repository
stringclasses
166 values
file_path
stringlengths
6
125
url
stringlengths
89
210
code
stringlengths
413
290k
chunk
stringlengths
56
175k
lucidrains/lion-pytorch
lion_pytorch/triton.py
https://github.com/lucidrains/lion-pytorch/blob/6a74fdc0ba572ab5683dc0270c66c20ecbc02d09/lion_pytorch/triton.py
import torch try: import triton import triton.language as tl except ImportError as e: print('triton is not installed, please install by running `pip install triton>=2.2.0`') exit() # triton cuda kernel @triton.autotune(configs = [ triton.Config({'BLOCK_SIZE': 128}, num_warps = 4), triton.Config({'BLOCK_SIZE': 1024}, num_warps = 8), ], key = ['n_elements'], restore_value=['p_ptr', 'exp_avg_ptr']) @triton.jit def update_fn_kernel( p_ptr, grad_ptr, exp_avg_ptr, lr, wd, beta1, beta2, n_elements, BLOCK_SIZE: tl.constexpr, ): pid = tl.program_id(axis = 0) block_start = pid * BLOCK_SIZE offsets = block_start + tl.arange(0, BLOCK_SIZE) mask = offsets < n_elements # offsetted pointers offset_p_ptr = p_ptr + offsets offset_grad_ptr = grad_ptr + offsets offset_exp_avg_ptr = exp_avg_ptr + offsets # load p = tl.load(offset_p_ptr, mask = mask) grad = tl.load(offset_grad_ptr, mask = mask) exp_avg = tl.load(offset_exp_avg_ptr, mask = mask) # stepweight decay p = p * (1 - lr * wd) # diff between momentum running average and grad diff = exp_avg - grad # weight update update = diff * beta1 + grad # torch.sign can_update = update != 0 update_sign = tl.where(update > 0, -lr, lr) p = p + update_sign * can_update # decay the momentum running average coefficient exp_avg = diff * beta2 + grad # store new params and momentum running average coefficient tl.store(offset_p_ptr, p, mask = mask) tl.store(offset_exp_avg_ptr, exp_avg, mask = mask) def update_fn( p: torch.Tensor, grad: torch.Tensor, exp_avg: torch.Tensor, lr: float, wd: float, beta1: float, beta2: float ): assert all([t.is_cuda for t in (p, grad, exp_avg)]) n_elements = p.numel() grid = lambda meta: (triton.cdiv(n_elements, meta['BLOCK_SIZE']),) update_fn_kernel[grid]( p, grad, exp_avg, lr, wd, beta1, beta2, n_elements )
@triton.jit def update_fn_kernel( p_ptr, grad_ptr, exp_avg_ptr, lr, wd, beta1, beta2, n_elements, BLOCK_SIZE: tl.constexpr, ): pid = tl.program_id(axis = 0) block_start = pid * BLOCK_SIZE offsets = block_start + tl.arange(0, BLOCK_SIZE) mask = offsets < n_elements # offsetted pointers offset_p_ptr = p_ptr + offsets offset_grad_ptr = grad_ptr + offsets offset_exp_avg_ptr = exp_avg_ptr + offsets # load p = tl.load(offset_p_ptr, mask = mask) grad = tl.load(offset_grad_ptr, mask = mask) exp_avg = tl.load(offset_exp_avg_ptr, mask = mask) # stepweight decay p = p * (1 - lr * wd) # diff between momentum running average and grad diff = exp_avg - grad # weight update update = diff * beta1 + grad # torch.sign can_update = update != 0 update_sign = tl.where(update > 0, -lr, lr) p = p + update_sign * can_update # decay the momentum running average coefficient exp_avg = diff * beta2 + grad # store new params and momentum running average coefficient tl.store(offset_p_ptr, p, mask = mask) tl.store(offset_exp_avg_ptr, exp_avg, mask = mask) def update_fn( p: torch.Tensor, grad: torch.Tensor, exp_avg: torch.Tensor, lr: float, wd: float, beta1: float, beta2: float ): assert all([t.is_cuda for t in (p, grad, exp_avg)]) n_elements = p.numel() grid = lambda meta: (triton.cdiv(n_elements, meta['BLOCK_SIZE']),) update_fn_kernel[grid]( p, grad, exp_avg, lr, wd, beta1, beta2, n_elements )
jax-ml/jax-triton
examples/add.py
https://github.com/jax-ml/jax-triton/blob/9aff06677a24d07e510f3632532a88b6804324dc/examples/add.py
# Copyright 2024 The jax_triton Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Addition example.""" import jax import jax.numpy as jnp import jax_triton as jt import triton import triton.language as tl @triton.jit def add_kernel( x_ptr, y_ptr, output_ptr, block_size: tl.constexpr, ): """Adds two vectors.""" pid = tl.program_id(axis=0) block_start = pid * block_size offsets = block_start + tl.arange(0, block_size) mask = offsets < 8 x = tl.load(x_ptr + offsets, mask=mask) y = tl.load(y_ptr + offsets, mask=mask) output = x + y tl.store(output_ptr + offsets, output, mask=mask) def add(x: jnp.ndarray, y: jnp.ndarray) -> jnp.ndarray: out_shape = jax.ShapeDtypeStruct(shape=x.shape, dtype=x.dtype) block_size = 8 grid = (triton.cdiv(x.size, block_size),) return jt.triton_call( x, y, kernel=add_kernel, out_shape=out_shape, grid=grid, block_size=block_size) def main(unused_argv): x_val = jnp.arange(8) y_val = jnp.arange(8, 16) print(add(x_val, y_val)) print(jax.jit(add)(x_val, y_val)) if __name__ == "__main__": from absl import app app.run(main)
@triton.jit def add_kernel( x_ptr, y_ptr, output_ptr, block_size: tl.constexpr, ): """Adds two vectors.""" pid = tl.program_id(axis=0) block_start = pid * block_size offsets = block_start + tl.arange(0, block_size) mask = offsets < 8 x = tl.load(x_ptr + offsets, mask=mask) y = tl.load(y_ptr + offsets, mask=mask) output = x + y tl.store(output_ptr + offsets, output, mask=mask) def add(x: jnp.ndarray, y: jnp.ndarray) -> jnp.ndarray: out_shape = jax.ShapeDtypeStruct(shape=x.shape, dtype=x.dtype) block_size = 8 grid = (triton.cdiv(x.size, block_size),) return jt.triton_call( x, y, kernel=add_kernel, out_shape=out_shape, grid=grid, block_size=block_size) def main(unused_argv): x_val = jnp.arange(8) y_val = jnp.arange(8, 16) print(add(x_val, y_val)) print(jax.jit(add)(x_val, y_val)) if __name__ == "__main__": from absl import app app.run(main)
josStorer/RWKV-Runner
finetune/lora/v6/fla/ops/hgrn/chunk.py
https://github.com/josStorer/RWKV-Runner/blob/ad6170816a776bfc312837aafc9a3ff889a3cdd3/finetune/lora/v6/fla/ops/hgrn/chunk.py
# -*- coding: utf-8 -*- # Copyright (c) 2024, Yu Zhang, Songlin Yang # this function implements the chunkwise form of HGRN, inspired by # [Volodymyr Kyrylov in his blog post](https://proger.github.io/posts/scan/chunk.html) # also refer to the `accelerated-scan` lib: https://github.com/proger/accelerated-scan # from tests on H800, with B, H, D = 16, 4, 128, we see that the chunk can be greatly faster than the recurrent: # # Performance: # seq_len chunk recurrent chunk_bwd recurrent_bwd # 0 128.0 0.039360 0.061056 0.312160 0.205008 # 1 256.0 0.045824 0.123712 0.308784 0.297696 # 2 512.0 0.058688 0.241952 0.310720 0.626528 # 3 1024.0 0.088288 0.476992 0.313184 1.333152 # 4 2048.0 0.169472 0.943264 0.452464 2.724864 # 5 4096.0 0.329920 1.886144 0.881600 5.551520 # 6 8192.0 0.647872 3.755040 1.740496 11.117184 # 7 16384.0 1.272064 7.520576 3.446608 22.362528 from typing import Tuple import torch import triton import triton.language as tl from fla.utils import contiguous @triton.autotune( configs=[ triton.Config({'BD': 32}, num_warps=1), triton.Config({'BD': 32}, num_warps=2), triton.Config({'BD': 32}, num_warps=4), triton.Config({'BD': 32}, num_warps=8), triton.Config({'BD': 64}, num_warps=1), triton.Config({'BD': 64}, num_warps=2), triton.Config({'BD': 64}, num_warps=4), triton.Config({'BD': 64}, num_warps=8), triton.Config({'BD': 128}, num_warps=1), triton.Config({'BD': 128}, num_warps=2), triton.Config({'BD': 128}, num_warps=4), triton.Config({'BD': 128}, num_warps=8), ], key=['D'] ) @triton.jit def chunk_hgrn_fwd_kernel_h( x, g, gc, o, h0, T: tl.constexpr, D: tl.constexpr, BT: tl.constexpr, BD: tl.constexpr, USE_INITIAL_STATE: tl.constexpr ): i_d, i_t, i_bh = tl.program_id(0), tl.program_id(1), tl.program_id(2) o_d = i_d * BD + tl.arange(0, BD) mask = o_d < D p_x = x + i_bh * T * D + i_t * BT * D + o_d p_g = g + i_bh * T * D + i_t * BT * D + o_d p_gc = gc + i_bh * T * D + i_t * BT * D + o_d p_o = o + i_bh * T * D + i_t * BT * D + o_d b_h = tl.zeros([BD], dtype=tl.float32) b_gc = tl.zeros([BD], dtype=tl.float32) if USE_INITIAL_STATE: if i_t == 0: b_h += tl.load(h0 + i_bh * D + o_d, mask=mask, other=0).to(tl.float32) for i in range(0, BT): mask_t = mask & ((i_t * BT + i) < T) b_x = tl.load(p_x, mask=mask_t, other=0).to(tl.float32) b_g = tl.load(p_g, mask=mask_t, other=0).to(tl.float32) b_h = tl.exp(b_g) * b_h + b_x b_gc = b_gc + b_g tl.store(p_gc, b_gc.to(p_o.dtype.element_ty), mask=mask_t) tl.store(p_o, b_h.to(p_o.dtype.element_ty), mask=mask_t) p_x += D p_g += D p_gc += D p_o += D @triton.jit def chunk_hgrn_fwd_kernel_o( gc, o, s_h, s_t, s_d, T: tl.constexpr, D: tl.constexpr, BT: tl.constexpr, BD: tl.constexpr ): i_d, i_bh = tl.program_id(0), tl.program_id(1) o_d = i_d * BD + tl.arange(0, BD) mask = o_d < D for i_t in range(1, tl.cdiv(T, BT)): p_gc = tl.make_block_ptr(gc + i_bh * s_h, (T, D), (s_t, s_d), (i_t * BT, i_d * BD), (BT, BD), (1, 0)) p_o = tl.make_block_ptr(o + i_bh * s_h, (T, D), (s_t, s_d), (i_t * BT, i_d * BD), (BT, BD), (1, 0)) # [BD,] b_h0 = tl.load(o + i_bh * T * D + i_t * BT * D - D + o_d, mask=mask, other=0).to(tl.float32) # [BT, BD] b_gc = tl.load(p_gc, boundary_check=(0, 1)).to(tl.float32) b_o = tl.load(p_o, boundary_check=(0, 1)).to(tl.float32) b_o = b_o + tl.exp(b_gc) * b_h0[None, :] tl.store(p_o, b_o.to(p_o.dtype.element_ty), boundary_check=(0, 1)) @triton.autotune( configs=[ triton.Config({'BD': 32}, num_warps=1), triton.Config({'BD': 32}, num_warps=2), triton.Config({'BD': 32}, num_warps=4), triton.Config({'BD': 32}, num_warps=8), triton.Config({'BD': 64}, num_warps=1), triton.Config({'BD': 64}, num_warps=2), triton.Config({'BD': 64}, num_warps=4), triton.Config({'BD': 64}, num_warps=8), triton.Config({'BD': 128}, num_warps=1), triton.Config({'BD': 128}, num_warps=2), triton.Config({'BD': 128}, num_warps=4), triton.Config({'BD': 128}, num_warps=8), ], key=['D'] ) @triton.jit def chunk_hgrn_bwd_kernel_h( g, gc, dx, do, T: tl.constexpr, D: tl.constexpr, BT: tl.constexpr, BD: tl.constexpr ): i_d, i_t, i_bh = tl.program_id(0), tl.program_id(1), tl.program_id(2) o_d = i_d * BD + tl.arange(0, BD) mask = o_d < D BC = min(BT, T - i_t * BT) NT = tl.num_programs(1) p_g = g + (i_bh * T + i_t * BT + BC - 1) * D + o_d p_gc = gc + (i_bh * T + i_t * BT + BC - 1) * D + o_d p_dx = dx + (i_bh * T + i_t * BT + BC - 1) * D + o_d p_do = do + (i_bh * T + i_t * BT + BC - 1) * D + o_d if i_t == NT - 1: b_gc = tl.zeros([BD], dtype=tl.float32) else: b_gc = tl.load(g + (i_bh * T + i_t * BT + BT) * D + o_d, mask=mask, other=0).to(tl.float32) b_dh = tl.zeros([BD], dtype=tl.float32) for _ in range(BC - 1, -1, -1): tl.store(p_gc, b_gc.to(p_gc.dtype.element_ty), mask=mask) b_g = tl.load(p_g, mask=mask, other=0).to(tl.float32) b_do = tl.load(p_do, mask=mask, other=0).to(tl.float32) b_gc = b_gc + b_g b_dh = b_dh + b_do b_dx = b_dh b_dh = b_dh * tl.exp(b_g) tl.store(p_dx, b_dx.to(p_dx.dtype.element_ty), mask=mask) p_g -= D p_gc -= D p_dx -= D p_do -= D @triton.jit def chunk_hgrn_bwd_kernel_o( g, gc, o, dx, dg, s_h, s_t, s_d, T: tl.constexpr, D: tl.constexpr, BT: tl.constexpr, BD: tl.constexpr ): i_d, i_bh = tl.program_id(0), tl.program_id(1) o_d = i_d * BD + tl.arange(0, BD) mask = o_d < D for i_t in range(tl.cdiv(T, BT) - 1, -1, -1): p_g = tl.make_block_ptr(g + i_bh * s_h, (T, D), (s_t, s_d), (i_t * BT, i_d * BD), (BT, BD), (1, 0)) p_gc = tl.make_block_ptr(gc + i_bh * s_h, (T, D), (s_t, s_d), (i_t * BT, i_d * BD), (BT, BD), (1, 0)) p_o = tl.make_block_ptr(o + i_bh * s_h, (T, D), (s_t, s_d), (i_t * BT - 1, i_d * BD), (BT, BD), (1, 0)) p_dx = tl.make_block_ptr(dx + i_bh * s_h, (T, D), (s_t, s_d), (i_t * BT, i_d * BD), (BT, BD), (1, 0)) p_dg = tl.make_block_ptr(dg + i_bh * s_h, (T, D), (s_t, s_d), (i_t * BT, i_d * BD), (BT, BD), (1, 0)) # [BD,] mask_t = mask & ((i_t + 1) * BT < T) b_ht = tl.load(dx + i_bh * T * D + (i_t + 1) * BT * D + o_d, mask=mask_t, other=0).to(tl.float32) # [BT, BD] b_g = tl.load(p_g, boundary_check=(0, 1)).to(tl.float32) b_gc = tl.load(p_gc, boundary_check=(0, 1)).to(tl.float32) b_o = tl.load(p_o, boundary_check=(0, 1)).to(tl.float32) b_dx = tl.load(p_dx, boundary_check=(0, 1)).to(tl.float32) b_dg = tl.load(p_dg, boundary_check=(0, 1)).to(tl.float32) b_dx = b_dx + tl.exp(b_gc) * b_ht[None, :] b_dg = b_o * b_dx * tl.exp(b_g) tl.store(p_dx, b_dx.to(p_dx.dtype.element_ty), boundary_check=(0, 1)) tl.store(p_dg, b_dg.to(p_dg.dtype.element_ty), boundary_check=(0, 1)) class ChunkHGRNFunction(torch.autograd.Function): @staticmethod @contiguous def forward(ctx, x, g, initial_state=None, output_final_state=False): B, H, T, D = x.shape BT, BD = 128, min(64, triton.next_power_of_2(D)) num_warps = 8 if BD == 64 else 4 gc = torch.empty_like(g, dtype=torch.float) o = torch.empty_like(x, dtype=torch.float) def grid(meta): return (triton.cdiv(D, meta['BD']), triton.cdiv(T, meta['BT']), B * H) chunk_hgrn_fwd_kernel_h[grid]( x, g, gc, o, initial_state, T, D, BT=BT, USE_INITIAL_STATE=initial_state is not None ) def grid(meta): return (triton.cdiv(D, meta['BD']), B * H) chunk_hgrn_fwd_kernel_o[grid]( gc, o, o.stride(1), o.stride(2), o.stride(3), T, D, BT=BT, BD=BD, num_warps=num_warps ) final_state = None if output_final_state: final_state = o[:, :, -1].clone() o = o.to(x.dtype) ctx.save_for_backward(g, o, initial_state) return o, final_state @staticmethod @contiguous def backward(ctx, do, dht=None): g, o, initial_state = ctx.saved_tensors B, H, T, D = do.shape BT, BD = 128, min(64, triton.next_power_of_2(D)) num_warps = 8 if BD == 64 else 4 gc = torch.empty_like(g, dtype=torch.float) dx = torch.empty_like(o) dg = torch.empty_like(g) def grid(meta): return (triton.cdiv(D, meta['BD']), triton.cdiv(T, meta['BT']), B * H) chunk_hgrn_bwd_kernel_h[grid]( g, gc, dx, do, T, D, BT=BT ) def grid(meta): return (triton.cdiv(D, meta['BD']), B * H) chunk_hgrn_bwd_kernel_o[grid]( g, gc, o, dx, dg, o.stride(1), o.stride(2), o.stride(3), T, D, BT=BT, BD=BD, num_warps=num_warps ) if initial_state is not None: dg[:, :, 0] = initial_state * dx[:, :, 0] * g[:, :, 0].exp() return dx, dg, None, None def chunk_hgrn( x: torch.Tensor, g: torch.Tensor, initial_state: torch.Tensor = None, output_final_state: bool = False ) -> Tuple[torch.Tensor, torch.Tensor]: if initial_state is not None: initial_state = initial_state.detach() o, final_state = ChunkHGRNFunction.apply(x, g, initial_state, output_final_state) return o, final_state if __name__ == '__main__': import torch.nn.functional as F from fla.ops.hgrn.naive import naive_recurrent_hgrn from fla.ops.hgrn.recurrent_fuse import fused_recurrent_hgrn B, H, T, D = 8, 4, 512, 128 dtype = torch.bfloat16 torch.manual_seed(42) # [batch_size, n_heads, seq_len, d_head] x = torch.randn((B, H, T, D), dtype=dtype, device='cuda') g = torch.randn((B, H, T, D), dtype=dtype, device='cuda') x, g = (1 - g.sigmoid()) * x, F.logsigmoid(g) print(f'x:\t{float(x.min()):>10.6f}\t{float(x.max()):>10.6f}') print(f'g:\t{float(g.min()):>10.6f}\t{float(g.max()):>10.6f}') x, g = (i.detach().clone().to(dtype).requires_grad_() for i in (x, g)) print(f"DTYPE:\t{x.dtype}") do = torch.randn_like(x) h0 = torch.randn_like(x[:, :, 0]) ref, ref_ht = naive_recurrent_hgrn(x, g, h0, output_final_state=True) ref.backward(do) ref_dx, x.grad = x.grad.clone(), None ref_dg, g.grad = g.grad.clone(), None tri, tri_ht = fused_recurrent_hgrn(x, g, h0, output_final_state=True) tri.backward(do) tri_dx, x.grad = x.grad.clone(), None tri_dg, g.grad = g.grad.clone(), None print(" \t DIFF\t MAX") print(' o\t', f"{float((ref - tri).abs().max()):>10.6f}\t{float(ref.max()):>10.6f}") print('ht\t', f"{float((ref_ht[0] - tri_ht[0]).abs().max()):>10.6f}\t{float(ref.max()):>10.6f}") print('dx\t', f"{float((ref_dx - tri_dx).abs().max()):>10.6f}\t{float(ref_dx.max()):>10.6f}") print('dg\t', f"{float((ref_dg - tri_dg).abs().max()):>10.6f}\t{float(ref_dg.max()):>10.6f}") print('Done!') @triton.testing.perf_report( triton.testing.Benchmark( # argument names to use as an x-axis for the plot x_names=['seq_len'], # different possible values for `x_name` x_vals=[128 * 2 ** i for i in range(0, 8)], # argument name whose value corresponds to a different line in the plot line_arg='provider', # possible values for `line_arg`` line_vals=['chunk', 'recurrent', 'chunk_bwd', 'recurrent_bwd'], # label name for the lines line_names=['chunk', 'recurrent', 'chunk_bwd', 'recurrent_bwd'], # line styles styles=[('green', '-'), ('blue', '--'), ('red', '-.'), ('cyan', ':'), ('yellow', 'dotted'), ('black', 'dashed')], ylabel="Execution Time (ms)", # label name for the y-axis # name for the plot. Used also as a file name for saving the plot. plot_name="Performance", args={}, ) ) def benchmark(seq_len, provider): dtype = torch.bfloat16 B, H, D = 16, 4, 128 x = torch.randn((B, H, seq_len, D), dtype=dtype, device='cuda') g = torch.randn((B, H, seq_len, D), dtype=dtype, device='cuda').sigmoid() x = (1 - g) * x x, g = (i.detach().clone().to(dtype).requires_grad_() for i in (x, g)) do = torch.randn_like(x, dtype=dtype) quantiles = [0.5, 0.2, 0.8] results = 0, 0, 0 if provider == 'chunk': results = triton.testing.do_bench(lambda: chunk_hgrn(x, g), quantiles=quantiles) if provider == 'recurrent': results = triton.testing.do_bench(lambda: fused_recurrent_hgrn(x, g), quantiles=quantiles) if provider == 'chunk_bwd': results = triton.testing.do_bench(lambda: chunk_hgrn(x, g)[0].backward(do), quantiles=quantiles) if provider == 'recurrent_bwd': results = triton.testing.do_bench(lambda: fused_recurrent_hgrn(x, g)[0].backward(do), quantiles=quantiles) return results benchmark.run(print_data=True)
@triton.jit def chunk_hgrn_fwd_kernel_h( x, g, gc, o, h0, T: tl.constexpr, D: tl.constexpr, BT: tl.constexpr, BD: tl.constexpr, USE_INITIAL_STATE: tl.constexpr ): i_d, i_t, i_bh = tl.program_id(0), tl.program_id(1), tl.program_id(2) o_d = i_d * BD + tl.arange(0, BD) mask = o_d < D p_x = x + i_bh * T * D + i_t * BT * D + o_d p_g = g + i_bh * T * D + i_t * BT * D + o_d p_gc = gc + i_bh * T * D + i_t * BT * D + o_d p_o = o + i_bh * T * D + i_t * BT * D + o_d b_h = tl.zeros([BD], dtype=tl.float32) b_gc = tl.zeros([BD], dtype=tl.float32) if USE_INITIAL_STATE: if i_t == 0: b_h += tl.load(h0 + i_bh * D + o_d, mask=mask, other=0).to(tl.float32) for i in range(0, BT): mask_t = mask & ((i_t * BT + i) < T) b_x = tl.load(p_x, mask=mask_t, other=0).to(tl.float32) b_g = tl.load(p_g, mask=mask_t, other=0).to(tl.float32) b_h = tl.exp(b_g) * b_h + b_x b_gc = b_gc + b_g tl.store(p_gc, b_gc.to(p_o.dtype.element_ty), mask=mask_t) tl.store(p_o, b_h.to(p_o.dtype.element_ty), mask=mask_t) p_x += D p_g += D p_gc += D p_o += D
josStorer/RWKV-Runner
finetune/lora/v6/fla/ops/hgrn/chunk.py
https://github.com/josStorer/RWKV-Runner/blob/ad6170816a776bfc312837aafc9a3ff889a3cdd3/finetune/lora/v6/fla/ops/hgrn/chunk.py
# -*- coding: utf-8 -*- # Copyright (c) 2024, Yu Zhang, Songlin Yang # this function implements the chunkwise form of HGRN, inspired by # [Volodymyr Kyrylov in his blog post](https://proger.github.io/posts/scan/chunk.html) # also refer to the `accelerated-scan` lib: https://github.com/proger/accelerated-scan # from tests on H800, with B, H, D = 16, 4, 128, we see that the chunk can be greatly faster than the recurrent: # # Performance: # seq_len chunk recurrent chunk_bwd recurrent_bwd # 0 128.0 0.039360 0.061056 0.312160 0.205008 # 1 256.0 0.045824 0.123712 0.308784 0.297696 # 2 512.0 0.058688 0.241952 0.310720 0.626528 # 3 1024.0 0.088288 0.476992 0.313184 1.333152 # 4 2048.0 0.169472 0.943264 0.452464 2.724864 # 5 4096.0 0.329920 1.886144 0.881600 5.551520 # 6 8192.0 0.647872 3.755040 1.740496 11.117184 # 7 16384.0 1.272064 7.520576 3.446608 22.362528 from typing import Tuple import torch import triton import triton.language as tl from fla.utils import contiguous @triton.autotune( configs=[ triton.Config({'BD': 32}, num_warps=1), triton.Config({'BD': 32}, num_warps=2), triton.Config({'BD': 32}, num_warps=4), triton.Config({'BD': 32}, num_warps=8), triton.Config({'BD': 64}, num_warps=1), triton.Config({'BD': 64}, num_warps=2), triton.Config({'BD': 64}, num_warps=4), triton.Config({'BD': 64}, num_warps=8), triton.Config({'BD': 128}, num_warps=1), triton.Config({'BD': 128}, num_warps=2), triton.Config({'BD': 128}, num_warps=4), triton.Config({'BD': 128}, num_warps=8), ], key=['D'] ) @triton.jit def chunk_hgrn_fwd_kernel_h( x, g, gc, o, h0, T: tl.constexpr, D: tl.constexpr, BT: tl.constexpr, BD: tl.constexpr, USE_INITIAL_STATE: tl.constexpr ): i_d, i_t, i_bh = tl.program_id(0), tl.program_id(1), tl.program_id(2) o_d = i_d * BD + tl.arange(0, BD) mask = o_d < D p_x = x + i_bh * T * D + i_t * BT * D + o_d p_g = g + i_bh * T * D + i_t * BT * D + o_d p_gc = gc + i_bh * T * D + i_t * BT * D + o_d p_o = o + i_bh * T * D + i_t * BT * D + o_d b_h = tl.zeros([BD], dtype=tl.float32) b_gc = tl.zeros([BD], dtype=tl.float32) if USE_INITIAL_STATE: if i_t == 0: b_h += tl.load(h0 + i_bh * D + o_d, mask=mask, other=0).to(tl.float32) for i in range(0, BT): mask_t = mask & ((i_t * BT + i) < T) b_x = tl.load(p_x, mask=mask_t, other=0).to(tl.float32) b_g = tl.load(p_g, mask=mask_t, other=0).to(tl.float32) b_h = tl.exp(b_g) * b_h + b_x b_gc = b_gc + b_g tl.store(p_gc, b_gc.to(p_o.dtype.element_ty), mask=mask_t) tl.store(p_o, b_h.to(p_o.dtype.element_ty), mask=mask_t) p_x += D p_g += D p_gc += D p_o += D @triton.jit def chunk_hgrn_fwd_kernel_o( gc, o, s_h, s_t, s_d, T: tl.constexpr, D: tl.constexpr, BT: tl.constexpr, BD: tl.constexpr ): i_d, i_bh = tl.program_id(0), tl.program_id(1) o_d = i_d * BD + tl.arange(0, BD) mask = o_d < D for i_t in range(1, tl.cdiv(T, BT)): p_gc = tl.make_block_ptr(gc + i_bh * s_h, (T, D), (s_t, s_d), (i_t * BT, i_d * BD), (BT, BD), (1, 0)) p_o = tl.make_block_ptr(o + i_bh * s_h, (T, D), (s_t, s_d), (i_t * BT, i_d * BD), (BT, BD), (1, 0)) # [BD,] b_h0 = tl.load(o + i_bh * T * D + i_t * BT * D - D + o_d, mask=mask, other=0).to(tl.float32) # [BT, BD] b_gc = tl.load(p_gc, boundary_check=(0, 1)).to(tl.float32) b_o = tl.load(p_o, boundary_check=(0, 1)).to(tl.float32) b_o = b_o + tl.exp(b_gc) * b_h0[None, :] tl.store(p_o, b_o.to(p_o.dtype.element_ty), boundary_check=(0, 1)) @triton.autotune( configs=[ triton.Config({'BD': 32}, num_warps=1), triton.Config({'BD': 32}, num_warps=2), triton.Config({'BD': 32}, num_warps=4), triton.Config({'BD': 32}, num_warps=8), triton.Config({'BD': 64}, num_warps=1), triton.Config({'BD': 64}, num_warps=2), triton.Config({'BD': 64}, num_warps=4), triton.Config({'BD': 64}, num_warps=8), triton.Config({'BD': 128}, num_warps=1), triton.Config({'BD': 128}, num_warps=2), triton.Config({'BD': 128}, num_warps=4), triton.Config({'BD': 128}, num_warps=8), ], key=['D'] ) @triton.jit def chunk_hgrn_bwd_kernel_h( g, gc, dx, do, T: tl.constexpr, D: tl.constexpr, BT: tl.constexpr, BD: tl.constexpr ): i_d, i_t, i_bh = tl.program_id(0), tl.program_id(1), tl.program_id(2) o_d = i_d * BD + tl.arange(0, BD) mask = o_d < D BC = min(BT, T - i_t * BT) NT = tl.num_programs(1) p_g = g + (i_bh * T + i_t * BT + BC - 1) * D + o_d p_gc = gc + (i_bh * T + i_t * BT + BC - 1) * D + o_d p_dx = dx + (i_bh * T + i_t * BT + BC - 1) * D + o_d p_do = do + (i_bh * T + i_t * BT + BC - 1) * D + o_d if i_t == NT - 1: b_gc = tl.zeros([BD], dtype=tl.float32) else: b_gc = tl.load(g + (i_bh * T + i_t * BT + BT) * D + o_d, mask=mask, other=0).to(tl.float32) b_dh = tl.zeros([BD], dtype=tl.float32) for _ in range(BC - 1, -1, -1): tl.store(p_gc, b_gc.to(p_gc.dtype.element_ty), mask=mask) b_g = tl.load(p_g, mask=mask, other=0).to(tl.float32) b_do = tl.load(p_do, mask=mask, other=0).to(tl.float32) b_gc = b_gc + b_g b_dh = b_dh + b_do b_dx = b_dh b_dh = b_dh * tl.exp(b_g) tl.store(p_dx, b_dx.to(p_dx.dtype.element_ty), mask=mask) p_g -= D p_gc -= D p_dx -= D p_do -= D @triton.jit def chunk_hgrn_bwd_kernel_o( g, gc, o, dx, dg, s_h, s_t, s_d, T: tl.constexpr, D: tl.constexpr, BT: tl.constexpr, BD: tl.constexpr ): i_d, i_bh = tl.program_id(0), tl.program_id(1) o_d = i_d * BD + tl.arange(0, BD) mask = o_d < D for i_t in range(tl.cdiv(T, BT) - 1, -1, -1): p_g = tl.make_block_ptr(g + i_bh * s_h, (T, D), (s_t, s_d), (i_t * BT, i_d * BD), (BT, BD), (1, 0)) p_gc = tl.make_block_ptr(gc + i_bh * s_h, (T, D), (s_t, s_d), (i_t * BT, i_d * BD), (BT, BD), (1, 0)) p_o = tl.make_block_ptr(o + i_bh * s_h, (T, D), (s_t, s_d), (i_t * BT - 1, i_d * BD), (BT, BD), (1, 0)) p_dx = tl.make_block_ptr(dx + i_bh * s_h, (T, D), (s_t, s_d), (i_t * BT, i_d * BD), (BT, BD), (1, 0)) p_dg = tl.make_block_ptr(dg + i_bh * s_h, (T, D), (s_t, s_d), (i_t * BT, i_d * BD), (BT, BD), (1, 0)) # [BD,] mask_t = mask & ((i_t + 1) * BT < T) b_ht = tl.load(dx + i_bh * T * D + (i_t + 1) * BT * D + o_d, mask=mask_t, other=0).to(tl.float32) # [BT, BD] b_g = tl.load(p_g, boundary_check=(0, 1)).to(tl.float32) b_gc = tl.load(p_gc, boundary_check=(0, 1)).to(tl.float32) b_o = tl.load(p_o, boundary_check=(0, 1)).to(tl.float32) b_dx = tl.load(p_dx, boundary_check=(0, 1)).to(tl.float32) b_dg = tl.load(p_dg, boundary_check=(0, 1)).to(tl.float32) b_dx = b_dx + tl.exp(b_gc) * b_ht[None, :] b_dg = b_o * b_dx * tl.exp(b_g) tl.store(p_dx, b_dx.to(p_dx.dtype.element_ty), boundary_check=(0, 1)) tl.store(p_dg, b_dg.to(p_dg.dtype.element_ty), boundary_check=(0, 1)) class ChunkHGRNFunction(torch.autograd.Function): @staticmethod @contiguous def forward(ctx, x, g, initial_state=None, output_final_state=False): B, H, T, D = x.shape BT, BD = 128, min(64, triton.next_power_of_2(D)) num_warps = 8 if BD == 64 else 4 gc = torch.empty_like(g, dtype=torch.float) o = torch.empty_like(x, dtype=torch.float) def grid(meta): return (triton.cdiv(D, meta['BD']), triton.cdiv(T, meta['BT']), B * H) chunk_hgrn_fwd_kernel_h[grid]( x, g, gc, o, initial_state, T, D, BT=BT, USE_INITIAL_STATE=initial_state is not None ) def grid(meta): return (triton.cdiv(D, meta['BD']), B * H) chunk_hgrn_fwd_kernel_o[grid]( gc, o, o.stride(1), o.stride(2), o.stride(3), T, D, BT=BT, BD=BD, num_warps=num_warps ) final_state = None if output_final_state: final_state = o[:, :, -1].clone() o = o.to(x.dtype) ctx.save_for_backward(g, o, initial_state) return o, final_state @staticmethod @contiguous def backward(ctx, do, dht=None): g, o, initial_state = ctx.saved_tensors B, H, T, D = do.shape BT, BD = 128, min(64, triton.next_power_of_2(D)) num_warps = 8 if BD == 64 else 4 gc = torch.empty_like(g, dtype=torch.float) dx = torch.empty_like(o) dg = torch.empty_like(g) def grid(meta): return (triton.cdiv(D, meta['BD']), triton.cdiv(T, meta['BT']), B * H) chunk_hgrn_bwd_kernel_h[grid]( g, gc, dx, do, T, D, BT=BT ) def grid(meta): return (triton.cdiv(D, meta['BD']), B * H) chunk_hgrn_bwd_kernel_o[grid]( g, gc, o, dx, dg, o.stride(1), o.stride(2), o.stride(3), T, D, BT=BT, BD=BD, num_warps=num_warps ) if initial_state is not None: dg[:, :, 0] = initial_state * dx[:, :, 0] * g[:, :, 0].exp() return dx, dg, None, None def chunk_hgrn( x: torch.Tensor, g: torch.Tensor, initial_state: torch.Tensor = None, output_final_state: bool = False ) -> Tuple[torch.Tensor, torch.Tensor]: if initial_state is not None: initial_state = initial_state.detach() o, final_state = ChunkHGRNFunction.apply(x, g, initial_state, output_final_state) return o, final_state if __name__ == '__main__': import torch.nn.functional as F from fla.ops.hgrn.naive import naive_recurrent_hgrn from fla.ops.hgrn.recurrent_fuse import fused_recurrent_hgrn B, H, T, D = 8, 4, 512, 128 dtype = torch.bfloat16 torch.manual_seed(42) # [batch_size, n_heads, seq_len, d_head] x = torch.randn((B, H, T, D), dtype=dtype, device='cuda') g = torch.randn((B, H, T, D), dtype=dtype, device='cuda') x, g = (1 - g.sigmoid()) * x, F.logsigmoid(g) print(f'x:\t{float(x.min()):>10.6f}\t{float(x.max()):>10.6f}') print(f'g:\t{float(g.min()):>10.6f}\t{float(g.max()):>10.6f}') x, g = (i.detach().clone().to(dtype).requires_grad_() for i in (x, g)) print(f"DTYPE:\t{x.dtype}") do = torch.randn_like(x) h0 = torch.randn_like(x[:, :, 0]) ref, ref_ht = naive_recurrent_hgrn(x, g, h0, output_final_state=True) ref.backward(do) ref_dx, x.grad = x.grad.clone(), None ref_dg, g.grad = g.grad.clone(), None tri, tri_ht = fused_recurrent_hgrn(x, g, h0, output_final_state=True) tri.backward(do) tri_dx, x.grad = x.grad.clone(), None tri_dg, g.grad = g.grad.clone(), None print(" \t DIFF\t MAX") print(' o\t', f"{float((ref - tri).abs().max()):>10.6f}\t{float(ref.max()):>10.6f}") print('ht\t', f"{float((ref_ht[0] - tri_ht[0]).abs().max()):>10.6f}\t{float(ref.max()):>10.6f}") print('dx\t', f"{float((ref_dx - tri_dx).abs().max()):>10.6f}\t{float(ref_dx.max()):>10.6f}") print('dg\t', f"{float((ref_dg - tri_dg).abs().max()):>10.6f}\t{float(ref_dg.max()):>10.6f}") print('Done!') @triton.testing.perf_report( triton.testing.Benchmark( # argument names to use as an x-axis for the plot x_names=['seq_len'], # different possible values for `x_name` x_vals=[128 * 2 ** i for i in range(0, 8)], # argument name whose value corresponds to a different line in the plot line_arg='provider', # possible values for `line_arg`` line_vals=['chunk', 'recurrent', 'chunk_bwd', 'recurrent_bwd'], # label name for the lines line_names=['chunk', 'recurrent', 'chunk_bwd', 'recurrent_bwd'], # line styles styles=[('green', '-'), ('blue', '--'), ('red', '-.'), ('cyan', ':'), ('yellow', 'dotted'), ('black', 'dashed')], ylabel="Execution Time (ms)", # label name for the y-axis # name for the plot. Used also as a file name for saving the plot. plot_name="Performance", args={}, ) ) def benchmark(seq_len, provider): dtype = torch.bfloat16 B, H, D = 16, 4, 128 x = torch.randn((B, H, seq_len, D), dtype=dtype, device='cuda') g = torch.randn((B, H, seq_len, D), dtype=dtype, device='cuda').sigmoid() x = (1 - g) * x x, g = (i.detach().clone().to(dtype).requires_grad_() for i in (x, g)) do = torch.randn_like(x, dtype=dtype) quantiles = [0.5, 0.2, 0.8] results = 0, 0, 0 if provider == 'chunk': results = triton.testing.do_bench(lambda: chunk_hgrn(x, g), quantiles=quantiles) if provider == 'recurrent': results = triton.testing.do_bench(lambda: fused_recurrent_hgrn(x, g), quantiles=quantiles) if provider == 'chunk_bwd': results = triton.testing.do_bench(lambda: chunk_hgrn(x, g)[0].backward(do), quantiles=quantiles) if provider == 'recurrent_bwd': results = triton.testing.do_bench(lambda: fused_recurrent_hgrn(x, g)[0].backward(do), quantiles=quantiles) return results benchmark.run(print_data=True)
@triton.jit def chunk_hgrn_fwd_kernel_o( gc, o, s_h, s_t, s_d, T: tl.constexpr, D: tl.constexpr, BT: tl.constexpr, BD: tl.constexpr ): i_d, i_bh = tl.program_id(0), tl.program_id(1) o_d = i_d * BD + tl.arange(0, BD) mask = o_d < D for i_t in range(1, tl.cdiv(T, BT)): p_gc = tl.make_block_ptr(gc + i_bh * s_h, (T, D), (s_t, s_d), (i_t * BT, i_d * BD), (BT, BD), (1, 0)) p_o = tl.make_block_ptr(o + i_bh * s_h, (T, D), (s_t, s_d), (i_t * BT, i_d * BD), (BT, BD), (1, 0)) # [BD,] b_h0 = tl.load(o + i_bh * T * D + i_t * BT * D - D + o_d, mask=mask, other=0).to(tl.float32) # [BT, BD] b_gc = tl.load(p_gc, boundary_check=(0, 1)).to(tl.float32) b_o = tl.load(p_o, boundary_check=(0, 1)).to(tl.float32) b_o = b_o + tl.exp(b_gc) * b_h0[None, :] tl.store(p_o, b_o.to(p_o.dtype.element_ty), boundary_check=(0, 1)) @triton.autotune( configs=[ triton.Config({'BD': 32}, num_warps=1), triton.Config({'BD': 32}, num_warps=2), triton.Config({'BD': 32}, num_warps=4), triton.Config({'BD': 32}, num_warps=8), triton.Config({'BD': 64}, num_warps=1), triton.Config({'BD': 64}, num_warps=2), triton.Config({'BD': 64}, num_warps=4), triton.Config({'BD': 64}, num_warps=8), triton.Config({'BD': 128}, num_warps=1), triton.Config({'BD': 128}, num_warps=2), triton.Config({'BD': 128}, num_warps=4), triton.Config({'BD': 128}, num_warps=8), ], key=['D'] )
josStorer/RWKV-Runner
finetune/lora/v6/fla/ops/hgrn/chunk.py
https://github.com/josStorer/RWKV-Runner/blob/ad6170816a776bfc312837aafc9a3ff889a3cdd3/finetune/lora/v6/fla/ops/hgrn/chunk.py
# -*- coding: utf-8 -*- # Copyright (c) 2024, Yu Zhang, Songlin Yang # this function implements the chunkwise form of HGRN, inspired by # [Volodymyr Kyrylov in his blog post](https://proger.github.io/posts/scan/chunk.html) # also refer to the `accelerated-scan` lib: https://github.com/proger/accelerated-scan # from tests on H800, with B, H, D = 16, 4, 128, we see that the chunk can be greatly faster than the recurrent: # # Performance: # seq_len chunk recurrent chunk_bwd recurrent_bwd # 0 128.0 0.039360 0.061056 0.312160 0.205008 # 1 256.0 0.045824 0.123712 0.308784 0.297696 # 2 512.0 0.058688 0.241952 0.310720 0.626528 # 3 1024.0 0.088288 0.476992 0.313184 1.333152 # 4 2048.0 0.169472 0.943264 0.452464 2.724864 # 5 4096.0 0.329920 1.886144 0.881600 5.551520 # 6 8192.0 0.647872 3.755040 1.740496 11.117184 # 7 16384.0 1.272064 7.520576 3.446608 22.362528 from typing import Tuple import torch import triton import triton.language as tl from fla.utils import contiguous @triton.autotune( configs=[ triton.Config({'BD': 32}, num_warps=1), triton.Config({'BD': 32}, num_warps=2), triton.Config({'BD': 32}, num_warps=4), triton.Config({'BD': 32}, num_warps=8), triton.Config({'BD': 64}, num_warps=1), triton.Config({'BD': 64}, num_warps=2), triton.Config({'BD': 64}, num_warps=4), triton.Config({'BD': 64}, num_warps=8), triton.Config({'BD': 128}, num_warps=1), triton.Config({'BD': 128}, num_warps=2), triton.Config({'BD': 128}, num_warps=4), triton.Config({'BD': 128}, num_warps=8), ], key=['D'] ) @triton.jit def chunk_hgrn_fwd_kernel_h( x, g, gc, o, h0, T: tl.constexpr, D: tl.constexpr, BT: tl.constexpr, BD: tl.constexpr, USE_INITIAL_STATE: tl.constexpr ): i_d, i_t, i_bh = tl.program_id(0), tl.program_id(1), tl.program_id(2) o_d = i_d * BD + tl.arange(0, BD) mask = o_d < D p_x = x + i_bh * T * D + i_t * BT * D + o_d p_g = g + i_bh * T * D + i_t * BT * D + o_d p_gc = gc + i_bh * T * D + i_t * BT * D + o_d p_o = o + i_bh * T * D + i_t * BT * D + o_d b_h = tl.zeros([BD], dtype=tl.float32) b_gc = tl.zeros([BD], dtype=tl.float32) if USE_INITIAL_STATE: if i_t == 0: b_h += tl.load(h0 + i_bh * D + o_d, mask=mask, other=0).to(tl.float32) for i in range(0, BT): mask_t = mask & ((i_t * BT + i) < T) b_x = tl.load(p_x, mask=mask_t, other=0).to(tl.float32) b_g = tl.load(p_g, mask=mask_t, other=0).to(tl.float32) b_h = tl.exp(b_g) * b_h + b_x b_gc = b_gc + b_g tl.store(p_gc, b_gc.to(p_o.dtype.element_ty), mask=mask_t) tl.store(p_o, b_h.to(p_o.dtype.element_ty), mask=mask_t) p_x += D p_g += D p_gc += D p_o += D @triton.jit def chunk_hgrn_fwd_kernel_o( gc, o, s_h, s_t, s_d, T: tl.constexpr, D: tl.constexpr, BT: tl.constexpr, BD: tl.constexpr ): i_d, i_bh = tl.program_id(0), tl.program_id(1) o_d = i_d * BD + tl.arange(0, BD) mask = o_d < D for i_t in range(1, tl.cdiv(T, BT)): p_gc = tl.make_block_ptr(gc + i_bh * s_h, (T, D), (s_t, s_d), (i_t * BT, i_d * BD), (BT, BD), (1, 0)) p_o = tl.make_block_ptr(o + i_bh * s_h, (T, D), (s_t, s_d), (i_t * BT, i_d * BD), (BT, BD), (1, 0)) # [BD,] b_h0 = tl.load(o + i_bh * T * D + i_t * BT * D - D + o_d, mask=mask, other=0).to(tl.float32) # [BT, BD] b_gc = tl.load(p_gc, boundary_check=(0, 1)).to(tl.float32) b_o = tl.load(p_o, boundary_check=(0, 1)).to(tl.float32) b_o = b_o + tl.exp(b_gc) * b_h0[None, :] tl.store(p_o, b_o.to(p_o.dtype.element_ty), boundary_check=(0, 1)) @triton.autotune( configs=[ triton.Config({'BD': 32}, num_warps=1), triton.Config({'BD': 32}, num_warps=2), triton.Config({'BD': 32}, num_warps=4), triton.Config({'BD': 32}, num_warps=8), triton.Config({'BD': 64}, num_warps=1), triton.Config({'BD': 64}, num_warps=2), triton.Config({'BD': 64}, num_warps=4), triton.Config({'BD': 64}, num_warps=8), triton.Config({'BD': 128}, num_warps=1), triton.Config({'BD': 128}, num_warps=2), triton.Config({'BD': 128}, num_warps=4), triton.Config({'BD': 128}, num_warps=8), ], key=['D'] ) @triton.jit def chunk_hgrn_bwd_kernel_h( g, gc, dx, do, T: tl.constexpr, D: tl.constexpr, BT: tl.constexpr, BD: tl.constexpr ): i_d, i_t, i_bh = tl.program_id(0), tl.program_id(1), tl.program_id(2) o_d = i_d * BD + tl.arange(0, BD) mask = o_d < D BC = min(BT, T - i_t * BT) NT = tl.num_programs(1) p_g = g + (i_bh * T + i_t * BT + BC - 1) * D + o_d p_gc = gc + (i_bh * T + i_t * BT + BC - 1) * D + o_d p_dx = dx + (i_bh * T + i_t * BT + BC - 1) * D + o_d p_do = do + (i_bh * T + i_t * BT + BC - 1) * D + o_d if i_t == NT - 1: b_gc = tl.zeros([BD], dtype=tl.float32) else: b_gc = tl.load(g + (i_bh * T + i_t * BT + BT) * D + o_d, mask=mask, other=0).to(tl.float32) b_dh = tl.zeros([BD], dtype=tl.float32) for _ in range(BC - 1, -1, -1): tl.store(p_gc, b_gc.to(p_gc.dtype.element_ty), mask=mask) b_g = tl.load(p_g, mask=mask, other=0).to(tl.float32) b_do = tl.load(p_do, mask=mask, other=0).to(tl.float32) b_gc = b_gc + b_g b_dh = b_dh + b_do b_dx = b_dh b_dh = b_dh * tl.exp(b_g) tl.store(p_dx, b_dx.to(p_dx.dtype.element_ty), mask=mask) p_g -= D p_gc -= D p_dx -= D p_do -= D @triton.jit def chunk_hgrn_bwd_kernel_o( g, gc, o, dx, dg, s_h, s_t, s_d, T: tl.constexpr, D: tl.constexpr, BT: tl.constexpr, BD: tl.constexpr ): i_d, i_bh = tl.program_id(0), tl.program_id(1) o_d = i_d * BD + tl.arange(0, BD) mask = o_d < D for i_t in range(tl.cdiv(T, BT) - 1, -1, -1): p_g = tl.make_block_ptr(g + i_bh * s_h, (T, D), (s_t, s_d), (i_t * BT, i_d * BD), (BT, BD), (1, 0)) p_gc = tl.make_block_ptr(gc + i_bh * s_h, (T, D), (s_t, s_d), (i_t * BT, i_d * BD), (BT, BD), (1, 0)) p_o = tl.make_block_ptr(o + i_bh * s_h, (T, D), (s_t, s_d), (i_t * BT - 1, i_d * BD), (BT, BD), (1, 0)) p_dx = tl.make_block_ptr(dx + i_bh * s_h, (T, D), (s_t, s_d), (i_t * BT, i_d * BD), (BT, BD), (1, 0)) p_dg = tl.make_block_ptr(dg + i_bh * s_h, (T, D), (s_t, s_d), (i_t * BT, i_d * BD), (BT, BD), (1, 0)) # [BD,] mask_t = mask & ((i_t + 1) * BT < T) b_ht = tl.load(dx + i_bh * T * D + (i_t + 1) * BT * D + o_d, mask=mask_t, other=0).to(tl.float32) # [BT, BD] b_g = tl.load(p_g, boundary_check=(0, 1)).to(tl.float32) b_gc = tl.load(p_gc, boundary_check=(0, 1)).to(tl.float32) b_o = tl.load(p_o, boundary_check=(0, 1)).to(tl.float32) b_dx = tl.load(p_dx, boundary_check=(0, 1)).to(tl.float32) b_dg = tl.load(p_dg, boundary_check=(0, 1)).to(tl.float32) b_dx = b_dx + tl.exp(b_gc) * b_ht[None, :] b_dg = b_o * b_dx * tl.exp(b_g) tl.store(p_dx, b_dx.to(p_dx.dtype.element_ty), boundary_check=(0, 1)) tl.store(p_dg, b_dg.to(p_dg.dtype.element_ty), boundary_check=(0, 1)) class ChunkHGRNFunction(torch.autograd.Function): @staticmethod @contiguous def forward(ctx, x, g, initial_state=None, output_final_state=False): B, H, T, D = x.shape BT, BD = 128, min(64, triton.next_power_of_2(D)) num_warps = 8 if BD == 64 else 4 gc = torch.empty_like(g, dtype=torch.float) o = torch.empty_like(x, dtype=torch.float) def grid(meta): return (triton.cdiv(D, meta['BD']), triton.cdiv(T, meta['BT']), B * H) chunk_hgrn_fwd_kernel_h[grid]( x, g, gc, o, initial_state, T, D, BT=BT, USE_INITIAL_STATE=initial_state is not None ) def grid(meta): return (triton.cdiv(D, meta['BD']), B * H) chunk_hgrn_fwd_kernel_o[grid]( gc, o, o.stride(1), o.stride(2), o.stride(3), T, D, BT=BT, BD=BD, num_warps=num_warps ) final_state = None if output_final_state: final_state = o[:, :, -1].clone() o = o.to(x.dtype) ctx.save_for_backward(g, o, initial_state) return o, final_state @staticmethod @contiguous def backward(ctx, do, dht=None): g, o, initial_state = ctx.saved_tensors B, H, T, D = do.shape BT, BD = 128, min(64, triton.next_power_of_2(D)) num_warps = 8 if BD == 64 else 4 gc = torch.empty_like(g, dtype=torch.float) dx = torch.empty_like(o) dg = torch.empty_like(g) def grid(meta): return (triton.cdiv(D, meta['BD']), triton.cdiv(T, meta['BT']), B * H) chunk_hgrn_bwd_kernel_h[grid]( g, gc, dx, do, T, D, BT=BT ) def grid(meta): return (triton.cdiv(D, meta['BD']), B * H) chunk_hgrn_bwd_kernel_o[grid]( g, gc, o, dx, dg, o.stride(1), o.stride(2), o.stride(3), T, D, BT=BT, BD=BD, num_warps=num_warps ) if initial_state is not None: dg[:, :, 0] = initial_state * dx[:, :, 0] * g[:, :, 0].exp() return dx, dg, None, None def chunk_hgrn( x: torch.Tensor, g: torch.Tensor, initial_state: torch.Tensor = None, output_final_state: bool = False ) -> Tuple[torch.Tensor, torch.Tensor]: if initial_state is not None: initial_state = initial_state.detach() o, final_state = ChunkHGRNFunction.apply(x, g, initial_state, output_final_state) return o, final_state if __name__ == '__main__': import torch.nn.functional as F from fla.ops.hgrn.naive import naive_recurrent_hgrn from fla.ops.hgrn.recurrent_fuse import fused_recurrent_hgrn B, H, T, D = 8, 4, 512, 128 dtype = torch.bfloat16 torch.manual_seed(42) # [batch_size, n_heads, seq_len, d_head] x = torch.randn((B, H, T, D), dtype=dtype, device='cuda') g = torch.randn((B, H, T, D), dtype=dtype, device='cuda') x, g = (1 - g.sigmoid()) * x, F.logsigmoid(g) print(f'x:\t{float(x.min()):>10.6f}\t{float(x.max()):>10.6f}') print(f'g:\t{float(g.min()):>10.6f}\t{float(g.max()):>10.6f}') x, g = (i.detach().clone().to(dtype).requires_grad_() for i in (x, g)) print(f"DTYPE:\t{x.dtype}") do = torch.randn_like(x) h0 = torch.randn_like(x[:, :, 0]) ref, ref_ht = naive_recurrent_hgrn(x, g, h0, output_final_state=True) ref.backward(do) ref_dx, x.grad = x.grad.clone(), None ref_dg, g.grad = g.grad.clone(), None tri, tri_ht = fused_recurrent_hgrn(x, g, h0, output_final_state=True) tri.backward(do) tri_dx, x.grad = x.grad.clone(), None tri_dg, g.grad = g.grad.clone(), None print(" \t DIFF\t MAX") print(' o\t', f"{float((ref - tri).abs().max()):>10.6f}\t{float(ref.max()):>10.6f}") print('ht\t', f"{float((ref_ht[0] - tri_ht[0]).abs().max()):>10.6f}\t{float(ref.max()):>10.6f}") print('dx\t', f"{float((ref_dx - tri_dx).abs().max()):>10.6f}\t{float(ref_dx.max()):>10.6f}") print('dg\t', f"{float((ref_dg - tri_dg).abs().max()):>10.6f}\t{float(ref_dg.max()):>10.6f}") print('Done!') @triton.testing.perf_report( triton.testing.Benchmark( # argument names to use as an x-axis for the plot x_names=['seq_len'], # different possible values for `x_name` x_vals=[128 * 2 ** i for i in range(0, 8)], # argument name whose value corresponds to a different line in the plot line_arg='provider', # possible values for `line_arg`` line_vals=['chunk', 'recurrent', 'chunk_bwd', 'recurrent_bwd'], # label name for the lines line_names=['chunk', 'recurrent', 'chunk_bwd', 'recurrent_bwd'], # line styles styles=[('green', '-'), ('blue', '--'), ('red', '-.'), ('cyan', ':'), ('yellow', 'dotted'), ('black', 'dashed')], ylabel="Execution Time (ms)", # label name for the y-axis # name for the plot. Used also as a file name for saving the plot. plot_name="Performance", args={}, ) ) def benchmark(seq_len, provider): dtype = torch.bfloat16 B, H, D = 16, 4, 128 x = torch.randn((B, H, seq_len, D), dtype=dtype, device='cuda') g = torch.randn((B, H, seq_len, D), dtype=dtype, device='cuda').sigmoid() x = (1 - g) * x x, g = (i.detach().clone().to(dtype).requires_grad_() for i in (x, g)) do = torch.randn_like(x, dtype=dtype) quantiles = [0.5, 0.2, 0.8] results = 0, 0, 0 if provider == 'chunk': results = triton.testing.do_bench(lambda: chunk_hgrn(x, g), quantiles=quantiles) if provider == 'recurrent': results = triton.testing.do_bench(lambda: fused_recurrent_hgrn(x, g), quantiles=quantiles) if provider == 'chunk_bwd': results = triton.testing.do_bench(lambda: chunk_hgrn(x, g)[0].backward(do), quantiles=quantiles) if provider == 'recurrent_bwd': results = triton.testing.do_bench(lambda: fused_recurrent_hgrn(x, g)[0].backward(do), quantiles=quantiles) return results benchmark.run(print_data=True)
@triton.jit def chunk_hgrn_bwd_kernel_h( g, gc, dx, do, T: tl.constexpr, D: tl.constexpr, BT: tl.constexpr, BD: tl.constexpr ): i_d, i_t, i_bh = tl.program_id(0), tl.program_id(1), tl.program_id(2) o_d = i_d * BD + tl.arange(0, BD) mask = o_d < D BC = min(BT, T - i_t * BT) NT = tl.num_programs(1) p_g = g + (i_bh * T + i_t * BT + BC - 1) * D + o_d p_gc = gc + (i_bh * T + i_t * BT + BC - 1) * D + o_d p_dx = dx + (i_bh * T + i_t * BT + BC - 1) * D + o_d p_do = do + (i_bh * T + i_t * BT + BC - 1) * D + o_d if i_t == NT - 1: b_gc = tl.zeros([BD], dtype=tl.float32) else: b_gc = tl.load(g + (i_bh * T + i_t * BT + BT) * D + o_d, mask=mask, other=0).to(tl.float32) b_dh = tl.zeros([BD], dtype=tl.float32) for _ in range(BC - 1, -1, -1): tl.store(p_gc, b_gc.to(p_gc.dtype.element_ty), mask=mask) b_g = tl.load(p_g, mask=mask, other=0).to(tl.float32) b_do = tl.load(p_do, mask=mask, other=0).to(tl.float32) b_gc = b_gc + b_g b_dh = b_dh + b_do b_dx = b_dh b_dh = b_dh * tl.exp(b_g) tl.store(p_dx, b_dx.to(p_dx.dtype.element_ty), mask=mask) p_g -= D p_gc -= D p_dx -= D p_do -= D
josStorer/RWKV-Runner
finetune/lora/v6/fla/ops/hgrn/chunk.py
https://github.com/josStorer/RWKV-Runner/blob/ad6170816a776bfc312837aafc9a3ff889a3cdd3/finetune/lora/v6/fla/ops/hgrn/chunk.py
