "content": "\\pi", "type": "inline_equation", "height": 6, "width": 7}, {"bbox": [214, 484, 244, 498], "score": 1.0, "content": " with ", "type": "text"}, {"bbox": [244, 485, 254, 494], "score": 0.9, "content": "C", "type": "inline_equation", "height": 9, "width": 10}, {"bbox": [254, 484, 389, 498], "score": 1.0, "content": ". From (3.6a) we get that ", "type": "text"}, {"bbox": [389, 488, 397, 494], "score": 0.87, "content": "\\pi", "type": "inline_equation", "height": 6, "width": 8}, {"bbox": [397, 484, 476, 498], "score": 1.0, "content": " must permute ", "type": "text"}, {"bbox": [476, 485, 490, 496], "score": 0.91, "content": "\\Lambda_{2}", "type": "inline_equation", "height": 11, "width": 14}, {"bbox": [490, 484, 516, 498], "score": 1.0, "content": " and ", "type": "text"}, {"bbox": [516, 485, 536, 496], "score": 0.9, "content": "2\\Lambda_{1}", "type": "inline_equation", "height": 11, "width": 20}, {"bbox": [536, 484, 540, 498], "score": 1.0, "content": ".", "type": "text"}], "index": 21}, {"bbox": [71, 498, 541, 512], "spans": [{"bbox": [71, 498, 288, 512], "score": 1.0, "content": "Compare (3.6c) with (3.6d): since for any", "type": "text"}, {"bbox": [289, 499, 318, 510], "score": 0.92, "content": "k\\geq2", "type": "inline_equation", "height": 11, "width": 29}, {"bbox": [318, 498, 541, 512], "score": 1.0, "content": " they have different numbers of summands,", "type": "text"}], "index": 22}, {"bbox": [71, 513, 539, 526], "spans": [{"bbox": [71, 513, 180, 526], "score": 1.0, "content": "we find in fact that ", "type": "text"}, {"bbox": [180, 517, 187, 523], "score": 0.86, "content": "\\pi", "type": "inline_equation", "height": 6, "width": 7}, {"bbox": [188, 513, 262, 526], "score": 1.0, "content": " will fix both ", "type": "text"}, {"bbox": [262, 514, 276, 525], "score": 0.89, "content": "\\Lambda_{2}", "type": "inline_equation", "height": 11, "width": 14}, {"bbox": [277, 513, 319, 526], "score": 1.0, "content": " (hence ", "type": "text"}, {"bbox": [320, 514, 334, 525], "score": 0.86, "content": "\\Lambda_{4}", "type": "inline_equation", "height": 11, "width": 14}, {"bbox": [334, 513, 366, 526], "score": 1.0, "content": ") and ", "type": "text"}, {"bbox": [367, 514, 387, 524], "score": 0.89, "content": "2\\Lambda_{1}", "type": "inline_equation", "height": 10, "width": 20}, {"bbox": [387, 513, 532, 526], "score": 1.0, "content": ". From (3.6b) we get that ", "type": "text"}, {"bbox": [532, 517, 539, 523], "score": 0.82, "content": "\\pi", "type": "inline_equation", "height": 6, "width": 7}], "index": 23}, {"bbox": [70, 526, 541, 541], "spans": [{"bbox": [70, 526, 122, 541], "score": 1.0, "content": "permutes ", "type": "text"}, {"bbox": [122, 528, 136, 538], "score": 0.92, "content": "\\Lambda_{6}", "type": "inline_equation", "height": 10, "width": 14}, {"bbox": [137, 526, 162, 541], "score": 1.0, "content": " and ", "type": "text"}, {"bbox": [162, 528, 203, 539], "score": 0.93, "content": "\\Lambda_{1}+\\Lambda_{5}", "type": "inline_equation", "height": 11, "width": 41}, {"bbox": [203, 526, 345, 541], "score": 1.0, "content": ", and so (3.6d) now tells us ", "type": "text"}, {"bbox": [345, 528, 396, 539], "score": 0.92, "content": "\\pi\\Lambda_{6}=\\Lambda_{6}", "type": "inline_equation", "height": 11, "width": 51}, {"bbox": [396, 526, 541, 541], "score": 1.0, "content": ". Finally, (3.6c) implies (for", "type": "text"}], "index": 24}, {"bbox": [71, 540, 540, 555], "spans": [{"bbox": [71, 542, 101, 553], "score": 0.88, "content": "k\\geq3", "type": "inline_equation", "height": 11, "width": 30}, {"bbox": [101, 540, 108, 555], "score": 1.0, "content": ") ", "type": "text"}, {"bbox": [109, 542, 160, 553], "score": 0.92, "content": "\\pi\\Lambda_{3}=\\Lambda_{3}", "type": "inline_equation", "height": 11, "width": 51}, {"bbox": [160, 540, 198, 555], "score": 1.0, "content": " (since ", "type": "text"}, {"bbox": [198, 542, 248, 551], "score": 0.88, "content": "C\\pi=\\pi C", "type": "inline_equation", "height": 9, "width": 50}, {"bbox": [249, 540, 367, 555], "score": 1.0, "content": "), and we are done for", "type": "text"}, {"bbox": [368, 542, 398, 553], "score": 0.9, "content": "k\\geq3", "type": "inline_equation", "height": 11, "width": 30}, {"bbox": [398, 540, 437, 555], "score": 1.0, "content": ". Since ", "type": "text"}, {"bbox": [438, 542, 540, 554], "score": 0.93, "content": "\\{\\Lambda_{1},\\Lambda_{2},\\Lambda_{4},\\Lambda_{5},\\Lambda_{6}\\}", "type": "inline_equation", "height": 12, "width": 102}], "index": 25}, {"bbox": [69, 555, 431, 569], "spans": [{"bbox": [69, 555, 199, 569], "score": 1.0, "content": "is a fusion-generator for ", "type": "text"}, {"bbox": [200, 557, 228, 565], "score": 0.91, "content": "k=2", "type": "inline_equation", "height": 8, "width": 28}, {"bbox": [229, 555, 255, 569], "score": 1.0, "content": " (see ", "type": "text"}, {"bbox": [256, 555, 280, 568], "score": 0.39, "content": "\\S2.2)", "type": "inline_equation", "height": 13, "width": 24}, {"bbox": [280, 555, 397, 569], "score": 1.0, "content": ", we are also done for ", "type": "text"}, {"bbox": [397, 556, 426, 566], "score": 0.9, "content": "k=2", "type": "inline_equation", "height": 10, "width": 29}, {"bbox": [426, 555, 431, 569], "score": 1.0, "content": ".", "type": "text"}], "index": 26}], "index": 22}, {"type": "text", "bbox": [70, 569, 542, 687], "lines": [{"bbox": [89, 564, 545, 589], "spans": [{"bbox": [89, 564, 117, 589], "score": 1.0, "content": "For ", "type": "text"}, {"bbox": [117, 569, 139, 585], "score": 0.94, "content": "{E}_{8}^{(1)}", "type": "inline_equation", "height": 16, "width": 22}, {"bbox": [140, 564, 174, 589], "score": 1.0, "content": "when ", "type": "text"}, {"bbox": [175, 573, 205, 584], "score": 0.91, "content": "k\\geq7", "type": "inline_equation", "height": 11, "width": 30}, {"bbox": [205, 564, 313, 589], "score": 1.0, "content": ", (3.7a) tells us that ", "type": "text"}, {"bbox": [313, 571, 372, 585], "score": 0.91, "content": "\\Lambda_{2},\\Lambda_{7},2\\Lambda_{1}", "type": "inline_equation", "height": 14, "width": 59}, {"bbox": [372, 564, 508, 589], "score": 1.0, "content": " are permuted. For those ", "type": "text"}, {"bbox": [508, 573, 515, 582], "score": 0.82, "content": "k", "type": "inline_equation", "height": 9, "width": 7}, {"bbox": [516, 564, 545, 589], "score": 1.0, "content": ", the", "type": "text"}], "index": 27}, {"bbox": [71, 586, 541, 601], "spans": [{"bbox": [71, 586, 417, 601], "score": 1.0, "content": "highest multiplicities in (3.7b)\u2013(3.7d) are 3, 1, 2, respectively, so ", "type": "text"}, {"bbox": [417, 586, 475, 599], "score": 0.91, "content": "\\Lambda_{2},\\Lambda_{7},2\\Lambda_{1}", "type": "inline_equation", "height": 13, "width": 58}, {"bbox": [476, 586, 541, 601], "score": 1.0, "content": " must all be", "type": "text"}], "index": 28}, {"bbox": [70, 600, 541, 615], "spans": [{"bbox": [70, 600, 336, 615], "score": 1.0, "content": "fixed. The fusion product (3.7c) also tells us that ", "type": "text"}, {"bbox": [337, 600, 462, 613], "score": 0.92, "content": "\\Lambda_{3},\\Lambda_{6},\\Lambda_{8},\\Lambda_{1}+\\Lambda_{7},2\\Lambda_{7}", "type": "inline_equation", "height": 13, "width": 125}, {"bbox": [462, 600, 541, 615], "score": 1.0, "content": " are permuted;", "type": "text"}], "index": 29}, {"bbox": [71, 614, 541, 630], "spans": [{"bbox": [71, 615, 227, 630], "score": 1.0, "content": "(3.7d) then says that the sets ", "type": "text"}, {"bbox": [227, 615, 272, 628], "score": 0.91, "content": "\\{\\Lambda_{6},\\Lambda_{8}\\}", "type": "inline_equation", "height": 13, "width": 45}, {"bbox": [273, 615, 279, 630], "score": 1.0, "content": ", ", "type": "text"}, {"bbox": [279, 615, 376, 628], "score": 0.91, "content": "\\{\\Lambda_{3},\\Lambda_{1}+\\Lambda_{7},2\\Lambda_{7}\\}", "type": "inline_equation", "height": 13, "width": 97}, {"bbox": [377, 615, 406, 630], "score": 1.0, "content": ", and ", "type": "text"}, {"bbox": [406, 614, 541, 628], "score": 0.9, "content": "\\{2\\Lambda_{2},\\Lambda_{2}+\\Lambda_{7},3\\Lambda_{1},2\\Lambda_{1}+", "type": "inline_equation", "height": 14, "width": 135}], "index": 30}, {"bbox": [71, 629, 541, 643], "spans": [{"bbox": [71, 630, 171, 642], "score": 0.9, "content": "\\Lambda_{2},2\\Lambda_{1}+\\Lambda_{7},4\\Lambda_{1}\\right\\}", "type": "inline_equation", "height": 12, "width": 100}, {"bbox": [171, 630, 359, 643], "score": 1.0, "content": " are stabilised. Now (3.7b) implies ", "type": "text"}, {"bbox": [360, 629, 437, 642], "score": 0.91, "content": "\\Lambda_{3},\\Lambda_{6},\\Lambda_{8},2\\Lambda_{7}", "type": "inline_equation", "height": 13, "width": 77}, {"bbox": [437, 630, 541, 643], "score": 1.0, "content": " are all fixed, while", "type": "text"}], "index": 31}, {"bbox": [70, 643, 541, 659], "spans": [{"bbox": [70, 644, 111, 659], "score": 1.0, "content": "the set ", "type": "text"}, {"bbox": [111, 644, 186, 657], "score": 0.92, "content": "\\{\\Lambda_{4},\\Lambda_{1}+\\Lambda_{3}\\}", "type": "inline_equation", "height": 13, "width": 75}, {"bbox": [186, 644, 323, 659], "score": 1.0, "content": " is stabilised. Comparing ", "type": "text"}, {"bbox": [324, 643, 353, 657], "score": 0.25, "content": "(3.7\\mathrm{e})", "type": "inline_equation", "height": 14, "width": 29}, {"bbox": [354, 644, 483, 659], "score": 1.0, "content": " and (3.7f), we get that ", "type": "text"}, {"bbox": [483, 643, 497, 656], "score": 0.87, "content": "\\Lambda_{4}", "type": "inline_equation", "height": 13, "width": 14}, {"bbox": [498, 644, 541, 659], "score": 1.0, "content": " is fixed", "type": "text"}], "index": 32}, {"bbox": [66, 656, 540, 680], "spans": [{"bbox": [66, 656, 95, 680], "score": 1.0, "content": "and ", "type": "text"}, {"bbox": [95, 662, 157, 673], "score": 0.92, "content": "\\Lambda_{5},\\Lambda_{7}+\\Lambda_{8}", "type": "inline_equation", "height": 11, "width": 62}, {"bbox": [158, 656, 287, 680], "score": 1.0, "content": " are permuted. Finally, ", "type": "text"}, {"bbox": [288, 660, 318, 673], "score": 0.49, "content": "\\left(3.7\\mathrm{g}\\right)", "type": "inline_equation", "height": 13, "width": 30}, {"bbox": [319, 656, 357, 680], "score": 1.0, "content": " shows ", "type": "text"}, {"bbox": [357, 660, 371, 672], "score": 0.88, "content": "\\Lambda_{5}", "type": "inline_equation", "height": 12, "width": 14}, {"bbox": [372, 656, 484, 680], "score": 1.0, "content": " also is fixed. To do ", "type": "text"}, {"bbox": [484, 658, 507, 674], "score": 0.93, "content": "{E}_{8}^{(1)}", "type": "inline_equation", "height": 16, "width": 23}, {"bbox": [508, 656, 540, 680], "score": 1.0, "content": "when", "type": "text"}], "index": 33}, {"bbox": [71, 674, 348, 691], "spans": [{"bbox": [71, 676, 100, 687], "score": 0.91, "content": "k\\leq6", "type": "inline_equation", "height": 11, "width": 29}, {"bbox": [100, 674, 348, 691], "score": 1.0, "content": ", knowing q-dimensions really simplifies things.", "type": "text"}], "index": 34}], "index": 30.5}], "layout_bboxes": [], "page_idx": 19, "page_size": [612.0, 792.0], "_layout_tree": [], "images": [], "tables": [], "interline_equations": [{"type": "interline_equation", "bbox": [124, 142, 488, 171], "lines": [{"bbox": [124, 142, 488, 171], "spans": [{"bbox": [124, 142, 488, 171], "score": 0.92, "content": "\\chi_{\\Lambda_{1}}[\\Lambda_{\\ell+1}]-\\chi_{\\Lambda_{1}}[\\Lambda_{1}+\\Lambda_{\\ell}]=4\\cos(\\pi\\,\\frac{2r-\\ell}{\\kappa})\\,\\{\\cos(\\pi\\,\\frac{\\ell}{\\kappa})-\\cos(\\pi\\,\\frac{\\ell+2}{\\kappa})\\}", "type": "interline_equation"}], "index": 4}], "index": 4}, {"type": "interline_equation", "bbox": [205, 225, 405, 257], "lines": [{"bbox": [205, 225, 405, 257], "spans": [{"bbox": [205, 225, 405, 257], "score": 0.92, "content": "\\frac{\\mathcal{D}(\\Lambda_{1}+\\Lambda_{\\ell})}{\\mathcal{D}(\\Lambda_{\\ell+1})}=\\frac{\\sin(2\\pi\\left(k-2\\right)/\\kappa)}{\\sin(2\\pi/\\kappa)}>1\\ ,", "type": "interline_equation"}], "index": 7}], "index": 7}], "discarded_blocks": [{"type": "discarded", "bbox": [299, 731, 312, 742], "lines": [{"bbox": [298, 731, 313, 745], "spans": [{"bbox": [298, 731, 313, 745], "score": 1.0, "content": "20", "type": "text"}]}]}], "need_drop": false, "drop_reason": [], "para_blocks": [{"type": "text", "bbox": [71, 70, 569, 114], "lines": [{"bbox": [93, 72, 541, 89], "spans": [{"bbox": [93, 72, 255, 89], "score": 1.0, "content": "Next, note that we know from", "type": "text"}, {"bbox": [256, 73, 271, 86], "score": 0.85, "content": "\\Lambda_{1}", "type": "inline_equation", "height": 13, "width": 15}, {"bbox": [271, 72, 287, 89], "score": 1.0, "content": " \u00d7 ", "type": "text"}, {"bbox": [288, 73, 302, 86], "score": 0.84, "content": "\\Lambda_{1}", "type": "inline_equation", "height": 13, "width": 14}, {"bbox": [303, 72, 331, 89], "score": 1.0, "content": " that ", "type": "text"}, {"bbox": [331, 73, 353, 86], "score": 0.9, "content": "\\pi\\Lambda_{2}", "type": "inline_equation", "height": 13, "width": 22}, {"bbox": [353, 72, 368, 89], "score": 1.0, "content": " is ", "type": "text"}, {"bbox": [368, 74, 382, 86], "score": 0.88, "content": "\\Lambda_{2}", "type": "inline_equation", "height": 12, "width": 14}, {"bbox": [383, 72, 400, 89], "score": 1.0, "content": " or ", "type": "text"}, {"bbox": [400, 74, 420, 86], "score": 0.87, "content": "2\\Lambda_{1}", "type": "inline_equation", "height": 12, "width": 20}, {"bbox": [420, 72, 459, 89], "score": 1.0, "content": ". As in ", "type": "text"}, {"bbox": [460, 73, 482, 87], "score": 0.6, "content": "\\S4.2", "type": "inline_equation", "height": 14, "width": 22}, {"bbox": [482, 72, 541, 89], "score": 1.0, "content": ", the fusion", "type": "text"}], "index": 0}, {"bbox": [71, 86, 569, 104], "spans": [{"bbox": [71, 87, 100, 101], "score": 0.84, "content": "(2\\Lambda_{1})", "type": "inline_equation", "height": 14, "width": 29}, {"bbox": [101, 86, 117, 104], "score": 1.0, "content": " \u00d7 ", "type": "text"}, {"bbox": [118, 87, 132, 100], "score": 0.87, "content": "\\Lambda_{1}", "type": "inline_equation", "height": 13, "width": 14}, {"bbox": [133, 86, 185, 104], "score": 1.0, "content": " \u00d7 \u00b7 \u00b7 \u00b7 \u00d7 ", "type": "text"}, {"bbox": [185, 87, 200, 101], "score": 0.85, "content": "\\Lambda_{1}", "type": "inline_equation", "height": 14, "width": 15}, {"bbox": [201, 86, 207, 104], "score": 1.0, "content": " (", "type": "text"}, {"bbox": [207, 88, 230, 100], "score": 0.53, "content": "k{-}2", "type": "inline_equation", "height": 12, "width": 23}, {"bbox": [230, 86, 409, 104], "score": 1.0, "content": " times) contains the simple-current ", "type": "text"}, {"bbox": [409, 90, 428, 100], "score": 0.91, "content": "J_{v}0", "type": "inline_equation", "height": 10, "width": 19}, {"bbox": [429, 86, 454, 104], "score": 1.0, "content": ", but", "type": "text"}, {"bbox": [455, 88, 469, 100], "score": 0.88, "content": "\\Lambda_{2}", "type": "inline_equation", "height": 12, "width": 14}, {"bbox": [469, 86, 485, 104], "score": 1.0, "content": " \u00d7", "type": "text"}, {"bbox": [486, 87, 501, 100], "score": 0.87, "content": "\\Lambda_{1}", "type": "inline_equation", "height": 13, "width": 15}, {"bbox": [501, 86, 553, 104], "score": 1.0, "content": " \u00d7 \u00b7 \u00b7 \u00b7 \u00d7", "type": "text"}, {"bbox": [554, 87, 569, 101], "score": 0.86, "content": "\\Lambda_{1}", "type": "inline_equation", "height": 14, "width": 15}], "index": 1}, {"bbox": [71, 101, 294, 118], "spans": [{"bbox": [71, 101, 75, 118], "score": 1.0, "content": "(", "type": "text"}, {"bbox": [75, 102, 104, 114], "score": 0.68, "content": "k-2", "type": "inline_equation", "height": 12, "width": 29}, {"bbox": [104, 101, 237, 118], "score": 1.0, "content": " times) doesn\u2019t, and thus ", "type": "text"}, {"bbox": [238, 102, 289, 115], "score": 0.92, "content": "\\pi\\Lambda_{2}=\\Lambda_{2}", "type": "inline_equation", "height": 13, "width": 51}, {"bbox": [289, 101, 294, 118], "score": 1.0, "content": ".", "type": "text"}], "index": 2}], "index": 1, "page_num": "page_19", "page_size": [612.0, 792.0], "bbox_fs": [71, 72, 569, 118]}, {"type": "text", "bbox": [93, 114, 527, 129], "lines": [{"bbox": [94, 115, 528, 134], "spans": [{"bbox": [94, 115, 138, 134], "score": 1.0, "content": "Assume", "type": "text"}, {"bbox": [139, 117, 189, 129], "score": 0.9, "content": "\\pi\\Lambda_{\\ell}=\\Lambda_{\\ell}", "type": "inline_equation", "height": 12, "width": 50}, {"bbox": [189, 115, 290, 134], "score": 1.0, "content": ". Using the fusions ", "type": "text"}, {"bbox": [290, 116, 304, 129], "score": 0.83, "content": "\\Lambda_{1}", "type": "inline_equation", "height": 13, "width": 14}, {"bbox": [305, 115, 321, 134], "score": 1.0, "content": " \u00d7", "type": "text"}, {"bbox": [322, 116, 336, 129], "score": 0.77, "content": "\\Lambda_{\\ell}", "type": "inline_equation", "height": 13, "width": 14}, {"bbox": [336, 115, 362, 134], "score": 1.0, "content": "(for ", "type": "text"}, {"bbox": [362, 117, 433, 129], "score": 0.85, "content": "1<\\ell<r-2", "type": "inline_equation", "height": 12, "width": 71}, {"bbox": [433, 115, 528, 134], "score": 1.0, "content": "), and noting that", "type": "text"}], "index": 3}], "index": 3, "page_num": "page_19", "page_size": [612.0, 792.0], "bbox_fs": [94, 115, 528, 134]}, {"type": "interline_equation", "bbox": [124, 142, 488, 171], "lines": [{"bbox": [124, 142, 488, 171], "spans": [{"bbox": [124, 142, 488, 171], "score": 0.92, "content": "\\chi_{\\Lambda_{1}}[\\Lambda_{\\ell+1}]-\\chi_{\\Lambda_{1}}[\\Lambda_{1}+\\Lambda_{\\ell}]=4\\cos(\\pi\\,\\frac{2r-\\ell}{\\kappa})\\,\\{\\cos(\\pi\\,\\frac{\\ell}{\\kappa})-\\cos(\\pi\\,\\frac{\\ell+2}{\\kappa})\\}", "type": "interline_equation"}], "index": 4}], "index": 4, "page_num": "page_19", "page_size": [612.0, 792.0]}, {"type": "text", "bbox": [69, 182, 541, 211], "lines": [{"bbox": [70, 183, 542, 201], "spans": [{"bbox": [70, 183, 181, 201], "score": 1.0, "content": "equals 0 only when ", "type": "text"}, {"bbox": [182, 184, 275, 198], "score": 0.91, "content": "\\ell\\,=\\,r+1\\,-\\,k/2", "type": "inline_equation", "height": 14, "width": 93}, {"bbox": [275, 183, 352, 201], "score": 1.0, "content": ", we see that ", "type": "text"}, {"bbox": [352, 184, 432, 198], "score": 0.91, "content": "\\pi\\Lambda_{\\ell+1}\\;=\\;\\Lambda_{\\ell+1}", "type": "inline_equation", "height": 14, "width": 80}, {"bbox": [432, 183, 542, 201], "score": 1.0, "content": " except possibly for", "type": "text"}], "index": 5}, {"bbox": [71, 199, 436, 213], "spans": [{"bbox": [71, 200, 152, 212], "score": 0.92, "content": "\\ell=r+1-k/2", "type": "inline_equation", "height": 12, "width": 81}, {"bbox": [152, 199, 193, 213], "score": 1.0, "content": " (hence ", "type": "text"}, {"bbox": [193, 199, 273, 211], "score": 0.85, "content": "2r-2\\geq k\\geq4)", "type": "inline_equation", "height": 12, "width": 80}, {"bbox": [273, 199, 330, 213], "score": 1.0, "content": "). For that ", "type": "text"}, {"bbox": [330, 199, 337, 209], "score": 0.81, "content": "\\ell", "type": "inline_equation", "height": 10, "width": 7}, {"bbox": [337, 199, 436, 213], "score": 1.0, "content": ", use q-dimensions:", "type": "text"}], "index": 6}], "index": 5.5, "page_num": "page_19", "page_size": [612.0, 792.0], "bbox_fs": [70, 183, 542, 213]}, {"type": "interline_equation", "bbox": [205, 225, 405, 257], "lines": [{"bbox": [205, 225, 405, 257], "spans": [{"bbox": [205, 225, 405, 257], "score": 0.92, "content": "\\frac{\\mathcal{D}(\\Lambda_{1}+\\Lambda_{\\ell})}{\\mathcal{D}(\\Lambda_{\\ell+1})}=\\frac{\\sin(2\\pi\\left(k-2\\right)/\\kappa)}{\\sin(2\\pi/\\kappa)}>1\\ ,", "type": "interline_equation"}], "index": 7}], "index": 7, "page_num": "page_19", "page_size": [612.0, 792.0]}, {"type": "text", "bbox": [71, 267, 531, 282], "lines": [{"bbox": [70, 270, 529, 285], "spans": [{"bbox": [70, 270, 195, 285], "score": 1.0, "content": "which is valid for these ", "type": "text"}, {"bbox": [195, 271, 202, 280], "score": 0.85, "content": "k", "type": "inline_equation", "height": 9, "width": 7}, {"bbox": [203, 270, 299, 285], "score": 1.0, "content": ". So we also know ", "type": "text"}, {"bbox": [300, 271, 348, 282], "score": 0.92, "content": "\\pi\\Lambda_{i}=\\Lambda_{i}", "type": "inline_equation", "height": 11, "width": 48}, {"bbox": [348, 270, 386, 285], "score": 1.0, "content": " for all ", "type": "text"}, {"bbox": [386, 270, 434, 282], "score": 0.88, "content": "i\\le r-2", "type": "inline_equation", "height": 12, "width": 48}, {"bbox": [434, 270, 529, 285], "score": 1.0, "content": ", and we are done.", "type": "text"}], "index": 8}], "index": 8, "page_num": "page_19", "page_size": [612.0, 792.0], "bbox_fs": [70, 270, 529, 285]}, {"type": "text", "bbox": [70, 284, 542, 342], "lines": [{"bbox": [94, 286, 540, 302], "spans": [{"bbox": [94, 286, 203, 302], "score": 1.0, "content": "All that remains is ", "type": "text"}, {"bbox": [204, 289, 226, 301], "score": 0.91, "content": "D_{r,2}", "type": "inline_equation", "height": 12, "width": 22}, {"bbox": [226, 286, 299, 302], "score": 1.0, "content": ". Recall the ", "type": "text"}, {"bbox": [299, 288, 310, 298], "score": 0.89, "content": "\\lambda^{i}", "type": "inline_equation", "height": 10, "width": 11}, {"bbox": [311, 286, 374, 302], "score": 1.0, "content": " defined in ", "type": "text"}, {"bbox": [374, 287, 396, 300], "score": 0.3, "content": "\\S3.4", "type": "inline_equation", "height": 13, "width": 22}, {"bbox": [396, 286, 466, 302], "score": 1.0, "content": ". Note that ", "type": "text"}, {"bbox": [466, 288, 537, 301], "score": 0.92, "content": "\\mathcal{D}(\\Lambda_{r})\\;=\\;\\sqrt{r}", "type": "inline_equation", "height": 13, "width": 71}, {"bbox": [537, 286, 540, 302], "score": 1.0, "content": ",", "type": "text"}], "index": 9}, {"bbox": [71, 299, 539, 318], "spans": [{"bbox": [71, 303, 126, 315], "score": 0.93, "content": "\\mathcal{D}(\\lambda^{a})=2", "type": "inline_equation", "height": 12, "width": 55}, {"bbox": [127, 299, 157, 318], "score": 1.0, "content": ", and ", "type": "text"}, {"bbox": [157, 302, 296, 315], "score": 0.91, "content": "S_{\\lambda^{a}\\lambda^{b}}/S_{0\\lambda^{b}}=2\\cos(\\pi a b/r)", "type": "inline_equation", "height": 13, "width": 139}, {"bbox": [296, 299, 326, 318], "score": 1.0, "content": ". For ", "type": "text"}, {"bbox": [327, 303, 356, 315], "score": 0.92, "content": "r\\neq4", "type": "inline_equation", "height": 12, "width": 29}, {"bbox": [356, 299, 484, 318], "score": 1.0, "content": ", the q-dimensions force ", "type": "text"}, {"bbox": [485, 303, 539, 314], "score": 0.89, "content": "\\pi\\Lambda_{1}=\\lambda^{m}", "type": "inline_equation", "height": 11, "width": 54}], "index": 10}, {"bbox": [68, 311, 545, 335], "spans": [{"bbox": [68, 311, 95, 335], "score": 1.0, "content": "and ", "type": "text"}, {"bbox": [96, 315, 160, 329], "score": 0.92, "content": "\\pi^{\\prime}\\Lambda_{1}\\,=\\,\\lambda^{m^{\\prime}}", "type": "inline_equation", "height": 14, "width": 64}, {"bbox": [160, 311, 193, 335], "score": 1.0, "content": ", and ", "type": "text"}, {"bbox": [193, 318, 281, 330], "score": 0.92, "content": "S_{\\Lambda_{1}\\Lambda_{1}}\\,=\\,S_{\\lambda^{m}\\lambda^{m^{\\prime}}}", "type": "inline_equation", "height": 12, "width": 88}, {"bbox": [281, 311, 314, 335], "score": 1.0, "content": " says ", "type": "text"}, {"bbox": [315, 317, 375, 327], "score": 0.89, "content": "m m^{\\prime}\\,\\equiv\\,\\pm1", "type": "inline_equation", "height": 10, "width": 60}, {"bbox": [375, 311, 412, 335], "score": 1.0, "content": " (mod ", "type": "text"}, {"bbox": [412, 316, 425, 327], "score": 0.56, "content": "2r", "type": "inline_equation", "height": 11, "width": 13}, {"bbox": [425, 311, 545, 335], "score": 1.0, "content": "). So without loss of", "type": "text"}], "index": 11}, {"bbox": [70, 329, 442, 346], "spans": [{"bbox": [70, 329, 195, 346], "score": 1.0, "content": "generality we may take ", "type": "text"}, {"bbox": [195, 331, 258, 341], "score": 0.91, "content": "m=m^{\\prime}=1", "type": "inline_equation", "height": 10, "width": 63}, {"bbox": [259, 329, 442, 346], "score": 1.0, "content": ". The rest of the argument is easy.", "type": "text"}], "index": 12}], "index": 10.5, "page_num": "page_19", "page_size": [612.0, 792.0], "bbox_fs": [68, 286, 545, 346]}, {"type": "text", "bbox": [70, 343, 541, 372], "lines": [{"bbox": [92, 343, 542, 361], "spans": [{"bbox": [92, 343, 117, 361], "score": 1.0, "content": "For ", "type": "text"}, {"bbox": [117, 347, 140, 359], "score": 0.92, "content": "D_{4,2}", "type": "inline_equation", "height": 12, "width": 23}, {"bbox": [140, 343, 215, 361], "score": 1.0, "content": ", we can force ", "type": "text"}, {"bbox": [216, 347, 267, 357], "score": 0.94, "content": "\\pi\\Lambda_{1}=\\Lambda_{1}", "type": "inline_equation", "height": 10, "width": 51}, {"bbox": [267, 343, 376, 361], "score": 1.0, "content": ", and then eliminate ", "type": "text"}, {"bbox": [376, 345, 443, 358], "score": 0.91, "content": "\\pi^{\\prime}\\Lambda_{1}=\\Lambda_{r-1}", "type": "inline_equation", "height": 13, "width": 67}, {"bbox": [443, 343, 461, 361], "score": 1.0, "content": " or ", "type": "text"}, {"bbox": [461, 345, 475, 357], "score": 0.89, "content": "\\Lambda_{r}", "type": "inline_equation", "height": 12, "width": 14}, {"bbox": [476, 343, 496, 361], "score": 1.0, "content": " by ", "type": "text"}, {"bbox": [496, 345, 542, 358], "score": 0.89, "content": "S_{\\Lambda_{1}\\Lambda_{1}}\\ne", "type": "inline_equation", "height": 13, "width": 46}], "index": 13}, {"bbox": [71, 358, 389, 375], "spans": [{"bbox": [71, 361, 181, 373], "score": 0.92, "content": "0=S_{\\Lambda_{1}\\Lambda_{r}}=S_{\\Lambda_{1}\\Lambda_{r-1}}", "type": "inline_equation", "height": 12, "width": 110}, {"bbox": [181, 358, 389, 375], "score": 1.0, "content": ". The rest of the argument is as before.", "type": "text"}], "index": 14}], "index": 13.5, "page_num": "page_19", "page_size": [612.0, 792.0], "bbox_fs": [71, 343, 542, 375]}, {"type": "text", "bbox": [72, 385, 321, 399], "lines": [{"bbox": [71, 387, 322, 402], "spans": [{"bbox": [71, 387, 322, 402], "score": 1.0, "content": "4.6. The arguments for the exceptional algebras", "type": "text"}], "index": 15}], "index": 15, "page_num": "page_19", "page_size": [612.0, 792.0], "bbox_fs": [71, 387, 322, 402]}, {"type": "text", "bbox": [70, 406, 540, 436], "lines": [{"bbox": [94, 408, 540, 425], "spans": [{"bbox": [94, 408, 540, 425], "score": 1.0, "content": "The exceptional algebras follow quickly from the fusions (and Dynkin diagram sym-", "type": "text"}], "index": 16}, {"bbox": [71, 424, 213, 439], "spans": [{"bbox": [71, 424, 213, 439], "score": 1.0, "content": "metries) given in \u00a7\u00a73.5-3.9.", "type": "text"}], "index": 17}], "index": 16.5, "page_num": "page_19", "page_size": [612.0, 792.0], "bbox_fs": [71, 408, 540, 439]}, {"type": "text", "bbox": [70, 437, 541, 567], "lines": [{"bbox": [91, 435, 544, 459], "spans": [{"bbox": [91, 435, 211, 459], "score": 1.0, "content": "For example, consider ", "type": "text"}, {"bbox": [212, 438, 234, 454], "score": 0.94, "content": "E_{6}^{(1)}", "type": "inline_equation", "height": 16, "width": 22}, {"bbox": [234, 435, 254, 459], "score": 1.0, "content": "for", "type": "text"}, {"bbox": [255, 442, 284, 452], "score": 0.91, "content": "k\\geq2", "type": "inline_equation", "height": 10, "width": 29}, {"bbox": [284, 435, 414, 459], "score": 1.0, "content": ". Proposition 4.1 tells us ", "type": "text"}, {"bbox": [414, 440, 492, 452], "score": 0.94, "content": "\\pi\\Lambda_{1}=C^{a}J^{b}\\Lambda_{1}", "type": "inline_equation", "height": 12, "width": 78}, {"bbox": [492, 435, 544, 459], "score": 1.0, "content": " for some", "type": "text"}], "index": 18}, {"bbox": [71, 454, 541, 469], "spans": [{"bbox": [71, 456, 89, 467], "score": 0.88, "content": "a,b", "type": "inline_equation", "height": 11, "width": 18}, {"bbox": [89, 454, 170, 469], "score": 1.0, "content": ", and we know ", "type": "text"}, {"bbox": [170, 455, 232, 466], "score": 0.93, "content": "\\pi^{\\prime}J0\\,=\\,J^{c}0", "type": "inline_equation", "height": 11, "width": 62}, {"bbox": [232, 454, 254, 469], "score": 1.0, "content": " for ", "type": "text"}, {"bbox": [255, 457, 293, 466], "score": 0.91, "content": "c=\\pm1", "type": "inline_equation", "height": 9, "width": 38}, {"bbox": [294, 454, 443, 469], "score": 1.0, "content": ". Hence from (2.7b) we get ", "type": "text"}, {"bbox": [443, 456, 489, 468], "score": 0.9, "content": "k b\\not\\equiv-1", "type": "inline_equation", "height": 12, "width": 46}, {"bbox": [489, 454, 541, 469], "score": 1.0, "content": " (mod 3).", "type": "text"}], "index": 19}, {"bbox": [71, 469, 542, 483], "spans": [{"bbox": [71, 469, 113, 483], "score": 1.0, "content": "Hitting ", "type": "text"}, {"bbox": [114, 474, 121, 480], "score": 0.77, "content": "\\pi", "type": "inline_equation", "height": 6, "width": 7}, {"bbox": [121, 469, 153, 483], "score": 1.0, "content": " with ", "type": "text"}, {"bbox": [154, 469, 210, 482], "score": 0.94, "content": "\\pi[-b]^{-1}C^{a}", "type": "inline_equation", "height": 13, "width": 56}, {"bbox": [211, 469, 340, 483], "score": 1.0, "content": ", we need consider only ", "type": "text"}, {"bbox": [340, 470, 394, 481], "score": 0.93, "content": "\\pi\\Lambda_{1}=\\Lambda_{1}", "type": "inline_equation", "height": 11, "width": 54}, {"bbox": [394, 469, 542, 483], "score": 1.0, "content": ". It is now immediate that", "type": "text"}], "index": 20}, {"bbox": [71, 484, 540, 498], "spans": [{"bbox": [71, 485, 122, 496], "score": 0.92, "content": "\\pi\\Lambda_{5}=\\Lambda_{5}", "type": "inline_equation", "height": 11, "width": 51}, {"bbox": [122, 484, 206, 498], "score": 1.0, "content": ", by commuting ", "type": "text"}, {"bbox": [207, 488, 214, 494], "score": 0.88, "content": "\\pi", "type": "inline_equation", "height": 6, "width": 7}, {"bbox": [214, 484, 244, 498], "score": 1.0, "content": " with ", "type": "text"}, {"bbox": [244, 485, 254, 494], "score": 0.9, "content": "C", "type": "inline_equation", "height": 9, "width": 10}, {"bbox": [254, 484, 389, 498], "score": 1.0, "content": ". From (3.6a) we get that ", "type": "text"}, {"bbox": [389, 488, 397, 494], "score": 0.87, "content": "\\pi", "type": "inline_equation", "height": 6, "width": 8}, {"bbox": [397, 484, 476, 498], "score": 1.0, "content": " must permute ", "type": "text"}, {"bbox": [476, 485, 490, 496], "score": 0.91, "content": "\\Lambda_{2}", "type": "inline_equation", "height": 11, "width": 14}, {"bbox": [490, 484, 516, 498], "score": 1.0, "content": " and ", "type": "text"}, {"bbox": [516, 485, 536, 496], "score": 0.9, "content": "2\\Lambda_{1}", "type": "inline_equation", "height": 11, "width": 20}, {"bbox": [536, 484, 540, 498], "score": 1.0, "content": ".", "type": "text"}], "index": 21}, {"bbox": [71, 498, 541, 512], "spans": [{"bbox": [71, 498, 288, 512], "score": 1.0, "content": "Compare (3.6c) with (3.6d): since for any", "type": "text"}, {"bbox": [289, 499, 318, 510], "score": 0.92, "content": "k\\geq2", "type": "inline_equation", "height": 11, "width": 29}, {"bbox": [318, 498, 541, 512], "score": 1.0, "content": " they have different numbers of summands,", "type": "text"}], "index": 22}, {"bbox": [71, 513, 539, 526], "spans": [{"bbox": [71, 513, 180, 526], "score": 1.0, "content": "we find in fact that ", "type": "text"}, {"bbox": [180, 517, 187, 523], "score": 0.86, "content": "\\pi", "type": "inline_equation", "height": 6, "width": 7}, {"bbox": [188, 513, 262, 526], "score": 1.0, "content": " will fix both ", "type": "text"}, {"bbox": [262, 514, 276, 525], "score": 0.89, "content": "\\Lambda_{2}", "type": "inline_equation", "height": 11, "width": 14}, {"bbox": [277, 513, 319, 526], "score": 1.0, "content": " (hence ", "type": "text"}, {"bbox": [320, 514, 334, 525], "score": 0.86, "content": "\\Lambda_{4}", "type": "inline_equation", "height": 11, "width": 14}, {"bbox": [334, 513, 366, 526], "score": 1.0, "content": ") and ", "type": "text"}, {"bbox": [367, 514, 387, 524], "score": 0.89, "content": "2\\Lambda_{1}", "type": "inline_equation", "height": 10, "width": 20}, {"bbox": [387, 513, 532, 526], "score": 1.0, "content": ". From (3.6b) we get that ", "type": "text"}, {"bbox": [532, 517, 539, 523], "score": 0.82, "content": "\\pi", "type": "inline_equation", "height": 6, "width": 7}], "index": 23}, {"bbox": [70, 526, 541, 541], "spans": [{"bbox": [70, 526, 122, 541], "score": 1.0, "content": "permutes ", "type": "text"}, {"bbox": [122, 528, 136, 538], "score": 0.92, "content": "\\Lambda_{6}", "type": "inline_equation", "height": 10, "width": 14}, {"bbox": [137, 526, 162, 541], "score": 1.0, "content": " and ", "type": "text"}, {"bbox": [162, 528, 203, 539], "score": 0.93, "content": "\\Lambda_{1}+\\Lambda_{5}", "type": "inline_equation", "height": 11, "width": 41}, {"bbox": [203, 526, 345, 541], "score": 1.0, "content": ", and so (3.6d) now tells us ", "type": "text"}, {"bbox": [345, 528, 396, 539], "score": 0.92, "content": "\\pi\\Lambda_{6}=\\Lambda_{6}", "type": "inline_equation", "height": 11, "width": 51}, {"bbox": [396, 526, 541, 541], "score": 1.0, "content": ". Finally, (3.6c) implies (for", "type": "text"}], "index": 24}, {"bbox": [71, 540, 540, 555], "spans": [{"bbox": [71, 542, 101, 553], "score": 0.88, "content": "k\\geq3", "type": "inline_equation", "height": 11, "width": 30}, {"bbox": [101, 540, 108, 555], "score": 1.0, "content": ") ", "type": "text"}, {"bbox": [109, 542, 160, 553], "score": 0.92, "content": "\\pi\\Lambda_{3}=\\Lambda_{3}", "type": "inline_equation", "height": 11, "width": 51}, {"bbox": [160, 540, 198, 555], "score": 1.0, "content": " (since ", "type": "text"}, {"bbox": [198, 542, 248, 551], "score": 0.88, "content": "C\\pi=\\pi C", "type": "inline_equation", "height": 9, "width": 50}, {"bbox": [249, 540, 367, 555], "score": 1.0, "content": "), and we are done for", "type": "text"}, {"bbox": [368, 542, 398, 553], "score": 0.9, "content": "k\\geq3", "type": "inline_equation", "height": 11, "width": 30}, {"bbox": [398, 540, 437, 555], "score": 1.0, "content": ". Since ", "type": "text"}, {"bbox": [438, 542, 540, 554], "score": 0.93, "content": "\\{\\Lambda_{1},\\Lambda_{2},\\Lambda_{4},\\Lambda_{5},\\Lambda_{6}\\}", "type": "inline_equation", "height": 12, "width": 102}], "index": 25}, {"bbox": [69, 555, 431, 569], "spans": [{"bbox": [69, 555, 199, 569], "score": 1.0, "content": "is a fusion-generator for ", "type": "text"}, {"bbox": [200, 557, 228, 565], "score": 0.91, "content": "k=2", "type": "inline_equation", "height": 8, "width": 28}, {"bbox": [229, 555, 255, 569], "score": 1.0, "content": " (see ", "type": "text"}, {"bbox": [256, 555, 280, 568], "score": 0.39, "content": "\\S2.2)", "type": "inline_equation", "height": 13, "width": 24}, {"bbox": [280, 555, 397, 569], "score": 1.0, "content": ", we are also done for ", "type": "text"}, {"bbox": [397, 556, 426, 566], "score": 0.9, "content": "k=2", "type": "inline_equation", "height": 10, "width": 29}, {"bbox": [426, 555, 431, 569], "score": 1.0, "content": ".", "type": "text"}], "index": 26}], "index": 22, "page_num": "page_19", "page_size": [612.0, 792.0], "bbox_fs": [69, 435, 544, 569]}, {"type": "text", "bbox": [70, 569, 542, 687], "lines": [{"bbox": [89, 564, 545, 589], "spans": [{"bbox": [89, 564, 117, 589], "score": 1.0, "content": "For ", "type": "text"}, {"bbox": [117, 569, 139, 585], "score": 0.94, "content": "{E}_{8}^{(1)}", "type": "inline_equation", "height": 16, "width": 22}, {"bbox": [140, 564, 174, 589], "score": 1.0, "content": "when ", "type": "text"}, {"bbox": [175, 573, 205, 584], "score": 0.91, "content": "k\\geq7", "type": "inline_equation", "height": 11, "width": 30}, {"bbox": [205, 564, 313, 589], "score": 1.0, "content": ", (3.7a) tells us that ", "type": "text"}, {"bbox": [313, 571, 372, 585], "score": 0.91, "content": "\\Lambda_{2},\\Lambda_{7},2\\Lambda_{1}", "type": "inline_equation", "height": 14, "width": 59}, {"bbox": [372, 564, 508, 589], "score": 1.0, "content": " are permuted. For those ", "type": "text"}, {"bbox": [508, 573, 515, 582], "score": 0.82, "content": "k", "type": "inline_equation", "height": 9, "width": 7}, {"bbox": [516, 564, 545, 589], "score": 1.0, "content": ", the", "type": "text"}], "index": 27}, {"bbox": [71, 586, 541, 601], "spans": [{"bbox": [71, 586, 417, 601], "score": 1.0, "content": "highest multiplicities in (3.7b)\u2013(3.7d) are 3, 1, 2, respectively, so ", "type": "text"}, {"bbox": [417, 586, 475, 599], "score": 0.91, "content": "\\Lambda_{2},\\Lambda_{7},2\\Lambda_{1}", "type": "inline_equation", "height": 13, "width": 58}, {"bbox": [476, 586, 541, 601], "score": 1.0, "content": " must all be", "type": "text"}], "index": 28}, {"bbox": [70, 600, 541, 615], "spans": [{"bbox": [70, 600, 336, 615], "score": 1.0, "content": "fixed. The fusion product (3.7c) also tells us that ", "type": "text"}, {"bbox": [337, 600, 462, 613], "score": 0.92, "content": "\\Lambda_{3},\\Lambda_{6},\\Lambda_{8},\\Lambda_{1}+\\Lambda_{7},2\\Lambda_{7}", "type": "inline_equation", "height": 13, "width": 125}, {"bbox": [462, 600, 541, 615], "score": 1.0, "content": " are permuted;", "type": "text"}], "index": 29}, {"bbox": [71, 614, 541, 630], "spans": [{"bbox": [71, 615, 227, 630], "score": 1.0, "content": "(3.7d) then says that the sets ", "type": "text"}, {"bbox": [227, 615, 272, 628], "score": 0.91, "content": "\\{\\Lambda_{6},\\Lambda_{8}\\}", "type": "inline_equation", "height": 13, "width": 45}, {"bbox": [273, 615, 279, 630], "score": 1.0, "content": ", ", "type": "text"}, {"bbox": [279, 615, 376, 628], "score": 0.91, "content": "\\{\\Lambda_{3},\\Lambda_{1}+\\Lambda_{7},2\\Lambda_{7}\\}", "type": "inline_equation", "height": 13, "width": 97}, {"bbox": [377, 615, 406, 630], "score": 1.0, "content": ", and ", "type": "text"}, {"bbox": [406, 614, 541, 628], "score": 0.9, "content": "\\{2\\Lambda_{2},\\Lambda_{2}+\\Lambda_{7},3\\Lambda_{1},2\\Lambda_{1}+", "type": "inline_equation", "height": 14, "width": 135}], "index": 30}, {"bbox": [71, 629, 541, 643], "spans": [{"bbox": [71, 630, 171, 642], "score": 0.9, "content": "\\Lambda_{2},2\\Lambda_{1}+\\Lambda_{7},4\\Lambda_{1}\\right\\}", "type": "inline_equation", "height": 12, "width": 100}, {"bbox": [171, 630, 359, 643], "score": 1.0, "content": " are stabilised. Now (3.7b) implies ", "type": "text"}, {"bbox": [360, 629, 437, 642], "score": 0.91, "content": "\\Lambda_{3},\\Lambda_{6},\\Lambda_{8},2\\Lambda_{7}", "type": "inline_equation", "height": 13, "width": 77}, {"bbox": [437, 630, 541, 643], "score": 1.0, "content": " are all fixed, while", "type": "text"}], "index": 31}, {"bbox": [70, 643, 541, 659], "spans": [{"bbox": [70, 644, 111, 659], "score": 1.0, "content": "the set ", "type": "text"}, {"bbox": [111, 644, 186, 657], "score": 0.92, "content": "\\{\\Lambda_{4},\\Lambda_{1}+\\Lambda_{3}\\}", "type": "inline_equation", "height": 13, "width": 75}, {"bbox": [186, 644, 323, 659], "score": 1.0, "content": " is stabilised. Comparing ", "type": "text"}, {"bbox": [324, 643, 353, 657], "score": 0.25, "content": "(3.7\\mathrm{e})", "type": "inline_equation", "height": 14, "width": 29}, {"bbox": [354, 644, 483, 659], "score": 1.0, "content": " and (3.7f), we get that ", "type": "text"}, {"bbox": [483, 643, 497, 656], "score": 0.87, "content": "\\Lambda_{4}", "type": "inline_equation", "height": 13, "width": 14}, {"bbox": [498, 644, 541, 659], "score": 1.0, "content": " is fixed", "type": "text"}], "index": 32}, {"bbox": [66, 656, 540, 680], "spans": [{"bbox": [66, 656, 95, 680], "score": 1.0, "content": "and ", "type": "text"}, {"bbox": [95, 662, 157, 673], "score": 0.92, "content": "\\Lambda_{5},\\Lambda_{7}+\\Lambda_{8}", "type": "inline_equation", "height": 11, "width": 62}, {"bbox": [158, 656, 287, 680], "score": 1.0, "content": " are permuted. Finally, ", "type": "text"}, {"bbox": [288, 660, 318, 673], "score": 0.49, "content": "\\left(3.7\\mathrm{g}\\right)", "type": "inline_equation", "height": 13, "width": 30}, {"bbox": [319, 656, 357, 680], "score": 1.0, "content": " shows ", "type": "text"}, {"bbox": [357, 660, 371, 672], "score": 0.88, "content": "\\Lambda_{5}", "type": "inline_equation", "height": 12, "width": 14}, {"bbox": [372, 656, 484, 680], "score": 1.0, "content": " also is fixed. To do ", "type": "text"}, {"bbox": [484, 658, 507, 674], "score": 0.93, "content": "{E}_{8}^{(1)}", "type": "inline_equation", "height": 16, "width": 23}, {"bbox": [508, 656, 540, 680], "score": 1.0, "content": "when", "type": "text"}], "index": 33}, {"bbox": [71, 674, 348, 691], "spans": [{"bbox": [71, 676, 100, 687], "score": 0.91, "content": "k\\leq6", "type": "inline_equation", "height": 11, "width": 29}, {"bbox": [100, 674, 348, 691], "score": 1.0, "content": ", knowing q-dimensions really simplifies things.", "type": "text"}], "index": 34}], "index": 30.5, "page_num": "page_19", "page_size": [612.0, 792.0], "bbox_fs": [66, 564, 545, 691]}]} |
|
0002044v1 | 22 | 8. M. Finkelberg, An equivalence of fusion categories, Geom. Func. Anal. 6 (1996),
249–267.
9. I. B. Frenkel, Representations of affine Lie algebras, Hecke modular forms and
Korteg-de Vries type equations, in: “Lie algebras and related topics”, Lecture Notes
in Math, Vol. 933, Springer-Verlag, New York, 1982.
10. I. B. Frenkel, Y.-Z. Huang and J. Lepowsky, “On axiomatic approaches to
vertex operator algebras and modules”, Memoirs Amer. Math. Soc. 104 (1993).
11. J. Fr¨ohlich and T. Kerler, “Quantum groups, quantum categories and quantum
field theory”, Lecture Notes in Mathematics, Vol. 1542, Springer-Verlag, Berlin, 1993.
12. J. Fuchs, Simple WZW currents, Commun. Math. Phys. 136 (1991), 345–356.
13. J. Fuchs, B. Gato-Rivera, A. N. Schellekens and C. Schweigert, Modular
invariants and fusion automorphisms from Galois theory, Phys. Lett. B334 (1994),
113–120.
14. J. Fuchs and P. van Driel, WZW fusion rules, quantum groups, and the modular
matrix $$S$$ , Nucl. Phys. B346 (1990), 632–648.
15. J. Fuchs and P. van Driel, Fusion rule engineering, Lett. Math. Phys. 23 (1991),
11–18.
16. T. Gannon, WZW commutants, lattices, and level-one partition functions, Nucl.
Phys. B396 (1993), 708–736;
P. Ruelle, E. Thiran and J. Weyers, Implications of an arithmetical symmetry
of the commutant for modular invariants, Nucl. Phys. B402 (1993), 693–708.
17. T. Gannon, Symmetries of the Kac-Peterson modular matrices of affine algebras,
Invent. math. 122 (1995), 341–357.
18. T. Gannon, Ph. Ruelle and M. A. Walton, Automorphism modular invariants
of current algebras, Commun. Math. Phys. 179 (1996), 121–156.
19. G. Georgiev and O. Mathieu, Cat´egorie de fusion pour les groupes de Chevalley,
C. R. Acad. Sci. Paris 315 (1992), 659–662.
20. F. M. Goodman and H. Wenzl, Littlewood-Richardson coefficients for Hecke alge-
bras at roots of unity, Adv. Math. 82 (1990), 244–265.
21. Y.-Z. Huang and J. Lepowsky, Intertwining operator algebras and vertex tensor
categories for affine Lie algebras, Duke Math. J. 99 (1999), 113–134.
22. V. G. Kac, Simple Lie groups and the Legendre symbol, in: “Lie algebras, group
theory, and partially ordered algebraic structures”, Lecture Notes in Math, Vol. 848,
Springer-Verlag, Berlin, 1981.
23. V. G. Kac, “Infinite Dimensional Lie algebras”, 3rd edition, Cambridge University
Press, Cambridge, 1990.
24. V. G. Kac and D. H. Peterson, Infinite-dimensional Lie algebras, theta functions
and modular forms, Adv. Math. 53 (1984), 125–264.
25. V. G. Kac and M. Wakimoto, Modular and conformal constraints in representation
theory of affine algebras, Adv. Math. 70 (1988), 156–236.
26. G. Lusztig, Exotic Fourier transform, Duke Math. J. 73 (1994), 227–241.
27. I. G. Macdonald, “Symmetric functions and Hall polynomials”, 2nd edition, Oxford
University Press, New York, 1995.
| <p>8. M. Finkelberg, An equivalence of fusion categories, Geom. Func. Anal. 6 (1996),
249–267.
9. I. B. Frenkel, Representations of affine Lie algebras, Hecke modular forms and
Korteg-de Vries type equations, in: “Lie algebras and related topics”, Lecture Notes
in Math, Vol. 933, Springer-Verlag, New York, 1982.
10. I. B. Frenkel, Y.-Z. Huang and J. Lepowsky, “On axiomatic approaches to
vertex operator algebras and modules”, Memoirs Amer. Math. Soc. 104 (1993).
11. J. Fr¨ohlich and T. Kerler, “Quantum groups, quantum categories and quantum
field theory”, Lecture Notes in Mathematics, Vol. 1542, Springer-Verlag, Berlin, 1993.
12. J. Fuchs, Simple WZW currents, Commun. Math. Phys. 136 (1991), 345–356.
13. J. Fuchs, B. Gato-Rivera, A. N. Schellekens and C. Schweigert, Modular
invariants and fusion automorphisms from Galois theory, Phys. Lett. B334 (1994),
113–120.
14. J. Fuchs and P. van Driel, WZW fusion rules, quantum groups, and the modular
matrix $$S$$ , Nucl. Phys. B346 (1990), 632–648.
15. J. Fuchs and P. van Driel, Fusion rule engineering, Lett. Math. Phys. 23 (1991),
11–18.
16. T. Gannon, WZW commutants, lattices, and level-one partition functions, Nucl.
Phys. B396 (1993), 708–736;
P. Ruelle, E. Thiran and J. Weyers, Implications of an arithmetical symmetry
of the commutant for modular invariants, Nucl. Phys. B402 (1993), 693–708.
17. T. Gannon, Symmetries of the Kac-Peterson modular matrices of affine algebras,
Invent. math. 122 (1995), 341–357.
18. T. Gannon, Ph. Ruelle and M. A. Walton, Automorphism modular invariants
of current algebras, Commun. Math. Phys. 179 (1996), 121–156.
19. G. Georgiev and O. Mathieu, Cat´egorie de fusion pour les groupes de Chevalley,
C. R. Acad. Sci. Paris 315 (1992), 659–662.
20. F. M. Goodman and H. Wenzl, Littlewood-Richardson coefficients for Hecke alge-
bras at roots of unity, Adv. Math. 82 (1990), 244–265.
21. Y.-Z. Huang and J. Lepowsky, Intertwining operator algebras and vertex tensor
categories for affine Lie algebras, Duke Math. J. 99 (1999), 113–134.
22. V. G. Kac, Simple Lie groups and the Legendre symbol, in: “Lie algebras, group
theory, and partially ordered algebraic structures”, Lecture Notes in Math, Vol. 848,
Springer-Verlag, Berlin, 1981.
23. V. G. Kac, “Infinite Dimensional Lie algebras”, 3rd edition, Cambridge University
Press, Cambridge, 1990.
24. V. G. Kac and D. H. Peterson, Infinite-dimensional Lie algebras, theta functions
and modular forms, Adv. Math. 53 (1984), 125–264.
25. V. G. Kac and M. Wakimoto, Modular and conformal constraints in representation
theory of affine algebras, Adv. Math. 70 (1988), 156–236.
26. G. Lusztig, Exotic Fourier transform, Duke Math. J. 73 (1994), 227–241.
27. I. G. Macdonald, “Symmetric functions and Hall polynomials”, 2nd edition, Oxford
University Press, New York, 1995.</p>
| [{"type": "text", "coordinates": [72, 70, 543, 716], "content": "8. M. Finkelberg, An equivalence of fusion categories, Geom. Func. Anal. 6 (1996),\n249\u2013267.\n9. I. B. Frenkel, Representations of affine Lie algebras, Hecke modular forms and\nKorteg-de Vries type equations, in: \u201cLie algebras and related topics\u201d, Lecture Notes\nin Math, Vol. 933, Springer-Verlag, New York, 1982.\n10. I. B. Frenkel, Y.-Z. Huang and J. Lepowsky, \u201cOn axiomatic approaches to\nvertex operator algebras and modules\u201d, Memoirs Amer. Math. Soc. 104 (1993).\n11. J. Fr\u00a8ohlich and T. Kerler, \u201cQuantum groups, quantum categories and quantum\nfield theory\u201d, Lecture Notes in Mathematics, Vol. 1542, Springer-Verlag, Berlin, 1993.\n12. J. Fuchs, Simple WZW currents, Commun. Math. Phys. 136 (1991), 345\u2013356.\n13. J. Fuchs, B. Gato-Rivera, A. N. Schellekens and C. Schweigert, Modular\ninvariants and fusion automorphisms from Galois theory, Phys. Lett. B334 (1994),\n113\u2013120.\n14. J. Fuchs and P. van Driel, WZW fusion rules, quantum groups, and the modular\nmatrix $$S$$ , Nucl. Phys. B346 (1990), 632\u2013648.\n15. J. Fuchs and P. van Driel, Fusion rule engineering, Lett. Math. Phys. 23 (1991),\n11\u201318.\n16. T. Gannon, WZW commutants, lattices, and level-one partition functions, Nucl.\nPhys. B396 (1993), 708\u2013736;\nP. Ruelle, E. Thiran and J. Weyers, Implications of an arithmetical symmetry\nof the commutant for modular invariants, Nucl. Phys. B402 (1993), 693\u2013708.\n17. T. Gannon, Symmetries of the Kac-Peterson modular matrices of affine algebras,\nInvent. math. 122 (1995), 341\u2013357.\n18. T. Gannon, Ph. Ruelle and M. A. Walton, Automorphism modular invariants\nof current algebras, Commun. Math. Phys. 179 (1996), 121\u2013156.\n19. G. Georgiev and O. Mathieu, Cat\u00b4egorie de fusion pour les groupes de Chevalley,\nC. R. Acad. Sci. Paris 315 (1992), 659\u2013662.\n20. F. M. Goodman and H. Wenzl, Littlewood-Richardson coefficients for Hecke alge-\nbras at roots of unity, Adv. Math. 82 (1990), 244\u2013265.\n21. Y.-Z. Huang and J. Lepowsky, Intertwining operator algebras and vertex tensor\ncategories for affine Lie algebras, Duke Math. J. 99 (1999), 113\u2013134.\n22. V. G. Kac, Simple Lie groups and the Legendre symbol, in: \u201cLie algebras, group\ntheory, and partially ordered algebraic structures\u201d, Lecture Notes in Math, Vol. 848,\nSpringer-Verlag, Berlin, 1981.\n23. V. G. Kac, \u201cInfinite Dimensional Lie algebras\u201d, 3rd edition, Cambridge University\nPress, Cambridge, 1990.\n24. V. G. Kac and D. H. Peterson, Infinite-dimensional Lie algebras, theta functions\nand modular forms, Adv. Math. 53 (1984), 125\u2013264.\n25. V. G. Kac and M. Wakimoto, Modular and conformal constraints in representation\ntheory of affine algebras, Adv. Math. 70 (1988), 156\u2013236.\n26. G. Lusztig, Exotic Fourier transform, Duke Math. J. 73 (1994), 227\u2013241.\n27. I. G. Macdonald, \u201cSymmetric functions and Hall polynomials\u201d, 2nd edition, Oxford\nUniversity Press, New York, 1995.", "block_type": "text", "index": 1}] | [{"type": "text", "coordinates": [78, 74, 541, 90], "content": "8. M. Finkelberg, An equivalence of fusion categories, Geom. Func. Anal. 6 (1996),", "score": 1.0, "index": 1}, {"type": "text", "coordinates": [94, 89, 142, 102], "content": "249\u2013267.", "score": 1.0, "index": 2}, {"type": "text", "coordinates": [78, 103, 540, 118], "content": "9. I. B. Frenkel, Representations of affine Lie algebras, Hecke modular forms and", "score": 1.0, "index": 3}, {"type": "text", "coordinates": [94, 118, 541, 133], "content": "Korteg-de Vries type equations, in: \u201cLie algebras and related topics\u201d, Lecture Notes", "score": 1.0, "index": 4}, {"type": "text", "coordinates": [93, 132, 372, 147], "content": "in Math, Vol. 933, Springer-Verlag, New York, 1982.", "score": 1.0, "index": 5}, {"type": "text", "coordinates": [72, 147, 542, 164], "content": "10. I. B. Frenkel, Y.-Z. Huang and J. Lepowsky, \u201cOn axiomatic approaches to", "score": 1.0, "index": 6}, {"type": "text", "coordinates": [94, 163, 517, 178], "content": "vertex operator algebras and modules\u201d, Memoirs Amer. Math. Soc. 104 (1993).", "score": 1.0, "index": 7}, {"type": "text", "coordinates": [72, 177, 541, 194], "content": "11. J. Fr\u00a8ohlich and T. Kerler, \u201cQuantum groups, quantum categories and quantum", "score": 1.0, "index": 8}, {"type": "text", "coordinates": [93, 192, 540, 208], "content": "field theory\u201d, Lecture Notes in Mathematics, Vol. 1542, Springer-Verlag, Berlin, 1993.", "score": 1.0, "index": 9}, {"type": "text", "coordinates": [72, 207, 514, 223], "content": "12. J. Fuchs, Simple WZW currents, Commun. Math. Phys. 136 (1991), 345\u2013356.", "score": 1.0, "index": 10}, {"type": "text", "coordinates": [73, 223, 541, 239], "content": "13. J. Fuchs, B. Gato-Rivera, A. N. Schellekens and C. Schweigert, Modular", "score": 1.0, "index": 11}, {"type": "text", "coordinates": [91, 236, 542, 255], "content": "invariants and fusion automorphisms from Galois theory, Phys. Lett. B334 (1994),", "score": 1.0, "index": 12}, {"type": "text", "coordinates": [94, 253, 143, 267], "content": "113\u2013120.", "score": 1.0, "index": 13}, {"type": "text", "coordinates": [70, 266, 542, 285], "content": "14. J. Fuchs and P. van Driel, WZW fusion rules, quantum groups, and the modular", "score": 1.0, "index": 14}, {"type": "text", "coordinates": [94, 282, 134, 296], "content": "matrix ", "score": 1.0, "index": 15}, {"type": "inline_equation", "coordinates": [134, 284, 142, 293], "content": "S", "score": 0.76, "index": 16}, {"type": "text", "coordinates": [143, 282, 336, 296], "content": ", Nucl. Phys. B346 (1990), 632\u2013648.", "score": 1.0, "index": 17}, {"type": "text", "coordinates": [71, 296, 542, 315], "content": "15. J. Fuchs and P. van Driel, Fusion rule engineering, Lett. Math. Phys. 23 (1991),", "score": 1.0, "index": 18}, {"type": "text", "coordinates": [93, 312, 132, 327], "content": "11\u201318.", "score": 1.0, "index": 19}, {"type": "text", "coordinates": [71, 326, 542, 344], "content": "16. T. Gannon, WZW commutants, lattices, and level-one partition functions, Nucl.", "score": 1.0, "index": 20}, {"type": "text", "coordinates": [95, 342, 252, 358], "content": "Phys. B396 (1993), 708\u2013736;", "score": 1.0, "index": 21}, {"type": "text", "coordinates": [92, 356, 541, 375], "content": "P. Ruelle, E. Thiran and J. Weyers, Implications of an arithmetical symmetry", "score": 1.0, "index": 22}, {"type": "text", "coordinates": [93, 371, 503, 388], "content": "of the commutant for modular invariants, Nucl. Phys. B402 (1993), 693\u2013708.", "score": 1.0, "index": 23}, {"type": "text", "coordinates": [71, 386, 541, 406], "content": "17. T. Gannon, Symmetries of the Kac-Peterson modular matrices of affine algebras,", "score": 1.0, "index": 24}, {"type": "text", "coordinates": [93, 401, 284, 417], "content": "Invent. math. 122 (1995), 341\u2013357.", "score": 1.0, "index": 25}, {"type": "text", "coordinates": [72, 417, 542, 434], "content": "18. T. Gannon, Ph. Ruelle and M. A. Walton, Automorphism modular invariants", "score": 1.0, "index": 26}, {"type": "text", "coordinates": [94, 432, 437, 448], "content": "of current algebras, Commun. Math. Phys. 179 (1996), 121\u2013156.", "score": 1.0, "index": 27}, {"type": "text", "coordinates": [72, 447, 540, 465], "content": "19. G. Georgiev and O. Mathieu, Cat\u00b4egorie de fusion pour les groupes de Chevalley,", "score": 1.0, "index": 28}, {"type": "text", "coordinates": [93, 461, 329, 478], "content": "C. R. Acad. Sci. Paris 315 (1992), 659\u2013662.", "score": 1.0, "index": 29}, {"type": "text", "coordinates": [72, 477, 540, 494], "content": "20. F. M. Goodman and H. Wenzl, Littlewood-Richardson coefficients for Hecke alge-", "score": 1.0, "index": 30}, {"type": "text", "coordinates": [94, 493, 383, 507], "content": "bras at roots of unity, Adv. Math. 82 (1990), 244\u2013265.", "score": 1.0, "index": 31}, {"type": "text", "coordinates": [70, 506, 542, 525], "content": "21. Y.-Z. Huang and J. Lepowsky, Intertwining operator algebras and vertex tensor", "score": 1.0, "index": 32}, {"type": "text", "coordinates": [94, 523, 456, 538], "content": "categories for affine Lie algebras, Duke Math. J. 99 (1999), 113\u2013134.", "score": 1.0, "index": 33}, {"type": "text", "coordinates": [71, 536, 542, 555], "content": "22. V. G. Kac, Simple Lie groups and the Legendre symbol, in: \u201cLie algebras, group", "score": 1.0, "index": 34}, {"type": "text", "coordinates": [93, 552, 540, 567], "content": "theory, and partially ordered algebraic structures\u201d, Lecture Notes in Math, Vol. 848,", "score": 1.0, "index": 35}, {"type": "text", "coordinates": [94, 567, 253, 582], "content": "Springer-Verlag, Berlin, 1981.", "score": 1.0, "index": 36}, {"type": "text", "coordinates": [71, 580, 542, 600], "content": "23. V. G. Kac, \u201cInfinite Dimensional Lie algebras\u201d, 3rd edition, Cambridge University", "score": 1.0, "index": 37}, {"type": "text", "coordinates": [92, 596, 224, 612], "content": "Press, Cambridge, 1990.", "score": 1.0, "index": 38}, {"type": "text", "coordinates": [72, 612, 542, 628], "content": "24. V. G. Kac and D. H. Peterson, Infinite-dimensional Lie algebras, theta functions", "score": 1.0, "index": 39}, {"type": "text", "coordinates": [94, 628, 371, 641], "content": "and modular forms, Adv. Math. 53 (1984), 125\u2013264.", "score": 1.0, "index": 40}, {"type": "text", "coordinates": [72, 641, 541, 658], "content": "25. V. G. Kac and M. Wakimoto, Modular and conformal constraints in representation", "score": 1.0, "index": 41}, {"type": "text", "coordinates": [94, 657, 398, 672], "content": "theory of affine algebras, Adv. Math. 70 (1988), 156\u2013236.", "score": 1.0, "index": 42}, {"type": "text", "coordinates": [73, 672, 489, 688], "content": "26. G. Lusztig, Exotic Fourier transform, Duke Math. J. 73 (1994), 227\u2013241.", "score": 1.0, "index": 43}, {"type": "text", "coordinates": [71, 686, 542, 704], "content": "27. I. G. Macdonald, \u201cSymmetric functions and Hall polynomials\u201d, 2nd edition, Oxford", "score": 1.0, "index": 44}, {"type": "text", "coordinates": [94, 702, 276, 718], "content": "University Press, New York, 1995.", "score": 1.0, "index": 45}] | [] | [{"type": "inline", "coordinates": [134, 284, 142, 293], "content": "S", "caption": ""}] | [] | [612.0, 792.0] | [{"type": "text", "text": "", "page_idx": 22}] | [{"category_id": 1, "poly": [201, 195, 1510, 195, 1510, 1989, 201, 1989], "score": 0.943}, {"category_id": 2, "poly": [830, 2031, 869, 2031, 869, 2063, 830, 2063], "score": 0.836}, {"category_id": 13, "poly": [374, 791, 397, 791, 397, 816, 374, 816], "score": 0.76, "latex": "S"}, {"category_id": 15, "poly": [219.0, 206.0, 1504.0, 206.0, 1504.0, 250.0, 219.0, 250.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [263.0, 248.0, 397.0, 248.0, 397.0, 285.0, 263.0, 285.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [219.0, 287.0, 1502.0, 287.0, 1502.0, 330.0, 219.0, 330.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [263.0, 328.0, 1504.0, 328.0, 1504.0, 372.0, 263.0, 372.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [259.0, 368.0, 1036.0, 368.0, 1036.0, 411.0, 259.0, 411.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [201.0, 409.0, 1506.0, 409.0, 1506.0, 457.0, 201.0, 457.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [263.0, 453.0, 1438.0, 453.0, 1438.0, 496.0, 263.0, 496.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [201.0, 494.0, 1504.0, 494.0, 1504.0, 540.0, 201.0, 540.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [261.0, 536.0, 1502.0, 536.0, 1502.0, 579.0, 261.0, 579.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [201.0, 575.0, 1430.0, 575.0, 1430.0, 622.0, 201.0, 622.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [203.0, 622.0, 1504.0, 622.0, 1504.0, 666.0, 203.0, 666.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [255.0, 658.0, 1506.0, 658.0, 1506.0, 709.0, 255.0, 709.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [263.0, 703.0, 399.0, 703.0, 399.0, 743.0, 263.0, 743.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [197.0, 741.0, 1506.0, 741.0, 1506.0, 792.0, 197.0, 792.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [263.0, 786.0, 373.0, 786.0, 373.0, 824.0, 263.0, 824.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [398.0, 786.0, 936.0, 786.0, 936.0, 824.0, 398.0, 824.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [199.0, 824.0, 1506.0, 824.0, 1506.0, 877.0, 199.0, 877.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [259.0, 869.0, 367.0, 869.0, 367.0, 909.0, 259.0, 909.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [199.0, 907.0, 1506.0, 907.0, 1506.0, 958.0, 199.0, 958.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [265.0, 950.0, 701.0, 950.0, 701.0, 995.0, 265.0, 995.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [257.0, 989.0, 1504.0, 989.0, 1504.0, 1043.0, 257.0, 1043.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [259.0, 1033.0, 1398.0, 1033.0, 1398.0, 1078.0, 259.0, 1078.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [199.0, 1074.0, 1504.0, 1074.0, 1504.0, 1128.0, 199.0, 1128.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [261.0, 1116.0, 790.0, 1116.0, 790.0, 1161.0, 261.0, 1161.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [201.0, 1159.0, 1506.0, 1159.0, 1506.0, 1206.0, 201.0, 1206.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [263.0, 1202.0, 1214.0, 1202.0, 1214.0, 1246.0, 263.0, 1246.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [201.0, 1242.0, 1502.0, 1242.0, 1502.0, 1293.0, 201.0, 1293.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [259.0, 1283.0, 916.0, 1283.0, 916.0, 1329.0, 259.0, 1329.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [201.0, 1327.0, 1502.0, 1327.0, 1502.0, 1374.0, 201.0, 1374.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [263.0, 1372.0, 1064.0, 1372.0, 1064.0, 1410.0, 263.0, 1410.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [197.0, 1408.0, 1506.0, 1408.0, 1506.0, 1459.0, 197.0, 1459.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [263.0, 1453.0, 1268.0, 1453.0, 1268.0, 1496.0, 263.0, 1496.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [199.0, 1491.0, 1506.0, 1491.0, 1506.0, 1542.0, 199.0, 1542.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [261.0, 1534.0, 1502.0, 1534.0, 1502.0, 1577.0, 261.0, 1577.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [263.0, 1575.0, 703.0, 1575.0, 703.0, 1619.0, 263.0, 1619.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [199.0, 1613.0, 1506.0, 1613.0, 1506.0, 1668.0, 199.0, 1668.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [257.0, 1656.0, 623.0, 1656.0, 623.0, 1702.0, 257.0, 1702.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [201.0, 1700.0, 1506.0, 1700.0, 1506.0, 1747.0, 201.0, 1747.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [263.0, 1745.0, 1032.0, 1745.0, 1032.0, 1783.0, 263.0, 1783.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [201.0, 1782.0, 1504.0, 1782.0, 1504.0, 1830.0, 201.0, 1830.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [263.0, 1826.0, 1106.0, 1826.0, 1106.0, 1869.0, 263.0, 1869.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [203.0, 1869.0, 1360.0, 1869.0, 1360.0, 1913.0, 203.0, 1913.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [199.0, 1907.0, 1506.0, 1907.0, 1506.0, 1958.0, 199.0, 1958.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [263.0, 1952.0, 767.0, 1952.0, 767.0, 1996.0, 263.0, 1996.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [829.0, 2033.0, 872.0, 2033.0, 872.0, 2070.0, 829.0, 2070.0], "score": 1.0, "text": ""}] | {"preproc_blocks": [{"type": "text", "bbox": [72, 70, 543, 716], "lines": [{"bbox": [78, 74, 541, 90], "spans": [{"bbox": [78, 74, 541, 90], "score": 1.0, "content": "8. M. Finkelberg, An equivalence of fusion categories, Geom. Func. Anal. 6 (1996),", "type": "text"}], "index": 0}, {"bbox": [94, 89, 142, 102], "spans": [{"bbox": [94, 89, 142, 102], "score": 1.0, "content": "249\u2013267.", "type": "text"}], "index": 1}, {"bbox": [78, 103, 540, 118], "spans": [{"bbox": [78, 103, 540, 118], "score": 1.0, "content": "9. I. B. Frenkel, Representations of affine Lie algebras, Hecke modular forms and", "type": "text"}], "index": 2}, {"bbox": [94, 118, 541, 133], "spans": [{"bbox": [94, 118, 541, 133], "score": 1.0, "content": "Korteg-de Vries type equations, in: \u201cLie algebras and related topics\u201d, Lecture Notes", "type": "text"}], "index": 3}, {"bbox": [93, 132, 372, 147], "spans": [{"bbox": [93, 132, 372, 147], "score": 1.0, "content": "in Math, Vol. 933, Springer-Verlag, New York, 1982.", "type": "text"}], "index": 4}, {"bbox": [72, 147, 542, 164], "spans": [{"bbox": [72, 147, 542, 164], "score": 1.0, "content": "10. I. B. Frenkel, Y.-Z. Huang and J. Lepowsky, \u201cOn axiomatic approaches to", "type": "text"}], "index": 5}, {"bbox": [94, 163, 517, 178], "spans": [{"bbox": [94, 163, 517, 178], "score": 1.0, "content": "vertex operator algebras and modules\u201d, Memoirs Amer. Math. Soc. 104 (1993).", "type": "text"}], "index": 6}, {"bbox": [72, 177, 541, 194], "spans": [{"bbox": [72, 177, 541, 194], "score": 1.0, "content": "11. J. Fr\u00a8ohlich and T. Kerler, \u201cQuantum groups, quantum categories and quantum", "type": "text"}], "index": 7}, {"bbox": [93, 192, 540, 208], "spans": [{"bbox": [93, 192, 540, 208], "score": 1.0, "content": "field theory\u201d, Lecture Notes in Mathematics, Vol. 1542, Springer-Verlag, Berlin, 1993.", "type": "text"}], "index": 8}, {"bbox": [72, 207, 514, 223], "spans": [{"bbox": [72, 207, 514, 223], "score": 1.0, "content": "12. J. Fuchs, Simple WZW currents, Commun. Math. Phys. 136 (1991), 345\u2013356.", "type": "text"}], "index": 9}, {"bbox": [73, 223, 541, 239], "spans": [{"bbox": [73, 223, 541, 239], "score": 1.0, "content": "13. J. Fuchs, B. Gato-Rivera, A. N. Schellekens and C. Schweigert, Modular", "type": "text"}], "index": 10}, {"bbox": [91, 236, 542, 255], "spans": [{"bbox": [91, 236, 542, 255], "score": 1.0, "content": "invariants and fusion automorphisms from Galois theory, Phys. Lett. B334 (1994),", "type": "text"}], "index": 11}, {"bbox": [94, 253, 143, 267], "spans": [{"bbox": [94, 253, 143, 267], "score": 1.0, "content": "113\u2013120.", "type": "text"}], "index": 12}, {"bbox": [70, 266, 542, 285], "spans": [{"bbox": [70, 266, 542, 285], "score": 1.0, "content": "14. J. Fuchs and P. van Driel, WZW fusion rules, quantum groups, and the modular", "type": "text"}], "index": 13}, {"bbox": [94, 282, 336, 296], "spans": [{"bbox": [94, 282, 134, 296], "score": 1.0, "content": "matrix ", "type": "text"}, {"bbox": [134, 284, 142, 293], "score": 0.76, "content": "S", "type": "inline_equation", "height": 9, "width": 8}, {"bbox": [143, 282, 336, 296], "score": 1.0, "content": ", Nucl. Phys. B346 (1990), 632\u2013648.", "type": "text"}], "index": 14}, {"bbox": [71, 296, 542, 315], "spans": [{"bbox": [71, 296, 542, 315], "score": 1.0, "content": "15. J. Fuchs and P. van Driel, Fusion rule engineering, Lett. Math. Phys. 23 (1991),", "type": "text"}], "index": 15}, {"bbox": [93, 312, 132, 327], "spans": [{"bbox": [93, 312, 132, 327], "score": 1.0, "content": "11\u201318.", "type": "text"}], "index": 16}, {"bbox": [71, 326, 542, 344], "spans": [{"bbox": [71, 326, 542, 344], "score": 1.0, "content": "16. T. Gannon, WZW commutants, lattices, and level-one partition functions, Nucl.", "type": "text"}], "index": 17}, {"bbox": [95, 342, 252, 358], "spans": [{"bbox": [95, 342, 252, 358], "score": 1.0, "content": "Phys. B396 (1993), 708\u2013736;", "type": "text"}], "index": 18}, {"bbox": [92, 356, 541, 375], "spans": [{"bbox": [92, 356, 541, 375], "score": 1.0, "content": "P. Ruelle, E. Thiran and J. Weyers, Implications of an arithmetical symmetry", "type": "text"}], "index": 19}, {"bbox": [93, 371, 503, 388], "spans": [{"bbox": [93, 371, 503, 388], "score": 1.0, "content": "of the commutant for modular invariants, Nucl. Phys. B402 (1993), 693\u2013708.", "type": "text"}], "index": 20}, {"bbox": [71, 386, 541, 406], "spans": [{"bbox": [71, 386, 541, 406], "score": 1.0, "content": "17. T. Gannon, Symmetries of the Kac-Peterson modular matrices of affine algebras,", "type": "text"}], "index": 21}, {"bbox": [93, 401, 284, 417], "spans": [{"bbox": [93, 401, 284, 417], "score": 1.0, "content": "Invent. math. 122 (1995), 341\u2013357.", "type": "text"}], "index": 22}, {"bbox": [72, 417, 542, 434], "spans": [{"bbox": [72, 417, 542, 434], "score": 1.0, "content": "18. T. Gannon, Ph. Ruelle and M. A. Walton, Automorphism modular invariants", "type": "text"}], "index": 23}, {"bbox": [94, 432, 437, 448], "spans": [{"bbox": [94, 432, 437, 448], "score": 1.0, "content": "of current algebras, Commun. Math. Phys. 179 (1996), 121\u2013156.", "type": "text"}], "index": 24}, {"bbox": [72, 447, 540, 465], "spans": [{"bbox": [72, 447, 540, 465], "score": 1.0, "content": "19. G. Georgiev and O. Mathieu, Cat\u00b4egorie de fusion pour les groupes de Chevalley,", "type": "text"}], "index": 25}, {"bbox": [93, 461, 329, 478], "spans": [{"bbox": [93, 461, 329, 478], "score": 1.0, "content": "C. R. Acad. Sci. Paris 315 (1992), 659\u2013662.", "type": "text"}], "index": 26}, {"bbox": [72, 477, 540, 494], "spans": [{"bbox": [72, 477, 540, 494], "score": 1.0, "content": "20. F. M. Goodman and H. Wenzl, Littlewood-Richardson coefficients for Hecke alge-", "type": "text"}], "index": 27}, {"bbox": [94, 493, 383, 507], "spans": [{"bbox": [94, 493, 383, 507], "score": 1.0, "content": "bras at roots of unity, Adv. Math. 82 (1990), 244\u2013265.", "type": "text"}], "index": 28}, {"bbox": [70, 506, 542, 525], "spans": [{"bbox": [70, 506, 542, 525], "score": 1.0, "content": "21. Y.-Z. Huang and J. Lepowsky, Intertwining operator algebras and vertex tensor", "type": "text"}], "index": 29}, {"bbox": [94, 523, 456, 538], "spans": [{"bbox": [94, 523, 456, 538], "score": 1.0, "content": "categories for affine Lie algebras, Duke Math. J. 99 (1999), 113\u2013134.", "type": "text"}], "index": 30}, {"bbox": [71, 536, 542, 555], "spans": [{"bbox": [71, 536, 542, 555], "score": 1.0, "content": "22. V. G. Kac, Simple Lie groups and the Legendre symbol, in: \u201cLie algebras, group", "type": "text"}], "index": 31}, {"bbox": [93, 552, 540, 567], "spans": [{"bbox": [93, 552, 540, 567], "score": 1.0, "content": "theory, and partially ordered algebraic structures\u201d, Lecture Notes in Math, Vol. 848,", "type": "text"}], "index": 32}, {"bbox": [94, 567, 253, 582], "spans": [{"bbox": [94, 567, 253, 582], "score": 1.0, "content": "Springer-Verlag, Berlin, 1981.", "type": "text"}], "index": 33}, {"bbox": [71, 580, 542, 600], "spans": [{"bbox": [71, 580, 542, 600], "score": 1.0, "content": "23. V. G. Kac, \u201cInfinite Dimensional Lie algebras\u201d, 3rd edition, Cambridge University", "type": "text"}], "index": 34}, {"bbox": [92, 596, 224, 612], "spans": [{"bbox": [92, 596, 224, 612], "score": 1.0, "content": "Press, Cambridge, 1990.", "type": "text"}], "index": 35}, {"bbox": [72, 612, 542, 628], "spans": [{"bbox": [72, 612, 542, 628], "score": 1.0, "content": "24. V. G. Kac and D. H. Peterson, Infinite-dimensional Lie algebras, theta functions", "type": "text"}], "index": 36}, {"bbox": [94, 628, 371, 641], "spans": [{"bbox": [94, 628, 371, 641], "score": 1.0, "content": "and modular forms, Adv. Math. 53 (1984), 125\u2013264.", "type": "text"}], "index": 37}, {"bbox": [72, 641, 541, 658], "spans": [{"bbox": [72, 641, 541, 658], "score": 1.0, "content": "25. V. G. Kac and M. Wakimoto, Modular and conformal constraints in representation", "type": "text"}], "index": 38}, {"bbox": [94, 657, 398, 672], "spans": [{"bbox": [94, 657, 398, 672], "score": 1.0, "content": "theory of affine algebras, Adv. Math. 70 (1988), 156\u2013236.", "type": "text"}], "index": 39}, {"bbox": [73, 672, 489, 688], "spans": [{"bbox": [73, 672, 489, 688], "score": 1.0, "content": "26. G. Lusztig, Exotic Fourier transform, Duke Math. J. 73 (1994), 227\u2013241.", "type": "text"}], "index": 40}, {"bbox": [71, 686, 542, 704], "spans": [{"bbox": [71, 686, 542, 704], "score": 1.0, "content": "27. I. G. Macdonald, \u201cSymmetric functions and Hall polynomials\u201d, 2nd edition, Oxford", "type": "text"}], "index": 41}, {"bbox": [94, 702, 276, 718], "spans": [{"bbox": [94, 702, 276, 718], "score": 1.0, "content": "University Press, New York, 1995.", "type": "text"}], "index": 42}], "index": 21}], "layout_bboxes": [], "page_idx": 22, "page_size": [612.0, 792.0], "_layout_tree": [], "images": [], "tables": [], "interline_equations": [], "discarded_blocks": [{"type": "discarded", "bbox": [298, 731, 312, 742], "lines": [{"bbox": [298, 731, 313, 745], "spans": [{"bbox": [298, 731, 313, 745], "score": 1.0, "content": "23", "type": "text"}]}]}], "need_drop": false, "drop_reason": [], "para_blocks": [{"type": "list", "bbox": [72, 70, 543, 716], "lines": [], "index": 21, "page_num": "page_22", "page_size": [612.0, 792.0], "bbox_fs": [70, 74, 542, 718], "lines_deleted": true}]} |
|
0002044v1 | 13 | At $$k=3$$ there is an order 3 Galois fusion-symmetry $$\pi_{3}=\pi\{5\}$$ , which sends $$J^{i}\Lambda_{1}\mapsto$$
$$J^{i}(2\Lambda_{6})\mapsto J^{i}\Lambda_{2}\mapsto J^{i}\Lambda_{1}$$ and fixes the other six weights.
Theorem 3.E7. The only nontrivial fusion-symmetries for $${E}_{7}^{(1)}$$ are $$\pi[1]$$ at even $$k$$ ,
as well as $$\pi_{3}$$ and its inverse at $$k=3$$ .
# 3.7. The algebra E8(1)
A weight $$\lambda$$ in $$P_{+}$$ satisfies $$k=\lambda_{0}+2\lambda_{1}+3\lambda_{2}+4\lambda_{3}+5\lambda_{4}+6\lambda_{5}+4\lambda_{6}+2\lambda_{7}+3\lambda_{8}$$ , and
$$\kappa=k+30$$ . The conjugations and simple-currents are all trivial, except for an anomolous
simple-current at $$k=2$$ , sending $$P_{+}=(0,\Lambda_{1},\Lambda_{7})$$ to $$(\Lambda_{7},\Lambda_{1},0)$$ , which plays no role in this
paper (except in Theorem 5.1).
The only fusion products we need can be derived from [28] and (2.4):
$$(2\Lambda_{1})\vert\mathrm{\bf\sfXI}(2\Lambda_{1})=(0)_{4}$$ + $$(\Lambda_{1})_{5}$$ + $$(\Lambda_{2})_{5}$$ + $$(\Lambda_{3})_{4}$$ + $$(\Lambda_{7})_{4}$$ + $$2\,\mathbf{E}\left(2\Lambda_{1}\right)_{46}$$ + $$(2\Lambda_{2})_{6}$$
$$\Lambda_{1}$$ × $$\Lambda_{4}=(\Lambda_{3})_{5}$$ + $$(\Lambda_{4})_{6}$$ + $$(\Lambda_{5})_{6}$$ + $$(\Lambda_{6})_{5}$$ + $$(\Lambda_{1}+\Lambda_{3})_{6}$$ + $$(\Lambda_{1}+\Lambda_{4})_{7}$$ + $$(\Lambda_{1}+\Lambda_{6})_{6}$$
$$\Lambda_{1}$$ × $$(\Lambda_{1}\!+\!\Lambda_{3})=(\Lambda_{3})_{6}$$ + $$(\Lambda_{4})_{6}$$ + $$(\Lambda_{1}+\Lambda_{2})_{6}$$ + $$2\,\mathtt{H}\,(\Lambda_{1}+\Lambda_{3})_{67}$$ + $$(\Lambda_{1}+\Lambda_{4})_{7}$$
$$\Lambda_{1}$$ × $$(2\Lambda_{7})=\!(\Lambda_{6})_{4}$$ + $$(\Lambda_{1}+\Lambda_{7})_{4}$$ + $$(2\Lambda_{7})_{5}$$ + $$(\Lambda_{2}+\Lambda_{7})_{5}$$ + $$(\Lambda_{7}+\Lambda_{8})_{5}$$ + $$(\Lambda_{1}+2\Lambda_{7})_{6}$$ $$(3.7g)$$
A fusion-symmetry at $$k=4$$ , called $$\pi_{4}$$ , was first found in [15]. It interchanges $$\Lambda_{1}\leftrightarrow\Lambda_{6}$$
and fixes the other eight weights in $$P_{+}$$ . There also is a fusion-symmetry, called $$\pi_{5}$$ , at $$k=5$$
which interchanges $$\Lambda_{7}\leftrightarrow2\Lambda_{1}$$ , $$\Lambda_{8}\leftrightarrow\Lambda_{1}+\Lambda_{2}$$ , and $$\Lambda_{6}\leftrightarrow\Lambda_{2}+\Lambda_{7}$$ , and fixes the nine other
weights. The exceptional $$\pi_{5}$$ is closely related to the Galois permutation $$\lambda\mapsto\lambda^{(13)}$$ .
Theorem 3.E8. The only nontrivial fusion-symmetries for $${E}_{8}^{(1)}$$ are $$\pi_{4}$$ and $$\pi_{5}$$ , oc-
curring at $$k=4$$ and 5 respectively.
