Dataset Viewer
repository
stringclasses 166
values | file_path
stringlengths 6
125
| url
stringlengths 89
210
| code
stringlengths 413
290k
| chunk
stringlengths 56
175k
|
---|---|---|---|---|
lucidrains/lion-pytorch | lion_pytorch/triton.py | https://github.com/lucidrains/lion-pytorch/blob/6a74fdc0ba572ab5683dc0270c66c20ecbc02d09/lion_pytorch/triton.py | import torch
try:
import triton
import triton.language as tl
except ImportError as e:
print('triton is not installed, please install by running `pip install triton>=2.2.0`')
exit()
# triton cuda kernel
@triton.autotune(configs = [
triton.Config({'BLOCK_SIZE': 128}, num_warps = 4),
triton.Config({'BLOCK_SIZE': 1024}, num_warps = 8),
], key = ['n_elements'], restore_value=['p_ptr', 'exp_avg_ptr'])
@triton.jit
def update_fn_kernel(
p_ptr,
grad_ptr,
exp_avg_ptr,
lr,
wd,
beta1,
beta2,
n_elements,
BLOCK_SIZE: tl.constexpr,
):
pid = tl.program_id(axis = 0)
block_start = pid * BLOCK_SIZE
offsets = block_start + tl.arange(0, BLOCK_SIZE)
mask = offsets < n_elements
# offsetted pointers
offset_p_ptr = p_ptr + offsets
offset_grad_ptr = grad_ptr + offsets
offset_exp_avg_ptr = exp_avg_ptr + offsets
# load
p = tl.load(offset_p_ptr, mask = mask)
grad = tl.load(offset_grad_ptr, mask = mask)
exp_avg = tl.load(offset_exp_avg_ptr, mask = mask)
# stepweight decay
p = p * (1 - lr * wd)
# diff between momentum running average and grad
diff = exp_avg - grad
# weight update
update = diff * beta1 + grad
# torch.sign
can_update = update != 0
update_sign = tl.where(update > 0, -lr, lr)
p = p + update_sign * can_update
# decay the momentum running average coefficient
exp_avg = diff * beta2 + grad
# store new params and momentum running average coefficient
tl.store(offset_p_ptr, p, mask = mask)
tl.store(offset_exp_avg_ptr, exp_avg, mask = mask)
def update_fn(
p: torch.Tensor,
grad: torch.Tensor,
exp_avg: torch.Tensor,
lr: float,
wd: float,
beta1: float,
beta2: float
):
assert all([t.is_cuda for t in (p, grad, exp_avg)])
n_elements = p.numel()
grid = lambda meta: (triton.cdiv(n_elements, meta['BLOCK_SIZE']),)
update_fn_kernel[grid](
p,
grad,
exp_avg,
lr,
wd,
beta1,
beta2,
n_elements
)
| @triton.jit
def update_fn_kernel(
p_ptr,
grad_ptr,
exp_avg_ptr,
lr,
wd,
beta1,
beta2,
n_elements,
BLOCK_SIZE: tl.constexpr,
):
pid = tl.program_id(axis = 0)
block_start = pid * BLOCK_SIZE
offsets = block_start + tl.arange(0, BLOCK_SIZE)
mask = offsets < n_elements
# offsetted pointers
offset_p_ptr = p_ptr + offsets
offset_grad_ptr = grad_ptr + offsets
offset_exp_avg_ptr = exp_avg_ptr + offsets
# load
p = tl.load(offset_p_ptr, mask = mask)
grad = tl.load(offset_grad_ptr, mask = mask)
exp_avg = tl.load(offset_exp_avg_ptr, mask = mask)
# stepweight decay
p = p * (1 - lr * wd)
# diff between momentum running average and grad
diff = exp_avg - grad
# weight update
update = diff * beta1 + grad
# torch.sign
can_update = update != 0
update_sign = tl.where(update > 0, -lr, lr)
p = p + update_sign * can_update
# decay the momentum running average coefficient
exp_avg = diff * beta2 + grad
# store new params and momentum running average coefficient
tl.store(offset_p_ptr, p, mask = mask)
tl.store(offset_exp_avg_ptr, exp_avg, mask = mask)
def update_fn(
p: torch.Tensor,
grad: torch.Tensor,
exp_avg: torch.Tensor,
lr: float,
wd: float,
beta1: float,
beta2: float
):
assert all([t.is_cuda for t in (p, grad, exp_avg)])
n_elements = p.numel()
grid = lambda meta: (triton.cdiv(n_elements, meta['BLOCK_SIZE']),)
update_fn_kernel[grid](
p,
grad,
exp_avg,
lr,
wd,
beta1,
beta2,
n_elements
)
|
jax-ml/jax-triton | examples/add.py | https://github.com/jax-ml/jax-triton/blob/9aff06677a24d07e510f3632532a88b6804324dc/examples/add.py | # Copyright 2024 The jax_triton Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Addition example."""
import jax
import jax.numpy as jnp
import jax_triton as jt
import triton
import triton.language as tl
@triton.jit
def add_kernel(
x_ptr,
y_ptr,
output_ptr,
block_size: tl.constexpr,
):
"""Adds two vectors."""
pid = tl.program_id(axis=0)
block_start = pid * block_size
offsets = block_start + tl.arange(0, block_size)
mask = offsets < 8
x = tl.load(x_ptr + offsets, mask=mask)
y = tl.load(y_ptr + offsets, mask=mask)
output = x + y
tl.store(output_ptr + offsets, output, mask=mask)
def add(x: jnp.ndarray, y: jnp.ndarray) -> jnp.ndarray:
out_shape = jax.ShapeDtypeStruct(shape=x.shape, dtype=x.dtype)
block_size = 8
grid = (triton.cdiv(x.size, block_size),)
return jt.triton_call(
x,
y,
kernel=add_kernel,
out_shape=out_shape,
grid=grid,
block_size=block_size)
def main(unused_argv):
x_val = jnp.arange(8)
y_val = jnp.arange(8, 16)
print(add(x_val, y_val))
print(jax.jit(add)(x_val, y_val))
if __name__ == "__main__":
from absl import app
app.run(main)
| @triton.jit
def add_kernel(
x_ptr,
y_ptr,
output_ptr,
block_size: tl.constexpr,
):
"""Adds two vectors."""
pid = tl.program_id(axis=0)
block_start = pid * block_size
offsets = block_start + tl.arange(0, block_size)
mask = offsets < 8
x = tl.load(x_ptr + offsets, mask=mask)
y = tl.load(y_ptr + offsets, mask=mask)
output = x + y
tl.store(output_ptr + offsets, output, mask=mask)
def add(x: jnp.ndarray, y: jnp.ndarray) -> jnp.ndarray:
out_shape = jax.ShapeDtypeStruct(shape=x.shape, dtype=x.dtype)
block_size = 8
grid = (triton.cdiv(x.size, block_size),)
return jt.triton_call(
x,
y,
kernel=add_kernel,
out_shape=out_shape,
grid=grid,
block_size=block_size)
def main(unused_argv):
x_val = jnp.arange(8)
y_val = jnp.arange(8, 16)
print(add(x_val, y_val))
print(jax.jit(add)(x_val, y_val))
if __name__ == "__main__":
from absl import app
app.run(main)
|
josStorer/RWKV-Runner | finetune/lora/v6/fla/ops/hgrn/chunk.py | https://github.com/josStorer/RWKV-Runner/blob/ad6170816a776bfc312837aafc9a3ff889a3cdd3/finetune/lora/v6/fla/ops/hgrn/chunk.py | # -*- coding: utf-8 -*-
# Copyright (c) 2024, Yu Zhang, Songlin Yang
# this function implements the chunkwise form of HGRN, inspired by
# [Volodymyr Kyrylov in his blog post](https://proger.github.io/posts/scan/chunk.html)
# also refer to the `accelerated-scan` lib: https://github.com/proger/accelerated-scan
# from tests on H800, with B, H, D = 16, 4, 128, we see that the chunk can be greatly faster than the recurrent:
#
# Performance:
# seq_len chunk recurrent chunk_bwd recurrent_bwd
# 0 128.0 0.039360 0.061056 0.312160 0.205008
# 1 256.0 0.045824 0.123712 0.308784 0.297696
# 2 512.0 0.058688 0.241952 0.310720 0.626528
# 3 1024.0 0.088288 0.476992 0.313184 1.333152
# 4 2048.0 0.169472 0.943264 0.452464 2.724864
# 5 4096.0 0.329920 1.886144 0.881600 5.551520
# 6 8192.0 0.647872 3.755040 1.740496 11.117184
# 7 16384.0 1.272064 7.520576 3.446608 22.362528
from typing import Tuple
import torch
import triton
import triton.language as tl
from fla.utils import contiguous
@triton.autotune(
configs=[
triton.Config({'BD': 32}, num_warps=1),
triton.Config({'BD': 32}, num_warps=2),
triton.Config({'BD': 32}, num_warps=4),
triton.Config({'BD': 32}, num_warps=8),
triton.Config({'BD': 64}, num_warps=1),
triton.Config({'BD': 64}, num_warps=2),
triton.Config({'BD': 64}, num_warps=4),
triton.Config({'BD': 64}, num_warps=8),
triton.Config({'BD': 128}, num_warps=1),
triton.Config({'BD': 128}, num_warps=2),
triton.Config({'BD': 128}, num_warps=4),
triton.Config({'BD': 128}, num_warps=8),
],
key=['D']
)
@triton.jit
def chunk_hgrn_fwd_kernel_h(
x,
g,
gc,
o,
h0,
T: tl.constexpr,
D: tl.constexpr,
BT: tl.constexpr,
BD: tl.constexpr,
USE_INITIAL_STATE: tl.constexpr
):
i_d, i_t, i_bh = tl.program_id(0), tl.program_id(1), tl.program_id(2)
o_d = i_d * BD + tl.arange(0, BD)
mask = o_d < D
p_x = x + i_bh * T * D + i_t * BT * D + o_d
p_g = g + i_bh * T * D + i_t * BT * D + o_d
p_gc = gc + i_bh * T * D + i_t * BT * D + o_d
p_o = o + i_bh * T * D + i_t * BT * D + o_d
b_h = tl.zeros([BD], dtype=tl.float32)
b_gc = tl.zeros([BD], dtype=tl.float32)
if USE_INITIAL_STATE:
if i_t == 0:
b_h += tl.load(h0 + i_bh * D + o_d, mask=mask, other=0).to(tl.float32)
for i in range(0, BT):
mask_t = mask & ((i_t * BT + i) < T)
b_x = tl.load(p_x, mask=mask_t, other=0).to(tl.float32)
b_g = tl.load(p_g, mask=mask_t, other=0).to(tl.float32)
b_h = tl.exp(b_g) * b_h + b_x
b_gc = b_gc + b_g
tl.store(p_gc, b_gc.to(p_o.dtype.element_ty), mask=mask_t)
tl.store(p_o, b_h.to(p_o.dtype.element_ty), mask=mask_t)
p_x += D
p_g += D
p_gc += D
p_o += D
@triton.jit
def chunk_hgrn_fwd_kernel_o(
gc,
o,
s_h,
s_t,
s_d,
T: tl.constexpr,
D: tl.constexpr,
BT: tl.constexpr,
BD: tl.constexpr
):
i_d, i_bh = tl.program_id(0), tl.program_id(1)
o_d = i_d * BD + tl.arange(0, BD)
mask = o_d < D
for i_t in range(1, tl.cdiv(T, BT)):
p_gc = tl.make_block_ptr(gc + i_bh * s_h, (T, D), (s_t, s_d), (i_t * BT, i_d * BD), (BT, BD), (1, 0))
p_o = tl.make_block_ptr(o + i_bh * s_h, (T, D), (s_t, s_d), (i_t * BT, i_d * BD), (BT, BD), (1, 0))
# [BD,]
b_h0 = tl.load(o + i_bh * T * D + i_t * BT * D - D + o_d, mask=mask, other=0).to(tl.float32)
# [BT, BD]
b_gc = tl.load(p_gc, boundary_check=(0, 1)).to(tl.float32)
b_o = tl.load(p_o, boundary_check=(0, 1)).to(tl.float32)
b_o = b_o + tl.exp(b_gc) * b_h0[None, :]
tl.store(p_o, b_o.to(p_o.dtype.element_ty), boundary_check=(0, 1))
@triton.autotune(
configs=[
triton.Config({'BD': 32}, num_warps=1),
triton.Config({'BD': 32}, num_warps=2),
triton.Config({'BD': 32}, num_warps=4),
triton.Config({'BD': 32}, num_warps=8),
triton.Config({'BD': 64}, num_warps=1),
triton.Config({'BD': 64}, num_warps=2),
triton.Config({'BD': 64}, num_warps=4),
triton.Config({'BD': 64}, num_warps=8),
triton.Config({'BD': 128}, num_warps=1),
triton.Config({'BD': 128}, num_warps=2),
triton.Config({'BD': 128}, num_warps=4),
triton.Config({'BD': 128}, num_warps=8),
],
key=['D']
)
@triton.jit
def chunk_hgrn_bwd_kernel_h(
g,
gc,
dx,
do,
T: tl.constexpr,
D: tl.constexpr,
BT: tl.constexpr,
BD: tl.constexpr
):
i_d, i_t, i_bh = tl.program_id(0), tl.program_id(1), tl.program_id(2)
o_d = i_d * BD + tl.arange(0, BD)
mask = o_d < D
BC = min(BT, T - i_t * BT)
NT = tl.num_programs(1)
p_g = g + (i_bh * T + i_t * BT + BC - 1) * D + o_d
p_gc = gc + (i_bh * T + i_t * BT + BC - 1) * D + o_d
p_dx = dx + (i_bh * T + i_t * BT + BC - 1) * D + o_d
p_do = do + (i_bh * T + i_t * BT + BC - 1) * D + o_d
if i_t == NT - 1:
b_gc = tl.zeros([BD], dtype=tl.float32)
else:
b_gc = tl.load(g + (i_bh * T + i_t * BT + BT) * D + o_d, mask=mask, other=0).to(tl.float32)
b_dh = tl.zeros([BD], dtype=tl.float32)
for _ in range(BC - 1, -1, -1):
tl.store(p_gc, b_gc.to(p_gc.dtype.element_ty), mask=mask)
b_g = tl.load(p_g, mask=mask, other=0).to(tl.float32)
b_do = tl.load(p_do, mask=mask, other=0).to(tl.float32)
b_gc = b_gc + b_g
b_dh = b_dh + b_do
b_dx = b_dh
b_dh = b_dh * tl.exp(b_g)
tl.store(p_dx, b_dx.to(p_dx.dtype.element_ty), mask=mask)
p_g -= D
p_gc -= D
p_dx -= D
p_do -= D
@triton.jit
def chunk_hgrn_bwd_kernel_o(
g,
gc,
o,
dx,
dg,
s_h,
s_t,
s_d,
T: tl.constexpr,
D: tl.constexpr,
BT: tl.constexpr,
BD: tl.constexpr
):
i_d, i_bh = tl.program_id(0), tl.program_id(1)
o_d = i_d * BD + tl.arange(0, BD)
mask = o_d < D
for i_t in range(tl.cdiv(T, BT) - 1, -1, -1):
p_g = tl.make_block_ptr(g + i_bh * s_h, (T, D), (s_t, s_d), (i_t * BT, i_d * BD), (BT, BD), (1, 0))
p_gc = tl.make_block_ptr(gc + i_bh * s_h, (T, D), (s_t, s_d), (i_t * BT, i_d * BD), (BT, BD), (1, 0))
p_o = tl.make_block_ptr(o + i_bh * s_h, (T, D), (s_t, s_d), (i_t * BT - 1, i_d * BD), (BT, BD), (1, 0))
p_dx = tl.make_block_ptr(dx + i_bh * s_h, (T, D), (s_t, s_d), (i_t * BT, i_d * BD), (BT, BD), (1, 0))
p_dg = tl.make_block_ptr(dg + i_bh * s_h, (T, D), (s_t, s_d), (i_t * BT, i_d * BD), (BT, BD), (1, 0))
# [BD,]
mask_t = mask & ((i_t + 1) * BT < T)
b_ht = tl.load(dx + i_bh * T * D + (i_t + 1) * BT * D + o_d, mask=mask_t, other=0).to(tl.float32)
# [BT, BD]
b_g = tl.load(p_g, boundary_check=(0, 1)).to(tl.float32)
b_gc = tl.load(p_gc, boundary_check=(0, 1)).to(tl.float32)
b_o = tl.load(p_o, boundary_check=(0, 1)).to(tl.float32)
b_dx = tl.load(p_dx, boundary_check=(0, 1)).to(tl.float32)
b_dg = tl.load(p_dg, boundary_check=(0, 1)).to(tl.float32)
b_dx = b_dx + tl.exp(b_gc) * b_ht[None, :]
b_dg = b_o * b_dx * tl.exp(b_g)
tl.store(p_dx, b_dx.to(p_dx.dtype.element_ty), boundary_check=(0, 1))
tl.store(p_dg, b_dg.to(p_dg.dtype.element_ty), boundary_check=(0, 1))
class ChunkHGRNFunction(torch.autograd.Function):
@staticmethod
@contiguous
def forward(ctx, x, g, initial_state=None, output_final_state=False):
B, H, T, D = x.shape
BT, BD = 128, min(64, triton.next_power_of_2(D))
num_warps = 8 if BD == 64 else 4
gc = torch.empty_like(g, dtype=torch.float)
o = torch.empty_like(x, dtype=torch.float)
def grid(meta): return (triton.cdiv(D, meta['BD']), triton.cdiv(T, meta['BT']), B * H)
chunk_hgrn_fwd_kernel_h[grid](
x, g, gc, o, initial_state,
T, D,
BT=BT,
USE_INITIAL_STATE=initial_state is not None
)
def grid(meta): return (triton.cdiv(D, meta['BD']), B * H)
chunk_hgrn_fwd_kernel_o[grid](
gc, o,
o.stride(1), o.stride(2), o.stride(3),
T, D,
BT=BT, BD=BD,
num_warps=num_warps
)
final_state = None
if output_final_state:
final_state = o[:, :, -1].clone()
o = o.to(x.dtype)
ctx.save_for_backward(g, o, initial_state)
return o, final_state
@staticmethod
@contiguous
def backward(ctx, do, dht=None):
g, o, initial_state = ctx.saved_tensors
B, H, T, D = do.shape
BT, BD = 128, min(64, triton.next_power_of_2(D))
num_warps = 8 if BD == 64 else 4
gc = torch.empty_like(g, dtype=torch.float)
dx = torch.empty_like(o)
dg = torch.empty_like(g)
def grid(meta): return (triton.cdiv(D, meta['BD']), triton.cdiv(T, meta['BT']), B * H)
chunk_hgrn_bwd_kernel_h[grid](
g, gc, dx, do,
T, D,
BT=BT
)
def grid(meta): return (triton.cdiv(D, meta['BD']), B * H)
chunk_hgrn_bwd_kernel_o[grid](
g, gc, o, dx, dg,
o.stride(1), o.stride(2), o.stride(3),
T, D,
BT=BT, BD=BD,
num_warps=num_warps
)
if initial_state is not None:
dg[:, :, 0] = initial_state * dx[:, :, 0] * g[:, :, 0].exp()
return dx, dg, None, None
def chunk_hgrn(
x: torch.Tensor,
g: torch.Tensor,
initial_state: torch.Tensor = None,
output_final_state: bool = False
) -> Tuple[torch.Tensor, torch.Tensor]:
if initial_state is not None:
initial_state = initial_state.detach()
o, final_state = ChunkHGRNFunction.apply(x, g, initial_state, output_final_state)
return o, final_state
if __name__ == '__main__':
import torch.nn.functional as F
from fla.ops.hgrn.naive import naive_recurrent_hgrn
from fla.ops.hgrn.recurrent_fuse import fused_recurrent_hgrn
B, H, T, D = 8, 4, 512, 128
dtype = torch.bfloat16
torch.manual_seed(42)
# [batch_size, n_heads, seq_len, d_head]
x = torch.randn((B, H, T, D), dtype=dtype, device='cuda')
g = torch.randn((B, H, T, D), dtype=dtype, device='cuda')
x, g = (1 - g.sigmoid()) * x, F.logsigmoid(g)
print(f'x:\t{float(x.min()):>10.6f}\t{float(x.max()):>10.6f}')
print(f'g:\t{float(g.min()):>10.6f}\t{float(g.max()):>10.6f}')
x, g = (i.detach().clone().to(dtype).requires_grad_() for i in (x, g))
print(f"DTYPE:\t{x.dtype}")
do = torch.randn_like(x)
h0 = torch.randn_like(x[:, :, 0])
ref, ref_ht = naive_recurrent_hgrn(x, g, h0, output_final_state=True)
ref.backward(do)
ref_dx, x.grad = x.grad.clone(), None
ref_dg, g.grad = g.grad.clone(), None
tri, tri_ht = fused_recurrent_hgrn(x, g, h0, output_final_state=True)
tri.backward(do)
tri_dx, x.grad = x.grad.clone(), None
tri_dg, g.grad = g.grad.clone(), None
print(" \t DIFF\t MAX")
print(' o\t', f"{float((ref - tri).abs().max()):>10.6f}\t{float(ref.max()):>10.6f}")
print('ht\t', f"{float((ref_ht[0] - tri_ht[0]).abs().max()):>10.6f}\t{float(ref.max()):>10.6f}")
print('dx\t', f"{float((ref_dx - tri_dx).abs().max()):>10.6f}\t{float(ref_dx.max()):>10.6f}")
print('dg\t', f"{float((ref_dg - tri_dg).abs().max()):>10.6f}\t{float(ref_dg.max()):>10.6f}")
print('Done!')
@triton.testing.perf_report(
triton.testing.Benchmark(
# argument names to use as an x-axis for the plot
x_names=['seq_len'],
# different possible values for `x_name`
x_vals=[128 * 2 ** i for i in range(0, 8)],
# argument name whose value corresponds to a different line in the plot
line_arg='provider',
# possible values for `line_arg``
line_vals=['chunk', 'recurrent', 'chunk_bwd', 'recurrent_bwd'],
# label name for the lines
line_names=['chunk', 'recurrent', 'chunk_bwd', 'recurrent_bwd'],
# line styles
styles=[('green', '-'), ('blue', '--'), ('red', '-.'), ('cyan', ':'), ('yellow', 'dotted'), ('black', 'dashed')],