# -*- coding: utf-8 -*- # Copyright (c) 2024, Yu Zhang, Songlin Yang # this function implements the chunkwise form of HGRN, inspired by # [Volodymyr Kyrylov in his blog post](https://proger.github.io/posts/scan/chunk.html) # also refer to the `accelerated-scan` lib: https://github.com/proger/accelerated-scan # from tests on H800, with B, H, D = 16, 4, 128, we see that the chunk can be greatly faster than the recurrent: # # Performance: # seq_len chunk recurrent chunk_bwd recurrent_bwd # 0 128.0 0.039360 0.061056 0.312160 0.205008 # 1 256.0 0.045824 0.123712 0.308784 0.297696 # 2 512.0 0.058688 0.241952 0.310720 0.626528 # 3 1024.0 0.088288 0.476992 0.313184 1.333152 # 4 2048.0 0.169472 0.943264 0.452464 2.724864 # 5 4096.0 0.329920 1.886144 0.881600 5.551520 # 6 8192.0 0.647872 3.755040 1.740496 11.117184 # 7 16384.0 1.272064 7.520576 3.446608 22.362528 from typing import Tuple import torch import triton import triton.language as tl from fla.utils import contiguous @triton.autotune( configs=[ triton.Config({'BD': 32}, num_warps=1), triton.Config({'BD': 32}, num_warps=2), triton.Config({'BD': 32}, num_warps=4), triton.Config({'BD': 32}, num_warps=8), triton.Config({'BD': 64}, num_warps=1), triton.Config({'BD': 64}, num_warps=2), triton.Config({'BD': 64}, num_warps=4), triton.Config({'BD': 64}, num_warps=8), triton.Config({'BD': 128}, num_warps=1), triton.Config({'BD': 128}, num_warps=2), triton.Config({'BD': 128}, num_warps=4), triton.Config({'BD': 128}, num_warps=8), ], key=['D'] ) @triton.jit def chunk_hgrn_fwd_kernel_h( x, g, gc, o, h0, T: tl.constexpr, D: tl.constexpr, BT: tl.constexpr, BD: tl.constexpr, USE_INITIAL_STATE: tl.constexpr ): i_d, i_t, i_bh = tl.program_id(0), tl.program_id(1), tl.program_id(2) o_d = i_d * BD + tl.arange(0, BD) mask = o_d < D p_x = x + i_bh * T * D + i_t * BT * D + o_d p_g = g + i_bh * T * D + i_t * BT * D + o_d p_gc = gc + i_bh * T * D + i_t * BT * D + o_d p_o = o + i_bh * T * D + i_t * BT * D + o_d b_h = tl.zeros([BD], dtype=tl.float32) b_gc = tl.zeros([BD], dtype=tl.float32) if USE_INITIAL_STATE: if i_t == 0: b_h += tl.load(h0 + i_bh * D + o_d, mask=mask, other=0).to(tl.float32) for i in range(0, BT): mask_t = mask & ((i_t * BT + i) < T) b_x = tl.load(p_x, mask=mask_t, other=0).to(tl.float32) b_g = tl.load(p_g, mask=mask_t, other=0).to(tl.float32) b_h = tl.exp(b_g) * b_h + b_x b_gc = b_gc + b_g tl.store(p_gc, b_gc.to(p_o.dtype.element_ty), mask=mask_t) tl.store(p_o, b_h.to(p_o.dtype.element_ty), mask=mask_t) p_x += D p_g += D p_gc += D p_o += D @triton.jit def chunk_hgrn_fwd_kernel_o( gc, o, s_h, s_t, s_d, T: tl.constexpr, D: tl.constexpr, BT: tl.constexpr, BD: tl.constexpr ): i_d, i_bh = tl.program_id(0), tl.program_id(1) o_d = i_d * BD + tl.arange(0, BD) mask = o_d < D for i_t in range(1, tl.cdiv(T, BT)): p_gc = tl.make_block_ptr(gc + i_bh * s_h, (T, D), (s_t, s_d), (i_t * BT, i_d * BD), (BT, BD), (1, 0)) p_o = tl.make_block_ptr(o + i_bh * s_h, (T, D), (s_t, s_d), (i_t * BT, i_d * BD), (BT, BD), (1, 0)) # [BD,] b_h0 = tl.load(o + i_bh * T * D + i_t * BT * D - D + o_d, mask=mask, other=0).to(tl.float32) # [BT, BD] b_gc = tl.load(p_gc, boundary_check=(0, 1)).to(tl.float32) b_o = tl.load(p_o, boundary_check=(0, 1)).to(tl.float32) b_o = b_o + tl.exp(b_gc) * b_h0[None, :] tl.store(p_o, b_o.to(p_o.dtype.element_ty), boundary_check=(0, 1)) @triton.autotune( configs=[ triton.Config({'BD': 32}, num_warps=1), triton.Config({'BD': 32}, num_warps=2), triton.Config({'BD': 32}, num_warps=4), triton.Config({'BD': 32}, num_warps=8), triton.Config({'BD': 64}, num_warps=1), triton.Config({'BD': 64}, num_warps=2), triton.Config({'BD': 64}, num_warps=4), triton.Config({'BD': 64}, num_warps=8), triton.Config({'BD': 128}, num_warps=1), triton.Config({'BD': 128}, num_warps=2), triton.Config({'BD': 128}, num_warps=4), triton.Config({'BD': 128}, num_warps=8), ], key=['D'] ) @triton.jit def chunk_hgrn_bwd_kernel_h( g, gc, dx, do, T: tl.constexpr, D: tl.constexpr, BT: tl.constexpr, BD: tl.constexpr ): i_d, i_t, i_bh = tl.program_id(0), tl.program_id(1), tl.program_id(2) o_d = i_d * BD + tl.arange(0, BD) mask = o_d < D BC = min(BT, T - i_t * BT) NT = tl.num_programs(1) p_g = g + (i_bh * T + i_t * BT + BC - 1) * D + o_d p_gc = gc + (i_bh * T + i_t * BT + BC - 1) * D + o_d p_dx = dx + (i_bh * T + i_t * BT + BC - 1) * D + o_d p_do = do + (i_bh * T + i_t * BT + BC - 1) * D + o_d if i_t == NT - 1: b_gc = tl.zeros([BD], dtype=tl.float32) else: b_gc = tl.load(g + (i_bh * T + i_t * BT + BT) * D + o_d, mask=mask, other=0).to(tl.float32) b_dh = tl.zeros([BD], dtype=tl.float32) for _ in range(BC - 1, -1, -1): tl.store(p_gc, b_gc.to(p_gc.dtype.element_ty), mask=mask) b_g = tl.load(p_g, mask=mask, other=0).to(tl.float32) b_do = tl.load(p_do, mask=mask, other=0).to(tl.float32) b_gc = b_gc + b_g b_dh = b_dh + b_do b_dx = b_dh b_dh = b_dh * tl.exp(b_g) tl.store(p_dx, b_dx.to(p_dx.dtype.element_ty), mask=mask) p_g -= D p_gc -= D p_dx -= D p_do -= D @triton.jit def chunk_hgrn_bwd_kernel_o( g, gc, o, dx, dg, s_h, s_t, s_d, T: tl.constexpr, D: tl.constexpr, BT: tl.constexpr, BD: tl.constexpr ): i_d, i_bh = tl.program_id(0), tl.program_id(1) o_d = i_d * BD + tl.arange(0, BD) mask = o_d < D for i_t in range(tl.cdiv(T, BT) - 1, -1, -1): p_g = tl.make_block_ptr(g + i_bh * s_h, (T, D), (s_t, s_d), (i_t * BT, i_d * BD), (BT, BD), (1, 0)) p_gc = tl.make_block_ptr(gc + i_bh * s_h, (T, D), (s_t, s_d), (i_t * BT, i_d * BD), (BT, BD), (1, 0)) p_o = tl.make_block_ptr(o + i_bh * s_h, (T, D), (s_t, s_d), (i_t * BT - 1, i_d * BD), (BT, BD), (1, 0)) p_dx = tl.make_block_ptr(dx + i_bh * s_h, (T, D), (s_t, s_d), (i_t * BT, i_d * BD), (BT, BD), (1, 0)) p_dg = tl.make_block_ptr(dg + i_bh * s_h, (T, D), (s_t, s_d), (i_t * BT, i_d * BD), (BT, BD), (1, 0)) # [BD,] mask_t = mask & ((i_t + 1) * BT < T) b_ht = tl.load(dx + i_bh * T * D + (i_t + 1) * BT * D + o_d, mask=mask_t, other=0).to(tl.float32) # [BT, BD] b_g = tl.load(p_g, boundary_check=(0, 1)).to(tl.float32) b_gc = tl.load(p_gc, boundary_check=(0, 1)).to(tl.float32) b_o = tl.load(p_o, boundary_check=(0, 1)).to(tl.float32) b_dx = tl.load(p_dx, boundary_check=(0, 1)).to(tl.float32) b_dg = tl.load(p_dg, boundary_check=(0, 1)).to(tl.float32) b_dx = b_dx + tl.exp(b_gc) * b_ht[None, :] b_dg = b_o * b_dx * tl.exp(b_g) tl.store(p_dx, b_dx.to(p_dx.dtype.element_ty), boundary_check=(0, 1)) tl.store(p_dg, b_dg.to(p_dg.dtype.element_ty), boundary_check=(0, 1)) class ChunkHGRNFunction(torch.autograd.Function): @staticmethod @contiguous def forward(ctx, x, g, initial_state=None, output_final_state=False): B, H, T, D = x.shape BT, BD = 128, min(64, triton.next_power_of_2(D)) num_warps = 8 if BD == 64 else 4 gc = torch.empty_like(g, dtype=torch.float) o = torch.empty_like(x, dtype=torch.float) def grid(meta): return (triton.cdiv(D, meta['BD']), triton.cdiv(T, meta['BT']), B * H) chunk_hgrn_fwd_kernel_h[grid]( x, g, gc, o, initial_state, T, D, BT=BT, USE_INITIAL_STATE=initial_state is not None ) def grid(meta): return (triton.cdiv(D, meta['BD']), B * H) chunk_hgrn_fwd_kernel_o[grid]( gc, o, o.stride(1), o.stride(2), o.stride(3), T, D, BT=BT, BD=BD, num_warps=num_warps ) final_state = None if output_final_state: final_state = o[:, :, -1].clone() o = o.to(x.dtype) ctx.save_for_backward(g, o, initial_state) return o, final_state @staticmethod @contiguous def backward(ctx, do, dht=None): g, o, initial_state = ctx.saved_tensors B, H, T, D = do.shape BT, BD = 128, min(64, triton.next_power_of_2(D)) num_warps = 8 if BD == 64 else 4 gc = torch.empty_like(g, dtype=torch.float) dx = torch.empty_like(o) dg = torch.empty_like(g) def grid(meta): return (triton.cdiv(D, meta['BD']), triton.cdiv(T, meta['BT']), B * H) chunk_hgrn_bwd_kernel_h[grid]( g, gc, dx, do, T, D, BT=BT ) def grid(meta): return (triton.cdiv(D, meta['BD']), B * H) chunk_hgrn_bwd_kernel_o[grid]( g, gc, o, dx, dg, o.stride(1), o.stride(2), o.stride(3), T, D, BT=BT, BD=BD, num_warps=num_warps ) if initial_state is not None: dg[:, :, 0] = initial_state * dx[:, :, 0] * g[:, :, 0].exp() return dx, dg, None, None def chunk_hgrn( x: torch.Tensor, g: torch.Tensor, initial_state: torch.Tensor = None, output_final_state: bool = False ) -> Tuple[torch.Tensor, torch.Tensor]: if initial_state is not None: initial_state = initial_state.detach() o, final_state = ChunkHGRNFunction.apply(x, g, initial_state, output_final_state) return o, final_state if __name__ == '__main__': import torch.nn.functional as F from fla.ops.hgrn.naive import naive_recurrent_hgrn from fla.ops.hgrn.recurrent_fuse import fused_recurrent_hgrn B, H, T, D = 8, 4, 512, 128 dtype = torch.bfloat16 torch.manual_seed(42) # [batch_size, n_heads, seq_len, d_head] x = torch.randn((B, H, T, D), dtype=dtype, device='cuda') g = torch.randn((B, H, T, D), dtype=dtype, device='cuda') x, g = (1 - g.sigmoid()) * x, F.logsigmoid(g) print(f'x:\t{float(x.min()):>10.6f}\t{float(x.max()):>10.6f}') print(f'g:\t{float(g.min()):>10.6f}\t{float(g.max()):>10.6f}') x, g = (i.detach().clone().to(dtype).requires_grad_() for i in (x, g)) print(f"DTYPE:\t{x.dtype}") do = torch.randn_like(x) h0 = torch.randn_like(x[:, :, 0]) ref, ref_ht = naive_recurrent_hgrn(x, g, h0, output_final_state=True) ref.backward(do) ref_dx, x.grad = x.grad.clone(), None ref_dg, g.grad = g.grad.clone(), None tri, tri_ht = fused_recurrent_hgrn(x, g, h0, output_final_state=True) tri.backward(do) tri_dx, x.grad = x.grad.clone(), None tri_dg, g.grad = g.grad.clone(), None print(" \t DIFF\t MAX") print(' o\t', f"{float((ref - tri).abs().max()):>10.6f}\t{float(ref.max()):>10.6f}") print('ht\t', f"{float((ref_ht[0] - tri_ht[0]).abs().max()):>10.6f}\t{float(ref.max()):>10.6f}") print('dx\t', f"{float((ref_dx - tri_dx).abs().max()):>10.6f}\t{float(ref_dx.max()):>10.6f}") print('dg\t', f"{float((ref_dg - tri_dg).abs().max()):>10.6f}\t{float(ref_dg.max()):>10.6f}") print('Done!') @triton.testing.perf_report( triton.testing.Benchmark( # argument names to use as an x-axis for the plot x_names=['seq_len'], # different possible values for `x_name` x_vals=[128 * 2 ** i for i in range(0, 8)], # argument name whose value corresponds to a different line in the plot line_arg='provider', # possible values for `line_arg`` line_vals=['chunk', 'recurrent', 'chunk_bwd', 'recurrent_bwd'], # label name for the lines line_names=['chunk', 'recurrent', 'chunk_bwd', 'recurrent_bwd'], # line styles styles=[('green', '-'), ('blue', '--'), ('red', '-.'), ('cyan', ':'), ('yellow', 'dotted'), ('black', 'dashed')], ylabel="Execution Time (ms)", # label name for the y-axis # name for the plot. Used also as a file name for saving the plot. plot_name="Performance", args={}, ) ) def benchmark(seq_len, provider): dtype = torch.bfloat16 B, H, D = 16, 4, 128 x = torch.randn((B, H, seq_len, D), dtype=dtype, device='cuda') g = torch.randn((B, H, seq_len, D), dtype=dtype, device='cuda').sigmoid() x = (1 - g) * x x, g = (i.detach().clone().to(dtype).requires_grad_() for i in (x, g)) do = torch.randn_like(x, dtype=dtype) quantiles = [0.5, 0.2, 0.8] results = 0, 0, 0 if provider == 'chunk': results = triton.testing.do_bench(lambda: chunk_hgrn(x, g), quantiles=quantiles) if provider == 'recurrent': results = triton.testing.do_bench(lambda: fused_recurrent_hgrn(x, g), quantiles=quantiles) if provider == 'chunk_bwd': results = triton.testing.do_bench(lambda: chunk_hgrn(x, g)[0].backward(do), quantiles=quantiles) if provider == 'recurrent_bwd': results = triton.testing.do_bench(lambda: fused_recurrent_hgrn(x, g)[0].backward(do), quantiles=quantiles) return results benchmark.run(print_data=True)
@triton.jit def chunk_hgrn_bwd_kernel_o( g, gc, o, dx, dg, s_h, s_t, s_d, T: tl.constexpr, D: tl.constexpr, BT: tl.constexpr, BD: tl.constexpr ): i_d, i_bh = tl.program_id(0), tl.program_id(1) o_d = i_d * BD + tl.arange(0, BD) mask = o_d < D for i_t in range(tl.cdiv(T, BT) - 1, -1, -1): p_g = tl.make_block_ptr(g + i_bh * s_h, (T, D), (s_t, s_d), (i_t * BT, i_d * BD), (BT, BD), (1, 0)) p_gc = tl.make_block_ptr(gc + i_bh * s_h, (T, D), (s_t, s_d), (i_t * BT, i_d * BD), (BT, BD), (1, 0)) p_o = tl.make_block_ptr(o + i_bh * s_h, (T, D), (s_t, s_d), (i_t * BT - 1, i_d * BD), (BT, BD), (1, 0)) p_dx = tl.make_block_ptr(dx + i_bh * s_h, (T, D), (s_t, s_d), (i_t * BT, i_d * BD), (BT, BD), (1, 0)) p_dg = tl.make_block_ptr(dg + i_bh * s_h, (T, D), (s_t, s_d), (i_t * BT, i_d * BD), (BT, BD), (1, 0)) # [BD,] mask_t = mask & ((i_t + 1) * BT < T) b_ht = tl.load(dx + i_bh * T * D + (i_t + 1) * BT * D + o_d, mask=mask_t, other=0).to(tl.float32) # [BT, BD] b_g = tl.load(p_g, boundary_check=(0, 1)).to(tl.float32) b_gc = tl.load(p_gc, boundary_check=(0, 1)).to(tl.float32) b_o = tl.load(p_o, boundary_check=(0, 1)).to(tl.float32) b_dx = tl.load(p_dx, boundary_check=(0, 1)).to(tl.float32) b_dg = tl.load(p_dg, boundary_check=(0, 1)).to(tl.float32) b_dx = b_dx + tl.exp(b_gc) * b_ht[None, :] b_dg = b_o * b_dx * tl.exp(b_g) tl.store(p_dx, b_dx.to(p_dx.dtype.element_ty), boundary_check=(0, 1)) tl.store(p_dg, b_dg.to(p_dg.dtype.element_ty), boundary_check=(0, 1)) class ChunkHGRNFunction(torch.autograd.Function): @staticmethod @contiguous def forward(ctx, x, g, initial_state=None, output_final_state=False): B, H, T, D = x.shape BT, BD = 128, min(64, triton.next_power_of_2(D)) num_warps = 8 if BD == 64 else 4 gc = torch.empty_like(g, dtype=torch.float) o = torch.empty_like(x, dtype=torch.float) def grid(meta): return (triton.cdiv(D, meta['BD']), triton.cdiv(T, meta['BT']), B * H) chunk_hgrn_fwd_kernel_h[grid]( x, g, gc, o, initial_state, T, D, BT=BT, USE_INITIAL_STATE=initial_state is not None ) def grid(meta): return (triton.cdiv(D, meta['BD']), B * H) chunk_hgrn_fwd_kernel_o[grid]( gc, o, o.stride(1), o.stride(2), o.stride(3), T, D, BT=BT, BD=BD, num_warps=num_warps ) final_state = None if output_final_state: final_state = o[:, :, -1].clone() o = o.to(x.dtype) ctx.save_for_backward(g, o, initial_state) return o, final_state @staticmethod @contiguous def backward(ctx, do, dht=None): g, o, initial_state = ctx.saved_tensors B, H, T, D = do.shape BT, BD = 128, min(64, triton.next_power_of_2(D)) num_warps = 8 if BD == 64 else 4 gc = torch.empty_like(g, dtype=torch.float) dx = torch.empty_like(o) dg = torch.empty_like(g) def grid(meta): return (triton.cdiv(D, meta['BD']), triton.cdiv(T, meta['BT']), B * H) chunk_hgrn_bwd_kernel_h[grid]( g, gc, dx, do, T, D, BT=BT ) def grid(meta): return (triton.cdiv(D, meta['BD']), B * H) chunk_hgrn_bwd_kernel_o[grid]( g, gc, o, dx, dg, o.stride(1), o.stride(2), o.stride(3), T, D, BT=BT, BD=BD, num_warps=num_warps ) if initial_state is not None: dg[:, :, 0] = initial_state * dx[:, :, 0] * g[:, :, 0].exp() return dx, dg, None, None def chunk_hgrn( x: torch.Tensor, g: torch.Tensor, initial_state: torch.Tensor = None, output_final_state: bool = False ) -> Tuple[torch.Tensor, torch.Tensor]: if initial_state is not None: initial_state = initial_state.detach() o, final_state = ChunkHGRNFunction.apply(x, g, initial_state, output_final_state) return o, final_state if __name__ == '__main__': import torch.nn.functional as F from fla.ops.hgrn.naive import naive_recurrent_hgrn from fla.ops.hgrn.recurrent_fuse import fused_recurrent_hgrn B, H, T, D = 8, 4, 512, 128 dtype = torch.bfloat16 torch.manual_seed(42) # [batch_size, n_heads, seq_len, d_head] x = torch.randn((B, H, T, D), dtype=dtype, device='cuda') g = torch.randn((B, H, T, D), dtype=dtype, device='cuda') x, g = (1 - g.sigmoid()) * x, F.logsigmoid(g) print(f'x:\t{float(x.min()):>10.6f}\t{float(x.max()):>10.6f}') print(f'g:\t{float(g.min()):>10.6f}\t{float(g.max()):>10.6f}') x, g = (i.detach().clone().to(dtype).requires_grad_() for i in (x, g)) print(f"DTYPE:\t{x.dtype}") do = torch.randn_like(x) h0 = torch.randn_like(x[:, :, 0]) ref, ref_ht = naive_recurrent_hgrn(x, g, h0, output_final_state=True) ref.backward(do) ref_dx, x.grad = x.grad.clone(), None ref_dg, g.grad = g.grad.clone(), None tri, tri_ht = fused_recurrent_hgrn(x, g, h0, output_final_state=True) tri.backward(do) tri_dx, x.grad = x.grad.clone(), None tri_dg, g.grad = g.grad.clone(), None print(" \t DIFF\t MAX") print(' o\t', f"{float((ref - tri).abs().max()):>10.6f}\t{float(ref.max()):>10.6f}") print('ht\t', f"{float((ref_ht[0] - tri_ht[0]).abs().max()):>10.6f}\t{float(ref.max()):>10.6f}") print('dx\t', f"{float((ref_dx - tri_dx).abs().max()):>10.6f}\t{float(ref_dx.max()):>10.6f}") print('dg\t', f"{float((ref_dg - tri_dg).abs().max()):>10.6f}\t{float(ref_dg.max()):>10.6f}") print('Done!') @triton.testing.perf_report( triton.testing.Benchmark( # argument names to use as an x-axis for the plot x_names=['seq_len'], # different possible values for `x_name` x_vals=[128 * 2 ** i for i in range(0, 8)], # argument name whose value corresponds to a different line in the plot line_arg='provider', # possible values for `line_arg`` line_vals=['chunk', 'recurrent', 'chunk_bwd', 'recurrent_bwd'], # label name for the lines line_names=['chunk', 'recurrent', 'chunk_bwd', 'recurrent_bwd'], # line styles styles=[('green', '-'), ('blue', '--'), ('red', '-.'), ('cyan', ':'), ('yellow', 'dotted'), ('black', 'dashed')], ylabel="Execution Time (ms)", # label name for the y-axis # name for the plot. Used also as a file name for saving the plot. plot_name="Performance", args={}, ) ) def benchmark(seq_len, provider): dtype = torch.bfloat16 B, H, D = 16, 4, 128 x = torch.randn((B, H, seq_len, D), dtype=dtype, device='cuda') g = torch.randn((B, H, seq_len, D), dtype=dtype, device='cuda').sigmoid() x = (1 - g) * x x, g = (i.detach().clone().to(dtype).requires_grad_() for i in (x, g)) do = torch.randn_like(x, dtype=dtype) quantiles = [0.5, 0.2, 0.8] results = 0, 0, 0 if provider == 'chunk': results = triton.testing.do_bench(lambda: chunk_hgrn(x, g), quantiles=quantiles) if provider == 'recurrent': results = triton.testing.do_bench(lambda: fused_recurrent_hgrn(x, g), quantiles=quantiles) if provider == 'chunk_bwd': results = triton.testing.do_bench(lambda: chunk_hgrn(x, g)[0].backward(do), quantiles=quantiles) if provider == 'recurrent_bwd': results = triton.testing.do_bench(lambda: fused_recurrent_hgrn(x, g)[0].backward(do), quantiles=quantiles) return results benchmark.run(print_data=True)
INT-FlashAttention2024/INT-FlashAttention
flash_atten_full_int8.py
https://github.com/INT-FlashAttention2024/INT-FlashAttention/blob/7f7bfb00bcd26b2cef49e7783f51ef610e05abf7/flash_atten_full_int8.py
import pytest import torch import triton import triton.language as tl from configs import * @triton.jit def _attn_fwd_inner_full_int8(acc, l_i, m_i, q, # K_block_ptr, V_block_ptr, # q_scale, K_block_scale_ptr, v_scale,# start_m, qk_scale, # BLOCK_M: tl.constexpr, HEAD_DIM: tl.constexpr, BLOCK_N: tl.constexpr, # STAGE: tl.constexpr, offs_m: tl.constexpr, offs_n: tl.constexpr, # N_CTX: tl.constexpr, fp8_v: tl.constexpr): # range of values handled by this stage if STAGE == 1: lo, hi = 0, start_m * BLOCK_M elif STAGE == 2: lo, hi = start_m * BLOCK_M, (start_m + 1) * BLOCK_M lo = tl.multiple_of(lo, BLOCK_M) # causal = False else: lo, hi = 0, N_CTX K_block_ptr = tl.advance(K_block_ptr, (0, lo)) K_block_scale_ptr = tl.advance(K_block_scale_ptr, (lo,)) V_block_ptr = tl.advance(V_block_ptr, (lo, 0)) # loop over k, v and update accumulator for start_n in range(lo, hi, BLOCK_N): # for start_n in range(0, 32, BLOCK_N): start_n = tl.multiple_of(start_n, BLOCK_N) # -- compute qk ---- k = tl.load(K_block_ptr) k_scale = tl.load(K_block_scale_ptr) qk = tl.dot(q, k).to(tl.float32) qk = qk * q_scale[:, None] qk = qk * k_scale if STAGE == 2: mask = offs_m[:, None] >= (start_n + offs_n[None, :]) qk = qk * qk_scale + tl.where(mask, 0, -1.0e6) m_ij = tl.maximum(m_i, tl.max(qk, 1)) qk -= m_ij[:, None] else: m_ij = tl.maximum(m_i, tl.max(qk, 1) * qk_scale) qk = qk * qk_scale - m_ij[:, None] p = tl.math.exp2(qk) l_ij = tl.sum(p, 1) p = p.to(tl.float16) p = p * 127 p = (p+0.5).to(tl.int8) # -- update m_i and l_i alpha = tl.math.exp2(m_i - m_ij) l_i = l_i * alpha + l_ij # -- update output accumulator -- acc = acc * alpha[:, None] # update acc v = tl.load(V_block_ptr) tmp = tl.dot(p, v) tmp = tmp.to(tl.float32) tmp = tmp * v_scale / 127 acc = acc + tmp # tmp = tl.dot(p, v) # tl.device_print("tmp", tmp) # update m_i and l_i m_i = m_ij V_block_ptr = tl.advance(V_block_ptr, (BLOCK_N, 0)) K_block_ptr = tl.advance(K_block_ptr, (0, BLOCK_N)) K_block_scale_ptr = tl.advance(K_block_scale_ptr, (BLOCK_N,)) return acc, l_i @triton.autotune(list(filter(keep, configs)), key=["N_CTX", "HEAD_DIM"]) @triton.jit def _attn_fwd_full_int8(Q, K, V, Q_scale, K_scale, V_scale, sm_scale, Out, # stride_qz, stride_qh, stride_qm, stride_qk, # stride_kz, stride_kh, stride_kn, stride_kk, # stride_vz, stride_vh, stride_vk, stride_vn, # stride_oz, stride_oh, stride_om, stride_on, # stride_s1, stride_s2, stride_s3, # stride_v1, stride_v2, # Z, H, N_CTX, # HEAD_DIM: tl.constexpr, # BLOCK_M: tl.constexpr, # BLOCK_N: tl.constexpr, # STAGE: tl.constexpr # ): tl.static_assert(BLOCK_N <= HEAD_DIM) start_m = tl.program_id(0) off_hz = tl.program_id(1) off_z = off_hz // H off_h = off_hz % H qvk_offset = off_z.to(tl.int64) * stride_qz + off_h.to(tl.int64) * stride_qh scl_offset = off_z.to(tl.int64) * stride_s1 + off_h.to(tl.int64) * stride_s2 vscl_offset = off_z.to(tl.int64) * stride_v1 + off_h.to(tl.int64) * stride_v2 # block pointers Q_block_ptr = tl.make_block_ptr( base=Q + qvk_offset, shape=(N_CTX, HEAD_DIM), strides=(stride_qm, stride_qk), offsets=(start_m * BLOCK_M, 0), block_shape=(BLOCK_M, HEAD_DIM), order=(1, 0), ) V_block_ptr = tl.make_block_ptr( base=V + qvk_offset, shape=(N_CTX, HEAD_DIM), strides=(stride_vk, stride_vn), offsets=(0, 0), block_shape=(BLOCK_N, HEAD_DIM), order=(1, 0), ) K_block_ptr = tl.make_block_ptr( base=K + qvk_offset, shape=(HEAD_DIM, N_CTX), strides=(stride_kk, stride_kn), offsets=(0, 0), block_shape=(HEAD_DIM, BLOCK_N), order=(0, 1), ) O_block_ptr = tl.make_block_ptr( base=Out + qvk_offset, shape=(N_CTX, HEAD_DIM), strides=(stride_om, stride_on), offsets=(start_m * BLOCK_M, 0), block_shape=(BLOCK_M, HEAD_DIM), order=(1, 0), ) # scale vector pointers Q_block_scale_ptr = tl.make_block_ptr( base=Q_scale + scl_offset, shape=(N_CTX,), strides=(stride_s3,), offsets=(start_m * BLOCK_M,), block_shape=(BLOCK_M,), order=(0,), ) K_block_scale_ptr = tl.make_block_ptr( base=K_scale + scl_offset, shape=(N_CTX,), strides=(stride_s3,), offsets=(0,), block_shape=(BLOCK_N,), order=(0,), ) # initialize offsets offs_m = start_m * BLOCK_M + tl.arange(0, BLOCK_M) offs_n = tl.arange(0, BLOCK_N) # initialize pointer to m and l m_i = tl.zeros([BLOCK_M], dtype=tl.float32) - float("inf") l_i = tl.zeros([BLOCK_M], dtype=tl.float32) + 1.0 acc = tl.zeros([BLOCK_M, HEAD_DIM], dtype=tl.float32) # load scales qk_scale = sm_scale qk_scale *= 1.44269504 # 1/log(2) # load q: it will stay in SRAM throughout q = tl.load(Q_block_ptr) q_scale = tl.load(Q_block_scale_ptr) v_scale = tl.load(V_scale + vscl_offset) # stage 1: off-band # For causal = True, STAGE = 3 and _attn_fwd_inner gets 1 as its STAGE # For causal = False, STAGE = 1, and _attn_fwd_inner gets 3 as its STAGE if STAGE & 1: acc, l_i = _attn_fwd_inner_full_int8(acc, l_i, m_i, q, K_block_ptr, V_block_ptr, q_scale, K_block_scale_ptr, v_scale, # start_m, qk_scale, # BLOCK_M, HEAD_DIM, BLOCK_N, # 4 - STAGE, offs_m, offs_n, N_CTX, V.dtype.element_ty == tl.float8e5 # ) # stage 2: on-band if STAGE & 2: # barrier makes it easier for compielr to schedule the # two loops independently acc, l_i = _attn_fwd_inner_full_int8(acc, l_i, m_i, q, K_block_ptr, V_block_ptr, q_scale, K_block_scale_ptr, v_scale, # start_m, qk_scale, # BLOCK_M, HEAD_DIM, BLOCK_N, # 2, offs_m, offs_n, N_CTX, V.dtype.element_ty == tl.float8e5 # ) # epilogue acc = acc / l_i[:, None] tl.store(O_block_ptr, acc.to(Out.type.element_ty)) class _attention_full_int8(torch.autograd.Function): @staticmethod # q, k, v: int8, q_scale, k_scale: float16 def forward(ctx, q, k, v, q_scale, k_scale, v_scale, causal, sm_scale): # shape constraints HEAD_DIM_Q, HEAD_DIM_K = q.shape[-1], k.shape[-1] # when v is in float8_e5m2 it is transposed. HEAD_DIM_V = v.shape[-1] assert HEAD_DIM_Q == HEAD_DIM_K and HEAD_DIM_K == HEAD_DIM_V assert HEAD_DIM_K in {16, 32, 64, 128, 256} o = torch.empty_like(q) o = o.to(torch.float16) stage = 3 if causal else 1 extra_kern_args = {} # Tuning for AMD target if is_hip(): waves_per_eu = 3 if HEAD_DIM_K <= 64 else 2 extra_kern_args = {"waves_per_eu": waves_per_eu, "allow_flush_denorm": True} grid = lambda args: (triton.cdiv(q.shape[2], args["BLOCK_M"]), q.shape[0] * q.shape[1], 1) _attn_fwd_full_int8[grid]( q, k, v, q_scale, k_scale, v_scale, sm_scale, o, # q.stride(0), q.stride(1), q.stride(2), q.stride(3), # k.stride(0), k.stride(1), k.stride(2), k.stride(3), # v.stride(0), v.stride(1), v.stride(2), v.stride(3), # o.stride(0), o.stride(1), o.stride(2), o.stride(3), # q_scale.stride(0), q_scale.stride(1), q_scale.stride(2), # v_scale.stride(0), v_scale.stride(1), # q.shape[0], q.shape[1], # N_CTX=q.shape[2], # HEAD_DIM=HEAD_DIM_K, # STAGE=stage, # **extra_kern_args) ctx.sm_scale = sm_scale ctx.HEAD_DIM = HEAD_DIM_K ctx.causal = causal return o attention_full_int8 = _attention_full_int8.apply
@triton.jit def _attn_fwd_inner_full_int8(acc, l_i, m_i, q, # K_block_ptr, V_block_ptr, # q_scale, K_block_scale_ptr, v_scale,# start_m, qk_scale, # BLOCK_M: tl.constexpr, HEAD_DIM: tl.constexpr, BLOCK_N: tl.constexpr, # STAGE: tl.constexpr, offs_m: tl.constexpr, offs_n: tl.constexpr, # N_CTX: tl.constexpr, fp8_v: tl.constexpr): # range of values handled by this stage if STAGE == 1: lo, hi = 0, start_m * BLOCK_M elif STAGE == 2: lo, hi = start_m * BLOCK_M, (start_m + 1) * BLOCK_M lo = tl.multiple_of(lo, BLOCK_M) # causal = False else: lo, hi = 0, N_CTX K_block_ptr = tl.advance(K_block_ptr, (0, lo)) K_block_scale_ptr = tl.advance(K_block_scale_ptr, (lo,)) V_block_ptr = tl.advance(V_block_ptr, (lo, 0)) # loop over k, v and update accumulator for start_n in range(lo, hi, BLOCK_N): # for start_n in range(0, 32, BLOCK_N): start_n = tl.multiple_of(start_n, BLOCK_N) # -- compute qk ---- k = tl.load(K_block_ptr) k_scale = tl.load(K_block_scale_ptr) qk = tl.dot(q, k).to(tl.float32) qk = qk * q_scale[:, None] qk = qk * k_scale if STAGE == 2: mask = offs_m[:, None] >= (start_n + offs_n[None, :]) qk = qk * qk_scale + tl.where(mask, 0, -1.0e6) m_ij = tl.maximum(m_i, tl.max(qk, 1)) qk -= m_ij[:, None] else: m_ij = tl.maximum(m_i, tl.max(qk, 1) * qk_scale) qk = qk * qk_scale - m_ij[:, None] p = tl.math.exp2(qk) l_ij = tl.sum(p, 1) p = p.to(tl.float16) p = p * 127 p = (p+0.5).to(tl.int8) # -- update m_i and l_i alpha = tl.math.exp2(m_i - m_ij) l_i = l_i * alpha + l_ij # -- update output accumulator -- acc = acc * alpha[:, None] # update acc v = tl.load(V_block_ptr) tmp = tl.dot(p, v) tmp = tmp.to(tl.float32) tmp = tmp * v_scale / 127 acc = acc + tmp # tmp = tl.dot(p, v) # tl.device_print("tmp", tmp) # update m_i and l_i m_i = m_ij V_block_ptr = tl.advance(V_block_ptr, (BLOCK_N, 0)) K_block_ptr = tl.advance(K_block_ptr, (0, BLOCK_N)) K_block_scale_ptr = tl.advance(K_block_scale_ptr, (BLOCK_N,)) return acc, l_i @triton.autotune(list(filter(keep, configs)), key=["N_CTX", "HEAD_DIM"])
INT-FlashAttention2024/INT-FlashAttention
flash_atten_full_int8.py
https://github.com/INT-FlashAttention2024/INT-FlashAttention/blob/7f7bfb00bcd26b2cef49e7783f51ef610e05abf7/flash_atten_full_int8.py
import pytest import torch import triton import triton.language as tl from configs import * @triton.jit def _attn_fwd_inner_full_int8(acc, l_i, m_i, q, # K_block_ptr, V_block_ptr, # q_scale, K_block_scale_ptr, v_scale,# start_m, qk_scale, # BLOCK_M: tl.constexpr, HEAD_DIM: tl.constexpr, BLOCK_N: tl.constexpr, # STAGE: tl.constexpr, offs_m: tl.constexpr, offs_n: tl.constexpr, # N_CTX: tl.constexpr, fp8_v: tl.constexpr): # range of values handled by this stage if STAGE == 1: lo, hi = 0, start_m * BLOCK_M elif STAGE == 2: lo, hi = start_m * BLOCK_M, (start_m + 1) * BLOCK_M lo = tl.multiple_of(lo, BLOCK_M) # causal = False else: lo, hi = 0, N_CTX K_block_ptr = tl.advance(K_block_ptr, (0, lo)) K_block_scale_ptr = tl.advance(K_block_scale_ptr, (lo,)) V_block_ptr = tl.advance(V_block_ptr, (lo, 0)) # loop over k, v and update accumulator for start_n in range(lo, hi, BLOCK_N): # for start_n in range(0, 32, BLOCK_N): start_n = tl.multiple_of(start_n, BLOCK_N) # -- compute qk ---- k = tl.load(K_block_ptr) k_scale = tl.load(K_block_scale_ptr) qk = tl.dot(q, k).to(tl.float32) qk = qk * q_scale[:, None] qk = qk * k_scale if STAGE == 2: mask = offs_m[:, None] >= (start_n + offs_n[None, :]) qk = qk * qk_scale + tl.where(mask, 0, -1.0e6) m_ij = tl.maximum(m_i, tl.max(qk, 1)) qk -= m_ij[:, None] else: m_ij = tl.maximum(m_i, tl.max(qk, 1) * qk_scale) qk = qk * qk_scale - m_ij[:, None] p = tl.math.exp2(qk) l_ij = tl.sum(p, 1) p = p.to(tl.float16) p = p * 127 p = (p+0.5).to(tl.int8) # -- update m_i and l_i alpha = tl.math.exp2(m_i - m_ij) l_i = l_i * alpha + l_ij # -- update output accumulator -- acc = acc * alpha[:, None] # update acc v = tl.load(V_block_ptr) tmp = tl.dot(p, v) tmp = tmp.to(tl.float32) tmp = tmp * v_scale / 127 acc = acc + tmp # tmp = tl.dot(p, v) # tl.device_print("tmp", tmp) # update m_i and l_i m_i = m_ij V_block_ptr = tl.advance(V_block_ptr, (BLOCK_N, 0)) K_block_ptr = tl.advance(K_block_ptr, (0, BLOCK_N)) K_block_scale_ptr = tl.advance(K_block_scale_ptr, (BLOCK_N,)) return acc, l_i @triton.autotune(list(filter(keep, configs)), key=["N_CTX", "HEAD_DIM"]) @triton.jit def _attn_fwd_full_int8(Q, K, V, Q_scale, K_scale, V_scale, sm_scale, Out, # stride_qz, stride_qh, stride_qm, stride_qk, # stride_kz, stride_kh, stride_kn, stride_kk, # stride_vz, stride_vh, stride_vk, stride_vn, # stride_oz, stride_oh, stride_om, stride_on, # stride_s1, stride_s2, stride_s3, # stride_v1, stride_v2, # Z, H, N_CTX, # HEAD_DIM: tl.constexpr, # BLOCK_M: tl.constexpr, # BLOCK_N: tl.constexpr, # STAGE: tl.constexpr # ): tl.static_assert(BLOCK_N <= HEAD_DIM) start_m = tl.program_id(0) off_hz = tl.program_id(1) off_z = off_hz // H off_h = off_hz % H qvk_offset = off_z.to(tl.int64) * stride_qz + off_h.to(tl.int64) * stride_qh scl_offset = off_z.to(tl.int64) * stride_s1 + off_h.to(tl.int64) * stride_s2 vscl_offset = off_z.to(tl.int64) * stride_v1 + off_h.to(tl.int64) * stride_v2 # block pointers Q_block_ptr = tl.make_block_ptr( base=Q + qvk_offset, shape=(N_CTX, HEAD_DIM), strides=(stride_qm, stride_qk), offsets=(start_m * BLOCK_M, 0), block_shape=(BLOCK_M, HEAD_DIM), order=(1, 0), ) V_block_ptr = tl.make_block_ptr( base=V + qvk_offset, shape=(N_CTX, HEAD_DIM), strides=(stride_vk, stride_vn), offsets=(0, 0), block_shape=(BLOCK_N, HEAD_DIM), order=(1, 0), ) K_block_ptr = tl.make_block_ptr( base=K + qvk_offset, shape=(HEAD_DIM, N_CTX), strides=(stride_kk, stride_kn), offsets=(0, 0), block_shape=(HEAD_DIM, BLOCK_N), order=(0, 1), ) O_block_ptr = tl.make_block_ptr( base=Out + qvk_offset, shape=(N_CTX, HEAD_DIM), strides=(stride_om, stride_on), offsets=(start_m * BLOCK_M, 0), block_shape=(BLOCK_M, HEAD_DIM), order=(1, 0), ) # scale vector pointers Q_block_scale_ptr = tl.make_block_ptr( base=Q_scale + scl_offset, shape=(N_CTX,), strides=(stride_s3,), offsets=(start_m * BLOCK_M,), block_shape=(BLOCK_M,), order=(0,), ) K_block_scale_ptr = tl.make_block_ptr( base=K_scale + scl_offset, shape=(N_CTX,), strides=(stride_s3,), offsets=(0,), block_shape=(BLOCK_N,), order=(0,), ) # initialize offsets offs_m = start_m * BLOCK_M + tl.arange(0, BLOCK_M) offs_n = tl.arange(0, BLOCK_N) # initialize pointer to m and l m_i = tl.zeros([BLOCK_M], dtype=tl.float32) - float("inf") l_i = tl.zeros([BLOCK_M], dtype=tl.float32) + 1.0 acc = tl.zeros([BLOCK_M, HEAD_DIM], dtype=tl.float32) # load scales qk_scale = sm_scale qk_scale *= 1.44269504 # 1/log(2) # load q: it will stay in SRAM throughout q = tl.load(Q_block_ptr) q_scale = tl.load(Q_block_scale_ptr) v_scale = tl.load(V_scale + vscl_offset) # stage 1: off-band # For causal = True, STAGE = 3 and _attn_fwd_inner gets 1 as its STAGE # For causal = False, STAGE = 1, and _attn_fwd_inner gets 3 as its STAGE if STAGE & 1: acc, l_i = _attn_fwd_inner_full_int8(acc, l_i, m_i, q, K_block_ptr, V_block_ptr, q_scale, K_block_scale_ptr, v_scale, # start_m, qk_scale, # BLOCK_M, HEAD_DIM, BLOCK_N, # 4 - STAGE, offs_m, offs_n, N_CTX, V.dtype.element_ty == tl.float8e5 # ) # stage 2: on-band if STAGE & 2: # barrier makes it easier for compielr to schedule the # two loops independently acc, l_i = _attn_fwd_inner_full_int8(acc, l_i, m_i, q, K_block_ptr, V_block_ptr, q_scale, K_block_scale_ptr, v_scale, # start_m, qk_scale, # BLOCK_M, HEAD_DIM, BLOCK_N, # 2, offs_m, offs_n, N_CTX, V.dtype.element_ty == tl.float8e5 # ) # epilogue acc = acc / l_i[:, None] tl.store(O_block_ptr, acc.to(Out.type.element_ty)) class _attention_full_int8(torch.autograd.Function): @staticmethod # q, k, v: int8, q_scale, k_scale: float16 def forward(ctx, q, k, v, q_scale, k_scale, v_scale, causal, sm_scale): # shape constraints HEAD_DIM_Q, HEAD_DIM_K = q.shape[-1], k.shape[-1] # when v is in float8_e5m2 it is transposed. HEAD_DIM_V = v.shape[-1] assert HEAD_DIM_Q == HEAD_DIM_K and HEAD_DIM_K == HEAD_DIM_V assert HEAD_DIM_K in {16, 32, 64, 128, 256} o = torch.empty_like(q) o = o.to(torch.float16) stage = 3 if causal else 1 extra_kern_args = {} # Tuning for AMD target if is_hip(): waves_per_eu = 3 if HEAD_DIM_K <= 64 else 2 extra_kern_args = {"waves_per_eu": waves_per_eu, "allow_flush_denorm": True} grid = lambda args: (triton.cdiv(q.shape[2], args["BLOCK_M"]), q.shape[0] * q.shape[1], 1) _attn_fwd_full_int8[grid]( q, k, v, q_scale, k_scale, v_scale, sm_scale, o, # q.stride(0), q.stride(1), q.stride(2), q.stride(3), # k.stride(0), k.stride(1), k.stride(2), k.stride(3), # v.stride(0), v.stride(1), v.stride(2), v.stride(3), # o.stride(0), o.stride(1), o.stride(2), o.stride(3), # q_scale.stride(0), q_scale.stride(1), q_scale.stride(2), # v_scale.stride(0), v_scale.stride(1), # q.shape[0], q.shape[1], # N_CTX=q.shape[2], # HEAD_DIM=HEAD_DIM_K, # STAGE=stage, # **extra_kern_args) ctx.sm_scale = sm_scale ctx.HEAD_DIM = HEAD_DIM_K ctx.causal = causal return o attention_full_int8 = _attention_full_int8.apply
@triton.jit def _attn_fwd_full_int8(Q, K, V, Q_scale, K_scale, V_scale, sm_scale, Out, # stride_qz, stride_qh, stride_qm, stride_qk, # stride_kz, stride_kh, stride_kn, stride_kk, # stride_vz, stride_vh, stride_vk, stride_vn, # stride_oz, stride_oh, stride_om, stride_on, # stride_s1, stride_s2, stride_s3, # stride_v1, stride_v2, # Z, H, N_CTX, # HEAD_DIM: tl.constexpr, # BLOCK_M: tl.constexpr, # BLOCK_N: tl.constexpr, # STAGE: tl.constexpr # ): tl.static_assert(BLOCK_N <= HEAD_DIM) start_m = tl.program_id(0) off_hz = tl.program_id(1) off_z = off_hz // H off_h = off_hz % H qvk_offset = off_z.to(tl.int64) * stride_qz + off_h.to(tl.int64) * stride_qh scl_offset = off_z.to(tl.int64) * stride_s1 + off_h.to(tl.int64) * stride_s2 vscl_offset = off_z.to(tl.int64) * stride_v1 + off_h.to(tl.int64) * stride_v2 # block pointers Q_block_ptr = tl.make_block_ptr( base=Q + qvk_offset, shape=(N_CTX, HEAD_DIM), strides=(stride_qm, stride_qk), offsets=(start_m * BLOCK_M, 0), block_shape=(BLOCK_M, HEAD_DIM), order=(1, 0), ) V_block_ptr = tl.make_block_ptr( base=V + qvk_offset, shape=(N_CTX, HEAD_DIM), strides=(stride_vk, stride_vn), offsets=(0, 0), block_shape=(BLOCK_N, HEAD_DIM), order=(1, 0), ) K_block_ptr = tl.make_block_ptr( base=K + qvk_offset, shape=(HEAD_DIM, N_CTX), strides=(stride_kk, stride_kn), offsets=(0, 0), block_shape=(HEAD_DIM, BLOCK_N), order=(0, 1), ) O_block_ptr = tl.make_block_ptr( base=Out + qvk_offset, shape=(N_CTX, HEAD_DIM), strides=(stride_om, stride_on), offsets=(start_m * BLOCK_M, 0), block_shape=(BLOCK_M, HEAD_DIM), order=(1, 0), ) # scale vector pointers Q_block_scale_ptr = tl.make_block_ptr( base=Q_scale + scl_offset, shape=(N_CTX,), strides=(stride_s3,), offsets=(start_m * BLOCK_M,), block_shape=(BLOCK_M,), order=(0,), ) K_block_scale_ptr = tl.make_block_ptr( base=K_scale + scl_offset, shape=(N_CTX,), strides=(stride_s3,), offsets=(0,), block_shape=(BLOCK_N,), order=(0,), ) # initialize offsets offs_m = start_m * BLOCK_M + tl.arange(0, BLOCK_M) offs_n = tl.arange(0, BLOCK_N) # initialize pointer to m and l m_i = tl.zeros([BLOCK_M], dtype=tl.float32) - float("inf") l_i = tl.zeros([BLOCK_M], dtype=tl.float32) + 1.0 acc = tl.zeros([BLOCK_M, HEAD_DIM], dtype=tl.float32) # load scales qk_scale = sm_scale qk_scale *= 1.44269504 # 1/log(2) # load q: it will stay in SRAM throughout q = tl.load(Q_block_ptr) q_scale = tl.load(Q_block_scale_ptr) v_scale = tl.load(V_scale + vscl_offset) # stage 1: off-band # For causal = True, STAGE = 3 and _attn_fwd_inner gets 1 as its STAGE # For causal = False, STAGE = 1, and _attn_fwd_inner gets 3 as its STAGE if STAGE & 1: acc, l_i = _attn_fwd_inner_full_int8(acc, l_i, m_i, q, K_block_ptr, V_block_ptr, q_scale, K_block_scale_ptr, v_scale, # start_m, qk_scale, # BLOCK_M, HEAD_DIM, BLOCK_N, # 4 - STAGE, offs_m, offs_n, N_CTX, V.dtype.element_ty == tl.float8e5 # ) # stage 2: on-band if STAGE & 2: # barrier makes it easier for compielr to schedule the # two loops independently acc, l_i = _attn_fwd_inner_full_int8(acc, l_i, m_i, q, K_block_ptr, V_block_ptr, q_scale, K_block_scale_ptr, v_scale, # start_m, qk_scale, # BLOCK_M, HEAD_DIM, BLOCK_N, # 2, offs_m, offs_n, N_CTX, V.dtype.element_ty == tl.float8e5 # ) # epilogue acc = acc / l_i[:, None] tl.store(O_block_ptr, acc.to(Out.type.element_ty)) class _attention_full_int8(torch.autograd.Function): @staticmethod # q, k, v: int8, q_scale, k_scale: float16 def forward(ctx, q, k, v, q_scale, k_scale, v_scale, causal, sm_scale): # shape constraints HEAD_DIM_Q, HEAD_DIM_K = q.shape[-1], k.shape[-1] # when v is in float8_e5m2 it is transposed. HEAD_DIM_V = v.shape[-1] assert HEAD_DIM_Q == HEAD_DIM_K and HEAD_DIM_K == HEAD_DIM_V assert HEAD_DIM_K in {16, 32, 64, 128, 256} o = torch.empty_like(q) o = o.to(torch.float16) stage = 3 if causal else 1 extra_kern_args = {} # Tuning for AMD target if is_hip(): waves_per_eu = 3 if HEAD_DIM_K <= 64 else 2 extra_kern_args = {"waves_per_eu": waves_per_eu, "allow_flush_denorm": True} grid = lambda args: (triton.cdiv(q.shape[2], args["BLOCK_M"]), q.shape[0] * q.shape[1], 1) _attn_fwd_full_int8[grid]( q, k, v, q_scale, k_scale, v_scale, sm_scale, o, # q.stride(0), q.stride(1), q.stride(2), q.stride(3), # k.stride(0), k.stride(1), k.stride(2), k.stride(3), # v.stride(0), v.stride(1), v.stride(2), v.stride(3), # o.stride(0), o.stride(1), o.stride(2), o.stride(3), # q_scale.stride(0), q_scale.stride(1), q_scale.stride(2), # v_scale.stride(0), v_scale.stride(1), # q.shape[0], q.shape[1], # N_CTX=q.shape[2], # HEAD_DIM=HEAD_DIM_K, # STAGE=stage, # **extra_kern_args) ctx.sm_scale = sm_scale ctx.HEAD_DIM = HEAD_DIM_K ctx.causal = causal return o attention_full_int8 = _attention_full_int8.apply
TD87/triton-kernels
gemm_matmul.py
https://github.com/TD87/triton-kernels/blob/17a97ede7b6d0ca7356db68b56d0e5b6a9080ad4/gemm_matmul.py
import math import torch # type: ignore import triton # type: ignore import triton.language as tl # type: ignore @triton.jit() def matmul_kernel(x_ptr, y_ptr, out_ptr, M, N, K, BLOCK_M: tl.constexpr, BLOCK_N: tl.constexpr, BLOCK_K: tl.constexpr): pid_r = tl.program_id(0) pid_c = tl.program_id(1) row_start = pid_r * BLOCK_M row_offsets = row_start + tl.arange(0, BLOCK_M) col_start = pid_c * BLOCK_N col_offsets = col_start + tl.arange(0, BLOCK_N) out = tl.zeros((BLOCK_M, BLOCK_N), dtype = tl.float32) for k in tl.range(0, K, BLOCK_K): k_offsets = k + tl.arange(0, BLOCK_K) row = row_offsets[:, None] * K + k_offsets[None, :] mask = (row_offsets[:, None] < M) & (k_offsets[None, :] < K) x = tl.load(x_ptr + row, mask = mask) col = col_offsets[None, :] + k_offsets[:, None] * N mask = (col_offsets[None, :] < N) & (k_offsets[:, None] < K) y = tl.load(y_ptr + col, mask = mask) out = tl.dot(x, y, out) out_offsets = row_offsets[:, None] * N + col_offsets[None, :] mask = (row_offsets[:, None] < M) & (col_offsets[None, :] < N) tl.store(out_ptr + out_offsets, out, mask = mask) def matmul(x, y, BLOCK_M = 128, BLOCK_N = 64, BLOCK_K = 64): M, K = x.size() N = y.size(1) assert K == y.size(0) out = torch.empty(M, N, device = 'cuda', dtype = torch.float32) grid = (math.ceil(M / BLOCK_M), math.ceil(N / BLOCK_N)) matmul_kernel[grid](x, y, out, M, N, K, BLOCK_M, BLOCK_N, BLOCK_K) return out @triton.testing.perf_report( triton.testing.Benchmark( x_names = ["M", "N", "K"], x_vals = [128 * i for i in range(2, 33)], line_arg = "provider", line_vals = ["triton", "torch"], line_names = ["Triton", "Torch"], styles = [("green", "-"), ("blue", "-")], ylabel = "TFLOPS", plot_name = "matmul-performance", args = {}, )) def benchmark(M, N, K, provider): x = torch.randn(M, K, device = 'cuda', dtype = torch.float32) y = torch.randn(K, N, device = 'cuda', dtype = torch.float32) if provider == "torch": ms = triton.testing.do_bench(lambda: torch.matmul(x, y)) else: ms = triton.testing.do_bench(lambda: matmul(x, y)) tflops = lambda ms: 2 * M * N * K * 1e-12 / (ms * 1e-3) return tflops(ms) benchmark.run(print_data = True, save_path = "plots")
@triton.jit () def matmul_kernel(x_ptr, y_ptr, out_ptr, M, N, K, BLOCK_M: tl.constexpr, BLOCK_N: tl.constexpr, BLOCK_K: tl.constexpr): pid_r = tl.program_id(0) pid_c = tl.program_id(1) row_start = pid_r * BLOCK_M row_offsets = row_start + tl.arange(0, BLOCK_M) col_start = pid_c * BLOCK_N col_offsets = col_start + tl.arange(0, BLOCK_N) out = tl.zeros((BLOCK_M, BLOCK_N), dtype = tl.float32) for k in tl.range(0, K, BLOCK_K): k_offsets = k + tl.arange(0, BLOCK_K) row = row_offsets[:, None] * K + k_offsets[None, :] mask = (row_offsets[:, None] < M) & (k_offsets[None, :] < K) x = tl.load(x_ptr + row, mask = mask) col = col_offsets[None, :] + k_offsets[:, None] * N mask = (col_offsets[None, :] < N) & (k_offsets[:, None] < K) y = tl.load(y_ptr + col, mask = mask) out = tl.dot(x, y, out) out_offsets = row_offsets[:, None] * N + col_offsets[None, :] mask = (row_offsets[:, None] < M) & (col_offsets[None, :] < N) tl.store(out_ptr + out_offsets, out, mask = mask) def matmul(x, y, BLOCK_M = 128, BLOCK_N = 64, BLOCK_K = 64): M, K = x.size() N = y.size(1) assert K == y.size(0) out = torch.empty(M, N, device = 'cuda', dtype = torch.float32) grid = (math.ceil(M / BLOCK_M), math.ceil(N / BLOCK_N)) matmul_kernel[grid](x, y, out, M, N, K, BLOCK_M, BLOCK_N, BLOCK_K) return out @triton.testing.perf_report( triton.testing.Benchmark( x_names = ["M", "N", "K"], x_vals = [128 * i for i in range(2, 33)], line_arg = "provider", line_vals = ["triton", "torch"], line_names = ["Triton", "Torch"], styles = [("green", "-"), ("blue", "-")], ylabel = "TFLOPS", plot_name = "matmul-performance", args = {}, )) def benchmark(M, N, K, provider): x = torch.randn(M, K, device = 'cuda', dtype = torch.float32) y = torch.randn(K, N, device = 'cuda', dtype = torch.float32) if provider == "torch": ms = triton.testing.do_bench(lambda: torch.matmul(x, y)) else: ms = triton.testing.do_bench(lambda: matmul(x, y)) tflops = lambda ms: 2 * M * N * K * 1e-12 / (ms * 1e-3) return tflops(ms) benchmark.run(print_data = True, save_path = "plots")
xiaonans/triton-gemm-benchmark
kernels/basic_matmul.py
https://github.com/xiaonans/triton-gemm-benchmark/blob/436ee5a77e01ede7e4a1fe015f533dfdc53b31d3/kernels/basic_matmul.py
import triton import triton.language as tl import torch from .autotune_config import get_autotune_config # `triton.jit`'ed functions can be auto-tuned by using the `triton.autotune` decorator, which consumes: # - A list of `triton.Config` objects that define different configurations of # meta-parameters (e.g., `BLOCK_SIZE_M`) and compilation options (e.g., `num_warps`) to try # - An auto-tuning *key* whose change in values will trigger evaluation of all the # provided configs @triton.autotune( configs=get_autotune_config(), key=['M', 'N', 'K'], ) @triton.jit def matmul_kernel( # Pointers to matrices a_ptr, b_ptr, c_ptr, # Matrix dimensions M, N, K, # The stride variables represent how much to increase the ptr by when moving by 1 # element in a particular dimension. E.g. `stride_am` is how much to increase `a_ptr` # by to get the element one row down (A has M rows). stride_am, stride_ak, # stride_bk, stride_bn, # stride_cm, stride_cn, # Meta-parameters BLOCK_SIZE_M: tl.constexpr, BLOCK_SIZE_N: tl.constexpr, BLOCK_SIZE_K: tl.constexpr, # GROUP_SIZE_M: tl.constexpr, # ACTIVATION: tl.constexpr # ): """Kernel for computing the matmul C = A x B. A has shape (M, K), B has shape (K, N) and C has shape (M, N) """ # ----------------------------------------------------------- # Map program ids `pid` to the block of C it should compute. # This is done in a grouped ordering to promote L2 data reuse. # See above `L2 Cache Optimizations` section for details. pid = tl.program_id(axis=0) num_pid_m = tl.cdiv(M, BLOCK_SIZE_M) num_pid_n = tl.cdiv(N, BLOCK_SIZE_N) num_pid_in_group = GROUP_SIZE_M * num_pid_n group_id = pid // num_pid_in_group first_pid_m = group_id * GROUP_SIZE_M group_size_m = min(num_pid_m - first_pid_m, GROUP_SIZE_M) pid_m = first_pid_m + ((pid % num_pid_in_group) % group_size_m) pid_n = (pid % num_pid_in_group) // group_size_m # ---------------------------------------------------------- # Create pointers for the first blocks of A and B. # We will advance this pointer as we move in the K direction # and accumulate # `a_ptrs` is a block of [BLOCK_SIZE_M, BLOCK_SIZE_K] pointers # `b_ptrs` is a block of [BLOCK_SIZE_K, BLOCK_SIZE_N] pointers # See above `Pointer Arithmetic` section for details offs_am = (pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M)) % M offs_bn = (pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N)) % N offs_k = tl.arange(0, BLOCK_SIZE_K) a_ptrs = a_ptr + (offs_am[:, None] * stride_am + offs_k[None, :] * stride_ak) b_ptrs = b_ptr + (offs_k[:, None] * stride_bk + offs_bn[None, :] * stride_bn) # ----------------------------------------------------------- # Iterate to compute a block of the C matrix. # We accumulate into a `[BLOCK_SIZE_M, BLOCK_SIZE_N]` block # of fp32 values for higher accuracy. # `accumulator` will be converted back to fp16 after the loop. accumulator = tl.zeros((BLOCK_SIZE_M, BLOCK_SIZE_N), dtype=tl.float32) for k in range(0, tl.cdiv(K, BLOCK_SIZE_K)): # Load the next block of A and B, generate a mask by checking the K dimension. # If it is out of bounds, set it to 0. a = tl.load(a_ptrs, mask=offs_k[None, :] < K - k * BLOCK_SIZE_K, other=0.0) b = tl.load(b_ptrs, mask=offs_k[:, None] < K - k * BLOCK_SIZE_K, other=0.0) # We accumulate along the K dimension. accumulator = tl.dot(a, b, accumulator) # Advance the ptrs to the next K block. a_ptrs += BLOCK_SIZE_K * stride_ak b_ptrs += BLOCK_SIZE_K * stride_bk # You can fuse arbitrary activation functions here # while the accumulator is still in FP32! if ACTIVATION == "leaky_relu": accumulator = leaky_relu(accumulator) c = accumulator.to(tl.float16) # ----------------------------------------------------------- # Write back the block of the output matrix C with masks. offs_cm = pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M) offs_cn = pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N) c_ptrs = c_ptr + stride_cm * offs_cm[:, None] + stride_cn * offs_cn[None, :] c_mask = (offs_cm[:, None] < M) & (offs_cn[None, :] < N) tl.store(c_ptrs, c, mask=c_mask) # We can fuse `leaky_relu` by providing it as an `ACTIVATION` meta-parameter in `matmul_kernel`. @triton.jit def leaky_relu(x): return tl.where(x >= 0, x, 0.01 * x) def matmul(a, b, activation=""): # Check constraints. assert a.shape[1] == b.shape[0], "Incompatible dimensions" assert a.is_contiguous(), "Matrix A must be contiguous" M, K = a.shape K, N = b.shape # Allocates output. c = torch.empty((M, N), device=a.device, dtype=torch.float16) # 1D launch kernel where each block gets its own program. grid = lambda META: (triton.cdiv(M, META['BLOCK_SIZE_M']) * triton.cdiv(N, META['BLOCK_SIZE_N']), ) matmul_kernel[grid]( a, b, c, # M, N, K, # a.stride(0), a.stride(1), # b.stride(0), b.stride(1), # c.stride(0), c.stride(1), # ACTIVATION=activation # ) return c