# 3.8. The algebra F 4(1)
A weight $$\lambda$$ in $$P_{+}$$ satisfies $$k=\lambda_{0}+2\lambda_{1}+3\lambda_{2}+2\lambda_{3}+\lambda_{4}$$ , and $$\kappa=k+9$$ . Again, the
conjugations and simple-currents are trivial.
| <p>At $$k=3$$ there is an order 3 Galois fusion-symmetry $$\pi_{3}=\pi\{5\}$$ , which sends $$J^{i}\Lambda_{1}\mapsto$$
$$J^{i}(2\Lambda_{6})\mapsto J^{i}\Lambda_{2}\mapsto J^{i}\Lambda_{1}$$ and fixes the other six weights.</p>
<p>Theorem 3.E7. The only nontrivial fusion-symmetries for $${E}_{7}^{(1)}$$ are $$\pi[1]$$ at even $$k$$ ,
as well as $$\pi_{3}$$ and its inverse at $$k=3$$ .</p>
<h1>3.7. The algebra E8(1)</h1>
<p>A weight $$\lambda$$ in $$P_{+}$$ satisfies $$k=\lambda_{0}+2\lambda_{1}+3\lambda_{2}+4\lambda_{3}+5\lambda_{4}+6\lambda_{5}+4\lambda_{6}+2\lambda_{7}+3\lambda_{8}$$ , and
$$\kappa=k+30$$ . The conjugations and simple-currents are all trivial, except for an anomolous
simple-current at $$k=2$$ , sending $$P_{+}=(0,\Lambda_{1},\Lambda_{7})$$ to $$(\Lambda_{7},\Lambda_{1},0)$$ , which plays no role in this
paper (except in Theorem 5.1).</p>
<p>The only fusion products we need can be derived from [28] and (2.4):</p>
<p>$$(2\Lambda_{1})\vert\mathrm{\bf\sfXI}(2\Lambda_{1})=(0)_{4}$$ + $$(\Lambda_{1})_{5}$$ + $$(\Lambda_{2})_{5}$$ + $$(\Lambda_{3})_{4}$$ + $$(\Lambda_{7})_{4}$$ + $$2\,\mathbf{E}\left(2\Lambda_{1}\right)_{46}$$ + $$(2\Lambda_{2})_{6}$$</p>
<p>$$\Lambda_{1}$$ × $$\Lambda_{4}=(\Lambda_{3})_{5}$$ + $$(\Lambda_{4})_{6}$$ + $$(\Lambda_{5})_{6}$$ + $$(\Lambda_{6})_{5}$$ + $$(\Lambda_{1}+\Lambda_{3})_{6}$$ + $$(\Lambda_{1}+\Lambda_{4})_{7}$$ + $$(\Lambda_{1}+\Lambda_{6})_{6}$$</p>
<p>$$\Lambda_{1}$$ × $$(\Lambda_{1}\!+\!\Lambda_{3})=(\Lambda_{3})_{6}$$ + $$(\Lambda_{4})_{6}$$ + $$(\Lambda_{1}+\Lambda_{2})_{6}$$ + $$2\,\mathtt{H}\,(\Lambda_{1}+\Lambda_{3})_{67}$$ + $$(\Lambda_{1}+\Lambda_{4})_{7}$$</p>
<p>$$\Lambda_{1}$$ × $$(2\Lambda_{7})=\!(\Lambda_{6})_{4}$$ + $$(\Lambda_{1}+\Lambda_{7})_{4}$$ + $$(2\Lambda_{7})_{5}$$ + $$(\Lambda_{2}+\Lambda_{7})_{5}$$ + $$(\Lambda_{7}+\Lambda_{8})_{5}$$ + $$(\Lambda_{1}+2\Lambda_{7})_{6}$$ $$(3.7g)$$</p>
<p>A fusion-symmetry at $$k=4$$ , called $$\pi_{4}$$ , was first found in [15]. It interchanges $$\Lambda_{1}\leftrightarrow\Lambda_{6}$$
and fixes the other eight weights in $$P_{+}$$ . There also is a fusion-symmetry, called $$\pi_{5}$$ , at $$k=5$$
which interchanges $$\Lambda_{7}\leftrightarrow2\Lambda_{1}$$ , $$\Lambda_{8}\leftrightarrow\Lambda_{1}+\Lambda_{2}$$ , and $$\Lambda_{6}\leftrightarrow\Lambda_{2}+\Lambda_{7}$$ , and fixes the nine other
weights. The exceptional $$\pi_{5}$$ is closely related to the Galois permutation $$\lambda\mapsto\lambda^{(13)}$$ .</p>
<p>Theorem 3.E8. The only nontrivial fusion-symmetries for $${E}_{8}^{(1)}$$ are $$\pi_{4}$$ and $$\pi_{5}$$ , oc-
curring at $$k=4$$ and 5 respectively.</p>
<h1>3.8. The algebra F 4(1)</h1>
<p>A weight $$\lambda$$ in $$P_{+}$$ satisfies $$k=\lambda_{0}+2\lambda_{1}+3\lambda_{2}+2\lambda_{3}+\lambda_{4}$$ , and $$\kappa=k+9$$ . Again, the
conjugations and simple-currents are trivial.</p>
| [{"type": "text", "coordinates": [71, 70, 541, 100], "content": "At $$k=3$$ there is an order 3 Galois fusion-symmetry $$\\pi_{3}=\\pi\\{5\\}$$ , which sends $$J^{i}\\Lambda_{1}\\mapsto$$\n$$J^{i}(2\\Lambda_{6})\\mapsto J^{i}\\Lambda_{2}\\mapsto J^{i}\\Lambda_{1}$$ and fixes the other six weights.", "block_type": "text", "index": 1}, {"type": "text", "coordinates": [71, 107, 541, 137], "content": "Theorem 3.E7. The only nontrivial fusion-symmetries for $${E}_{7}^{(1)}$$ are $$\\pi[1]$$ at even $$k$$ ,\nas well as $$\\pi_{3}$$ and its inverse at $$k=3$$ .", "block_type": "text", "index": 2}, {"type": "title", "coordinates": [70, 150, 183, 167], "content": "3.7. The algebra E8(1)", "block_type": "title", "index": 3}, {"type": "text", "coordinates": [70, 173, 542, 230], "content": "A weight $$\\lambda$$ in $$P_{+}$$ satisfies $$k=\\lambda_{0}+2\\lambda_{1}+3\\lambda_{2}+4\\lambda_{3}+5\\lambda_{4}+6\\lambda_{5}+4\\lambda_{6}+2\\lambda_{7}+3\\lambda_{8}$$ , and\n$$\\kappa=k+30$$ . The conjugations and simple-currents are all trivial, except for an anomolous\nsimple-current at $$k=2$$ , sending $$P_{+}=(0,\\Lambda_{1},\\Lambda_{7})$$ to $$(\\Lambda_{7},\\Lambda_{1},0)$$ , which plays no role in this\npaper (except in Theorem 5.1).", "block_type": "text", "index": 4}, {"type": "text", "coordinates": [94, 230, 460, 245], "content": "The only fusion products we need can be derived from [28] and (2.4):", "block_type": "text", "index": 5}, {"type": "text", "coordinates": [47, 364, 469, 381], "content": "$$(2\\Lambda_{1})\\vert\\mathrm{\\bf\\sfXI}(2\\Lambda_{1})=(0)_{4}$$ + $$(\\Lambda_{1})_{5}$$ + $$(\\Lambda_{2})_{5}$$ + $$(\\Lambda_{3})_{4}$$ + $$(\\Lambda_{7})_{4}$$ + $$2\\,\\mathbf{E}\\left(2\\Lambda_{1}\\right)_{46}$$ + $$(2\\Lambda_{2})_{6}$$", "block_type": "text", "index": 6}, {"type": "text", "coordinates": [73, 418, 520, 435], "content": "$$\\Lambda_{1}$$ \u00d7 $$\\Lambda_{4}=(\\Lambda_{3})_{5}$$ + $$(\\Lambda_{4})_{6}$$ + $$(\\Lambda_{5})_{6}$$ + $$(\\Lambda_{6})_{5}$$ + $$(\\Lambda_{1}+\\Lambda_{3})_{6}$$ + $$(\\Lambda_{1}+\\Lambda_{4})_{7}$$ + $$(\\Lambda_{1}+\\Lambda_{6})_{6}$$", "block_type": "text", "index": 7}, {"type": "text", "coordinates": [45, 454, 460, 470], "content": "$$\\Lambda_{1}$$ \u00d7 $$(\\Lambda_{1}\\!+\\!\\Lambda_{3})=(\\Lambda_{3})_{6}$$ + $$(\\Lambda_{4})_{6}$$ + $$(\\Lambda_{1}+\\Lambda_{2})_{6}$$ + $$2\\,\\mathtt{H}\\,(\\Lambda_{1}+\\Lambda_{3})_{67}$$ + $$(\\Lambda_{1}+\\Lambda_{4})_{7}$$", "block_type": "text", "index": 8}, {"type": "text", "coordinates": [59, 526, 530, 543], "content": "$$\\Lambda_{1}$$ \u00d7 $$(2\\Lambda_{7})=\\!(\\Lambda_{6})_{4}$$ + $$(\\Lambda_{1}+\\Lambda_{7})_{4}$$ + $$(2\\Lambda_{7})_{5}$$ + $$(\\Lambda_{2}+\\Lambda_{7})_{5}$$ + $$(\\Lambda_{7}+\\Lambda_{8})_{5}$$ + $$(\\Lambda_{1}+2\\Lambda_{7})_{6}$$ $$(3.7g)$$", "block_type": "text", "index": 9}, {"type": "text", "coordinates": [70, 554, 542, 613], "content": "A fusion-symmetry at $$k=4$$ , called $$\\pi_{4}$$ , was first found in [15]. It interchanges $$\\Lambda_{1}\\leftrightarrow\\Lambda_{6}$$\nand fixes the other eight weights in $$P_{+}$$ . There also is a fusion-symmetry, called $$\\pi_{5}$$ , at $$k=5$$\nwhich interchanges $$\\Lambda_{7}\\leftrightarrow2\\Lambda_{1}$$ , $$\\Lambda_{8}\\leftrightarrow\\Lambda_{1}+\\Lambda_{2}$$ , and $$\\Lambda_{6}\\leftrightarrow\\Lambda_{2}+\\Lambda_{7}$$ , and fixes the nine other\nweights. The exceptional $$\\pi_{5}$$ is closely related to the Galois permutation $$\\lambda\\mapsto\\lambda^{(13)}$$ .", "block_type": "text", "index": 10}, {"type": "text", "coordinates": [70, 618, 541, 650], "content": "Theorem 3.E8. The only nontrivial fusion-symmetries for $${E}_{8}^{(1)}$$ are $$\\pi_{4}$$ and $$\\pi_{5}$$ , oc-\ncurring at $$k=4$$ and 5 respectively.", "block_type": "text", "index": 11}, {"type": "title", "coordinates": [71, 663, 183, 680], "content": "3.8. The algebra F 4(1)", "block_type": "title", "index": 12}, {"type": "text", "coordinates": [70, 686, 541, 715], "content": "A weight $$\\lambda$$ in $$P_{+}$$ satisfies $$k=\\lambda_{0}+2\\lambda_{1}+3\\lambda_{2}+2\\lambda_{3}+\\lambda_{4}$$ , and $$\\kappa=k+9$$ . Again, the\nconjugations and simple-currents are trivial.", "block_type": "text", "index": 13}] | [{"type": "text", "coordinates": [94, 73, 111, 90], "content": "At", "score": 1.0, "index": 1}, {"type": "inline_equation", "coordinates": [112, 75, 141, 84], "content": "k=3", "score": 0.9, "index": 2}, {"type": "text", "coordinates": [141, 73, 371, 90], "content": " there is an order 3 Galois fusion-symmetry ", "score": 1.0, "index": 3}, {"type": "inline_equation", "coordinates": [372, 73, 426, 87], "content": "\\pi_{3}=\\pi\\{5\\}", "score": 0.93, "index": 4}, {"type": "text", "coordinates": [426, 73, 498, 90], "content": ", which sends ", "score": 1.0, "index": 5}, {"type": "inline_equation", "coordinates": [498, 73, 541, 86], "content": "J^{i}\\Lambda_{1}\\mapsto", "score": 0.89, "index": 6}, {"type": "inline_equation", "coordinates": [71, 88, 200, 101], "content": "J^{i}(2\\Lambda_{6})\\mapsto J^{i}\\Lambda_{2}\\mapsto J^{i}\\Lambda_{1}", "score": 0.92, "index": 7}, {"type": "text", "coordinates": [200, 87, 367, 103], "content": " and fixes the other six weights.", "score": 1.0, "index": 8}, {"type": "text", "coordinates": [92, 109, 414, 128], "content": "Theorem 3.E7. The only nontrivial fusion-symmetries for ", "score": 1.0, "index": 9}, {"type": "inline_equation", "coordinates": [414, 108, 438, 126], "content": "{E}_{7}^{(1)}", "score": 0.9, "index": 10}, {"type": "text", "coordinates": [438, 109, 461, 128], "content": "are ", "score": 1.0, "index": 11}, {"type": "inline_equation", "coordinates": [461, 110, 483, 126], "content": "\\pi[1]", "score": 0.71, "index": 12}, {"type": "text", "coordinates": [483, 109, 528, 128], "content": " at even ", "score": 1.0, "index": 13}, {"type": "inline_equation", "coordinates": [529, 112, 536, 123], "content": "k", "score": 0.73, "index": 14}, {"type": "text", "coordinates": [536, 109, 540, 128], "content": ",", "score": 1.0, "index": 15}, {"type": "text", "coordinates": [72, 126, 126, 139], "content": "as well as ", "score": 1.0, "index": 16}, {"type": "inline_equation", "coordinates": [126, 129, 139, 138], "content": "\\pi_{3}", "score": 0.75, "index": 17}, {"type": "text", "coordinates": [139, 126, 237, 139], "content": " and its inverse at ", "score": 1.0, "index": 18}, {"type": "inline_equation", "coordinates": [238, 128, 267, 137], "content": "k=3", "score": 0.91, "index": 19}, {"type": "text", "coordinates": [268, 126, 271, 139], "content": ".", "score": 1.0, "index": 20}, {"type": "text", "coordinates": [67, 148, 189, 174], "content": "3.7. The algebra E8(1)", "score": 1.0, "index": 21}, {"type": "text", "coordinates": [95, 176, 144, 190], "content": "A weight ", "score": 1.0, "index": 22}, {"type": "inline_equation", "coordinates": [144, 177, 153, 186], "content": "\\lambda", "score": 0.81, "index": 23}, {"type": "text", "coordinates": [153, 176, 168, 190], "content": " in ", "score": 1.0, "index": 24}, {"type": "inline_equation", "coordinates": [168, 176, 185, 189], "content": "P_{+}", "score": 0.9, "index": 25}, {"type": "text", "coordinates": [185, 176, 231, 190], "content": " satisfies ", "score": 1.0, "index": 26}, {"type": "inline_equation", "coordinates": [231, 176, 514, 188], "content": "k=\\lambda_{0}+2\\lambda_{1}+3\\lambda_{2}+4\\lambda_{3}+5\\lambda_{4}+6\\lambda_{5}+4\\lambda_{6}+2\\lambda_{7}+3\\lambda_{8}", "score": 0.85, "index": 27}, {"type": "text", "coordinates": [514, 176, 541, 190], "content": ", and", "score": 1.0, "index": 28}, {"type": "inline_equation", "coordinates": [71, 190, 128, 202], "content": "\\kappa=k+30", "score": 0.89, "index": 29}, {"type": "text", "coordinates": [128, 190, 541, 205], "content": ". The conjugations and simple-currents are all trivial, except for an anomolous", "score": 1.0, "index": 30}, {"type": "text", "coordinates": [70, 205, 163, 218], "content": "simple-current at ", "score": 1.0, "index": 31}, {"type": "inline_equation", "coordinates": [163, 204, 193, 215], "content": "k=2", "score": 0.88, "index": 32}, {"type": "text", "coordinates": [193, 205, 241, 218], "content": ", sending ", "score": 1.0, "index": 33}, {"type": "inline_equation", "coordinates": [241, 203, 327, 218], "content": "P_{+}=(0,\\Lambda_{1},\\Lambda_{7})", "score": 0.92, "index": 34}, {"type": "text", "coordinates": [327, 205, 344, 218], "content": " to ", "score": 1.0, "index": 35}, {"type": "inline_equation", "coordinates": [344, 203, 397, 218], "content": "(\\Lambda_{7},\\Lambda_{1},0)", "score": 0.92, "index": 36}, {"type": "text", "coordinates": [398, 205, 541, 218], "content": ", which plays no role in this", "score": 1.0, "index": 37}, {"type": "text", "coordinates": [70, 219, 236, 232], "content": "paper (except in Theorem 5.1).", "score": 1.0, "index": 38}, {"type": "text", "coordinates": [95, 232, 458, 247], "content": "The only fusion products we need can be derived from [28] and (2.4):", "score": 1.0, "index": 39}, {"type": "inline_equation", "coordinates": [48, 366, 158, 382], "content": "(2\\Lambda_{1})\\vert\\mathrm{\\bf\\sfXI}(2\\Lambda_{1})=(0)_{4}", "score": 0.73, "index": 40}, {"type": "text", "coordinates": [158, 368, 174, 385], "content": " + ", "score": 1.0, "index": 41}, {"type": "inline_equation", "coordinates": [174, 366, 204, 381], "content": "(\\Lambda_{1})_{5}", "score": 0.92, "index": 42}, {"type": "text", "coordinates": [204, 368, 221, 385], "content": " + ", "score": 1.0, "index": 43}, {"type": "inline_equation", "coordinates": [221, 366, 250, 381], "content": "(\\Lambda_{2})_{5}", "score": 0.92, "index": 44}, {"type": "text", "coordinates": [251, 368, 267, 385], "content": " + ", "score": 1.0, "index": 45}, {"type": "inline_equation", "coordinates": [267, 366, 297, 381], "content": "(\\Lambda_{3})_{4}", "score": 0.92, "index": 46}, {"type": "text", "coordinates": [297, 368, 314, 385], "content": " + ", "score": 1.0, "index": 47}, {"type": "inline_equation", "coordinates": [314, 366, 343, 381], "content": "(\\Lambda_{7})_{4}", "score": 0.91, "index": 48}, {"type": "text", "coordinates": [344, 368, 360, 385], "content": " + ", "score": 1.0, "index": 49}, {"type": "inline_equation", "coordinates": [360, 366, 415, 381], "content": "2\\,\\mathbf{E}\\left(2\\Lambda_{1}\\right)_{46}", "score": 0.91, "index": 50}, {"type": "text", "coordinates": [415, 368, 432, 385], "content": " + ", "score": 1.0, "index": 51}, {"type": "inline_equation", "coordinates": [433, 366, 468, 381], "content": "(2\\Lambda_{2})_{6}", "score": 0.88, "index": 52}, {"type": "inline_equation", "coordinates": [75, 420, 90, 434], "content": "\\Lambda_{1}", "score": 0.84, "index": 53}, {"type": "text", "coordinates": [90, 421, 106, 438], "content": " \u00d7", "score": 1.0, "index": 54}, {"type": "inline_equation", "coordinates": [106, 420, 165, 435], "content": "\\Lambda_{4}=(\\Lambda_{3})_{5}", "score": 0.93, "index": 55}, {"type": "text", "coordinates": [165, 421, 182, 438], "content": " + ", "score": 1.0, "index": 56}, {"type": "inline_equation", "coordinates": [182, 420, 211, 435], "content": "(\\Lambda_{4})_{6}", "score": 0.91, "index": 57}, {"type": "text", "coordinates": [212, 421, 226, 438], "content": " + ", "score": 1.0, "index": 58}, {"type": "inline_equation", "coordinates": [227, 420, 255, 435], "content": "(\\Lambda_{5})_{6}", "score": 0.91, "index": 59}, {"type": "text", "coordinates": [256, 421, 271, 438], "content": " + ", "score": 1.0, "index": 60}, {"type": "inline_equation", "coordinates": [271, 420, 300, 435], "content": "(\\Lambda_{6})_{5}", "score": 0.92, "index": 61}, {"type": "text", "coordinates": [300, 421, 315, 438], "content": " + ", "score": 1.0, "index": 62}, {"type": "inline_equation", "coordinates": [316, 420, 373, 435], "content": "(\\Lambda_{1}+\\Lambda_{3})_{6}", "score": 0.93, "index": 63}, {"type": "text", "coordinates": [374, 421, 390, 438], "content": " + ", "score": 1.0, "index": 64}, {"type": "inline_equation", "coordinates": [390, 420, 448, 435], "content": "(\\Lambda_{1}+\\Lambda_{4})_{7}", "score": 0.91, "index": 65}, {"type": "text", "coordinates": [449, 421, 465, 438], "content": " + ", "score": 1.0, "index": 66}, {"type": "inline_equation", "coordinates": [465, 420, 523, 436], "content": "(\\Lambda_{1}+\\Lambda_{6})_{6}", "score": 0.88, "index": 67}, {"type": "inline_equation", "coordinates": [45, 456, 60, 470], "content": "\\Lambda_{1}", "score": 0.79, "index": 68}, {"type": "text", "coordinates": [60, 456, 74, 474], "content": " \u00d7 ", "score": 1.0, "index": 69}, {"type": "inline_equation", "coordinates": [74, 456, 165, 471], "content": "(\\Lambda_{1}\\!+\\!\\Lambda_{3})=(\\Lambda_{3})_{6}", "score": 0.89, "index": 70}, {"type": "text", "coordinates": [165, 456, 182, 474], "content": " + ", "score": 1.0, "index": 71}, {"type": "inline_equation", "coordinates": [182, 456, 212, 471], "content": "(\\Lambda_{4})_{6}", "score": 0.92, "index": 72}, {"type": "text", "coordinates": [212, 456, 228, 474], "content": " + ", "score": 1.0, "index": 73}, {"type": "inline_equation", "coordinates": [228, 456, 286, 471], "content": "(\\Lambda_{1}+\\Lambda_{2})_{6}", "score": 0.93, "index": 74}, {"type": "text", "coordinates": [286, 456, 302, 474], "content": " +", "score": 1.0, "index": 75}, {"type": "inline_equation", "coordinates": [303, 456, 380, 471], "content": "2\\,\\mathtt{H}\\,(\\Lambda_{1}+\\Lambda_{3})_{67}", "score": 0.91, "index": 76}, {"type": "text", "coordinates": [380, 456, 397, 474], "content": " + ", "score": 1.0, "index": 77}, {"type": "inline_equation", "coordinates": [397, 456, 455, 471], "content": "(\\Lambda_{1}+\\Lambda_{4})_{7}", "score": 0.85, "index": 78}, {"type": "inline_equation", "coordinates": [59, 528, 74, 542], "content": "\\Lambda_{1}", "score": 0.86, "index": 79}, {"type": "text", "coordinates": [75, 530, 92, 545], "content": " \u00d7 ", "score": 1.0, "index": 80}, {"type": "inline_equation", "coordinates": [92, 528, 162, 543], "content": "(2\\Lambda_{7})=\\!(\\Lambda_{6})_{4}", "score": 0.91, "index": 81}, {"type": "text", "coordinates": [163, 530, 176, 545], "content": " + ", "score": 1.0, "index": 82}, {"type": "inline_equation", "coordinates": [177, 528, 233, 543], "content": "(\\Lambda_{1}+\\Lambda_{7})_{4}", "score": 0.91, "index": 83}, {"type": "text", "coordinates": [234, 530, 247, 545], "content": " + ", "score": 1.0, "index": 84}, {"type": "inline_equation", "coordinates": [248, 528, 282, 543], "content": "(2\\Lambda_{7})_{5}", "score": 0.9, "index": 85}, {"type": "text", "coordinates": [282, 530, 296, 545], "content": " + ", "score": 1.0, "index": 86}, {"type": "inline_equation", "coordinates": [296, 528, 353, 543], "content": "(\\Lambda_{2}+\\Lambda_{7})_{5}", "score": 0.88, "index": 87}, {"type": "text", "coordinates": [353, 530, 367, 545], "content": " + ", "score": 1.0, "index": 88}, {"type": "inline_equation", "coordinates": [367, 528, 424, 543], "content": "(\\Lambda_{7}+\\Lambda_{8})_{5}", "score": 0.25, "index": 89}, {"type": "text", "coordinates": [424, 530, 437, 545], "content": " +", "score": 1.0, "index": 90}, {"type": "inline_equation", "coordinates": [438, 528, 500, 543], "content": "(\\Lambda_{1}+2\\Lambda_{7})_{6}", "score": 0.35, "index": 91}, {"type": "text", "coordinates": [501, 530, 508, 545], "content": " ", "score": 1.0, "index": 92}, {"type": "inline_equation", "coordinates": [509, 529, 540, 543], "content": "(3.7g)", "score": 0.29, "index": 93}, {"type": "text", "coordinates": [95, 556, 209, 571], "content": "A fusion-symmetry at", "score": 1.0, "index": 94}, {"type": "inline_equation", "coordinates": [209, 556, 239, 568], "content": "k=4", "score": 0.9, "index": 95}, {"type": "text", "coordinates": [240, 556, 277, 571], "content": ", called", "score": 1.0, "index": 96}, {"type": "inline_equation", "coordinates": [277, 558, 290, 569], "content": "\\pi_{4}", "score": 0.85, "index": 97}, {"type": "text", "coordinates": [291, 556, 493, 571], "content": ", was first found in [15]. It interchanges ", "score": 1.0, "index": 98}, {"type": "inline_equation", "coordinates": [493, 556, 540, 569], "content": "\\Lambda_{1}\\leftrightarrow\\Lambda_{6}", "score": 0.92, "index": 99}, {"type": "text", "coordinates": [71, 571, 252, 586], "content": "and fixes the other eight weights in ", "score": 1.0, "index": 100}, {"type": "inline_equation", "coordinates": [252, 571, 268, 585], "content": "P_{+}", "score": 0.91, "index": 101}, {"type": "text", "coordinates": [269, 571, 477, 586], "content": ". There also is a fusion-symmetry, called", "score": 1.0, "index": 102}, {"type": "inline_equation", "coordinates": [478, 572, 491, 584], "content": "\\pi_{5}", "score": 0.85, "index": 103}, {"type": "text", "coordinates": [491, 571, 510, 586], "content": ", at ", "score": 1.0, "index": 104}, {"type": "inline_equation", "coordinates": [510, 571, 540, 583], "content": "k=5", "score": 0.88, "index": 105}, {"type": "text", "coordinates": [72, 586, 173, 600], "content": "which interchanges ", "score": 1.0, "index": 106}, {"type": "inline_equation", "coordinates": [173, 585, 226, 598], "content": "\\Lambda_{7}\\leftrightarrow2\\Lambda_{1}", "score": 0.93, "index": 107}, {"type": "text", "coordinates": [226, 586, 232, 600], "content": ", ", "score": 1.0, "index": 108}, {"type": "inline_equation", "coordinates": [232, 585, 306, 598], "content": "\\Lambda_{8}\\leftrightarrow\\Lambda_{1}+\\Lambda_{2}", "score": 0.91, "index": 109}, {"type": "text", "coordinates": [307, 586, 335, 600], "content": ", and ", "score": 1.0, "index": 110}, {"type": "inline_equation", "coordinates": [335, 585, 410, 598], "content": "\\Lambda_{6}\\leftrightarrow\\Lambda_{2}+\\Lambda_{7}", "score": 0.93, "index": 111}, {"type": "text", "coordinates": [410, 586, 541, 600], "content": ", and fixes the nine other", "score": 1.0, "index": 112}, {"type": "text", "coordinates": [69, 599, 205, 615], "content": "weights. The exceptional ", "score": 1.0, "index": 113}, {"type": "inline_equation", "coordinates": [205, 602, 218, 613], "content": "\\pi_{5}", "score": 0.88, "index": 114}, {"type": "text", "coordinates": [219, 599, 452, 615], "content": " is closely related to the Galois permutation ", "score": 1.0, "index": 115}, {"type": "inline_equation", "coordinates": [452, 598, 503, 611], "content": "\\lambda\\mapsto\\lambda^{(13)}", "score": 0.91, "index": 116}, {"type": "text", "coordinates": [503, 599, 508, 615], "content": ".", "score": 1.0, "index": 117}, {"type": "text", "coordinates": [90, 619, 415, 641], "content": "Theorem 3.E8. The only nontrivial fusion-symmetries for ", "score": 1.0, "index": 118}, {"type": "inline_equation", "coordinates": [415, 619, 438, 636], "content": "{E}_{8}^{(1)}", "score": 0.91, "index": 119}, {"type": "text", "coordinates": [438, 619, 462, 641], "content": "are ", "score": 1.0, "index": 120}, {"type": "inline_equation", "coordinates": [462, 624, 475, 635], "content": "\\pi_{4}", "score": 0.78, "index": 121}, {"type": "text", "coordinates": [476, 619, 502, 641], "content": " and ", "score": 1.0, "index": 122}, {"type": "inline_equation", "coordinates": [503, 624, 516, 635], "content": "\\pi_{5}", "score": 0.79, "index": 123}, {"type": "text", "coordinates": [516, 619, 540, 641], "content": ", oc-", "score": 1.0, "index": 124}, {"type": "text", "coordinates": [72, 637, 127, 653], "content": "curring at ", "score": 1.0, "index": 125}, {"type": "inline_equation", "coordinates": [128, 639, 157, 648], "content": "k=4", "score": 0.85, "index": 126}, {"type": "text", "coordinates": [157, 637, 257, 653], "content": " and 5 respectively.", "score": 1.0, "index": 127}, {"type": "text", "coordinates": [69, 663, 186, 683], "content": "3.8. The algebra F 4(1)", "score": 1.0, "index": 128}, {"type": "text", "coordinates": [94, 688, 145, 703], "content": "A weight ", "score": 1.0, "index": 129}, {"type": "inline_equation", "coordinates": [146, 690, 153, 699], "content": "\\lambda", "score": 0.86, "index": 130}, {"type": "text", "coordinates": [154, 688, 171, 703], "content": " in ", "score": 1.0, "index": 131}, {"type": "inline_equation", "coordinates": [171, 690, 186, 702], "content": "P_{+}", "score": 0.93, "index": 132}, {"type": "text", "coordinates": [187, 688, 234, 703], "content": " satisfies ", "score": 1.0, "index": 133}, {"type": "inline_equation", "coordinates": [234, 689, 396, 701], "content": "k=\\lambda_{0}+2\\lambda_{1}+3\\lambda_{2}+2\\lambda_{3}+\\lambda_{4}", "score": 0.93, "index": 134}, {"type": "text", "coordinates": [396, 688, 425, 703], "content": ", and ", "score": 1.0, "index": 135}, {"type": "inline_equation", "coordinates": [425, 690, 476, 700], "content": "\\kappa=k+9", "score": 0.89, "index": 136}, {"type": "text", "coordinates": [477, 688, 541, 703], "content": ". Again, the", "score": 1.0, "index": 137}, {"type": "text", "coordinates": [72, 703, 303, 717], "content": "conjugations and simple-currents are trivial.", "score": 1.0, "index": 138}] | [] | [{"type": "inline", "coordinates": [112, 75, 141, 84], "content": "k=3", "caption": ""}, {"type": "inline", "coordinates": [372, 73, 426, 87], "content": "\\pi_{3}=\\pi\\{5\\}", "caption": ""}, {"type": "inline", "coordinates": [498, 73, 541, 86], "content": "J^{i}\\Lambda_{1}\\mapsto", "caption": ""}, {"type": "inline", "coordinates": [71, 88, 200, 101], "content": "J^{i}(2\\Lambda_{6})\\mapsto J^{i}\\Lambda_{2}\\mapsto J^{i}\\Lambda_{1}", "caption": ""}, {"type": "inline", "coordinates": [414, 108, 438, 126], "content": "{E}_{7}^{(1)}", "caption": ""}, {"type": "inline", "coordinates": [461, 110, 483, 126], "content": "\\pi[1]", "caption": ""}, {"type": "inline", "coordinates": [529, 112, 536, 123], "content": "k", "caption": ""}, {"type": "inline", "coordinates": [126, 129, 139, 138], "content": "\\pi_{3}", "caption": ""}, {"type": "inline", "coordinates": [238, 128, 267, 137], "content": "k=3", "caption": ""}, {"type": "inline", "coordinates": [144, 177, 153, 186], "content": "\\lambda", "caption": ""}, {"type": "inline", "coordinates": [168, 176, 185, 189], "content": "P_{+}", "caption": ""}, {"type": "inline", "coordinates": [231, 176, 514, 188], "content": "k=\\lambda_{0}+2\\lambda_{1}+3\\lambda_{2}+4\\lambda_{3}+5\\lambda_{4}+6\\lambda_{5}+4\\lambda_{6}+2\\lambda_{7}+3\\lambda_{8}", "caption": ""}, {"type": "inline", "coordinates": [71, 190, 128, 202], "content": "\\kappa=k+30", "caption": ""}, {"type": "inline", "coordinates": [163, 204, 193, 215], "content": "k=2", "caption": ""}, {"type": "inline", "coordinates": [241, 203, 327, 218], "content": "P_{+}=(0,\\Lambda_{1},\\Lambda_{7})", "caption": ""}, {"type": "inline", "coordinates": [344, 203, 397, 218], "content": "(\\Lambda_{7},\\Lambda_{1},0)", "caption": ""}, {"type": "inline", "coordinates": [48, 366, 158, 382], "content": "(2\\Lambda_{1})\\vert\\mathrm{\\bf\\sfXI}(2\\Lambda_{1})=(0)_{4}", "caption": ""}, {"type": "inline", "coordinates": [174, 366, 204, 381], "content": "(\\Lambda_{1})_{5}", "caption": ""}, {"type": "inline", "coordinates": [221, 366, 250, 381], "content": "(\\Lambda_{2})_{5}", "caption": ""}, {"type": "inline", "coordinates": [267, 366, 297, 381], "content": "(\\Lambda_{3})_{4}", "caption": ""}, {"type": "inline", "coordinates": [314, 366, 343, 381], "content": "(\\Lambda_{7})_{4}", "caption": ""}, {"type": "inline", "coordinates": [360, 366, 415, 381], "content": "2\\,\\mathbf{E}\\left(2\\Lambda_{1}\\right)_{46}", "caption": ""}, {"type": "inline", "coordinates": [433, 366, 468, 381], "content": "(2\\Lambda_{2})_{6}", "caption": ""}, {"type": "inline", "coordinates": [75, 420, 90, 434], "content": "\\Lambda_{1}", "caption": ""}, {"type": "inline", "coordinates": [106, 420, 165, 435], "content": "\\Lambda_{4}=(\\Lambda_{3})_{5}", "caption": ""}, {"type": "inline", "coordinates": [182, 420, 211, 435], "content": "(\\Lambda_{4})_{6}", "caption": ""}, {"type": "inline", "coordinates": [227, 420, 255, 435], "content": "(\\Lambda_{5})_{6}", "caption": ""}, {"type": "inline", "coordinates": [271, 420, 300, 435], "content": "(\\Lambda_{6})_{5}", "caption": ""}, {"type": "inline", "coordinates": [316, 420, 373, 435], "content": "(\\Lambda_{1}+\\Lambda_{3})_{6}", "caption": ""}, {"type": "inline", "coordinates": [390, 420, 448, 435], "content": "(\\Lambda_{1}+\\Lambda_{4})_{7}", "caption": ""}, {"type": "inline", "coordinates": [465, 420, 523, 436], "content": "(\\Lambda_{1}+\\Lambda_{6})_{6}", "caption": ""}, {"type": "inline", "coordinates": [45, 456, 60, 470], "content": "\\Lambda_{1}", "caption": ""}, {"type": "inline", "coordinates": [74, 456, 165, 471], "content": "(\\Lambda_{1}\\!+\\!\\Lambda_{3})=(\\Lambda_{3})_{6}", "caption": ""}, {"type": "inline", "coordinates": [182, 456, 212, 471], "content": "(\\Lambda_{4})_{6}", "caption": ""}, {"type": "inline", "coordinates": [228, 456, 286, 471], "content": "(\\Lambda_{1}+\\Lambda_{2})_{6}", "caption": ""}, {"type": "inline", "coordinates": [303, 456, 380, 471], "content": "2\\,\\mathtt{H}\\,(\\Lambda_{1}+\\Lambda_{3})_{67}", "caption": ""}, {"type": "inline", "coordinates": [397, 456, 455, 471], "content": "(\\Lambda_{1}+\\Lambda_{4})_{7}", "caption": ""}, {"type": "inline", "coordinates": [59, 528, 74, 542], "content": "\\Lambda_{1}", "caption": ""}, {"type": "inline", "coordinates": [92, 528, 162, 543], "content": "(2\\Lambda_{7})=\\!(\\Lambda_{6})_{4}", "caption": ""}, {"type": "inline", "coordinates": [177, 528, 233, 543], "content": "(\\Lambda_{1}+\\Lambda_{7})_{4}", "caption": ""}, {"type": "inline", "coordinates": [248, 528, 282, 543], "content": "(2\\Lambda_{7})_{5}", "caption": ""}, {"type": "inline", "coordinates": [296, 528, 353, 543], "content": "(\\Lambda_{2}+\\Lambda_{7})_{5}", "caption": ""}, {"type": "inline", "coordinates": [367, 528, 424, 543], "content": "(\\Lambda_{7}+\\Lambda_{8})_{5}", "caption": ""}, {"type": "inline", "coordinates": [438, 528, 500, 543], "content": "(\\Lambda_{1}+2\\Lambda_{7})_{6}", "caption": ""}, {"type": "inline", "coordinates": [509, 529, 540, 543], "content": "(3.7g)", "caption": ""}, {"type": "inline", "coordinates": [209, 556, 239, 568], "content": "k=4", "caption": ""}, {"type": "inline", "coordinates": [277, 558, 290, 569], "content": "\\pi_{4}", "caption": ""}, {"type": "inline", "coordinates": [493, 556, 540, 569], "content": "\\Lambda_{1}\\leftrightarrow\\Lambda_{6}", "caption": ""}, {"type": "inline", "coordinates": [252, 571, 268, 585], "content": "P_{+}", "caption": ""}, {"type": "inline", "coordinates": [478, 572, 491, 584], "content": "\\pi_{5}", "caption": ""}, {"type": "inline", "coordinates": [510, 571, 540, 583], "content": "k=5", "caption": ""}, {"type": "inline", "coordinates": [173, 585, 226, 598], "content": "\\Lambda_{7}\\leftrightarrow2\\Lambda_{1}", "caption": ""}, {"type": "inline", "coordinates": [232, 585, 306, 598], "content": "\\Lambda_{8}\\leftrightarrow\\Lambda_{1}+\\Lambda_{2}", "caption": ""}, {"type": "inline", "coordinates": [335, 585, 410, 598], "content": "\\Lambda_{6}\\leftrightarrow\\Lambda_{2}+\\Lambda_{7}", "caption": ""}, {"type": "inline", "coordinates": [205, 602, 218, 613], "content": "\\pi_{5}", "caption": ""}, {"type": "inline", "coordinates": [452, 598, 503, 611], "content": "\\lambda\\mapsto\\lambda^{(13)}", "caption": ""}, {"type": "inline", "coordinates": [415, 619, 438, 636], "content": "{E}_{8}^{(1)}", "caption": ""}, {"type": "inline", "coordinates": [462, 624, 475, 635], "content": "\\pi_{4}", "caption": ""}, {"type": "inline", "coordinates": [503, 624, 516, 635], "content": "\\pi_{5}", "caption": ""}, {"type": "inline", "coordinates": [128, 639, 157, 648], "content": "k=4", "caption": ""}, {"type": "inline", "coordinates": [146, 690, 153, 699], "content": "\\lambda", "caption": ""}, {"type": "inline", "coordinates": [171, 690, 186, 702], "content": "P_{+}", "caption": ""}, {"type": "inline", "coordinates": [234, 689, 396, 701], "content": "k=\\lambda_{0}+2\\lambda_{1}+3\\lambda_{2}+2\\lambda_{3}+\\lambda_{4}", "caption": ""}, {"type": "inline", "coordinates": [425, 690, 476, 700], "content": "\\kappa=k+9", "caption": ""}] | [] | [612.0, 792.0] | [{"type": "text", "text": "At $k=3$ there is an order 3 Galois fusion-symmetry $\\pi_{3}=\\pi\\{5\\}$ , which sends $J^{i}\\Lambda_{1}\\mapsto$ $J^{i}(2\\Lambda_{6})\\mapsto J^{i}\\Lambda_{2}\\mapsto J^{i}\\Lambda_{1}$ and fixes the other six weights. ", "page_idx": 13}, {"type": "text", "text": "Theorem 3.E7. The only nontrivial fusion-symmetries for ${E}_{7}^{(1)}$ are $\\pi[1]$ at even $k$ , as well as $\\pi_{3}$ and its inverse at $k=3$ . ", "page_idx": 13}, {"type": "text", "text": "3.7. The algebra E8(1) ", "text_level": 1, "page_idx": 13}, {"type": "text", "text": "A weight $\\lambda$ in $P_{+}$ satisfies $k=\\lambda_{0}+2\\lambda_{1}+3\\lambda_{2}+4\\lambda_{3}+5\\lambda_{4}+6\\lambda_{5}+4\\lambda_{6}+2\\lambda_{7}+3\\lambda_{8}$ , and $\\kappa=k+30$ . The conjugations and simple-currents are all trivial, except for an anomolous simple-current at $k=2$ , sending $P_{+}=(0,\\Lambda_{1},\\Lambda_{7})$ to $(\\Lambda_{7},\\Lambda_{1},0)$ , which plays no role in this paper (except in Theorem 5.1). ", "page_idx": 13}, {"type": "text", "text": "The only fusion products we need can be derived from [28] and (2.4): ", "page_idx": 13}, {"type": "text", "text": "$(2\\Lambda_{1})\\vert\\mathrm{\\bf\\sfXI}(2\\Lambda_{1})=(0)_{4}$ + $(\\Lambda_{1})_{5}$ + $(\\Lambda_{2})_{5}$ + $(\\Lambda_{3})_{4}$ + $(\\Lambda_{7})_{4}$ + $2\\,\\mathbf{E}\\left(2\\Lambda_{1}\\right)_{46}$ + $(2\\Lambda_{2})_{6}$ $\\Lambda_{1}$ \u00d7 $\\Lambda_{4}=(\\Lambda_{3})_{5}$ + $(\\Lambda_{4})_{6}$ + $(\\Lambda_{5})_{6}$ + $(\\Lambda_{6})_{5}$ + $(\\Lambda_{1}+\\Lambda_{3})_{6}$ + $(\\Lambda_{1}+\\Lambda_{4})_{7}$ + $(\\Lambda_{1}+\\Lambda_{6})_{6}$ $\\Lambda_{1}$ \u00d7 $(\\Lambda_{1}\\!+\\!\\Lambda_{3})=(\\Lambda_{3})_{6}$ + $(\\Lambda_{4})_{6}$ + $(\\Lambda_{1}+\\Lambda_{2})_{6}$ + $2\\,\\mathtt{H}\\,(\\Lambda_{1}+\\Lambda_{3})_{67}$ + $(\\Lambda_{1}+\\Lambda_{4})_{7}$ $\\Lambda_{1}$ \u00d7 $(2\\Lambda_{7})=\\!(\\Lambda_{6})_{4}$ + $(\\Lambda_{1}+\\Lambda_{7})_{4}$ + $(2\\Lambda_{7})_{5}$ + $(\\Lambda_{2}+\\Lambda_{7})_{5}$ + $(\\Lambda_{7}+\\Lambda_{8})_{5}$ + $(\\Lambda_{1}+2\\Lambda_{7})_{6}$ $(3.7g)$ ", "page_idx": 13}, {"type": "text", "text": "", "page_idx": 13}, {"type": "text", "text": "", "page_idx": 13}, {"type": "text", "text": "", "page_idx": 13}, {"type": "text", "text": "A fusion-symmetry at $k=4$ , called $\\pi_{4}$ , was first found in [15]. It interchanges $\\Lambda_{1}\\leftrightarrow\\Lambda_{6}$ and fixes the other eight weights in $P_{+}$ . There also is a fusion-symmetry, called $\\pi_{5}$ , at $k=5$ which interchanges $\\Lambda_{7}\\leftrightarrow2\\Lambda_{1}$ , $\\Lambda_{8}\\leftrightarrow\\Lambda_{1}+\\Lambda_{2}$ , and $\\Lambda_{6}\\leftrightarrow\\Lambda_{2}+\\Lambda_{7}$ , and fixes the nine other weights. The exceptional $\\pi_{5}$ is closely related to the Galois permutation $\\lambda\\mapsto\\lambda^{(13)}$ . ", "page_idx": 13}, {"type": "text", "text": "Theorem 3.E8. The only nontrivial fusion-symmetries for ${E}_{8}^{(1)}$ are $\\pi_{4}$ and $\\pi_{5}$ , occurring at $k=4$ and 5 respectively. ", "page_idx": 13}, {"type": "text", "text": "3.8. The algebra F 4(1) ", "text_level": 1, "page_idx": 13}, {"type": "text", "text": "A weight $\\lambda$ in $P_{+}$ satisfies $k=\\lambda_{0}+2\\lambda_{1}+3\\lambda_{2}+2\\lambda_{3}+\\lambda_{4}$ , and $\\kappa=k+9$ . Again, the conjugations and simple-currents are trivial. ", "page_idx": 13}] | [{"category_id": 1, "poly": [196, 1541, 1506, 1541, 1506, 1704, 196, 1704], "score": 0.974}, {"category_id": 1, "poly": [196, 481, 1506, 481, 1506, 640, 196, 640], "score": 0.965}, {"category_id": 1, "poly": [196, 1907, 1505, 1907, 1505, 1987, 196, 1987], "score": 0.954}, {"category_id": 1, "poly": [197, 1719, 1505, 1719, 1505, 1807, 197, 1807], "score": 0.952}, {"category_id": 1, "poly": [198, 298, 1503, 298, 1503, 383, 198, 383], "score": 0.948}, {"category_id": 1, "poly": [198, 197, 1503, 197, 1503, 280, 198, 280], "score": 0.943}, {"category_id": 8, "poly": [371, 1312, 1356, 1312, 1356, 1458, 371, 1458], "score": 0.908}, {"category_id": 1, "poly": [262, 641, 1280, 641, 1280, 683, 262, 683], "score": 0.901}, {"category_id": 9, "poly": [1412, 1118, 1500, 1118, 1500, 1156, 1412, 1156], "score": 0.889}, {"category_id": 1, "poly": [165, 1462, 1473, 1462, 1473, 1509, 165, 1509], "score": 0.883}, {"category_id": 9, "poly": [1409, 1416, 1501, 1416, 1501, 1456, 1409, 1456], "score": 0.878}, {"category_id": 2, "poly": [833, 2031, 869, 2031, 869, 2062, 833, 2062], "score": 0.873}, {"category_id": 9, "poly": [1417, 1218, 1501, 1218, 1501, 1257, 1417, 1257], "score": 0.857}, {"category_id": 9, "poly": [1412, 720, 1502, 720, 1502, 758, 1412, 758], "score": 0.821}, {"category_id": 1, "poly": [127, 1263, 1278, 1263, 1278, 1308, 127, 1308], "score": 0.804}, {"category_id": 9, "poly": [1415, 919, 1500, 919, 1500, 958, 1415, 958], "score": 0.802}, {"category_id": 0, "poly": [198, 1842, 511, 1842, 511, 1889, 198, 1889], "score": 0.671}, {"category_id": 1, "poly": [133, 1013, 1305, 1013, 1305, 1060, 133, 1060], "score": 0.645}, {"category_id": 1, "poly": [205, 1163, 1445, 1163, 1445, 1209, 205, 1209], "score": 0.625}, {"category_id": 9, "poly": [1411, 1467, 1501, 1467, 1501, 1508, 1411, 1508], "score": 0.565}, {"category_id": 8, "poly": [369, 1064, 1348, 1064, 1348, 1158, 369, 1158], "score": 0.552}, {"category_id": 0, "poly": [197, 417, 510, 417, 510, 464, 197, 464], "score": 0.505}, {"category_id": 8, "poly": [205, 913, 1219, 913, 1219, 1009, 205, 1009], "score": 0.499}, {"category_id": 8, "poly": [363, 1215, 1380, 1215, 1380, 1259, 363, 1259], "score": 0.475}, {"category_id": 1, "poly": [197, 417, 510, 417, 510, 464, 197, 464], "score": 0.438}, {"category_id": 9, "poly": [1418, 769, 1501, 769, 1501, 807, 1418, 807], "score": 0.288}, {"category_id": 1, "poly": [198, 1842, 511, 1842, 511, 1889, 198, 1889], "score": 0.277}, {"category_id": 9, "poly": [1415, 920, 1501, 920, 1501, 958, 1415, 958], "score": 0.255}, {"category_id": 13, "poly": [297, 770, 438, 770, 438, 812, 297, 812], "score": 0.94, "latex": "\\Lambda_{2}=(0)_{3}"}, {"category_id": 13, "poly": [297, 919, 438, 919, 438, 962, 297, 962], "score": 0.94, "latex": "\\Lambda_{7}=(0)_{2}"}, {"category_id": 13, "poly": [423, 1418, 600, 1418, 600, 1460, 423, 1460], "score": 0.94, "latex": "(2\\Lambda_{1}+\\Lambda_{3})_{8}"}, {"category_id": 13, "poly": [830, 1069, 989, 1069, 989, 1111, 830, 1111], "score": 0.93, "latex": "(\\Lambda_{1}+\\Lambda_{7})_{5}"}, {"category_id": 13, "poly": [631, 1368, 791, 1368, 791, 1410, 631, 1410], "score": 0.93, "latex": "(\\Lambda_{3}+\\Lambda_{7})_{6}"}, {"category_id": 13, "poly": [631, 1318, 791, 1318, 791, 1360, 631, 1360], "score": 0.93, "latex": "(\\Lambda_{1}+\\Lambda_{8})_{6}"}, {"category_id": 13, "poly": [423, 1318, 583, 1318, 583, 1360, 423, 1360], "score": 0.93, "latex": "(\\Lambda_{1}+\\Lambda_{6})_{6}"}, {"category_id": 13, "poly": [482, 1626, 628, 1626, 628, 1663, 482, 1663], "score": 0.93, "latex": "\\Lambda_{7}\\leftrightarrow2\\Lambda_{1}"}, {"category_id": 13, "poly": [423, 1368, 583, 1368, 583, 1410, 423, 1410], "score": 0.93, "latex": "(\\Lambda_{2}+\\Lambda_{8})_{6}"}, {"category_id": 13, "poly": [423, 870, 583, 870, 583, 912, 423, 912], "score": 0.93, "latex": "(\\Lambda_{1}+\\Lambda_{3})_{6}"}, {"category_id": 13, "poly": [297, 1168, 459, 1168, 459, 1211, 297, 1211], "score": 0.93, "latex": "\\Lambda_{4}=(\\Lambda_{3})_{5}"}, {"category_id": 13, "poly": [648, 1418, 824, 1418, 824, 1460, 648, 1460], "score": 0.93, "latex": "(2\\Lambda_{1}+\\Lambda_{7})_{6}"}, {"category_id": 13, "poly": [933, 1626, 1139, 1626, 1139, 1663, 933, 1663], "score": 0.93, "latex": "\\Lambda_{6}\\leftrightarrow\\Lambda_{2}+\\Lambda_{7}"}, {"category_id": 13, "poly": [424, 1119, 600, 1119, 600, 1161, 424, 1161], "score": 0.93, "latex": "(2\\Lambda_{1}+\\Lambda_{2})_{7}"}, {"category_id": 13, "poly": [636, 1268, 796, 1268, 796, 1310, 636, 1310], "score": 0.93, "latex": "(\\Lambda_{1}+\\Lambda_{2})_{6}"}, {"category_id": 13, "poly": [652, 1916, 1100, 1916, 1100, 1948, 652, 1948], "score": 0.93, "latex": "k=\\lambda_{0}+2\\lambda_{1}+3\\lambda_{2}+2\\lambda_{3}+\\lambda_{4}"}, {"category_id": 13, "poly": [1034, 204, 1185, 204, 1185, 244, 1034, 244], "score": 0.93, "latex": "\\pi_{3}=\\pi\\{5\\}"}, {"category_id": 13, "poly": [878, 1169, 1038, 1169, 1038, 1211, 878, 1211], "score": 0.93, "latex": "(\\Lambda_{1}+\\Lambda_{3})_{6}"}, {"category_id": 13, "poly": [813, 1219, 970, 1219, 970, 1261, 813, 1261], "score": 0.93, "latex": "(\\Lambda_{7}+\\Lambda_{8})_{5}"}, {"category_id": 13, "poly": [423, 1069, 521, 1069, 521, 1111, 423, 1111], "score": 0.93, "latex": "(2\\Lambda_{7})_{4}"}, {"category_id": 13, "poly": [891, 870, 1051, 870, 1051, 912, 891, 912], "score": 0.93, "latex": "(\\Lambda_{2}+\\Lambda_{7})_{5}"}, {"category_id": 13, "poly": [476, 1918, 519, 1918, 519, 1950, 476, 1950], "score": 0.93, "latex": "P_{+}"}, {"category_id": 13, "poly": [486, 920, 567, 920, 567, 962, 486, 962], "score": 0.93, "latex": "(\\Lambda_{1})_{3}"}, {"category_id": 13, "poly": [629, 870, 843, 870, 843, 912, 629, 912], "score": 0.92, "latex": "2\\,\\Xi\\,(\\Lambda_{1}+\\Lambda_{8})_{55}"}, {"category_id": 13, "poly": [744, 1019, 826, 1019, 826, 1061, 744, 1061], "score": 0.92, "latex": "(\\Lambda_{3})_{4}"}, {"category_id": 13, "poly": [297, 720, 438, 720, 438, 763, 297, 763], "score": 0.92, "latex": "\\Lambda_{1}=(0)_{2}"}, {"category_id": 13, "poly": [429, 969, 526, 969, 526, 1012, 429, 1012], "score": 0.92, "latex": "(2\\Lambda_{1})_{4}"}, {"category_id": 13, "poly": [1371, 1547, 1500, 1547, 1500, 1583, 1371, 1583], "score": 0.92, "latex": "\\Lambda_{1}\\leftrightarrow\\Lambda_{6}"}, {"category_id": 13, "poly": [744, 920, 826, 920, 826, 962, 744, 962], "score": 0.92, "latex": "(\\Lambda_{3})_{4}"}, {"category_id": 13, "poly": [671, 565, 910, 565, 910, 606, 671, 606], "score": 0.92, "latex": "P_{+}=(0,\\Lambda_{1},\\Lambda_{7})"}, {"category_id": 13, "poly": [1003, 920, 1085, 920, 1085, 963, 1003, 963], "score": 0.92, "latex": "(\\Lambda_{7})_{3}"}, {"category_id": 13, "poly": [486, 1019, 567, 1019, 567, 1061, 486, 1061], "score": 0.92, "latex": "(\\Lambda_{1})_{5}"}, {"category_id": 13, "poly": [615, 1019, 697, 1019, 697, 1061, 615, 1061], "score": 0.92, "latex": "(\\Lambda_{2})_{5}"}, {"category_id": 13, "poly": [877, 820, 1029, 820, 1029, 862, 877, 862], "score": 0.92, "latex": "2\\,\\Xi\\,(2\\Lambda_{1})_{45}"}, {"category_id": 13, "poly": [615, 920, 697, 920, 697, 962, 615, 962], "score": 0.92, "latex": "(\\Lambda_{2})_{3}"}, {"category_id": 13, "poly": [613, 770, 749, 770, 749, 812, 613, 812], "score": 0.92, "latex": "2\\,\\pm\\,(\\Lambda_{2})_{34}"}, {"category_id": 13, "poly": [575, 969, 673, 969, 673, 1012, 575, 1012], "score": 0.92, "latex": "(2\\Lambda_{7})_{4}"}, {"category_id": 13, "poly": [648, 1119, 824, 1119, 824, 1161, 648, 1161], "score": 0.92, "latex": "(2\\Lambda_{1}+\\Lambda_{7})_{6}"}, {"category_id": 13, "poly": [957, 565, 1105, 565, 1105, 606, 957, 606], "score": 0.92, "latex": "(\\Lambda_{7},\\Lambda_{1},0)"}, {"category_id": 13, "poly": [839, 1318, 999, 1318, 999, 1360, 839, 1360], "score": 0.92, "latex": "(\\Lambda_{2}+\\Lambda_{3})_{7}"}, {"category_id": 13, "poly": [755, 1169, 834, 1169, 834, 1211, 755, 1211], "score": 0.92, "latex": "(\\Lambda_{6})_{5}"}, {"category_id": 13, "poly": [720, 969, 881, 969, 881, 1012, 720, 1012], "score": 0.92, "latex": "(\\Lambda_{1}+\\Lambda_{7})_{4}"}, {"category_id": 13, "poly": [421, 820, 558, 820, 558, 862, 421, 862], "score": 0.92, "latex": "2\\,\\Xi\\,(\\Lambda_{8})_{44}"}, {"category_id": 13, "poly": [602, 820, 831, 820, 831, 862, 602, 862], "score": 0.92, "latex": "3\\,\\pm\\,(\\Lambda_{1}+\\Lambda_{7})_{445}"}, {"category_id": 13, "poly": [486, 770, 567, 770, 567, 812, 486, 812], "score": 0.92, "latex": "(\\Lambda_{1})_{4}"}, {"category_id": 13, "poly": [1037, 1069, 1197, 1069, 1197, 1112, 1037, 1112], "score": 0.92, "latex": "(\\Lambda_{2}+\\Lambda_{7})_{5}"}, {"category_id": 13, "poly": [199, 245, 557, 245, 557, 283, 199, 283], "score": 0.92, "latex": "J^{i}(2\\Lambda_{6})\\mapsto J^{i}\\Lambda_{2}\\mapsto J^{i}\\Lambda_{1}"}, {"category_id": 13, "poly": [507, 1268, 589, 1268, 589, 1310, 507, 1310], "score": 0.92, "latex": "(\\Lambda_{4})_{6}"}, {"category_id": 13, "poly": [795, 770, 932, 770, 932, 812, 795, 812], "score": 0.91, "latex": "2\\,\\pm\\,(\\Lambda_{3})_{45}"}, {"category_id": 13, "poly": [839, 1368, 1016, 1368, 1016, 1410, 839, 1410], "score": 0.91, "latex": "(2\\Lambda_{1}+\\Lambda_{8})_{7}"}, {"category_id": 13, "poly": [616, 1219, 773, 1219, 773, 1261, 616, 1261], "score": 0.91, "latex": "(\\Lambda_{2}+\\Lambda_{7})_{5}"}, {"category_id": 13, "poly": [646, 1627, 852, 1627, 852, 1663, 646, 1663], "score": 0.91, "latex": "\\Lambda_{8}\\leftrightarrow\\Lambda_{1}+\\Lambda_{2}"}, {"category_id": 13, "poly": [1086, 1169, 1247, 1169, 1247, 1211, 1086, 1211], "score": 0.91, "latex": "(\\Lambda_{1}+\\Lambda_{4})_{7}"}, {"category_id": 13, "poly": [1001, 1018, 1154, 1018, 1154, 1061, 1001, 1061], "score": 0.91, "latex": "2\\,\\mathbf{E}\\left(2\\Lambda_{1}\\right)_{46}"}, {"category_id": 13, "poly": [1154, 1721, 1218, 1721, 1218, 1769, 1154, 1769], "score": 0.91, "latex": "{E}_{8}^{(1)}"}, {"category_id": 13, "poly": [507, 1169, 588, 1169, 588, 1211, 507, 1211], "score": 0.91, "latex": "(\\Lambda_{4})_{6}"}, {"category_id": 13, "poly": [257, 1467, 452, 1467, 452, 1510, 257, 1510], "score": 0.91, "latex": "(2\\Lambda_{7})=\\!(\\Lambda_{6})_{4}"}, {"category_id": 13, "poly": [874, 1019, 955, 1019, 955, 1061, 874, 1061], "score": 0.91, "latex": "(\\Lambda_{7})_{4}"}, {"category_id": 13, "poly": [1079, 820, 1175, 820, 1175, 862, 1079, 862], "score": 0.91, "latex": "(2\\Lambda_{2})_{6}"}, {"category_id": 13, "poly": [874, 920, 955, 920, 955, 962, 874, 962], "score": 0.91, "latex": "(\\Lambda_{6})_{4}"}, {"category_id": 13, "poly": [662, 356, 744, 356, 744, 381, 662, 381], "score": 0.91, "latex": "k=3"}, {"category_id": 13, "poly": [449, 422, 511, 422, 511, 468, 449, 468], "score": 0.91, "latex": "{E}_{8}^{(1)}"}, {"category_id": 13, "poly": [449, 1847, 510, 1847, 510, 1892, 449, 1892], "score": 0.91, "latex": "{F}_{4}^{(1)}"}, {"category_id": 13, "poly": [842, 1267, 1057, 1267, 1057, 1310, 842, 1310], "score": 0.91, "latex": "2\\,\\mathtt{H}\\,(\\Lambda_{1}+\\Lambda_{3})_{67}"}, {"category_id": 13, "poly": [567, 1069, 782, 1069, 782, 1111, 567, 1111], "score": 0.91, "latex": "2\\,\\Xi\\,(\\Lambda_{1}+\\Lambda_{2})_{56}"}, {"category_id": 13, "poly": [492, 1468, 649, 1468, 649, 1510, 492, 1510], "score": 0.91, "latex": "(\\Lambda_{1}+\\Lambda_{7})_{4}"}, {"category_id": 13, "poly": [1257, 1662, 1398, 1662, 1398, 1698, 1257, 1698], "score": 0.91, "latex": "\\lambda\\mapsto\\lambda^{(13)}"}, {"category_id": 13, "poly": [631, 1169, 711, 1169, 711, 1211, 631, 1211], "score": 0.91, "latex": "(\\Lambda_{5})_{6}"}, {"category_id": 13, "poly": [1047, 1318, 1206, 1318, 1206, 1360, 1047, 1360], "score": 0.91, "latex": "(\\Lambda_{2}+\\Lambda_{7})_{6}"}, {"category_id": 13, "poly": [701, 1587, 747, 1587, 747, 1625, 701, 1625], "score": 0.91, "latex": "P_{+}"}, {"category_id": 13, "poly": [1219, 820, 1315, 820, 1315, 862, 1219, 862], "score": 0.9, "latex": "(2\\Lambda_{7})_{4}"}, {"category_id": 13, "poly": [418, 1219, 576, 1219, 576, 1261, 418, 1261], "score": 0.9, "latex": "(\\Lambda_{1}+\\Lambda_{8})_{5}"}, {"category_id": 13, "poly": [979, 770, 1061, 770, 1061, 812, 979, 812], "score": 0.9, "latex": "(\\Lambda_{4})_{5}"}, {"category_id": 13, "poly": [614, 720, 697, 720, 697, 763, 614, 763], "score": 0.9, "latex": "(\\Lambda_{2})_{3}"}, {"category_id": 13, "poly": [1151, 300, 1217, 300, 1217, 350, 1151, 350], "score": 0.9, "latex": "{E}_{7}^{(1)}"}, {"category_id": 13, "poly": [744, 720, 826, 720, 826, 763, 744, 763], "score": 0.9, "latex": "(\\Lambda_{7})_{2}"}, {"category_id": 13, "poly": [312, 211, 393, 211, 393, 236, 312, 236], "score": 0.9, "latex": "k=3"}, {"category_id": 13, "poly": [486, 720, 567, 720, 567, 763, 486, 763], "score": 0.9, "latex": "(\\Lambda_{1})_{3}"}, {"category_id": 13, "poly": [583, 1547, 666, 1547, 666, 1580, 583, 1580], "score": 0.9, "latex": "k=4"}, {"category_id": 13, "poly": [689, 1468, 784, 1468, 784, 1510, 689, 1510], "score": 0.9, "latex": "(2\\Lambda_{7})_{5}"}, {"category_id": 13, "poly": [469, 491, 514, 491, 514, 526, 469, 526], "score": 0.9, "latex": "P_{+}"}, {"category_id": 13, "poly": [1385, 204, 1505, 204, 1505, 241, 1385, 241], "score": 0.89, "latex": "J^{i}\\Lambda_{1}\\mapsto"}, {"category_id": 13, "poly": [1109, 770, 1190, 770, 1190, 812, 1109, 812], "score": 0.89, "latex": "(\\Lambda_{6})_{4}"}, {"category_id": 13, "poly": [1183, 1917, 1324, 1917, 1324, 1945, 1183, 1945], "score": 0.89, "latex": "\\kappa=k+9"}, {"category_id": 13, "poly": [198, 528, 356, 528, 356, 562, 198, 562], "score": 0.89, "latex": "\\kappa=k+30"}, {"category_id": 13, "poly": [207, 1267, 459, 1267, 459, 1310, 207, 1310], "score": 0.89, "latex": "(\\Lambda_{1}\\!+\\!\\Lambda_{3})=(\\Lambda_{3})_{6}"}, {"category_id": 13, "poly": [874, 720, 972, 720, 972, 763, 874, 763], "score": 0.89, "latex": "(2\\Lambda_{1})_{4}"}, {"category_id": 13, "poly": [1294, 1169, 1455, 1169, 1455, 1212, 1294, 1212], "score": 0.88, "latex": "(\\Lambda_{1}+\\Lambda_{6})_{6}"}, {"category_id": 13, "poly": [1418, 1587, 1502, 1587, 1502, 1620, 1418, 1620], "score": 0.88, "latex": "k=5"}, {"category_id": 13, "poly": [1009, 1219, 1166, 1219, 1166, 1261, 1009, 1261], "score": 0.88, "latex": "(\\Lambda_{2}+\\Lambda_{8})_{6}"}, {"category_id": 13, "poly": [571, 1674, 608, 1674, 608, 1703, 571, 1703], "score": 0.88, "latex": "\\pi_{5}"}, {"category_id": 13, "poly": [454, 567, 537, 567, 537, 599, 454, 599], "score": 0.88, "latex": "k=2"}, {"category_id": 13, "poly": [824, 1468, 981, 1468, 981, 1510, 824, 1510], "score": 0.88, "latex": "(\\Lambda_{2}+\\Lambda_{7})_{5}"}, {"category_id": 13, "poly": [1203, 1019, 1300, 1019, 1300, 1061, 1203, 1061], "score": 0.88, "latex": "(2\\Lambda_{2})_{6}"}, {"category_id": 13, "poly": [209, 771, 251, 771, 251, 809, 209, 809], "score": 0.88, "latex": "\\Lambda_{2}"}, {"category_id": 13, "poly": [1357, 819, 1571, 819, 1571, 862, 1357, 862], "score": 0.88, "latex": "2\\,\\Xi\\,(\\Lambda_{1}+\\Lambda_{2})_{55}"}, {"category_id": 13, "poly": [871, 1418, 1109, 1418, 1109, 1460, 871, 1460], "score": 0.87, "latex": "(\\Lambda_{1}+\\Lambda_{2}+\\Lambda_{7})_{7}"}, {"category_id": 13, "poly": [209, 720, 251, 720, 251, 760, 209, 760], "score": 0.87, "latex": "\\Lambda_{1}"}, {"category_id": 13, "poly": [872, 1119, 971, 1119, 971, 1161, 872, 1161], "score": 0.87, "latex": "(4\\Lambda_{1})_{8}"}, {"category_id": 13, "poly": [1100, 870, 1275, 870, 1275, 912, 1100, 912], "score": 0.87, "latex": "(2\\Lambda_{1}+\\Lambda_{7})_{6}"}, {"category_id": 13, "poly": [406, 1918, 427, 1918, 427, 1942, 406, 1942], "score": 0.86, "latex": "\\lambda"}, {"category_id": 13, "poly": [209, 920, 252, 920, 252, 960, 209, 960], "score": 0.86, "latex": "\\Lambda_{7}"}, {"category_id": 13, "poly": [166, 1468, 208, 1468, 208, 1507, 166, 1507], "score": 0.86, "latex": "\\Lambda_{1}"}, {"category_id": 13, "poly": [1328, 1590, 1365, 1590, 1365, 1623, 1328, 1623], "score": 0.85, "latex": "\\pi_{5}"}, {"category_id": 13, "poly": [643, 489, 1428, 489, 1428, 524, 643, 524], "score": 0.85, "latex": "k=\\lambda_{0}+2\\lambda_{1}+3\\lambda_{2}+4\\lambda_{3}+5\\lambda_{4}+6\\lambda_{5}+4\\lambda_{6}+2\\lambda_{7}+3\\lambda_{8}"}, {"category_id": 13, "poly": [771, 1552, 808, 1552, 808, 1583, 771, 1583], "score": 0.85, "latex": "\\pi_{4}"}, {"category_id": 13, "poly": [1236, 769, 1373, 769, 1373, 812, 1236, 812], "score": 0.85, "latex": "2\\,\\Theta\\left(\\Lambda_{7}\\right)_{34}"}, {"category_id": 13, "poly": [1105, 1268, 1266, 1268, 1266, 1310, 1105, 1310], "score": 0.85, "latex": "(\\Lambda_{1}+\\Lambda_{4})_{7}"}, {"category_id": 13, "poly": [356, 1775, 437, 1775, 437, 1800, 356, 1800], "score": 0.85, "latex": "k=4"}, {"category_id": 13, "poly": [1205, 1219, 1365, 1219, 1365, 1262, 1205, 1262], "score": 0.85, "latex": "(\\Lambda_{3}+\\Lambda_{7})_{6}"}, {"category_id": 13, "poly": [209, 1169, 251, 1169, 251, 1208, 209, 1208], "score": 0.84, "latex": "\\Lambda_{1}"}, {"category_id": 13, "poly": [1255, 1318, 1352, 1318, 1352, 1360, 1255, 1360], "score": 0.84, "latex": "(2\\Lambda_{2})_{6}"}, {"category_id": 13, "poly": [1246, 1068, 1344, 1068, 1344, 1111, 1246, 1111], "score": 0.83, "latex": "(3\\Lambda_{1})_{7}"}, {"category_id": 13, "poly": [1314, 870, 1411, 870, 1411, 912, 1314, 912], "score": 0.82, "latex": "(3\\Lambda_{1})_{6}"}, {"category_id": 13, "poly": [402, 492, 425, 492, 425, 519, 402, 519], "score": 0.81, "latex": "\\lambda"}, {"category_id": 13, "poly": [1064, 1368, 1241, 1368, 1241, 1410, 1064, 1410], "score": 0.8, "latex": "(2\\Lambda_{1}+\\Lambda_{2})_{7}"}, {"category_id": 13, "poly": [1398, 1735, 1434, 1735, 1434, 1766, 1398, 1766], "score": 0.79, "latex": "\\pi_{5}"}, {"category_id": 13, "poly": [126, 1268, 168, 1268, 168, 1308, 126, 1308], "score": 0.79, "latex": "\\Lambda_{1}"}, {"category_id": 13, "poly": [1285, 1735, 1322, 1735, 1322, 1765, 1285, 1765], "score": 0.78, "latex": "\\pi_{4}"}, {"category_id": 13, "poly": [1132, 920, 1214, 920, 1214, 963, 1132, 963], "score": 0.77, "latex": "(\\Lambda_{8})_{3}"}, {"category_id": 13, "poly": [351, 360, 387, 360, 387, 386, 351, 386], "score": 0.75, "latex": "\\pi_{3}"}, {"category_id": 13, "poly": [1470, 313, 1490, 313, 1490, 342, 1470, 342], "score": 0.73, "latex": "k"}, {"category_id": 13, "poly": [136, 1018, 439, 1018, 439, 1062, 136, 1062], "score": 0.73, "latex": "(2\\Lambda_{1})\\vert\\mathrm{\\bf\\sfXI}(2\\Lambda_{1})=(0)_{4}"}, {"category_id": 13, "poly": [1282, 307, 1343, 307, 1343, 350, 1282, 350], "score": 0.71, "latex": "\\pi[1]"}, {"category_id": 13, "poly": [1411, 1419, 1501, 1419, 1501, 1460, 1411, 1460], "score": 0.69, "latex": "\\left(3.7f\\right)"}, {"category_id": 13, "poly": [1217, 1468, 1391, 1468, 1391, 1510, 1217, 1510], "score": 0.35, "latex": "(\\Lambda_{1}+2\\Lambda_{7})_{6}"}, {"category_id": 13, "poly": [138, 1019, 216, 1019, 216, 1061, 138, 1061], "score": 0.32, "latex": "(2\\Lambda_{1})"}, {"category_id": 13, "poly": [1414, 1470, 1501, 1470, 1501, 1510, 1414, 1510], "score": 0.29, "latex": "(3.7g)"}, {"category_id": 13, "poly": [1414, 722, 1501, 722, 1501, 763, 1414, 763], "score": 0.26, "latex": "(3.7a)"}, {"category_id": 13, "poly": [1021, 1468, 1178, 1468, 1178, 1511, 1021, 1511], "score": 0.25, "latex": "(\\Lambda_{7}+\\Lambda_{8})_{5}"}, {"category_id": 15, "poly": [265.0, 1547.0, 582.0, 1547.0, 582.0, 1588.0, 265.0, 1588.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [667.0, 1547.0, 770.0, 1547.0, 770.0, 1588.0, 667.0, 1588.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [809.0, 1547.0, 1370.0, 1547.0, 1370.0, 1588.0, 809.0, 1588.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1501.0, 1547.0, 1502.0, 1547.0, 1502.0, 1588.0, 1501.0, 1588.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [199.0, 1587.0, 700.0, 1587.0, 700.0, 1628.0, 199.0, 1628.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [748.0, 1587.0, 1327.0, 1587.0, 1327.0, 1628.0, 748.0, 1628.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1366.0, 1587.0, 1417.0, 1587.0, 1417.0, 1628.0, 1366.0, 1628.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1503.0, 1587.0, 1506.0, 1587.0, 1506.0, 1628.0, 1503.0, 1628.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [200.0, 1629.0, 481.0, 1629.0, 481.0, 1668.0, 200.0, 1668.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [629.0, 1629.0, 645.0, 1629.0, 645.0, 1668.0, 629.0, 1668.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [853.0, 1629.0, 932.0, 1629.0, 932.0, 1668.0, 853.0, 1668.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1140.0, 1629.0, 1503.0, 1629.0, 1503.0, 1668.0, 1140.0, 1668.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [194.0, 1664.0, 570.0, 1664.0, 570.0, 1710.0, 194.0, 1710.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [609.0, 1664.0, 1256.0, 1664.0, 1256.0, 1710.0, 609.0, 1710.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1399.0, 1664.0, 1413.0, 1664.0, 1413.0, 1710.0, 1399.0, 1710.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [265.0, 490.0, 401.0, 490.0, 401.0, 528.0, 265.0, 528.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [426.0, 490.0, 468.0, 490.0, 468.0, 528.0, 426.0, 528.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [515.0, 490.0, 642.0, 490.0, 642.0, 528.0, 515.0, 528.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1429.0, 490.0, 1503.0, 490.0, 1503.0, 528.0, 1429.0, 528.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [197.0, 529.0, 197.0, 529.0, 197.0, 571.0, 197.0, 571.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [357.0, 529.0, 1505.0, 529.0, 1505.0, 571.0, 357.0, 571.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [197.0, 570.0, 453.0, 570.0, 453.0, 608.0, 197.0, 608.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [538.0, 570.0, 670.0, 570.0, 670.0, 608.0, 538.0, 608.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [911.0, 570.0, 956.0, 570.0, 956.0, 608.0, 911.0, 608.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1106.0, 570.0, 1503.0, 570.0, 1503.0, 608.0, 1106.0, 608.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [197.0, 610.0, 657.0, 610.0, 657.0, 645.0, 197.0, 645.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [262.0, 1912.0, 405.0, 1912.0, 405.0, 1954.0, 262.0, 1954.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [428.0, 1912.0, 475.0, 1912.0, 475.0, 1954.0, 428.0, 1954.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [520.0, 1912.0, 651.0, 1912.0, 651.0, 1954.0, 520.0, 1954.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1101.0, 1912.0, 1182.0, 1912.0, 1182.0, 1954.0, 1101.0, 1954.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1325.0, 1912.0, 1504.0, 1912.0, 1504.0, 1954.0, 1325.0, 1954.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [200.0, 1954.0, 843.0, 1954.0, 843.0, 1993.0, 200.0, 1993.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [252.0, 1721.0, 1153.0, 1721.0, 1153.0, 1783.0, 252.0, 1783.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1219.0, 1721.0, 1284.0, 1721.0, 1284.0, 1783.0, 1219.0, 1783.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1323.0, 1721.0, 1397.0, 1721.0, 1397.0, 1783.0, 1323.0, 1783.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1435.0, 1721.0, 1502.0, 1721.0, 1502.0, 1783.0, 1435.0, 1783.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [200.0, 1770.0, 355.0, 1770.0, 355.0, 1814.0, 200.0, 1814.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [438.0, 1770.0, 716.0, 1770.0, 716.0, 1814.0, 438.0, 1814.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [256.0, 303.0, 1150.0, 303.0, 1150.0, 358.0, 256.0, 358.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1218.0, 303.0, 1281.0, 303.0, 1281.0, 358.0, 1218.0, 358.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1344.0, 303.0, 1469.0, 303.0, 1469.0, 358.0, 1344.0, 358.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1491.0, 303.0, 1500.0, 303.0, 1500.0, 358.0, 1491.0, 358.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [202.0, 352.0, 350.0, 352.0, 350.0, 388.0, 202.0, 388.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [388.0, 352.0, 661.0, 352.0, 661.0, 388.0, 388.0, 388.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [745.0, 352.0, 755.0, 352.0, 755.0, 388.0, 745.0, 388.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [262.0, 203.0, 311.0, 203.0, 311.0, 251.0, 262.0, 251.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [394.0, 203.0, 1033.0, 203.0, 1033.0, 251.0, 394.0, 251.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1186.0, 203.0, 1384.0, 203.0, 1384.0, 251.0, 1186.0, 251.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [558.0, 244.0, 1020.0, 244.0, 1020.0, 287.0, 558.0, 287.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [266.0, 646.0, 1274.0, 646.0, 1274.0, 688.0, 266.0, 688.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [209.0, 1473.0, 256.0, 1473.0, 256.0, 1516.0, 209.0, 1516.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [453.0, 1473.0, 491.0, 1473.0, 491.0, 1516.0, 453.0, 1516.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [650.0, 1473.0, 688.0, 1473.0, 688.0, 1516.0, 650.0, 1516.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [785.0, 1473.0, 823.0, 1473.0, 823.0, 1516.0, 785.0, 1516.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [982.0, 1473.0, 1020.0, 1473.0, 1020.0, 1516.0, 982.0, 1516.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1179.0, 1473.0, 1216.0, 1473.0, 1216.0, 1516.0, 1179.0, 1516.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1392.0, 1473.0, 1413.0, 1473.0, 1413.0, 1516.0, 1392.0, 1516.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [829.0, 2032.0, 872.0, 2032.0, 872.0, 2069.0, 829.0, 2069.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [169.0, 1269.0, 206.0, 1269.0, 206.0, 1319.0, 169.0, 1319.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [460.0, 1269.0, 506.0, 1269.0, 506.0, 1319.0, 460.0, 1319.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [590.0, 1269.0, 635.0, 1269.0, 635.0, 1319.0, 590.0, 1319.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [797.0, 1269.0, 841.0, 1269.0, 841.0, 1319.0, 797.0, 1319.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1058.0, 1269.0, 1104.0, 1269.0, 1104.0, 1319.0, 1058.0, 1319.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [192.0, 1842.0, 518.0, 1842.0, 518.0, 1898.0, 192.0, 1898.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [440.0, 1023.0, 485.0, 1023.0, 485.0, 1070.0, 440.0, 1070.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [568.0, 1023.0, 614.0, 1023.0, 614.0, 1070.0, 568.0, 1070.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [698.0, 1023.0, 743.0, 1023.0, 743.0, 1070.0, 698.0, 1070.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [827.0, 1023.0, 873.0, 1023.0, 873.0, 1070.0, 827.0, 1070.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [956.0, 1023.0, 1000.0, 1023.0, 1000.0, 1070.0, 956.0, 1070.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1155.0, 1023.0, 1202.0, 1023.0, 1202.0, 1070.0, 1155.0, 1070.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [252.0, 1172.0, 296.0, 1172.0, 296.0, 1219.0, 252.0, 1219.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [460.0, 1172.0, 506.0, 1172.0, 506.0, 1219.0, 460.0, 1219.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [589.0, 1172.0, 630.0, 1172.0, 630.0, 1219.0, 589.0, 1219.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [712.0, 1172.0, 754.0, 1172.0, 754.0, 1219.0, 712.0, 1219.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [835.0, 1172.0, 877.0, 1172.0, 877.0, 1219.0, 835.0, 1219.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1039.0, 1172.0, 1085.0, 1172.0, 1085.0, 1219.0, 1039.0, 1219.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1248.0, 1172.0, 1293.0, 1172.0, 1293.0, 1219.0, 1248.0, 1219.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [186.25, 412.5, 525.25, 412.5, 525.25, 484.5, 186.25, 484.5], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [186.25, 412.5, 525.25, 412.5, 525.25, 484.5, 186.25, 484.5], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [192.0, 1842.0, 518.0, 1842.0, 518.0, 1898.0, 192.0, 1898.0], "score": 1.0, "text": ""}] | {"preproc_blocks": [{"type": "text", "bbox": [71, 70, 541, 100], "lines": [{"bbox": [94, 73, 541, 90], "spans": [{"bbox": [94, 73, 111, 90], "score": 1.0, "content": "At", "type": "text"}, {"bbox": [112, 75, 141, 84], "score": 0.9, "content": "k=3", "type": "inline_equation", "height": 9, "width": 29}, {"bbox": [141, 73, 371, 90], "score": 1.0, "content": " there is an order 3 Galois fusion-symmetry ", "type": "text"}, {"bbox": [372, 73, 426, 87], "score": 0.93, "content": "\\pi_{3}=\\pi\\{5\\}", "type": "inline_equation", "height": 14, "width": 54}, {"bbox": [426, 73, 498, 90], "score": 1.0, "content": ", which sends ", "type": "text"}, {"bbox": [498, 73, 541, 86], "score": 0.89, "content": "J^{i}\\Lambda_{1}\\mapsto", "type": "inline_equation", "height": 13, "width": 43}], "index": 0}, {"bbox": [71, 87, 367, 103], "spans": [{"bbox": [71, 88, 200, 101], "score": 0.92, "content": "J^{i}(2\\Lambda_{6})\\mapsto J^{i}\\Lambda_{2}\\mapsto J^{i}\\Lambda_{1}", "type": "inline_equation", "height": 13, "width": 129}, {"bbox": [200, 87, 367, 103], "score": 1.0, "content": " and fixes the other six weights.", "type": "text"}], "index": 1}], "index": 0.5}, {"type": "text", "bbox": [71, 107, 541, 137], "lines": [{"bbox": [92, 108, 540, 128], "spans": [{"bbox": [92, 109, 414, 128], "score": 1.0, "content": "Theorem 3.E7. The only nontrivial fusion-symmetries for ", "type": "text"}, {"bbox": [414, 108, 438, 126], "score": 0.9, "content": "{E}_{7}^{(1)}", "type": "inline_equation", "height": 18, "width": 24}, {"bbox": [438, 109, 461, 128], "score": 1.0, "content": "are ", "type": "text"}, {"bbox": [461, 110, 483, 126], "score": 0.71, "content": "\\pi[1]", "type": "inline_equation", "height": 16, "width": 22}, {"bbox": [483, 109, 528, 128], "score": 1.0, "content": " at even ", "type": "text"}, {"bbox": [529, 112, 536, 123], "score": 0.73, "content": "k", "type": "inline_equation", "height": 11, "width": 7}, {"bbox": [536, 109, 540, 128], "score": 1.0, "content": ",", "type": "text"}], "index": 2}, {"bbox": [72, 126, 271, 139], "spans": [{"bbox": [72, 126, 126, 139], "score": 1.0, "content": "as well as ", "type": "text"}, {"bbox": [126, 129, 139, 138], "score": 0.75, "content": "\\pi_{3}", "type": "inline_equation", "height": 9, "width": 13}, {"bbox": [139, 126, 237, 139], "score": 1.0, "content": " and its inverse at ", "type": "text"}, {"bbox": [238, 128, 267, 137], "score": 0.91, "content": "k=3", "type": "inline_equation", "height": 9, "width": 29}, {"bbox": [268, 126, 271, 139], "score": 1.0, "content": ".", "type": "text"}], "index": 3}], "index": 2.5}, {"type": "title", "bbox": [70, 150, 183, 167], "lines": [{"bbox": [67, 148, 189, 174], "spans": [{"bbox": [67, 148, 189, 174], "score": 1.0, "content": "3.7. The algebra E8(1)", "type": "text"}], "index": 4}], "index": 4}, {"type": "text", "bbox": [70, 173, 542, 230], "lines": [{"bbox": [95, 176, 541, 190], "spans": [{"bbox": [95, 176, 144, 190], "score": 1.0, "content": "A weight ", "type": "text"}, {"bbox": [144, 177, 153, 186], "score": 0.81, "content": "\\lambda", "type": "inline_equation", "height": 9, "width": 9}, {"bbox": [153, 176, 168, 190], "score": 1.0, "content": " in ", "type": "text"}, {"bbox": [168, 176, 185, 189], "score": 0.9, "content": "P_{+}", "type": "inline_equation", "height": 13, "width": 17}, {"bbox": [185, 176, 231, 190], "score": 1.0, "content": " satisfies ", "type": "text"}, {"bbox": [231, 176, 514, 188], "score": 0.85, "content": "k=\\lambda_{0}+2\\lambda_{1}+3\\lambda_{2}+4\\lambda_{3}+5\\lambda_{4}+6\\lambda_{5}+4\\lambda_{6}+2\\lambda_{7}+3\\lambda_{8}", "type": "inline_equation", "height": 12, "width": 283}, {"bbox": [514, 176, 541, 190], "score": 1.0, "content": ", and", "type": "text"}], "index": 5}, {"bbox": [71, 190, 541, 205], "spans": [{"bbox": [71, 190, 128, 202], "score": 0.89, "content": "\\kappa=k+30", "type": "inline_equation", "height": 12, "width": 57}, {"bbox": [128, 190, 541, 205], "score": 1.0, "content": ". The conjugations and simple-currents are all trivial, except for an anomolous", "type": "text"}], "index": 6}, {"bbox": [70, 203, 541, 218], "spans": [{"bbox": [70, 205, 163, 218], "score": 1.0, "content": "simple-current at ", "type": "text"}, {"bbox": [163, 204, 193, 215], "score": 0.88, "content": "k=2", "type": "inline_equation", "height": 11, "width": 30}, {"bbox": [193, 205, 241, 218], "score": 1.0, "content": ", sending ", "type": "text"}, {"bbox": [241, 203, 327, 218], "score": 0.92, "content": "P_{+}=(0,\\Lambda_{1},\\Lambda_{7})", "type": "inline_equation", "height": 15, "width": 86}, {"bbox": [327, 205, 344, 218], "score": 1.0, "content": " to ", "type": "text"}, {"bbox": [344, 203, 397, 218], "score": 0.92, "content": "(\\Lambda_{7},\\Lambda_{1},0)", "type": "inline_equation", "height": 15, "width": 53}, {"bbox": [398, 205, 541, 218], "score": 1.0, "content": ", which plays no role in this", "type": "text"}], "index": 7}, {"bbox": [70, 219, 236, 232], "spans": [{"bbox": [70, 219, 236, 232], "score": 1.0, "content": "paper (except in Theorem 5.1).", "type": "text"}], "index": 8}], "index": 6.5}, {"type": "text", "bbox": [94, 230, 460, 245], "lines": [{"bbox": [95, 232, 458, 247], "spans": [{"bbox": [95, 232, 458, 247], "score": 1.0, "content": "The only fusion products we need can be derived from [28] and (2.4):", "type": "text"}], "index": 9}], "index": 9}, {"type": "text", "bbox": [47, 364, 469, 381], "lines": [{"bbox": [48, 366, 468, 385], "spans": [{"bbox": [48, 366, 158, 382], "score": 0.73, "content": "(2\\Lambda_{1})\\vert\\mathrm{\\bf\\sfXI}(2\\Lambda_{1})=(0)_{4}", "type": "inline_equation", "height": 16, "width": 110}, {"bbox": [158, 368, 174, 385], "score": 1.0, "content": " + ", "type": "text"}, {"bbox": [174, 366, 204, 381], "score": 0.92, "content": "(\\Lambda_{1})_{5}", "type": "inline_equation", "height": 15, "width": 30}, {"bbox": [204, 368, 221, 385], "score": 1.0, "content": " + ", "type": "text"}, {"bbox": [221, 366, 250, 381], "score": 0.92, "content": "(\\Lambda_{2})_{5}", "type": "inline_equation", "height": 15, "width": 29}, {"bbox": [251, 368, 267, 385], "score": 1.0, "content": " + ", "type": "text"}, {"bbox": [267, 366, 297, 381], "score": 0.92, "content": "(\\Lambda_{3})_{4}", "type": "inline_equation", "height": 15, "width": 30}, {"bbox": [297, 368, 314, 385], "score": 1.0, "content": " + ", "type": "text"}, {"bbox": [314, 366, 343, 381], "score": 0.91, "content": "(\\Lambda_{7})_{4}", "type": "inline_equation", "height": 15, "width": 29}, {"bbox": [344, 368, 360, 385], "score": 1.0, "content": " + ", "type": "text"}, {"bbox": [360, 366, 415, 381], "score": 0.91, "content": "2\\,\\mathbf{E}\\left(2\\Lambda_{1}\\right)_{46}", "type": "inline_equation", "height": 15, "width": 55}, {"bbox": [415, 368, 432, 385], "score": 1.0, "content": " + ", "type": "text"}, {"bbox": [433, 366, 468, 381], "score": 0.88, "content": "(2\\Lambda_{2})_{6}", "type": "inline_equation", "height": 15, "width": 35}], "index": 10}], "index": 10}, {"type": "text", "bbox": [73, 418, 520, 435], "lines": [{"bbox": [75, 420, 523, 438], "spans": [{"bbox": [75, 420, 90, 434], "score": 0.84, "content": "\\Lambda_{1}", "type": "inline_equation", "height": 14, "width": 15}, {"bbox": [90, 421, 106, 438], "score": 1.0, "content": " \u00d7", "type": "text"}, {"bbox": [106, 420, 165, 435], "score": 0.93, "content": "\\Lambda_{4}=(\\Lambda_{3})_{5}", "type": "inline_equation", "height": 15, "width": 59}, {"bbox": [165, 421, 182, 438], "score": 1.0, "content": " + ", "type": "text"}, {"bbox": [182, 420, 211, 435], "score": 0.91, "content": "(\\Lambda_{4})_{6}", "type": "inline_equation", "height": 15, "width": 29}, {"bbox": [212, 421, 226, 438], "score": 1.0, "content": " + ", "type": "text"}, {"bbox": [227, 420, 255, 435], "score": 0.91, "content": "(\\Lambda_{5})_{6}", "type": "inline_equation", "height": 15, "width": 28}, {"bbox": [256, 421, 271, 438], "score": 1.0, "content": " + ", "type": "text"}, {"bbox": [271, 420, 300, 435], "score": 0.92, "content": "(\\Lambda_{6})_{5}", "type": "inline_equation", "height": 15, "width": 29}, {"bbox": [300, 421, 315, 438], "score": 1.0, "content": " + ", "type": "text"}, {"bbox": [316, 420, 373, 435], "score": 0.93, "content": "(\\Lambda_{1}+\\Lambda_{3})_{6}", "type": "inline_equation", "height": 15, "width": 57}, {"bbox": [374, 421, 390, 438], "score": 1.0, "content": " + ", "type": "text"}, {"bbox": [390, 420, 448, 435], "score": 0.91, "content": "(\\Lambda_{1}+\\Lambda_{4})_{7}", "type": "inline_equation", "height": 15, "width": 58}, {"bbox": [449, 421, 465, 438], "score": 1.0, "content": " + ", "type": "text"}, {"bbox": [465, 420, 523, 436], "score": 0.88, "content": "(\\Lambda_{1}+\\Lambda_{6})_{6}", "type": "inline_equation", "height": 16, "width": 58}], "index": 11}], "index": 11}, {"type": "text", "bbox": [45, 454, 460, 470], "lines": [{"bbox": [45, 456, 455, 474], "spans": [{"bbox": [45, 456, 60, 470], "score": 0.79, "content": "\\Lambda_{1}", "type": "inline_equation", "height": 14, "width": 15}, {"bbox": [60, 456, 74, 474], "score": 1.0, "content": " \u00d7 ", "type": "text"}, {"bbox": [74, 456, 165, 471], "score": 0.89, "content": "(\\Lambda_{1}\\!+\\!\\Lambda_{3})=(\\Lambda_{3})_{6}", "type": "inline_equation", "height": 15, "width": 91}, {"bbox": [165, 456, 182, 474], "score": 1.0, "content": " + ", "type": "text"}, {"bbox": [182, 456, 212, 471], "score": 0.92, "content": "(\\Lambda_{4})_{6}", "type": "inline_equation", "height": 15, "width": 30}, {"bbox": [212, 456, 228, 474], "score": 1.0, "content": " + ", "type": "text"}, {"bbox": [228, 456, 286, 471], "score": 0.93, "content": "(\\Lambda_{1}+\\Lambda_{2})_{6}", "type": "inline_equation", "height": 15, "width": 58}, {"bbox": [286, 456, 302, 474], "score": 1.0, "content": " +", "type": "text"}, {"bbox": [303, 456, 380, 471], "score": 0.91, "content": "2\\,\\mathtt{H}\\,(\\Lambda_{1}+\\Lambda_{3})_{67}", "type": "inline_equation", "height": 15, "width": 77}, {"bbox": [380, 456, 397, 474], "score": 1.0, "content": " + ", "type": "text"}, {"bbox": [397, 456, 455, 471], "score": 0.85, "content": "(\\Lambda_{1}+\\Lambda_{4})_{7}", "type": "inline_equation", "height": 15, "width": 58}], "index": 12}], "index": 12}, {"type": "text", "bbox": [59, 526, 530, 543], "lines": [{"bbox": [59, 528, 540, 545], "spans": [{"bbox": [59, 528, 74, 542], "score": 0.86, "content": "\\Lambda_{1}", "type": "inline_equation", "height": 14, "width": 15}, {"bbox": [75, 530, 92, 545], "score": 1.0, "content": " \u00d7 ", "type": "text"}, {"bbox": [92, 528, 162, 543], "score": 0.91, "content": "(2\\Lambda_{7})=\\!