ylabel="Execution Time (ms)", # label name for the y-axis
# name for the plot. Used also as a file name for saving the plot.
plot_name="Performance",
args={},
)
)
def benchmark(seq_len, provider):
dtype = torch.bfloat16
B, H, D = 16, 4, 128
x = torch.randn((B, H, seq_len, D), dtype=dtype, device='cuda')
g = torch.randn((B, H, seq_len, D), dtype=dtype, device='cuda').sigmoid()
x = (1 - g) * x
x, g = (i.detach().clone().to(dtype).requires_grad_() for i in (x, g))
do = torch.randn_like(x, dtype=dtype)
quantiles = [0.5, 0.2, 0.8]
results = 0, 0, 0
if provider == 'chunk':
results = triton.testing.do_bench(lambda: chunk_hgrn(x, g), quantiles=quantiles)
if provider == 'recurrent':
results = triton.testing.do_bench(lambda: fused_recurrent_hgrn(x, g), quantiles=quantiles)
if provider == 'chunk_bwd':
results = triton.testing.do_bench(lambda: chunk_hgrn(x, g)[0].backward(do), quantiles=quantiles)
if provider == 'recurrent_bwd':
results = triton.testing.do_bench(lambda: fused_recurrent_hgrn(x, g)[0].backward(do), quantiles=quantiles)
return results
benchmark.run(print_data=True)
| @triton.jit
def chunk_hgrn_fwd_kernel_h(
x,
g,
gc,
o,
h0,
T: tl.constexpr,
D: tl.constexpr,
BT: tl.constexpr,
BD: tl.constexpr,
USE_INITIAL_STATE: tl.constexpr
):
i_d, i_t, i_bh = tl.program_id(0), tl.program_id(1), tl.program_id(2)
o_d = i_d * BD + tl.arange(0, BD)
mask = o_d < D
p_x = x + i_bh * T * D + i_t * BT * D + o_d
p_g = g + i_bh * T * D + i_t * BT * D + o_d
p_gc = gc + i_bh * T * D + i_t * BT * D + o_d
p_o = o + i_bh * T * D + i_t * BT * D + o_d
b_h = tl.zeros([BD], dtype=tl.float32)
b_gc = tl.zeros([BD], dtype=tl.float32)
if USE_INITIAL_STATE:
if i_t == 0:
b_h += tl.load(h0 + i_bh * D + o_d, mask=mask, other=0).to(tl.float32)
for i in range(0, BT):
mask_t = mask & ((i_t * BT + i) < T)
b_x = tl.load(p_x, mask=mask_t, other=0).to(tl.float32)
b_g = tl.load(p_g, mask=mask_t, other=0).to(tl.float32)
b_h = tl.exp(b_g) * b_h + b_x
b_gc = b_gc + b_g
tl.store(p_gc, b_gc.to(p_o.dtype.element_ty), mask=mask_t)
tl.store(p_o, b_h.to(p_o.dtype.element_ty), mask=mask_t)
p_x += D
p_g += D
p_gc += D
p_o += D
|
josStorer/RWKV-Runner | finetune/lora/v6/fla/ops/hgrn/chunk.py | https://github.com/josStorer/RWKV-Runner/blob/ad6170816a776bfc312837aafc9a3ff889a3cdd3/finetune/lora/v6/fla/ops/hgrn/chunk.py | # -*- coding: utf-8 -*-
# Copyright (c) 2024, Yu Zhang, Songlin Yang
# this function implements the chunkwise form of HGRN, inspired by
# [Volodymyr Kyrylov in his blog post](https://proger.github.io/posts/scan/chunk.html)
# also refer to the `accelerated-scan` lib: https://github.com/proger/accelerated-scan
# from tests on H800, with B, H, D = 16, 4, 128, we see that the chunk can be greatly faster than the recurrent:
#
# Performance:
# seq_len chunk recurrent chunk_bwd recurrent_bwd
# 0 128.0 0.039360 0.061056 0.312160 0.205008
# 1 256.0 0.045824 0.123712 0.308784 0.297696
# 2 512.0 0.058688 0.241952 0.310720 0.626528
# 3 1024.0 0.088288 0.476992 0.313184 1.333152
# 4 2048.0 0.169472 0.943264 0.452464 2.724864
# 5 4096.0 0.329920 1.886144 0.881600 5.551520
# 6 8192.0 0.647872 3.755040 1.740496 11.117184
# 7 16384.0 1.272064 7.520576 3.446608 22.362528
from typing import Tuple
import torch
import triton
import triton.language as tl
from fla.utils import contiguous
@triton.autotune(
configs=[
triton.Config({'BD': 32}, num_warps=1),
triton.Config({'BD': 32}, num_warps=2),
triton.Config({'BD': 32}, num_warps=4),
triton.Config({'BD': 32}, num_warps=8),
triton.Config({'BD': 64}, num_warps=1),
triton.Config({'BD': 64}, num_warps=2),
triton.Config({'BD': 64}, num_warps=4),
triton.Config({'BD': 64}, num_warps=8),
triton.Config({'BD': 128}, num_warps=1),
triton.Config({'BD': 128}, num_warps=2),
triton.Config({'BD': 128}, num_warps=4),
triton.Config({'BD': 128}, num_warps=8),
],
key=['D']
)
@triton.jit
def chunk_hgrn_fwd_kernel_h(
x,
g,
gc,
o,
h0,
T: tl.constexpr,
D: tl.constexpr,
BT: tl.constexpr,
BD: tl.constexpr,
USE_INITIAL_STATE: tl.constexpr
):
i_d, i_t, i_bh = tl.program_id(0), tl.program_id(1), tl.program_id(2)
o_d = i_d * BD + tl.arange(0, BD)
mask = o_d < D
p_x = x + i_bh * T * D + i_t * BT * D + o_d
p_g = g + i_bh * T * D + i_t * BT * D + o_d
p_gc = gc + i_bh * T * D + i_t * BT * D + o_d
p_o = o + i_bh * T * D + i_t * BT * D + o_d
b_h = tl.zeros([BD], dtype=tl.float32)
b_gc = tl.zeros([BD], dtype=tl.float32)
if USE_INITIAL_STATE:
if i_t == 0:
b_h += tl.load(h0 + i_bh * D + o_d, mask=mask, other=0).to(tl.float32)
for i in range(0, BT):
mask_t = mask & ((i_t * BT + i) < T)
b_x = tl.load(p_x, mask=mask_t, other=0).to(tl.float32)
b_g = tl.load(p_g, mask=mask_t, other=0).to(tl.float32)
b_h = tl.exp(b_g) * b_h + b_x
b_gc = b_gc + b_g
tl.store(p_gc, b_gc.to(p_o.dtype.element_ty), mask=mask_t)
tl.store(p_o, b_h.to(p_o.dtype.element_ty), mask=mask_t)
p_x += D
p_g += D
p_gc += D
p_o += D
@triton.jit
def chunk_hgrn_fwd_kernel_o(
gc,
o,
s_h,
s_t,
s_d,
T: tl.constexpr,
D: tl.constexpr,
BT: tl.constexpr,
BD: tl.constexpr
):
i_d, i_bh = tl.program_id(0), tl.program_id(1)
o_d = i_d * BD + tl.arange(0, BD)
mask = o_d < D
for i_t in range(1, tl.cdiv(T, BT)):
p_gc = tl.make_block_ptr(gc + i_bh * s_h, (T, D), (s_t, s_d), (i_t * BT, i_d * BD), (BT, BD), (1, 0))
p_o = tl.make_block_ptr(o + i_bh * s_h, (T, D), (s_t, s_d), (i_t * BT, i_d * BD), (BT, BD), (1, 0))
# [BD,]
b_h0 = tl.load(o + i_bh * T * D + i_t * BT * D - D + o_d, mask=mask, other=0).to(tl.float32)
# [BT, BD]
b_gc = tl.load(p_gc, boundary_check=(0, 1)).to(tl.float32)
b_o = tl.load(p_o, boundary_check=(0, 1)).to(tl.float32)
b_o = b_o + tl.exp(b_gc) * b_h0[None, :]
tl.store(p_o, b_o.to(p_o.dtype.element_ty), boundary_check=(0, 1))
@triton.autotune(
configs=[
triton.Config({'BD': 32}, num_warps=1),
triton.Config({'BD': 32}, num_warps=2),
triton.Config({'BD': 32}, num_warps=4),
triton.Config({'BD': 32}, num_warps=8),
triton.Config({'BD': 64}, num_warps=1),
triton.Config({'BD': 64}, num_warps=2),
triton.Config({'BD': 64}, num_warps=4),
triton.Config({'BD': 64}, num_warps=8),
triton.Config({'BD': 128}, num_warps=1),
triton.Config({'BD': 128}, num_warps=2),
triton.Config({'BD': 128}, num_warps=4),
triton.Config({'BD': 128}, num_warps=8),
],
key=['D']
)
@triton.jit
def chunk_hgrn_bwd_kernel_h(
g,
gc,
dx,
do,
T: tl.constexpr,
D: tl.constexpr,
BT: tl.constexpr,
BD: tl.constexpr
):
i_d, i_t, i_bh = tl.program_id(0), tl.program_id(1), tl.program_id(2)
o_d = i_d * BD + tl.arange(0, BD)
mask = o_d < D
BC = min(BT, T - i_t * BT)
NT = tl.num_programs(1)
p_g = g + (i_bh * T + i_t * BT + BC - 1) * D + o_d
p_gc = gc + (i_bh * T + i_t * BT + BC - 1) * D + o_d
p_dx = dx + (i_bh * T + i_t * BT + BC - 1) * D + o_d
p_do = do + (i_bh * T + i_t * BT + BC - 1) * D + o_d
if i_t == NT - 1:
b_gc = tl.zeros([BD], dtype=tl.float32)
else:
b_gc = tl.load(g + (i_bh * T + i_t * BT + BT) * D + o_d, mask=mask, other=0).to(tl.float32)
b_dh = tl.zeros([BD], dtype=tl.float32)
for _ in range(BC - 1, -1, -1):
tl.store(p_gc, b_gc.to(p_gc.dtype.element_ty), mask=mask)
b_g = tl.load(p_g, mask=mask, other=0).to(tl.float32)
b_do = tl.load(p_do, mask=mask, other=0).to(tl.float32)
b_gc = b_gc + b_g
b_dh = b_dh + b_do
b_dx = b_dh
b_dh = b_dh * tl.exp(b_g)
tl.store(p_dx, b_dx.to(p_dx.dtype.element_ty), mask=mask)
p_g -= D
p_gc -= D
p_dx -= D
p_do -= D
@triton.jit
def chunk_hgrn_bwd_kernel_o(
g,
gc,
o,
dx,
dg,
s_h,
s_t,
s_d,
T: tl.constexpr,
D: tl.constexpr,
BT: tl.constexpr,
BD: tl.constexpr
):
i_d, i_bh = tl.program_id(0), tl.program_id(1)
o_d = i_d * BD + tl.arange(0, BD)
mask = o_d < D
for i_t in range(tl.cdiv(T, BT) - 1, -1, -1):
p_g = tl.make_block_ptr(g + i_bh * s_h, (T, D), (s_t, s_d), (i_t * BT, i_d * BD), (BT, BD), (1, 0))
p_gc = tl.make_block_ptr(gc + i_bh * s_h, (T, D), (s_t, s_d), (i_t * BT, i_d * BD), (BT, BD), (1, 0))
p_o = tl.make_block_ptr(o + i_bh * s_h, (T, D), (s_t, s_d), (i_t * BT - 1, i_d * BD), (BT, BD), (1, 0))
p_dx = tl.make_block_ptr(dx + i_bh * s_h, (T, D), (s_t, s_d), (i_t * BT, i_d * BD), (BT, BD), (1, 0))
p_dg = tl.make_block_ptr(dg + i_bh * s_h, (T, D), (s_t, s_d), (i_t * BT, i_d * BD), (BT, BD), (1, 0))
# [BD,]
mask_t = mask & ((i_t + 1) * BT < T)
b_ht = tl.load(dx + i_bh * T * D + (i_t + 1) * BT * D + o_d, mask=mask_t, other=0).to(tl.float32)
# [BT, BD]
b_g = tl.load(p_g, boundary_check=(0, 1)).to(tl.float32)
b_gc = tl.load(p_gc, boundary_check=(0, 1)).to(tl.float32)
b_o = tl.load(p_o, boundary_check=(0, 1)).to(tl.float32)
b_dx = tl.load(p_dx, boundary_check=(0, 1)).to(tl.float32)
b_dg = tl.load(p_dg, boundary_check=(0, 1)).to(tl.float32)
b_dx = b_dx + tl.exp(b_gc) * b_ht[None, :]
b_dg = b_o * b_dx * tl.exp(b_g)
tl.store(p_dx, b_dx.to(p_dx.dtype.element_ty), boundary_check=(0, 1))
tl.store(p_dg, b_dg.to(p_dg.dtype.element_ty), boundary_check=(0, 1))
class ChunkHGRNFunction(torch.autograd.Function):
@staticmethod
@contiguous
def forward(ctx, x, g, initial_state=None, output_final_state=False):
B, H, T, D = x.shape
BT, BD = 128, min(64, triton.next_power_of_2(D))
num_warps = 8 if BD == 64 else 4
gc = torch.empty_like(g, dtype=torch.float)
o = torch.empty_like(x, dtype=torch.float)
def grid(meta): return (triton.cdiv(D, meta['BD']), triton.cdiv(T, meta['BT']), B * H)
chunk_hgrn_fwd_kernel_h[grid](
x, g, gc, o, initial_state,
T, D,
BT=BT,
USE_INITIAL_STATE=initial_state is not None
)
def grid(meta): return (triton.cdiv(D, meta['BD']), B * H)
chunk_hgrn_fwd_kernel_o[grid](
gc, o,
o.stride(1), o.stride(2), o.stride(3),
T, D,
BT=BT, BD=BD,
num_warps=num_warps
)
final_state = None
if output_final_state:
final_state = o[:, :, -1].clone()
o = o.to(x.dtype)
ctx.save_for_backward(g, o, initial_state)
return o, final_state
@staticmethod
@contiguous
def backward(ctx, do, dht=None):
g, o, initial_state = ctx.saved_tensors
B, H, T, D = do.shape
BT, BD = 128, min(64, triton.next_power_of_2(D))
num_warps = 8 if BD == 64 else 4
gc = torch.empty_like(g, dtype=torch.float)
dx = torch.empty_like(o)
dg = torch.empty_like(g)
def grid(meta): return (triton.cdiv(D, meta['BD']), triton.cdiv(T, meta['BT']), B * H)
chunk_hgrn_bwd_kernel_h[grid](
g, gc, dx, do,
T, D,
BT=BT
)
def grid(meta): return (triton.cdiv(D, meta['BD']), B * H)
chunk_hgrn_bwd_kernel_o[grid](
g, gc, o, dx, dg,
o.stride(1), o.stride(2), o.stride(3),
T, D,
BT=BT, BD=BD,
num_warps=num_warps
)
if initial_state is not None:
dg[:, :, 0] = initial_state * dx[:, :, 0] * g[:, :, 0].exp()
return dx, dg, None, None
def chunk_hgrn(
x: torch.Tensor,
g: torch.Tensor,
initial_state: torch.Tensor = None,
output_final_state: bool = False
) -> Tuple[torch.Tensor, torch.Tensor]:
if initial_state is not None:
initial_state = initial_state.detach()
o, final_state = ChunkHGRNFunction.apply(x, g, initial_state, output_final_state)
return o, final_state
if __name__ == '__main__':
import torch.nn.functional as F
from fla.ops.hgrn.naive import naive_recurrent_hgrn
from fla.ops.hgrn.recurrent_fuse import fused_recurrent_hgrn
B, H, T, D = 8, 4, 512, 128
dtype = torch.bfloat16
torch.manual_seed(42)
# [batch_size, n_heads, seq_len, d_head]
x = torch.randn((B, H, T, D), dtype=dtype, device='cuda')
g = torch.randn((B, H, T, D), dtype=dtype, device='cuda')
x, g = (1 - g.sigmoid()) * x, F.logsigmoid(g)
print(f'x:\t{float(x.min()):>10.6f}\t{float(x.max()):>10.6f}')
print(f'g:\t{float(g.min()):>10.6f}\t{float(g.max()):>10.6f}')
x, g = (i.detach().clone().to(dtype).requires_grad_() for i in (x, g))
print(f"DTYPE:\t{x.dtype}")
do = torch.randn_like(x)
h0 = torch.randn_like(x[:, :, 0])
ref, ref_ht = naive_recurrent_hgrn(x, g, h0, output_final_state=True)
ref.backward(do)
ref_dx, x.grad = x.grad.clone(), None
ref_dg, g.grad = g.grad.clone(), None
tri, tri_ht = fused_recurrent_hgrn(x, g, h0, output_final_state=True)
tri.backward(do)
tri_dx, x.grad = x.grad.clone(), None
tri_dg, g.grad = g.grad.clone(), None
print(" \t DIFF\t MAX")
print(' o\t', f"{float((ref - tri).abs().max()):>10.6f}\t{float(ref.max()):>10.6f}")
print('ht\t', f"{float((ref_ht[0] - tri_ht[0]).abs().max()):>10.6f}\t{float(ref.max()):>10.6f}")
print('dx\t', f"{float((ref_dx - tri_dx).abs().max()):>10.6f}\t{float(ref_dx.max()):>10.6f}")
print('dg\t', f"{float((ref_dg - tri_dg).abs().max()):>10.6f}\t{float(ref_dg.max()):>10.6f}")
print('Done!')
@triton.testing.perf_report(
triton.testing.Benchmark(
# argument names to use as an x-axis for the plot
x_names=['seq_len'],
# different possible values for `x_name`
x_vals=[128 * 2 ** i for i in range(0, 8)],
# argument name whose value corresponds to a different line in the plot
line_arg='provider',
# possible values for `line_arg``
line_vals=['chunk', 'recurrent', 'chunk_bwd', 'recurrent_bwd'],
# label name for the lines
line_names=['chunk', 'recurrent', 'chunk_bwd', 'recurrent_bwd'],
# line styles
styles=[('green', '-'), ('blue', '--'), ('red', '-.'), ('cyan', ':'), ('yellow', 'dotted'), ('black', 'dashed')],
ylabel="Execution Time (ms)", # label name for the y-axis
# name for the plot. Used also as a file name for saving the plot.
plot_name="Performance",
args={},
)
)
def benchmark(seq_len, provider):
dtype = torch.bfloat16
B, H, D = 16, 4, 128
x = torch.randn((B, H, seq_len, D), dtype=dtype, device='cuda')
g = torch.randn((B, H, seq_len, D), dtype=dtype, device='cuda').sigmoid()
x = (1 - g) * x
x, g = (i.detach().clone().to(dtype).requires_grad_() for i in (x, g))
do = torch.randn_like(x, dtype=dtype)
quantiles = [0.5, 0.2, 0.8]
results = 0, 0, 0
if provider == 'chunk':
results = triton.testing.do_bench(lambda: chunk_hgrn(x, g), quantiles=quantiles)
if provider == 'recurrent':
results = triton.testing.do_bench(lambda: fused_recurrent_hgrn(x, g), quantiles=quantiles)
if provider == 'chunk_bwd':
results = triton.testing.do_bench(lambda: chunk_hgrn(x, g)[0].backward(do), quantiles=quantiles)
if provider == 'recurrent_bwd':
results = triton.testing.do_bench(lambda: fused_recurrent_hgrn(x, g)[0].backward(do), quantiles=quantiles)
return results
benchmark.run(print_data=True)
| @triton.jit
def chunk_hgrn_fwd_kernel_o(
gc,
o,
s_h,
s_t,
s_d,
T: tl.constexpr,
D: tl.constexpr,
BT: tl.constexpr,
BD: tl.constexpr
):
i_d, i_bh = tl.program_id(0), tl.program_id(1)
o_d = i_d * BD + tl.arange(0, BD)
mask = o_d < D
for i_t in range(1, tl.cdiv(T, BT)):
p_gc = tl.make_block_ptr(gc + i_bh * s_h, (T, D), (s_t, s_d), (i_t * BT, i_d * BD), (BT, BD), (1, 0))
p_o = tl.make_block_ptr(o + i_bh * s_h, (T, D), (s_t, s_d), (i_t * BT, i_d * BD), (BT, BD), (1, 0))
# [BD,]
b_h0 = tl.load(o + i_bh * T * D + i_t * BT * D - D + o_d, mask=mask, other=0).to(tl.float32)
# [BT, BD]
b_gc = tl.load(p_gc, boundary_check=(0, 1)).to(tl.float32)
b_o = tl.load(p_o, boundary_check=(0, 1)).to(tl.float32)
b_o = b_o + tl.exp(b_gc) * b_h0[None, :]
tl.store(p_o, b_o.to(p_o.dtype.element_ty), boundary_check=(0, 1))
@triton.autotune(
configs=[
triton.Config({'BD': 32}, num_warps=1),
triton.Config({'BD': 32}, num_warps=2),
triton.Config({'BD': 32}, num_warps=4),
triton.Config({'BD': 32}, num_warps=8),
triton.Config({'BD': 64}, num_warps=1),
triton.Config({'BD': 64}, num_warps=2),
triton.Config({'BD': 64}, num_warps=4),
triton.Config({'BD': 64}, num_warps=8),
triton.Config({'BD': 128}, num_warps=1),
triton.Config({'BD': 128}, num_warps=2),
triton.Config({'BD': 128}, num_warps=4),
triton.Config({'BD': 128}, num_warps=8),
],
key=['D']
)
|
josStorer/RWKV-Runner | finetune/lora/v6/fla/ops/hgrn/chunk.py | https://github.com/josStorer/RWKV-Runner/blob/ad6170816a776bfc312837aafc9a3ff889a3cdd3/finetune/lora/v6/fla/ops/hgrn/chunk.py | # -*- coding: utf-8 -*-
# Copyright (c) 2024, Yu Zhang, Songlin Yang
# this function implements the chunkwise form of HGRN, inspired by
# [Volodymyr Kyrylov in his blog post](https://proger.github.io/posts/scan/chunk.html)
# also refer to the `accelerated-scan` lib: https://github.com/proger/accelerated-scan
# from tests on H800, with B, H, D = 16, 4, 128, we see that the chunk can be greatly faster than the recurrent:
#
# Performance:
# seq_len chunk recurrent chunk_bwd recurrent_bwd
# 0 128.0 0.039360 0.061056 0.312160 0.205008
# 1 256.0 0.045824 0.123712 0.308784 0.297696
# 2 512.0 0.058688 0.241952 0.310720 0.626528
# 3 1024.0 0.088288 0.476992 0.313184 1.333152
# 4 2048.0 0.169472 0.943264 0.452464 2.724864
# 5 4096.0 0.329920 1.886144 0.881600 5.551520
# 6 8192.0 0.647872 3.755040 1.740496 11.117184
# 7 16384.0 1.272064 7.520576 3.446608 22.362528
from typing import Tuple
import torch
import triton
import triton.language as tl
from fla.utils import contiguous
@triton.autotune(
configs=[
triton.Config({'BD': 32}, num_warps=1),
triton.Config({'BD': 32}, num_warps=2),
triton.Config({'BD': 32}, num_warps=4),
triton.Config({'BD': 32}, num_warps=8),
triton.Config({'BD': 64}, num_warps=1),
triton.Config({'BD': 64}, num_warps=2),
triton.Config({'BD': 64}, num_warps=4),
triton.Config({'BD': 64}, num_warps=8),
triton.Config({'BD': 128}, num_warps=1),
triton.Config({'BD': 128}, num_warps=2),
triton.Config({'BD': 128}, num_warps=4),
triton.Config({'BD': 128}, num_warps=8),
],
key=['D']
)
@triton.jit
def chunk_hgrn_fwd_kernel_h(
x,
g,
gc,
o,
h0,
T: tl.constexpr,
D: tl.constexpr,
BT: tl.constexpr,
BD: tl.constexpr,
USE_INITIAL_STATE: tl.constexpr
):
i_d, i_t, i_bh = tl.program_id(0), tl.program_id(1), tl.program_id(2)
o_d = i_d * BD + tl.arange(0, BD)
mask = o_d < D
p_x = x + i_bh * T * D + i_t * BT * D + o_d
p_g = g + i_bh * T * D + i_t * BT * D + o_d
p_gc = gc + i_bh * T * D + i_t * BT * D + o_d
p_o = o + i_bh * T * D + i_t * BT * D + o_d
b_h = tl.zeros([BD], dtype=tl.float32)
b_gc = tl.zeros([BD], dtype=tl.float32)
if USE_INITIAL_STATE:
if i_t == 0:
b_h += tl.load(h0 + i_bh * D + o_d, mask=mask, other=0).to(tl.float32)
for i in range(0, BT):
mask_t = mask & ((i_t * BT + i) < T)
b_x = tl.load(p_x, mask=mask_t, other=0).to(tl.float32)
b_g = tl.load(p_g, mask=mask_t, other=0).to(tl.float32)
b_h = tl.exp(b_g) * b_h + b_x
b_gc = b_gc + b_g
tl.store(p_gc, b_gc.to(p_o.dtype.element_ty), mask=mask_t)
tl.store(p_o, b_h.to(p_o.dtype.element_ty), mask=mask_t)
p_x += D
p_g += D
p_gc += D
p_o += D
@triton.jit
def chunk_hgrn_fwd_kernel_o(
gc,
o,
s_h,
s_t,
s_d,
T: tl.constexpr,
D: tl.constexpr,
BT: tl.constexpr,
BD: tl.constexpr
):
i_d, i_bh = tl.program_id(0), tl.program_id(1)
o_d = i_d * BD + tl.arange(0, BD)
mask = o_d < D
for i_t in range(1, tl.cdiv(T, BT)):
p_gc = tl.make_block_ptr(gc + i_bh * s_h, (T, D), (s_t, s_d), (i_t * BT, i_d * BD), (BT, BD), (1, 0))
p_o = tl.make_block_ptr(o + i_bh * s_h, (T, D), (s_t, s_d), (i_t * BT, i_d * BD), (BT, BD), (1, 0))
# [BD,]
b_h0 = tl.load(o + i_bh * T * D + i_t * BT * D - D + o_d, mask=mask, other=0).to(tl.float32)
# [BT, BD]
b_gc = tl.load(p_gc, boundary_check=(0, 1)).to(tl.float32)
b_o = tl.load(p_o, boundary_check=(0, 1)).to(tl.float32)
b_o = b_o + tl.exp(b_gc) * b_h0[None, :]
tl.store(p_o, b_o.to(p_o.dtype.element_ty), boundary_check=(0, 1))
@triton.autotune(
configs=[
triton.Config({'BD': 32}, num_warps=1),
triton.Config({'BD': 32}, num_warps=2),
triton.Config({'BD': 32}, num_warps=4),
triton.Config({'BD': 32}, num_warps=8),
triton.Config({'BD': 64}, num_warps=1),
triton.Config({'BD': 64}, num_warps=2),
triton.Config({'BD': 64}, num_warps=4),
triton.Config({'BD': 64}, num_warps=8),
triton.Config({'BD': 128}, num_warps=1),
triton.Config({'BD': 128}, num_warps=2),
triton.Config({'BD': 128}, num_warps=4),
triton.Config({'BD': 128}, num_warps=8),
],
key=['D']
)
@triton.jit
def chunk_hgrn_bwd_kernel_h(
g,
gc,
dx,
do,
T: tl.constexpr,
D: tl.constexpr,
BT: tl.constexpr,
BD: tl.constexpr
):
i_d, i_t, i_bh = tl.program_id(0), tl.program_id(1), tl.program_id(2)
o_d = i_d * BD + tl.arange(0, BD)
mask = o_d < D
BC = min(BT, T - i_t * BT)
NT = tl.num_programs(1)
p_g = g + (i_bh * T + i_t * BT + BC - 1) * D + o_d
p_gc = gc + (i_bh * T + i_t * BT + BC - 1) * D + o_d
p_dx = dx + (i_bh * T + i_t * BT + BC - 1) * D + o_d
p_do = do + (i_bh * T + i_t * BT + BC - 1) * D + o_d
if i_t == NT - 1:
b_gc = tl.zeros([BD], dtype=tl.float32)
else:
b_gc = tl.load(g + (i_bh * T + i_t * BT + BT) * D + o_d, mask=mask, other=0).to(tl.float32)
b_dh = tl.zeros([BD], dtype=tl.float32)
for _ in range(BC - 1, -1, -1):
tl.store(p_gc, b_gc.to(p_gc.dtype.element_ty), mask=mask)
b_g = tl.load(p_g, mask=mask, other=0).to(tl.float32)
b_do = tl.load(p_do, mask=mask, other=0).to(tl.float32)
b_gc = b_gc + b_g
b_dh = b_dh + b_do
b_dx = b_dh
b_dh = b_dh * tl.exp(b_g)
tl.store(p_dx, b_dx.to(p_dx.dtype.element_ty), mask=mask)
p_g -= D
p_gc -= D
p_dx -= D
p_do -= D
@triton.jit
def chunk_hgrn_bwd_kernel_o(
g,
gc,
o,
dx,
dg,
s_h,
s_t,
s_d,
T: tl.constexpr,
D: tl.constexpr,
BT: tl.constexpr,
BD: tl.constexpr
):
i_d, i_bh = tl.program_id(0), tl.program_id(1)
o_d = i_d * BD + tl.arange(0, BD)
mask = o_d < D
for i_t in range(tl.cdiv(T, BT) - 1, -1, -1):
p_g = tl.make_block_ptr(g + i_bh * s_h, (T, D), (s_t, s_d), (i_t * BT, i_d * BD), (BT, BD), (1, 0))
p_gc = tl.make_block_ptr(gc + i_bh * s_h, (T, D), (s_t, s_d), (i_t * BT, i_d * BD), (BT, BD), (1, 0))
p_o = tl.make_block_ptr(o + i_bh * s_h, (T, D), (s_t, s_d), (i_t * BT - 1, i_d * BD), (BT, BD), (1, 0))
p_dx = tl.make_block_ptr(dx + i_bh * s_h, (T, D), (s_t, s_d), (i_t * BT, i_d * BD), (BT, BD), (1, 0))
p_dg = tl.make_block_ptr(dg + i_bh * s_h, (T, D), (s_t, s_d), (i_t * BT, i_d * BD), (BT, BD), (1, 0))
# [BD,]
mask_t = mask & ((i_t + 1) * BT < T)
b_ht = tl.load(dx + i_bh * T * D + (i_t + 1) * BT * D + o_d, mask=mask_t, other=0).to(tl.float32)
# [BT, BD]
b_g = tl.load(p_g, boundary_check=(0, 1)).to(tl.float32)
b_gc = tl.load(p_gc, boundary_check=(0, 1)).to(tl.float32)
b_o = tl.load(p_o, boundary_check=(0, 1)).to(tl.float32)
b_dx = tl.load(p_dx, boundary_check=(0, 1)).to(tl.float32)
b_dg = tl.load(p_dg, boundary_check=(0, 1)).to(tl.float32)
b_dx = b_dx + tl.exp(b_gc) * b_ht[None, :]
b_dg = b_o * b_dx * tl.exp(b_g)
tl.store(p_dx, b_dx.to(p_dx.dtype.element_ty), boundary_check=(0, 1))
tl.store(p_dg, b_dg.to(p_dg.dtype.element_ty), boundary_check=(0, 1))
class ChunkHGRNFunction(torch.autograd.Function):
@staticmethod
@contiguous
def forward(ctx, x, g, initial_state=None, output_final_state=False):
B, H, T, D = x.shape
BT, BD = 128, min(64, triton.next_power_of_2(D))
num_warps = 8 if BD == 64 else 4
gc = torch.empty_like(g, dtype=torch.float)
o = torch.empty_like(x, dtype=torch.float)
def grid(meta): return (triton.cdiv(D, meta['BD']), triton.cdiv(T, meta['BT']), B * H)
chunk_hgrn_fwd_kernel_h[grid](
x, g, gc, o, initial_state,
T, D,
BT=BT,
USE_INITIAL_STATE=initial_state is not None
)
def grid(meta): return (triton.cdiv(D, meta['BD']), B * H)
chunk_hgrn_fwd_kernel_o[grid](
gc, o,
o.stride(1), o.stride(2), o.stride(3),
T, D,
BT=BT, BD=BD,
num_warps=num_warps
)
final_state = None
if output_final_state:
final_state = o[:, :, -1].clone()
o = o.to(x.dtype)
ctx.save_for_backward(g, o, initial_state)
return o, final_state
@staticmethod
@contiguous
def backward(ctx, do, dht=None):
g, o, initial_state = ctx.saved_tensors
B, H, T, D = do.shape
BT, BD = 128, min(64, triton.next_power_of_2(D))
num_warps = 8 if BD == 64 else 4
gc = torch.empty_like(g, dtype=torch.float)
dx = torch.empty_like(o)
dg = torch.empty_like(g)
def grid(meta): return (triton.cdiv(D, meta['BD']), triton.cdiv(T, meta['BT']), B * H)
chunk_hgrn_bwd_kernel_h[grid](
g, gc, dx, do,
T, D,
BT=BT
)
def grid(meta): return (triton.cdiv(D, meta['BD']), B * H)
chunk_hgrn_bwd_kernel_o[grid](
g, gc, o, dx, dg,
o.stride(1), o.stride(2), o.stride(3),
T, D,
BT=BT, BD=BD,
num_warps=num_warps
)
if initial_state is not None:
dg[:, :, 0] = initial_state * dx[:, :, 0] * g[:, :, 0].exp()
return dx, dg, None, None
def chunk_hgrn(
x: torch.Tensor,
g: torch.Tensor,
initial_state: torch.Tensor = None,
output_final_state: bool = False
) -> Tuple[torch.Tensor, torch.Tensor]:
if initial_state is not None:
initial_state = initial_state.detach()
o, final_state = ChunkHGRNFunction.apply(x, g, initial_state, output_final_state)
return o, final_state
if __name__ == '__main__':
import torch.nn.functional as F
from fla.ops.hgrn.naive import naive_recurrent_hgrn
from fla.ops.hgrn.recurrent_fuse import fused_recurrent_hgrn
B, H, T, D = 8, 4, 512, 128
dtype = torch.bfloat16
torch.manual_seed(42)
# [batch_size, n_heads, seq_len, d_head]
x = torch.randn((B, H, T, D), dtype=dtype, device='cuda')
g = torch.randn((B, H, T, D), dtype=dtype, device='cuda')
x, g = (1 - g.sigmoid()) * x, F.logsigmoid(g)
print(f'x:\t{float(x.min()):>10.6f}\t{float(x.max()):>10.6f}')
print(f'g:\t{float(g.min()):>10.6f}\t{float(g.max()):>10.6f}')
x, g = (i.detach().clone().to(dtype).requires_grad_() for i in (x, g))
print(f"DTYPE:\t{x.dtype}")
do = torch.randn_like(x)
h0 = torch.randn_like(x[:, :, 0])
ref, ref_ht = naive_recurrent_hgrn(x, g, h0, output_final_state=True)
ref.backward(do)
ref_dx, x.grad = x.grad.clone(), None
ref_dg, g.grad = g.grad.clone(), None
tri, tri_ht = fused_recurrent_hgrn(x, g, h0, output_final_state=True)
tri.backward(do)
tri_dx, x.grad = x.grad.clone(), None
tri_dg, g.grad = g.grad.clone(), None
print(" \t DIFF\t MAX")
print(' o\t', f"{float((ref - tri).abs().max()):>10.6f}\t{float(ref.max()):>10.6f}")
print('ht\t', f"{float((ref_ht[0] - tri_ht[0]).abs().max()):>10.6f}\t{float(ref.max()):>10.6f}")
print('dx\t', f"{float((ref_dx - tri_dx).abs().max()):>10.6f}\t{float(ref_dx.max()):>10.6f}")
print('dg\t', f"{float((ref_dg - tri_dg).abs().max()):>10.6f}\t{float(ref_dg.max()):>10.6f}")
print('Done!')