@triton.jit def matmul_kernel( # Pointers to matrices a_ptr, b_ptr, c_ptr, # Matrix dimensions M, N, K, # The stride variables represent how much to increase the ptr by when moving by 1 # element in a particular dimension. E.g. `stride_am` is how much to increase `a_ptr` # by to get the element one row down (A has M rows). stride_am, stride_ak, # stride_bk, stride_bn, # stride_cm, stride_cn, # Meta-parameters BLOCK_SIZE_M: tl.constexpr, BLOCK_SIZE_N: tl.constexpr, BLOCK_SIZE_K: tl.constexpr, # GROUP_SIZE_M: tl.constexpr, # ACTIVATION: tl.constexpr # ): """Kernel for computing the matmul C = A x B. A has shape (M, K), B has shape (K, N) and C has shape (M, N) """ # ----------------------------------------------------------- # Map program ids `pid` to the block of C it should compute. # This is done in a grouped ordering to promote L2 data reuse. # See above `L2 Cache Optimizations` section for details. pid = tl.program_id(axis=0) num_pid_m = tl.cdiv(M, BLOCK_SIZE_M) num_pid_n = tl.cdiv(N, BLOCK_SIZE_N) num_pid_in_group = GROUP_SIZE_M * num_pid_n group_id = pid // num_pid_in_group first_pid_m = group_id * GROUP_SIZE_M group_size_m = min(num_pid_m - first_pid_m, GROUP_SIZE_M) pid_m = first_pid_m + ((pid % num_pid_in_group) % group_size_m) pid_n = (pid % num_pid_in_group) // group_size_m # ---------------------------------------------------------- # Create pointers for the first blocks of A and B. # We will advance this pointer as we move in the K direction # and accumulate # `a_ptrs` is a block of [BLOCK_SIZE_M, BLOCK_SIZE_K] pointers # `b_ptrs` is a block of [BLOCK_SIZE_K, BLOCK_SIZE_N] pointers # See above `Pointer Arithmetic` section for details offs_am = (pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M)) % M offs_bn = (pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N)) % N offs_k = tl.arange(0, BLOCK_SIZE_K) a_ptrs = a_ptr + (offs_am[:, None] * stride_am + offs_k[None, :] * stride_ak) b_ptrs = b_ptr + (offs_k[:, None] * stride_bk + offs_bn[None, :] * stride_bn) # ----------------------------------------------------------- # Iterate to compute a block of the C matrix. # We accumulate into a `[BLOCK_SIZE_M, BLOCK_SIZE_N]` block # of fp32 values for higher accuracy. # `accumulator` will be converted back to fp16 after the loop. accumulator = tl.zeros((BLOCK_SIZE_M, BLOCK_SIZE_N), dtype=tl.float32) for k in range(0, tl.cdiv(K, BLOCK_SIZE_K)): # Load the next block of A and B, generate a mask by checking the K dimension. # If it is out of bounds, set it to 0. a = tl.load(a_ptrs, mask=offs_k[None, :] < K - k * BLOCK_SIZE_K, other=0.0) b = tl.load(b_ptrs, mask=offs_k[:, None] < K - k * BLOCK_SIZE_K, other=0.0) # We accumulate along the K dimension. accumulator = tl.dot(a, b, accumulator) # Advance the ptrs to the next K block. a_ptrs += BLOCK_SIZE_K * stride_ak b_ptrs += BLOCK_SIZE_K * stride_bk # You can fuse arbitrary activation functions here # while the accumulator is still in FP32! if ACTIVATION == "leaky_relu": accumulator = leaky_relu(accumulator) c = accumulator.to(tl.float16) # ----------------------------------------------------------- # Write back the block of the output matrix C with masks. offs_cm = pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M) offs_cn = pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N) c_ptrs = c_ptr + stride_cm * offs_cm[:, None] + stride_cn * offs_cn[None, :] c_mask = (offs_cm[:, None] < M) & (offs_cn[None, :] < N) tl.store(c_ptrs, c, mask=c_mask) # We can fuse `leaky_relu` by providing it as an `ACTIVATION` meta-parameter in `matmul_kernel`.
xiaonans/triton-gemm-benchmark
kernels/basic_matmul.py
https://github.com/xiaonans/triton-gemm-benchmark/blob/436ee5a77e01ede7e4a1fe015f533dfdc53b31d3/kernels/basic_matmul.py
import triton import triton.language as tl import torch from .autotune_config import get_autotune_config # `triton.jit`'ed functions can be auto-tuned by using the `triton.autotune` decorator, which consumes: # - A list of `triton.Config` objects that define different configurations of # meta-parameters (e.g., `BLOCK_SIZE_M`) and compilation options (e.g., `num_warps`) to try # - An auto-tuning *key* whose change in values will trigger evaluation of all the # provided configs @triton.autotune( configs=get_autotune_config(), key=['M', 'N', 'K'], ) @triton.jit def matmul_kernel( # Pointers to matrices a_ptr, b_ptr, c_ptr, # Matrix dimensions M, N, K, # The stride variables represent how much to increase the ptr by when moving by 1 # element in a particular dimension. E.g. `stride_am` is how much to increase `a_ptr` # by to get the element one row down (A has M rows). stride_am, stride_ak, # stride_bk, stride_bn, # stride_cm, stride_cn, # Meta-parameters BLOCK_SIZE_M: tl.constexpr, BLOCK_SIZE_N: tl.constexpr, BLOCK_SIZE_K: tl.constexpr, # GROUP_SIZE_M: tl.constexpr, # ACTIVATION: tl.constexpr # ): """Kernel for computing the matmul C = A x B. A has shape (M, K), B has shape (K, N) and C has shape (M, N) """ # ----------------------------------------------------------- # Map program ids `pid` to the block of C it should compute. # This is done in a grouped ordering to promote L2 data reuse. # See above `L2 Cache Optimizations` section for details. pid = tl.program_id(axis=0) num_pid_m = tl.cdiv(M, BLOCK_SIZE_M) num_pid_n = tl.cdiv(N, BLOCK_SIZE_N) num_pid_in_group = GROUP_SIZE_M * num_pid_n group_id = pid // num_pid_in_group first_pid_m = group_id * GROUP_SIZE_M group_size_m = min(num_pid_m - first_pid_m, GROUP_SIZE_M) pid_m = first_pid_m + ((pid % num_pid_in_group) % group_size_m) pid_n = (pid % num_pid_in_group) // group_size_m # ---------------------------------------------------------- # Create pointers for the first blocks of A and B. # We will advance this pointer as we move in the K direction # and accumulate # `a_ptrs` is a block of [BLOCK_SIZE_M, BLOCK_SIZE_K] pointers # `b_ptrs` is a block of [BLOCK_SIZE_K, BLOCK_SIZE_N] pointers # See above `Pointer Arithmetic` section for details offs_am = (pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M)) % M offs_bn = (pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N)) % N offs_k = tl.arange(0, BLOCK_SIZE_K) a_ptrs = a_ptr + (offs_am[:, None] * stride_am + offs_k[None, :] * stride_ak) b_ptrs = b_ptr + (offs_k[:, None] * stride_bk + offs_bn[None, :] * stride_bn) # ----------------------------------------------------------- # Iterate to compute a block of the C matrix. # We accumulate into a `[BLOCK_SIZE_M, BLOCK_SIZE_N]` block # of fp32 values for higher accuracy. # `accumulator` will be converted back to fp16 after the loop. accumulator = tl.zeros((BLOCK_SIZE_M, BLOCK_SIZE_N), dtype=tl.float32) for k in range(0, tl.cdiv(K, BLOCK_SIZE_K)): # Load the next block of A and B, generate a mask by checking the K dimension. # If it is out of bounds, set it to 0. a = tl.load(a_ptrs, mask=offs_k[None, :] < K - k * BLOCK_SIZE_K, other=0.0) b = tl.load(b_ptrs, mask=offs_k[:, None] < K - k * BLOCK_SIZE_K, other=0.0) # We accumulate along the K dimension. accumulator = tl.dot(a, b, accumulator) # Advance the ptrs to the next K block. a_ptrs += BLOCK_SIZE_K * stride_ak b_ptrs += BLOCK_SIZE_K * stride_bk # You can fuse arbitrary activation functions here # while the accumulator is still in FP32! if ACTIVATION == "leaky_relu": accumulator = leaky_relu(accumulator) c = accumulator.to(tl.float16) # ----------------------------------------------------------- # Write back the block of the output matrix C with masks. offs_cm = pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M) offs_cn = pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N) c_ptrs = c_ptr + stride_cm * offs_cm[:, None] + stride_cn * offs_cn[None, :] c_mask = (offs_cm[:, None] < M) & (offs_cn[None, :] < N) tl.store(c_ptrs, c, mask=c_mask) # We can fuse `leaky_relu` by providing it as an `ACTIVATION` meta-parameter in `matmul_kernel`. @triton.jit def leaky_relu(x): return tl.where(x >= 0, x, 0.01 * x) def matmul(a, b, activation=""): # Check constraints. assert a.shape[1] == b.shape[0], "Incompatible dimensions" assert a.is_contiguous(), "Matrix A must be contiguous" M, K = a.shape K, N = b.shape # Allocates output. c = torch.empty((M, N), device=a.device, dtype=torch.float16) # 1D launch kernel where each block gets its own program. grid = lambda META: (triton.cdiv(M, META['BLOCK_SIZE_M']) * triton.cdiv(N, META['BLOCK_SIZE_N']), ) matmul_kernel[grid]( a, b, c, # M, N, K, # a.stride(0), a.stride(1), # b.stride(0), b.stride(1), # c.stride(0), c.stride(1), # ACTIVATION=activation # ) return c
@triton.jit def leaky_relu(x): return tl.where(x >= 0, x, 0.01 * x) def matmul(a, b, activation=""): # Check constraints. assert a.shape[1] == b.shape[0], "Incompatible dimensions" assert a.is_contiguous(), "Matrix A must be contiguous" M, K = a.shape K, N = b.shape # Allocates output. c = torch.empty((M, N), device=a.device, dtype=torch.float16) # 1D launch kernel where each block gets its own program. grid = lambda META: (triton.cdiv(M, META['BLOCK_SIZE_M']) * triton.cdiv(N, META['BLOCK_SIZE_N']), ) matmul_kernel[grid]( a, b, c, # M, N, K, # a.stride(0), a.stride(1), # b.stride(0), b.stride(1), # c.stride(0), c.stride(1), # ACTIVATION=activation # ) return c
xiaohuguo2023/scripts
others/tune_gemm1.py
https://github.com/xiaohuguo2023/scripts/blob/b6de80a590c78e78a4f8d64346c34ef445e2aa17/others/tune_gemm1.py
import argparse import sys import yaml import os import glob import subprocess import torch import triton import triton.language as tl from matmul_kernel import matmul_kernel from datetime import datetime import pandas as pd import torch.distributed as dist from torch.multiprocessing import spawn def get_full_tuning_space(): configs = [] block_mn_range = [16, 32, 64, 128, 256] block_k_range = [16, 32, 64, 128, 256] split_k_range = [1, 2, 4, 5, 6, 8, 10, 12, 16, 18, 24] num_warps_range = [1, 2, 4, 8] group_m_range = [1, 4, 8, 16, 32] num_stage_range = [0] waves_per_eu_range = [0] matrix_instr_nonkdim_range = [16, 32] kpack_range = [1, 2] for block_m in block_mn_range: for block_n in block_mn_range: for block_k in block_k_range: for num_warps in num_warps_range: for group_m in group_m_range: for split_k in split_k_range: for num_stages in num_stage_range: for waves_per_eu in waves_per_eu_range: for matrix_instr_nonkdim in matrix_instr_nonkdim_range: for kpack in kpack_range: configs.append({ 'BLOCK_SIZE_M': block_m, 'BLOCK_SIZE_N': block_n, 'BLOCK_SIZE_K': block_k, 'GROUP_SIZE_M': group_m, 'SPLIT_K': split_k, 'num_warps': num_warps, 'num_stages': num_stages, 'waves_per_eu': waves_per_eu, 'matrix_instr_nonkdim': matrix_instr_nonkdim, 'kpack': kpack }) return configs def prune_configs(M, N, K, configs, elemBytes_a, elemBytes_b): pruned_configs = [] if M < 32 or N < 32: mfma = 16 else: mfma = 32 large_gemm = False if M >= 2048 and N >=2048: large_gemm = True for config in configs: BLOCK_SIZE_M = config.get("BLOCK_SIZE_M") BLOCK_SIZE_N = config.get("BLOCK_SIZE_N") BLOCK_SIZE_K = config.get("BLOCK_SIZE_K") num_warps = config.get("num_warps") matrix_instr_nonkdim = config.get("matrix_instr_nonkdim") kpack = config.get("kpack") if matrix_instr_nonkdim > mfma: continue if mfma == 4 and BLOCK_SIZE_K < 64: continue if BLOCK_SIZE_M * BLOCK_SIZE_N < 64: continue SPLIT_K = config.get("SPLIT_K") GROUP_M = config.get("GROUP_SIZE_M") if BLOCK_SIZE_M < matrix_instr_nonkdim or BLOCK_SIZE_N < matrix_instr_nonkdim: continue if M <= matrix_instr_nonkdim and BLOCK_SIZE_M != matrix_instr_nonkdim: continue if N <= matrix_instr_nonkdim and BLOCK_SIZE_N != matrix_instr_nonkdim: continue if BLOCK_SIZE_M > M * 2 and BLOCK_SIZE_M != 16: continue if BLOCK_SIZE_N > N * 2 and BLOCK_SIZE_N != 16: continue if SPLIT_K != 1 and not need_split_k(M, N, K): continue leap = SPLIT_K * BLOCK_SIZE_K modv = K % leap if modv != 0: continue if GROUP_M * BLOCK_SIZE_M > M and GROUP_M != 1: continue LDS = BLOCK_SIZE_K * BLOCK_SIZE_M * elemBytes_a + BLOCK_SIZE_K * BLOCK_SIZE_N * elemBytes_b if LDS > 65536: continue if large_gemm: if BLOCK_SIZE_M < 64 or BLOCK_SIZE_N < 64: continue if BLOCK_SIZE_K < 64: continue if num_warps < 4: continue pruned_configs.append(config) return pruned_configs def need_split_k(SIZE_M, SIZE_N, SIZE_K): return (SIZE_M < 64 or SIZE_N < 64) and SIZE_K > 1024 def run_bash_command_wrapper(commandstring, capture=True): try: run_bash_command(commandstring, capture) except subprocess.CalledProcessError as e: if not capture: print(f"running {commandstring} one more time") run_bash_command(commandstring, capture) def run_bash_command(commandstring, capture=True): if capture: proc = subprocess.run(commandstring, shell=True, check=True, executable='/bin/bash', stdout=subprocess.PIPE) return proc.stdout.splitlines() proc = subprocess.run(commandstring, shell=True, check=True, executable='/bin/bash') return None def read_config(config): block_m = config.get('BLOCK_SIZE_M') block_n = config.get('BLOCK_SIZE_N') block_k = config.get('BLOCK_SIZE_K') group_m = config.get('GROUP_SIZE_M') split_k = config.get('SPLIT_K') num_warps = config.get('num_warps') num_stages = config.get('num_stages') waves_per_eu = config.get('waves_per_eu') mfma_instr_size = config.get('matrix_instr_nonkdim') kpack = config.get('kpack') return block_m, block_n, block_k, group_m, split_k, num_warps, num_stages, waves_per_eu, mfma_instr_size, kpack def gen_kernel_and_configStr_from_config(M, N, K, config, dtype_a, dtype_b, dtype_c): block_m, block_n, block_k, group_m, split_k, num_warps, num_stages, waves_per_eu, mfmaInstrSize, kpack = read_config(config) torch_dtype_a = 'fp16' torch_dtype_b = 'fp16' torch_dtype_c = 'fp16' if dtype_a: torch_dtype_a = tl_to_torch_types[name_to_tl_types[dtype_a]] if dtype_b: torch_dtype_b = tl_to_torch_types[name_to_tl_types[dtype_b]] if dtype_c: torch_dtype_c = tl_to_torch_types[name_to_tl_types[dtype_c]] configStr = f"M{M}_N{N}_K{K}_BM{block_m}_BN{block_n}_BK{block_k}_GM{group_m}_SK{split_k}_nW{num_warps}_nS{num_stages}_EU{waves_per_eu}_kP{kpack}_mfma{mfmaInstrSize}" matmul_def_str = f""" def matmul_{configStr}(a, b, c, M, N, K, am, ak, bk, bn, cm, cn, warmup=False): grid = triton.cdiv(M, {block_m}) * triton.cdiv(N, {block_n}), {split_k} if warmup: matmul_kernel_{configStr}.warmup( {torch_dtype_a}, {torch_dtype_b}, {torch_dtype_c}, M, N, K, am, ak, bk, bn, cm, cn, BLOCK_SIZE_M = {block_m}, BLOCK_SIZE_N = {block_n}, BLOCK_SIZE_K = {block_k}, GROUP_SIZE_M = {group_m}, SPLIT_K = {split_k}, num_warps = {num_warps}, num_stages = {num_stages}, waves_per_eu = {waves_per_eu}, matrix_instr_nonkdim = {mfmaInstrSize}, kpack = {kpack}, grid=(1,) ) return None else: matmul_kernel_{configStr}[grid]( a, b, c, M, N, K, am, ak, bk, bn, cm, cn, BLOCK_SIZE_M = {block_m}, BLOCK_SIZE_N = {block_n}, BLOCK_SIZE_K = {block_k}, GROUP_SIZE_M = {group_m}, SPLIT_K = {split_k}, num_warps = {num_warps}, num_stages = {num_stages}, waves_per_eu = {waves_per_eu}, matrix_instr_nonkdim = {mfmaInstrSize}, kpack = {kpack} ) return c def try_config_{configStr}(M, N, K, am, ak, bk, bn, cm, cn): try: matmul_{configStr}(None, None, None, M, N, K, am, ak, bk, bn, cm, cn, True) return True except Exception as e: print(f'invalid config(compilation): {configStr}: ', e, flush=True) return False """ return configStr, matmul_def_str def generated_kernel_name(M, N, K, gpu_id): path = os.path.dirname(os.path.abspath(__file__)) return f"{path}/generated_kernel{M}-{N}-{K}-{gpu_id}.py" def generate_kernel(rank, world_size, M, N, K, col_a, col_b, dtype_a, dtype_b, dtype_c, init_type, configs, jobs, iters, run_bench): filenames = [generated_kernel_name(M, N, K, i) for i in range(jobs)] f_kernel = [open(path, 'w') for path in filenames] import_str = """import torch import triton import triton.language as tl import argparse import sys import torch.multiprocessing as mp from tune_gemm import gen_input """ for fi in range(jobs): f_kernel[fi].write(import_str + "\n") with open(os.path.dirname(os.path.abspath(__file__))+"/matmul_kernel.py") as file: matmul_kernel_code = file.read() idx = 0 for config in configs: file_idx = idx % jobs configStr, matmul_def_str = gen_kernel_and_configStr_from_config(M, N, K, config, dtype_a, dtype_b, dtype_c) matmul_kernel_config = matmul_kernel_code.replace("matmul_kernel", f"matmul_kernel_{configStr}") matmul_kernel_config = matmul_kernel_config.replace("import triton.language as tl", "") matmul_kernel_config = matmul_kernel_config.replace("import triton", "") f_kernel[file_idx].write(matmul_kernel_config + "\n\n") f_kernel[file_idx].write(matmul_def_str + "\n") idx += 1 test_gemm_pre_str = f"""def test_gemm(M, N, K, num_threads): results = [] config_names = [] a, a_fp16 = gen_input(M, K, '{dtype_a}', {col_a}, 1, '{init_type}', device='cuda') b, b_fp16 = gen_input(K, N, '{dtype_b}', {col_b}, 2, '{init_type}', device='cuda') c = torch.zeros((M, N), device=a.device, dtype={tl_to_torch_types[name_to_tl_types[dtype_c]]}) task_args = (M, N, K, a.stride(0), a.stride(1), b.stride(0), b.stride(1), c.stride(0), c.stride(1)) """ for fi in range(jobs): f_kernel[fi].write(test_gemm_pre_str + "\n") idx = 0 for config in configs: configStr, _ = gen_kernel_and_configStr_from_config(M, N, K, config, None, None, None) task_str = f" results.append(try_config_{configStr}(*task_args))\n" task_str += f" config_names.append('{configStr}')\n" f_kernel[idx % jobs].write(task_str) idx += 1 for fi in range(jobs): threadpool_str = """ failed_configs = [] for i in range(len(results)): if not results[i]: failed_configs.append(config_names[i]) with open("{filename}.failed_configs", "w") as f: for cfg in failed_configs: f.write(cfg + "\\n") else: try: with open("{filename}.failed_configs", "r") as f: failed_configs = [cfg.strip() for cfg in f.readlines()] except Exception: failed_configs = [] """.format(filename=filenames[fi]) f_kernel[fi].write(threadpool_str) idx = 0 runs = iters if run_bench else 200 for config in configs: configStr, _ = gen_kernel_and_configStr_from_config(M, N, K, config, None, None, None) matmul_call_str = f""" if '{configStr}' not in failed_configs: for i in range({runs}): d = matmul_{configStr}(a, b, c, M, N, K, a.stride(0), a.stride(1), b.stride(0), b.stride(1), c.stride(0), c.stride(1))""" f_kernel[idx % jobs].write(matmul_call_str + "\n") idx += 1 for fi in range(jobs): f_kernel[fi].write(" return d\n") def_main_str = """ def main(): parser = argparse.ArgumentParser( prog="tune a specific gemm size", allow_abbrev=False,) parser.add_argument("-n", type=int, default=1, help='number of threads') args = parser.parse_args() numThreads = args.n """ test_gemm_call_str = f'test_gemm({M}, {N}, {K}, numThreads)' for fi in range(jobs): f_kernel[fi].write(def_main_str) f_kernel[fi].write(test_gemm_call_str + "\n\n") f_kernel[fi].write("""if __name__ == '__main__': sys.exit(main())""") f_kernel[fi].close() def extract_kernel_time(M, N, K, config, df): configStr, _ = gen_kernel_and_configStr_from_config(M, N, K, config, None, None, None) df = df[df['KernelName'].str.contains(configStr)] meanTime = df['DurationNs'].tail(100).mean() return config, meanTime def profile_batch_kernels(rank, world_size, M, N, K, jobs, verbose): ngpus = world_size gpu_id = rank os.environ['ROCR_VISIBLE_DEVICES'] = str(gpu_id) jobId = gpu_id while jobId < jobs: if verbose: print(f"profiling {generated_kernel_name(M, N, K, jobId)} on GPU {gpu_id}") run_bash_command_wrapper(f"rocprof --stats -o results-{jobId}.csv python {generated_kernel_name(M, N, K, jobId)}", capture=(verbose < 2)) jobId += ngpus def tune_gemm_config(rank, world_size, M, N, K, col_a, col_b, dtype_a, dtype_b, dtype_c, init_type, configs, run_bench, jobs, iters, skipWarmup, verbose=0, num_threads=16): setup(rank, world_size) if rank == 0: generate_kernel(rank, world_size, M, N, K, col_a, col_b, dtype_a, dtype_b, dtype_c, init_type, configs, jobs, iters, run_bench) run_bash_command("rm -rf ~/.triton/cache") start_time = datetime.now() if not skipWarmup: for i in range(jobs): run_bash_command(f"python {generated_kernel_name(M, N, K, i)} -n {num_threads}", capture=(verbose < 2)) compile_end = datetime.now() compile_time = compile_end - start_time if verbose: print(f"compile time: {compile_time}", flush=True) dist.barrier() profile_batch_kernels(rank, world_size, M, N, K, jobs, verbose) dist.barrier() if rank == 0: profile_end = datetime.now() profile_time = profile_end - compile_end if verbose: print(f"profile time: {profile_time}", flush=True) minTime = 1024 * 1024 * 1024 tasks = [] idx = 0 df_prof = [pd.read_csv(f"results-{i}.csv") for i in range(jobs)] for config in configs: file_idx = idx % jobs tasks.append((M, N, K, config, df_prof[file_idx])) idx += 1 for task in tasks: config, myTime = extract_kernel_time(*task) if myTime: min_us = myTime / 1000 if min_us < minTime: minTime = min_us bestConfig = config else: min_us = -1 print(f"invalid config(post processing): SIZE {M} {N} {K}: {config}", flush=True) post_end = datetime.now() post_time = post_end - profile_end if verbose: print(f"post processing time: {post_time}", flush=True) return minTime, bestConfig, compile_time, profile_time, post_time cleanup() def gen_input(M, N, ty_name, needTrans, seed, init_type, device='cuda'): d_type = name_to_tl_types[ty_name] torch.manual_seed(seed) torch.cuda.manual_seed(seed) @triton.jit def copy_kernel(input_ptr, output_ptr, n_elements, BLOCK_SIZE: tl.constexpr): offsets = tl.program_id(axis=0) * BLOCK_SIZE + tl.arange(0, BLOCK_SIZE) mask = offsets < n_elements input = tl.load(input_ptr + offsets, mask=mask) output = input tl.store(output_ptr + offsets, output, mask=mask) def init_by_size_and_type(size, dtype, init_type): if init_type == 'hpl': return torch.empty(size, device='cuda', dtype=dtype).uniform_(-0.5, 0.5) # This init type has element[i] in row[j] equal to sin(i+j*N) elif init_type == 'trig_float': M, N = size return torch.reshape(torch.arange(0, M*N), (M, N)).sin().to(dtype=dtype, device='cuda') elif init_type == 'zeros': return torch.zeros(size, dtype=dtype, device='cuda') elif init_type == "randn": temp = torch.randn(size, dtype=dtype, device='cuda') return temp else: raise ValueError("Bad matrix initialization type.") raw_data = init_by_size_and_type((N,M) if needTrans else (M,N), torch.float32, init_type) if needTrans: raw_data = raw_data.T if (d_type == tl.float8e4b8 and TORCH_HAS_FP8E4B8) or \ (d_type == tl.float8e5b16 and TORCH_HAS_FP8E5B16) or not d_type.is_fp8(): input = raw_data.to(tl_to_torch_types[d_type]) input_f16 = input.to(torch.float16) else: f8_tensor = raw_data.to(torch.int8) # keep only two bits of exponent to avoid overflow f8_tensor = f8_tensor & 0b00111111 input = triton.reinterpret(f8_tensor, d_type) input_f16 = torch.empty_like(f8_tensor, dtype=torch.float16) grid = lambda meta: (triton.cdiv(n_elements, meta['BLOCK_SIZE']),) n_elements = raw_data.numel() copy_kernel[grid](input, input_f16, n_elements, BLOCK_SIZE=1024) return input, input_f16 def matmul(a, b, c, block_m, block_n, block_k, group_m, split_k, num_warps, num_stages, waves_per_eu, mfmaInstrSize, kpack): # Check constraints. assert a.shape[1] == b.shape[0], "Incompatible dimensions" #assert a.is_contiguous(), "Matrix A must be contiguous" #assert b.is_contiguous(), "Matrix B must be contiguous" M, K = a.shape K, N = b.shape # 1D launch kernel where each block gets its own program. grid = triton.cdiv(M, block_m) * triton.cdiv(N, block_n), split_k matmul_kernel[grid]( a, b, c, M, N, K, a.stride(0), a.stride(1), b.stride(0), b.stride(1), c.stride(0), c.stride(1), BLOCK_SIZE_M=block_m, BLOCK_SIZE_N=block_n, BLOCK_SIZE_K=block_k, GROUP_SIZE_M=group_m, SPLIT_K=split_k, num_warps=num_warps, num_stages=num_stages, waves_per_eu=waves_per_eu, matrix_instr_nonkdim = mfmaInstrSize, kpack = kpack ) return c def test_correctness(M, N, K, col_a, col_b, dtype_a, dtype_b, dtype_c, init_type, config, verbose): block_m, block_n, block_k, group_m, split_k, num_warps, num_stages, waves_per_eu, mfmaInstrSize, kpack = read_config(config) torch.manual_seed(0) #a = torch.randn((M, K), device='cuda', dtype=datatype) #b = torch.randn((K, N), device='cuda', dtype=datatype) a, a_fp16 = gen_input(M, K, dtype_a, col_a, 1, init_type, device='cuda') b, b_fp16 = gen_input(K, N, dtype_b, col_b, 2, init_type, device='cuda') # Allocates output. c = torch.zeros((M, N), device=a.device, dtype=tl_to_torch_types[name_to_tl_types[dtype_c]]) triton_output = matmul(a, b, c, block_m, block_n, block_k, group_m, split_k, num_warps, num_stages, waves_per_eu, mfmaInstrSize, kpack) torch_output = torch.matmul(a_fp16, b_fp16) # print(f"triton_output={triton_output}") # print(f"torch_output={torch_output}") rtol = 0 if torch.version.hip is None else 1e-2 atol = 1e-3 if split_k == 1 else 4e-2 row_a_str = 'N' if col_a else 'T' row_b_str = 'N' if col_b else 'T' size_str = '' if verbose: size_str = f'SIZE M: {M}, N: {N}, K: {K}, trans: {row_a_str}{row_b_str}' if torch.allclose(triton_output.to(torch.float16), torch_output, atol=atol, rtol=rtol): print(f'{size_str} Correct✅') else: print(f'{size_str} Incorrect❌') def get_default_tuning_result_filename(): git_branch_name = run_bash_command("git rev-parse --abbrev-ref HEAD") git_branch_name = git_branch_name[0].decode() git_commit_hash = run_bash_command("git rev-parse --short HEAD") git_commit_hash = git_commit_hash[0].decode() dt_string = datetime.now().strftime("%m-%d-%Y-%H:%M:%S") defaultName = f"tuning_results_{git_branch_name}@{git_commit_hash}_{dt_string}.yaml" return defaultName def parse_args(): parser = argparse.ArgumentParser( prog="tune a specific gemm size", allow_abbrev=False, ) parser.add_argument("-m", type=int, default=0) parser.add_argument("-n", type=int, default=0) parser.add_argument("-k", type=int, default=0) parser.add_argument("-col_a", action='store_true', default=False, help='whether matrix a is column major') parser.add_argument("-col_b", action='store_true', default=False, help='whether matrix b is column major') parser.add_argument("-dtype_a", type=str, default='fp16', help="matrix a element data type") parser.add_argument("-dtype_b", type=str, default='fp16', help="matrix b element data type") parser.add_argument("-dtype_c", type=str, default='fp16', help="output element data type") parser.add_argument("--ngpus", type=int, default=0, help='number of GPUs used in the profiling step') parser.add_argument("--gpu_ids", type=lambda s: [int(id) for id in s.split(',')], default=[], help='list of gpu ids to use for tuning') parser.add_argument("--gemm_size_file", type=str, default="", help='yaml file to indicate matrix size') parser.add_argument("--o", type=str, default='', help='yaml file to store tuning results') parser.add_argument("--keep", action='store_true', default=False, help='keep generated files') parser.add_argument("--compare", action='store_true', default=False, help="Whether check result correctness") parser.add_argument("--compare_wo_tuning", action='store_true', default=False, help="Whether check result correctness") parser.add_argument("--benchmark", action='store_true', default=False, help="Benchmark the given config") parser.add_argument("--time_breakdown", action='store_true', default=False, help="Show detailed time breakdown of each step during the tuning") parser.add_argument("--verbose", action='store_true', default=False, help="enables time_breakdown and additional logging messages") parser.add_argument("--num_threads", type=int, default=16, help="number of threads to use for kernel compilation and post processing") parser.add_argument("--jobs", type=int, default=1, help="number of generated files") parser.add_argument("--iters", type=int, default=1000, help="number of generated files") parser.add_argument("--init_type", type=str, default='randn', help="Initialization type for input matrices (default uniform rand [0, 1.0)])") parser.add_argument("--no_warmup", action='store_true', default=False, help="Do not call the warmup kernel") args = parser.parse_args() if not args.o: if args.benchmark: args.o = "benchmarking_results.csv" else: args.o = get_default_tuning_result_filename() return args TORCH_HAS_FP8E5B16 = hasattr(torch, 'float8_e5m2fnuz') TORCH_HAS_FP8E4B8 = hasattr(torch, 'float8_e4m3fnuz') tl_to_torch_types = { tl.float16: torch.float16, tl.bfloat16: torch.bfloat16, tl.float32: torch.float32, tl.int8: torch.int8, tl.int32: torch.int32, } if TORCH_HAS_FP8E5B16: tl_to_torch_types[tl.float8e5b16] = torch.float8_e5m2fnuz if TORCH_HAS_FP8E4B8: tl_to_torch_types[tl.float8e4b8] = torch.float8_e4m3fnuz name_to_tl_types = { 'int8': tl.int8, 'int32': tl.int32, 'fp16': tl.float16, 'fp32': tl.float32, 'bf16': tl.bfloat16, 'fp8': tl.float8e4b8, 'bf8': tl.float8e5b16, } def process_item(item): M = item['M'] N = item['N'] K = item['K'] col_a = False if item['rowMajorA'] == 'T' else True col_b = False if item['rowMajorB'] == 'T' else True del item['M'] del item['N'] del item['K'] del item['rowMajorA'] del item['rowMajorB'] return M, N, K, col_a, col_b, item def type_name_to_bytes(ty_name): if '32' in ty_name: return 4 if '16' in ty_name: return 2 if '8' in ty_name: return 1 else: print(f"Unrecognized input type name {ty_name}") sys.exit(1) def format_output(unformatted): if unformatted < 0.0001: formatted = "{:.3e}".format(unformatted) elif unformatted > 1000: formatted = "{:.1f}".format(unformatted) else: formatted = "{:.2f}".format(unformatted) return formatted def setup(rank, world_size): os.environ['MASTER_ADDR'] = 'localhost' os.environ['MASTER_PORT'] = '12355' dist.init_process_group("nccl", rank=rank, world_size=world_size) print(f"Rank {rank}/{world_size} process initialized.") def cleanup(): dist.destroy_process_group() print("Process group destroyed.") def main(): args = parse_args() world_size = len(args.gpu_ids) if args.gpu_ids else torch.cuda.device_count() print(f"Number of GPUs available: {world_size}") matrix_size_file = args.gemm_size_file output_file = args.o keepTmp = args.keep run_bench = args.benchmark jobs = args.jobs iters = args.iters skipWarmup = args.no_warmup # Get GPU ids ngpus = args.ngpus gpu_ids = args.gpu_ids if ngpus != 0 and gpu_ids: print("--ngpus and --gpu_ids are mutually exclusive options") return os.EX_USAGE if ngpus == 0 and not gpu_ids: ngpus = 1 if ngpus != 0: gpus = list(range(ngpus)) if gpu_ids: gpus = gpu_ids if run_bench: gpus = [gpus[0]] jobs = 1 # Get element type dtype_a = args.dtype_a dtype_b = args.dtype_b dtype_c = args.dtype_c if not dtype_a in name_to_tl_types or not dtype_b in name_to_tl_types or not dtype_c in name_to_tl_types: print(f"Unsupported dtype_a {args.dtype_a} or dtype_b {args.dtype_b} or dtype_c {args.dtype_c}") print("Supported types: ", list(name_to_tl_types.keys())) sys.exit(1) mnks = [] # TODO: make it more robust to get user input init_type = args.init_type if matrix_size_file == "" or not os.path.isfile(matrix_size_file): M = args.m N = args.n K = args.k col_a = args.col_a col_b = args.col_b mnks = [(M, N, K, col_a, col_b, None)] else: with open(matrix_size_file) as file: matrix_sizes = yaml.safe_load(file) for item in matrix_sizes: M, N, K, col_a, col_b, item = process_item(item) mnks.append((M, N, K, col_a, col_b, item)) # Check correctness from given configs if args.compare_wo_tuning: for (M, N, K, col_a, col_b, myConfig) in mnks: test_correctness(M, N, K, col_a, col_b, dtype_a, dtype_b, dtype_c, init_type, myConfig, True) return configs_full = get_full_tuning_space() start_time = datetime.now() # Append to the output file so that we can save all results into one file f_results = open(output_file, 'a') if run_bench: print(f"Benchmarking gemm with {dtype_a} inputs") print("trans M N K TFLOPS us") f_results.write("trans,M,N,K,TFLOPS,us\n") else: print(f"Tuning {len(mnks)} gemm sizes starts at: {start_time}", flush=True) for (M, N, K, col_a, col_b, myConfig) in mnks: start_local_time = datetime.now() # Obtain a pruned tuning space according to gemm size # If running benchmark, use the provided config pruned_configs = [myConfig] if run_bench else prune_configs(M, N, K, configs_full, type_name_to_bytes(dtype_a), type_name_to_bytes(dtype_b)) row_a_str = 'N' if col_a else 'T' row_b_str = 'N' if col_b else 'T' size_str = f'SIZE: {M} {N} {K} {row_a_str}{row_b_str}' if not run_bench: print(f"{size_str} nConfigs: {len(pruned_configs)}", end=" ", flush=True) else: print(f"{row_a_str}{row_b_str} {M:5d} {N:5d} {K:5d} ", end="") f_results.write(f"{row_a_str}{row_b_str},{M},{N},{K},") # The main tuning function for one gemm size verbose_level = 0 if args.time_breakdown: verbose_level = 1 if args.verbose: verbose_level = 2 def tune_gemm(rank, world_size, M, N, K, col_a, col_b, dtype_a, dtype_b, dtype_c, init_type, pruned_configs, run_bench, jobs, iters, skipWarmup, verbose, num_threads): return tune_gemm_config(rank, world_size, M, N, K, col_a, col_b, dtype_a, dtype_b, dtype_c, init_type, pruned_configs, run_bench, jobs, iters, skipWarmup, verbose, num_threads) minTime, bestConfig, compile_time, profile_time, post_time = spawn( tune_gemm, args=(world_size, M, N, K, col_a, col_b, dtype_a, dtype_b, dtype_c, init_type, pruned_configs, run_bench, jobs, iters, skipWarmup, verbose_level, num_threads), nprocs=world_size, join=True ) # post processing the numbers perf_tflops = lambda us: 2 * M * N * K * 1e-12 / (us * 1e-6) tri_tflops = perf_tflops(minTime) formatted_tflops = format_output(tri_tflops) minTime = format_output(minTime) if not run_bench: print(f'TFLOPS: {formatted_tflops} time(us): {minTime}', end=" ", flush=True) bestConfig_compact_str, _ = gen_kernel_and_configStr_from_config(M, N, K, bestConfig, None, None, None) if not run_bench: print(f'best_config: {bestConfig_compact_str}', end=" ", flush=True) # write best config to tuning_results.yaml if run_bench: print(f"{formatted_tflops} {minTime}") f_results.write(f"{formatted_tflops},{minTime}\n") sizeDict = {'M': M, 'N': N, 'K': K, 'rowMajorA': row_a_str, 'rowMajorB': row_b_str} sizeDict.update(bestConfig) if not run_bench: f_results.write("- " + str(sizeDict) + " ") f_results.write(f'# TFLOPS: {formatted_tflops} time(us): {minTime}\n') # remove generated files if asked to if not keepTmp: for i in range(jobs): generated_script = generated_kernel_name(M, N, K, i) os.remove(generated_script) if not skipWarmup: os.remove(generated_script + ".failed_configs") for f in glob.glob(f"results-{i}.*"): os.remove(f) # Check correctness if asked to if args.compare: print("correctness: ", end=" ", flush=True) test_correctness(M, N, K, col_a, col_b, dtype_a, dtype_b, dtype_c, init_type, bestConfig, False) elif not run_bench: print("", flush=True) end_local_time = datetime.now() if not run_bench: print(f">>> Elapsed time: {end_local_time - start_local_time} = {compile_time} (compile) + {profile_time} (profile) + {post_time} (post processing)", flush=True) f_results.close() end_time = datetime.now() tuning_time = end_time - start_time if not run_bench: print(f"Tuning ends at: {end_time}") print(f"Total tuning time (h:m:s): {tuning_time}") if __name__ == '__main__': main()
@triton.jit def copy_kernel(input_ptr, output_ptr, n_elements, BLOCK_SIZE: tl.constexpr): offsets = tl.program_id(axis=0) * BLOCK_SIZE + tl.arange(0, BLOCK_SIZE) mask = offsets < n_elements input = tl.load(input_ptr + offsets, mask=mask) output = input tl.store(output_ptr + offsets, output, mask=mask) def init_by_size_and_type(size, dtype, init_type): if init_type == 'hpl': return torch.empty(size, device='cuda', dtype=dtype).uniform_(-0.5, 0.5) # This init type has element[i] in row[j] equal to sin(i+j*N) elif init_type == 'trig_float': M, N = size return torch.reshape(torch.arange(0, M*N), (M, N)).sin().to(dtype=dtype, device='cuda') elif init_type == 'zeros': return torch.zeros(size, dtype=dtype, device='cuda') elif init_type == "randn": temp = torch.randn(size, dtype=dtype, device='cuda') return temp else: raise ValueError("Bad matrix initialization type.") raw_data = init_by_size_and_type((N,M) if needTrans else (M,N), torch.float32, init_type) if needTrans: raw_data = raw_data.T if (d_type == tl.float8e4b8 and TORCH_HAS_FP8E4B8) or \ (d_type == tl.float8e5b16 and TORCH_HAS_FP8E5B16) or not d_type.is_fp8(): input = raw_data.to(tl_to_torch_types[d_type]) input_f16 = input.to(torch.float16) else: f8_tensor = raw_data.to(torch.int8) # keep only two bits of exponent to avoid overflow f8_tensor = f8_tensor & 0b00111111 input = triton.reinterpret(f8_tensor, d_type) input_f16 = torch.empty_like(f8_tensor, dtype=torch.float16) grid = lambda meta: (triton.cdiv(n_elements, meta['BLOCK_SIZE']),) n_elements = raw_data.numel() copy_kernel[grid](input, input_f16, n_elements, BLOCK_SIZE=1024) return input, input_f16 def matmul(a, b, c, block_m, block_n, block_k, group_m, split_k, num_warps, num_stages, waves_per_eu, mfmaInstrSize, kpack): # Check constraints. assert a.shape[1] == b.shape[0], "Incompatible dimensions" #assert a.is_contiguous(), "Matrix A must be contiguous" #assert b.is_contiguous(), "Matrix B must be contiguous" M, K = a.shape K, N = b.shape # 1D launch kernel where each block gets its own program. grid = triton.cdiv(M, block_m) * triton.cdiv(N, block_n), split_k matmul_kernel[grid]( a, b, c, M, N, K, a.stride(0), a.stride(1), b.stride(0), b.stride(1), c.stride(0), c.stride(1), BLOCK_SIZE_M=block_m, BLOCK_SIZE_N=block_n, BLOCK_SIZE_K=block_k, GROUP_SIZE_M=group_m, SPLIT_K=split_k, num_warps=num_warps, num_stages=num_stages, waves_per_eu=waves_per_eu, matrix_instr_nonkdim = mfmaInstrSize, kpack = kpack ) return c def test_correctness(M, N, K, col_a, col_b, dtype_a, dtype_b, dtype_c, init_type, config, verbose): block_m, block_n, block_k, group_m, split_k, num_warps, num_stages, waves_per_eu, mfmaInstrSize, kpack = read_config(config) torch.manual_seed(0) #a = torch.randn((M, K), device='cuda', dtype=datatype) #b = torch.randn((K, N), device='cuda', dtype=datatype) a, a_fp16 = gen_input(M, K, dtype_a, col_a, 1, init_type, device='cuda') b, b_fp16 = gen_input(K, N, dtype_b, col_b, 2, init_type, device='cuda') # Allocates output. c = torch.zeros((M, N), device=a.device, dtype=tl_to_torch_types[name_to_tl_types[dtype_c]]) triton_output = matmul(a, b, c, block_m, block_n, block_k, group_m, split_k, num_warps, num_stages, waves_per_eu, mfmaInstrSize, kpack) torch_output = torch.matmul(a_fp16, b_fp16) # print(f"triton_output={triton_output}") # print(f"torch_output={torch_output}") rtol = 0 if torch.version.hip is None else 1e-2 atol = 1e-3 if split_k == 1 else 4e-2 row_a_str = 'N' if col_a else 'T' row_b_str = 'N' if col_b else 'T' size_str = '' if verbose: size_str = f'SIZE M: {M}, N: {N}, K: {K}, trans: {row_a_str}{row_b_str}' if torch.allclose(triton_output.to(torch.float16), torch_output, atol=atol, rtol=rtol): print(f'{size_str} Correct✅') else: print(f'{size_str} Incorrect❌') def get_default_tuning_result_filename(): git_branch_name = run_bash_command("git rev-parse --abbrev-ref HEAD") git_branch_name = git_branch_name[0].decode() git_commit_hash = run_bash_command("git rev-parse --short HEAD") git_commit_hash = git_commit_hash[0].decode() dt_string = datetime.now().strftime("%m-%d-%Y-%H:%M:%S") defaultName = f"tuning_results_{git_branch_name}@{git_commit_hash}_{dt_string}.yaml" return defaultName def parse_args(): parser = argparse.ArgumentParser( prog="tune a specific gemm size", allow_abbrev=False, ) parser.add_argument("-m", type=int, default=0) parser.add_argument("-n", type=int, default=0) parser.add_argument("-k", type=int, default=0) parser.add_argument("-col_a", action='store_true', default=False, help='whether matrix a is column major') parser.add_argument("-col_b", action='store_true', default=False, help='whether matrix b is column major') parser.add_argument("-dtype_a", type=str, default='fp16', help="matrix a element data type") parser.add_argument("-dtype_b", type=str, default='fp16', help="matrix b element data type") parser.add_argument("-dtype_c", type=str, default='fp16', help="output element data type") parser.add_argument("--ngpus", type=int, default=0, help='number of GPUs used in the profiling step') parser.add_argument("--gpu_ids", type=lambda s: [int(id) for id in s.split(',')], default=[], help='list of gpu ids to use for tuning') parser.add_argument("--gemm_size_file", type=str, default="", help='yaml file to indicate matrix size') parser.add_argument("--o", type=str, default='', help='yaml file to store tuning results') parser.add_argument("--keep", action='store_true', default=False, help='keep generated files') parser.add_argument("--compare", action='store_true', default=False, help="Whether check result correctness") parser.add_argument("--compare_wo_tuning", action='store_true', default=False, help="Whether check result correctness") parser.add_argument("--benchmark", action='store_true', default=False, help="Benchmark the given config") parser.add_argument("--time_breakdown", action='store_true', default=False, help="Show detailed time breakdown of each step during the tuning") parser.add_argument("--verbose", action='store_true', default=False, help="enables time_breakdown and additional logging messages") parser.add_argument("--num_threads", type=int, default=16, help="number of threads to use for kernel compilation and post processing") parser.add_argument("--jobs", type=int, default=1, help="number of generated files") parser.add_argument("--iters", type=int, default=1000, help="number of generated files") parser.add_argument("--init_type", type=str, default='randn', help="Initialization type for input matrices (default uniform rand [0, 1.0)])") parser.add_argument("--no_warmup", action='store_true', default=False, help="Do not call the warmup kernel") args = parser.parse_args() if not args.o: if args.benchmark: args.o = "benchmarking_results.csv" else: args.o = get_default_tuning_result_filename() return args TORCH_HAS_FP8E5B16 = hasattr(torch, 'float8_e5m2fnuz') TORCH_HAS_FP8E4B8 = hasattr(torch, 'float8_e4m3fnuz') tl_to_torch_types = { tl.float16: torch.float16, tl.bfloat16: torch.bfloat16, tl.float32: torch.float32, tl.int8: torch.int8, tl.int32: torch.int32, } if TORCH_HAS_FP8E5B16: tl_to_torch_types[tl.float8e5b16] = torch.float8_e5m2fnuz if TORCH_HAS_FP8E4B8: tl_to_torch_types[tl.float8e4b8] = torch.float8_e4m3fnuz name_to_tl_types = { 'int8': tl.int8, 'int32': tl.int32, 'fp16': tl.float16, 'fp32': tl.float32, 'bf16': tl.bfloat16, 'fp8': tl.float8e4b8, 'bf8': tl.float8e5b16, } def process_item(item): M = item['M'] N = item['N'] K = item['K'] col_a = False if item['rowMajorA'] == 'T' else True col_b = False if item['rowMajorB'] == 'T' else True del item['M'] del item['N'] del item['K'] del item['rowMajorA'] del item['rowMajorB'] return M, N, K, col_a, col_b, item def type_name_to_bytes(ty_name): if '32' in ty_name: return 4 if '16' in ty_name: return 2 if '8' in ty_name: return 1 else: print(f"Unrecognized input type name {ty_name}") sys.exit(1) def format_output(unformatted): if unformatted < 0.0001: formatted = "{:.3e}".format(unformatted) elif unformatted > 1000: formatted = "{:.1f}".format(unformatted) else: formatted = "{:.2f}".format(unformatted) return formatted def setup(rank, world_size): os.environ['MASTER_ADDR'] = 'localhost' os.environ['MASTER_PORT'] = '12355' dist.init_process_group("nccl", rank=rank, world_size=world_size) print(f"Rank {rank}/{world_size} process initialized.") def cleanup(): dist.destroy_process_group() print("Process group destroyed.") def main(): args = parse_args() world_size = len(args.gpu_ids) if args.gpu_ids else torch.cuda.device_count() print(f"Number of GPUs available: {world_size}") matrix_size_file = args.gemm_size_file output_file = args.o keepTmp = args.keep run_bench = args.benchmark jobs = args.jobs iters = args.iters skipWarmup = args.no_warmup # Get GPU ids ngpus = args.ngpus gpu_ids = args.gpu_ids if ngpus != 0 and gpu_ids: print("--ngpus and --gpu_ids are mutually exclusive options") return os.EX_USAGE if ngpus == 0 and not gpu_ids: ngpus = 1 if ngpus != 0: gpus = list(range(ngpus)) if gpu_ids: gpus = gpu_ids if run_bench: gpus = [gpus[0]] jobs = 1 # Get element type dtype_a = args.dtype_a dtype_b = args.dtype_b dtype_c = args.dtype_c if not dtype_a in name_to_tl_types or not dtype_b in name_to_tl_types or not dtype_c in name_to_tl_types: print(f"Unsupported dtype_a {args.dtype_a} or dtype_b {args.dtype_b} or dtype_c {args.dtype_c}") print("Supported types: ", list(name_to_tl_types.keys())) sys.exit(1) mnks = [] # TODO: make it more robust to get user input init_type = args.init_type if matrix_size_file == "" or not os.path.isfile(matrix_size_file): M = args.m N = args.n K = args.k col_a = args.col_a col_b = args.col_b mnks = [(M, N, K, col_a, col_b, None)] else: with open(matrix_size_file) as file: matrix_sizes = yaml.safe_load(file) for item in matrix_sizes: M, N, K, col_a, col_b, item = process_item(item) mnks.append((M, N, K, col_a, col_b, item)) # Check correctness from given configs if args.compare_wo_tuning: for (M, N, K, col_a, col_b, myConfig) in mnks: test_correctness(M, N, K, col_a, col_b, dtype_a, dtype_b, dtype_c, init_type, myConfig, True) return configs_full = get_full_tuning_space() start_time = datetime.now() # Append to the output file so that we can save all results into one file f_results = open(output_file, 'a') if run_bench: print(f"Benchmarking gemm with {dtype_a} inputs") print("trans M N K TFLOPS us") f_results.write("trans,M,N,K,TFLOPS,us\n") else: print(f"Tuning {len(mnks)} gemm sizes starts at: {start_time}", flush=True) for (M, N, K, col_a, col_b, myConfig) in mnks: start_local_time = datetime.now() # Obtain a pruned tuning space according to gemm size # If running benchmark, use the provided config pruned_configs = [myConfig] if run_bench else prune_configs(M, N, K, configs_full, type_name_to_bytes(dtype_a), type_name_to_bytes(dtype_b)) row_a_str = 'N' if col_a else 'T' row_b_str = 'N' if col_b else 'T' size_str = f'SIZE: {M} {N} {K} {row_a_str}{row_b_str}' if not run_bench: print(f"{size_str} nConfigs: {len(pruned_configs)}", end=" ", flush=True) else: print(f"{row_a_str}{row_b_str} {M:5d} {N:5d} {K:5d} ", end="") f_results.write(f"{row_a_str}{row_b_str},{M},{N},{K},") # The main tuning function for one gemm size verbose_level = 0 if args.time_breakdown: verbose_level = 1 if args.verbose: verbose_level = 2 def tune_gemm(rank, world_size, M, N, K, col_a, col_b, dtype_a, dtype_b, dtype_c, init_type, pruned_configs, run_bench, jobs, iters, skipWarmup, verbose, num_threads): return tune_gemm_config(rank, world_size, M, N, K, col_a, col_b, dtype_a, dtype_b, dtype_c, init_type, pruned_configs, run_bench, jobs, iters, skipWarmup, verbose, num_threads) minTime, bestConfig, compile_time, profile_time, post_time = spawn( tune_gemm, args=(world_size, M, N, K, col_a, col_b, dtype_a, dtype_b, dtype_c, init_type, pruned_configs, run_bench, jobs, iters, skipWarmup, verbose_level, num_threads), nprocs=world_size, join=True ) # post processing the numbers perf_tflops = lambda us: 2 * M * N * K * 1e-12 / (us * 1e-6) tri_tflops = perf_tflops(minTime) formatted_tflops = format_output(tri_tflops) minTime = format_output(minTime) if not run_bench: print(f'TFLOPS: {formatted_tflops} time(us): {minTime}', end=" ", flush=True) bestConfig_compact_str, _ = gen_kernel_and_configStr_from_config(M, N, K, bestConfig, None, None, None) if not run_bench: print(f'best_config: {bestConfig_compact_str}', end=" ", flush=True) # write best config to tuning_results.yaml if run_bench: print(f"{formatted_tflops} {minTime}") f_results.write(f"{formatted_tflops},{minTime}\n") sizeDict = {'M': M, 'N': N, 'K': K, 'rowMajorA': row_a_str, 'rowMajorB': row_b_str} sizeDict.update(bestConfig) if not run_bench: f_results.write("- " + str(sizeDict) + " ") f_results.write(f'# TFLOPS: {formatted_tflops} time(us): {minTime}\n') # remove generated files if asked to if not keepTmp: for i in range(jobs): generated_script = generated_kernel_name(M, N, K, i) os.remove(generated_script) if not skipWarmup: os.remove(generated_script + ".failed_configs") for f in glob.glob(f"results-{i}.*"): os.remove(f) # Check correctness if asked to if args.compare: print("correctness: ", end=" ", flush=True) test_correctness(M, N, K, col_a, col_b, dtype_a, dtype_b, dtype_c, init_type, bestConfig, False) elif not run_bench: print("", flush=True) end_local_time = datetime.now() if not run_bench: print(f">>> Elapsed time: {end_local_time - start_local_time} = {compile_time} (compile) + {profile_time} (profile) + {post_time} (post processing)", flush=True) f_results.close() end_time = datetime.now() tuning_time = end_time - start_time if not run_bench: print(f"Tuning ends at: {end_time}") print(f"Total tuning time (h:m:s): {tuning_time}") if __name__ == '__main__': main()