(\\Lambda_{6})_{4}", "type": "inline_equation", "height": 15, "width": 70}, {"bbox": [163, 530, 176, 545], "score": 1.0, "content": " + ", "type": "text"}, {"bbox": [177, 528, 233, 543], "score": 0.91, "content": "(\\Lambda_{1}+\\Lambda_{7})_{4}", "type": "inline_equation", "height": 15, "width": 56}, {"bbox": [234, 530, 247, 545], "score": 1.0, "content": " + ", "type": "text"}, {"bbox": [248, 528, 282, 543], "score": 0.9, "content": "(2\\Lambda_{7})_{5}", "type": "inline_equation", "height": 15, "width": 34}, {"bbox": [282, 530, 296, 545], "score": 1.0, "content": " + ", "type": "text"}, {"bbox": [296, 528, 353, 543], "score": 0.88, "content": "(\\Lambda_{2}+\\Lambda_{7})_{5}", "type": "inline_equation", "height": 15, "width": 57}, {"bbox": [353, 530, 367, 545], "score": 1.0, "content": " + ", "type": "text"}, {"bbox": [367, 528, 424, 543], "score": 0.25, "content": "(\\Lambda_{7}+\\Lambda_{8})_{5}", "type": "inline_equation", "height": 15, "width": 57}, {"bbox": [424, 530, 437, 545], "score": 1.0, "content": " +", "type": "text"}, {"bbox": [438, 528, 500, 543], "score": 0.35, "content": "(\\Lambda_{1}+2\\Lambda_{7})_{6}", "type": "inline_equation", "height": 15, "width": 62}, {"bbox": [501, 530, 508, 545], "score": 1.0, "content": " ", "type": "text"}, {"bbox": [509, 529, 540, 543], "score": 0.29, "content": "(3.7g)", "type": "inline_equation", "height": 14, "width": 31}], "index": 13}], "index": 13}, {"type": "text", "bbox": [70, 554, 542, 613], "lines": [{"bbox": [95, 556, 540, 571], "spans": [{"bbox": [95, 556, 209, 571], "score": 1.0, "content": "A fusion-symmetry at", "type": "text"}, {"bbox": [209, 556, 239, 568], "score": 0.9, "content": "k=4", "type": "inline_equation", "height": 12, "width": 30}, {"bbox": [240, 556, 277, 571], "score": 1.0, "content": ", called", "type": "text"}, {"bbox": [277, 558, 290, 569], "score": 0.85, "content": "\\pi_{4}", "type": "inline_equation", "height": 11, "width": 13}, {"bbox": [291, 556, 493, 571], "score": 1.0, "content": ", was first found in [15]. It interchanges ", "type": "text"}, {"bbox": [493, 556, 540, 569], "score": 0.92, "content": "\\Lambda_{1}\\leftrightarrow\\Lambda_{6}", "type": "inline_equation", "height": 13, "width": 47}], "index": 14}, {"bbox": [71, 571, 540, 586], "spans": [{"bbox": [71, 571, 252, 586], "score": 1.0, "content": "and fixes the other eight weights in ", "type": "text"}, {"bbox": [252, 571, 268, 585], "score": 0.91, "content": "P_{+}", "type": "inline_equation", "height": 14, "width": 16}, {"bbox": [269, 571, 477, 586], "score": 1.0, "content": ". There also is a fusion-symmetry, called", "type": "text"}, {"bbox": [478, 572, 491, 584], "score": 0.85, "content": "\\pi_{5}", "type": "inline_equation", "height": 12, "width": 13}, {"bbox": [491, 571, 510, 586], "score": 1.0, "content": ", at ", "type": "text"}, {"bbox": [510, 571, 540, 583], "score": 0.88, "content": "k=5", "type": "inline_equation", "height": 12, "width": 30}], "index": 15}, {"bbox": [72, 585, 541, 600], "spans": [{"bbox": [72, 586, 173, 600], "score": 1.0, "content": "which interchanges ", "type": "text"}, {"bbox": [173, 585, 226, 598], "score": 0.93, "content": "\\Lambda_{7}\\leftrightarrow2\\Lambda_{1}", "type": "inline_equation", "height": 13, "width": 53}, {"bbox": [226, 586, 232, 600], "score": 1.0, "content": ", ", "type": "text"}, {"bbox": [232, 585, 306, 598], "score": 0.91, "content": "\\Lambda_{8}\\leftrightarrow\\Lambda_{1}+\\Lambda_{2}", "type": "inline_equation", "height": 13, "width": 74}, {"bbox": [307, 586, 335, 600], "score": 1.0, "content": ", and ", "type": "text"}, {"bbox": [335, 585, 410, 598], "score": 0.93, "content": "\\Lambda_{6}\\leftrightarrow\\Lambda_{2}+\\Lambda_{7}", "type": "inline_equation", "height": 13, "width": 75}, {"bbox": [410, 586, 541, 600], "score": 1.0, "content": ", and fixes the nine other", "type": "text"}], "index": 16}, {"bbox": [69, 598, 508, 615], "spans": [{"bbox": [69, 599, 205, 615], "score": 1.0, "content": "weights. The exceptional ", "type": "text"}, {"bbox": [205, 602, 218, 613], "score": 0.88, "content": "\\pi_{5}", "type": "inline_equation", "height": 11, "width": 13}, {"bbox": [219, 599, 452, 615], "score": 1.0, "content": " is closely related to the Galois permutation ", "type": "text"}, {"bbox": [452, 598, 503, 611], "score": 0.91, "content": "\\lambda\\mapsto\\lambda^{(13)}", "type": "inline_equation", "height": 13, "width": 51}, {"bbox": [503, 599, 508, 615], "score": 1.0, "content": ".", "type": "text"}], "index": 17}], "index": 15.5}, {"type": "text", "bbox": [70, 618, 541, 650], "lines": [{"bbox": [90, 619, 540, 641], "spans": [{"bbox": [90, 619, 415, 641], "score": 1.0, "content": "Theorem 3.E8. The only nontrivial fusion-symmetries for ", "type": "text"}, {"bbox": [415, 619, 438, 636], "score": 0.91, "content": "{E}_{8}^{(1)}", "type": "inline_equation", "height": 17, "width": 23}, {"bbox": [438, 619, 462, 641], "score": 1.0, "content": "are ", "type": "text"}, {"bbox": [462, 624, 475, 635], "score": 0.78, "content": "\\pi_{4}", "type": "inline_equation", "height": 11, "width": 13}, {"bbox": [476, 619, 502, 641], "score": 1.0, "content": " and ", "type": "text"}, {"bbox": [503, 624, 516, 635], "score": 0.79, "content": "\\pi_{5}", "type": "inline_equation", "height": 11, "width": 13}, {"bbox": [516, 619, 540, 641], "score": 1.0, "content": ", oc-", "type": "text"}], "index": 18}, {"bbox": [72, 637, 257, 653], "spans": [{"bbox": [72, 637, 127, 653], "score": 1.0, "content": "curring at ", "type": "text"}, {"bbox": [128, 639, 157, 648], "score": 0.85, "content": "k=4", "type": "inline_equation", "height": 9, "width": 29}, {"bbox": [157, 637, 257, 653], "score": 1.0, "content": " and 5 respectively.", "type": "text"}], "index": 19}], "index": 18.5}, {"type": "title", "bbox": [71, 663, 183, 680], "lines": [{"bbox": [69, 663, 186, 683], "spans": [{"bbox": [69, 663, 186, 683], "score": 1.0, "content": "3.8. The algebra F 4(1)", "type": "text"}], "index": 20}], "index": 20}, {"type": "text", "bbox": [70, 686, 541, 715], "lines": [{"bbox": [94, 688, 541, 703], "spans": [{"bbox": [94, 688, 145, 703], "score": 1.0, "content": "A weight ", "type": "text"}, {"bbox": [146, 690, 153, 699], "score": 0.86, "content": "\\lambda", "type": "inline_equation", "height": 9, "width": 7}, {"bbox": [154, 688, 171, 703], "score": 1.0, "content": " in ", "type": "text"}, {"bbox": [171, 690, 186, 702], "score": 0.93, "content": "P_{+}", "type": "inline_equation", "height": 12, "width": 15}, {"bbox": [187, 688, 234, 703], "score": 1.0, "content": " satisfies ", "type": "text"}, {"bbox": [234, 689, 396, 701], "score": 0.93, "content": "k=\\lambda_{0}+2\\lambda_{1}+3\\lambda_{2}+2\\lambda_{3}+\\lambda_{4}", "type": "inline_equation", "height": 12, "width": 162}, {"bbox": [396, 688, 425, 703], "score": 1.0, "content": ", and ", "type": "text"}, {"bbox": [425, 690, 476, 700], "score": 0.89, "content": "\\kappa=k+9", "type": "inline_equation", "height": 10, "width": 51}, {"bbox": [477, 688, 541, 703], "score": 1.0, "content": ". Again, the", "type": "text"}], "index": 21}, {"bbox": [72, 703, 303, 717], "spans": [{"bbox": [72, 703, 303, 717], "score": 1.0, "content": "conjugations and simple-currents are trivial.", "type": "text"}], "index": 22}], "index": 21.5}], "layout_bboxes": [], "page_idx": 13, "page_size": [612.0, 792.0], "_layout_tree": [], "images": [], "tables": [], "interline_equations": [], "discarded_blocks": [{"type": "discarded", "bbox": [299, 731, 312, 742], "lines": [{"bbox": [298, 731, 313, 744], "spans": [{"bbox": [298, 731, 313, 744], "score": 1.0, "content": "14", "type": "text"}]}]}], "need_drop": false, "drop_reason": [], "para_blocks": [{"type": "text", "bbox": [71, 70, 541, 100], "lines": [{"bbox": [94, 73, 541, 90], "spans": [{"bbox": [94, 73, 111, 90], "score": 1.0, "content": "At", "type": "text"}, {"bbox": [112, 75, 141, 84], "score": 0.9, "content": "k=3", "type": "inline_equation", "height": 9, "width": 29}, {"bbox": [141, 73, 371, 90], "score": 1.0, "content": " there is an order 3 Galois fusion-symmetry ", "type": "text"}, {"bbox": [372, 73, 426, 87], "score": 0.93, "content": "\\pi_{3}=\\pi\\{5\\}", "type": "inline_equation", "height": 14, "width": 54}, {"bbox": [426, 73, 498, 90], "score": 1.0, "content": ", which sends ", "type": "text"}, {"bbox": [498, 73, 541, 86], "score": 0.89, "content": "J^{i}\\Lambda_{1}\\mapsto", "type": "inline_equation", "height": 13, "width": 43}], "index": 0}, {"bbox": [71, 87, 367, 103], "spans": [{"bbox": [71, 88, 200, 101], "score": 0.92, "content": "J^{i}(2\\Lambda_{6})\\mapsto J^{i}\\Lambda_{2}\\mapsto J^{i}\\Lambda_{1}", "type": "inline_equation", "height": 13, "width": 129}, {"bbox": [200, 87, 367, 103], "score": 1.0, "content": " and fixes the other six weights.", "type": "text"}], "index": 1}], "index": 0.5, "page_num": "page_13", "page_size": [612.0, 792.0], "bbox_fs": [71, 73, 541, 103]}, {"type": "text", "bbox": [71, 107, 541, 137], "lines": [{"bbox": [92, 108, 540, 128], "spans": [{"bbox": [92, 109, 414, 128], "score": 1.0, "content": "Theorem 3.E7. The only nontrivial fusion-symmetries for ", "type": "text"}, {"bbox": [414, 108, 438, 126], "score": 0.9, "content": "{E}_{7}^{(1)}", "type": "inline_equation", "height": 18, "width": 24}, {"bbox": [438, 109, 461, 128], "score": 1.0, "content": "are ", "type": "text"}, {"bbox": [461, 110, 483, 126], "score": 0.71, "content": "\\pi[1]", "type": "inline_equation", "height": 16, "width": 22}, {"bbox": [483, 109, 528, 128], "score": 1.0, "content": " at even ", "type": "text"}, {"bbox": [529, 112, 536, 123], "score": 0.73, "content": "k", "type": "inline_equation", "height": 11, "width": 7}, {"bbox": [536, 109, 540, 128], "score": 1.0, "content": ",", "type": "text"}], "index": 2}, {"bbox": [72, 126, 271, 139], "spans": [{"bbox": [72, 126, 126, 139], "score": 1.0, "content": "as well as ", "type": "text"}, {"bbox": [126, 129, 139, 138], "score": 0.75, "content": "\\pi_{3}", "type": "inline_equation", "height": 9, "width": 13}, {"bbox": [139, 126, 237, 139], "score": 1.0, "content": " and its inverse at ", "type": "text"}, {"bbox": [238, 128, 267, 137], "score": 0.91, "content": "k=3", "type": "inline_equation", "height": 9, "width": 29}, {"bbox": [268, 126, 271, 139], "score": 1.0, "content": ".", "type": "text"}], "index": 3}], "index": 2.5, "page_num": "page_13", "page_size": [612.0, 792.0], "bbox_fs": [72, 108, 540, 139]}, {"type": "title", "bbox": [70, 150, 183, 167], "lines": [{"bbox": [67, 148, 189, 174], "spans": [{"bbox": [67, 148, 189, 174], "score": 1.0, "content": "3.7. The algebra E8(1)", "type": "text"}], "index": 4}], "index": 4, "page_num": "page_13", "page_size": [612.0, 792.0]}, {"type": "text", "bbox": [70, 173, 542, 230], "lines": [{"bbox": [95, 176, 541, 190], "spans": [{"bbox": [95, 176, 144, 190], "score": 1.0, "content": "A weight ", "type": "text"}, {"bbox": [144, 177, 153, 186], "score": 0.81, "content": "\\lambda", "type": "inline_equation", "height": 9, "width": 9}, {"bbox": [153, 176, 168, 190], "score": 1.0, "content": " in ", "type": "text"}, {"bbox": [168, 176, 185, 189], "score": 0.9, "content": "P_{+}", "type": "inline_equation", "height": 13, "width": 17}, {"bbox": [185, 176, 231, 190], "score": 1.0, "content": " satisfies ", "type": "text"}, {"bbox": [231, 176, 514, 188], "score": 0.85, "content": "k=\\lambda_{0}+2\\lambda_{1}+3\\lambda_{2}+4\\lambda_{3}+5\\lambda_{4}+6\\lambda_{5}+4\\lambda_{6}+2\\lambda_{7}+3\\lambda_{8}", "type": "inline_equation", "height": 12, "width": 283}, {"bbox": [514, 176, 541, 190], "score": 1.0, "content": ", and", "type": "text"}], "index": 5}, {"bbox": [71, 190, 541, 205], "spans": [{"bbox": [71, 190, 128, 202], "score": 0.89, "content": "\\kappa=k+30", "type": "inline_equation", "height": 12, "width": 57}, {"bbox": [128, 190, 541, 205], "score": 1.0, "content": ". The conjugations and simple-currents are all trivial, except for an anomolous", "type": "text"}], "index": 6}, {"bbox": [70, 203, 541, 218], "spans": [{"bbox": [70, 205, 163, 218], "score": 1.0, "content": "simple-current at ", "type": "text"}, {"bbox": [163, 204, 193, 215], "score": 0.88, "content": "k=2", "type": "inline_equation", "height": 11, "width": 30}, {"bbox": [193, 205, 241, 218], "score": 1.0, "content": ", sending ", "type": "text"}, {"bbox": [241, 203, 327, 218], "score": 0.92, "content": "P_{+}=(0,\\Lambda_{1},\\Lambda_{7})", "type": "inline_equation", "height": 15, "width": 86}, {"bbox": [327, 205, 344, 218], "score": 1.0, "content": " to ", "type": "text"}, {"bbox": [344, 203, 397, 218], "score": 0.92, "content": "(\\Lambda_{7},\\Lambda_{1},0)", "type": "inline_equation", "height": 15, "width": 53}, {"bbox": [398, 205, 541, 218], "score": 1.0, "content": ", which plays no role in this", "type": "text"}], "index": 7}, {"bbox": [70, 219, 236, 232], "spans": [{"bbox": [70, 219, 236, 232], "score": 1.0, "content": "paper (except in Theorem 5.1).", "type": "text"}], "index": 8}], "index": 6.5, "page_num": "page_13", "page_size": [612.0, 792.0], "bbox_fs": [70, 176, 541, 232]}, {"type": "text", "bbox": [94, 230, 460, 245], "lines": [{"bbox": [95, 232, 458, 247], "spans": [{"bbox": [95, 232, 458, 247], "score": 1.0, "content": "The only fusion products we need can be derived from [28] and (2.4):", "type": "text"}], "index": 9}], "index": 9, "page_num": "page_13", "page_size": [612.0, 792.0], "bbox_fs": [95, 232, 458, 247]}, {"type": "text", "bbox": [47, 364, 469, 381], "lines": [{"bbox": [48, 366, 468, 385], "spans": [{"bbox": [48, 366, 158, 382], "score": 0.73, "content": "(2\\Lambda_{1})\\vert\\mathrm{\\bf\\sfXI}(2\\Lambda_{1})=(0)_{4}", "type": "inline_equation", "height": 16, "width": 110}, {"bbox": [158, 368, 174, 385], "score": 1.0, "content": " + ", "type": "text"}, {"bbox": [174, 366, 204, 381], "score": 0.92, "content": "(\\Lambda_{1})_{5}", "type": "inline_equation", "height": 15, "width": 30}, {"bbox": [204, 368, 221, 385], "score": 1.0, "content": " + ", "type": "text"}, {"bbox": [221, 366, 250, 381], "score": 0.92, "content": "(\\Lambda_{2})_{5}", "type": "inline_equation", "height": 15, "width": 29}, {"bbox": [251, 368, 267, 385], "score": 1.0, "content": " + ", "type": "text"}, {"bbox": [267, 366, 297, 381], "score": 0.92, "content": "(\\Lambda_{3})_{4}", "type": "inline_equation", "height": 15, "width": 30}, {"bbox": [297, 368, 314, 385], "score": 1.0, "content": " + ", "type": "text"}, {"bbox": [314, 366, 343, 381], "score": 0.91, "content": "(\\Lambda_{7})_{4}", "type": "inline_equation", "height": 15, "width": 29}, {"bbox": [344, 368, 360, 385], "score": 1.0, "content": " + ", "type": "text"}, {"bbox": [360, 366, 415, 381], "score": 0.91, "content": "2\\,\\mathbf{E}\\left(2\\Lambda_{1}\\right)_{46}", "type": "inline_equation", "height": 15, "width": 55}, {"bbox": [415, 368, 432, 385], "score": 1.0, "content": " + ", "type": "text"}, {"bbox": [433, 366, 468, 381], "score": 0.88, "content": "(2\\Lambda_{2})_{6}", "type": "inline_equation", "height": 15, "width": 35}], "index": 10}, {"bbox": [75, 420, 523, 438], "spans": [{"bbox": [75, 420, 90, 434], "score": 0.84, "content": "\\Lambda_{1}", "type": "inline_equation", "height": 14, "width": 15}, {"bbox": [90, 421, 106, 438], "score": 1.0, "content": " \u00d7", "type": "text"}, {"bbox": [106, 420, 165, 435], "score": 0.93, "content": "\\Lambda_{4}=(\\Lambda_{3})_{5}", "type": "inline_equation", "height": 15, "width": 59}, {"bbox": [165, 421, 182, 438], "score": 1.0, "content": " + ", "type": "text"}, {"bbox": [182, 420, 211, 435], "score": 0.91, "content": "(\\Lambda_{4})_{6}", "type": "inline_equation", "height": 15, "width": 29}, {"bbox": [212, 421, 226, 438], "score": 1.0, "content": " + ", "type": "text"}, {"bbox": [227, 420, 255, 435], "score": 0.91, "content": "(\\Lambda_{5})_{6}", "type": "inline_equation", "height": 15, "width": 28}, {"bbox": [256, 421, 271, 438], "score": 1.0, "content": " + ", "type": "text"}, {"bbox": [271, 420, 300, 435], "score": 0.92, "content": "(\\Lambda_{6})_{5}", "type": "inline_equation", "height": 15, "width": 29}, {"bbox": [300, 421, 315, 438], "score": 1.0, "content": " + ", "type": "text"}, {"bbox": [316, 420, 373, 435], "score": 0.93, "content": "(\\Lambda_{1}+\\Lambda_{3})_{6}", "type": "inline_equation", "height": 15, "width": 57}, {"bbox": [374, 421, 390, 438], "score": 1.0, "content": " + ", "type": "text"}, {"bbox": [390, 420, 448, 435], "score": 0.91, "content": "(\\Lambda_{1}+\\Lambda_{4})_{7}", "type": "inline_equation", "height": 15, "width": 58}, {"bbox": [449, 421, 465, 438], "score": 1.0, "content": " + ", "type": "text"}, {"bbox": [465, 420, 523, 436], "score": 0.88, "content": "(\\Lambda_{1}+\\Lambda_{6})_{6}", "type": "inline_equation", "height": 16, "width": 58}], "index": 11}, {"bbox": [45, 456, 455, 474], "spans": [{"bbox": [45, 456, 60, 470], "score": 0.79, "content": "\\Lambda_{1}", "type": "inline_equation", "height": 14, "width": 15}, {"bbox": [60, 456, 74, 474], "score": 1.0, "content": " \u00d7 ", "type": "text"}, {"bbox": [74, 456, 165, 471], "score": 0.89, "content": "(\\Lambda_{1}\\!+\\!\\Lambda_{3})=(\\Lambda_{3})_{6}", "type": "inline_equation", "height": 15, "width": 91}, {"bbox": [165, 456, 182, 474], "score": 1.0, "content": " + ", "type": "text"}, {"bbox": [182, 456, 212, 471], "score": 0.92, "content": "(\\Lambda_{4})_{6}", "type": "inline_equation", "height": 15, "width": 30}, {"bbox": [212, 456, 228, 474], "score": 1.0, "content": " + ", "type": "text"}, {"bbox": [228, 456, 286, 471], "score": 0.93, "content": "(\\Lambda_{1}+\\Lambda_{2})_{6}", "type": "inline_equation", "height": 15, "width": 58}, {"bbox": [286, 456, 302, 474], "score": 1.0, "content": " +", "type": "text"}, {"bbox": [303, 456, 380, 471], "score": 0.91, "content": "2\\,\\mathtt{H}\\,(\\Lambda_{1}+\\Lambda_{3})_{67}", "type": "inline_equation", "height": 15, "width": 77}, {"bbox": [380, 456, 397, 474], "score": 1.0, "content": " + ", "type": "text"}, {"bbox": [397, 456, 455, 471], "score": 0.85, "content": "(\\Lambda_{1}+\\Lambda_{4})_{7}", "type": "inline_equation", "height": 15, "width": 58}], "index": 12}, {"bbox": [59, 528, 540, 545], "spans": [{"bbox": [59, 528, 74, 542], "score": 0.86, "content": "\\Lambda_{1}", "type": "inline_equation", "height": 14, "width": 15}, {"bbox": [75, 530, 92, 545], "score": 1.0, "content": " \u00d7 ", "type": "text"}, {"bbox": [92, 528, 162, 543], "score": 0.91, "content": "(2\\Lambda_{7})=\\!(\\Lambda_{6})_{4}", "type": "inline_equation", "height": 15, "width": 70}, {"bbox": [163, 530, 176, 545], "score": 1.0, "content": " + ", "type": "text"}, {"bbox": [177, 528, 233, 543], "score": 0.91, "content": "(\\Lambda_{1}+\\Lambda_{7})_{4}", "type": "inline_equation", "height": 15, "width": 56}, {"bbox": [234, 530, 247, 545], "score": 1.0, "content": " + ", "type": "text"}, {"bbox": [248, 528, 282, 543], "score": 0.9, "content": "(2\\Lambda_{7})_{5}", "type": "inline_equation", "height": 15, "width": 34}, {"bbox": [282, 530, 296, 545], "score": 1.0, "content": " + ", "type": "text"}, {"bbox": [296, 528, 353, 543], "score": 0.88, "content": "(\\Lambda_{2}+\\Lambda_{7})_{5}", "type": "inline_equation", "height": 15, "width": 57}, {"bbox": [353, 530, 367, 545], "score": 1.0, "content": " + ", "type": "text"}, {"bbox": [367, 528, 424, 543], "score": 0.25, "content": "(\\Lambda_{7}+\\Lambda_{8})_{5}", "type": "inline_equation", "height": 15, "width": 57}, {"bbox": [424, 530, 437, 545], "score": 1.0, "content": " +", "type": "text"}, {"bbox": [438, 528, 500, 543], "score": 0.35, "content": "(\\Lambda_{1}+2\\Lambda_{7})_{6}", "type": "inline_equation", "height": 15, "width": 62}, {"bbox": [501, 530, 508, 545], "score": 1.0, "content": " ", "type": "text"}, {"bbox": [509, 529, 540, 543], "score": 0.29, "content": "(3.7g)", "type": "inline_equation", "height": 14, "width": 31}], "index": 13}], "index": 10, "page_num": "page_13", "page_size": [612.0, 792.0], "bbox_fs": [48, 366, 468, 385]}, {"type": "text", "bbox": [73, 418, 520, 435], "lines": [], "index": 11, "page_num": "page_13", "page_size": [612.0, 792.0], "bbox_fs": [75, 420, 523, 438], "lines_deleted": true}, {"type": "text", "bbox": [45, 454, 460, 470], "lines": [], "index": 12, "page_num": "page_13", "page_size": [612.0, 792.0], "bbox_fs": [45, 456, 455, 474], "lines_deleted": true}, {"type": "text", "bbox": [59, 526, 530, 543], "lines": [], "index": 13, "page_num": "page_13", "page_size": [612.0, 792.0], "bbox_fs": [59, 528, 540, 545], "lines_deleted": true}, {"type": "text", "bbox": [70, 554, 542, 613], "lines": [{"bbox": [95, 556, 540, 571], "spans": [{"bbox": [95, 556, 209, 571], "score": 1.0, "content": "A fusion-symmetry at", "type": "text"}, {"bbox": [209, 556, 239, 568], "score": 0.9, "content": "k=4", "type": "inline_equation", "height": 12, "width": 30}, {"bbox": [240, 556, 277, 571], "score": 1.0, "content": ", called", "type": "text"}, {"bbox": [277, 558, 290, 569], "score": 0.85, "content": "\\pi_{4}", "type": "inline_equation", "height": 11, "width": 13}, {"bbox": [291, 556, 493, 571], "score": 1.0, "content": ", was first found in [15]. It interchanges ", "type": "text"}, {"bbox": [493, 556, 540, 569], "score": 0.92, "content": "\\Lambda_{1}\\leftrightarrow\\Lambda_{6}", "type": "inline_equation", "height": 13, "width": 47}], "index": 14}, {"bbox": [71, 571, 540, 586], "spans": [{"bbox": [71, 571, 252, 586], "score": 1.0, "content": "and fixes the other eight weights in ", "type": "text"}, {"bbox": [252, 571, 268, 585], "score": 0.91, "content": "P_{+}", "type": "inline_equation", "height": 14, "width": 16}, {"bbox": [269, 571, 477, 586], "score": 1.0, "content": ". There also is a fusion-symmetry, called", "type": "text"}, {"bbox": [478, 572, 491, 584], "score": 0.85, "content": "\\pi_{5}", "type": "inline_equation", "height": 12, "width": 13}, {"bbox": [491, 571, 510, 586], "score": 1.0, "content": ", at ", "type": "text"}, {"bbox": [510, 571, 540, 583], "score": 0.88, "content": "k=5", "type": "inline_equation", "height": 12, "width": 30}], "index": 15}, {"bbox": [72, 585, 541, 600], "spans": [{"bbox": [72, 586, 173, 600], "score": 1.0, "content": "which interchanges ", "type": "text"}, {"bbox": [173, 585, 226, 598], "score": 0.93, "content": "\\Lambda_{7}\\leftrightarrow2\\Lambda_{1}", "type": "inline_equation", "height": 13, "width": 53}, {"bbox": [226, 586, 232, 600], "score": 1.0, "content": ", ", "type": "text"}, {"bbox": [232, 585, 306, 598], "score": 0.91, "content": "\\Lambda_{8}\\leftrightarrow\\Lambda_{1}+\\Lambda_{2}", "type": "inline_equation", "height": 13, "width": 74}, {"bbox": [307, 586, 335, 600], "score": 1.0, "content": ", and ", "type": "text"}, {"bbox": [335, 585, 410, 598], "score": 0.93, "content": "\\Lambda_{6}\\leftrightarrow\\Lambda_{2}+\\Lambda_{7}", "type": "inline_equation", "height": 13, "width": 75}, {"bbox": [410, 586, 541, 600], "score": 1.0, "content": ", and fixes the nine other", "type": "text"}], "index": 16}, {"bbox": [69, 598, 508, 615], "spans": [{"bbox": [69, 599, 205, 615], "score": 1.0, "content": "weights. The exceptional ", "type": "text"}, {"bbox": [205, 602, 218, 613], "score": 0.88, "content": "\\pi_{5}", "type": "inline_equation", "height": 11, "width": 13}, {"bbox": [219, 599, 452, 615], "score": 1.0, "content": " is closely related to the Galois permutation ", "type": "text"}, {"bbox": [452, 598, 503, 611], "score": 0.91, "content": "\\lambda\\mapsto\\lambda^{(13)}", "type": "inline_equation", "height": 13, "width": 51}, {"bbox": [503, 599, 508, 615], "score": 1.0, "content": ".", "type": "text"}], "index": 17}], "index": 15.5, "page_num": "page_13", "page_size": [612.0, 792.0], "bbox_fs": [69, 556, 541, 615]}, {"type": "text", "bbox": [70, 618, 541, 650], "lines": [{"bbox": [90, 619, 540, 641], "spans": [{"bbox": [90, 619, 415, 641], "score": 1.0, "content": "Theorem 3.E8. The only nontrivial fusion-symmetries for ", "type": "text"}, {"bbox": [415, 619, 438, 636], "score": 0.91, "content": "{E}_{8}^{(1)}", "type": "inline_equation", "height": 17, "width": 23}, {"bbox": [438, 619, 462, 641], "score": 1.0, "content": "are ", "type": "text"}, {"bbox": [462, 624, 475, 635], "score": 0.78, "content": "\\pi_{4}", "type": "inline_equation", "height": 11, "width": 13}, {"bbox": [476, 619, 502, 641], "score": 1.0, "content": " and ", "type": "text"}, {"bbox": [503, 624, 516, 635], "score": 0.79, "content": "\\pi_{5}", "type": "inline_equation", "height": 11, "width": 13}, {"bbox": [516, 619, 540, 641], "score": 1.0, "content": ", oc-", "type": "text"}], "index": 18}, {"bbox": [72, 637, 257, 653], "spans": [{"bbox": [72, 637, 127, 653], "score": 1.0, "content": "curring at ", "type": "text"}, {"bbox": [128, 639, 157, 648], "score": 0.85, "content": "k=4", "type": "inline_equation", "height": 9, "width": 29}, {"bbox": [157, 637, 257, 653], "score": 1.0, "content": " and 5 respectively.", "type": "text"}], "index": 19}], "index": 18.5, "page_num": "page_13", "page_size": [612.0, 792.0], "bbox_fs": [72, 619, 540, 653]}, {"type": "title", "bbox": [71, 663, 183, 680], "lines": [{"bbox": [69, 663, 186, 683], "spans": [{"bbox": [69, 663, 186, 683], "score": 1.0, "content": "3.8. The algebra F 4(1)", "type": "text"}], "index": 20}], "index": 20, "page_num": "page_13", "page_size": [612.0, 792.0]}, {"type": "text", "bbox": [70, 686, 541, 715], "lines": [{"bbox": [94, 688, 541, 703], "spans": [{"bbox": [94, 688, 145, 703], "score": 1.0, "content": "A weight ", "type": "text"}, {"bbox": [146, 690, 153, 699], "score": 0.86, "content": "\\lambda", "type": "inline_equation", "height": 9, "width": 7}, {"bbox": [154, 688, 171, 703], "score": 1.0, "content": " in ", "type": "text"}, {"bbox": [171, 690, 186, 702], "score": 0.93, "content": "P_{+}", "type": "inline_equation", "height": 12, "width": 15}, {"bbox": [187, 688, 234, 703], "score": 1.0, "content": " satisfies ", "type": "text"}, {"bbox": [234, 689, 396, 701], "score": 0.93, "content": "k=\\lambda_{0}+2\\lambda_{1}+3\\lambda_{2}+2\\lambda_{3}+\\lambda_{4}", "type": "inline_equation", "height": 12, "width": 162}, {"bbox": [396, 688, 425, 703], "score": 1.0, "content": ", and ", "type": "text"}, {"bbox": [425, 690, 476, 700], "score": 0.89, "content": "\\kappa=k+9", "type": "inline_equation", "height": 10, "width": 51}, {"bbox": [477, 688, 541, 703], "score": 1.0, "content": ". Again, the", "type": "text"}], "index": 21}, {"bbox": [72, 703, 303, 717], "spans": [{"bbox": [72, 703, 303, 717], "score": 1.0, "content": "conjugations and simple-currents are trivial.", "type": "text"}], "index": 22}], "index": 21.5, "page_num": "page_13", "page_size": [612.0, 792.0], "bbox_fs": [72, 688, 541, 717]}]} |
|
0002044v1 | 18 | $$a=a^{\prime}=0$$ holds for $$k r$$ even. From the fusion $$\Lambda_{1}$$ × $$\Lambda_{\ell}$$ we get $$\pi\Lambda_{\ell+1}\in\{\Lambda_{\ell+1},\Lambda_{1}+\Lambda_{\ell}\}$$ if
$$\pi\Lambda_{\ell}=\Lambda_{\ell}$$ ; for $$r<k$$ conclude the argument with the calculation
as in $$\S4.3$$ . When $$r=k$$ , that inequality only holds for $$\ell>1$$ , but we can force $$\pi\Lambda_{2}=\Lambda_{2}$$
by hitting $$\pi$$ if necessary with $$\pi_{\mathrm{rld}}$$ .
The remaining case $$C_{2,3}$$ follows because $$\pi^{\prime}J0\,=\,J0$$ : by (2.7b) $$\pi\Lambda_{1}\notin S\Lambda_{2}$$ , and by
(2.7a) $$\pi\Lambda_{1}\neq3\Lambda_{1}$$ ( $$3\Lambda_{1}$$ is a $$J$$ -fixed-point).
# 4.5. The $$D$$ -series argument
$$k=1$$ is trivial, and $$k=2$$ will be considered shortly. For $$k>2$$ , Proposition 4.1 tells
us that $$\pi\Lambda_{1}=J_{v}^{a}J_{s}^{b}\Lambda_{1}$$ and $$\pi^{\prime}\Lambda_{1}=J_{v}^{a^{\prime}}J_{s}^{b^{\prime}}\Lambda_{1}$$ , for $$a,a^{\prime},b,b^{\prime}\in\{0,1\}$$ . Immediate from (3.4)
is that $$\chi_{\Lambda_{1}}[\Lambda_{1}]>0$$ and that $$\chi_{\Lambda_{1}}[\psi]$$ , for a spinor $$\psi$$ , takes its maximum at $$C^{i}J_{v}^{j}\Lambda_{r}$$ . Our
first step is to force $$\pi\Lambda_{1}=\pi^{\prime}\Lambda_{1}=\Lambda_{1}$$ . Unfortunately this requires a case analysis.
Consider first even $$r\,\neq\,4$$ , and even $$k\ >\ 2$$ . Now, $$0\;\neq\;S_{\Lambda_{1}\Lambda_{1}}\;=\;S_{\pi\Lambda_{1},\pi^{\prime}\Lambda_{1}}$$ forces
$$b=b^{\prime}$$ ; hence hitting with the simple-current automorphism $$\pi\left[{\begin{array}{l l}{0}&{a}\\ {a^{\prime}}&{b}\end{array}}\right]$$ , we may assume
$$\pi\Lambda_{1}=\pi^{\prime}\Lambda_{1}=\Lambda_{1}$$ .
Next consider even $$r\neq4$$ and odd $$k\,>\,2$$ . Either of $$\pi\Lambda_{1}=J_{v}\Lambda_{1}$$ or $$\pi^{\prime}\Lambda_{1}\,=\,J_{v}\Lambda_{1}$$ is
impossible, by comparing $$S_{\Lambda_{1},J_{s}0}$$ and $$S_{J_{v}\Lambda_{1},J0}$$ for any simple-current $$J$$ . For any of the
three remaining choices of $$J_{v}^{a}J_{s}^{b}\Lambda_{1}$$ , we can find a simple-current automorphism of the form
$$\pi\left[{\ast}\quad a\,\right];$$ hitting its inverse onto $$\pi$$ allows us to take $$a=b=0$$ . Again $$0\not=S_{\Lambda_{1}\Lambda_{1}}$$ forces
$$b^{\prime}=0$$ , and now $$a^{\prime}=1$$ is forbidden. Thus again $$\pi\Lambda_{1}=\pi^{\prime}\Lambda_{1}=\Lambda_{1}$$ .
As usual, $$r=4$$ is complicated by triality. We can force $$\pi\Lambda_{1}=\Lambda_{1}$$ . That we can also
take $$\pi^{\prime}\Lambda_{1}=\Lambda_{1}$$ , follows from the inequality $$\chi_{\Lambda_{1}}[\Lambda_{1}]>\chi_{\Lambda_{1}}[\Lambda_{3}]=\chi_{\Lambda_{1}}[\Lambda_{4}]>0$$ , valid for
$$k\geq3$$ . Establishing that inequality from (3.4) is equivalent to showing
$$1+\cos(x)+\cos(2x)+\cos(4x)>\cos(x/2)+\cos(3x/2)+\cos(5x/2)+\cos(7x/2)>0$$ 2)
for $$0<x\le2\pi/9$$ , which can be shown e.g. using Taylor series.
For odd $$r$$ , the charge-conjugation $$C$$ equals $$C_{1}$$ . Since it must commute with $$\pi$$ , i.e.
that $$C_{1}\pi\Lambda_{1}=J_{v}^{a+b}J_{s}^{b}\Lambda_{1}$$ must equal $$\pi C_{1}\Lambda_{1}=J_{v}^{a}J_{s}^{b}\Lambda_{1}$$ , we get that $$b=0$$ . Similarly $$b^{\prime}=0$$ .
When $$k$$ is odd, eliminate $$a=1$$ and $$a\prime=1$$ by comparing $$S_{\Lambda_{1},J_{s}0}$$ and $$S_{J_{v}\Lambda_{1},J0}$$ as before.
The hardest case is $$k$$ even. We can force $$\pi\Lambda_{1}\,=\,\Lambda_{1}$$ by hitting with $$\pi[a]$$ . Suppose for
contradiction that $$\pi^{\prime}\Lambda_{1}=J_{v}\Lambda_{1}$$ . We know $$\pi^{\prime}(J_{v}0)=J_{v}0$$ (compare $$S_{\Lambda_{1},J_{v}0}$$ and $$S_{\Lambda_{1},J0})$$ ,
so by (2.7b) $$\pi\Lambda_{r}$$ must be a spinor. $$\chi_{\Lambda_{1}}[\Lambda_{r}]\;=\;\chi_{J_{v}\Lambda_{1}}[\pi\Lambda_{r}]$$ requires $$\pi\Lambda_{r}\,=\,C_{1}^{i}J_{v}^{j}J_{s}\Lambda_{r}$$ .
From the $$\Lambda_{1}\boxtimes\Lambda_{r}$$ fusion we get $$\pi\Lambda_{r-1}=C_{1}^{i}J_{v}^{j}J_{s}\Lambda_{r-1}$$ , but $$C\pi=\pi C$$ says that $$\pi\Lambda_{r-1}=$$
$$C_{1}^{i}J_{v}^{j+1}J_{s}\Lambda_{r-1}$$ — a contradiction.
Thus in all cases we have $$\pi\Lambda_{1}\,=\,\pi^{\prime}\Lambda_{1}\,=\,\Lambda_{1}$$ . We know $$\pi^{\prime}(J_{v}0)\;=\;J_{v}0$$ (compare
$$S_{\Lambda_{1},J_{v}0}$$ and $$S_{\Lambda_{1},J0})$$ , so $$\pi\Lambda_{r}$$ is a spinor and in fact must equal $$\pi\Lambda_{r}\,=\,C_{1}^{i}J_{v}^{j}\Lambda_{r}$$ . Hitting
with $$(C_{1}^{i}\pi_{v}^{j})^{-1}$$ , we can require $$\pi\Lambda_{r}=\Lambda_{r}$$ . That $$\pi\Lambda_{r-1}$$ must now equal $$\Lambda_{r-1}$$ follows from
the $$\Lambda_{1}\boxtimes\Lambda_{r}$$ fusion.
| <p>$$a=a^{\prime}=0$$ holds for $$k r$$ even. From the fusion $$\Lambda_{1}$$ × $$\Lambda_{\ell}$$ we get $$\pi\Lambda_{\ell+1}\in\{\Lambda_{\ell+1},\Lambda_{1}+\Lambda_{\ell}\}$$ if
$$\pi\Lambda_{\ell}=\Lambda_{\ell}$$ ; for $$r<k$$ conclude the argument with the calculation</p>
<p>as in $$\S4.3$$ . When $$r=k$$ , that inequality only holds for $$\ell>1$$ , but we can force $$\pi\Lambda_{2}=\Lambda_{2}$$
by hitting $$\pi$$ if necessary with $$\pi_{\mathrm{rld}}$$ .</p>
<p>The remaining case $$C_{2,3}$$ follows because $$\pi^{\prime}J0\,=\,J0$$ : by (2.7b) $$\pi\Lambda_{1}\notin S\Lambda_{2}$$ , and by
(2.7a) $$\pi\Lambda_{1}\neq3\Lambda_{1}$$ ( $$3\Lambda_{1}$$ is a $$J$$ -fixed-point).</p>
<h1>4.5. The $$D$$ -series argument</h1>
<p>$$k=1$$ is trivial, and $$k=2$$ will be considered shortly. For $$k>2$$ , Proposition 4.1 tells
us that $$\pi\Lambda_{1}=J_{v}^{a}J_{s}^{b}\Lambda_{1}$$ and $$\pi^{\prime}\Lambda_{1}=J_{v}^{a^{\prime}}J_{s}^{b^{\prime}}\Lambda_{1}$$ , for $$a,a^{\prime},b,b^{\prime}\in\{0,1\}$$ . Immediate from (3.4)
is that $$\chi_{\Lambda_{1}}[\Lambda_{1}]>0$$ and that $$\chi_{\Lambda_{1}}[\psi]$$ , for a spinor $$\psi$$ , takes its maximum at $$C^{i}J_{v}^{j}\Lambda_{r}$$ . Our
first step is to force $$\pi\Lambda_{1}=\pi^{\prime}\Lambda_{1}=\Lambda_{1}$$ . Unfortunately this requires a case analysis.</p>
<p>Consider first even $$r\,\neq\,4$$ , and even $$k\ >\ 2$$ . Now, $$0\;\neq\;S_{\Lambda_{1}\Lambda_{1}}\;=\;S_{\pi\Lambda_{1},\pi^{\prime}\Lambda_{1}}$$ forces
$$b=b^{\prime}$$ ; hence hitting with the simple-current automorphism $$\pi\left[{\begin{array}{l l}{0}&{a}\\ {a^{\prime}}&{b}\end{array}}\right]$$ , we may assume
$$\pi\Lambda_{1}=\pi^{\prime}\Lambda_{1}=\Lambda_{1}$$ .</p>
<p>Next consider even $$r\neq4$$ and odd $$k\,>\,2$$ . Either of $$\pi\Lambda_{1}=J_{v}\Lambda_{1}$$ or $$\pi^{\prime}\Lambda_{1}\,=\,J_{v}\Lambda_{1}$$ is
impossible, by comparing $$S_{\Lambda_{1},J_{s}0}$$ and $$S_{J_{v}\Lambda_{1},J0}$$ for any simple-current $$J$$ . For any of the
three remaining choices of $$J_{v}^{a}J_{s}^{b}\Lambda_{1}$$ , we can find a simple-current automorphism of the form
$$\pi\left[{\ast}\quad a\,\right];$$ hitting its inverse onto $$\pi$$ allows us to take $$a=b=0$$ . Again $$0\not=S_{\Lambda_{1}\Lambda_{1}}$$ forces
$$b^{\prime}=0$$ , and now $$a^{\prime}=1$$ is forbidden. Thus again $$\pi\Lambda_{1}=\pi^{\prime}\Lambda_{1}=\Lambda_{1}$$ .</p>
<p>As usual, $$r=4$$ is complicated by triality. We can force $$\pi\Lambda_{1}=\Lambda_{1}$$ . That we can also
take $$\pi^{\prime}\Lambda_{1}=\Lambda_{1}$$ , follows from the inequality $$\chi_{\Lambda_{1}}[\Lambda_{1}]>\chi_{\Lambda_{1}}[\Lambda_{3}]=\chi_{\Lambda_{1}}[\Lambda_{4}]>0$$ , valid for
$$k\geq3$$ . Establishing that inequality from (3.4) is equivalent to showing</p>
<p>$$1+\cos(x)+\cos(2x)+\cos(4x)>\cos(x/2)+\cos(3x/2)+\cos(5x/2)+\cos(7x/2)>0$$ 2)</p>
<p>for $$0<x\le2\pi/9$$ , which can be shown e.g. using Taylor series.</p>
<p>For odd $$r$$ , the charge-conjugation $$C$$ equals $$C_{1}$$ . Since it must commute with $$\pi$$ , i.e.
that $$C_{1}\pi\Lambda_{1}=J_{v}^{a+b}J_{s}^{b}\Lambda_{1}$$ must equal $$\pi C_{1}\Lambda_{1}=J_{v}^{a}J_{s}^{b}\Lambda_{1}$$ , we get that $$b=0$$ . Similarly $$b^{\prime}=0$$ .
When $$k$$ is odd, eliminate $$a=1$$ and $$a\prime=1$$ by comparing $$S_{\Lambda_{1},J_{s}0}$$ and $$S_{J_{v}\Lambda_{1},J0}$$ as before.
The hardest case is $$k$$ even. We can force $$\pi\Lambda_{1}\,=\,\Lambda_{1}$$ by hitting with $$\pi[a]$$ . Suppose for
contradiction that $$\pi^{\prime}\Lambda_{1}=J_{v}\Lambda_{1}$$ . We know $$\pi^{\prime}(J_{v}0)=J_{v}0$$ (compare $$S_{\Lambda_{1},J_{v}0}$$ and $$S_{\Lambda_{1},J0})$$ ,
so by (2.7b) $$\pi\Lambda_{r}$$ must be a spinor. $$\chi_{\Lambda_{1}}[\Lambda_{r}]\;=\;\chi_{J_{v}\Lambda_{1}}[\pi\Lambda_{r}]$$ requires $$\pi\Lambda_{r}\,=\,C_{1}^{i}J_{v}^{j}J_{s}\Lambda_{r}$$ .
From the $$\Lambda_{1}\boxtimes\Lambda_{r}$$ fusion we get $$\pi\Lambda_{r-1}=C_{1}^{i}J_{v}^{j}J_{s}\Lambda_{r-1}$$ , but $$C\pi=\pi C$$ says that $$\pi\Lambda_{r-1}=$$
$$C_{1}^{i}J_{v}^{j+1}J_{s}\Lambda_{r-1}$$ — a contradiction.</p>
<p>Thus in all cases we have $$\pi\Lambda_{1}\,=\,\pi^{\prime}\Lambda_{1}\,=\,\Lambda_{1}$$ . We know $$\pi^{\prime}(J_{v}0)\;=\;J_{v}0$$ (compare
$$S_{\Lambda_{1},J_{v}0}$$ and $$S_{\Lambda_{1},J0})$$ , so $$\pi\Lambda_{r}$$ is a spinor and in fact must equal $$\pi\Lambda_{r}\,=\,C_{1}^{i}J_{v}^{j}\Lambda_{r}$$ . Hitting
with $$(C_{1}^{i}\pi_{v}^{j})^{-1}$$ , we can require $$\pi\Lambda_{r}=\Lambda_{r}$$ . That $$\pi\Lambda_{r-1}$$ must now equal $$\Lambda_{r-1}$$ follows from
the $$\Lambda_{1}\boxtimes\Lambda_{r}$$ fusion.</p>
| [{"type": "text", "coordinates": [69, 70, 542, 100], "content": "$$a=a^{\\prime}=0$$ holds for $$k r$$ even. From the fusion $$\\Lambda_{1}$$ \u00d7 $$\\Lambda_{\\ell}$$ we get $$\\pi\\Lambda_{\\ell+1}\\in\\{\\Lambda_{\\ell+1},\\Lambda_{1}+\\Lambda_{\\ell}\\}$$ if\n$$\\pi\\Lambda_{\\ell}=\\Lambda_{\\ell}$$ ; for $$r<k$$ conclude the argument with the calculation", "block_type": "text", "index": 1}, {"type": "interline_equation", "coordinates": [99, 113, 500, 141], "content": "", "block_type": "interline_equation", "index": 2}, {"type": "text", "coordinates": [70, 149, 541, 178], "content": "as in $$\\S4.3$$ . When $$r=k$$ , that inequality only holds for $$\\ell>1$$ , but we can force $$\\pi\\Lambda_{2}=\\Lambda_{2}$$\nby hitting $$\\pi$$ if necessary with $$\\pi_{\\mathrm{rld}}$$ .", "block_type": "text", "index": 3}, {"type": "text", "coordinates": [70, 179, 541, 208], "content": "The remaining case $$C_{2,3}$$ follows because $$\\pi^{\\prime}J0\\,=\\,J0$$ : by (2.7b) $$\\pi\\Lambda_{1}\\notin S\\Lambda_{2}$$ , and by\n(2.7a) $$\\pi\\Lambda_{1}\\neq3\\Lambda_{1}$$ ( $$3\\Lambda_{1}$$ is a $$J$$ -fixed-point).", "block_type": "text", "index": 4}, {"type": "title", "coordinates": [71, 221, 219, 236], "content": "4.5. The $$D$$ -series argument", "block_type": "title", "index": 5}, {"type": "text", "coordinates": [70, 243, 541, 300], "content": "$$k=1$$ is trivial, and $$k=2$$ will be considered shortly. For $$k>2$$ , Proposition 4.1 tells\nus that $$\\pi\\Lambda_{1}=J_{v}^{a}J_{s}^{b}\\Lambda_{1}$$ and $$\\pi^{\\prime}\\Lambda_{1}=J_{v}^{a^{\\prime}}J_{s}^{b^{\\prime}}\\Lambda_{1}$$ , for $$a,a^{\\prime},b,b^{\\prime}\\in\\{0,1\\}$$ . Immediate from (3.4)\nis that $$\\chi_{\\Lambda_{1}}[\\Lambda_{1}]>0$$ and that $$\\chi_{\\Lambda_{1}}[\\psi]$$ , for a spinor $$\\psi$$ , takes its maximum at $$C^{i}J_{v}^{j}\\Lambda_{r}$$ . Our\nfirst step is to force $$\\pi\\Lambda_{1}=\\pi^{\\prime}\\Lambda_{1}=\\Lambda_{1}$$ . Unfortunately this requires a case analysis.", "block_type": "text", "index": 6}, {"type": "text", "coordinates": [69, 301, 541, 358], "content": "Consider first even $$r\\,\\neq\\,4$$ , and even $$k\\ >\\ 2$$ . Now, $$0\\;\\neq\\;S_{\\Lambda_{1}\\Lambda_{1}}\\;=\\;S_{\\pi\\Lambda_{1},\\pi^{\\prime}\\Lambda_{1}}$$ forces\n$$b=b^{\\prime}$$ ; hence hitting with the simple-current automorphism $$\\pi\\left[{\\begin{array}{l l}{0}&{a}\\\\ {a^{\\prime}}&{b}\\end{array}}\\right]$$ , we may assume\n$$\\pi\\Lambda_{1}=\\pi^{\\prime}\\Lambda_{1}=\\Lambda_{1}$$ .", "block_type": "text", "index": 7}, {"type": "text", "coordinates": [70, 358, 542, 444], "content": "Next consider even $$r\\neq4$$ and odd $$k\\,>\\,2$$ . Either of $$\\pi\\Lambda_{1}=J_{v}\\Lambda_{1}$$ or $$\\pi^{\\prime}\\Lambda_{1}\\,=\\,J_{v}\\Lambda_{1}$$ is\nimpossible, by comparing $$S_{\\Lambda_{1},J_{s}0}$$ and $$S_{J_{v}\\Lambda_{1},J0}$$ for any simple-current $$J$$ . For any of the\nthree remaining choices of $$J_{v}^{a}J_{s}^{b}\\Lambda_{1}$$ , we can find a simple-current automorphism of the form\n$$\\pi\\left[{\\ast}\\quad a\\,\\right];$$ hitting its inverse onto $$\\pi$$ allows us to take $$a=b=0$$ . Again $$0\\not=S_{\\Lambda_{1}\\Lambda_{1}}$$ forces\n$$b^{\\prime}=0$$ , and now $$a^{\\prime}=1$$ is forbidden. Thus again $$\\pi\\Lambda_{1}=\\pi^{\\prime}\\Lambda_{1}=\\Lambda_{1}$$ .", "block_type": "text", "index": 8}, {"type": "text", "coordinates": [70, 444, 541, 488], "content": "As usual, $$r=4$$ is complicated by triality. We can force $$\\pi\\Lambda_{1}=\\Lambda_{1}$$ . That we can also\ntake $$\\pi^{\\prime}\\Lambda_{1}=\\Lambda_{1}$$ , follows from the inequality $$\\chi_{\\Lambda_{1}}[\\Lambda_{1}]>\\chi_{\\Lambda_{1}}[\\Lambda_{3}]=\\chi_{\\Lambda_{1}}[\\Lambda_{4}]>0$$ , valid for\n$$k\\geq3$$ . Establishing that inequality from (3.4) is equivalent to showing", "block_type": "text", "index": 9}, {"type": "text", "coordinates": [98, 500, 514, 516], "content": "$$1+\\cos(x)+\\cos(2x)+\\cos(4x)>\\cos(x/2)+\\cos(3x/2)+\\cos(5x/2)+\\cos(7x/2)>0$$ 2)", "block_type": "text", "index": 10}, {"type": "text", "coordinates": [69, 528, 398, 542], "content": "for $$0<x\\le2\\pi/9$$ , which can be shown e.g. using Taylor series.", "block_type": "text", "index": 11}, {"type": "text", "coordinates": [70, 543, 541, 657], "content": "For odd $$r$$ , the charge-conjugation $$C$$ equals $$C_{1}$$ . Since it must commute with $$\\pi$$ , i.e.\nthat $$C_{1}\\pi\\Lambda_{1}=J_{v}^{a+b}J_{s}^{b}\\Lambda_{1}$$ must equal $$\\pi C_{1}\\Lambda_{1}=J_{v}^{a}J_{s}^{b}\\Lambda_{1}$$ , we get that $$b=0$$ . Similarly $$b^{\\prime}=0$$ .\nWhen $$k$$ is odd, eliminate $$a=1$$ and $$a\\prime=1$$ by comparing $$S_{\\Lambda_{1},J_{s}0}$$ and $$S_{J_{v}\\Lambda_{1},J0}$$ as before.\nThe hardest case is $$k$$ even. We can force $$\\pi\\Lambda_{1}\\,=\\,\\Lambda_{1}$$ by hitting with $$\\pi[a]$$ . Suppose for\ncontradiction that $$\\pi^{\\prime}\\Lambda_{1}=J_{v}\\Lambda_{1}$$ . We know $$\\pi^{\\prime}(J_{v}0)=J_{v}0$$ (compare $$S_{\\Lambda_{1},J_{v}0}$$ and $$S_{\\Lambda_{1},J0})$$ ,\nso by (2.7b) $$\\pi\\Lambda_{r}$$ must be a spinor. $$\\chi_{\\Lambda_{1}}[\\Lambda_{r}]\\;=\\;\\chi_{J_{v}\\Lambda_{1}}[\\pi\\Lambda_{r}]$$ requires $$\\pi\\Lambda_{r}\\,=\\,C_{1}^{i}J_{v}^{j}J_{s}\\Lambda_{r}$$ .\nFrom the $$\\Lambda_{1}\\boxtimes\\Lambda_{r}$$ fusion we get $$\\pi\\Lambda_{r-1}=C_{1}^{i}J_{v}^{j}J_{s}\\Lambda_{r-1}$$ , but $$C\\pi=\\pi C$$ says that $$\\pi\\Lambda_{r-1}=$$\n$$C_{1}^{i}J_{v}^{j+1}J_{s}\\Lambda_{r-1}$$ \u2014 a contradiction.", "block_type": "text", "index": 12}, {"type": "text", "coordinates": [70, 658, 541, 715], "content": "Thus in all cases we have $$\\pi\\Lambda_{1}\\,=\\,\\pi^{\\prime}\\Lambda_{1}\\,=\\,\\Lambda_{1}$$ . We know $$\\pi^{\\prime}(J_{v}0)\\;=\\;J_{v}0$$ (compare\n$$S_{\\Lambda_{1},J_{v}0}$$ and $$S_{\\Lambda_{1},J0})$$ , so $$\\pi\\Lambda_{r}$$ is a spinor and in fact must equal $$\\pi\\Lambda_{r}\\,=\\,C_{1}^{i}J_{v}^{j}\\Lambda_{r}$$ . Hitting\nwith $$(C_{1}^{i}\\pi_{v}^{j})^{-1}$$ , we can require $$\\pi\\Lambda_{r}=\\Lambda_{r}$$ . That $$\\pi\\Lambda_{r-1}$$ must now equal $$\\Lambda_{r-1}$$ follows from\nthe $$\\Lambda_{1}\\boxtimes\\Lambda_{r}$$ fusion.", "block_type": "text", "index": 13}] | [{"type": "inline_equation", "coordinates": [71, 75, 126, 84], "content": "a=a^{\\prime}=0", "score": 0.93, "index": 1}, {"type": "text", "coordinates": [126, 72, 178, 90], "content": " holds for ", "score": 1.0, "index": 2}, {"type": "inline_equation", "coordinates": [178, 75, 191, 84], "content": "k r", "score": 0.39, "index": 3}, {"type": "text", "coordinates": [191, 72, 312, 90], "content": " even. From the fusion ", "score": 1.0, "index": 4}, {"type": "inline_equation", "coordinates": [313, 75, 326, 86], "content": "\\Lambda_{1}", "score": 0.64, "index": 5}, {"type": "text", "coordinates": [327, 72, 344, 90], "content": " \u00d7 ", "score": 1.0, "index": 6}, {"type": "inline_equation", "coordinates": [344, 74, 358, 86], "content": "\\Lambda_{\\ell}", "score": 0.63, "index": 7}, {"type": "text", "coordinates": [358, 72, 398, 90], "content": "we get ", "score": 1.0, "index": 8}, {"type": "inline_equation", "coordinates": [398, 75, 529, 87], "content": "\\pi\\Lambda_{\\ell+1}\\in\\{\\Lambda_{\\ell+1},\\Lambda_{1}+\\Lambda_{\\ell}\\}", "score": 0.92, "index": 9}, {"type": "text", "coordinates": [529, 72, 542, 90], "content": " if", "score": 1.0, "index": 10}, {"type": "inline_equation", "coordinates": [71, 90, 120, 100], "content": "\\pi\\Lambda_{\\ell}=\\Lambda_{\\ell}", "score": 0.92, "index": 11}, {"type": "text", "coordinates": [121, 89, 145, 102], "content": "; for ", "score": 1.0, "index": 12}, {"type": "inline_equation", "coordinates": [146, 90, 174, 99], "content": "r<k", "score": 0.92, "index": 13}, {"type": "text", "coordinates": [174, 89, 408, 102], "content": " conclude the argument with the calculation", "score": 1.0, "index": 14}, {"type": "interline_equation", "coordinates": [99, 113, 500, 141], "content": "\\chi_{\\Lambda_{1}}[\\Lambda_{\\ell+1}]-\\chi_{\\Lambda_{1}}[\\Lambda_{1}+\\Lambda_{\\ell}]=4\\cos(\\pi\\,\\frac{2r+2-\\ell}{2\\kappa})\\,\\{\\cos(\\pi\\,\\frac{\\ell}{2\\kappa})-\\cos(\\pi\\,\\frac{\\ell+2}{2\\kappa})\\}>", "score": 0.9, "index": 15}, {"type": "text", "coordinates": [70, 151, 100, 168], "content": "as in ", "score": 1.0, "index": 16}, {"type": "inline_equation", "coordinates": [100, 153, 121, 165], "content": "\\S4.3", "score": 0.41, "index": 17}, {"type": "text", "coordinates": [122, 151, 165, 168], "content": ". When ", "score": 1.0, "index": 18}, {"type": "inline_equation", "coordinates": [165, 154, 195, 163], "content": "r=k", "score": 0.92, "index": 19}, {"type": "text", "coordinates": [195, 151, 360, 168], "content": ", that inequality only holds for ", "score": 1.0, "index": 20}, {"type": "inline_equation", "coordinates": [360, 153, 389, 164], "content": "\\ell>1", "score": 0.88, "index": 21}, {"type": "text", "coordinates": [390, 151, 487, 168], "content": ", but we can force ", "score": 1.0, "index": 22}, {"type": "inline_equation", "coordinates": [488, 154, 539, 165], "content": "\\pi\\Lambda_{2}=\\Lambda_{2}", "score": 0.91, "index": 23}, {"type": "text", "coordinates": [70, 166, 127, 183], "content": "by hitting ", "score": 1.0, "index": 24}, {"type": "inline_equation", "coordinates": [127, 172, 135, 178], "content": "\\pi", "score": 0.77, "index": 25}, {"type": "text", "coordinates": [135, 166, 229, 183], "content": " if necessary with ", "score": 1.0, "index": 26}, {"type": "inline_equation", "coordinates": [229, 172, 249, 179], "content": "\\pi_{\\mathrm{rld}}", "score": 0.88, "index": 27}, {"type": "text", "coordinates": [249, 166, 254, 183], "content": ".", "score": 1.0, "index": 28}, {"type": "text", "coordinates": [93, 180, 203, 197], "content": "The remaining case ", "score": 1.0, "index": 29}, {"type": "inline_equation", "coordinates": [203, 182, 225, 195], "content": "C_{2,3}", "score": 0.91, "index": 30}, {"type": "text", "coordinates": [225, 180, 314, 197], "content": " follows because ", "score": 1.0, "index": 31}, {"type": "inline_equation", "coordinates": [314, 182, 371, 192], "content": "\\pi^{\\prime}J0\\,=\\,J0", "score": 0.92, "index": 32}, {"type": "text", "coordinates": [372, 180, 434, 197], "content": ": by (2.7b) ", "score": 1.0, "index": 33}, {"type": "inline_equation", "coordinates": [434, 182, 495, 194], "content": "\\pi\\Lambda_{1}\\notin S\\Lambda_{2}", "score": 0.87, "index": 34}, {"type": "text", "coordinates": [495, 180, 541, 197], "content": ", and by", "score": 1.0, "index": 35}, {"type": "text", "coordinates": [72, 196, 105, 210], "content": "(2.7a) ", "score": 1.0, "index": 36}, {"type": "inline_equation", "coordinates": [105, 195, 162, 208], "content": "\\pi\\Lambda_{1}\\neq3\\Lambda_{1}", "score": 0.89, "index": 37}, {"type": "text", "coordinates": [163, 196, 170, 210], "content": " (", "score": 1.0, "index": 38}, {"type": "inline_equation", "coordinates": [171, 195, 191, 208], "content": "3\\Lambda_{1}", "score": 0.88, "index": 39}, {"type": "text", "coordinates": [191, 196, 216, 210], "content": " is a ", "score": 1.0, "index": 40}, {"type": "inline_equation", "coordinates": [216, 196, 225, 206], "content": "J", "score": 0.84, "index": 41}, {"type": "text", "coordinates": [225, 196, 292, 210], "content": "-fixed-point).", "score": 1.0, "index": 42}, {"type": "text", "coordinates": [71, 225, 119, 236], "content": "4.5. The ", "score": 1.0, "index": 43}, {"type": "inline_equation", "coordinates": [119, 225, 130, 235], "content": "D", "score": 0.8, "index": 44}, {"type": "text", "coordinates": [131, 225, 219, 236], "content": "-series argument", "score": 1.0, "index": 45}, {"type": "inline_equation", "coordinates": [95, 247, 124, 256], "content": "k=1", "score": 0.9, "index": 46}, {"type": "text", "coordinates": [124, 244, 201, 259], "content": " is trivial, and ", "score": 1.0, "index": 47}, {"type": "inline_equation", "coordinates": [202, 245, 231, 256], "content": "k=2", "score": 0.88, "index": 48}, {"type": "text", "coordinates": [232, 244, 398, 259], "content": " will be considered shortly. For ", "score": 1.0, "index": 49}, {"type": "inline_equation", "coordinates": [398, 247, 427, 256], "content": "k>2", "score": 0.9, "index": 50}, {"type": "text", "coordinates": [427, 244, 541, 259], "content": ", Proposition 4.1 tells", "score": 1.0, "index": 51}, {"type": "text", "coordinates": [70, 258, 111, 274], "content": "us that", "score": 1.0, "index": 52}, {"type": "inline_equation", "coordinates": [112, 259, 189, 273], "content": "\\pi\\Lambda_{1}=J_{v}^{a}J_{s}^{b}\\Lambda_{1}", "score": 0.93, "index": 53}, {"type": "text", "coordinates": [190, 258, 216, 274], "content": " and ", "score": 1.0, "index": 54}, {"type": "inline_equation", "coordinates": [216, 258, 303, 273], "content": "\\pi^{\\prime}\\Lambda_{1}=J_{v}^{a^{\\prime}}J_{s}^{b^{\\prime}}\\Lambda_{1}", "score": 0.94, "index": 55}, {"type": "text", "coordinates": [303, 258, 329, 274], "content": ", for ", "score": 1.0, "index": 56}, {"type": "inline_equation", "coordinates": [329, 260, 419, 273], "content": "a,a^{\\prime},b,b^{\\prime}\\in\\{0,1\\}", "score": 0.93, "index": 57}, {"type": "text", "coordinates": [419, 258, 541, 274], "content": ". Immediate from (3.4)", "score": 1.0, "index": 58}, {"type": "text", "coordinates": [69, 272, 109, 289], "content": "is that ", "score": 1.0, "index": 59}, {"type": "inline_equation", "coordinates": [110, 274, 173, 288], "content": "\\chi_{\\Lambda_{1}}[\\Lambda_{1}]>0", "score": 0.92, "index": 60}, {"type": "text", "coordinates": [173, 272, 226, 289], "content": " and that ", "score": 1.0, "index": 61}, {"type": "inline_equation", "coordinates": [226, 275, 261, 287], "content": "\\chi_{\\Lambda_{1}}[\\psi]", "score": 0.92, "index": 62}, {"type": "text", "coordinates": [262, 272, 334, 289], "content": ", for a spinor ", "score": 1.0, "index": 63}, {"type": "inline_equation", "coordinates": [334, 275, 343, 287], "content": "\\psi", "score": 0.89, "index": 64}, {"type": "text", "coordinates": [343, 272, 469, 289], "content": ", takes its maximum at ", "score": 1.0, "index": 65}, {"type": "inline_equation", "coordinates": [469, 274, 509, 287], "content": "C^{i}J_{v}^{j}\\Lambda_{r}", "score": 0.93, "index": 66}, {"type": "text", "coordinates": [509, 272, 542, 289], "content": ". Our", "score": 1.0, "index": 67}, {"type": "text", "coordinates": [70, 288, 176, 303], "content": "first step is to force ", "score": 1.0, "index": 68}, {"type": "inline_equation", "coordinates": [177, 289, 268, 301], "content": "\\pi\\Lambda_{1}=\\pi^{\\prime}\\Lambda_{1}=\\Lambda_{1}", "score": 0.93, "index": 69}, {"type": "text", "coordinates": [268, 288, 502, 303], "content": ". Unfortunately this requires a case analysis.", "score": 1.0, "index": 70}, {"type": "text", "coordinates": [94, 301, 201, 319], "content": "Consider first even ", "score": 1.0, "index": 71}, {"type": "inline_equation", "coordinates": [201, 304, 235, 315], "content": "r\\,\\neq\\,4", "score": 0.92, "index": 72}, {"type": "text", "coordinates": [235, 301, 297, 319], "content": ", and even ", "score": 1.0, "index": 73}, {"type": "inline_equation", "coordinates": [297, 304, 331, 313], "content": "k\\ >\\ 2", "score": 0.88, "index": 74}, {"type": "text", "coordinates": [332, 301, 376, 319], "content": ". Now, ", "score": 1.0, "index": 75}, {"type": "inline_equation", "coordinates": [377, 304, 504, 316], "content": "0\\;\\neq\\;S_{\\Lambda_{1}\\Lambda_{1}}\\;=\\;S_{\\pi\\Lambda_{1},\\pi^{\\prime}\\Lambda_{1}}", "score": 0.92, "index": 76}, {"type": "text", "coordinates": [504, 301, 542, 319], "content": " forces", "score": 1.0, "index": 77}, {"type": "inline_equation", "coordinates": [71, 325, 104, 335], "content": "b=b^{\\prime}", "score": 0.9, "index": 78}, {"type": "text", "coordinates": [104, 324, 394, 339], "content": "; hence hitting with the simple-current automorphism ", "score": 1.0, "index": 79}, {"type": "inline_equation", "coordinates": [394, 317, 449, 347], "content": "\\pi\\left[{\\begin{array}{l l}{0}&{a}\\\\ {a^{\\prime}}&{b}\\end{array}}\\right]", "score": 0.94, "index": 80}, {"type": "text", "coordinates": [450, 326, 541, 338], "content": ", we may assume", "score": 1.0, "index": 81}, {"type": "inline_equation", "coordinates": [71, 347, 162, 358], "content": "\\pi\\Lambda_{1}=\\pi^{\\prime}\\Lambda_{1}=\\Lambda_{1}", "score": 0.91, "index": 82}, {"type": "text", "coordinates": [163, 347, 165, 361], "content": ".", "score": 1.0, "index": 83}, {"type": "text", "coordinates": [93, 359, 200, 375], "content": "Next consider even ", "score": 1.0, "index": 84}, {"type": "inline_equation", "coordinates": [200, 362, 230, 373], "content": "r\\neq4", "score": 0.93, "index": 85}, {"type": "text", "coordinates": [230, 359, 281, 375], "content": " and odd ", "score": 1.0, "index": 86}, {"type": "inline_equation", "coordinates": [282, 362, 312, 371], "content": "k\\,>\\,2", "score": 0.9, "index": 87}, {"type": "text", "coordinates": [313, 359, 374, 375], "content": ". Either of ", "score": 1.0, "index": 88}, {"type": "inline_equation", "coordinates": [374, 362, 439, 373], "content": "\\pi\\Lambda_{1}=J_{v}\\Lambda_{1}", "score": 0.92, "index": 89}, {"type": "text", "coordinates": [439, 359, 458, 375], "content": " or ", "score": 1.0, "index": 90}, {"type": "inline_equation", "coordinates": [459, 360, 527, 373], "content": "\\pi^{\\prime}\\Lambda_{1}\\,=\\,J_{v}\\Lambda_{1}", "score": 0.92, "index": 91}, {"type": "text", "coordinates": [527, 359, 541, 375], "content": " is", "score": 1.0, "index": 92}, {"type": "text", "coordinates": [69, 373, 210, 392], "content": "impossible, by comparing ", "score": 1.0, "index": 93}, {"type": "inline_equation", "coordinates": [210, 376, 246, 388], "content": "S_{\\Lambda_{1},J_{s}0}", "score": 0.92, "index": 94}, {"type": "text", "coordinates": [247, 373, 275, 392], "content": " and ", "score": 1.0, "index": 95}, {"type": "inline_equation", "coordinates": [275, 376, 318, 388], "content": "S_{J_{v}\\Lambda_{1},J0}", "score": 0.93, "index": 96}, {"type": "text", "coordinates": [319, 373, 444, 392], "content": " for any simple-current ", "score": 1.0, "index": 97}, {"type": "inline_equation", "coordinates": [444, 376, 453, 385], "content": "J", "score": 0.86, "index": 98}, {"type": "text", "coordinates": [453, 373, 542, 392], "content": ". For any of the", "score": 1.0, "index": 99}, {"type": "text", "coordinates": [70, 387, 208, 405], "content": "three remaining choices of ", "score": 1.0, "index": 100}, {"type": "inline_equation", "coordinates": [209, 389, 249, 402], "content": "J_{v}^{a}J_{s}^{b}\\Lambda_{1}", "score": 0.93, "index": 101}, {"type": "text", "coordinates": [249, 387, 541, 405], "content": ", we can find a simple-current automorphism of the form", "score": 1.0, "index": 102}, {"type": "inline_equation", "coordinates": [71, 403, 123, 433], "content": "\\pi\\left[{\\ast}\\quad a\\,\\right];", "score": 0.95, "index": 103}, {"type": "text", "coordinates": [124, 409, 252, 425], "content": " hitting its inverse onto ", "score": 1.0, "index": 104}, {"type": "inline_equation", "coordinates": [253, 415, 260, 421], "content": "\\pi", "score": 0.88, "index": 105}, {"type": "text", "coordinates": [260, 409, 356, 425], "content": " allows us to take ", "score": 1.0, "index": 106}, {"type": "inline_equation", "coordinates": [357, 412, 408, 421], "content": "a=b=0", "score": 0.92, "index": 107}, {"type": "text", "coordinates": [408, 409, 452, 425], "content": ". Again ", "score": 1.0, "index": 108}, {"type": "inline_equation", "coordinates": [452, 412, 505, 424], "content": "0\\not=S_{\\Lambda_{1}\\Lambda_{1}}", "score": 0.95, "index": 109}, {"type": "text", "coordinates": [505, 409, 541, 425], "content": " forces", "score": 1.0, "index": 110}, {"type": "inline_equation", "coordinates": [71, 433, 102, 443], "content": "b^{\\prime}=0", "score": 0.87, "index": 111}, {"type": "text", "coordinates": [102, 431, 157, 447], "content": ", and now ", "score": 1.0, "index": 112}, {"type": "inline_equation", "coordinates": [157, 433, 189, 443], "content": "a^{\\prime}=1", "score": 0.91, "index": 113}, {"type": "text", "coordinates": [189, 431, 325, 447], "content": " is forbidden. Thus again ", "score": 1.0, "index": 114}, {"type": "inline_equation", "coordinates": [325, 433, 416, 444], "content": "\\pi\\Lambda_{1}=\\pi^{\\prime}\\Lambda_{1}=\\Lambda_{1}", "score": 0.94, "index": 115}, {"type": "text", "coordinates": [416, 431, 420, 447], "content": ".", "score": 1.0, "index": 116}, {"type": "text", "coordinates": [95, 446, 147, 461], "content": "As usual, ", "score": 1.0, "index": 117}, {"type": "inline_equation", "coordinates": [147, 448, 176, 457], "content": "r=4", "score": 0.9, "index": 118}, {"type": "text", "coordinates": [176, 446, 389, 461], "content": " is complicated by triality. We can force ", "score": 1.0, "index": 119}, {"type": "inline_equation", "coordinates": [390, 448, 441, 459], "content": "\\pi\\Lambda_{1}=\\Lambda_{1}", "score": 0.93, "index": 120}, {"type": "text", "coordinates": [441, 446, 541, 461], "content": ". That we can also", "score": 1.0, "index": 121}, {"type": "text", "coordinates": [70, 460, 97, 477], "content": "take ", "score": 1.0, "index": 122}, {"type": "inline_equation", "coordinates": [97, 461, 154, 473], "content": "\\pi^{\\prime}\\Lambda_{1}=\\Lambda_{1}", "score": 0.92, "index": 123}, {"type": "text", "coordinates": [154, 460, 307, 477], "content": ", follows from the inequality ", "score": 1.0, "index": 124}, {"type": "inline_equation", "coordinates": [307, 461, 488, 474], "content": "\\chi_{\\Lambda_{1}}[\\Lambda_{1}]>\\chi_{\\Lambda_{1}}[\\Lambda_{3}]=\\chi_{\\Lambda_{1}}[\\Lambda_{4}]>0", "score": 0.92, "index": 125}, {"type": "text", "coordinates": [488, 460, 541, 477], "content": ", valid for", "score": 1.0, "index": 126}, {"type": "inline_equation", "coordinates": [71, 476, 100, 487], "content": "k\\geq3", "score": 0.89, "index": 127}, {"type": "text", "coordinates": [100, 473, 442, 492], "content": ". Establishing that inequality from (3.4) is equivalent to showing", "score": 1.0, "index": 128}, {"type": "inline_equation", "coordinates": [98, 503, 500, 516], "content": "1+\\cos(x)+\\cos(2x)+\\cos(4x)>\\cos(x/2)+\\cos(3x/2)+\\cos(5x/2)+\\cos(7x/2)>0", "score": 0.77, "index": 129}, {"type": "text", "coordinates": [501, 502, 512, 520], "content": "2)", "score": 1.0, "index": 130}, {"type": "text", "coordinates": [70, 530, 89, 545], "content": "for ", "score": 1.0, "index": 131}, {"type": "inline_equation", "coordinates": [89, 531, 160, 544], "content": "0<x\\le2\\pi/9", "score": 0.92, "index": 132}, {"type": "text", "coordinates": [160, 530, 397, 545], "content": ", which can be shown e.g. using Taylor series.", "score": 1.0, "index": 133}, {"type": "text", "coordinates": [93, 543, 141, 560], "content": "For odd ", "score": 1.0, "index": 134}, {"type": "inline_equation", "coordinates": [141, 550, 147, 556], "content": "r", "score": 0.8, "index": 135}, {"type": "text", "coordinates": [147, 543, 279, 560], "content": ", the charge-conjugation ", "score": 1.0, "index": 136}, {"type": "inline_equation", "coordinates": [279, 547, 289, 556], "content": "C", "score": 0.88, "index": 137}, {"type": "text", "coordinates": [289, 543, 329, 560], "content": " equals ", "score": 1.0, "index": 138}, {"type": "inline_equation", "coordinates": [330, 547, 344, 558], "content": "C_{1}", "score": 0.91, "index": 139}, {"type": "text", "coordinates": [344, 543, 508, 560], "content": ". Since it must commute with ", "score": 1.0, "index": 140}, {"type": "inline_equation", "coordinates": [509, 550, 516, 556], "content": "\\pi", "score": 0.86, "index": 141}, {"type": "text", "coordinates": [516, 543, 540, 560], "content": ", i.e.", "score": 1.0, "index": 142}, {"type": "text", "coordinates": [69, 556, 96, 574], "content": "that ", "score": 1.0, "index": 143}, {"type": "inline_equation", "coordinates": [96, 558, 198, 573], "content": "C_{1}\\pi\\Lambda_{1}=J_{v}^{a+b}J_{s}^{b}\\Lambda_{1}", "score": 0.93, "index": 144}, {"type": "text", "coordinates": [199, 556, 261, 574], "content": " must equal ", "score": 1.0, "index": 145}, {"type": "inline_equation", "coordinates": [262, 559, 352, 573], "content": "\\pi C_{1}\\Lambda_{1}=J_{v}^{a}J_{s}^{b}\\Lambda_{1}", "score": 0.95, "index": 146}, {"type": "text", "coordinates": [353, 556, 419, 574], "content": ", we get that", "score": 1.0, "index": 147}, {"type": "inline_equation", "coordinates": [420, 561, 447, 570], "content": "b=0", "score": 0.9, "index": 148}, {"type": "text", "coordinates": [448, 556, 505, 574], "content": ". Similarly ", "score": 1.0, "index": 149}, {"type": "inline_equation", "coordinates": [506, 560, 536, 570], "content": "b^{\\prime}=0", "score": 0.92, "index": 150}, {"type": "text", "coordinates": [537, 556, 541, 574], "content": ".", "score": 1.0, "index": 151}, {"type": "text", "coordinates": [70, 572, 106, 590], "content": "When ", "score": 1.0, "index": 152}, {"type": "inline_equation", "coordinates": [106, 574, 113, 584], "content": "k", "score": 0.78, "index": 153}, {"type": "text", "coordinates": [114, 572, 208, 590], "content": " is odd, eliminate ", "score": 1.0, "index": 154}, {"type": "inline_equation", "coordinates": [208, 574, 238, 584], "content": "a=1", "score": 0.86, "index": 155}, {"type": "text", "coordinates": [238, 572, 265, 590], "content": " and ", "score": 1.0, "index": 156}, {"type": "inline_equation", "coordinates": [265, 574, 298, 584], "content": "a\\prime=1", "score": 0.92, "index": 157}, {"type": "text", "coordinates": [298, 572, 377, 590], "content": " by comparing ", "score": 1.0, "index": 158}, {"type": "inline_equation", "coordinates": [377, 575, 414, 587], "content": "S_{\\Lambda_{1},J_{s}0}", "score": 0.92, "index": 159}, {"type": "text", "coordinates": [414, 572, 441, 590], "content": " and ", "score": 1.0, "index": 160}, {"type": "inline_equation", "coordinates": [442, 575, 485, 587], "content": "S_{J_{v}\\Lambda_{1},J0}", "score": 0.93, "index": 161}, {"type": "text", "coordinates": [485, 572, 541, 590], "content": " as before.", "score": 1.0, "index": 162}, {"type": "text", "coordinates": [70, 587, 179, 602], "content": "The hardest case is ", "score": 1.0, "index": 163}, {"type": "inline_equation", "coordinates": [180, 588, 187, 599], "content": "k", "score": 0.85, "index": 164}, {"type": "text", "coordinates": [187, 587, 300, 602], "content": " even. We can force ", "score": 1.0, "index": 165}, {"type": "inline_equation", "coordinates": [300, 590, 354, 600], "content": "\\pi\\Lambda_{1}\\,=\\,\\Lambda_{1}", "score": 0.92, "index": 166}, {"type": "text", "coordinates": [354, 587, 445, 602], "content": " by hitting with ", "score": 1.0, "index": 167}, {"type": "inline_equation", "coordinates": [445, 589, 466, 601], "content": "\\pi[a]", "score": 0.92, "index": 168}, {"type": "text", "coordinates": [466, 587, 541, 602], "content": ". Suppose for", "score": 1.0, "index": 169}, {"type": "text", "coordinates": [70, 601, 170, 617], "content": "contradiction that ", "score": 1.0, "index": 170}, {"type": "inline_equation", "coordinates": [171, 601, 239, 614], "content": "\\pi^{\\prime}\\Lambda_{1}=J_{v}\\Lambda_{1}", "score": 0.92, "index": 171}, {"type": "text", "coordinates": [239, 601, 301, 617], "content": ". We know ", "score": 1.0, "index": 172}, {"type": "inline_equation", "coordinates": [302, 603, 376, 616], "content": "\\pi^{\\prime}(J_{v}0)=J_{v}0", "score": 0.93, "index": 173}, {"type": "text", "coordinates": [376, 601, 433, 617], "content": " (compare ", "score": 1.0, "index": 174}, {"type": "inline_equation", "coordinates": [433, 604, 470, 616], "content": "S_{\\Lambda_{1},J_{v}0}", "score": 0.93, "index": 175}, {"type": "text", "coordinates": [470, 601, 498, 617], "content": " and ", "score": 1.0, "index": 176}, {"type": "inline_equation", "coordinates": [498, 603, 536, 616], "content": "S_{\\Lambda_{1},J0})", "score": 0.89, "index": 177}, {"type": "text", "coordinates": [537, 601, 541, 617], "content": ",", "score": 1.0, "index": 178}, {"type": "text", "coordinates": [69, 615, 141, 633], "content": "so by (2.7b) ", "score": 1.0, "index": 179}, {"type": "inline_equation", "coordinates": [141, 616, 163, 629], "content": "\\pi\\Lambda_{r}", "score": 0.86, "index": 180}, {"type": "text", "coordinates": [163, 615, 272, 633], "content": " must be a spinor.", "score": 1.0, "index": 181}, {"type": "inline_equation", "coordinates": [273, 617, 390, 630], "content": "\\chi_{\\Lambda_{1}}[\\Lambda_{r}]\\;=\\;\\chi_{J_{v}\\Lambda_{1}}[\\pi\\Lambda_{r}]", "score": 0.92, "index": 182}, {"type": "text", "coordinates": [391, 615, 442, 633], "content": " requires ", "score": 1.0, "index": 183}, {"type": "inline_equation", "coordinates": [442, 617, 536, 630], "content": "\\pi\\Lambda_{r}\\,=\\,C_{1}^{i}J_{v}^{j}J_{s}\\Lambda_{r}", "score": 0.93, "index": 184}, {"type": "text", "coordinates": [537, 615, 540, 633], "content": ".", "score": 1.0, "index": 185}, {"type": "text", "coordinates": [69, 630, 123, 646], "content": "From the ", "score": 1.0, "index": 186}, {"type": "inline_equation", "coordinates": [123, 631, 169, 644], "content": "\\Lambda_{1}\\boxtimes\\Lambda_{r}", "score": 0.52, "index": 187}, {"type": "text", "coordinates": [169, 630, 245, 646], "content": " fusion we get ", "score": 1.0, "index": 188}, {"type": "inline_equation", "coordinates": [245, 631, 360, 644], "content": "\\pi\\Lambda_{r-1}=C_{1}^{i}J_{v}^{j}J_{s}\\Lambda_{r-1}", "score": 0.92, "index": 189}, {"type": "text", "coordinates": [360, 630, 388, 646], "content": ", but ", "score": 1.0, "index": 190}, {"type": "inline_equation", "coordinates": [389, 633, 438, 641], "content": "C\\pi=\\pi C", "score": 0.92, "index": 191}, {"type": "text", "coordinates": [438, 630, 493, 646], "content": " says that ", "score": 1.0, "index": 192}, {"type": "inline_equation", "coordinates": [493, 632, 541, 644], "content": "\\pi\\Lambda_{r-1}=", "score": 0.9, "index": 193}, {"type": "inline_equation", "coordinates": [71, 644, 147, 659], "content": "C_{1}^{i}J_{v}^{j+1}J_{s}\\Lambda_{r-1}", "score": 0.91, "index": 194}, {"type": "text", "coordinates": [148, 644, 251, 662], "content": " \u2014 a contradiction.", "score": 1.0, "index": 195}, {"type": "text", "coordinates": [93, 658, 239, 675], "content": "Thus in all cases we have ", "score": 1.0, "index": 196}, {"type": "inline_equation", "coordinates": [240, 660, 340, 672], "content": "\\pi\\Lambda_{1}\\,=\\,\\pi^{\\prime}\\Lambda_{1}\\,=\\,\\Lambda_{1}", "score": 0.92, "index": 197}, {"type": "text", "coordinates": [341, 658, 407, 675], "content": ". We know ", "score": 1.0, "index": 198}, {"type": "inline_equation", "coordinates": [408, 660, 486, 673], "content": "\\pi^{\\prime}(J_{v}0)\\;=\\;J_{v}0", "score": 0.93, "index": 199}, {"type": "text", "coordinates": [486, 658, 541, 675], "content": " (compare", "score": 1.0, "index": 200}, {"type": "inline_equation", "coordinates": [71, 673, 109, 687], "content": "S_{\\Lambda_{1},J_{v}0}", "score": 0.91, "index": 201}, {"type": "text", "coordinates": [109, 674, 137, 689], "content": " and ", "score": 1.0, "index": 202}, {"type": "inline_equation", "coordinates": [137, 673, 175, 687], "content": "S_{\\Lambda_{1},J0})", "score": 0.89, "index": 203}, {"type": "text", "coordinates": [175, 674, 198, 689], "content": ", so ", "score": 1.0, "index": 204}, {"type": "inline_equation", "coordinates": [198, 675, 219, 686], "content": "\\pi\\Lambda_{r}", "score": 0.9, "index": 205}, {"type": "text", "coordinates": [220, 674, 410, 689], "content": " is a spinor and in fact must equal ", "score": 1.0, "index": 206}, {"type": "inline_equation", "coordinates": [411, 674, 491, 687], "content": "\\pi\\Lambda_{r}\\,=\\,C_{1}^{i}J_{v}^{j}\\Lambda_{r}", "score": 0.93, "index": 207}, {"type": "text", "coordinates": [491, 674, 541, 689], "content": ". Hitting", "score": 1.0, "index": 208}, {"type": "text", "coordinates": [70, 687, 98, 704], "content": "with ", "score": 1.0, "index": 209}, {"type": "inline_equation", "coordinates": [99, 687, 147, 702], "content": "(C_{1}^{i}\\pi_{v}^{j})^{-1}", "score": 0.93, "index": 210}, {"type": "text", "coordinates": [147, 687, 234, 704], "content": ", we can require ", "score": 1.0, "index": 211}, {"type": "inline_equation", "coordinates": [234, 690, 285, 700], "content": "\\pi\\Lambda_{r}=\\Lambda_{r}", "score": 0.91, "index": 212}, {"type": "text", "coordinates": [285, 687, 322, 704], "content": ". That ", "score": 1.0, "index": 213}, {"type": "inline_equation", "coordinates": [323, 690, 356, 701], "content": "\\pi\\Lambda_{r-1}", "score": 0.92, "index": 214}, {"type": "text", "coordinates": [356, 687, 445, 704], "content": " must now equal ", "score": 1.0, "index": 215}, {"type": "inline_equation", "coordinates": [446, 690, 471, 701], "content": "\\Lambda_{r-1}", "score": 0.92, "index": 216}, {"type": "text", "coordinates": [472, 687, 542, 704], "content": " follows from", "score": 1.0, "index": 217}, {"type": "text", "coordinates": [71, 703, 91, 717], "content": "the ", "score": 1.0, "index": 218}, {"type": "inline_equation", "coordinates": [92, 703, 137, 715], "content": "\\Lambda_{1}\\boxtimes\\Lambda_{r}", "score": 0.28, "index": 219}, {"type": "text", "coordinates": [138, 703, 177, 717], "content": " fusion.", "score": 1.0, "index": 220}] | [] | [{"type": "block", "coordinates": [99, 113, 500, 141], "content": "", "caption": ""}, {"type": "inline", "coordinates": [71, 75, 126, 84], "content": "a=a^{\\prime}=0", "caption": ""}, {"type": "inline", "coordinates": [178, 75, 191, 84], "content": "k r", "caption": ""}, {"type": "inline", "coordinates": [313, 75, 326, 86], "content": "\\Lambda_{1}", "caption": ""}, {"type": "inline", "coordinates": [344, 74, 358, 86], "content": "\\Lambda_{\\ell}", "caption": ""}, {"type": "inline", "coordinates": [398, 75, 529, 87], "content": "\\pi\\Lambda_{\\ell+1}\\in\\{\\Lambda_{\\ell+1},\\Lambda_{1}+\\Lambda_{\\ell}\\}", "caption": ""}, {"type": "inline", "coordinates": [71, 90, 120, 100], "content": "\\pi\\Lambda_{\\ell}=\\Lambda_{\\ell}", "caption": ""}, {"type": "inline", "coordinates": [146, 90, 174, 99], "content": "r<k", "caption": ""}, {"type": "inline", "coordinates": [100, 153, 121, 165], "content": "\\S4.3", "caption": ""}, {"type": "inline", "coordinates": [165, 154, 195, 163], "content": "r=k", "caption": ""}, {"type": "inline", "coordinates": [360, 153, 389, 164], "content": "\\ell>1", "caption": ""}, {"type": "inline", "coordinates": [488, 154, 539, 165], "content": "\\pi\\Lambda_{2}=\\Lambda_{2}", "caption": ""}, {"type": "inline", "coordinates": [127, 172, 135, 178], "content": "\\pi", "caption": ""}, {"type": "inline", "coordinates": [229, 172, 249, 179], "content": "\\pi_{\\mathrm{rld}}", "caption": ""}, {"type": "inline", "coordinates": [203, 182, 225, 195], "content": "C_{2,3}", "caption": ""}, {"type": "inline", "coordinates": [314, 182, 371, 192], "content": "\\pi^{\\prime}J0\\,=\\,J0", "caption": ""}, {"type": "inline", "coordinates": [434, 182, 495, 194], "content": "\\pi\\Lambda_{1}\\notin S\\Lambda_{2}", "caption": ""}, {"type": "inline", "coordinates": [105, 195, 162, 208], "content": "\\pi\\Lambda_{1}\\neq3\\Lambda_{1}", "caption": ""}, {"type": "inline", "coordinates": [171, 195, 191, 208], "content": "3\\Lambda_{1}", "caption": ""}, {"type": "inline", "coordinates": [216, 196, 225, 206], "content": "J", "caption": ""}, {"type": "inline", "coordinates": [119, 225, 130, 235], "content": "D", "caption": ""}, {"type": "inline", "coordinates": [95, 247, 124, 256], "content": "k=1", "caption": ""}, {"type": "inline", "coordinates": [202, 245, 231, 256], "content": "k=2", "caption": ""}, {"type": "inline", "coordinates": [398, 247, 427, 256], "content": "k>2", "caption": ""}, {"type": "inline", "coordinates": [112, 259, 189, 273], "content": "\\pi\\Lambda_{1}=J_{v}^{a}J_{s}^{b}\\Lambda_{1}", "caption": ""}, {"type": "inline", "coordinates": [216, 258, 303, 273], "content": "\\pi^{\\prime}\\Lambda_{1}=J_{v}^{a^{\\prime}}J_{s}^{b^{\\prime}}\\Lambda_{1}", "caption": ""}, {"type": "inline", "coordinates": [329, 260, 419, 273], "content": "a,a^{\\prime},b,b^{\\prime}\\in\\{0,1\\}", "caption": ""}, {"type": "inline", "coordinates": [110, 274, 173, 288], "content": "\\chi_{\\Lambda_{1}}[\\Lambda_{1}]>0", "caption": ""}, {"type": "inline", "coordinates": [226, 275, 261, 287], "content": "\\chi_{\\Lambda_{1}}[\\psi]", "caption": ""}, {"type": "inline", "coordinates": [334, 275, 343, 287], "content": "\\psi", "caption": ""}, {"type": "inline", "coordinates": [469, 274, 509, 287], "content": "C^{i}J_{v}^{j}\\Lambda_{r}", "caption": ""}, {"type": "inline", "coordinates": [177, 289, 268, 301], "content": "\\pi\\Lambda_{1}=\\pi^{\\prime}\\Lambda_{1}=\\Lambda_{1}", "caption": ""}, {"type": "inline", "coordinates": [201, 304, 235, 315], "content": "r\\,\\neq\\,4", "caption": ""}, {"type": "inline", "coordinates": [297, 304, 331, 313], "content": "k\\ >\\ 2", "caption": ""}, {"type": "inline", "coordinates": [377, 304, 504, 316], "content": "0\\;\\neq\\;S_{\\Lambda_{1}\\Lambda_{1}}\\;=\\;S_{\\pi\\Lambda_{1},\\pi^{\\prime}\\Lambda_{1}}", "caption": ""}, {"type": "inline", "coordinates": [71, 325, 104, 335], "content": "b=b^{\\prime}", "caption": ""}, {"type": "inline", "coordinates": [394, 317, 449, 347], "content": "\\pi\\left[{\\begin{array}{l l}{0}&{a}\\\\ {a^{\\prime}}&{b}\\end{array}}\\right]", "caption": ""}, {"type": "inline", "coordinates": [71, 347, 162, 358], "content": "\\pi\\Lambda_{1}=\\pi^{\\prime}\\Lambda_{1}=\\Lambda_{1}", "caption": ""}, {"type": "inline", "coordinates": [200, 362, 230, 373], "content": "r\\neq4", "caption": ""}, {"type": "inline", "coordinates": [282, 362, 312, 371], "content": "k\\,>\\,2", "caption": ""}, {"type": "inline", "coordinates": [374, 362, 439, 373], "content": "\\pi\\Lambda_{1}=J_{v}\\Lambda_{1}", "caption": ""}, {"type": "inline", "coordinates": [459, 360, 527, 373], "content": "\\pi^{\\prime}\\Lambda_{1}\\,=\\,J_{v}\\Lambda_{1}", "caption": ""}, {"type": "inline", "coordinates": [210, 376, 246, 388], "content": "S_{\\Lambda_{1},J_{s}0}", "caption": ""}, {"type": "inline", "coordinates": [275, 376, 318, 388], "content": "S_{J_{v}\\Lambda_{1},J0}", "caption": ""}, {"type": "inline", "coordinates": [444, 376, 453, 385], "content": "J", "caption": ""}, {"type": "inline", "coordinates": [209, 389, 249, 402], "content": "J_{v}^{a}J_{s}^{b}\\Lambda_{1}", "caption": ""}, {"type": "inline", "coordinates": [71, 403, 123, 433], "content": "\\pi\\left[{\\ast}\\quad a\\,\\right];", "caption": ""}, {"type": "inline", "coordinates": [253, 415, 260, 421], "content": "\\pi", "caption": ""}, {"type": "inline", "coordinates": [357, 412, 408, 421], "content": "a=b=0", "caption": ""}, {"type": "inline", "coordinates": [452, 412, 505, 424], "content": "0\\not=S_{\\Lambda_{1}\\Lambda_{1}}", "caption": ""}, {"type": "inline", "coordinates": [71, 433, 102, 443], "content": "b^{\\prime}=0", "caption": ""}, {"type": "inline", "coordinates": [157, 433, 189, 443], "content": "a^{\\prime}=1", "caption": ""}, {"type": "inline", "coordinates": [325, 433, 416, 444], "content": "\\pi\\Lambda_{1}=\\pi^{\\prime}\\Lambda_{1}=\\Lambda_{1}", "caption": ""}, {"type": "inline", "coordinates": [147, 448, 176, 457], "content": "r=4", "caption": ""}, {"type": "inline", "coordinates": [390, 448, 441, 459], "content": "\\pi\\Lambda_{1}=\\Lambda_{1}", "caption": ""}, {"type": "inline", "coordinates": [97, 461, 154, 473], "content": "\\pi^{\\prime}\\Lambda_{1}=\\Lambda_{1}", "caption": ""}, {"type": "inline", "coordinates": [307, 461, 488, 474], "content": "\\chi_{\\Lambda_{1}}[\\Lambda_{1}]>\\chi_{\\Lambda_{1}}[\\Lambda_{3}]=\\chi_{\\Lambda_{1}}[\\Lambda_{4}]>0", "caption": ""}, {"type": "inline", "coordinates": [71, 476, 100, 