@triton.testing.perf_report(
triton.testing.Benchmark(
# argument names to use as an x-axis for the plot
x_names=['seq_len'],
# different possible values for `x_name`
x_vals=[128 * 2 ** i for i in range(0, 8)],
# argument name whose value corresponds to a different line in the plot
line_arg='provider',
# possible values for `line_arg``
line_vals=['chunk', 'recurrent', 'chunk_bwd', 'recurrent_bwd'],
# label name for the lines
line_names=['chunk', 'recurrent', 'chunk_bwd', 'recurrent_bwd'],
# line styles
styles=[('green', '-'), ('blue', '--'), ('red', '-.'), ('cyan', ':'), ('yellow', 'dotted'), ('black', 'dashed')],
ylabel="Execution Time (ms)", # label name for the y-axis
# name for the plot. Used also as a file name for saving the plot.
plot_name="Performance",
args={},
)
)
def benchmark(seq_len, provider):
dtype = torch.bfloat16
B, H, D = 16, 4, 128
x = torch.randn((B, H, seq_len, D), dtype=dtype, device='cuda')
g = torch.randn((B, H, seq_len, D), dtype=dtype, device='cuda').sigmoid()
x = (1 - g) * x
x, g = (i.detach().clone().to(dtype).requires_grad_() for i in (x, g))
do = torch.randn_like(x, dtype=dtype)
quantiles = [0.5, 0.2, 0.8]
results = 0, 0, 0
if provider == 'chunk':
results = triton.testing.do_bench(lambda: chunk_hgrn(x, g), quantiles=quantiles)
if provider == 'recurrent':
results = triton.testing.do_bench(lambda: fused_recurrent_hgrn(x, g), quantiles=quantiles)
if provider == 'chunk_bwd':
results = triton.testing.do_bench(lambda: chunk_hgrn(x, g)[0].backward(do), quantiles=quantiles)
if provider == 'recurrent_bwd':
results = triton.testing.do_bench(lambda: fused_recurrent_hgrn(x, g)[0].backward(do), quantiles=quantiles)
return results
benchmark.run(print_data=True)
| @triton.jit
def chunk_hgrn_bwd_kernel_h(
g,
gc,
dx,
do,
T: tl.constexpr,
D: tl.constexpr,
BT: tl.constexpr,
BD: tl.constexpr
):
i_d, i_t, i_bh = tl.program_id(0), tl.program_id(1), tl.program_id(2)
o_d = i_d * BD + tl.arange(0, BD)
mask = o_d < D
BC = min(BT, T - i_t * BT)
NT = tl.num_programs(1)
p_g = g + (i_bh * T + i_t * BT + BC - 1) * D + o_d
p_gc = gc + (i_bh * T + i_t * BT + BC - 1) * D + o_d
p_dx = dx + (i_bh * T + i_t * BT + BC - 1) * D + o_d
p_do = do + (i_bh * T + i_t * BT + BC - 1) * D + o_d
if i_t == NT - 1:
b_gc = tl.zeros([BD], dtype=tl.float32)
else:
b_gc = tl.load(g + (i_bh * T + i_t * BT + BT) * D + o_d, mask=mask, other=0).to(tl.float32)
b_dh = tl.zeros([BD], dtype=tl.float32)
for _ in range(BC - 1, -1, -1):
tl.store(p_gc, b_gc.to(p_gc.dtype.element_ty), mask=mask)
b_g = tl.load(p_g, mask=mask, other=0).to(tl.float32)
b_do = tl.load(p_do, mask=mask, other=0).to(tl.float32)
b_gc = b_gc + b_g
b_dh = b_dh + b_do
b_dx = b_dh
b_dh = b_dh * tl.exp(b_g)
tl.store(p_dx, b_dx.to(p_dx.dtype.element_ty), mask=mask)
p_g -= D
p_gc -= D
p_dx -= D
p_do -= D
|
josStorer/RWKV-Runner | finetune/lora/v6/fla/ops/hgrn/chunk.py | https://github.com/josStorer/RWKV-Runner/blob/ad6170816a776bfc312837aafc9a3ff889a3cdd3/finetune/lora/v6/fla/ops/hgrn/chunk.py | # -*- coding: utf-8 -*-
# Copyright (c) 2024, Yu Zhang, Songlin Yang
# this function implements the chunkwise form of HGRN, inspired by
# [Volodymyr Kyrylov in his blog post](https://proger.github.io/posts/scan/chunk.html)
# also refer to the `accelerated-scan` lib: https://github.com/proger/accelerated-scan
# from tests on H800, with B, H, D = 16, 4, 128, we see that the chunk can be greatly faster than the recurrent:
#
# Performance:
# seq_len chunk recurrent chunk_bwd recurrent_bwd
# 0 128.0 0.039360 0.061056 0.312160 0.205008
# 1 256.0 0.045824 0.123712 0.308784 0.297696
# 2 512.0 0.058688 0.241952 0.310720 0.626528
# 3 1024.0 0.088288 0.476992 0.313184 1.333152
# 4 2048.0 0.169472 0.943264 0.452464 2.724864
# 5 4096.0 0.329920 1.886144 0.881600 5.551520
# 6 8192.0 0.647872 3.755040 1.740496 11.117184
# 7 16384.0 1.272064 7.520576 3.446608 22.362528
from typing import Tuple
import torch
import triton
import triton.language as tl
from fla.utils import contiguous
@triton.autotune(
configs=[
triton.Config({'BD': 32}, num_warps=1),
triton.Config({'BD': 32}, num_warps=2),
triton.Config({'BD': 32}, num_warps=4),
triton.Config({'BD': 32}, num_warps=8),
triton.Config({'BD': 64}, num_warps=1),
triton.Config({'BD': 64}, num_warps=2),
triton.Config({'BD': 64}, num_warps=4),
triton.Config({'BD': 64}, num_warps=8),
triton.Config({'BD': 128}, num_warps=1),
triton.Config({'BD': 128}, num_warps=2),
triton.Config({'BD': 128}, num_warps=4),
triton.Config({'BD': 128}, num_warps=8),
],
key=['D']
)
@triton.jit
def chunk_hgrn_fwd_kernel_h(
x,
g,
gc,
o,
h0,
T: tl.constexpr,
D: tl.constexpr,
BT: tl.constexpr,
BD: tl.constexpr,
USE_INITIAL_STATE: tl.constexpr
):
i_d, i_t, i_bh = tl.program_id(0), tl.program_id(1), tl.program_id(2)
o_d = i_d * BD + tl.arange(0, BD)
mask = o_d < D
p_x = x + i_bh * T * D + i_t * BT * D + o_d
p_g = g + i_bh * T * D + i_t * BT * D + o_d
p_gc = gc + i_bh * T * D + i_t * BT * D + o_d
p_o = o + i_bh * T * D + i_t * BT * D + o_d
b_h = tl.zeros([BD], dtype=tl.float32)
b_gc = tl.zeros([BD], dtype=tl.float32)
if USE_INITIAL_STATE:
if i_t == 0:
b_h += tl.load(h0 + i_bh * D + o_d, mask=mask, other=0).to(tl.float32)
for i in range(0, BT):
mask_t = mask & ((i_t * BT + i) < T)
b_x = tl.load(p_x, mask=mask_t, other=0).to(tl.float32)
b_g = tl.load(p_g, mask=mask_t, other=0).to(tl.float32)
b_h = tl.exp(b_g) * b_h + b_x
b_gc = b_gc + b_g
tl.store(p_gc, b_gc.to(p_o.dtype.element_ty), mask=mask_t)
tl.store(p_o, b_h.to(p_o.dtype.element_ty), mask=mask_t)
p_x += D
p_g += D
p_gc += D
p_o += D
@triton.jit
def chunk_hgrn_fwd_kernel_o(
gc,
o,
s_h,
s_t,
s_d,
T: tl.constexpr,
D: tl.constexpr,
BT: tl.constexpr,
BD: tl.constexpr
):
i_d, i_bh = tl.program_id(0), tl.program_id(1)
o_d = i_d * BD + tl.arange(0, BD)
mask = o_d < D
for i_t in range(1, tl.cdiv(T, BT)):
p_gc = tl.make_block_ptr(gc + i_bh * s_h, (T, D), (s_t, s_d), (i_t * BT, i_d * BD), (BT, BD), (1, 0))
p_o = tl.make_block_ptr(o + i_bh * s_h, (T, D), (s_t, s_d), (i_t * BT, i_d * BD), (BT, BD), (1, 0))
# [BD,]
b_h0 = tl.load(o + i_bh * T * D + i_t * BT * D - D + o_d, mask=mask, other=0).to(tl.float32)
# [BT, BD]
b_gc = tl.load(p_gc, boundary_check=(0, 1)).to(tl.float32)
b_o = tl.load(p_o, boundary_check=(0, 1)).to(tl.float32)
b_o = b_o + tl.exp(b_gc) * b_h0[None, :]
tl.store(p_o, b_o.to(p_o.dtype.element_ty), boundary_check=(0, 1))
@triton.autotune(
configs=[
triton.Config({'BD': 32}, num_warps=1),
triton.Config({'BD': 32}, num_warps=2),
triton.Config({'BD': 32}, num_warps=4),
triton.Config({'BD': 32}, num_warps=8),
triton.Config({'BD': 64}, num_warps=1),
triton.Config({'BD': 64}, num_warps=2),
triton.Config({'BD': 64}, num_warps=4),
triton.Config({'BD': 64}, num_warps=8),
triton.Config({'BD': 128}, num_warps=1),
triton.Config({'BD': 128}, num_warps=2),
triton.Config({'BD': 128}, num_warps=4),
triton.Config({'BD': 128}, num_warps=8),
],
key=['D']
)
@triton.jit
def chunk_hgrn_bwd_kernel_h(
g,
gc,
dx,
do,
T: tl.constexpr,
D: tl.constexpr,
BT: tl.constexpr,
BD: tl.constexpr
):
i_d, i_t, i_bh = tl.program_id(0), tl.program_id(1), tl.program_id(2)
o_d = i_d * BD + tl.arange(0, BD)
mask = o_d < D
BC = min(BT, T - i_t * BT)
NT = tl.num_programs(1)
p_g = g + (i_bh * T + i_t * BT + BC - 1) * D + o_d
p_gc = gc + (i_bh * T + i_t * BT + BC - 1) * D + o_d
p_dx = dx + (i_bh * T + i_t * BT + BC - 1) * D + o_d
p_do = do + (i_bh * T + i_t * BT + BC - 1) * D + o_d
if i_t == NT - 1:
b_gc = tl.zeros([BD], dtype=tl.float32)
else:
b_gc = tl.load(g + (i_bh * T + i_t * BT + BT) * D + o_d, mask=mask, other=0).to(tl.float32)
b_dh = tl.zeros([BD], dtype=tl.float32)
for _ in range(BC - 1, -1, -1):
tl.store(p_gc, b_gc.to(p_gc.dtype.element_ty), mask=mask)
b_g = tl.load(p_g, mask=mask, other=0).to(tl.float32)
b_do = tl.load(p_do, mask=mask, other=0).to(tl.float32)
b_gc = b_gc + b_g
b_dh = b_dh + b_do
b_dx = b_dh
b_dh = b_dh * tl.exp(b_g)
tl.store(p_dx, b_dx.to(p_dx.dtype.element_ty), mask=mask)
p_g -= D
p_gc -= D
p_dx -= D
p_do -= D
@triton.jit
def chunk_hgrn_bwd_kernel_o(
g,
gc,
o,
dx,
dg,
s_h,
s_t,
s_d,
T: tl.constexpr,
D: tl.constexpr,
BT: tl.constexpr,
BD: tl.constexpr
):
i_d, i_bh = tl.program_id(0), tl.program_id(1)
o_d = i_d * BD + tl.arange(0, BD)
mask = o_d < D
for i_t in range(tl.cdiv(T, BT) - 1, -1, -1):
p_g = tl.make_block_ptr(g + i_bh * s_h, (T, D), (s_t, s_d), (i_t * BT, i_d * BD), (BT, BD), (1, 0))
p_gc = tl.make_block_ptr(gc + i_bh * s_h, (T, D), (s_t, s_d), (i_t * BT, i_d * BD), (BT, BD), (1, 0))
p_o = tl.make_block_ptr(o + i_bh * s_h, (T, D), (s_t, s_d), (i_t * BT - 1, i_d * BD), (BT, BD), (1, 0))
p_dx = tl.make_block_ptr(dx + i_bh * s_h, (T, D), (s_t, s_d), (i_t * BT, i_d * BD), (BT, BD), (1, 0))
p_dg = tl.make_block_ptr(dg + i_bh * s_h, (T, D), (s_t, s_d), (i_t * BT, i_d * BD), (BT, BD), (1, 0))
# [BD,]
mask_t = mask & ((i_t + 1) * BT < T)
b_ht = tl.load(dx + i_bh * T * D + (i_t + 1) * BT * D + o_d, mask=mask_t, other=0).to(tl.float32)
# [BT, BD]
b_g = tl.load(p_g, boundary_check=(0, 1)).to(tl.float32)
b_gc = tl.load(p_gc, boundary_check=(0, 1)).to(tl.float32)
b_o = tl.load(p_o, boundary_check=(0, 1)).to(tl.float32)
b_dx = tl.load(p_dx, boundary_check=(0, 1)).to(tl.float32)
b_dg = tl.load(p_dg, boundary_check=(0, 1)).to(tl.float32)
b_dx = b_dx + tl.exp(b_gc) * b_ht[None, :]
b_dg = b_o * b_dx * tl.exp(b_g)
tl.store(p_dx, b_dx.to(p_dx.dtype.element_ty), boundary_check=(0, 1))
tl.store(p_dg, b_dg.to(p_dg.dtype.element_ty), boundary_check=(0, 1))
class ChunkHGRNFunction(torch.autograd.Function):
@staticmethod
@contiguous
def forward(ctx, x, g, initial_state=None, output_final_state=False):
B, H, T, D = x.shape
BT, BD = 128, min(64, triton.next_power_of_2(D))
num_warps = 8 if BD == 64 else 4
gc = torch.empty_like(g, dtype=torch.float)
o = torch.empty_like(x, dtype=torch.float)
def grid(meta): return (triton.cdiv(D, meta['BD']), triton.cdiv(T, meta['BT']), B * H)
chunk_hgrn_fwd_kernel_h[grid](
x, g, gc, o, initial_state,
T, D,
BT=BT,
USE_INITIAL_STATE=initial_state is not None
)
def grid(meta): return (triton.cdiv(D, meta['BD']), B * H)
chunk_hgrn_fwd_kernel_o[grid](
gc, o,
o.stride(1), o.stride(2), o.stride(3),
T, D,
BT=BT, BD=BD,
num_warps=num_warps
)
final_state = None
if output_final_state:
final_state = o[:, :, -1].clone()
o = o.to(x.dtype)
ctx.save_for_backward(g, o, initial_state)
return o, final_state
@staticmethod
@contiguous
def backward(ctx, do, dht=None):
g, o, initial_state = ctx.saved_tensors
B, H, T, D = do.shape
BT, BD = 128, min(64, triton.next_power_of_2(D))
num_warps = 8 if BD == 64 else 4
gc = torch.empty_like(g, dtype=torch.float)
dx = torch.empty_like(o)
dg = torch.empty_like(g)
def grid(meta): return (triton.cdiv(D, meta['BD']), triton.cdiv(T, meta['BT']), B * H)
chunk_hgrn_bwd_kernel_h[grid](
g, gc, dx, do,
T, D,
BT=BT
)
def grid(meta): return (triton.cdiv(D, meta['BD']), B * H)
chunk_hgrn_bwd_kernel_o[grid](
g, gc, o, dx, dg,
o.stride(1), o.stride(2), o.stride(3),
T, D,
BT=BT, BD=BD,
num_warps=num_warps
)
if initial_state is not None:
dg[:, :, 0] = initial_state * dx[:, :, 0] * g[:, :, 0].exp()
return dx, dg, None, None
def chunk_hgrn(
x: torch.Tensor,
g: torch.Tensor,
initial_state: torch.Tensor = None,
output_final_state: bool = False
) -> Tuple[torch.Tensor, torch.Tensor]:
if initial_state is not None:
initial_state = initial_state.detach()
o, final_state = ChunkHGRNFunction.apply(x, g, initial_state, output_final_state)
return o, final_state
if __name__ == '__main__':
import torch.nn.functional as F
from fla.ops.hgrn.naive import naive_recurrent_hgrn
from fla.ops.hgrn.recurrent_fuse import fused_recurrent_hgrn
B, H, T, D = 8, 4, 512, 128
dtype = torch.bfloat16
torch.manual_seed(42)
# [batch_size, n_heads, seq_len, d_head]
x = torch.randn((B, H, T, D), dtype=dtype, device='cuda')
g = torch.randn((B, H, T, D), dtype=dtype, device='cuda')
x, g = (1 - g.sigmoid()) * x, F.logsigmoid(g)
print(f'x:\t{float(x.min()):>10.6f}\t{float(x.max()):>10.6f}')
print(f'g:\t{float(g.min()):>10.6f}\t{float(g.max()):>10.6f}')
x, g = (i.detach().clone().to(dtype).requires_grad_() for i in (x, g))
print(f"DTYPE:\t{x.dtype}")
do = torch.randn_like(x)
h0 = torch.randn_like(x[:, :, 0])
ref, ref_ht = naive_recurrent_hgrn(x, g, h0, output_final_state=True)
ref.backward(do)
ref_dx, x.grad = x.grad.clone(), None
ref_dg, g.grad = g.grad.clone(), None
tri, tri_ht = fused_recurrent_hgrn(x, g, h0, output_final_state=True)
tri.backward(do)
tri_dx, x.grad = x.grad.clone(), None
tri_dg, g.grad = g.grad.clone(), None
print(" \t DIFF\t MAX")
print(' o\t', f"{float((ref - tri).abs().max()):>10.6f}\t{float(ref.max()):>10.6f}")
print('ht\t', f"{float((ref_ht[0] - tri_ht[0]).abs().max()):>10.6f}\t{float(ref.max()):>10.6f}")
print('dx\t', f"{float((ref_dx - tri_dx).abs().max()):>10.6f}\t{float(ref_dx.max()):>10.6f}")
print('dg\t', f"{float((ref_dg - tri_dg).abs().max()):>10.6f}\t{float(ref_dg.max()):>10.6f}")
print('Done!')