phlippe/liger_kernels
liger_kernels/utils.py
https://github.com/phlippe/liger_kernels/blob/0abb152b752e66e1c3e0c78a7eb56daea9a07f42/liger_kernels/utils.py
import jax import numpy as np import triton import triton.language as tl @triton.jit def element_mul_kernel( _, # alias for X_ptr grad_output_ptr, X_ptr, X_stride, n_cols, BLOCK_SIZE: tl.constexpr, ): """ This function multiplies each element of the tensor pointed by X_ptr with the value pointed by grad_output_ptr. The multiplication is performed in-place on the tensor pointed by X_ptr. Parameters: X_ptr: Pointer to the input tensor. X_stride (int): The stride of the input tensor. grad_output_ptr: Pointer to the gradient output value. n_cols (int): The number of columns in the input tensor. BLOCK_SIZE (int): The block size for Triton operations. """ # Get the program ID and convert it to int64 to avoid overflow program_id = tl.program_id(0).to(tl.int64) # Locate the start index X_ptr += program_id * X_stride # Load the gradient output value grad_output = tl.load(grad_output_ptr) # Perform the element-wise multiplication for i in range(0, n_cols, BLOCK_SIZE): X_offsets = i + tl.arange(0, BLOCK_SIZE) X_block = tl.load(X_ptr + X_offsets, mask=X_offsets < n_cols) tl.store(X_ptr + X_offsets, X_block * grad_output, mask=X_offsets < n_cols) def get_stride(array: jax.Array | jax.ShapeDtypeStruct, axis: int) -> int: """ Returns the stride of a JAX array at a given axis. To calculate all strides, use get_strides. Args: array: JAX array or shape-dtype struct. axis: The axis at which to calculate the stride. Returns: The stride of the array at the given axis. """ if axis < 0: axis += len(array.shape) shape = array.shape size = array.size stride = size // np.prod(shape[: axis + 1]) return int(stride)
@triton.jit def element_mul_kernel( _, # alias for X_ptr grad_output_ptr, X_ptr, X_stride, n_cols, BLOCK_SIZE: tl.constexpr, ): """ This function multiplies each element of the tensor pointed by X_ptr with the value pointed by grad_output_ptr. The multiplication is performed in-place on the tensor pointed by X_ptr. Parameters: X_ptr: Pointer to the input tensor. X_stride (int): The stride of the input tensor. grad_output_ptr: Pointer to the gradient output value. n_cols (int): The number of columns in the input tensor. BLOCK_SIZE (int): The block size for Triton operations. """ # Get the program ID and convert it to int64 to avoid overflow program_id = tl.program_id(0).to(tl.int64) # Locate the start index X_ptr += program_id * X_stride # Load the gradient output value grad_output = tl.load(grad_output_ptr) # Perform the element-wise multiplication for i in range(0, n_cols, BLOCK_SIZE): X_offsets = i + tl.arange(0, BLOCK_SIZE) X_block = tl.load(X_ptr + X_offsets, mask=X_offsets < n_cols) tl.store(X_ptr + X_offsets, X_block * grad_output, mask=X_offsets < n_cols) def get_stride(array: jax.Array | jax.ShapeDtypeStruct, axis: int) -> int: """ Returns the stride of a JAX array at a given axis. To calculate all strides, use get_strides. Args: array: JAX array or shape-dtype struct. axis: The axis at which to calculate the stride. Returns: The stride of the array at the given axis. """ if axis < 0: axis += len(array.shape) shape = array.shape size = array.size stride = size // np.prod(shape[: axis + 1]) return int(stride)
yifuwang/symm-mem-recipes
triton_utils.py
https://github.com/yifuwang/symm-mem-recipes/blob/8ee5d5b8f53efb9c051e6cdf0ca62270c2b43c34/triton_utils.py
import triton import triton.language as tl @triton.jit def get_tid(): return tl.inline_asm_elementwise( """ mov.u32 $0, %tid.x; mov.u32 $1, %tid.y; mov.u32 $2, %tid.z; """, "=r,=r,=r", [], dtype=(tl.uint32, tl.uint32, tl.uint32), is_pure=True, pack=1, ) @triton.jit def get_ntid(): return tl.inline_asm_elementwise( """ mov.u32 $0, %ntid.x; mov.u32 $1, %ntid.y; mov.u32 $2, %ntid.z; """, "=r,=r,=r", [], dtype=(tl.uint32, tl.uint32, tl.uint32), is_pure=True, pack=1, ) @triton.jit def get_flat_tid(): tid_x, tid_y, tid_z = get_tid() ntid_x, ntid_y, _ = get_ntid() return tid_z * ntid_y * ntid_x + tid_y * ntid_x + tid_x @triton.jit def get_flat_bid(): return ( tl.program_id(2) * tl.num_programs(1) * tl.num_programs(0) + tl.program_id(1) * tl.num_programs(0) + tl.program_id(0) ) @triton.jit def sync_threads(): tl.inline_asm_elementwise( "bar.sync 0;", "=r", [], dtype=tl.int32, is_pure=False, pack=1 )
@triton.jit def get_tid(): return tl.inline_asm_elementwise( """ mov.u32 $0, %tid.x; mov.u32 $1, %tid.y; mov.u32 $2, %tid.z; """, "=r,=r,=r", [], dtype=(tl.uint32, tl.uint32, tl.uint32), is_pure=True, pack=1, )
yifuwang/symm-mem-recipes
triton_utils.py
https://github.com/yifuwang/symm-mem-recipes/blob/8ee5d5b8f53efb9c051e6cdf0ca62270c2b43c34/triton_utils.py
import triton import triton.language as tl @triton.jit def get_tid(): return tl.inline_asm_elementwise( """ mov.u32 $0, %tid.x; mov.u32 $1, %tid.y; mov.u32 $2, %tid.z; """, "=r,=r,=r", [], dtype=(tl.uint32, tl.uint32, tl.uint32), is_pure=True, pack=1, ) @triton.jit def get_ntid(): return tl.inline_asm_elementwise( """ mov.u32 $0, %ntid.x; mov.u32 $1, %ntid.y; mov.u32 $2, %ntid.z; """, "=r,=r,=r", [], dtype=(tl.uint32, tl.uint32, tl.uint32), is_pure=True, pack=1, ) @triton.jit def get_flat_tid(): tid_x, tid_y, tid_z = get_tid() ntid_x, ntid_y, _ = get_ntid() return tid_z * ntid_y * ntid_x + tid_y * ntid_x + tid_x @triton.jit def get_flat_bid(): return ( tl.program_id(2) * tl.num_programs(1) * tl.num_programs(0) + tl.program_id(1) * tl.num_programs(0) + tl.program_id(0) ) @triton.jit def sync_threads(): tl.inline_asm_elementwise( "bar.sync 0;", "=r", [], dtype=tl.int32, is_pure=False, pack=1 )
@triton.jit def get_ntid(): return tl.inline_asm_elementwise( """ mov.u32 $0, %ntid.x; mov.u32 $1, %ntid.y; mov.u32 $2, %ntid.z; """, "=r,=r,=r", [], dtype=(tl.uint32, tl.uint32, tl.uint32), is_pure=True, pack=1, )
yifuwang/symm-mem-recipes
triton_utils.py
https://github.com/yifuwang/symm-mem-recipes/blob/8ee5d5b8f53efb9c051e6cdf0ca62270c2b43c34/triton_utils.py
import triton import triton.language as tl @triton.jit def get_tid(): return tl.inline_asm_elementwise( """ mov.u32 $0, %tid.x; mov.u32 $1, %tid.y; mov.u32 $2, %tid.z; """, "=r,=r,=r", [], dtype=(tl.uint32, tl.uint32, tl.uint32), is_pure=True, pack=1, ) @triton.jit def get_ntid(): return tl.inline_asm_elementwise( """ mov.u32 $0, %ntid.x; mov.u32 $1, %ntid.y; mov.u32 $2, %ntid.z; """, "=r,=r,=r", [], dtype=(tl.uint32, tl.uint32, tl.uint32), is_pure=True, pack=1, ) @triton.jit def get_flat_tid(): tid_x, tid_y, tid_z = get_tid() ntid_x, ntid_y, _ = get_ntid() return tid_z * ntid_y * ntid_x + tid_y * ntid_x + tid_x @triton.jit def get_flat_bid(): return ( tl.program_id(2) * tl.num_programs(1) * tl.num_programs(0) + tl.program_id(1) * tl.num_programs(0) + tl.program_id(0) ) @triton.jit def sync_threads(): tl.inline_asm_elementwise( "bar.sync 0;", "=r", [], dtype=tl.int32, is_pure=False, pack=1 )
@triton.jit def get_flat_tid(): tid_x, tid_y, tid_z = get_tid() ntid_x, ntid_y, _ = get_ntid() return tid_z * ntid_y * ntid_x + tid_y * ntid_x + tid_x
yifuwang/symm-mem-recipes
triton_utils.py
https://github.com/yifuwang/symm-mem-recipes/blob/8ee5d5b8f53efb9c051e6cdf0ca62270c2b43c34/triton_utils.py
import triton import triton.language as tl @triton.jit def get_tid(): return tl.inline_asm_elementwise( """ mov.u32 $0, %tid.x; mov.u32 $1, %tid.y; mov.u32 $2, %tid.z; """, "=r,=r,=r", [], dtype=(tl.uint32, tl.uint32, tl.uint32), is_pure=True, pack=1, ) @triton.jit def get_ntid(): return tl.inline_asm_elementwise( """ mov.u32 $0, %ntid.x; mov.u32 $1, %ntid.y; mov.u32 $2, %ntid.z; """, "=r,=r,=r", [], dtype=(tl.uint32, tl.uint32, tl.uint32), is_pure=True, pack=1, ) @triton.jit def get_flat_tid(): tid_x, tid_y, tid_z = get_tid() ntid_x, ntid_y, _ = get_ntid() return tid_z * ntid_y * ntid_x + tid_y * ntid_x + tid_x @triton.jit def get_flat_bid(): return ( tl.program_id(2) * tl.num_programs(1) * tl.num_programs(0) + tl.program_id(1) * tl.num_programs(0) + tl.program_id(0) ) @triton.jit def sync_threads(): tl.inline_asm_elementwise( "bar.sync 0;", "=r", [], dtype=tl.int32, is_pure=False, pack=1 )
@triton.jit def get_flat_bid(): return ( tl.program_id(2) * tl.num_programs(1) * tl.num_programs(0) + tl.program_id(1) * tl.num_programs(0) + tl.program_id(0) )
yifuwang/symm-mem-recipes
triton_utils.py
https://github.com/yifuwang/symm-mem-recipes/blob/8ee5d5b8f53efb9c051e6cdf0ca62270c2b43c34/triton_utils.py
import triton import triton.language as tl @triton.jit def get_tid(): return tl.inline_asm_elementwise( """ mov.u32 $0, %tid.x; mov.u32 $1, %tid.y; mov.u32 $2, %tid.z; """, "=r,=r,=r", [], dtype=(tl.uint32, tl.uint32, tl.uint32), is_pure=True, pack=1, ) @triton.jit def get_ntid(): return tl.inline_asm_elementwise( """ mov.u32 $0, %ntid.x; mov.u32 $1, %ntid.y; mov.u32 $2, %ntid.z; """, "=r,=r,=r", [], dtype=(tl.uint32, tl.uint32, tl.uint32), is_pure=True, pack=1, ) @triton.jit def get_flat_tid(): tid_x, tid_y, tid_z = get_tid() ntid_x, ntid_y, _ = get_ntid() return tid_z * ntid_y * ntid_x + tid_y * ntid_x + tid_x @triton.jit def get_flat_bid(): return ( tl.program_id(2) * tl.num_programs(1) * tl.num_programs(0) + tl.program_id(1) * tl.num_programs(0) + tl.program_id(0) ) @triton.jit def sync_threads(): tl.inline_asm_elementwise( "bar.sync 0;", "=r", [], dtype=tl.int32, is_pure=False, pack=1 )
@triton.jit def sync_threads(): tl.inline_asm_elementwise( "bar.sync 0;", "=r", [], dtype=tl.int32, is_pure=False, pack=1 )
Terapines/AI-Benchmark
src/triton/resize.py
https://github.com/Terapines/AI-Benchmark/blob/0ae8cd849a833d4c35a4b25b722ce98c5af2fe34/src/triton/resize.py
import torch import triton import triton.language as tl import os USE_GPU = False triton.runtime.driver.set_active_to_cpu() def get_resize_kernel_autotune_config(): configs = [ triton.Config({'BLOCK_SIZE_W': 1}), triton.Config({'BLOCK_SIZE_W': 2}), triton.Config({'BLOCK_SIZE_W': 4}), triton.Config({'BLOCK_SIZE_W': 8}), triton.Config({'BLOCK_SIZE_W': 16}), triton.Config({'BLOCK_SIZE_W': 32}), triton.Config({'BLOCK_SIZE_W': 64}), triton.Config({'BLOCK_SIZE_W': 128}), ] if(os.getenv("ENABLE_AUTOTUNING") == "resize_kernel"): assert (len(configs) > 1), "Autotuning config size need be larger than 1" return configs return [triton.Config({'BLOCK_SIZE_W': 32})] @triton.autotune( configs=get_resize_kernel_autotune_config(), key=[], ) @triton.jit def resize_kernel( src_ptr, out_ptr, channel, height, width, BLOCK_SIZE_W: tl.constexpr, ): pid_h = tl.program_id(axis=0) pid_c = tl.program_id(axis=1) dst_height = 2 * height # 2x upsample dst_width = 2 * width hw_fl = 7 h_idx = pid_h input_y = h_idx << (hw_fl - 1) y0 = input_y >> hw_fl h1_lambda = input_y - (y0 << hw_fl) factor = 1 << hw_fl h0_lambda = factor - h1_lambda y1 = tl.minimum(y0 + 1, height - 1) src_offset = pid_c * height * width src_ptrs0 = src_ptr + src_offset + y0 * width src_ptrs1 = src_ptr + src_offset + y1 * width out_ptrs = out_ptr + (pid_c * dst_height * dst_width + h_idx * dst_width) for off in range(0, width * 2, BLOCK_SIZE_W): w_idx = off + tl.arange(0, BLOCK_SIZE_W) # [1, BLOCK_SIZE_W] mask = (w_idx < dst_width) input_x = w_idx << (hw_fl - 1) x0 = input_x >> hw_fl y0x0 = tl.load(src_ptrs0 + x0, mask=mask, other=0).to(tl.int16) y1x0 = tl.load(src_ptrs1 + x0, mask=mask, other=0).to(tl.int16) x1 = tl.minimum(x0 + 1, width - 1) y0x1 = tl.load(src_ptrs0 + x1, mask=mask, other=0).to(tl.int16) y1x1 = tl.load(src_ptrs1 + x1, mask=mask, other=0).to(tl.int16) w1_lambda = input_x - (x0 << hw_fl) w0_lambda = factor - w1_lambda sum1 = (y0x0 * w0_lambda + y0x1 * w1_lambda) >> hw_fl sum2 = (y1x0 * w0_lambda + y1x1 * w1_lambda) >> hw_fl sum = (sum1 * h0_lambda + sum2 * h1_lambda) >> hw_fl sum = sum.to(tl.int8) tl.store(out_ptrs + w_idx, sum, mask=mask) def resize(src_arr, out_arr): src_arr = src_arr.contiguous() out_arr = out_arr.contiguous() # Get dimensions channel, height, width = src_arr.shape # BLOCK_H = 32 # BLOCK_W = 32 # Compute grid dimensions grid = lambda meta: (height * 2, channel, 1) # Launch the Triton kernel resize_kernel[grid]( src_arr, out_arr, channel, height, width ) C, H, W = 3, 512, 512 src = torch.ones((C, H, W), dtype=torch.int8, device='cpu') out = torch.empty((C, 2 * H, 2 * W), dtype=torch.int8, device='cpu') resize(src, out) # print(src) # print(out)
@triton.jit def resize_kernel( src_ptr, out_ptr, channel, height, width, BLOCK_SIZE_W: tl.constexpr, ): pid_h = tl.program_id(axis=0) pid_c = tl.program_id(axis=1) dst_height = 2 * height # 2x upsample dst_width = 2 * width hw_fl = 7 h_idx = pid_h input_y = h_idx << (hw_fl - 1) y0 = input_y >> hw_fl h1_lambda = input_y - (y0 << hw_fl) factor = 1 << hw_fl h0_lambda = factor - h1_lambda y1 = tl.minimum(y0 + 1, height - 1) src_offset = pid_c * height * width src_ptrs0 = src_ptr + src_offset + y0 * width src_ptrs1 = src_ptr + src_offset + y1 * width out_ptrs = out_ptr + (pid_c * dst_height * dst_width + h_idx * dst_width) for off in range(0, width * 2, BLOCK_SIZE_W): w_idx = off + tl.arange(0, BLOCK_SIZE_W) # [1, BLOCK_SIZE_W] mask = (w_idx < dst_width) input_x = w_idx << (hw_fl - 1) x0 = input_x >> hw_fl y0x0 = tl.load(src_ptrs0 + x0, mask=mask, other=0).to(tl.int16) y1x0 = tl.load(src_ptrs1 + x0, mask=mask, other=0).to(tl.int16) x1 = tl.minimum(x0 + 1, width - 1) y0x1 = tl.load(src_ptrs0 + x1, mask=mask, other=0).to(tl.int16) y1x1 = tl.load(src_ptrs1 + x1, mask=mask, other=0).to(tl.int16) w1_lambda = input_x - (x0 << hw_fl) w0_lambda = factor - w1_lambda sum1 = (y0x0 * w0_lambda + y0x1 * w1_lambda) >> hw_fl sum2 = (y1x0 * w0_lambda + y1x1 * w1_lambda) >> hw_fl sum = (sum1 * h0_lambda + sum2 * h1_lambda) >> hw_fl sum = sum.to(tl.int8) tl.store(out_ptrs + w_idx, sum, mask=mask) def resize(src_arr, out_arr): src_arr = src_arr.contiguous() out_arr = out_arr.contiguous() # Get dimensions channel, height, width = src_arr.shape # BLOCK_H = 32 # BLOCK_W = 32 # Compute grid dimensions grid = lambda meta: (height * 2, channel, 1) # Launch the Triton kernel resize_kernel[grid]( src_arr, out_arr, channel, height, width ) C, H, W = 3, 512, 512 src = torch.ones((C, H, W), dtype=torch.int8, device='cpu') out = torch.empty((C, 2 * H, 2 * W), dtype=torch.int8, device='cpu') resize(src, out) # print(src) # print(out)
khulnasoft/divest
divest/kernels/swiglu.py
https://github.com/khulnasoft/divest/blob/53b878ed6cf9f8e172a496bf26a2b22ff3a30a51/divest/kernels/swiglu.py
import triton import triton.language as tl import torch from .utils import calculate_settings @triton.jit def _fg_kernel(e, g, h, n_elements, BLOCK_SIZE : tl.constexpr,): block_idx = tl.program_id(0) offsets = block_idx*BLOCK_SIZE + tl.arange(0, BLOCK_SIZE) mask = offsets < n_elements e_row = tl.load(e + offsets, mask = mask, other = 0).to(tl.float32) g_row = tl.load(g + offsets, mask = mask, other = 0)#.to(tl.float32) # f = e * sigmoid(e) f_row = e_row * tl.sigmoid(e_row) # e_row / (1 + tl.exp(-e_row)) f_row = f_row.to(g_row.dtype) # Exact copy from HF # h = f * g h_row = f_row * g_row # Store h tl.store(h + offsets, h_row, mask = mask) pass def swiglu_fg_kernel(e, g): batch, seq_len, hd = e.shape n_elements = e.numel() h = torch.empty((batch, seq_len, hd), dtype = e.dtype, device = "cuda") grid = lambda meta: (triton.cdiv(n_elements, meta['BLOCK_SIZE']),) _fg_kernel[grid](e, g, h, n_elements, BLOCK_SIZE = 1024,) return h pass @triton.jit def _DWf_DW_dfg_kernel(DW, e, g, n_elements, BLOCK_SIZE : tl.constexpr,): """ e = e.float() se = 1.0 / (1.0 + torch.exp(-e)) f = (se * e).to(dtype) h = f * g df = DW * f dg = DW * g de = (dg.float() * se * (1.0 + e * (1.0 - se))).to(dtype) """ block_idx = tl.program_id(0) offsets = block_idx*BLOCK_SIZE + tl.arange(0, BLOCK_SIZE) mask = offsets < n_elements DW_row = tl.load(DW + offsets, mask = mask, other = 0)#.to(tl.float32) e_row = tl.load(e + offsets, mask = mask, other = 0).to(tl.float32) g_row = tl.load(g + offsets, mask = mask, other = 0)#.to(tl.float32) # e = e.float() # se = 1.0 / (1.0 + torch.exp(-e)) se_row = tl.sigmoid(e_row) # 1.0 / (1.0 + tl.exp(-e_row)) # f = (se * e).to(dtype) f_row = se_row * e_row f_row = f_row.to(DW_row.dtype) # h = f * g h_row = f_row * g_row # df = DW * f df_row = DW_row * f_row # dg = DW * g dg_row = DW_row * g_row # de = (dg.float() * se * (1.0 + e * (1.0 - se))).to(dtype) de_row = dg_row.to(tl.float32) * se_row * (1.0 + e_row * (1.0 - se_row)) de_row = de_row.to(DW_row.dtype) # Store derivatives in buffers tl.store(DW + offsets, h_row, mask = mask) # h = f * g tl.store(e + offsets, df_row, mask = mask) # df = DW * f tl.store(g + offsets, de_row, mask = mask) # de pass def swiglu_DWf_DW_dfg_kernel(DW, e, g): batch_seq_len, hd = e.shape n_elements = e.numel() grid = lambda meta: (triton.cdiv(n_elements, meta['BLOCK_SIZE']),) _DWf_DW_dfg_kernel[grid](DW, e, g, n_elements, BLOCK_SIZE = 1024,) return DW, e, g pass
@triton.jit def _fg_kernel(e, g, h, n_elements, BLOCK_SIZE : tl.constexpr,): block_idx = tl.program_id(0) offsets = block_idx*BLOCK_SIZE + tl.arange(0, BLOCK_SIZE) mask = offsets < n_elements e_row = tl.load(e + offsets, mask = mask, other = 0).to(tl.float32) g_row = tl.load(g + offsets, mask = mask, other = 0)#.to(tl.float32) # f = e * sigmoid(e) f_row = e_row * tl.sigmoid(e_row) # e_row / (1 + tl.exp(-e_row)) f_row = f_row.to(g_row.dtype) # Exact copy from HF # h = f * g h_row = f_row * g_row # Store h tl.store(h + offsets, h_row, mask = mask) pass def swiglu_fg_kernel(e, g): batch, seq_len, hd = e.shape n_elements = e.numel() h = torch.empty((batch, seq_len, hd), dtype = e.dtype, device = "cuda") grid = lambda meta: (triton.cdiv(n_elements, meta['BLOCK_SIZE']),) _fg_kernel[grid](e, g, h, n_elements, BLOCK_SIZE = 1024,) return h pass
khulnasoft/divest
divest/kernels/swiglu.py
https://github.com/khulnasoft/divest/blob/53b878ed6cf9f8e172a496bf26a2b22ff3a30a51/divest/kernels/swiglu.py
import triton import triton.language as tl import torch from .utils import calculate_settings @triton.jit def _fg_kernel(e, g, h, n_elements, BLOCK_SIZE : tl.constexpr,): block_idx = tl.program_id(0) offsets = block_idx*BLOCK_SIZE + tl.arange(0, BLOCK_SIZE) mask = offsets < n_elements e_row = tl.load(e + offsets, mask = mask, other = 0).to(tl.float32) g_row = tl.load(g + offsets, mask = mask, other = 0)#.to(tl.float32) # f = e * sigmoid(e) f_row = e_row * tl.sigmoid(e_row) # e_row / (1 + tl.exp(-e_row)) f_row = f_row.to(g_row.dtype) # Exact copy from HF # h = f * g h_row = f_row * g_row # Store h tl.store(h + offsets, h_row, mask = mask) pass def swiglu_fg_kernel(e, g): batch, seq_len, hd = e.shape n_elements = e.numel() h = torch.empty((batch, seq_len, hd), dtype = e.dtype, device = "cuda") grid = lambda meta: (triton.cdiv(n_elements, meta['BLOCK_SIZE']),) _fg_kernel[grid](e, g, h, n_elements, BLOCK_SIZE = 1024,) return h pass @triton.jit def _DWf_DW_dfg_kernel(DW, e, g, n_elements, BLOCK_SIZE : tl.constexpr,): """ e = e.float() se = 1.0 / (1.0 + torch.exp(-e)) f = (se * e).to(dtype) h = f * g df = DW * f dg = DW * g de = (dg.float() * se * (1.0 + e * (1.0 - se))).to(dtype) """ block_idx = tl.program_id(0) offsets = block_idx*BLOCK_SIZE + tl.arange(0, BLOCK_SIZE) mask = offsets < n_elements DW_row = tl.load(DW + offsets, mask = mask, other = 0)#.to(tl.float32) e_row = tl.load(e + offsets, mask = mask, other = 0).to(tl.float32) g_row = tl.load(g + offsets, mask = mask, other = 0)#.to(tl.float32) # e = e.float() # se = 1.0 / (1.0 + torch.exp(-e)) se_row = tl.sigmoid(e_row) # 1.0 / (1.0 + tl.exp(-e_row)) # f = (se * e).to(dtype) f_row = se_row * e_row f_row = f_row.to(DW_row.dtype) # h = f * g h_row = f_row * g_row # df = DW * f df_row = DW_row * f_row # dg = DW * g dg_row = DW_row * g_row # de = (dg.float() * se * (1.0 + e * (1.0 - se))).to(dtype) de_row = dg_row.to(tl.float32) * se_row * (1.0 + e_row * (1.0 - se_row)) de_row = de_row.to(DW_row.dtype) # Store derivatives in buffers tl.store(DW + offsets, h_row, mask = mask) # h = f * g tl.store(e + offsets, df_row, mask = mask) # df = DW * f tl.store(g + offsets, de_row, mask = mask) # de pass def swiglu_DWf_DW_dfg_kernel(DW, e, g): batch_seq_len, hd = e.shape n_elements = e.numel() grid = lambda meta: (triton.cdiv(n_elements, meta['BLOCK_SIZE']),) _DWf_DW_dfg_kernel[grid](DW, e, g, n_elements, BLOCK_SIZE = 1024,) return DW, e, g pass
@triton.jit def _DWf_DW_dfg_kernel(DW, e, g, n_elements, BLOCK_SIZE : tl.constexpr,): """ e = e.float() se = 1.0 / (1.0 + torch.exp(-e)) f = (se * e).to(dtype) h = f * g df = DW * f dg = DW * g de = (dg.float() * se * (1.0 + e * (1.0 - se))).to(dtype) """ block_idx = tl.program_id(0) offsets = block_idx*BLOCK_SIZE + tl.arange(0, BLOCK_SIZE) mask = offsets < n_elements DW_row = tl.load(DW + offsets, mask = mask, other = 0)#.to(tl.float32) e_row = tl.load(e + offsets, mask = mask, other = 0).to(tl.float32) g_row = tl.load(g + offsets, mask = mask, other = 0)#.to(tl.float32) # e = e.float() # se = 1.0 / (1.0 + torch.exp(-e)) se_row = tl.sigmoid(e_row) # 1.0 / (1.0 + tl.exp(-e_row)) # f = (se * e).to(dtype) f_row = se_row * e_row f_row = f_row.to(DW_row.dtype) # h = f * g h_row = f_row * g_row # df = DW * f df_row = DW_row * f_row # dg = DW * g dg_row = DW_row * g_row # de = (dg.float() * se * (1.0 + e * (1.0 - se))).to(dtype) de_row = dg_row.to(tl.float32) * se_row * (1.0 + e_row * (1.0 - se_row)) de_row = de_row.to(DW_row.dtype) # Store derivatives in buffers tl.store(DW + offsets, h_row, mask = mask) # h = f * g tl.store(e + offsets, df_row, mask = mask) # df = DW * f tl.store(g + offsets, de_row, mask = mask) # de pass def swiglu_DWf_DW_dfg_kernel(DW, e, g): batch_seq_len, hd = e.shape n_elements = e.numel() grid = lambda meta: (triton.cdiv(n_elements, meta['BLOCK_SIZE']),) _DWf_DW_dfg_kernel[grid](DW, e, g, n_elements, BLOCK_SIZE = 1024,) return DW, e, g pass
gameofdimension/hfans
triton/ext_autograd.py
https://github.com/gameofdimension/hfans/blob/7e76ba5f3ae59d2ebaea0d8e67a40a6057f4af57/triton/ext_autograd.py
import torch import triton import triton.language as tl try: # This is https://github.com/NVIDIA/apex, NOT the apex on PyPi, so it # should not be added to extras_require in setup.py. import apex HAS_APEX = True except ModuleNotFoundError: HAS_APEX = False @triton.jit def _layer_norm_fwd_fused( X, # pointer to the input Y, # pointer to the output W, # pointer to the weights B, # pointer to the biases Mean, # pointer to the mean Rstd, # pointer to the 1/std stride, # how much to increase the pointer when moving by 1 row N, # number of columns in X eps, # epsilon to avoid division by zero BLOCK_SIZE: tl.constexpr, ): # Map the program id to the row of X and Y it should compute. row = tl.program_id(0) Y += row * stride X += row * stride # Compute mean mean = 0 _mean = tl.zeros([BLOCK_SIZE], dtype=tl.float32) for off in range(0, N, BLOCK_SIZE): cols = off + tl.arange(0, BLOCK_SIZE) a = tl.load(X + cols, mask=cols < N, other=0.).to(tl.float32) _mean += a mean = tl.sum(_mean, axis=0) / N # Compute variance _var = tl.zeros([BLOCK_SIZE], dtype=tl.float32) for off in range(0, N, BLOCK_SIZE): cols = off + tl.arange(0, BLOCK_SIZE) x = tl.load(X + cols, mask=cols < N, other=0.).to(tl.float32) x = tl.where(cols < N, x - mean, 0.) _var += x * x var = tl.sum(_var, axis=0) / N rstd = 1 / tl.sqrt(var + eps) # Write mean / rstd tl.store(Mean + row, mean) tl.store(Rstd + row, rstd) # Normalize and apply linear transformation for off in range(0, N, BLOCK_SIZE): cols = off + tl.arange(0, BLOCK_SIZE) mask = cols < N w = tl.load(W + cols, mask=mask) b = tl.load(B + cols, mask=mask) x = tl.load(X + cols, mask=mask, other=0.).to(tl.float32) x_hat = (x - mean) * rstd y = x_hat * w + b # Write output tl.store(Y + cols, y, mask=mask) @triton.jit def _layer_norm_bwd_dx_fused( DX, # pointer to the input gradient DY, # pointer to the output gradient DW, # pointer to the partial sum of weights gradient DB, # pointer to the partial sum of biases gradient X, # pointer to the input W, # pointer to the weights Mean, # pointer to the mean Rstd, # pointer to the 1/std Lock, # pointer to the lock stride, # how much to increase the pointer when moving by 1 row N, # number of columns in X GROUP_SIZE_M: tl.constexpr, BLOCK_SIZE_N: tl.constexpr): # Map the program id to the elements of X, DX, and DY it should compute. row = tl.program_id(0) cols = tl.arange(0, BLOCK_SIZE_N) mask = cols < N X += row * stride DY += row * stride DX += row * stride # Offset locks and weights/biases gradient pointer for parallel reduction lock_id = row % GROUP_SIZE_M Lock += lock_id Count = Lock + GROUP_SIZE_M DW = DW + lock_id * N + cols DB = DB + lock_id * N + cols # Load data to SRAM x = tl.load(X + cols, mask=mask, other=0).to(tl.float32) dy = tl.load(DY + cols, mask=mask, other=0).to(tl.float32) w = tl.load(W + cols, mask=mask).to(tl.float32) mean = tl.load(Mean + row) rstd = tl.load(Rstd + row) # Compute dx xhat = (x - mean) * rstd wdy = w * dy xhat = tl.where(mask, xhat, 0.) wdy = tl.where(mask, wdy, 0.) c1 = tl.sum(xhat * wdy, axis=0) / N c2 = tl.sum(wdy, axis=0) / N dx = (wdy - (xhat * c1 + c2)) * rstd # Write dx tl.store(DX + cols, dx, mask=mask) # Accumulate partial sums for dw/db partial_dw = (dy * xhat).to(w.dtype) partial_db = (dy).to(w.dtype) while tl.atomic_cas(Lock, 0, 1) == 1: pass count = tl.load(Count) # First store doesn't accumulate if count == 0: tl.atomic_xchg(Count, 1) else: partial_dw += tl.load(DW, mask=mask) partial_db += tl.load(DB, mask=mask) tl.store(DW, partial_dw, mask=mask) tl.store(DB, partial_db, mask=mask) # Release the lock tl.atomic_xchg(Lock, 0) @triton.jit def _layer_norm_bwd_dwdb( DW, # pointer to the partial sum of weights gradient DB, # pointer to the partial sum of biases gradient FINAL_DW, # pointer to the weights gradient FINAL_DB, # pointer to the biases gradient M, # GROUP_SIZE_M N, # number of columns BLOCK_SIZE_M: tl.constexpr, BLOCK_SIZE_N: tl.constexpr): # Map the program id to the elements of DW and DB it should compute. pid = tl.program_id(0) cols = pid * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N) dw = tl.zeros((BLOCK_SIZE_M, BLOCK_SIZE_N), dtype=tl.float32) db = tl.zeros((BLOCK_SIZE_M, BLOCK_SIZE_N), dtype=tl.float32) # Iterate through the rows of DW and DB to sum the partial sums. for i in range(0, M, BLOCK_SIZE_M): rows = i + tl.arange(0, BLOCK_SIZE_M) mask = (rows[:, None] < M) & (cols[None, :] < N) offs = rows[:, None] * N + cols[None, :] dw += tl.load(DW + offs, mask=mask, other=0.) db += tl.load(DB + offs, mask=mask, other=0.) # Write the final sum to the output. sum_dw = tl.sum(dw, axis=0) sum_db = tl.sum(db, axis=0) tl.store(FINAL_DW + cols, sum_dw, mask=cols < N) tl.store(FINAL_DB + cols, sum_db, mask=cols < N) class LayerNorm(torch.autograd.Function): @staticmethod def forward(ctx, x, normalized_shape, weight, bias, eps): # allocate output y = torch.empty_like(x) # reshape input data into 2D tensor x_arg = x.reshape(-1, x.shape[-1]) M, N = x_arg.shape mean = torch.empty((M, ), dtype=torch.float32, device=x.device) rstd = torch.empty((M, ), dtype=torch.float32, device=x.device) # Less than 64KB per feature: enqueue fused kernel MAX_FUSED_SIZE = 65536 // x.element_size() BLOCK_SIZE = min(MAX_FUSED_SIZE, triton.next_power_of_2(N)) if N > BLOCK_SIZE: raise RuntimeError( "This layer norm doesn't support feature dim >= 64KB.") # heuristics for number of warps num_warps = min(max(BLOCK_SIZE // 256, 1), 8) # enqueue kernel _layer_norm_fwd_fused[(M, )]( # x_arg, y, weight, bias, mean, rstd, # x_arg.stride(0), N, eps, # BLOCK_SIZE=BLOCK_SIZE, num_warps=num_warps, num_ctas=1) # type: ignore # noqa ctx.save_for_backward(x, weight, bias, mean, rstd) ctx.BLOCK_SIZE = BLOCK_SIZE ctx.num_warps = num_warps ctx.eps = eps return y @staticmethod def backward(ctx, dy): x, w, b, m, v = ctx.saved_tensors # heuristics for amount of parallel reduction stream for DW/DB N = w.shape[0] GROUP_SIZE_M = 64 if N <= 8192: GROUP_SIZE_M = 96 if N <= 4096: GROUP_SIZE_M = 128 if N <= 1024: GROUP_SIZE_M = 256 # allocate output locks = torch.zeros( 2 * GROUP_SIZE_M, dtype=torch.int32, device=w.device) _dw = torch.zeros((GROUP_SIZE_M, N), dtype=x.dtype, device=w.device) _db = torch.zeros((GROUP_SIZE_M, N), dtype=x.dtype, device=w.device) dw = torch.empty((N, ), dtype=w.dtype, device=w.device) db = torch.empty((N, ), dtype=w.dtype, device=w.device) dx = torch.empty_like(dy) # enqueue kernel using forward pass heuristics # also compute partial sums for DW and DB x_arg = x.reshape(-1, x.shape[-1]) M, N = x_arg.shape _layer_norm_bwd_dx_fused[(M, )]( # dx, dy, _dw, _db, x, w, m, v, locks, # x_arg.stride(0), N, # BLOCK_SIZE_N=ctx.BLOCK_SIZE, # GROUP_SIZE_M=GROUP_SIZE_M, # num_warps=ctx.num_warps) # type: ignore def grid(meta): return [triton.cdiv(N, meta['BLOCK_SIZE_N'])] # accumulate partial sums in separate kernel _layer_norm_bwd_dwdb[grid]( _dw, _db, dw, db, min(GROUP_SIZE_M, M), N, # BLOCK_SIZE_M=32, # BLOCK_SIZE_N=128, num_ctas=1) # type: ignore return dx, None, dw, db, None layer_norm = LayerNorm.apply def test_layer_norm(M, N, dtype, eps=1e-5, device='cuda'): # create data x_shape = (M, N) w_shape = (x_shape[-1], ) weight = torch.rand(w_shape, dtype=dtype, device=device, requires_grad=True) bias = torch.rand(w_shape, dtype=dtype, device=device, requires_grad=True) x = -2.3 + 0.5 * torch.randn(x_shape, dtype=dtype, device=device) dy = .1 * torch.randn_like(x) x.requires_grad_(True) # forward pass y_tri: torch.Tensor = layer_norm(x, w_shape, weight, bias, eps) # type: ignore # noqa y_ref = torch.nn.functional.layer_norm( x, w_shape, weight, bias, eps).to(dtype) # backward pass (triton) y_tri.backward(dy, retain_graph=True) dx_tri, dw_tri, db_tri = [_.grad.clone() for _ in [x, weight, bias]] # type: ignore # noqa x.grad, weight.grad, bias.grad = None, None, None # backward pass (torch) y_ref.backward(dy, retain_graph=True) dx_ref, dw_ref, db_ref = [_.grad.clone() for _ in [x, weight, bias]] # type: ignore # noqa # compare assert torch.allclose(y_tri, y_ref, atol=1e-2, rtol=0) assert torch.allclose(dx_tri, dx_ref, atol=1e-2, rtol=0) assert torch.allclose(db_tri, db_ref, atol=1e-2, rtol=0) assert torch.allclose(dw_tri, dw_ref, atol=1e-2, rtol=0) @triton.testing.perf_report( triton.testing.Benchmark( x_names=['N'], x_vals=[512 * i for i in range(2, 32)], line_arg='provider', line_vals=['triton', 'torch'] + (['apex'] if HAS_APEX else []), line_names=['Triton', 'Torch'] + (['Apex'] if HAS_APEX else []), styles=[('blue', '-'), ('green', '-'), ('orange', '-')], ylabel='GB/s', plot_name='layer-norm-backward', args={'M': 4096, 'dtype': torch.float16, 'mode': 'backward'}, )) def bench_layer_norm( M, N, dtype, provider, mode='backward', eps=1e-5, device='cuda'): # create data x_shape = (M, N) w_shape = (x_shape[-1], ) weight = torch.rand(w_shape, dtype=dtype, device=device, requires_grad=True) bias = torch.rand(w_shape, dtype=dtype, device=device, requires_grad=True) x = -2.3 + 0.5 * torch.randn(x_shape, dtype=dtype, device=device) dy = .1 * torch.randn_like(x) x.requires_grad_(True) quantiles = [0.5, 0.2, 0.8] def y_fwd() -> torch.Tensor: # type: ignore if provider == "triton": return layer_norm(x, w_shape, weight, bias, eps) # type: ignore if provider == "torch": return torch.nn.functional.layer_norm( x, w_shape, weight, bias, eps) # noqa: F811, E704 if provider == "apex": apex_layer_norm = (apex.normalization.FusedLayerNorm( w_shape).to(x.device).to(x.dtype)) return apex_layer_norm(x) # noqa: F811, E704 # forward pass if mode == 'forward': def gbps(ms): return 2 * x.numel() * x.element_size() / ms * 1e-6 ms, min_ms, max_ms = triton.testing.do_bench( y_fwd, quantiles=quantiles, rep=500) # backward pass if mode == 'backward': y = y_fwd() def gbps(ms): # noqa: F811, E704 return 3 * x.numel() * x.element_size() / ms * 1e-6 ms, min_ms, max_ms = triton.testing.do_bench( lambda: y.backward(dy, retain_graph=True), quantiles=quantiles, grad_to_none=[x], rep=500) return gbps(ms), gbps(max_ms), gbps(min_ms) if __name__ == "__main__": test_layer_norm(1151, 8192, torch.float16) bench_layer_norm.run(save_path='./benchmark_result', print_data=True)
@triton.jit def _layer_norm_fwd_fused( X, # pointer to the input Y, # pointer to the output W, # pointer to the weights B, # pointer to the biases Mean, # pointer to the mean Rstd, # pointer to the 1/std stride, # how much to increase the pointer when moving by 1 row N, # number of columns in X eps, # epsilon to avoid division by zero BLOCK_SIZE: tl.constexpr, ): # Map the program id to the row of X and Y it should compute. row = tl.program_id(0) Y += row * stride X += row * stride # Compute mean mean = 0 _mean = tl.zeros([BLOCK_SIZE], dtype=tl.float32) for off in range(0, N, BLOCK_SIZE): cols = off + tl.arange(0, BLOCK_SIZE) a = tl.load(X + cols, mask=cols < N, other=0.).to(tl.float32) _mean += a mean = tl.sum(_mean, axis=0) / N # Compute variance _var = tl.zeros([BLOCK_SIZE], dtype=tl.float32) for off in range(0, N, BLOCK_SIZE): cols = off + tl.arange(0, BLOCK_SIZE) x = tl.load(X + cols, mask=cols < N, other=0.).to(tl.float32) x = tl.where(cols < N, x - mean, 0.) _var += x * x var = tl.sum(_var, axis=0) / N rstd = 1 / tl.sqrt(var + eps) # Write mean / rstd tl.store(Mean + row, mean) tl.store(Rstd + row, rstd) # Normalize and apply linear transformation for off in range(0, N, BLOCK_SIZE): cols = off + tl.arange(0, BLOCK_SIZE) mask = cols < N w = tl.load(W + cols, mask=mask) b = tl.load(B + cols, mask=mask) x = tl.load(X + cols, mask=mask, other=0.).to(tl.float32) x_hat = (x - mean) * rstd y = x_hat * w + b # Write output tl.store(Y + cols, y, mask=mask)
gameofdimension/hfans
triton/ext_autograd.py
https://github.com/gameofdimension/hfans/blob/7e76ba5f3ae59d2ebaea0d8e67a40a6057f4af57/triton/ext_autograd.py
import torch import triton import triton.language as tl try: # This is https://github.com/NVIDIA/apex, NOT the apex on PyPi, so it # should not be added to extras_require in setup.py. import apex HAS_APEX = True except ModuleNotFoundError: HAS_APEX = False @triton.jit def _layer_norm_fwd_fused( X, # pointer to the input Y, # pointer to the output W, # pointer to the weights B, # pointer to the biases Mean, # pointer to the mean Rstd, # pointer to the 1/std stride, # how much to increase the pointer when moving by 1 row N, # number of columns in X eps, # epsilon to avoid division by zero BLOCK_SIZE: tl.constexpr, ): # Map the program id to the row of X and Y it should compute. row = tl.program_id(0) Y += row * stride X += row * stride # Compute mean mean = 0 _mean = tl.zeros([BLOCK_SIZE], dtype=tl.float32) for off in range(0, N, BLOCK_SIZE): cols = off + tl.arange(0, BLOCK_SIZE) a = tl.load(X + cols, mask=cols < N, other=0.).to(tl.float32) _mean += a mean = tl.sum(_mean, axis=0) / N # Compute variance _var = tl.zeros([BLOCK_SIZE], dtype=tl.float32) for off in range(0, N, BLOCK_SIZE): cols = off + tl.arange(0, BLOCK_SIZE) x = tl.load(X + cols, mask=cols < N, other=0.).to(tl.float32) x = tl.where(cols < N, x - mean, 0.) _var += x * x var = tl.sum(_var, axis=0) / N rstd = 1 / tl.sqrt(var + eps) # Write mean / rstd tl.store(Mean + row, mean) tl.store(Rstd + row, rstd) # Normalize and apply linear transformation for off in range(0, N, BLOCK_SIZE): cols = off + tl.arange(0, BLOCK_SIZE) mask = cols < N w = tl.load(W + cols, mask=mask) b = tl.load(B + cols, mask=mask) x = tl.load(X + cols, mask=mask, other=0.).to(tl.float32) x_hat = (x - mean) * rstd y = x_hat * w + b # Write output tl.store(Y + cols, y, mask=mask) @triton.jit def _layer_norm_bwd_dx_fused( DX, # pointer to the input gradient DY, # pointer to the output gradient DW, # pointer to the partial sum of weights gradient DB, # pointer to the partial sum of biases gradient X, # pointer to the input W, # pointer to the weights Mean, # pointer to the mean Rstd, # pointer to the 1/std Lock, # pointer to the lock stride, # how much to increase the pointer when moving by 1 row N, # number of columns in X GROUP_SIZE_M: tl.constexpr, BLOCK_SIZE_N: tl.constexpr): # Map the program id to the elements of X, DX, and DY it should compute. row = tl.program_id(0) cols = tl.arange(0, BLOCK_SIZE_N) mask = cols < N X += row * stride DY += row * stride DX += row * stride # Offset locks and weights/biases gradient pointer for parallel reduction lock_id = row % GROUP_SIZE_M Lock += lock_id Count = Lock + GROUP_SIZE_M DW = DW + lock_id * N + cols DB = DB + lock_id * N + cols # Load data to SRAM x = tl.load(X + cols, mask=mask, other=0).to(tl.float32) dy = tl.load(DY + cols, mask=mask, other=0).to(tl.float32) w = tl.load(W + cols, mask=mask).to(tl.float32) mean = tl.load(Mean + row) rstd = tl.load(Rstd + row) # Compute dx xhat = (x - mean) * rstd wdy = w * dy xhat = tl.where(mask, xhat, 0.) wdy = tl.where(mask, wdy, 0.) c1 = tl.sum(xhat * wdy, axis=0) / N c2 = tl.sum(wdy, axis=0) / N dx = (wdy - (xhat * c1 + c2)) * rstd # Write dx tl.store(DX + cols, dx, mask=mask) # Accumulate partial sums for dw/db partial_dw = (dy * xhat).to(w.dtype) partial_db = (dy).to(w.dtype) while tl.atomic_cas(Lock, 0, 1) == 1: pass count = tl.load(Count) # First store doesn't accumulate if count == 0: tl.atomic_xchg(Count, 1) else: partial_dw += tl.load(DW, mask=mask) partial_db += tl.load(DB, mask=mask) tl.store(DW, partial_dw, mask=mask) tl.store(DB, partial_db, mask=mask) # Release the lock tl.atomic_xchg(Lock, 0) @triton.jit def _layer_norm_bwd_dwdb( DW, # pointer to the partial sum of weights gradient DB, # pointer to the partial sum of biases gradient FINAL_DW, # pointer to the weights gradient FINAL_DB, # pointer to the biases gradient M, # GROUP_SIZE_M N, # number of columns BLOCK_SIZE_M: tl.constexpr, BLOCK_SIZE_N: tl.constexpr): # Map the program id to the elements of DW and DB it should compute. pid = tl.program_id(0) cols = pid * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N) dw = tl.zeros((BLOCK_SIZE_M, BLOCK_SIZE_N), dtype=tl.float32) db = tl.zeros((BLOCK_SIZE_M, BLOCK_SIZE_N), dtype=tl.float32) # Iterate through the rows of DW and DB to sum the partial sums. for i in range(0, M, BLOCK_SIZE_M): rows = i + tl.arange(0, BLOCK_SIZE_M) mask = (rows[:, None] < M) & (cols[None, :] < N) offs = rows[:, None] * N + cols[None, :] dw += tl.load(DW + offs, mask=mask, other=0.) db += tl.load(DB + offs, mask=mask, other=0.) # Write the final sum to the output. sum_dw = tl.sum(dw, axis=0) sum_db = tl.sum(db, axis=0) tl.store(FINAL_DW + cols, sum_dw, mask=cols < N) tl.store(FINAL_DB + cols, sum_db, mask=cols < N) class LayerNorm(torch.autograd.Function): @staticmethod def forward(ctx, x, normalized_shape, weight, bias, eps): # allocate output y = torch.empty_like(x) # reshape input data into 2D tensor x_arg = x.reshape(-1, x.shape[-1]) M, N = x_arg.shape mean = torch.empty((M, ), dtype=torch.float32, device=x.device) rstd = torch.empty((M, ), dtype=torch.float32, device=x.device) # Less than 64KB per feature: enqueue fused kernel MAX_FUSED_SIZE = 65536 // x.element_size() BLOCK_SIZE = min(MAX_FUSED_SIZE, triton.next_power_of_2(N)) if N > BLOCK_SIZE: raise RuntimeError( "This layer norm doesn't support feature dim >= 64KB.") # heuristics for number of warps num_warps = min(max(BLOCK_SIZE // 256, 1), 8) # enqueue kernel _layer_norm_fwd_fused[(M, )]( # x_arg, y, weight, bias, mean, rstd, # x_arg.stride(0), N, eps, # BLOCK_SIZE=BLOCK_SIZE, num_warps=num_warps, num_ctas=1) # type: ignore # noqa ctx.save_for_backward(x, weight, bias, mean, rstd) ctx.BLOCK_SIZE = BLOCK_SIZE ctx.num_warps = num_warps ctx.eps = eps return y @staticmethod def backward(ctx, dy): x, w, b, m, v = ctx.saved_tensors # heuristics for amount of parallel reduction stream for DW/DB N = w.shape[0] GROUP_SIZE_M = 64 if N <= 8192: GROUP_SIZE_M = 96 if N <= 4096: GROUP_SIZE_M = 128 if N <= 1024: GROUP_SIZE_M = 256 # allocate output locks = torch.zeros( 2 * GROUP_SIZE_M, dtype=torch.int32, device=w.device) _dw = torch.zeros((GROUP_SIZE_M, N), dtype=x.dtype, device=w.device) _db = torch.zeros((GROUP_SIZE_M, N), dtype=x.dtype, device=w.device) dw = torch.empty((N, ), dtype=w.dtype, device=w.device) db = torch.empty((N, ), dtype=w.dtype, device=w.device) dx = torch.empty_like(dy) # enqueue kernel using forward pass heuristics # also compute partial sums for DW and DB x_arg = x.reshape(-1, x.shape[-1]) M, N = x_arg.shape _layer_norm_bwd_dx_fused[(M, )]( # dx, dy, _dw, _db, x, w, m, v, locks, # x_arg.stride(0), N, # BLOCK_SIZE_N=ctx.BLOCK_SIZE, # GROUP_SIZE_M=GROUP_SIZE_M, # num_warps=ctx.num_warps) # type: ignore def grid(meta): return [triton.cdiv(N, meta['BLOCK_SIZE_N'])] # accumulate partial sums in separate kernel _layer_norm_bwd_dwdb[grid]( _dw, _db, dw, db, min(GROUP_SIZE_M, M), N, # BLOCK_SIZE_M=32, # BLOCK_SIZE_N=128, num_ctas=1) # type: ignore return dx, None, dw, db, None layer_norm = LayerNorm.apply def test_layer_norm(M, N, dtype, eps=1e-5, device='cuda'): # create data x_shape = (M, N) w_shape = (x_shape[-1], ) weight = torch.rand(w_shape, dtype=dtype, device=device, requires_grad=True) bias = torch.rand(w_shape, dtype=dtype, device=device, requires_grad=True) x = -2.3 + 0.5 * torch.randn(x_shape, dtype=dtype, device=device) dy = .1 * torch.randn_like(x) x.requires_grad_(True) # forward pass y_tri: torch.Tensor = layer_norm(x, w_shape, weight, bias, eps) # type: ignore # noqa y_ref = torch.nn.functional.layer_norm( x, w_shape, weight, bias, eps).to(dtype) # backward pass (triton) y_tri.backward(dy, retain_graph=True) dx_tri, dw_tri, db_tri = [_.grad.clone() for _ in [x, weight, bias]] # type: ignore # noqa x.grad, weight.grad, bias.grad = None, None, None # backward pass (torch) y_ref.backward(dy, retain_graph=True) dx_ref, dw_ref, db_ref = [_.grad.clone() for _ in [x, weight, bias]] # type: ignore # noqa # compare assert torch.allclose(y_tri, y_ref, atol=1e-2, rtol=0) assert torch.allclose(dx_tri, dx_ref, atol=1e-2, rtol=0) assert torch.allclose(db_tri, db_ref, atol=1e-2, rtol=0) assert torch.allclose(dw_tri, dw_ref, atol=1e-2, rtol=0) @triton.testing.perf_report( triton.testing.Benchmark( x_names=['N'], x_vals=[512 * i for i in range(2, 32)], line_arg='provider', line_vals=['triton', 'torch'] + (['apex'] if HAS_APEX else []), line_names=['Triton', 'Torch'] + (['Apex'] if HAS_APEX else []), styles=[('blue', '-'), ('green', '-'), ('orange', '-')], ylabel='GB/s', plot_name='layer-norm-backward', args={'M': 4096, 'dtype': torch.float16, 'mode': 'backward'}, )) def bench_layer_norm( M, N, dtype, provider, mode='backward', eps=1e-5, device='cuda'): # create data x_shape = (M, N) w_shape = (x_shape[-1], ) weight = torch.rand(w_shape, dtype=dtype, device=device, requires_grad=True) bias = torch.rand(w_shape, dtype=dtype, device=device, requires_grad=True) x = -2.3 + 0.5 * torch.randn(x_shape, dtype=dtype, device=device) dy = .1 * torch.randn_like(x) x.requires_grad_(True) quantiles = [0.5, 0.2, 0.8] def y_fwd() -> torch.Tensor: # type: ignore if provider == "triton": return layer_norm(x, w_shape, weight, bias, eps) # type: ignore if provider == "torch": return torch.nn.functional.layer_norm( x, w_shape, weight, bias, eps) # noqa: F811, E704 if provider == "apex": apex_layer_norm = (apex.normalization.FusedLayerNorm( w_shape).to(x.device).to(x.dtype)) return apex_layer_norm(x) # noqa: F811, E704 # forward pass if mode == 'forward': def gbps(ms): return 2 * x.numel() * x.element_size() / ms * 1e-6 ms, min_ms, max_ms = triton.testing.do_bench( y_fwd, quantiles=quantiles, rep=500) # backward pass if mode == 'backward': y = y_fwd() def gbps(ms): # noqa: F811, E704 return 3 * x.numel() * x.element_size() / ms * 1e-6 ms, min_ms, max_ms = triton.testing.do_bench( lambda: y.backward(dy, retain_graph=True), quantiles=quantiles, grad_to_none=[x], rep=500) return gbps(ms), gbps(max_ms), gbps(min_ms) if __name__ == "__main__": test_layer_norm(1151, 8192, torch.float16) bench_layer_norm.run(save_path='./benchmark_result', print_data=True)
@triton.jit def _layer_norm_bwd_dx_fused( DX, # pointer to the input gradient DY, # pointer to the output gradient DW, # pointer to the partial sum of weights gradient DB, # pointer to the partial sum of biases gradient X, # pointer to the input W, # pointer to the weights Mean, # pointer to the mean Rstd, # pointer to the 1/std Lock, # pointer to the lock stride, # how much to increase the pointer when moving by 1 row N, # number of columns in X GROUP_SIZE_M: tl.constexpr, BLOCK_SIZE_N: tl.constexpr): # Map the program id to the elements of X, DX, and DY it should compute. row = tl.program_id(0) cols = tl.arange(0, BLOCK_SIZE_N) mask = cols < N X += row * stride DY += row * stride DX += row * stride # Offset locks and weights/biases gradient pointer for parallel reduction lock_id = row % GROUP_SIZE_M Lock += lock_id Count = Lock + GROUP_SIZE_M DW = DW + lock_id * N + cols DB = DB + lock_id * N + cols # Load data to SRAM x = tl.load(X + cols, mask=mask, other=0).to(tl.float32) dy = tl.load(DY + cols, mask=mask, other=0).to(tl.float32) w = tl.load(W + cols, mask=mask).to(tl.float32) mean = tl.load(Mean + row) rstd = tl.load(Rstd + row) # Compute dx xhat = (x - mean) * rstd wdy = w * dy xhat = tl.where(mask, xhat, 0.) wdy = tl.where(mask, wdy, 0.) c1 = tl.sum(xhat * wdy, axis=0) / N c2 = tl.sum(wdy, axis=0) / N dx = (wdy - (xhat * c1 + c2)) * rstd # Write dx tl.store(DX + cols, dx, mask=mask) # Accumulate partial sums for dw/db partial_dw = (dy * xhat).to(w.dtype) partial_db = (dy).to(w.dtype) while tl.atomic_cas(Lock, 0, 1) == 1: pass count = tl.load(Count) # First store doesn't accumulate if count == 0: tl.atomic_xchg(Count, 1) else: partial_dw += tl.load(DW, mask=mask) partial_db += tl.load(DB, mask=mask) tl.store(DW, partial_dw, mask=mask) tl.store(DB, partial_db, mask=mask) # Release the lock tl.atomic_xchg(Lock, 0)