487], "content": "k\\geq3", "caption": ""}, {"type": "inline", "coordinates": [98, 503, 500, 516], "content": "1+\\cos(x)+\\cos(2x)+\\cos(4x)>\\cos(x/2)+\\cos(3x/2)+\\cos(5x/2)+\\cos(7x/2)>0", "caption": ""}, {"type": "inline", "coordinates": [89, 531, 160, 544], "content": "0<x\\le2\\pi/9", "caption": ""}, {"type": "inline", "coordinates": [141, 550, 147, 556], "content": "r", "caption": ""}, {"type": "inline", "coordinates": [279, 547, 289, 556], "content": "C", "caption": ""}, {"type": "inline", "coordinates": [330, 547, 344, 558], "content": "C_{1}", "caption": ""}, {"type": "inline", "coordinates": [509, 550, 516, 556], "content": "\\pi", "caption": ""}, {"type": "inline", "coordinates": [96, 558, 198, 573], "content": "C_{1}\\pi\\Lambda_{1}=J_{v}^{a+b}J_{s}^{b}\\Lambda_{1}", "caption": ""}, {"type": "inline", "coordinates": [262, 559, 352, 573], "content": "\\pi C_{1}\\Lambda_{1}=J_{v}^{a}J_{s}^{b}\\Lambda_{1}", "caption": ""}, {"type": "inline", "coordinates": [420, 561, 447, 570], "content": "b=0", "caption": ""}, {"type": "inline", "coordinates": [506, 560, 536, 570], "content": "b^{\\prime}=0", "caption": ""}, {"type": "inline", "coordinates": [106, 574, 113, 584], "content": "k", "caption": ""}, {"type": "inline", "coordinates": [208, 574, 238, 584], "content": "a=1", "caption": ""}, {"type": "inline", "coordinates": [265, 574, 298, 584], "content": "a\\prime=1", "caption": ""}, {"type": "inline", "coordinates": [377, 575, 414, 587], "content": "S_{\\Lambda_{1},J_{s}0}", "caption": ""}, {"type": "inline", "coordinates": [442, 575, 485, 587], "content": "S_{J_{v}\\Lambda_{1},J0}", "caption": ""}, {"type": "inline", "coordinates": [180, 588, 187, 599], "content": "k", "caption": ""}, {"type": "inline", "coordinates": [300, 590, 354, 600], "content": "\\pi\\Lambda_{1}\\,=\\,\\Lambda_{1}", "caption": ""}, {"type": "inline", "coordinates": [445, 589, 466, 601], "content": "\\pi[a]", "caption": ""}, {"type": "inline", "coordinates": [171, 601, 239, 614], "content": "\\pi^{\\prime}\\Lambda_{1}=J_{v}\\Lambda_{1}", "caption": ""}, {"type": "inline", "coordinates": [302, 603, 376, 616], "content": "\\pi^{\\prime}(J_{v}0)=J_{v}0", "caption": ""}, {"type": "inline", "coordinates": [433, 604, 470, 616], "content": "S_{\\Lambda_{1},J_{v}0}", "caption": ""}, {"type": "inline", "coordinates": [498, 603, 536, 616], "content": "S_{\\Lambda_{1},J0})", "caption": ""}, {"type": "inline", "coordinates": [141, 616, 163, 629], "content": "\\pi\\Lambda_{r}", "caption": ""}, {"type": "inline", "coordinates": [273, 617, 390, 630], "content": "\\chi_{\\Lambda_{1}}[\\Lambda_{r}]\\;=\\;\\chi_{J_{v}\\Lambda_{1}}[\\pi\\Lambda_{r}]", "caption": ""}, {"type": "inline", "coordinates": [442, 617, 536, 630], "content": "\\pi\\Lambda_{r}\\,=\\,C_{1}^{i}J_{v}^{j}J_{s}\\Lambda_{r}", "caption": ""}, {"type": "inline", "coordinates": [123, 631, 169, 644], "content": "\\Lambda_{1}\\boxtimes\\Lambda_{r}", "caption": ""}, {"type": "inline", "coordinates": [245, 631, 360, 644], "content": "\\pi\\Lambda_{r-1}=C_{1}^{i}J_{v}^{j}J_{s}\\Lambda_{r-1}", "caption": ""}, {"type": "inline", "coordinates": [389, 633, 438, 641], "content": "C\\pi=\\pi C", "caption": ""}, {"type": "inline", "coordinates": [493, 632, 541, 644], "content": "\\pi\\Lambda_{r-1}=", "caption": ""}, {"type": "inline", "coordinates": [71, 644, 147, 659], "content": "C_{1}^{i}J_{v}^{j+1}J_{s}\\Lambda_{r-1}", "caption": ""}, {"type": "inline", "coordinates": [240, 660, 340, 672], "content": "\\pi\\Lambda_{1}\\,=\\,\\pi^{\\prime}\\Lambda_{1}\\,=\\,\\Lambda_{1}", "caption": ""}, {"type": "inline", "coordinates": [408, 660, 486, 673], "content": "\\pi^{\\prime}(J_{v}0)\\;=\\;J_{v}0", "caption": ""}, {"type": "inline", "coordinates": [71, 673, 109, 687], "content": "S_{\\Lambda_{1},J_{v}0}", "caption": ""}, {"type": "inline", "coordinates": [137, 673, 175, 687], "content": "S_{\\Lambda_{1},J0})", "caption": ""}, {"type": "inline", "coordinates": [198, 675, 219, 686], "content": "\\pi\\Lambda_{r}", "caption": ""}, {"type": "inline", "coordinates": [411, 674, 491, 687], "content": "\\pi\\Lambda_{r}\\,=\\,C_{1}^{i}J_{v}^{j}\\Lambda_{r}", "caption": ""}, {"type": "inline", "coordinates": [99, 687, 147, 702], "content": "(C_{1}^{i}\\pi_{v}^{j})^{-1}", "caption": ""}, {"type": "inline", "coordinates": [234, 690, 285, 700], "content": "\\pi\\Lambda_{r}=\\Lambda_{r}", "caption": ""}, {"type": "inline", "coordinates": [323, 690, 356, 701], "content": "\\pi\\Lambda_{r-1}", "caption": ""}, {"type": "inline", "coordinates": [446, 690, 471, 701], "content": "\\Lambda_{r-1}", "caption": ""}, {"type": "inline", "coordinates": [92, 703, 137, 715], "content": "\\Lambda_{1}\\boxtimes\\Lambda_{r}", "caption": ""}] | [] | [612.0, 792.0] | [{"type": "text", "text": "", "page_idx": 18}, {"type": "equation", "text": "$$\n\\chi_{\\Lambda_{1}}[\\Lambda_{\\ell+1}]-\\chi_{\\Lambda_{1}}[\\Lambda_{1}+\\Lambda_{\\ell}]=4\\cos(\\pi\\,\\frac{2r+2-\\ell}{2\\kappa})\\,\\{\\cos(\\pi\\,\\frac{\\ell}{2\\kappa})-\\cos(\\pi\\,\\frac{\\ell+2}{2\\kappa})\\}>\n$$", "text_format": "latex", "page_idx": 18}, {"type": "text", "text": "as in $\\S4.3$ . When $r=k$ , that inequality only holds for $\\ell>1$ , but we can force $\\pi\\Lambda_{2}=\\Lambda_{2}$ by hitting $\\pi$ if necessary with $\\pi_{\\mathrm{rld}}$ . ", "page_idx": 18}, {"type": "text", "text": "The remaining case $C_{2,3}$ follows because $\\pi^{\\prime}J0\\,=\\,J0$ : by (2.7b) $\\pi\\Lambda_{1}\\notin S\\Lambda_{2}$ , and by (2.7a) $\\pi\\Lambda_{1}\\neq3\\Lambda_{1}$ ( $3\\Lambda_{1}$ is a $J$ -fixed-point). ", "page_idx": 18}, {"type": "text", "text": "4.5. The $D$ -series argument ", "text_level": 1, "page_idx": 18}, {"type": "text", "text": "$k=1$ is trivial, and $k=2$ will be considered shortly. For $k>2$ , Proposition 4.1 tells us that $\\pi\\Lambda_{1}=J_{v}^{a}J_{s}^{b}\\Lambda_{1}$ and $\\pi^{\\prime}\\Lambda_{1}=J_{v}^{a^{\\prime}}J_{s}^{b^{\\prime}}\\Lambda_{1}$ , for $a,a^{\\prime},b,b^{\\prime}\\in\\{0,1\\}$ . Immediate from (3.4) is that $\\chi_{\\Lambda_{1}}[\\Lambda_{1}]>0$ and that $\\chi_{\\Lambda_{1}}[\\psi]$ , for a spinor $\\psi$ , takes its maximum at $C^{i}J_{v}^{j}\\Lambda_{r}$ . Our first step is to force $\\pi\\Lambda_{1}=\\pi^{\\prime}\\Lambda_{1}=\\Lambda_{1}$ . Unfortunately this requires a case analysis. ", "page_idx": 18}, {"type": "text", "text": "Consider first even $r\\,\\neq\\,4$ , and even $k\\ >\\ 2$ . Now, $0\\;\\neq\\;S_{\\Lambda_{1}\\Lambda_{1}}\\;=\\;S_{\\pi\\Lambda_{1},\\pi^{\\prime}\\Lambda_{1}}$ forces $b=b^{\\prime}$ ; hence hitting with the simple-current automorphism $\\pi\\left[{\\begin{array}{l l}{0}&{a}\\\\ {a^{\\prime}}&{b}\\end{array}}\\right]$ , we may assume $\\pi\\Lambda_{1}=\\pi^{\\prime}\\Lambda_{1}=\\Lambda_{1}$ . ", "page_idx": 18}, {"type": "text", "text": "Next consider even $r\\neq4$ and odd $k\\,>\\,2$ . Either of $\\pi\\Lambda_{1}=J_{v}\\Lambda_{1}$ or $\\pi^{\\prime}\\Lambda_{1}\\,=\\,J_{v}\\Lambda_{1}$ is impossible, by comparing $S_{\\Lambda_{1},J_{s}0}$ and $S_{J_{v}\\Lambda_{1},J0}$ for any simple-current $J$ . For any of the three remaining choices of $J_{v}^{a}J_{s}^{b}\\Lambda_{1}$ , we can find a simple-current automorphism of the form $\\pi\\left[{\\ast}\\quad a\\,\\right];$ hitting its inverse onto $\\pi$ allows us to take $a=b=0$ . Again $0\\not=S_{\\Lambda_{1}\\Lambda_{1}}$ forces $b^{\\prime}=0$ , and now $a^{\\prime}=1$ is forbidden. Thus again $\\pi\\Lambda_{1}=\\pi^{\\prime}\\Lambda_{1}=\\Lambda_{1}$ . ", "page_idx": 18}, {"type": "text", "text": "As usual, $r=4$ is complicated by triality. We can force $\\pi\\Lambda_{1}=\\Lambda_{1}$ . That we can also take $\\pi^{\\prime}\\Lambda_{1}=\\Lambda_{1}$ , follows from the inequality $\\chi_{\\Lambda_{1}}[\\Lambda_{1}]>\\chi_{\\Lambda_{1}}[\\Lambda_{3}]=\\chi_{\\Lambda_{1}}[\\Lambda_{4}]>0$ , valid for $k\\geq3$ . Establishing that inequality from (3.4) is equivalent to showing ", "page_idx": 18}, {"type": "text", "text": "$1+\\cos(x)+\\cos(2x)+\\cos(4x)>\\cos(x/2)+\\cos(3x/2)+\\cos(5x/2)+\\cos(7x/2)>0$ 2) ", "page_idx": 18}, {"type": "text", "text": "for $0<x\\le2\\pi/9$ , which can be shown e.g. using Taylor series. ", "page_idx": 18}, {"type": "text", "text": "For odd $r$ , the charge-conjugation $C$ equals $C_{1}$ . Since it must commute with $\\pi$ , i.e. that $C_{1}\\pi\\Lambda_{1}=J_{v}^{a+b}J_{s}^{b}\\Lambda_{1}$ must equal $\\pi C_{1}\\Lambda_{1}=J_{v}^{a}J_{s}^{b}\\Lambda_{1}$ , we get that $b=0$ . Similarly $b^{\\prime}=0$ . When $k$ is odd, eliminate $a=1$ and $a\\prime=1$ by comparing $S_{\\Lambda_{1},J_{s}0}$ and $S_{J_{v}\\Lambda_{1},J0}$ as before. The hardest case is $k$ even. We can force $\\pi\\Lambda_{1}\\,=\\,\\Lambda_{1}$ by hitting with $\\pi[a]$ . Suppose for contradiction that $\\pi^{\\prime}\\Lambda_{1}=J_{v}\\Lambda_{1}$ . We know $\\pi^{\\prime}(J_{v}0)=J_{v}0$ (compare $S_{\\Lambda_{1},J_{v}0}$ and $S_{\\Lambda_{1},J0})$ , so by (2.7b) $\\pi\\Lambda_{r}$ must be a spinor. $\\chi_{\\Lambda_{1}}[\\Lambda_{r}]\\;=\\;\\chi_{J_{v}\\Lambda_{1}}[\\pi\\Lambda_{r}]$ requires $\\pi\\Lambda_{r}\\,=\\,C_{1}^{i}J_{v}^{j}J_{s}\\Lambda_{r}$ . From the $\\Lambda_{1}\\boxtimes\\Lambda_{r}$ fusion we get $\\pi\\Lambda_{r-1}=C_{1}^{i}J_{v}^{j}J_{s}\\Lambda_{r-1}$ , but $C\\pi=\\pi C$ says that $\\pi\\Lambda_{r-1}=$ $C_{1}^{i}J_{v}^{j+1}J_{s}\\Lambda_{r-1}$ \u2014 a contradiction. ", "page_idx": 18}, {"type": "text", "text": "Thus in all cases we have $\\pi\\Lambda_{1}\\,=\\,\\pi^{\\prime}\\Lambda_{1}\\,=\\,\\Lambda_{1}$ . We know $\\pi^{\\prime}(J_{v}0)\\;=\\;J_{v}0$ (compare $S_{\\Lambda_{1},J_{v}0}$ and $S_{\\Lambda_{1},J0})$ , so $\\pi\\Lambda_{r}$ is a spinor and in fact must equal $\\pi\\Lambda_{r}\\,=\\,C_{1}^{i}J_{v}^{j}\\Lambda_{r}$ . Hitting with $(C_{1}^{i}\\pi_{v}^{j})^{-1}$ , we can require $\\pi\\Lambda_{r}=\\Lambda_{r}$ . That $\\pi\\Lambda_{r-1}$ must now equal $\\Lambda_{r-1}$ follows from the $\\Lambda_{1}\\boxtimes\\Lambda_{r}$ fusion. ", "page_idx": 18}] | [{"category_id": 1, "poly": [195, 1510, 1505, 1510, 1505, 1827, 195, 1827], "score": 0.984}, {"category_id": 1, "poly": [197, 1828, 1505, 1828, 1505, 1988, 197, 1988], "score": 0.976}, {"category_id": 1, "poly": [195, 996, 1506, 996, 1506, 1234, 195, 1234], "score": 0.965}, {"category_id": 1, "poly": [196, 675, 1504, 675, 1504, 834, 196, 834], "score": 0.964}, {"category_id": 1, "poly": [195, 416, 1503, 416, 1503, 497, 195, 497], "score": 0.947}, {"category_id": 1, "poly": [193, 196, 1506, 196, 1506, 280, 193, 280], "score": 0.947}, {"category_id": 1, "poly": [197, 1236, 1505, 1236, 1505, 1357, 197, 1357], "score": 0.946}, {"category_id": 1, "poly": [194, 837, 1504, 837, 1504, 996, 194, 996], "score": 0.935}, {"category_id": 1, "poly": [196, 499, 1504, 499, 1504, 579, 196, 579], "score": 0.933}, {"category_id": 8, "poly": [272, 307, 1427, 307, 1427, 390, 272, 390], "score": 0.925}, {"category_id": 1, "poly": [194, 1468, 1107, 1468, 1107, 1508, 194, 1508], "score": 0.888}, {"category_id": 2, "poly": [833, 2031, 869, 2031, 869, 2061, 833, 2061], "score": 0.87}, {"category_id": 0, "poly": [199, 615, 609, 615, 609, 656, 199, 656], "score": 0.813}, {"category_id": 1, "poly": [276, 1391, 1429, 1391, 1429, 1435, 276, 1435], "score": 0.302}, {"category_id": 13, "poly": [1257, 1146, 1404, 1146, 1404, 1179, 1257, 1179], "score": 0.95, "latex": "0\\not=S_{\\Lambda_{1}\\Lambda_{1}}"}, {"category_id": 13, "poly": [198, 1120, 344, 1120, 344, 1203, 198, 1203], "score": 0.95, "latex": "\\pi\\left[{\\ast}\\quad a\\,\\right];"}, {"category_id": 13, "poly": [728, 1554, 980, 1554, 980, 1592, 728, 1592], "score": 0.95, "latex": "\\pi C_{1}\\Lambda_{1}=J_{v}^{a}J_{s}^{b}\\Lambda_{1}"}, {"category_id": 13, "poly": [1097, 882, 1249, 882, 1249, 965, 1097, 965], "score": 0.94, "latex": "\\pi\\left[{\\begin{array}{l l}{0}&{a}\\\\ {a^{\\prime}}&{b}\\end{array}}\\right]"}, {"category_id": 13, "poly": [601, 718, 843, 718, 843, 759, 601, 759], "score": 0.94, "latex": "\\pi^{\\prime}\\Lambda_{1}=J_{v}^{a^{\\prime}}J_{s}^{b^{\\prime}}\\Lambda_{1}"}, {"category_id": 13, "poly": [904, 1204, 1157, 1204, 1157, 1235, 904, 1235], "score": 0.94, "latex": "\\pi\\Lambda_{1}=\\pi^{\\prime}\\Lambda_{1}=\\Lambda_{1}"}, {"category_id": 13, "poly": [1305, 763, 1415, 763, 1415, 799, 1305, 799], "score": 0.93, "latex": "C^{i}J_{v}^{j}\\Lambda_{r}"}, {"category_id": 13, "poly": [1142, 1873, 1364, 1873, 1364, 1911, 1142, 1911], "score": 0.93, "latex": "\\pi\\Lambda_{r}\\,=\\,C_{1}^{i}J_{v}^{j}\\Lambda_{r}"}, {"category_id": 13, "poly": [766, 1047, 886, 1047, 886, 1080, 766, 1080], "score": 0.93, "latex": "S_{J_{v}\\Lambda_{1},J0}"}, {"category_id": 13, "poly": [1204, 1679, 1307, 1679, 1307, 1712, 1204, 1712], "score": 0.93, "latex": "S_{\\Lambda_{1},J_{v}0}"}, {"category_id": 13, "poly": [312, 721, 527, 721, 527, 759, 312, 759], "score": 0.93, "latex": "\\pi\\Lambda_{1}=J_{v}^{a}J_{s}^{b}\\Lambda_{1}"}, {"category_id": 13, "poly": [581, 1082, 693, 1082, 693, 1119, 581, 1119], "score": 0.93, "latex": "J_{v}^{a}J_{s}^{b}\\Lambda_{1}"}, {"category_id": 13, "poly": [1134, 1836, 1351, 1836, 1351, 1870, 1134, 1870], "score": 0.93, "latex": "\\pi^{\\prime}(J_{v}0)\\;=\\;J_{v}0"}, {"category_id": 13, "poly": [492, 803, 745, 803, 745, 837, 492, 837], "score": 0.93, "latex": "\\pi\\Lambda_{1}=\\pi^{\\prime}\\Lambda_{1}=\\Lambda_{1}"}, {"category_id": 13, "poly": [915, 724, 1165, 724, 1165, 759, 915, 759], "score": 0.93, "latex": "a,a^{\\prime},b,b^{\\prime}\\in\\{0,1\\}"}, {"category_id": 13, "poly": [199, 209, 350, 209, 350, 236, 199, 236], "score": 0.93, "latex": "a=a^{\\prime}=0"}, {"category_id": 13, "poly": [1228, 1598, 1348, 1598, 1348, 1633, 1228, 1633], "score": 0.93, "latex": "S_{J_{v}\\Lambda_{1},J0}"}, {"category_id": 13, "poly": [1084, 1245, 1226, 1245, 1226, 1275, 1084, 1275], "score": 0.93, "latex": "\\pi\\Lambda_{1}=\\Lambda_{1}"}, {"category_id": 13, "poly": [275, 1911, 410, 1911, 410, 1950, 275, 1950], "score": 0.93, "latex": "(C_{1}^{i}\\pi_{v}^{j})^{-1}"}, {"category_id": 13, "poly": [269, 1552, 552, 1552, 552, 1592, 269, 1592], "score": 0.93, "latex": "C_{1}\\pi\\Lambda_{1}=J_{v}^{a+b}J_{s}^{b}\\Lambda_{1}"}, {"category_id": 13, "poly": [839, 1676, 1046, 1676, 1046, 1712, 839, 1712], "score": 0.93, "latex": "\\pi^{\\prime}(J_{v}0)=J_{v}0"}, {"category_id": 13, "poly": [557, 1006, 639, 1006, 639, 1038, 557, 1038], "score": 0.93, "latex": "r\\neq4"}, {"category_id": 13, "poly": [1230, 1714, 1491, 1714, 1491, 1751, 1230, 1751], "score": 0.93, "latex": "\\pi\\Lambda_{r}\\,=\\,C_{1}^{i}J_{v}^{j}J_{s}\\Lambda_{r}"}, {"category_id": 13, "poly": [1238, 1637, 1295, 1637, 1295, 1671, 1238, 1671], "score": 0.92, "latex": "\\pi[a]"}, {"category_id": 13, "poly": [992, 1146, 1134, 1146, 1134, 1171, 992, 1171], "score": 0.92, "latex": "a=b=0"}, {"category_id": 13, "poly": [667, 1836, 947, 1836, 947, 1868, 667, 1868], "score": 0.92, "latex": "\\pi\\Lambda_{1}\\,=\\,\\pi^{\\prime}\\Lambda_{1}\\,=\\,\\Lambda_{1}"}, {"category_id": 13, "poly": [835, 1639, 985, 1639, 985, 1668, 835, 1668], "score": 0.92, "latex": "\\pi\\Lambda_{1}\\,=\\,\\Lambda_{1}"}, {"category_id": 13, "poly": [1108, 209, 1470, 209, 1470, 244, 1108, 244], "score": 0.92, "latex": "\\pi\\Lambda_{\\ell+1}\\in\\{\\Lambda_{\\ell+1},\\Lambda_{1}+\\Lambda_{\\ell}\\}"}, {"category_id": 13, "poly": [898, 1918, 989, 1918, 989, 1949, 898, 1949], "score": 0.92, "latex": "\\pi\\Lambda_{r-1}"}, {"category_id": 13, "poly": [1239, 1918, 1311, 1918, 1311, 1949, 1239, 1949], "score": 0.92, "latex": "\\Lambda_{r-1}"}, {"category_id": 13, "poly": [461, 430, 543, 430, 543, 455, 461, 455], "score": 0.92, "latex": "r=k"}, {"category_id": 13, "poly": [561, 846, 654, 846, 654, 877, 561, 877], "score": 0.92, "latex": "r\\,\\neq\\,4"}, {"category_id": 13, "poly": [630, 764, 727, 764, 727, 799, 630, 799], "score": 0.92, "latex": "\\chi_{\\Lambda_{1}}[\\psi]"}, {"category_id": 13, "poly": [406, 251, 485, 251, 485, 276, 406, 276], "score": 0.92, "latex": "r<k"}, {"category_id": 13, "poly": [306, 763, 482, 763, 482, 800, 306, 800], "score": 0.92, "latex": "\\chi_{\\Lambda_{1}}[\\Lambda_{1}]>0"}, {"category_id": 13, "poly": [1048, 845, 1400, 845, 1400, 880, 1048, 880], "score": 0.92, "latex": "0\\;\\neq\\;S_{\\Lambda_{1}\\Lambda_{1}}\\;=\\;S_{\\pi\\Lambda_{1},\\pi^{\\prime}\\Lambda_{1}}"}, {"category_id": 13, "poly": [1049, 1598, 1151, 1598, 1151, 1633, 1049, 1633], "score": 0.92, "latex": "S_{\\Lambda_{1},J_{s}0}"}, {"category_id": 13, "poly": [874, 507, 1033, 507, 1033, 535, 874, 535], "score": 0.92, "latex": "\\pi^{\\prime}J0\\,=\\,J0"}, {"category_id": 13, "poly": [1040, 1006, 1221, 1006, 1221, 1037, 1040, 1037], "score": 0.92, "latex": "\\pi\\Lambda_{1}=J_{v}\\Lambda_{1}"}, {"category_id": 13, "poly": [1275, 1002, 1464, 1002, 1464, 1037, 1275, 1037], "score": 0.92, "latex": "\\pi^{\\prime}\\Lambda_{1}\\,=\\,J_{v}\\Lambda_{1}"}, {"category_id": 13, "poly": [249, 1475, 445, 1475, 445, 1513, 249, 1513], "score": 0.92, "latex": "0<x\\le2\\pi/9"}, {"category_id": 13, "poly": [759, 1716, 1086, 1716, 1086, 1752, 759, 1752], "score": 0.92, "latex": "\\chi_{\\Lambda_{1}}[\\Lambda_{r}]\\;=\\;\\chi_{J_{v}\\Lambda_{1}}[\\pi\\Lambda_{r}]"}, {"category_id": 13, "poly": [199, 251, 336, 251, 336, 280, 199, 280], "score": 0.92, "latex": "\\pi\\Lambda_{\\ell}=\\Lambda_{\\ell}"}, {"category_id": 13, "poly": [738, 1597, 829, 1597, 829, 1623, 738, 1623], "score": 0.92, "latex": "a\\prime=1"}, {"category_id": 13, "poly": [1406, 1558, 1491, 1558, 1491, 1584, 1406, 1584], "score": 0.92, "latex": "b^{\\prime}=0"}, {"category_id": 13, "poly": [475, 1672, 664, 1672, 664, 1708, 475, 1708], "score": 0.92, "latex": "\\pi^{\\prime}\\Lambda_{1}=J_{v}\\Lambda_{1}"}, {"category_id": 13, "poly": [272, 1283, 429, 1283, 429, 1316, 272, 1316], "score": 0.92, "latex": "\\pi^{\\prime}\\Lambda_{1}=\\Lambda_{1}"}, {"category_id": 13, "poly": [683, 1754, 1000, 1754, 1000, 1791, 683, 1791], "score": 0.92, "latex": "\\pi\\Lambda_{r-1}=C_{1}^{i}J_{v}^{j}J_{s}\\Lambda_{r-1}"}, {"category_id": 13, "poly": [855, 1283, 1356, 1283, 1356, 1319, 855, 1319], "score": 0.92, "latex": "\\chi_{\\Lambda_{1}}[\\Lambda_{1}]>\\chi_{\\Lambda_{1}}[\\Lambda_{3}]=\\chi_{\\Lambda_{1}}[\\Lambda_{4}]>0"}, {"category_id": 13, "poly": [585, 1047, 686, 1047, 686, 1080, 585, 1080], "score": 0.92, "latex": "S_{\\Lambda_{1},J_{s}0}"}, {"category_id": 13, "poly": [1081, 1759, 1218, 1759, 1218, 1783, 1081, 1783], "score": 0.92, "latex": "C\\pi=\\pi C"}, {"category_id": 13, "poly": [199, 965, 452, 965, 452, 996, 199, 996], "score": 0.91, "latex": "\\pi\\Lambda_{1}=\\pi^{\\prime}\\Lambda_{1}=\\Lambda_{1}"}, {"category_id": 13, "poly": [651, 1917, 792, 1917, 792, 1947, 651, 1947], "score": 0.91, "latex": "\\pi\\Lambda_{r}=\\Lambda_{r}"}, {"category_id": 13, "poly": [1356, 429, 1499, 429, 1499, 459, 1356, 459], "score": 0.91, "latex": "\\pi\\Lambda_{2}=\\Lambda_{2}"}, {"category_id": 13, "poly": [198, 1872, 303, 1872, 303, 1911, 198, 1911], "score": 0.91, "latex": "S_{\\Lambda_{1},J_{v}0}"}, {"category_id": 13, "poly": [198, 1790, 411, 1790, 411, 1831, 198, 1831], "score": 0.91, "latex": "C_{1}^{i}J_{v}^{j+1}J_{s}\\Lambda_{r-1}"}, {"category_id": 13, "poly": [438, 1204, 526, 1204, 526, 1231, 438, 1231], "score": 0.91, "latex": "a^{\\prime}=1"}, {"category_id": 13, "poly": [917, 1520, 957, 1520, 957, 1550, 917, 1550], "score": 0.91, "latex": "C_{1}"}, {"category_id": 13, "poly": [565, 508, 626, 508, 626, 543, 565, 543], "score": 0.91, "latex": "C_{2,3}"}, {"category_id": 13, "poly": [199, 905, 289, 905, 289, 932, 199, 932], "score": 0.9, "latex": "b=b^{\\prime}"}, {"category_id": 13, "poly": [410, 1247, 490, 1247, 490, 1271, 410, 1271], "score": 0.9, "latex": "r=4"}, {"category_id": 13, "poly": [1371, 1758, 1505, 1758, 1505, 1791, 1371, 1791], "score": 0.9, "latex": "\\pi\\Lambda_{r-1}="}, {"category_id": 14, "poly": [277, 314, 1391, 314, 1391, 392, 277, 392], "score": 0.9, "latex": "\\chi_{\\Lambda_{1}}[\\Lambda_{\\ell+1}]-\\chi_{\\Lambda_{1}}[\\Lambda_{1}+\\Lambda_{\\ell}]=4\\cos(\\pi\\,\\frac{2r+2-\\ell}{2\\kappa})\\,\\{\\cos(\\pi\\,\\frac{\\ell}{2\\kappa})-\\cos(\\pi\\,\\frac{\\ell+2}{2\\kappa})\\}>"}, {"category_id": 13, "poly": [784, 1007, 869, 1007, 869, 1032, 784, 1032], "score": 0.9, "latex": "k\\,>\\,2"}, {"category_id": 13, "poly": [551, 1875, 611, 1875, 611, 1908, 551, 1908], "score": 0.9, "latex": "\\pi\\Lambda_{r}"}, {"category_id": 13, "poly": [1167, 1559, 1244, 1559, 1244, 1584, 1167, 1584], "score": 0.9, "latex": "b=0"}, {"category_id": 13, "poly": [265, 687, 346, 687, 346, 712, 265, 712], "score": 0.9, "latex": "k=1"}, {"category_id": 13, "poly": [1107, 687, 1187, 687, 1187, 712, 1107, 712], "score": 0.9, "latex": "k>2"}, {"category_id": 13, "poly": [294, 542, 452, 542, 452, 580, 294, 580], "score": 0.89, "latex": "\\pi\\Lambda_{1}\\neq3\\Lambda_{1}"}, {"category_id": 13, "poly": [382, 1871, 487, 1871, 487, 1911, 382, 1911], "score": 0.89, "latex": "S_{\\Lambda_{1},J0})"}, {"category_id": 13, "poly": [1385, 1677, 1491, 1677, 1491, 1712, 1385, 1712], "score": 0.89, "latex": "S_{\\Lambda_{1},J0})"}, {"category_id": 13, "poly": [929, 766, 953, 766, 953, 798, 929, 798], "score": 0.89, "latex": "\\psi"}, {"category_id": 13, "poly": [199, 1324, 279, 1324, 279, 1355, 199, 1355], "score": 0.89, "latex": "k\\geq3"}, {"category_id": 13, "poly": [777, 1520, 803, 1520, 803, 1545, 777, 1545], "score": 0.88, "latex": "C"}, {"category_id": 13, "poly": [1002, 425, 1083, 425, 1083, 457, 1002, 457], "score": 0.88, "latex": "\\ell>1"}, {"category_id": 13, "poly": [703, 1155, 723, 1155, 723, 1170, 703, 1170], "score": 0.88, "latex": "\\pi"}, {"category_id": 13, "poly": [475, 543, 532, 543, 532, 578, 475, 578], "score": 0.88, "latex": "3\\Lambda_{1}"}, {"category_id": 13, "poly": [827, 845, 922, 845, 922, 872, 827, 872], "score": 0.88, "latex": "k\\ >\\ 2"}, {"category_id": 13, "poly": [638, 479, 692, 479, 692, 499, 638, 499], "score": 0.88, "latex": "\\pi_{\\mathrm{rld}}"}, {"category_id": 13, "poly": [562, 682, 644, 682, 644, 712, 562, 712], "score": 0.88, "latex": "k=2"}, {"category_id": 13, "poly": [199, 1204, 285, 1204, 285, 1231, 199, 1231], "score": 0.87, "latex": "b^{\\prime}=0"}, {"category_id": 13, "poly": [1207, 507, 1375, 507, 1375, 541, 1207, 541], "score": 0.87, "latex": "\\pi\\Lambda_{1}\\notin S\\Lambda_{2}"}, {"category_id": 13, "poly": [393, 1713, 454, 1713, 454, 1749, 393, 1749], "score": 0.86, "latex": "\\pi\\Lambda_{r}"}, {"category_id": 13, "poly": [1414, 1529, 1435, 1529, 1435, 1545, 1414, 1545], "score": 0.86, "latex": "\\pi"}, {"category_id": 13, "poly": [579, 1595, 662, 1595, 662, 1623, 579, 1623], "score": 0.86, "latex": "a=1"}, {"category_id": 13, "poly": [1236, 1047, 1259, 1047, 1259, 1072, 1236, 1072], "score": 0.86, "latex": "J"}, {"category_id": 13, "poly": [500, 1635, 520, 1635, 520, 1664, 500, 1664], "score": 0.85, "latex": "k"}, {"category_id": 13, "poly": [602, 547, 626, 547, 626, 574, 602, 574], "score": 0.84, "latex": "J"}, {"category_id": 13, "poly": [393, 1528, 410, 1528, 410, 1545, 393, 1545], "score": 0.8, "latex": "r"}, {"category_id": 13, "poly": [332, 626, 363, 626, 363, 653, 332, 653], "score": 0.8, "latex": "D"}, {"category_id": 13, "poly": [296, 1597, 316, 1597, 316, 1624, 296, 1624], "score": 0.78, "latex": "k"}, {"category_id": 14, "poly": [274, 1398, 1391, 1398, 1391, 1436, 274, 1436], "score": 0.77, "latex": "1+\\cos(x)+\\cos(2x)+\\cos(4x)>\\cos(x/2)+\\cos(3x/2)+\\cos(5x/2)+\\cos(7x/2)>0"}, {"category_id": 13, "poly": [354, 478, 375, 478, 375, 495, 354, 495], "score": 0.77, "latex": "\\pi"}, {"category_id": 13, "poly": [342, 1953, 383, 1953, 383, 1987, 342, 1987], "score": 0.74, "latex": "\\Lambda_{r}"}, {"category_id": 13, "poly": [255, 1952, 296, 1952, 296, 1988, 255, 1988], "score": 0.69, "latex": "\\Lambda_{1}"}, {"category_id": 13, "poly": [870, 209, 908, 209, 908, 240, 870, 240], "score": 0.64, "latex": "\\Lambda_{1}"}, {"category_id": 13, "poly": [957, 208, 995, 208, 995, 240, 957, 240], "score": 0.63, "latex": "\\Lambda_{\\ell}"}, {"category_id": 13, "poly": [431, 1753, 471, 1753, 471, 1788, 431, 1788], "score": 0.55, "latex": "\\Lambda_{r}"}, {"category_id": 13, "poly": [343, 1753, 382, 1753, 382, 1788, 343, 1788], "score": 0.53, "latex": "\\Lambda_{1}"}, {"category_id": 13, "poly": [343, 1753, 470, 1753, 470, 1789, 343, 1789], "score": 0.52, "latex": "\\Lambda_{1}\\boxtimes\\Lambda_{r}"}, {"category_id": 13, "poly": [279, 425, 338, 425, 338, 461, 279, 461], "score": 0.41, "latex": "\\S4.3"}, {"category_id": 13, "poly": [496, 211, 531, 211, 531, 235, 496, 235], "score": 0.39, "latex": "k r"}, {"category_id": 13, "poly": [256, 1953, 383, 1953, 383, 1988, 256, 1988], "score": 0.28, "latex": "\\Lambda_{1}\\boxtimes\\Lambda_{r}"}, {"category_id": 15, "poly": [260.0, 1511.0, 392.0, 1511.0, 392.0, 1557.0, 260.0, 1557.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [411.0, 1511.0, 776.0, 1511.0, 776.0, 1557.0, 411.0, 1557.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [804.0, 1511.0, 916.0, 1511.0, 916.0, 1557.0, 804.0, 1557.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [958.0, 1511.0, 1413.0, 1511.0, 1413.0, 1557.0, 958.0, 1557.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1436.0, 1511.0, 1502.0, 1511.0, 1502.0, 1557.0, 1436.0, 1557.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [193.0, 1547.0, 268.0, 1547.0, 268.0, 1596.0, 193.0, 1596.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [553.0, 1547.0, 727.0, 1547.0, 727.0, 1596.0, 553.0, 1596.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [981.0, 1547.0, 1166.0, 1547.0, 1166.0, 1596.0, 981.0, 1596.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1245.0, 1547.0, 1405.0, 1547.0, 1405.0, 1596.0, 1245.0, 1596.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1492.0, 1547.0, 1505.0, 1547.0, 1505.0, 1596.0, 1492.0, 1596.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [195.0, 1590.0, 295.0, 1590.0, 295.0, 1640.0, 195.0, 1640.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [317.0, 1590.0, 578.0, 1590.0, 578.0, 1640.0, 317.0, 1640.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [663.0, 1590.0, 737.0, 1590.0, 737.0, 1640.0, 663.0, 1640.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [830.0, 1590.0, 1048.0, 1590.0, 1048.0, 1640.0, 830.0, 1640.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1152.0, 1590.0, 1227.0, 1590.0, 1227.0, 1640.0, 1152.0, 1640.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1349.0, 1590.0, 1505.0, 1590.0, 1505.0, 1640.0, 1349.0, 1640.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [196.0, 1632.0, 499.0, 1632.0, 499.0, 1673.0, 196.0, 1673.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [521.0, 1632.0, 834.0, 1632.0, 834.0, 1673.0, 521.0, 1673.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [986.0, 1632.0, 1237.0, 1632.0, 1237.0, 1673.0, 986.0, 1673.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1296.0, 1632.0, 1504.0, 1632.0, 1504.0, 1673.0, 1296.0, 1673.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [197.0, 1670.0, 474.0, 1670.0, 474.0, 1716.0, 197.0, 1716.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [665.0, 1670.0, 838.0, 1670.0, 838.0, 1716.0, 665.0, 1716.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1047.0, 1670.0, 1203.0, 1670.0, 1203.0, 1716.0, 1047.0, 1716.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1308.0, 1670.0, 1384.0, 1670.0, 1384.0, 1716.0, 1308.0, 1716.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1492.0, 1670.0, 1504.0, 1670.0, 1504.0, 1716.0, 1492.0, 1716.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [192.0, 1710.0, 392.0, 1710.0, 392.0, 1760.0, 192.0, 1760.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [455.0, 1710.0, 758.0, 1710.0, 758.0, 1760.0, 455.0, 1760.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1087.0, 1710.0, 1229.0, 1710.0, 1229.0, 1760.0, 1087.0, 1760.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1492.0, 1710.0, 1502.0, 1710.0, 1502.0, 1760.0, 1492.0, 1760.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [193.0, 1752.0, 342.0, 1752.0, 342.0, 1797.0, 193.0, 1797.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [472.0, 1752.0, 682.0, 1752.0, 682.0, 1797.0, 472.0, 1797.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1001.0, 1752.0, 1080.0, 1752.0, 1080.0, 1797.0, 1001.0, 1797.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1219.0, 1752.0, 1370.0, 1752.0, 1370.0, 1797.0, 1219.0, 1797.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [197.0, 1790.0, 197.0, 1790.0, 197.0, 1839.0, 197.0, 1839.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [412.0, 1790.0, 699.0, 1790.0, 699.0, 1839.0, 412.0, 1839.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [259.0, 1828.0, 666.0, 1828.0, 666.0, 1876.0, 259.0, 1876.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [948.0, 1828.0, 1133.0, 1828.0, 1133.0, 1876.0, 948.0, 1876.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1352.0, 1828.0, 1505.0, 1828.0, 1505.0, 1876.0, 1352.0, 1876.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [304.0, 1873.0, 381.0, 1873.0, 381.0, 1915.0, 304.0, 1915.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [488.0, 1873.0, 550.0, 1873.0, 550.0, 1915.0, 488.0, 1915.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [612.0, 1873.0, 1141.0, 1873.0, 1141.0, 1915.0, 612.0, 1915.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1365.0, 1873.0, 1504.0, 1873.0, 1504.0, 1915.0, 1365.0, 1915.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [197.0, 1911.0, 274.0, 1911.0, 274.0, 1957.0, 197.0, 1957.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [411.0, 1911.0, 650.0, 1911.0, 650.0, 1957.0, 411.0, 1957.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [793.0, 1911.0, 897.0, 1911.0, 897.0, 1957.0, 793.0, 1957.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [990.0, 1911.0, 1238.0, 1911.0, 1238.0, 1957.0, 990.0, 1957.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1312.0, 1911.0, 1507.0, 1911.0, 1507.0, 1957.0, 1312.0, 1957.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [198.0, 1953.0, 254.0, 1953.0, 254.0, 1992.0, 198.0, 1992.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [384.0, 1953.0, 492.0, 1953.0, 492.0, 1992.0, 384.0, 1992.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [261.0, 999.0, 556.0, 999.0, 556.0, 1043.0, 261.0, 1043.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [640.0, 999.0, 783.0, 999.0, 783.0, 1043.0, 640.0, 1043.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [870.0, 999.0, 1039.0, 999.0, 1039.0, 1043.0, 870.0, 1043.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1222.0, 999.0, 1274.0, 999.0, 1274.0, 1043.0, 1222.0, 1043.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1465.0, 999.0, 1505.0, 999.0, 1505.0, 1043.0, 1465.0, 1043.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [194.0, 1038.0, 584.0, 1038.0, 584.0, 1089.0, 194.0, 1089.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [687.0, 1038.0, 765.0, 1038.0, 765.0, 1089.0, 687.0, 1089.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [887.0, 1038.0, 1235.0, 1038.0, 1235.0, 1089.0, 887.0, 1089.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1260.0, 1038.0, 1506.0, 1038.0, 1506.0, 1089.0, 1260.0, 1089.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [195.0, 1077.0, 580.0, 1077.0, 580.0, 1127.0, 195.0, 1127.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [694.0, 1077.0, 1505.0, 1077.0, 1505.0, 1127.0, 694.0, 1127.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [345.0, 1138.0, 702.0, 1138.0, 702.0, 1183.0, 345.0, 1183.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [724.0, 1138.0, 991.0, 1138.0, 991.0, 1183.0, 724.0, 1183.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1135.0, 1138.0, 1256.0, 1138.0, 1256.0, 1183.0, 1135.0, 1183.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1405.0, 1138.0, 1505.0, 1138.0, 1505.0, 1183.0, 1405.0, 1183.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [192.0, 1198.0, 198.0, 1198.0, 198.0, 1243.0, 192.0, 1243.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [286.0, 1198.0, 437.0, 1198.0, 437.0, 1243.0, 286.0, 1243.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [527.0, 1198.0, 903.0, 1198.0, 903.0, 1243.0, 527.0, 1243.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1158.0, 1198.0, 1168.0, 1198.0, 1168.0, 1243.0, 1158.0, 1243.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [260.0, 678.0, 264.0, 678.0, 264.0, 722.0, 260.0, 722.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [347.0, 678.0, 561.0, 678.0, 561.0, 722.0, 347.0, 722.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [645.0, 678.0, 1106.0, 678.0, 1106.0, 722.0, 645.0, 722.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1188.0, 678.0, 1504.0, 678.0, 1504.0, 722.0, 1188.0, 722.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [196.0, 717.0, 311.0, 717.0, 311.0, 763.0, 196.0, 763.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [528.0, 717.0, 600.0, 717.0, 600.0, 763.0, 528.0, 763.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [844.0, 717.0, 914.0, 717.0, 914.0, 763.0, 844.0, 763.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1166.0, 717.0, 1503.0, 717.0, 1503.0, 763.0, 1166.0, 763.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [192.0, 757.0, 305.0, 757.0, 305.0, 804.0, 192.0, 804.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [483.0, 757.0, 629.0, 757.0, 629.0, 804.0, 483.0, 804.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [728.0, 757.0, 928.0, 757.0, 928.0, 804.0, 728.0, 804.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [954.0, 757.0, 1304.0, 757.0, 1304.0, 804.0, 954.0, 804.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1416.0, 757.0, 1506.0, 757.0, 1506.0, 804.0, 1416.0, 804.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [196.0, 802.0, 491.0, 802.0, 491.0, 842.0, 196.0, 842.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [746.0, 802.0, 1396.0, 802.0, 1396.0, 842.0, 746.0, 842.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [195.0, 421.0, 278.0, 421.0, 278.0, 468.0, 195.0, 468.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [339.0, 421.0, 460.0, 421.0, 460.0, 468.0, 339.0, 468.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [544.0, 421.0, 1001.0, 421.0, 1001.0, 468.0, 544.0, 468.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1084.0, 421.0, 1355.0, 421.0, 1355.0, 468.0, 1084.0, 468.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1500.0, 421.0, 1503.0, 421.0, 1503.0, 468.0, 1500.0, 468.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [197.0, 462.0, 353.0, 462.0, 353.0, 509.0, 197.0, 509.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [376.0, 462.0, 637.0, 462.0, 637.0, 509.0, 376.0, 509.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [693.0, 462.0, 707.0, 462.0, 707.0, 509.0, 693.0, 509.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [195.0, 201.0, 198.0, 201.0, 198.0, 250.0, 195.0, 250.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [351.0, 201.0, 495.0, 201.0, 495.0, 250.0, 351.0, 250.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [532.0, 201.0, 869.0, 201.0, 869.0, 250.0, 532.0, 250.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [909.0, 201.0, 956.0, 201.0, 956.0, 250.0, 909.0, 250.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [996.0, 201.0, 1107.0, 201.0, 1107.0, 250.0, 996.0, 250.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1471.0, 201.0, 1506.0, 201.0, 1506.0, 250.0, 1471.0, 250.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [337.0, 248.0, 405.0, 248.0, 405.0, 284.0, 337.0, 284.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [486.0, 248.0, 1134.0, 248.0, 1134.0, 284.0, 486.0, 284.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [264.0, 1240.0, 409.0, 1240.0, 409.0, 1283.0, 264.0, 1283.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [491.0, 1240.0, 1083.0, 1240.0, 1083.0, 1283.0, 491.0, 1283.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1227.0, 1240.0, 1504.0, 1240.0, 1504.0, 1283.0, 1227.0, 1283.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [197.0, 1279.0, 271.0, 1279.0, 271.0, 1326.0, 197.0, 1326.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [430.0, 1279.0, 854.0, 1279.0, 854.0, 1326.0, 430.0, 1326.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1357.0, 1279.0, 1505.0, 1279.0, 1505.0, 1326.0, 1357.0, 1326.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [193.0, 1316.0, 198.0, 1316.0, 198.0, 1368.0, 193.0, 1368.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [280.0, 1316.0, 1229.0, 1316.0, 1229.0, 1368.0, 280.0, 1368.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [262.0, 838.0, 560.0, 838.0, 560.0, 888.0, 262.0, 888.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [655.0, 838.0, 826.0, 838.0, 826.0, 888.0, 655.0, 888.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [923.0, 838.0, 1047.0, 838.0, 1047.0, 888.0, 923.0, 888.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1401.0, 838.0, 1507.0, 838.0, 1507.0, 888.0, 1401.0, 888.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [195.0, 900.0, 198.0, 900.0, 198.0, 942.0, 195.0, 942.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [290.0, 900.0, 1096.0, 900.0, 1096.0, 942.0, 290.0, 942.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1250.0, 907.0, 1504.0, 907.0, 1504.0, 941.0, 1250.0, 941.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [453.0, 964.0, 460.0, 964.0, 460.0, 1003.0, 453.0, 1003.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [260.0, 501.0, 564.0, 501.0, 564.0, 549.0, 260.0, 549.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [627.0, 501.0, 873.0, 501.0, 873.0, 549.0, 627.0, 549.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1034.0, 501.0, 1206.0, 501.0, 1206.0, 549.0, 1034.0, 549.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1376.0, 501.0, 1503.0, 501.0, 1503.0, 549.0, 1376.0, 549.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [202.0, 545.0, 293.0, 545.0, 293.0, 584.0, 202.0, 584.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [453.0, 545.0, 474.0, 545.0, 474.0, 584.0, 453.0, 584.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [533.0, 545.0, 601.0, 545.0, 601.0, 584.0, 533.0, 584.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [627.0, 545.0, 813.0, 545.0, 813.0, 584.0, 627.0, 584.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [197.0, 1474.0, 248.0, 1474.0, 248.0, 1515.0, 197.0, 1515.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [446.0, 1474.0, 1104.0, 1474.0, 1104.0, 1515.0, 446.0, 1515.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [829.0, 2033.0, 871.0, 2033.0, 871.0, 2070.0, 829.0, 2070.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [199.0, 625.0, 331.0, 625.0, 331.0, 657.0, 199.0, 657.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [364.0, 625.0, 609.0, 625.0, 609.0, 657.0, 364.0, 657.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1392.0, 1395.0, 1423.0, 1395.0, 1423.0, 1445.0, 1392.0, 1445.0], "score": 1.0, "text": ""}] | {"preproc_blocks": [{"type": "text", "bbox": [69, 70, 542, 100], "lines": [{"bbox": [71, 72, 542, 90], "spans": [{"bbox": [71, 75, 126, 84], "score": 0.93, "content": "a=a^{\\prime}=0", "type": "inline_equation", "height": 9, "width": 55}, {"bbox": [126, 72, 178, 90], "score": 1.0, "content": " holds for ", "type": "text"}, {"bbox": [178, 75, 191, 84], "score": 0.39, "content": "k r", "type": "inline_equation", "height": 9, "width": 13}, {"bbox": [191, 72, 312, 90], "score": 1.0, "content": " even. From the fusion ", "type": "text"}, {"bbox": [313, 75, 326, 86], "score": 0.64, "content": "\\Lambda_{1}", "type": "inline_equation", "height": 11, "width": 13}, {"bbox": [327, 72, 344, 90], "score": 1.0, "content": " \u00d7 ", "type": "text"}, {"bbox": [344, 74, 358, 86], "score": 0.63, "content": "\\Lambda_{\\ell}", "type": "inline_equation", "height": 12, "width": 14}, {"bbox": [358, 72, 398, 90], "score": 1.0, "content": "we get ", "type": "text"}, {"bbox": [398, 75, 529, 87], "score": 0.92, "content": "\\pi\\Lambda_{\\ell+1}\\in\\{\\Lambda_{\\ell+1},\\Lambda_{1}+\\Lambda_{\\ell}\\}", "type": "inline_equation", "height": 12, "width": 131}, {"bbox": [529, 72, 542, 90], "score": 1.0, "content": " if", "type": "text"}], "index": 0}, {"bbox": [71, 89, 408, 102], "spans": [{"bbox": [71, 90, 120, 100], "score": 0.92, "content": "\\pi\\Lambda_{\\ell}=\\Lambda_{\\ell}", "type": "inline_equation", "height": 10, "width": 49}, {"bbox": [121, 89, 145, 102], "score": 1.0, "content": "; for ", "type": "text"}, {"bbox": [146, 90, 174, 99], "score": 0.92, "content": "r<k", "type": "inline_equation", "height": 9, "width": 28}, {"bbox": [174, 89, 408, 102], "score": 1.0, "content": " conclude the argument with the calculation", "type": "text"}], "index": 1}], "index": 0.5}, {"type": "interline_equation", "bbox": [99, 113, 500, 141], "lines": [{"bbox": [99, 113, 500, 141], "spans": [{"bbox": [99, 113, 500, 141], "score": 0.9, "content": "\\chi_{\\Lambda_{1}}[\\Lambda_{\\ell+1}]-\\chi_{\\Lambda_{1}}[\\Lambda_{1}+\\Lambda_{\\ell}]=4\\cos(\\pi\\,\\frac{2r+2-\\ell}{2\\kappa})\\,\\{\\cos(\\pi\\,\\frac{\\ell}{2\\kappa})-\\cos(\\pi\\,\\frac{\\ell+2}{2\\kappa})\\}>", "type": "interline_equation"}], "index": 2}], "index": 2}, {"type": "text", "bbox": [70, 149, 541, 178], "lines": [{"bbox": [70, 151, 539, 168], "spans": [{"bbox": [70, 151, 100, 168], "score": 1.0, "content": "as in ", "type": "text"}, {"bbox": [100, 153, 121, 165], "score": 0.41, "content": "\\S4.3", "type": "inline_equation", "height": 12, "width": 21}, {"bbox": [122, 151, 165, 168], "score": 1.0, "content": ". When ", "type": "text"}, {"bbox": [165, 154, 195, 163], "score": 0.92, "content": "r=k", "type": "inline_equation", "height": 9, "width": 30}, {"bbox": [195, 151, 360, 168], "score": 1.0, "content": ", that inequality only holds for ", "type": "text"}, {"bbox": [360, 153, 389, 164], "score": 0.88, "content": "\\ell>1", "type": "inline_equation", "height": 11, "width": 29}, {"bbox": [390, 151, 487, 168], "score": 1.0, "content": ", but we can force ", "type": "text"}, {"bbox": [488, 154, 539, 165], "score": 0.91, "content": "\\pi\\Lambda_{2}=\\Lambda_{2}", "type": "inline_equation", "height": 11, "width": 51}], "index": 3}, {"bbox": [70, 166, 254, 183], "spans": [{"bbox": [70, 166, 127, 183], "score": 1.0, "content": "by hitting ", "type": "text"}, {"bbox": [127, 172, 135, 178], "score": 0.77, "content": "\\pi", "type": "inline_equation", "height": 6, "width": 8}, {"bbox": [135, 166, 229, 183], "score": 1.0, "content": " if necessary with ", "type": "text"}, {"bbox": [229, 172, 249, 179], "score": 0.88, "content": "\\pi_{\\mathrm{rld}}", "type": "inline_equation", "height": 7, "width": 20}, {"bbox": [249, 166, 254, 183], "score": 1.0, "content": ".", "type": "text"}], "index": 4}], "index": 3.5}, {"type": "text", "bbox": [70, 179, 541, 208], "lines": [{"bbox": [93, 180, 541, 197], "spans": [{"bbox": [93, 180, 203, 197], "score": 1.0, "content": "The remaining case ", "type": "text"}, {"bbox": [203, 182, 225, 195], "score": 0.91, "content": "C_{2,3}", "type": "inline_equation", "height": 13, "width": 22}, {"bbox": [225, 180, 314, 197], "score": 1.0, "content": " follows because ", "type": "text"}, {"bbox": [314, 182, 371, 192], "score": 0.92, "content": "\\pi^{\\prime}J0\\,=\\,J0", "type": "inline_equation", "height": 10, "width": 57}, {"bbox": [372, 180, 434, 197], "score": 1.0, "content": ": by (2.7b) ", "type": "text"}, {"bbox": [434, 182, 495, 194], "score": 0.87, "content": "\\pi\\Lambda_{1}\\notin S\\Lambda_{2}", "type": "inline_equation", "height": 12, "width": 61}, {"bbox": [495, 180, 541, 197], "score": 1.0, "content": ", and by", "type": "text"}], "index": 5}, {"bbox": [72, 195, 292, 210], "spans": [{"bbox": [72, 196, 105, 210], "score": 1.0, "content": "(2.7a) ", "type": "text"}, {"bbox": [105, 195, 162, 208], "score": 0.89, "content": "\\pi\\Lambda_{1}\\neq3\\Lambda_{1}", "type": "inline_equation", "height": 13, "width": 57}, {"bbox": [163, 196, 170, 210], "score": 1.0, "content": " (", "type": "text"}, {"bbox": [171, 195, 191, 208], "score": 0.88, "content": "3\\Lambda_{1}", "type": "inline_equation", "height": 13, "width": 20}, {"bbox": [191, 196, 216, 210], "score": 1.0, "content": " is a ", "type": "text"}, {"bbox": [216, 196, 225, 206], "score": 0.84, "content": "J", "type": "inline_equation", "height": 10, "width": 9}, {"bbox": [225, 196, 292, 210], "score": 1.0, "content": "-fixed-point).", "type": "text"}], "index": 6}], "index": 5.5}, {"type": "title", "bbox": [71, 221, 219, 236], "lines": [{"bbox": [71, 225, 219, 236], "spans": [{"bbox": [71, 225, 119, 236], "score": 1.0, "content": "4.5. The ", "type": "text"}, {"bbox": [119, 225, 130, 235], "score": 0.8, "content": "D", "type": "inline_equation", "height": 10, "width": 11}, {"bbox": [131, 225, 219, 236], "score": 1.0, "content": "-series argument", "type": "text"}], "index": 7}], "index": 7}, {"type": "text", "bbox": [70, 243, 541, 300], "lines": [{"bbox": [95, 244, 541, 259], "spans": [{"bbox": [95, 247, 124, 256], "score": 0.9, "content": "k=1", "type": "inline_equation", "height": 9, "width": 29}, {"bbox": [124, 244, 201, 259], "score": 1.0, "content": " is trivial, and ", "type": "text"}, {"bbox": [202, 245, 231, 256], "score": 0.88, "content": "k=2", "type": "inline_equation", "height": 11, "width": 29}, {"bbox": [232, 244, 398, 259], "score": 1.0, "content": " will be considered shortly. For ", "type": "text"}, {"bbox": [398, 247, 427, 256], "score": 0.9, "content": "k>2", "type": "inline_equation", "height": 9, "width": 29}, {"bbox": [427, 244, 541, 259], "score": 1.0, "content": ", Proposition 4.1 tells", "type": "text"}], "index": 8}, {"bbox": [70, 258, 541, 274], "spans": [{"bbox": [70, 258, 111, 274], "score": 1.0, "content": "us that", "type": "text"}, {"bbox": [112, 259, 189, 273], "score": 0.93, "content": "\\pi\\Lambda_{1}=J_{v}^{a}J_{s}^{b}\\Lambda_{1}", "type": "inline_equation", "height": 14, "width": 77}, {"bbox": [190, 258, 216, 274], "score": 1.0, "content": " and ", "type": "text"}, {"bbox": [216, 258, 303, 273], "score": 0.94, "content": "\\pi^{\\prime}\\Lambda_{1}=J_{v}^{a^{\\prime}}J_{s}^{b^{\\prime}}\\Lambda_{1}", "type": "inline_equation", "height": 15, "width": 87}, {"bbox": [303, 258, 329, 274], "score": 1.0, "content": ", for ", "type": "text"}, {"bbox": [329, 260, 419, 273], "score": 0.93, "content": "a,a^{\\prime},b,b^{\\prime}\\in\\{0,1\\}", "type": "inline_equation", "height": 13, "width": 90}, {"bbox": [419, 258, 541, 274], "score": 1.0, "content": ". Immediate from (3.4)", "type": "text"}], "index": 9}, {"bbox": [69, 272, 542, 289], "spans": [{"bbox": [69, 272, 109, 289], "score": 1.0, "content": "is that ", "type": "text"}, {"bbox": [110, 274, 173, 288], "score": 0.92, "content": "\\chi_{\\Lambda_{1}}[\\Lambda_{1}]>0", "type": "inline_equation", "height": 14, "width": 63}, {"bbox": [173, 272, 226, 289], "score": 1.0, "content": " and that ", "type": "text"}, {"bbox": [226, 275, 261, 287], "score": 0.92, "content": "\\chi_{\\Lambda_{1}}[\\psi]", "type": "inline_equation", "height": 12, "width": 35}, {"bbox": [262, 272, 334, 289], "score": 1.0, "content": ", for a spinor ", "type": "text"}, {"bbox": [334, 275, 343, 287], "score": 0.89, "content": "\\psi", "type": "inline_equation", "height": 12, "width": 9}, {"bbox": [343, 272, 469, 289], "score": 1.0, "content": ", takes its maximum at ", "type": "text"}, {"bbox": [469, 274, 509, 287], "score": 0.93, "content": "C^{i}J_{v}^{j}\\Lambda_{r}", "type": "inline_equation", "height": 13, "width": 40}, {"bbox": [509, 272, 542, 289], "score": 1.0, "content": ". Our", "type": "text"}], "index": 10}, {"bbox": [70, 288, 502, 303], "spans": [{"bbox": [70, 288, 176, 303], "score": 1.0, "content": "first step is to force ", "type": "text"}, {"bbox": [177, 289, 268, 301], "score": 0.93, "content": "\\pi\\Lambda_{1}=\\pi^{\\prime}\\Lambda_{1}=\\Lambda_{1}", "type": "inline_equation", "height": 12, "width": 91}, {"bbox": [268, 288, 502, 303], "score": 1.0, "content": ". Unfortunately this requires a case analysis.", "type": "text"}], "index": 11}], "index": 9.5}, {"type": "text", "bbox": [69, 301, 541, 358], "lines": [{"bbox": [94, 301, 542, 319], "spans": [{"bbox": [94, 301, 201, 319], "score": 1.0, "content": "Consider first even ", "type": "text"}, {"bbox": [201, 304, 235, 315], "score": 0.92, "content": "r\\,\\neq\\,4", "type": "inline_equation", "height": 11, "width": 34}, {"bbox": [235, 301, 297, 319], "score": 1.0, "content": ", and even ", "type": "text"}, {"bbox": [297, 304, 331, 313], "score": 0.88, "content": "k\\ >\\ 2", "type": "inline_equation", "height": 9, "width": 34}, {"bbox": [332, 301, 376, 319], "score": 1.0, "content": ". Now, ", "type": "text"}, {"bbox": [377, 304, 504, 316], "score": 0.92, "content": "0\\;\\neq\\;S_{\\Lambda_{1}\\Lambda_{1}}\\;=\\;S_{\\pi\\Lambda_{1},\\pi^{\\prime}\\Lambda_{1}}", "type": "inline_equation", "height": 12, "width": 127}, {"bbox": [504, 301, 542, 319], "score": 1.0, "content": " forces", "type": "text"}], "index": 12}, {"bbox": [71, 317, 541, 347], "spans": [{"bbox": [71, 325, 104, 335], "score": 0.9, "content": "b=b^{\\prime}", "type": "inline_equation", "height": 10, "width": 33}, {"bbox": [104, 324, 394, 339], "score": 1.0, "content": "; hence hitting with the simple-current automorphism ", "type": "text"}, {"bbox": [394, 317, 449, 347], "score": 0.94, "content": "\\pi\\left[{\\begin{array}{l l}{0}&{a}\\\\ {a^{\\prime}}&{b}\\end{array}}\\right]", "type": "inline_equation", "height": 30, "width": 55}, {"bbox": [450, 326, 541, 338], "score": 1.0, "content": ", we may assume", "type": "text"}], "index": 13}, {"bbox": [71, 347, 165, 361], "spans": [{"bbox": [71, 347, 162, 358], "score": 0.91, "content": "\\pi\\Lambda_{1}=\\pi^{\\prime}\\Lambda_{1}=\\Lambda_{1}", "type": "inline_equation", "height": 11, "width": 91}, {"bbox": [163, 347, 165, 361], "score": 1.0, "content": ".", "type": "text"}], "index": 14}], "index": 13}, {"type": "text", "bbox": [70, 358, 542, 444], "lines": [{"bbox": [93, 359, 541, 375], "spans": [{"bbox": [93, 359, 200, 375], "score": 1.0, "content": "Next consider even ", "type": "text"}, {"bbox": [200, 362, 230, 373], "score": 0.93, "content": "r\\neq4", "type": "inline_equation", "height": 11, "width": 30}, {"bbox": [230, 359, 281, 375], "score": 1.0, "content": " and odd ", "type": "text"}, {"bbox": [282, 362, 312, 371], "score": 0.9, "content": "k\\,>\\,2", "type": "inline_equation", "height": 9, "width": 30}, {"bbox": [313, 359, 374, 375], "score": 1.0, "content": ". Either of ", "type": "text"}, {"bbox": [374, 362, 439, 373], "score": 0.92, "content": "\\pi\\Lambda_{1}=J_{v}\\Lambda_{1}", "type": "inline_equation", "height": 11, "width": 65}, {"bbox": [439, 359, 458, 375], "score": 1.0, "content": " or ", "type": "text"}, {"bbox": [459, 360, 527, 373], "score": 0.92, "content": "\\pi^{\\prime}\\Lambda_{1}\\,=\\,J_{v}\\Lambda_{1}", "type": "inline_equation", "height": 13, "width": 68}, {"bbox": [527, 359, 541, 375], "score": 1.0, "content": " is", "type": "text"}], "index": 15}, {"bbox": [69, 373, 542, 392], "spans": [{"bbox": [69, 373, 210, 392], "score": 1.0, "content": "impossible, by comparing ", "type": "text"}, {"bbox": [210, 376, 246, 388], "score": 0.92, "content": "S_{\\Lambda_{1},J_{s}0}", "type": "inline_equation", "height": 12, "width": 36}, {"bbox": [247, 373, 275, 392], "score": 1.0, "content": " and ", "type": "text"}, {"bbox": [275, 376, 318, 388], "score": 0.93, "content": "S_{J_{v}\\Lambda_{1},J0}", "type": "inline_equation", "height": 12, "width": 43}, {"bbox": [319, 373, 444, 392], "score": 1.0, "content": " for any simple-current ", "type": "text"}, {"bbox": [444, 376, 453, 385], "score": 0.86, "content": "J", "type": "inline_equation", "height": 9, "width": 9}, {"bbox": [453, 373, 542, 392], "score": 1.0, "content": ". For any of the", "type": "text"}], "index": 16}, {"bbox": [70, 387, 541, 405], "spans": [{"bbox": [70, 387, 208, 405], "score": 1.0, "content": "three remaining choices of ", "type": "text"}, {"bbox": [209, 389, 249, 402], "score": 0.93, "content": "J_{v}^{a}J_{s}^{b}\\Lambda_{1}", "type": "inline_equation", "height": 13, "width": 40}, {"bbox": [249, 387, 541, 405], "score": 1.0, "content": ", we can find a simple-current automorphism of the form", "type": "text"}], "index": 17}, {"bbox": [71, 403, 541, 433], "spans": [{"bbox": [71, 403, 123, 433], "score": 0.95, "content": "\\pi\\left[{\\ast}\\quad a\\,\\right];", "type": "inline_equation", "height": 30, "width": 52}, {"bbox": [124, 409, 252, 425], "score": 1.0, "content": " hitting its inverse onto ", "type": "text"}, {"bbox": [253, 415, 260, 421], "score": 0.88, "content": "\\pi", "type": "inline_equation", "height": 6, "width": 7}, {"bbox": [260, 409, 356, 425], "score": 1.0, "content": " allows us to take ", "type": "text"}, {"bbox": [357, 412, 408, 421], "score": 0.92, "content": "a=b=0", "type": "inline_equation", "height": 9, "width": 51}, {"bbox": [408, 409, 452, 425], "score": 1.0, "content": ". Again ", "type": "text"}, {"bbox": [452, 412, 505, 424], "score": 0.95, "content": "0\\not=S_{\\Lambda_{1}\\Lambda_{1}}", "type": "inline_equation", "height": 12, "width": 53}, {"bbox": [505, 409, 541, 425], "score": 1.0, "content": " forces", "type": "text"}], "index": 18}, {"bbox": [71, 431, 420, 447], "spans": [{"bbox": [71, 433, 102, 443], "score": 0.87, "content": "b^{\\prime}=0", "type": "inline_equation", "height": 10, "width": 31}, {"bbox": [102, 431, 157, 447], "score": 1.0, "content": ", and now ", "type": "text"}, {"bbox": [157, 433, 189, 443], "score": 0.91, "content": "a^{\\prime}=1", "type": "inline_equation", "height": 10, "width": 32}, {"bbox": [189, 431, 325, 447], "score": 1.0, "content": " is forbidden. Thus again ", "type": "text"}, {"bbox": [325, 433, 416, 444], "score": 0.94, "content": "\\pi\\Lambda_{1}=\\pi^{\\prime}\\Lambda_{1}=\\Lambda_{1}", "type": "inline_equation", "height": 11, "width": 91}, {"bbox": [416, 431, 420, 447], "score": 1.0, "content": ".", "type": "text"}], "index": 19}], "index": 17}, {"type": "text", "bbox": [70, 444, 541, 488], "lines": [{"bbox": [95, 446, 541, 461], "spans": [{"bbox": [95, 446, 147, 461], "score": 1.0, "content": "As usual, ", "type": "text"}, {"bbox": [147, 448, 176, 457], "score": 0.9, "content": "r=4", "type": "inline_equation", "height": 9, "width": 29}, {"bbox": [176, 446, 389, 461], "score": 1.0, "content": " is complicated by triality. We can force ", "type": "text"}, {"bbox": [390, 448, 441, 459], "score": 0.93, "content": "\\pi\\Lambda_{1}=\\Lambda_{1}", "type": "inline_equation", "height": 11, "width": 51}, {"bbox": [441, 446, 541, 461], "score": 1.0, "content": ". That we can also", "type": "text"}], "index": 20}, {"bbox": [70, 460, 541, 477], "spans": [{"bbox": [70, 460, 97, 477], "score": 1.0, "content": "take ", "type": "text"}, {"bbox": [97, 461, 154, 473], "score": 0.92, "content": "\\pi^{\\prime}\\Lambda_{1}=\\Lambda_{1}", "type": "inline_equation", "height": 12, "width": 57}, {"bbox": [154, 460, 307, 477], "score": 1.0, "content": ", follows from the inequality ", "type": "text"}, {"bbox": [307, 461, 488, 474], "score": 0.92, "content": "\\chi_{\\Lambda_{1}}[\\Lambda_{1}]>\\chi_{\\Lambda_{1}}[\\Lambda_{3}]=\\chi_{\\Lambda_{1}}[\\Lambda_{4}]>0", "type": "inline_equation", "height": 13, "width": 181}, {"bbox": [488, 460, 541, 477], "score": 1.0, "content": ", valid for", "type": "text"}], "index": 21}, {"bbox": [71, 473, 442, 492], "spans": [{"bbox": [71, 476, 100, 487], "score": 0.89, "content": "k\\geq3", "type": "inline_equation", "height": 11, "width": 29}, {"bbox": [100, 473, 442, 492], "score": 1.0, "content": ". Establishing that inequality from (3.4) is equivalent to showing", "type": "text"}], "index": 22}], "index": 21}, {"type": "text", "bbox": [98, 500, 514, 516], "lines": [{"bbox": [98, 502, 512, 520], "spans": [{"bbox": [98, 503, 500, 516], "score": 0.77, "content": "1+\\cos(x)+\\cos(2x)+\\cos(4x)>\\cos(x/2)+\\cos(3x/2)+\\cos(5x/2)+\\cos(7x/2)>0", "type": "inline_equation"}, {"bbox": [501, 502, 512, 520], "score": 1.0, "content": "2)", "type": "text"}], "index": 23}], "index": 23}, {"type": "text", "bbox": [69, 528, 398, 542], "lines": [{"bbox": [70, 530, 397, 545], "spans": [{"bbox": [70, 530, 89, 545], "score": 1.0, "content": "for ", "type": "text"}, {"bbox": [89, 531, 160, 544], "score": 0.92, "content": "0<x\\le2\\pi/9", "type": "inline_equation", "height": 13, "width": 71}, {"bbox": [160, 530, 397, 545], "score": 1.0, "content": ", which can be shown e.g. using Taylor series.", "type": "text"}], "index": 24}], "index": 24}, {"type": "text", "bbox": [70, 543, 541, 657], "lines": [{"bbox": [93, 543, 540, 560], "spans": [{"bbox": [93, 543, 141, 560], "score": 1.0, "content": "For odd ", "type": "text"}, {"bbox": [141, 550, 147, 556], "score": 0.8, "content": "r", "type": "inline_equation", "height": 6, "width": 6}, {"bbox": [147, 543, 279, 560], "score": 1.0, "content": ", the charge-conjugation ", "type": "text"}, {"bbox": [279, 547, 289, 556], "score": 0.88, "content": "C", "type": "inline_equation", "height": 9, "width": 10}, {"bbox": [289, 543, 329, 560], "score": 1.0, "content": " equals ", "type": "text"}, {"bbox": [330, 547, 344, 558], "score": 0.91, "content": "C_{1}", "type": "inline_equation", "height": 11, "width": 14}, {"bbox": [344, 543, 508, 560], "score": 1.0, "content": ". Since it must commute with ", "type": "text"}, {"bbox": [509, 550, 516, 556], "score": 0.86, "content": "\\pi", "type": "inline_equation", "height": 6, "width": 7}, {"bbox": [516, 543, 540, 560], "score": 1.0, "content": ", i.e.", "type": "text"}], "index": 25}, {"bbox": [69, 556, 541, 574], "spans": [{"bbox": [69, 556, 96, 574], "score": 1.0, "content": "that ", "type": "text"}, {"bbox": [96, 558, 198, 573], "score": 0.93, "content": "C_{1}\\pi\\Lambda_{1}=J_{v}^{a+b}J_{s}^{b}\\Lambda_{1}", "type": "inline_equation", "height": 15, "width": 102}, {"bbox": [199, 556, 261, 574], "score": 1.0, "content": " must equal ", "type": "text"}, {"bbox": [262, 559, 352, 573], "score": 0.95, "content": "\\pi C_{1}\\Lambda_{1}=J_{v}^{a}J_{s}^{b}\\Lambda_{1}", "type": "inline_equation", "height": 14, "width": 90}, {"bbox": [353, 556, 419, 574], "score": 1.0, "content": ", we get that", "type": "text"}, {"bbox": [420, 561, 447, 570], "score": 0.9, "content": "b=0", "type": "inline_equation", "height": 9, "width": 27}, {"bbox": [448, 556, 505, 574], "score": 1.0, "content": ". Similarly ", "type": "text"}, {"bbox": [506, 560, 536, 570], "score": 0.92, "content": "b^{\\prime}=0", "type": "inline_equation", "height": 10, "width": 30}, {"bbox": [537, 556, 541, 574], "score": 1.0, "content": ".", "type": "text"}], "index": 26}, {"bbox": [70, 572, 541, 590], "spans": [{"bbox": [70, 572, 106, 590], "score": 1.0, "content": "When ", "type": "text"}, {"bbox": [106, 574, 113, 584], "score": 0.78, "content": "k", "type": "inline_equation", "height": 10, "width": 7}, {"bbox": [114, 572, 208, 590], "score": 1.0, "content": " is odd, eliminate ", "type": "text"}, {"bbox": [208, 574, 238, 584], "score": 0.86, "content": "a=1", "type": "inline_equation", "height": 10, "width": 30}, {"bbox": [238, 572, 265, 590], "score": 1.0, "content": " and ", "type": "text"}, {"bbox": [265, 574, 298, 584], "score": 0.92, "content": "a\\prime=1", "type": "inline_equation", "height": 10, "width": 33}, {"bbox": [298, 572, 377, 590], "score": 1.0, "content": " by comparing ", "type": "text"}, {"bbox": [377, 575, 414, 587], "score": 0.92, "content": "S_{\\Lambda_{1},J_{s}0}", "type": "inline_equation", "height": 12, "width": 37}, {"bbox": [414, 572, 441, 590], "score": 1.0, "content": " and ", "type": "text"}, {"bbox": [442, 575, 485, 587], "score": 0.93, "content": "S_{J_{v}\\Lambda_{1},J0}", "type": "inline_equation", "height": 12, "width": 43}, {"bbox": [485, 572, 541, 590], "score": 1.0, "content": " as before.", "type": "text"}], "index": 27}, {"bbox": [70, 587, 541, 602], "spans": [{"bbox": [70, 587, 179, 602], "score": 1.0, "content": "The hardest case is ", "type": "text"}, {"bbox": [180, 588, 187, 599], "score": 0.85, "content": "k", "type": "inline_equation", "height": 11, "width": 7}, {"bbox": [187, 587, 300, 602], "score": 1.0, "content": " even. We can force ", "type": "text"}, {"bbox": [300, 590, 354, 600], "score": 0.92, "content": "\\pi\\Lambda_{1}\\,=\\,\\Lambda_{1}", "type": "inline_equation", "height": 10, "width": 54}, {"bbox": [354, 587, 445, 602], "score": 1.0, "content": " by hitting with ", "type": "text"}, {"bbox": [445, 589, 466, 601], "score": 0.92, "content": "\\pi[a]", "type": "inline_equation", "height": 12, "width": 21}, {"bbox": [466, 587, 541, 602], "score": 1.0, "content": ". Suppose for", "type": "text"}], "index": 28}, {"bbox": [70, 601, 541, 617], "spans": [{"bbox": [70, 601, 170, 617], "score": 1.0, "content": "contradiction that ", "type": "text"}, {"bbox": [171, 601, 239, 614], "score": 0.92, "content": "\\pi^{\\prime}\\Lambda_{1}=J_{v}\\Lambda_{1}", "type": "inline_equation", "height": 13, "width": 68}, {"bbox": [239, 601, 301, 617], "score": 1.0, "content": ". We know ", "type": "text"}, {"bbox": [302, 603, 376, 616], "score": 0.93, "content": "\\pi^{\\prime}(J_{v}0)=J_{v}0", "type": "inline_equation", "height": 13, "width": 74}, {"bbox": [376, 601, 433, 617], "score": 1.0, "content": " (compare ", "type": "text"}, {"bbox": [433, 604, 470, 616], "score": 0.93, "content": "S_{\\Lambda_{1},J_{v}0}", "type": "inline_equation", "height": 12, "width": 37}, {"bbox": [470, 601, 498, 617], "score": 1.0, "content": " and ", "type": "text"}, {"bbox": [498, 603, 536, 616], "score": 0.89, "content": "S_{\\Lambda_{1},J0})", "type": "inline_equation", "height": 13, "width": 38}, {"bbox": [537, 601, 541, 617], "score": 1.0, "content": ",", "type": "text"}], "index": 29}, {"bbox": [69, 615, 540, 633], "spans": [{"bbox": [69, 615, 141, 633], "score": 1.0, "content": "so by (2.7b) ", "type": "text"}, {"bbox": [141, 616, 163, 629], "score": 0.86, "content": "\\pi\\Lambda_{r}", "type": "inline_equation", "height": 13, "width": 22}, {"bbox": [163, 615, 272, 633], "score": 1.0, "content": " must be a spinor.", "type": "text"}, {"bbox": [273, 617, 390, 630], "score": 0.92, "content": "\\chi_{\\Lambda_{1}}[\\Lambda_{r}]\\;=\\;\\chi_{J_{v}\\Lambda_{1}}[\\pi\\Lambda_{r}]", "type": "inline_equation", "height": 13, "width": 117}, {"bbox": [391, 615, 442, 633], "score": 1.0, "content": " requires ", "type": "text"}, {"bbox": [442, 617, 536, 630], "score": 0.93, "content": "\\pi\\Lambda_{r}\\,=\\,C_{1}^{i}J_{v}^{j}J_{s}\\Lambda_{r}", "type": "inline_equation", "height": 13, "width": 94}, {"bbox": [537, 615, 540, 633], "score": 1.0, "content": ".", "type": "text"}], "index": 30}, {"bbox": [69, 630, 541, 646], "spans": [{"bbox": [69, 630, 123, 646], "score": 1.0, "content": "From the ", "type": "text"}, {"bbox": [123, 631, 169, 644], "score": 0.52, "content": "\\Lambda_{1}\\boxtimes\\Lambda_{r}", "type": "inline_equation", "height": 13, "width": 46}, {"bbox": [169, 630, 245, 646], "score": 1.0, "content": " fusion we get ", "type": "text"}, {"bbox": [245, 631, 360, 644], "score": 0.92, "content": "\\pi\\Lambda_{r-1}=C_{1}^{i}J_{v}^{j}J_{s}\\Lambda_{r-1}", "type": "inline_equation", "height": 13, "width": 115}, {"bbox": [360, 630, 388, 646], "score": 1.0, "content": ", but ", "type": "text"}, {"bbox": [389, 633, 438, 641], "score": 0.92, "content": "C\\pi=\\pi C", "type": "inline_equation", "height": 8, "width": 49}, {"bbox": [438, 630, 493, 646], "score": 1.0, "content": " says that ", "type": "text"}, {"bbox": [493, 632, 541, 644], "score": 0.9, "content": "\\pi\\Lambda_{r-1}=", "type": "inline_equation", "height": 12, "width": 48}], "index": 31}, {"bbox": [71, 644, 251, 662], "spans": [{"bbox": [71, 644, 147, 659], "score": 0.91, "content": "C_{1}^{i}J_{v}^{j+1}J_{s}\\Lambda_{r-1}", "type": "inline_equation", "height": 15, "width": 76}, {"bbox": [148, 644, 251, 662], "score": 1.0, "content": " \u2014 a contradiction.", "type": "text"}], "index": 32}], "index": 28.5}, {"type": "text", "bbox": [70, 658, 541, 715], "lines": [{"bbox": [93, 658, 541, 675], "spans": [{"bbox": [93, 658, 239, 675], "score": 1.0, "content": "Thus in all cases we have ", "type": "text"}, {"bbox": [240, 660, 340, 672], "score": 0.92, "content": "\\pi\\Lambda_{1}\\,=\\,\\pi^{\\prime}\\Lambda_{1}\\,=\\,\\Lambda_{1}", "type": "inline_equation", "height": 12, "width": 100}, {"bbox": [341, 658, 407, 675], "score": 1.0, "content": ". We know ", "type": "text"}, {"bbox": [408, 660, 486, 673], "score": 0.93, "content": "\\pi^{\\prime}(J_{v}0)\\;=\\;J_{v}0", "type": "inline_equation", "height": 13, "width": 78}, {"bbox": [486, 658, 541, 675], "score": 1.0, "content": " (compare", "type": "text"}], "index": 33}, {"bbox": [71, 673, 541, 689], "spans": [{"bbox": [71, 673, 109, 687], "score": 0.91, "content": "S_{\\Lambda_{1},J_{v}0}", "type": "inline_equation", "height": 14, "width": 38}, {"bbox": [109, 674, 137, 689], "score": 1.0, "content": " and ", "type": "text"}, {"bbox": [137, 673, 175, 687], "score": 0.89, "content": "S_{\\Lambda_{1},J0})", "type": "inline_equation", "height": 14, "width": 38}, {"bbox": [175, 674, 198, 689], "score": 1.0, "content": ", so ", "type": "text"}, {"bbox": [198, 675, 219, 686], "score": 0.9, "content": "\\pi\\Lambda_{r}", "type": "inline_equation", "height": 11, "width": 21}, {"bbox": [220, 674, 410, 689], "score": 1.0, "content": " is a spinor and in fact must equal ", "type": "text"}, {"bbox": [411, 674, 491, 687], "score": 0.93, "content": "\\pi\\Lambda_{r}\\,=\\,C_{1}^{i}J_{v}^{j}\\Lambda_{r}", "type": "inline_equation", "height": 13, "width": 80}, {"bbox": [491, 674, 541, 689], "score": 1.0, "content": ". Hitting", "type": "text"}], "index": 34}, {"bbox": [70, 687, 542, 704], "spans": [{"bbox": [70, 687, 98, 704], "score": 1.0, "content": "with ", "type": "text"}, {"bbox": [99, 687, 147, 702], "score": 0.93, "content": "(C_{1}^{i}\\pi_{v}^{j})^{-1}", "type": "inline_equation", "height": 15, "width": 48}, {"bbox": [147, 687, 234, 704], "score": 1.0, "content": ", we can require ", "type": "text"}, {"bbox": [234, 690, 285, 700], "score": 0.91, "content": "\\pi\\Lambda_{r}=\\Lambda_{r}", "type": "inline_equation", "height": 10, "width": 51}, {"bbox": [285, 687, 322, 704], "score": 1.0, "content": ". That ", "type": "text"}, {"bbox": [323, 690, 356, 701], "score": 0.92, "content": "\\pi\\Lambda_{r-1}", "type": "inline_equation", "height": 11, "width": 33}, {"bbox": [356, 687, 445, 704], "score": 1.0, "content": " must now equal ", "type": "text"}, {"bbox": [446, 690, 471, 701], "score": 0.92, "content": "\\Lambda_{r-1}", "type": "inline_equation", "height": 11, "width": 25}, {"bbox": [472, 687, 542, 704], "score": 1.0, "content": " follows from", "type": "text"}], "index": 35}, {"bbox": [71, 703, 177, 717], "spans": [{"bbox": [71, 703, 91, 717], "score": 1.0, "content": "the ", "type": "text"}, {"bbox": [92, 703, 137, 715], "score": 0.28, "content": "\\Lambda_{1}\\boxtimes\\Lambda_{r}", "type": "inline_equation", "height": 12, "width": 45}, {"bbox": [138, 703, 177, 717], "score": 1.0, "content": " fusion.", "type": "text"}], "index": 36}], "index": 34.5}], "layout_bboxes": [], "page_idx": 18, "page_size": [612.0, 792.0], "_layout_tree": [], "images": [], "tables": [], "interline_equations": [{"type": "interline_equation", "bbox": [99, 113, 500, 141], "lines": [{"bbox": [99, 113, 500, 141], "spans": [{"bbox": [99, 113, 500, 141], "score": 0.9, "content": "\\chi_{\\Lambda_{1}}[\\Lambda_{\\ell+1}]-\\chi_{\\Lambda_{1}}[\\Lambda_{1}+\\Lambda_{\\ell}]=4\\cos(\\pi\\,\\frac{2r+2-\\ell}{2\\kappa})\\,\\{\\cos(\\pi\\,\\frac{\\ell}{2\\kappa})-\\cos(\\pi\\,\\frac{\\ell+2}{2\\kappa})\\}>", "type": "interline_equation"}], "index": 2}], "index": 2}], "discarded_blocks": [{"type": "discarded", "bbox": [299, 731, 312, 741], "lines": [{"bbox": [298, 731, 313, 745], "spans": [{"bbox": [298, 731, 313, 745], "score": 1.0, "content": "19", "type": "text"}]}]}], "need_drop": false, "drop_reason": [], "para_blocks": [{"type": "text", "bbox": [69, 70, 542, 100], "lines": [], "index": 0.5, "page_num": "page_18", "page_size": [612.0, 792.0], "bbox_fs": [71, 72, 542, 102], "lines_deleted": true}, {"type": "interline_equation", "bbox": [99, 113, 500, 141], "lines": [{"bbox": [99, 113, 500, 141], "spans": [{"bbox": [99, 113, 500, 141], "score": 0.9, "content": "\\chi_{\\Lambda_{1}}[\\Lambda_{\\ell+1}]-\\chi_{\\Lambda_{1}}[\\Lambda_{1}+\\Lambda_{\\ell}]=4\\cos(\\pi\\,\\frac{2r+2-\\ell}{2\\kappa})\\,\\{\\cos(\\pi\\,\\frac{\\ell}{2\\kappa})-\\cos(\\pi\\,\\frac{\\ell+2}{2\\kappa})\\}>", "type": "interline_equation"}], "index": 2}], "index": 2, "page_num": "page_18", "page_size": [612.0, 792.0]}, {"type": "text", "bbox": [70, 149, 541, 178], "lines": [{"bbox": [70, 151, 539, 168], "spans": [{"bbox": [70, 151, 100, 168], "score": 1.0, "content": "as in ", "type": "text"}, {"bbox": [100, 153, 121, 165], "score": 0.41, "content": "\\S4.3", "type": "inline_equation", "height": 12, "width": 21}, {"bbox": [122, 151, 165, 168], "score": 1.0, "content": ". When ", "type": "text"}, {"bbox": [165, 154, 195, 163], "score": 0.92, "content": "r=k", "type": "inline_equation", "height": 9, "width": 30}, {"bbox": [195, 151, 360, 168], "score": 1.0, "content": ", that inequality only holds for ", "type": "text"}, {"bbox": [360, 153, 389, 164], "score": 0.88, "content": "\\ell>1", "type": "inline_equation", "height": 11, "width": 29}, {"bbox": [390, 151, 487, 168], "score": 1.0, "content": ", but we can force ", "type": "text"}, {"bbox": [488, 154, 539, 165], "score": 0.91, "content": "\\pi\\Lambda_{2}=\\Lambda_{2}", "type": "inline_equation", "height": 11, "width": 51}], "index": 3}, {"bbox": [70, 166, 254, 183], "spans": [{"bbox": [70, 166, 127, 183], "score": 1.0, "content": "by hitting ", "type": "text"}, {"bbox": [127, 172, 135, 178], "score": 0.77, "content": "\\pi", "type": "inline_equation", "height": 6, "width": 8}, {"bbox": [135, 166, 229, 183], "score": 1.0, "content": " if necessary with ", "type": "text"}, {"bbox": [229, 172, 249, 179], "score": 0.88, "content": "\\pi_{\\mathrm{rld}}", "type": "inline_equation", "height": 7, "width": 20}, {"bbox": [249, 166, 254, 183], "score": 1.0, "content": ".", "type": "text"}], "index": 4}], "index": 3.5, "page_num": "page_18", "page_size": [612.0, 792.0], "bbox_fs": [70, 151, 539, 183]}, {"type": "text", "bbox": [70, 179, 541, 208], "lines": [{"bbox": [93, 180, 541, 197], "spans": [{"bbox": [93, 180, 203, 197], "score": 1.0, "content": "The remaining case ", "type": "text"}, {"bbox": [203, 182, 225, 195], "score": 0.91, "content": "C_{2,3}", "type": "inline_equation", "height": 13, "width": 22}, {"bbox": [225, 180, 314, 197], "score": 1.0, "content": " follows because ", "type": "text"}, {"bbox": [314, 182, 371, 192], "score": 0.92, "content": "\\pi^{\\prime}J0\\,=\\,J0", "type": "inline_equation", "height": 10, "width": 57}, {"bbox": [372, 180, 434, 197], "score": 1.0, "content": ": by (2.7b) ", "type": "text"}, {"bbox": [434, 182, 495, 194], "score": 0.87, "content": "\\pi\\Lambda_{1}\\notin S\\Lambda_{2}", "type": "inline_equation", "height": 12, "width": 61}, {"bbox": [495, 180, 541, 197], "score": 1.0, "content": ", and by", "type": "text"}], "index": 5}, {"bbox": [72, 195, 292, 210], "spans": [{"bbox": [72, 196, 105, 210], "score": 1.0, "content": "(2.7a) ", "type": "text"}, {"bbox": [105, 195, 162, 208], "score": 0.89, "content": "\\pi\\Lambda_{1}\\neq3\\Lambda_{1}", "type": "inline_equation", "height": 13, "width": 57}, {"bbox": [163, 196, 170, 210], "score": 1.0, "content": " (", "type": "text"}, {"bbox": [171, 195, 191, 208], "score": 0.88, "content": "3\\Lambda_{1}", "type": "inline_equation", "height": 13, "width": 20}, {"bbox": [191, 196, 216, 210], "score": 1.0, "content": " is a ", "type": "text"}, {"bbox": [216, 196, 225, 206], "score": 0.84, "content": "J", "type": "inline_equation", "height": 10, "width": 9}, {"bbox": [225, 196, 292, 210], "score": 1.0, "content": "-fixed-point).", "type": "text"}], "index": 6}], "index": 5.5, "page_num": "page_18", "page_size": [612.0, 792.0], "bbox_fs": [72, 180, 541, 210]}, {"type": "title", "bbox": [71, 221, 219, 236], "lines": [{"bbox": [71, 225, 219, 236], "spans": [{"bbox": [71, 225, 119, 236], "score": 1.0, "content": "4.5. The ", "type": "text"}, {"bbox": [119, 225, 130, 235], "score": 0.8, "content": "D", "type": "inline_equation", "height": 10, "width": 11}, {"bbox": [131, 225, 219, 236], "score": 1.0, "content": "-series argument", "type": "text"}], "index": 7}], "index": 7, "page_num": "page_18", "page_size": [612.0, 792.0]}, {"type": "text", "bbox": [70, 243, 541, 300], "lines": [{"bbox": [95, 244, 541, 259], "spans": [{"bbox": [95, 247, 124, 256], "score": 0.9, "content": "k=1", "type": "inline_equation", "height": 9, "width": 29}, {"bbox": [124, 244, 201, 259], "score": 1.0, "content": " is trivial, and ", "type": "text"}, {"bbox": [202, 245, 231, 256], "score": 0.88, "content": "k=2", "type": "inline_equation", "height": 11, "width": 29}, {"bbox": [232, 244, 398, 259], "score": 1.0, "content": " will be considered shortly. For ", "type": "text"}, {"bbox": [398, 247, 427, 256], "score": 0.9, "content": "k>2", "type": "inline_equation", "height": 9, "width": 29}, {"bbox": [427, 244, 541, 259], "score": 1.0, "content": ", Proposition 4.1 tells", "type": "text"}], "index": 8}, {"bbox": [70, 258, 541, 274], "spans": [{"bbox": [70, 258, 111, 274], "score": 1.0, "content": "us that", "type": "text"}, {"bbox": [112, 259, 189, 273], "score": 0.93, "content": "\\pi\\Lambda_{1}=J_{v}^{a}J_{s}^{b}\\Lambda_{1}", "type": "inline_equation", "height": 14, "width": 77}, {"bbox": [190, 258, 216, 274], "score": 1.0, "content": " and ", "type": "text"}, {"bbox": [216, 258, 303, 273], "score": 0.94, "content": "\\pi^{\\prime}\\Lambda_{1}=J_{v}^{a^{\\prime}}J_{s}^{b^{\\prime}}\\Lambda_{1}", "type": "inline_equation", "height": 15, "width": 87}, {"bbox": [303, 258, 329, 274], "score": 1.0, "content": ", for ", "type": "text"}, {"bbox": [329, 260, 419, 273], "score": 0.93, "content": "a,a^{\\prime},b,b^{\\prime}\\in\\{0,1\\}", "type": "inline_equation", "height": 13, "width": 90}, {"bbox": [419, 258, 541, 274], "score": 1.0, "content": ". Immediate from (3.4)", "type": "text"}], "index": 9}, {"bbox": [69, 272, 542, 289], "spans": [{"bbox": [69, 272, 109, 289], "score": 1.0, "content": "is that ", "type": "text"}, {"bbox": [110, 274, 173, 288], "score": 