@triton.testing.perf_report(
triton.testing.Benchmark(
# argument names to use as an x-axis for the plot
x_names=['seq_len'],
# different possible values for `x_name`
x_vals=[128 * 2 ** i for i in range(0, 8)],
# argument name whose value corresponds to a different line in the plot
line_arg='provider',
# possible values for `line_arg``
line_vals=['chunk', 'recurrent', 'chunk_bwd', 'recurrent_bwd'],
# label name for the lines
line_names=['chunk', 'recurrent', 'chunk_bwd', 'recurrent_bwd'],
# line styles
styles=[('green', '-'), ('blue', '--'), ('red', '-.'), ('cyan', ':'), ('yellow', 'dotted'), ('black', 'dashed')],
ylabel="Execution Time (ms)", # label name for the y-axis
# name for the plot. Used also as a file name for saving the plot.
plot_name="Performance",
args={},
)
)
def benchmark(seq_len, provider):
dtype = torch.bfloat16
B, H, D = 16, 4, 128
x = torch.randn((B, H, seq_len, D), dtype=dtype, device='cuda')
g = torch.randn((B, H, seq_len, D), dtype=dtype, device='cuda').sigmoid()
x = (1 - g) * x
x, g = (i.detach().clone().to(dtype).requires_grad_() for i in (x, g))
do = torch.randn_like(x, dtype=dtype)
quantiles = [0.5, 0.2, 0.8]
results = 0, 0, 0
if provider == 'chunk':
results = triton.testing.do_bench(lambda: chunk_hgrn(x, g), quantiles=quantiles)
if provider == 'recurrent':
results = triton.testing.do_bench(lambda: fused_recurrent_hgrn(x, g), quantiles=quantiles)
if provider == 'chunk_bwd':
results = triton.testing.do_bench(lambda: chunk_hgrn(x, g)[0].backward(do), quantiles=quantiles)
if provider == 'recurrent_bwd':
results = triton.testing.do_bench(lambda: fused_recurrent_hgrn(x, g)[0].backward(do), quantiles=quantiles)
return results
benchmark.run(print_data=True)
| @triton.jit
def chunk_hgrn_bwd_kernel_o(
g,
gc,
o,
dx,
dg,
s_h,
s_t,
s_d,
T: tl.constexpr,
D: tl.constexpr,
BT: tl.constexpr,
BD: tl.constexpr
):
i_d, i_bh = tl.program_id(0), tl.program_id(1)
o_d = i_d * BD + tl.arange(0, BD)
mask = o_d < D
for i_t in range(tl.cdiv(T, BT) - 1, -1, -1):
p_g = tl.make_block_ptr(g + i_bh * s_h, (T, D), (s_t, s_d), (i_t * BT, i_d * BD), (BT, BD), (1, 0))
p_gc = tl.make_block_ptr(gc + i_bh * s_h, (T, D), (s_t, s_d), (i_t * BT, i_d * BD), (BT, BD), (1, 0))
p_o = tl.make_block_ptr(o + i_bh * s_h, (T, D), (s_t, s_d), (i_t * BT - 1, i_d * BD), (BT, BD), (1, 0))
p_dx = tl.make_block_ptr(dx + i_bh * s_h, (T, D), (s_t, s_d), (i_t * BT, i_d * BD), (BT, BD), (1, 0))
p_dg = tl.make_block_ptr(dg + i_bh * s_h, (T, D), (s_t, s_d), (i_t * BT, i_d * BD), (BT, BD), (1, 0))
# [BD,]
mask_t = mask & ((i_t + 1) * BT < T)
b_ht = tl.load(dx + i_bh * T * D + (i_t + 1) * BT * D + o_d, mask=mask_t, other=0).to(tl.float32)
# [BT, BD]
b_g = tl.load(p_g, boundary_check=(0, 1)).to(tl.float32)
b_gc = tl.load(p_gc, boundary_check=(0, 1)).to(tl.float32)
b_o = tl.load(p_o, boundary_check=(0, 1)).to(tl.float32)
b_dx = tl.load(p_dx, boundary_check=(0, 1)).to(tl.float32)
b_dg = tl.load(p_dg, boundary_check=(0, 1)).to(tl.float32)
b_dx = b_dx + tl.exp(b_gc) * b_ht[None, :]
b_dg = b_o * b_dx * tl.exp(b_g)
tl.store(p_dx, b_dx.to(p_dx.dtype.element_ty), boundary_check=(0, 1))
tl.store(p_dg, b_dg.to(p_dg.dtype.element_ty), boundary_check=(0, 1))
class ChunkHGRNFunction(torch.autograd.Function):
@staticmethod
@contiguous
def forward(ctx, x, g, initial_state=None, output_final_state=False):
B, H, T, D = x.shape
BT, BD = 128, min(64, triton.next_power_of_2(D))
num_warps = 8 if BD == 64 else 4
gc = torch.empty_like(g, dtype=torch.float)
o = torch.empty_like(x, dtype=torch.float)
def grid(meta): return (triton.cdiv(D, meta['BD']), triton.cdiv(T, meta['BT']), B * H)
chunk_hgrn_fwd_kernel_h[grid](
x, g, gc, o, initial_state,
T, D,
BT=BT,
USE_INITIAL_STATE=initial_state is not None
)
def grid(meta): return (triton.cdiv(D, meta['BD']), B * H)
chunk_hgrn_fwd_kernel_o[grid](
gc, o,
o.stride(1), o.stride(2), o.stride(3),
T, D,
BT=BT, BD=BD,
num_warps=num_warps
)
final_state = None
if output_final_state:
final_state = o[:, :, -1].clone()
o = o.to(x.dtype)
ctx.save_for_backward(g, o, initial_state)
return o, final_state
@staticmethod
@contiguous
def backward(ctx, do, dht=None):
g, o, initial_state = ctx.saved_tensors
B, H, T, D = do.shape
BT, BD = 128, min(64, triton.next_power_of_2(D))
num_warps = 8 if BD == 64 else 4
gc = torch.empty_like(g, dtype=torch.float)
dx = torch.empty_like(o)
dg = torch.empty_like(g)
def grid(meta): return (triton.cdiv(D, meta['BD']), triton.cdiv(T, meta['BT']), B * H)
chunk_hgrn_bwd_kernel_h[grid](
g, gc, dx, do,
T, D,
BT=BT
)
def grid(meta): return (triton.cdiv(D, meta['BD']), B * H)
chunk_hgrn_bwd_kernel_o[grid](
g, gc, o, dx, dg,
o.stride(1), o.stride(2), o.stride(3),
T, D,
BT=BT, BD=BD,
num_warps=num_warps
)
if initial_state is not None:
dg[:, :, 0] = initial_state * dx[:, :, 0] * g[:, :, 0].exp()
return dx, dg, None, None
def chunk_hgrn(
x: torch.Tensor,
g: torch.Tensor,
initial_state: torch.Tensor = None,
output_final_state: bool = False
) -> Tuple[torch.Tensor, torch.Tensor]:
if initial_state is not None:
initial_state = initial_state.detach()
o, final_state = ChunkHGRNFunction.apply(x, g, initial_state, output_final_state)
return o, final_state
if __name__ == '__main__':
import torch.nn.functional as F
from fla.ops.hgrn.naive import naive_recurrent_hgrn
from fla.ops.hgrn.recurrent_fuse import fused_recurrent_hgrn
B, H, T, D = 8, 4, 512, 128
dtype = torch.bfloat16
torch.manual_seed(42)
# [batch_size, n_heads, seq_len, d_head]
x = torch.randn((B, H, T, D), dtype=dtype, device='cuda')
g = torch.randn((B, H, T, D), dtype=dtype, device='cuda')
x, g = (1 - g.sigmoid()) * x, F.logsigmoid(g)
print(f'x:\t{float(x.min()):>10.6f}\t{float(x.max()):>10.6f}')
print(f'g:\t{float(g.min()):>10.6f}\t{float(g.max()):>10.6f}')
x, g = (i.detach().clone().to(dtype).requires_grad_() for i in (x, g))
print(f"DTYPE:\t{x.dtype}")
do = torch.randn_like(x)
h0 = torch.randn_like(x[:, :, 0])
ref, ref_ht = naive_recurrent_hgrn(x, g, h0, output_final_state=True)
ref.backward(do)
ref_dx, x.grad = x.grad.clone(), None
ref_dg, g.grad = g.grad.clone(), None
tri, tri_ht = fused_recurrent_hgrn(x, g, h0, output_final_state=True)
tri.backward(do)
tri_dx, x.grad = x.grad.clone(), None
tri_dg, g.grad = g.grad.clone(), None
print(" \t DIFF\t MAX")
print(' o\t', f"{float((ref - tri).abs().max()):>10.6f}\t{float(ref.max()):>10.6f}")
print('ht\t', f"{float((ref_ht[0] - tri_ht[0]).abs().max()):>10.6f}\t{float(ref.max()):>10.6f}")
print('dx\t', f"{float((ref_dx - tri_dx).abs().max()):>10.6f}\t{float(ref_dx.max()):>10.6f}")
print('dg\t', f"{float((ref_dg - tri_dg).abs().max()):>10.6f}\t{float(ref_dg.max()):>10.6f}")
print('Done!')
@triton.testing.perf_report(
triton.testing.Benchmark(
# argument names to use as an x-axis for the plot
x_names=['seq_len'],
# different possible values for `x_name`
x_vals=[128 * 2 ** i for i in range(0, 8)],
# argument name whose value corresponds to a different line in the plot
line_arg='provider',
# possible values for `line_arg``
line_vals=['chunk', 'recurrent', 'chunk_bwd', 'recurrent_bwd'],
# label name for the lines
line_names=['chunk', 'recurrent', 'chunk_bwd', 'recurrent_bwd'],
# line styles
styles=[('green', '-'), ('blue', '--'), ('red', '-.'), ('cyan', ':'), ('yellow', 'dotted'), ('black', 'dashed')],
ylabel="Execution Time (ms)", # label name for the y-axis
# name for the plot. Used also as a file name for saving the plot.
plot_name="Performance",
args={},
)
)
def benchmark(seq_len, provider):
dtype = torch.bfloat16
B, H, D = 16, 4, 128
x = torch.randn((B, H, seq_len, D), dtype=dtype, device='cuda')
g = torch.randn((B, H, seq_len, D), dtype=dtype, device='cuda').sigmoid()
x = (1 - g) * x
x, g = (i.detach().clone().to(dtype).requires_grad_() for i in (x, g))
do = torch.randn_like(x, dtype=dtype)
quantiles = [0.5, 0.2, 0.8]
results = 0, 0, 0
if provider == 'chunk':
results = triton.testing.do_bench(lambda: chunk_hgrn(x, g), quantiles=quantiles)
if provider == 'recurrent':
results = triton.testing.do_bench(lambda: fused_recurrent_hgrn(x, g), quantiles=quantiles)
if provider == 'chunk_bwd':
results = triton.testing.do_bench(lambda: chunk_hgrn(x, g)[0].backward(do), quantiles=quantiles)
if provider == 'recurrent_bwd':
results = triton.testing.do_bench(lambda: fused_recurrent_hgrn(x, g)[0].backward(do), quantiles=quantiles)
return results
benchmark.run(print_data=True)
|
INT-FlashAttention2024/INT-FlashAttention | flash_atten_full_int8.py | https://github.com/INT-FlashAttention2024/INT-FlashAttention/blob/7f7bfb00bcd26b2cef49e7783f51ef610e05abf7/flash_atten_full_int8.py | import pytest
import torch
import triton
import triton.language as tl
from configs import *
@triton.jit
def _attn_fwd_inner_full_int8(acc, l_i, m_i, q, #
K_block_ptr, V_block_ptr, #
q_scale, K_block_scale_ptr, v_scale,#
start_m, qk_scale, #
BLOCK_M: tl.constexpr, HEAD_DIM: tl.constexpr, BLOCK_N: tl.constexpr, #
STAGE: tl.constexpr, offs_m: tl.constexpr, offs_n: tl.constexpr, #
N_CTX: tl.constexpr, fp8_v: tl.constexpr):
# range of values handled by this stage
if STAGE == 1:
lo, hi = 0, start_m * BLOCK_M
elif STAGE == 2:
lo, hi = start_m * BLOCK_M, (start_m + 1) * BLOCK_M
lo = tl.multiple_of(lo, BLOCK_M)
# causal = False
else:
lo, hi = 0, N_CTX
K_block_ptr = tl.advance(K_block_ptr, (0, lo))
K_block_scale_ptr = tl.advance(K_block_scale_ptr, (lo,))
V_block_ptr = tl.advance(V_block_ptr, (lo, 0))
# loop over k, v and update accumulator
for start_n in range(lo, hi, BLOCK_N):
# for start_n in range(0, 32, BLOCK_N):
start_n = tl.multiple_of(start_n, BLOCK_N)
# -- compute qk ----
k = tl.load(K_block_ptr)
k_scale = tl.load(K_block_scale_ptr)
qk = tl.dot(q, k).to(tl.float32)
qk = qk * q_scale[:, None]
qk = qk * k_scale
if STAGE == 2:
mask = offs_m[:, None] >= (start_n + offs_n[None, :])
qk = qk * qk_scale + tl.where(mask, 0, -1.0e6)
m_ij = tl.maximum(m_i, tl.max(qk, 1))
qk -= m_ij[:, None]
else:
m_ij = tl.maximum(m_i, tl.max(qk, 1) * qk_scale)
qk = qk * qk_scale - m_ij[:, None]
p = tl.math.exp2(qk)
l_ij = tl.sum(p, 1)
p = p.to(tl.float16)
p = p * 127
p = (p+0.5).to(tl.int8)
# -- update m_i and l_i
alpha = tl.math.exp2(m_i - m_ij)
l_i = l_i * alpha + l_ij
# -- update output accumulator --
acc = acc * alpha[:, None]
# update acc
v = tl.load(V_block_ptr)
tmp = tl.dot(p, v)
tmp = tmp.to(tl.float32)
tmp = tmp * v_scale / 127
acc = acc + tmp
# tmp = tl.dot(p, v)
# tl.device_print("tmp", tmp)
# update m_i and l_i
m_i = m_ij
V_block_ptr = tl.advance(V_block_ptr, (BLOCK_N, 0))
K_block_ptr = tl.advance(K_block_ptr, (0, BLOCK_N))
K_block_scale_ptr = tl.advance(K_block_scale_ptr, (BLOCK_N,))
return acc, l_i
@triton.autotune(list(filter(keep, configs)), key=["N_CTX", "HEAD_DIM"])
@triton.jit
def _attn_fwd_full_int8(Q, K, V, Q_scale, K_scale, V_scale, sm_scale, Out, #
stride_qz, stride_qh, stride_qm, stride_qk, #
stride_kz, stride_kh, stride_kn, stride_kk, #
stride_vz, stride_vh, stride_vk, stride_vn, #
stride_oz, stride_oh, stride_om, stride_on, #
stride_s1, stride_s2, stride_s3, #
stride_v1, stride_v2, #
Z, H, N_CTX, #
HEAD_DIM: tl.constexpr, #
BLOCK_M: tl.constexpr, #
BLOCK_N: tl.constexpr, #
STAGE: tl.constexpr #
):
tl.static_assert(BLOCK_N <= HEAD_DIM)
start_m = tl.program_id(0)
off_hz = tl.program_id(1)
off_z = off_hz // H
off_h = off_hz % H
qvk_offset = off_z.to(tl.int64) * stride_qz + off_h.to(tl.int64) * stride_qh
scl_offset = off_z.to(tl.int64) * stride_s1 + off_h.to(tl.int64) * stride_s2
vscl_offset = off_z.to(tl.int64) * stride_v1 + off_h.to(tl.int64) * stride_v2
# block pointers
Q_block_ptr = tl.make_block_ptr(
base=Q + qvk_offset,
shape=(N_CTX, HEAD_DIM),
strides=(stride_qm, stride_qk),
offsets=(start_m * BLOCK_M, 0),
block_shape=(BLOCK_M, HEAD_DIM),
order=(1, 0),
)
V_block_ptr = tl.make_block_ptr(
base=V + qvk_offset,
shape=(N_CTX, HEAD_DIM),
strides=(stride_vk, stride_vn),
offsets=(0, 0),
block_shape=(BLOCK_N, HEAD_DIM),
order=(1, 0),
)
K_block_ptr = tl.make_block_ptr(
base=K + qvk_offset,
shape=(HEAD_DIM, N_CTX),
strides=(stride_kk, stride_kn),
offsets=(0, 0),
block_shape=(HEAD_DIM, BLOCK_N),
order=(0, 1),
)
O_block_ptr = tl.make_block_ptr(
base=Out + qvk_offset,
shape=(N_CTX, HEAD_DIM),
strides=(stride_om, stride_on),
offsets=(start_m * BLOCK_M, 0),
block_shape=(BLOCK_M, HEAD_DIM),
order=(1, 0),
)
# scale vector pointers
Q_block_scale_ptr = tl.make_block_ptr(
base=Q_scale + scl_offset,
shape=(N_CTX,),
strides=(stride_s3,),
offsets=(start_m * BLOCK_M,),
block_shape=(BLOCK_M,),
order=(0,),
)
K_block_scale_ptr = tl.make_block_ptr(
base=K_scale + scl_offset,
shape=(N_CTX,),
strides=(stride_s3,),
offsets=(0,),
block_shape=(BLOCK_N,),
order=(0,),
)
# initialize offsets
offs_m = start_m * BLOCK_M + tl.arange(0, BLOCK_M)
offs_n = tl.arange(0, BLOCK_N)
# initialize pointer to m and l
m_i = tl.zeros([BLOCK_M], dtype=tl.float32) - float("inf")
l_i = tl.zeros([BLOCK_M], dtype=tl.float32) + 1.0
acc = tl.zeros([BLOCK_M, HEAD_DIM], dtype=tl.float32)
# load scales
qk_scale = sm_scale
qk_scale *= 1.44269504 # 1/log(2)
# load q: it will stay in SRAM throughout
q = tl.load(Q_block_ptr)
q_scale = tl.load(Q_block_scale_ptr)
v_scale = tl.load(V_scale + vscl_offset)
# stage 1: off-band
# For causal = True, STAGE = 3 and _attn_fwd_inner gets 1 as its STAGE
# For causal = False, STAGE = 1, and _attn_fwd_inner gets 3 as its STAGE
if STAGE & 1:
acc, l_i = _attn_fwd_inner_full_int8(acc, l_i, m_i, q, K_block_ptr, V_block_ptr, q_scale, K_block_scale_ptr, v_scale, #
start_m, qk_scale, #
BLOCK_M, HEAD_DIM, BLOCK_N, #
4 - STAGE, offs_m, offs_n, N_CTX, V.dtype.element_ty == tl.float8e5 #
)
# stage 2: on-band
if STAGE & 2:
# barrier makes it easier for compielr to schedule the
# two loops independently
acc, l_i = _attn_fwd_inner_full_int8(acc, l_i, m_i, q, K_block_ptr, V_block_ptr, q_scale, K_block_scale_ptr, v_scale, #
start_m, qk_scale, #
BLOCK_M, HEAD_DIM, BLOCK_N, #
2, offs_m, offs_n, N_CTX, V.dtype.element_ty == tl.float8e5 #
)
# epilogue
acc = acc / l_i[:, None]
tl.store(O_block_ptr, acc.to(Out.type.element_ty))
class _attention_full_int8(torch.autograd.Function):
@staticmethod # q, k, v: int8, q_scale, k_scale: float16
def forward(ctx, q, k, v, q_scale, k_scale, v_scale, causal, sm_scale):
# shape constraints
HEAD_DIM_Q, HEAD_DIM_K = q.shape[-1], k.shape[-1]
# when v is in float8_e5m2 it is transposed.
HEAD_DIM_V = v.shape[-1]
assert HEAD_DIM_Q == HEAD_DIM_K and HEAD_DIM_K == HEAD_DIM_V
assert HEAD_DIM_K in {16, 32, 64, 128, 256}
o = torch.empty_like(q)
o = o.to(torch.float16)
stage = 3 if causal else 1
extra_kern_args = {}
# Tuning for AMD target
if is_hip():
waves_per_eu = 3 if HEAD_DIM_K <= 64 else 2
extra_kern_args = {"waves_per_eu": waves_per_eu, "allow_flush_denorm": True}
grid = lambda args: (triton.cdiv(q.shape[2], args["BLOCK_M"]), q.shape[0] * q.shape[1], 1)
_attn_fwd_full_int8[grid](
q, k, v, q_scale, k_scale, v_scale, sm_scale, o, #
q.stride(0), q.stride(1), q.stride(2), q.stride(3), #
k.stride(0), k.stride(1), k.stride(2), k.stride(3), #
v.stride(0), v.stride(1), v.stride(2), v.stride(3), #
o.stride(0), o.stride(1), o.stride(2), o.stride(3), #
q_scale.stride(0), q_scale.stride(1), q_scale.stride(2), #
v_scale.stride(0), v_scale.stride(1), #
q.shape[0], q.shape[1], #
N_CTX=q.shape[2], #
HEAD_DIM=HEAD_DIM_K, #
STAGE=stage, #
**extra_kern_args)
ctx.sm_scale = sm_scale
ctx.HEAD_DIM = HEAD_DIM_K
ctx.causal = causal
return o
attention_full_int8 = _attention_full_int8.apply | @triton.jit
def _attn_fwd_inner_full_int8(acc, l_i, m_i, q, #
K_block_ptr, V_block_ptr, #
q_scale, K_block_scale_ptr, v_scale,#
start_m, qk_scale, #
BLOCK_M: tl.constexpr, HEAD_DIM: tl.constexpr, BLOCK_N: tl.constexpr, #
STAGE: tl.constexpr, offs_m: tl.constexpr, offs_n: tl.constexpr, #
N_CTX: tl.constexpr, fp8_v: tl.constexpr):
# range of values handled by this stage
if STAGE == 1:
lo, hi = 0, start_m * BLOCK_M
elif STAGE == 2:
lo, hi = start_m * BLOCK_M, (start_m + 1) * BLOCK_M
lo = tl.multiple_of(lo, BLOCK_M)
# causal = False
else:
lo, hi = 0, N_CTX
K_block_ptr = tl.advance(K_block_ptr, (0, lo))
K_block_scale_ptr = tl.advance(K_block_scale_ptr, (lo,))
V_block_ptr = tl.advance(V_block_ptr, (lo, 0))
# loop over k, v and update accumulator
for start_n in range(lo, hi, BLOCK_N):
# for start_n in range(0, 32, BLOCK_N):
start_n = tl.multiple_of(start_n, BLOCK_N)
# -- compute qk ----
k = tl.load(K_block_ptr)
k_scale = tl.load(K_block_scale_ptr)
qk = tl.dot(q, k).to(tl.float32)
qk = qk * q_scale[:, None]
qk = qk * k_scale
if STAGE == 2:
mask = offs_m[:, None] >= (start_n + offs_n[None, :])
qk = qk * qk_scale + tl.where(mask, 0, -1.0e6)
m_ij = tl.maximum(m_i, tl.max(qk, 1))
qk -= m_ij[:, None]
else:
m_ij = tl.maximum(m_i, tl.max(qk, 1) * qk_scale)
qk = qk * qk_scale - m_ij[:, None]
p = tl.math.exp2(qk)
l_ij = tl.sum(p, 1)
p = p.to(tl.float16)
p = p * 127
p = (p+0.5).to(tl.int8)
# -- update m_i and l_i
alpha = tl.math.exp2(m_i - m_ij)
l_i = l_i * alpha + l_ij
# -- update output accumulator --
acc = acc * alpha[:, None]
# update acc
v = tl.load(V_block_ptr)
tmp = tl.dot(p, v)
tmp = tmp.to(tl.float32)
tmp = tmp * v_scale / 127
acc = acc + tmp
# tmp = tl.dot(p, v)
# tl.device_print("tmp", tmp)
# update m_i and l_i
m_i = m_ij
V_block_ptr = tl.advance(V_block_ptr, (BLOCK_N, 0))
K_block_ptr = tl.advance(K_block_ptr, (0, BLOCK_N))
K_block_scale_ptr = tl.advance(K_block_scale_ptr, (BLOCK_N,))
return acc, l_i
@triton.autotune(list(filter(keep, configs)), key=["N_CTX", "HEAD_DIM"])
|
INT-FlashAttention2024/INT-FlashAttention | flash_atten_full_int8.py | https://github.com/INT-FlashAttention2024/INT-FlashAttention/blob/7f7bfb00bcd26b2cef49e7783f51ef610e05abf7/flash_atten_full_int8.py | import pytest
import torch
import triton
import triton.language as tl
from configs import *
@triton.jit
def _attn_fwd_inner_full_int8(acc, l_i, m_i, q, #
K_block_ptr, V_block_ptr, #
q_scale, K_block_scale_ptr, v_scale,#
start_m, qk_scale, #
BLOCK_M: tl.constexpr, HEAD_DIM: tl.constexpr, BLOCK_N: tl.constexpr, #
STAGE: tl.constexpr, offs_m: tl.constexpr, offs_n: tl.constexpr, #
N_CTX: tl.constexpr, fp8_v: tl.constexpr):
# range of values handled by this stage
if STAGE == 1:
lo, hi = 0, start_m * BLOCK_M
elif STAGE == 2:
lo, hi = start_m * BLOCK_M, (start_m + 1) * BLOCK_M
lo = tl.multiple_of(lo, BLOCK_M)
# causal = False
else:
lo, hi = 0, N_CTX
K_block_ptr = tl.advance(K_block_ptr, (0, lo))
K_block_scale_ptr = tl.advance(K_block_scale_ptr, (lo,))
V_block_ptr = tl.advance(V_block_ptr, (lo, 0))
# loop over k, v and update accumulator
for start_n in range(lo, hi, BLOCK_N):
# for start_n in range(0, 32, BLOCK_N):
start_n = tl.multiple_of(start_n, BLOCK_N)
# -- compute qk ----
k = tl.load(K_block_ptr)
k_scale = tl.load(K_block_scale_ptr)
qk = tl.dot(q, k).to(tl.float32)
qk = qk * q_scale[:, None]
qk = qk * k_scale
if STAGE == 2:
mask = offs_m[:, None] >= (start_n + offs_n[None, :])
qk = qk * qk_scale + tl.where(mask, 0, -1.0e6)
m_ij = tl.maximum(m_i, tl.max(qk, 1))
qk -= m_ij[:, None]
else:
m_ij = tl.maximum(m_i, tl.max(qk, 1) * qk_scale)
qk = qk * qk_scale - m_ij[:, None]
p = tl.math.exp2(qk)
l_ij = tl.sum(p, 1)
p = p.to(tl.float16)
p = p * 127
p = (p+0.5).to(tl.int8)
# -- update m_i and l_i
alpha = tl.math.exp2(m_i - m_ij)
l_i = l_i * alpha + l_ij
# -- update output accumulator --
acc = acc * alpha[:, None]
# update acc
v = tl.load(V_block_ptr)
tmp = tl.dot(p, v)
tmp = tmp.to(tl.float32)
tmp = tmp * v_scale / 127
acc = acc + tmp
# tmp = tl.dot(p, v)
# tl.device_print("tmp", tmp)
# update m_i and l_i
m_i = m_ij
V_block_ptr = tl.advance(V_block_ptr, (BLOCK_N, 0))
K_block_ptr = tl.advance(K_block_ptr, (0, BLOCK_N))
K_block_scale_ptr = tl.advance(K_block_scale_ptr, (BLOCK_N,))
return acc, l_i
@triton.autotune(list(filter(keep, configs)), key=["N_CTX", "HEAD_DIM"])
@triton.jit
def _attn_fwd_full_int8(Q, K, V, Q_scale, K_scale, V_scale, sm_scale, Out, #
stride_qz, stride_qh, stride_qm, stride_qk, #
stride_kz, stride_kh, stride_kn, stride_kk, #
stride_vz, stride_vh, stride_vk, stride_vn, #
stride_oz, stride_oh, stride_om, stride_on, #
stride_s1, stride_s2, stride_s3, #
stride_v1, stride_v2, #
Z, H, N_CTX, #
HEAD_DIM: tl.constexpr, #
BLOCK_M: tl.constexpr, #
BLOCK_N: tl.constexpr, #
STAGE: tl.constexpr #
):
tl.static_assert(BLOCK_N <= HEAD_DIM)
start_m = tl.program_id(0)
off_hz = tl.program_id(1)
off_z = off_hz // H
off_h = off_hz % H
qvk_offset = off_z.to(tl.int64) * stride_qz + off_h.to(tl.int64) * stride_qh
scl_offset = off_z.to(tl.int64) * stride_s1 + off_h.to(tl.int64) * stride_s2
vscl_offset = off_z.to(tl.int64) * stride_v1 + off_h.to(tl.int64) * stride_v2
# block pointers
Q_block_ptr = tl.make_block_ptr(
base=Q + qvk_offset,
shape=(N_CTX, HEAD_DIM),
strides=(stride_qm, stride_qk),
offsets=(start_m * BLOCK_M, 0),
block_shape=(BLOCK_M, HEAD_DIM),
order=(1, 0),
)
V_block_ptr = tl.make_block_ptr(
base=V + qvk_offset,
shape=(N_CTX, HEAD_DIM),
strides=(stride_vk, stride_vn),
offsets=(0, 0),
block_shape=(BLOCK_N, HEAD_DIM),
order=(1, 0),
)
K_block_ptr = tl.make_block_ptr(
base=K + qvk_offset,
shape=(HEAD_DIM, N_CTX),
strides=(stride_kk, stride_kn),
offsets=(0, 0),
block_shape=(HEAD_DIM, BLOCK_N),
order=(0, 1),
)
O_block_ptr = tl.make_block_ptr(
base=Out + qvk_offset,
shape=(N_CTX, HEAD_DIM),
strides=(stride_om, stride_on),
offsets=(start_m * BLOCK_M, 0),
block_shape=(BLOCK_M, HEAD_DIM),
order=(1, 0),
)
# scale vector pointers
Q_block_scale_ptr = tl.make_block_ptr(
base=Q_scale + scl_offset,
shape=(N_CTX,),
strides=(stride_s3,),
offsets=(start_m * BLOCK_M,),
block_shape=(BLOCK_M,),
order=(0,),
)
K_block_scale_ptr = tl.make_block_ptr(
base=K_scale + scl_offset,
shape=(N_CTX,),
strides=(stride_s3,),
offsets=(0,),
block_shape=(BLOCK_N,),
order=(0,),
)
# initialize offsets
offs_m = start_m * BLOCK_M + tl.arange(0, BLOCK_M)
offs_n = tl.arange(0, BLOCK_N)
# initialize pointer to m and l
m_i = tl.zeros([BLOCK_M], dtype=tl.float32) - float("inf")
l_i = tl.zeros([BLOCK_M], dtype=tl.float32) + 1.0
acc = tl.zeros([BLOCK_M, HEAD_DIM], dtype=tl.float32)
# load scales
qk_scale = sm_scale
qk_scale *= 1.44269504 # 1/log(2)
# load q: it will stay in SRAM throughout
q = tl.load(Q_block_ptr)
q_scale = tl.load(Q_block_scale_ptr)
v_scale = tl.load(V_scale + vscl_offset)
# stage 1: off-band
# For causal = True, STAGE = 3 and _attn_fwd_inner gets 1 as its STAGE
# For causal = False, STAGE = 1, and _attn_fwd_inner gets 3 as its STAGE
if STAGE & 1:
acc, l_i = _attn_fwd_inner_full_int8(acc, l_i, m_i, q, K_block_ptr, V_block_ptr, q_scale, K_block_scale_ptr, v_scale, #
start_m, qk_scale, #
BLOCK_M, HEAD_DIM, BLOCK_N, #
4 - STAGE, offs_m, offs_n, N_CTX, V.dtype.element_ty == tl.float8e5 #
)
# stage 2: on-band
if STAGE & 2:
# barrier makes it easier for compielr to schedule the
# two loops independently
acc, l_i = _attn_fwd_inner_full_int8(acc, l_i, m_i, q, K_block_ptr, V_block_ptr, q_scale, K_block_scale_ptr, v_scale, #
start_m, qk_scale, #
BLOCK_M, HEAD_DIM, BLOCK_N, #
2, offs_m, offs_n, N_CTX, V.dtype.element_ty == tl.float8e5 #
)
# epilogue
acc = acc / l_i[:, None]
tl.store(O_block_ptr, acc.to(Out.type.element_ty))
class _attention_full_int8(torch.autograd.Function):
@staticmethod # q, k, v: int8, q_scale, k_scale: float16
def forward(ctx, q, k, v, q_scale, k_scale, v_scale, causal, sm_scale):
# shape constraints
HEAD_DIM_Q, HEAD_DIM_K = q.shape[-1], k.shape[-1]