gameofdimension/hfans
triton/ext_autograd.py
https://github.com/gameofdimension/hfans/blob/7e76ba5f3ae59d2ebaea0d8e67a40a6057f4af57/triton/ext_autograd.py
import torch import triton import triton.language as tl try: # This is https://github.com/NVIDIA/apex, NOT the apex on PyPi, so it # should not be added to extras_require in setup.py. import apex HAS_APEX = True except ModuleNotFoundError: HAS_APEX = False @triton.jit def _layer_norm_fwd_fused( X, # pointer to the input Y, # pointer to the output W, # pointer to the weights B, # pointer to the biases Mean, # pointer to the mean Rstd, # pointer to the 1/std stride, # how much to increase the pointer when moving by 1 row N, # number of columns in X eps, # epsilon to avoid division by zero BLOCK_SIZE: tl.constexpr, ): # Map the program id to the row of X and Y it should compute. row = tl.program_id(0) Y += row * stride X += row * stride # Compute mean mean = 0 _mean = tl.zeros([BLOCK_SIZE], dtype=tl.float32) for off in range(0, N, BLOCK_SIZE): cols = off + tl.arange(0, BLOCK_SIZE) a = tl.load(X + cols, mask=cols < N, other=0.).to(tl.float32) _mean += a mean = tl.sum(_mean, axis=0) / N # Compute variance _var = tl.zeros([BLOCK_SIZE], dtype=tl.float32) for off in range(0, N, BLOCK_SIZE): cols = off + tl.arange(0, BLOCK_SIZE) x = tl.load(X + cols, mask=cols < N, other=0.).to(tl.float32) x = tl.where(cols < N, x - mean, 0.) _var += x * x var = tl.sum(_var, axis=0) / N rstd = 1 / tl.sqrt(var + eps) # Write mean / rstd tl.store(Mean + row, mean) tl.store(Rstd + row, rstd) # Normalize and apply linear transformation for off in range(0, N, BLOCK_SIZE): cols = off + tl.arange(0, BLOCK_SIZE) mask = cols < N w = tl.load(W + cols, mask=mask) b = tl.load(B + cols, mask=mask) x = tl.load(X + cols, mask=mask, other=0.).to(tl.float32) x_hat = (x - mean) * rstd y = x_hat * w + b # Write output tl.store(Y + cols, y, mask=mask) @triton.jit def _layer_norm_bwd_dx_fused( DX, # pointer to the input gradient DY, # pointer to the output gradient DW, # pointer to the partial sum of weights gradient DB, # pointer to the partial sum of biases gradient X, # pointer to the input W, # pointer to the weights Mean, # pointer to the mean Rstd, # pointer to the 1/std Lock, # pointer to the lock stride, # how much to increase the pointer when moving by 1 row N, # number of columns in X GROUP_SIZE_M: tl.constexpr, BLOCK_SIZE_N: tl.constexpr): # Map the program id to the elements of X, DX, and DY it should compute. row = tl.program_id(0) cols = tl.arange(0, BLOCK_SIZE_N) mask = cols < N X += row * stride DY += row * stride DX += row * stride # Offset locks and weights/biases gradient pointer for parallel reduction lock_id = row % GROUP_SIZE_M Lock += lock_id Count = Lock + GROUP_SIZE_M DW = DW + lock_id * N + cols DB = DB + lock_id * N + cols # Load data to SRAM x = tl.load(X + cols, mask=mask, other=0).to(tl.float32) dy = tl.load(DY + cols, mask=mask, other=0).to(tl.float32) w = tl.load(W + cols, mask=mask).to(tl.float32) mean = tl.load(Mean + row) rstd = tl.load(Rstd + row) # Compute dx xhat = (x - mean) * rstd wdy = w * dy xhat = tl.where(mask, xhat, 0.) wdy = tl.where(mask, wdy, 0.) c1 = tl.sum(xhat * wdy, axis=0) / N c2 = tl.sum(wdy, axis=0) / N dx = (wdy - (xhat * c1 + c2)) * rstd # Write dx tl.store(DX + cols, dx, mask=mask) # Accumulate partial sums for dw/db partial_dw = (dy * xhat).to(w.dtype) partial_db = (dy).to(w.dtype) while tl.atomic_cas(Lock, 0, 1) == 1: pass count = tl.load(Count) # First store doesn't accumulate if count == 0: tl.atomic_xchg(Count, 1) else: partial_dw += tl.load(DW, mask=mask) partial_db += tl.load(DB, mask=mask) tl.store(DW, partial_dw, mask=mask) tl.store(DB, partial_db, mask=mask) # Release the lock tl.atomic_xchg(Lock, 0) @triton.jit def _layer_norm_bwd_dwdb( DW, # pointer to the partial sum of weights gradient DB, # pointer to the partial sum of biases gradient FINAL_DW, # pointer to the weights gradient FINAL_DB, # pointer to the biases gradient M, # GROUP_SIZE_M N, # number of columns BLOCK_SIZE_M: tl.constexpr, BLOCK_SIZE_N: tl.constexpr): # Map the program id to the elements of DW and DB it should compute. pid = tl.program_id(0) cols = pid * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N) dw = tl.zeros((BLOCK_SIZE_M, BLOCK_SIZE_N), dtype=tl.float32) db = tl.zeros((BLOCK_SIZE_M, BLOCK_SIZE_N), dtype=tl.float32) # Iterate through the rows of DW and DB to sum the partial sums. for i in range(0, M, BLOCK_SIZE_M): rows = i + tl.arange(0, BLOCK_SIZE_M) mask = (rows[:, None] < M) & (cols[None, :] < N) offs = rows[:, None] * N + cols[None, :] dw += tl.load(DW + offs, mask=mask, other=0.) db += tl.load(DB + offs, mask=mask, other=0.) # Write the final sum to the output. sum_dw = tl.sum(dw, axis=0) sum_db = tl.sum(db, axis=0) tl.store(FINAL_DW + cols, sum_dw, mask=cols < N) tl.store(FINAL_DB + cols, sum_db, mask=cols < N) class LayerNorm(torch.autograd.Function): @staticmethod def forward(ctx, x, normalized_shape, weight, bias, eps): # allocate output y = torch.empty_like(x) # reshape input data into 2D tensor x_arg = x.reshape(-1, x.shape[-1]) M, N = x_arg.shape mean = torch.empty((M, ), dtype=torch.float32, device=x.device) rstd = torch.empty((M, ), dtype=torch.float32, device=x.device) # Less than 64KB per feature: enqueue fused kernel MAX_FUSED_SIZE = 65536 // x.element_size() BLOCK_SIZE = min(MAX_FUSED_SIZE, triton.next_power_of_2(N)) if N > BLOCK_SIZE: raise RuntimeError( "This layer norm doesn't support feature dim >= 64KB.") # heuristics for number of warps num_warps = min(max(BLOCK_SIZE // 256, 1), 8) # enqueue kernel _layer_norm_fwd_fused[(M, )]( # x_arg, y, weight, bias, mean, rstd, # x_arg.stride(0), N, eps, # BLOCK_SIZE=BLOCK_SIZE, num_warps=num_warps, num_ctas=1) # type: ignore # noqa ctx.save_for_backward(x, weight, bias, mean, rstd) ctx.BLOCK_SIZE = BLOCK_SIZE ctx.num_warps = num_warps ctx.eps = eps return y @staticmethod def backward(ctx, dy): x, w, b, m, v = ctx.saved_tensors # heuristics for amount of parallel reduction stream for DW/DB N = w.shape[0] GROUP_SIZE_M = 64 if N <= 8192: GROUP_SIZE_M = 96 if N <= 4096: GROUP_SIZE_M = 128 if N <= 1024: GROUP_SIZE_M = 256 # allocate output locks = torch.zeros( 2 * GROUP_SIZE_M, dtype=torch.int32, device=w.device) _dw = torch.zeros((GROUP_SIZE_M, N), dtype=x.dtype, device=w.device) _db = torch.zeros((GROUP_SIZE_M, N), dtype=x.dtype, device=w.device) dw = torch.empty((N, ), dtype=w.dtype, device=w.device) db = torch.empty((N, ), dtype=w.dtype, device=w.device) dx = torch.empty_like(dy) # enqueue kernel using forward pass heuristics # also compute partial sums for DW and DB x_arg = x.reshape(-1, x.shape[-1]) M, N = x_arg.shape _layer_norm_bwd_dx_fused[(M, )]( # dx, dy, _dw, _db, x, w, m, v, locks, # x_arg.stride(0), N, # BLOCK_SIZE_N=ctx.BLOCK_SIZE, # GROUP_SIZE_M=GROUP_SIZE_M, # num_warps=ctx.num_warps) # type: ignore def grid(meta): return [triton.cdiv(N, meta['BLOCK_SIZE_N'])] # accumulate partial sums in separate kernel _layer_norm_bwd_dwdb[grid]( _dw, _db, dw, db, min(GROUP_SIZE_M, M), N, # BLOCK_SIZE_M=32, # BLOCK_SIZE_N=128, num_ctas=1) # type: ignore return dx, None, dw, db, None layer_norm = LayerNorm.apply def test_layer_norm(M, N, dtype, eps=1e-5, device='cuda'): # create data x_shape = (M, N) w_shape = (x_shape[-1], ) weight = torch.rand(w_shape, dtype=dtype, device=device, requires_grad=True) bias = torch.rand(w_shape, dtype=dtype, device=device, requires_grad=True) x = -2.3 + 0.5 * torch.randn(x_shape, dtype=dtype, device=device) dy = .1 * torch.randn_like(x) x.requires_grad_(True) # forward pass y_tri: torch.Tensor = layer_norm(x, w_shape, weight, bias, eps) # type: ignore # noqa y_ref = torch.nn.functional.layer_norm( x, w_shape, weight, bias, eps).to(dtype) # backward pass (triton) y_tri.backward(dy, retain_graph=True) dx_tri, dw_tri, db_tri = [_.grad.clone() for _ in [x, weight, bias]] # type: ignore # noqa x.grad, weight.grad, bias.grad = None, None, None # backward pass (torch) y_ref.backward(dy, retain_graph=True) dx_ref, dw_ref, db_ref = [_.grad.clone() for _ in [x, weight, bias]] # type: ignore # noqa # compare assert torch.allclose(y_tri, y_ref, atol=1e-2, rtol=0) assert torch.allclose(dx_tri, dx_ref, atol=1e-2, rtol=0) assert torch.allclose(db_tri, db_ref, atol=1e-2, rtol=0) assert torch.allclose(dw_tri, dw_ref, atol=1e-2, rtol=0) @triton.testing.perf_report( triton.testing.Benchmark( x_names=['N'], x_vals=[512 * i for i in range(2, 32)], line_arg='provider', line_vals=['triton', 'torch'] + (['apex'] if HAS_APEX else []), line_names=['Triton', 'Torch'] + (['Apex'] if HAS_APEX else []), styles=[('blue', '-'), ('green', '-'), ('orange', '-')], ylabel='GB/s', plot_name='layer-norm-backward', args={'M': 4096, 'dtype': torch.float16, 'mode': 'backward'}, )) def bench_layer_norm( M, N, dtype, provider, mode='backward', eps=1e-5, device='cuda'): # create data x_shape = (M, N) w_shape = (x_shape[-1], ) weight = torch.rand(w_shape, dtype=dtype, device=device, requires_grad=True) bias = torch.rand(w_shape, dtype=dtype, device=device, requires_grad=True) x = -2.3 + 0.5 * torch.randn(x_shape, dtype=dtype, device=device) dy = .1 * torch.randn_like(x) x.requires_grad_(True) quantiles = [0.5, 0.2, 0.8] def y_fwd() -> torch.Tensor: # type: ignore if provider == "triton": return layer_norm(x, w_shape, weight, bias, eps) # type: ignore if provider == "torch": return torch.nn.functional.layer_norm( x, w_shape, weight, bias, eps) # noqa: F811, E704 if provider == "apex": apex_layer_norm = (apex.normalization.FusedLayerNorm( w_shape).to(x.device).to(x.dtype)) return apex_layer_norm(x) # noqa: F811, E704 # forward pass if mode == 'forward': def gbps(ms): return 2 * x.numel() * x.element_size() / ms * 1e-6 ms, min_ms, max_ms = triton.testing.do_bench( y_fwd, quantiles=quantiles, rep=500) # backward pass if mode == 'backward': y = y_fwd() def gbps(ms): # noqa: F811, E704 return 3 * x.numel() * x.element_size() / ms * 1e-6 ms, min_ms, max_ms = triton.testing.do_bench( lambda: y.backward(dy, retain_graph=True), quantiles=quantiles, grad_to_none=[x], rep=500) return gbps(ms), gbps(max_ms), gbps(min_ms) if __name__ == "__main__": test_layer_norm(1151, 8192, torch.float16) bench_layer_norm.run(save_path='./benchmark_result', print_data=True)
@triton.jit def _layer_norm_bwd_dwdb( DW, # pointer to the partial sum of weights gradient DB, # pointer to the partial sum of biases gradient FINAL_DW, # pointer to the weights gradient FINAL_DB, # pointer to the biases gradient M, # GROUP_SIZE_M N, # number of columns BLOCK_SIZE_M: tl.constexpr, BLOCK_SIZE_N: tl.constexpr): # Map the program id to the elements of DW and DB it should compute. pid = tl.program_id(0) cols = pid * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N) dw = tl.zeros((BLOCK_SIZE_M, BLOCK_SIZE_N), dtype=tl.float32) db = tl.zeros((BLOCK_SIZE_M, BLOCK_SIZE_N), dtype=tl.float32) # Iterate through the rows of DW and DB to sum the partial sums. for i in range(0, M, BLOCK_SIZE_M): rows = i + tl.arange(0, BLOCK_SIZE_M) mask = (rows[:, None] < M) & (cols[None, :] < N) offs = rows[:, None] * N + cols[None, :] dw += tl.load(DW + offs, mask=mask, other=0.) db += tl.load(DB + offs, mask=mask, other=0.) # Write the final sum to the output. sum_dw = tl.sum(dw, axis=0) sum_db = tl.sum(db, axis=0) tl.store(FINAL_DW + cols, sum_dw, mask=cols < N) tl.store(FINAL_DB + cols, sum_db, mask=cols < N) class LayerNorm(torch.autograd.Function): @staticmethod def forward(ctx, x, normalized_shape, weight, bias, eps): # allocate output y = torch.empty_like(x) # reshape input data into 2D tensor x_arg = x.reshape(-1, x.shape[-1]) M, N = x_arg.shape mean = torch.empty((M, ), dtype=torch.float32, device=x.device) rstd = torch.empty((M, ), dtype=torch.float32, device=x.device) # Less than 64KB per feature: enqueue fused kernel MAX_FUSED_SIZE = 65536 // x.element_size() BLOCK_SIZE = min(MAX_FUSED_SIZE, triton.next_power_of_2(N)) if N > BLOCK_SIZE: raise RuntimeError( "This layer norm doesn't support feature dim >= 64KB.") # heuristics for number of warps num_warps = min(max(BLOCK_SIZE // 256, 1), 8) # enqueue kernel _layer_norm_fwd_fused[(M, )]( # x_arg, y, weight, bias, mean, rstd, # x_arg.stride(0), N, eps, # BLOCK_SIZE=BLOCK_SIZE, num_warps=num_warps, num_ctas=1) # type: ignore # noqa ctx.save_for_backward(x, weight, bias, mean, rstd) ctx.BLOCK_SIZE = BLOCK_SIZE ctx.num_warps = num_warps ctx.eps = eps return y @staticmethod def backward(ctx, dy): x, w, b, m, v = ctx.saved_tensors # heuristics for amount of parallel reduction stream for DW/DB N = w.shape[0] GROUP_SIZE_M = 64 if N <= 8192: GROUP_SIZE_M = 96 if N <= 4096: GROUP_SIZE_M = 128 if N <= 1024: GROUP_SIZE_M = 256 # allocate output locks = torch.zeros( 2 * GROUP_SIZE_M, dtype=torch.int32, device=w.device) _dw = torch.zeros((GROUP_SIZE_M, N), dtype=x.dtype, device=w.device) _db = torch.zeros((GROUP_SIZE_M, N), dtype=x.dtype, device=w.device) dw = torch.empty((N, ), dtype=w.dtype, device=w.device) db = torch.empty((N, ), dtype=w.dtype, device=w.device) dx = torch.empty_like(dy) # enqueue kernel using forward pass heuristics # also compute partial sums for DW and DB x_arg = x.reshape(-1, x.shape[-1]) M, N = x_arg.shape _layer_norm_bwd_dx_fused[(M, )]( # dx, dy, _dw, _db, x, w, m, v, locks, # x_arg.stride(0), N, # BLOCK_SIZE_N=ctx.BLOCK_SIZE, # GROUP_SIZE_M=GROUP_SIZE_M, # num_warps=ctx.num_warps) # type: ignore def grid(meta): return [triton.cdiv(N, meta['BLOCK_SIZE_N'])] # accumulate partial sums in separate kernel _layer_norm_bwd_dwdb[grid]( _dw, _db, dw, db, min(GROUP_SIZE_M, M), N, # BLOCK_SIZE_M=32, # BLOCK_SIZE_N=128, num_ctas=1) # type: ignore return dx, None, dw, db, None layer_norm = LayerNorm.apply def test_layer_norm(M, N, dtype, eps=1e-5, device='cuda'): # create data x_shape = (M, N) w_shape = (x_shape[-1], ) weight = torch.rand(w_shape, dtype=dtype, device=device, requires_grad=True) bias = torch.rand(w_shape, dtype=dtype, device=device, requires_grad=True) x = -2.3 + 0.5 * torch.randn(x_shape, dtype=dtype, device=device) dy = .1 * torch.randn_like(x) x.requires_grad_(True) # forward pass y_tri: torch.Tensor = layer_norm(x, w_shape, weight, bias, eps) # type: ignore # noqa y_ref = torch.nn.functional.layer_norm( x, w_shape, weight, bias, eps).to(dtype) # backward pass (triton) y_tri.backward(dy, retain_graph=True) dx_tri, dw_tri, db_tri = [_.grad.clone() for _ in [x, weight, bias]] # type: ignore # noqa x.grad, weight.grad, bias.grad = None, None, None # backward pass (torch) y_ref.backward(dy, retain_graph=True) dx_ref, dw_ref, db_ref = [_.grad.clone() for _ in [x, weight, bias]] # type: ignore # noqa # compare assert torch.allclose(y_tri, y_ref, atol=1e-2, rtol=0) assert torch.allclose(dx_tri, dx_ref, atol=1e-2, rtol=0) assert torch.allclose(db_tri, db_ref, atol=1e-2, rtol=0) assert torch.allclose(dw_tri, dw_ref, atol=1e-2, rtol=0) @triton.testing.perf_report( triton.testing.Benchmark( x_names=['N'], x_vals=[512 * i for i in range(2, 32)], line_arg='provider', line_vals=['triton', 'torch'] + (['apex'] if HAS_APEX else []), line_names=['Triton', 'Torch'] + (['Apex'] if HAS_APEX else []), styles=[('blue', '-'), ('green', '-'), ('orange', '-')], ylabel='GB/s', plot_name='layer-norm-backward', args={'M': 4096, 'dtype': torch.float16, 'mode': 'backward'}, )) def bench_layer_norm( M, N, dtype, provider, mode='backward', eps=1e-5, device='cuda'): # create data x_shape = (M, N) w_shape = (x_shape[-1], ) weight = torch.rand(w_shape, dtype=dtype, device=device, requires_grad=True) bias = torch.rand(w_shape, dtype=dtype, device=device, requires_grad=True) x = -2.3 + 0.5 * torch.randn(x_shape, dtype=dtype, device=device) dy = .1 * torch.randn_like(x) x.requires_grad_(True) quantiles = [0.5, 0.2, 0.8] def y_fwd() -> torch.Tensor: # type: ignore if provider == "triton": return layer_norm(x, w_shape, weight, bias, eps) # type: ignore if provider == "torch": return torch.nn.functional.layer_norm( x, w_shape, weight, bias, eps) # noqa: F811, E704 if provider == "apex": apex_layer_norm = (apex.normalization.FusedLayerNorm( w_shape).to(x.device).to(x.dtype)) return apex_layer_norm(x) # noqa: F811, E704 # forward pass if mode == 'forward': def gbps(ms): return 2 * x.numel() * x.element_size() / ms * 1e-6 ms, min_ms, max_ms = triton.testing.do_bench( y_fwd, quantiles=quantiles, rep=500) # backward pass if mode == 'backward': y = y_fwd() def gbps(ms): # noqa: F811, E704 return 3 * x.numel() * x.element_size() / ms * 1e-6 ms, min_ms, max_ms = triton.testing.do_bench( lambda: y.backward(dy, retain_graph=True), quantiles=quantiles, grad_to_none=[x], rep=500) return gbps(ms), gbps(max_ms), gbps(min_ms) if __name__ == "__main__": test_layer_norm(1151, 8192, torch.float16) bench_layer_norm.run(save_path='./benchmark_result', print_data=True)
BobMcDear/attorch
attorch/math.py
https://github.com/BobMcDear/attorch/blob/fdd7c33c9476f19488b9025404112f56212dcb05/attorch/math.py
""" Pure math operations to be performed on loaded Triton tensors. """ import triton import triton.language as tl from .act_kernels import apply_act_func @triton.jit def accum_linear(accum, input1, input2, fp16: tl.constexpr, tf32: tl.constexpr): """ Accumulates matrix multiplications of input tensors for linear functions. Args: accum: Accumulator holding aggregation of matrix multiplications. The accumulator must be of shape [BLOCK_SIZE1, BLOCK_SIZE3]. input1: First operand of matrix multiplication. The operand must be of shape [BLOCK_SIZE1, BLOCK_SIZE2]. input2: Second operand of matrix multiplication. The operand must be of shape [BLOCK_SIZE2, BLOCK_SIZE3]. fp16: Flag for converting operands to FP16. tf32: Flag for performing matrix multiplication in TF32. Returns: Accumulator with the result of the new matrix multiplication added to it. """ if fp16: input1 = input1.to(tl.float16) input2 = input2.to(tl.float16) return accum + tl.dot(input1, input2, allow_tf32=tf32) @triton.jit def glu(input1, input2, param, act_func: tl.constexpr): """ Applies the gated linear unit with an arbitrary activation function to the input. Args: input1: First half of input to gate. The first half must be of the same shape as the second half. input2: Second half of input to gate. The second half must be of the same shape as the first half. param: Parameter in the case of parameterized activation functions. act_func: Name of activation function to apply. Options are 'sigmoid', 'logsigmoid', 'tanh', 'relu', 'gelu', 'silu', 'relu6', 'hardsigmoid', 'hardtanh', 'hardswish', 'selu', 'mish', 'softplus', 'softsign', 'tanhshrink', 'leaky_relu', 'elu', and 'celu'. param: Parameter in the case of parameterized activation functions. Args: Input transformed by the gated linear unit with an arbitrary activation function. """ return input1 * apply_act_func(input2, None, None, None, param, act_func, False) @triton.jit def softmax(input, log: tl.constexpr): """ Normalizes the input using softmax along the last dimension. Args: input: Input to normalize. The input must be of shape [BLOCK_SIZE1, BLOCK_SIZE2]. log: Flag for indicating if the log of softmax should be taken. Returns: Input normalized by softmax. """ input = input.to(tl.float32) input = input - tl.max(input, axis=1)[:, None] numerator = tl.exp(input) denominator = tl.sum(numerator, axis=1)[:, None] if log: output = input - tl.log(denominator) else: output = numerator / denominator return output @triton.jit def calc_mean_and_inv_std(input, last_dim, eps, last_dim_mask: tl.constexpr): """ Calculates the mean and inverse standard deviation of the input along the last dimension. Args: input: Input whose mean and inverse standard deviation are calculated. The input must be of shape [BLOCK_SIZE1, BLOCK_SIZE2]. last_dim: Size of the last dimension of input. eps: Epsilon added in the square root in the denominator to avoid division by zero. last_dim_mask: Mask for the last dimension indicating which elements should be included in the calculations. The mask must be of shape [BLOCK_SIZE2]. Returns: Mean and inverse standard deviation of the input. """ input = input.to(tl.float32) mean = tl.sum(input, axis=1) / last_dim diff = tl.where(last_dim_mask[None, :], input - mean[:, None], 0) inv_std = tl.rsqrt(tl.sum(diff * diff, axis=1) / last_dim + eps) return mean, inv_std @triton.jit def update_welford(input, prev_count, prev_mean, prev_var, curr_count, mask: tl.constexpr): """ Updates count, mean, and variance (M2) statistics for Welford's algorithm. Args: input: Input used to update statistics. The input must be of the same shape as the mask. prev_count: Previous count statistic to update. prev_mean: Previous mean statistic to update. prev_var: Previous variance (M2) statistic to update. curr_count: Count of elements in current input. mask: Mask indicating which elements should be included in the calculations. The mask must be of the same shape as the input. Returns: Updated count, mean, and variance (M2) statistics """ input = input.to(tl.float32) count = prev_count + curr_count mean = (tl.sum(input) - curr_count * prev_mean) / count deltas = tl.where(mask, (input - mean) * (input - prev_mean), 0.) var = prev_var + tl.sum(deltas) return count, mean, var @triton.jit def update_ema(prev_ema, new_val, momentum): """ Updates exponential moving average. Args: prev_ema: Previous exponential moving average. new_val: Value used to update the exponential moving average. momentum: Momentum. Returns: Updated running statistic. """ return (1 - momentum) * prev_ema + momentum * new_val @triton.jit def standardize(input, mean, inv_std, weight, bias): """ Standardizes the input given its mean and inverse standard deviation, multiplies the result by weights, and adds a bias vector. Args: input: Input to standardize. mean: Mean of input. inv_std: Inverse standard deviation of input. weight: Weight multiplied by the standardized input. bias: Bias added to the result of the weight multiplication. Returns: Standardized input. """ return weight * inv_std * (input - mean) + bias @triton.jit def calc_p_loss(input, target, size, p_loss: tl.constexpr, reduction: tl.constexpr): """ Measures the L1 or squared L2 norm of the difference between the input and target (i.e., mean absolute error or mean squared error). Args: input: Input. The input must be of shape [BLOCK_SIZE]. target: Target. The target must be of shape [BLOCK_SIZE]. size: Number of elements in the input and target. This value is used only if reduction is 'mean'. p_loss: p-norm used to compute the error. Options are 1 for MAE and 2 for MSE. reduction: Reduction strategy for the output. Options are 'none' for no reduction, 'mean' for averaging the error across all entries, and 'sum' for summing the error across all entries. Returns: Error. """ input = input.to(tl.float32) target = target.to(tl.float32) diff = input - target if p_loss == 1: error = tl.abs(diff) elif p_loss == 2: error = diff * diff if reduction == 'none': output = error elif reduction == 'mean': output = tl.sum(error) / size elif reduction == 'sum': output = tl.sum(error) return output @triton.jit def nll_loss(input, size, reduction: tl.constexpr): """ Measures the negative log likelihood loss given log-probabilities of target class. Args: input: Input containing predicted log-probabilities corresponding to target class. The input can have arbitrary shape. size: Number of elements in the input. This value is used only if reduction is 'mean'. reduction: Reduction strategy for the output. Options are 'none' for no reduction, 'mean' for averaging the loss across all entries, and 'sum' for summing the loss across all entries. Returns: Loss. """ input = input.to(tl.float32) if reduction == 'none': output = -input elif reduction == 'mean': output = -tl.sum(input) / size elif reduction == 'sum': output = -tl.sum(input) return output @triton.jit def cross_entropy_loss(input, pred): """ Measures the per-row cross entropy loss given input and predicted logits corresponding to target class. Args: input: Input. The input must be of shape [BLOCK_SIZE1, BLOCK_SIZE2]. pred: Predicted logits corresponding to target class. The predictions must be of shape [BLOCK_SIZE1]. Returns: Loss. """ input = input.to(tl.float32) pred = pred.to(tl.float32) mx = tl.max(input, axis=1) input -= mx[:, None] loss = tl.log(tl.sum(tl.exp(input), axis=1)) - pred + mx return loss
@triton.jit def accum_linear(accum, input1, input2, fp16: tl.constexpr, tf32: tl.constexpr): """ Accumulates matrix multiplications of input tensors for linear functions. Args: accum: Accumulator holding aggregation of matrix multiplications. The accumulator must be of shape [BLOCK_SIZE1, BLOCK_SIZE3]. input1: First operand of matrix multiplication. The operand must be of shape [BLOCK_SIZE1, BLOCK_SIZE2]. input2: Second operand of matrix multiplication. The operand must be of shape [BLOCK_SIZE2, BLOCK_SIZE3]. fp16: Flag for converting operands to FP16. tf32: Flag for performing matrix multiplication in TF32. Returns: Accumulator with the result of the new matrix multiplication added to it. """ if fp16: input1 = input1.to(tl.float16) input2 = input2.to(tl.float16) return accum + tl.dot(input1, input2, allow_tf32=tf32)
BobMcDear/attorch
attorch/math.py
https://github.com/BobMcDear/attorch/blob/fdd7c33c9476f19488b9025404112f56212dcb05/attorch/math.py
""" Pure math operations to be performed on loaded Triton tensors. """ import triton import triton.language as tl from .act_kernels import apply_act_func @triton.jit def accum_linear(accum, input1, input2, fp16: tl.constexpr, tf32: tl.constexpr): """ Accumulates matrix multiplications of input tensors for linear functions. Args: accum: Accumulator holding aggregation of matrix multiplications. The accumulator must be of shape [BLOCK_SIZE1, BLOCK_SIZE3]. input1: First operand of matrix multiplication. The operand must be of shape [BLOCK_SIZE1, BLOCK_SIZE2]. input2: Second operand of matrix multiplication. The operand must be of shape [BLOCK_SIZE2, BLOCK_SIZE3]. fp16: Flag for converting operands to FP16. tf32: Flag for performing matrix multiplication in TF32. Returns: Accumulator with the result of the new matrix multiplication added to it. """ if fp16: input1 = input1.to(tl.float16) input2 = input2.to(tl.float16) return accum + tl.dot(input1, input2, allow_tf32=tf32) @triton.jit def glu(input1, input2, param, act_func: tl.constexpr): """ Applies the gated linear unit with an arbitrary activation function to the input. Args: input1: First half of input to gate. The first half must be of the same shape as the second half. input2: Second half of input to gate. The second half must be of the same shape as the first half. param: Parameter in the case of parameterized activation functions. act_func: Name of activation function to apply. Options are 'sigmoid', 'logsigmoid', 'tanh', 'relu', 'gelu', 'silu', 'relu6', 'hardsigmoid', 'hardtanh', 'hardswish', 'selu', 'mish', 'softplus', 'softsign', 'tanhshrink', 'leaky_relu', 'elu', and 'celu'. param: Parameter in the case of parameterized activation functions. Args: Input transformed by the gated linear unit with an arbitrary activation function. """ return input1 * apply_act_func(input2, None, None, None, param, act_func, False) @triton.jit def softmax(input, log: tl.constexpr): """ Normalizes the input using softmax along the last dimension. Args: input: Input to normalize. The input must be of shape [BLOCK_SIZE1, BLOCK_SIZE2]. log: Flag for indicating if the log of softmax should be taken. Returns: Input normalized by softmax. """ input = input.to(tl.float32) input = input - tl.max(input, axis=1)[:, None] numerator = tl.exp(input) denominator = tl.sum(numerator, axis=1)[:, None] if log: output = input - tl.log(denominator) else: output = numerator / denominator return output @triton.jit def calc_mean_and_inv_std(input, last_dim, eps, last_dim_mask: tl.constexpr): """ Calculates the mean and inverse standard deviation of the input along the last dimension. Args: input: Input whose mean and inverse standard deviation are calculated. The input must be of shape [BLOCK_SIZE1, BLOCK_SIZE2]. last_dim: Size of the last dimension of input. eps: Epsilon added in the square root in the denominator to avoid division by zero. last_dim_mask: Mask for the last dimension indicating which elements should be included in the calculations. The mask must be of shape [BLOCK_SIZE2]. Returns: Mean and inverse standard deviation of the input. """ input = input.to(tl.float32) mean = tl.sum(input, axis=1) / last_dim diff = tl.where(last_dim_mask[None, :], input - mean[:, None], 0) inv_std = tl.rsqrt(tl.sum(diff * diff, axis=1) / last_dim + eps) return mean, inv_std @triton.jit def update_welford(input, prev_count, prev_mean, prev_var, curr_count, mask: tl.constexpr): """ Updates count, mean, and variance (M2) statistics for Welford's algorithm. Args: input: Input used to update statistics. The input must be of the same shape as the mask. prev_count: Previous count statistic to update. prev_mean: Previous mean statistic to update. prev_var: Previous variance (M2) statistic to update. curr_count: Count of elements in current input. mask: Mask indicating which elements should be included in the calculations. The mask must be of the same shape as the input. Returns: Updated count, mean, and variance (M2) statistics """ input = input.to(tl.float32) count = prev_count + curr_count mean = (tl.sum(input) - curr_count * prev_mean) / count deltas = tl.where(mask, (input - mean) * (input - prev_mean), 0.) var = prev_var + tl.sum(deltas) return count, mean, var @triton.jit def update_ema(prev_ema, new_val, momentum): """ Updates exponential moving average. Args: prev_ema: Previous exponential moving average. new_val: Value used to update the exponential moving average. momentum: Momentum. Returns: Updated running statistic. """ return (1 - momentum) * prev_ema + momentum * new_val @triton.jit def standardize(input, mean, inv_std, weight, bias): """ Standardizes the input given its mean and inverse standard deviation, multiplies the result by weights, and adds a bias vector. Args: input: Input to standardize. mean: Mean of input. inv_std: Inverse standard deviation of input. weight: Weight multiplied by the standardized input. bias: Bias added to the result of the weight multiplication. Returns: Standardized input. """ return weight * inv_std * (input - mean) + bias @triton.jit def calc_p_loss(input, target, size, p_loss: tl.constexpr, reduction: tl.constexpr): """ Measures the L1 or squared L2 norm of the difference between the input and target (i.e., mean absolute error or mean squared error). Args: input: Input. The input must be of shape [BLOCK_SIZE]. target: Target. The target must be of shape [BLOCK_SIZE]. size: Number of elements in the input and target. This value is used only if reduction is 'mean'. p_loss: p-norm used to compute the error. Options are 1 for MAE and 2 for MSE. reduction: Reduction strategy for the output. Options are 'none' for no reduction, 'mean' for averaging the error across all entries, and 'sum' for summing the error across all entries. Returns: Error. """ input = input.to(tl.float32) target = target.to(tl.float32) diff = input - target if p_loss == 1: error = tl.abs(diff) elif p_loss == 2: error = diff * diff if reduction == 'none': output = error elif reduction == 'mean': output = tl.sum(error) / size elif reduction == 'sum': output = tl.sum(error) return output @triton.jit def nll_loss(input, size, reduction: tl.constexpr): """ Measures the negative log likelihood loss given log-probabilities of target class. Args: input: Input containing predicted log-probabilities corresponding to target class. The input can have arbitrary shape. size: Number of elements in the input. This value is used only if reduction is 'mean'. reduction: Reduction strategy for the output. Options are 'none' for no reduction, 'mean' for averaging the loss across all entries, and 'sum' for summing the loss across all entries. Returns: Loss. """ input = input.to(tl.float32) if reduction == 'none': output = -input elif reduction == 'mean': output = -tl.sum(input) / size elif reduction == 'sum': output = -tl.sum(input) return output @triton.jit def cross_entropy_loss(input, pred): """ Measures the per-row cross entropy loss given input and predicted logits corresponding to target class. Args: input: Input. The input must be of shape [BLOCK_SIZE1, BLOCK_SIZE2]. pred: Predicted logits corresponding to target class. The predictions must be of shape [BLOCK_SIZE1]. Returns: Loss. """ input = input.to(tl.float32) pred = pred.to(tl.float32) mx = tl.max(input, axis=1) input -= mx[:, None] loss = tl.log(tl.sum(tl.exp(input), axis=1)) - pred + mx return loss
@triton.jit def glu(input1, input2, param, act_func: tl.constexpr): """ Applies the gated linear unit with an arbitrary activation function to the input. Args: input1: First half of input to gate. The first half must be of the same shape as the second half. input2: Second half of input to gate. The second half must be of the same shape as the first half. param: Parameter in the case of parameterized activation functions. act_func: Name of activation function to apply. Options are 'sigmoid', 'logsigmoid', 'tanh', 'relu', 'gelu', 'silu', 'relu6', 'hardsigmoid', 'hardtanh', 'hardswish', 'selu', 'mish', 'softplus', 'softsign', 'tanhshrink', 'leaky_relu', 'elu', and 'celu'. param: Parameter in the case of parameterized activation functions. Args: Input transformed by the gated linear unit with an arbitrary activation function. """ return input1 * apply_act_func(input2, None, None, None, param, act_func, False)
BobMcDear/attorch
attorch/math.py
https://github.com/BobMcDear/attorch/blob/fdd7c33c9476f19488b9025404112f56212dcb05/attorch/math.py
""" Pure math operations to be performed on loaded Triton tensors. """ import triton import triton.language as tl from .act_kernels import apply_act_func @triton.jit def accum_linear(accum, input1, input2, fp16: tl.constexpr, tf32: tl.constexpr): """ Accumulates matrix multiplications of input tensors for linear functions. Args: accum: Accumulator holding aggregation of matrix multiplications. The accumulator must be of shape [BLOCK_SIZE1, BLOCK_SIZE3]. input1: First operand of matrix multiplication. The operand must be of shape [BLOCK_SIZE1, BLOCK_SIZE2]. input2: Second operand of matrix multiplication. The operand must be of shape [BLOCK_SIZE2, BLOCK_SIZE3]. fp16: Flag for converting operands to FP16. tf32: Flag for performing matrix multiplication in TF32. Returns: Accumulator with the result of the new matrix multiplication added to it. """ if fp16: input1 = input1.to(tl.float16) input2 = input2.to(tl.float16) return accum + tl.dot(input1, input2, allow_tf32=tf32) @triton.jit def glu(input1, input2, param, act_func: tl.constexpr): """ Applies the gated linear unit with an arbitrary activation function to the input. Args: input1: First half of input to gate. The first half must be of the same shape as the second half. input2: Second half of input to gate. The second half must be of the same shape as the first half. param: Parameter in the case of parameterized activation functions. act_func: Name of activation function to apply. Options are 'sigmoid', 'logsigmoid', 'tanh', 'relu', 'gelu', 'silu', 'relu6', 'hardsigmoid', 'hardtanh', 'hardswish', 'selu', 'mish', 'softplus', 'softsign', 'tanhshrink', 'leaky_relu', 'elu', and 'celu'. param: Parameter in the case of parameterized activation functions. Args: Input transformed by the gated linear unit with an arbitrary activation function. """ return input1 * apply_act_func(input2, None, None, None, param, act_func, False) @triton.jit def softmax(input, log: tl.constexpr): """ Normalizes the input using softmax along the last dimension. Args: input: Input to normalize. The input must be of shape [BLOCK_SIZE1, BLOCK_SIZE2]. log: Flag for indicating if the log of softmax should be taken. Returns: Input normalized by softmax. """ input = input.to(tl.float32) input = input - tl.max(input, axis=1)[:, None] numerator = tl.exp(input) denominator = tl.sum(numerator, axis=1)[:, None] if log: output = input - tl.log(denominator) else: output = numerator / denominator return output @triton.jit def calc_mean_and_inv_std(input, last_dim, eps, last_dim_mask: tl.constexpr): """ Calculates the mean and inverse standard deviation of the input along the last dimension. Args: input: Input whose mean and inverse standard deviation are calculated. The input must be of shape [BLOCK_SIZE1, BLOCK_SIZE2]. last_dim: Size of the last dimension of input. eps: Epsilon added in the square root in the denominator to avoid division by zero. last_dim_mask: Mask for the last dimension indicating which elements should be included in the calculations. The mask must be of shape [BLOCK_SIZE2]. Returns: Mean and inverse standard deviation of the input. """ input = input.to(tl.float32) mean = tl.sum(input, axis=1) / last_dim diff = tl.where(last_dim_mask[None, :], input - mean[:, None], 0) inv_std = tl.rsqrt(tl.sum(diff * diff, axis=1) / last_dim + eps) return mean, inv_std @triton.jit def update_welford(input, prev_count, prev_mean, prev_var, curr_count, mask: tl.constexpr): """ Updates count, mean, and variance (M2) statistics for Welford's algorithm. Args: input: Input used to update statistics. The input must be of the same shape as the mask. prev_count: Previous count statistic to update. prev_mean: Previous mean statistic to update. prev_var: Previous variance (M2) statistic to update. curr_count: Count of elements in current input. mask: Mask indicating which elements should be included in the calculations. The mask must be of the same shape as the input. Returns: Updated count, mean, and variance (M2) statistics """ input = input.to(tl.float32) count = prev_count + curr_count mean = (tl.sum(input) - curr_count * prev_mean) / count deltas = tl.where(mask, (input - mean) * (input - prev_mean), 0.) var = prev_var + tl.sum(deltas) return count, mean, var @triton.jit def update_ema(prev_ema, new_val, momentum): """ Updates exponential moving average. Args: prev_ema: Previous exponential moving average. new_val: Value used to update the exponential moving average. momentum: Momentum. Returns: Updated running statistic. """ return (1 - momentum) * prev_ema + momentum * new_val @triton.jit def standardize(input, mean, inv_std, weight, bias): """ Standardizes the input given its mean and inverse standard deviation, multiplies the result by weights, and adds a bias vector. Args: input: Input to standardize. mean: Mean of input. inv_std: Inverse standard deviation of input. weight: Weight multiplied by the standardized input. bias: Bias added to the result of the weight multiplication. Returns: Standardized input. """ return weight * inv_std * (input - mean) + bias @triton.jit def calc_p_loss(input, target, size, p_loss: tl.constexpr, reduction: tl.constexpr): """ Measures the L1 or squared L2 norm of the difference between the input and target (i.e., mean absolute error or mean squared error). Args: input: Input. The input must be of shape [BLOCK_SIZE]. target: Target. The target must be of shape [BLOCK_SIZE]. size: Number of elements in the input and target. This value is used only if reduction is 'mean'. p_loss: p-norm used to compute the error. Options are 1 for MAE and 2 for MSE. reduction: Reduction strategy for the output. Options are 'none' for no reduction, 'mean' for averaging the error across all entries, and 'sum' for summing the error across all entries. Returns: Error. """ input = input.to(tl.float32) target = target.to(tl.float32) diff = input - target if p_loss == 1: error = tl.abs(diff) elif p_loss == 2: error = diff * diff if reduction == 'none': output = error elif reduction == 'mean': output = tl.sum(error) / size elif reduction == 'sum': output = tl.sum(error) return output @triton.jit def nll_loss(input, size, reduction: tl.constexpr): """ Measures the negative log likelihood loss given log-probabilities of target class. Args: input: Input containing predicted log-probabilities corresponding to target class. The input can have arbitrary shape. size: Number of elements in the input. This value is used only if reduction is 'mean'. reduction: Reduction strategy for the output. Options are 'none' for no reduction, 'mean' for averaging the loss across all entries, and 'sum' for summing the loss across all entries. Returns: Loss. """ input = input.to(tl.float32) if reduction == 'none': output = -input elif reduction == 'mean': output = -tl.sum(input) / size elif reduction == 'sum': output = -tl.sum(input) return output @triton.jit def cross_entropy_loss(input, pred): """ Measures the per-row cross entropy loss given input and predicted logits corresponding to target class. Args: input: Input. The input must be of shape [BLOCK_SIZE1, BLOCK_SIZE2]. pred: Predicted logits corresponding to target class. The predictions must be of shape [BLOCK_SIZE1]. Returns: Loss. """ input = input.to(tl.float32) pred = pred.to(tl.float32) mx = tl.max(input, axis=1) input -= mx[:, None] loss = tl.log(tl.sum(tl.exp(input), axis=1)) - pred + mx return loss
@triton.jit def softmax(input, log: tl.constexpr): """ Normalizes the input using softmax along the last dimension. Args: input: Input to normalize. The input must be of shape [BLOCK_SIZE1, BLOCK_SIZE2]. log: Flag for indicating if the log of softmax should be taken. Returns: Input normalized by softmax. """ input = input.to(tl.float32) input = input - tl.max(input, axis=1)[:, None] numerator = tl.exp(input) denominator = tl.sum(numerator, axis=1)[:, None] if log: output = input - tl.log(denominator) else: output = numerator / denominator return output
BobMcDear/attorch
attorch/math.py
https://github.com/BobMcDear/attorch/blob/fdd7c33c9476f19488b9025404112f56212dcb05/attorch/math.py
""" Pure math operations to be performed on loaded Triton tensors. """ import triton import triton.language as tl from .act_kernels import apply_act_func @triton.jit def accum_linear(accum, input1, input2, fp16: tl.constexpr, tf32: tl.constexpr): """ Accumulates matrix multiplications of input tensors for linear functions. Args: accum: Accumulator holding aggregation of matrix multiplications. The accumulator must be of shape [BLOCK_SIZE1, BLOCK_SIZE3]. input1: First operand of matrix multiplication. The operand must be of shape [BLOCK_SIZE1, BLOCK_SIZE2]. input2: Second operand of matrix multiplication. The operand must be of shape [BLOCK_SIZE2, BLOCK_SIZE3]. fp16: Flag for converting operands to FP16. tf32: Flag for performing matrix multiplication in TF32. Returns: Accumulator with the result of the new matrix multiplication added to it. """ if fp16: input1 = input1.to(tl.float16) input2 = input2.to(tl.float16) return accum + tl.dot(input1, input2, allow_tf32=tf32) @triton.jit def glu(input1, input2, param, act_func: tl.constexpr): """ Applies the gated linear unit with an arbitrary activation function to the input. Args: input1: First half of input to gate. The first half must be of the same shape as the second half. input2: Second half of input to gate. The second half must be of the same shape as the first half. param: Parameter in the case of parameterized activation functions. act_func: Name of activation function to apply. Options are 'sigmoid', 'logsigmoid', 'tanh', 'relu', 'gelu', 'silu', 'relu6', 'hardsigmoid', 'hardtanh', 'hardswish', 'selu', 'mish', 'softplus', 'softsign', 'tanhshrink', 'leaky_relu', 'elu', and 'celu'. param: Parameter in the case of parameterized activation functions. Args: Input transformed by the gated linear unit with an arbitrary activation function. """ return input1 * apply_act_func(input2, None, None, None, param, act_func, False) @triton.jit def softmax(input, log: tl.constexpr): """ Normalizes the input using softmax along the last dimension. Args: input: Input to normalize. The input must be of shape [BLOCK_SIZE1, BLOCK_SIZE2]. log: Flag for indicating if the log of softmax should be taken. Returns: Input normalized by softmax. """ input = input.to(tl.float32) input = input - tl.max(input, axis=1)[:, None] numerator = tl.exp(input) denominator = tl.sum(numerator, axis=1)[:, None] if log: output = input - tl.log(denominator) else: output = numerator / denominator return output @triton.jit def calc_mean_and_inv_std(input, last_dim, eps, last_dim_mask: tl.constexpr): """ Calculates the mean and inverse standard deviation of the input along the last dimension. Args: input: Input whose mean and inverse standard deviation are calculated. The input must be of shape [BLOCK_SIZE1, BLOCK_SIZE2]. last_dim: Size of the last dimension of input. eps: Epsilon added in the square root in the denominator to avoid division by zero. last_dim_mask: Mask for the last dimension indicating which elements should be included in the calculations. The mask must be of shape [BLOCK_SIZE2]. Returns: Mean and inverse standard deviation of the input. """ input = input.to(tl.float32) mean = tl.sum(input, axis=1) / last_dim diff = tl.where(last_dim_mask[None, :], input - mean[:, None], 0) inv_std = tl.rsqrt(tl.sum(diff * diff, axis=1) / last_dim + eps) return mean, inv_std @triton.jit def update_welford(input, prev_count, prev_mean, prev_var, curr_count, mask: tl.constexpr): """ Updates count, mean, and variance (M2) statistics for Welford's algorithm. Args: input: Input used to update statistics. The input must be of the same shape as the mask. prev_count: Previous count statistic to update. prev_mean: Previous mean statistic to update. prev_var: Previous variance (M2) statistic to update. curr_count: Count of elements in current input. mask: Mask indicating which elements should be included in the calculations. The mask must be of the same shape as the input. Returns: Updated count, mean, and variance (M2) statistics """ input = input.to(tl.float32) count = prev_count + curr_count mean = (tl.sum(input) - curr_count * prev_mean) / count deltas = tl.where(mask, (input - mean) * (input - prev_mean), 0.) var = prev_var + tl.sum(deltas) return count, mean, var @triton.jit def update_ema(prev_ema, new_val, momentum): """ Updates exponential moving average. Args: prev_ema: Previous exponential moving average. new_val: Value used to update the exponential moving average. momentum: Momentum. Returns: Updated running statistic. """ return (1 - momentum) * prev_ema + momentum * new_val @triton.jit def standardize(input, mean, inv_std, weight, bias): """ Standardizes the input given its mean and inverse standard deviation, multiplies the result by weights, and adds a bias vector. Args: input: Input to standardize. mean: Mean of input. inv_std: Inverse standard deviation of input. weight: Weight multiplied by the standardized input. bias: Bias added to the result of the weight multiplication. Returns: Standardized input. """ return weight * inv_std * (input - mean) + bias @triton.jit def calc_p_loss(input, target, size, p_loss: tl.constexpr, reduction: tl.constexpr): """ Measures the L1 or squared L2 norm of the difference between the input and target (i.e., mean absolute error or mean squared error). Args: input: Input. The input must be of shape [BLOCK_SIZE]. target: Target. The target must be of shape [BLOCK_SIZE]. size: Number of elements in the input and target. This value is used only if reduction is 'mean'. p_loss: p-norm used to compute the error. Options are 1 for MAE and 2 for MSE. reduction: Reduction strategy for the output. Options are 'none' for no reduction, 'mean' for averaging the error across all entries, and 'sum' for summing the error across all entries. Returns: Error. """ input = input.to(tl.float32) target = target.to(tl.float32) diff = input - target if p_loss == 1: error = tl.abs(diff) elif p_loss == 2: error = diff * diff if reduction == 'none': output = error elif reduction == 'mean': output = tl.sum(error) / size elif reduction == 'sum': output = tl.sum(error) return output @triton.jit def nll_loss(input, size, reduction: tl.constexpr): """ Measures the negative log likelihood loss given log-probabilities of target class. Args: input: Input containing predicted log-probabilities corresponding to target class. The input can have arbitrary shape. size: Number of elements in the input. This value is used only if reduction is 'mean'. reduction: Reduction strategy for the output. Options are 'none' for no reduction, 'mean' for averaging the loss across all entries, and 'sum' for summing the loss across all entries. Returns: Loss. """ input = input.to(tl.float32) if reduction == 'none': output = -input elif reduction == 'mean': output = -tl.sum(input) / size elif reduction == 'sum': output = -tl.sum(input) return output @triton.jit def cross_entropy_loss(input, pred): """ Measures the per-row cross entropy loss given input and predicted logits corresponding to target class. Args: input: Input. The input must be of shape [BLOCK_SIZE1, BLOCK_SIZE2]. pred: Predicted logits corresponding to target class. The predictions must be of shape [BLOCK_SIZE1]. Returns: Loss. """ input = input.to(tl.float32) pred = pred.to(tl.float32) mx = tl.max(input, axis=1) input -= mx[:, None] loss = tl.log(tl.sum(tl.exp(input), axis=1)) - pred + mx return loss