0.92, "content": "\\chi_{\\Lambda_{1}}[\\Lambda_{1}]>0", "type": "inline_equation", "height": 14, "width": 63}, {"bbox": [173, 272, 226, 289], "score": 1.0, "content": " and that ", "type": "text"}, {"bbox": [226, 275, 261, 287], "score": 0.92, "content": "\\chi_{\\Lambda_{1}}[\\psi]", "type": "inline_equation", "height": 12, "width": 35}, {"bbox": [262, 272, 334, 289], "score": 1.0, "content": ", for a spinor ", "type": "text"}, {"bbox": [334, 275, 343, 287], "score": 0.89, "content": "\\psi", "type": "inline_equation", "height": 12, "width": 9}, {"bbox": [343, 272, 469, 289], "score": 1.0, "content": ", takes its maximum at ", "type": "text"}, {"bbox": [469, 274, 509, 287], "score": 0.93, "content": "C^{i}J_{v}^{j}\\Lambda_{r}", "type": "inline_equation", "height": 13, "width": 40}, {"bbox": [509, 272, 542, 289], "score": 1.0, "content": ". Our", "type": "text"}], "index": 10}, {"bbox": [70, 288, 502, 303], "spans": [{"bbox": [70, 288, 176, 303], "score": 1.0, "content": "first step is to force ", "type": "text"}, {"bbox": [177, 289, 268, 301], "score": 0.93, "content": "\\pi\\Lambda_{1}=\\pi^{\\prime}\\Lambda_{1}=\\Lambda_{1}", "type": "inline_equation", "height": 12, "width": 91}, {"bbox": [268, 288, 502, 303], "score": 1.0, "content": ". Unfortunately this requires a case analysis.", "type": "text"}], "index": 11}], "index": 9.5, "page_num": "page_18", "page_size": [612.0, 792.0], "bbox_fs": [69, 244, 542, 303]}, {"type": "text", "bbox": [69, 301, 541, 358], "lines": [{"bbox": [94, 301, 542, 319], "spans": [{"bbox": [94, 301, 201, 319], "score": 1.0, "content": "Consider first even ", "type": "text"}, {"bbox": [201, 304, 235, 315], "score": 0.92, "content": "r\\,\\neq\\,4", "type": "inline_equation", "height": 11, "width": 34}, {"bbox": [235, 301, 297, 319], "score": 1.0, "content": ", and even ", "type": "text"}, {"bbox": [297, 304, 331, 313], "score": 0.88, "content": "k\\ >\\ 2", "type": "inline_equation", "height": 9, "width": 34}, {"bbox": [332, 301, 376, 319], "score": 1.0, "content": ". Now, ", "type": "text"}, {"bbox": [377, 304, 504, 316], "score": 0.92, "content": "0\\;\\neq\\;S_{\\Lambda_{1}\\Lambda_{1}}\\;=\\;S_{\\pi\\Lambda_{1},\\pi^{\\prime}\\Lambda_{1}}", "type": "inline_equation", "height": 12, "width": 127}, {"bbox": [504, 301, 542, 319], "score": 1.0, "content": " forces", "type": "text"}], "index": 12}, {"bbox": [71, 317, 541, 347], "spans": [{"bbox": [71, 325, 104, 335], "score": 0.9, "content": "b=b^{\\prime}", "type": "inline_equation", "height": 10, "width": 33}, {"bbox": [104, 324, 394, 339], "score": 1.0, "content": "; hence hitting with the simple-current automorphism ", "type": "text"}, {"bbox": [394, 317, 449, 347], "score": 0.94, "content": "\\pi\\left[{\\begin{array}{l l}{0}&{a}\\\\ {a^{\\prime}}&{b}\\end{array}}\\right]", "type": "inline_equation", "height": 30, "width": 55}, {"bbox": [450, 326, 541, 338], "score": 1.0, "content": ", we may assume", "type": "text"}], "index": 13}, {"bbox": [71, 347, 165, 361], "spans": [{"bbox": [71, 347, 162, 358], "score": 0.91, "content": "\\pi\\Lambda_{1}=\\pi^{\\prime}\\Lambda_{1}=\\Lambda_{1}", "type": "inline_equation", "height": 11, "width": 91}, {"bbox": [163, 347, 165, 361], "score": 1.0, "content": ".", "type": "text"}], "index": 14}], "index": 13, "page_num": "page_18", "page_size": [612.0, 792.0], "bbox_fs": [71, 301, 542, 361]}, {"type": "text", "bbox": [70, 358, 542, 444], "lines": [{"bbox": [93, 359, 541, 375], "spans": [{"bbox": [93, 359, 200, 375], "score": 1.0, "content": "Next consider even ", "type": "text"}, {"bbox": [200, 362, 230, 373], "score": 0.93, "content": "r\\neq4", "type": "inline_equation", "height": 11, "width": 30}, {"bbox": [230, 359, 281, 375], "score": 1.0, "content": " and odd ", "type": "text"}, {"bbox": [282, 362, 312, 371], "score": 0.9, "content": "k\\,>\\,2", "type": "inline_equation", "height": 9, "width": 30}, {"bbox": [313, 359, 374, 375], "score": 1.0, "content": ". Either of ", "type": "text"}, {"bbox": [374, 362, 439, 373], "score": 0.92, "content": "\\pi\\Lambda_{1}=J_{v}\\Lambda_{1}", "type": "inline_equation", "height": 11, "width": 65}, {"bbox": [439, 359, 458, 375], "score": 1.0, "content": " or ", "type": "text"}, {"bbox": [459, 360, 527, 373], "score": 0.92, "content": "\\pi^{\\prime}\\Lambda_{1}\\,=\\,J_{v}\\Lambda_{1}", "type": "inline_equation", "height": 13, "width": 68}, {"bbox": [527, 359, 541, 375], "score": 1.0, "content": " is", "type": "text"}], "index": 15}, {"bbox": [69, 373, 542, 392], "spans": [{"bbox": [69, 373, 210, 392], "score": 1.0, "content": "impossible, by comparing ", "type": "text"}, {"bbox": [210, 376, 246, 388], "score": 0.92, "content": "S_{\\Lambda_{1},J_{s}0}", "type": "inline_equation", "height": 12, "width": 36}, {"bbox": [247, 373, 275, 392], "score": 1.0, "content": " and ", "type": "text"}, {"bbox": [275, 376, 318, 388], "score": 0.93, "content": "S_{J_{v}\\Lambda_{1},J0}", "type": "inline_equation", "height": 12, "width": 43}, {"bbox": [319, 373, 444, 392], "score": 1.0, "content": " for any simple-current ", "type": "text"}, {"bbox": [444, 376, 453, 385], "score": 0.86, "content": "J", "type": "inline_equation", "height": 9, "width": 9}, {"bbox": [453, 373, 542, 392], "score": 1.0, "content": ". For any of the", "type": "text"}], "index": 16}, {"bbox": [70, 387, 541, 405], "spans": [{"bbox": [70, 387, 208, 405], "score": 1.0, "content": "three remaining choices of ", "type": "text"}, {"bbox": [209, 389, 249, 402], "score": 0.93, "content": "J_{v}^{a}J_{s}^{b}\\Lambda_{1}", "type": "inline_equation", "height": 13, "width": 40}, {"bbox": [249, 387, 541, 405], "score": 1.0, "content": ", we can find a simple-current automorphism of the form", "type": "text"}], "index": 17}, {"bbox": [71, 403, 541, 433], "spans": [{"bbox": [71, 403, 123, 433], "score": 0.95, "content": "\\pi\\left[{\\ast}\\quad a\\,\\right];", "type": "inline_equation", "height": 30, "width": 52}, {"bbox": [124, 409, 252, 425], "score": 1.0, "content": " hitting its inverse onto ", "type": "text"}, {"bbox": [253, 415, 260, 421], "score": 0.88, "content": "\\pi", "type": "inline_equation", "height": 6, "width": 7}, {"bbox": [260, 409, 356, 425], "score": 1.0, "content": " allows us to take ", "type": "text"}, {"bbox": [357, 412, 408, 421], "score": 0.92, "content": "a=b=0", "type": "inline_equation", "height": 9, "width": 51}, {"bbox": [408, 409, 452, 425], "score": 1.0, "content": ". Again ", "type": "text"}, {"bbox": [452, 412, 505, 424], "score": 0.95, "content": "0\\not=S_{\\Lambda_{1}\\Lambda_{1}}", "type": "inline_equation", "height": 12, "width": 53}, {"bbox": [505, 409, 541, 425], "score": 1.0, "content": " forces", "type": "text"}], "index": 18}, {"bbox": [71, 431, 420, 447], "spans": [{"bbox": [71, 433, 102, 443], "score": 0.87, "content": "b^{\\prime}=0", "type": "inline_equation", "height": 10, "width": 31}, {"bbox": [102, 431, 157, 447], "score": 1.0, "content": ", and now ", "type": "text"}, {"bbox": [157, 433, 189, 443], "score": 0.91, "content": "a^{\\prime}=1", "type": "inline_equation", "height": 10, "width": 32}, {"bbox": [189, 431, 325, 447], "score": 1.0, "content": " is forbidden. Thus again ", "type": "text"}, {"bbox": [325, 433, 416, 444], "score": 0.94, "content": "\\pi\\Lambda_{1}=\\pi^{\\prime}\\Lambda_{1}=\\Lambda_{1}", "type": "inline_equation", "height": 11, "width": 91}, {"bbox": [416, 431, 420, 447], "score": 1.0, "content": ".", "type": "text"}], "index": 19}], "index": 17, "page_num": "page_18", "page_size": [612.0, 792.0], "bbox_fs": [69, 359, 542, 447]}, {"type": "text", "bbox": [70, 444, 541, 488], "lines": [{"bbox": [95, 446, 541, 461], "spans": [{"bbox": [95, 446, 147, 461], "score": 1.0, "content": "As usual, ", "type": "text"}, {"bbox": [147, 448, 176, 457], "score": 0.9, "content": "r=4", "type": "inline_equation", "height": 9, "width": 29}, {"bbox": [176, 446, 389, 461], "score": 1.0, "content": " is complicated by triality. We can force ", "type": "text"}, {"bbox": [390, 448, 441, 459], "score": 0.93, "content": "\\pi\\Lambda_{1}=\\Lambda_{1}", "type": "inline_equation", "height": 11, "width": 51}, {"bbox": [441, 446, 541, 461], "score": 1.0, "content": ". That we can also", "type": "text"}], "index": 20}, {"bbox": [70, 460, 541, 477], "spans": [{"bbox": [70, 460, 97, 477], "score": 1.0, "content": "take ", "type": "text"}, {"bbox": [97, 461, 154, 473], "score": 0.92, "content": "\\pi^{\\prime}\\Lambda_{1}=\\Lambda_{1}", "type": "inline_equation", "height": 12, "width": 57}, {"bbox": [154, 460, 307, 477], "score": 1.0, "content": ", follows from the inequality ", "type": "text"}, {"bbox": [307, 461, 488, 474], "score": 0.92, "content": "\\chi_{\\Lambda_{1}}[\\Lambda_{1}]>\\chi_{\\Lambda_{1}}[\\Lambda_{3}]=\\chi_{\\Lambda_{1}}[\\Lambda_{4}]>0", "type": "inline_equation", "height": 13, "width": 181}, {"bbox": [488, 460, 541, 477], "score": 1.0, "content": ", valid for", "type": "text"}], "index": 21}, {"bbox": [71, 473, 442, 492], "spans": [{"bbox": [71, 476, 100, 487], "score": 0.89, "content": "k\\geq3", "type": "inline_equation", "height": 11, "width": 29}, {"bbox": [100, 473, 442, 492], "score": 1.0, "content": ". Establishing that inequality from (3.4) is equivalent to showing", "type": "text"}], "index": 22}], "index": 21, "page_num": "page_18", "page_size": [612.0, 792.0], "bbox_fs": [70, 446, 541, 492]}, {"type": "text", "bbox": [98, 500, 514, 516], "lines": [{"bbox": [98, 502, 512, 520], "spans": [{"bbox": [98, 503, 500, 516], "score": 0.77, "content": "1+\\cos(x)+\\cos(2x)+\\cos(4x)>\\cos(x/2)+\\cos(3x/2)+\\cos(5x/2)+\\cos(7x/2)>0", "type": "inline_equation"}, {"bbox": [501, 502, 512, 520], "score": 1.0, "content": "2)", "type": "text"}], "index": 23}], "index": 23, "page_num": "page_18", "page_size": [612.0, 792.0], "bbox_fs": [98, 502, 512, 520]}, {"type": "text", "bbox": [69, 528, 398, 542], "lines": [{"bbox": [70, 530, 397, 545], "spans": [{"bbox": [70, 530, 89, 545], "score": 1.0, "content": "for ", "type": "text"}, {"bbox": [89, 531, 160, 544], "score": 0.92, "content": "0<x\\le2\\pi/9", "type": "inline_equation", "height": 13, "width": 71}, {"bbox": [160, 530, 397, 545], "score": 1.0, "content": ", which can be shown e.g. using Taylor series.", "type": "text"}], "index": 24}], "index": 24, "page_num": "page_18", "page_size": [612.0, 792.0], "bbox_fs": [70, 530, 397, 545]}, {"type": "text", "bbox": [70, 543, 541, 657], "lines": [{"bbox": [93, 543, 540, 560], "spans": [{"bbox": [93, 543, 141, 560], "score": 1.0, "content": "For odd ", "type": "text"}, {"bbox": [141, 550, 147, 556], "score": 0.8, "content": "r", "type": "inline_equation", "height": 6, "width": 6}, {"bbox": [147, 543, 279, 560], "score": 1.0, "content": ", the charge-conjugation ", "type": "text"}, {"bbox": [279, 547, 289, 556], "score": 0.88, "content": "C", "type": "inline_equation", "height": 9, "width": 10}, {"bbox": [289, 543, 329, 560], "score": 1.0, "content": " equals ", "type": "text"}, {"bbox": [330, 547, 344, 558], "score": 0.91, "content": "C_{1}", "type": "inline_equation", "height": 11, "width": 14}, {"bbox": [344, 543, 508, 560], "score": 1.0, "content": ". Since it must commute with ", "type": "text"}, {"bbox": [509, 550, 516, 556], "score": 0.86, "content": "\\pi", "type": "inline_equation", "height": 6, "width": 7}, {"bbox": [516, 543, 540, 560], "score": 1.0, "content": ", i.e.", "type": "text"}], "index": 25}, {"bbox": [69, 556, 541, 574], "spans": [{"bbox": [69, 556, 96, 574], "score": 1.0, "content": "that ", "type": "text"}, {"bbox": [96, 558, 198, 573], "score": 0.93, "content": "C_{1}\\pi\\Lambda_{1}=J_{v}^{a+b}J_{s}^{b}\\Lambda_{1}", "type": "inline_equation", "height": 15, "width": 102}, {"bbox": [199, 556, 261, 574], "score": 1.0, "content": " must equal ", "type": "text"}, {"bbox": [262, 559, 352, 573], "score": 0.95, "content": "\\pi C_{1}\\Lambda_{1}=J_{v}^{a}J_{s}^{b}\\Lambda_{1}", "type": "inline_equation", "height": 14, "width": 90}, {"bbox": [353, 556, 419, 574], "score": 1.0, "content": ", we get that", "type": "text"}, {"bbox": [420, 561, 447, 570], "score": 0.9, "content": "b=0", "type": "inline_equation", "height": 9, "width": 27}, {"bbox": [448, 556, 505, 574], "score": 1.0, "content": ". Similarly ", "type": "text"}, {"bbox": [506, 560, 536, 570], "score": 0.92, "content": "b^{\\prime}=0", "type": "inline_equation", "height": 10, "width": 30}, {"bbox": [537, 556, 541, 574], "score": 1.0, "content": ".", "type": "text"}], "index": 26}, {"bbox": [70, 572, 541, 590], "spans": [{"bbox": [70, 572, 106, 590], "score": 1.0, "content": "When ", "type": "text"}, {"bbox": [106, 574, 113, 584], "score": 0.78, "content": "k", "type": "inline_equation", "height": 10, "width": 7}, {"bbox": [114, 572, 208, 590], "score": 1.0, "content": " is odd, eliminate ", "type": "text"}, {"bbox": [208, 574, 238, 584], "score": 0.86, "content": "a=1", "type": "inline_equation", "height": 10, "width": 30}, {"bbox": [238, 572, 265, 590], "score": 1.0, "content": " and ", "type": "text"}, {"bbox": [265, 574, 298, 584], "score": 0.92, "content": "a\\prime=1", "type": "inline_equation", "height": 10, "width": 33}, {"bbox": [298, 572, 377, 590], "score": 1.0, "content": " by comparing ", "type": "text"}, {"bbox": [377, 575, 414, 587], "score": 0.92, "content": "S_{\\Lambda_{1},J_{s}0}", "type": "inline_equation", "height": 12, "width": 37}, {"bbox": [414, 572, 441, 590], "score": 1.0, "content": " and ", "type": "text"}, {"bbox": [442, 575, 485, 587], "score": 0.93, "content": "S_{J_{v}\\Lambda_{1},J0}", "type": "inline_equation", "height": 12, "width": 43}, {"bbox": [485, 572, 541, 590], "score": 1.0, "content": " as before.", "type": "text"}], "index": 27}, {"bbox": [70, 587, 541, 602], "spans": [{"bbox": [70, 587, 179, 602], "score": 1.0, "content": "The hardest case is ", "type": "text"}, {"bbox": [180, 588, 187, 599], "score": 0.85, "content": "k", "type": "inline_equation", "height": 11, "width": 7}, {"bbox": [187, 587, 300, 602], "score": 1.0, "content": " even. We can force ", "type": "text"}, {"bbox": [300, 590, 354, 600], "score": 0.92, "content": "\\pi\\Lambda_{1}\\,=\\,\\Lambda_{1}", "type": "inline_equation", "height": 10, "width": 54}, {"bbox": [354, 587, 445, 602], "score": 1.0, "content": " by hitting with ", "type": "text"}, {"bbox": [445, 589, 466, 601], "score": 0.92, "content": "\\pi[a]", "type": "inline_equation", "height": 12, "width": 21}, {"bbox": [466, 587, 541, 602], "score": 1.0, "content": ". Suppose for", "type": "text"}], "index": 28}, {"bbox": [70, 601, 541, 617], "spans": [{"bbox": [70, 601, 170, 617], "score": 1.0, "content": "contradiction that ", "type": "text"}, {"bbox": [171, 601, 239, 614], "score": 0.92, "content": "\\pi^{\\prime}\\Lambda_{1}=J_{v}\\Lambda_{1}", "type": "inline_equation", "height": 13, "width": 68}, {"bbox": [239, 601, 301, 617], "score": 1.0, "content": ". We know ", "type": "text"}, {"bbox": [302, 603, 376, 616], "score": 0.93, "content": "\\pi^{\\prime}(J_{v}0)=J_{v}0", "type": "inline_equation", "height": 13, "width": 74}, {"bbox": [376, 601, 433, 617], "score": 1.0, "content": " (compare ", "type": "text"}, {"bbox": [433, 604, 470, 616], "score": 0.93, "content": "S_{\\Lambda_{1},J_{v}0}", "type": "inline_equation", "height": 12, "width": 37}, {"bbox": [470, 601, 498, 617], "score": 1.0, "content": " and ", "type": "text"}, {"bbox": [498, 603, 536, 616], "score": 0.89, "content": "S_{\\Lambda_{1},J0})", "type": "inline_equation", "height": 13, "width": 38}, {"bbox": [537, 601, 541, 617], "score": 1.0, "content": ",", "type": "text"}], "index": 29}, {"bbox": [69, 615, 540, 633], "spans": [{"bbox": [69, 615, 141, 633], "score": 1.0, "content": "so by (2.7b) ", "type": "text"}, {"bbox": [141, 616, 163, 629], "score": 0.86, "content": "\\pi\\Lambda_{r}", "type": "inline_equation", "height": 13, "width": 22}, {"bbox": [163, 615, 272, 633], "score": 1.0, "content": " must be a spinor.", "type": "text"}, {"bbox": [273, 617, 390, 630], "score": 0.92, "content": "\\chi_{\\Lambda_{1}}[\\Lambda_{r}]\\;=\\;\\chi_{J_{v}\\Lambda_{1}}[\\pi\\Lambda_{r}]", "type": "inline_equation", "height": 13, "width": 117}, {"bbox": [391, 615, 442, 633], "score": 1.0, "content": " requires ", "type": "text"}, {"bbox": [442, 617, 536, 630], "score": 0.93, "content": "\\pi\\Lambda_{r}\\,=\\,C_{1}^{i}J_{v}^{j}J_{s}\\Lambda_{r}", "type": "inline_equation", "height": 13, "width": 94}, {"bbox": [537, 615, 540, 633], "score": 1.0, "content": ".", "type": "text"}], "index": 30}, {"bbox": [69, 630, 541, 646], "spans": [{"bbox": [69, 630, 123, 646], "score": 1.0, "content": "From the ", "type": "text"}, {"bbox": [123, 631, 169, 644], "score": 0.52, "content": "\\Lambda_{1}\\boxtimes\\Lambda_{r}", "type": "inline_equation", "height": 13, "width": 46}, {"bbox": [169, 630, 245, 646], "score": 1.0, "content": " fusion we get ", "type": "text"}, {"bbox": [245, 631, 360, 644], "score": 0.92, "content": "\\pi\\Lambda_{r-1}=C_{1}^{i}J_{v}^{j}J_{s}\\Lambda_{r-1}", "type": "inline_equation", "height": 13, "width": 115}, {"bbox": [360, 630, 388, 646], "score": 1.0, "content": ", but ", "type": "text"}, {"bbox": [389, 633, 438, 641], "score": 0.92, "content": "C\\pi=\\pi C", "type": "inline_equation", "height": 8, "width": 49}, {"bbox": [438, 630, 493, 646], "score": 1.0, "content": " says that ", "type": "text"}, {"bbox": [493, 632, 541, 644], "score": 0.9, "content": "\\pi\\Lambda_{r-1}=", "type": "inline_equation", "height": 12, "width": 48}], "index": 31}, {"bbox": [71, 644, 251, 662], "spans": [{"bbox": [71, 644, 147, 659], "score": 0.91, "content": "C_{1}^{i}J_{v}^{j+1}J_{s}\\Lambda_{r-1}", "type": "inline_equation", "height": 15, "width": 76}, {"bbox": [148, 644, 251, 662], "score": 1.0, "content": " \u2014 a contradiction.", "type": "text"}], "index": 32}], "index": 28.5, "page_num": "page_18", "page_size": [612.0, 792.0], "bbox_fs": [69, 543, 541, 662]}, {"type": "text", "bbox": [70, 658, 541, 715], "lines": [{"bbox": [93, 658, 541, 675], "spans": [{"bbox": [93, 658, 239, 675], "score": 1.0, "content": "Thus in all cases we have ", "type": "text"}, {"bbox": [240, 660, 340, 672], "score": 0.92, "content": "\\pi\\Lambda_{1}\\,=\\,\\pi^{\\prime}\\Lambda_{1}\\,=\\,\\Lambda_{1}", "type": "inline_equation", "height": 12, "width": 100}, {"bbox": [341, 658, 407, 675], "score": 1.0, "content": ". We know ", "type": "text"}, {"bbox": [408, 660, 486, 673], "score": 0.93, "content": "\\pi^{\\prime}(J_{v}0)\\;=\\;J_{v}0", "type": "inline_equation", "height": 13, "width": 78}, {"bbox": [486, 658, 541, 675], "score": 1.0, "content": " (compare", "type": "text"}], "index": 33}, {"bbox": [71, 673, 541, 689], "spans": [{"bbox": [71, 673, 109, 687], "score": 0.91, "content": "S_{\\Lambda_{1},J_{v}0}", "type": "inline_equation", "height": 14, "width": 38}, {"bbox": [109, 674, 137, 689], "score": 1.0, "content": " and ", "type": "text"}, {"bbox": [137, 673, 175, 687], "score": 0.89, "content": "S_{\\Lambda_{1},J0})", "type": "inline_equation", "height": 14, "width": 38}, {"bbox": [175, 674, 198, 689], "score": 1.0, "content": ", so ", "type": "text"}, {"bbox": [198, 675, 219, 686], "score": 0.9, "content": "\\pi\\Lambda_{r}", "type": "inline_equation", "height": 11, "width": 21}, {"bbox": [220, 674, 410, 689], "score": 1.0, "content": " is a spinor and in fact must equal ", "type": "text"}, {"bbox": [411, 674, 491, 687], "score": 0.93, "content": "\\pi\\Lambda_{r}\\,=\\,C_{1}^{i}J_{v}^{j}\\Lambda_{r}", "type": "inline_equation", "height": 13, "width": 80}, {"bbox": [491, 674, 541, 689], "score": 1.0, "content": ". Hitting", "type": "text"}], "index": 34}, {"bbox": [70, 687, 542, 704], "spans": [{"bbox": [70, 687, 98, 704], "score": 1.0, "content": "with ", "type": "text"}, {"bbox": [99, 687, 147, 702], "score": 0.93, "content": "(C_{1}^{i}\\pi_{v}^{j})^{-1}", "type": "inline_equation", "height": 15, "width": 48}, {"bbox": [147, 687, 234, 704], "score": 1.0, "content": ", we can require ", "type": "text"}, {"bbox": [234, 690, 285, 700], "score": 0.91, "content": "\\pi\\Lambda_{r}=\\Lambda_{r}", "type": "inline_equation", "height": 10, "width": 51}, {"bbox": [285, 687, 322, 704], "score": 1.0, "content": ". That ", "type": "text"}, {"bbox": [323, 690, 356, 701], "score": 0.92, "content": "\\pi\\Lambda_{r-1}", "type": "inline_equation", "height": 11, "width": 33}, {"bbox": [356, 687, 445, 704], "score": 1.0, "content": " must now equal ", "type": "text"}, {"bbox": [446, 690, 471, 701], "score": 0.92, "content": "\\Lambda_{r-1}", "type": "inline_equation", "height": 11, "width": 25}, {"bbox": [472, 687, 542, 704], "score": 1.0, "content": " follows from", "type": "text"}], "index": 35}, {"bbox": [71, 703, 177, 717], "spans": [{"bbox": [71, 703, 91, 717], "score": 1.0, "content": "the ", "type": "text"}, {"bbox": [92, 703, 137, 715], "score": 0.28, "content": "\\Lambda_{1}\\boxtimes\\Lambda_{r}", "type": "inline_equation", "height": 12, "width": 45}, {"bbox": [138, 703, 177, 717], "score": 1.0, "content": " fusion.", "type": "text"}], "index": 36}], "index": 34.5, "page_num": "page_18", "page_size": [612.0, 792.0], "bbox_fs": [70, 658, 542, 717]}]} |
|
0002044v1 | 21 | where $$[x]$$ here denotes the greatest integer not more than $$x$$ . The absolute value of each
of these is quickly seen to be greater than 1 unless $$\ell\,\equiv\,\pm1$$ (mod $$2\kappa$$ ), except for the
orthogonal algebras when $$k\ \leq\ 2$$ . An isomorphism $$\mathscr{R}(X_{r,k})\,\cong\,\mathscr{R}(X_{r^{\prime},k^{\prime}})$$ would require
then that whenever $$\ell\equiv\pm1$$ (mod $$2\kappa$$ ) is coprime to $$\kappa^{\prime}$$ , it must also satisfy $$\ell\equiv\pm1$$ (mod
$$2\kappa^{\prime}$$ ), and conversely. This forces $$\kappa=\kappa^{\prime}$$ , for $$X=B$$ or $$D$$ and $$k>2$$ , or $$X=C$$ and any $$k$$ .
If $$\mathscr{R}(C_{r,k})\cong\mathscr{R}(C_{s,m})$$ , then that Galois argument implies $$r+k+1=s+m+1$$ , so
compare numbers of highest-weights: $$\big(\mathbf{\Lambda}_{r}^{r+k}\big)=\big(\mathbf{\Lambda}_{s}^{r+k}\big)$$ .
A similar argument works for the orthogonal algebras. For instance suppose $$\mathcal{R}(B_{r,k})\cong$$
$$\mathcal{R}(B_{s,m})$$ but $$B_{r,k}\ne B_{s,m}$$ , and that $$k,m\,>\,2$$ . Then Galois implies $$2r+k\,=\,2s\,+\,m$$ .
Comparing the value of $$\mathcal{D}(\Lambda_{1})$$ (the second smallest q-dimension when $$k>3$$ ), using (3.2)
with $$\lambda=0$$ , tells us that $$2s+1=k,2r+1=m$$ . Now count the number of fixed-points of
$$J$$ in both cases: $$\binom{\kappa/2-1}{r-1}=\binom{\kappa/2-1}{s-1}$$ , i.e. $$s-1=(k-1)/2$$ , a contradiction.
For comparing classical algebras with exceptional algebras, a useful device is to count
the number of weights appearing in the fusion $$\Lambda_{\star}$$ × $$\Lambda_{\star}$$ (when $$\Lambda_{\star}$$ has second smallest
q-dimension). For example, for $$A_{1,k}$$ $$\left(k>1\right)$$ , $$C_{r,k}$$ ( $$k>1$$ , except for $$C_{2,2},C_{2,3},C_{3,2})$$ , and
$$E_{7,k}$$ ( $$k>4)$$ ), we learned in §3 that this number is 2, 3, 4 respectively, so none of these can
be isomorphic.
For the orthogonal algebras at level 2, useful is the number of weights with second
smallest q-dimension (respectively $$r$$ and $$r-1$$ for $$B_{r,2}$$ and $$D_{r,2}$$ , except for $$D_{4,2}$$ ).
For the exceptional algebras, comparing $$\mathcal{D}(\boldsymbol{\Lambda}_{\star})$$ and the number of highest-weights is
effective. Recall that both $$||P_{+}||$$ and $$\mathcal{D}(\boldsymbol{\Lambda}_{\star})$$ for a fixed algebra monotonically increase with
$$k$$ to (respectively) $$\infty$$ and the Weyl dimension of $$\Lambda_{\star}$$ , which is 7, 26, and 248 for $$G_{2},F_{4},E_{8}$$
respectively. For $$E_{8,k}$$ , $$\mathcal{D}(\Lambda_{1})$$ exceeds 7 for $$k\geq5$$ , and exceeds 26 for $$k\geq11$$ , while $$F_{4,k}$$
exceeds 7 for $$k\geq4$$ . The number of highest-weights of $$E_{8,4},E_{8,10}$$ , and $$F_{4,3}$$ are 10, 135,
and 9, so only a small number of possibilities need be considered.
# References
1. R. E. Behrend, P. A. Pearce, V. B. Petkova and J.-B. Zuber, On the clas-
sification of bulk and boundary conformal field theories, Phys. Lett. B444 (1998),
163–166;
J. Fuchs and C. Schweigert, Branes: From free fields to general backgrounds,
Nucl. Phys. B530 (1998), 99–136.
2. D. Bernard, String characters from Kac–Moody automorphisms, Nucl. Phys. B288
(1987), 628–648.
3. J. B¨ockenhauer and D. E. Evans, Modular invariants from subfactors: Type I
coupling matrices and intermediate subfactors, preprint math.OA/9911239, 1999.
4. A. Coste and T. Gannon, Remarks on Galois in rational conformal field theories,
Phys. Lett. B323 (1994), 316–321.
5. A. Coste, T. Gannon and P. Ruelle, Finite group modular data, preprint hep-
th/0001158, 2000.
6. Ph. Di Francesco, P. Mathieu and D. S´en´echal, “Conformal Field Theory”,
Springer-Verlag, New York, 1997.
7. G. Faltings, A proof for the Verlinde formula, J. Alg. Geom. 3 (1994), 347–374.
| <p>where $$[x]$$ here denotes the greatest integer not more than $$x$$ . The absolute value of each
of these is quickly seen to be greater than 1 unless $$\ell\,\equiv\,\pm1$$ (mod $$2\kappa$$ ), except for the
orthogonal algebras when $$k\ \leq\ 2$$ . An isomorphism $$\mathscr{R}(X_{r,k})\,\cong\,\mathscr{R}(X_{r^{\prime},k^{\prime}})$$ would require
then that whenever $$\ell\equiv\pm1$$ (mod $$2\kappa$$ ) is coprime to $$\kappa^{\prime}$$ , it must also satisfy $$\ell\equiv\pm1$$ (mod
$$2\kappa^{\prime}$$ ), and conversely. This forces $$\kappa=\kappa^{\prime}$$ , for $$X=B$$ or $$D$$ and $$k>2$$ , or $$X=C$$ and any $$k$$ .</p>
<p>If $$\mathscr{R}(C_{r,k})\cong\mathscr{R}(C_{s,m})$$ , then that Galois argument implies $$r+k+1=s+m+1$$ , so
compare numbers of highest-weights: $$\big(\mathbf{\Lambda}_{r}^{r+k}\big)=\big(\mathbf{\Lambda}_{s}^{r+k}\big)$$ .</p>
<p>A similar argument works for the orthogonal algebras. For instance suppose $$\mathcal{R}(B_{r,k})\cong$$
$$\mathcal{R}(B_{s,m})$$ but $$B_{r,k}\ne B_{s,m}$$ , and that $$k,m\,>\,2$$ . Then Galois implies $$2r+k\,=\,2s\,+\,m$$ .
Comparing the value of $$\mathcal{D}(\Lambda_{1})$$ (the second smallest q-dimension when $$k>3$$ ), using (3.2)
with $$\lambda=0$$ , tells us that $$2s+1=k,2r+1=m$$ . Now count the number of fixed-points of
$$J$$ in both cases: $$\binom{\kappa/2-1}{r-1}=\binom{\kappa/2-1}{s-1}$$ , i.e. $$s-1=(k-1)/2$$ , a contradiction.</p>
<p>For comparing classical algebras with exceptional algebras, a useful device is to count
the number of weights appearing in the fusion $$\Lambda_{\star}$$ × $$\Lambda_{\star}$$ (when $$\Lambda_{\star}$$ has second smallest
q-dimension). For example, for $$A_{1,k}$$ $$\left(k>1\right)$$ , $$C_{r,k}$$ ( $$k>1$$ , except for $$C_{2,2},C_{2,3},C_{3,2})$$ , and
$$E_{7,k}$$ ( $$k>4)$$ ), we learned in §3 that this number is 2, 3, 4 respectively, so none of these can
be isomorphic.</p>
<p>For the orthogonal algebras at level 2, useful is the number of weights with second
smallest q-dimension (respectively $$r$$ and $$r-1$$ for $$B_{r,2}$$ and $$D_{r,2}$$ , except for $$D_{4,2}$$ ).</p>
<p>For the exceptional algebras, comparing $$\mathcal{D}(\boldsymbol{\Lambda}_{\star})$$ and the number of highest-weights is
effective. Recall that both $$||P_{+}||$$ and $$\mathcal{D}(\boldsymbol{\Lambda}_{\star})$$ for a fixed algebra monotonically increase with
$$k$$ to (respectively) $$\infty$$ and the Weyl dimension of $$\Lambda_{\star}$$ , which is 7, 26, and 248 for $$G_{2},F_{4},E_{8}$$
respectively. For $$E_{8,k}$$ , $$\mathcal{D}(\Lambda_{1})$$ exceeds 7 for $$k\geq5$$ , and exceeds 26 for $$k\geq11$$ , while $$F_{4,k}$$
exceeds 7 for $$k\geq4$$ . The number of highest-weights of $$E_{8,4},E_{8,10}$$ , and $$F_{4,3}$$ are 10, 135,
and 9, so only a small number of possibilities need be considered.</p>
<h1>References</h1>
<p>1. R. E. Behrend, P. A. Pearce, V. B. Petkova and J.-B. Zuber, On the clas-
sification of bulk and boundary conformal field theories, Phys. Lett. B444 (1998),
163–166;
J. Fuchs and C. Schweigert, Branes: From free fields to general backgrounds,
Nucl. Phys. B530 (1998), 99–136.
2. D. Bernard, String characters from Kac–Moody automorphisms, Nucl. Phys. B288
(1987), 628–648.
3. J. B¨ockenhauer and D. E. Evans, Modular invariants from subfactors: Type I
coupling matrices and intermediate subfactors, preprint math.OA/9911239, 1999.
4. A. Coste and T. Gannon, Remarks on Galois in rational conformal field theories,
Phys. Lett. B323 (1994), 316–321.
5. A. Coste, T. Gannon and P. Ruelle, Finite group modular data, preprint hep-
th/0001158, 2000.
6. Ph. Di Francesco, P. Mathieu and D. S´en´echal, “Conformal Field Theory”,
Springer-Verlag, New York, 1997.
7. G. Faltings, A proof for the Verlinde formula, J. Alg. Geom. 3 (1994), 347–374.</p>
| [{"type": "text", "coordinates": [71, 70, 541, 143], "content": "where $$[x]$$ here denotes the greatest integer not more than $$x$$ . The absolute value of each\nof these is quickly seen to be greater than 1 unless $$\\ell\\,\\equiv\\,\\pm1$$ (mod $$2\\kappa$$ ), except for the\northogonal algebras when $$k\\ \\leq\\ 2$$ . An isomorphism $$\\mathscr{R}(X_{r,k})\\,\\cong\\,\\mathscr{R}(X_{r^{\\prime},k^{\\prime}})$$ would require\nthen that whenever $$\\ell\\equiv\\pm1$$ (mod $$2\\kappa$$ ) is coprime to $$\\kappa^{\\prime}$$ , it must also satisfy $$\\ell\\equiv\\pm1$$ (mod\n$$2\\kappa^{\\prime}$$ ), and conversely. This forces $$\\kappa=\\kappa^{\\prime}$$ , for $$X=B$$ or $$D$$ and $$k>2$$ , or $$X=C$$ and any $$k$$ .", "block_type": "text", "index": 1}, {"type": "text", "coordinates": [70, 144, 541, 175], "content": "If $$\\mathscr{R}(C_{r,k})\\cong\\mathscr{R}(C_{s,m})$$ , then that Galois argument implies $$r+k+1=s+m+1$$ , so\ncompare numbers of highest-weights: $$\\big(\\mathbf{\\Lambda}_{r}^{r+k}\\big)=\\big(\\mathbf{\\Lambda}_{s}^{r+k}\\big)$$ .", "block_type": "text", "index": 2}, {"type": "text", "coordinates": [70, 176, 541, 248], "content": "A similar argument works for the orthogonal algebras. For instance suppose $$\\mathcal{R}(B_{r,k})\\cong$$\n$$\\mathcal{R}(B_{s,m})$$ but $$B_{r,k}\\ne B_{s,m}$$ , and that $$k,m\\,>\\,2$$ . Then Galois implies $$2r+k\\,=\\,2s\\,+\\,m$$ .\nComparing the value of $$\\mathcal{D}(\\Lambda_{1})$$ (the second smallest q-dimension when $$k>3$$ ), using (3.2)\nwith $$\\lambda=0$$ , tells us that $$2s+1=k,2r+1=m$$ . Now count the number of fixed-points of\n$$J$$ in both cases: $$\\binom{\\kappa/2-1}{r-1}=\\binom{\\kappa/2-1}{s-1}$$ , i.e. $$s-1=(k-1)/2$$ , a contradiction.", "block_type": "text", "index": 3}, {"type": "text", "coordinates": [71, 249, 541, 319], "content": "For comparing classical algebras with exceptional algebras, a useful device is to count\nthe number of weights appearing in the fusion $$\\Lambda_{\\star}$$ \u00d7 $$\\Lambda_{\\star}$$ (when $$\\Lambda_{\\star}$$ has second smallest\nq-dimension). For example, for $$A_{1,k}$$ $$\\left(k>1\\right)$$ , $$C_{r,k}$$ ( $$k>1$$ , except for $$C_{2,2},C_{2,3},C_{3,2})$$ , and\n$$E_{7,k}$$ ( $$k>4)$$ ), we learned in \u00a73 that this number is 2, 3, 4 respectively, so none of these can\nbe isomorphic.", "block_type": "text", "index": 4}, {"type": "text", "coordinates": [70, 321, 541, 349], "content": "For the orthogonal algebras at level 2, useful is the number of weights with second\nsmallest q-dimension (respectively $$r$$ and $$r-1$$ for $$B_{r,2}$$ and $$D_{r,2}$$ , except for $$D_{4,2}$$ ).", "block_type": "text", "index": 5}, {"type": "text", "coordinates": [70, 351, 541, 436], "content": "For the exceptional algebras, comparing $$\\mathcal{D}(\\boldsymbol{\\Lambda}_{\\star})$$ and the number of highest-weights is\neffective. Recall that both $$||P_{+}||$$ and $$\\mathcal{D}(\\boldsymbol{\\Lambda}_{\\star})$$ for a fixed algebra monotonically increase with\n$$k$$ to (respectively) $$\\infty$$ and the Weyl dimension of $$\\Lambda_{\\star}$$ , which is 7, 26, and 248 for $$G_{2},F_{4},E_{8}$$\nrespectively. For $$E_{8,k}$$ , $$\\mathcal{D}(\\Lambda_{1})$$ exceeds 7 for $$k\\geq5$$ , and exceeds 26 for $$k\\geq11$$ , while $$F_{4,k}$$\nexceeds 7 for $$k\\geq4$$ . The number of highest-weights of $$E_{8,4},E_{8,10}$$ , and $$F_{4,3}$$ are 10, 135,\nand 9, so only a small number of possibilities need be considered.", "block_type": "text", "index": 6}, {"type": "title", "coordinates": [270, 455, 342, 468], "content": "References", "block_type": "title", "index": 7}, {"type": "text", "coordinates": [78, 478, 541, 716], "content": "1. R. E. Behrend, P. A. Pearce, V. B. Petkova and J.-B. Zuber, On the clas-\nsification of bulk and boundary conformal field theories, Phys. Lett. B444 (1998),\n163\u2013166;\nJ. Fuchs and C. Schweigert, Branes: From free fields to general backgrounds,\nNucl. Phys. B530 (1998), 99\u2013136.\n2. D. Bernard, String characters from Kac\u2013Moody automorphisms, Nucl. Phys. B288\n(1987), 628\u2013648.\n3. J. B\u00a8ockenhauer and D. E. Evans, Modular invariants from subfactors: Type I\ncoupling matrices and intermediate subfactors, preprint math.OA/9911239, 1999.\n4. A. Coste and T. Gannon, Remarks on Galois in rational conformal field theories,\nPhys. Lett. B323 (1994), 316\u2013321.\n5. A. Coste, T. Gannon and P. Ruelle, Finite group modular data, preprint hep-\nth/0001158, 2000.\n6. Ph. Di Francesco, P. Mathieu and D. S\u00b4en\u00b4echal, \u201cConformal Field Theory\u201d,\nSpringer-Verlag, New York, 1997.\n7. G. Faltings, A proof for the Verlinde formula, J. Alg. Geom. 3 (1994), 347\u2013374.", "block_type": "text", "index": 8}] | [{"type": "text", "coordinates": [71, 73, 106, 89], "content": "where ", "score": 1.0, "index": 1}, {"type": "inline_equation", "coordinates": [106, 75, 120, 87], "content": "[x]", "score": 0.9, "index": 2}, {"type": "text", "coordinates": [120, 73, 381, 89], "content": " here denotes the greatest integer not more than ", "score": 1.0, "index": 3}, {"type": "inline_equation", "coordinates": [381, 78, 388, 84], "content": "x", "score": 0.89, "index": 4}, {"type": "text", "coordinates": [389, 73, 541, 89], "content": ". The absolute value of each", "score": 1.0, "index": 5}, {"type": "text", "coordinates": [70, 88, 356, 104], "content": "of these is quickly seen to be greater than 1 unless ", "score": 1.0, "index": 6}, {"type": "inline_equation", "coordinates": [357, 90, 398, 100], "content": "\\ell\\,\\equiv\\,\\pm1", "score": 0.91, "index": 7}, {"type": "text", "coordinates": [399, 88, 437, 104], "content": " (mod ", "score": 1.0, "index": 8}, {"type": "inline_equation", "coordinates": [437, 90, 450, 99], "content": "2\\kappa", "score": 0.72, "index": 9}, {"type": "text", "coordinates": [451, 88, 541, 104], "content": "), except for the", "score": 1.0, "index": 10}, {"type": "text", "coordinates": [71, 102, 212, 118], "content": "orthogonal algebras when ", "score": 1.0, "index": 11}, {"type": "inline_equation", "coordinates": [213, 104, 246, 115], "content": "k\\ \\leq\\ 2", "score": 0.92, "index": 12}, {"type": "text", "coordinates": [246, 102, 349, 118], "content": ". An isomorphism ", "score": 1.0, "index": 13}, {"type": "inline_equation", "coordinates": [350, 104, 462, 116], "content": "\\mathscr{R}(X_{r,k})\\,\\cong\\,\\mathscr{R}(X_{r^{\\prime},k^{\\prime}})", "score": 0.94, "index": 14}, {"type": "text", "coordinates": [462, 102, 541, 118], "content": " would require", "score": 1.0, "index": 15}, {"type": "text", "coordinates": [71, 117, 177, 131], "content": "then that whenever ", "score": 1.0, "index": 16}, {"type": "inline_equation", "coordinates": [178, 118, 216, 128], "content": "\\ell\\equiv\\pm1", "score": 0.9, "index": 17}, {"type": "text", "coordinates": [216, 117, 252, 131], "content": " (mod ", "score": 1.0, "index": 18}, {"type": "inline_equation", "coordinates": [252, 119, 266, 127], "content": "2\\kappa", "score": 0.66, "index": 19}, {"type": "text", "coordinates": [266, 117, 347, 131], "content": ") is coprime to ", "score": 1.0, "index": 20}, {"type": "inline_equation", "coordinates": [347, 118, 357, 127], "content": "\\kappa^{\\prime}", "score": 0.89, "index": 21}, {"type": "text", "coordinates": [358, 117, 469, 131], "content": ", it must also satisfy ", "score": 1.0, "index": 22}, {"type": "inline_equation", "coordinates": [470, 118, 507, 128], "content": "\\ell\\equiv\\pm1", "score": 0.91, "index": 23}, {"type": "text", "coordinates": [508, 117, 540, 131], "content": " (mod", "score": 1.0, "index": 24}, {"type": "inline_equation", "coordinates": [71, 132, 88, 142], "content": "2\\kappa^{\\prime}", "score": 0.77, "index": 25}, {"type": "text", "coordinates": [88, 131, 243, 145], "content": "), and conversely. This forces ", "score": 1.0, "index": 26}, {"type": "inline_equation", "coordinates": [244, 132, 277, 142], "content": "\\kappa=\\kappa^{\\prime}", "score": 0.91, "index": 27}, {"type": "text", "coordinates": [277, 131, 302, 145], "content": ", for ", "score": 1.0, "index": 28}, {"type": "inline_equation", "coordinates": [302, 133, 339, 142], "content": "X=B", "score": 0.92, "index": 29}, {"type": "text", "coordinates": [339, 131, 356, 145], "content": " or ", "score": 1.0, "index": 30}, {"type": "inline_equation", "coordinates": [357, 133, 367, 142], "content": "D", "score": 0.91, "index": 31}, {"type": "text", "coordinates": [367, 131, 393, 145], "content": " and ", "score": 1.0, "index": 32}, {"type": "inline_equation", "coordinates": [394, 133, 423, 142], "content": "k>2", "score": 0.91, "index": 33}, {"type": "text", "coordinates": [423, 131, 443, 145], "content": ", or ", "score": 1.0, "index": 34}, {"type": "inline_equation", "coordinates": [444, 133, 480, 142], "content": "X=C", "score": 0.92, "index": 35}, {"type": "text", "coordinates": [480, 131, 529, 145], "content": " and any ", "score": 1.0, "index": 36}, {"type": "inline_equation", "coordinates": [529, 133, 536, 142], "content": "k", "score": 0.9, "index": 37}, {"type": "text", "coordinates": [537, 131, 540, 145], "content": ".", "score": 1.0, "index": 38}, {"type": "text", "coordinates": [94, 146, 107, 163], "content": "If ", "score": 1.0, "index": 39}, {"type": "inline_equation", "coordinates": [107, 147, 210, 160], "content": "\\mathscr{R}(C_{r,k})\\cong\\mathscr{R}(C_{s,m})", "score": 0.93, "index": 40}, {"type": "text", "coordinates": [210, 146, 403, 163], "content": ", then that Galois argument implies ", "score": 1.0, "index": 41}, {"type": "inline_equation", "coordinates": [403, 148, 521, 158], "content": "r+k+1=s+m+1", "score": 0.92, "index": 42}, {"type": "text", "coordinates": [522, 146, 542, 163], "content": ", so", "score": 1.0, "index": 43}, {"type": "text", "coordinates": [70, 160, 269, 179], "content": "compare numbers of highest-weights: ", "score": 1.0, "index": 44}, {"type": "inline_equation", "coordinates": [270, 161, 345, 177], "content": "\\big(\\mathbf{\\Lambda}_{r}^{r+k}\\big)=\\big(\\mathbf{\\Lambda}_{s}^{r+k}\\big)", "score": 0.96, "index": 45}, {"type": "text", "coordinates": [345, 160, 349, 179], "content": ".", "score": 1.0, "index": 46}, {"type": "text", "coordinates": [94, 176, 485, 193], "content": "A similar argument works for the orthogonal algebras. For instance suppose ", "score": 1.0, "index": 47}, {"type": "inline_equation", "coordinates": [485, 178, 542, 191], "content": "\\mathcal{R}(B_{r,k})\\cong", "score": 0.93, "index": 48}, {"type": "inline_equation", "coordinates": [71, 193, 117, 205], "content": "\\mathcal{R}(B_{s,m})", "score": 0.93, "index": 49}, {"type": "text", "coordinates": [117, 191, 144, 207], "content": " but ", "score": 1.0, "index": 50}, {"type": "inline_equation", "coordinates": [144, 194, 212, 205], "content": "B_{r,k}\\ne B_{s,m}", "score": 0.93, "index": 51}, {"type": "text", "coordinates": [212, 191, 271, 207], "content": ", and that ", "score": 1.0, "index": 52}, {"type": "inline_equation", "coordinates": [271, 193, 320, 205], "content": "k,m\\,>\\,2", "score": 0.89, "index": 53}, {"type": "text", "coordinates": [321, 191, 443, 207], "content": ". Then Galois implies ", "score": 1.0, "index": 54}, {"type": "inline_equation", "coordinates": [444, 194, 536, 204], "content": "2r+k\\,=\\,2s\\,+\\,m", "score": 0.91, "index": 55}, {"type": "text", "coordinates": [536, 191, 541, 207], "content": ".", "score": 1.0, "index": 56}, {"type": "text", "coordinates": [72, 207, 198, 221], "content": "Comparing the value of ", "score": 1.0, "index": 57}, {"type": "inline_equation", "coordinates": [198, 207, 231, 220], "content": "\\mathcal{D}(\\Lambda_{1})", "score": 0.94, "index": 58}, {"type": "text", "coordinates": [231, 207, 442, 221], "content": " (the second smallest q-dimension when ", "score": 1.0, "index": 59}, {"type": "inline_equation", "coordinates": [443, 208, 472, 217], "content": "k>3", "score": 0.9, "index": 60}, {"type": "text", "coordinates": [472, 207, 541, 221], "content": "), using (3.2)", "score": 1.0, "index": 61}, {"type": "text", "coordinates": [71, 221, 98, 235], "content": "with ", "score": 1.0, "index": 62}, {"type": "inline_equation", "coordinates": [98, 222, 127, 231], "content": "\\lambda=0", "score": 0.9, "index": 63}, {"type": "text", "coordinates": [128, 221, 200, 235], "content": ", tells us that ", "score": 1.0, "index": 64}, {"type": "inline_equation", "coordinates": [201, 222, 320, 233], "content": "2s+1=k,2r+1=m", "score": 0.47, "index": 65}, {"type": "text", "coordinates": [320, 221, 543, 235], "content": ". Now count the number of fixed-points of", "score": 1.0, "index": 66}, {"type": "inline_equation", "coordinates": [71, 237, 79, 246], "content": "J", "score": 0.89, "index": 67}, {"type": "text", "coordinates": [80, 227, 159, 258], "content": " in both cases: ", "score": 1.0, "index": 68}, {"type": "inline_equation", "coordinates": [160, 234, 255, 250], "content": "\\binom{\\kappa/2-1}{r-1}=\\binom{\\kappa/2-1}{s-1}", "score": 0.93, "index": 69}, {"type": "text", "coordinates": [255, 227, 281, 258], "content": ", i.e. ", "score": 1.0, "index": 70}, {"type": "inline_equation", "coordinates": [281, 235, 372, 249], "content": "s-1=(k-1)/2", "score": 0.92, "index": 71}, {"type": "text", "coordinates": [373, 227, 467, 258], "content": ", a contradiction.", "score": 1.0, "index": 72}, {"type": "text", "coordinates": [93, 248, 542, 266], "content": "For comparing classical algebras with exceptional algebras, a useful device is to count", "score": 1.0, "index": 73}, {"type": "text", "coordinates": [70, 264, 326, 280], "content": "the number of weights appearing in the fusion ", "score": 1.0, "index": 74}, {"type": "inline_equation", "coordinates": [326, 264, 341, 277], "content": "\\Lambda_{\\star}", "score": 0.77, "index": 75}, {"type": "text", "coordinates": [342, 264, 358, 280], "content": "\u00d7 ", "score": 1.0, "index": 76}, {"type": "inline_equation", "coordinates": [358, 264, 373, 277], "content": "\\Lambda_{\\star}", "score": 0.73, "index": 77}, {"type": "text", "coordinates": [374, 264, 415, 280], "content": "(when ", "score": 1.0, "index": 78}, {"type": "inline_equation", "coordinates": [415, 264, 429, 277], "content": "\\Lambda_{\\star}", "score": 0.86, "index": 79}, {"type": "text", "coordinates": [430, 264, 541, 280], "content": "has second smallest", "score": 1.0, "index": 80}, {"type": "text", "coordinates": [70, 278, 237, 294], "content": "q-dimension). For example, for ", "score": 1.0, "index": 81}, {"type": "inline_equation", "coordinates": [238, 280, 261, 293], "content": "A_{1,k}", "score": 0.84, "index": 82}, {"type": "text", "coordinates": [261, 278, 267, 294], "content": " ", "score": 1.0, "index": 83}, {"type": "inline_equation", "coordinates": [267, 278, 302, 292], "content": "\\left(k>1\\right)", "score": 0.43, "index": 84}, {"type": "text", "coordinates": [302, 278, 309, 294], "content": ", ", "score": 1.0, "index": 85}, {"type": "inline_equation", "coordinates": [309, 278, 332, 293], "content": "C_{r,k}", "score": 0.69, "index": 86}, {"type": "text", "coordinates": [333, 278, 339, 294], "content": " (", "score": 1.0, "index": 87}, {"type": "inline_equation", "coordinates": [340, 279, 370, 291], "content": "k>1", "score": 0.82, "index": 88}, {"type": "text", "coordinates": [370, 278, 433, 294], "content": ", except for ", "score": 1.0, "index": 89}, {"type": "inline_equation", "coordinates": [433, 280, 513, 293], "content": "C_{2,2},C_{2,3},C_{3,2})", "score": 0.92, "index": 90}, {"type": "text", "coordinates": [513, 278, 542, 294], "content": ", and", "score": 1.0, "index": 91}, {"type": "inline_equation", "coordinates": [71, 295, 93, 307], "content": "E_{7,k}", "score": 0.86, "index": 92}, {"type": "text", "coordinates": [94, 294, 101, 308], "content": " (", "score": 1.0, "index": 93}, {"type": "inline_equation", "coordinates": [101, 294, 133, 306], "content": "k>4)", "score": 0.51, "index": 94}, {"type": "text", "coordinates": [133, 294, 541, 308], "content": "), we learned in \u00a73 that this number is 2, 3, 4 respectively, so none of these can", "score": 1.0, "index": 95}, {"type": "text", "coordinates": [70, 308, 148, 322], "content": "be isomorphic.", "score": 1.0, "index": 96}, {"type": "text", "coordinates": [95, 323, 541, 337], "content": "For the orthogonal algebras at level 2, useful is the number of weights with second", "score": 1.0, "index": 97}, {"type": "text", "coordinates": [70, 338, 254, 353], "content": "smallest q-dimension (respectively ", "score": 1.0, "index": 98}, {"type": "inline_equation", "coordinates": [254, 342, 260, 348], "content": "r", "score": 0.87, "index": 99}, {"type": "text", "coordinates": [260, 338, 286, 353], "content": " and ", "score": 1.0, "index": 100}, {"type": "inline_equation", "coordinates": [286, 337, 313, 349], "content": "r-1", "score": 0.86, "index": 101}, {"type": "text", "coordinates": [314, 338, 335, 353], "content": " for ", "score": 1.0, "index": 102}, {"type": "inline_equation", "coordinates": [335, 338, 357, 351], "content": "B_{r,2}", "score": 0.91, "index": 103}, {"type": "text", "coordinates": [357, 338, 383, 353], "content": " and ", "score": 1.0, "index": 104}, {"type": "inline_equation", "coordinates": [384, 339, 407, 351], "content": "D_{r,2}", "score": 0.92, "index": 105}, {"type": "text", "coordinates": [407, 338, 469, 353], "content": ", except for ", "score": 1.0, "index": 106}, {"type": "inline_equation", "coordinates": [470, 339, 492, 351], "content": "D_{4,2}", "score": 0.92, "index": 107}, {"type": "text", "coordinates": [493, 338, 502, 353], "content": ").", "score": 1.0, "index": 108}, {"type": "text", "coordinates": [93, 352, 308, 367], "content": "For the exceptional algebras, comparing ", "score": 1.0, "index": 109}, {"type": "inline_equation", "coordinates": [309, 352, 342, 366], "content": "\\mathcal{D}(\\boldsymbol{\\Lambda}_{\\star})", "score": 0.92, "index": 110}, {"type": "text", "coordinates": [342, 352, 541, 367], "content": " and the number of highest-weights is", "score": 1.0, "index": 111}, {"type": "text", "coordinates": [70, 365, 210, 383], "content": "effective. Recall that both ", "score": 1.0, "index": 112}, {"type": "inline_equation", "coordinates": [210, 368, 237, 380], "content": "||P_{+}||", "score": 0.94, "index": 113}, {"type": "text", "coordinates": [237, 365, 263, 383], "content": "and ", "score": 1.0, "index": 114}, {"type": "inline_equation", "coordinates": [263, 368, 296, 380], "content": "\\mathcal{D}(\\boldsymbol{\\Lambda}_{\\star})", "score": 0.94, "index": 115}, {"type": "text", "coordinates": [296, 365, 541, 383], "content": " for a fixed algebra monotonically increase with", "score": 1.0, "index": 116}, {"type": "inline_equation", "coordinates": [71, 383, 78, 392], "content": "k", "score": 0.86, "index": 117}, {"type": "text", "coordinates": [78, 381, 169, 396], "content": " to (respectively) ", "score": 1.0, "index": 118}, {"type": "inline_equation", "coordinates": [170, 386, 182, 392], "content": "\\infty", "score": 0.86, "index": 119}, {"type": "text", "coordinates": [182, 381, 326, 396], "content": "and the Weyl dimension of ", "score": 1.0, "index": 120}, {"type": "inline_equation", "coordinates": [327, 383, 341, 393], "content": "\\Lambda_{\\star}", "score": 0.91, "index": 121}, {"type": "text", "coordinates": [341, 381, 486, 396], "content": ", which is 7, 26, and 248 for ", "score": 1.0, "index": 122}, {"type": "inline_equation", "coordinates": [487, 383, 540, 394], "content": "G_{2},F_{4},E_{8}", "score": 0.93, "index": 123}, {"type": "text", "coordinates": [70, 396, 163, 411], "content": "respectively. For ", "score": 1.0, "index": 124}, {"type": "inline_equation", "coordinates": [163, 397, 186, 410], "content": "E_{8,k}", "score": 0.92, "index": 125}, {"type": "text", "coordinates": [186, 396, 193, 411], "content": ", ", "score": 1.0, "index": 126}, {"type": "inline_equation", "coordinates": [194, 397, 226, 409], "content": "\\mathcal{D}(\\Lambda_{1})", "score": 0.93, "index": 127}, {"type": "text", "coordinates": [226, 396, 302, 411], "content": " exceeds 7 for ", "score": 1.0, "index": 128}, {"type": "inline_equation", "coordinates": [303, 397, 333, 408], "content": "k\\geq5", "score": 0.91, "index": 129}, {"type": "text", "coordinates": [333, 396, 442, 411], "content": ", and exceeds 26 for ", "score": 1.0, "index": 130}, {"type": "inline_equation", "coordinates": [442, 397, 479, 408], "content": "k\\geq11", "score": 0.88, "index": 131}, {"type": "text", "coordinates": [479, 396, 518, 411], "content": ", while ", "score": 1.0, "index": 132}, {"type": "inline_equation", "coordinates": [518, 397, 539, 409], "content": "F_{4,k}", "score": 0.92, "index": 133}, {"type": "text", "coordinates": [70, 409, 144, 425], "content": "exceeds 7 for ", "score": 1.0, "index": 134}, {"type": "inline_equation", "coordinates": [144, 412, 175, 422], "content": "k\\geq4", "score": 0.92, "index": 135}, {"type": "text", "coordinates": [175, 409, 366, 425], "content": ". The number of highest-weights of ", "score": 1.0, "index": 136}, {"type": "inline_equation", "coordinates": [367, 411, 421, 424], "content": "E_{8,4},E_{8,10}", "score": 0.92, "index": 137}, {"type": "text", "coordinates": [421, 409, 452, 425], "content": ", and ", "score": 1.0, "index": 138}, {"type": "inline_equation", "coordinates": [452, 412, 473, 424], "content": "F_{4,3}", "score": 0.92, "index": 139}, {"type": "text", "coordinates": [473, 409, 541, 425], "content": " are 10, 135,", "score": 1.0, "index": 140}, {"type": "text", "coordinates": [70, 424, 415, 438], "content": "and 9, so only a small number of possibilities need be considered.", "score": 1.0, "index": 141}, {"type": "text", "coordinates": [270, 457, 342, 469], "content": "References", "score": 1.0, "index": 142}, {"type": "text", "coordinates": [79, 481, 539, 495], "content": "1. R. E. Behrend, P. A. Pearce, V. B. Petkova and J.-B. Zuber, On the clas-", "score": 1.0, "index": 143}, {"type": "text", "coordinates": [94, 495, 540, 510], "content": "sification of bulk and boundary conformal field theories, Phys. Lett. B444 (1998),", "score": 1.0, "index": 144}, {"type": "text", "coordinates": [95, 511, 142, 523], "content": "163\u2013166;", "score": 1.0, "index": 145}, {"type": "text", "coordinates": [95, 525, 539, 539], "content": "J. Fuchs and C. Schweigert, Branes: From free fields to general backgrounds,", "score": 1.0, "index": 146}, {"type": "text", "coordinates": [95, 539, 276, 554], "content": "Nucl. Phys. B530 (1998), 99\u2013136.", "score": 1.0, "index": 147}, {"type": "text", "coordinates": [78, 554, 541, 570], "content": "2. D. Bernard, String characters from Kac\u2013Moody automorphisms, Nucl. Phys. B288", "score": 1.0, "index": 148}, {"type": "text", "coordinates": [95, 570, 182, 583], "content": "(1987), 628\u2013648.", "score": 1.0, "index": 149}, {"type": "text", "coordinates": [78, 583, 542, 600], "content": "3. J. B\u00a8ockenhauer and D. E. Evans, Modular invariants from subfactors: Type I", "score": 1.0, "index": 150}, {"type": "text", "coordinates": [94, 598, 523, 615], "content": "coupling matrices and intermediate subfactors, preprint math.OA/9911239, 1999.", "score": 1.0, "index": 151}, {"type": "text", "coordinates": [78, 612, 541, 630], "content": "4. A. Coste and T. Gannon, Remarks on Galois in rational conformal field theories,", "score": 1.0, "index": 152}, {"type": "text", "coordinates": [95, 627, 279, 644], "content": "Phys. Lett. B323 (1994), 316\u2013321.", "score": 1.0, "index": 153}, {"type": "text", "coordinates": [78, 642, 540, 659], "content": "5. A. Coste, T. Gannon and P. Ruelle, Finite group modular data, preprint hep-", "score": 1.0, "index": 154}, {"type": "text", "coordinates": [95, 658, 190, 672], "content": "th/0001158, 2000.", "score": 1.0, "index": 155}, {"type": "text", "coordinates": [78, 672, 541, 689], "content": "6. Ph. Di Francesco, P. Mathieu and D. S\u00b4en\u00b4echal, \u201cConformal Field Theory\u201d,", "score": 1.0, "index": 156}, {"type": "text", "coordinates": [95, 689, 271, 702], "content": "Springer-Verlag, New York, 1997.", "score": 1.0, "index": 157}, {"type": "text", "coordinates": [79, 702, 525, 718], "content": "7. G. Faltings, A proof for the Verlinde formula, J. Alg. Geom. 3 (1994), 347\u2013374.", "score": 1.0, "index": 158}] | [] | [{"type": "inline", "coordinates": [106, 75, 120, 87], "content": "[x]", "caption": ""}, {"type": "inline", "coordinates": [381, 78, 388, 84], "content": "x", "caption": ""}, {"type": "inline", "coordinates": [357, 90, 398, 100], "content": "\\ell\\,\\equiv\\,\\pm1", "caption": ""}, {"type": "inline", "coordinates": [437, 90, 450, 99], "content": "2\\kappa", "caption": ""}, {"type": "inline", "coordinates": [213, 104, 246, 115], "content": "k\\ \\leq\\ 2", "caption": ""}, {"type": "inline", "coordinates": [350, 104, 462, 116], "content": "\\mathscr{R}(X_{r,k})\\,\\cong\\,\\mathscr{R}(X_{r^{\\prime},k^{\\prime}})", "caption": ""}, {"type": "inline", "coordinates": [178, 118, 216, 128], "content": "\\ell\\equiv\\pm1", "caption": ""}, {"type": "inline", "coordinates": [252, 119, 266, 127], "content": "2\\kappa", "caption": ""}, {"type": "inline", "coordinates": [347, 118, 357, 127], "content": "\\kappa^{\\prime}", "caption": ""}, {"type": "inline", "coordinates": [470, 118, 507, 128], "content": "\\ell\\equiv\\pm1", "caption": ""}, {"type": "inline", "coordinates": [71, 132, 88, 142], "content": "2\\kappa^{\\prime}", "caption": ""}, {"type": "inline", "coordinates": [244, 132, 277, 142], "content": "\\kappa=\\kappa^{\\prime}", "caption": ""}, {"type": "inline", "coordinates": [302, 133, 339, 142], "content": "X=B", "caption": ""}, {"type": "inline", "coordinates": [357, 133, 367, 142], "content": "D", "caption": ""}, {"type": "inline", "coordinates": [394, 133, 423, 142], "content": "k>2", "caption": ""}, {"type": "inline", "coordinates": [444, 133, 480, 142], "content": "X=C", "caption": ""}, {"type": "inline", "coordinates": [529, 133, 536, 142], "content": "k", "caption": ""}, {"type": "inline", "coordinates": [107, 147, 210, 160], "content": "\\mathscr{R}(C_{r,k})\\cong\\mathscr{R}(C_{s,m})", "caption": ""}, {"type": "inline", "coordinates": [403, 148, 521, 158], "content": "r+k+1=s+m+1", "caption": ""}, {"type": "inline", "coordinates": [270, 161, 345, 177], "content": "\\big(\\mathbf{\\Lambda}_{r}^{r+k}\\big)=\\big(\\mathbf{\\Lambda}_{s}^{r+k}\\big)", "caption": ""}, {"type": "inline", "coordinates": [485, 178, 542, 191], "content": "\\mathcal{R}(B_{r,k})\\cong", "caption": ""}, {"type": "inline", "coordinates": [71, 193, 117, 205], "content": "\\mathcal{R}(B_{s,m})", "caption": ""}, {"type": "inline", "coordinates": [144, 194, 212, 205], "content": "B_{r,k}\\ne B_{s,m}", "caption": ""}, {"type": "inline", "coordinates": [271, 193, 320, 205], "content": "k,m\\,>\\,2", "caption": ""}, {"type": "inline", "coordinates": [444, 194, 536, 204], "content": "2r+k\\,=\\,2s\\,+\\,m", "caption": ""}, {"type": "inline", "coordinates": [198, 207, 231, 220], "content": "\\mathcal{D}(\\Lambda_{1})", "caption": ""}, {"type": "inline", "coordinates": [443, 208, 472, 217], "content": "k>3", "caption": ""}, {"type": "inline", "coordinates": [98, 222, 127, 231], "content": "\\lambda=0", "caption": ""}, {"type": "inline", "coordinates": [201, 222, 320, 233], "content": "2s+1=k,2r+1=m", "caption": ""}, {"type": "inline", "coordinates": [71, 237, 79, 246], "content": "J", "caption": ""}, {"type": "inline", "coordinates": [160, 234, 255, 250], "content": "\\binom{\\kappa/2-1}{r-1}=\\binom{\\kappa/2-1}{s-1}", "caption": ""}, {"type": "inline", "coordinates": [281, 235, 372, 249], "content": "s-1=(k-1)/2", "caption": ""}, {"type": "inline", "coordinates": [326, 264, 341, 277], "content": "\\Lambda_{\\star}", "caption": ""}, {"type": "inline", "coordinates": [358, 264, 373, 277], "content": "\\Lambda_{\\star}", "caption": ""}, {"type": "inline", "coordinates": [415, 264, 429, 277], "content": "\\Lambda_{\\star}", "caption": ""}, {"type": "inline", "coordinates": [238, 280, 261, 293], "content": "A_{1,k}", "caption": ""}, {"type": "inline", "coordinates": [267, 278, 302, 292], "content": "\\left(k>1\\right)", "caption": ""}, {"type": "inline", "coordinates": [309, 278, 332, 293], "content": "C_{r,k}", "caption": ""}, {"type": "inline", "coordinates": [340, 279, 370, 291], "content": "k>1", "caption": ""}, {"type": "inline", "coordinates": [433, 280, 513, 293], "content": "C_{2,2},C_{2,3},C_{3,2})", "caption": ""}, {"type": "inline", "coordinates": [71, 295, 93, 307], "content": "E_{7,k}", "caption": ""}, {"type": "inline", "coordinates": [101, 294, 133, 306], "content": "k>4)", "caption": ""}, {"type": "inline", "coordinates": [254, 342, 260, 348], "content": "r", "caption": ""}, {"type": "inline", "coordinates": [286, 337, 313, 349], "content": "r-1", "caption": ""}, {"type": "inline", "coordinates": [335, 338, 357, 351], "content": "B_{r,2}", "caption": ""}, {"type": "inline", "coordinates": [384, 339, 407, 351], "content": "D_{r,2}", "caption": ""}, {"type": "inline", "coordinates": [470, 339, 492, 351], "content": "D_{4,2}", "caption": ""}, {"type": "inline", "coordinates": [309, 352, 342, 366], "content": "\\mathcal{D}(\\boldsymbol{\\Lambda}_{\\star})", "caption": ""}, {"type": "inline", "coordinates": [210, 368, 237, 380], "content": "||P_{+}||", "caption": ""}, {"type": "inline", "coordinates": [263, 368, 296, 380], "content": "\\mathcal{D}(\\boldsymbol{\\Lambda}_{\\star})", "caption": ""}, {"type": "inline", "coordinates": [71, 383, 78, 392], "content": "k", "caption": ""}, {"type": "inline", "coordinates": [170, 386, 182, 392], "content": "\\infty", "caption": ""}, {"type": "inline", "coordinates": [327, 383, 341, 393], "content": "\\Lambda_{\\star}", "caption": ""}, {"type": "inline", "coordinates": [487, 383, 540, 394], "content": "G_{2},F_{4},E_{8}", "caption": ""}, {"type": "inline", "coordinates": [163, 397, 186, 410], "content": "E_{8,k}", "caption": ""}, {"type": "inline", "coordinates": [194, 397, 226, 409], "content": "\\mathcal{D}(\\Lambda_{1})", "caption": ""}, {"type": "inline", "coordinates": [303, 397, 333, 408], "content": "k\\geq5", "caption": ""}, {"type": "inline", "coordinates": [442, 397, 479, 408], "content": "k\\geq11", "caption": ""}, {"type": "inline", "coordinates": [518, 397, 539, 409], "content": "F_{4,k}", "caption": ""}, {"type": "inline", "coordinates": [144, 412, 175, 422], "content": "k\\geq4", "caption": ""}, {"type": "inline", "coordinates": [367, 411, 421, 424], "content": "E_{8,4},E_{8,10}", "caption": ""}, {"type": "inline", "coordinates": [452, 412, 473, 424], "content": "F_{4,3}", "caption": ""}] | [] | [612.0, 792.0] | [{"type": "text", "text": "where $[x]$ here denotes the greatest integer not more than $x$ . The absolute value of each of these is quickly seen to be greater than 1 unless $\\ell\\,\\equiv\\,\\pm1$ (mod $2\\kappa$ ), except for the orthogonal algebras when $k\\ \\leq\\ 2$ . An isomorphism $\\mathscr{R}(X_{r,k})\\,\\cong\\,\\mathscr{R}(X_{r^{\\prime},k^{\\prime}})$ would require then that whenever $\\ell\\equiv\\pm1$ (mod $2\\kappa$ ) is coprime to $\\kappa^{\\prime}$ , it must also satisfy $\\ell\\equiv\\pm1$ (mod $2\\kappa^{\\prime}$ ), and conversely. This forces $\\kappa=\\kappa^{\\prime}$ , for $X=B$ or $D$ and $k>2$ , or $X=C$ and any $k$ . ", "page_idx": 21}, {"type": "text", "text": "If $\\mathscr{R}(C_{r,k})\\cong\\mathscr{R}(C_{s,m})$ , then that Galois argument implies $r+k+1=s+m+1$ , so compare numbers of highest-weights: $\\big(\\mathbf{\\Lambda}_{r}^{r+k}\\big)=\\big(\\mathbf{\\Lambda}_{s}^{r+k}\\big)$ . ", "page_idx": 21}, {"type": "text", "text": "A similar argument works for the orthogonal algebras. For instance suppose $\\mathcal{R}(B_{r,k})\\cong$ $\\mathcal{R}(B_{s,m})$ but $B_{r,k}\\ne B_{s,m}$ , and that $k,m\\,>\\,2$ . Then Galois implies $2r+k\\,=\\,2s\\,+\\,m$ . Comparing the value of $\\mathcal{D}(\\Lambda_{1})$ (the second smallest q-dimension when $k>3$ ), using (3.2) with $\\lambda=0$ , tells us that $2s+1=k,2r+1=m$ . Now count the number of fixed-points of $J$ in both cases: $\\binom{\\kappa/2-1}{r-1}=\\binom{\\kappa/2-1}{s-1}$ , i.e. $s-1=(k-1)/2$ , a contradiction. ", "page_idx": 21}, {"type": "text", "text": "For comparing classical algebras with exceptional algebras, a useful device is to count the number of weights appearing in the fusion $\\Lambda_{\\star}$ \u00d7 $\\Lambda_{\\star}$ (when $\\Lambda_{\\star}$ has second smallest q-dimension). For example, for $A_{1,k}$ $\\left(k>1\\right)$ , $C_{r,k}$ ( $k>1$ , except for $C_{2,2},C_{2,3},C_{3,2})$ , and $E_{7,k}$ ( $k>4)$ ), we learned in \u00a73 that this number is 2, 3, 4 respectively, so none of these can be isomorphic. ", "page_idx": 21}, {"type": "text", "text": "For the orthogonal algebras at level 2, useful is the number of weights with second smallest q-dimension (respectively $r$ and $r-1$ for $B_{r,2}$ and $D_{r,2}$ , except for $D_{4,2}$ ). ", "page_idx": 21}, {"type": "text", "text": "For the exceptional algebras, comparing $\\mathcal{D}(\\boldsymbol{\\Lambda}_{\\star})$ and the number of highest-weights is effective. Recall that both $||P_{+}||$ and $\\mathcal{D}(\\boldsymbol{\\Lambda}_{\\star})$ for a fixed algebra monotonically increase with $k$ to (respectively) $\\infty$ and the Weyl dimension of $\\Lambda_{\\star}$ , which is 7, 26, and 248 for $G_{2},F_{4},E_{8}$ respectively. For $E_{8,k}$ , $\\mathcal{D}(\\Lambda_{1})$ exceeds 7 for $k\\geq5$ , and exceeds 26 for $k\\geq11$ , while $F_{4,k}$ exceeds 7 for $k\\geq4$ . The number of highest-weights of $E_{8,4},E_{8,10}$ , and $F_{4,3}$ are 10, 135, and 9, so only a small number of possibilities need be considered. ", "page_idx": 21}, {"type": "text", "text": "References ", "text_level": 1, "page_idx": 21}, {"type": "text", "text": "1. R. E. Behrend, P. A. Pearce, V. B. Petkova and J.-B. Zuber, On the classification of bulk and boundary conformal field theories, Phys. Lett. B444 (1998), \n163\u2013166; J. Fuchs and C. Schweigert, Branes: From free fields to general backgrounds, Nucl. Phys. B530 (1998), 99\u2013136. \n2. D. Bernard, String characters from Kac\u2013Moody automorphisms, Nucl. Phys. B288 (1987), 628\u2013648. \n3. J. B\u00a8ockenhauer and D. E. Evans, Modular invariants from subfactors: Type I coupling matrices and intermediate subfactors, preprint math.OA/9911239, 1999. \n4. A. Coste and T. Gannon, Remarks on Galois in rational conformal field theories, Phys. Lett. B323 (1994), 316\u2013321. \n5. A. Coste, T. Gannon and P. Ruelle, Finite group modular data, preprint hepth/0001158, 2000. \n6. Ph. Di Francesco, P. Mathieu and D. S\u00b4en\u00b4echal, \u201cConformal Field Theory\u201d, Springer-Verlag, New York, 1997. \n7. G. Faltings, A proof for the Verlinde formula, J. Alg. Geom. 3 (1994), 347\u2013374. 8. M. Finkelberg, An equivalence of fusion categories, Geom. Func. Anal. 6 (1996), 249\u2013267. 9. I. B. Frenkel, Representations of affine Lie algebras, Hecke modular forms and Korteg-de Vries type equations, in: \u201cLie algebras and related topics\u201d, Lecture Notes in Math, Vol. 933, Springer-Verlag, New York, 1982. \n10. I. B. Frenkel, Y.-Z. Huang and J. Lepowsky, \u201cOn axiomatic approaches to vertex operator algebras and modules\u201d, Memoirs Amer. Math. Soc. 104 (1993). \n11. J. Fr\u00a8ohlich and T. Kerler, \u201cQuantum groups, quantum categories and quantum field theory\u201d, Lecture Notes in Mathematics, Vol. 1542, Springer-Verlag, Berlin, 1993. \n12. J. Fuchs, Simple WZW currents, Commun. Math. Phys. 136 (1991), 345\u2013356. \n13. J. Fuchs, B. Gato-Rivera, A. N. Schellekens and C. Schweigert, Modular invariants and fusion automorphisms from Galois theory, Phys. Lett. B334 (1994), 113\u2013120. \n14. J. Fuchs and P. van Driel, WZW fusion rules, quantum groups, and the modular matrix $S$ , Nucl. Phys. B346 (1990), 632\u2013648. \n15. J. Fuchs and P. van Driel, Fusion rule engineering, Lett. Math. Phys. 23 (1991), 11\u201318. \n16. T. Gannon, WZW commutants, lattices, and level-one partition functions, Nucl. Phys. B396 (1993), 708\u2013736; P. Ruelle, E. Thiran and J. Weyers, Implications of an arithmetical symmetry of the commutant for modular invariants, Nucl. Phys. B402 (1993), 693\u2013708. \n17. T. Gannon, Symmetries of the Kac-Peterson modular matrices of affine algebras, Invent. math. 122 (1995), 341\u2013357. \n18. T. Gannon, Ph. Ruelle and M. A. Walton, Automorphism modular invariants of current algebras, Commun. Math. Phys. 179 (1996), 121\u2013156. \n19. G. Georgiev and O. Mathieu, Cat\u00b4egorie de fusion pour les groupes de Chevalley, C. R. Acad. Sci. Paris 315 (1992), 659\u2013662. \n20. F. M. Goodman and H. Wenzl, Littlewood-Richardson coefficients for Hecke algebras at roots of unity, Adv. Math. 82 (1990), 244\u2013265. \n21. Y.-Z. Huang and J. Lepowsky, Intertwining operator algebras and vertex tensor categories for affine Lie algebras, Duke Math. J. 99 (1999), 113\u2013134. \n22. V. G. Kac, Simple Lie groups and the Legendre symbol, in: \u201cLie algebras, group theory, and partially ordered algebraic structures\u201d, Lecture Notes in Math, Vol. 848, Springer-Verlag, Berlin, 1981. \n23. V. G. Kac, \u201cInfinite Dimensional Lie algebras\u201d, 3rd edition, Cambridge University Press, Cambridge, 1990. \n24. V. G. Kac and D. H. Peterson, Infinite-dimensional Lie algebras, theta functions and modular forms, Adv. Math. 53 (1984), 125\u2013264. \n25. V. G. Kac and M. Wakimoto, Modular and conformal constraints in representation theory of affine algebras, Adv. Math. 70 (1988), 156\u2013236. \n26. G. Lusztig, Exotic Fourier transform, Duke Math. J. 73 (1994), 227\u2013241. \n27. I. G. Macdonald, \u201cSymmetric functions and Hall polynomials\u201d, 2nd edition, Oxford University Press, New York, 1995. \n28. W. G. McKay, R. V. Moody and J. Patera, Decomposition of tensor products of $E_{8}$ representations, Alg., Groups Geom. 3 (1986), 286\u2013328. \n29. W. G. McKay, J. Patera and D. W. Rand, \u201cTables of representations of simple Lie algebras\u201d, Vol. 1, Centre de Recherches Math\u00b4ematiques, Univ\u00b4ersit\u00b4e de Montr\u00b4eal, 1990. \n30. W. Nahm, Conformal field theories, dilogarithms, and 3-dimensional manifolds, in: \u201cInterface between physics and mathematics\u201d, World-Scientific, 1994, (W. Nahm and J.-M. Shen, Eds.), World-Scientific, Singapore, 1994. \n31. A. N. Schellekens, Fusion rule automorphisms from integer spin simple currents, Phys. Lett. B244 (1990), 255\u2013260. \n32. V. G. Turaev, \u201cQuantum invariants of knots and 3-manifolds\u201d, Walter de Gruyter, Berlin, 1994. \n33. E. Verlinde, Fusion rules and modular transformations in 2D conformal field theory, Nucl. Phys. 300 (1988), 360\u2013376. \n34. D. Verstegen, New exceptional modular invariant partition functions for simple Kac\u2013Moody algebras, Nucl. Phys. B346 (1990), 349\u2013386. \n35. M. A. Walton, Algorithm for WZW fusion rules: a proof, Phys. Lett. B241 (1990), 365\u2013368. \n36. A. J. Wassermann, Operator algebras and conformal field theory, in: \u201cProc. ICM, Zurich\", Birkhauser, Basel, 1995. \n37. E. Witten, The Verlinde formula and the cohomology of the Grassmannian, in: \u201cGeometry, Topology and Physics\u201d, International Press, Cambridge, MA, 1995. ", "page_idx": 21}] | [{"category_id": 1, "poly": [197, 976, 1503, 976, 1503, 1212, 197, 1212], "score": 0.98}, {"category_id": 1, "poly": [197, 489, 1504, 489, 1504, 689, 197, 689], "score": 0.975}, {"category_id": 1, "poly": [198, 692, 1503, 692, 1503, 888, 198, 888], "score": 0.973}, {"category_id": 1, "poly": [217, 1329, 1504, 1329, 1504, 1990, 217, 1990], "score": 0.96}, {"category_id": 1, "poly": [197, 892, 1504, 892, 1504, 972, 197, 972], "score": 0.944}, {"category_id": 1, "poly": [198, 197, 1505, 197, 1505, 399, 198, 399], "score": 0.942}, {"category_id": 1, "poly": [196, 401, 1505, 401, 1505, 487, 196, 487], "score": 0.907}, {"category_id": 2, "poly": [831, 2032, 869, 2032, 869, 2062, 831, 2062], "score": 0.851}, {"category_id": 0, "poly": [750, 1264, 951, 1264, 951, 1302, 750, 1302], "score": 0.843}, {"category_id": 13, "poly": [750, 449, 959, 449, 959, 492, 750, 492], "score": 0.96, "latex": "\\big(\\mathbf{\\Lambda}_{r}^{r+k}\\big)=\\big(\\mathbf{\\Lambda}_{s}^{r+k}\\big)"}, {"category_id": 13, "poly": [732, 1023, 823, 1023, 823, 1058, 732, 1058], "score": 0.94, "latex": "\\mathcal{D}(\\boldsymbol{\\Lambda}_{\\star})"}, {"category_id": 13, "poly": [585, 1023, 660, 1023, 660, 1058, 585, 1058], "score": 0.94, "latex": "||P_{+}||"}, {"category_id": 13, "poly": [973, 289, 1284, 289, 1284, 324, 973, 324], "score": 0.94, "latex": "\\mathscr{R}(X_{r,k})\\,\\cong\\,\\mathscr{R}(X_{r^{\\prime},k^{\\prime}})"}, {"category_id": 13, "poly": [552, 576, 643, 576, 643, 612, 552, 612], "score": 0.94, "latex": "\\mathcal{D}(\\Lambda_{1})"}, {"category_id": 13, "poly": [199, 537, 325, 537, 325, 572, 199, 572], "score": 0.93, "latex": "\\mathcal{R}(B_{s,m})"}, {"category_id": 13, "poly": [445, 650, 710, 650, 710, 696, 445, 696], "score": 0.93, "latex": "\\binom{\\kappa/2-1}{r-1}=\\binom{\\kappa/2-1}{s-1}"}, {"category_id": 13, "poly": [402, 539, 590, 539, 590, 572, 402, 572], "score": 0.93, "latex": "B_{r,k}\\ne B_{s,m}"}, {"category_id": 13, "poly": [539, 1103, 629, 1103, 629, 1137, 539, 1137], "score": 0.93, "latex": "\\mathcal{D}(\\Lambda_{1})"}, {"category_id": 13, "poly": [299, 411, 585, 411, 585, 447, 299, 447], "score": 0.93, "latex": "\\mathscr{R}(C_{r,k})\\cong\\mathscr{R}(C_{s,m})"}, {"category_id": 13, "poly": [1349, 496, 1507, 496, 1507, 532, 1349, 532], "score": 0.93, "latex": "\\mathcal{R}(B_{r,k})\\cong"}, {"category_id": 13, "poly": [1353, 1065, 1500, 1065, 1500, 1096, 1353, 1096], "score": 0.93, "latex": "G_{2},F_{4},E_{8}"}, {"category_id": 13, "poly": [840, 371, 942, 371, 942, 395, 840, 395], "score": 0.92, "latex": "X=B"}, {"category_id": 13, "poly": [1234, 371, 1335, 371, 1335, 395, 1234, 395], "score": 0.92, "latex": "X=C"}, {"category_id": 13, "poly": [1204, 780, 1426, 780, 1426, 815, 1204, 815], "score": 0.92, "latex": "C_{2,2},C_{2,3},C_{3,2})"}, {"category_id": 13, "poly": [1258, 1145, 1315, 1145, 1315, 1179, 1258, 1179], "score": 0.92, "latex": "F_{4,3}"}, {"category_id": 13, "poly": [1440, 1105, 1499, 1105, 1499, 1138, 1440, 1138], "score": 0.92, "latex": "F_{4,k}"}, {"category_id": 13, "poly": [859, 980, 951, 980, 951, 1017, 859, 1017], "score": 0.92, "latex": "\\mathcal{D}(\\boldsymbol{\\Lambda}_{\\star})"}, {"category_id": 13, "poly": [455, 1105, 517, 1105, 517, 1139, 455, 1139], "score": 0.92, "latex": "E_{8,k}"}, {"category_id": 13, "poly": [783, 653, 1036, 653, 1036, 692, 783, 692], "score": 0.92, "latex": "s-1=(k-1)/2"}, {"category_id": 13, "poly": [1020, 1142, 1170, 1142, 1170, 1178, 1020, 1178], "score": 0.92, "latex": "E_{8,4},E_{8,10}"}, {"category_id": 13, "poly": [592, 291, 684, 291, 684, 320, 592, 320], "score": 0.92, "latex": "k\\ \\leq\\ 2"}, {"category_id": 13, "poly": [1067, 943, 1131, 943, 1131, 976, 1067, 976], "score": 0.92, "latex": "D_{r,2}"}, {"category_id": 13, "poly": [1121, 413, 1449, 413, 1449, 441, 1121, 441], "score": 0.92, "latex": "r+k+1=s+m+1"}, {"category_id": 13, "poly": [1306, 943, 1369, 943, 1369, 977, 1306, 977], "score": 0.92, "latex": "D_{4,2}"}, {"category_id": 13, "poly": [402, 1145, 487, 1145, 487, 1174, 402, 1174], "score": 0.92, "latex": "k\\geq4"}, {"category_id": 13, "poly": [932, 940, 993, 940, 993, 977, 932, 977], "score": 0.91, "latex": "B_{r,2}"}, {"category_id": 13, "poly": [909, 1064, 948, 1064, 948, 1094, 909, 1094], "score": 0.91, "latex": "\\Lambda_{\\star}"}, {"category_id": 13, "poly": [842, 1105, 926, 1105, 926, 1134, 842, 1134], "score": 0.91, "latex": "k\\geq5"}, {"category_id": 13, "poly": [678, 369, 770, 369, 770, 395, 678, 395], "score": 0.91, "latex": "\\kappa=\\kappa^{\\prime}"}, {"category_id": 13, "poly": [1095, 371, 1175, 371, 1175, 396, 1095, 396], "score": 0.91, "latex": "k>2"}, {"category_id": 13, "poly": [1306, 330, 1411, 330, 1411, 358, 1306, 358], "score": 0.91, "latex": "\\ell\\equiv\\pm1"}, {"category_id": 13, "poly": [992, 251, 1108, 251, 1108, 278, 992, 278], "score": 0.91, "latex": "\\ell\\,\\equiv\\,\\pm1"}, {"category_id": 13, "poly": [992, 371, 1021, 371, 1021, 395, 992, 395], "score": 0.91, "latex": "D"}, {"category_id": 13, "poly": [1234, 539, 1490, 539, 1490, 567, 1234, 567], "score": 0.91, "latex": "2r+k\\,=\\,2s\\,+\\,m"}, {"category_id": 13, "poly": [1231, 579, 1312, 579, 1312, 604, 1231, 604], "score": 0.9, "latex": "k>3"}, {"category_id": 13, "poly": [297, 209, 334, 209, 334, 244, 297, 244], "score": 0.9, "latex": "[x]"}, {"category_id": 13, "poly": [274, 619, 355, 619, 355, 644, 274, 644], "score": 0.9, "latex": "\\lambda=0"}, {"category_id": 13, "poly": [495, 330, 601, 330, 601, 357, 495, 357], "score": 0.9, "latex": "\\ell\\equiv\\pm1"}, {"category_id": 13, "poly": [1472, 371, 1491, 371, 1491, 395, 1472, 395], "score": 0.9, "latex": "k"}, {"category_id": 13, "poly": [199, 659, 222, 659, 222, 684, 199, 684], "score": 0.89, "latex": "J"}, {"category_id": 13, "poly": [1061, 219, 1080, 219, 1080, 235, 1061, 235], "score": 0.89, "latex": "x"}, {"category_id": 13, "poly": [965, 329, 994, 329, 994, 355, 965, 355], "score": 0.89, "latex": "\\kappa^{\\prime}"}, {"category_id": 13, "poly": [755, 537, 891, 537, 891, 570, 755, 570], "score": 0.89, "latex": "k,m\\,>\\,2"}, {"category_id": 13, "poly": [1230, 1103, 1332, 1103, 1332, 1134, 1230, 1134], "score": 0.88, "latex": "k\\geq11"}, {"category_id": 13, "poly": [707, 952, 723, 952, 723, 967, 707, 967], "score": 0.87, "latex": "r"}, {"category_id": 13, "poly": [473, 1074, 506, 1074, 506, 1089, 473, 1089], "score": 0.86, "latex": "\\infty"}, {"category_id": 13, "poly": [1155, 736, 1194, 736, 1194, 770, 1155, 770], "score": 0.86, "latex": "\\Lambda_{\\star}"}, {"category_id": 13, "poly": [199, 821, 261, 821, 261, 855, 199, 855], "score": 0.86, "latex": "E_{7,k}"}, {"category_id": 13, "poly": [797, 938, 872, 938, 872, 970, 797, 970], "score": 0.86, "latex": "r-1"}, {"category_id": 13, "poly": [199, 1065, 218, 1065, 218, 1090, 199, 1090], "score": 0.86, "latex": "k"}, {"category_id": 13, "poly": [662, 780, 725, 780, 725, 815, 662, 815], "score": 0.84, "latex": "A_{1,k}"}, {"category_id": 13, "poly": [945, 775, 1028, 775, 1028, 809, 945, 809], "score": 0.82, "latex": "k>1"}, {"category_id": 13, "poly": [199, 369, 246, 369, 246, 396, 199, 396], "score": 0.77, "latex": "2\\kappa^{\\prime}"}, {"category_id": 13, "poly": [908, 734, 949, 734, 949, 770, 908, 770], "score": 0.77, "latex": "\\Lambda_{\\star}"}, {"category_id": 13, "poly": [997, 734, 1038, 734, 1038, 770, 997, 770], "score": 0.73, "latex": "\\Lambda_{\\star}"}, {"category_id": 13, "poly": [1215, 252, 1252, 252, 1252, 275, 1215, 275], "score": 0.72, "latex": "2\\kappa"}, {"category_id": 13, "poly": [861, 774, 924, 774, 924, 815, 861, 815], "score": 0.69, "latex": "C_{r,k}"}, {"category_id": 13, "poly": [702, 332, 739, 332, 739, 355, 702, 355], "score": 0.66, "latex": "2\\kappa"}, {"category_id": 13, "poly": [282, 819, 371, 819, 371, 850, 282, 850], "score": 0.51, "latex": "k>4)"}, {"category_id": 13, "poly": [559, 617, 889, 617, 889, 648, 559, 648], "score": 0.47, "latex": "2s+1=k,2r+1=m"}, {"category_id": 13, "poly": [744, 774, 840, 774, 840, 812, 744, 812], "score": 0.43, "latex": "\\left(k>1\\right)"}, {"category_id": 13, "poly": [560, 618, 711, 618, 711, 647, 560, 647], "score": 0.39, "latex": "2s+1=k"}, {"category_id": 15, "poly": [261.0, 978.0, 858.0, 978.0, 858.0, 1022.0, 261.0, 1022.