# when v is in float8_e5m2 it is transposed.
HEAD_DIM_V = v.shape[-1]
assert HEAD_DIM_Q == HEAD_DIM_K and HEAD_DIM_K == HEAD_DIM_V
assert HEAD_DIM_K in {16, 32, 64, 128, 256}
o = torch.empty_like(q)
o = o.to(torch.float16)
stage = 3 if causal else 1
extra_kern_args = {}
# Tuning for AMD target
if is_hip():
waves_per_eu = 3 if HEAD_DIM_K <= 64 else 2
extra_kern_args = {"waves_per_eu": waves_per_eu, "allow_flush_denorm": True}
grid = lambda args: (triton.cdiv(q.shape[2], args["BLOCK_M"]), q.shape[0] * q.shape[1], 1)
_attn_fwd_full_int8[grid](
q, k, v, q_scale, k_scale, v_scale, sm_scale, o, #
q.stride(0), q.stride(1), q.stride(2), q.stride(3), #
k.stride(0), k.stride(1), k.stride(2), k.stride(3), #
v.stride(0), v.stride(1), v.stride(2), v.stride(3), #
o.stride(0), o.stride(1), o.stride(2), o.stride(3), #
q_scale.stride(0), q_scale.stride(1), q_scale.stride(2), #
v_scale.stride(0), v_scale.stride(1), #
q.shape[0], q.shape[1], #
N_CTX=q.shape[2], #
HEAD_DIM=HEAD_DIM_K, #
STAGE=stage, #
**extra_kern_args)
ctx.sm_scale = sm_scale
ctx.HEAD_DIM = HEAD_DIM_K
ctx.causal = causal
return o
attention_full_int8 = _attention_full_int8.apply | @triton.jit
def _attn_fwd_full_int8(Q, K, V, Q_scale, K_scale, V_scale, sm_scale, Out, #
stride_qz, stride_qh, stride_qm, stride_qk, #
stride_kz, stride_kh, stride_kn, stride_kk, #
stride_vz, stride_vh, stride_vk, stride_vn, #
stride_oz, stride_oh, stride_om, stride_on, #
stride_s1, stride_s2, stride_s3, #
stride_v1, stride_v2, #
Z, H, N_CTX, #
HEAD_DIM: tl.constexpr, #
BLOCK_M: tl.constexpr, #
BLOCK_N: tl.constexpr, #
STAGE: tl.constexpr #
):
tl.static_assert(BLOCK_N <= HEAD_DIM)
start_m = tl.program_id(0)
off_hz = tl.program_id(1)
off_z = off_hz // H
off_h = off_hz % H
qvk_offset = off_z.to(tl.int64) * stride_qz + off_h.to(tl.int64) * stride_qh
scl_offset = off_z.to(tl.int64) * stride_s1 + off_h.to(tl.int64) * stride_s2
vscl_offset = off_z.to(tl.int64) * stride_v1 + off_h.to(tl.int64) * stride_v2
# block pointers
Q_block_ptr = tl.make_block_ptr(
base=Q + qvk_offset,
shape=(N_CTX, HEAD_DIM),
strides=(stride_qm, stride_qk),
offsets=(start_m * BLOCK_M, 0),
block_shape=(BLOCK_M, HEAD_DIM),
order=(1, 0),
)
V_block_ptr = tl.make_block_ptr(
base=V + qvk_offset,
shape=(N_CTX, HEAD_DIM),
strides=(stride_vk, stride_vn),
offsets=(0, 0),
block_shape=(BLOCK_N, HEAD_DIM),
order=(1, 0),
)
K_block_ptr = tl.make_block_ptr(
base=K + qvk_offset,
shape=(HEAD_DIM, N_CTX),
strides=(stride_kk, stride_kn),
offsets=(0, 0),
block_shape=(HEAD_DIM, BLOCK_N),
order=(0, 1),
)
O_block_ptr = tl.make_block_ptr(
base=Out + qvk_offset,
shape=(N_CTX, HEAD_DIM),
strides=(stride_om, stride_on),
offsets=(start_m * BLOCK_M, 0),
block_shape=(BLOCK_M, HEAD_DIM),
order=(1, 0),
)
# scale vector pointers
Q_block_scale_ptr = tl.make_block_ptr(
base=Q_scale + scl_offset,
shape=(N_CTX,),
strides=(stride_s3,),
offsets=(start_m * BLOCK_M,),
block_shape=(BLOCK_M,),
order=(0,),
)
K_block_scale_ptr = tl.make_block_ptr(
base=K_scale + scl_offset,
shape=(N_CTX,),
strides=(stride_s3,),
offsets=(0,),
block_shape=(BLOCK_N,),
order=(0,),
)
# initialize offsets
offs_m = start_m * BLOCK_M + tl.arange(0, BLOCK_M)
offs_n = tl.arange(0, BLOCK_N)
# initialize pointer to m and l
m_i = tl.zeros([BLOCK_M], dtype=tl.float32) - float("inf")
l_i = tl.zeros([BLOCK_M], dtype=tl.float32) + 1.0
acc = tl.zeros([BLOCK_M, HEAD_DIM], dtype=tl.float32)
# load scales
qk_scale = sm_scale
qk_scale *= 1.44269504 # 1/log(2)
# load q: it will stay in SRAM throughout
q = tl.load(Q_block_ptr)
q_scale = tl.load(Q_block_scale_ptr)
v_scale = tl.load(V_scale + vscl_offset)
# stage 1: off-band
# For causal = True, STAGE = 3 and _attn_fwd_inner gets 1 as its STAGE
# For causal = False, STAGE = 1, and _attn_fwd_inner gets 3 as its STAGE
if STAGE & 1:
acc, l_i = _attn_fwd_inner_full_int8(acc, l_i, m_i, q, K_block_ptr, V_block_ptr, q_scale, K_block_scale_ptr, v_scale, #
start_m, qk_scale, #
BLOCK_M, HEAD_DIM, BLOCK_N, #
4 - STAGE, offs_m, offs_n, N_CTX, V.dtype.element_ty == tl.float8e5 #
)
# stage 2: on-band
if STAGE & 2:
# barrier makes it easier for compielr to schedule the
# two loops independently
acc, l_i = _attn_fwd_inner_full_int8(acc, l_i, m_i, q, K_block_ptr, V_block_ptr, q_scale, K_block_scale_ptr, v_scale, #
start_m, qk_scale, #
BLOCK_M, HEAD_DIM, BLOCK_N, #
2, offs_m, offs_n, N_CTX, V.dtype.element_ty == tl.float8e5 #
)
# epilogue
acc = acc / l_i[:, None]
tl.store(O_block_ptr, acc.to(Out.type.element_ty))
class _attention_full_int8(torch.autograd.Function):
@staticmethod # q, k, v: int8, q_scale, k_scale: float16
def forward(ctx, q, k, v, q_scale, k_scale, v_scale, causal, sm_scale):
# shape constraints
HEAD_DIM_Q, HEAD_DIM_K = q.shape[-1], k.shape[-1]
# when v is in float8_e5m2 it is transposed.
HEAD_DIM_V = v.shape[-1]
assert HEAD_DIM_Q == HEAD_DIM_K and HEAD_DIM_K == HEAD_DIM_V
assert HEAD_DIM_K in {16, 32, 64, 128, 256}
o = torch.empty_like(q)
o = o.to(torch.float16)
stage = 3 if causal else 1
extra_kern_args = {}
# Tuning for AMD target
if is_hip():
waves_per_eu = 3 if HEAD_DIM_K <= 64 else 2
extra_kern_args = {"waves_per_eu": waves_per_eu, "allow_flush_denorm": True}
grid = lambda args: (triton.cdiv(q.shape[2], args["BLOCK_M"]), q.shape[0] * q.shape[1], 1)
_attn_fwd_full_int8[grid](
q, k, v, q_scale, k_scale, v_scale, sm_scale, o, #
q.stride(0), q.stride(1), q.stride(2), q.stride(3), #
k.stride(0), k.stride(1), k.stride(2), k.stride(3), #
v.stride(0), v.stride(1), v.stride(2), v.stride(3), #
o.stride(0), o.stride(1), o.stride(2), o.stride(3), #
q_scale.stride(0), q_scale.stride(1), q_scale.stride(2), #
v_scale.stride(0), v_scale.stride(1), #
q.shape[0], q.shape[1], #
N_CTX=q.shape[2], #
HEAD_DIM=HEAD_DIM_K, #
STAGE=stage, #
**extra_kern_args)
ctx.sm_scale = sm_scale
ctx.HEAD_DIM = HEAD_DIM_K
ctx.causal = causal
return o
attention_full_int8 = _attention_full_int8.apply |
TD87/triton-kernels | gemm_matmul.py | https://github.com/TD87/triton-kernels/blob/17a97ede7b6d0ca7356db68b56d0e5b6a9080ad4/gemm_matmul.py | import math
import torch # type: ignore
import triton # type: ignore
import triton.language as tl # type: ignore
@triton.jit()
def matmul_kernel(x_ptr, y_ptr, out_ptr, M, N, K, BLOCK_M: tl.constexpr, BLOCK_N: tl.constexpr,
BLOCK_K: tl.constexpr):
pid_r = tl.program_id(0)
pid_c = tl.program_id(1)
row_start = pid_r * BLOCK_M
row_offsets = row_start + tl.arange(0, BLOCK_M)
col_start = pid_c * BLOCK_N
col_offsets = col_start + tl.arange(0, BLOCK_N)
out = tl.zeros((BLOCK_M, BLOCK_N), dtype = tl.float32)
for k in tl.range(0, K, BLOCK_K):
k_offsets = k + tl.arange(0, BLOCK_K)
row = row_offsets[:, None] * K + k_offsets[None, :]
mask = (row_offsets[:, None] < M) & (k_offsets[None, :] < K)
x = tl.load(x_ptr + row, mask = mask)
col = col_offsets[None, :] + k_offsets[:, None] * N
mask = (col_offsets[None, :] < N) & (k_offsets[:, None] < K)
y = tl.load(y_ptr + col, mask = mask)
out = tl.dot(x, y, out)
out_offsets = row_offsets[:, None] * N + col_offsets[None, :]
mask = (row_offsets[:, None] < M) & (col_offsets[None, :] < N)
tl.store(out_ptr + out_offsets, out, mask = mask)
def matmul(x, y, BLOCK_M = 128, BLOCK_N = 64, BLOCK_K = 64):
M, K = x.size()
N = y.size(1)
assert K == y.size(0)
out = torch.empty(M, N, device = 'cuda', dtype = torch.float32)
grid = (math.ceil(M / BLOCK_M), math.ceil(N / BLOCK_N))
matmul_kernel[grid](x, y, out, M, N, K, BLOCK_M, BLOCK_N, BLOCK_K)
return out
@triton.testing.perf_report(
triton.testing.Benchmark(
x_names = ["M", "N", "K"],
x_vals = [128 * i for i in range(2, 33)],
line_arg = "provider",
line_vals = ["triton", "torch"],
line_names = ["Triton", "Torch"],
styles = [("green", "-"), ("blue", "-")],
ylabel = "TFLOPS",
plot_name = "matmul-performance",
args = {},
))
def benchmark(M, N, K, provider):
x = torch.randn(M, K, device = 'cuda', dtype = torch.float32)
y = torch.randn(K, N, device = 'cuda', dtype = torch.float32)
if provider == "torch":
ms = triton.testing.do_bench(lambda: torch.matmul(x, y))
else:
ms = triton.testing.do_bench(lambda: matmul(x, y))
tflops = lambda ms: 2 * M * N * K * 1e-12 / (ms * 1e-3)
return tflops(ms)
benchmark.run(print_data = True, save_path = "plots") | @triton.jit
()
def matmul_kernel(x_ptr, y_ptr, out_ptr, M, N, K, BLOCK_M: tl.constexpr, BLOCK_N: tl.constexpr,
BLOCK_K: tl.constexpr):
pid_r = tl.program_id(0)
pid_c = tl.program_id(1)
row_start = pid_r * BLOCK_M
row_offsets = row_start + tl.arange(0, BLOCK_M)
col_start = pid_c * BLOCK_N
col_offsets = col_start + tl.arange(0, BLOCK_N)
out = tl.zeros((BLOCK_M, BLOCK_N), dtype = tl.float32)
for k in tl.range(0, K, BLOCK_K):
k_offsets = k + tl.arange(0, BLOCK_K)
row = row_offsets[:, None] * K + k_offsets[None, :]
mask = (row_offsets[:, None] < M) & (k_offsets[None, :] < K)
x = tl.load(x_ptr + row, mask = mask)
col = col_offsets[None, :] + k_offsets[:, None] * N
mask = (col_offsets[None, :] < N) & (k_offsets[:, None] < K)
y = tl.load(y_ptr + col, mask = mask)
out = tl.dot(x, y, out)
out_offsets = row_offsets[:, None] * N + col_offsets[None, :]
mask = (row_offsets[:, None] < M) & (col_offsets[None, :] < N)
tl.store(out_ptr + out_offsets, out, mask = mask)
def matmul(x, y, BLOCK_M = 128, BLOCK_N = 64, BLOCK_K = 64):
M, K = x.size()
N = y.size(1)
assert K == y.size(0)
out = torch.empty(M, N, device = 'cuda', dtype = torch.float32)
grid = (math.ceil(M / BLOCK_M), math.ceil(N / BLOCK_N))
matmul_kernel[grid](x, y, out, M, N, K, BLOCK_M, BLOCK_N, BLOCK_K)
return out
@triton.testing.perf_report(
triton.testing.Benchmark(
x_names = ["M", "N", "K"],
x_vals = [128 * i for i in range(2, 33)],
line_arg = "provider",
line_vals = ["triton", "torch"],
line_names = ["Triton", "Torch"],
styles = [("green", "-"), ("blue", "-")],
ylabel = "TFLOPS",
plot_name = "matmul-performance",
args = {},
))
def benchmark(M, N, K, provider):
x = torch.randn(M, K, device = 'cuda', dtype = torch.float32)
y = torch.randn(K, N, device = 'cuda', dtype = torch.float32)
if provider == "torch":
ms = triton.testing.do_bench(lambda: torch.matmul(x, y))
else:
ms = triton.testing.do_bench(lambda: matmul(x, y))
tflops = lambda ms: 2 * M * N * K * 1e-12 / (ms * 1e-3)
return tflops(ms)
benchmark.run(print_data = True, save_path = "plots") |
xiaonans/triton-gemm-benchmark | kernels/basic_matmul.py | https://github.com/xiaonans/triton-gemm-benchmark/blob/436ee5a77e01ede7e4a1fe015f533dfdc53b31d3/kernels/basic_matmul.py | import triton
import triton.language as tl
import torch
from .autotune_config import get_autotune_config
# `triton.jit`'ed functions can be auto-tuned by using the `triton.autotune` decorator, which consumes:
# - A list of `triton.Config` objects that define different configurations of
# meta-parameters (e.g., `BLOCK_SIZE_M`) and compilation options (e.g., `num_warps`) to try
# - An auto-tuning *key* whose change in values will trigger evaluation of all the
# provided configs
@triton.autotune(
configs=get_autotune_config(),
key=['M', 'N', 'K'],
)
@triton.jit
def matmul_kernel(
# Pointers to matrices
a_ptr, b_ptr, c_ptr,
# Matrix dimensions
M, N, K,
# The stride variables represent how much to increase the ptr by when moving by 1
# element in a particular dimension. E.g. `stride_am` is how much to increase `a_ptr`
# by to get the element one row down (A has M rows).
stride_am, stride_ak, #
stride_bk, stride_bn, #
stride_cm, stride_cn,
# Meta-parameters
BLOCK_SIZE_M: tl.constexpr, BLOCK_SIZE_N: tl.constexpr, BLOCK_SIZE_K: tl.constexpr, #
GROUP_SIZE_M: tl.constexpr, #
ACTIVATION: tl.constexpr #
):
"""Kernel for computing the matmul C = A x B.
A has shape (M, K), B has shape (K, N) and C has shape (M, N)
"""
# -----------------------------------------------------------
# Map program ids `pid` to the block of C it should compute.
# This is done in a grouped ordering to promote L2 data reuse.
# See above `L2 Cache Optimizations` section for details.
pid = tl.program_id(axis=0)
num_pid_m = tl.cdiv(M, BLOCK_SIZE_M)
num_pid_n = tl.cdiv(N, BLOCK_SIZE_N)
num_pid_in_group = GROUP_SIZE_M * num_pid_n
group_id = pid // num_pid_in_group
first_pid_m = group_id * GROUP_SIZE_M
group_size_m = min(num_pid_m - first_pid_m, GROUP_SIZE_M)
pid_m = first_pid_m + ((pid % num_pid_in_group) % group_size_m)
pid_n = (pid % num_pid_in_group) // group_size_m
# ----------------------------------------------------------
# Create pointers for the first blocks of A and B.
# We will advance this pointer as we move in the K direction
# and accumulate
# `a_ptrs` is a block of [BLOCK_SIZE_M, BLOCK_SIZE_K] pointers
# `b_ptrs` is a block of [BLOCK_SIZE_K, BLOCK_SIZE_N] pointers
# See above `Pointer Arithmetic` section for details
offs_am = (pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M)) % M
offs_bn = (pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N)) % N
offs_k = tl.arange(0, BLOCK_SIZE_K)
a_ptrs = a_ptr + (offs_am[:, None] * stride_am + offs_k[None, :] * stride_ak)
b_ptrs = b_ptr + (offs_k[:, None] * stride_bk + offs_bn[None, :] * stride_bn)
# -----------------------------------------------------------
# Iterate to compute a block of the C matrix.
# We accumulate into a `[BLOCK_SIZE_M, BLOCK_SIZE_N]` block
# of fp32 values for higher accuracy.
# `accumulator` will be converted back to fp16 after the loop.
accumulator = tl.zeros((BLOCK_SIZE_M, BLOCK_SIZE_N), dtype=tl.float32)
for k in range(0, tl.cdiv(K, BLOCK_SIZE_K)):
# Load the next block of A and B, generate a mask by checking the K dimension.
# If it is out of bounds, set it to 0.
a = tl.load(a_ptrs, mask=offs_k[None, :] < K - k * BLOCK_SIZE_K, other=0.0)
b = tl.load(b_ptrs, mask=offs_k[:, None] < K - k * BLOCK_SIZE_K, other=0.0)
# We accumulate along the K dimension.
accumulator = tl.dot(a, b, accumulator)
# Advance the ptrs to the next K block.
a_ptrs += BLOCK_SIZE_K * stride_ak
b_ptrs += BLOCK_SIZE_K * stride_bk
# You can fuse arbitrary activation functions here
# while the accumulator is still in FP32!
if ACTIVATION == "leaky_relu":
accumulator = leaky_relu(accumulator)
c = accumulator.to(tl.float16)
# -----------------------------------------------------------
# Write back the block of the output matrix C with masks.
offs_cm = pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M)
offs_cn = pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N)
c_ptrs = c_ptr + stride_cm * offs_cm[:, None] + stride_cn * offs_cn[None, :]
c_mask = (offs_cm[:, None] < M) & (offs_cn[None, :] < N)
tl.store(c_ptrs, c, mask=c_mask)
# We can fuse `leaky_relu` by providing it as an `ACTIVATION` meta-parameter in `matmul_kernel`.
@triton.jit
def leaky_relu(x):
return tl.where(x >= 0, x, 0.01 * x)
def matmul(a, b, activation=""):
# Check constraints.
assert a.shape[1] == b.shape[0], "Incompatible dimensions"
assert a.is_contiguous(), "Matrix A must be contiguous"
M, K = a.shape
K, N = b.shape
# Allocates output.
c = torch.empty((M, N), device=a.device, dtype=torch.float16)
# 1D launch kernel where each block gets its own program.
grid = lambda META: (triton.cdiv(M, META['BLOCK_SIZE_M']) * triton.cdiv(N, META['BLOCK_SIZE_N']), )
matmul_kernel[grid](
a, b, c, #
M, N, K, #
a.stride(0), a.stride(1), #
b.stride(0), b.stride(1), #
c.stride(0), c.stride(1), #
ACTIVATION=activation #
)
return c | @triton.jit
def matmul_kernel(
# Pointers to matrices
a_ptr, b_ptr, c_ptr,
# Matrix dimensions
M, N, K,
# The stride variables represent how much to increase the ptr by when moving by 1
# element in a particular dimension. E.g. `stride_am` is how much to increase `a_ptr`
# by to get the element one row down (A has M rows).
stride_am, stride_ak, #
stride_bk, stride_bn, #
stride_cm, stride_cn,
# Meta-parameters
BLOCK_SIZE_M: tl.constexpr, BLOCK_SIZE_N: tl.constexpr, BLOCK_SIZE_K: tl.constexpr, #
GROUP_SIZE_M: tl.constexpr, #
ACTIVATION: tl.constexpr #
):
"""Kernel for computing the matmul C = A x B.