@triton.jit def calc_mean_and_inv_std(input, last_dim, eps, last_dim_mask: tl.constexpr): """ Calculates the mean and inverse standard deviation of the input along the last dimension. Args: input: Input whose mean and inverse standard deviation are calculated. The input must be of shape [BLOCK_SIZE1, BLOCK_SIZE2]. last_dim: Size of the last dimension of input. eps: Epsilon added in the square root in the denominator to avoid division by zero. last_dim_mask: Mask for the last dimension indicating which elements should be included in the calculations. The mask must be of shape [BLOCK_SIZE2]. Returns: Mean and inverse standard deviation of the input. """ input = input.to(tl.float32) mean = tl.sum(input, axis=1) / last_dim diff = tl.where(last_dim_mask[None, :], input - mean[:, None], 0) inv_std = tl.rsqrt(tl.sum(diff * diff, axis=1) / last_dim + eps) return mean, inv_std
BobMcDear/attorch
attorch/math.py
https://github.com/BobMcDear/attorch/blob/fdd7c33c9476f19488b9025404112f56212dcb05/attorch/math.py
""" Pure math operations to be performed on loaded Triton tensors. """ import triton import triton.language as tl from .act_kernels import apply_act_func @triton.jit def accum_linear(accum, input1, input2, fp16: tl.constexpr, tf32: tl.constexpr): """ Accumulates matrix multiplications of input tensors for linear functions. Args: accum: Accumulator holding aggregation of matrix multiplications. The accumulator must be of shape [BLOCK_SIZE1, BLOCK_SIZE3]. input1: First operand of matrix multiplication. The operand must be of shape [BLOCK_SIZE1, BLOCK_SIZE2]. input2: Second operand of matrix multiplication. The operand must be of shape [BLOCK_SIZE2, BLOCK_SIZE3]. fp16: Flag for converting operands to FP16. tf32: Flag for performing matrix multiplication in TF32. Returns: Accumulator with the result of the new matrix multiplication added to it. """ if fp16: input1 = input1.to(tl.float16) input2 = input2.to(tl.float16) return accum + tl.dot(input1, input2, allow_tf32=tf32) @triton.jit def glu(input1, input2, param, act_func: tl.constexpr): """ Applies the gated linear unit with an arbitrary activation function to the input. Args: input1: First half of input to gate. The first half must be of the same shape as the second half. input2: Second half of input to gate. The second half must be of the same shape as the first half. param: Parameter in the case of parameterized activation functions. act_func: Name of activation function to apply. Options are 'sigmoid', 'logsigmoid', 'tanh', 'relu', 'gelu', 'silu', 'relu6', 'hardsigmoid', 'hardtanh', 'hardswish', 'selu', 'mish', 'softplus', 'softsign', 'tanhshrink', 'leaky_relu', 'elu', and 'celu'. param: Parameter in the case of parameterized activation functions. Args: Input transformed by the gated linear unit with an arbitrary activation function. """ return input1 * apply_act_func(input2, None, None, None, param, act_func, False) @triton.jit def softmax(input, log: tl.constexpr): """ Normalizes the input using softmax along the last dimension. Args: input: Input to normalize. The input must be of shape [BLOCK_SIZE1, BLOCK_SIZE2]. log: Flag for indicating if the log of softmax should be taken. Returns: Input normalized by softmax. """ input = input.to(tl.float32) input = input - tl.max(input, axis=1)[:, None] numerator = tl.exp(input) denominator = tl.sum(numerator, axis=1)[:, None] if log: output = input - tl.log(denominator) else: output = numerator / denominator return output @triton.jit def calc_mean_and_inv_std(input, last_dim, eps, last_dim_mask: tl.constexpr): """ Calculates the mean and inverse standard deviation of the input along the last dimension. Args: input: Input whose mean and inverse standard deviation are calculated. The input must be of shape [BLOCK_SIZE1, BLOCK_SIZE2]. last_dim: Size of the last dimension of input. eps: Epsilon added in the square root in the denominator to avoid division by zero. last_dim_mask: Mask for the last dimension indicating which elements should be included in the calculations. The mask must be of shape [BLOCK_SIZE2]. Returns: Mean and inverse standard deviation of the input. """ input = input.to(tl.float32) mean = tl.sum(input, axis=1) / last_dim diff = tl.where(last_dim_mask[None, :], input - mean[:, None], 0) inv_std = tl.rsqrt(tl.sum(diff * diff, axis=1) / last_dim + eps) return mean, inv_std @triton.jit def update_welford(input, prev_count, prev_mean, prev_var, curr_count, mask: tl.constexpr): """ Updates count, mean, and variance (M2) statistics for Welford's algorithm. Args: input: Input used to update statistics. The input must be of the same shape as the mask. prev_count: Previous count statistic to update. prev_mean: Previous mean statistic to update. prev_var: Previous variance (M2) statistic to update. curr_count: Count of elements in current input. mask: Mask indicating which elements should be included in the calculations. The mask must be of the same shape as the input. Returns: Updated count, mean, and variance (M2) statistics """ input = input.to(tl.float32) count = prev_count + curr_count mean = (tl.sum(input) - curr_count * prev_mean) / count deltas = tl.where(mask, (input - mean) * (input - prev_mean), 0.) var = prev_var + tl.sum(deltas) return count, mean, var @triton.jit def update_ema(prev_ema, new_val, momentum): """ Updates exponential moving average. Args: prev_ema: Previous exponential moving average. new_val: Value used to update the exponential moving average. momentum: Momentum. Returns: Updated running statistic. """ return (1 - momentum) * prev_ema + momentum * new_val @triton.jit def standardize(input, mean, inv_std, weight, bias): """ Standardizes the input given its mean and inverse standard deviation, multiplies the result by weights, and adds a bias vector. Args: input: Input to standardize. mean: Mean of input. inv_std: Inverse standard deviation of input. weight: Weight multiplied by the standardized input. bias: Bias added to the result of the weight multiplication. Returns: Standardized input. """ return weight * inv_std * (input - mean) + bias @triton.jit def calc_p_loss(input, target, size, p_loss: tl.constexpr, reduction: tl.constexpr): """ Measures the L1 or squared L2 norm of the difference between the input and target (i.e., mean absolute error or mean squared error). Args: input: Input. The input must be of shape [BLOCK_SIZE]. target: Target. The target must be of shape [BLOCK_SIZE]. size: Number of elements in the input and target. This value is used only if reduction is 'mean'. p_loss: p-norm used to compute the error. Options are 1 for MAE and 2 for MSE. reduction: Reduction strategy for the output. Options are 'none' for no reduction, 'mean' for averaging the error across all entries, and 'sum' for summing the error across all entries. Returns: Error. """ input = input.to(tl.float32) target = target.to(tl.float32) diff = input - target if p_loss == 1: error = tl.abs(diff) elif p_loss == 2: error = diff * diff if reduction == 'none': output = error elif reduction == 'mean': output = tl.sum(error) / size elif reduction == 'sum': output = tl.sum(error) return output @triton.jit def nll_loss(input, size, reduction: tl.constexpr): """ Measures the negative log likelihood loss given log-probabilities of target class. Args: input: Input containing predicted log-probabilities corresponding to target class. The input can have arbitrary shape. size: Number of elements in the input. This value is used only if reduction is 'mean'. reduction: Reduction strategy for the output. Options are 'none' for no reduction, 'mean' for averaging the loss across all entries, and 'sum' for summing the loss across all entries. Returns: Loss. """ input = input.to(tl.float32) if reduction == 'none': output = -input elif reduction == 'mean': output = -tl.sum(input) / size elif reduction == 'sum': output = -tl.sum(input) return output @triton.jit def cross_entropy_loss(input, pred): """ Measures the per-row cross entropy loss given input and predicted logits corresponding to target class. Args: input: Input. The input must be of shape [BLOCK_SIZE1, BLOCK_SIZE2]. pred: Predicted logits corresponding to target class. The predictions must be of shape [BLOCK_SIZE1]. Returns: Loss. """ input = input.to(tl.float32) pred = pred.to(tl.float32) mx = tl.max(input, axis=1) input -= mx[:, None] loss = tl.log(tl.sum(tl.exp(input), axis=1)) - pred + mx return loss
@triton.jit def update_welford(input, prev_count, prev_mean, prev_var, curr_count, mask: tl.constexpr): """ Updates count, mean, and variance (M2) statistics for Welford's algorithm. Args: input: Input used to update statistics. The input must be of the same shape as the mask. prev_count: Previous count statistic to update. prev_mean: Previous mean statistic to update. prev_var: Previous variance (M2) statistic to update. curr_count: Count of elements in current input. mask: Mask indicating which elements should be included in the calculations. The mask must be of the same shape as the input. Returns: Updated count, mean, and variance (M2) statistics """ input = input.to(tl.float32) count = prev_count + curr_count mean = (tl.sum(input) - curr_count * prev_mean) / count deltas = tl.where(mask, (input - mean) * (input - prev_mean), 0.) var = prev_var + tl.sum(deltas) return count, mean, var
BobMcDear/attorch
attorch/math.py
https://github.com/BobMcDear/attorch/blob/fdd7c33c9476f19488b9025404112f56212dcb05/attorch/math.py
""" Pure math operations to be performed on loaded Triton tensors. """ import triton import triton.language as tl from .act_kernels import apply_act_func @triton.jit def accum_linear(accum, input1, input2, fp16: tl.constexpr, tf32: tl.constexpr): """ Accumulates matrix multiplications of input tensors for linear functions. Args: accum: Accumulator holding aggregation of matrix multiplications. The accumulator must be of shape [BLOCK_SIZE1, BLOCK_SIZE3]. input1: First operand of matrix multiplication. The operand must be of shape [BLOCK_SIZE1, BLOCK_SIZE2]. input2: Second operand of matrix multiplication. The operand must be of shape [BLOCK_SIZE2, BLOCK_SIZE3]. fp16: Flag for converting operands to FP16. tf32: Flag for performing matrix multiplication in TF32. Returns: Accumulator with the result of the new matrix multiplication added to it. """ if fp16: input1 = input1.to(tl.float16) input2 = input2.to(tl.float16) return accum + tl.dot(input1, input2, allow_tf32=tf32) @triton.jit def glu(input1, input2, param, act_func: tl.constexpr): """ Applies the gated linear unit with an arbitrary activation function to the input. Args: input1: First half of input to gate. The first half must be of the same shape as the second half. input2: Second half of input to gate. The second half must be of the same shape as the first half. param: Parameter in the case of parameterized activation functions. act_func: Name of activation function to apply. Options are 'sigmoid', 'logsigmoid', 'tanh', 'relu', 'gelu', 'silu', 'relu6', 'hardsigmoid', 'hardtanh', 'hardswish', 'selu', 'mish', 'softplus', 'softsign', 'tanhshrink', 'leaky_relu', 'elu', and 'celu'. param: Parameter in the case of parameterized activation functions. Args: Input transformed by the gated linear unit with an arbitrary activation function. """ return input1 * apply_act_func(input2, None, None, None, param, act_func, False) @triton.jit def softmax(input, log: tl.constexpr): """ Normalizes the input using softmax along the last dimension. Args: input: Input to normalize. The input must be of shape [BLOCK_SIZE1, BLOCK_SIZE2]. log: Flag for indicating if the log of softmax should be taken. Returns: Input normalized by softmax. """ input = input.to(tl.float32) input = input - tl.max(input, axis=1)[:, None] numerator = tl.exp(input) denominator = tl.sum(numerator, axis=1)[:, None] if log: output = input - tl.log(denominator) else: output = numerator / denominator return output @triton.jit def calc_mean_and_inv_std(input, last_dim, eps, last_dim_mask: tl.constexpr): """ Calculates the mean and inverse standard deviation of the input along the last dimension. Args: input: Input whose mean and inverse standard deviation are calculated. The input must be of shape [BLOCK_SIZE1, BLOCK_SIZE2]. last_dim: Size of the last dimension of input. eps: Epsilon added in the square root in the denominator to avoid division by zero. last_dim_mask: Mask for the last dimension indicating which elements should be included in the calculations. The mask must be of shape [BLOCK_SIZE2]. Returns: Mean and inverse standard deviation of the input. """ input = input.to(tl.float32) mean = tl.sum(input, axis=1) / last_dim diff = tl.where(last_dim_mask[None, :], input - mean[:, None], 0) inv_std = tl.rsqrt(tl.sum(diff * diff, axis=1) / last_dim + eps) return mean, inv_std @triton.jit def update_welford(input, prev_count, prev_mean, prev_var, curr_count, mask: tl.constexpr): """ Updates count, mean, and variance (M2) statistics for Welford's algorithm. Args: input: Input used to update statistics. The input must be of the same shape as the mask. prev_count: Previous count statistic to update. prev_mean: Previous mean statistic to update. prev_var: Previous variance (M2) statistic to update. curr_count: Count of elements in current input. mask: Mask indicating which elements should be included in the calculations. The mask must be of the same shape as the input. Returns: Updated count, mean, and variance (M2) statistics """ input = input.to(tl.float32) count = prev_count + curr_count mean = (tl.sum(input) - curr_count * prev_mean) / count deltas = tl.where(mask, (input - mean) * (input - prev_mean), 0.) var = prev_var + tl.sum(deltas) return count, mean, var @triton.jit def update_ema(prev_ema, new_val, momentum): """ Updates exponential moving average. Args: prev_ema: Previous exponential moving average. new_val: Value used to update the exponential moving average. momentum: Momentum. Returns: Updated running statistic. """ return (1 - momentum) * prev_ema + momentum * new_val @triton.jit def standardize(input, mean, inv_std, weight, bias): """ Standardizes the input given its mean and inverse standard deviation, multiplies the result by weights, and adds a bias vector. Args: input: Input to standardize. mean: Mean of input. inv_std: Inverse standard deviation of input. weight: Weight multiplied by the standardized input. bias: Bias added to the result of the weight multiplication. Returns: Standardized input. """ return weight * inv_std * (input - mean) + bias @triton.jit def calc_p_loss(input, target, size, p_loss: tl.constexpr, reduction: tl.constexpr): """ Measures the L1 or squared L2 norm of the difference between the input and target (i.e., mean absolute error or mean squared error). Args: input: Input. The input must be of shape [BLOCK_SIZE]. target: Target. The target must be of shape [BLOCK_SIZE]. size: Number of elements in the input and target. This value is used only if reduction is 'mean'. p_loss: p-norm used to compute the error. Options are 1 for MAE and 2 for MSE. reduction: Reduction strategy for the output. Options are 'none' for no reduction, 'mean' for averaging the error across all entries, and 'sum' for summing the error across all entries. Returns: Error. """ input = input.to(tl.float32) target = target.to(tl.float32) diff = input - target if p_loss == 1: error = tl.abs(diff) elif p_loss == 2: error = diff * diff if reduction == 'none': output = error elif reduction == 'mean': output = tl.sum(error) / size elif reduction == 'sum': output = tl.sum(error) return output @triton.jit def nll_loss(input, size, reduction: tl.constexpr): """ Measures the negative log likelihood loss given log-probabilities of target class. Args: input: Input containing predicted log-probabilities corresponding to target class. The input can have arbitrary shape. size: Number of elements in the input. This value is used only if reduction is 'mean'. reduction: Reduction strategy for the output. Options are 'none' for no reduction, 'mean' for averaging the loss across all entries, and 'sum' for summing the loss across all entries. Returns: Loss. """ input = input.to(tl.float32) if reduction == 'none': output = -input elif reduction == 'mean': output = -tl.sum(input) / size elif reduction == 'sum': output = -tl.sum(input) return output @triton.jit def cross_entropy_loss(input, pred): """ Measures the per-row cross entropy loss given input and predicted logits corresponding to target class. Args: input: Input. The input must be of shape [BLOCK_SIZE1, BLOCK_SIZE2]. pred: Predicted logits corresponding to target class. The predictions must be of shape [BLOCK_SIZE1]. Returns: Loss. """ input = input.to(tl.float32) pred = pred.to(tl.float32) mx = tl.max(input, axis=1) input -= mx[:, None] loss = tl.log(tl.sum(tl.exp(input), axis=1)) - pred + mx return loss
@triton.jit def update_ema(prev_ema, new_val, momentum): """ Updates exponential moving average. Args: prev_ema: Previous exponential moving average. new_val: Value used to update the exponential moving average. momentum: Momentum. Returns: Updated running statistic. """ return (1 - momentum) * prev_ema + momentum * new_val
BobMcDear/attorch
attorch/math.py
https://github.com/BobMcDear/attorch/blob/fdd7c33c9476f19488b9025404112f56212dcb05/attorch/math.py
""" Pure math operations to be performed on loaded Triton tensors. """ import triton import triton.language as tl from .act_kernels import apply_act_func @triton.jit def accum_linear(accum, input1, input2, fp16: tl.constexpr, tf32: tl.constexpr): """ Accumulates matrix multiplications of input tensors for linear functions. Args: accum: Accumulator holding aggregation of matrix multiplications. The accumulator must be of shape [BLOCK_SIZE1, BLOCK_SIZE3]. input1: First operand of matrix multiplication. The operand must be of shape [BLOCK_SIZE1, BLOCK_SIZE2]. input2: Second operand of matrix multiplication. The operand must be of shape [BLOCK_SIZE2, BLOCK_SIZE3]. fp16: Flag for converting operands to FP16. tf32: Flag for performing matrix multiplication in TF32. Returns: Accumulator with the result of the new matrix multiplication added to it. """ if fp16: input1 = input1.to(tl.float16) input2 = input2.to(tl.float16) return accum + tl.dot(input1, input2, allow_tf32=tf32) @triton.jit def glu(input1, input2, param, act_func: tl.constexpr): """ Applies the gated linear unit with an arbitrary activation function to the input. Args: input1: First half of input to gate. The first half must be of the same shape as the second half. input2: Second half of input to gate. The second half must be of the same shape as the first half. param: Parameter in the case of parameterized activation functions. act_func: Name of activation function to apply. Options are 'sigmoid', 'logsigmoid', 'tanh', 'relu', 'gelu', 'silu', 'relu6', 'hardsigmoid', 'hardtanh', 'hardswish', 'selu', 'mish', 'softplus', 'softsign', 'tanhshrink', 'leaky_relu', 'elu', and 'celu'. param: Parameter in the case of parameterized activation functions. Args: Input transformed by the gated linear unit with an arbitrary activation function. """ return input1 * apply_act_func(input2, None, None, None, param, act_func, False) @triton.jit def softmax(input, log: tl.constexpr): """ Normalizes the input using softmax along the last dimension. Args: input: Input to normalize. The input must be of shape [BLOCK_SIZE1, BLOCK_SIZE2]. log: Flag for indicating if the log of softmax should be taken. Returns: Input normalized by softmax. """ input = input.to(tl.float32) input = input - tl.max(input, axis=1)[:, None] numerator = tl.exp(input) denominator = tl.sum(numerator, axis=1)[:, None] if log: output = input - tl.log(denominator) else: output = numerator / denominator return output @triton.jit def calc_mean_and_inv_std(input, last_dim, eps, last_dim_mask: tl.constexpr): """ Calculates the mean and inverse standard deviation of the input along the last dimension. Args: input: Input whose mean and inverse standard deviation are calculated. The input must be of shape [BLOCK_SIZE1, BLOCK_SIZE2]. last_dim: Size of the last dimension of input. eps: Epsilon added in the square root in the denominator to avoid division by zero. last_dim_mask: Mask for the last dimension indicating which elements should be included in the calculations. The mask must be of shape [BLOCK_SIZE2]. Returns: Mean and inverse standard deviation of the input. """ input = input.to(tl.float32) mean = tl.sum(input, axis=1) / last_dim diff = tl.where(last_dim_mask[None, :], input - mean[:, None], 0) inv_std = tl.rsqrt(tl.sum(diff * diff, axis=1) / last_dim + eps) return mean, inv_std @triton.jit def update_welford(input, prev_count, prev_mean, prev_var, curr_count, mask: tl.constexpr): """ Updates count, mean, and variance (M2) statistics for Welford's algorithm. Args: input: Input used to update statistics. The input must be of the same shape as the mask. prev_count: Previous count statistic to update. prev_mean: Previous mean statistic to update. prev_var: Previous variance (M2) statistic to update. curr_count: Count of elements in current input. mask: Mask indicating which elements should be included in the calculations. The mask must be of the same shape as the input. Returns: Updated count, mean, and variance (M2) statistics """ input = input.to(tl.float32) count = prev_count + curr_count mean = (tl.sum(input) - curr_count * prev_mean) / count deltas = tl.where(mask, (input - mean) * (input - prev_mean), 0.) var = prev_var + tl.sum(deltas) return count, mean, var @triton.jit def update_ema(prev_ema, new_val, momentum): """ Updates exponential moving average. Args: prev_ema: Previous exponential moving average. new_val: Value used to update the exponential moving average. momentum: Momentum. Returns: Updated running statistic. """ return (1 - momentum) * prev_ema + momentum * new_val @triton.jit def standardize(input, mean, inv_std, weight, bias): """ Standardizes the input given its mean and inverse standard deviation, multiplies the result by weights, and adds a bias vector. Args: input: Input to standardize. mean: Mean of input. inv_std: Inverse standard deviation of input. weight: Weight multiplied by the standardized input. bias: Bias added to the result of the weight multiplication. Returns: Standardized input. """ return weight * inv_std * (input - mean) + bias @triton.jit def calc_p_loss(input, target, size, p_loss: tl.constexpr, reduction: tl.constexpr): """ Measures the L1 or squared L2 norm of the difference between the input and target (i.e., mean absolute error or mean squared error). Args: input: Input. The input must be of shape [BLOCK_SIZE]. target: Target. The target must be of shape [BLOCK_SIZE]. size: Number of elements in the input and target. This value is used only if reduction is 'mean'. p_loss: p-norm used to compute the error. Options are 1 for MAE and 2 for MSE. reduction: Reduction strategy for the output. Options are 'none' for no reduction, 'mean' for averaging the error across all entries, and 'sum' for summing the error across all entries. Returns: Error. """ input = input.to(tl.float32) target = target.to(tl.float32) diff = input - target if p_loss == 1: error = tl.abs(diff) elif p_loss == 2: error = diff * diff if reduction == 'none': output = error elif reduction == 'mean': output = tl.sum(error) / size elif reduction == 'sum': output = tl.sum(error) return output @triton.jit def nll_loss(input, size, reduction: tl.constexpr): """ Measures the negative log likelihood loss given log-probabilities of target class. Args: input: Input containing predicted log-probabilities corresponding to target class. The input can have arbitrary shape. size: Number of elements in the input. This value is used only if reduction is 'mean'. reduction: Reduction strategy for the output. Options are 'none' for no reduction, 'mean' for averaging the loss across all entries, and 'sum' for summing the loss across all entries. Returns: Loss. """ input = input.to(tl.float32) if reduction == 'none': output = -input elif reduction == 'mean': output = -tl.sum(input) / size elif reduction == 'sum': output = -tl.sum(input) return output @triton.jit def cross_entropy_loss(input, pred): """ Measures the per-row cross entropy loss given input and predicted logits corresponding to target class. Args: input: Input. The input must be of shape [BLOCK_SIZE1, BLOCK_SIZE2]. pred: Predicted logits corresponding to target class. The predictions must be of shape [BLOCK_SIZE1]. Returns: Loss. """ input = input.to(tl.float32) pred = pred.to(tl.float32) mx = tl.max(input, axis=1) input -= mx[:, None] loss = tl.log(tl.sum(tl.exp(input), axis=1)) - pred + mx return loss
@triton.jit def standardize(input, mean, inv_std, weight, bias): """ Standardizes the input given its mean and inverse standard deviation, multiplies the result by weights, and adds a bias vector. Args: input: Input to standardize. mean: Mean of input. inv_std: Inverse standard deviation of input. weight: Weight multiplied by the standardized input. bias: Bias added to the result of the weight multiplication. Returns: Standardized input. """ return weight * inv_std * (input - mean) + bias
BobMcDear/attorch
attorch/math.py
https://github.com/BobMcDear/attorch/blob/fdd7c33c9476f19488b9025404112f56212dcb05/attorch/math.py
""" Pure math operations to be performed on loaded Triton tensors. """ import triton import triton.language as tl from .act_kernels import apply_act_func @triton.jit def accum_linear(accum, input1, input2, fp16: tl.constexpr, tf32: tl.constexpr): """ Accumulates matrix multiplications of input tensors for linear functions. Args: accum: Accumulator holding aggregation of matrix multiplications. The accumulator must be of shape [BLOCK_SIZE1, BLOCK_SIZE3]. input1: First operand of matrix multiplication. The operand must be of shape [BLOCK_SIZE1, BLOCK_SIZE2]. input2: Second operand of matrix multiplication. The operand must be of shape [BLOCK_SIZE2, BLOCK_SIZE3]. fp16: Flag for converting operands to FP16. tf32: Flag for performing matrix multiplication in TF32. Returns: Accumulator with the result of the new matrix multiplication added to it. """ if fp16: input1 = input1.to(tl.float16) input2 = input2.to(tl.float16) return accum + tl.dot(input1, input2, allow_tf32=tf32) @triton.jit def glu(input1, input2, param, act_func: tl.constexpr): """ Applies the gated linear unit with an arbitrary activation function to the input. Args: input1: First half of input to gate. The first half must be of the same shape as the second half. input2: Second half of input to gate. The second half must be of the same shape as the first half. param: Parameter in the case of parameterized activation functions. act_func: Name of activation function to apply. Options are 'sigmoid', 'logsigmoid', 'tanh', 'relu', 'gelu', 'silu', 'relu6', 'hardsigmoid', 'hardtanh', 'hardswish', 'selu', 'mish', 'softplus', 'softsign', 'tanhshrink', 'leaky_relu', 'elu', and 'celu'. param: Parameter in the case of parameterized activation functions. Args: Input transformed by the gated linear unit with an arbitrary activation function. """ return input1 * apply_act_func(input2, None, None, None, param, act_func, False) @triton.jit def softmax(input, log: tl.constexpr): """ Normalizes the input using softmax along the last dimension. Args: input: Input to normalize. The input must be of shape [BLOCK_SIZE1, BLOCK_SIZE2]. log: Flag for indicating if the log of softmax should be taken. Returns: Input normalized by softmax. """ input = input.to(tl.float32) input = input - tl.max(input, axis=1)[:, None] numerator = tl.exp(input) denominator = tl.sum(numerator, axis=1)[:, None] if log: output = input - tl.log(denominator) else: output = numerator / denominator return output @triton.jit def calc_mean_and_inv_std(input, last_dim, eps, last_dim_mask: tl.constexpr): """ Calculates the mean and inverse standard deviation of the input along the last dimension. Args: input: Input whose mean and inverse standard deviation are calculated. The input must be of shape [BLOCK_SIZE1, BLOCK_SIZE2]. last_dim: Size of the last dimension of input. eps: Epsilon added in the square root in the denominator to avoid division by zero. last_dim_mask: Mask for the last dimension indicating which elements should be included in the calculations. The mask must be of shape [BLOCK_SIZE2]. Returns: Mean and inverse standard deviation of the input. """ input = input.to(tl.float32) mean = tl.sum(input, axis=1) / last_dim diff = tl.where(last_dim_mask[None, :], input - mean[:, None], 0) inv_std = tl.rsqrt(tl.sum(diff * diff, axis=1) / last_dim + eps) return mean, inv_std @triton.jit def update_welford(input, prev_count, prev_mean, prev_var, curr_count, mask: tl.constexpr): """ Updates count, mean, and variance (M2) statistics for Welford's algorithm. Args: input: Input used to update statistics. The input must be of the same shape as the mask. prev_count: Previous count statistic to update. prev_mean: Previous mean statistic to update. prev_var: Previous variance (M2) statistic to update. curr_count: Count of elements in current input. mask: Mask indicating which elements should be included in the calculations. The mask must be of the same shape as the input. Returns: Updated count, mean, and variance (M2) statistics """ input = input.to(tl.float32) count = prev_count + curr_count mean = (tl.sum(input) - curr_count * prev_mean) / count deltas = tl.where(mask, (input - mean) * (input - prev_mean), 0.) var = prev_var + tl.sum(deltas) return count, mean, var @triton.jit def update_ema(prev_ema, new_val, momentum): """ Updates exponential moving average. Args: prev_ema: Previous exponential moving average. new_val: Value used to update the exponential moving average. momentum: Momentum. Returns: Updated running statistic. """ return (1 - momentum) * prev_ema + momentum * new_val @triton.jit def standardize(input, mean, inv_std, weight, bias): """ Standardizes the input given its mean and inverse standard deviation, multiplies the result by weights, and adds a bias vector. Args: input: Input to standardize. mean: Mean of input. inv_std: Inverse standard deviation of input. weight: Weight multiplied by the standardized input. bias: Bias added to the result of the weight multiplication. Returns: Standardized input. """ return weight * inv_std * (input - mean) + bias @triton.jit def calc_p_loss(input, target, size, p_loss: tl.constexpr, reduction: tl.constexpr): """ Measures the L1 or squared L2 norm of the difference between the input and target (i.e., mean absolute error or mean squared error). Args: input: Input. The input must be of shape [BLOCK_SIZE]. target: Target. The target must be of shape [BLOCK_SIZE]. size: Number of elements in the input and target. This value is used only if reduction is 'mean'. p_loss: p-norm used to compute the error. Options are 1 for MAE and 2 for MSE. reduction: Reduction strategy for the output. Options are 'none' for no reduction, 'mean' for averaging the error across all entries, and 'sum' for summing the error across all entries. Returns: Error. """ input = input.to(tl.float32) target = target.to(tl.float32) diff = input - target if p_loss == 1: error = tl.abs(diff) elif p_loss == 2: error = diff * diff if reduction == 'none': output = error elif reduction == 'mean': output = tl.sum(error) / size elif reduction == 'sum': output = tl.sum(error) return output @triton.jit def nll_loss(input, size, reduction: tl.constexpr): """ Measures the negative log likelihood loss given log-probabilities of target class. Args: input: Input containing predicted log-probabilities corresponding to target class. The input can have arbitrary shape. size: Number of elements in the input. This value is used only if reduction is 'mean'. reduction: Reduction strategy for the output. Options are 'none' for no reduction, 'mean' for averaging the loss across all entries, and 'sum' for summing the loss across all entries. Returns: Loss. """ input = input.to(tl.float32) if reduction == 'none': output = -input elif reduction == 'mean': output = -tl.sum(input) / size elif reduction == 'sum': output = -tl.sum(input) return output @triton.jit def cross_entropy_loss(input, pred): """ Measures the per-row cross entropy loss given input and predicted logits corresponding to target class. Args: input: Input. The input must be of shape [BLOCK_SIZE1, BLOCK_SIZE2]. pred: Predicted logits corresponding to target class. The predictions must be of shape [BLOCK_SIZE1]. Returns: Loss. """ input = input.to(tl.float32) pred = pred.to(tl.float32) mx = tl.max(input, axis=1) input -= mx[:, None] loss = tl.log(tl.sum(tl.exp(input), axis=1)) - pred + mx return loss
@triton.jit def calc_p_loss(input, target, size, p_loss: tl.constexpr, reduction: tl.constexpr): """ Measures the L1 or squared L2 norm of the difference between the input and target (i.e., mean absolute error or mean squared error). Args: input: Input. The input must be of shape [BLOCK_SIZE]. target: Target. The target must be of shape [BLOCK_SIZE]. size: Number of elements in the input and target. This value is used only if reduction is 'mean'. p_loss: p-norm used to compute the error. Options are 1 for MAE and 2 for MSE. reduction: Reduction strategy for the output. Options are 'none' for no reduction, 'mean' for averaging the error across all entries, and 'sum' for summing the error across all entries. Returns: Error. """ input = input.to(tl.float32) target = target.to(tl.float32) diff = input - target if p_loss == 1: error = tl.abs(diff) elif p_loss == 2: error = diff * diff if reduction == 'none': output = error elif reduction == 'mean': output = tl.sum(error) / size elif reduction == 'sum': output = tl.sum(error) return output
BobMcDear/attorch
attorch/math.py
https://github.com/BobMcDear/attorch/blob/fdd7c33c9476f19488b9025404112f56212dcb05/attorch/math.py
""" Pure math operations to be performed on loaded Triton tensors. """ import triton import triton.language as tl from .act_kernels import apply_act_func @triton.jit def accum_linear(accum, input1, input2, fp16: tl.constexpr, tf32: tl.constexpr): """ Accumulates matrix multiplications of input tensors for linear functions. Args: accum: Accumulator holding aggregation of matrix multiplications. The accumulator must be of shape [BLOCK_SIZE1, BLOCK_SIZE3]. input1: First operand of matrix multiplication. The operand must be of shape [BLOCK_SIZE1, BLOCK_SIZE2]. input2: Second operand of matrix multiplication. The operand must be of shape [BLOCK_SIZE2, BLOCK_SIZE3]. fp16: Flag for converting operands to FP16. tf32: Flag for performing matrix multiplication in TF32. Returns: Accumulator with the result of the new matrix multiplication added to it. """ if fp16: input1 = input1.to(tl.float16) input2 = input2.to(tl.float16) return accum + tl.dot(input1, input2, allow_tf32=tf32) @triton.jit def glu(input1, input2, param, act_func: tl.constexpr): """ Applies the gated linear unit with an arbitrary activation function to the input. Args: input1: First half of input to gate. The first half must be of the same shape as the second half. input2: Second half of input to gate. The second half must be of the same shape as the first half. param: Parameter in the case of parameterized activation functions. act_func: Name of activation function to apply. Options are 'sigmoid', 'logsigmoid', 'tanh', 'relu', 'gelu', 'silu', 'relu6', 'hardsigmoid', 'hardtanh', 'hardswish', 'selu', 'mish', 'softplus', 'softsign', 'tanhshrink', 'leaky_relu', 'elu', and 'celu'. param: Parameter in the case of parameterized activation functions. Args: Input transformed by the gated linear unit with an arbitrary activation function. """ return input1 * apply_act_func(input2, None, None, None, param, act_func, False) @triton.jit def softmax(input, log: tl.constexpr): """ Normalizes the input using softmax along the last dimension. Args: input: Input to normalize. The input must be of shape [BLOCK_SIZE1, BLOCK_SIZE2]. log: Flag for indicating if the log of softmax should be taken. Returns: Input normalized by softmax. """ input = input.to(tl.float32) input = input - tl.max(input, axis=1)[:, None] numerator = tl.exp(input) denominator = tl.sum(numerator, axis=1)[:, None] if log: output = input - tl.log(denominator) else: output = numerator / denominator return output @triton.jit def calc_mean_and_inv_std(input, last_dim, eps, last_dim_mask: tl.constexpr): """ Calculates the mean and inverse standard deviation of the input along the last dimension. Args: input: Input whose mean and inverse standard deviation are calculated. The input must be of shape [BLOCK_SIZE1, BLOCK_SIZE2]. last_dim: Size of the last dimension of input. eps: Epsilon added in the square root in the denominator to avoid division by zero. last_dim_mask: Mask for the last dimension indicating which elements should be included in the calculations. The mask must be of shape [BLOCK_SIZE2]. Returns: Mean and inverse standard deviation of the input. """ input = input.to(tl.float32) mean = tl.sum(input, axis=1) / last_dim diff = tl.where(last_dim_mask[None, :], input - mean[:, None], 0) inv_std = tl.rsqrt(tl.sum(diff * diff, axis=1) / last_dim + eps) return mean, inv_std @triton.jit def update_welford(input, prev_count, prev_mean, prev_var, curr_count, mask: tl.constexpr): """ Updates count, mean, and variance (M2) statistics for Welford's algorithm. Args: input: Input used to update statistics. The input must be of the same shape as the mask. prev_count: Previous count statistic to update. prev_mean: Previous mean statistic to update. prev_var: Previous variance (M2) statistic to update. curr_count: Count of elements in current input. mask: Mask indicating which elements should be included in the calculations. The mask must be of the same shape as the input. Returns: Updated count, mean, and variance (M2) statistics """ input = input.to(tl.float32) count = prev_count + curr_count mean = (tl.sum(input) - curr_count * prev_mean) / count deltas = tl.where(mask, (input - mean) * (input - prev_mean), 0.) var = prev_var + tl.sum(deltas) return count, mean, var @triton.jit def update_ema(prev_ema, new_val, momentum): """ Updates exponential moving average. Args: prev_ema: Previous exponential moving average. new_val: Value used to update the exponential moving average. momentum: Momentum. Returns: Updated running statistic. """ return (1 - momentum) * prev_ema + momentum * new_val @triton.jit def standardize(input, mean, inv_std, weight, bias): """ Standardizes the input given its mean and inverse standard deviation, multiplies the result by weights, and adds a bias vector. Args: input: Input to standardize. mean: Mean of input. inv_std: Inverse standard deviation of input. weight: Weight multiplied by the standardized input. bias: Bias added to the result of the weight multiplication. Returns: Standardized input. """ return weight * inv_std * (input - mean) + bias @triton.jit def calc_p_loss(input, target, size, p_loss: tl.constexpr, reduction: tl.constexpr): """ Measures the L1 or squared L2 norm of the difference between the input and target (i.e., mean absolute error or mean squared error). Args: input: Input. The input must be of shape [BLOCK_SIZE]. target: Target. The target must be of shape [BLOCK_SIZE]. size: Number of elements in the input and target. This value is used only if reduction is 'mean'. p_loss: p-norm used to compute the error. Options are 1 for MAE and 2 for MSE. reduction: Reduction strategy for the output. Options are 'none' for no reduction, 'mean' for averaging the error across all entries, and 'sum' for summing the error across all entries. Returns: Error. """ input = input.to(tl.float32) target = target.to(tl.float32) diff = input - target if p_loss == 1: error = tl.abs(diff) elif p_loss == 2: error = diff * diff if reduction == 'none': output = error elif reduction == 'mean': output = tl.sum(error) / size elif reduction == 'sum': output = tl.sum(error) return output @triton.jit def nll_loss(input, size, reduction: tl.constexpr): """ Measures the negative log likelihood loss given log-probabilities of target class. Args: input: Input containing predicted log-probabilities corresponding to target class. The input can have arbitrary shape. size: Number of elements in the input. This value is used only if reduction is 'mean'. reduction: Reduction strategy for the output. Options are 'none' for no reduction, 'mean' for averaging the loss across all entries, and 'sum' for summing the loss across all entries. Returns: Loss. """ input = input.to(tl.float32) if reduction == 'none': output = -input elif reduction == 'mean': output = -tl.sum(input) / size elif reduction == 'sum': output = -tl.sum(input) return output @triton.jit def cross_entropy_loss(input, pred): """ Measures the per-row cross entropy loss given input and predicted logits corresponding to target class. Args: input: Input. The input must be of shape [BLOCK_SIZE1, BLOCK_SIZE2]. pred: Predicted logits corresponding to target class. The predictions must be of shape [BLOCK_SIZE1]. Returns: Loss. """ input = input.to(tl.float32) pred = pred.to(tl.float32) mx = tl.max(input, axis=1) input -= mx[:, None] loss = tl.log(tl.sum(tl.exp(input), axis=1)) - pred + mx return loss
@triton.jit def nll_loss(input, size, reduction: tl.constexpr): """ Measures the negative log likelihood loss given log-probabilities of target class. Args: input: Input containing predicted log-probabilities corresponding to target class. The input can have arbitrary shape. size: Number of elements in the input. This value is used only if reduction is 'mean'. reduction: Reduction strategy for the output. Options are 'none' for no reduction, 'mean' for averaging the loss across all entries, and 'sum' for summing the loss across all entries. Returns: Loss. """ input = input.to(tl.float32) if reduction == 'none': output = -input elif reduction == 'mean': output = -tl.sum(input) / size elif reduction == 'sum': output = -tl.sum(input) return output
BobMcDear/attorch
attorch/math.py
https://github.com/BobMcDear/attorch/blob/fdd7c33c9476f19488b9025404112f56212dcb05/attorch/math.py