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [952.0, 978.0, 1505.0, 978.0, 1505.0, 1022.0, 952.0, 1022.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [197.0, 1016.0, 584.0, 1016.0, 584.0, 1064.0, 197.0, 1064.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [661.0, 1016.0, 731.0, 1016.0, 731.0, 1064.0, 661.0, 1064.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [824.0, 1016.0, 1505.0, 1016.0, 1505.0, 1064.0, 824.0, 1064.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [197.0, 1060.0, 198.0, 1060.0, 198.0, 1101.0, 197.0, 1101.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [219.0, 1060.0, 472.0, 1060.0, 472.0, 1101.0, 219.0, 1101.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [507.0, 1060.0, 908.0, 1060.0, 908.0, 1101.0, 507.0, 1101.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [949.0, 1060.0, 1352.0, 1060.0, 1352.0, 1101.0, 949.0, 1101.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1501.0, 1060.0, 1505.0, 1060.0, 1505.0, 1101.0, 1501.0, 1101.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [197.0, 1100.0, 454.0, 1100.0, 454.0, 1142.0, 197.0, 1142.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [518.0, 1100.0, 538.0, 1100.0, 538.0, 1142.0, 518.0, 1142.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [630.0, 1100.0, 841.0, 1100.0, 841.0, 1142.0, 630.0, 1142.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [927.0, 1100.0, 1229.0, 1100.0, 1229.0, 1142.0, 927.0, 1142.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1333.0, 1100.0, 1439.0, 1100.0, 1439.0, 1142.0, 1333.0, 1142.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1500.0, 1100.0, 1503.0, 1100.0, 1503.0, 1142.0, 1500.0, 1142.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [195.0, 1137.0, 401.0, 1137.0, 401.0, 1183.0, 195.0, 1183.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [488.0, 1137.0, 1019.0, 1137.0, 1019.0, 1183.0, 488.0, 1183.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1171.0, 1137.0, 1257.0, 1137.0, 1257.0, 1183.0, 1171.0, 1183.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1316.0, 1137.0, 1503.0, 1137.0, 1503.0, 1183.0, 1316.0, 1183.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [197.0, 1180.0, 1153.0, 1180.0, 1153.0, 1217.0, 197.0, 1217.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [263.0, 491.0, 1348.0, 491.0, 1348.0, 537.0, 263.0, 537.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [197.0, 533.0, 198.0, 533.0, 198.0, 577.0, 197.0, 577.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [326.0, 533.0, 401.0, 533.0, 401.0, 577.0, 326.0, 577.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [591.0, 533.0, 754.0, 533.0, 754.0, 577.0, 591.0, 577.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [892.0, 533.0, 1233.0, 533.0, 1233.0, 577.0, 892.0, 577.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1491.0, 533.0, 1503.0, 533.0, 1503.0, 577.0, 1491.0, 577.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [200.0, 575.0, 551.0, 575.0, 551.0, 614.0, 200.0, 614.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [644.0, 575.0, 1230.0, 575.0, 1230.0, 614.0, 644.0, 614.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1313.0, 575.0, 1503.0, 575.0, 1503.0, 614.0, 1313.0, 614.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [198.0, 614.0, 273.0, 614.0, 273.0, 653.0, 198.0, 653.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [356.0, 614.0, 558.0, 614.0, 558.0, 653.0, 356.0, 653.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [890.0, 614.0, 1509.0, 614.0, 1509.0, 653.0, 890.0, 653.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [187.0, 631.0, 198.0, 631.0, 198.0, 717.0, 187.0, 717.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [223.0, 631.0, 444.0, 631.0, 444.0, 717.0, 223.0, 717.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [711.0, 631.0, 782.0, 631.0, 782.0, 717.0, 711.0, 717.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1037.0, 631.0, 1298.0, 631.0, 1298.0, 717.0, 1037.0, 717.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [598.75, 656.0, 707.75, 656.0, 707.75, 692.0, 598.75, 692.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [259.0, 691.0, 1506.0, 691.0, 1506.0, 741.0, 259.0, 741.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [196.0, 734.0, 907.0, 734.0, 907.0, 778.0, 196.0, 778.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [950.0, 734.0, 996.0, 734.0, 996.0, 778.0, 950.0, 778.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1039.0, 734.0, 1154.0, 734.0, 1154.0, 778.0, 1039.0, 778.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1195.0, 734.0, 1503.0, 734.0, 1503.0, 778.0, 1195.0, 778.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [195.0, 773.0, 661.0, 773.0, 661.0, 819.0, 195.0, 819.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [726.0, 773.0, 743.0, 773.0, 743.0, 819.0, 726.0, 819.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [841.0, 773.0, 860.0, 773.0, 860.0, 819.0, 841.0, 819.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [925.0, 773.0, 944.0, 773.0, 944.0, 819.0, 925.0, 819.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1029.0, 773.0, 1203.0, 773.0, 1203.0, 819.0, 1029.0, 819.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1427.0, 773.0, 1506.0, 773.0, 1506.0, 819.0, 1427.0, 819.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [262.0, 818.0, 281.0, 818.0, 281.0, 856.0, 262.0, 856.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [372.0, 818.0, 1503.0, 818.0, 1503.0, 856.0, 372.0, 856.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [196.0, 856.0, 413.0, 856.0, 413.0, 896.0, 196.0, 896.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [222.0, 1338.0, 1498.0, 1338.0, 1498.0, 1376.0, 222.0, 1376.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [262.0, 1376.0, 1502.0, 1376.0, 1502.0, 1419.0, 262.0, 1419.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [265.0, 1420.0, 395.0, 1420.0, 395.0, 1454.0, 265.0, 1454.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [264.0, 1459.0, 1499.0, 1459.0, 1499.0, 1499.0, 264.0, 1499.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [265.0, 1499.0, 768.0, 1499.0, 768.0, 1539.0, 265.0, 1539.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [218.0, 1541.0, 1503.0, 1541.0, 1503.0, 1585.0, 218.0, 1585.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [264.0, 1584.0, 507.0, 1584.0, 507.0, 1621.0, 264.0, 1621.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [218.0, 1622.0, 1506.0, 1622.0, 1506.0, 1667.0, 218.0, 1667.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [262.0, 1662.0, 1453.0, 1662.0, 1453.0, 1709.0, 262.0, 1709.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [218.0, 1700.0, 1504.0, 1700.0, 1504.0, 1752.0, 218.0, 1752.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [264.0, 1744.0, 777.0, 1744.0, 777.0, 1789.0, 264.0, 1789.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [218.0, 1786.0, 1501.0, 1786.0, 1501.0, 1832.0, 218.0, 1832.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [265.0, 1830.0, 530.0, 1830.0, 530.0, 1868.0, 265.0, 1868.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [218.0, 1869.0, 1503.0, 1869.0, 1503.0, 1914.0, 218.0, 1914.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [264.0, 1914.0, 755.0, 1914.0, 755.0, 1951.0, 264.0, 1951.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [220.0, 1951.0, 1460.0, 1951.0, 1460.0, 1995.0, 220.0, 1995.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [264.0, 898.0, 1503.0, 898.0, 1503.0, 938.0, 264.0, 938.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [197.0, 939.0, 706.0, 939.0, 706.0, 983.0, 197.0, 983.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [724.0, 939.0, 796.0, 939.0, 796.0, 983.0, 724.0, 983.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [873.0, 939.0, 931.0, 939.0, 931.0, 983.0, 873.0, 983.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [994.0, 939.0, 1066.0, 939.0, 1066.0, 983.0, 994.0, 983.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1132.0, 939.0, 1305.0, 939.0, 1305.0, 983.0, 1132.0, 983.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1370.0, 939.0, 1397.0, 939.0, 1397.0, 983.0, 1370.0, 983.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [199.0, 205.0, 296.0, 205.0, 296.0, 249.0, 199.0, 249.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [335.0, 205.0, 1060.0, 205.0, 1060.0, 249.0, 335.0, 249.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1081.0, 205.0, 1504.0, 205.0, 1504.0, 249.0, 1081.0, 249.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [196.0, 245.0, 991.0, 245.0, 991.0, 289.0, 196.0, 289.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1109.0, 245.0, 1214.0, 245.0, 1214.0, 289.0, 1109.0, 289.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1253.0, 245.0, 1505.0, 245.0, 1505.0, 289.0, 1253.0, 289.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [198.0, 285.0, 591.0, 285.0, 591.0, 329.0, 198.0, 329.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [685.0, 285.0, 972.0, 285.0, 972.0, 329.0, 685.0, 329.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1285.0, 285.0, 1504.0, 285.0, 1504.0, 329.0, 1285.0, 329.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [198.0, 326.0, 494.0, 326.0, 494.0, 366.0, 198.0, 366.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [602.0, 326.0, 701.0, 326.0, 701.0, 366.0, 602.0, 366.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [740.0, 326.0, 964.0, 326.0, 964.0, 366.0, 740.0, 366.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [995.0, 326.0, 1305.0, 326.0, 1305.0, 366.0, 995.0, 366.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1412.0, 326.0, 1502.0, 326.0, 1502.0, 366.0, 1412.0, 366.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [198.0, 366.0, 198.0, 366.0, 198.0, 405.0, 198.0, 405.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [247.0, 366.0, 677.0, 366.0, 677.0, 405.0, 247.0, 405.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [771.0, 366.0, 839.0, 366.0, 839.0, 405.0, 771.0, 405.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [943.0, 366.0, 991.0, 366.0, 991.0, 405.0, 943.0, 405.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1022.0, 366.0, 1094.0, 366.0, 1094.0, 405.0, 1022.0, 405.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1176.0, 366.0, 1233.0, 366.0, 1233.0, 405.0, 1176.0, 405.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1336.0, 366.0, 1471.0, 366.0, 1471.0, 405.0, 1336.0, 405.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1492.0, 366.0, 1502.0, 366.0, 1502.0, 405.0, 1492.0, 405.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [262.0, 408.0, 298.0, 408.0, 298.0, 453.0, 262.0, 453.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [586.0, 408.0, 1120.0, 408.0, 1120.0, 453.0, 586.0, 453.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1450.0, 408.0, 1507.0, 408.0, 1507.0, 453.0, 1450.0, 453.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [196.0, 447.0, 749.0, 447.0, 749.0, 498.0, 196.0, 498.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [960.0, 447.0, 971.0, 447.0, 971.0, 498.0, 960.0, 498.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [828.0, 2033.0, 873.0, 2033.0, 873.0, 2069.0, 828.0, 2069.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [752.0, 1270.0, 951.0, 1270.0, 951.0, 1305.0, 752.0, 1305.0], "score": 1.0, "text": ""}] | {"preproc_blocks": [{"type": "text", "bbox": [71, 70, 541, 143], "lines": [{"bbox": [71, 73, 541, 89], "spans": [{"bbox": [71, 73, 106, 89], "score": 1.0, "content": "where ", "type": "text"}, {"bbox": [106, 75, 120, 87], "score": 0.9, "content": "[x]", "type": "inline_equation", "height": 12, "width": 14}, {"bbox": [120, 73, 381, 89], "score": 1.0, "content": " here denotes the greatest integer not more than ", "type": "text"}, {"bbox": [381, 78, 388, 84], "score": 0.89, "content": "x", "type": "inline_equation", "height": 6, "width": 7}, {"bbox": [389, 73, 541, 89], "score": 1.0, "content": ". The absolute value of each", "type": "text"}], "index": 0}, {"bbox": [70, 88, 541, 104], "spans": [{"bbox": [70, 88, 356, 104], "score": 1.0, "content": "of these is quickly seen to be greater than 1 unless ", "type": "text"}, {"bbox": [357, 90, 398, 100], "score": 0.91, "content": "\\ell\\,\\equiv\\,\\pm1", "type": "inline_equation", "height": 10, "width": 41}, {"bbox": [399, 88, 437, 104], "score": 1.0, "content": " (mod ", "type": "text"}, {"bbox": [437, 90, 450, 99], "score": 0.72, "content": "2\\kappa", "type": "inline_equation", "height": 9, "width": 13}, {"bbox": [451, 88, 541, 104], "score": 1.0, "content": "), except for the", "type": "text"}], "index": 1}, {"bbox": [71, 102, 541, 118], "spans": [{"bbox": [71, 102, 212, 118], "score": 1.0, "content": "orthogonal algebras when ", "type": "text"}, {"bbox": [213, 104, 246, 115], "score": 0.92, "content": "k\\ \\leq\\ 2", "type": "inline_equation", "height": 11, "width": 33}, {"bbox": [246, 102, 349, 118], "score": 1.0, "content": ". An isomorphism ", "type": "text"}, {"bbox": [350, 104, 462, 116], "score": 0.94, "content": "\\mathscr{R}(X_{r,k})\\,\\cong\\,\\mathscr{R}(X_{r^{\\prime},k^{\\prime}})", "type": "inline_equation", "height": 12, "width": 112}, {"bbox": [462, 102, 541, 118], "score": 1.0, "content": " would require", "type": "text"}], "index": 2}, {"bbox": [71, 117, 540, 131], "spans": [{"bbox": [71, 117, 177, 131], "score": 1.0, "content": "then that whenever ", "type": "text"}, {"bbox": [178, 118, 216, 128], "score": 0.9, "content": "\\ell\\equiv\\pm1", "type": "inline_equation", "height": 10, "width": 38}, {"bbox": [216, 117, 252, 131], "score": 1.0, "content": " (mod ", "type": "text"}, {"bbox": [252, 119, 266, 127], "score": 0.66, "content": "2\\kappa", "type": "inline_equation", "height": 8, "width": 14}, {"bbox": [266, 117, 347, 131], "score": 1.0, "content": ") is coprime to ", "type": "text"}, {"bbox": [347, 118, 357, 127], "score": 0.89, "content": "\\kappa^{\\prime}", "type": "inline_equation", "height": 9, "width": 10}, {"bbox": [358, 117, 469, 131], "score": 1.0, "content": ", it must also satisfy ", "type": "text"}, {"bbox": [470, 118, 507, 128], "score": 0.91, "content": "\\ell\\equiv\\pm1", "type": "inline_equation", "height": 10, "width": 37}, {"bbox": [508, 117, 540, 131], "score": 1.0, "content": " (mod", "type": "text"}], "index": 3}, {"bbox": [71, 131, 540, 145], "spans": [{"bbox": [71, 132, 88, 142], "score": 0.77, "content": "2\\kappa^{\\prime}", "type": "inline_equation", "height": 10, "width": 17}, {"bbox": [88, 131, 243, 145], "score": 1.0, "content": "), and conversely. This forces ", "type": "text"}, {"bbox": [244, 132, 277, 142], "score": 0.91, "content": "\\kappa=\\kappa^{\\prime}", "type": "inline_equation", "height": 10, "width": 33}, {"bbox": [277, 131, 302, 145], "score": 1.0, "content": ", for ", "type": "text"}, {"bbox": [302, 133, 339, 142], "score": 0.92, "content": "X=B", "type": "inline_equation", "height": 9, "width": 37}, {"bbox": [339, 131, 356, 145], "score": 1.0, "content": " or ", "type": "text"}, {"bbox": [357, 133, 367, 142], "score": 0.91, "content": "D", "type": "inline_equation", "height": 9, "width": 10}, {"bbox": [367, 131, 393, 145], "score": 1.0, "content": " and ", "type": "text"}, {"bbox": [394, 133, 423, 142], "score": 0.91, "content": "k>2", "type": "inline_equation", "height": 9, "width": 29}, {"bbox": [423, 131, 443, 145], "score": 1.0, "content": ", or ", "type": "text"}, {"bbox": [444, 133, 480, 142], "score": 0.92, "content": "X=C", "type": "inline_equation", "height": 9, "width": 36}, {"bbox": [480, 131, 529, 145], "score": 1.0, "content": " and any ", "type": "text"}, {"bbox": [529, 133, 536, 142], "score": 0.9, "content": "k", "type": "inline_equation", "height": 9, "width": 7}, {"bbox": [537, 131, 540, 145], "score": 1.0, "content": ".", "type": "text"}], "index": 4}], "index": 2}, {"type": "text", "bbox": [70, 144, 541, 175], "lines": [{"bbox": [94, 146, 542, 163], "spans": [{"bbox": [94, 146, 107, 163], "score": 1.0, "content": "If ", "type": "text"}, {"bbox": [107, 147, 210, 160], "score": 0.93, "content": "\\mathscr{R}(C_{r,k})\\cong\\mathscr{R}(C_{s,m})", "type": "inline_equation", "height": 13, "width": 103}, {"bbox": [210, 146, 403, 163], "score": 1.0, "content": ", then that Galois argument implies ", "type": "text"}, {"bbox": [403, 148, 521, 158], "score": 0.92, "content": "r+k+1=s+m+1", "type": "inline_equation", "height": 10, "width": 118}, {"bbox": [522, 146, 542, 163], "score": 1.0, "content": ", so", "type": "text"}], "index": 5}, {"bbox": [70, 160, 349, 179], "spans": [{"bbox": [70, 160, 269, 179], "score": 1.0, "content": "compare numbers of highest-weights: ", "type": "text"}, {"bbox": [270, 161, 345, 177], "score": 0.96, "content": "\\big(\\mathbf{\\Lambda}_{r}^{r+k}\\big)=\\big(\\mathbf{\\Lambda}_{s}^{r+k}\\big)", "type": "inline_equation", "height": 16, "width": 75}, {"bbox": [345, 160, 349, 179], "score": 1.0, "content": ".", "type": "text"}], "index": 6}], "index": 5.5}, {"type": "text", "bbox": [70, 176, 541, 248], "lines": [{"bbox": [94, 176, 542, 193], "spans": [{"bbox": [94, 176, 485, 193], "score": 1.0, "content": "A similar argument works for the orthogonal algebras. For instance suppose ", "type": "text"}, {"bbox": [485, 178, 542, 191], "score": 0.93, "content": "\\mathcal{R}(B_{r,k})\\cong", "type": "inline_equation", "height": 13, "width": 57}], "index": 7}, {"bbox": [71, 191, 541, 207], "spans": [{"bbox": [71, 193, 117, 205], "score": 0.93, "content": "\\mathcal{R}(B_{s,m})", "type": "inline_equation", "height": 12, "width": 46}, {"bbox": [117, 191, 144, 207], "score": 1.0, "content": " but ", "type": "text"}, {"bbox": [144, 194, 212, 205], "score": 0.93, "content": "B_{r,k}\\ne B_{s,m}", "type": "inline_equation", "height": 11, "width": 68}, {"bbox": [212, 191, 271, 207], "score": 1.0, "content": ", and that ", "type": "text"}, {"bbox": [271, 193, 320, 205], "score": 0.89, "content": "k,m\\,>\\,2", "type": "inline_equation", "height": 12, "width": 49}, {"bbox": [321, 191, 443, 207], "score": 1.0, "content": ". Then Galois implies ", "type": "text"}, {"bbox": [444, 194, 536, 204], "score": 0.91, "content": "2r+k\\,=\\,2s\\,+\\,m", "type": "inline_equation", "height": 10, "width": 92}, {"bbox": [536, 191, 541, 207], "score": 1.0, "content": ".", "type": "text"}], "index": 8}, {"bbox": [72, 207, 541, 221], "spans": [{"bbox": [72, 207, 198, 221], "score": 1.0, "content": "Comparing the value of ", "type": "text"}, {"bbox": [198, 207, 231, 220], "score": 0.94, "content": "\\mathcal{D}(\\Lambda_{1})", "type": "inline_equation", "height": 13, "width": 33}, {"bbox": [231, 207, 442, 221], "score": 1.0, "content": " (the second smallest q-dimension when ", "type": "text"}, {"bbox": [443, 208, 472, 217], "score": 0.9, "content": "k>3", "type": "inline_equation", "height": 9, "width": 29}, {"bbox": [472, 207, 541, 221], "score": 1.0, "content": "), using (3.2)", "type": "text"}], "index": 9}, {"bbox": [71, 221, 543, 235], "spans": [{"bbox": [71, 221, 98, 235], "score": 1.0, "content": "with ", "type": "text"}, {"bbox": [98, 222, 127, 231], "score": 0.9, "content": "\\lambda=0", "type": "inline_equation", "height": 9, "width": 29}, {"bbox": [128, 221, 200, 235], "score": 1.0, "content": ", tells us that ", "type": "text"}, {"bbox": [201, 222, 320, 233], "score": 0.47, "content": "2s+1=k,2r+1=m", "type": "inline_equation", "height": 11, "width": 119}, {"bbox": [320, 221, 543, 235], "score": 1.0, "content": ". Now count the number of fixed-points of", "type": "text"}], "index": 10}, {"bbox": [71, 227, 467, 258], "spans": [{"bbox": [71, 237, 79, 246], "score": 0.89, "content": "J", "type": "inline_equation", "height": 9, "width": 8}, {"bbox": [80, 227, 159, 258], "score": 1.0, "content": " in both cases: ", "type": "text"}, {"bbox": [160, 234, 255, 250], "score": 0.93, "content": "\\binom{\\kappa/2-1}{r-1}=\\binom{\\kappa/2-1}{s-1}", "type": "inline_equation", "height": 16, "width": 95}, {"bbox": [255, 227, 281, 258], "score": 1.0, "content": ", i.e. ", "type": "text"}, {"bbox": [281, 235, 372, 249], "score": 0.92, "content": "s-1=(k-1)/2", "type": "inline_equation", "height": 14, "width": 91}, {"bbox": [373, 227, 467, 258], "score": 1.0, "content": ", a contradiction.", "type": "text"}], "index": 11}], "index": 9}, {"type": "text", "bbox": [71, 249, 541, 319], "lines": [{"bbox": [93, 248, 542, 266], "spans": [{"bbox": [93, 248, 542, 266], "score": 1.0, "content": "For comparing classical algebras with exceptional algebras, a useful device is to count", "type": "text"}], "index": 12}, {"bbox": [70, 264, 541, 280], "spans": [{"bbox": [70, 264, 326, 280], "score": 1.0, "content": "the number of weights appearing in the fusion ", "type": "text"}, {"bbox": [326, 264, 341, 277], "score": 0.77, "content": "\\Lambda_{\\star}", "type": "inline_equation", "height": 13, "width": 15}, {"bbox": [342, 264, 358, 280], "score": 1.0, "content": "\u00d7 ", "type": "text"}, {"bbox": [358, 264, 373, 277], "score": 0.73, "content": "\\Lambda_{\\star}", "type": "inline_equation", "height": 13, "width": 15}, {"bbox": [374, 264, 415, 280], "score": 1.0, "content": "(when ", "type": "text"}, {"bbox": [415, 264, 429, 277], "score": 0.86, "content": "\\Lambda_{\\star}", "type": "inline_equation", "height": 13, "width": 14}, {"bbox": [430, 264, 541, 280], "score": 1.0, "content": "has second smallest", "type": "text"}], "index": 13}, {"bbox": [70, 278, 542, 294], "spans": [{"bbox": [70, 278, 237, 294], "score": 1.0, "content": "q-dimension). For example, for ", "type": "text"}, {"bbox": [238, 280, 261, 293], "score": 0.84, "content": "A_{1,k}", "type": "inline_equation", "height": 13, "width": 23}, {"bbox": [261, 278, 267, 294], "score": 1.0, "content": " ", "type": "text"}, {"bbox": [267, 278, 302, 292], "score": 0.43, "content": "\\left(k>1\\right)", "type": "inline_equation", "height": 14, "width": 35}, {"bbox": [302, 278, 309, 294], "score": 1.0, "content": ", ", "type": "text"}, {"bbox": [309, 278, 332, 293], "score": 0.69, "content": "C_{r,k}", "type": "inline_equation", "height": 15, "width": 23}, {"bbox": [333, 278, 339, 294], "score": 1.0, "content": " (", "type": "text"}, {"bbox": [340, 279, 370, 291], "score": 0.82, "content": "k>1", "type": "inline_equation", "height": 12, "width": 30}, {"bbox": [370, 278, 433, 294], "score": 1.0, "content": ", except for ", "type": "text"}, {"bbox": [433, 280, 513, 293], "score": 0.92, "content": "C_{2,2},C_{2,3},C_{3,2})", "type": "inline_equation", "height": 13, "width": 80}, {"bbox": [513, 278, 542, 294], "score": 1.0, "content": ", and", "type": "text"}], "index": 14}, {"bbox": [71, 294, 541, 308], "spans": [{"bbox": [71, 295, 93, 307], "score": 0.86, "content": "E_{7,k}", "type": "inline_equation", "height": 12, "width": 22}, {"bbox": [94, 294, 101, 308], "score": 1.0, "content": " (", "type": "text"}, {"bbox": [101, 294, 133, 306], "score": 0.51, "content": "k>4)", "type": "inline_equation", "height": 12, "width": 32}, {"bbox": [133, 294, 541, 308], "score": 1.0, "content": "), we learned in \u00a73 that this number is 2, 3, 4 respectively, so none of these can", "type": "text"}], "index": 15}, {"bbox": [70, 308, 148, 322], "spans": [{"bbox": [70, 308, 148, 322], "score": 1.0, "content": "be isomorphic.", "type": "text"}], "index": 16}], "index": 14}, {"type": "text", "bbox": [70, 321, 541, 349], "lines": [{"bbox": [95, 323, 541, 337], "spans": [{"bbox": [95, 323, 541, 337], "score": 1.0, "content": "For the orthogonal algebras at level 2, useful is the number of weights with second", "type": "text"}], "index": 17}, {"bbox": [70, 337, 502, 353], "spans": [{"bbox": [70, 338, 254, 353], "score": 1.0, "content": "smallest q-dimension (respectively ", "type": "text"}, {"bbox": [254, 342, 260, 348], "score": 0.87, "content": "r", "type": "inline_equation", "height": 6, "width": 6}, {"bbox": [260, 338, 286, 353], "score": 1.0, "content": " and ", "type": "text"}, {"bbox": [286, 337, 313, 349], "score": 0.86, "content": "r-1", "type": "inline_equation", "height": 12, "width": 27}, {"bbox": [314, 338, 335, 353], "score": 1.0, "content": " for ", "type": "text"}, {"bbox": [335, 338, 357, 351], "score": 0.91, "content": "B_{r,2}", "type": "inline_equation", "height": 13, "width": 22}, {"bbox": [357, 338, 383, 353], "score": 1.0, "content": " and ", "type": "text"}, {"bbox": [384, 339, 407, 351], "score": 0.92, "content": "D_{r,2}", "type": "inline_equation", "height": 12, "width": 23}, {"bbox": [407, 338, 469, 353], "score": 1.0, "content": ", except for ", "type": "text"}, {"bbox": [470, 339, 492, 351], "score": 0.92, "content": "D_{4,2}", "type": "inline_equation", "height": 12, "width": 22}, {"bbox": [493, 338, 502, 353], "score": 1.0, "content": ").", "type": "text"}], "index": 18}], "index": 17.5}, {"type": "text", "bbox": [70, 351, 541, 436], "lines": [{"bbox": [93, 352, 541, 367], "spans": [{"bbox": [93, 352, 308, 367], "score": 1.0, "content": "For the exceptional algebras, comparing ", "type": "text"}, {"bbox": [309, 352, 342, 366], "score": 0.92, "content": "\\mathcal{D}(\\boldsymbol{\\Lambda}_{\\star})", "type": "inline_equation", "height": 14, "width": 33}, {"bbox": [342, 352, 541, 367], "score": 1.0, "content": " and the number of highest-weights is", "type": "text"}], "index": 19}, {"bbox": [70, 365, 541, 383], "spans": [{"bbox": [70, 365, 210, 383], "score": 1.0, "content": "effective. Recall that both ", "type": "text"}, {"bbox": [210, 368, 237, 380], "score": 0.94, "content": "||P_{+}||", "type": "inline_equation", "height": 12, "width": 27}, {"bbox": [237, 365, 263, 383], "score": 1.0, "content": "and ", "type": "text"}, {"bbox": [263, 368, 296, 380], "score": 0.94, "content": "\\mathcal{D}(\\boldsymbol{\\Lambda}_{\\star})", "type": "inline_equation", "height": 12, "width": 33}, {"bbox": [296, 365, 541, 383], "score": 1.0, "content": " for a fixed algebra monotonically increase with", "type": "text"}], "index": 20}, {"bbox": [71, 381, 540, 396], "spans": [{"bbox": [71, 383, 78, 392], "score": 0.86, "content": "k", "type": "inline_equation", "height": 9, "width": 7}, {"bbox": [78, 381, 169, 396], "score": 1.0, "content": " to (respectively) ", "type": "text"}, {"bbox": [170, 386, 182, 392], "score": 0.86, "content": "\\infty", "type": "inline_equation", "height": 6, "width": 12}, {"bbox": [182, 381, 326, 396], "score": 1.0, "content": "and the Weyl dimension of ", "type": "text"}, {"bbox": [327, 383, 341, 393], "score": 0.91, "content": "\\Lambda_{\\star}", "type": "inline_equation", "height": 10, "width": 14}, {"bbox": [341, 381, 486, 396], "score": 1.0, "content": ", which is 7, 26, and 248 for ", "type": "text"}, {"bbox": [487, 383, 540, 394], "score": 0.93, "content": "G_{2},F_{4},E_{8}", "type": "inline_equation", "height": 11, "width": 53}], "index": 21}, {"bbox": [70, 396, 539, 411], "spans": [{"bbox": [70, 396, 163, 411], "score": 1.0, "content": "respectively. For ", "type": "text"}, {"bbox": [163, 397, 186, 410], "score": 0.92, "content": "E_{8,k}", "type": "inline_equation", "height": 13, "width": 23}, {"bbox": [186, 396, 193, 411], "score": 1.0, "content": ", ", "type": "text"}, {"bbox": [194, 397, 226, 409], "score": 0.93, "content": "\\mathcal{D}(\\Lambda_{1})", "type": "inline_equation", "height": 12, "width": 32}, {"bbox": [226, 396, 302, 411], "score": 1.0, "content": " exceeds 7 for ", "type": "text"}, {"bbox": [303, 397, 333, 408], "score": 0.91, "content": "k\\geq5", "type": "inline_equation", "height": 11, "width": 30}, {"bbox": [333, 396, 442, 411], "score": 1.0, "content": ", and exceeds 26 for ", "type": "text"}, {"bbox": [442, 397, 479, 408], "score": 0.88, "content": "k\\geq11", "type": "inline_equation", "height": 11, "width": 37}, {"bbox": [479, 396, 518, 411], "score": 1.0, "content": ", while ", "type": "text"}, {"bbox": [518, 397, 539, 409], "score": 0.92, "content": "F_{4,k}", "type": "inline_equation", "height": 12, "width": 21}], "index": 22}, {"bbox": [70, 409, 541, 425], "spans": [{"bbox": [70, 409, 144, 425], "score": 1.0, "content": "exceeds 7 for ", "type": "text"}, {"bbox": [144, 412, 175, 422], "score": 0.92, "content": "k\\geq4", "type": "inline_equation", "height": 10, "width": 31}, {"bbox": [175, 409, 366, 425], "score": 1.0, "content": ". The number of highest-weights of ", "type": "text"}, {"bbox": [367, 411, 421, 424], "score": 0.92, "content": "E_{8,4},E_{8,10}", "type": "inline_equation", "height": 13, "width": 54}, {"bbox": [421, 409, 452, 425], "score": 1.0, "content": ", and ", "type": "text"}, {"bbox": [452, 412, 473, 424], "score": 0.92, "content": "F_{4,3}", "type": "inline_equation", "height": 12, "width": 21}, {"bbox": [473, 409, 541, 425], "score": 1.0, "content": " are 10, 135,", "type": "text"}], "index": 23}, {"bbox": [70, 424, 415, 438], "spans": [{"bbox": [70, 424, 415, 438], "score": 1.0, "content": "and 9, so only a small number of possibilities need be considered.", "type": "text"}], "index": 24}], "index": 21.5}, {"type": "title", "bbox": [270, 455, 342, 468], "lines": [{"bbox": [270, 457, 342, 469], "spans": [{"bbox": [270, 457, 342, 469], "score": 1.0, "content": "References", "type": "text"}], "index": 25}], "index": 25}, {"type": "text", "bbox": [78, 478, 541, 716], "lines": [{"bbox": [79, 481, 539, 495], "spans": [{"bbox": [79, 481, 539, 495], "score": 1.0, "content": "1. R. E. Behrend, P. A. Pearce, V. B. Petkova and J.-B. Zuber, On the clas-", "type": "text"}], "index": 26}, {"bbox": [94, 495, 540, 510], "spans": [{"bbox": [94, 495, 540, 510], "score": 1.0, "content": "sification of bulk and boundary conformal field theories, Phys. Lett. B444 (1998),", "type": "text"}], "index": 27}, {"bbox": [95, 511, 142, 523], "spans": [{"bbox": [95, 511, 142, 523], "score": 1.0, "content": "163\u2013166;", "type": "text"}], "index": 28}, {"bbox": [95, 525, 539, 539], "spans": [{"bbox": [95, 525, 539, 539], "score": 1.0, "content": "J. Fuchs and C. Schweigert, Branes: From free fields to general backgrounds,", "type": "text"}], "index": 29}, {"bbox": [95, 539, 276, 554], "spans": [{"bbox": [95, 539, 276, 554], "score": 1.0, "content": "Nucl. Phys. B530 (1998), 99\u2013136.", "type": "text"}], "index": 30}, {"bbox": [78, 554, 541, 570], "spans": [{"bbox": [78, 554, 541, 570], "score": 1.0, "content": "2. D. Bernard, String characters from Kac\u2013Moody automorphisms, Nucl. Phys. B288", "type": "text"}], "index": 31}, {"bbox": [95, 570, 182, 583], "spans": [{"bbox": [95, 570, 182, 583], "score": 1.0, "content": "(1987), 628\u2013648.", "type": "text"}], "index": 32}, {"bbox": [78, 583, 542, 600], "spans": [{"bbox": [78, 583, 542, 600], "score": 1.0, "content": "3. J. B\u00a8ockenhauer and D. E. Evans, Modular invariants from subfactors: Type I", "type": "text"}], "index": 33}, {"bbox": [94, 598, 523, 615], "spans": [{"bbox": [94, 598, 523, 615], "score": 1.0, "content": "coupling matrices and intermediate subfactors, preprint math.OA/9911239, 1999.", "type": "text"}], "index": 34}, {"bbox": [78, 612, 541, 630], "spans": [{"bbox": [78, 612, 541, 630], "score": 1.0, "content": "4. A. Coste and T. Gannon, Remarks on Galois in rational conformal field theories,", "type": "text"}], "index": 35}, {"bbox": [95, 627, 279, 644], "spans": [{"bbox": [95, 627, 279, 644], "score": 1.0, "content": "Phys. Lett. B323 (1994), 316\u2013321.", "type": "text"}], "index": 36}, {"bbox": [78, 642, 540, 659], "spans": [{"bbox": [78, 642, 540, 659], "score": 1.0, "content": "5. A. Coste, T. Gannon and P. Ruelle, Finite group modular data, preprint hep-", "type": "text"}], "index": 37}, {"bbox": [95, 658, 190, 672], "spans": [{"bbox": [95, 658, 190, 672], "score": 1.0, "content": "th/0001158, 2000.", "type": "text"}], "index": 38}, {"bbox": [78, 672, 541, 689], "spans": [{"bbox": [78, 672, 541, 689], "score": 1.0, "content": "6. Ph. Di Francesco, P. Mathieu and D. S\u00b4en\u00b4echal, \u201cConformal Field Theory\u201d,", "type": "text"}], "index": 39}, {"bbox": [95, 689, 271, 702], "spans": [{"bbox": [95, 689, 271, 702], "score": 1.0, "content": "Springer-Verlag, New York, 1997.", "type": "text"}], "index": 40}, {"bbox": [79, 702, 525, 718], "spans": [{"bbox": [79, 702, 525, 718], "score": 1.0, "content": "7. G. Faltings, A proof for the Verlinde formula, J. Alg. Geom. 3 (1994), 347\u2013374.", "type": "text"}], "index": 41}], "index": 33.5}], "layout_bboxes": [], "page_idx": 21, "page_size": [612.0, 792.0], "_layout_tree": [], "images": [], "tables": [], "interline_equations": [], "discarded_blocks": [{"type": "discarded", "bbox": [299, 731, 312, 742], "lines": [{"bbox": [298, 731, 314, 744], "spans": [{"bbox": [298, 731, 314, 744], "score": 1.0, "content": "22", "type": "text"}]}]}], "need_drop": false, "drop_reason": [], "para_blocks": [{"type": "text", "bbox": [71, 70, 541, 143], "lines": [{"bbox": [71, 73, 541, 89], "spans": [{"bbox": [71, 73, 106, 89], "score": 1.0, "content": "where ", "type": "text"}, {"bbox": [106, 75, 120, 87], "score": 0.9, "content": "[x]", "type": "inline_equation", "height": 12, "width": 14}, {"bbox": [120, 73, 381, 89], "score": 1.0, "content": " here denotes the greatest integer not more than ", "type": "text"}, {"bbox": [381, 78, 388, 84], "score": 0.89, "content": "x", "type": "inline_equation", "height": 6, "width": 7}, {"bbox": [389, 73, 541, 89], "score": 1.0, "content": ". The absolute value of each", "type": "text"}], "index": 0}, {"bbox": [70, 88, 541, 104], "spans": [{"bbox": [70, 88, 356, 104], "score": 1.0, "content": "of these is quickly seen to be greater than 1 unless ", "type": "text"}, {"bbox": [357, 90, 398, 100], "score": 0.91, "content": "\\ell\\,\\equiv\\,\\pm1", "type": "inline_equation", "height": 10, "width": 41}, {"bbox": [399, 88, 437, 104], "score": 1.0, "content": " (mod ", "type": "text"}, {"bbox": [437, 90, 450, 99], "score": 0.72, "content": "2\\kappa", "type": "inline_equation", "height": 9, "width": 13}, {"bbox": [451, 88, 541, 104], "score": 1.0, "content": "), except for the", "type": "text"}], "index": 1}, {"bbox": [71, 102, 541, 118], "spans": [{"bbox": [71, 102, 212, 118], "score": 1.0, "content": "orthogonal algebras when ", "type": "text"}, {"bbox": [213, 104, 246, 115], "score": 0.92, "content": "k\\ \\leq\\ 2", "type": "inline_equation", "height": 11, "width": 33}, {"bbox": [246, 102, 349, 118], "score": 1.0, "content": ". An isomorphism ", "type": "text"}, {"bbox": [350, 104, 462, 116], "score": 0.94, "content": "\\mathscr{R}(X_{r,k})\\,\\cong\\,\\mathscr{R}(X_{r^{\\prime},k^{\\prime}})", "type": "inline_equation", "height": 12, "width": 112}, {"bbox": [462, 102, 541, 118], "score": 1.0, "content": " would require", "type": "text"}], "index": 2}, {"bbox": [71, 117, 540, 131], "spans": [{"bbox": [71, 117, 177, 131], "score": 1.0, "content": "then that whenever ", "type": "text"}, {"bbox": [178, 118, 216, 128], "score": 0.9, "content": "\\ell\\equiv\\pm1", "type": "inline_equation", "height": 10, "width": 38}, {"bbox": [216, 117, 252, 131], "score": 1.0, "content": " (mod ", "type": "text"}, {"bbox": [252, 119, 266, 127], "score": 0.66, "content": "2\\kappa", "type": "inline_equation", "height": 8, "width": 14}, {"bbox": [266, 117, 347, 131], "score": 1.0, "content": ") is coprime to ", "type": "text"}, {"bbox": [347, 118, 357, 127], "score": 0.89, "content": "\\kappa^{\\prime}", "type": "inline_equation", "height": 9, "width": 10}, {"bbox": [358, 117, 469, 131], "score": 1.0, "content": ", it must also satisfy ", "type": "text"}, {"bbox": [470, 118, 507, 128], "score": 0.91, "content": "\\ell\\equiv\\pm1", "type": "inline_equation", "height": 10, "width": 37}, {"bbox": [508, 117, 540, 131], "score": 1.0, "content": " (mod", "type": "text"}], "index": 3}, {"bbox": [71, 131, 540, 145], "spans": [{"bbox": [71, 132, 88, 142], "score": 0.77, "content": "2\\kappa^{\\prime}", "type": "inline_equation", "height": 10, "width": 17}, {"bbox": [88, 131, 243, 145], "score": 1.0, "content": "), and conversely. This forces ", "type": "text"}, {"bbox": [244, 132, 277, 142], "score": 0.91, "content": "\\kappa=\\kappa^{\\prime}", "type": "inline_equation", "height": 10, "width": 33}, {"bbox": [277, 131, 302, 145], "score": 1.0, "content": ", for ", "type": "text"}, {"bbox": [302, 133, 339, 142], "score": 0.92, "content": "X=B", "type": "inline_equation", "height": 9, "width": 37}, {"bbox": [339, 131, 356, 145], "score": 1.0, "content": " or ", "type": "text"}, {"bbox": [357, 133, 367, 142], "score": 0.91, "content": "D", "type": "inline_equation", "height": 9, "width": 10}, {"bbox": [367, 131, 393, 145], "score": 1.0, "content": " and ", "type": "text"}, {"bbox": [394, 133, 423, 142], "score": 0.91, "content": "k>2", "type": "inline_equation", "height": 9, "width": 29}, {"bbox": [423, 131, 443, 145], "score": 1.0, "content": ", or ", "type": "text"}, {"bbox": [444, 133, 480, 142], "score": 0.92, "content": "X=C", "type": "inline_equation", "height": 9, "width": 36}, {"bbox": [480, 131, 529, 145], "score": 1.0, "content": " and any ", "type": "text"}, {"bbox": [529, 133, 536, 142], "score": 0.9, "content": "k", "type": "inline_equation", "height": 9, "width": 7}, {"bbox": [537, 131, 540, 145], "score": 1.0, "content": ".", "type": "text"}], "index": 4}], "index": 2, "page_num": "page_21", "page_size": [612.0, 792.0], "bbox_fs": [70, 73, 541, 145]}, {"type": "text", "bbox": [70, 144, 541, 175], "lines": [{"bbox": [94, 146, 542, 163], "spans": [{"bbox": [94, 146, 107, 163], "score": 1.0, "content": "If ", "type": "text"}, {"bbox": [107, 147, 210, 160], "score": 0.93, "content": "\\mathscr{R}(C_{r,k})\\cong\\mathscr{R}(C_{s,m})", "type": "inline_equation", "height": 13, "width": 103}, {"bbox": [210, 146, 403, 163], "score": 1.0, "content": ", then that Galois argument implies ", "type": "text"}, {"bbox": [403, 148, 521, 158], "score": 0.92, "content": "r+k+1=s+m+1", "type": "inline_equation", "height": 10, "width": 118}, {"bbox": [522, 146, 542, 163], "score": 1.0, "content": ", so", "type": "text"}], "index": 5}, {"bbox": [70, 160, 349, 179], "spans": [{"bbox": [70, 160, 269, 179], "score": 1.0, "content": "compare numbers of highest-weights: ", "type": "text"}, {"bbox": [270, 161, 345, 177], "score": 0.96, "content": "\\big(\\mathbf{\\Lambda}_{r}^{r+k}\\big)=\\big(\\mathbf{\\Lambda}_{s}^{r+k}\\big)", "type": "inline_equation", "height": 16, "width": 75}, {"bbox": [345, 160, 349, 179], "score": 1.0, "content": ".", "type": "text"}], "index": 6}], "index": 5.5, "page_num": "page_21", "page_size": [612.0, 792.0], "bbox_fs": [70, 146, 542, 179]}, {"type": "text", "bbox": [70, 176, 541, 248], "lines": [{"bbox": [94, 176, 542, 193], "spans": [{"bbox": [94, 176, 485, 193], "score": 1.0, "content": "A similar argument works for the orthogonal algebras. For instance suppose ", "type": "text"}, {"bbox": [485, 178, 542, 191], "score": 0.93, "content": "\\mathcal{R}(B_{r,k})\\cong", "type": "inline_equation", "height": 13, "width": 57}], "index": 7}, {"bbox": [71, 191, 541, 207], "spans": [{"bbox": [71, 193, 117, 205], "score": 0.93, "content": "\\mathcal{R}(B_{s,m})", "type": "inline_equation", "height": 12, "width": 46}, {"bbox": [117, 191, 144, 207], "score": 1.0, "content": " but ", "type": "text"}, {"bbox": [144, 194, 212, 205], "score": 0.93, "content": "B_{r,k}\\ne B_{s,m}", "type": "inline_equation", "height": 11, "width": 68}, {"bbox": [212, 191, 271, 207], "score": 1.0, "content": ", and that ", "type": "text"}, {"bbox": [271, 193, 320, 205], "score": 0.89, "content": "k,m\\,>\\,2", "type": "inline_equation", "height": 12, "width": 49}, {"bbox": [321, 191, 443, 207], "score": 1.0, "content": ". Then Galois implies ", "type": "text"}, {"bbox": [444, 194, 536, 204], "score": 0.91, "content": "2r+k\\,=\\,2s\\,+\\,m", "type": "inline_equation", "height": 10, "width": 92}, {"bbox": [536, 191, 541, 207], "score": 1.0, "content": ".", "type": "text"}], "index": 8}, {"bbox": [72, 207, 541, 221], "spans": [{"bbox": [72, 207, 198, 221], "score": 1.0, "content": "Comparing the value of ", "type": "text"}, {"bbox": [198, 207, 231, 220], "score": 0.94, "content": "\\mathcal{D}(\\Lambda_{1})", "type": "inline_equation", "height": 13, "width": 33}, {"bbox": [231, 207, 442, 221], "score": 1.0, "content": " (the second smallest q-dimension when ", "type": "text"}, {"bbox": [443, 208, 472, 217], "score": 0.9, "content": "k>3", "type": "inline_equation", "height": 9, "width": 29}, {"bbox": [472, 207, 541, 221], "score": 1.0, "content": "), using (3.2)", "type": "text"}], "index": 9}, {"bbox": [71, 221, 543, 235], "spans": [{"bbox": [71, 221, 98, 235], "score": 1.0, "content": "with ", "type": "text"}, {"bbox": [98, 222, 127, 231], "score": 0.9, "content": "\\lambda=0", "type": "inline_equation", "height": 9, "width": 29}, {"bbox": [128, 221, 200, 235], "score": 1.0, "content": ", tells us that ", "type": "text"}, {"bbox": [201, 222, 320, 233], "score": 0.47, "content": "2s+1=k,2r+1=m", "type": "inline_equation", "height": 11, "width": 119}, {"bbox": [320, 221, 543, 235], "score": 1.0, "content": ". Now count the number of fixed-points of", "type": "text"}], "index": 10}, {"bbox": [71, 227, 467, 258], "spans": [{"bbox": [71, 237, 79, 246], "score": 0.89, "content": "J", "type": "inline_equation", "height": 9, "width": 8}, {"bbox": [80, 227, 159, 258], "score": 1.0, "content": " in both cases: ", "type": "text"}, {"bbox": [160, 234, 255, 250], "score": 0.93, "content": "\\binom{\\kappa/2-1}{r-1}=\\binom{\\kappa/2-1}{s-1}", "type": "inline_equation", "height": 16, "width": 95}, {"bbox": [255, 227, 281, 258], "score": 1.0, "content": ", i.e. ", "type": "text"}, {"bbox": [281, 235, 372, 249], "score": 0.92, "content": "s-1=(k-1)/2", "type": "inline_equation", "height": 14, "width": 91}, {"bbox": [373, 227, 467, 258], "score": 1.0, "content": ", a contradiction.", "type": "text"}], "index": 11}], "index": 9, "page_num": "page_21", "page_size": [612.0, 792.0], "bbox_fs": [71, 176, 543, 258]}, {"type": "text", "bbox": [71, 249, 541, 319], "lines": [{"bbox": [93, 248, 542, 266], "spans": [{"bbox": [93, 248, 542, 266], "score": 1.0, "content": "For comparing classical algebras with exceptional algebras, a useful device is to count", "type": "text"}], "index": 12}, {"bbox": [70, 264, 541, 280], "spans": [{"bbox": [70, 264, 326, 280], "score": 1.0, "content": "the number of weights appearing in the fusion ", "type": "text"}, {"bbox": [326, 264, 341, 277], "score": 0.77, "content": "\\Lambda_{\\star}", "type": "inline_equation", "height": 13, "width": 15}, {"bbox": [342, 264, 358, 280], "score": 1.0, "content": "\u00d7 ", "type": "text"}, {"bbox": [358, 264, 373, 277], "score": 0.73, "content": "\\Lambda_{\\star}", "type": "inline_equation", "height": 13, "width": 15}, {"bbox": [374, 264, 415, 280], "score": 1.0, "content": "(when ", "type": "text"}, {"bbox": [415, 264, 429, 277], "score": 0.86, "content": "\\Lambda_{\\star}", "type": "inline_equation", "height": 13, "width": 14}, {"bbox": [430, 264, 541, 280], "score": 1.0, "content": "has second smallest", "type": "text"}], "index": 13}, {"bbox": [70, 278, 542, 294], "spans": [{"bbox": [70, 278, 237, 294], "score": 1.0, "content": "q-dimension). For example, for ", "type": "text"}, {"bbox": [238, 280, 261, 293], "score": 0.84, "content": "A_{1,k}", "type": "inline_equation", "height": 13, "width": 23}, {"bbox": [261, 278, 267, 294], "score": 1.0, "content": " ", "type": "text"}, {"bbox": [267, 278, 302, 292], "score": 0.43, "content": "\\left(k>1\\right)", "type": "inline_equation", "height": 14, "width": 35}, {"bbox": [302, 278, 309, 294], "score": 1.0, "content": ", ", "type": "text"}, {"bbox": [309, 278, 332, 293], "score": 0.69, "content": "C_{r,k}", "type": "inline_equation", "height": 15, "width": 23}, {"bbox": [333, 278, 339, 294], "score": 1.0, "content": " (", "type": "text"}, {"bbox": [340, 279, 370, 291], "score": 0.82, "content": "k>1", "type": "inline_equation", "height": 12, "width": 30}, {"bbox": [370, 278, 433, 294], "score": 1.0, "content": ", except for ", "type": "text"}, {"bbox": [433, 280, 513, 293], "score": 0.92, "content": "C_{2,2},C_{2,3},C_{3,2})", "type": "inline_equation", "height": 13, "width": 80}, {"bbox": [513, 278, 542, 294], "score": 1.0, "content": ", and", "type": "text"}], "index": 14}, {"bbox": [71, 294, 541, 308], "spans": [{"bbox": [71, 295, 93, 307], "score": 0.86, "content": "E_{7,k}", "type": "inline_equation", "height": 12, "width": 22}, {"bbox": [94, 294, 101, 308], "score": 1.0, "content": " (", "type": "text"}, {"bbox": [101, 294, 133, 306], "score": 0.51, "content": "k>4)", "type": "inline_equation", "height": 12, "width": 32}, {"bbox": [133, 294, 541, 308], "score": 1.0, "content": "), we learned in \u00a73 that this number is 2, 3, 4 respectively, so none of these can", "type": "text"}], "index": 15}, {"bbox": [70, 308, 148, 322], "spans": [{"bbox": [70, 308, 148, 322], "score": 1.0, "content": "be isomorphic.", "type": "text"}], "index": 16}], "index": 14, "page_num": "page_21", "page_size": [612.0, 792.0], "bbox_fs": [70, 248, 542, 322]}, {"type": "text", "bbox": [70, 321, 541, 349], "lines": [{"bbox": [95, 323, 541, 337], "spans": [{"bbox": [95, 323, 541, 337], "score": 1.0, "content": "For the orthogonal algebras at level 2, useful is the number of weights with second", "type": "text"}], "index": 17}, {"bbox": [70, 337, 502, 353], "spans": [{"bbox": [70, 338, 254, 353], "score": 1.0, "content": "smallest q-dimension (respectively ", "type": "text"}, {"bbox": [254, 342, 260, 348], "score": 0.87, "content": "r", "type": "inline_equation", "height": 6, "width": 6}, {"bbox": [260, 338, 286, 353], "score": 1.0, "content": " and ", "type": "text"}, {"bbox": [286, 337, 313, 349], "score": 0.86, "content": "r-1", "type": "inline_equation", "height": 12, "width": 27}, {"bbox": [314, 338, 335, 353], "score": 1.0, "content": " for ", "type": "text"}, {"bbox": [335, 338, 357, 351], "score": 0.91, "content": "B_{r,2}", "type": "inline_equation", "height": 13, "width": 22}, {"bbox": [357, 338, 383, 353], "score": 1.0, "content": " and ", "type": "text"}, {"bbox": [384, 339, 407, 351], "score": 0.92, "content": "D_{r,2}", "type": "inline_equation", "height": 12, "width": 23}, {"bbox": [407, 338, 469, 353], "score": 1.0, "content": ", except for ", "type": "text"}, {"bbox": [470, 339, 492, 351], "score": 0.92, "content": "D_{4,2}", "type": "inline_equation", "height": 12, "width": 22}, {"bbox": [493, 338, 502, 353], "score": 1.0, "content": ").", "type": "text"}], "index": 18}], "index": 17.5, "page_num": "page_21", "page_size": [612.0, 792.0], "bbox_fs": [70, 323, 541, 353]}, {"type": "text", "bbox": [70, 351, 541, 436], "lines": [{"bbox": [93, 352, 541, 367], "spans": [{"bbox": [93, 352, 308, 367], "score": 1.0, "content": "For the exceptional algebras, comparing ", "type": "text"}, {"bbox": [309, 352, 342, 366], "score": 0.92, "content": "\\mathcal{D}(\\boldsymbol{\\Lambda}_{\\star})", "type": "inline_equation", "height": 14, "width": 33}, {"bbox": [342, 352, 541, 367], "score": 1.0, "content": " and the number of highest-weights is", "type": "text"}], "index": 19}, {"bbox": [70, 365, 541, 383], "spans": [{"bbox": [70, 365, 210, 383], "score": 1.0, "content": "effective. Recall that both ", "type": "text"}, {"bbox": [210, 368, 237, 380], "score": 0.94, "content": "||P_{+}||", "type": "inline_equation", "height": 12, "width": 27}, {"bbox": [237, 365, 263, 383], "score": 1.0, "content": "and ", "type": "text"}, {"bbox": [263, 368, 296, 380], "score": 0.94, "content": "\\mathcal{D}(\\boldsymbol{\\Lambda}_{\\star})", "type": "inline_equation", "height": 12, "width": 33}, {"bbox": [296, 365, 541, 383], "score": 1.0, "content": " for a fixed algebra monotonically increase with", "type": "text"}], "index": 20}, {"bbox": [71, 381, 540, 396], "spans": [{"bbox": [71, 383, 78, 392], "score": 0.86, "content": "k", "type": "inline_equation", "height": 9, "width": 7}, {"bbox": [78, 381, 169, 396], "score": 1.0, "content": " to (respectively) ", "type": "text"}, {"bbox": [170, 386, 182, 392], "score": 0.86, "content": "\\infty", "type": "inline_equation", "height": 6, "width": 12}, {"bbox": [182, 381, 326, 396], "score": 1.0, "content": "and the Weyl dimension of ", "type": "text"}, {"bbox": [327, 383, 341, 393], "score": 0.91, "content": "\\Lambda_{\\star}", "type": "inline_equation", "height": 10, "width": 14}, {"bbox": [341, 381, 486, 396], "score": 1.0, "content": ", which is 7, 26, and 248 for ", "type": "text"}, {"bbox": [487, 383, 540, 394], "score": 0.93, "content": "G_{2},F_{4},E_{8}", "type": "inline_equation", "height": 11, "width": 53}], "index": 21}, {"bbox": [70, 396, 539, 411], "spans": [{"bbox": [70, 396, 163, 411], "score": 1.0, "content": "respectively. For ", "type": "text"}, {"bbox": [163, 397, 186, 410], "score": 0.92, "content": "E_{8,k}", "type": "inline_equation", "height": 13, "width": 23}, {"bbox": [186, 396, 193, 411], "score": 1.0, "content": ", ", "type": "text"}, {"bbox": [194, 397, 226, 409], "score": 0.93, "content": "\\mathcal{D}(\\Lambda_{1})", "type": "inline_equation", "height": 12, "width": 32}, {"bbox": [226, 396, 302, 411], "score": 1.0, "content": " exceeds 7 for ", "type": "text"}, {"bbox": [303, 397, 333, 408], "score": 0.91, "content": "k\\geq5", "type": "inline_equation", "height": 11, "width": 30}, {"bbox": [333, 396, 442, 411], "score": 1.0, "content": ", and exceeds 26 for ", "type": "text"}, {"bbox": [442, 397, 479, 408], "score": 0.88, "content": "k\\geq11", "type": "inline_equation", "height": 11, "width": 37}, {"bbox": [479, 396, 518, 411], "score": 1.0, "content": ", while ", "type": "text"}, {"bbox": [518, 397, 539, 409], "score": 0.92, "content": "F_{4,k}", "type": "inline_equation", "height": 12, "width": 21}], "index": 22}, {"bbox": [70, 409, 541, 425], "spans": [{"bbox": [70, 409, 144, 425], "score": 1.0, "content": "exceeds 7 for ", "type": "text"}, {"bbox": [144, 412, 175, 422], "score": 0.92, "content": "k\\geq4", "type": "inline_equation", "height": 10, "width": 31}, {"bbox": [175, 409, 366, 425], "score": 1.0, "content": ". The number of highest-weights of ", "type": "text"}, {"bbox": [367, 411, 421, 424], "score": 0.92, "content": "E_{8,4},E_{8,10}", "type": "inline_equation", "height": 13, "width": 54}, {"bbox": [421, 409, 452, 425], "score": 1.0, "content": ", and ", "type": "text"}, {"bbox": [452, 412, 473, 424], "score": 0.92, "content": "F_{4,3}", "type": "inline_equation", "height": 12, "width": 21}, {"bbox": [473, 409, 541, 425], "score": 1.0, "content": " are 10, 135,", "type": "text"}], "index": 23}, {"bbox": [70, 424, 415, 438], "spans": [{"bbox": [70, 424, 415, 438], "score": 1.0, "content": "and 9, so only a small number of possibilities need be considered.", "type": "text"}], "index": 24}], "index": 21.5, "page_num": "page_21", "page_size": [612.0, 792.0], "bbox_fs": [70, 352, 541, 438]}, {"type": "title", "bbox": [270, 455, 342, 468], "lines": [{"bbox": [270, 457, 342, 469], "spans": [{"bbox": [270, 457, 342, 469], "score": 1.0, "content": "References", "type": "text"}], "index": 25}], "index": 25, "page_num": "page_21", "page_size": [612.0, 792.0]}, {"type": "list", "bbox": [78, 478, 541, 716], "lines": [{"bbox": [79, 481, 539, 495], "spans": [{"bbox": [79, 481, 539, 495], "score": 1.0, "content": "1. R. E. Behrend, P. A. Pearce, V. B. Petkova and J.-B. Zuber, On the clas-", "type": "text"}], "index": 26, "is_list_start_line": true}, {"bbox": [94, 495, 540, 510], "spans": [{"bbox": [94, 495, 540, 510], "score": 1.0, "content": "sification of bulk and boundary conformal field theories, Phys. Lett. B444 (1998),", "type": "text"}], "index": 27}, {"bbox": [95, 511, 142, 523], "spans": [{"bbox": [95, 511, 142, 523], "score": 1.0, "content": "163\u2013166;", "type": "text"}], "index": 28, "is_list_start_line": true, "is_list_end_line": true}, {"bbox": [95, 525, 539, 539], "spans": [{"bbox": [95, 525, 539, 539], "score": 1.0, "content": "J. Fuchs and C. Schweigert, Branes: From free fields to general backgrounds,", "type": "text"}], "index": 29}, {"bbox": [95, 539, 276, 554], "spans": [{"bbox": [95, 539, 276, 554], "score": 1.0, "content": "Nucl. Phys. B530 (1998), 99\u2013136.", "type": "text"}], "index": 30, "is_list_end_line": true}, {"bbox": [78, 554, 541, 570], "spans": [{"bbox": [78, 554, 541, 570], "score": 1.0, "content": "2. D. Bernard, String characters from Kac\u2013Moody automorphisms, Nucl. Phys. B288", "type": "text"}], "index": 31, "is_list_start_line": true}, {"bbox": [95, 570, 182, 583], "spans": [{"bbox": [95, 570, 182, 583], "score": 1.0, "content": "(1987), 628\u2013648.", "type": "text"}], "index": 32, "is_list_end_line": true}, {"bbox": [78, 583, 542, 600], "spans": [{"bbox": [78, 583, 542, 600], "score": 1.0, "content": "3. J. B\u00a8ockenhauer and D. E. Evans, Modular invariants from subfactors: Type I", "type": "text"}], "index": 33, "is_list_start_line": true}, {"bbox": [94, 598, 523, 615], "spans": [{"bbox": [94, 598, 523, 615], "score": 1.0, "content": "coupling matrices and intermediate subfactors, preprint math.OA/9911239, 1999.", "type": "text"}], "index": 34, "is_list_end_line": true}, {"bbox": [78, 612, 541, 630], "spans": [{"bbox": [78, 612, 541, 630], "score": 1.0, "content": "4. A. Coste and T. Gannon, Remarks on Galois in rational conformal field theories,", "type": "text"}], "index": 35, "is_list_start_line": true}, {"bbox": [95, 627, 279, 644], "spans": [{"bbox": [95, 627, 279, 644], "score": 1.0, "content": "Phys. Lett. B323 (1994), 316\u2013321.", "type": "text"}], "index": 36, "is_list_end_line": true}, {"bbox": [78, 642, 540, 659], "spans": [{"bbox": [78, 642, 540, 659], "score": 1.0, "content": "5. A. Coste, T. Gannon and P. Ruelle, Finite group modular data, preprint hep-", "type": "text"}], "index": 37, "is_list_start_line": true}, {"bbox": [95, 658, 190, 672], "spans": [{"bbox": [95, 658, 190, 672], "score": 1.0, "content": "th/0001158, 2000.", "type": "text"}], "index": 38, "is_list_end_line": true}, {"bbox": [78, 672, 541, 689], "spans": [{"bbox": [78, 672, 541, 689], "score": 1.0, "content": "6. Ph. Di Francesco, P. Mathieu and D. S\u00b4en\u00b4echal, \u201cConformal Field Theory\u201d,", "type": "text"}], "index": 39, "is_list_start_line": true}, {"bbox": [95, 689, 271, 702], "spans": [{"bbox": [95, 689, 271, 702], "score": 1.0, "content": "Springer-Verlag, New York, 1997.", "type": "text"}], "index": 40, "is_list_end_line": true}, {"bbox": [79, 702, 525, 718], "spans": [{"bbox": [79, 702, 525, 718], "score": 1.0, "content": "7. G. Faltings, A proof for the Verlinde formula, J. Alg. Geom. 3 (1994), 347\u2013374.", "type": "text"}], "index": 41, "is_list_start_line": true, "is_list_end_line": true}, {"bbox": [78, 74, 541, 90], "spans": [{"bbox": [78, 74, 541, 90], "score": 1.0, "content": "8. M. Finkelberg, An equivalence of fusion categories, Geom. Func. Anal. 6 (1996),", "type": "text", "cross_page": true}], "index": 0}, {"bbox": [94, 89, 142, 102], "spans": [{"bbox": [94, 89, 142, 102], "score": 1.0, "content": "249\u2013267.", "type": "text", "cross_page": true}], "index": 1, "is_list_end_line": true}, {"bbox": [78, 103, 540, 118], "spans": [{"bbox": [78, 103, 540, 118], "score": 1.0, "content": "9. I. B. Frenkel, Representations of affine Lie algebras, Hecke modular forms and", "type": "text", "cross_page": true}], "index": 2}, {"bbox": [94, 118, 541, 133], "spans": [{"bbox": [94, 118, 541, 133], "score": 1.0, "content": "Korteg-de Vries type equations, in: \u201cLie algebras and related topics\u201d, Lecture Notes", "type": "text", "cross_page": true}], "index": 3}, {"bbox": [93, 132, 372, 147], "spans": [{"bbox": [93, 132, 372, 147], "score": 1.0, "content": "in Math, Vol. 933, Springer-Verlag, New York, 1982.", "type": "text", "cross_page": true}], "index": 4, "is_list_end_line": true}, {"bbox": [72, 147, 542, 164], "spans": [{"bbox": [72, 147, 542, 164], "score": 1.0, "content": "10. I. B. Frenkel, Y.-Z. Huang and J. Lepowsky, \u201cOn axiomatic approaches to", "type": "text", "cross_page": true}], "index": 5, "is_list_start_line": true}, {"bbox": [94, 163, 517, 178], "spans": [{"bbox": [94, 163, 517, 178], "score": 1.0, "content": "vertex operator algebras and modules\u201d, Memoirs Amer. Math. Soc. 104 (1993).", "type": "text", "cross_page": true}], "index": 6, "is_list_end_line": true}, {"bbox": [72, 177, 541, 194], "spans": [{"bbox": [72, 177, 541, 194], "score": 1.0, "content": "11. J. Fr\u00a8ohlich and T. Kerler, \u201cQuantum groups, quantum categories and quantum", "type": "text", "cross_page": true}], "index": 7, "is_list_start_line": true}, {"bbox": [93, 192, 540, 208], "spans": [{"bbox": [93, 192, 540, 208], "score": 1.0, "content": "field theory\u201d, Lecture Notes in Mathematics, Vol. 1542, Springer-Verlag, Berlin, 1993.", "type": "text", "cross_page": true}], "index": 8}, {"bbox": [72, 207, 514, 223], "spans": [{"bbox": [72, 207, 514, 223], "score": 1.0, "content": "12. J. Fuchs, Simple WZW currents, Commun. Math. Phys. 136 (1991), 345\u2013356.", "type": "text", "cross_page": true}], "index": 9, "is_list_start_line": true, "is_list_end_line": true}, {"bbox": [73, 223, 541, 239], "spans": [{"bbox": [73, 223, 541, 239], "score": 1.0, "content": "13. J. Fuchs, B. Gato-Rivera, A. N. Schellekens and C. Schweigert, Modular", "type": "text", "cross_page": true}], "index": 10, "is_list_start_line": true}, {"bbox": [91, 236, 542, 255], "spans": [{"bbox": [91, 236, 542, 255], "score": 1.0, "content": "invariants and fusion automorphisms from Galois theory, Phys. Lett. B334 (1994),", "type": "text", "cross_page": true}], "index": 11}, {"bbox": [94, 253, 143, 267], "spans": [{"bbox": [94, 253, 143, 267], "score": 1.0, "content": "113\u2013120.", "type": "text", "cross_page": true}], "index": 12, "is_list_end_line": true}, {"bbox": [70, 266, 542, 285], "spans": [{"bbox": [70, 266, 542, 285], "score": 1.0, "content": "14. J. Fuchs and P. van Driel, WZW fusion rules, quantum groups, and the modular", "type": "text", "cross_page": true}], "index": 13, "is_list_start_line": true}, {"bbox": [94, 282, 336, 296], "spans": [{"bbox": [94, 282, 134, 296], "score": 1.0, "content": "matrix ", "type": "text", "cross_page": true}, {"bbox": [134, 284, 142, 293], "score": 0.76, "content": "S", "type": "inline_equation", "height": 9, "width": 8, "cross_page": true}, {"bbox": [143, 282, 336, 296], "score": 1.0, "content": ", Nucl. Phys. B346 (1990), 632\u2013648.", "type": "text", "cross_page": true}], "index": 14, "is_list_end_line": true}, {"bbox": [71, 296, 542, 315], "spans": [{"bbox": [71, 296, 542, 315], "score": 1.0, "content": "15. J. Fuchs and P. van Driel, Fusion rule engineering, Lett. Math. Phys. 23 (1991),", "type": "text", "cross_page": true}], "index": 15, "is_list_start_line": true}, {"bbox": [93, 312, 132, 327], "spans": [{"bbox": [93, 312, 132, 327], "score": 1.0, "content": "11\u201318.", "type": "text", "cross_page": true}], "index": 16, "is_list_end_line": true}, {"bbox": [71, 326, 542, 344], "spans": [{"bbox": [71, 326, 542, 344], "score": 1.0, "content": "16. T. Gannon, WZW commutants, lattices, and level-one partition functions, Nucl.", "type": "text", "cross_page": true}], "index": 17, "is_list_start_line": true}, {"bbox": [95, 342, 252, 358], "spans": [{"bbox": [95, 342, 252, 358], "score": 1.0, "content": "Phys. B396 (1993), 708\u2013736;", "type": "text", "cross_page": true}], "index": 18, "is_list_end_line": true}, {"bbox": [92, 356, 541, 375], "spans": [{"bbox": [92, 356, 541, 375], "score": 1.0, "content": "P. Ruelle, E. Thiran and J. Weyers, Implications of an arithmetical symmetry", "type": "text", "cross_page": true}], "index": 19}, {"bbox": [93, 371, 503, 388], "spans": [{"bbox": [93, 371, 503, 388], "score": 1.0, "content": "of the commutant for modular invariants, Nucl. Phys. B402 (1993), 693\u2013708.", "type": "text", "cross_page": true}], "index": 20, "is_list_end_line": true}, {"bbox": [71, 386, 541, 406], "spans": [{"bbox": [71, 386, 541, 406], "score": 1.0, "content": "17. T. Gannon, Symmetries of the Kac-Peterson modular matrices of affine algebras,", "type": "text", "cross_page": true}], "index": 21, "is_list_start_line": true}, {"bbox": [93, 401, 284, 417], "spans": [{"bbox": [93, 401, 284, 417], "score": 1.0, "content": "Invent. math. 122 (1995), 341\u2013357.", "type": "text", "cross_page": true}], "index": 22, "is_list_end_line": true}, {"bbox": [72, 417, 542, 434], "spans": [{"bbox": [72, 417, 542, 434], "score": 1.0, "content": "18. T. Gannon, Ph. Ruelle and M. A. Walton, Automorphism modular invariants", "type": "text", "cross_page": true}], "index": 23, "is_list_start_line": true}, {"bbox": [94, 432, 437, 448], "spans": [{"bbox": [94, 432, 437, 448], "score": 1.0, "content": "of current algebras, Commun. Math. Phys. 179 (1996), 121\u2013156.", "type": "text", "cross_page": true}], "index": 24, "is_list_end_line": true}, {"bbox": [72, 447, 540, 465], "spans": [{"bbox": [72, 447, 540, 465], "score": 1.0, "content": "19. G. Georgiev and O. Mathieu, Cat\u00b4egorie de fusion pour les groupes de Chevalley,", "type": "text", "cross_page": true}], "index": 25, "is_list_start_line": true}, {"bbox": [93, 461, 329, 478], "spans": [{"bbox": [93, 461, 329, 478], "score": 1.0, "content": "C. R. Acad. Sci. Paris 315 (1992), 659\u2013662.", "type": "text", "cross_page": true}], "index": 26, "is_list_end_line": true}, {"bbox": [72, 477, 540, 494], "spans": [{"bbox": [72, 477, 540, 494], "score": 1.0, "content": "20. F. M. Goodman and H. Wenzl, Littlewood-Richardson coefficients for Hecke alge-", "type": "text", "cross_page": true}], "index": 27, "is_list_start_line": true}, {"bbox": [94, 493, 383, 507], "spans": [{"bbox": [94, 493, 383, 507], "score": 1.0, "content": "bras at roots of unity, Adv. Math. 82 (1990), 244\u2013265.", "type": "text", "cross_page": true}], "index": 28, "is_list_end_line": true}, {"bbox": [70, 506, 542, 525], "spans": [{"bbox": [70, 506, 542, 525], "score": 1.0, "content": "21. Y.-Z. Huang and J. Lepowsky, Intertwining operator algebras and vertex tensor", "type": "text", "cross_page": true}], "index": 29, "is_list_start_line": true}, {"bbox": [94, 523, 456, 538], "spans": [{"bbox": [94, 523, 456, 538], "score": 1.0, "content": "categories for affine Lie algebras, Duke Math. J. 99 (1999), 113\u2013134.", "type": "text", "cross_page": true}], "index": 30, "is_list_end_line": true}, {"bbox": [71, 536, 542, 555], "spans": [{"bbox": [71, 536, 542, 555], "score": 1.0, "content": "22. V. G. Kac, Simple Lie groups and the Legendre symbol, in: \u201cLie algebras, group", "type": "text", "cross_page": true}], "index": 31, "is_list_start_line": true}, {"bbox": [93, 552, 540, 567], "spans": [{"bbox": [93, 552, 540, 567], "score": 1.0, "content": "theory, and partially ordered algebraic structures\u201d, Lecture Notes in Math, Vol. 848,", "type": "text", "cross_page": true}], "index": 32}, {"bbox": [94, 567, 253, 582], "spans": [{"bbox": [94, 567, 253, 582], "score": 1.0, "content": "Springer-Verlag, Berlin, 1981.", "type": "text", "cross_page": true}], "index": 33, "is_list_end_line": true}, {"bbox": [71, 580, 542, 600], "spans": [{"bbox": [71, 580, 542, 600], "score": 1.0, "content": "23. V. G. Kac, \u201cInfinite Dimensional Lie algebras\u201d, 3rd edition, Cambridge University", "type": "text", "cross_page": true}], "index": 34, "is_list_start_line": true}, {"bbox": [92, 596, 224, 612], "spans": [{"bbox": [92, 596, 224, 612], "score": 1.0, "content": "Press, Cambridge, 1990.", "type": "text", "cross_page": true}], "index": 35, "is_list_end_line": true}, {"bbox": [72, 612, 542, 628], "spans": [{"bbox": [72, 612, 542, 628], "score": 1.0, "content": "24. V. G. Kac and D. H. Peterson, Infinite-dimensional Lie algebras, theta functions", "type": "text", "cross_page": true}], "index": 36, "is_list_start_line": true}, {"bbox": [94, 628, 371, 641], "spans": [{"bbox": [94, 628, 371, 641], "score": 1.0, "content": "and modular forms, Adv. Math. 53 (1984), 125\u2013264.", "type": "text", "cross_page": true}], "index": 37, "is_list_end_line": true}, {"bbox": [72, 641, 541, 658], "spans": [{"bbox": [72, 641, 541, 658], "score": 1.0, "content": "25. V. G. Kac and M. Wakimoto, Modular and conformal constraints in representation", "type": "text", "cross_page": true}], "index": 38, "is_list_start_line": true}, {"bbox": [94, 657, 398, 672], "spans": [{"bbox": [94, 657, 398, 672], "score": 1.0, "content": "theory of affine algebras, Adv. Math. 70 (1988), 156\u2013236.", "type": "text", "cross_page": true}], "index": 39, "is_list_end_line": true}, {"bbox": [73, 672, 489, 688], "spans": [{"bbox": [73, 672, 489, 688], "score": 1.0, "content": "26. G. Lusztig, Exotic Fourier transform, Duke Math. J. 73 (1994), 227\u2013241.", "type": "text", "cross_page": true}], "index": 40, "is_list_start_line": true, "is_list_end_line": true}, {"bbox": [71, 686, 542, 704], "spans": [{"bbox": [71, 686, 542, 704], "score": 1.0, "content": "27. I. G. Macdonald, \u201cSymmetric functions and Hall polynomials\u201d, 2nd edition, Oxford", "type": "text", "cross_page": true}], "index": 41, "is_list_start_line": true}, {"bbox": [94, 702, 276, 718], "spans": [{"bbox": [94, 702, 276, 718], "score": 1.0, "content": "University Press, New York, 1995.", "type": "text", "cross_page": true}], "index": 42, "is_list_end_line": true}, {"bbox": [73, 73, 541, 88], "spans": [{"bbox": [73, 73, 541, 88], "score": 1.0, "content": "28. W. G. McKay, R. V. Moody and J. Patera, Decomposition of tensor products", "type": "text", "cross_page": true}], "index": 0, "is_list_start_line": true}, {"bbox": [94, 87, 421, 103], "spans": [{"bbox": [94, 87, 108, 103], "score": 1.0, "content": "of ", "type": "text", "cross_page": true}, {"bbox": [109, 90, 123, 101], "score": 0.92, "content": "E_{8}", "type": "inline_equation", "height": 11, "width": 14, "cross_page": true}, {"bbox": [123, 87, 421, 103], "score": 1.0, "content": " representations, Alg., Groups Geom. 3 (1986), 286\u2013328.", "type": "text", "cross_page": true}], "index": 1, "is_list_end_line": true}, {"bbox": [73, 102, 540, 118], "spans": [{"bbox": [73, 102, 540, 118], "score": 1.0, "content": "29. W. G. McKay, J. Patera and D. W. Rand, \u201cTables of representations of simple", "type": "text", "cross_page": true}], "index": 2, "is_list_start_line": true}, {"bbox": [94, 117, 541, 132], "spans": [{"bbox": [94, 117, 541, 132], "score": 1.0, "content": "Lie algebras\u201d, Vol. 1, Centre de Recherches Math\u00b4ematiques, Univ\u00b4ersit\u00b4e de Montr\u00b4eal,", "type": "text", "cross_page": true}], "index": 3}, {"bbox": [94, 132, 124, 144], "spans": [{"bbox": [94, 132, 124, 144], "score": 1.0, "content": "1990.", "type": "text", "cross_page": true}], "index": 4, "is_list_end_line": true}, {"bbox": [73, 145, 540, 160], "spans": [{"bbox": [73, 145, 540, 160], "score": 1.0, "content": "30. W. Nahm, Conformal field theories, dilogarithms, and 3-dimensional manifolds, in:", "type": "text", "cross_page": true}], "index": 5, "is_list_start_line": true}, {"bbox": [94, 159, 541, 176], "spans": [{"bbox": [94, 159, 541, 176], "score": 1.0, "content": "\u201cInterface between physics and mathematics\u201d, World-Scientific, 1994, (W. Nahm and", "type": "text", "cross_page": true}], "index": 6}, {"bbox": [93, 173, 373, 190], "spans": [{"bbox": [93, 173, 373, 190], "score": 1.0, "content": "J.-M. Shen, Eds.), World-Scientific, Singapore, 1994.", "type": "text", "cross_page": true}], "index": 7, "is_list_end_line": true}, {"bbox": [73, 187, 540, 204], "spans": [{"bbox": [73, 187, 540, 204], "score": 1.0, "content": "31. A. N. Schellekens, Fusion rule automorphisms from integer spin simple currents,", "type": "text", "cross_page": true}], "index": 8, "is_list_start_line": true}, {"bbox": [95, 204, 279, 217], "spans": [{"bbox": [95, 204, 279, 217], "score": 1.0, "content": "Phys. Lett. B244 (1990), 255\u2013260.", "type": "text", "cross_page": true}], "index": 9, "is_list_end_line": true}, {"bbox": [72, 216, 541, 234], "spans": [{"bbox": [72, 216, 541, 234], "score": 1.0, "content": "32. V. G. Turaev, \u201cQuantum invariants of knots and 3-manifolds\u201d, Walter de Gruyter,", "type": "text", "cross_page": true}], "index": 10, "is_list_start_line": true}, {"bbox": [94, 232, 163, 245], "spans": [{"bbox": [94, 232, 163, 245], "score": 1.0, "content": "Berlin, 1994.", "type": "text", "cross_page": true}], "index": 11, "is_list_end_line": true}, {"bbox": [72, 244, 541, 262], "spans": [{"bbox": [72, 244, 541, 262], "score": 1.0, "content": "33. E. Verlinde, Fusion rules and modular transformations in 2D conformal field theory,", "type": "text", "cross_page": true}], "index": 12, "is_list_start_line": true}, {"bbox": [94, 259, 273, 275], "spans": [{"bbox": [94, 259, 273, 275], "score": 1.0, "content": "Nucl. Phys. 300 (1988), 360\u2013376.", "type": "text", "cross_page": true}], "index": 13, "is_list_end_line": true}, {"bbox": [72, 273, 541, 291], "spans": [{"bbox": [72, 273, 541, 291], "score": 1.0, "content": "34. D. Verstegen, New exceptional modular invariant partition functions for simple", "type": "text", "cross_page": true}], "index": 14, "is_list_start_line": true}, {"bbox": [94, 289, 399, 304], "spans": [{"bbox": [94, 289, 399, 304], "score": 1.0, "content": "Kac\u2013Moody algebras, Nucl. Phys. B346 (1990), 349\u2013386.", "type": "text", "cross_page": true}], "index": 15, "is_list_end_line": true}, {"bbox": [72, 303, 540, 319], "spans": [{"bbox": [72, 303, 540, 319], "score": 1.0, "content": "35. M. A. Walton, Algorithm for WZW fusion rules: a proof, Phys. Lett. B241 (1990),", "type": "text", "cross_page": true}], "index": 16, "is_list_start_line": true}, {"bbox": [95, 319, 141, 331], "spans": [{"bbox": [95, 319, 141, 331], "score": 1.0, "content": "365\u2013368.", "type": "text", "cross_page": true}], "index": 17, "is_list_end_line": true}, {"bbox": [72, 331, 540, 347], "spans": [{"bbox": [72, 331, 540, 347], "score": 1.0, "content": "36. A. J. Wassermann, Operator algebras and conformal field theory, in: \u201cProc. ICM,", "type": "text", "cross_page": true}], "index": 18, "is_list_start_line": true}, {"bbox": [94, 346, 270, 361], "spans": [{"bbox": [94, 346, 270, 361], "score": 0.9778538346290588, "content": "Zurich\", Birkhauser, Basel, 1995.", "type": "text", "cross_page": true}], "index": 19, "is_list_end_line": true}, {"bbox": [73, 360, 541, 376], "spans": [{"bbox": [73, 360, 541, 376], "score": 1.0, "content": "37. E. Witten, The Verlinde formula and the cohomology of the Grassmannian, in:", "type": "text", "cross_page": true}], "index": 20, "is_list_start_line": true}, {"bbox": [96, 375, 513, 391], "spans": [{"bbox": [96, 375, 513, 391], "score": 1.0, "content": "\u201cGeometry, Topology and Physics\u201d, International Press, Cambridge, MA, 1995.", "type": "text", "cross_page": true}], "index": 21, "is_list_end_line": true}], "index": 33.5, "page_num": "page_21", "page_size": [612.0, 792.0], "bbox_fs": [78, 481, 542, 718]}]} |
|
0002044v1 | 17 | $$k=1$$ is easy: $$P_{+}=\{0,J0,\Lambda_{r}\}$$ and $$\pi=i d$$ . is automatic. $$k=2$$ will be done later in
this subsection. Assume now that $$k\geq3$$ .
From Proposition 4.1(b) we can write $$\pi\Lambda_{1}\,=\,J^{a}\Lambda_{1}$$ and $$\pi^{\prime}\Lambda_{1}\,=\,J^{a^{\prime}}\Lambda_{1}$$ . We know
$$\pi J0\,=\,J0$$ , so (2.7b) says $$\pi$$ must take spinors to spinors, and nonspinors to nonspinors.
Then we will have $$\chi_{\Lambda_{1}}[\psi]\,=\,(-1)^{a^{\prime}}\chi_{\Lambda_{1}}[\pi\psi]$$ for any spinor $$\psi$$ . Now if $$a^{\prime}=1$$ , then $$\pi$$ will
take the spinors which maximize $$\chi_{\Lambda_{1}}$$ , to those which minimize it. Both these maxima
and minima can be easily found from (3.2). Thus we get that $$\pi(S\Lambda_{r})$$ equals $$k\Lambda_{r}$$ (when
$$k$$ odd) or $$S((k-1)\Lambda_{r})$$ (when $$k$$ even). But the sets $$S\Lambda_{r}$$ and $$k\Lambda_{r}$$ have different cardi-
nalities ( $$k\Lambda_{r}$$ is a $$J$$ -fixed-point), and so can’t get mapped to each other. Also, the fusions
$$\Lambda_{1}$$ × $$\Lambda_{r}=\Lambda_{r}$$ + $$(\Lambda_{1}+\Lambda_{r})$$ and $$J^{a}\Lambda_{1}\boxtimes\left(J^{i}(k-1)\Lambda_{r}\right)=\left(J^{a+i}(k-1)\Lambda_{r}\right)$$ + $$(J^{a+i+1}(k-$$
$$1)\Lambda_{r})$$ + $$J^{a+i+1}(\Lambda_{r-1}+(k-3)\Lambda_{r})$$ have different numbers of weights on their right sides,
so also $$\pi\Lambda_{r}\notin{\cal S}(k-1)\Lambda_{r}$$ .
Thus $$a^{\prime}=0$$ and $$\pi\Lambda_{r}=J^{b}\Lambda_{r}$$ for some $$b$$ . Similarly, $$a=0$$ . Hitting $$\pi$$ with $$\pi[1]^{b}$$ , we
may assume that $$\pi$$ fixes $$\Lambda_{r}$$ .