A has shape (M, K), B has shape (K, N) and C has shape (M, N)
"""
# -----------------------------------------------------------
# Map program ids `pid` to the block of C it should compute.
# This is done in a grouped ordering to promote L2 data reuse.
# See above `L2 Cache Optimizations` section for details.
pid = tl.program_id(axis=0)
num_pid_m = tl.cdiv(M, BLOCK_SIZE_M)
num_pid_n = tl.cdiv(N, BLOCK_SIZE_N)
num_pid_in_group = GROUP_SIZE_M * num_pid_n
group_id = pid // num_pid_in_group
first_pid_m = group_id * GROUP_SIZE_M
group_size_m = min(num_pid_m - first_pid_m, GROUP_SIZE_M)
pid_m = first_pid_m + ((pid % num_pid_in_group) % group_size_m)
pid_n = (pid % num_pid_in_group) // group_size_m
# ----------------------------------------------------------
# Create pointers for the first blocks of A and B.
# We will advance this pointer as we move in the K direction
# and accumulate
# `a_ptrs` is a block of [BLOCK_SIZE_M, BLOCK_SIZE_K] pointers
# `b_ptrs` is a block of [BLOCK_SIZE_K, BLOCK_SIZE_N] pointers
# See above `Pointer Arithmetic` section for details
offs_am = (pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M)) % M
offs_bn = (pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N)) % N
offs_k = tl.arange(0, BLOCK_SIZE_K)
a_ptrs = a_ptr + (offs_am[:, None] * stride_am + offs_k[None, :] * stride_ak)
b_ptrs = b_ptr + (offs_k[:, None] * stride_bk + offs_bn[None, :] * stride_bn)
# -----------------------------------------------------------
# Iterate to compute a block of the C matrix.
# We accumulate into a `[BLOCK_SIZE_M, BLOCK_SIZE_N]` block
# of fp32 values for higher accuracy.
# `accumulator` will be converted back to fp16 after the loop.
accumulator = tl.zeros((BLOCK_SIZE_M, BLOCK_SIZE_N), dtype=tl.float32)
for k in range(0, tl.cdiv(K, BLOCK_SIZE_K)):
# Load the next block of A and B, generate a mask by checking the K dimension.
# If it is out of bounds, set it to 0.
a = tl.load(a_ptrs, mask=offs_k[None, :] < K - k * BLOCK_SIZE_K, other=0.0)
b = tl.load(b_ptrs, mask=offs_k[:, None] < K - k * BLOCK_SIZE_K, other=0.0)
# We accumulate along the K dimension.
accumulator = tl.dot(a, b, accumulator)
# Advance the ptrs to the next K block.
a_ptrs += BLOCK_SIZE_K * stride_ak
b_ptrs += BLOCK_SIZE_K * stride_bk
# You can fuse arbitrary activation functions here
# while the accumulator is still in FP32!
if ACTIVATION == "leaky_relu":
accumulator = leaky_relu(accumulator)
c = accumulator.to(tl.float16)
# -----------------------------------------------------------
# Write back the block of the output matrix C with masks.
offs_cm = pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M)
offs_cn = pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N)
c_ptrs = c_ptr + stride_cm * offs_cm[:, None] + stride_cn * offs_cn[None, :]
c_mask = (offs_cm[:, None] < M) & (offs_cn[None, :] < N)
tl.store(c_ptrs, c, mask=c_mask)
# We can fuse `leaky_relu` by providing it as an `ACTIVATION` meta-parameter in `matmul_kernel`.
|
xiaonans/triton-gemm-benchmark | kernels/basic_matmul.py | https://github.com/xiaonans/triton-gemm-benchmark/blob/436ee5a77e01ede7e4a1fe015f533dfdc53b31d3/kernels/basic_matmul.py | import triton
import triton.language as tl
import torch
from .autotune_config import get_autotune_config
# `triton.jit`'ed functions can be auto-tuned by using the `triton.autotune` decorator, which consumes:
# - A list of `triton.Config` objects that define different configurations of
# meta-parameters (e.g., `BLOCK_SIZE_M`) and compilation options (e.g., `num_warps`) to try
# - An auto-tuning *key* whose change in values will trigger evaluation of all the
# provided configs
@triton.autotune(
configs=get_autotune_config(),
key=['M', 'N', 'K'],
)
@triton.jit
def matmul_kernel(
# Pointers to matrices
a_ptr, b_ptr, c_ptr,
# Matrix dimensions
M, N, K,
# The stride variables represent how much to increase the ptr by when moving by 1
# element in a particular dimension. E.g. `stride_am` is how much to increase `a_ptr`
# by to get the element one row down (A has M rows).
stride_am, stride_ak, #
stride_bk, stride_bn, #
stride_cm, stride_cn,
# Meta-parameters
BLOCK_SIZE_M: tl.constexpr, BLOCK_SIZE_N: tl.constexpr, BLOCK_SIZE_K: tl.constexpr, #
GROUP_SIZE_M: tl.constexpr, #
ACTIVATION: tl.constexpr #
):
"""Kernel for computing the matmul C = A x B.
A has shape (M, K), B has shape (K, N) and C has shape (M, N)
"""
# -----------------------------------------------------------
# Map program ids `pid` to the block of C it should compute.
# This is done in a grouped ordering to promote L2 data reuse.
# See above `L2 Cache Optimizations` section for details.
pid = tl.program_id(axis=0)
num_pid_m = tl.cdiv(M, BLOCK_SIZE_M)
num_pid_n = tl.cdiv(N, BLOCK_SIZE_N)
num_pid_in_group = GROUP_SIZE_M * num_pid_n
group_id = pid // num_pid_in_group
first_pid_m = group_id * GROUP_SIZE_M
group_size_m = min(num_pid_m - first_pid_m, GROUP_SIZE_M)
pid_m = first_pid_m + ((pid % num_pid_in_group) % group_size_m)
pid_n = (pid % num_pid_in_group) // group_size_m
# ----------------------------------------------------------
# Create pointers for the first blocks of A and B.
# We will advance this pointer as we move in the K direction
# and accumulate
# `a_ptrs` is a block of [BLOCK_SIZE_M, BLOCK_SIZE_K] pointers
# `b_ptrs` is a block of [BLOCK_SIZE_K, BLOCK_SIZE_N] pointers
# See above `Pointer Arithmetic` section for details
offs_am = (pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M)) % M
offs_bn = (pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N)) % N
offs_k = tl.arange(0, BLOCK_SIZE_K)
a_ptrs = a_ptr + (offs_am[:, None] * stride_am + offs_k[None, :] * stride_ak)
b_ptrs = b_ptr + (offs_k[:, None] * stride_bk + offs_bn[None, :] * stride_bn)
# -----------------------------------------------------------
# Iterate to compute a block of the C matrix.
# We accumulate into a `[BLOCK_SIZE_M, BLOCK_SIZE_N]` block
# of fp32 values for higher accuracy.
# `accumulator` will be converted back to fp16 after the loop.
accumulator = tl.zeros((BLOCK_SIZE_M, BLOCK_SIZE_N), dtype=tl.float32)
for k in range(0, tl.cdiv(K, BLOCK_SIZE_K)):
# Load the next block of A and B, generate a mask by checking the K dimension.
# If it is out of bounds, set it to 0.
a = tl.load(a_ptrs, mask=offs_k[None, :] < K - k * BLOCK_SIZE_K, other=0.0)
b = tl.load(b_ptrs, mask=offs_k[:, None] < K - k * BLOCK_SIZE_K, other=0.0)
# We accumulate along the K dimension.
accumulator = tl.dot(a, b, accumulator)
# Advance the ptrs to the next K block.
a_ptrs += BLOCK_SIZE_K * stride_ak
b_ptrs += BLOCK_SIZE_K * stride_bk
# You can fuse arbitrary activation functions here
# while the accumulator is still in FP32!
if ACTIVATION == "leaky_relu":
accumulator = leaky_relu(accumulator)
c = accumulator.to(tl.float16)
# -----------------------------------------------------------
# Write back the block of the output matrix C with masks.
offs_cm = pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M)
offs_cn = pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N)
c_ptrs = c_ptr + stride_cm * offs_cm[:, None] + stride_cn * offs_cn[None, :]
c_mask = (offs_cm[:, None] < M) & (offs_cn[None, :] < N)
tl.store(c_ptrs, c, mask=c_mask)
# We can fuse `leaky_relu` by providing it as an `ACTIVATION` meta-parameter in `matmul_kernel`.
@triton.jit
def leaky_relu(x):
return tl.where(x >= 0, x, 0.01 * x)
def matmul(a, b, activation=""):
# Check constraints.
assert a.shape[1] == b.shape[0], "Incompatible dimensions"
assert a.is_contiguous(), "Matrix A must be contiguous"
M, K = a.shape
K, N = b.shape
# Allocates output.
c = torch.empty((M, N), device=a.device, dtype=torch.float16)
# 1D launch kernel where each block gets its own program.
grid = lambda META: (triton.cdiv(M, META['BLOCK_SIZE_M']) * triton.cdiv(N, META['BLOCK_SIZE_N']), )
matmul_kernel[grid](
a, b, c, #
M, N, K, #
a.stride(0), a.stride(1), #
b.stride(0), b.stride(1), #
c.stride(0), c.stride(1), #
ACTIVATION=activation #
)
return c | @triton.jit
def leaky_relu(x):
return tl.where(x >= 0, x, 0.01 * x)
def matmul(a, b, activation=""):
# Check constraints.
assert a.shape[1] == b.shape[0], "Incompatible dimensions"
assert a.is_contiguous(), "Matrix A must be contiguous"
M, K = a.shape
K, N = b.shape
# Allocates output.
c = torch.empty((M, N), device=a.device, dtype=torch.float16)
# 1D launch kernel where each block gets its own program.
grid = lambda META: (triton.cdiv(M, META['BLOCK_SIZE_M']) * triton.cdiv(N, META['BLOCK_SIZE_N']), )
matmul_kernel[grid](
a, b, c, #
M, N, K, #
a.stride(0), a.stride(1), #
b.stride(0), b.stride(1), #
c.stride(0), c.stride(1), #
ACTIVATION=activation #
)
return c |
xiaohuguo2023/scripts | others/tune_gemm1.py | https://github.com/xiaohuguo2023/scripts/blob/b6de80a590c78e78a4f8d64346c34ef445e2aa17/others/tune_gemm1.py | import argparse
import sys
import yaml
import os
import glob
import subprocess
import torch
import triton
import triton.language as tl
from matmul_kernel import matmul_kernel
from datetime import datetime
import pandas as pd
import torch.distributed as dist
from torch.multiprocessing import spawn
def get_full_tuning_space():
configs = []
block_mn_range = [16, 32, 64, 128, 256]
block_k_range = [16, 32, 64, 128, 256]
split_k_range = [1, 2, 4, 5, 6, 8, 10, 12, 16, 18, 24]
num_warps_range = [1, 2, 4, 8]
group_m_range = [1, 4, 8, 16, 32]
num_stage_range = [0]
waves_per_eu_range = [0]
matrix_instr_nonkdim_range = [16, 32]
kpack_range = [1, 2]
for block_m in block_mn_range:
for block_n in block_mn_range:
for block_k in block_k_range:
for num_warps in num_warps_range:
for group_m in group_m_range:
for split_k in split_k_range:
for num_stages in num_stage_range:
for waves_per_eu in waves_per_eu_range:
for matrix_instr_nonkdim in matrix_instr_nonkdim_range:
for kpack in kpack_range:
configs.append({
'BLOCK_SIZE_M': block_m, 'BLOCK_SIZE_N': block_n, 'BLOCK_SIZE_K': block_k,
'GROUP_SIZE_M': group_m, 'SPLIT_K': split_k, 'num_warps': num_warps,
'num_stages': num_stages, 'waves_per_eu': waves_per_eu,
'matrix_instr_nonkdim': matrix_instr_nonkdim, 'kpack': kpack
})
return configs
def prune_configs(M, N, K, configs, elemBytes_a, elemBytes_b):
pruned_configs = []
if M < 32 or N < 32:
mfma = 16
else:
mfma = 32
large_gemm = False
if M >= 2048 and N >=2048:
large_gemm = True
for config in configs:
BLOCK_SIZE_M = config.get("BLOCK_SIZE_M")
BLOCK_SIZE_N = config.get("BLOCK_SIZE_N")
BLOCK_SIZE_K = config.get("BLOCK_SIZE_K")
num_warps = config.get("num_warps")
matrix_instr_nonkdim = config.get("matrix_instr_nonkdim")
kpack = config.get("kpack")
if matrix_instr_nonkdim > mfma:
continue
if mfma == 4 and BLOCK_SIZE_K < 64:
continue
if BLOCK_SIZE_M * BLOCK_SIZE_N < 64:
continue
SPLIT_K = config.get("SPLIT_K")
GROUP_M = config.get("GROUP_SIZE_M")
if BLOCK_SIZE_M < matrix_instr_nonkdim or BLOCK_SIZE_N < matrix_instr_nonkdim:
continue
if M <= matrix_instr_nonkdim and BLOCK_SIZE_M != matrix_instr_nonkdim:
continue
if N <= matrix_instr_nonkdim and BLOCK_SIZE_N != matrix_instr_nonkdim:
continue
if BLOCK_SIZE_M > M * 2 and BLOCK_SIZE_M != 16:
continue
if BLOCK_SIZE_N > N * 2 and BLOCK_SIZE_N != 16:
continue
if SPLIT_K != 1 and not need_split_k(M, N, K):
continue
leap = SPLIT_K * BLOCK_SIZE_K
modv = K % leap
if modv != 0:
continue
if GROUP_M * BLOCK_SIZE_M > M and GROUP_M != 1:
continue
LDS = BLOCK_SIZE_K * BLOCK_SIZE_M * elemBytes_a + BLOCK_SIZE_K * BLOCK_SIZE_N * elemBytes_b
if LDS > 65536:
continue
if large_gemm:
if BLOCK_SIZE_M < 64 or BLOCK_SIZE_N < 64:
continue
if BLOCK_SIZE_K < 64:
continue
if num_warps < 4:
continue
pruned_configs.append(config)
return pruned_configs
def need_split_k(SIZE_M, SIZE_N, SIZE_K):
return (SIZE_M < 64 or SIZE_N < 64) and SIZE_K > 1024
def run_bash_command_wrapper(commandstring, capture=True):
try:
run_bash_command(commandstring, capture)
except subprocess.CalledProcessError as e:
if not capture:
print(f"running {commandstring} one more time")
run_bash_command(commandstring, capture)
def run_bash_command(commandstring, capture=True):
if capture:
proc = subprocess.run(commandstring, shell=True, check=True, executable='/bin/bash', stdout=subprocess.PIPE)
return proc.stdout.splitlines()
proc = subprocess.run(commandstring, shell=True, check=True, executable='/bin/bash')
return None
def read_config(config):
block_m = config.get('BLOCK_SIZE_M')
block_n = config.get('BLOCK_SIZE_N')
block_k = config.get('BLOCK_SIZE_K')
group_m = config.get('GROUP_SIZE_M')
split_k = config.get('SPLIT_K')
num_warps = config.get('num_warps')
num_stages = config.get('num_stages')
waves_per_eu = config.get('waves_per_eu')
mfma_instr_size = config.get('matrix_instr_nonkdim')
kpack = config.get('kpack')
return block_m, block_n, block_k, group_m, split_k, num_warps, num_stages, waves_per_eu, mfma_instr_size, kpack
def gen_kernel_and_configStr_from_config(M, N, K, config, dtype_a, dtype_b, dtype_c):
block_m, block_n, block_k, group_m, split_k, num_warps, num_stages, waves_per_eu, mfmaInstrSize, kpack = read_config(config)
torch_dtype_a = 'fp16'
torch_dtype_b = 'fp16'
torch_dtype_c = 'fp16'
if dtype_a:
torch_dtype_a = tl_to_torch_types[name_to_tl_types[dtype_a]]
if dtype_b:
torch_dtype_b = tl_to_torch_types[name_to_tl_types[dtype_b]]
if dtype_c:
torch_dtype_c = tl_to_torch_types[name_to_tl_types[dtype_c]]
configStr = f"M{M}_N{N}_K{K}_BM{block_m}_BN{block_n}_BK{block_k}_GM{group_m}_SK{split_k}_nW{num_warps}_nS{num_stages}_EU{waves_per_eu}_kP{kpack}_mfma{mfmaInstrSize}"
matmul_def_str = f"""
def matmul_{configStr}(a, b, c, M, N, K, am, ak, bk, bn, cm, cn, warmup=False):
grid = triton.cdiv(M, {block_m}) * triton.cdiv(N, {block_n}), {split_k}
if warmup:
matmul_kernel_{configStr}.warmup(
{torch_dtype_a}, {torch_dtype_b}, {torch_dtype_c},
M, N, K,
am, ak, bk, bn, cm, cn,
BLOCK_SIZE_M = {block_m},
BLOCK_SIZE_N = {block_n},
BLOCK_SIZE_K = {block_k},
GROUP_SIZE_M = {group_m},
SPLIT_K = {split_k},
num_warps = {num_warps},
num_stages = {num_stages},
waves_per_eu = {waves_per_eu},
matrix_instr_nonkdim = {mfmaInstrSize},
kpack = {kpack},
grid=(1,)
)
return None
else:
matmul_kernel_{configStr}[grid](
a, b, c,
M, N, K,
am, ak, bk, bn, cm, cn,
BLOCK_SIZE_M = {block_m},
BLOCK_SIZE_N = {block_n},
BLOCK_SIZE_K = {block_k},
GROUP_SIZE_M = {group_m},
SPLIT_K = {split_k},
num_warps = {num_warps},
num_stages = {num_stages},
waves_per_eu = {waves_per_eu},
matrix_instr_nonkdim = {mfmaInstrSize},
kpack = {kpack}
)
return c
def try_config_{configStr}(M, N, K, am, ak, bk, bn, cm, cn):
try:
matmul_{configStr}(None, None, None, M, N, K, am, ak, bk, bn, cm, cn, True)
return True
except Exception as e:
print(f'invalid config(compilation): {configStr}: ', e, flush=True)
return False
"""
return configStr, matmul_def_str
def generated_kernel_name(M, N, K, gpu_id):
path = os.path.dirname(os.path.abspath(__file__))
return f"{path}/generated_kernel{M}-{N}-{K}-{gpu_id}.py"
def generate_kernel(rank, world_size, M, N, K, col_a, col_b, dtype_a, dtype_b, dtype_c, init_type, configs, jobs, iters, run_bench):
filenames = [generated_kernel_name(M, N, K, i) for i in range(jobs)]
f_kernel = [open(path, 'w') for path in filenames]
import_str = """import torch
import triton
import triton.language as tl
import argparse
import sys
import torch.multiprocessing as mp
from tune_gemm import gen_input
"""
for fi in range(jobs):
f_kernel[fi].write(import_str + "\n")
with open(os.path.dirname(os.path.abspath(__file__))+"/matmul_kernel.py") as file:
matmul_kernel_code = file.read()
idx = 0
for config in configs:
file_idx = idx % jobs
configStr, matmul_def_str = gen_kernel_and_configStr_from_config(M, N, K, config, dtype_a, dtype_b, dtype_c)
matmul_kernel_config = matmul_kernel_code.replace("matmul_kernel", f"matmul_kernel_{configStr}")
matmul_kernel_config = matmul_kernel_config.replace("import triton.language as tl", "")
matmul_kernel_config = matmul_kernel_config.replace("import triton", "")
f_kernel[file_idx].write(matmul_kernel_config + "\n\n")
f_kernel[file_idx].write(matmul_def_str + "\n")
idx += 1
test_gemm_pre_str = f"""def test_gemm(M, N, K, num_threads):
results = []
config_names = []
a, a_fp16 = gen_input(M, K, '{dtype_a}', {col_a}, 1, '{init_type}', device='cuda')
b, b_fp16 = gen_input(K, N, '{dtype_b}', {col_b}, 2, '{init_type}', device='cuda')
c = torch.zeros((M, N), device=a.device, dtype={tl_to_torch_types[name_to_tl_types[dtype_c]]})
task_args = (M, N, K,
a.stride(0), a.stride(1),
b.stride(0), b.stride(1),
c.stride(0), c.stride(1))
"""
for fi in range(jobs):
f_kernel[fi].write(test_gemm_pre_str + "\n")
idx = 0
for config in configs:
configStr, _ = gen_kernel_and_configStr_from_config(M, N, K, config, None, None, None)
task_str = f" results.append(try_config_{configStr}(*task_args))\n"
task_str += f" config_names.append('{configStr}')\n"
f_kernel[idx % jobs].write(task_str)
idx += 1
for fi in range(jobs):
threadpool_str = """
failed_configs = []
for i in range(len(results)):
if not results[i]:
failed_configs.append(config_names[i])
with open("{filename}.failed_configs", "w") as f:
for cfg in failed_configs:
f.write(cfg + "\\n")
else:
try:
with open("{filename}.failed_configs", "r") as f:
failed_configs = [cfg.strip() for cfg in f.readlines()]
except Exception:
failed_configs = []
""".format(filename=filenames[fi])
f_kernel[fi].write(threadpool_str)
idx = 0
runs = iters if run_bench else 200
for config in configs:
configStr, _ = gen_kernel_and_configStr_from_config(M, N, K, config, None, None, None)
matmul_call_str = f"""
if '{configStr}' not in failed_configs:
for i in range({runs}):
d = matmul_{configStr}(a, b, c, M, N, K, a.stride(0), a.stride(1), b.stride(0), b.stride(1), c.stride(0), c.stride(1))"""
f_kernel[idx % jobs].write(matmul_call_str + "\n")
idx += 1
for fi in range(jobs):
f_kernel[fi].write(" return d\n")
def_main_str = """
def main():
parser = argparse.ArgumentParser(
prog="tune a specific gemm size",
allow_abbrev=False,)
parser.add_argument("-n", type=int, default=1, help='number of threads')
args = parser.parse_args()
numThreads = args.n
"""
test_gemm_call_str = f'test_gemm({M}, {N}, {K}, numThreads)'
for fi in range(jobs):
f_kernel[fi].write(def_main_str)
f_kernel[fi].write(test_gemm_call_str + "\n\n")
f_kernel[fi].write("""if __name__ == '__main__':
sys.exit(main())""")
f_kernel[fi].close()
def extract_kernel_time(M, N, K, config, df):
configStr, _ = gen_kernel_and_configStr_from_config(M, N, K, config, None, None, None)
df = df[df['KernelName'].str.contains(configStr)]
meanTime = df['DurationNs'].tail(100).mean()
return config, meanTime
def profile_batch_kernels(rank, world_size, M, N, K, jobs, verbose):
ngpus = world_size
gpu_id = rank
os.environ['ROCR_VISIBLE_DEVICES'] = str(gpu_id)
jobId = gpu_id
while jobId < jobs:
if verbose:
print(f"profiling {generated_kernel_name(M, N, K, jobId)} on GPU {gpu_id}")
run_bash_command_wrapper(f"rocprof --stats -o results-{jobId}.csv python {generated_kernel_name(M, N, K, jobId)}", capture=(verbose < 2))
jobId += ngpus
def tune_gemm_config(rank, world_size, M, N, K, col_a, col_b, dtype_a, dtype_b, dtype_c, init_type, configs, run_bench, jobs, iters, skipWarmup, verbose=0, num_threads=16):
setup(rank, world_size)
if rank == 0:
generate_kernel(rank, world_size, M, N, K, col_a, col_b, dtype_a, dtype_b, dtype_c, init_type, configs, jobs, iters, run_bench)
run_bash_command("rm -rf ~/.triton/cache")
start_time = datetime.now()
if not skipWarmup:
for i in range(jobs):
run_bash_command(f"python {generated_kernel_name(M, N, K, i)} -n {num_threads}", capture=(verbose < 2))
compile_end = datetime.now()
compile_time = compile_end - start_time
if verbose:
print(f"compile time: {compile_time}", flush=True)
dist.barrier()
profile_batch_kernels(rank, world_size, M, N, K, jobs, verbose)
dist.barrier()
if rank == 0:
profile_end = datetime.now()
profile_time = profile_end - compile_end
if verbose:
print(f"profile time: {profile_time}", flush=True)
minTime = 1024 * 1024 * 1024
tasks = []
idx = 0
df_prof = [pd.read_csv(f"results-{i}.csv") for i in range(jobs)]
for config in configs:
file_idx = idx % jobs
tasks.append((M, N, K, config, df_prof[file_idx]))
idx += 1
for task in tasks:
config, myTime = extract_kernel_time(*task)
if myTime:
min_us = myTime / 1000
if min_us < minTime:
minTime = min_us
bestConfig = config
else:
min_us = -1
print(f"invalid config(post processing): SIZE {M} {N} {K}: {config}", flush=True)
post_end = datetime.now()
post_time = post_end - profile_end
if verbose:
print(f"post processing time: {post_time}", flush=True)
return minTime, bestConfig, compile_time, profile_time, post_time
cleanup()
def gen_input(M, N, ty_name, needTrans, seed, init_type, device='cuda'):
d_type = name_to_tl_types[ty_name]
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
@triton.jit
def copy_kernel(input_ptr, output_ptr, n_elements, BLOCK_SIZE: tl.constexpr):
offsets = tl.program_id(axis=0) * BLOCK_SIZE + tl.arange(0, BLOCK_SIZE)
mask = offsets < n_elements
input = tl.load(input_ptr + offsets, mask=mask)
output = input
tl.store(output_ptr + offsets, output, mask=mask)
def init_by_size_and_type(size, dtype, init_type):
if init_type == 'hpl':
return torch.empty(size, device='cuda', dtype=dtype).uniform_(-0.5, 0.5)
# This init type has element[i] in row[j] equal to sin(i+j*N)
elif init_type == 'trig_float':
M, N = size
return torch.reshape(torch.arange(0, M*N), (M, N)).sin().to(dtype=dtype, device='cuda')
elif init_type == 'zeros':
return torch.zeros(size, dtype=dtype, device='cuda')
elif init_type == "randn":
temp = torch.randn(size, dtype=dtype, device='cuda')
return temp
else:
raise ValueError("Bad matrix initialization type.")