""" Pure math operations to be performed on loaded Triton tensors. """ import triton import triton.language as tl from .act_kernels import apply_act_func @triton.jit def accum_linear(accum, input1, input2, fp16: tl.constexpr, tf32: tl.constexpr): """ Accumulates matrix multiplications of input tensors for linear functions. Args: accum: Accumulator holding aggregation of matrix multiplications. The accumulator must be of shape [BLOCK_SIZE1, BLOCK_SIZE3]. input1: First operand of matrix multiplication. The operand must be of shape [BLOCK_SIZE1, BLOCK_SIZE2]. input2: Second operand of matrix multiplication. The operand must be of shape [BLOCK_SIZE2, BLOCK_SIZE3]. fp16: Flag for converting operands to FP16. tf32: Flag for performing matrix multiplication in TF32. Returns: Accumulator with the result of the new matrix multiplication added to it. """ if fp16: input1 = input1.to(tl.float16) input2 = input2.to(tl.float16) return accum + tl.dot(input1, input2, allow_tf32=tf32) @triton.jit def glu(input1, input2, param, act_func: tl.constexpr): """ Applies the gated linear unit with an arbitrary activation function to the input. Args: input1: First half of input to gate. The first half must be of the same shape as the second half. input2: Second half of input to gate. The second half must be of the same shape as the first half. param: Parameter in the case of parameterized activation functions. act_func: Name of activation function to apply. Options are 'sigmoid', 'logsigmoid', 'tanh', 'relu', 'gelu', 'silu', 'relu6', 'hardsigmoid', 'hardtanh', 'hardswish', 'selu', 'mish', 'softplus', 'softsign', 'tanhshrink', 'leaky_relu', 'elu', and 'celu'. param: Parameter in the case of parameterized activation functions. Args: Input transformed by the gated linear unit with an arbitrary activation function. """ return input1 * apply_act_func(input2, None, None, None, param, act_func, False) @triton.jit def softmax(input, log: tl.constexpr): """ Normalizes the input using softmax along the last dimension. Args: input: Input to normalize. The input must be of shape [BLOCK_SIZE1, BLOCK_SIZE2]. log: Flag for indicating if the log of softmax should be taken. Returns: Input normalized by softmax. """ input = input.to(tl.float32) input = input - tl.max(input, axis=1)[:, None] numerator = tl.exp(input) denominator = tl.sum(numerator, axis=1)[:, None] if log: output = input - tl.log(denominator) else: output = numerator / denominator return output @triton.jit def calc_mean_and_inv_std(input, last_dim, eps, last_dim_mask: tl.constexpr): """ Calculates the mean and inverse standard deviation of the input along the last dimension. Args: input: Input whose mean and inverse standard deviation are calculated. The input must be of shape [BLOCK_SIZE1, BLOCK_SIZE2]. last_dim: Size of the last dimension of input. eps: Epsilon added in the square root in the denominator to avoid division by zero. last_dim_mask: Mask for the last dimension indicating which elements should be included in the calculations. The mask must be of shape [BLOCK_SIZE2]. Returns: Mean and inverse standard deviation of the input. """ input = input.to(tl.float32) mean = tl.sum(input, axis=1) / last_dim diff = tl.where(last_dim_mask[None, :], input - mean[:, None], 0) inv_std = tl.rsqrt(tl.sum(diff * diff, axis=1) / last_dim + eps) return mean, inv_std @triton.jit def update_welford(input, prev_count, prev_mean, prev_var, curr_count, mask: tl.constexpr): """ Updates count, mean, and variance (M2) statistics for Welford's algorithm. Args: input: Input used to update statistics. The input must be of the same shape as the mask. prev_count: Previous count statistic to update. prev_mean: Previous mean statistic to update. prev_var: Previous variance (M2) statistic to update. curr_count: Count of elements in current input. mask: Mask indicating which elements should be included in the calculations. The mask must be of the same shape as the input. Returns: Updated count, mean, and variance (M2) statistics """ input = input.to(tl.float32) count = prev_count + curr_count mean = (tl.sum(input) - curr_count * prev_mean) / count deltas = tl.where(mask, (input - mean) * (input - prev_mean), 0.) var = prev_var + tl.sum(deltas) return count, mean, var @triton.jit def update_ema(prev_ema, new_val, momentum): """ Updates exponential moving average. Args: prev_ema: Previous exponential moving average. new_val: Value used to update the exponential moving average. momentum: Momentum. Returns: Updated running statistic. """ return (1 - momentum) * prev_ema + momentum * new_val @triton.jit def standardize(input, mean, inv_std, weight, bias): """ Standardizes the input given its mean and inverse standard deviation, multiplies the result by weights, and adds a bias vector. Args: input: Input to standardize. mean: Mean of input. inv_std: Inverse standard deviation of input. weight: Weight multiplied by the standardized input. bias: Bias added to the result of the weight multiplication. Returns: Standardized input. """ return weight * inv_std * (input - mean) + bias @triton.jit def calc_p_loss(input, target, size, p_loss: tl.constexpr, reduction: tl.constexpr): """ Measures the L1 or squared L2 norm of the difference between the input and target (i.e., mean absolute error or mean squared error). Args: input: Input. The input must be of shape [BLOCK_SIZE]. target: Target. The target must be of shape [BLOCK_SIZE]. size: Number of elements in the input and target. This value is used only if reduction is 'mean'. p_loss: p-norm used to compute the error. Options are 1 for MAE and 2 for MSE. reduction: Reduction strategy for the output. Options are 'none' for no reduction, 'mean' for averaging the error across all entries, and 'sum' for summing the error across all entries. Returns: Error. """ input = input.to(tl.float32) target = target.to(tl.float32) diff = input - target if p_loss == 1: error = tl.abs(diff) elif p_loss == 2: error = diff * diff if reduction == 'none': output = error elif reduction == 'mean': output = tl.sum(error) / size elif reduction == 'sum': output = tl.sum(error) return output @triton.jit def nll_loss(input, size, reduction: tl.constexpr): """ Measures the negative log likelihood loss given log-probabilities of target class. Args: input: Input containing predicted log-probabilities corresponding to target class. The input can have arbitrary shape. size: Number of elements in the input. This value is used only if reduction is 'mean'. reduction: Reduction strategy for the output. Options are 'none' for no reduction, 'mean' for averaging the loss across all entries, and 'sum' for summing the loss across all entries. Returns: Loss. """ input = input.to(tl.float32) if reduction == 'none': output = -input elif reduction == 'mean': output = -tl.sum(input) / size elif reduction == 'sum': output = -tl.sum(input) return output @triton.jit def cross_entropy_loss(input, pred): """ Measures the per-row cross entropy loss given input and predicted logits corresponding to target class. Args: input: Input. The input must be of shape [BLOCK_SIZE1, BLOCK_SIZE2]. pred: Predicted logits corresponding to target class. The predictions must be of shape [BLOCK_SIZE1]. Returns: Loss. """ input = input.to(tl.float32) pred = pred.to(tl.float32) mx = tl.max(input, axis=1) input -= mx[:, None] loss = tl.log(tl.sum(tl.exp(input), axis=1)) - pred + mx return loss
@triton.jit def cross_entropy_loss(input, pred): """ Measures the per-row cross entropy loss given input and predicted logits corresponding to target class. Args: input: Input. The input must be of shape [BLOCK_SIZE1, BLOCK_SIZE2]. pred: Predicted logits corresponding to target class. The predictions must be of shape [BLOCK_SIZE1]. Returns: Loss. """ input = input.to(tl.float32) pred = pred.to(tl.float32) mx = tl.max(input, axis=1) input -= mx[:, None] loss = tl.log(tl.sum(tl.exp(input), axis=1)) - pred + mx return loss
bryanzhang/triton_fusedattention
fused-attention.py
https://github.com/bryanzhang/triton_fusedattention/blob/722fb46a6d16f573621cfc9bf791977e0f05f541/fused-attention.py
#! /usr/bin/python3 import pytest import torch import torch.nn.functional as F import triton import triton.language as tl @triton.jit def _attn_fwd_inner(acc, l_i, m_i, q, # K_block_ptr, V_block_ptr, # start_m, qk_scale, # BLOCK_M: tl.constexpr, HEAD_DIM: tl.constexpr, BLOCK_N: tl.constexpr, # STAGE: tl.constexpr, offs_m: tl.constexpr, offs_n: tl.constexpr, # N_CTX: tl.constexpr): # range of values handled by this stage if STAGE == 1: lo, hi = 0, start_m * BLOCK_M elif STAGE == 2: lo, hi = start_m * BLOCK_M, (start_m + 1) * BLOCK_M lo = tl.multiple_of(lo, BLOCK_M) K_block_ptr = tl.advance(K_block_ptr, (0, lo)) V_block_ptr = tl.advance(V_block_ptr, (lo, 0)) # loop over k, v and update accumulator for start_n in range(lo, hi, BLOCK_N): start_n = tl.multiple_of(start_n, BLOCK_N) # -- compute qk ---- k = tl.load(K_block_ptr) qk = tl.dot(q, k) if STAGE == 2: mask = offs_m[:, None] >= (start_n + offs_n[None, :]) qk = qk * qk_scale + tl.where(mask, 0, -1.0e6) m_ij = tl.maximum(m_i, tl.max(qk, 1)) qk -= m_ij[:, None] else: m_ij = tl.maximum(m_i, tl.max(qk, 1) * qk_scale) qk = qk * qk_scale - m_ij[:, None] p = tl.math.exp2(qk) l_ij = tl.sum(p, 1) # -- update m_i and l_i alpha = tl.math.exp2(m_i - m_ij) l_i = l_i * alpha + l_ij # -- update output accumulator -- acc = acc * alpha[:, None] # update acc v = tl.load(V_block_ptr) p = p.to(tl.float16) acc = tl.dot(p, v, acc) # update m_i and l_i m_i = m_ij V_block_ptr = tl.advance(V_block_ptr, (BLOCK_N, 0)) K_block_ptr = tl.advance(K_block_ptr, (0, BLOCK_N)) return acc, l_i, m_i # We don't run auto-tuning every time to keep the tutorial fast. Keeping # the code below and commenting out the equivalent parameters is convenient for # re-tuning. configs = [ triton.Config({'BLOCK_M': BM, 'BLOCK_N': BN}, num_stages=s, num_warps=w) \ for BM in [64, 128]\ for BN in [32, 64]\ for s in [3, 4, 7]\ for w in [4, 8]\ ] def keep(conf): BLOCK_M = conf.kwargs["BLOCK_M"] BLOCK_N = conf.kwargs["BLOCK_N"] if BLOCK_M * BLOCK_N < 128 * 128 and conf.num_warps == 8: return False return True @triton.autotune(list(filter(keep, configs)), key=["N_CTX", "HEAD_DIM"]) @triton.jit def _attn_fwd(Q, K, V, sm_scale, M, Out, # stride_qz, stride_qh, stride_qm, stride_qk, # stride_kz, stride_kh, stride_kn, stride_kk, # stride_vz, stride_vh, stride_vk, stride_vn, # stride_oz, stride_oh, stride_om, stride_on, # Z, H, N_CTX, # HEAD_DIM: tl.constexpr, # BLOCK_M: tl.constexpr, # BLOCK_N: tl.constexpr, # ): tl.static_assert(BLOCK_N <= HEAD_DIM) start_m = tl.program_id(0) off_hz = tl.program_id(1) off_z = off_hz // H off_h = off_hz % H qvk_offset = off_z.to(tl.int64) * stride_qz + off_h.to(tl.int64) * stride_qh # block pointers Q_block_ptr = tl.make_block_ptr( base=Q + qvk_offset, shape=(N_CTX, HEAD_DIM), strides=(stride_qm, stride_qk), offsets=(start_m * BLOCK_M, 0), block_shape=(BLOCK_M, HEAD_DIM), order=(1, 0), ) v_order: tl.constexpr = (1, 0) V_block_ptr = tl.make_block_ptr( base=V + qvk_offset, shape=(N_CTX, HEAD_DIM), strides=(stride_vk, stride_vn), offsets=(0, 0), block_shape=(BLOCK_N, HEAD_DIM), order=v_order, ) K_block_ptr = tl.make_block_ptr( base=K + qvk_offset, shape=(HEAD_DIM, N_CTX), strides=(stride_kk, stride_kn), offsets=(0, 0), block_shape=(HEAD_DIM, BLOCK_N), order=(0, 1), ) O_block_ptr = tl.make_block_ptr( base=Out + qvk_offset, shape=(N_CTX, HEAD_DIM), strides=(stride_om, stride_on), offsets=(start_m * BLOCK_M, 0), block_shape=(BLOCK_M, HEAD_DIM), order=(1, 0), ) # initialize offsets offs_m = start_m * BLOCK_M + tl.arange(0, BLOCK_M) offs_n = tl.arange(0, BLOCK_N) # initialize pointer to m and l m_i = tl.zeros([BLOCK_M], dtype=tl.float32) - float("inf") l_i = tl.zeros([BLOCK_M], dtype=tl.float32) + 1.0 acc = tl.zeros([BLOCK_M, HEAD_DIM], dtype=tl.float32) # load scales qk_scale = sm_scale qk_scale *= 1.44269504 # 1/log(2) # load q: it will stay in SRAM throughout q = tl.load(Q_block_ptr) # stage 1: off-band acc, l_i, m_i = _attn_fwd_inner(acc, l_i, m_i, q, K_block_ptr, V_block_ptr, # start_m, qk_scale, # BLOCK_M, HEAD_DIM, BLOCK_N, # 1, offs_m, offs_n, N_CTX # ) # stage 2: on-band # barrier makes it easier for compielr to schedule the # two loops independently acc, l_i, m_i = _attn_fwd_inner(acc, l_i, m_i, q, K_block_ptr, V_block_ptr, # start_m, qk_scale, # BLOCK_M, HEAD_DIM, BLOCK_N, # 2, offs_m, offs_n, N_CTX # ) # epilogue acc = acc / l_i[:, None] m_ptrs = M + off_hz * N_CTX + offs_m tl.store(m_ptrs, m_i) tl.store(O_block_ptr, acc.to(Out.type.element_ty)) class _attention(torch.autograd.Function): @staticmethod def forward(ctx, q, k, v, sm_scale): # shape constraints HEAD_DIM_Q, HEAD_DIM_K = q.shape[-1], k.shape[-1] HEAD_DIM_V = v.shape[-1] assert HEAD_DIM_Q == HEAD_DIM_K and HEAD_DIM_K == HEAD_DIM_V assert HEAD_DIM_K in {16, 32, 64, 128, 256} o = torch.empty_like(q) extra_kern_args = {} grid = lambda args: (triton.cdiv(q.shape[2], args["BLOCK_M"]), q.shape[0] * q.shape[1], 1) M = torch.empty((q.shape[0], q.shape[1], q.shape[2]), device=q.device, dtype=torch.float32) _attn_fwd[grid]( q, k, v, sm_scale, M, o, # q.stride(0), q.stride(1), q.stride(2), q.stride(3), # k.stride(0), k.stride(1), k.stride(2), k.stride(3), # v.stride(0), v.stride(1), v.stride(2), v.stride(3), # o.stride(0), o.stride(1), o.stride(2), o.stride(3), # q.shape[0], q.shape[1], # N_CTX=q.shape[2], # HEAD_DIM=HEAD_DIM_K, # **extra_kern_args) return o attention = _attention.apply import flash_attn from flash_attn import flash_attn_func BATCH, N_HEADS, HEAD_DIM = 4, 32, 64 # vary seq length for fixed head and batch=4 configs = [] configs.append( triton.testing.Benchmark( x_names=["N_CTX"], x_vals=[2**i for i in range(10, 15)], line_arg="provider", line_vals=["triton-fp16", "flash-v2", "pytorch"], line_names=["Triton [FP16]", "Flash-v2 [FP16]", "pytorch [FP16]"], styles=[("red", "-"), ("blue", "-"), ("green", "-")], ylabel="ms", plot_name=f"fused-attention-batch{BATCH}-head{N_HEADS}-d{HEAD_DIM}", args={ "H": N_HEADS, "BATCH": BATCH, "HEAD_DIM": HEAD_DIM, }, )) # 标准的softmax计算,直接以e为底计算幂函数, 更准确. def torch_attention_standard(Q, K, V, sm_scale): qk = torch.matmul(Q, K.transpose(-2, -1)) # Compute the dot product qk_scale = sm_scale qk *= qk_scale mask = torch.triu(torch.ones_like(qk) * float(-1.0e6), diagonal=1) qk = qk + mask qk = qk - torch.max(qk, dim=-1, keepdim=True)[0] qk_score = torch.exp(qk) / torch.exp(qk).sum(dim=-1, keepdim=True) O = torch.matmul(qk_score, V) # Multiply scores with V return O @triton.testing.perf_report(configs) def bench_flash_attention(BATCH, H, N_CTX, HEAD_DIM, provider, device="cuda"): warmup = 25 rep = 100 dtype = torch.float16 if "triton" in provider: q = torch.randn((BATCH, H, N_CTX, HEAD_DIM), dtype=dtype, device=device, requires_grad=False) k = torch.randn((BATCH, H, N_CTX, HEAD_DIM), dtype=dtype, device=device, requires_grad=False) v = torch.randn((BATCH, H, N_CTX, HEAD_DIM), dtype=dtype, device=device, requires_grad=False) sm_scale = 1.3 fn = lambda: attention(q, k, v, sm_scale) ms = triton.testing.do_bench(fn, warmup=warmup, rep=rep) if provider == "flash-v2": q = torch.randn((BATCH, N_CTX, H, HEAD_DIM), dtype=dtype, device=device, requires_grad=False) k = torch.randn((BATCH, N_CTX, H, HEAD_DIM), dtype=dtype, device=device, requires_grad=False) v = torch.randn((BATCH, N_CTX, H, HEAD_DIM), dtype=dtype, device=device, requires_grad=False) fn = lambda: flash_attn_func(q=q, k=k, v=v, dropout_p=float(0.0), softmax_scale=1.3, causal=True, window_size=(-1,-1), alibi_slopes=None, deterministic=False) ms = triton.testing.do_bench(fn, warmup=warmup, rep=rep) if provider == "pytorch": q = torch.randn((BATCH, H, N_CTX, HEAD_DIM), dtype=dtype, device=device, requires_grad=False) k = torch.randn((BATCH, H, N_CTX, HEAD_DIM), dtype=dtype, device=device, requires_grad=False) v = torch.randn((BATCH, H, N_CTX, HEAD_DIM), dtype=dtype, device=device, requires_grad=False) fn = lambda: F.scaled_dot_product_attention(q, k, v, is_causal=True, scale=1.3) #fn = lambda: torch_attention_standard_v2(q, k, v, 1.3) ms = triton.testing.do_bench(fn, warmup=warmup, rep=rep) flops_per_matmul = 2.0 * BATCH * H * N_CTX * N_CTX * HEAD_DIM total_flops = 2 * flops_per_matmul total_flops *= 0.5 return total_flops / ms * 1e-9 # 模仿flashattention以2为底做幂函数计算,需要前置乘以log2e,结果更接近FlashAttention计算结果. # 误差是FlashAttention分块计算的scale的误差. def torch_attention(Q, K, V, sm_scale): qk = torch.matmul(Q, K.transpose(-2, -1)) # Compute the dot product qk_scale = sm_scale qk_scale *= 1.44269504 # 1/log(2) qk *= qk_scale mask = torch.triu(torch.ones_like(qk) * float(-1.0e6), diagonal=1) qk = qk + mask qk = qk - torch.max(qk, dim=-1, keepdim=True)[0] qk_score = torch.pow(2, qk) / torch.pow(2, qk).sum(dim=-1, keepdim=True) O = torch.matmul(qk_score, V) # Multiply scores with V return O if __name__ == "__main__": # 测试推理正确性. torch.manual_seed(0) q = torch.randn((4, 32, 1024, 64), dtype=torch.float16, device="cuda") k = torch.randn((4, 32, 1024, 64), dtype=torch.float16, device="cuda") v = torch.randn((4, 32, 1024, 64), dtype=torch.float16, device="cuda") sm_scale = 1.3 o_triton = attention(q, k, v, sm_scale) #o_torch = torch_attention_standard_v2(q, k, v, sm_scale) o_torch = F.scaled_dot_product_attention(q, k, v, is_causal=True, scale=sm_scale) assert o_triton.shape == (4, 32, 1024, 64) assert o_torch.shape == (4, 32, 1024, 64) assert torch.allclose(o_triton[0][0], o_torch[0][0], rtol=0.25*1e-2, atol=0.3*1e-1), (o_triton[0][0], o_torch[0][0]) #assert torch.allclose(o_triton[0][0], o_torch[0][0]), (o_triton[0][0], o_torch[0][0]) # 推理性能测试 bench_flash_attention.run(save_path=".", print_data=True)
@triton.jit def _attn_fwd_inner(acc, l_i, m_i, q, # K_block_ptr, V_block_ptr, # start_m, qk_scale, # BLOCK_M: tl.constexpr, HEAD_DIM: tl.constexpr, BLOCK_N: tl.constexpr, # STAGE: tl.constexpr, offs_m: tl.constexpr, offs_n: tl.constexpr, # N_CTX: tl.constexpr): # range of values handled by this stage if STAGE == 1: lo, hi = 0, start_m * BLOCK_M elif STAGE == 2: lo, hi = start_m * BLOCK_M, (start_m + 1) * BLOCK_M lo = tl.multiple_of(lo, BLOCK_M) K_block_ptr = tl.advance(K_block_ptr, (0, lo)) V_block_ptr = tl.advance(V_block_ptr, (lo, 0)) # loop over k, v and update accumulator for start_n in range(lo, hi, BLOCK_N): start_n = tl.multiple_of(start_n, BLOCK_N) # -- compute qk ---- k = tl.load(K_block_ptr) qk = tl.dot(q, k) if STAGE == 2: mask = offs_m[:, None] >= (start_n + offs_n[None, :]) qk = qk * qk_scale + tl.where(mask, 0, -1.0e6) m_ij = tl.maximum(m_i, tl.max(qk, 1)) qk -= m_ij[:, None] else: m_ij = tl.maximum(m_i, tl.max(qk, 1) * qk_scale) qk = qk * qk_scale - m_ij[:, None] p = tl.math.exp2(qk) l_ij = tl.sum(p, 1) # -- update m_i and l_i alpha = tl.math.exp2(m_i - m_ij) l_i = l_i * alpha + l_ij # -- update output accumulator -- acc = acc * alpha[:, None] # update acc v = tl.load(V_block_ptr) p = p.to(tl.float16) acc = tl.dot(p, v, acc) # update m_i and l_i m_i = m_ij V_block_ptr = tl.advance(V_block_ptr, (BLOCK_N, 0)) K_block_ptr = tl.advance(K_block_ptr, (0, BLOCK_N)) return acc, l_i, m_i # We don't run auto-tuning every time to keep the tutorial fast. Keeping # the code below and commenting out the equivalent parameters is convenient for # re-tuning. configs = [ triton.Config({'BLOCK_M': BM, 'BLOCK_N': BN}, num_stages=s, num_warps=w) \ for BM in [64, 128]\ for BN in [32, 64]\ for s in [3, 4, 7]\ for w in [4, 8]\ ] def keep(conf): BLOCK_M = conf.kwargs["BLOCK_M"] BLOCK_N = conf.kwargs["BLOCK_N"] if BLOCK_M * BLOCK_N < 128 * 128 and conf.num_warps == 8: return False return True @triton.autotune(list(filter(keep, configs)), key=["N_CTX", "HEAD_DIM"])
bryanzhang/triton_fusedattention
fused-attention.py
https://github.com/bryanzhang/triton_fusedattention/blob/722fb46a6d16f573621cfc9bf791977e0f05f541/fused-attention.py
#! /usr/bin/python3 import pytest import torch import torch.nn.functional as F import triton import triton.language as tl @triton.jit def _attn_fwd_inner(acc, l_i, m_i, q, # K_block_ptr, V_block_ptr, # start_m, qk_scale, # BLOCK_M: tl.constexpr, HEAD_DIM: tl.constexpr, BLOCK_N: tl.constexpr, # STAGE: tl.constexpr, offs_m: tl.constexpr, offs_n: tl.constexpr, # N_CTX: tl.constexpr): # range of values handled by this stage if STAGE == 1: lo, hi = 0, start_m * BLOCK_M elif STAGE == 2: lo, hi = start_m * BLOCK_M, (start_m + 1) * BLOCK_M lo = tl.multiple_of(lo, BLOCK_M) K_block_ptr = tl.advance(K_block_ptr, (0, lo)) V_block_ptr = tl.advance(V_block_ptr, (lo, 0)) # loop over k, v and update accumulator for start_n in range(lo, hi, BLOCK_N): start_n = tl.multiple_of(start_n, BLOCK_N) # -- compute qk ---- k = tl.load(K_block_ptr) qk = tl.dot(q, k) if STAGE == 2: mask = offs_m[:, None] >= (start_n + offs_n[None, :]) qk = qk * qk_scale + tl.where(mask, 0, -1.0e6) m_ij = tl.maximum(m_i, tl.max(qk, 1)) qk -= m_ij[:, None] else: m_ij = tl.maximum(m_i, tl.max(qk, 1) * qk_scale) qk = qk * qk_scale - m_ij[:, None] p = tl.math.exp2(qk) l_ij = tl.sum(p, 1) # -- update m_i and l_i alpha = tl.math.exp2(m_i - m_ij) l_i = l_i * alpha + l_ij # -- update output accumulator -- acc = acc * alpha[:, None] # update acc v = tl.load(V_block_ptr) p = p.to(tl.float16) acc = tl.dot(p, v, acc) # update m_i and l_i m_i = m_ij V_block_ptr = tl.advance(V_block_ptr, (BLOCK_N, 0)) K_block_ptr = tl.advance(K_block_ptr, (0, BLOCK_N)) return acc, l_i, m_i # We don't run auto-tuning every time to keep the tutorial fast. Keeping # the code below and commenting out the equivalent parameters is convenient for # re-tuning. configs = [ triton.Config({'BLOCK_M': BM, 'BLOCK_N': BN}, num_stages=s, num_warps=w) \ for BM in [64, 128]\ for BN in [32, 64]\ for s in [3, 4, 7]\ for w in [4, 8]\ ] def keep(conf): BLOCK_M = conf.kwargs["BLOCK_M"] BLOCK_N = conf.kwargs["BLOCK_N"] if BLOCK_M * BLOCK_N < 128 * 128 and conf.num_warps == 8: return False return True @triton.autotune(list(filter(keep, configs)), key=["N_CTX", "HEAD_DIM"]) @triton.jit def _attn_fwd(Q, K, V, sm_scale, M, Out, # stride_qz, stride_qh, stride_qm, stride_qk, # stride_kz, stride_kh, stride_kn, stride_kk, # stride_vz, stride_vh, stride_vk, stride_vn, # stride_oz, stride_oh, stride_om, stride_on, # Z, H, N_CTX, # HEAD_DIM: tl.constexpr, # BLOCK_M: tl.constexpr, # BLOCK_N: tl.constexpr, # ): tl.static_assert(BLOCK_N <= HEAD_DIM) start_m = tl.program_id(0) off_hz = tl.program_id(1) off_z = off_hz // H off_h = off_hz % H qvk_offset = off_z.to(tl.int64) * stride_qz + off_h.to(tl.int64) * stride_qh # block pointers Q_block_ptr = tl.make_block_ptr( base=Q + qvk_offset, shape=(N_CTX, HEAD_DIM), strides=(stride_qm, stride_qk), offsets=(start_m * BLOCK_M, 0), block_shape=(BLOCK_M, HEAD_DIM), order=(1, 0), ) v_order: tl.constexpr = (1, 0) V_block_ptr = tl.make_block_ptr( base=V + qvk_offset, shape=(N_CTX, HEAD_DIM), strides=(stride_vk, stride_vn), offsets=(0, 0), block_shape=(BLOCK_N, HEAD_DIM), order=v_order, ) K_block_ptr = tl.make_block_ptr( base=K + qvk_offset, shape=(HEAD_DIM, N_CTX), strides=(stride_kk, stride_kn), offsets=(0, 0), block_shape=(HEAD_DIM, BLOCK_N), order=(0, 1), ) O_block_ptr = tl.make_block_ptr( base=Out + qvk_offset, shape=(N_CTX, HEAD_DIM), strides=(stride_om, stride_on), offsets=(start_m * BLOCK_M, 0), block_shape=(BLOCK_M, HEAD_DIM), order=(1, 0), ) # initialize offsets offs_m = start_m * BLOCK_M + tl.arange(0, BLOCK_M) offs_n = tl.arange(0, BLOCK_N) # initialize pointer to m and l m_i = tl.zeros([BLOCK_M], dtype=tl.float32) - float("inf") l_i = tl.zeros([BLOCK_M], dtype=tl.float32) + 1.0 acc = tl.zeros([BLOCK_M, HEAD_DIM], dtype=tl.float32) # load scales qk_scale = sm_scale qk_scale *= 1.44269504 # 1/log(2) # load q: it will stay in SRAM throughout q = tl.load(Q_block_ptr) # stage 1: off-band acc, l_i, m_i = _attn_fwd_inner(acc, l_i, m_i, q, K_block_ptr, V_block_ptr, # start_m, qk_scale, # BLOCK_M, HEAD_DIM, BLOCK_N, # 1, offs_m, offs_n, N_CTX # ) # stage 2: on-band # barrier makes it easier for compielr to schedule the # two loops independently acc, l_i, m_i = _attn_fwd_inner(acc, l_i, m_i, q, K_block_ptr, V_block_ptr, # start_m, qk_scale, # BLOCK_M, HEAD_DIM, BLOCK_N, # 2, offs_m, offs_n, N_CTX # ) # epilogue acc = acc / l_i[:, None] m_ptrs = M + off_hz * N_CTX + offs_m tl.store(m_ptrs, m_i) tl.store(O_block_ptr, acc.to(Out.type.element_ty)) class _attention(torch.autograd.Function): @staticmethod def forward(ctx, q, k, v, sm_scale): # shape constraints HEAD_DIM_Q, HEAD_DIM_K = q.shape[-1], k.shape[-1] HEAD_DIM_V = v.shape[-1] assert HEAD_DIM_Q == HEAD_DIM_K and HEAD_DIM_K == HEAD_DIM_V assert HEAD_DIM_K in {16, 32, 64, 128, 256} o = torch.empty_like(q) extra_kern_args = {} grid = lambda args: (triton.cdiv(q.shape[2], args["BLOCK_M"]), q.shape[0] * q.shape[1], 1) M = torch.empty((q.shape[0], q.shape[1], q.shape[2]), device=q.device, dtype=torch.float32) _attn_fwd[grid]( q, k, v, sm_scale, M, o, # q.stride(0), q.stride(1), q.stride(2), q.stride(3), # k.stride(0), k.stride(1), k.stride(2), k.stride(3), # v.stride(0), v.stride(1), v.stride(2), v.stride(3), # o.stride(0), o.stride(1), o.stride(2), o.stride(3), # q.shape[0], q.shape[1], # N_CTX=q.shape[2], # HEAD_DIM=HEAD_DIM_K, # **extra_kern_args) return o attention = _attention.apply import flash_attn from flash_attn import flash_attn_func BATCH, N_HEADS, HEAD_DIM = 4, 32, 64 # vary seq length for fixed head and batch=4 configs = [] configs.append( triton.testing.Benchmark( x_names=["N_CTX"], x_vals=[2**i for i in range(10, 15)], line_arg="provider", line_vals=["triton-fp16", "flash-v2", "pytorch"], line_names=["Triton [FP16]", "Flash-v2 [FP16]", "pytorch [FP16]"], styles=[("red", "-"), ("blue", "-"), ("green", "-")], ylabel="ms", plot_name=f"fused-attention-batch{BATCH}-head{N_HEADS}-d{HEAD_DIM}", args={ "H": N_HEADS, "BATCH": BATCH, "HEAD_DIM": HEAD_DIM, }, )) # 标准的softmax计算,直接以e为底计算幂函数, 更准确. def torch_attention_standard(Q, K, V, sm_scale): qk = torch.matmul(Q, K.transpose(-2, -1)) # Compute the dot product qk_scale = sm_scale qk *= qk_scale mask = torch.triu(torch.ones_like(qk) * float(-1.0e6), diagonal=1) qk = qk + mask qk = qk - torch.max(qk, dim=-1, keepdim=True)[0] qk_score = torch.exp(qk) / torch.exp(qk).sum(dim=-1, keepdim=True) O = torch.matmul(qk_score, V) # Multiply scores with V return O @triton.testing.perf_report(configs) def bench_flash_attention(BATCH, H, N_CTX, HEAD_DIM, provider, device="cuda"): warmup = 25 rep = 100 dtype = torch.float16 if "triton" in provider: q = torch.randn((BATCH, H, N_CTX, HEAD_DIM), dtype=dtype, device=device, requires_grad=False) k = torch.randn((BATCH, H, N_CTX, HEAD_DIM), dtype=dtype, device=device, requires_grad=False) v = torch.randn((BATCH, H, N_CTX, HEAD_DIM), dtype=dtype, device=device, requires_grad=False) sm_scale = 1.3 fn = lambda: attention(q, k, v, sm_scale) ms = triton.testing.do_bench(fn, warmup=warmup, rep=rep) if provider == "flash-v2": q = torch.randn((BATCH, N_CTX, H, HEAD_DIM), dtype=dtype, device=device, requires_grad=False) k = torch.randn((BATCH, N_CTX, H, HEAD_DIM), dtype=dtype, device=device, requires_grad=False) v = torch.randn((BATCH, N_CTX, H, HEAD_DIM), dtype=dtype, device=device, requires_grad=False) fn = lambda: flash_attn_func(q=q, k=k, v=v, dropout_p=float(0.0), softmax_scale=1.3, causal=True, window_size=(-1,-1), alibi_slopes=None, deterministic=False) ms = triton.testing.do_bench(fn, warmup=warmup, rep=rep) if provider == "pytorch": q = torch.randn((BATCH, H, N_CTX, HEAD_DIM), dtype=dtype, device=device, requires_grad=False) k = torch.randn((BATCH, H, N_CTX, HEAD_DIM), dtype=dtype, device=device, requires_grad=False) v = torch.randn((BATCH, H, N_CTX, HEAD_DIM), dtype=dtype, device=device, requires_grad=False) fn = lambda: F.scaled_dot_product_attention(q, k, v, is_causal=True, scale=1.3) #fn = lambda: torch_attention_standard_v2(q, k, v, 1.3) ms = triton.testing.do_bench(fn, warmup=warmup, rep=rep) flops_per_matmul = 2.0 * BATCH * H * N_CTX * N_CTX * HEAD_DIM total_flops = 2 * flops_per_matmul total_flops *= 0.5 return total_flops / ms * 1e-9 # 模仿flashattention以2为底做幂函数计算,需要前置乘以log2e,结果更接近FlashAttention计算结果. # 误差是FlashAttention分块计算的scale的误差. def torch_attention(Q, K, V, sm_scale): qk = torch.matmul(Q, K.transpose(-2, -1)) # Compute the dot product qk_scale = sm_scale qk_scale *= 1.44269504 # 1/log(2) qk *= qk_scale mask = torch.triu(torch.ones_like(qk) * float(-1.0e6), diagonal=1) qk = qk + mask qk = qk - torch.max(qk, dim=-1, keepdim=True)[0] qk_score = torch.pow(2, qk) / torch.pow(2, qk).sum(dim=-1, keepdim=True) O = torch.matmul(qk_score, V) # Multiply scores with V return O if __name__ == "__main__": # 测试推理正确性. torch.manual_seed(0) q = torch.randn((4, 32, 1024, 64), dtype=torch.float16, device="cuda") k = torch.randn((4, 32, 1024, 64), dtype=torch.float16, device="cuda") v = torch.randn((4, 32, 1024, 64), dtype=torch.float16, device="cuda") sm_scale = 1.3 o_triton = attention(q, k, v, sm_scale) #o_torch = torch_attention_standard_v2(q, k, v, sm_scale) o_torch = F.scaled_dot_product_attention(q, k, v, is_causal=True, scale=sm_scale) assert o_triton.shape == (4, 32, 1024, 64) assert o_torch.shape == (4, 32, 1024, 64) assert torch.allclose(o_triton[0][0], o_torch[0][0], rtol=0.25*1e-2, atol=0.3*1e-1), (o_triton[0][0], o_torch[0][0]) #assert torch.allclose(o_triton[0][0], o_torch[0][0]), (o_triton[0][0], o_torch[0][0]) # 推理性能测试 bench_flash_attention.run(save_path=".", print_data=True)
@triton.jit def _attn_fwd(Q, K, V, sm_scale, M, Out, # stride_qz, stride_qh, stride_qm, stride_qk, # stride_kz, stride_kh, stride_kn, stride_kk, # stride_vz, stride_vh, stride_vk, stride_vn, # stride_oz, stride_oh, stride_om, stride_on, # Z, H, N_CTX, # HEAD_DIM: tl.constexpr, # BLOCK_M: tl.constexpr, # BLOCK_N: tl.constexpr, # ): tl.static_assert(BLOCK_N <= HEAD_DIM) start_m = tl.program_id(0) off_hz = tl.program_id(1) off_z = off_hz // H off_h = off_hz % H qvk_offset = off_z.to(tl.int64) * stride_qz + off_h.to(tl.int64) * stride_qh # block pointers Q_block_ptr = tl.make_block_ptr( base=Q + qvk_offset, shape=(N_CTX, HEAD_DIM), strides=(stride_qm, stride_qk), offsets=(start_m * BLOCK_M, 0), block_shape=(BLOCK_M, HEAD_DIM), order=(1, 0), ) v_order: tl.constexpr = (1, 0) V_block_ptr = tl.make_block_ptr( base=V + qvk_offset, shape=(N_CTX, HEAD_DIM), strides=(stride_vk, stride_vn), offsets=(0, 0), block_shape=(BLOCK_N, HEAD_DIM), order=v_order, ) K_block_ptr = tl.make_block_ptr( base=K + qvk_offset, shape=(HEAD_DIM, N_CTX), strides=(stride_kk, stride_kn), offsets=(0, 0), block_shape=(HEAD_DIM, BLOCK_N), order=(0, 1), ) O_block_ptr = tl.make_block_ptr( base=Out + qvk_offset, shape=(N_CTX, HEAD_DIM), strides=(stride_om, stride_on), offsets=(start_m * BLOCK_M, 0), block_shape=(BLOCK_M, HEAD_DIM), order=(1, 0), ) # initialize offsets offs_m = start_m * BLOCK_M + tl.arange(0, BLOCK_M) offs_n = tl.arange(0, BLOCK_N) # initialize pointer to m and l m_i = tl.zeros([BLOCK_M], dtype=tl.float32) - float("inf") l_i = tl.zeros([BLOCK_M], dtype=tl.float32) + 1.0 acc = tl.zeros([BLOCK_M, HEAD_DIM], dtype=tl.float32) # load scales qk_scale = sm_scale qk_scale *= 1.44269504 # 1/log(2) # load q: it will stay in SRAM throughout q = tl.load(Q_block_ptr) # stage 1: off-band acc, l_i, m_i = _attn_fwd_inner(acc, l_i, m_i, q, K_block_ptr, V_block_ptr, # start_m, qk_scale, # BLOCK_M, HEAD_DIM, BLOCK_N, # 1, offs_m, offs_n, N_CTX # ) # stage 2: on-band # barrier makes it easier for compielr to schedule the # two loops independently acc, l_i, m_i = _attn_fwd_inner(acc, l_i, m_i, q, K_block_ptr, V_block_ptr, # start_m, qk_scale, # BLOCK_M, HEAD_DIM, BLOCK_N, # 2, offs_m, offs_n, N_CTX # ) # epilogue acc = acc / l_i[:, None] m_ptrs = M + off_hz * N_CTX + offs_m tl.store(m_ptrs, m_i) tl.store(O_block_ptr, acc.to(Out.type.element_ty)) class _attention(torch.autograd.Function): @staticmethod def forward(ctx, q, k, v, sm_scale): # shape constraints HEAD_DIM_Q, HEAD_DIM_K = q.shape[-1], k.shape[-1] HEAD_DIM_V = v.shape[-1] assert HEAD_DIM_Q == HEAD_DIM_K and HEAD_DIM_K == HEAD_DIM_V assert HEAD_DIM_K in {16, 32, 64, 128, 256} o = torch.empty_like(q) extra_kern_args = {} grid = lambda args: (triton.cdiv(q.shape[2], args["BLOCK_M"]), q.shape[0] * q.shape[1], 1) M = torch.empty((q.shape[0], q.shape[1], q.shape[2]), device=q.device, dtype=torch.float32) _attn_fwd[grid]( q, k, v, sm_scale, M, o, # q.stride(0), q.stride(1), q.stride(2), q.stride(3), # k.stride(0), k.stride(1), k.stride(2), k.stride(3), # v.stride(0), v.stride(1), v.stride(2), v.stride(3), # o.stride(0), o.stride(1), o.stride(2), o.stride(3), # q.shape[0], q.shape[1], # N_CTX=q.shape[2], # HEAD_DIM=HEAD_DIM_K, # **extra_kern_args) return o attention = _attention.apply import flash_attn from flash_attn import flash_attn_func BATCH, N_HEADS, HEAD_DIM = 4, 32, 64 # vary seq length for fixed head and batch=4 configs = [] configs.append( triton.testing.Benchmark( x_names=["N_CTX"], x_vals=[2**i for i in range(10, 15)], line_arg="provider", line_vals=["triton-fp16", "flash-v2", "pytorch"], line_names=["Triton [FP16]", "Flash-v2 [FP16]", "pytorch [FP16]"], styles=[("red", "-"), ("blue", "-"), ("green", "-")], ylabel="ms", plot_name=f"fused-attention-batch{BATCH}-head{N_HEADS}-d{HEAD_DIM}", args={ "H": N_HEADS, "BATCH": BATCH, "HEAD_DIM": HEAD_DIM, }, )) # 标准的softmax计算,直接以e为底计算幂函数, 更准确. def torch_attention_standard(Q, K, V, sm_scale): qk = torch.matmul(Q, K.transpose(-2, -1)) # Compute the dot product qk_scale = sm_scale qk *= qk_scale mask = torch.triu(torch.ones_like(qk) * float(-1.0e6), diagonal=1) qk = qk + mask qk = qk - torch.max(qk, dim=-1, keepdim=True)[0] qk_score = torch.exp(qk) / torch.exp(qk).sum(dim=-1, keepdim=True) O = torch.matmul(qk_score, V) # Multiply scores with V return O @triton.testing.perf_report(configs) def bench_flash_attention(BATCH, H, N_CTX, HEAD_DIM, provider, device="cuda"): warmup = 25 rep = 100 dtype = torch.float16 if "triton" in provider: q = torch.randn((BATCH, H, N_CTX, HEAD_DIM), dtype=dtype, device=device, requires_grad=False) k = torch.randn((BATCH, H, N_CTX, HEAD_DIM), dtype=dtype, device=device, requires_grad=False) v = torch.randn((BATCH, H, N_CTX, HEAD_DIM), dtype=dtype, device=device, requires_grad=False) sm_scale = 1.3 fn = lambda: attention(q, k, v, sm_scale) ms = triton.testing.do_bench(fn, warmup=warmup, rep=rep) if provider == "flash-v2": q = torch.randn((BATCH, N_CTX, H, HEAD_DIM), dtype=dtype, device=device, requires_grad=False) k = torch.randn((BATCH, N_CTX, H, HEAD_DIM), dtype=dtype, device=device, requires_grad=False) v = torch.randn((BATCH, N_CTX, H, HEAD_DIM), dtype=dtype, device=device, requires_grad=False) fn = lambda: flash_attn_func(q=q, k=k, v=v, dropout_p=float(0.0), softmax_scale=1.3, causal=True, window_size=(-1,-1), alibi_slopes=None, deterministic=False) ms = triton.testing.do_bench(fn, warmup=warmup, rep=rep) if provider == "pytorch": q = torch.randn((BATCH, H, N_CTX, HEAD_DIM), dtype=dtype, device=device, requires_grad=False) k = torch.randn((BATCH, H, N_CTX, HEAD_DIM), dtype=dtype, device=device, requires_grad=False) v = torch.randn((BATCH, H, N_CTX, HEAD_DIM), dtype=dtype, device=device, requires_grad=False) fn = lambda: F.scaled_dot_product_attention(q, k, v, is_causal=True, scale=1.3) #fn = lambda: torch_attention_standard_v2(q, k, v, 1.3) ms = triton.testing.do_bench(fn, warmup=warmup, rep=rep) flops_per_matmul = 2.0 * BATCH * H * N_CTX * N_CTX * HEAD_DIM total_flops = 2 * flops_per_matmul total_flops *= 0.5 return total_flops / ms * 1e-9 # 模仿flashattention以2为底做幂函数计算,需要前置乘以log2e,结果更接近FlashAttention计算结果. # 误差是FlashAttention分块计算的scale的误差. def torch_attention(Q, K, V, sm_scale): qk = torch.matmul(Q, K.transpose(-2, -1)) # Compute the dot product qk_scale = sm_scale qk_scale *= 1.44269504 # 1/log(2) qk *= qk_scale mask = torch.triu(torch.ones_like(qk) * float(-1.0e6), diagonal=1) qk = qk + mask qk = qk - torch.max(qk, dim=-1, keepdim=True)[0] qk_score = torch.pow(2, qk) / torch.pow(2, qk).sum(dim=-1, keepdim=True) O = torch.matmul(qk_score, V) # Multiply scores with V return O if __name__ == "__main__": # 测试推理正确性. torch.manual_seed(0) q = torch.randn((4, 32, 1024, 64), dtype=torch.float16, device="cuda") k = torch.randn((4, 32, 1024, 64), dtype=torch.float16, device="cuda") v = torch.randn((4, 32, 1024, 64), dtype=torch.float16, device="cuda") sm_scale = 1.3 o_triton = attention(q, k, v, sm_scale) #o_torch = torch_attention_standard_v2(q, k, v, sm_scale) o_torch = F.scaled_dot_product_attention(q, k, v, is_causal=True, scale=sm_scale) assert o_triton.shape == (4, 32, 1024, 64) assert o_torch.shape == (4, 32, 1024, 64) assert torch.allclose(o_triton[0][0], o_torch[0][0], rtol=0.25*1e-2, atol=0.3*1e-1), (o_triton[0][0], o_torch[0][0]) #assert torch.allclose(o_triton[0][0], o_torch[0][0]), (o_triton[0][0], o_torch[0][0]) # 推理性能测试 bench_flash_attention.run(save_path=".", print_data=True)
l1351868270/implicit_gemm.triton
triton_gemm.py
https://github.com/l1351868270/implicit_gemm.triton/blob/b19c43fb5219c4bac5b0f5f6b1d98e280e07dcc4/triton_gemm.py
# copy from https://triton-lang.org/main/_downloads/d5fee5b55a64e47f1b5724ec39adf171/03-matrix-multiplication.py import torch import triton import triton.language as tl def get_autotune_config(): return [ triton.Config({'BLOCK_SIZE_M': 128, 'BLOCK_SIZE_N': 256, 'BLOCK_SIZE_K': 64, 'GROUP_SIZE_M': 8}, num_stages=3, num_warps=8), triton.Config({'BLOCK_SIZE_M': 64, 'BLOCK_SIZE_N': 256, 'BLOCK_SIZE_K': 32, 'GROUP_SIZE_M': 8}, num_stages=4, num_warps=4), triton.Config({'BLOCK_SIZE_M': 128, 'BLOCK_SIZE_N': 128, 'BLOCK_SIZE_K': 32, 'GROUP_SIZE_M': 8}, num_stages=4, num_warps=4), triton.Config({'BLOCK_SIZE_M': 128, 'BLOCK_SIZE_N': 64, 'BLOCK_SIZE_K': 32, 'GROUP_SIZE_M': 8}, num_stages=4, num_warps=4), triton.Config({'BLOCK_SIZE_M': 64, 'BLOCK_SIZE_N': 128, 'BLOCK_SIZE_K': 32, 'GROUP_SIZE_M': 8}, num_stages=4, num_warps=4), triton.Config({'BLOCK_SIZE_M': 128, 'BLOCK_SIZE_N': 32, 'BLOCK_SIZE_K': 32, 'GROUP_SIZE_M': 8}, num_stages=4, num_warps=4), triton.Config({'BLOCK_SIZE_M': 64, 'BLOCK_SIZE_N': 32, 'BLOCK_SIZE_K': 32, 'GROUP_SIZE_M': 8}, num_stages=5, num_warps=2), triton.Config({'BLOCK_SIZE_M': 32, 'BLOCK_SIZE_N': 64, 'BLOCK_SIZE_K': 32, 'GROUP_SIZE_M': 8}, num_stages=5, num_warps=2), # Good config for fp8 inputs. triton.Config({'BLOCK_SIZE_M': 128, 'BLOCK_SIZE_N': 256, 'BLOCK_SIZE_K': 128, 'GROUP_SIZE_M': 8}, num_stages=3, num_warps=8), triton.Config({'BLOCK_SIZE_M': 256, 'BLOCK_SIZE_N': 128, 'BLOCK_SIZE_K': 128, 'GROUP_SIZE_M': 8}, num_stages=3, num_warps=8), triton.Config({'BLOCK_SIZE_M': 256, 'BLOCK_SIZE_N': 64, 'BLOCK_SIZE_K': 128, 'GROUP_SIZE_M': 8}, num_stages=4, num_warps=4), triton.Config({'BLOCK_SIZE_M': 64, 'BLOCK_SIZE_N': 256, 'BLOCK_SIZE_K': 128, 'GROUP_SIZE_M': 8}, num_stages=4, num_warps=4), triton.Config({'BLOCK_SIZE_M': 128, 'BLOCK_SIZE_N': 128, 'BLOCK_SIZE_K': 128, 'GROUP_SIZE_M': 8}, num_stages=4, num_warps=4), triton.Config({'BLOCK_SIZE_M': 128, 'BLOCK_SIZE_N': 64, 'BLOCK_SIZE_K': 64, 'GROUP_SIZE_M': 8}, num_stages=4, num_warps=4), triton.Config({'BLOCK_SIZE_M': 64, 'BLOCK_SIZE_N': 128, 'BLOCK_SIZE_K': 64, 'GROUP_SIZE_M': 8}, num_stages=4, num_warps=4), triton.Config({'BLOCK_SIZE_M': 128, 'BLOCK_SIZE_N': 32, 'BLOCK_SIZE_K': 64, 'GROUP_SIZE_M': 8}, num_stages=4, num_warps=4) ] @triton.autotune( configs=get_autotune_config(), key=['M', 'N', 'K'], ) @triton.jit def matmul_kernel( # Pointers to matrices a_ptr, b_ptr, c_ptr, # Matrix dimensions M, N, K, # The stride variables represent how much to increase the ptr by when moving by 1 # element in a particular dimension. E.g. `stride_am` is how much to increase `a_ptr` # by to get the element one row down (A has M rows). stride_am, stride_ak, # stride_bk, stride_bn, # stride_cm, stride_cn, # Meta-parameters BLOCK_SIZE_M: tl.constexpr, BLOCK_SIZE_N: tl.constexpr, BLOCK_SIZE_K: tl.constexpr, # GROUP_SIZE_M: tl.constexpr, # ACTIVATION: tl.constexpr # ): """Kernel for computing the matmul C = A x B. A has shape (M, K), B has shape (K, N) and C has shape (M, N) """ # ----------------------------------------------------------- # Map program ids `pid` to the block of C it should compute. # This is done in a grouped ordering to promote L2 data reuse. # See above `L2 Cache Optimizations` section for details. pid = tl.program_id(axis=0) num_pid_m = tl.cdiv(M, BLOCK_SIZE_M) num_pid_n = tl.cdiv(N, BLOCK_SIZE_N) num_pid_in_group = GROUP_SIZE_M * num_pid_n group_id = pid // num_pid_in_group first_pid_m = group_id * GROUP_SIZE_M group_size_m = min(num_pid_m - first_pid_m, GROUP_SIZE_M) pid_m = first_pid_m + ((pid % num_pid_in_group) % group_size_m) pid_n = (pid % num_pid_in_group) // group_size_m # ---------------------------------------------------------- # Create pointers for the first blocks of A and B. # We will advance this pointer as we move in the K direction # and accumulate # `a_ptrs` is a block of [BLOCK_SIZE_M, BLOCK_SIZE_K] pointers # `b_ptrs` is a block of [BLOCK_SIZE_K, BLOCK_SIZE_N] pointers # See above `Pointer Arithmetic` section for details offs_am = (pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M)) % M offs_bn = (pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N)) % N offs_k = tl.arange(0, BLOCK_SIZE_K) a_ptrs = a_ptr + (offs_am[:, None] * stride_am + offs_k[None, :] * stride_ak) b_ptrs = b_ptr + (offs_k[:, None] * stride_bk + offs_bn[None, :] * stride_bn) # ----------------------------------------------------------- # Iterate to compute a block of the C matrix. # We accumulate into a `[BLOCK_SIZE_M, BLOCK_SIZE_N]` block # of fp32 values for higher accuracy. # `accumulator` will be converted back to fp16 after the loop. accumulator = tl.zeros((BLOCK_SIZE_M, BLOCK_SIZE_N), dtype=tl.float32) for k in range(0, tl.cdiv(K, BLOCK_SIZE_K)): # Load the next block of A and B, generate a mask by checking the K dimension. # If it is out of bounds, set it to 0. a = tl.load(a_ptrs, mask=offs_k[None, :] < K - k * BLOCK_SIZE_K, other=0.0) b = tl.load(b_ptrs, mask=offs_k[:, None] < K - k * BLOCK_SIZE_K, other=0.0) # We accumulate along the K dimension. accumulator = tl.dot(a, b, accumulator) # Advance the ptrs to the next K block. a_ptrs += BLOCK_SIZE_K * stride_ak b_ptrs += BLOCK_SIZE_K * stride_bk # You can fuse arbitrary activation functions here # while the accumulator is still in FP32! if ACTIVATION == "leaky_relu": accumulator = leaky_relu(accumulator) c = accumulator.to(tl.float16) # ----------------------------------------------------------- # Write back the block of the output matrix C with masks. offs_cm = pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M) offs_cn = pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N) c_ptrs = c_ptr + stride_cm * offs_cm[:, None] + stride_cn * offs_cn[None, :] c_mask = (offs_cm[:, None] < M) & (offs_cn[None, :] < N) tl.store(c_ptrs, c, mask=c_mask) # We can fuse `leaky_relu` by providing it as an `ACTIVATION` meta-parameter in `matmul_kernel`. @triton.jit def leaky_relu(x): return tl.where(x >= 0, x, 0.01 * x) def matmul(a, b, activation=""): # Check constraints. assert a.shape[1] == b.shape[0], "Incompatible dimensions" assert a.is_contiguous(), "Matrix A must be contiguous" M, K = a.shape K, N = b.shape # Allocates output. c = torch.empty((M, N), device=a.device, dtype=torch.float16) # 1D launch kernel where each block gets its own program. grid = lambda META: (triton.cdiv(M, META['BLOCK_SIZE_M']) * triton.cdiv(N, META['BLOCK_SIZE_N']), ) matmul_kernel[grid]( a, b, c, # M, N, K, # a.stride(0), a.stride(1), # b.stride(0), b.stride(1), # c.stride(0), c.stride(1), # ACTIVATION=activation # ) return c
@triton.jit def matmul_kernel( # Pointers to matrices a_ptr, b_ptr, c_ptr, # Matrix dimensions M, N, K, # The stride variables represent how much to increase the ptr by when moving by 1 # element in a particular dimension. E.g. `stride_am` is how much to increase `a_ptr` # by to get the element one row down (A has M rows). stride_am, stride_ak, # stride_bk, stride_bn, # stride_cm, stride_cn, # Meta-parameters BLOCK_SIZE_M: tl.constexpr, BLOCK_SIZE_N: tl.constexpr, BLOCK_SIZE_K: tl.constexpr, # GROUP_SIZE_M: tl.constexpr, # ACTIVATION: tl.constexpr # ): """Kernel for computing the matmul C = A x B. A has shape (M, K), B has shape (K, N) and C has shape (M, N) """ # ----------------------------------------------------------- # Map program ids `pid` to the block of C it should compute. # This is done in a grouped ordering to promote L2 data reuse. # See above `L2 Cache Optimizations` section for details. pid = tl.program_id(axis=0) num_pid_m = tl.cdiv(M, BLOCK_SIZE_M) num_pid_n = tl.cdiv(N, BLOCK_SIZE_N) num_pid_in_group = GROUP_SIZE_M * num_pid_n group_id = pid // num_pid_in_group first_pid_m = group_id * GROUP_SIZE_M group_size_m = min(num_pid_m - first_pid_m, GROUP_SIZE_M) pid_m = first_pid_m + ((pid % num_pid_in_group) % group_size_m) pid_n = (pid % num_pid_in_group) // group_size_m # ---------------------------------------------------------- # Create pointers for the first blocks of A and B. # We will advance this pointer as we move in the K direction # and accumulate # `a_ptrs` is a block of [BLOCK_SIZE_M, BLOCK_SIZE_K] pointers # `b_ptrs` is a block of [BLOCK_SIZE_K, BLOCK_SIZE_N] pointers # See above `Pointer Arithmetic` section for details offs_am = (pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M)) % M offs_bn = (pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N)) % N offs_k = tl.arange(0, BLOCK_SIZE_K) a_ptrs = a_ptr + (offs_am[:, None] * stride_am + offs_k[None, :] * stride_ak) b_ptrs = b_ptr + (offs_k[:, None] * stride_bk + offs_bn[None, :] * stride_bn) # ----------------------------------------------------------- # Iterate to compute a block of the C matrix. # We accumulate into a `[BLOCK_SIZE_M, BLOCK_SIZE_N]` block # of fp32 values for higher accuracy. # `accumulator` will be converted back to fp16 after the loop. accumulator = tl.zeros((BLOCK_SIZE_M, BLOCK_SIZE_N), dtype=tl.float32) for k in range(0, tl.cdiv(K, BLOCK_SIZE_K)): # Load the next block of A and B, generate a mask by checking the K dimension. # If it is out of bounds, set it to 0. a = tl.load(a_ptrs, mask=offs_k[None, :] < K - k * BLOCK_SIZE_K, other=0.0) b = tl.load(b_ptrs, mask=offs_k[:, None] < K - k * BLOCK_SIZE_K, other=0.0) # We accumulate along the K dimension. accumulator = tl.dot(a, b, accumulator) # Advance the ptrs to the next K block. a_ptrs += BLOCK_SIZE_K * stride_ak b_ptrs += BLOCK_SIZE_K * stride_bk # You can fuse arbitrary activation functions here # while the accumulator is still in FP32! if ACTIVATION == "leaky_relu": accumulator = leaky_relu(accumulator) c = accumulator.to(tl.float16) # ----------------------------------------------------------- # Write back the block of the output matrix C with masks. offs_cm = pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M) offs_cn = pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N) c_ptrs = c_ptr + stride_cm * offs_cm[:, None] + stride_cn * offs_cn[None, :] c_mask = (offs_cm[:, None] < M) & (offs_cn[None, :] < N) tl.store(c_ptrs, c, mask=c_mask) # We can fuse `leaky_relu` by providing it as an `ACTIVATION` meta-parameter in `matmul_kernel`.