Now assume $$\pi$$ fixes $$\Lambda_{\ell}$$ , for $$1\leq\ell<r-1$$ . Then the fusion $$\Lambda_{1}$$ × $$\Lambda_{\ell}$$ says that $$\pi\Lambda_{\ell+1}$$
equals $$\Lambda_{\ell+1}$$ or $$\Lambda_{1}+\Lambda_{\ell}$$ . But from (3.2) we find
Hence $$\pi$$ will fix $$\Lambda_{\ell+1}$$ if it fixes $$\Lambda_{\ell}$$ , concluding the argument.
Now consider the more interesting case: $$k=2$$ . Then $$\kappa=2r+1$$ ; recall the weights
in $$P_{+}(B_{r,2})$$ are the simple-currents $$0,J0$$ , the $$J$$ -fixed-points $$\gamma^{1},\ldots,\gamma^{r}$$ (notation defined
in §3.2), and the spinors $$\Lambda_{r},J\Lambda_{r}$$ . Because $$\pi(J0)\,=\,\pi^{\prime}(J0)\,=\,J0$$ , we know both $$\pi$$ and
$$\pi^{\prime}$$ must take $$J$$ -fixed-points to $$J$$ -fixed-points, i.e. $$\pi\Lambda_{1}\,=\,\gamma^{m}$$ and $$\pi^{\prime}\Lambda_{1}\,=\,\gamma^{m^{\prime}}$$ for some
$$1\leq m,m^{\prime}\leq r$$ . It is easy to compute [25]
From this we see $$m\,m^{\prime}\equiv\pm1$$ (mod $$\kappa$$ ), so $$^{\prime\prime}$$ is coprime to $$\kappa$$ . Hitting it with the Galois
fusion-symmetry $$\pi\{m^{\prime}\}$$ , we see that we may assume $$\pi\Lambda_{1}=\pi^{\prime}\Lambda_{1}=\Lambda_{1}$$ .
Now use (4.2) to get $$\pi\gamma^{i}=\gamma^{i}$$ for all $$i$$ . Then $$\pi$$ equals the identity or $$\pi[1]$$ , depending
on what $$\pi$$ does to $$\Lambda_{r}$$ .
# 4.4. The $$C$$ -series argument
By rank-level duality, we may take $$r\le k$$ . For now assume $$(r,k)\neq(2,3)$$ . Then we
know $$\pi\Lambda_{1}=J^{a}\Lambda_{1}$$ and $$\pi\Lambda_{1}=J^{a^{\prime}}\Lambda_{1}$$ for some $$a,a^{\prime}$$ . Since $$\pi J0=\pi^{\prime}J0=J0$$ , (2.7b) says
$$a=a^{\prime}=0$$ if $$k r$$ is odd. Since $$\chi_{\Lambda_{1}}[\Lambda_{1}]>0$$ (using (3.3)), $$S_{\Lambda_{1}\Lambda_{1}}=S_{J^{a}\Lambda_{1},J^{a^{\prime}}\Lambda_{1}}$$ implies that
$$a=a^{\prime}$$ also holds when $$k r$$ is even, and hence we may assume (hitting with $$\pi[1]^{a}$$ ) that also
| <p>$$k=1$$ is easy: $$P_{+}=\{0,J0,\Lambda_{r}\}$$ and $$\pi=i d$$ . is automatic. $$k=2$$ will be done later in
this subsection. Assume now that $$k\geq3$$ .</p>
<p>From Proposition 4.1(b) we can write $$\pi\Lambda_{1}\,=\,J^{a}\Lambda_{1}$$ and $$\pi^{\prime}\Lambda_{1}\,=\,J^{a^{\prime}}\Lambda_{1}$$ . We know
$$\pi J0\,=\,J0$$ , so (2.7b) says $$\pi$$ must take spinors to spinors, and nonspinors to nonspinors.
Then we will have $$\chi_{\Lambda_{1}}[\psi]\,=\,(-1)^{a^{\prime}}\chi_{\Lambda_{1}}[\pi\psi]$$ for any spinor $$\psi$$ . Now if $$a^{\prime}=1$$ , then $$\pi$$ will
take the spinors which maximize $$\chi_{\Lambda_{1}}$$ , to those which minimize it. Both these maxima
and minima can be easily found from (3.2). Thus we get that $$\pi(S\Lambda_{r})$$ equals $$k\Lambda_{r}$$ (when
$$k$$ odd) or $$S((k-1)\Lambda_{r})$$ (when $$k$$ even). But the sets $$S\Lambda_{r}$$ and $$k\Lambda_{r}$$ have different cardi-
nalities ( $$k\Lambda_{r}$$ is a $$J$$ -fixed-point), and so can’t get mapped to each other. Also, the fusions
$$\Lambda_{1}$$ × $$\Lambda_{r}=\Lambda_{r}$$ + $$(\Lambda_{1}+\Lambda_{r})$$ and $$J^{a}\Lambda_{1}\boxtimes\left(J^{i}(k-1)\Lambda_{r}\right)=\left(J^{a+i}(k-1)\Lambda_{r}\right)$$ + $$(J^{a+i+1}(k-$$
$$1)\Lambda_{r})$$ + $$J^{a+i+1}(\Lambda_{r-1}+(k-3)\Lambda_{r})$$ have different numbers of weights on their right sides,
so also $$\pi\Lambda_{r}\notin{\cal S}(k-1)\Lambda_{r}$$ .</p>
<p>Thus $$a^{\prime}=0$$ and $$\pi\Lambda_{r}=J^{b}\Lambda_{r}$$ for some $$b$$ . Similarly, $$a=0$$ . Hitting $$\pi$$ with $$\pi[1]^{b}$$ , we
may assume that $$\pi$$ fixes $$\Lambda_{r}$$ .</p>
<p>Now assume $$\pi$$ fixes $$\Lambda_{\ell}$$ , for $$1\leq\ell<r-1$$ . Then the fusion $$\Lambda_{1}$$ × $$\Lambda_{\ell}$$ says that $$\pi\Lambda_{\ell+1}$$
equals $$\Lambda_{\ell+1}$$ or $$\Lambda_{1}+\Lambda_{\ell}$$ . But from (3.2) we find</p>
<p>Hence $$\pi$$ will fix $$\Lambda_{\ell+1}$$ if it fixes $$\Lambda_{\ell}$$ , concluding the argument.</p>
<p>Now consider the more interesting case: $$k=2$$ . Then $$\kappa=2r+1$$ ; recall the weights
in $$P_{+}(B_{r,2})$$ are the simple-currents $$0,J0$$ , the $$J$$ -fixed-points $$\gamma^{1},\ldots,\gamma^{r}$$ (notation defined
in §3.2), and the spinors $$\Lambda_{r},J\Lambda_{r}$$ . Because $$\pi(J0)\,=\,\pi^{\prime}(J0)\,=\,J0$$ , we know both $$\pi$$ and
$$\pi^{\prime}$$ must take $$J$$ -fixed-points to $$J$$ -fixed-points, i.e. $$\pi\Lambda_{1}\,=\,\gamma^{m}$$ and $$\pi^{\prime}\Lambda_{1}\,=\,\gamma^{m^{\prime}}$$ for some
$$1\leq m,m^{\prime}\leq r$$ . It is easy to compute [25]</p>
<p>From this we see $$m\,m^{\prime}\equiv\pm1$$ (mod $$\kappa$$ ), so $$^{\prime\prime}$$ is coprime to $$\kappa$$ . Hitting it with the Galois
fusion-symmetry $$\pi\{m^{\prime}\}$$ , we see that we may assume $$\pi\Lambda_{1}=\pi^{\prime}\Lambda_{1}=\Lambda_{1}$$ .</p>
<p>Now use (4.2) to get $$\pi\gamma^{i}=\gamma^{i}$$ for all $$i$$ . Then $$\pi$$ equals the identity or $$\pi[1]$$ , depending
on what $$\pi$$ does to $$\Lambda_{r}$$ .</p>
<h1>4.4. The $$C$$ -series argument</h1>
<p>By rank-level duality, we may take $$r\le k$$ . For now assume $$(r,k)\neq(2,3)$$ . Then we
know $$\pi\Lambda_{1}=J^{a}\Lambda_{1}$$ and $$\pi\Lambda_{1}=J^{a^{\prime}}\Lambda_{1}$$ for some $$a,a^{\prime}$$ . Since $$\pi J0=\pi^{\prime}J0=J0$$ , (2.7b) says
$$a=a^{\prime}=0$$ if $$k r$$ is odd. Since $$\chi_{\Lambda_{1}}[\Lambda_{1}]>0$$ (using (3.3)), $$S_{\Lambda_{1}\Lambda_{1}}=S_{J^{a}\Lambda_{1},J^{a^{\prime}}\Lambda_{1}}$$ implies that
$$a=a^{\prime}$$ also holds when $$k r$$ is even, and hence we may assume (hitting with $$\pi[1]^{a}$$ ) that also</p>
| [{"type": "text", "coordinates": [70, 93, 541, 122], "content": "$$k=1$$ is easy: $$P_{+}=\\{0,J0,\\Lambda_{r}\\}$$ and $$\\pi=i d$$ . is automatic. $$k=2$$ will be done later in\nthis subsection. Assume now that $$k\\geq3$$ .", "block_type": "text", "index": 1}, {"type": "text", "coordinates": [70, 123, 541, 266], "content": "From Proposition 4.1(b) we can write $$\\pi\\Lambda_{1}\\,=\\,J^{a}\\Lambda_{1}$$ and $$\\pi^{\\prime}\\Lambda_{1}\\,=\\,J^{a^{\\prime}}\\Lambda_{1}$$ . We know\n$$\\pi J0\\,=\\,J0$$ , so (2.7b) says $$\\pi$$ must take spinors to spinors, and nonspinors to nonspinors.\nThen we will have $$\\chi_{\\Lambda_{1}}[\\psi]\\,=\\,(-1)^{a^{\\prime}}\\chi_{\\Lambda_{1}}[\\pi\\psi]$$ for any spinor $$\\psi$$ . Now if $$a^{\\prime}=1$$ , then $$\\pi$$ will\ntake the spinors which maximize $$\\chi_{\\Lambda_{1}}$$ , to those which minimize it. Both these maxima\nand minima can be easily found from (3.2). Thus we get that $$\\pi(S\\Lambda_{r})$$ equals $$k\\Lambda_{r}$$ (when\n$$k$$ odd) or $$S((k-1)\\Lambda_{r})$$ (when $$k$$ even). But the sets $$S\\Lambda_{r}$$ and $$k\\Lambda_{r}$$ have different cardi-\nnalities ( $$k\\Lambda_{r}$$ is a $$J$$ -fixed-point), and so can\u2019t get mapped to each other. Also, the fusions\n$$\\Lambda_{1}$$ \u00d7 $$\\Lambda_{r}=\\Lambda_{r}$$ + $$(\\Lambda_{1}+\\Lambda_{r})$$ and $$J^{a}\\Lambda_{1}\\boxtimes\\left(J^{i}(k-1)\\Lambda_{r}\\right)=\\left(J^{a+i}(k-1)\\Lambda_{r}\\right)$$ + $$(J^{a+i+1}(k-$$\n$$1)\\Lambda_{r})$$ + $$J^{a+i+1}(\\Lambda_{r-1}+(k-3)\\Lambda_{r})$$ have different numbers of weights on their right sides,\nso also $$\\pi\\Lambda_{r}\\notin{\\cal S}(k-1)\\Lambda_{r}$$ .", "block_type": "text", "index": 2}, {"type": "text", "coordinates": [70, 267, 541, 295], "content": "Thus $$a^{\\prime}=0$$ and $$\\pi\\Lambda_{r}=J^{b}\\Lambda_{r}$$ for some $$b$$ . Similarly, $$a=0$$ . Hitting $$\\pi$$ with $$\\pi[1]^{b}$$ , we\nmay assume that $$\\pi$$ fixes $$\\Lambda_{r}$$ .", "block_type": "text", "index": 3}, {"type": "text", "coordinates": [70, 296, 540, 326], "content": "Now assume $$\\pi$$ fixes $$\\Lambda_{\\ell}$$ , for $$1\\leq\\ell<r-1$$ . Then the fusion $$\\Lambda_{1}$$ \u00d7 $$\\Lambda_{\\ell}$$ says that $$\\pi\\Lambda_{\\ell+1}$$\nequals $$\\Lambda_{\\ell+1}$$ or $$\\Lambda_{1}+\\Lambda_{\\ell}$$ . But from (3.2) we find", "block_type": "text", "index": 4}, {"type": "interline_equation", "coordinates": [124, 340, 527, 401], "content": "", "block_type": "interline_equation", "index": 5}, {"type": "text", "coordinates": [70, 409, 391, 425], "content": "Hence $$\\pi$$ will fix $$\\Lambda_{\\ell+1}$$ if it fixes $$\\Lambda_{\\ell}$$ , concluding the argument.", "block_type": "text", "index": 6}, {"type": "text", "coordinates": [70, 428, 541, 501], "content": "Now consider the more interesting case: $$k=2$$ . Then $$\\kappa=2r+1$$ ; recall the weights\nin $$P_{+}(B_{r,2})$$ are the simple-currents $$0,J0$$ , the $$J$$ -fixed-points $$\\gamma^{1},\\ldots,\\gamma^{r}$$ (notation defined\nin \u00a73.2), and the spinors $$\\Lambda_{r},J\\Lambda_{r}$$ . Because $$\\pi(J0)\\,=\\,\\pi^{\\prime}(J0)\\,=\\,J0$$ , we know both $$\\pi$$ and\n$$\\pi^{\\prime}$$ must take $$J$$ -fixed-points to $$J$$ -fixed-points, i.e. $$\\pi\\Lambda_{1}\\,=\\,\\gamma^{m}$$ and $$\\pi^{\\prime}\\Lambda_{1}\\,=\\,\\gamma^{m^{\\prime}}$$ for some\n$$1\\leq m,m^{\\prime}\\leq r$$ . It is easy to compute [25]", "block_type": "text", "index": 7}, {"type": "interline_equation", "coordinates": [247, 515, 365, 547], "content": "", "block_type": "interline_equation", "index": 8}, {"type": "text", "coordinates": [70, 560, 541, 589], "content": "From this we see $$m\\,m^{\\prime}\\equiv\\pm1$$ (mod $$\\kappa$$ ), so $$^{\\prime\\prime}$$ is coprime to $$\\kappa$$ . Hitting it with the Galois\nfusion-symmetry $$\\pi\\{m^{\\prime}\\}$$ , we see that we may assume $$\\pi\\Lambda_{1}=\\pi^{\\prime}\\Lambda_{1}=\\Lambda_{1}$$ .", "block_type": "text", "index": 9}, {"type": "text", "coordinates": [71, 590, 541, 619], "content": "Now use (4.2) to get $$\\pi\\gamma^{i}=\\gamma^{i}$$ for all $$i$$ . Then $$\\pi$$ equals the identity or $$\\pi[1]$$ , depending\non what $$\\pi$$ does to $$\\Lambda_{r}$$ .", "block_type": "text", "index": 10}, {"type": "title", "coordinates": [71, 634, 218, 649], "content": "4.4. The $$C$$ -series argument", "block_type": "title", "index": 11}, {"type": "text", "coordinates": [70, 657, 541, 715], "content": "By rank-level duality, we may take $$r\\le k$$ . For now assume $$(r,k)\\neq(2,3)$$ . Then we\nknow $$\\pi\\Lambda_{1}=J^{a}\\Lambda_{1}$$ and $$\\pi\\Lambda_{1}=J^{a^{\\prime}}\\Lambda_{1}$$ for some $$a,a^{\\prime}$$ . Since $$\\pi J0=\\pi^{\\prime}J0=J0$$ , (2.7b) says\n$$a=a^{\\prime}=0$$ if $$k r$$ is odd. Since $$\\chi_{\\Lambda_{1}}[\\Lambda_{1}]>0$$ (using (3.3)), $$S_{\\Lambda_{1}\\Lambda_{1}}=S_{J^{a}\\Lambda_{1},J^{a^{\\prime}}\\Lambda_{1}}$$ implies that\n$$a=a^{\\prime}$$ also holds when $$k r$$ is even, and hence we may assume (hitting with $$\\pi[1]^{a}$$ ) that also", "block_type": "text", "index": 12}] | [{"type": "inline_equation", "coordinates": [95, 98, 124, 107], "content": "k=1", "score": 0.9, "index": 1}, {"type": "text", "coordinates": [124, 95, 171, 111], "content": " is easy: ", "score": 1.0, "index": 2}, {"type": "inline_equation", "coordinates": [171, 97, 259, 110], "content": "P_{+}=\\{0,J0,\\Lambda_{r}\\}", "score": 0.95, "index": 3}, {"type": "text", "coordinates": [259, 95, 286, 111], "content": " and ", "score": 1.0, "index": 4}, {"type": "inline_equation", "coordinates": [286, 98, 321, 107], "content": "\\pi=i d", "score": 0.92, "index": 5}, {"type": "text", "coordinates": [321, 95, 400, 111], "content": ". is automatic. ", "score": 1.0, "index": 6}, {"type": "inline_equation", "coordinates": [401, 98, 430, 107], "content": "k=2", "score": 0.92, "index": 7}, {"type": "text", "coordinates": [430, 95, 541, 111], "content": " will be done later in", "score": 1.0, "index": 8}, {"type": "text", "coordinates": [72, 111, 252, 124], "content": "this subsection. Assume now that ", "score": 1.0, "index": 9}, {"type": "inline_equation", "coordinates": [252, 113, 281, 123], "content": "k\\geq3", "score": 0.92, "index": 10}, {"type": "text", "coordinates": [281, 111, 285, 124], "content": ".", "score": 1.0, "index": 11}, {"type": "text", "coordinates": [93, 125, 304, 140], "content": "From Proposition 4.1(b) we can write ", "score": 1.0, "index": 12}, {"type": "inline_equation", "coordinates": [304, 127, 372, 138], "content": "\\pi\\Lambda_{1}\\,=\\,J^{a}\\Lambda_{1}", "score": 0.95, "index": 13}, {"type": "text", "coordinates": [373, 125, 402, 140], "content": " and ", "score": 1.0, "index": 14}, {"type": "inline_equation", "coordinates": [402, 124, 478, 138], "content": "\\pi^{\\prime}\\Lambda_{1}\\,=\\,J^{a^{\\prime}}\\Lambda_{1}", "score": 0.95, "index": 15}, {"type": "text", "coordinates": [478, 125, 541, 140], "content": ". We know", "score": 1.0, "index": 16}, {"type": "inline_equation", "coordinates": [71, 142, 125, 151], "content": "\\pi J0\\,=\\,J0", "score": 0.88, "index": 17}, {"type": "text", "coordinates": [125, 140, 209, 155], "content": ", so (2.7b) says ", "score": 1.0, "index": 18}, {"type": "inline_equation", "coordinates": [209, 145, 217, 150], "content": "\\pi", "score": 0.81, "index": 19}, {"type": "text", "coordinates": [217, 140, 540, 155], "content": " must take spinors to spinors, and nonspinors to nonspinors.", "score": 1.0, "index": 20}, {"type": "text", "coordinates": [70, 154, 172, 169], "content": "Then we will have ", "score": 1.0, "index": 21}, {"type": "inline_equation", "coordinates": [172, 153, 300, 168], "content": "\\chi_{\\Lambda_{1}}[\\psi]\\,=\\,(-1)^{a^{\\prime}}\\chi_{\\Lambda_{1}}[\\pi\\psi]", "score": 0.93, "index": 22}, {"type": "text", "coordinates": [300, 154, 381, 169], "content": " for any spinor ", "score": 1.0, "index": 23}, {"type": "inline_equation", "coordinates": [382, 156, 390, 167], "content": "\\psi", "score": 0.9, "index": 24}, {"type": "text", "coordinates": [391, 154, 439, 169], "content": ". Now if ", "score": 1.0, "index": 25}, {"type": "inline_equation", "coordinates": [440, 155, 474, 165], "content": "a^{\\prime}=1", "score": 0.88, "index": 26}, {"type": "text", "coordinates": [474, 154, 508, 169], "content": ", then ", "score": 1.0, "index": 27}, {"type": "inline_equation", "coordinates": [509, 158, 516, 165], "content": "\\pi", "score": 0.61, "index": 28}, {"type": "text", "coordinates": [517, 154, 542, 169], "content": " will", "score": 1.0, "index": 29}, {"type": "text", "coordinates": [70, 168, 251, 184], "content": "take the spinors which maximize ", "score": 1.0, "index": 30}, {"type": "inline_equation", "coordinates": [251, 173, 271, 182], "content": "\\chi_{\\Lambda_{1}}", "score": 0.86, "index": 31}, {"type": "text", "coordinates": [271, 168, 542, 184], "content": ", to those which minimize it. Both these maxima", "score": 1.0, "index": 32}, {"type": "text", "coordinates": [70, 182, 403, 198], "content": "and minima can be easily found from (3.2). Thus we get that ", "score": 1.0, "index": 33}, {"type": "inline_equation", "coordinates": [403, 183, 442, 196], "content": "\\pi(S\\Lambda_{r})", "score": 0.92, "index": 34}, {"type": "text", "coordinates": [442, 182, 482, 198], "content": " equals ", "score": 1.0, "index": 35}, {"type": "inline_equation", "coordinates": [482, 182, 503, 195], "content": "k\\Lambda_{r}", "score": 0.89, "index": 36}, {"type": "text", "coordinates": [504, 182, 541, 198], "content": " (when", "score": 1.0, "index": 37}, {"type": "inline_equation", "coordinates": [70, 197, 79, 209], "content": "k", "score": 0.74, "index": 38}, {"type": "text", "coordinates": [79, 198, 126, 212], "content": " odd) or ", "score": 1.0, "index": 39}, {"type": "inline_equation", "coordinates": [127, 196, 196, 211], "content": "S((k-1)\\Lambda_{r})", "score": 0.92, "index": 40}, {"type": "text", "coordinates": [196, 198, 236, 212], "content": " (when ", "score": 1.0, "index": 41}, {"type": "inline_equation", "coordinates": [236, 198, 244, 208], "content": "k", "score": 0.74, "index": 42}, {"type": "text", "coordinates": [244, 198, 357, 212], "content": " even). But the sets ", "score": 1.0, "index": 43}, {"type": "inline_equation", "coordinates": [357, 199, 379, 210], "content": "S\\Lambda_{r}", "score": 0.92, "index": 44}, {"type": "text", "coordinates": [379, 198, 407, 212], "content": " and ", "score": 1.0, "index": 45}, {"type": "inline_equation", "coordinates": [408, 198, 429, 210], "content": "k\\Lambda_{r}", "score": 0.89, "index": 46}, {"type": "text", "coordinates": [429, 198, 541, 212], "content": " have different cardi-", "score": 1.0, "index": 47}, {"type": "text", "coordinates": [71, 212, 116, 226], "content": "nalities (", "score": 1.0, "index": 48}, {"type": "inline_equation", "coordinates": [116, 211, 138, 224], "content": "k\\Lambda_{r}", "score": 0.88, "index": 49}, {"type": "text", "coordinates": [138, 212, 162, 226], "content": " is a ", "score": 1.0, "index": 50}, {"type": "inline_equation", "coordinates": [163, 212, 171, 223], "content": "J", "score": 0.83, "index": 51}, {"type": "text", "coordinates": [172, 212, 541, 226], "content": "-fixed-point), and so can\u2019t get mapped to each other. Also, the fusions", "score": 1.0, "index": 52}, {"type": "inline_equation", "coordinates": [71, 225, 85, 238], "content": "\\Lambda_{1}", "score": 0.86, "index": 53}, {"type": "text", "coordinates": [86, 225, 101, 241], "content": " \u00d7", "score": 1.0, "index": 54}, {"type": "inline_equation", "coordinates": [102, 225, 147, 238], "content": "\\Lambda_{r}=\\Lambda_{r}", "score": 0.89, "index": 55}, {"type": "text", "coordinates": [147, 225, 164, 241], "content": " + ", "score": 1.0, "index": 56}, {"type": "inline_equation", "coordinates": [164, 225, 215, 239], "content": "(\\Lambda_{1}+\\Lambda_{r})", "score": 0.89, "index": 57}, {"type": "text", "coordinates": [216, 225, 241, 241], "content": " and ", "score": 1.0, "index": 58}, {"type": "inline_equation", "coordinates": [241, 226, 457, 240], "content": "J^{a}\\Lambda_{1}\\boxtimes\\left(J^{i}(k-1)\\Lambda_{r}\\right)=\\left(J^{a+i}(k-1)\\Lambda_{r}\\right)", "score": 0.85, "index": 59}, {"type": "text", "coordinates": [457, 225, 476, 241], "content": " + ", "score": 1.0, "index": 60}, {"type": "inline_equation", "coordinates": [477, 224, 541, 240], "content": "(J^{a+i+1}(k-", "score": 0.85, "index": 61}, {"type": "inline_equation", "coordinates": [70, 239, 99, 254], "content": "1)\\Lambda_{r})", "score": 0.85, "index": 62}, {"type": "text", "coordinates": [99, 237, 117, 257], "content": " + ", "score": 1.0, "index": 63}, {"type": "inline_equation", "coordinates": [118, 240, 254, 254], "content": "J^{a+i+1}(\\Lambda_{r-1}+(k-3)\\Lambda_{r})", "score": 0.9, "index": 64}, {"type": "text", "coordinates": [254, 237, 541, 257], "content": " have different numbers of weights on their right sides,", "score": 1.0, "index": 65}, {"type": "text", "coordinates": [70, 255, 109, 269], "content": "so also ", "score": 1.0, "index": 66}, {"type": "inline_equation", "coordinates": [110, 254, 204, 268], "content": "\\pi\\Lambda_{r}\\notin{\\cal S}(k-1)\\Lambda_{r}", "score": 0.92, "index": 67}, {"type": "text", "coordinates": [204, 255, 209, 269], "content": ".", "score": 1.0, "index": 68}, {"type": "text", "coordinates": [94, 268, 125, 285], "content": "Thus ", "score": 1.0, "index": 69}, {"type": "inline_equation", "coordinates": [126, 269, 160, 281], "content": "a^{\\prime}=0", "score": 0.9, "index": 70}, {"type": "text", "coordinates": [160, 268, 186, 285], "content": " and ", "score": 1.0, "index": 71}, {"type": "inline_equation", "coordinates": [186, 269, 251, 282], "content": "\\pi\\Lambda_{r}=J^{b}\\Lambda_{r}", "score": 0.95, "index": 72}, {"type": "text", "coordinates": [252, 268, 304, 285], "content": " for some ", "score": 1.0, "index": 73}, {"type": "inline_equation", "coordinates": [304, 271, 310, 280], "content": "b", "score": 0.85, "index": 74}, {"type": "text", "coordinates": [310, 268, 372, 285], "content": ". Similarly, ", "score": 1.0, "index": 75}, {"type": "inline_equation", "coordinates": [372, 270, 403, 281], "content": "a=0", "score": 0.84, "index": 76}, {"type": "text", "coordinates": [403, 268, 453, 285], "content": ". Hitting ", "score": 1.0, "index": 77}, {"type": "inline_equation", "coordinates": [453, 272, 462, 280], "content": "\\pi", "score": 0.69, "index": 78}, {"type": "text", "coordinates": [462, 268, 492, 285], "content": " with ", "score": 1.0, "index": 79}, {"type": "inline_equation", "coordinates": [493, 268, 518, 283], "content": "\\pi[1]^{b}", "score": 0.92, "index": 80}, {"type": "text", "coordinates": [519, 268, 541, 285], "content": ", we", "score": 1.0, "index": 81}, {"type": "text", "coordinates": [71, 284, 163, 298], "content": "may assume that", "score": 1.0, "index": 82}, {"type": "inline_equation", "coordinates": [164, 286, 172, 295], "content": "\\pi", "score": 0.75, "index": 83}, {"type": "text", "coordinates": [173, 284, 202, 298], "content": " fixes ", "score": 1.0, "index": 84}, {"type": "inline_equation", "coordinates": [202, 285, 216, 296], "content": "\\Lambda_{r}", "score": 0.89, "index": 85}, {"type": "text", "coordinates": [217, 284, 220, 298], "content": ".", "score": 1.0, "index": 86}, {"type": "text", "coordinates": [93, 297, 163, 315], "content": "Now assume ", "score": 1.0, "index": 87}, {"type": "inline_equation", "coordinates": [163, 301, 172, 309], "content": "\\pi", "score": 0.76, "index": 88}, {"type": "text", "coordinates": [172, 297, 201, 315], "content": " fixes ", "score": 1.0, "index": 89}, {"type": "inline_equation", "coordinates": [202, 300, 215, 311], "content": "\\Lambda_{\\ell}", "score": 0.88, "index": 90}, {"type": "text", "coordinates": [216, 297, 240, 315], "content": ", for ", "score": 1.0, "index": 91}, {"type": "inline_equation", "coordinates": [241, 300, 311, 311], "content": "1\\leq\\ell<r-1", "score": 0.91, "index": 92}, {"type": "text", "coordinates": [311, 297, 406, 315], "content": ". Then the fusion ", "score": 1.0, "index": 93}, {"type": "inline_equation", "coordinates": [406, 298, 421, 311], "content": "\\Lambda_{1}", "score": 0.79, "index": 94}, {"type": "text", "coordinates": [421, 297, 437, 315], "content": " \u00d7", "score": 1.0, "index": 95}, {"type": "inline_equation", "coordinates": [438, 298, 452, 311], "content": "\\Lambda_{\\ell}", "score": 0.73, "index": 96}, {"type": "text", "coordinates": [452, 297, 506, 315], "content": "says that ", "score": 1.0, "index": 97}, {"type": "inline_equation", "coordinates": [506, 299, 539, 312], "content": "\\pi\\Lambda_{\\ell+1}", "score": 0.89, "index": 98}, {"type": "text", "coordinates": [71, 313, 106, 327], "content": "equals", "score": 1.0, "index": 99}, {"type": "inline_equation", "coordinates": [107, 313, 133, 326], "content": "\\Lambda_{\\ell+1}", "score": 0.91, "index": 100}, {"type": "text", "coordinates": [133, 313, 150, 327], "content": " or ", "score": 1.0, "index": 101}, {"type": "inline_equation", "coordinates": [151, 313, 192, 325], "content": "\\Lambda_{1}+\\Lambda_{\\ell}", "score": 0.91, "index": 102}, {"type": "text", "coordinates": [193, 313, 321, 327], "content": ". But from (3.2) we find", "score": 1.0, "index": 103}, {"type": "interline_equation", "coordinates": [124, 340, 527, 401], "content": "\\begin{array}{c}{{-\\chi_{\\Lambda_{1}}[\\Lambda_{1}+\\Lambda_{\\ell}]=2\\,\\{\\displaystyle\\mathrm{cos}(\\pi\\frac{2r-2\\ell+1}{\\kappa})-\\mathrm{cos}(\\pi\\frac{2r-2\\ell-1}{\\kappa})+\\mathrm{cos}(\\pi\\frac{2r+1}{\\kappa})\\}}}\\\\ {{-\\cos(\\pi\\frac{2r+3}{\\kappa})\\}=4\\cos(\\pi\\frac{2r-\\ell+1}{\\kappa})\\,\\{\\displaystyle\\mathrm{cos}(2\\pi\\frac{\\ell}{\\kappa})-\\mathrm{cos}(2\\pi\\frac{\\ell+1}{\\kappa})\\},}}\\end{array}", "score": 0.86, "index": 104}, {"type": "text", "coordinates": [70, 411, 106, 426], "content": "Hence ", "score": 1.0, "index": 105}, {"type": "inline_equation", "coordinates": [107, 417, 114, 423], "content": "\\pi", "score": 0.86, "index": 106}, {"type": "text", "coordinates": [114, 411, 157, 426], "content": " will fix ", "score": 1.0, "index": 107}, {"type": "inline_equation", "coordinates": [158, 413, 182, 425], "content": "\\Lambda_{\\ell+1}", "score": 0.92, "index": 108}, {"type": "text", "coordinates": [182, 411, 236, 426], "content": " if it fixes ", "score": 1.0, "index": 109}, {"type": "inline_equation", "coordinates": [236, 414, 249, 424], "content": "\\Lambda_{\\ell}", "score": 0.9, "index": 110}, {"type": "text", "coordinates": [250, 411, 390, 426], "content": ", concluding the argument.", "score": 1.0, "index": 111}, {"type": "text", "coordinates": [94, 430, 311, 446], "content": "Now consider the more interesting case: ", "score": 1.0, "index": 112}, {"type": "inline_equation", "coordinates": [311, 432, 341, 441], "content": "k=2", "score": 0.91, "index": 113}, {"type": "text", "coordinates": [342, 430, 382, 446], "content": ". Then ", "score": 1.0, "index": 114}, {"type": "inline_equation", "coordinates": [382, 433, 440, 442], "content": "\\kappa=2r+1", "score": 0.91, "index": 115}, {"type": "text", "coordinates": [440, 430, 540, 446], "content": "; recall the weights", "score": 1.0, "index": 116}, {"type": "text", "coordinates": [69, 443, 85, 460], "content": "in ", "score": 1.0, "index": 117}, {"type": "inline_equation", "coordinates": [86, 446, 132, 459], "content": "P_{+}(B_{r,2})", "score": 0.94, "index": 118}, {"type": "text", "coordinates": [132, 443, 262, 460], "content": " are the simple-currents ", "score": 1.0, "index": 119}, {"type": "inline_equation", "coordinates": [262, 447, 288, 458], "content": "0,J0", "score": 0.92, "index": 120}, {"type": "text", "coordinates": [288, 443, 316, 460], "content": ", the ", "score": 1.0, "index": 121}, {"type": "inline_equation", "coordinates": [316, 447, 325, 456], "content": "J", "score": 0.88, "index": 122}, {"type": "text", "coordinates": [325, 443, 393, 460], "content": "-fixed-points ", "score": 1.0, "index": 123}, {"type": "inline_equation", "coordinates": [393, 445, 444, 458], "content": "\\gamma^{1},\\ldots,\\gamma^{r}", "score": 0.92, "index": 124}, {"type": "text", "coordinates": [445, 443, 542, 460], "content": " (notation defined", "score": 1.0, "index": 125}, {"type": "text", "coordinates": [69, 458, 206, 474], "content": "in \u00a73.2), and the spinors ", "score": 1.0, "index": 126}, {"type": "inline_equation", "coordinates": [207, 461, 247, 472], "content": "\\Lambda_{r},J\\Lambda_{r}", "score": 0.93, "index": 127}, {"type": "text", "coordinates": [248, 458, 304, 474], "content": ". Because ", "score": 1.0, "index": 128}, {"type": "inline_equation", "coordinates": [304, 460, 421, 473], "content": "\\pi(J0)\\,=\\,\\pi^{\\prime}(J0)\\,=\\,J0", "score": 0.93, "index": 129}, {"type": "text", "coordinates": [421, 458, 507, 474], "content": ", we know both ", "score": 1.0, "index": 130}, {"type": "inline_equation", "coordinates": [508, 464, 515, 470], "content": "\\pi", "score": 0.88, "index": 131}, {"type": "text", "coordinates": [516, 458, 541, 474], "content": " and", "score": 1.0, "index": 132}, {"type": "inline_equation", "coordinates": [71, 475, 82, 484], "content": "\\pi^{\\prime}", "score": 0.9, "index": 133}, {"type": "text", "coordinates": [82, 472, 144, 489], "content": " must take ", "score": 1.0, "index": 134}, {"type": "inline_equation", "coordinates": [145, 475, 153, 484], "content": "J", "score": 0.9, "index": 135}, {"type": "text", "coordinates": [153, 472, 237, 489], "content": "-fixed-points to ", "score": 1.0, "index": 136}, {"type": "inline_equation", "coordinates": [238, 475, 246, 484], "content": "J", "score": 0.89, "index": 137}, {"type": "text", "coordinates": [246, 472, 339, 489], "content": "-fixed-points, i.e. ", "score": 1.0, "index": 138}, {"type": "inline_equation", "coordinates": [340, 475, 397, 487], "content": "\\pi\\Lambda_{1}\\,=\\,\\gamma^{m}", "score": 0.92, "index": 139}, {"type": "text", "coordinates": [397, 472, 425, 489], "content": " and ", "score": 1.0, "index": 140}, {"type": "inline_equation", "coordinates": [425, 473, 489, 487], "content": "\\pi^{\\prime}\\Lambda_{1}\\,=\\,\\gamma^{m^{\\prime}}", "score": 0.94, "index": 141}, {"type": "text", "coordinates": [489, 472, 542, 489], "content": " for some", "score": 1.0, "index": 142}, {"type": "inline_equation", "coordinates": [71, 489, 145, 501], "content": "1\\leq m,m^{\\prime}\\leq r", "score": 0.92, "index": 143}, {"type": "text", "coordinates": [145, 487, 287, 504], "content": ". It is easy to compute [25]", "score": 1.0, "index": 144}, {"type": "interline_equation", "coordinates": [247, 515, 365, 547], "content": "\\frac{S_{\\gamma^{a}\\gamma^{b}}}{S_{0\\gamma^{b}}}=2\\cos(2\\pi\\frac{a b}{\\kappa})\\ .", "score": 0.94, "index": 145}, {"type": "text", "coordinates": [70, 561, 165, 578], "content": "From this we see ", "score": 1.0, "index": 146}, {"type": "inline_equation", "coordinates": [165, 564, 225, 574], "content": "m\\,m^{\\prime}\\equiv\\pm1", "score": 0.8, "index": 147}, {"type": "text", "coordinates": [226, 561, 261, 578], "content": " (mod ", "score": 1.0, "index": 148}, {"type": "inline_equation", "coordinates": [262, 567, 269, 573], "content": "\\kappa", "score": 0.58, "index": 149}, {"type": "text", "coordinates": [269, 561, 296, 578], "content": "), so ", "score": 1.0, "index": 150}, {"type": "inline_equation", "coordinates": [297, 568, 307, 573], "content": "^{\\prime\\prime}", "score": 0.85, "index": 151}, {"type": "text", "coordinates": [308, 561, 385, 578], "content": " is coprime to ", "score": 1.0, "index": 152}, {"type": "inline_equation", "coordinates": [385, 566, 393, 573], "content": "\\kappa", "score": 0.74, "index": 153}, {"type": "text", "coordinates": [393, 561, 541, 578], "content": ". Hitting it with the Galois", "score": 1.0, "index": 154}, {"type": "text", "coordinates": [70, 577, 162, 592], "content": "fusion-symmetry ", "score": 1.0, "index": 155}, {"type": "inline_equation", "coordinates": [162, 578, 195, 591], "content": "\\pi\\{m^{\\prime}\\}", "score": 0.93, "index": 156}, {"type": "text", "coordinates": [196, 577, 349, 592], "content": ", we see that we may assume ", "score": 1.0, "index": 157}, {"type": "inline_equation", "coordinates": [350, 576, 441, 590], "content": "\\pi\\Lambda_{1}=\\pi^{\\prime}\\Lambda_{1}=\\Lambda_{1}", "score": 0.92, "index": 158}, {"type": "text", "coordinates": [442, 577, 445, 592], "content": ".", "score": 1.0, "index": 159}, {"type": "text", "coordinates": [94, 591, 205, 607], "content": "Now use (4.2) to get ", "score": 1.0, "index": 160}, {"type": "inline_equation", "coordinates": [205, 591, 251, 605], "content": "\\pi\\gamma^{i}=\\gamma^{i}", "score": 0.93, "index": 161}, {"type": "text", "coordinates": [251, 591, 288, 607], "content": " for all ", "score": 1.0, "index": 162}, {"type": "inline_equation", "coordinates": [289, 594, 293, 603], "content": "i", "score": 0.75, "index": 163}, {"type": "text", "coordinates": [293, 591, 331, 607], "content": ". Then", "score": 1.0, "index": 164}, {"type": "inline_equation", "coordinates": [332, 594, 340, 603], "content": "\\pi", "score": 0.72, "index": 165}, {"type": "text", "coordinates": [340, 591, 458, 607], "content": " equals the identity or ", "score": 1.0, "index": 166}, {"type": "inline_equation", "coordinates": [459, 592, 479, 605], "content": "\\pi[1]", "score": 0.74, "index": 167}, {"type": "text", "coordinates": [479, 591, 540, 607], "content": ", depending", "score": 1.0, "index": 168}, {"type": "text", "coordinates": [70, 605, 117, 621], "content": "on what ", "score": 1.0, "index": 169}, {"type": "inline_equation", "coordinates": [118, 611, 125, 617], "content": "\\pi", "score": 0.87, "index": 170}, {"type": "text", "coordinates": [126, 605, 170, 621], "content": " does to ", "score": 1.0, "index": 171}, {"type": "inline_equation", "coordinates": [170, 608, 184, 619], "content": "\\Lambda_{r}", "score": 0.91, "index": 172}, {"type": "text", "coordinates": [185, 605, 189, 621], "content": ".", "score": 1.0, "index": 173}, {"type": "text", "coordinates": [71, 637, 119, 649], "content": "4.4. The ", "score": 1.0, "index": 174}, {"type": "inline_equation", "coordinates": [119, 639, 129, 647], "content": "C", "score": 0.87, "index": 175}, {"type": "text", "coordinates": [129, 637, 218, 649], "content": "-series argument", "score": 1.0, "index": 176}, {"type": "text", "coordinates": [94, 659, 284, 674], "content": "By rank-level duality, we may take ", "score": 1.0, "index": 177}, {"type": "inline_equation", "coordinates": [284, 661, 314, 672], "content": "r\\le k", "score": 0.93, "index": 178}, {"type": "text", "coordinates": [315, 659, 413, 674], "content": ". For now assume ", "score": 1.0, "index": 179}, {"type": "inline_equation", "coordinates": [413, 659, 484, 673], "content": "(r,k)\\neq(2,3)", "score": 0.91, "index": 180}, {"type": "text", "coordinates": [484, 659, 541, 674], "content": ". Then we", "score": 1.0, "index": 181}, {"type": "text", "coordinates": [70, 673, 102, 688], "content": "know ", "score": 1.0, "index": 182}, {"type": "inline_equation", "coordinates": [102, 676, 168, 686], "content": "\\pi\\Lambda_{1}=J^{a}\\Lambda_{1}", "score": 0.92, "index": 183}, {"type": "text", "coordinates": [168, 673, 195, 688], "content": " and ", "score": 1.0, "index": 184}, {"type": "inline_equation", "coordinates": [196, 672, 265, 686], "content": "\\pi\\Lambda_{1}=J^{a^{\\prime}}\\Lambda_{1}", "score": 0.93, "index": 185}, {"type": "text", "coordinates": [265, 673, 318, 688], "content": " for some ", "score": 1.0, "index": 186}, {"type": "inline_equation", "coordinates": [318, 675, 340, 687], "content": "a,a^{\\prime}", "score": 0.91, "index": 187}, {"type": "text", "coordinates": [340, 673, 380, 688], "content": ". Since ", "score": 1.0, "index": 188}, {"type": "inline_equation", "coordinates": [380, 674, 475, 686], "content": "\\pi J0=\\pi^{\\prime}J0=J0", "score": 0.86, "index": 189}, {"type": "text", "coordinates": [475, 673, 540, 688], "content": ", (2.7b) says", "score": 1.0, "index": 190}, {"type": "inline_equation", "coordinates": [71, 689, 126, 699], "content": "a=a^{\\prime}=0", "score": 0.92, "index": 191}, {"type": "text", "coordinates": [126, 685, 140, 707], "content": " if ", "score": 1.0, "index": 192}, {"type": "inline_equation", "coordinates": [140, 690, 153, 699], "content": "k r", "score": 0.89, "index": 193}, {"type": "text", "coordinates": [154, 685, 228, 707], "content": " is odd. Since ", "score": 1.0, "index": 194}, {"type": "inline_equation", "coordinates": [228, 689, 291, 702], "content": "\\chi_{\\Lambda_{1}}[\\Lambda_{1}]>0", "score": 0.95, "index": 195}, {"type": "text", "coordinates": [291, 685, 366, 707], "content": " (using (3.3)), ", "score": 1.0, "index": 196}, {"type": "inline_equation", "coordinates": [367, 689, 473, 703], "content": "S_{\\Lambda_{1}\\Lambda_{1}}=S_{J^{a}\\Lambda_{1},J^{a^{\\prime}}\\Lambda_{1}}", "score": 0.9, "index": 197}, {"type": "text", "coordinates": [473, 685, 542, 707], "content": " implies that", "score": 1.0, "index": 198}, {"type": "inline_equation", "coordinates": [71, 704, 103, 713], "content": "a=a^{\\prime}", "score": 0.92, "index": 199}, {"type": "text", "coordinates": [103, 702, 192, 717], "content": " also holds when ", "score": 1.0, "index": 200}, {"type": "inline_equation", "coordinates": [192, 704, 205, 713], "content": "k r", "score": 0.88, "index": 201}, {"type": "text", "coordinates": [205, 702, 459, 717], "content": " is even, and hence we may assume (hitting with ", "score": 1.0, "index": 202}, {"type": "inline_equation", "coordinates": [459, 703, 487, 716], "content": "\\pi[1]^{a}", "score": 0.84, "index": 203}, {"type": "text", "coordinates": [487, 702, 540, 717], "content": ") that also", "score": 1.0, "index": 204}] | [] | [{"type": "block", "coordinates": [124, 340, 527, 401], "content": "", "caption": ""}, {"type": "block", "coordinates": [247, 515, 365, 547], "content": "", "caption": ""}, {"type": "inline", "coordinates": [95, 98, 124, 107], "content": "k=1", "caption": ""}, {"type": "inline", "coordinates": [171, 97, 259, 110], "content": "P_{+}=\\{0,J0,\\Lambda_{r}\\}", "caption": ""}, {"type": "inline", "coordinates": [286, 98, 321, 107], "content": "\\pi=i d", "caption": ""}, {"type": "inline", "coordinates": [401, 98, 430, 107], "content": "k=2", "caption": ""}, {"type": "inline", "coordinates": [252, 113, 281, 123], "content": "k\\geq3", "caption": ""}, {"type": "inline", "coordinates": [304, 127, 372, 138], "content": "\\pi\\Lambda_{1}\\,=\\,J^{a}\\Lambda_{1}", "caption": ""}, {"type": "inline", "coordinates": [402, 124, 478, 138], "content": "\\pi^{\\prime}\\Lambda_{1}\\,=\\,J^{a^{\\prime}}\\Lambda_{1}", "caption": ""}, {"type": "inline", "coordinates": [71, 142, 125, 151], "content": "\\pi J0\\,=\\,J0", "caption": ""}, {"type": "inline", "coordinates": [209, 145, 217, 150], "content": "\\pi", "caption": ""}, {"type": "inline", "coordinates": [172, 153, 300, 168], "content": "\\chi_{\\Lambda_{1}}[\\psi]\\,=\\,(-1)^{a^{\\prime}}\\chi_{\\Lambda_{1}}[\\pi\\psi]", "caption": ""}, {"type": "inline", "coordinates": [382, 156, 390, 167], "content": "\\psi", "caption": ""}, {"type": "inline", "coordinates": [440, 155, 474, 165], "content": "a^{\\prime}=1", "caption": ""}, {"type": "inline", "coordinates": [509, 158, 516, 165], "content": "\\pi", "caption": ""}, {"type": "inline", "coordinates": [251, 173, 271, 182], "content": "\\chi_{\\Lambda_{1}}", "caption": ""}, {"type": "inline", "coordinates": [403, 183, 442, 196], "content": "\\pi(S\\Lambda_{r})", "caption": ""}, {"type": "inline", "coordinates": [482, 182, 503, 195], "content": "k\\Lambda_{r}", "caption": ""}, {"type": "inline", "coordinates": [70, 197, 79, 209], "content": "k", "caption": ""}, {"type": "inline", "coordinates": [127, 196, 196, 211], "content": "S((k-1)\\Lambda_{r})", "caption": ""}, {"type": "inline", "coordinates": [236, 198, 244, 208], "content": "k", "caption": ""}, {"type": "inline", "coordinates": [357, 199, 379, 210], "content": "S\\Lambda_{r}", "caption": ""}, {"type": "inline", "coordinates": [408, 198, 429, 210], "content": "k\\Lambda_{r}", "caption": ""}, {"type": "inline", "coordinates": [116, 211, 138, 224], "content": "k\\Lambda_{r}", "caption": ""}, {"type": "inline", "coordinates": [163, 212, 171, 223], "content": "J", "caption": ""}, {"type": "inline", "coordinates": [71, 225, 85, 238], "content": "\\Lambda_{1}", "caption": ""}, {"type": "inline", "coordinates": [102, 225, 147, 238], "content": "\\Lambda_{r}=\\Lambda_{r}", "caption": ""}, {"type": "inline", "coordinates": [164, 225, 215, 239], "content": "(\\Lambda_{1}+\\Lambda_{r})", "caption": ""}, {"type": "inline", "coordinates": [241, 226, 457, 240], "content": "J^{a}\\Lambda_{1}\\boxtimes\\left(J^{i}(k-1)\\Lambda_{r}\\right)=\\left(J^{a+i}(k-1)\\Lambda_{r}\\right)", "caption": ""}, {"type": "inline", "coordinates": [477, 224, 541, 240], "content": "(J^{a+i+1}(k-", "caption": ""}, {"type": "inline", "coordinates": [70, 239, 99, 254], "content": "1)\\Lambda_{r})", "caption": ""}, {"type": "inline", "coordinates": [118, 240, 254, 254], "content": "J^{a+i+1}(\\Lambda_{r-1}+(k-3)\\Lambda_{r})", "caption": ""}, {"type": "inline", "coordinates": [110, 254, 204, 268], "content": "\\pi\\Lambda_{r}\\notin{\\cal S}(k-1)\\Lambda_{r}", "caption": ""}, {"type": "inline", "coordinates": [126, 269, 160, 281], "content": "a^{\\prime}=0", "caption": ""}, {"type": "inline", "coordinates": [186, 269, 251, 282], "content": "\\pi\\Lambda_{r}=J^{b}\\Lambda_{r}", "caption": ""}, {"type": "inline", "coordinates": [304, 271, 310, 280], "content": "b", "caption": ""}, {"type": "inline", "coordinates": [372, 270, 403, 281], "content": "a=0", "caption": ""}, {"type": "inline", "coordinates": [453, 272, 462, 280], "content": "\\pi", "caption": ""}, {"type": "inline", "coordinates": [493, 268, 518, 283], "content": "\\pi[1]^{b}", "caption": ""}, {"type": "inline", "coordinates": [164, 286, 172, 295], "content": "\\pi", "caption": ""}, {"type": "inline", "coordinates": [202, 285, 216, 296], "content": "\\Lambda_{r}", "caption": ""}, {"type": "inline", "coordinates": [163, 301, 172, 309], "content": "\\pi", "caption": ""}, {"type": "inline", "coordinates": [202, 300, 215, 311], "content": "\\Lambda_{\\ell}", "caption": ""}, {"type": "inline", "coordinates": [241, 300, 311, 311], "content": "1\\leq\\ell<r-1", "caption": ""}, {"type": "inline", "coordinates": [406, 298, 421, 311], "content": "\\Lambda_{1}", "caption": ""}, {"type": "inline", "coordinates": [438, 298, 452, 311], "content": "\\Lambda_{\\ell}", "caption": ""}, {"type": "inline", "coordinates": [506, 299, 539, 312], "content": "\\pi\\Lambda_{\\ell+1}", "caption": ""}, {"type": "inline", "coordinates": [107, 313, 133, 326], "content": "\\Lambda_{\\ell+1}", "caption": ""}, {"type": "inline", "coordinates": [151, 313, 192, 325], "content": "\\Lambda_{1}+\\Lambda_{\\ell}", "caption": ""}, {"type": "inline", "coordinates": [107, 417, 114, 423], "content": "\\pi", "caption": ""}, {"type": "inline", "coordinates": [158, 413, 182, 425], "content": "\\Lambda_{\\ell+1}", "caption": ""}, {"type": "inline", "coordinates": [236, 414, 249, 424], "content": "\\Lambda_{\\ell}", "caption": ""}, {"type": "inline", "coordinates": [311, 432, 341, 441], "content": "k=2", "caption": ""}, {"type": "inline", "coordinates": [382, 433, 440, 442], "content": "\\kappa=2r+1", "caption": ""}, {"type": "inline", "coordinates": [86, 446, 132, 459], "content": "P_{+}(B_{r,2})", "caption": ""}, {"type": "inline", "coordinates": [262, 447, 288, 458], "content": "0,J0", "caption": ""}, {"type": "inline", "coordinates": [316, 447, 325, 456], "content": "J", "caption": ""}, {"type": "inline", "coordinates": [393, 445, 444, 458], "content": "\\gamma^{1},\\ldots,\\gamma^{r}", "caption": ""}, {"type": "inline", "coordinates": [207, 461, 247, 472], "content": "\\Lambda_{r},J\\Lambda_{r}", "caption": ""}, {"type": "inline", "coordinates": [304, 460, 421, 473], "content": "\\pi(J0)\\,=\\,\\pi^{\\prime}(J0)\\,=\\,J0", "caption": ""}, {"type": "inline", "coordinates": [508, 464, 515, 470], "content": "\\pi", "caption": ""}, {"type": "inline", "coordinates": [71, 475, 82, 484], "content": "\\pi^{\\prime}", "caption": ""}, {"type": "inline", "coordinates": [145, 475, 153, 484], "content": "J", "caption": ""}, {"type": "inline", "coordinates": [238, 475, 246, 484], "content": "J", "caption": ""}, {"type": "inline", "coordinates": [340, 475, 397, 487], "content": "\\pi\\Lambda_{1}\\,=\\,\\gamma^{m}", "caption": ""}, {"type": "inline", "coordinates": [425, 473, 489, 487], "content": "\\pi^{\\prime}\\Lambda_{1}\\,=\\,\\gamma^{m^{\\prime}}", "caption": ""}, {"type": "inline", "coordinates": [71, 489, 145, 501], "content": "1\\leq m,m^{\\prime}\\leq r", "caption": ""}, {"type": "inline", "coordinates": [165, 564, 225, 574], "content": "m\\,m^{\\prime}\\equiv\\pm1", "caption": ""}, {"type": "inline", "coordinates": [262, 567, 269, 573], "content": "\\kappa", "caption": ""}, {"type": "inline", "coordinates": [297, 568, 307, 573], "content": "^{\\prime\\prime}", "caption": ""}, {"type": "inline", "coordinates": [385, 566, 393, 573], "content": "\\kappa", "caption": ""}, {"type": "inline", "coordinates": [162, 578, 195, 591], "content": "\\pi\\{m^{\\prime}\\}", "caption": ""}, {"type": "inline", "coordinates": [350, 576, 441, 590], "content": "\\pi\\Lambda_{1}=\\pi^{\\prime}\\Lambda_{1}=\\Lambda_{1}", "caption": ""}, {"type": "inline", "coordinates": [205, 591, 251, 605], "content": "\\pi\\gamma^{i}=\\gamma^{i}", "caption": ""}, {"type": "inline", "coordinates": [289, 594, 293, 603], "content": "i", "caption": ""}, {"type": "inline", "coordinates": [332, 594, 340, 603], "content": "\\pi", "caption": ""}, {"type": "inline", "coordinates": [459, 592, 479, 605], "content": "\\pi[1]", "caption": ""}, {"type": "inline", "coordinates": [118, 611, 125, 617], "content": "\\pi", "caption": ""}, {"type": "inline", "coordinates": [170, 608, 184, 619], "content": "\\Lambda_{r}", "caption": ""}, {"type": "inline", "coordinates": [119, 639, 129, 647], "content": "C", "caption": ""}, {"type": "inline", "coordinates": [284, 661, 314, 672], "content": "r\\le k", "caption": ""}, {"type": "inline", "coordinates": [413, 659, 484, 673], "content": "(r,k)\\neq(2,3)", "caption": ""}, {"type": "inline", "coordinates": [102, 676, 168, 686], "content": "\\pi\\Lambda_{1}=J^{a}\\Lambda_{1}", "caption": ""}, {"type": "inline", "coordinates": [196, 672, 265, 686], "content": "\\pi\\Lambda_{1}=J^{a^{\\prime}}\\Lambda_{1}", "caption": ""}, {"type": "inline", "coordinates": [318, 675, 340, 687], "content": "a,a^{\\prime}", "caption": ""}, {"type": "inline", "coordinates": [380, 674, 475, 686], "content": "\\pi J0=\\pi^{\\prime}J0=J0", "caption": ""}, {"type": "inline", "coordinates": [71, 689, 126, 699], "content": "a=a^{\\prime}=0", "caption": ""}, {"type": "inline", "coordinates": [140, 690, 153, 699], "content": "k r", "caption": ""}, {"type": "inline", "coordinates": [228, 689, 291, 702], "content": "\\chi_{\\Lambda_{1}}[\\Lambda_{1}]>0", "caption": ""}, {"type": "inline", "coordinates": [367, 689, 473, 703], "content": "S_{\\Lambda_{1}\\Lambda_{1}}=S_{J^{a}\\Lambda_{1},J^{a^{\\prime}}\\Lambda_{1}}", "caption": ""}, {"type": "inline", "coordinates": [71, 704, 103, 713], "content": "a=a^{\\prime}", "caption": ""}, {"type": "inline", "coordinates": [192, 704, 205, 713], "content": "k r", "caption": ""}, {"type": "inline", "coordinates": [459, 703, 487, 716], "content": "\\pi[1]^{a}", "caption": ""}] | [] | [612.0, 792.0] | [{"type": "text", "text": "$k=1$ is easy: $P_{+}=\\{0,J0,\\Lambda_{r}\\}$ and $\\pi=i d$ . is automatic. $k=2$ will be done later in this subsection. Assume now that $k\\geq3$ . ", "page_idx": 17}, {"type": "text", "text": "From Proposition 4.1(b) we can write $\\pi\\Lambda_{1}\\,=\\,J^{a}\\Lambda_{1}$ and $\\pi^{\\prime}\\Lambda_{1}\\,=\\,J^{a^{\\prime}}\\Lambda_{1}$ . We know $\\pi J0\\,=\\,J0$ , so (2.7b) says $\\pi$ must take spinors to spinors, and nonspinors to nonspinors. Then we will have $\\chi_{\\Lambda_{1}}[\\psi]\\,=\\,(-1)^{a^{\\prime}}\\chi_{\\Lambda_{1}}[\\pi\\psi]$ for any spinor $\\psi$ . Now if $a^{\\prime}=1$ , then $\\pi$ will take the spinors which maximize $\\chi_{\\Lambda_{1}}$ , to those which minimize it. Both these maxima and minima can be easily found from (3.2). Thus we get that $\\pi(S\\Lambda_{r})$ equals $k\\Lambda_{r}$ (when $k$ odd) or $S((k-1)\\Lambda_{r})$ (when $k$ even). But the sets $S\\Lambda_{r}$ and $k\\Lambda_{r}$ have different cardinalities ( $k\\Lambda_{r}$ is a $J$ -fixed-point), and so can\u2019t get mapped to each other. Also, the fusions $\\Lambda_{1}$ \u00d7 $\\Lambda_{r}=\\Lambda_{r}$ + $(\\Lambda_{1}+\\Lambda_{r})$ and $J^{a}\\Lambda_{1}\\boxtimes\\left(J^{i}(k-1)\\Lambda_{r}\\right)=\\left(J^{a+i}(k-1)\\Lambda_{r}\\right)$ + $(J^{a+i+1}(k-$ $1)\\Lambda_{r})$ + $J^{a+i+1}(\\Lambda_{r-1}+(k-3)\\Lambda_{r})$ have different numbers of weights on their right sides, so also $\\pi\\Lambda_{r}\\notin{\\cal S}(k-1)\\Lambda_{r}$ . ", "page_idx": 17}, {"type": "text", "text": "Thus $a^{\\prime}=0$ and $\\pi\\Lambda_{r}=J^{b}\\Lambda_{r}$ for some $b$ . Similarly, $a=0$ . Hitting $\\pi$ with $\\pi[1]^{b}$ , we may assume that $\\pi$ fixes $\\Lambda_{r}$ . ", "page_idx": 17}, {"type": "text", "text": "Now assume $\\pi$ fixes $\\Lambda_{\\ell}$ , for $1\\leq\\ell<r-1$ . Then the fusion $\\Lambda_{1}$ \u00d7 $\\Lambda_{\\ell}$ says that $\\pi\\Lambda_{\\ell+1}$ equals $\\Lambda_{\\ell+1}$ or $\\Lambda_{1}+\\Lambda_{\\ell}$ . But from (3.2) we find ", "page_idx": 17}, {"type": "equation", "text": "$$\n\\begin{array}{c}{{-\\chi_{\\Lambda_{1}}[\\Lambda_{1}+\\Lambda_{\\ell}]=2\\,\\{\\displaystyle\\mathrm{cos}(\\pi\\frac{2r-2\\ell+1}{\\kappa})-\\mathrm{cos}(\\pi\\frac{2r-2\\ell-1}{\\kappa})+\\mathrm{cos}(\\pi\\frac{2r+1}{\\kappa})\\}}}\\\\ {{-\\cos(\\pi\\frac{2r+3}{\\kappa})\\}=4\\cos(\\pi\\frac{2r-\\ell+1}{\\kappa})\\,\\{\\displaystyle\\mathrm{cos}(2\\pi\\frac{\\ell}{\\kappa})-\\mathrm{cos}(2\\pi\\frac{\\ell+1}{\\kappa})\\},}}\\end{array}\n$$", "text_format": "latex", "page_idx": 17}, {"type": "text", "text": "Hence $\\pi$ will fix $\\Lambda_{\\ell+1}$ if it fixes $\\Lambda_{\\ell}$ , concluding the argument. ", "page_idx": 17}, {"type": "text", "text": "Now consider the more interesting case: $k=2$ . Then $\\kappa=2r+1$ ; recall the weights in $P_{+}(B_{r,2})$ are the simple-currents $0,J0$ , the $J$ -fixed-points $\\gamma^{1},\\ldots,\\gamma^{r}$ (notation defined in \u00a73.2), and the spinors $\\Lambda_{r},J\\Lambda_{r}$ . Because $\\pi(J0)\\,=\\,\\pi^{\\prime}(J0)\\,=\\,J0$ , we know both $\\pi$ and $\\pi^{\\prime}$ must take $J$ -fixed-points to $J$ -fixed-points, i.e. $\\pi\\Lambda_{1}\\,=\\,\\gamma^{m}$ and $\\pi^{\\prime}\\Lambda_{1}\\,=\\,\\gamma^{m^{\\prime}}$ for some $1\\leq m,m^{\\prime}\\leq r$ . It is easy to compute [25] ", "page_idx": 17}, {"type": "equation", "text": "$$\n\\frac{S_{\\gamma^{a}\\gamma^{b}}}{S_{0\\gamma^{b}}}=2\\cos(2\\pi\\frac{a b}{\\kappa})\\ .\n$$", "text_format": "latex", "page_idx": 17}, {"type": "text", "text": "From this we see $m\\,m^{\\prime}\\equiv\\pm1$ (mod $\\kappa$ ), so $^{\\prime\\prime}$ is coprime to $\\kappa$ . Hitting it with the Galois fusion-symmetry $\\pi\\{m^{\\prime}\\}$ , we see that we may assume $\\pi\\Lambda_{1}=\\pi^{\\prime}\\Lambda_{1}=\\Lambda_{1}$ . ", "page_idx": 17}, {"type": "text", "text": "Now use (4.2) to get $\\pi\\gamma^{i}=\\gamma^{i}$ for all $i$ . Then $\\pi$ equals the identity or $\\pi[1]$ , depending on what $\\pi$ does to $\\Lambda_{r}$ . ", "page_idx": 17}, {"type": "text", "text": "4.4. The $C$ -series argument ", "text_level": 1, "page_idx": 17}, {"type": "text", "text": "By rank-level duality, we may take $r\\le k$ . For now assume $(r,k)\\neq(2,3)$ . Then we know $\\pi\\Lambda_{1}=J^{a}\\Lambda_{1}$ and $\\pi\\Lambda_{1}=J^{a^{\\prime}}\\Lambda_{1}$ for some $a,a^{\\prime}$ . Since $\\pi J0=\\pi^{\\prime}J0=J0$ , (2.7b) says $a=a^{\\prime}=0$ if $k r$ is odd. Since $\\chi_{\\Lambda_{1}}[\\Lambda_{1}]>0$ (using (3.3)), $S_{\\Lambda_{1}\\Lambda_{1}}=S_{J^{a}\\Lambda_{1},J^{a^{\\prime}}\\Lambda_{1}}$ implies that $a=a^{\\prime}$ also holds when $k r$ is even, and hence we may assume (hitting with $\\pi[1]^{a}$ ) that also $a=a^{\\prime}=0$ holds for $k r$ even. From the fusion $\\Lambda_{1}$ \u00d7 $\\Lambda_{\\ell}$ we get $\\pi\\Lambda_{\\ell+1}\\in\\{\\Lambda_{\\ell+1},\\Lambda_{1}+\\Lambda_{\\ell}\\}$ if $\\pi\\Lambda_{\\ell}=\\Lambda_{\\ell}$ ; for $r<k$ conclude the argument with the calculation ", "page_idx": 17}] | [{"category_id": 1, "poly": [195, 343, 1504, 343, 1504, 740, 195, 740], "score": 0.985}, {"category_id": 1, "poly": [196, 1190, 1505, 1190, 1505, 1393, 196, 1393], "score": 0.983}, {"category_id": 1, "poly": [196, 1826, 1505, 1826, 1505, 1988, 196, 1988], "score": 0.977}, {"category_id": 1, "poly": [196, 1556, 1504, 1556, 1504, 1638, 196, 1638], "score": 0.958}, {"category_id": 8, "poly": [200, 937, 1599, 937, 1599, 1107, 200, 1107], "score": 0.955}, {"category_id": 1, "poly": [195, 824, 1502, 824, 1502, 907, 195, 907], "score": 0.951}, {"category_id": 1, "poly": [198, 1640, 1503, 1640, 1503, 1720, 198, 1720], "score": 0.949}, {"category_id": 8, "poly": [686, 1427, 1015, 1427, 1015, 1520, 686, 1520], "score": 0.939}, {"category_id": 1, "poly": [196, 260, 1504, 260, 1504, 340, 196, 340], "score": 0.933}, {"category_id": 1, "poly": [195, 742, 1503, 742, 1503, 822, 195, 822], "score": 0.914}, {"category_id": 9, "poly": [1430, 1452, 1500, 1452, 1500, 1491, 1430, 1491], "score": 0.883}, {"category_id": 1, "poly": [195, 1137, 1087, 1137, 1087, 1181, 195, 1181], "score": 0.881}, {"category_id": 2, "poly": [833, 2031, 868, 2031, 868, 2061, 833, 2061], "score": 0.876}, {"category_id": 0, "poly": [199, 1763, 606, 1763, 606, 1804, 199, 1804], "score": 0.855}, {"category_id": 2, "poly": [198, 199, 610, 199, 610, 237, 198, 237], "score": 0.852}, {"category_id": 13, "poly": [846, 355, 1036, 355, 1036, 384, 846, 384], "score": 0.95, "latex": "\\pi\\Lambda_{1}\\,=\\,J^{a}\\Lambda_{1}"}, {"category_id": 13, "poly": [1119, 347, 1328, 347, 1328, 384, 1119, 384], "score": 0.95, "latex": "\\pi^{\\prime}\\Lambda_{1}\\,=\\,J^{a^{\\prime}}\\Lambda_{1}"}, {"category_id": 13, "poly": [636, 1916, 809, 1916, 809, 1951, 636, 1951], "score": 0.95, "latex": "\\chi_{\\Lambda_{1}}[\\Lambda_{1}]>0"}, {"category_id": 13, "poly": [519, 748, 699, 748, 699, 784, 519, 784], "score": 0.95, "latex": "\\pi\\Lambda_{r}=J^{b}\\Lambda_{r}"}, {"category_id": 13, "poly": [476, 272, 721, 272, 721, 307, 476, 307], "score": 0.95, "latex": "P_{+}=\\{0,J0,\\Lambda_{r}\\}"}, {"category_id": 14, "poly": [688, 1433, 1014, 1433, 1014, 1522, 688, 1522], "score": 0.94, "latex": "\\frac{S_{\\gamma^{a}\\gamma^{b}}}{S_{0\\gamma^{b}}}=2\\cos(2\\pi\\frac{a b}{\\kappa})\\ ."}, {"category_id": 13, "poly": [239, 1240, 368, 1240, 368, 1275, 239, 1275], "score": 0.94, "latex": "P_{+}(B_{r,2})"}, {"category_id": 13, "poly": [1183, 1314, 1359, 1314, 1359, 1353, 1183, 1353], "score": 0.94, "latex": "\\pi^{\\prime}\\Lambda_{1}\\,=\\,\\gamma^{m^{\\prime}}"}, {"category_id": 13, "poly": [847, 1280, 1170, 1280, 1170, 1315, 847, 1315], "score": 0.93, "latex": "\\pi(J0)\\,=\\,\\pi^{\\prime}(J0)\\,=\\,J0"}, {"category_id": 13, "poly": [545, 1869, 737, 1869, 737, 1908, 545, 1908], "score": 0.93, "latex": "\\pi\\Lambda_{1}=J^{a^{\\prime}}\\Lambda_{1}"}, {"category_id": 13, "poly": [479, 426, 834, 426, 834, 468, 479, 468], "score": 0.93, "latex": "\\chi_{\\Lambda_{1}}[\\psi]\\,=\\,(-1)^{a^{\\prime}}\\chi_{\\Lambda_{1}}[\\pi\\psi]"}, {"category_id": 13, "poly": [451, 1606, 544, 1606, 544, 1642, 451, 1642], "score": 0.93, "latex": "\\pi\\{m^{\\prime}\\}"}, {"category_id": 13, "poly": [575, 1282, 688, 1282, 688, 1312, 575, 1312], "score": 0.93, "latex": "\\Lambda_{r},J\\Lambda_{r}"}, {"category_id": 13, "poly": [790, 1838, 874, 1838, 874, 1867, 790, 1867], "score": 0.93, "latex": "r\\le k"}, {"category_id": 13, "poly": [571, 1642, 698, 1642, 698, 1681, 571, 1681], "score": 0.93, "latex": "\\pi\\gamma^{i}=\\gamma^{i}"}, {"category_id": 13, "poly": [1121, 509, 1229, 509, 1229, 547, 1121, 547], "score": 0.92, "latex": "\\pi(S\\Lambda_{r})"}, {"category_id": 13, "poly": [286, 1878, 468, 1878, 468, 1908, 286, 1908], "score": 0.92, "latex": "\\pi\\Lambda_{1}=J^{a}\\Lambda_{1}"}, {"category_id": 13, "poly": [1093, 1238, 1236, 1238, 1236, 1273, 1093, 1273], "score": 0.92, "latex": "\\gamma^{1},\\ldots,\\gamma^{r}"}, {"category_id": 13, "poly": [994, 555, 1054, 555, 1054, 584, 994, 584], "score": 0.92, "latex": "S\\Lambda_{r}"}, {"category_id": 13, "poly": [439, 1149, 507, 1149, 507, 1182, 439, 1182], "score": 0.92, "latex": "\\Lambda_{\\ell+1}"}, {"category_id": 13, "poly": [306, 707, 567, 707, 567, 747, 306, 747], "score": 0.92, "latex": "\\pi\\Lambda_{r}\\notin{\\cal S}(k-1)\\Lambda_{r}"}, {"category_id": 13, "poly": [701, 314, 782, 314, 782, 343, 701, 343], "score": 0.92, "latex": "k\\geq3"}, {"category_id": 13, "poly": [199, 1916, 351, 1916, 351, 1943, 199, 1943], "score": 0.92, "latex": "a=a^{\\prime}=0"}, {"category_id": 13, "poly": [730, 1242, 801, 1242, 801, 1273, 730, 1273], "score": 0.92, "latex": "0,J0"}, {"category_id": 13, "poly": [199, 1360, 403, 1360, 403, 1393, 199, 1393], "score": 0.92, "latex": "1\\leq m,m^{\\prime}\\leq r"}, {"category_id": 13, "poly": [199, 1956, 287, 1956, 287, 1982, 199, 1982], "score": 0.92, "latex": "a=a^{\\prime}"}, {"category_id": 13, "poly": [973, 1602, 1227, 1602, 1227, 1639, 973, 1639], "score": 0.92, "latex": "\\pi\\Lambda_{1}=\\pi^{\\prime}\\Lambda_{1}=\\Lambda_{1}"}, {"category_id": 13, "poly": [353, 547, 545, 547, 545, 588, 353, 588], "score": 0.92, "latex": "S((k-1)\\Lambda_{r})"}, {"category_id": 13, "poly": [1114, 274, 1195, 274, 1195, 298, 1114, 298], "score": 0.92, "latex": "k=2"}, {"category_id": 13, "poly": [945, 1321, 1103, 1321, 1103, 1353, 945, 1353], "score": 0.92, "latex": "\\pi\\Lambda_{1}\\,=\\,\\gamma^{m}"}, {"category_id": 13, "poly": [797, 274, 892, 274, 892, 298, 797, 298], "score": 0.92, "latex": "\\pi=i d"}, {"category_id": 13, "poly": [1370, 745, 1441, 745, 1441, 788, 1370, 788], "score": 0.92, "latex": "\\pi[1]^{b}"}, {"category_id": 13, "poly": [1149, 1833, 1346, 1833, 1346, 1870, 1149, 1870], "score": 0.91, "latex": "(r,k)\\neq(2,3)"}, {"category_id": 13, "poly": [885, 1876, 945, 1876, 945, 1909, 885, 1909], "score": 0.91, "latex": "a,a^{\\prime}"}, {"category_id": 13, "poly": [865, 1202, 949, 1202, 949, 1227, 865, 1227], "score": 0.91, "latex": "k=2"}, {"category_id": 13, "poly": [298, 871, 370, 871, 370, 908, 298, 908], "score": 0.91, "latex": "\\Lambda_{\\ell+1}"}, {"category_id": 13, "poly": [420, 870, 536, 870, 536, 905, 420, 905], "score": 0.91, "latex": "\\Lambda_{1}+\\Lambda_{\\ell}"}, {"category_id": 13, "poly": [1063, 1203, 1223, 1203, 1223, 1230, 1063, 1230], "score": 0.91, "latex": "\\kappa=2r+1"}, {"category_id": 13, "poly": [474, 1689, 513, 1689, 513, 1720, 474, 1720], "score": 0.91, "latex": "\\Lambda_{r}"}, {"category_id": 13, "poly": [670, 835, 865, 835, 865, 866, 670, 866], "score": 0.91, "latex": "1\\leq\\ell<r-1"}, {"category_id": 13, "poly": [657, 1150, 694, 1150, 694, 1180, 657, 1180], "score": 0.9, "latex": "\\Lambda_{\\ell}"}, {"category_id": 13, "poly": [350, 749, 445, 749, 445, 782, 350, 782], "score": 0.9, "latex": "a^{\\prime}=0"}, {"category_id": 13, "poly": [1062, 435, 1086, 435, 1086, 466, 1062, 466], "score": 0.9, "latex": "\\psi"}, {"category_id": 13, "poly": [199, 1320, 229, 1320, 229, 1347, 199, 1347], "score": 0.9, "latex": "\\pi^{\\prime}"}, {"category_id": 13, "poly": [403, 1322, 426, 1322, 426, 1347, 403, 1347], "score": 0.9, "latex": "J"}, {"category_id": 13, "poly": [328, 667, 707, 667, 707, 706, 328, 706], "score": 0.9, "latex": "J^{a+i+1}(\\Lambda_{r-1}+(k-3)\\Lambda_{r})"}, {"category_id": 13, "poly": [266, 274, 346, 274, 346, 298, 266, 298], "score": 0.9, "latex": "k=1"}, {"category_id": 13, "poly": [1020, 1914, 1315, 1914, 1315, 1955, 1020, 1955], "score": 0.9, "latex": "S_{\\Lambda_{1}\\Lambda_{1}}=S_{J^{a}\\Lambda_{1},J^{a^{\\prime}}\\Lambda_{1}}"}, {"category_id": 13, "poly": [457, 626, 599, 626, 599, 666, 457, 666], "score": 0.89, "latex": "(\\Lambda_{1}+\\Lambda_{r})"}, {"category_id": 13, "poly": [563, 793, 602, 793, 602, 824, 563, 824], "score": 0.89, "latex": "\\Lambda_{r}"}, {"category_id": 13, "poly": [1340, 508, 1399, 508, 1399, 544, 1340, 544], "score": 0.89, "latex": "k\\Lambda_{r}"}, {"category_id": 13, "poly": [284, 627, 409, 627, 409, 663, 284, 663], "score": 0.89, "latex": "\\Lambda_{r}=\\Lambda_{r}"}, {"category_id": 13, "poly": [662, 1322, 685, 1322, 685, 1347, 662, 1347], "score": 0.89, "latex": "J"}, {"category_id": 13, "poly": [1408, 831, 1499, 831, 1499, 868, 1408, 868], "score": 0.89, "latex": "\\pi\\Lambda_{\\ell+1}"}, {"category_id": 13, "poly": [391, 1918, 427, 1918, 427, 1943, 391, 1943], "score": 0.89, "latex": "k r"}, {"category_id": 13, "poly": [1134, 552, 1192, 552, 1192, 584, 1134, 584], "score": 0.89, "latex": "k\\Lambda_{r}"}, {"category_id": 13, "poly": [535, 1958, 570, 1958, 570, 1982, 535, 1982], "score": 0.88, "latex": "k r"}, {"category_id": 13, "poly": [324, 588, 384, 588, 384, 624, 324, 624], "score": 0.88, "latex": "k\\Lambda_{r}"}, {"category_id": 13, "poly": [562, 835, 599, 835, 599, 866, 562, 866], "score": 0.88, "latex": "\\Lambda_{\\ell}"}, {"category_id": 13, "poly": [880, 1242, 903, 1242, 903, 1267, 880, 1267], "score": 0.88, "latex": "J"}, {"category_id": 13, "poly": [198, 395, 348, 395, 348, 422, 198, 422], "score": 0.88, "latex": "\\pi J0\\,=\\,J0"}, {"category_id": 13, "poly": [1412, 1291, 1433, 1291, 1433, 1306, 1412, 1306], "score": 0.88, "latex": "\\pi"}, {"category_id": 13, "poly": [1223, 432, 1317, 432, 1317, 460, 1223, 460], "score": 0.88, "latex": "a^{\\prime}=1"}, {"category_id": 13, "poly": [333, 1775, 360, 1775, 360, 1799, 333, 1799], "score": 0.87, "latex": "C"}, {"category_id": 13, "poly": [328, 1699, 349, 1699, 349, 1714, 328, 1714], "score": 0.87, "latex": "\\pi"}, {"category_id": 13, "poly": [198, 626, 238, 626, 238, 663, 198, 663], "score": 0.86, "latex": "\\Lambda_{1}"}, {"category_id": 13, "poly": [699, 482, 754, 482, 754, 507, 699, 507], "score": 0.86, "latex": "\\chi_{\\Lambda_{1}}"}, {"category_id": 13, "poly": [298, 1159, 318, 1159, 318, 1175, 298, 1175], "score": 0.86, "latex": "\\pi"}, {"category_id": 13, "poly": [1058, 1873, 1320, 1873, 1320, 1906, 1058, 1906], "score": 0.86, "latex": "\\pi J0=\\pi^{\\prime}J0=J0"}, {"category_id": 13, "poly": [336, 211, 364, 211, 364, 235, 336, 235], "score": 0.86, "latex": "B"}, {"category_id": 14, "poly": [347, 945, 1465, 945, 1465, 1115, 347, 1115], "score": 0.86, "latex": "\\begin{array}{c}{{-\\chi_{\\Lambda_{1}}[\\Lambda_{1}+\\Lambda_{\\ell}]=2\\,\\{\\displaystyle\\mathrm{cos}(\\pi\\frac{2r-2\\ell+1}{\\kappa})-\\mathrm{cos}(\\pi\\frac{2r-2\\ell-1}{\\kappa})+\\mathrm{cos}(\\pi\\frac{2r+1}{\\kappa})\\}}}\\\\ {{-\\cos(\\pi\\frac{2r+3}{\\kappa})\\}=4\\cos(\\pi\\frac{2r-\\ell+1}{\\kappa})\\,\\{\\displaystyle\\mathrm{cos}(2\\pi\\frac{\\ell}{\\kappa})-\\mathrm{cos}(2\\pi\\frac{\\ell+1}{\\kappa})\\},}}\\end{array}"}, {"category_id": 13, "poly": [1325, 624, 1504, 624, 1504, 667, 1325, 667], "score": 0.85, "latex": "(J^{a+i+1}(k-"}, {"category_id": 13, "poly": [672, 628, 1271, 628, 1271, 667, 672, 667], "score": 0.85, "latex": "J^{a}\\Lambda_{1}\\boxtimes\\left(J^{i}(k-1)\\Lambda_{r}\\right)=\\left(J^{a+i}(k-1)\\Lambda_{r}\\right)"}, {"category_id": 13, "poly": [825, 1578, 855, 1578, 855, 1593, 825, 1593], "score": 0.85, "latex": "^{\\prime\\prime}"}, {"category_id": 13, "poly": [847, 755, 862, 755, 862, 780, 847, 780], "score": 0.85, "latex": "b"}, {"category_id": 13, "poly": [197, 666, 275, 666, 275, 707, 197, 707], "score": 0.85, "latex": "1)\\Lambda_{r})"}, {"category_id": 13, "poly": [1277, 1953, 1353, 1953, 1353, 1990, 1277, 1990], "score": 0.84, "latex": "\\pi[1]^{a}"}, {"category_id": 13, "poly": [1036, 751, 1120, 751, 1120, 781, 1036, 781], "score": 0.84, "latex": "a=0"}, {"category_id": 13, "poly": [453, 590, 477, 590, 477, 620, 453, 620], "score": 0.83, "latex": "J"}, {"category_id": 13, "poly": [583, 404, 604, 404, 604, 419, 583, 419], "score": 0.81, "latex": "\\pi"}, {"category_id": 13, "poly": [461, 1567, 627, 1567, 627, 1597, 461, 1597], "score": 0.8, "latex": "m\\,m^{\\prime}\\equiv\\pm1"}, {"category_id": 13, "poly": [1129, 828, 1171, 828, 1171, 866, 1129, 866], "score": 0.79, "latex": "\\Lambda_{1}"}, {"category_id": 13, "poly": [455, 837, 479, 837, 479, 861, 455, 861], "score": 0.76, "latex": "\\pi"}, {"category_id": 13, "poly": [803, 1650, 815, 1650, 815, 1675, 803, 1675], "score": 0.75, "latex": "i"}, {"category_id": 13, "poly": [456, 795, 480, 795, 480, 820, 456, 820], "score": 0.75, "latex": "\\pi"}, {"category_id": 13, "poly": [197, 549, 220, 549, 220, 581, 197, 581], "score": 0.74, "latex": "k"}, {"category_id": 13, "poly": [1071, 1574, 1092, 1574, 1092, 1594, 1071, 1594], "score": 0.74, "latex": "\\kappa"}, {"category_id": 13, "poly": [1275, 1645, 1332, 1645, 1332, 1683, 1275, 1683], "score": 0.74, "latex": "\\pi[1]"}, {"category_id": 13, "poly": [658, 550, 679, 550, 679, 580, 658, 580], "score": 0.74, "latex": "k"}, {"category_id": 13, "poly": [1217, 829, 1257, 829, 1257, 865, 1217, 865], "score": 0.73, "latex": "\\Lambda_{\\ell}"}, {"category_id": 13, "poly": [923, 1652, 946, 1652, 946, 1675, 923, 1675], "score": 0.72, "latex": "\\pi"}, {"category_id": 13, "poly": [1261, 756, 1284, 756, 1284, 780, 1261, 780], "score": 0.69, "latex": "\\pi"}, {"category_id": 13, "poly": [1414, 439, 1436, 439, 1436, 459, 1414, 459], "score": 0.61, "latex": "\\pi"}, {"category_id": 13, "poly": [728, 1577, 748, 1577, 748, 1594, 728, 1594], "score": 0.58, "latex": "\\kappa"}, {"category_id": 13, "poly": [673, 627, 749, 627, 749, 664, 673, 664], "score": 0.56, "latex": "J^{a}\\Lambda_{1}"}, {"category_id": 15, "poly": [261.0, 348.0, 845.0, 348.0, 845.0, 389.0, 261.0, 389.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1037.0, 348.0, 1118.0, 348.0, 1118.0, 389.0, 1037.0, 389.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1329.0, 348.0, 1503.0, 348.0, 1503.0, 389.0, 1329.0, 389.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [349.0, 389.0, 582.0, 389.0, 582.0, 431.0, 349.0, 431.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [605.0, 389.0, 1501.0, 389.0, 1501.0, 431.0, 605.0, 431.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [196.0, 429.0, 478.0, 429.0, 478.0, 472.0, 196.0, 472.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [835.0, 429.0, 1061.0, 429.0, 1061.0, 472.0, 835.0, 472.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1087.0, 429.0, 1222.0, 429.0, 1222.0, 472.0, 1087.0, 472.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1318.0, 429.0, 1413.0, 429.0, 1413.0, 472.0, 1318.0, 472.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1437.0, 429.0, 1506.0, 429.0, 1506.0, 472.0, 1437.0, 472.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [195.0, 469.0, 698.0, 469.0, 698.0, 513.0, 195.0, 513.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [755.0, 469.0, 1506.0, 469.0, 1506.0, 513.0, 755.0, 513.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [196.0, 508.0, 1120.0, 508.0, 1120.0, 551.0, 196.0, 551.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1230.0, 508.0, 1339.0, 508.0, 1339.0, 551.0, 1230.0, 551.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1400.0, 508.0, 1503.0, 508.0, 1503.0, 551.0, 1400.0, 551.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [195.0, 550.0, 196.0, 550.0, 196.0, 590.0, 195.0, 590.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [221.0, 550.0, 352.0, 550.0, 352.0, 590.0, 221.0, 590.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [546.0, 550.0, 657.0, 550.0, 657.0, 590.0, 546.0, 590.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [680.0, 550.0, 993.0, 550.0, 993.0, 590.0, 680.0, 590.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1055.0, 550.0, 1133.0, 550.0, 1133.0, 590.0, 1055.0, 590.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1193.0, 550.0, 1504.0, 550.0, 1504.0, 590.0, 1193.0, 590.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [198.0, 590.0, 323.0, 590.0, 323.0, 629.0, 198.0, 629.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [385.0, 590.0, 452.0, 590.0, 452.0, 629.0, 385.0, 629.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [478.0, 590.0, 1504.0, 590.0, 1504.0, 629.0, 478.0, 629.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [193.0, 625.0, 197.0, 625.0, 197.0, 671.0, 193.0, 671.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [239.0, 625.0, 283.0, 625.0, 283.0, 671.0, 239.0, 671.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [410.0, 625.0, 456.0, 625.0, 456.0, 671.0, 410.0, 671.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [600.0, 625.0, 671.0, 625.0, 671.0, 671.0, 600.0, 671.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1272.0, 625.0, 1324.0, 625.0, 1324.0, 671.0, 1272.0, 671.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [195.0, 661.0, 196.0, 661.0, 196.0, 715.0, 195.0, 715.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [276.0, 661.0, 327.0, 661.0, 327.0, 715.0, 276.0, 715.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [708.0, 661.0, 1503.0, 661.0, 1503.0, 715.0, 708.0, 715.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [196.0, 710.0, 305.0, 710.0, 305.0, 749.0, 196.0, 749.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [568.0, 710.0, 581.0, 710.0, 581.0, 749.0, 568.0, 749.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [262.0, 1195.0, 864.0, 1195.0, 864.0, 1239.0, 262.0, 1239.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [950.0, 1195.0, 1062.0, 1195.0, 1062.0, 1239.0, 950.0, 1239.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1224.0, 1195.0, 1502.0, 1195.0, 1502.0, 1239.0, 1224.0, 1239.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [193.0, 1233.0, 238.0, 1233.0, 238.0, 1280.0, 193.0, 1280.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [369.0, 1233.0, 729.0, 1233.0, 729.0, 1280.0, 369.0, 1280.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [802.0, 1233.0, 879.0, 1233.0, 879.0, 1280.0, 802.0, 1280.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [904.0, 1233.0, 1092.0, 1233.0, 1092.0, 1280.0, 904.0, 1280.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1237.0, 1233.0, 1507.0, 1233.0, 1507.0, 1280.0, 1237.0, 1280.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [194.0, 1274.0, 574.0, 1274.0, 574.0, 1318.0, 194.0, 1318.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [689.0, 1274.0, 846.0, 1274.0, 846.0, 1318.0, 689.0, 1318.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1171.0, 1274.0, 1411.0, 1274.0, 1411.0, 1318.0, 1171.0, 1318.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1434.0, 1274.0, 1505.0, 1274.0, 1505.0, 1318.0, 1434.0, 1318.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [191.0, 1312.0, 198.0, 1312.0, 198.0, 1359.0, 191.0, 1359.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [230.0, 1312.0, 402.0, 1312.0, 402.0, 1359.0, 230.0, 1359.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [427.0, 1312.0, 661.0, 1312.0, 661.0, 1359.0, 427.0, 1359.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [686.0, 1312.0, 944.0, 1312.0, 944.0, 1359.0, 686.0, 1359.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1104.0, 1312.0, 1182.0, 1312.0, 1182.0, 1359.0, 1104.0, 1359.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1360.0, 1312.0, 1508.0, 1312.0, 1508.0, 1359.0, 1360.0, 1359.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [193.0, 1355.0, 198.0, 1355.0, 198.0, 1402.0, 193.0, 1402.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [404.0, 1355.0, 799.0, 1355.0, 799.0, 1402.0, 404.0, 1402.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [263.0, 1832.0, 789.0, 1832.0, 789.0, 1874.0, 263.0, 1874.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [875.0, 1832.0, 1148.0, 1832.0, 1148.0, 1874.0, 875.0, 1874.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1347.0, 1832.0, 1505.0, 1832.0, 1505.0, 1874.0, 1347.0, 1874.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [197.0, 1872.0, 285.0, 1872.0, 285.0, 1912.0, 197.0, 1912.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [469.0, 1872.0, 544.0, 1872.0, 544.0, 1912.0, 469.0, 1912.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [738.0, 1872.0, 884.0, 1872.0, 884.0, 1912.0, 738.0, 1912.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [946.0, 1872.0, 1057.0, 1872.0, 1057.0, 1912.0, 946.0, 1912.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1321.0, 1872.0, 1502.0, 1872.0, 1502.0, 1912.0, 1321.0, 1912.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [192.0, 1904.0, 198.0, 1904.0, 198.0, 1966.0, 192.0, 1966.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [352.0, 1904.0, 390.0, 1904.0, 390.0, 1966.0, 352.0, 1966.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [428.0, 1904.0, 635.0, 1904.0, 635.0, 1966.0, 428.0, 1966.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [810.0, 1904.0, 1019.0, 1904.0, 1019.0, 1966.0, 810.0, 1966.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1316.0, 1904.0, 1508.0, 1904.0, 1508.0, 1966.0, 1316.0, 1966.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [197.0, 1951.0, 198.0, 1951.0, 198.0, 1993.0, 197.0, 1993.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [288.0, 1951.0, 534.0, 1951.0, 534.0, 1993.0, 288.0, 1993.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [571.0, 1951.0, 1276.0, 1951.0, 1276.0, 1993.0, 571.0, 1993.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1354.0, 1951.0, 1502.0, 1951.0, 1502.0, 1993.0, 1354.0, 1993.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [196.0, 1560.0, 460.0, 1560.0, 460.0, 1607.0, 196.0, 1607.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [628.0, 1560.0, 727.0, 1560.0, 727.0, 1607.0, 628.0, 1607.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [749.0, 1560.0, 824.0, 1560.0, 824.0, 1607.0, 749.0, 1607.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [856.0, 1560.0, 1070.0, 1560.0, 1070.0, 1607.0, 856.0, 1607.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1093.0, 1560.0, 1504.0, 1560.0, 1504.0, 1607.0, 1093.0, 1607.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [197.0, 1603.0, 450.0, 1603.0, 450.0, 1645.0, 197.0, 1645.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [545.0, 1603.0, 972.0, 1603.0, 972.0, 1645.0, 545.0, 1645.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1228.0, 1603.0, 1237.0, 1603.0, 1237.0, 1645.0, 1228.0, 1645.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [261.0, 825.0, 454.0, 825.0, 454.0, 876.0, 261.0, 876.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [480.0, 825.0, 561.0, 825.0, 561.0, 876.0, 480.0, 876.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [600.0, 825.0, 669.0, 825.0, 669.0, 876.0, 600.0, 876.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [866.0, 825.0, 1128.0, 825.0, 1128.0, 876.0, 866.0, 876.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1172.0, 825.0, 1216.0, 825.0, 1216.0, 876.0, 1172.0, 876.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1258.0, 825.0, 1407.0, 825.0, 1407.0, 876.0, 1258.0, 876.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [198.0, 870.0, 297.0, 870.0, 297.0, 911.0, 198.0, 911.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [371.0, 870.0, 419.0, 870.0, 419.0, 911.0, 371.0, 911.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [537.0, 870.0, 893.0, 870.0, 893.0, 911.0, 537.0, 911.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [262.0, 1643.0, 570.0, 1643.0, 570.0, 1687.0, 262.0, 1687.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [699.0, 1643.0, 802.0, 1643.0, 802.0, 1687.0, 699.0, 1687.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [816.0, 1643.0, 922.0, 1643.0, 922.0, 1687.0, 816.0, 1687.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [947.0, 1643.0, 1274.0, 1643.0, 1274.0, 1687.0, 947.0, 1687.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1333.0, 1643.0, 1500.0, 1643.0, 1500.0, 1687.0, 1333.0, 1687.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [197.0, 1681.0, 327.0, 1681.0, 327.0, 1727.0, 197.0, 1727.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [350.0, 1681.0, 473.0, 1681.0, 473.0, 1727.0, 350.0, 1727.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [514.0, 1681.0, 526.0, 1681.0, 526.0, 1727.0, 514.0, 1727.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [260.0, 265.0, 265.0, 265.0, 265.0, 310.0, 260.0, 310.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [347.0, 265.0, 475.0, 265.0, 475.0, 310.0, 347.0, 310.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [722.0, 265.0, 796.0, 265.0, 796.0, 310.0, 722.0, 310.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [893.0, 265.0, 1113.0, 265.0, 1113.0, 310.0, 893.0, 310.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1196.0, 265.0, 1504.0, 265.0, 1504.0, 310.0, 1196.0, 310.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [200.0, 311.0, 700.0, 311.0, 700.0, 346.0, 200.0, 346.