raw_data = init_by_size_and_type((N,M) if needTrans else (M,N), torch.float32, init_type)
if needTrans:
raw_data = raw_data.T
if (d_type == tl.float8e4b8 and TORCH_HAS_FP8E4B8) or \
(d_type == tl.float8e5b16 and TORCH_HAS_FP8E5B16) or not d_type.is_fp8():
input = raw_data.to(tl_to_torch_types[d_type])
input_f16 = input.to(torch.float16)
else:
f8_tensor = raw_data.to(torch.int8)
# keep only two bits of exponent to avoid overflow
f8_tensor = f8_tensor & 0b00111111
input = triton.reinterpret(f8_tensor, d_type)
input_f16 = torch.empty_like(f8_tensor, dtype=torch.float16)
grid = lambda meta: (triton.cdiv(n_elements, meta['BLOCK_SIZE']),)
n_elements = raw_data.numel()
copy_kernel[grid](input, input_f16, n_elements, BLOCK_SIZE=1024)
return input, input_f16
def matmul(a, b, c, block_m, block_n, block_k, group_m, split_k, num_warps, num_stages, waves_per_eu, mfmaInstrSize, kpack):
# Check constraints.
assert a.shape[1] == b.shape[0], "Incompatible dimensions"
#assert a.is_contiguous(), "Matrix A must be contiguous"
#assert b.is_contiguous(), "Matrix B must be contiguous"
M, K = a.shape
K, N = b.shape
# 1D launch kernel where each block gets its own program.
grid = triton.cdiv(M, block_m) * triton.cdiv(N, block_n), split_k
matmul_kernel[grid](
a, b, c,
M, N, K,
a.stride(0), a.stride(1),
b.stride(0), b.stride(1),
c.stride(0), c.stride(1),
BLOCK_SIZE_M=block_m,
BLOCK_SIZE_N=block_n,
BLOCK_SIZE_K=block_k,
GROUP_SIZE_M=group_m,
SPLIT_K=split_k,
num_warps=num_warps,
num_stages=num_stages,
waves_per_eu=waves_per_eu,
matrix_instr_nonkdim = mfmaInstrSize,
kpack = kpack
)
return c
def test_correctness(M, N, K, col_a, col_b, dtype_a, dtype_b, dtype_c, init_type, config, verbose):
block_m, block_n, block_k, group_m, split_k, num_warps, num_stages, waves_per_eu, mfmaInstrSize, kpack = read_config(config)
torch.manual_seed(0)
#a = torch.randn((M, K), device='cuda', dtype=datatype)
#b = torch.randn((K, N), device='cuda', dtype=datatype)
a, a_fp16 = gen_input(M, K, dtype_a, col_a, 1, init_type, device='cuda')
b, b_fp16 = gen_input(K, N, dtype_b, col_b, 2, init_type, device='cuda')
# Allocates output.
c = torch.zeros((M, N), device=a.device, dtype=tl_to_torch_types[name_to_tl_types[dtype_c]])
triton_output = matmul(a, b, c, block_m, block_n, block_k, group_m, split_k, num_warps, num_stages, waves_per_eu, mfmaInstrSize, kpack)
torch_output = torch.matmul(a_fp16, b_fp16)
# print(f"triton_output={triton_output}")
# print(f"torch_output={torch_output}")
rtol = 0 if torch.version.hip is None else 1e-2
atol = 1e-3 if split_k == 1 else 4e-2
row_a_str = 'N' if col_a else 'T'
row_b_str = 'N' if col_b else 'T'
size_str = ''
if verbose:
size_str = f'SIZE M: {M}, N: {N}, K: {K}, trans: {row_a_str}{row_b_str}'
if torch.allclose(triton_output.to(torch.float16), torch_output, atol=atol, rtol=rtol):
print(f'{size_str} Correct✅')
else:
print(f'{size_str} Incorrect❌')
def get_default_tuning_result_filename():
git_branch_name = run_bash_command("git rev-parse --abbrev-ref HEAD")
git_branch_name = git_branch_name[0].decode()
git_commit_hash = run_bash_command("git rev-parse --short HEAD")
git_commit_hash = git_commit_hash[0].decode()
dt_string = datetime.now().strftime("%m-%d-%Y-%H:%M:%S")
defaultName = f"tuning_results_{git_branch_name}@{git_commit_hash}_{dt_string}.yaml"
return defaultName
def parse_args():
parser = argparse.ArgumentParser(
prog="tune a specific gemm size",
allow_abbrev=False,
)
parser.add_argument("-m", type=int, default=0)
parser.add_argument("-n", type=int, default=0)
parser.add_argument("-k", type=int, default=0)
parser.add_argument("-col_a", action='store_true', default=False, help='whether matrix a is column major')
parser.add_argument("-col_b", action='store_true', default=False, help='whether matrix b is column major')
parser.add_argument("-dtype_a", type=str, default='fp16', help="matrix a element data type")
parser.add_argument("-dtype_b", type=str, default='fp16', help="matrix b element data type")
parser.add_argument("-dtype_c", type=str, default='fp16', help="output element data type")
parser.add_argument("--ngpus", type=int, default=0, help='number of GPUs used in the profiling step')
parser.add_argument("--gpu_ids", type=lambda s: [int(id) for id in s.split(',')], default=[], help='list of gpu ids to use for tuning')
parser.add_argument("--gemm_size_file", type=str, default="", help='yaml file to indicate matrix size')
parser.add_argument("--o", type=str, default='', help='yaml file to store tuning results')
parser.add_argument("--keep", action='store_true', default=False, help='keep generated files')
parser.add_argument("--compare", action='store_true', default=False, help="Whether check result correctness")
parser.add_argument("--compare_wo_tuning", action='store_true', default=False, help="Whether check result correctness")
parser.add_argument("--benchmark", action='store_true', default=False, help="Benchmark the given config")
parser.add_argument("--time_breakdown", action='store_true', default=False, help="Show detailed time breakdown of each step during the tuning")
parser.add_argument("--verbose", action='store_true', default=False, help="enables time_breakdown and additional logging messages")
parser.add_argument("--num_threads", type=int, default=16, help="number of threads to use for kernel compilation and post processing")
parser.add_argument("--jobs", type=int, default=1, help="number of generated files")
parser.add_argument("--iters", type=int, default=1000, help="number of generated files")
parser.add_argument("--init_type", type=str, default='randn', help="Initialization type for input matrices (default uniform rand [0, 1.0)])")
parser.add_argument("--no_warmup", action='store_true', default=False, help="Do not call the warmup kernel")
args = parser.parse_args()
if not args.o:
if args.benchmark:
args.o = "benchmarking_results.csv"
else:
args.o = get_default_tuning_result_filename()
return args
TORCH_HAS_FP8E5B16 = hasattr(torch, 'float8_e5m2fnuz')
TORCH_HAS_FP8E4B8 = hasattr(torch, 'float8_e4m3fnuz')
tl_to_torch_types = {
tl.float16: torch.float16,
tl.bfloat16: torch.bfloat16,
tl.float32: torch.float32,
tl.int8: torch.int8,
tl.int32: torch.int32,
}
if TORCH_HAS_FP8E5B16:
tl_to_torch_types[tl.float8e5b16] = torch.float8_e5m2fnuz
if TORCH_HAS_FP8E4B8:
tl_to_torch_types[tl.float8e4b8] = torch.float8_e4m3fnuz
name_to_tl_types = {
'int8': tl.int8,
'int32': tl.int32,
'fp16': tl.float16,
'fp32': tl.float32,
'bf16': tl.bfloat16,
'fp8': tl.float8e4b8,
'bf8': tl.float8e5b16,
}
def process_item(item):
M = item['M']
N = item['N']
K = item['K']
col_a = False if item['rowMajorA'] == 'T' else True
col_b = False if item['rowMajorB'] == 'T' else True
del item['M']
del item['N']
del item['K']
del item['rowMajorA']
del item['rowMajorB']
return M, N, K, col_a, col_b, item
def type_name_to_bytes(ty_name):
if '32' in ty_name:
return 4
if '16' in ty_name:
return 2
if '8' in ty_name:
return 1
else:
print(f"Unrecognized input type name {ty_name}")
sys.exit(1)
def format_output(unformatted):
if unformatted < 0.0001:
formatted = "{:.3e}".format(unformatted)
elif unformatted > 1000:
formatted = "{:.1f}".format(unformatted)
else:
formatted = "{:.2f}".format(unformatted)
return formatted
def setup(rank, world_size):
os.environ['MASTER_ADDR'] = 'localhost'
os.environ['MASTER_PORT'] = '12355'
dist.init_process_group("nccl", rank=rank, world_size=world_size)
print(f"Rank {rank}/{world_size} process initialized.")
def cleanup():
dist.destroy_process_group()
print("Process group destroyed.")
def main():
args = parse_args()
world_size = len(args.gpu_ids) if args.gpu_ids else torch.cuda.device_count()
print(f"Number of GPUs available: {world_size}")
matrix_size_file = args.gemm_size_file
output_file = args.o
keepTmp = args.keep
run_bench = args.benchmark
jobs = args.jobs
iters = args.iters
skipWarmup = args.no_warmup
# Get GPU ids
ngpus = args.ngpus
gpu_ids = args.gpu_ids
if ngpus != 0 and gpu_ids:
print("--ngpus and --gpu_ids are mutually exclusive options")
return os.EX_USAGE
if ngpus == 0 and not gpu_ids:
ngpus = 1
if ngpus != 0:
gpus = list(range(ngpus))
if gpu_ids:
gpus = gpu_ids
if run_bench:
gpus = [gpus[0]]
jobs = 1
# Get element type
dtype_a = args.dtype_a
dtype_b = args.dtype_b
dtype_c = args.dtype_c
if not dtype_a in name_to_tl_types or not dtype_b in name_to_tl_types or not dtype_c in name_to_tl_types:
print(f"Unsupported dtype_a {args.dtype_a} or dtype_b {args.dtype_b} or dtype_c {args.dtype_c}")
print("Supported types: ", list(name_to_tl_types.keys()))
sys.exit(1)
mnks = []
# TODO: make it more robust to get user input
init_type = args.init_type
if matrix_size_file == "" or not os.path.isfile(matrix_size_file):
M = args.m
N = args.n
K = args.k
col_a = args.col_a
col_b = args.col_b
mnks = [(M, N, K, col_a, col_b, None)]
else:
with open(matrix_size_file) as file:
matrix_sizes = yaml.safe_load(file)
for item in matrix_sizes:
M, N, K, col_a, col_b, item = process_item(item)
mnks.append((M, N, K, col_a, col_b, item))
# Check correctness from given configs
if args.compare_wo_tuning:
for (M, N, K, col_a, col_b, myConfig) in mnks:
test_correctness(M, N, K, col_a, col_b, dtype_a, dtype_b, dtype_c, init_type, myConfig, True)
return
configs_full = get_full_tuning_space()
start_time = datetime.now()
# Append to the output file so that we can save all results into one file
f_results = open(output_file, 'a')
if run_bench:
print(f"Benchmarking gemm with {dtype_a} inputs")
print("trans M N K TFLOPS us")
f_results.write("trans,M,N,K,TFLOPS,us\n")
else:
print(f"Tuning {len(mnks)} gemm sizes starts at: {start_time}", flush=True)
for (M, N, K, col_a, col_b, myConfig) in mnks:
start_local_time = datetime.now()
# Obtain a pruned tuning space according to gemm size
# If running benchmark, use the provided config
pruned_configs = [myConfig] if run_bench else prune_configs(M, N, K, configs_full, type_name_to_bytes(dtype_a), type_name_to_bytes(dtype_b))
row_a_str = 'N' if col_a else 'T'
row_b_str = 'N' if col_b else 'T'
size_str = f'SIZE: {M} {N} {K} {row_a_str}{row_b_str}'
if not run_bench:
print(f"{size_str} nConfigs: {len(pruned_configs)}", end=" ", flush=True)
else:
print(f"{row_a_str}{row_b_str} {M:5d} {N:5d} {K:5d} ", end="")
f_results.write(f"{row_a_str}{row_b_str},{M},{N},{K},")
# The main tuning function for one gemm size
verbose_level = 0
if args.time_breakdown:
verbose_level = 1
if args.verbose:
verbose_level = 2
def tune_gemm(rank, world_size, M, N, K, col_a, col_b, dtype_a, dtype_b, dtype_c, init_type, pruned_configs, run_bench, jobs, iters, skipWarmup, verbose, num_threads):
return tune_gemm_config(rank, world_size, M, N, K, col_a, col_b, dtype_a, dtype_b, dtype_c, init_type, pruned_configs, run_bench, jobs, iters, skipWarmup, verbose, num_threads)
minTime, bestConfig, compile_time, profile_time, post_time = spawn(
tune_gemm,
args=(world_size, M, N, K, col_a, col_b, dtype_a, dtype_b, dtype_c, init_type, pruned_configs, run_bench, jobs, iters, skipWarmup, verbose_level, num_threads),
nprocs=world_size,
join=True
)
# post processing the numbers
perf_tflops = lambda us: 2 * M * N * K * 1e-12 / (us * 1e-6)
tri_tflops = perf_tflops(minTime)
formatted_tflops = format_output(tri_tflops)
minTime = format_output(minTime)
if not run_bench:
print(f'TFLOPS: {formatted_tflops} time(us): {minTime}', end=" ", flush=True)
bestConfig_compact_str, _ = gen_kernel_and_configStr_from_config(M, N, K, bestConfig, None, None, None)
if not run_bench:
print(f'best_config: {bestConfig_compact_str}', end=" ", flush=True)
# write best config to tuning_results.yaml
if run_bench:
print(f"{formatted_tflops} {minTime}")
f_results.write(f"{formatted_tflops},{minTime}\n")
sizeDict = {'M': M, 'N': N, 'K': K, 'rowMajorA': row_a_str, 'rowMajorB': row_b_str}
sizeDict.update(bestConfig)
if not run_bench:
f_results.write("- " + str(sizeDict) + " ")
f_results.write(f'# TFLOPS: {formatted_tflops} time(us): {minTime}\n')
# remove generated files if asked to
if not keepTmp:
for i in range(jobs):
generated_script = generated_kernel_name(M, N, K, i)
os.remove(generated_script)
if not skipWarmup:
os.remove(generated_script + ".failed_configs")
for f in glob.glob(f"results-{i}.*"):
os.remove(f)
# Check correctness if asked to
if args.compare:
print("correctness: ", end=" ", flush=True)
test_correctness(M, N, K, col_a, col_b, dtype_a, dtype_b, dtype_c, init_type, bestConfig, False)
elif not run_bench:
print("", flush=True)
end_local_time = datetime.now()
if not run_bench:
print(f">>> Elapsed time: {end_local_time - start_local_time} = {compile_time} (compile) + {profile_time} (profile) + {post_time} (post processing)", flush=True)
f_results.close()
end_time = datetime.now()
tuning_time = end_time - start_time
if not run_bench:
print(f"Tuning ends at: {end_time}")
print(f"Total tuning time (h:m:s): {tuning_time}")
if __name__ == '__main__':
main()
| @triton.jit
def copy_kernel(input_ptr, output_ptr, n_elements, BLOCK_SIZE: tl.constexpr):
offsets = tl.program_id(axis=0) * BLOCK_SIZE + tl.arange(0, BLOCK_SIZE)
mask = offsets < n_elements
input = tl.load(input_ptr + offsets, mask=mask)
output = input
tl.store(output_ptr + offsets, output, mask=mask)
def init_by_size_and_type(size, dtype, init_type):
if init_type == 'hpl':
return torch.empty(size, device='cuda', dtype=dtype).uniform_(-0.5, 0.5)
# This init type has element[i] in row[j] equal to sin(i+j*N)
elif init_type == 'trig_float':
M, N = size
return torch.reshape(torch.arange(0, M*N), (M, N)).sin().to(dtype=dtype, device='cuda')
elif init_type == 'zeros':
return torch.zeros(size, dtype=dtype, device='cuda')
elif init_type == "randn":
temp = torch.randn(size, dtype=dtype, device='cuda')
return temp
else:
raise ValueError("Bad matrix initialization type.")
raw_data = init_by_size_and_type((N,M) if needTrans else (M,N), torch.float32, init_type)
if needTrans:
raw_data = raw_data.T
if (d_type == tl.float8e4b8 and TORCH_HAS_FP8E4B8) or \
(d_type == tl.float8e5b16 and TORCH_HAS_FP8E5B16) or not d_type.is_fp8():
input = raw_data.to(tl_to_torch_types[d_type])
input_f16 = input.to(torch.float16)
else:
f8_tensor = raw_data.to(torch.int8)
# keep only two bits of exponent to avoid overflow
f8_tensor = f8_tensor & 0b00111111
input = triton.reinterpret(f8_tensor, d_type)
input_f16 = torch.empty_like(f8_tensor, dtype=torch.float16)
grid = lambda meta: (triton.cdiv(n_elements, meta['BLOCK_SIZE']),)
n_elements = raw_data.numel()
copy_kernel[grid](input, input_f16, n_elements, BLOCK_SIZE=1024)
return input, input_f16
def matmul(a, b, c, block_m, block_n, block_k, group_m, split_k, num_warps, num_stages, waves_per_eu, mfmaInstrSize, kpack):
# Check constraints.
assert a.shape[1] == b.shape[0], "Incompatible dimensions"
#assert a.is_contiguous(), "Matrix A must be contiguous"
#assert b.is_contiguous(), "Matrix B must be contiguous"
M, K = a.shape
K, N = b.shape
# 1D launch kernel where each block gets its own program.
grid = triton.cdiv(M, block_m) * triton.cdiv(N, block_n), split_k
matmul_kernel[grid](
a, b, c,
M, N, K,
a.stride(0), a.stride(1),
b.stride(0), b.stride(1),
c.stride(0), c.stride(1),
BLOCK_SIZE_M=block_m,
BLOCK_SIZE_N=block_n,
BLOCK_SIZE_K=block_k,
GROUP_SIZE_M=group_m,
SPLIT_K=split_k,
num_warps=num_warps,
num_stages=num_stages,
waves_per_eu=waves_per_eu,
matrix_instr_nonkdim = mfmaInstrSize,
kpack = kpack
)
return c
def test_correctness(M, N, K, col_a, col_b, dtype_a, dtype_b, dtype_c, init_type, config, verbose):
block_m, block_n, block_k, group_m, split_k, num_warps, num_stages, waves_per_eu, mfmaInstrSize, kpack = read_config(config)
torch.manual_seed(0)
#a = torch.randn((M, K), device='cuda', dtype=datatype)
#b = torch.randn((K, N), device='cuda', dtype=datatype)
a, a_fp16 = gen_input(M, K, dtype_a, col_a, 1, init_type, device='cuda')
b, b_fp16 = gen_input(K, N, dtype_b, col_b, 2, init_type, device='cuda')
# Allocates output.
c = torch.zeros((M, N), device=a.device, dtype=tl_to_torch_types[name_to_tl_types[dtype_c]])
triton_output = matmul(a, b, c, block_m, block_n, block_k, group_m, split_k, num_warps, num_stages, waves_per_eu, mfmaInstrSize, kpack)
torch_output = torch.matmul(a_fp16, b_fp16)
# print(f"triton_output={triton_output}")
# print(f"torch_output={torch_output}")
rtol = 0 if torch.version.hip is None else 1e-2
atol = 1e-3 if split_k == 1 else 4e-2
row_a_str = 'N' if col_a else 'T'
row_b_str = 'N' if col_b else 'T'
size_str = ''
if verbose:
size_str = f'SIZE M: {M}, N: {N}, K: {K}, trans: {row_a_str}{row_b_str}'
if torch.allclose(triton_output.to(torch.float16), torch_output, atol=atol, rtol=rtol):
print(f'{size_str} Correct✅')
else:
print(f'{size_str} Incorrect❌')
def get_default_tuning_result_filename():
git_branch_name = run_bash_command("git rev-parse --abbrev-ref HEAD")
git_branch_name = git_branch_name[0].decode()
git_commit_hash = run_bash_command("git rev-parse --short HEAD")
git_commit_hash = git_commit_hash[0].decode()
dt_string = datetime.now().strftime("%m-%d-%Y-%H:%M:%S")
defaultName = f"tuning_results_{git_branch_name}@{git_commit_hash}_{dt_string}.yaml"
return defaultName
def parse_args():
parser = argparse.ArgumentParser(
prog="tune a specific gemm size",
allow_abbrev=False,
)
parser.add_argument("-m", type=int, default=0)
parser.add_argument("-n", type=int, default=0)
parser.add_argument("-k", type=int, default=0)
parser.add_argument("-col_a", action='store_true', default=False, help='whether matrix a is column major')
parser.add_argument("-col_b", action='store_true', default=False, help='whether matrix b is column major')
parser.add_argument("-dtype_a", type=str, default='fp16', help="matrix a element data type")
parser.add_argument("-dtype_b", type=str, default='fp16', help="matrix b element data type")
parser.add_argument("-dtype_c", type=str, default='fp16', help="output element data type")
parser.add_argument("--ngpus", type=int, default=0, help='number of GPUs used in the profiling step')
parser.add_argument("--gpu_ids", type=lambda s: [int(id) for id in s.split(',')], default=[], help='list of gpu ids to use for tuning')
parser.add_argument("--gemm_size_file", type=str, default="", help='yaml file to indicate matrix size')
parser.add_argument("--o", type=str, default='', help='yaml file to store tuning results')
parser.add_argument("--keep", action='store_true', default=False, help='keep generated files')
parser.add_argument("--compare", action='store_true', default=False, help="Whether check result correctness")
parser.add_argument("--compare_wo_tuning", action='store_true', default=False, help="Whether check result correctness")
parser.add_argument("--benchmark", action='store_true', default=False, help="Benchmark the given config")
parser.add_argument("--time_breakdown", action='store_true', default=False, help="Show detailed time breakdown of each step during the tuning")
parser.add_argument("--verbose", action='store_true', default=False, help="enables time_breakdown and additional logging messages")
parser.add_argument("--num_threads", type=int, default=16, help="number of threads to use for kernel compilation and post processing")
parser.add_argument("--jobs", type=int, default=1, help="number of generated files")
parser.add_argument("--iters", type=int, default=1000, help="number of generated files")
parser.add_argument("--init_type", type=str, default='randn', help="Initialization type for input matrices (default uniform rand [0, 1.0)])")
parser.add_argument("--no_warmup", action='store_true', default=False, help="Do not call the warmup kernel")
args = parser.parse_args()
if not args.o:
if args.benchmark:
args.o = "benchmarking_results.csv"
else:
args.o = get_default_tuning_result_filename()
return args
TORCH_HAS_FP8E5B16 = hasattr(torch, 'float8_e5m2fnuz')
TORCH_HAS_FP8E4B8 = hasattr(torch, 'float8_e4m3fnuz')
tl_to_torch_types = {
tl.float16: torch.float16,
tl.bfloat16: torch.bfloat16,
tl.float32: torch.float32,
tl.int8: torch.int8,
tl.int32: torch.int32,
}
if TORCH_HAS_FP8E5B16:
tl_to_torch_types[tl.float8e5b16] = torch.float8_e5m2fnuz
if TORCH_HAS_FP8E4B8:
tl_to_torch_types[tl.float8e4b8] = torch.float8_e4m3fnuz
name_to_tl_types = {
'int8': tl.int8,
'int32': tl.int32,
'fp16': tl.float16,
'fp32': tl.float32,
'bf16': tl.bfloat16,
'fp8': tl.float8e4b8,
'bf8': tl.float8e5b16,
}
def process_item(item):
M = item['M']
N = item['N']
K = item['K']
col_a = False if item['rowMajorA'] == 'T' else True
col_b = False if item['rowMajorB'] == 'T' else True
del item['M']
del item['N']
del item['K']
del item['rowMajorA']
del item['rowMajorB']
return M, N, K, col_a, col_b, item
def type_name_to_bytes(ty_name):
if '32' in ty_name:
return 4
if '16' in ty_name:
return 2
if '8' in ty_name:
return 1
else:
print(f"Unrecognized input type name {ty_name}")
sys.exit(1)
def format_output(unformatted):
if unformatted < 0.0001:
formatted = "{:.3e}".format(unformatted)
elif unformatted > 1000:
formatted = "{:.1f}".format(unformatted)
else:
formatted = "{:.2f}".format(unformatted)
return formatted
def setup(rank, world_size):
os.environ['MASTER_ADDR'] = 'localhost'
os.environ['MASTER_PORT'] = '12355'
dist.init_process_group("nccl", rank=rank, world_size=world_size)
print(f"Rank {rank}/{world_size} process initialized.")
def cleanup():
dist.destroy_process_group()
print("Process group destroyed.")
def main():
args = parse_args()
world_size = len(args.gpu_ids) if args.gpu_ids else torch.cuda.device_count()
print(f"Number of GPUs available: {world_size}")
matrix_size_file = args.gemm_size_file
output_file = args.o
keepTmp = args.keep
run_bench = args.benchmark
jobs = args.jobs
iters = args.iters
skipWarmup = args.no_warmup
# Get GPU ids
ngpus = args.ngpus
gpu_ids = args.gpu_ids
if ngpus != 0 and gpu_ids:
print("--ngpus and --gpu_ids are mutually exclusive options")
return os.EX_USAGE
if ngpus == 0 and not gpu_ids:
ngpus = 1
if ngpus != 0:
gpus = list(range(ngpus))
if gpu_ids:
gpus = gpu_ids
if run_bench:
gpus = [gpus[0]]
jobs = 1
# Get element type
dtype_a = args.dtype_a
dtype_b = args.dtype_b
dtype_c = args.dtype_c
if not dtype_a in name_to_tl_types or not dtype_b in name_to_tl_types or not dtype_c in name_to_tl_types:
print(f"Unsupported dtype_a {args.dtype_a} or dtype_b {args.dtype_b} or dtype_c {args.dtype_c}")
print("Supported types: ", list(name_to_tl_types.keys()))
sys.exit(1)
mnks = []
# TODO: make it more robust to get user input
init_type = args.init_type
if matrix_size_file == "" or not os.path.isfile(matrix_size_file):
M = args.m
N = args.n
K = args.k
col_a = args.col_a
col_b = args.col_b
mnks = [(M, N, K, col_a, col_b, None)]
else:
with open(matrix_size_file) as file:
matrix_sizes = yaml.safe_load(file)
for item in matrix_sizes:
M, N, K, col_a, col_b, item = process_item(item)
mnks.append((M, N, K, col_a, col_b, item))
# Check correctness from given configs
if args.compare_wo_tuning:
for (M, N, K, col_a, col_b, myConfig) in mnks:
test_correctness(M, N, K, col_a, col_b, dtype_a, dtype_b, dtype_c, init_type, myConfig, True)
return
configs_full = get_full_tuning_space()
start_time = datetime.now()
# Append to the output file so that we can save all results into one file
f_results = open(output_file, 'a')
if run_bench:
print(f"Benchmarking gemm with {dtype_a} inputs")
print("trans M N K TFLOPS us")
f_results.write("trans,M,N,K,TFLOPS,us\n")
else:
print(f"Tuning {len(mnks)} gemm sizes starts at: {start_time}", flush=True)
for (M, N, K, col_a, col_b, myConfig) in mnks:
start_local_time = datetime.now()
# Obtain a pruned tuning space according to gemm size
# If running benchmark, use the provided config
pruned_configs = [myConfig] if run_bench else prune_configs(M, N, K, configs_full, type_name_to_bytes(dtype_a), type_name_to_bytes(dtype_b))
row_a_str = 'N' if col_a else 'T'
row_b_str = 'N' if col_b else 'T'
size_str = f'SIZE: {M} {N} {K} {row_a_str}{row_b_str}'
if not run_bench:
print(f"{size_str} nConfigs: {len(pruned_configs)}", end=" ", flush=True)
else:
print(f"{row_a_str}{row_b_str} {M:5d} {N:5d} {K:5d} ", end="")
f_results.write(f"{row_a_str}{row_b_str},{M},{N},{K},")
# The main tuning function for one gemm size
verbose_level = 0
if args.time_breakdown:
verbose_level = 1
if args.verbose:
verbose_level = 2
def tune_gemm(rank, world_size, M, N, K, col_a, col_b, dtype_a, dtype_b, dtype_c, init_type, pruned_configs, run_bench, jobs, iters, skipWarmup, verbose, num_threads):
return tune_gemm_config(rank, world_size, M, N, K, col_a, col_b, dtype_a, dtype_b, dtype_c, init_type, pruned_configs, run_bench, jobs, iters, skipWarmup, verbose, num_threads)
minTime, bestConfig, compile_time, profile_time, post_time = spawn(
tune_gemm,
args=(world_size, M, N, K, col_a, col_b, dtype_a, dtype_b, dtype_c, init_type, pruned_configs, run_bench, jobs, iters, skipWarmup, verbose_level, num_threads),
nprocs=world_size,
join=True
)
# post processing the numbers
perf_tflops = lambda us: 2 * M * N * K * 1e-12 / (us * 1e-6)
tri_tflops = perf_tflops(minTime)
formatted_tflops = format_output(tri_tflops)
minTime = format_output(minTime)
if not run_bench:
print(f'TFLOPS: {formatted_tflops} time(us): {minTime}', end=" ", flush=True)
bestConfig_compact_str, _ = gen_kernel_and_configStr_from_config(M, N, K, bestConfig, None, None, None)
if not run_bench:
print(f'best_config: {bestConfig_compact_str}', end=" ", flush=True)
# write best config to tuning_results.yaml
if run_bench:
print(f"{formatted_tflops} {minTime}")
f_results.write(f"{formatted_tflops},{minTime}\n")
sizeDict = {'M': M, 'N': N, 'K': K, 'rowMajorA': row_a_str, 'rowMajorB': row_b_str}
sizeDict.update(bestConfig)
if not run_bench:
f_results.write("- " + str(sizeDict) + " ")
f_results.write(f'# TFLOPS: {formatted_tflops} time(us): {minTime}\n')
# remove generated files if asked to
if not keepTmp:
for i in range(jobs):
generated_script = generated_kernel_name(M, N, K, i)
os.remove(generated_script)
if not skipWarmup:
os.remove(generated_script + ".failed_configs")
for f in glob.glob(f"results-{i}.*"):
os.remove(f)
# Check correctness if asked to
if args.compare:
print("correctness: ", end=" ", flush=True)
test_correctness(M, N, K, col_a, col_b, dtype_a, dtype_b, dtype_c, init_type, bestConfig, False)
elif not run_bench:
print("", flush=True)
end_local_time = datetime.now()
if not run_bench:
print(f">>> Elapsed time: {end_local_time - start_local_time} = {compile_time} (compile) + {profile_time} (profile) + {post_time} (post processing)", flush=True)
f_results.close()
end_time = datetime.now()
tuning_time = end_time - start_time
if not run_bench:
print(f"Tuning ends at: {end_time}")
print(f"Total tuning time (h:m:s): {tuning_time}")
if __name__ == '__main__':
main()
|
phlippe/liger_kernels | liger_kernels/utils.py | https://github.com/phlippe/liger_kernels/blob/0abb152b752e66e1c3e0c78a7eb56daea9a07f42/liger_kernels/utils.py | import jax
import numpy as np
import triton
import triton.language as tl
@triton.jit
def element_mul_kernel(
_, # alias for X_ptr
grad_output_ptr,
X_ptr,
X_stride,
n_cols,
BLOCK_SIZE: tl.constexpr,
):
"""
This function multiplies each element of the tensor pointed by X_ptr with the value pointed by grad_output_ptr.