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [783.0, 311.0, 794.0, 311.0, 794.0, 346.0, 783.0, 346.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [262.0, 745.0, 349.0, 745.0, 349.0, 792.0, 262.0, 792.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [446.0, 745.0, 518.0, 745.0, 518.0, 792.0, 446.0, 792.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [700.0, 745.0, 846.0, 745.0, 846.0, 792.0, 700.0, 792.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [863.0, 745.0, 1035.0, 745.0, 1035.0, 792.0, 863.0, 792.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1121.0, 745.0, 1260.0, 745.0, 1260.0, 792.0, 1121.0, 792.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1285.0, 745.0, 1369.0, 745.0, 1369.0, 792.0, 1285.0, 792.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [1442.0, 745.0, 1503.0, 745.0, 1503.0, 792.0, 1442.0, 792.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [198.0, 789.0, 455.0, 789.0, 455.0, 828.0, 198.0, 828.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [481.0, 789.0, 562.0, 789.0, 562.0, 828.0, 481.0, 828.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [603.0, 789.0, 613.0, 789.0, 613.0, 828.0, 603.0, 828.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [197.0, 1143.0, 297.0, 1143.0, 297.0, 1184.0, 197.0, 1184.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [319.0, 1143.0, 438.0, 1143.0, 438.0, 1184.0, 319.0, 1184.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [508.0, 1143.0, 656.0, 1143.0, 656.0, 1184.0, 508.0, 1184.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [695.0, 1143.0, 1084.0, 1143.0, 1084.0, 1184.0, 695.0, 1184.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [828.0, 2033.0, 872.0, 2033.0, 872.0, 2069.0, 828.0, 2069.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [199.0, 1771.0, 332.0, 1771.0, 332.0, 1804.0, 199.0, 1804.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [361.0, 1771.0, 606.0, 1771.0, 606.0, 1804.0, 361.0, 1804.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [200.0, 207.0, 335.0, 207.0, 335.0, 241.0, 200.0, 241.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [365.0, 207.0, 610.0, 207.0, 610.0, 241.0, 365.0, 241.0], "score": 1.0, "text": ""}] | {"preproc_blocks": [{"type": "text", "bbox": [70, 93, 541, 122], "lines": [{"bbox": [95, 95, 541, 111], "spans": [{"bbox": [95, 98, 124, 107], "score": 0.9, "content": "k=1", "type": "inline_equation", "height": 9, "width": 29}, {"bbox": [124, 95, 171, 111], "score": 1.0, "content": " is easy: ", "type": "text"}, {"bbox": [171, 97, 259, 110], "score": 0.95, "content": "P_{+}=\\{0,J0,\\Lambda_{r}\\}", "type": "inline_equation", "height": 13, "width": 88}, {"bbox": [259, 95, 286, 111], "score": 1.0, "content": " and ", "type": "text"}, {"bbox": [286, 98, 321, 107], "score": 0.92, "content": "\\pi=i d", "type": "inline_equation", "height": 9, "width": 35}, {"bbox": [321, 95, 400, 111], "score": 1.0, "content": ". is automatic. ", "type": "text"}, {"bbox": [401, 98, 430, 107], "score": 0.92, "content": "k=2", "type": "inline_equation", "height": 9, "width": 29}, {"bbox": [430, 95, 541, 111], "score": 1.0, "content": " will be done later in", "type": "text"}], "index": 0}, {"bbox": [72, 111, 285, 124], "spans": [{"bbox": [72, 111, 252, 124], "score": 1.0, "content": "this subsection. Assume now that ", "type": "text"}, {"bbox": [252, 113, 281, 123], "score": 0.92, "content": "k\\geq3", "type": "inline_equation", "height": 10, "width": 29}, {"bbox": [281, 111, 285, 124], "score": 1.0, "content": ".", "type": "text"}], "index": 1}], "index": 0.5}, {"type": "text", "bbox": [70, 123, 541, 266], "lines": [{"bbox": [93, 124, 541, 140], "spans": [{"bbox": [93, 125, 304, 140], "score": 1.0, "content": "From Proposition 4.1(b) we can write ", "type": "text"}, {"bbox": [304, 127, 372, 138], "score": 0.95, "content": "\\pi\\Lambda_{1}\\,=\\,J^{a}\\Lambda_{1}", "type": "inline_equation", "height": 11, "width": 68}, {"bbox": [373, 125, 402, 140], "score": 1.0, "content": " and ", "type": "text"}, {"bbox": [402, 124, 478, 138], "score": 0.95, "content": "\\pi^{\\prime}\\Lambda_{1}\\,=\\,J^{a^{\\prime}}\\Lambda_{1}", "type": "inline_equation", "height": 14, "width": 76}, {"bbox": [478, 125, 541, 140], "score": 1.0, "content": ". We know", "type": "text"}], "index": 2}, {"bbox": [71, 140, 540, 155], "spans": [{"bbox": [71, 142, 125, 151], "score": 0.88, "content": "\\pi J0\\,=\\,J0", "type": "inline_equation", "height": 9, "width": 54}, {"bbox": [125, 140, 209, 155], "score": 1.0, "content": ", so (2.7b) says ", "type": "text"}, {"bbox": [209, 145, 217, 150], "score": 0.81, "content": "\\pi", "type": "inline_equation", "height": 5, "width": 8}, {"bbox": [217, 140, 540, 155], "score": 1.0, "content": " must take spinors to spinors, and nonspinors to nonspinors.", "type": "text"}], "index": 3}, {"bbox": [70, 153, 542, 169], "spans": [{"bbox": [70, 154, 172, 169], "score": 1.0, "content": "Then we will have ", "type": "text"}, {"bbox": [172, 153, 300, 168], "score": 0.93, "content": "\\chi_{\\Lambda_{1}}[\\psi]\\,=\\,(-1)^{a^{\\prime}}\\chi_{\\Lambda_{1}}[\\pi\\psi]", "type": "inline_equation", "height": 15, "width": 128}, {"bbox": [300, 154, 381, 169], "score": 1.0, "content": " for any spinor ", "type": "text"}, {"bbox": [382, 156, 390, 167], "score": 0.9, "content": "\\psi", "type": "inline_equation", "height": 11, "width": 8}, {"bbox": [391, 154, 439, 169], "score": 1.0, "content": ". Now if ", "type": "text"}, {"bbox": [440, 155, 474, 165], "score": 0.88, "content": "a^{\\prime}=1", "type": "inline_equation", "height": 10, "width": 34}, {"bbox": [474, 154, 508, 169], "score": 1.0, "content": ", then ", "type": "text"}, {"bbox": [509, 158, 516, 165], "score": 0.61, "content": "\\pi", "type": "inline_equation", "height": 7, "width": 7}, {"bbox": [517, 154, 542, 169], "score": 1.0, "content": " will", "type": "text"}], "index": 4}, {"bbox": [70, 168, 542, 184], "spans": [{"bbox": [70, 168, 251, 184], "score": 1.0, "content": "take the spinors which maximize ", "type": "text"}, {"bbox": [251, 173, 271, 182], "score": 0.86, "content": "\\chi_{\\Lambda_{1}}", "type": "inline_equation", "height": 9, "width": 20}, {"bbox": [271, 168, 542, 184], "score": 1.0, "content": ", to those which minimize it. Both these maxima", "type": "text"}], "index": 5}, {"bbox": [70, 182, 541, 198], "spans": [{"bbox": [70, 182, 403, 198], "score": 1.0, "content": "and minima can be easily found from (3.2). Thus we get that ", "type": "text"}, {"bbox": [403, 183, 442, 196], "score": 0.92, "content": "\\pi(S\\Lambda_{r})", "type": "inline_equation", "height": 13, "width": 39}, {"bbox": [442, 182, 482, 198], "score": 1.0, "content": " equals ", "type": "text"}, {"bbox": [482, 182, 503, 195], "score": 0.89, "content": "k\\Lambda_{r}", "type": "inline_equation", "height": 13, "width": 21}, {"bbox": [504, 182, 541, 198], "score": 1.0, "content": " (when", "type": "text"}], "index": 6}, {"bbox": [70, 196, 541, 212], "spans": [{"bbox": [70, 197, 79, 209], "score": 0.74, "content": "k", "type": "inline_equation", "height": 12, "width": 9}, {"bbox": [79, 198, 126, 212], "score": 1.0, "content": " odd) or ", "type": "text"}, {"bbox": [127, 196, 196, 211], "score": 0.92, "content": "S((k-1)\\Lambda_{r})", "type": "inline_equation", "height": 15, "width": 69}, {"bbox": [196, 198, 236, 212], "score": 1.0, "content": " (when ", "type": "text"}, {"bbox": [236, 198, 244, 208], "score": 0.74, "content": "k", "type": "inline_equation", "height": 10, "width": 8}, {"bbox": [244, 198, 357, 212], "score": 1.0, "content": " even). But the sets ", "type": "text"}, {"bbox": [357, 199, 379, 210], "score": 0.92, "content": "S\\Lambda_{r}", "type": "inline_equation", "height": 11, "width": 22}, {"bbox": [379, 198, 407, 212], "score": 1.0, "content": " and ", "type": "text"}, {"bbox": [408, 198, 429, 210], "score": 0.89, "content": "k\\Lambda_{r}", "type": "inline_equation", "height": 12, "width": 21}, {"bbox": [429, 198, 541, 212], "score": 1.0, "content": " have different cardi-", "type": "text"}], "index": 7}, {"bbox": [71, 211, 541, 226], "spans": [{"bbox": [71, 212, 116, 226], "score": 1.0, "content": "nalities (", "type": "text"}, {"bbox": [116, 211, 138, 224], "score": 0.88, "content": "k\\Lambda_{r}", "type": "inline_equation", "height": 13, "width": 22}, {"bbox": [138, 212, 162, 226], "score": 1.0, "content": " is a ", "type": "text"}, {"bbox": [163, 212, 171, 223], "score": 0.83, "content": "J", "type": "inline_equation", "height": 11, "width": 8}, {"bbox": [172, 212, 541, 226], "score": 1.0, "content": "-fixed-point), and so can\u2019t get mapped to each other. Also, the fusions", "type": "text"}], "index": 8}, {"bbox": [71, 224, 541, 241], "spans": [{"bbox": [71, 225, 85, 238], "score": 0.86, "content": "\\Lambda_{1}", "type": "inline_equation", "height": 13, "width": 14}, {"bbox": [86, 225, 101, 241], "score": 1.0, "content": " \u00d7", "type": "text"}, {"bbox": [102, 225, 147, 238], "score": 0.89, "content": "\\Lambda_{r}=\\Lambda_{r}", "type": "inline_equation", "height": 13, "width": 45}, {"bbox": [147, 225, 164, 241], "score": 1.0, "content": " + ", "type": "text"}, {"bbox": [164, 225, 215, 239], "score": 0.89, "content": "(\\Lambda_{1}+\\Lambda_{r})", "type": "inline_equation", "height": 14, "width": 51}, {"bbox": [216, 225, 241, 241], "score": 1.0, "content": " and ", "type": "text"}, {"bbox": [241, 226, 457, 240], "score": 0.85, "content": "J^{a}\\Lambda_{1}\\boxtimes\\left(J^{i}(k-1)\\Lambda_{r}\\right)=\\left(J^{a+i}(k-1)\\Lambda_{r}\\right)", "type": "inline_equation", "height": 14, "width": 216}, {"bbox": [457, 225, 476, 241], "score": 1.0, "content": " + ", "type": "text"}, {"bbox": [477, 224, 541, 240], "score": 0.85, "content": "(J^{a+i+1}(k-", "type": "inline_equation", "height": 16, "width": 64}], "index": 9}, {"bbox": [70, 237, 541, 257], "spans": [{"bbox": [70, 239, 99, 254], "score": 0.85, "content": "1)\\Lambda_{r})", "type": "inline_equation", "height": 15, "width": 29}, {"bbox": [99, 237, 117, 257], "score": 1.0, "content": " + ", "type": "text"}, {"bbox": [118, 240, 254, 254], "score": 0.9, "content": "J^{a+i+1}(\\Lambda_{r-1}+(k-3)\\Lambda_{r})", "type": "inline_equation", "height": 14, "width": 136}, {"bbox": [254, 237, 541, 257], "score": 1.0, "content": " have different numbers of weights on their right sides,", "type": "text"}], "index": 10}, {"bbox": [70, 254, 209, 269], "spans": [{"bbox": [70, 255, 109, 269], "score": 1.0, "content": "so also ", "type": "text"}, {"bbox": [110, 254, 204, 268], "score": 0.92, "content": "\\pi\\Lambda_{r}\\notin{\\cal S}(k-1)\\Lambda_{r}", "type": "inline_equation", "height": 14, "width": 94}, {"bbox": [204, 255, 209, 269], "score": 1.0, "content": ".", "type": "text"}], "index": 11}], "index": 6.5}, {"type": "text", "bbox": [70, 267, 541, 295], "lines": [{"bbox": [94, 268, 541, 285], "spans": [{"bbox": [94, 268, 125, 285], "score": 1.0, "content": "Thus ", "type": "text"}, {"bbox": [126, 269, 160, 281], "score": 0.9, "content": "a^{\\prime}=0", "type": "inline_equation", "height": 12, "width": 34}, {"bbox": [160, 268, 186, 285], "score": 1.0, "content": " and ", "type": "text"}, {"bbox": [186, 269, 251, 282], "score": 0.95, "content": "\\pi\\Lambda_{r}=J^{b}\\Lambda_{r}", "type": "inline_equation", "height": 13, "width": 65}, {"bbox": [252, 268, 304, 285], "score": 1.0, "content": " for some ", "type": "text"}, {"bbox": [304, 271, 310, 280], "score": 0.85, "content": "b", "type": "inline_equation", "height": 9, "width": 6}, {"bbox": [310, 268, 372, 285], "score": 1.0, "content": ". Similarly, ", "type": "text"}, {"bbox": [372, 270, 403, 281], "score": 0.84, "content": "a=0", "type": "inline_equation", "height": 11, "width": 31}, {"bbox": [403, 268, 453, 285], "score": 1.0, "content": ". Hitting ", "type": "text"}, {"bbox": [453, 272, 462, 280], "score": 0.69, "content": "\\pi", "type": "inline_equation", "height": 8, "width": 9}, {"bbox": [462, 268, 492, 285], "score": 1.0, "content": " with ", "type": "text"}, {"bbox": [493, 268, 518, 283], "score": 0.92, "content": "\\pi[1]^{b}", "type": "inline_equation", "height": 15, "width": 25}, {"bbox": [519, 268, 541, 285], "score": 1.0, "content": ", we", "type": "text"}], "index": 12}, {"bbox": [71, 284, 220, 298], "spans": [{"bbox": [71, 284, 163, 298], "score": 1.0, "content": "may assume that", "type": "text"}, {"bbox": [164, 286, 172, 295], "score": 0.75, "content": "\\pi", "type": "inline_equation", "height": 9, "width": 8}, {"bbox": [173, 284, 202, 298], "score": 1.0, "content": " fixes ", "type": "text"}, {"bbox": [202, 285, 216, 296], "score": 0.89, "content": "\\Lambda_{r}", "type": "inline_equation", "height": 11, "width": 14}, {"bbox": [217, 284, 220, 298], "score": 1.0, "content": ".", "type": "text"}], "index": 13}], "index": 12.5}, {"type": "text", "bbox": [70, 296, 540, 326], "lines": [{"bbox": [93, 297, 539, 315], "spans": [{"bbox": [93, 297, 163, 315], "score": 1.0, "content": "Now assume ", "type": "text"}, {"bbox": [163, 301, 172, 309], "score": 0.76, "content": "\\pi", "type": "inline_equation", "height": 8, "width": 9}, {"bbox": [172, 297, 201, 315], "score": 1.0, "content": " fixes ", "type": "text"}, {"bbox": [202, 300, 215, 311], "score": 0.88, "content": "\\Lambda_{\\ell}", "type": "inline_equation", "height": 11, "width": 13}, {"bbox": [216, 297, 240, 315], "score": 1.0, "content": ", for ", "type": "text"}, {"bbox": [241, 300, 311, 311], "score": 0.91, "content": "1\\leq\\ell<r-1", "type": "inline_equation", "height": 11, "width": 70}, {"bbox": [311, 297, 406, 315], "score": 1.0, "content": ". Then the fusion ", "type": "text"}, {"bbox": [406, 298, 421, 311], "score": 0.79, "content": "\\Lambda_{1}", "type": "inline_equation", "height": 13, "width": 15}, {"bbox": [421, 297, 437, 315], "score": 1.0, "content": " \u00d7", "type": "text"}, {"bbox": [438, 298, 452, 311], "score": 0.73, "content": "\\Lambda_{\\ell}", "type": "inline_equation", "height": 13, "width": 14}, {"bbox": [452, 297, 506, 315], "score": 1.0, "content": "says that ", "type": "text"}, {"bbox": [506, 299, 539, 312], "score": 0.89, "content": "\\pi\\Lambda_{\\ell+1}", "type": "inline_equation", "height": 13, "width": 33}], "index": 14}, {"bbox": [71, 313, 321, 327], "spans": [{"bbox": [71, 313, 106, 327], "score": 1.0, "content": "equals", "type": "text"}, {"bbox": [107, 313, 133, 326], "score": 0.91, "content": "\\Lambda_{\\ell+1}", "type": "inline_equation", "height": 13, "width": 26}, {"bbox": [133, 313, 150, 327], "score": 1.0, "content": " or ", "type": "text"}, {"bbox": [151, 313, 192, 325], "score": 0.91, "content": "\\Lambda_{1}+\\Lambda_{\\ell}", "type": "inline_equation", "height": 12, "width": 41}, {"bbox": [193, 313, 321, 327], "score": 1.0, "content": ". But from (3.2) we find", "type": "text"}], "index": 15}], "index": 14.5}, {"type": "interline_equation", "bbox": [124, 340, 527, 401], "lines": [{"bbox": [124, 340, 527, 401], "spans": [{"bbox": [124, 340, 527, 401], "score": 0.86, "content": "\\begin{array}{c}{{-\\chi_{\\Lambda_{1}}[\\Lambda_{1}+\\Lambda_{\\ell}]=2\\,\\{\\displaystyle\\mathrm{cos}(\\pi\\frac{2r-2\\ell+1}{\\kappa})-\\mathrm{cos}(\\pi\\frac{2r-2\\ell-1}{\\kappa})+\\mathrm{cos}(\\pi\\frac{2r+1}{\\kappa})\\}}}\\\\ {{-\\cos(\\pi\\frac{2r+3}{\\kappa})\\}=4\\cos(\\pi\\frac{2r-\\ell+1}{\\kappa})\\,\\{\\displaystyle\\mathrm{cos}(2\\pi\\frac{\\ell}{\\kappa})-\\mathrm{cos}(2\\pi\\frac{\\ell+1}{\\kappa})\\},}}\\end{array}", "type": "interline_equation"}], "index": 16}], "index": 16}, {"type": "text", "bbox": [70, 409, 391, 425], "lines": [{"bbox": [70, 411, 390, 426], "spans": [{"bbox": [70, 411, 106, 426], "score": 1.0, "content": "Hence ", "type": "text"}, {"bbox": [107, 417, 114, 423], "score": 0.86, "content": "\\pi", "type": "inline_equation", "height": 6, "width": 7}, {"bbox": [114, 411, 157, 426], "score": 1.0, "content": " will fix ", "type": "text"}, {"bbox": [158, 413, 182, 425], "score": 0.92, "content": "\\Lambda_{\\ell+1}", "type": "inline_equation", "height": 12, "width": 24}, {"bbox": [182, 411, 236, 426], "score": 1.0, "content": " if it fixes ", "type": "text"}, {"bbox": [236, 414, 249, 424], "score": 0.9, "content": "\\Lambda_{\\ell}", "type": "inline_equation", "height": 10, "width": 13}, {"bbox": [250, 411, 390, 426], "score": 1.0, "content": ", concluding the argument.", "type": "text"}], "index": 17}], "index": 17}, {"type": "text", "bbox": [70, 428, 541, 501], "lines": [{"bbox": [94, 430, 540, 446], "spans": [{"bbox": [94, 430, 311, 446], "score": 1.0, "content": "Now consider the more interesting case: ", "type": "text"}, {"bbox": [311, 432, 341, 441], "score": 0.91, "content": "k=2", "type": "inline_equation", "height": 9, "width": 30}, {"bbox": [342, 430, 382, 446], "score": 1.0, "content": ". Then ", "type": "text"}, {"bbox": [382, 433, 440, 442], "score": 0.91, "content": "\\kappa=2r+1", "type": "inline_equation", "height": 9, "width": 58}, {"bbox": [440, 430, 540, 446], "score": 1.0, "content": "; recall the weights", "type": "text"}], "index": 18}, {"bbox": [69, 443, 542, 460], "spans": [{"bbox": [69, 443, 85, 460], "score": 1.0, "content": "in ", "type": "text"}, {"bbox": [86, 446, 132, 459], "score": 0.94, "content": "P_{+}(B_{r,2})", "type": "inline_equation", "height": 13, "width": 46}, {"bbox": [132, 443, 262, 460], "score": 1.0, "content": " are the simple-currents ", "type": "text"}, {"bbox": [262, 447, 288, 458], "score": 0.92, "content": "0,J0", "type": "inline_equation", "height": 11, "width": 26}, {"bbox": [288, 443, 316, 460], "score": 1.0, "content": ", the ", "type": "text"}, {"bbox": [316, 447, 325, 456], "score": 0.88, "content": "J", "type": "inline_equation", "height": 9, "width": 9}, {"bbox": [325, 443, 393, 460], "score": 1.0, "content": "-fixed-points ", "type": "text"}, {"bbox": [393, 445, 444, 458], "score": 0.92, "content": "\\gamma^{1},\\ldots,\\gamma^{r}", "type": "inline_equation", "height": 13, "width": 51}, {"bbox": [445, 443, 542, 460], "score": 1.0, "content": " (notation defined", "type": "text"}], "index": 19}, {"bbox": [69, 458, 541, 474], "spans": [{"bbox": [69, 458, 206, 474], "score": 1.0, "content": "in \u00a73.2), and the spinors ", "type": "text"}, {"bbox": [207, 461, 247, 472], "score": 0.93, "content": "\\Lambda_{r},J\\Lambda_{r}", "type": "inline_equation", "height": 11, "width": 40}, {"bbox": [248, 458, 304, 474], "score": 1.0, "content": ". Because ", "type": "text"}, {"bbox": [304, 460, 421, 473], "score": 0.93, "content": "\\pi(J0)\\,=\\,\\pi^{\\prime}(J0)\\,=\\,J0", "type": "inline_equation", "height": 13, "width": 117}, {"bbox": [421, 458, 507, 474], "score": 1.0, "content": ", we know both ", "type": "text"}, {"bbox": [508, 464, 515, 470], "score": 0.88, "content": "\\pi", "type": "inline_equation", "height": 6, "width": 7}, {"bbox": [516, 458, 541, 474], "score": 1.0, "content": " and", "type": "text"}], "index": 20}, {"bbox": [71, 472, 542, 489], "spans": [{"bbox": [71, 475, 82, 484], "score": 0.9, "content": "\\pi^{\\prime}", "type": "inline_equation", "height": 9, "width": 11}, {"bbox": [82, 472, 144, 489], "score": 1.0, "content": " must take ", "type": "text"}, {"bbox": [145, 475, 153, 484], "score": 0.9, "content": "J", "type": "inline_equation", "height": 9, "width": 8}, {"bbox": [153, 472, 237, 489], "score": 1.0, "content": "-fixed-points to ", "type": "text"}, {"bbox": [238, 475, 246, 484], "score": 0.89, "content": "J", "type": "inline_equation", "height": 9, "width": 8}, {"bbox": [246, 472, 339, 489], "score": 1.0, "content": "-fixed-points, i.e. ", "type": "text"}, {"bbox": [340, 475, 397, 487], "score": 0.92, "content": "\\pi\\Lambda_{1}\\,=\\,\\gamma^{m}", "type": "inline_equation", "height": 12, "width": 57}, {"bbox": [397, 472, 425, 489], "score": 1.0, "content": " and ", "type": "text"}, {"bbox": [425, 473, 489, 487], "score": 0.94, "content": "\\pi^{\\prime}\\Lambda_{1}\\,=\\,\\gamma^{m^{\\prime}}", "type": "inline_equation", "height": 14, "width": 64}, {"bbox": [489, 472, 542, 489], "score": 1.0, "content": " for some", "type": "text"}], "index": 21}, {"bbox": [71, 487, 287, 504], "spans": [{"bbox": [71, 489, 145, 501], "score": 0.92, "content": "1\\leq m,m^{\\prime}\\leq r", "type": "inline_equation", "height": 12, "width": 74}, {"bbox": [145, 487, 287, 504], "score": 1.0, "content": ". It is easy to compute [25]", "type": "text"}], "index": 22}], "index": 20}, {"type": "interline_equation", "bbox": [247, 515, 365, 547], "lines": [{"bbox": [247, 515, 365, 547], "spans": [{"bbox": [247, 515, 365, 547], "score": 0.94, "content": "\\frac{S_{\\gamma^{a}\\gamma^{b}}}{S_{0\\gamma^{b}}}=2\\cos(2\\pi\\frac{a b}{\\kappa})\\ .", "type": "interline_equation"}], "index": 23}], "index": 23}, {"type": "text", "bbox": [70, 560, 541, 589], "lines": [{"bbox": [70, 561, 541, 578], "spans": [{"bbox": [70, 561, 165, 578], "score": 1.0, "content": "From this we see ", "type": "text"}, {"bbox": [165, 564, 225, 574], "score": 0.8, "content": "m\\,m^{\\prime}\\equiv\\pm1", "type": "inline_equation", "height": 10, "width": 60}, {"bbox": [226, 561, 261, 578], "score": 1.0, "content": " (mod ", "type": "text"}, {"bbox": [262, 567, 269, 573], "score": 0.58, "content": "\\kappa", "type": "inline_equation", "height": 6, "width": 7}, {"bbox": [269, 561, 296, 578], "score": 1.0, "content": "), so ", "type": "text"}, {"bbox": [297, 568, 307, 573], "score": 0.85, "content": "^{\\prime\\prime}", "type": "inline_equation", "height": 5, "width": 10}, {"bbox": [308, 561, 385, 578], "score": 1.0, "content": " is coprime to ", "type": "text"}, {"bbox": [385, 566, 393, 573], "score": 0.74, "content": "\\kappa", "type": "inline_equation", "height": 7, "width": 8}, {"bbox": [393, 561, 541, 578], "score": 1.0, "content": ". Hitting it with the Galois", "type": "text"}], "index": 24}, {"bbox": [70, 576, 445, 592], "spans": [{"bbox": [70, 577, 162, 592], "score": 1.0, "content": "fusion-symmetry ", "type": "text"}, {"bbox": [162, 578, 195, 591], "score": 0.93, "content": "\\pi\\{m^{\\prime}\\}", "type": "inline_equation", "height": 13, "width": 33}, {"bbox": [196, 577, 349, 592], "score": 1.0, "content": ", we see that we may assume ", "type": "text"}, {"bbox": [350, 576, 441, 590], "score": 0.92, "content": "\\pi\\Lambda_{1}=\\pi^{\\prime}\\Lambda_{1}=\\Lambda_{1}", "type": "inline_equation", "height": 14, "width": 91}, {"bbox": [442, 577, 445, 592], "score": 1.0, "content": ".", "type": "text"}], "index": 25}], "index": 24.5}, {"type": "text", "bbox": [71, 590, 541, 619], "lines": [{"bbox": [94, 591, 540, 607], "spans": [{"bbox": [94, 591, 205, 607], "score": 1.0, "content": "Now use (4.2) to get ", "type": "text"}, {"bbox": [205, 591, 251, 605], "score": 0.93, "content": "\\pi\\gamma^{i}=\\gamma^{i}", "type": "inline_equation", "height": 14, "width": 46}, {"bbox": [251, 591, 288, 607], "score": 1.0, "content": " for all ", "type": "text"}, {"bbox": [289, 594, 293, 603], "score": 0.75, "content": "i", "type": "inline_equation", "height": 9, "width": 4}, {"bbox": [293, 591, 331, 607], "score": 1.0, "content": ". Then", "type": "text"}, {"bbox": [332, 594, 340, 603], "score": 0.72, "content": "\\pi", "type": "inline_equation", "height": 9, "width": 8}, {"bbox": [340, 591, 458, 607], "score": 1.0, "content": " equals the identity or ", "type": "text"}, {"bbox": [459, 592, 479, 605], "score": 0.74, "content": "\\pi[1]", "type": "inline_equation", "height": 13, "width": 20}, {"bbox": [479, 591, 540, 607], "score": 1.0, "content": ", depending", "type": "text"}], "index": 26}, {"bbox": [70, 605, 189, 621], "spans": [{"bbox": [70, 605, 117, 621], "score": 1.0, "content": "on what ", "type": "text"}, {"bbox": [118, 611, 125, 617], "score": 0.87, "content": "\\pi", "type": "inline_equation", "height": 6, "width": 7}, {"bbox": [126, 605, 170, 621], "score": 1.0, "content": " does to ", "type": "text"}, {"bbox": [170, 608, 184, 619], "score": 0.91, "content": "\\Lambda_{r}", "type": "inline_equation", "height": 11, "width": 14}, {"bbox": [185, 605, 189, 621], "score": 1.0, "content": ".", "type": "text"}], "index": 27}], "index": 26.5}, {"type": "title", "bbox": [71, 634, 218, 649], "lines": [{"bbox": [71, 637, 218, 649], "spans": [{"bbox": [71, 637, 119, 649], "score": 1.0, "content": "4.4. The ", "type": "text"}, {"bbox": [119, 639, 129, 647], "score": 0.87, "content": "C", "type": "inline_equation", "height": 8, "width": 10}, {"bbox": [129, 637, 218, 649], "score": 1.0, "content": "-series argument", "type": "text"}], "index": 28}], "index": 28}, {"type": "text", "bbox": [70, 657, 541, 715], "lines": [{"bbox": [94, 659, 541, 674], "spans": [{"bbox": [94, 659, 284, 674], "score": 1.0, "content": "By rank-level duality, we may take ", "type": "text"}, {"bbox": [284, 661, 314, 672], "score": 0.93, "content": "r\\le k", "type": "inline_equation", "height": 11, "width": 30}, {"bbox": [315, 659, 413, 674], "score": 1.0, "content": ". For now assume ", "type": "text"}, {"bbox": [413, 659, 484, 673], "score": 0.91, "content": "(r,k)\\neq(2,3)", "type": "inline_equation", "height": 14, "width": 71}, {"bbox": [484, 659, 541, 674], "score": 1.0, "content": ". Then we", "type": "text"}], "index": 29}, {"bbox": [70, 672, 540, 688], "spans": [{"bbox": [70, 673, 102, 688], "score": 1.0, "content": "know ", "type": "text"}, {"bbox": [102, 676, 168, 686], "score": 0.92, "content": "\\pi\\Lambda_{1}=J^{a}\\Lambda_{1}", "type": "inline_equation", "height": 10, "width": 66}, {"bbox": [168, 673, 195, 688], "score": 1.0, "content": " and ", "type": "text"}, {"bbox": [196, 672, 265, 686], "score": 0.93, "content": "\\pi\\Lambda_{1}=J^{a^{\\prime}}\\Lambda_{1}", "type": "inline_equation", "height": 14, "width": 69}, {"bbox": [265, 673, 318, 688], "score": 1.0, "content": " for some ", "type": "text"}, {"bbox": [318, 675, 340, 687], "score": 0.91, "content": "a,a^{\\prime}", "type": "inline_equation", "height": 12, "width": 22}, {"bbox": [340, 673, 380, 688], "score": 1.0, "content": ". Since ", "type": "text"}, {"bbox": [380, 674, 475, 686], "score": 0.86, "content": "\\pi J0=\\pi^{\\prime}J0=J0", "type": "inline_equation", "height": 12, "width": 95}, {"bbox": [475, 673, 540, 688], "score": 1.0, "content": ", (2.7b) says", "type": "text"}], "index": 30}, {"bbox": [71, 685, 542, 707], "spans": [{"bbox": [71, 689, 126, 699], "score": 0.92, "content": "a=a^{\\prime}=0", "type": "inline_equation", "height": 10, "width": 55}, {"bbox": [126, 685, 140, 707], "score": 1.0, "content": " if ", "type": "text"}, {"bbox": [140, 690, 153, 699], "score": 0.89, "content": "k r", "type": "inline_equation", "height": 9, "width": 13}, {"bbox": [154, 685, 228, 707], "score": 1.0, "content": " is odd. Since ", "type": "text"}, {"bbox": [228, 689, 291, 702], "score": 0.95, "content": "\\chi_{\\Lambda_{1}}[\\Lambda_{1}]>0", "type": "inline_equation", "height": 13, "width": 63}, {"bbox": [291, 685, 366, 707], "score": 1.0, "content": " (using (3.3)), ", "type": "text"}, {"bbox": [367, 689, 473, 703], "score": 0.9, "content": "S_{\\Lambda_{1}\\Lambda_{1}}=S_{J^{a}\\Lambda_{1},J^{a^{\\prime}}\\Lambda_{1}}", "type": "inline_equation", "height": 14, "width": 106}, {"bbox": [473, 685, 542, 707], "score": 1.0, "content": " implies that", "type": "text"}], "index": 31}, {"bbox": [71, 702, 540, 717], "spans": [{"bbox": [71, 704, 103, 713], "score": 0.92, "content": "a=a^{\\prime}", "type": "inline_equation", "height": 9, "width": 32}, {"bbox": [103, 702, 192, 717], "score": 1.0, "content": " also holds when ", "type": "text"}, {"bbox": [192, 704, 205, 713], "score": 0.88, "content": "k r", "type": "inline_equation", "height": 9, "width": 13}, {"bbox": [205, 702, 459, 717], "score": 1.0, "content": " is even, and hence we may assume (hitting with ", "type": "text"}, {"bbox": [459, 703, 487, 716], "score": 0.84, "content": "\\pi[1]^{a}", "type": "inline_equation", "height": 13, "width": 28}, {"bbox": [487, 702, 540, 717], "score": 1.0, "content": ") that also", "type": "text"}], "index": 32}], "index": 30.5}], "layout_bboxes": [], "page_idx": 17, "page_size": [612.0, 792.0], "_layout_tree": [], "images": [], "tables": [], "interline_equations": [{"type": "interline_equation", "bbox": [124, 340, 527, 401], "lines": [{"bbox": [124, 340, 527, 401], "spans": [{"bbox": [124, 340, 527, 401], "score": 0.86, "content": "\\begin{array}{c}{{-\\chi_{\\Lambda_{1}}[\\Lambda_{1}+\\Lambda_{\\ell}]=2\\,\\{\\displaystyle\\mathrm{cos}(\\pi\\frac{2r-2\\ell+1}{\\kappa})-\\mathrm{cos}(\\pi\\frac{2r-2\\ell-1}{\\kappa})+\\mathrm{cos}(\\pi\\frac{2r+1}{\\kappa})\\}}}\\\\ {{-\\cos(\\pi\\frac{2r+3}{\\kappa})\\}=4\\cos(\\pi\\frac{2r-\\ell+1}{\\kappa})\\,\\{\\displaystyle\\mathrm{cos}(2\\pi\\frac{\\ell}{\\kappa})-\\mathrm{cos}(2\\pi\\frac{\\ell+1}{\\kappa})\\},}}\\end{array}", "type": "interline_equation"}], "index": 16}], "index": 16}, {"type": "interline_equation", "bbox": [247, 515, 365, 547], "lines": [{"bbox": [247, 515, 365, 547], "spans": [{"bbox": [247, 515, 365, 547], "score": 0.94, "content": "\\frac{S_{\\gamma^{a}\\gamma^{b}}}{S_{0\\gamma^{b}}}=2\\cos(2\\pi\\frac{a b}{\\kappa})\\ .", "type": "interline_equation"}], "index": 23}], "index": 23}], "discarded_blocks": [{"type": "discarded", "bbox": [299, 731, 312, 741], "lines": [{"bbox": [298, 731, 313, 744], "spans": [{"bbox": [298, 731, 313, 744], "score": 1.0, "content": "18", "type": "text"}]}]}, {"type": "discarded", "bbox": [71, 71, 219, 85], "lines": [{"bbox": [72, 74, 219, 86], "spans": [{"bbox": [72, 74, 120, 86], "score": 1.0, "content": "4.3. The ", "type": "text"}, {"bbox": [120, 75, 131, 84], "score": 0.86, "content": "B", "type": "inline_equation", "height": 9, "width": 11}, {"bbox": [131, 74, 219, 86], "score": 1.0, "content": "-series argument", "type": "text"}]}]}], "need_drop": false, "drop_reason": [], "para_blocks": [{"type": "text", "bbox": [70, 93, 541, 122], "lines": [{"bbox": [95, 95, 541, 111], "spans": [{"bbox": [95, 98, 124, 107], "score": 0.9, "content": "k=1", "type": "inline_equation", "height": 9, "width": 29}, {"bbox": [124, 95, 171, 111], "score": 1.0, "content": " is easy: ", "type": "text"}, {"bbox": [171, 97, 259, 110], "score": 0.95, "content": "P_{+}=\\{0,J0,\\Lambda_{r}\\}", "type": "inline_equation", "height": 13, "width": 88}, {"bbox": [259, 95, 286, 111], "score": 1.0, "content": " and ", "type": "text"}, {"bbox": [286, 98, 321, 107], "score": 0.92, "content": "\\pi=i d", "type": "inline_equation", "height": 9, "width": 35}, {"bbox": [321, 95, 400, 111], "score": 1.0, "content": ". is automatic. ", "type": "text"}, {"bbox": [401, 98, 430, 107], "score": 0.92, "content": "k=2", "type": "inline_equation", "height": 9, "width": 29}, {"bbox": [430, 95, 541, 111], "score": 1.0, "content": " will be done later in", "type": "text"}], "index": 0}, {"bbox": [72, 111, 285, 124], "spans": [{"bbox": [72, 111, 252, 124], "score": 1.0, "content": "this subsection. Assume now that ", "type": "text"}, {"bbox": [252, 113, 281, 123], "score": 0.92, "content": "k\\geq3", "type": "inline_equation", "height": 10, "width": 29}, {"bbox": [281, 111, 285, 124], "score": 1.0, "content": ".", "type": "text"}], "index": 1}], "index": 0.5, "page_num": "page_17", "page_size": [612.0, 792.0], "bbox_fs": [72, 95, 541, 124]}, {"type": "text", "bbox": [70, 123, 541, 266], "lines": [{"bbox": [93, 124, 541, 140], "spans": [{"bbox": [93, 125, 304, 140], "score": 1.0, "content": "From Proposition 4.1(b) we can write ", "type": "text"}, {"bbox": [304, 127, 372, 138], "score": 0.95, "content": "\\pi\\Lambda_{1}\\,=\\,J^{a}\\Lambda_{1}", "type": "inline_equation", "height": 11, "width": 68}, {"bbox": [373, 125, 402, 140], "score": 1.0, "content": " and ", "type": "text"}, {"bbox": [402, 124, 478, 138], "score": 0.95, "content": "\\pi^{\\prime}\\Lambda_{1}\\,=\\,J^{a^{\\prime}}\\Lambda_{1}", "type": "inline_equation", "height": 14, "width": 76}, {"bbox": [478, 125, 541, 140], "score": 1.0, "content": ". We know", "type": "text"}], "index": 2}, {"bbox": [71, 140, 540, 155], "spans": [{"bbox": [71, 142, 125, 151], "score": 0.88, "content": "\\pi J0\\,=\\,J0", "type": "inline_equation", "height": 9, "width": 54}, {"bbox": [125, 140, 209, 155], "score": 1.0, "content": ", so (2.7b) says ", "type": "text"}, {"bbox": [209, 145, 217, 150], "score": 0.81, "content": "\\pi", "type": "inline_equation", "height": 5, "width": 8}, {"bbox": [217, 140, 540, 155], "score": 1.0, "content": " must take spinors to spinors, and nonspinors to nonspinors.", "type": "text"}], "index": 3}, {"bbox": [70, 153, 542, 169], "spans": [{"bbox": [70, 154, 172, 169], "score": 1.0, "content": "Then we will have ", "type": "text"}, {"bbox": [172, 153, 300, 168], "score": 0.93, "content": "\\chi_{\\Lambda_{1}}[\\psi]\\,=\\,(-1)^{a^{\\prime}}\\chi_{\\Lambda_{1}}[\\pi\\psi]", "type": "inline_equation", "height": 15, "width": 128}, {"bbox": [300, 154, 381, 169], "score": 1.0, "content": " for any spinor ", "type": "text"}, {"bbox": [382, 156, 390, 167], "score": 0.9, "content": "\\psi", "type": "inline_equation", "height": 11, "width": 8}, {"bbox": [391, 154, 439, 169], "score": 1.0, "content": ". Now if ", "type": "text"}, {"bbox": [440, 155, 474, 165], "score": 0.88, "content": "a^{\\prime}=1", "type": "inline_equation", "height": 10, "width": 34}, {"bbox": [474, 154, 508, 169], "score": 1.0, "content": ", then ", "type": "text"}, {"bbox": [509, 158, 516, 165], "score": 0.61, "content": "\\pi", "type": "inline_equation", "height": 7, "width": 7}, {"bbox": [517, 154, 542, 169], "score": 1.0, "content": " will", "type": "text"}], "index": 4}, {"bbox": [70, 168, 542, 184], "spans": [{"bbox": [70, 168, 251, 184], "score": 1.0, "content": "take the spinors which maximize ", "type": "text"}, {"bbox": [251, 173, 271, 182], "score": 0.86, "content": "\\chi_{\\Lambda_{1}}", "type": "inline_equation", "height": 9, "width": 20}, {"bbox": [271, 168, 542, 184], "score": 1.0, "content": ", to those which minimize it. Both these maxima", "type": "text"}], "index": 5}, {"bbox": [70, 182, 541, 198], "spans": [{"bbox": [70, 182, 403, 198], "score": 1.0, "content": "and minima can be easily found from (3.2). Thus we get that ", "type": "text"}, {"bbox": [403, 183, 442, 196], "score": 0.92, "content": "\\pi(S\\Lambda_{r})", "type": "inline_equation", "height": 13, "width": 39}, {"bbox": [442, 182, 482, 198], "score": 1.0, "content": " equals ", "type": "text"}, {"bbox": [482, 182, 503, 195], "score": 0.89, "content": "k\\Lambda_{r}", "type": "inline_equation", "height": 13, "width": 21}, {"bbox": [504, 182, 541, 198], "score": 1.0, "content": " (when", "type": "text"}], "index": 6}, {"bbox": [70, 196, 541, 212], "spans": [{"bbox": [70, 197, 79, 209], "score": 0.74, "content": "k", "type": "inline_equation", "height": 12, "width": 9}, {"bbox": [79, 198, 126, 212], "score": 1.0, "content": " odd) or ", "type": "text"}, {"bbox": [127, 196, 196, 211], "score": 0.92, "content": "S((k-1)\\Lambda_{r})", "type": "inline_equation", "height": 15, "width": 69}, {"bbox": [196, 198, 236, 212], "score": 1.0, "content": " (when ", "type": "text"}, {"bbox": [236, 198, 244, 208], "score": 0.74, "content": "k", "type": "inline_equation", "height": 10, "width": 8}, {"bbox": [244, 198, 357, 212], "score": 1.0, "content": " even). But the sets ", "type": "text"}, {"bbox": [357, 199, 379, 210], "score": 0.92, "content": "S\\Lambda_{r}", "type": "inline_equation", "height": 11, "width": 22}, {"bbox": [379, 198, 407, 212], "score": 1.0, "content": " and ", "type": "text"}, {"bbox": [408, 198, 429, 210], "score": 0.89, "content": "k\\Lambda_{r}", "type": "inline_equation", "height": 12, "width": 21}, {"bbox": [429, 198, 541, 212], "score": 1.0, "content": " have different cardi-", "type": "text"}], "index": 7}, {"bbox": [71, 211, 541, 226], "spans": [{"bbox": [71, 212, 116, 226], "score": 1.0, "content": "nalities (", "type": "text"}, {"bbox": [116, 211, 138, 224], "score": 0.88, "content": "k\\Lambda_{r}", "type": "inline_equation", "height": 13, "width": 22}, {"bbox": [138, 212, 162, 226], "score": 1.0, "content": " is a ", "type": "text"}, {"bbox": [163, 212, 171, 223], "score": 0.83, "content": "J", "type": "inline_equation", "height": 11, "width": 8}, {"bbox": [172, 212, 541, 226], "score": 1.0, "content": "-fixed-point), and so can\u2019t get mapped to each other. Also, the fusions", "type": "text"}], "index": 8}, {"bbox": [71, 224, 541, 241], "spans": [{"bbox": [71, 225, 85, 238], "score": 0.86, "content": "\\Lambda_{1}", "type": "inline_equation", "height": 13, "width": 14}, {"bbox": [86, 225, 101, 241], "score": 1.0, "content": " \u00d7", "type": "text"}, {"bbox": [102, 225, 147, 238], "score": 0.89, "content": "\\Lambda_{r}=\\Lambda_{r}", "type": "inline_equation", "height": 13, "width": 45}, {"bbox": [147, 225, 164, 241], "score": 1.0, "content": " + ", "type": "text"}, {"bbox": [164, 225, 215, 239], "score": 0.89, "content": "(\\Lambda_{1}+\\Lambda_{r})", "type": "inline_equation", "height": 14, "width": 51}, {"bbox": [216, 225, 241, 241], "score": 1.0, "content": " and ", "type": "text"}, {"bbox": [241, 226, 457, 240], "score": 0.85, "content": "J^{a}\\Lambda_{1}\\boxtimes\\left(J^{i}(k-1)\\Lambda_{r}\\right)=\\left(J^{a+i}(k-1)\\Lambda_{r}\\right)", "type": "inline_equation", "height": 14, "width": 216}, {"bbox": [457, 225, 476, 241], "score": 1.0, "content": " + ", "type": "text"}, {"bbox": [477, 224, 541, 240], "score": 0.85, "content": "(J^{a+i+1}(k-", "type": "inline_equation", "height": 16, "width": 64}], "index": 9}, {"bbox": [70, 237, 541, 257], "spans": [{"bbox": [70, 239, 99, 254], "score": 0.85, "content": "1)\\Lambda_{r})", "type": "inline_equation", "height": 15, "width": 29}, {"bbox": [99, 237, 117, 257], "score": 1.0, "content": " + ", "type": "text"}, {"bbox": [118, 240, 254, 254], "score": 0.9, "content": "J^{a+i+1}(\\Lambda_{r-1}+(k-3)\\Lambda_{r})", "type": "inline_equation", "height": 14, "width": 136}, {"bbox": [254, 237, 541, 257], "score": 1.0, "content": " have different numbers of weights on their right sides,", "type": "text"}], "index": 10}, {"bbox": [70, 254, 209, 269], "spans": [{"bbox": [70, 255, 109, 269], "score": 1.0, "content": "so also ", "type": "text"}, {"bbox": [110, 254, 204, 268], "score": 0.92, "content": "\\pi\\Lambda_{r}\\notin{\\cal S}(k-1)\\Lambda_{r}", "type": "inline_equation", "height": 14, "width": 94}, {"bbox": [204, 255, 209, 269], "score": 1.0, "content": ".", "type": "text"}], "index": 11}], "index": 6.5, "page_num": "page_17", "page_size": [612.0, 792.0], "bbox_fs": [70, 124, 542, 269]}, {"type": "text", "bbox": [70, 267, 541, 295], "lines": [{"bbox": [94, 268, 541, 285], "spans": [{"bbox": [94, 268, 125, 285], "score": 1.0, "content": "Thus ", "type": "text"}, {"bbox": [126, 269, 160, 281], "score": 0.9, "content": "a^{\\prime}=0", "type": "inline_equation", "height": 12, "width": 34}, {"bbox": [160, 268, 186, 285], "score": 1.0, "content": " and ", "type": "text"}, {"bbox": [186, 269, 251, 282], "score": 0.95, "content": "\\pi\\Lambda_{r}=J^{b}\\Lambda_{r}", "type": "inline_equation", "height": 13, "width": 65}, {"bbox": [252, 268, 304, 285], "score": 1.0, "content": " for some ", "type": "text"}, {"bbox": [304, 271, 310, 280], "score": 0.85, "content": "b", "type": "inline_equation", "height": 9, "width": 6}, {"bbox": [310, 268, 372, 285], "score": 1.0, "content": ". Similarly, ", "type": "text"}, {"bbox": [372, 270, 403, 281], "score": 0.84, "content": "a=0", "type": "inline_equation", "height": 11, "width": 31}, {"bbox": [403, 268, 453, 285], "score": 1.0, "content": ". Hitting ", "type": "text"}, {"bbox": [453, 272, 462, 280], "score": 0.69, "content": "\\pi", "type": "inline_equation", "height": 8, "width": 9}, {"bbox": [462, 268, 492, 285], "score": 1.0, "content": " with ", "type": "text"}, {"bbox": [493, 268, 518, 283], "score": 0.92, "content": "\\pi[1]^{b}", "type": "inline_equation", "height": 15, "width": 25}, {"bbox": [519, 268, 541, 285], "score": 1.0, "content": ", we", "type": "text"}], "index": 12}, {"bbox": [71, 284, 220, 298], "spans": [{"bbox": [71, 284, 163, 298], "score": 1.0, "content": "may assume that", "type": "text"}, {"bbox": [164, 286, 172, 295], "score": 0.75, "content": "\\pi", "type": "inline_equation", "height": 9, "width": 8}, {"bbox": [173, 284, 202, 298], "score": 1.0, "content": " fixes ", "type": "text"}, {"bbox": [202, 285, 216, 296], "score": 0.89, "content": "\\Lambda_{r}", "type": "inline_equation", "height": 11, "width": 14}, {"bbox": [217, 284, 220, 298], "score": 1.0, "content": ".", "type": "text"}], "index": 13}], "index": 12.5, "page_num": "page_17", "page_size": [612.0, 792.0], "bbox_fs": [71, 268, 541, 298]}, {"type": "text", "bbox": [70, 296, 540, 326], "lines": [{"bbox": [93, 297, 539, 315], "spans": [{"bbox": [93, 297, 163, 315], "score": 1.0, "content": "Now assume ", "type": "text"}, {"bbox": [163, 301, 172, 309], "score": 0.76, "content": "\\pi", "type": "inline_equation", "height": 8, "width": 9}, {"bbox": [172, 297, 201, 315], "score": 1.0, "content": " fixes ", "type": "text"}, {"bbox": [202, 300, 215, 311], "score": 0.88, "content": "\\Lambda_{\\ell}", "type": "inline_equation", "height": 11, "width": 13}, {"bbox": [216, 297, 240, 315], "score": 1.0, "content": ", for ", "type": "text"}, {"bbox": [241, 300, 311, 311], "score": 0.91, "content": "1\\leq\\ell<r-1", "type": "inline_equation", "height": 11, "width": 70}, {"bbox": [311, 297, 406, 315], "score": 1.0, "content": ". Then the fusion ", "type": "text"}, {"bbox": [406, 298, 421, 311], "score": 0.79, "content": "\\Lambda_{1}", "type": "inline_equation", "height": 13, "width": 15}, {"bbox": [421, 297, 437, 315], "score": 1.0, "content": " \u00d7", "type": "text"}, {"bbox": [438, 298, 452, 311], "score": 0.73, "content": "\\Lambda_{\\ell}", "type": "inline_equation", "height": 13, "width": 14}, {"bbox": [452, 297, 506, 315], "score": 1.0, "content": "says that ", "type": "text"}, {"bbox": [506, 299, 539, 312], "score": 0.89, "content": "\\pi\\Lambda_{\\ell+1}", "type": "inline_equation", "height": 13, "width": 33}], "index": 14}, {"bbox": [71, 313, 321, 327], "spans": [{"bbox": [71, 313, 106, 327], "score": 1.0, "content": "equals", "type": "text"}, {"bbox": [107, 313, 133, 326], "score": 0.91, "content": "\\Lambda_{\\ell+1}", "type": "inline_equation", "height": 13, "width": 26}, {"bbox": [133, 313, 150, 327], "score": 1.0, "content": " or ", "type": "text"}, {"bbox": [151, 313, 192, 325], "score": 0.91, "content": "\\Lambda_{1}+\\Lambda_{\\ell}", "type": "inline_equation", "height": 12, "width": 41}, {"bbox": [193, 313, 321, 327], "score": 1.0, "content": ". But from (3.2) we find", "type": "text"}], "index": 15}], "index": 14.5, "page_num": "page_17", "page_size": [612.0, 792.0], "bbox_fs": [71, 297, 539, 327]}, {"type": "interline_equation", "bbox": [124, 340, 527, 401], "lines": [{"bbox": [124, 340, 527, 401], "spans": [{"bbox": [124, 340, 527, 401], "score": 0.86, "content": "\\begin{array}{c}{{-\\chi_{\\Lambda_{1}}[\\Lambda_{1}+\\Lambda_{\\ell}]=2\\,\\{\\displaystyle\\mathrm{cos}(\\pi\\frac{2r-2\\ell+1}{\\kappa})-\\mathrm{cos}(\\pi\\frac{2r-2\\ell-1}{\\kappa})+\\mathrm{cos}(\\pi\\frac{2r+1}{\\kappa})\\}}}\\\\ {{-\\cos(\\pi\\frac{2r+3}{\\kappa})\\}=4\\cos(\\pi\\frac{2r-\\ell+1}{\\kappa})\\,\\{\\displaystyle\\mathrm{cos}(2\\pi\\frac{\\ell}{\\kappa})-\\mathrm{cos}(2\\pi\\frac{\\ell+1}{\\kappa})\\},}}\\end{array}", "type": "interline_equation"}], "index": 16}], "index": 16, "page_num": "page_17", "page_size": [612.0, 792.0]}, {"type": "text", "bbox": [70, 409, 391, 425], "lines": [{"bbox": [70, 411, 390, 426], "spans": [{"bbox": [70, 411, 106, 426], "score": 1.0, "content": "Hence ", "type": "text"}, {"bbox": [107, 417, 114, 423], "score": 0.86, "content": "\\pi", "type": "inline_equation", "height": 6, "width": 7}, {"bbox": [114, 411, 157, 426], "score": 1.0, "content": " will fix ", "type": "text"}, {"bbox": [158, 413, 182, 425], "score": 0.92, "content": "\\Lambda_{\\ell+1}", "type": "inline_equation", "height": 12, "width": 24}, {"bbox": [182, 411, 236, 426], "score": 1.0, "content": " if it fixes ", "type": "text"}, {"bbox": [236, 414, 249, 424], "score": 0.9, "content": "\\Lambda_{\\ell}", "type": "inline_equation", "height": 10, "width": 13}, {"bbox": [250, 411, 390, 426], "score": 1.0, "content": ", concluding the argument.", "type": "text"}], "index": 17}], "index": 17, "page_num": "page_17", "page_size": [612.0, 792.0], "bbox_fs": [70, 411, 390, 426]}, {"type": "text", "bbox": [70, 428, 541, 501], "lines": [{"bbox": [94, 430, 540, 446], "spans": [{"bbox": [94, 430, 311, 446], "score": 1.0, "content": "Now consider the more interesting case: ", "type": "text"}, {"bbox": [311, 432, 341, 441], "score": 0.91, "content": "k=2", "type": "inline_equation", "height": 9, "width": 30}, {"bbox": [342, 430, 382, 446], "score": 1.0, "content": ". Then ", "type": "text"}, {"bbox": [382, 433, 440, 442], "score": 0.91, "content": "\\kappa=2r+1", "type": "inline_equation", "height": 9, "width": 58}, {"bbox": [440, 430, 540, 446], "score": 1.0, "content": "; recall the weights", "type": "text"}], "index": 18}, {"bbox": [69, 443, 542, 460], "spans": [{"bbox": [69, 443, 85, 460], "score": 1.0, "content": "in ", "type": "text"}, {"bbox": [86, 446, 132, 459], "score": 0.94, "content": "P_{+}(B_{r,2})", "type": "inline_equation", "height": 13, "width": 46}, {"bbox": [132, 443, 262, 460], "score": 1.0, "content": " are the simple-currents ", "type": "text"}, {"bbox": [262, 447, 288, 458], "score": 0.92, "content": "0,J0", "type": "inline_equation", "height": 11, "width": 26}, {"bbox": [288, 443, 316, 460], "score": 1.0, "content": ", the ", "type": "text"}, {"bbox": [316, 447, 325, 456], "score": 0.88, "content": "J", "type": "inline_equation", "height": 9, "width": 9}, {"bbox": [325, 443, 393, 460], "score": 1.0, "content": "-fixed-points ", "type": "text"}, {"bbox": [393, 445, 444, 458], "score": 0.92, "content": "\\gamma^{1},\\ldots,\\gamma^{r}", "type": "inline_equation", "height": 13, "width": 51}, {"bbox": [445, 443, 542, 460], "score": 1.0, "content": " (notation defined", "type": "text"}], "index": 19}, {"bbox": [69, 458, 541, 474], "spans": [{"bbox": [69, 458, 206, 474], "score": 1.0, "content": "in \u00a73.2), and the spinors ", "type": "text"}, {"bbox": [207, 461, 247, 472], "score": 0.93, "content": "\\Lambda_{r},J\\Lambda_{r}", "type": "inline_equation", "height": 11, "width": 40}, {"bbox": [248, 458, 304, 474], "score": 1.0, "content": ". Because ", "type": "text"}, {"bbox": [304, 460, 421, 473], "score": 0.93, "content": "\\pi(J0)\\,=\\,\\pi^{\\prime}(J0)\\,=\\,J0", "type": "inline_equation", "height": 13, "width": 117}, {"bbox": [421, 458, 507, 474], "score": 1.0, "content": ", we know both ", "type": "text"}, {"bbox": [508, 464, 515, 470], "score": 0.88, "content": "\\pi", "type": "inline_equation", "height": 6, "width": 7}, {"bbox": [516, 458, 541, 474], "score": 1.0, "content": " and", "type": "text"}], "index": 20}, {"bbox": [71, 472, 542, 489], "spans": [{"bbox": [71, 475, 82, 484], "score": 0.9, "content": "\\pi^{\\prime}", "type": "inline_equation", "height": 9, "width": 11}, {"bbox": [82, 472, 144, 489], "score": 1.0, "content": " must take ", "type": "text"}, {"bbox": [145, 475, 153, 484], "score": 0.9, "content": "J", "type": "inline_equation", "height": 9, "width": 8}, {"bbox": [153, 472, 237, 489], "score": 1.0, "content": "-fixed-points to ", "type": "text"}, {"bbox": [238, 475, 246, 484], "score": 0.89, "content": "J", "type": "inline_equation", "height": 9, "width": 8}, {"bbox": [246, 472, 339, 489], "score": 1.0, "content": "-fixed-points, i.e. ", "type": "text"}, {"bbox": [340, 475, 397, 487], "score": 0.92, "content": "\\pi\\Lambda_{1}\\,=\\,\\gamma^{m}", "type": "inline_equation", "height": 12, "width": 57}, {"bbox": [397, 472, 425, 489], "score": 1.0, "content": " and ", "type": "text"}, {"bbox": [425, 473, 489, 487], "score": 0.94, "content": "\\pi^{\\prime}\\Lambda_{1}\\,=\\,\\gamma^{m^{\\prime}}", "type": "inline_equation", "height": 14, "width": 64}, {"bbox": [489, 472, 542, 489], "score": 1.0, "content": " for some", "type": "text"}], "index": 21}, {"bbox": [71, 487, 287, 504], "spans": [{"bbox": [71, 489, 145, 501], "score": 0.92, "content": "1\\leq m,m^{\\prime}\\leq r", "type": "inline_equation", "height": 12, "width": 74}, {"bbox": [145, 487, 287, 504], "score": 1.0, "content": ". It is easy to compute [25]", "type": "text"}], "index": 22}], "index": 20, "page_num": "page_17", "page_size": [612.0, 792.0], "bbox_fs": [69, 430, 542, 504]}, {"type": "interline_equation", "bbox": [247, 515, 365, 547], "lines": [{"bbox": [247, 515, 365, 547], "spans": [{"bbox": [247, 515, 365, 547], "score": 0.94, "content": "\\frac{S_{\\gamma^{a}\\gamma^{b}}}{S_{0\\gamma^{b}}}=2\\cos(2\\pi\\frac{a b}{\\kappa})\\ .", "type": "interline_equation"}], "index": 23}], "index": 23, "page_num": "page_17", "page_size": [612.0, 792.0]}, {"type": "text", "bbox": [70, 560, 541, 589], "lines": [{"bbox": [70, 561, 541, 578], "spans": [{"bbox": [70, 561, 165, 578], "score": 1.0, "content": "From this we see ", "type": "text"}, {"bbox": [165, 564, 225, 574], "score": 0.8, "content": "m\\,m^{\\prime}\\equiv\\pm1", "type": "inline_equation", "height": 10, "width": 60}, {"bbox": [226, 561, 261, 578], "score": 1.0, "content": " (mod ", "type": "text"}, {"bbox": [262, 567, 269, 573], "score": 0.58, "content": "\\kappa", "type": "inline_equation", "height": 6, "width": 7}, {"bbox": [269, 561, 296, 578], "score": 1.0, "content": "), so ", "type": "text"}, {"bbox": [297, 568, 307, 573], "score": 0.85, "content": "^{\\prime\\prime}", "type": "inline_equation", "height": 5, "width": 10}, {"bbox": [308, 561, 385, 578], "score": 1.0, "content": " is coprime to ", "type": "text"}, {"bbox": [385, 566, 393, 573], "score": 0.74, "content": "\\kappa", "type": "inline_equation", "height": 7, "width": 8}, {"bbox": [393, 561, 541, 578], "score": 1.0, "content": ". Hitting it with the Galois", "type": "text"}], "index": 24}, {"bbox": [70, 576, 445, 592], "spans": [{"bbox": [70, 577, 162, 592], "score": 1.0, "content": "fusion-symmetry ", "type": "text"}, {"bbox": [162, 578, 195, 591], "score": 0.93, "content": "\\pi\\{m^{\\prime}\\}", "type": "inline_equation", "height": 13, "width": 33}, {"bbox": [196, 577, 349, 592], "score": 1.0, "content": ", we see that we may assume ", "type": "text"}, {"bbox": [350, 576, 441, 590], "score": 0.92, "content": "\\pi\\Lambda_{1}=\\pi^{\\prime}\\Lambda_{1}=\\Lambda_{1}", "type": "inline_equation", "height": 14, "width": 91}, {"bbox": [442, 577, 445, 592], "score": 1.0, "content": ".", "type": "text"}], "index": 25}], "index": 24.5, "page_num": "page_17", "page_size": [612.0, 792.0], "bbox_fs": [70, 561, 541, 592]}, {"type": "text", "bbox": [71, 590, 541, 619], "lines": [{"bbox": [94, 591, 540, 607], "spans": [{"bbox": [94, 591, 205, 607], "score": 1.0, "content": "Now use (4.2) to get ", "type": "text"}, {"bbox": [205, 591, 251, 605], "score": 0.93, "content": "\\pi\\gamma^{i}=\\gamma^{i}", "type": "inline_equation", "height": 14, "width": 46}, {"bbox": [251, 591, 288, 607], "score": 1.0, "content": " for all ", "type": "text"}, {"bbox": [289, 594, 293, 603], "score": 0.75, "content": "i", "type": "inline_equation", "height": 9, "width": 4}, {"bbox": [293, 591, 331, 607], "score": 1.0, "content": ". Then", "type": "text"}, {"bbox": [332, 594, 340, 603], "score": 0.72, "content": "\\pi", "type": "inline_equation", "height": 9, "width": 8}, {"bbox": [340, 591, 458, 607], "score": 1.0, "content": " equals the identity or ", "type": "text"}, {"bbox": [459, 592, 479, 605], "score": 0.74, "content": "\\pi[1]", "type": "inline_equation", "height": 13, "width": 20}, {"bbox": [479, 591, 540, 607], "score": 1.0, "content": ", depending", "type": "text"}], "index": 26}, {"bbox": [70, 605, 189, 621], "spans": [{"bbox": [70, 605, 117, 621], "score": 1.0, "content": "on what ", "type": "text"}, {"bbox": [118, 611, 125, 617], "score": 0.87, "content": "\\pi", "type": "inline_equation", "height": 6, "width": 7}, {"bbox": [126, 605, 170, 621], "score": 1.0, "content": " does to ", "type": "text"}, {"bbox": [170, 608, 184, 619], "score": 0.91, "content": "\\Lambda_{r}", "type": "inline_equation", "height": 11, "width": 14}, {"bbox": [185, 605, 189, 621], "score": 1.0, "content": ".", "type": "text"}], "index": 27}], "index": 26.5, "page_num": "page_17", "page_size": [612.0, 792.0], "bbox_fs": [70, 591, 540, 621]}, {"type": "title", "bbox": [71, 634, 218, 649], "lines": [{"bbox": [71, 637, 218, 649], "spans": [{"bbox": [71, 637, 119, 649], "score": 1.0, "content": "4.4. The ", "type": "text"}, {"bbox": [119, 639, 129, 647], "score": 0.87, "content": "C", "type": "inline_equation", "height": 8, "width": 10}, {"bbox": [129, 637, 218, 649], "score": 1.0, "content": "-series argument", "type": "text"}], "index": 28}], "index": 28, "page_num": "page_17", "page_size": [612.0, 792.0]}, {"type": "text", "bbox": [70, 657, 541, 715], "lines": [{"bbox": [94, 659, 541, 674], "spans": [{"bbox": [94, 659, 284, 674], "score": 1.0, "content": "By rank-level duality, we may take ", "type": "text"}, {"bbox": [284, 661, 314, 672], "score": 0.93, "content": "r\\le k", "type": "inline_equation", "height": 11, "width": 30}, {"bbox": [315, 659, 413, 674], "score": 1.0, "content": ". For now assume ", "type": "text"}, {"bbox": [413, 659, 484, 673], "score": 0.91, "content": "(r,k)\\neq(2,3)", "type": "inline_equation", "height": 14, "width": 71}, {"bbox": [484, 659, 541, 674], "score": 1.0, "content": ". Then we", "type": "text"}], "index": 29}, {"bbox": [70, 672, 540, 688], "spans": [{"bbox": [70, 673, 102, 688], "score": 1.0, "content": "know ", "type": "text"}, {"bbox": [102, 676, 168, 686], "score": 0.92, "content": "\\pi\\Lambda_{1}=J^{a}\\Lambda_{1}", "type": "inline_equation", "height": 10, "width": 66}, {"bbox": [168, 673, 195, 688], "score": 1.0, "content": " and ", "type": "text"}, {"bbox": [196, 672, 265, 686], "score": 0.93, "content": "\\pi\\Lambda_{1}=J^{a^{\\prime}}\\Lambda_{1}", "type": "inline_equation", "height": 14, "width": 69}, {"bbox": [265, 673, 318, 688], "score": 1.0, "content": " for some ", "type": "text"}, {"bbox": [318, 675, 340, 687], "score": 0.91, "content": "a,a^{\\prime}", "type": "inline_equation", "height": 12, "width": 22}, {"bbox": [340, 673, 380, 688], "score": 1.0, "content": ". Since ", "type": "text"}, {"bbox": [380, 674, 475, 686], "score": 0.86, "content": "\\pi J0=\\pi^{\\prime}J0=J0", "type": "inline_equation", "height": 12, "width": 95}, {"bbox": [475, 673, 540, 688], "score": 1.0, "content": ", (2.7b) says", "type": "text"}], "index": 30}, {"bbox": [71, 685, 542, 707], "spans": [{"bbox": [71, 689, 126, 699], "score": 0.92, "content": "a=a^{\\prime}=0", "type": "inline_equation", "height": 10, "width": 55}, {"bbox": [126, 685, 140, 707], "score": 1.0, "content": " if ", "type": "text"}, {"bbox": [140, 690, 153, 699], "score": 0.89, "content": "k r", "type": "inline_equation", "height": 9, "width": 13}, {"bbox": [154, 685, 228, 707], "score": 1.0, "content": " is odd. Since ", "type": "text"}, {"bbox": [228, 689, 291, 702], "score": 0.95, "content": "\\chi_{\\Lambda_{1}}[\\Lambda_{1}]>0", "type": "inline_equation", "height": 13, "width": 63}, {"bbox": [291, 685, 366, 707], "score": 1.0, "content": " (using (3.3)), ", "type": "text"}, {"bbox": [367, 689, 473, 703], "score": 0.9, "content": "S_{\\Lambda_{1}\\Lambda_{1}}=S_{J^{a}\\Lambda_{1},J^{a^{\\prime}}\\Lambda_{1}}", "type": "inline_equation", "height": 14, "width": 106}, {"bbox": [473, 685, 542, 707], "score": 1.0, "content": " implies that", "type": "text"}], "index": 31}, {"bbox": [71, 702, 540, 717], "spans": [{"bbox": [71, 704, 103, 713], "score": 0.92, "content": "a=a^{\\prime}", "type": "inline_equation", "height": 9, "width": 32}, {"bbox": [103, 702, 192, 717], "score": 1.0, "content": " also holds when ", "type": "text"}, {"bbox": [192, 704, 205, 713], "score": 0.88, "content": "k r", "type": "inline_equation", "height": 9, "width": 13}, {"bbox": [205, 702, 459, 717], "score": 1.0, "content": " is even, and hence we may assume (hitting with ", "type": "text"}, {"bbox": [459, 703, 487, 716], "score": 0.84, "content": "\\pi[1]^{a}", "type": "inline_equation", "height": 13, "width": 28}, {"bbox": [487, 702, 540, 717], "score": 1.0, "content": ") that also", "type": "text"}], "index": 32}, {"bbox": [71, 72, 542, 90], "spans": [{"bbox": [71, 75, 126, 84], "score": 0.93, "content": "a=a^{\\prime}=0", "type": "inline_equation", "height": 9, "width": 55, "cross_page": true}, {"bbox": [126, 72, 178, 90], "score": 1.0, "content": " holds for ", "type": "text", "cross_page": true}, {"bbox": [178, 75, 191, 84], "score": 0.39, "content": "k r", "type": "inline_equation", "height": 9, "width": 13, "cross_page": true}, {"bbox": [191, 72, 312, 90], "score": 1.0, "content": " even. From the fusion ", "type": "text", "cross_page": true}, {"bbox": [313, 75, 326, 86], "score": 0.64, "content": "\\Lambda_{1}", "type": "inline_equation", "height": 11, "width": 13, "cross_page": true}, {"bbox": [327, 72, 344, 90], "score": 1.0, "content": " \u00d7 ", "type": "text", "cross_page": true}, {"bbox": [344, 74, 358, 86], "score": 0.63, "content": "\\Lambda_{\\ell}", "type": "inline_equation", "height": 12, "width": 14, "cross_page": true}, {"bbox": [358, 72, 398, 90], "score": 1.0, "content": "we get ", "type": "text", "cross_page": true}, {"bbox": [398, 75, 529, 87], "score": 0.92, "content": "\\pi\\Lambda_{\\ell+1}\\in\\{\\Lambda_{\\ell+1},\\Lambda_{1}+\\Lambda_{\\ell}\\}", "type": "inline_equation", "height": 12, "width": 131, "cross_page": true}, {"bbox": [529, 72, 542, 90], "score": 1.0, "content": " if", "type": "text", "cross_page": true}], "index": 0}, {"bbox": [71, 89, 408, 102], "spans": [{"bbox": [71, 90, 120, 100], "score": 0.92, "content": "\\pi\\Lambda_{\\ell}=\\Lambda_{\\ell}", "type": "inline_equation", "height": 10, "width": 49, "cross_page": true}, {"bbox": [121, 89, 145, 102], "score": 1.0, "content": "; for ", "type": "text", "cross_page": true}, {"bbox": [146, 90, 174, 99], "score": 0.92, "content": "r<k", "type": "inline_equation", "height": 9, "width": 28, "cross_page": true}, {"bbox": [174, 89, 408, 102], "score": 1.0, "content": " conclude the argument with the calculation", "type": "text", "cross_page": true}], "index": 1}], "index": 30.5, "page_num": "page_17", "page_size": [612.0, 792.0], "bbox_fs": [70, 659, 542, 717]}]} |
|
0002044v1 | 23 | 28. W. G. McKay, R. V. Moody and J. Patera, Decomposition of tensor products
of $$E_{8}$$ representations, Alg., Groups Geom. 3 (1986), 286–328.
29. W. G. McKay, J. Patera and D. W. Rand, “Tables of representations of simple
Lie algebras”, Vol. 1, Centre de Recherches Math´ematiques, Univ´ersit´e de Montr´eal,
1990.
30. W. Nahm, Conformal field theories, dilogarithms, and 3-dimensional manifolds, in:
“Interface between physics and mathematics”, World-Scientific, 1994, (W. Nahm and
J.-M. Shen, Eds.), World-Scientific, Singapore, 1994.
31. A. N. Schellekens, Fusion rule automorphisms from integer spin simple currents,
Phys. Lett. B244 (1990), 255–260.
32. V. G. Turaev, “Quantum invariants of knots and 3-manifolds”, Walter de Gruyter,
Berlin, 1994.
33. E. Verlinde, Fusion rules and modular transformations in 2D conformal field theory,
Nucl. Phys. 300 (1988), 360–376.
34. D. Verstegen, New exceptional modular invariant partition functions for simple
Kac–Moody algebras, Nucl. Phys. B346 (1990), 349–386.
35. M. A. Walton, Algorithm for WZW fusion rules: a proof, Phys. Lett. B241 (1990),
365–368.
36. A. J. Wassermann, Operator algebras and conformal field theory, in: “Proc. ICM,
Zurich", Birkhauser, Basel, 1995.
37. E. Witten, The Verlinde formula and the cohomology of the Grassmannian, in:
“Geometry, Topology and Physics”, International Press, Cambridge, MA, 1995.
| <p>28. W. G. McKay, R. V. Moody and J. Patera, Decomposition of tensor products
of $$E_{8}$$ representations, Alg., Groups Geom. 3 (1986), 286–328.
29. W. G. McKay, J. Patera and D. W. Rand, “Tables of representations of simple
Lie algebras”, Vol. 1, Centre de Recherches Math´ematiques, Univ´ersit´e de Montr´eal,
1990.
30. W. Nahm, Conformal field theories, dilogarithms, and 3-dimensional manifolds, in:
“Interface between physics and mathematics”, World-Scientific, 1994, (W. Nahm and
J.-M. Shen, Eds.), World-Scientific, Singapore, 1994.
31. A. N. Schellekens, Fusion rule automorphisms from integer spin simple currents,
Phys. Lett. B244 (1990), 255–260.
32. V. G. Turaev, “Quantum invariants of knots and 3-manifolds”, Walter de Gruyter,
Berlin, 1994.
33. E. Verlinde, Fusion rules and modular transformations in 2D conformal field theory,
Nucl. Phys. 300 (1988), 360–376.
34. D. Verstegen, New exceptional modular invariant partition functions for simple
Kac–Moody algebras, Nucl. Phys. B346 (1990), 349–386.
35. M. A. Walton, Algorithm for WZW fusion rules: a proof, Phys. Lett. B241 (1990),
365–368.
36. A. J. Wassermann, Operator algebras and conformal field theory, in: “Proc. ICM,
Zurich", Birkhauser, Basel, 1995.
37. E. Witten, The Verlinde formula and the cohomology of the Grassmannian, in:
“Geometry, Topology and Physics”, International Press, Cambridge, MA, 1995.</p>
| [{"type": "text", "coordinates": [72, 70, 543, 388], "content": "28. W. G. McKay, R. V. Moody and J. Patera, Decomposition of tensor products\nof $$E_{8}$$ representations, Alg., Groups Geom. 3 (1986), 286\u2013328.\n29. W. G. McKay, J. Patera and D. W. Rand, \u201cTables of representations of simple\nLie algebras\u201d, Vol. 1, Centre de Recherches Math\u00b4ematiques, Univ\u00b4ersit\u00b4e de Montr\u00b4eal,\n1990.\n30. W. Nahm, Conformal field theories, dilogarithms, and 3-dimensional manifolds, in:\n\u201cInterface between physics and mathematics\u201d, World-Scientific, 1994, (W. Nahm and\nJ.-M. Shen, Eds.), World-Scientific, Singapore, 1994.\n31. A. N. Schellekens, Fusion rule automorphisms from integer spin simple currents,\nPhys. Lett. B244 (1990), 255\u2013260.\n32. V. G. Turaev, \u201cQuantum invariants of knots and 3-manifolds\u201d, Walter de Gruyter,\nBerlin, 1994.\n33. E. Verlinde, Fusion rules and modular transformations in 2D conformal field theory,\nNucl. Phys. 300 (1988), 360\u2013376.\n34. D. Verstegen, New exceptional modular invariant partition functions for simple\nKac\u2013Moody algebras, Nucl. Phys. B346 (1990), 349\u2013386.\n35. M. A. Walton, Algorithm for WZW fusion rules: a proof, Phys. Lett. B241 (1990),\n365\u2013368.\n36. A. J. Wassermann, Operator algebras and conformal field theory, in: \u201cProc. ICM,\nZurich\", Birkhauser, Basel, 1995.\n37. E. Witten, The Verlinde formula and the cohomology of the Grassmannian, in:\n\u201cGeometry, Topology and Physics\u201d, International Press, Cambridge, MA, 1995.", "block_type": "text", "index": 1}] | [{"type": "text", "coordinates": [73, 73, 541, 88], "content": "28. W. G. McKay, R. V. Moody and J. Patera, Decomposition of tensor products", "score": 1.0, "index": 1}, {"type": "text", "coordinates": [94, 87, 108, 103], "content": "of ", "score": 1.0, "index": 2}, {"type": "inline_equation", "coordinates": [109, 90, 123, 101], "content": "E_{8}", "score": 0.92, "index": 3}, {"type": "text", "coordinates": [123, 87, 421, 103], "content": " representations, Alg., Groups Geom. 3 (1986), 286\u2013328.", "score": 1.0, "index": 4}, {"type": "text", "coordinates": [73, 102, 540, 118], "content": "29. W. G. McKay, J. Patera and D. W. Rand, \u201cTables of representations of simple", "score": 1.0, "index": 5}, {"type": "text", "coordinates": [94, 117, 541, 132], "content": "Lie algebras\u201d, Vol. 1, Centre de Recherches Math\u00b4ematiques, Univ\u00b4ersit\u00b4e de Montr\u00b4eal,", "score": 1.0, "index": 6}, {"type": "text", "coordinates": [94, 132, 124, 144], "content": "1990.", "score": 1.0, "index": 7}, {"type": "text", "coordinates": [73, 145, 540, 160], "content": "30. W. Nahm, Conformal field theories, dilogarithms, and 3-dimensional manifolds, in:", "score": 1.0, "index": 8}, {"type": "text", "coordinates": [94, 159, 541, 176], "content": "\u201cInterface between physics and mathematics\u201d, World-Scientific, 1994, (W. Nahm and", "score": 1.0, "index": 9}, {"type": "text", "coordinates": [93, 173, 373, 190], "content": "J.-M. Shen, Eds.), World-Scientific, Singapore, 1994.", "score": 1.0, "index": 10}, {"type": "text", "coordinates": [73, 187, 540, 204], "content": "31. A. N. Schellekens, Fusion rule automorphisms from integer spin simple currents,", "score": 1.0, "index": 11}, {"type": "text", "coordinates": [95, 204, 279, 217], "content": "Phys. Lett. B244 (1990), 255\u2013260.", "score": 1.0, "index": 12}, {"type": "text", "coordinates": [72, 216, 541, 234], "content": "32. V. G. Turaev, \u201cQuantum invariants of knots and 3-manifolds\u201d, Walter de Gruyter,", "score": 1.0, "index": 13}, {"type": "text", "coordinates": [94, 232, 163, 245], "content": "Berlin, 1994.", "score": 1.0, "index": 14}, {"type": "text", "coordinates": [72, 244, 541, 262], "content": "33. E. Verlinde, Fusion rules and modular transformations in 2D conformal field theory,", "score": 1.0, "index": 15}, {"type": "text", "coordinates": [94, 259, 273, 275], "content": "Nucl. Phys. 300 (1988), 360\u2013376.", "score": 1.0, "index": 16}, {"type": "text", "coordinates": [72, 273, 541, 291], "content": "34. D. Verstegen, New exceptional modular invariant partition functions for simple", "score": 1.0, "index": 17}, {"type": "text", "coordinates": [94, 289, 399, 304], "content": "Kac\u2013Moody algebras, Nucl. Phys. B346 (1990), 349\u2013386.", "score": 1.0, "index": 18}, {"type": "text", "coordinates": [72, 303, 540, 319], "content": "35. M. A. Walton, Algorithm for WZW fusion rules: a proof, Phys. Lett. B241 (1990),", "score": 1.0, "index": 19}, {"type": "text", "coordinates": [95, 319, 141, 331], "content": "365\u2013368.", "score": 1.0, "index": 20}, {"type": "text", "coordinates": [72, 331, 540, 347], "content": "36. A. J. Wassermann, Operator algebras and conformal field theory, in: \u201cProc. ICM,", "score": 1.0, "index": 21}, {"type": "text", "coordinates": [94, 346, 270, 361], "content": "Zurich\", Birkhauser, Basel, 1995.", "score": 0.9778538346290588, "index": 22}, {"type": "text", "coordinates": [73, 360, 541, 376], "content": "37. E. Witten, The Verlinde formula and the cohomology of the Grassmannian, in:", "score": 1.0, "index": 23}, {"type": "text", "coordinates": [96, 375, 513, 391], "content": "\u201cGeometry, Topology and Physics\u201d, International Press, Cambridge, MA, 1995.", "score": 1.0, "index": 24}] | [] | [{"type": "inline", "coordinates": [109, 90, 123, 101], "content": "E_{8}", "caption": ""}] | [] | [612.0, 792.0] | [{"type": "text", "text": "", "page_idx": 23}] | [{"category_id": 1, "poly": [200, 196, 1509, 196, 1509, 1080, 200, 1080], "score": 0.912}, {"category_id": 2, "poly": [830, 2030, 870, 2030, 870, 2063, 830, 2063], "score": 0.832}, {"category_id": 13, "poly": [303, 251, 343, 251, 343, 281, 303, 281], "score": 0.92, "latex": "E_{8}"}, {"category_id": 15, "poly": [203.0, 203.0, 1503.0, 203.0, 1503.0, 247.0, 203.0, 247.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [262.0, 244.0, 302.0, 244.0, 302.0, 287.0, 262.0, 287.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [344.0, 244.0, 1170.0, 244.0, 1170.0, 287.0, 344.0, 287.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [203.0, 284.0, 1502.0, 284.0, 1502.0, 328.0, 203.0, 328.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [262.0, 325.0, 1503.0, 325.0, 1503.0, 367.0, 262.0, 367.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [263.0, 367.0, 345.0, 367.0, 345.0, 402.0, 263.0, 402.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [204.0, 404.0, 1502.0, 404.0, 1502.0, 445.0, 204.0, 445.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [263.0, 442.0, 1505.0, 442.0, 1505.0, 489.0, 263.0, 489.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [259.0, 481.0, 1037.0, 481.0, 1037.0, 530.0, 259.0, 530.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [203.0, 522.0, 1500.0, 522.0, 1500.0, 569.0, 203.0, 569.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [266.0, 568.0, 775.0, 568.0, 775.0, 604.0, 266.0, 604.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [200.0, 601.0, 1503.0, 601.0, 1503.0, 650.0, 200.0, 650.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [263.0, 647.0, 454.0, 647.0, 454.0, 683.0, 263.0, 683.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [200.0, 679.0, 1505.0, 679.0, 1505.0, 729.0, 200.0, 729.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [263.0, 721.0, 759.0, 721.0, 759.0, 764.0, 263.0, 764.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [200.0, 761.0, 1505.0, 761.0, 1505.0, 809.0, 200.0, 809.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [262.0, 805.0, 1111.0, 805.0, 1111.0, 846.0, 262.0, 846.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [201.0, 843.0, 1502.0, 843.0, 1502.0, 887.0, 201.0, 887.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [264.0, 887.0, 394.0, 887.0, 394.0, 921.0, 264.0, 921.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [201.0, 922.0, 1502.0, 922.0, 1502.0, 966.0, 201.0, 966.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [262.0, 962.0, 750.0, 962.0, 750.0, 1003.0, 262.0, 1003.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [203.0, 1001.0, 1503.0, 1001.0, 1503.0, 1045.0, 203.0, 1045.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [267.0, 1042.0, 1427.0, 1042.0, 1427.0, 1088.0, 267.0, 1088.0], "score": 1.0, "text": ""}, {"category_id": 15, "poly": [828.0, 2033.0, 873.0, 2033.0, 873.0, 2069.0, 828.0, 2069.0], "score": 1.0, "text": ""}] | {"preproc_blocks": [{"type": "text", "bbox": [72, 70, 543, 388], "lines": [{"bbox": [73, 73, 541, 88], "spans": [{"bbox": [73, 73, 541, 88], "score": 1.0, "content": "28. W. G. McKay, R. V. Moody and J. Patera, Decomposition of tensor products", "type": "text"}], "index": 0}, {"bbox": [94, 87, 421, 103], "spans": [{"bbox": [94, 87, 108, 103], "score": 1.0, "content": "of ", "type": "text"}, {"bbox": [109, 90, 123, 101], "score": 0.92, "content": "E_{8}", "type": "inline_equation", "height": 11, "width": 14}, {"bbox": [123, 87, 421, 103], "score": 1.0, "content": " representations, Alg., Groups Geom. 3 (1986), 286\u2013328.", "type": "text"}], "index": 1}, {"bbox": [73, 102, 540, 118], "spans": [{"bbox": [73, 102, 540, 118], "score": 1.0, "content": "29. W. G. McKay, J. Patera and D. W. Rand, \u201cTables of representations of simple", "type": "text"}], "index": 2}, {"bbox": [94, 117, 541, 132], "spans": [{"bbox": [94, 117, 541, 132], "score": 1.0, "content": "Lie algebras\u201d, Vol. 1, Centre de Recherches Math\u00b4ematiques, Univ\u00b4ersit\u00b4e de Montr\u00b4eal,", "type": "text"}], "index": 3}, {"bbox": [94, 132, 124, 144], "spans": [{"bbox": [94, 132, 124, 144], "score": 1.0, "content": "1990.", "type": "text"}], "index": 4}, {"bbox": [73, 145, 540, 160], "spans": [{"bbox": [73, 145, 540, 160], "score": 1.0, "content": "30. W. Nahm, Conformal field theories, dilogarithms, and 3-dimensional manifolds, in:", "type": "text"}], "index": 5}, {"bbox": [94, 159, 541, 176], "spans": [{"bbox": [94, 159, 541, 176], "score": 1.0, "content": "\u201cInterface between physics and mathematics\u201d, World-Scientific, 1994, (W. Nahm and", "type": "text"}], "index": 6}, {"bbox": [93, 173, 373, 190], "spans": [{"bbox": [93, 173, 373, 190], "score": 1.0, "content": "J.-M. Shen, Eds.), World-Scientific, Singapore, 1994.", "type": "text"}], "index": 7}, {"bbox": [73, 187, 540, 204], "spans": [{"bbox": [73, 187, 540, 204], "score": 1.0, "content": "31. A. N. Schellekens, Fusion rule automorphisms from integer spin simple currents,", "type": "text"}], "index": 8}, {"bbox": [95, 204, 279, 217], "spans": [{"bbox": [95, 204, 279, 217], "score": 1.0, "content": "Phys. Lett. B244 (1990), 255\u2013260.", "type": "text"}], "index": 9}, {"bbox": [72, 216, 541, 234], "spans": [{"bbox": [72, 216, 541, 234], "score": 1.0, "content": "32. V. G. Turaev, \u201cQuantum invariants of knots and 3-manifolds\u201d, Walter de Gruyter,", "type": "text"}], "index": 10}, {"bbox": [94, 232, 163, 245], "spans": [{"bbox": [94, 232, 163, 245], "score": 1.0, "content": "Berlin, 1994.", "type": "text"}], "index": 11}, {"bbox": [72, 244, 541, 262], "spans": [{"bbox": [72, 244, 541, 262], "score": 1.0, "content": "33. E. Verlinde, Fusion rules and modular transformations in 2D conformal field theory,", "type": "text"}], "index": 12}, {"bbox": [94, 259, 273, 275], "spans": [{"bbox": [94, 259, 273, 275], "score": 1.0, "content": "Nucl. Phys. 300 (1988), 360\u2013376.", "type": "text"}], "index": 13}, {"bbox": [72, 273, 541, 291], "spans": [{"bbox": [72, 273, 541, 291], "score": 1.0, "content": "34. D. Verstegen, New exceptional modular invariant partition functions for simple", "type": "text"}], "index": 14}, {"bbox": [94, 289, 399, 304], "spans": [{"bbox": [94, 289, 399, 304], "score": 1.0, "content": "Kac\u2013Moody algebras, Nucl. Phys. B346 (1990), 349\u2013386.", "type": "text"}], "index": 15}, {"bbox": [72, 303, 540, 319], "spans": [{"bbox": [72, 303, 540, 319], "score": 1.0, "content": "35. M. A. Walton, Algorithm for WZW fusion rules: a proof, Phys. Lett. B241 (1990),", "type": "text"}], "index": 16}, {"bbox": [95, 319, 141, 331], "spans": [{"bbox": [95, 319, 141, 331], "score": 1.0, "content": "365\u2013368.", "type": "text"}], "index": 17}, {"bbox": [72, 331, 540, 347], "spans": [{"bbox": [72, 331, 540, 347], "score": 1.0, "content": "36. A. J. Wassermann, Operator algebras and conformal field theory, in: \u201cProc. ICM,", "type": "text"}], "index": 18}, {"bbox": [94, 346, 270, 361], "spans": [{"bbox": [94, 346, 270, 361], "score": 0.9778538346290588, "content": "Zurich\", Birkhauser, Basel, 1995.", "type": "text"}], "index": 19}, {"bbox": [73, 360, 541, 376], "spans": [{"bbox": [73, 360, 541, 376], "score": 1.0, "content": "37. E. Witten, The Verlinde formula and the cohomology of the Grassmannian, in:", "type": "text"}], "index": 20}, {"bbox": [96, 375, 513, 391], "spans": [{"bbox": [96, 375, 513, 391], "score": 1.0, "content": "\u201cGeometry, Topology and Physics\u201d, International Press, Cambridge, MA, 1995.", "type": "text"}], "index": 21}], "index": 10.5}], "layout_bboxes": [], "page_idx": 23, "page_size": [612.0, 792.0], "_layout_tree": [], "images": [], "tables": [], "interline_equations": [], "discarded_blocks": [{"type": "discarded", "bbox": [298, 730, 313, 742], "lines": [{"bbox": [298, 731, 314, 744], "spans": [{"bbox": [298, 731, 314, 744], "score": 1.0, "content": "24", "type": "text"}]}]}], "need_drop": false, "drop_reason": [], "para_blocks": [{"type": "list", "bbox": [72, 70, 543, 388], "lines": [], "index": 10.5, "page_num": "page_23", "page_size": [612.0, 792.0], "bbox_fs": [72, 73, 541, 391], "lines_deleted": true}]} |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.