The multiplication is performed in-place on the tensor pointed by X_ptr.
Parameters:
X_ptr: Pointer to the input tensor.
X_stride (int): The stride of the input tensor.
grad_output_ptr: Pointer to the gradient output value.
n_cols (int): The number of columns in the input tensor.
BLOCK_SIZE (int): The block size for Triton operations.
"""
# Get the program ID and convert it to int64 to avoid overflow
program_id = tl.program_id(0).to(tl.int64)
# Locate the start index
X_ptr += program_id * X_stride
# Load the gradient output value
grad_output = tl.load(grad_output_ptr)
# Perform the element-wise multiplication
for i in range(0, n_cols, BLOCK_SIZE):
X_offsets = i + tl.arange(0, BLOCK_SIZE)
X_block = tl.load(X_ptr + X_offsets, mask=X_offsets < n_cols)
tl.store(X_ptr + X_offsets, X_block * grad_output, mask=X_offsets < n_cols)
def get_stride(array: jax.Array | jax.ShapeDtypeStruct, axis: int) -> int:
"""
Returns the stride of a JAX array at a given axis.
To calculate all strides, use get_strides.
Args:
array: JAX array or shape-dtype struct.
axis: The axis at which to calculate the stride.
Returns:
The stride of the array at the given axis.
"""
if axis < 0:
axis += len(array.shape)
shape = array.shape
size = array.size
stride = size // np.prod(shape[: axis + 1])
return int(stride)
| @triton.jit
def element_mul_kernel(
_, # alias for X_ptr
grad_output_ptr,
X_ptr,
X_stride,
n_cols,
BLOCK_SIZE: tl.constexpr,
):
"""
This function multiplies each element of the tensor pointed by X_ptr with the value pointed by grad_output_ptr.
The multiplication is performed in-place on the tensor pointed by X_ptr.
Parameters:
X_ptr: Pointer to the input tensor.
X_stride (int): The stride of the input tensor.
grad_output_ptr: Pointer to the gradient output value.
n_cols (int): The number of columns in the input tensor.
BLOCK_SIZE (int): The block size for Triton operations.
"""
# Get the program ID and convert it to int64 to avoid overflow
program_id = tl.program_id(0).to(tl.int64)
# Locate the start index
X_ptr += program_id * X_stride
# Load the gradient output value
grad_output = tl.load(grad_output_ptr)
# Perform the element-wise multiplication
for i in range(0, n_cols, BLOCK_SIZE):
X_offsets = i + tl.arange(0, BLOCK_SIZE)
X_block = tl.load(X_ptr + X_offsets, mask=X_offsets < n_cols)
tl.store(X_ptr + X_offsets, X_block * grad_output, mask=X_offsets < n_cols)
def get_stride(array: jax.Array | jax.ShapeDtypeStruct, axis: int) -> int:
"""
Returns the stride of a JAX array at a given axis.
To calculate all strides, use get_strides.
Args:
array: JAX array or shape-dtype struct.
axis: The axis at which to calculate the stride.
Returns:
The stride of the array at the given axis.
"""
if axis < 0:
axis += len(array.shape)
shape = array.shape
size = array.size
stride = size // np.prod(shape[: axis + 1])
return int(stride)
|
yifuwang/symm-mem-recipes | triton_utils.py | https://github.com/yifuwang/symm-mem-recipes/blob/8ee5d5b8f53efb9c051e6cdf0ca62270c2b43c34/triton_utils.py | import triton
import triton.language as tl
@triton.jit
def get_tid():
return tl.inline_asm_elementwise(
"""
mov.u32 $0, %tid.x;
mov.u32 $1, %tid.y;
mov.u32 $2, %tid.z;
""",
"=r,=r,=r",
[],
dtype=(tl.uint32, tl.uint32, tl.uint32),
is_pure=True,
pack=1,
)
@triton.jit
def get_ntid():
return tl.inline_asm_elementwise(
"""
mov.u32 $0, %ntid.x;
mov.u32 $1, %ntid.y;
mov.u32 $2, %ntid.z;
""",
"=r,=r,=r",
[],
dtype=(tl.uint32, tl.uint32, tl.uint32),
is_pure=True,
pack=1,
)
@triton.jit
def get_flat_tid():
tid_x, tid_y, tid_z = get_tid()
ntid_x, ntid_y, _ = get_ntid()
return tid_z * ntid_y * ntid_x + tid_y * ntid_x + tid_x
@triton.jit
def get_flat_bid():
return (
tl.program_id(2) * tl.num_programs(1) * tl.num_programs(0)
+ tl.program_id(1) * tl.num_programs(0)
+ tl.program_id(0)
)
@triton.jit
def sync_threads():
tl.inline_asm_elementwise(
"bar.sync 0;", "=r", [], dtype=tl.int32, is_pure=False, pack=1
)
| @triton.jit
def get_tid():
return tl.inline_asm_elementwise(
"""
mov.u32 $0, %tid.x;
mov.u32 $1, %tid.y;
mov.u32 $2, %tid.z;
""",
"=r,=r,=r",
[],
dtype=(tl.uint32, tl.uint32, tl.uint32),
is_pure=True,
pack=1,
)
|
yifuwang/symm-mem-recipes | triton_utils.py | https://github.com/yifuwang/symm-mem-recipes/blob/8ee5d5b8f53efb9c051e6cdf0ca62270c2b43c34/triton_utils.py | import triton
import triton.language as tl
@triton.jit
def get_tid():
return tl.inline_asm_elementwise(
"""
mov.u32 $0, %tid.x;
mov.u32 $1, %tid.y;
mov.u32 $2, %tid.z;
""",
"=r,=r,=r",
[],
dtype=(tl.uint32, tl.uint32, tl.uint32),
is_pure=True,
pack=1,
)
@triton.jit
def get_ntid():
return tl.inline_asm_elementwise(
"""
mov.u32 $0, %ntid.x;
mov.u32 $1, %ntid.y;
mov.u32 $2, %ntid.z;
""",
"=r,=r,=r",
[],
dtype=(tl.uint32, tl.uint32, tl.uint32),
is_pure=True,
pack=1,
)
@triton.jit
def get_flat_tid():
tid_x, tid_y, tid_z = get_tid()
ntid_x, ntid_y, _ = get_ntid()
return tid_z * ntid_y * ntid_x + tid_y * ntid_x + tid_x
@triton.jit
def get_flat_bid():
return (
tl.program_id(2) * tl.num_programs(1) * tl.num_programs(0)
+ tl.program_id(1) * tl.num_programs(0)
+ tl.program_id(0)
)
@triton.jit
def sync_threads():
tl.inline_asm_elementwise(
"bar.sync 0;", "=r", [], dtype=tl.int32, is_pure=False, pack=1
)
| @triton.jit
def get_ntid():
return tl.inline_asm_elementwise(
"""
mov.u32 $0, %ntid.x;
mov.u32 $1, %ntid.y;
mov.u32 $2, %ntid.z;
""",
"=r,=r,=r",
[],
dtype=(tl.uint32, tl.uint32, tl.uint32),
is_pure=True,
pack=1,
)
|
yifuwang/symm-mem-recipes | triton_utils.py | https://github.com/yifuwang/symm-mem-recipes/blob/8ee5d5b8f53efb9c051e6cdf0ca62270c2b43c34/triton_utils.py | import triton
import triton.language as tl
@triton.jit
def get_tid():
return tl.inline_asm_elementwise(
"""
mov.u32 $0, %tid.x;
mov.u32 $1, %tid.y;
mov.u32 $2, %tid.z;
""",
"=r,=r,=r",
[],
dtype=(tl.uint32, tl.uint32, tl.uint32),
is_pure=True,
pack=1,
)
@triton.jit
def get_ntid():
return tl.inline_asm_elementwise(
"""
mov.u32 $0, %ntid.x;
mov.u32 $1, %ntid.y;
mov.u32 $2, %ntid.z;
""",
"=r,=r,=r",
[],
dtype=(tl.uint32, tl.uint32, tl.uint32),
is_pure=True,
pack=1,
)
@triton.jit
def get_flat_tid():
tid_x, tid_y, tid_z = get_tid()
ntid_x, ntid_y, _ = get_ntid()
return tid_z * ntid_y * ntid_x + tid_y * ntid_x + tid_x
@triton.jit
def get_flat_bid():
return (
tl.program_id(2) * tl.num_programs(1) * tl.num_programs(0)
+ tl.program_id(1) * tl.num_programs(0)
+ tl.program_id(0)
)
@triton.jit
def sync_threads():
tl.inline_asm_elementwise(
"bar.sync 0;", "=r", [], dtype=tl.int32, is_pure=False, pack=1
)
| @triton.jit
def get_flat_tid():
tid_x, tid_y, tid_z = get_tid()
ntid_x, ntid_y, _ = get_ntid()
return tid_z * ntid_y * ntid_x + tid_y * ntid_x + tid_x
|
yifuwang/symm-mem-recipes | triton_utils.py | https://github.com/yifuwang/symm-mem-recipes/blob/8ee5d5b8f53efb9c051e6cdf0ca62270c2b43c34/triton_utils.py | import triton
import triton.language as tl
@triton.jit
def get_tid():
return tl.inline_asm_elementwise(
"""
mov.u32 $0, %tid.x;
mov.u32 $1, %tid.y;
mov.u32 $2, %tid.z;
""",
"=r,=r,=r",
[],
dtype=(tl.uint32, tl.uint32, tl.uint32),
is_pure=True,
pack=1,
)
@triton.jit
def get_ntid():
return tl.inline_asm_elementwise(
"""
mov.u32 $0, %ntid.x;
mov.u32 $1, %ntid.y;
mov.u32 $2, %ntid.z;
""",
"=r,=r,=r",
[],
dtype=(tl.uint32, tl.uint32, tl.uint32),
is_pure=True,
pack=1,
)
@triton.jit
def get_flat_tid():
tid_x, tid_y, tid_z = get_tid()
ntid_x, ntid_y, _ = get_ntid()
return tid_z * ntid_y * ntid_x + tid_y * ntid_x + tid_x
@triton.jit
def get_flat_bid():
return (
tl.program_id(2) * tl.num_programs(1) * tl.num_programs(0)
+ tl.program_id(1) * tl.num_programs(0)
+ tl.program_id(0)
)
@triton.jit
def sync_threads():
tl.inline_asm_elementwise(
"bar.sync 0;", "=r", [], dtype=tl.int32, is_pure=False, pack=1
)
| @triton.jit
def get_flat_bid():
return (
tl.program_id(2) * tl.num_programs(1) * tl.num_programs(0)
+ tl.program_id(1) * tl.num_programs(0)
+ tl.program_id(0)
)
|
yifuwang/symm-mem-recipes | triton_utils.py | https://github.com/yifuwang/symm-mem-recipes/blob/8ee5d5b8f53efb9c051e6cdf0ca62270c2b43c34/triton_utils.py | import triton
import triton.language as tl
@triton.jit
def get_tid():
return tl.inline_asm_elementwise(
"""
mov.u32 $0, %tid.x;
mov.u32 $1, %tid.y;
mov.u32 $2, %tid.z;
""",
"=r,=r,=r",
[],
dtype=(tl.uint32, tl.uint32, tl.uint32),
is_pure=True,
pack=1,
)
@triton.jit
def get_ntid():
return tl.inline_asm_elementwise(
"""
mov.u32 $0, %ntid.x;
mov.u32 $1, %ntid.y;
mov.u32 $2, %ntid.z;
""",
"=r,=r,=r",
[],
dtype=(tl.uint32, tl.uint32, tl.uint32),
is_pure=True,
pack=1,
)
@triton.jit
def get_flat_tid():
tid_x, tid_y, tid_z = get_tid()
ntid_x, ntid_y, _ = get_ntid()
return tid_z * ntid_y * ntid_x + tid_y * ntid_x + tid_x
@triton.jit
def get_flat_bid():
return (
tl.program_id(2) * tl.num_programs(1) * tl.num_programs(0)
+ tl.program_id(1) * tl.num_programs(0)
+ tl.program_id(0)
)
@triton.jit
def sync_threads():
tl.inline_asm_elementwise(
"bar.sync 0;", "=r", [], dtype=tl.int32, is_pure=False, pack=1
)
| @triton.jit
def sync_threads():
tl.inline_asm_elementwise(
"bar.sync 0;", "=r", [], dtype=tl.int32, is_pure=False, pack=1
)
|
Terapines/AI-Benchmark | src/triton/resize.py | https://github.com/Terapines/AI-Benchmark/blob/0ae8cd849a833d4c35a4b25b722ce98c5af2fe34/src/triton/resize.py | import torch
import triton
import triton.language as tl
import os
USE_GPU = False
triton.runtime.driver.set_active_to_cpu()
def get_resize_kernel_autotune_config():
configs = [
triton.Config({'BLOCK_SIZE_W': 1}),
triton.Config({'BLOCK_SIZE_W': 2}),
triton.Config({'BLOCK_SIZE_W': 4}),
triton.Config({'BLOCK_SIZE_W': 8}),
triton.Config({'BLOCK_SIZE_W': 16}),
triton.Config({'BLOCK_SIZE_W': 32}),
triton.Config({'BLOCK_SIZE_W': 64}),
triton.Config({'BLOCK_SIZE_W': 128}),
]
if(os.getenv("ENABLE_AUTOTUNING") == "resize_kernel"):
assert (len(configs) > 1), "Autotuning config size need be larger than 1"
return configs
return [triton.Config({'BLOCK_SIZE_W': 32})]
@triton.autotune(
configs=get_resize_kernel_autotune_config(),
key=[],
)
@triton.jit
def resize_kernel(
src_ptr,
out_ptr,
channel,
height,
width,
BLOCK_SIZE_W: tl.constexpr,
):
pid_h = tl.program_id(axis=0)
pid_c = tl.program_id(axis=1)
dst_height = 2 * height # 2x upsample
dst_width = 2 * width
hw_fl = 7
h_idx = pid_h
input_y = h_idx << (hw_fl - 1)
y0 = input_y >> hw_fl
h1_lambda = input_y - (y0 << hw_fl)
factor = 1 << hw_fl
h0_lambda = factor - h1_lambda
y1 = tl.minimum(y0 + 1, height - 1)
src_offset = pid_c * height * width
src_ptrs0 = src_ptr + src_offset + y0 * width
src_ptrs1 = src_ptr + src_offset + y1 * width
out_ptrs = out_ptr + (pid_c * dst_height * dst_width + h_idx * dst_width)
for off in range(0, width * 2, BLOCK_SIZE_W):
w_idx = off + tl.arange(0, BLOCK_SIZE_W) # [1, BLOCK_SIZE_W]
mask = (w_idx < dst_width)
input_x = w_idx << (hw_fl - 1)
x0 = input_x >> hw_fl
y0x0 = tl.load(src_ptrs0 + x0, mask=mask, other=0).to(tl.int16)
y1x0 = tl.load(src_ptrs1 + x0, mask=mask, other=0).to(tl.int16)
x1 = tl.minimum(x0 + 1, width - 1)
y0x1 = tl.load(src_ptrs0 + x1, mask=mask, other=0).to(tl.int16)
y1x1 = tl.load(src_ptrs1 + x1, mask=mask, other=0).to(tl.int16)
w1_lambda = input_x - (x0 << hw_fl)
w0_lambda = factor - w1_lambda
sum1 = (y0x0 * w0_lambda + y0x1 * w1_lambda) >> hw_fl
sum2 = (y1x0 * w0_lambda + y1x1 * w1_lambda) >> hw_fl
sum = (sum1 * h0_lambda + sum2 * h1_lambda) >> hw_fl
sum = sum.to(tl.int8)
tl.store(out_ptrs + w_idx, sum, mask=mask)
def resize(src_arr, out_arr):
src_arr = src_arr.contiguous()
out_arr = out_arr.contiguous()
# Get dimensions
channel, height, width = src_arr.shape
# BLOCK_H = 32
# BLOCK_W = 32
# Compute grid dimensions
grid = lambda meta: (height * 2, channel, 1)
# Launch the Triton kernel
resize_kernel[grid](
src_arr, out_arr, channel, height, width
)
C, H, W = 3, 512, 512
src = torch.ones((C, H, W), dtype=torch.int8, device='cpu')
out = torch.empty((C, 2 * H, 2 * W), dtype=torch.int8, device='cpu')
resize(src, out)
# print(src)
# print(out)
| @triton.jit
def resize_kernel(
src_ptr,
out_ptr,
channel,
height,
width,
BLOCK_SIZE_W: tl.constexpr,
):
pid_h = tl.program_id(axis=0)
pid_c = tl.program_id(axis=1)
dst_height = 2 * height # 2x upsample
dst_width = 2 * width
hw_fl = 7
h_idx = pid_h
input_y = h_idx << (hw_fl - 1)
y0 = input_y >> hw_fl
h1_lambda = input_y - (y0 << hw_fl)
factor = 1 << hw_fl
h0_lambda = factor - h1_lambda
y1 = tl.minimum(y0 + 1, height - 1)
src_offset = pid_c * height * width
src_ptrs0 = src_ptr + src_offset + y0 * width
src_ptrs1 = src_ptr + src_offset + y1 * width
out_ptrs = out_ptr + (pid_c * dst_height * dst_width + h_idx * dst_width)
for off in range(0, width * 2, BLOCK_SIZE_W):
w_idx = off + tl.arange(0, BLOCK_SIZE_W) # [1, BLOCK_SIZE_W]
mask = (w_idx < dst_width)
input_x = w_idx << (hw_fl - 1)
x0 = input_x >> hw_fl
y0x0 = tl.load(src_ptrs0 + x0, mask=mask, other=0).to(tl.int16)
y1x0 = tl.load(src_ptrs1 + x0, mask=mask, other=0).to(tl.int16)
x1 = tl.minimum(x0 + 1, width - 1)
y0x1 = tl.load(src_ptrs0 + x1, mask=mask, other=0).to(tl.int16)
y1x1 = tl.load(src_ptrs1 + x1, mask=mask, other=0).to(tl.int16)
w1_lambda = input_x - (x0 << hw_fl)
w0_lambda = factor - w1_lambda
sum1 = (y0x0 * w0_lambda + y0x1 * w1_lambda) >> hw_fl
sum2 = (y1x0 * w0_lambda + y1x1 * w1_lambda) >> hw_fl
sum = (sum1 * h0_lambda + sum2 * h1_lambda) >> hw_fl
sum = sum.to(tl.int8)
tl.store(out_ptrs + w_idx, sum, mask=mask)
def resize(src_arr, out_arr):
src_arr = src_arr.contiguous()
out_arr = out_arr.contiguous()
# Get dimensions
channel, height, width = src_arr.shape
# BLOCK_H = 32
# BLOCK_W = 32
# Compute grid dimensions
grid = lambda meta: (height * 2, channel, 1)
# Launch the Triton kernel
resize_kernel[grid](
src_arr, out_arr, channel, height, width
)
C, H, W = 3, 512, 512
src = torch.ones((C, H, W), dtype=torch.int8, device='cpu')
out = torch.empty((C, 2 * H, 2 * W), dtype=torch.int8, device='cpu')
resize(src, out)
# print(src)
# print(out)
|
khulnasoft/divest | divest/kernels/swiglu.py | https://github.com/khulnasoft/divest/blob/53b878ed6cf9f8e172a496bf26a2b22ff3a30a51/divest/kernels/swiglu.py | import triton
import triton.language as tl
import torch
from .utils import calculate_settings
@triton.jit
def _fg_kernel(e, g, h, n_elements, BLOCK_SIZE : tl.constexpr,):
block_idx = tl.program_id(0)
offsets = block_idx*BLOCK_SIZE + tl.arange(0, BLOCK_SIZE)
mask = offsets < n_elements
e_row = tl.load(e + offsets, mask = mask, other = 0).to(tl.float32)
g_row = tl.load(g + offsets, mask = mask, other = 0)#.to(tl.float32)
# f = e * sigmoid(e)
f_row = e_row * tl.sigmoid(e_row) # e_row / (1 + tl.exp(-e_row))
f_row = f_row.to(g_row.dtype) # Exact copy from HF
# h = f * g
h_row = f_row * g_row
# Store h
tl.store(h + offsets, h_row, mask = mask)
pass
def swiglu_fg_kernel(e, g):
batch, seq_len, hd = e.shape
n_elements = e.numel()
h = torch.empty((batch, seq_len, hd), dtype = e.dtype, device = "cuda")
grid = lambda meta: (triton.cdiv(n_elements, meta['BLOCK_SIZE']),)
_fg_kernel[grid](e, g, h, n_elements, BLOCK_SIZE = 1024,)
return h
pass
@triton.jit
def _DWf_DW_dfg_kernel(DW, e, g, n_elements, BLOCK_SIZE : tl.constexpr,):
"""
e = e.float()
se = 1.0 / (1.0 + torch.exp(-e))
f = (se * e).to(dtype)
h = f * g
df = DW * f
dg = DW * g
de = (dg.float() * se * (1.0 + e * (1.0 - se))).to(dtype)
"""
block_idx = tl.program_id(0)
offsets = block_idx*BLOCK_SIZE + tl.arange(0, BLOCK_SIZE)
mask = offsets < n_elements
DW_row = tl.load(DW + offsets, mask = mask, other = 0)#.to(tl.float32)
e_row = tl.load(e + offsets, mask = mask, other = 0).to(tl.float32)
g_row = tl.load(g + offsets, mask = mask, other = 0)#.to(tl.float32)
# e = e.float()
# se = 1.0 / (1.0 + torch.exp(-e))
se_row = tl.sigmoid(e_row) # 1.0 / (1.0 + tl.exp(-e_row))
# f = (se * e).to(dtype)
f_row = se_row * e_row
f_row = f_row.to(DW_row.dtype)
# h = f * g
h_row = f_row * g_row
# df = DW * f
df_row = DW_row * f_row
# dg = DW * g
dg_row = DW_row * g_row
# de = (dg.float() * se * (1.0 + e * (1.0 - se))).to(dtype)
de_row = dg_row.to(tl.float32) * se_row * (1.0 + e_row * (1.0 - se_row))
de_row = de_row.to(DW_row.dtype)
# Store derivatives in buffers
tl.store(DW + offsets, h_row, mask = mask) # h = f * g
tl.store(e + offsets, df_row, mask = mask) # df = DW * f
tl.store(g + offsets, de_row, mask = mask) # de
pass
def swiglu_DWf_DW_dfg_kernel(DW, e, g):
batch_seq_len, hd = e.shape
n_elements = e.numel()
grid = lambda meta: (triton.cdiv(n_elements, meta['BLOCK_SIZE']),)
_DWf_DW_dfg_kernel[grid](DW, e, g, n_elements, BLOCK_SIZE = 1024,)
return DW, e, g
pass | @triton.jit
def _fg_kernel(e, g, h, n_elements, BLOCK_SIZE : tl.constexpr,):
block_idx = tl.program_id(0)
offsets = block_idx*BLOCK_SIZE + tl.arange(0, BLOCK_SIZE)
mask = offsets < n_elements
e_row = tl.load(e + offsets, mask = mask, other = 0).to(tl.float32)
g_row = tl.load(g + offsets, mask = mask, other = 0)#.to(tl.float32)
# f = e * sigmoid(e)
f_row = e_row * tl.sigmoid(e_row) # e_row / (1 + tl.exp(-e_row))
f_row = f_row.to(g_row.dtype) # Exact copy from HF
# h = f * g
h_row = f_row * g_row
# Store h
tl.store(h + offsets, h_row, mask = mask)
pass
def swiglu_fg_kernel(e, g):
batch, seq_len, hd = e.shape
n_elements = e.numel()
h = torch.empty((batch, seq_len, hd), dtype = e.dtype, device = "cuda")
grid = lambda meta: (triton.cdiv(n_elements, meta['BLOCK_SIZE']),)
_fg_kernel[grid](e, g, h, n_elements, BLOCK_SIZE = 1024,)
return h
pass
|
End of preview. Expand
in Data Studio
README.md exists but content is empty.
- Downloads last month
- 30