l1351868270/implicit_gemm.triton
triton_gemm.py
https://github.com/l1351868270/implicit_gemm.triton/blob/b19c43fb5219c4bac5b0f5f6b1d98e280e07dcc4/triton_gemm.py
# copy from https://triton-lang.org/main/_downloads/d5fee5b55a64e47f1b5724ec39adf171/03-matrix-multiplication.py import torch import triton import triton.language as tl def get_autotune_config(): return [ triton.Config({'BLOCK_SIZE_M': 128, 'BLOCK_SIZE_N': 256, 'BLOCK_SIZE_K': 64, 'GROUP_SIZE_M': 8}, num_stages=3, num_warps=8), triton.Config({'BLOCK_SIZE_M': 64, 'BLOCK_SIZE_N': 256, 'BLOCK_SIZE_K': 32, 'GROUP_SIZE_M': 8}, num_stages=4, num_warps=4), triton.Config({'BLOCK_SIZE_M': 128, 'BLOCK_SIZE_N': 128, 'BLOCK_SIZE_K': 32, 'GROUP_SIZE_M': 8}, num_stages=4, num_warps=4), triton.Config({'BLOCK_SIZE_M': 128, 'BLOCK_SIZE_N': 64, 'BLOCK_SIZE_K': 32, 'GROUP_SIZE_M': 8}, num_stages=4, num_warps=4), triton.Config({'BLOCK_SIZE_M': 64, 'BLOCK_SIZE_N': 128, 'BLOCK_SIZE_K': 32, 'GROUP_SIZE_M': 8}, num_stages=4, num_warps=4), triton.Config({'BLOCK_SIZE_M': 128, 'BLOCK_SIZE_N': 32, 'BLOCK_SIZE_K': 32, 'GROUP_SIZE_M': 8}, num_stages=4, num_warps=4), triton.Config({'BLOCK_SIZE_M': 64, 'BLOCK_SIZE_N': 32, 'BLOCK_SIZE_K': 32, 'GROUP_SIZE_M': 8}, num_stages=5, num_warps=2), triton.Config({'BLOCK_SIZE_M': 32, 'BLOCK_SIZE_N': 64, 'BLOCK_SIZE_K': 32, 'GROUP_SIZE_M': 8}, num_stages=5, num_warps=2), # Good config for fp8 inputs. triton.Config({'BLOCK_SIZE_M': 128, 'BLOCK_SIZE_N': 256, 'BLOCK_SIZE_K': 128, 'GROUP_SIZE_M': 8}, num_stages=3, num_warps=8), triton.Config({'BLOCK_SIZE_M': 256, 'BLOCK_SIZE_N': 128, 'BLOCK_SIZE_K': 128, 'GROUP_SIZE_M': 8}, num_stages=3, num_warps=8), triton.Config({'BLOCK_SIZE_M': 256, 'BLOCK_SIZE_N': 64, 'BLOCK_SIZE_K': 128, 'GROUP_SIZE_M': 8}, num_stages=4, num_warps=4), triton.Config({'BLOCK_SIZE_M': 64, 'BLOCK_SIZE_N': 256, 'BLOCK_SIZE_K': 128, 'GROUP_SIZE_M': 8}, num_stages=4, num_warps=4), triton.Config({'BLOCK_SIZE_M': 128, 'BLOCK_SIZE_N': 128, 'BLOCK_SIZE_K': 128, 'GROUP_SIZE_M': 8}, num_stages=4, num_warps=4), triton.Config({'BLOCK_SIZE_M': 128, 'BLOCK_SIZE_N': 64, 'BLOCK_SIZE_K': 64, 'GROUP_SIZE_M': 8}, num_stages=4, num_warps=4), triton.Config({'BLOCK_SIZE_M': 64, 'BLOCK_SIZE_N': 128, 'BLOCK_SIZE_K': 64, 'GROUP_SIZE_M': 8}, num_stages=4, num_warps=4), triton.Config({'BLOCK_SIZE_M': 128, 'BLOCK_SIZE_N': 32, 'BLOCK_SIZE_K': 64, 'GROUP_SIZE_M': 8}, num_stages=4, num_warps=4) ] @triton.autotune( configs=get_autotune_config(), key=['M', 'N', 'K'], ) @triton.jit def matmul_kernel( # Pointers to matrices a_ptr, b_ptr, c_ptr, # Matrix dimensions M, N, K, # The stride variables represent how much to increase the ptr by when moving by 1 # element in a particular dimension. E.g. `stride_am` is how much to increase `a_ptr` # by to get the element one row down (A has M rows). stride_am, stride_ak, # stride_bk, stride_bn, # stride_cm, stride_cn, # Meta-parameters BLOCK_SIZE_M: tl.constexpr, BLOCK_SIZE_N: tl.constexpr, BLOCK_SIZE_K: tl.constexpr, # GROUP_SIZE_M: tl.constexpr, # ACTIVATION: tl.constexpr # ): """Kernel for computing the matmul C = A x B. A has shape (M, K), B has shape (K, N) and C has shape (M, N) """ # ----------------------------------------------------------- # Map program ids `pid` to the block of C it should compute. # This is done in a grouped ordering to promote L2 data reuse. # See above `L2 Cache Optimizations` section for details. pid = tl.program_id(axis=0) num_pid_m = tl.cdiv(M, BLOCK_SIZE_M) num_pid_n = tl.cdiv(N, BLOCK_SIZE_N) num_pid_in_group = GROUP_SIZE_M * num_pid_n group_id = pid // num_pid_in_group first_pid_m = group_id * GROUP_SIZE_M group_size_m = min(num_pid_m - first_pid_m, GROUP_SIZE_M) pid_m = first_pid_m + ((pid % num_pid_in_group) % group_size_m) pid_n = (pid % num_pid_in_group) // group_size_m # ---------------------------------------------------------- # Create pointers for the first blocks of A and B. # We will advance this pointer as we move in the K direction # and accumulate # `a_ptrs` is a block of [BLOCK_SIZE_M, BLOCK_SIZE_K] pointers # `b_ptrs` is a block of [BLOCK_SIZE_K, BLOCK_SIZE_N] pointers # See above `Pointer Arithmetic` section for details offs_am = (pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M)) % M offs_bn = (pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N)) % N offs_k = tl.arange(0, BLOCK_SIZE_K) a_ptrs = a_ptr + (offs_am[:, None] * stride_am + offs_k[None, :] * stride_ak) b_ptrs = b_ptr + (offs_k[:, None] * stride_bk + offs_bn[None, :] * stride_bn) # ----------------------------------------------------------- # Iterate to compute a block of the C matrix. # We accumulate into a `[BLOCK_SIZE_M, BLOCK_SIZE_N]` block # of fp32 values for higher accuracy. # `accumulator` will be converted back to fp16 after the loop. accumulator = tl.zeros((BLOCK_SIZE_M, BLOCK_SIZE_N), dtype=tl.float32) for k in range(0, tl.cdiv(K, BLOCK_SIZE_K)): # Load the next block of A and B, generate a mask by checking the K dimension. # If it is out of bounds, set it to 0. a = tl.load(a_ptrs, mask=offs_k[None, :] < K - k * BLOCK_SIZE_K, other=0.0) b = tl.load(b_ptrs, mask=offs_k[:, None] < K - k * BLOCK_SIZE_K, other=0.0) # We accumulate along the K dimension. accumulator = tl.dot(a, b, accumulator) # Advance the ptrs to the next K block. a_ptrs += BLOCK_SIZE_K * stride_ak b_ptrs += BLOCK_SIZE_K * stride_bk # You can fuse arbitrary activation functions here # while the accumulator is still in FP32! if ACTIVATION == "leaky_relu": accumulator = leaky_relu(accumulator) c = accumulator.to(tl.float16) # ----------------------------------------------------------- # Write back the block of the output matrix C with masks. offs_cm = pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M) offs_cn = pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N) c_ptrs = c_ptr + stride_cm * offs_cm[:, None] + stride_cn * offs_cn[None, :] c_mask = (offs_cm[:, None] < M) & (offs_cn[None, :] < N) tl.store(c_ptrs, c, mask=c_mask) # We can fuse `leaky_relu` by providing it as an `ACTIVATION` meta-parameter in `matmul_kernel`. @triton.jit def leaky_relu(x): return tl.where(x >= 0, x, 0.01 * x) def matmul(a, b, activation=""): # Check constraints. assert a.shape[1] == b.shape[0], "Incompatible dimensions" assert a.is_contiguous(), "Matrix A must be contiguous" M, K = a.shape K, N = b.shape # Allocates output. c = torch.empty((M, N), device=a.device, dtype=torch.float16) # 1D launch kernel where each block gets its own program. grid = lambda META: (triton.cdiv(M, META['BLOCK_SIZE_M']) * triton.cdiv(N, META['BLOCK_SIZE_N']), ) matmul_kernel[grid]( a, b, c, # M, N, K, # a.stride(0), a.stride(1), # b.stride(0), b.stride(1), # c.stride(0), c.stride(1), # ACTIVATION=activation # ) return c
@triton.jit def leaky_relu(x): return tl.where(x >= 0, x, 0.01 * x) def matmul(a, b, activation=""): # Check constraints. assert a.shape[1] == b.shape[0], "Incompatible dimensions" assert a.is_contiguous(), "Matrix A must be contiguous" M, K = a.shape K, N = b.shape # Allocates output. c = torch.empty((M, N), device=a.device, dtype=torch.float16) # 1D launch kernel where each block gets its own program. grid = lambda META: (triton.cdiv(M, META['BLOCK_SIZE_M']) * triton.cdiv(N, META['BLOCK_SIZE_N']), ) matmul_kernel[grid]( a, b, c, # M, N, K, # a.stride(0), a.stride(1), # b.stride(0), b.stride(1), # c.stride(0), c.stride(1), # ACTIVATION=activation # ) return c
zhanghuanrong/cudas
scratch_triton/vec_add.py
https://github.com/zhanghuanrong/cudas/blob/8f4d176fae9939b428fe634aae9a1416e6252cc1/scratch_triton/vec_add.py
import torch import triton import triton.language as tl DEVICE = torch.device('cuda:0') @triton.jit def add_kernel(x, y, z, n_elements, BLOCK_SIZE: tl.constexpr) : pid = tl.program_id(axis=0) block_start = pid * BLOCK_SIZE offsets = block_start + tl.arange(0, BLOCK_SIZE) mask = offsets < n_elements x = tl.load(x + offsets, mask = mask) y = tl.load(y + offsets, mask = mask) tl.store(z + offsets, x + y, mask=mask) def add(x: torch.Tensor, y: torch.Tensor): z = torch.empty_like(x) n_elements = z.numel() grid = lambda meta: (triton.cdiv(n_elements, meta['BLOCK_SIZE']), ) add_kernel[grid](x, y, z, n_elements, BLOCK_SIZE=1024) return z def main() : size = 327680 torch.manual_seed(0) x = torch.rand(size, device = DEVICE) y = torch.rand(size, device = DEVICE) z_torch = x + y z_tr = add(x, y) print(f'Max diff of add result from torch vs triton are:') print(f"{torch.max(torch.abs(z_torch - z_tr))}") main()
@triton.jit def add_kernel(x, y, z, n_elements, BLOCK_SIZE: tl.constexpr) : pid = tl.program_id(axis=0) block_start = pid * BLOCK_SIZE offsets = block_start + tl.arange(0, BLOCK_SIZE) mask = offsets < n_elements x = tl.load(x + offsets, mask = mask) y = tl.load(y + offsets, mask = mask) tl.store(z + offsets, x + y, mask=mask) def add(x: torch.Tensor, y: torch.Tensor): z = torch.empty_like(x) n_elements = z.numel() grid = lambda meta: (triton.cdiv(n_elements, meta['BLOCK_SIZE']), ) add_kernel[grid](x, y, z, n_elements, BLOCK_SIZE=1024) return z def main() : size = 327680 torch.manual_seed(0) x = torch.rand(size, device = DEVICE) y = torch.rand(size, device = DEVICE) z_torch = x + y z_tr = add(x, y) print(f'Max diff of add result from torch vs triton are:') print(f"{torch.max(torch.abs(z_torch - z_tr))}") main()
motobiubiu/biubiuquik
src/triton/relu.py
https://github.com/motobiubiu/biubiuquik/blob/eedaa2e7d4e2132ecbc969709fd3cbf018cd21db/src/triton/relu.py
import torch import triton import triton.language as tl import os # os.environ["TRITON_INTERPRET"] = "1" @triton.jit def relu_kernel(x_ptr, # *Pointer* to first input vector. output_ptr, # *Pointer* to output vector. n_elements, # Size of the vector. BLOCK_SIZE: tl.constexpr, # Number of elements each program should process. # NOTE: `constexpr` so it can be used as a shape value. ): pid = tl.program_id(axis=0) # We use a 1D launch grid so axis is 0. block_start = pid * BLOCK_SIZE offsets = block_start + tl.arange(0, BLOCK_SIZE) mask = offsets < n_elements x = tl.load(x_ptr + offsets, mask=mask) output=tl.maximum(x,0) tl.store(output_ptr + offsets, output, mask=mask) def relu(x: torch.Tensor): # We need to preallocate the output. output = torch.empty_like(x) assert x.is_cuda and output.is_cuda n_elements = output.numel() grid = lambda meta: (triton.cdiv(n_elements, meta['BLOCK_SIZE']), ) relu_kernel[grid](x, output, n_elements, BLOCK_SIZE=1024) return output torch.manual_seed(0) size = 98432 x = torch.rand(size, device='cuda') output_torch = torch.relu(x) output_triton = relu(x) print(output_torch) print(output_triton) print(f'The maximum difference between torch and triton is ' f'{torch.max(torch.abs(output_torch - output_triton))}') @triton.testing.perf_report( triton.testing.Benchmark( x_names=['size'], # Argument names to use as an x-axis for the plot. x_vals=[2**i for i in range(12, 28, 1)], # Different possible values for `x_name`. x_log=True, # x axis is logarithmic. line_arg='provider', # Argument name whose value corresponds to a different line in the plot. line_vals=['triton', 'torch'], # Possible values for `line_arg`. line_names=['Triton', 'Torch'], # Label name for the lines. styles=[('blue', '-'), ('green', '-')], # Line styles. ylabel='GB/s', # Label name for the y-axis. plot_name='vector-add-performance', # Name for the plot. Used also as a file name for saving the plot. args={}, # Values for function arguments not in `x_names` and `y_name`. )) def benchmark(size, provider): x = torch.rand(size, device='cuda', dtype=torch.float32) quantiles = [0.5, 0.2, 0.8] if provider == 'torch': ms, min_ms, max_ms = triton.testing.do_bench(lambda: torch.relu(x), quantiles=quantiles) if provider == 'triton': ms, min_ms, max_ms = triton.testing.do_bench(lambda: relu(x), quantiles=quantiles) gbps = lambda ms: 3 * x.numel() * x.element_size() / ms * 1e-6 return gbps(ms), gbps(max_ms), gbps(min_ms) benchmark.run(print_data=True, show_plots=True)
@triton.jit def relu_kernel(x_ptr, # *Pointer* to first input vector. output_ptr, # *Pointer* to output vector. n_elements, # Size of the vector. BLOCK_SIZE: tl.constexpr, # Number of elements each program should process. # NOTE: `constexpr` so it can be used as a shape value. ): pid = tl.program_id(axis=0) # We use a 1D launch grid so axis is 0. block_start = pid * BLOCK_SIZE offsets = block_start + tl.arange(0, BLOCK_SIZE) mask = offsets < n_elements x = tl.load(x_ptr + offsets, mask=mask) output=tl.maximum(x,0) tl.store(output_ptr + offsets, output, mask=mask) def relu(x: torch.Tensor): # We need to preallocate the output. output = torch.empty_like(x) assert x.is_cuda and output.is_cuda n_elements = output.numel() grid = lambda meta: (triton.cdiv(n_elements, meta['BLOCK_SIZE']), ) relu_kernel[grid](x, output, n_elements, BLOCK_SIZE=1024) return output torch.manual_seed(0) size = 98432 x = torch.rand(size, device='cuda') output_torch = torch.relu(x) output_triton = relu(x) print(output_torch) print(output_triton) print(f'The maximum difference between torch and triton is ' f'{torch.max(torch.abs(output_torch - output_triton))}') @triton.testing.perf_report( triton.testing.Benchmark( x_names=['size'], # Argument names to use as an x-axis for the plot. x_vals=[2**i for i in range(12, 28, 1)], # Different possible values for `x_name`. x_log=True, # x axis is logarithmic. line_arg='provider', # Argument name whose value corresponds to a different line in the plot. line_vals=['triton', 'torch'], # Possible values for `line_arg`. line_names=['Triton', 'Torch'], # Label name for the lines. styles=[('blue', '-'), ('green', '-')], # Line styles. ylabel='GB/s', # Label name for the y-axis. plot_name='vector-add-performance', # Name for the plot. Used also as a file name for saving the plot. args={}, # Values for function arguments not in `x_names` and `y_name`. )) def benchmark(size, provider): x = torch.rand(size, device='cuda', dtype=torch.float32) quantiles = [0.5, 0.2, 0.8] if provider == 'torch': ms, min_ms, max_ms = triton.testing.do_bench(lambda: torch.relu(x), quantiles=quantiles) if provider == 'triton': ms, min_ms, max_ms = triton.testing.do_bench(lambda: relu(x), quantiles=quantiles) gbps = lambda ms: 3 * x.numel() * x.element_size() / ms * 1e-6 return gbps(ms), gbps(max_ms), gbps(min_ms) benchmark.run(print_data=True, show_plots=True)
yynil/RWKVinLLAMA
rwkv/fla/modules/l2norm.py
https://github.com/yynil/RWKVinLLAMA/blob/6fa0a05a76b513dc6f0e11a32aaf1d89b8678376/rwkv/fla/modules/l2norm.py
# -*- coding: utf-8 -*- import torch import triton import triton.language as tl @triton.autotune( configs=[ triton.Config({}, num_warps=1), triton.Config({}, num_warps=2), triton.Config({}, num_warps=4), triton.Config({}, num_warps=8), triton.Config({}, num_warps=16), triton.Config({}, num_warps=32), ], key=["N"], ) # @triton.heuristics({"HAS_BIAS": lambda args: args["B"] is not None}) # @triton.heuristics({"HAS_RESIDUAL": lambda args: args["RESIDUAL"] is not None}) @triton.jit def _l2_norm_fwd_1pass_kernel( X, # pointer to the input Y, # pointer to the output stride_x_row, # how much to increase the pointer when moving by 1 row N, # number of columns in X eps, # epsilon to avoid division by zero BLOCK_N: tl.constexpr, ): # Map the program id to the row of X and Y it should compute. row = tl.program_id(0) X += row * stride_x_row Y += row * stride_x_row # Compute mean and variance cols = tl.arange(0, BLOCK_N) x = tl.load(X + cols, mask=cols < N, other=0.0).to(tl.float32) xbar = tl.where(cols < N, x, 0.0) var = tl.sum(xbar * xbar, axis=0) rstd = 1 / tl.sqrt(var + eps) # tl.store(Rstd + row, rstd) # Normalize and apply linear transformation mask = cols < N y = x * rstd # Write output tl.store(Y + cols, y, mask=mask) @triton.autotune( configs=[ triton.Config({}, num_warps=1), triton.Config({}, num_warps=2), triton.Config({}, num_warps=4), triton.Config({}, num_warps=8), triton.Config({}, num_warps=16), triton.Config({}, num_warps=32), ], key=["N"], ) # @triton.heuristics({"HAS_BIAS": lambda args: args["B"] is not None}) # @triton.heuristics({"HAS_DRESIDUAL": lambda args: args["DRESIDUAL"] is not None}) # @triton.heuristics({"STORE_DRESIDUAL": lambda args: args["DRESIDUAL_IN"] is not None}) # @triton.heuristics({"RECOMPUTE_OUTPUT": lambda args: args["Y"] is not None}) @triton.jit def _l2_norm_bwd_kernel( X, # pointer to the input # Y, # pointer to the output to be recomputed DY, # pointer to the output gradient DX, # pointer to the input gradient stride_x_row, # how much to increase the pointer when moving by 1 row N, # number of columns in X eps, # epsilon to avoid division by zero BLOCK_N: tl.constexpr, ): # Map the program id to the elements of X, DX, and DY it should compute. # Map the program id to the row of X and Y it should compute. row = tl.program_id(0) X += row * stride_x_row DX += row * stride_x_row DY += row * stride_x_row # Y += row * stride_y_row cols = tl.arange(0, BLOCK_N) x = tl.load(X + cols, mask=cols < N, other=0.0).to(tl.float32) x = tl.where(cols < N, x, 0.0) var = tl.sum(x * x) rstd = 1 / tl.sqrt(var + eps) # tl.store(Rstd + row, rstd) # Normalize and apply linear transformation mask = cols < N # y = x * rstd dy = tl.load(DY + cols, mask=cols < N, other=0.0).to(tl.float32) dy = tl.where(cols < N, dy, 0.0) # dx = dy * rstd - tl.sum(dy * x) * (1 / (var+eps)) * rstd * x dx = dy * rstd - tl.sum(dy * x) * (1 / (var+eps)) * rstd * x tl.store(DX + cols, dx, mask=mask) def _l2_norm_fwd( x, eps=1e-6 ): x_shape_og = x.shape x = x.reshape(-1, x.shape[-1]) if x.stride(-1) != 1: x = x.contiguous() M, N = x.shape assert x.stride(-1) == 1 # allocate output y = torch.empty_like(x) assert y.stride(-1) == 1 N = x.shape[-1] M = x.shape[0] # rstd = torch.empty((M,), dtype=torch.float32, device="cuda") # Less than 64KB per feature: enqueue fused kernel MAX_FUSED_SIZE = 65536 // x.element_size() BLOCK_N = min(MAX_FUSED_SIZE, triton.next_power_of_2(N)) if N > BLOCK_N: raise RuntimeError( "This layer norm doesn't support feature dim >= 64KB.") # heuristics for number of warps with torch.cuda.device(x.device.index): _l2_norm_fwd_1pass_kernel[(M,)]( x, y, x.stride(0), N, eps, # is_rms_norm, BLOCK_N, # residual is not None, # residual_out is not None, # bias is not None, ) return y.reshape(x_shape_og) def _l2_norm_bwd( x, dy, eps=1e-5, ): x_shape_og = x.shape x = x.reshape(-1, dy.shape[-1]) dy = dy.reshape(-1, dy.shape[-1]) if dy.stride(-1) != 1: dy = dy.contiguous() assert dy.shape == x.shape # allocate output dx = torch.empty_like(x) N = x.shape[-1] M = x.shape[0] assert x.stride(-1) == 1 assert dy.stride(-1) == 1 # rstd = torch.empty((M,), dtype=torch.float32, device="cuda") # Less than 64KB per feature: enqueue fused kernel MAX_FUSED_SIZE = 65536 // x.element_size() BLOCK_N = min(MAX_FUSED_SIZE, triton.next_power_of_2(N)) if N > BLOCK_N: raise RuntimeError( "This layer norm doesn't support feature dim >= 64KB.") # heuristics for number of warps with torch.cuda.device(x.device.index): _l2_norm_bwd_kernel[(M,)]( x, dy, dx, x.stride(0), N, eps, BLOCK_N, ) return dx.reshape(x_shape_og) class L2NormFN(torch.autograd.Function): @staticmethod def forward( ctx, x, eps=1e-6, ): # reshape input data into 2D tensor y = _l2_norm_fwd(x, eps) ctx.eps = eps ctx.x_dtype = x.dtype ctx.save_for_backward(x) return y @staticmethod def backward(ctx, dy, *args): x, = ctx.saved_tensors dx = _l2_norm_bwd( x, dy, ctx.eps, ) return ( dx, None ) l2_norm_fn = L2NormFN.apply
@triton.jit def _l2_norm_fwd_1pass_kernel( X, # pointer to the input Y, # pointer to the output stride_x_row, # how much to increase the pointer when moving by 1 row N, # number of columns in X eps, # epsilon to avoid division by zero BLOCK_N: tl.constexpr, ): # Map the program id to the row of X and Y it should compute. row = tl.program_id(0) X += row * stride_x_row Y += row * stride_x_row # Compute mean and variance cols = tl.arange(0, BLOCK_N) x = tl.load(X + cols, mask=cols < N, other=0.0).to(tl.float32) xbar = tl.where(cols < N, x, 0.0) var = tl.sum(xbar * xbar, axis=0) rstd = 1 / tl.sqrt(var + eps) # tl.store(Rstd + row, rstd) # Normalize and apply linear transformation mask = cols < N y = x * rstd # Write output tl.store(Y + cols, y, mask=mask) @triton.autotune( configs=[ triton.Config({}, num_warps=1), triton.Config({}, num_warps=2), triton.Config({}, num_warps=4), triton.Config({}, num_warps=8), triton.Config({}, num_warps=16), triton.Config({}, num_warps=32), ], key=["N"], ) # @triton.heuristics({"HAS_BIAS": lambda args: args["B"] is not None}) # @triton.heuristics({"HAS_DRESIDUAL": lambda args: args["DRESIDUAL"] is not None}) # @triton.heuristics({"STORE_DRESIDUAL": lambda args: args["DRESIDUAL_IN"] is not None}) # @triton.heuristics({"RECOMPUTE_OUTPUT": lambda args: args["Y"] is not None})
yynil/RWKVinLLAMA
rwkv/fla/modules/l2norm.py
https://github.com/yynil/RWKVinLLAMA/blob/6fa0a05a76b513dc6f0e11a32aaf1d89b8678376/rwkv/fla/modules/l2norm.py
# -*- coding: utf-8 -*- import torch import triton import triton.language as tl @triton.autotune( configs=[ triton.Config({}, num_warps=1), triton.Config({}, num_warps=2), triton.Config({}, num_warps=4), triton.Config({}, num_warps=8), triton.Config({}, num_warps=16), triton.Config({}, num_warps=32), ], key=["N"], ) # @triton.heuristics({"HAS_BIAS": lambda args: args["B"] is not None}) # @triton.heuristics({"HAS_RESIDUAL": lambda args: args["RESIDUAL"] is not None}) @triton.jit def _l2_norm_fwd_1pass_kernel( X, # pointer to the input Y, # pointer to the output stride_x_row, # how much to increase the pointer when moving by 1 row N, # number of columns in X eps, # epsilon to avoid division by zero BLOCK_N: tl.constexpr, ): # Map the program id to the row of X and Y it should compute. row = tl.program_id(0) X += row * stride_x_row Y += row * stride_x_row # Compute mean and variance cols = tl.arange(0, BLOCK_N) x = tl.load(X + cols, mask=cols < N, other=0.0).to(tl.float32) xbar = tl.where(cols < N, x, 0.0) var = tl.sum(xbar * xbar, axis=0) rstd = 1 / tl.sqrt(var + eps) # tl.store(Rstd + row, rstd) # Normalize and apply linear transformation mask = cols < N y = x * rstd # Write output tl.store(Y + cols, y, mask=mask) @triton.autotune( configs=[ triton.Config({}, num_warps=1), triton.Config({}, num_warps=2), triton.Config({}, num_warps=4), triton.Config({}, num_warps=8), triton.Config({}, num_warps=16), triton.Config({}, num_warps=32), ], key=["N"], ) # @triton.heuristics({"HAS_BIAS": lambda args: args["B"] is not None}) # @triton.heuristics({"HAS_DRESIDUAL": lambda args: args["DRESIDUAL"] is not None}) # @triton.heuristics({"STORE_DRESIDUAL": lambda args: args["DRESIDUAL_IN"] is not None}) # @triton.heuristics({"RECOMPUTE_OUTPUT": lambda args: args["Y"] is not None}) @triton.jit def _l2_norm_bwd_kernel( X, # pointer to the input # Y, # pointer to the output to be recomputed DY, # pointer to the output gradient DX, # pointer to the input gradient stride_x_row, # how much to increase the pointer when moving by 1 row N, # number of columns in X eps, # epsilon to avoid division by zero BLOCK_N: tl.constexpr, ): # Map the program id to the elements of X, DX, and DY it should compute. # Map the program id to the row of X and Y it should compute. row = tl.program_id(0) X += row * stride_x_row DX += row * stride_x_row DY += row * stride_x_row # Y += row * stride_y_row cols = tl.arange(0, BLOCK_N) x = tl.load(X + cols, mask=cols < N, other=0.0).to(tl.float32) x = tl.where(cols < N, x, 0.0) var = tl.sum(x * x) rstd = 1 / tl.sqrt(var + eps) # tl.store(Rstd + row, rstd) # Normalize and apply linear transformation mask = cols < N # y = x * rstd dy = tl.load(DY + cols, mask=cols < N, other=0.0).to(tl.float32) dy = tl.where(cols < N, dy, 0.0) # dx = dy * rstd - tl.sum(dy * x) * (1 / (var+eps)) * rstd * x dx = dy * rstd - tl.sum(dy * x) * (1 / (var+eps)) * rstd * x tl.store(DX + cols, dx, mask=mask) def _l2_norm_fwd( x, eps=1e-6 ): x_shape_og = x.shape x = x.reshape(-1, x.shape[-1]) if x.stride(-1) != 1: x = x.contiguous() M, N = x.shape assert x.stride(-1) == 1 # allocate output y = torch.empty_like(x) assert y.stride(-1) == 1 N = x.shape[-1] M = x.shape[0] # rstd = torch.empty((M,), dtype=torch.float32, device="cuda") # Less than 64KB per feature: enqueue fused kernel MAX_FUSED_SIZE = 65536 // x.element_size() BLOCK_N = min(MAX_FUSED_SIZE, triton.next_power_of_2(N)) if N > BLOCK_N: raise RuntimeError( "This layer norm doesn't support feature dim >= 64KB.") # heuristics for number of warps with torch.cuda.device(x.device.index): _l2_norm_fwd_1pass_kernel[(M,)]( x, y, x.stride(0), N, eps, # is_rms_norm, BLOCK_N, # residual is not None, # residual_out is not None, # bias is not None, ) return y.reshape(x_shape_og) def _l2_norm_bwd( x, dy, eps=1e-5, ): x_shape_og = x.shape x = x.reshape(-1, dy.shape[-1]) dy = dy.reshape(-1, dy.shape[-1]) if dy.stride(-1) != 1: dy = dy.contiguous() assert dy.shape == x.shape # allocate output dx = torch.empty_like(x) N = x.shape[-1] M = x.shape[0] assert x.stride(-1) == 1 assert dy.stride(-1) == 1 # rstd = torch.empty((M,), dtype=torch.float32, device="cuda") # Less than 64KB per feature: enqueue fused kernel MAX_FUSED_SIZE = 65536 // x.element_size() BLOCK_N = min(MAX_FUSED_SIZE, triton.next_power_of_2(N)) if N > BLOCK_N: raise RuntimeError( "This layer norm doesn't support feature dim >= 64KB.") # heuristics for number of warps with torch.cuda.device(x.device.index): _l2_norm_bwd_kernel[(M,)]( x, dy, dx, x.stride(0), N, eps, BLOCK_N, ) return dx.reshape(x_shape_og) class L2NormFN(torch.autograd.Function): @staticmethod def forward( ctx, x, eps=1e-6, ): # reshape input data into 2D tensor y = _l2_norm_fwd(x, eps) ctx.eps = eps ctx.x_dtype = x.dtype ctx.save_for_backward(x) return y @staticmethod def backward(ctx, dy, *args): x, = ctx.saved_tensors dx = _l2_norm_bwd( x, dy, ctx.eps, ) return ( dx, None ) l2_norm_fn = L2NormFN.apply
@triton.jit def _l2_norm_bwd_kernel( X, # pointer to the input # Y, # pointer to the output to be recomputed DY, # pointer to the output gradient DX, # pointer to the input gradient stride_x_row, # how much to increase the pointer when moving by 1 row N, # number of columns in X eps, # epsilon to avoid division by zero BLOCK_N: tl.constexpr, ): # Map the program id to the elements of X, DX, and DY it should compute. # Map the program id to the row of X and Y it should compute. row = tl.program_id(0) X += row * stride_x_row DX += row * stride_x_row DY += row * stride_x_row # Y += row * stride_y_row cols = tl.arange(0, BLOCK_N) x = tl.load(X + cols, mask=cols < N, other=0.0).to(tl.float32) x = tl.where(cols < N, x, 0.0) var = tl.sum(x * x) rstd = 1 / tl.sqrt(var + eps) # tl.store(Rstd + row, rstd) # Normalize and apply linear transformation mask = cols < N # y = x * rstd dy = tl.load(DY + cols, mask=cols < N, other=0.0).to(tl.float32) dy = tl.where(cols < N, dy, 0.0) # dx = dy * rstd - tl.sum(dy * x) * (1 / (var+eps)) * rstd * x dx = dy * rstd - tl.sum(dy * x) * (1 / (var+eps)) * rstd * x tl.store(DX + cols, dx, mask=mask) def _l2_norm_fwd( x, eps=1e-6 ): x_shape_og = x.shape x = x.reshape(-1, x.shape[-1]) if x.stride(-1) != 1: x = x.contiguous() M, N = x.shape assert x.stride(-1) == 1 # allocate output y = torch.empty_like(x) assert y.stride(-1) == 1 N = x.shape[-1] M = x.shape[0] # rstd = torch.empty((M,), dtype=torch.float32, device="cuda") # Less than 64KB per feature: enqueue fused kernel MAX_FUSED_SIZE = 65536 // x.element_size() BLOCK_N = min(MAX_FUSED_SIZE, triton.next_power_of_2(N)) if N > BLOCK_N: raise RuntimeError( "This layer norm doesn't support feature dim >= 64KB.") # heuristics for number of warps with torch.cuda.device(x.device.index): _l2_norm_fwd_1pass_kernel[(M,)]( x, y, x.stride(0), N, eps, # is_rms_norm, BLOCK_N, # residual is not None, # residual_out is not None, # bias is not None, ) return y.reshape(x_shape_og) def _l2_norm_bwd( x, dy, eps=1e-5, ): x_shape_og = x.shape x = x.reshape(-1, dy.shape[-1]) dy = dy.reshape(-1, dy.shape[-1]) if dy.stride(-1) != 1: dy = dy.contiguous() assert dy.shape == x.shape # allocate output dx = torch.empty_like(x) N = x.shape[-1] M = x.shape[0] assert x.stride(-1) == 1 assert dy.stride(-1) == 1 # rstd = torch.empty((M,), dtype=torch.float32, device="cuda") # Less than 64KB per feature: enqueue fused kernel MAX_FUSED_SIZE = 65536 // x.element_size() BLOCK_N = min(MAX_FUSED_SIZE, triton.next_power_of_2(N)) if N > BLOCK_N: raise RuntimeError( "This layer norm doesn't support feature dim >= 64KB.") # heuristics for number of warps with torch.cuda.device(x.device.index): _l2_norm_bwd_kernel[(M,)]( x, dy, dx, x.stride(0), N, eps, BLOCK_N, ) return dx.reshape(x_shape_og) class L2NormFN(torch.autograd.Function): @staticmethod def forward( ctx, x, eps=1e-6, ): # reshape input data into 2D tensor y = _l2_norm_fwd(x, eps) ctx.eps = eps ctx.x_dtype = x.dtype ctx.save_for_backward(x) return y @staticmethod def backward(ctx, dy, *args): x, = ctx.saved_tensors dx = _l2_norm_bwd( x, dy, ctx.eps, ) return ( dx, None ) l2_norm_fn = L2NormFN.apply
RobertCsordas/moe_attention
layers/cvmm.py
https://github.com/RobertCsordas/moe_attention/blob/7169ad370e68185ecddb592c623b8d550de725df/layers/cvmm.py
from typing import Union, Optional import torch import math from dataclasses import dataclass from torch.cuda.amp import custom_fwd, custom_bwd import triton import triton.language as tl @dataclass class CVMMSel: raw_sel: torch.Tensor sel: torch.Tensor sel_index: torch.Tensor out_index: Optional[torch.Tensor] = None reduction_weight: Optional[torch.Tensor] = None def clone(self) -> 'CVMMSel': return CVMMSel(self.raw_sel, self.sel, self.sel_index, self.out_index, self.reduction_weight) def cvmm_prepare_sel(sel: torch.Tensor, n_experts: Optional[int] = None) -> CVMMSel: fsel = sel.flatten() ssel, sel_index = fsel.sort() return CVMMSel(sel, ssel.view_as(sel), sel_index, None) # `triton.jit`'ed functions can be auto-tuned by using the `triton.autotune` decorator, which consumes: # - A list of `triton.Config` objects that define different configurations of # meta-parameters (e.g., `BLOCK_SIZE_M`) and compilation options (e.g., `num_warps`) to try # - An auto-tuning *key* whose change in values will trigger evaluation of all the # provided configs @triton.autotune( configs=[ triton.Config({'BLOCK_SIZE_M': 128, 'BLOCK_SIZE_N': 256, 'BLOCK_SIZE_K': 64, 'GROUP_SIZE_M': 8}, num_stages=3, num_warps=8), triton.Config({'BLOCK_SIZE_M': 256, 'BLOCK_SIZE_N': 64, 'BLOCK_SIZE_K': 32, 'GROUP_SIZE_M': 8}, num_stages=4, num_warps=4), triton.Config({'BLOCK_SIZE_M': 64, 'BLOCK_SIZE_N': 256, 'BLOCK_SIZE_K': 32, 'GROUP_SIZE_M': 8}, num_stages=4, num_warps=4), triton.Config({'BLOCK_SIZE_M': 128, 'BLOCK_SIZE_N': 128, 'BLOCK_SIZE_K': 32, 'GROUP_SIZE_M': 8}, num_stages=4, num_warps=4), triton.Config({'BLOCK_SIZE_M': 128, 'BLOCK_SIZE_N': 64, 'BLOCK_SIZE_K': 32, 'GROUP_SIZE_M': 8}, num_stages=4, num_warps=4), triton.Config({'BLOCK_SIZE_M': 64, 'BLOCK_SIZE_N': 128, 'BLOCK_SIZE_K': 32, 'GROUP_SIZE_M': 8}, num_stages=4, num_warps=4), triton.Config({'BLOCK_SIZE_M': 128, 'BLOCK_SIZE_N': 32, 'BLOCK_SIZE_K': 32, 'GROUP_SIZE_M': 8}, num_stages=4, num_warps=4), triton.Config({'BLOCK_SIZE_M': 64, 'BLOCK_SIZE_N': 32, 'BLOCK_SIZE_K': 32, 'GROUP_SIZE_M': 8}, num_stages=5, num_warps=2), triton.Config({'BLOCK_SIZE_M': 32, 'BLOCK_SIZE_N': 64, 'BLOCK_SIZE_K': 32, 'GROUP_SIZE_M': 8}, num_stages=5, num_warps=2), triton.Config({'BLOCK_SIZE_M': 64, 'BLOCK_SIZE_N': 64, 'BLOCK_SIZE_K': 32, 'GROUP_SIZE_M': 8}, num_stages=4, num_warps=4), ], key=['M', 'N', 'K', 'float32', 'allow_tf32'] ) @triton.jit def cvmm_kernel( # Pointers to matrices a_ptr, b_ptr, c_ptr, index_ptr, sel_ptr, out_index_ptr, # Matrix dimensions M, N, K, # The stride variables represent how much to increase the ptr by when moving by 1 # element in a particular dimension. E.g. `stride_am` is how much to increase `a_ptr` # by to get the element one row down (A has M rows). stride_am, stride_ak, stride_bo, stride_bk, stride_bn, stride_cm, stride_cn, stride_index, stride_sel, stride_out_index, float32: tl.constexpr, allow_tf32: tl.constexpr, # Meta-parameters BLOCK_SIZE_M: tl.constexpr, BLOCK_SIZE_N: tl.constexpr, BLOCK_SIZE_K: tl.constexpr, GROUP_SIZE_M: tl.constexpr ): """Kernel for computing the matmul C = A x B. A has shape (M, K), B has shape (K, N) and C has shape (M, N) """ # ----------------------------------------------------------- # Map program ids `pid` to the block of C it should compute. # This is done in a grouped ordering to promote L2 data reuse. # See above `L2 Cache Optimizations` section for details. pid = tl.program_id(axis=0) num_pid_m = tl.cdiv(M, BLOCK_SIZE_M) num_pid_n = tl.cdiv(N, BLOCK_SIZE_N) num_pid_in_group = GROUP_SIZE_M * num_pid_n group_id = pid // num_pid_in_group first_pid_m = group_id * GROUP_SIZE_M group_size_m = min(num_pid_m - first_pid_m, GROUP_SIZE_M) pid_n = (pid % num_pid_in_group) // group_size_m pid_m = first_pid_m + (pid % group_size_m) # n_vects = tl.load(cnt_ptr + stride_cnt * matrix_id) sel_first = tl.load(sel_ptr + pid_m * BLOCK_SIZE_M * stride_sel) sel_last = tl.load(sel_ptr + (min((pid_m + 1) * BLOCK_SIZE_M, M) - 1) * stride_sel) sel_all = tl.load(sel_ptr + stride_sel * ((pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M)) % M)) for matrix_id in range(sel_first, sel_last + 1): # ---------------------------------------------------------- # Create pointers for the first blocks of A and B. # We will advance this pointer as we move in the K direction # and accumulate # `a_ptrs` is a block of [BLOCK_SIZE_M, BLOCK_SIZE_K] pointers # `b_ptrs` is a block of [BLOCK_SIZE_K, BLOCK_SIZE_N] pointers # See above `Pointer Arithmetics` section for details offs_am = (pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M)) % M offs_bn = (pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N)) % N remap_offs_am = tl.load(index_ptr + stride_index * offs_am) # Create offset pointers offs_k = tl.arange(0, BLOCK_SIZE_K) a_ptrs = a_ptr + (remap_offs_am[:, None] * stride_am + offs_k[None, :] * stride_ak) b_ptrs = b_ptr + matrix_id * stride_bo + (offs_k[:, None] * stride_bk + offs_bn[None, :] * stride_bn) # ----------------------------------------------------------- # Iterate to compute a block of the C matrix. # We accumulate into a `[BLOCK_SIZE_M, BLOCK_SIZE_N]` block # of fp32 values for higher accuracy. # `accumulator` will be converted back to fp16 after the loop. accumulator = tl.zeros((BLOCK_SIZE_M, BLOCK_SIZE_N), dtype=tl.float32) for k in range(0, tl.cdiv(K, BLOCK_SIZE_K)): # Load the next block of A and B, generate a mask by checking the K dimension. # If it is out of bounds, set it to 0. a = tl.load(a_ptrs, mask=offs_k[None, :] < K - k * BLOCK_SIZE_K, other=0.0) b = tl.load(b_ptrs, mask=offs_k[:, None] < K - k * BLOCK_SIZE_K, other=0.0) # We accumulate along the K dimension. # if not float32: # if not float32: # b = b.to(tl.float16) if not float32: a = a.to(tl.float16) b = b.to(tl.float16) accumulator += tl.dot(a, b, allow_tf32=allow_tf32) # Advance the ptrs to the next K block. a_ptrs += BLOCK_SIZE_K * stride_ak b_ptrs += BLOCK_SIZE_K * stride_bk if not float32: c = accumulator.to(tl.float16) else: c = accumulator # c = tl.full((BLOCK_SIZE_M, BLOCK_SIZE_N), index_offset_for_this_matrix+100, dtype=OUT_TYPE) # ----------------------------------------------------------- # Write back the block of the output matrix C with masks. offs_cm = pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M) # remap_offs_cm = index_ptr[offset_ptr[matrix_id] + offs_am] # offs_cm = remap_offs_am if out_index_ptr is not None: remap_offs_cm = tl.load(out_index_ptr + stride_out_index * offs_am) else: remap_offs_cm = remap_offs_am # remap_offs_cm = offs_cm # remap_offs_cm = offs_am offs_cn = pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N) c_ptrs = c_ptr + stride_cm * remap_offs_cm[:, None] + stride_cn * offs_cn[None, :] c_mask = ((offs_cm[:, None] < M) & (sel_all[:, None] == matrix_id)) & (offs_cn[None, :] < N) tl.store(c_ptrs, c, mask=c_mask) @triton.autotune( configs=[ triton.Config({'BLOCK_SIZE_M': 64, 'BLOCK_SIZE_N': 64, 'BLOCK_SIZE_K': 16, 'GROUP_SIZE_M': 8, 'K_BLOCKS': 64}, num_stages=4, num_warps=4), # triton.Config({'BLOCK_SIZE_M': 64, 'BLOCK_SIZE_N': 64, 'BLOCK_SIZE_K': 16, 'GROUP_SIZE_M': 8, 'K_BLOCKS': 128}, num_stages=4, num_warps=4), triton.Config({'BLOCK_SIZE_M': 64, 'BLOCK_SIZE_N': 64, 'BLOCK_SIZE_K': 16, 'GROUP_SIZE_M': 8, 'K_BLOCKS': 32}, num_stages=4, num_warps=4), triton.Config({'BLOCK_SIZE_M': 64, 'BLOCK_SIZE_N': 64, 'BLOCK_SIZE_K': 16, 'GROUP_SIZE_M': 8, 'K_BLOCKS': 4}, num_stages=4, num_warps=4), triton.Config({'BLOCK_SIZE_M': 32, 'BLOCK_SIZE_N': 32, 'BLOCK_SIZE_K': 16, 'GROUP_SIZE_M': 8, 'K_BLOCKS': 64}, num_stages=4, num_warps=4), # triton.Config({'BLOCK_SIZE_M': 32, 'BLOCK_SIZE_N': 32, 'BLOCK_SIZE_K': 16, 'GROUP_SIZE_M': 8, 'K_BLOCKS': 128}, num_stages=4, num_warps=4), triton.Config({'BLOCK_SIZE_M': 32, 'BLOCK_SIZE_N': 32, 'BLOCK_SIZE_K': 16, 'GROUP_SIZE_M': 8, 'K_BLOCKS': 32}, num_stages=4, num_warps=4), triton.Config({'BLOCK_SIZE_M': 32, 'BLOCK_SIZE_N': 32, 'BLOCK_SIZE_K': 16, 'GROUP_SIZE_M': 8, 'K_BLOCKS': 8}, num_stages=4, num_warps=4), triton.Config({'BLOCK_SIZE_M': 32, 'BLOCK_SIZE_N': 64, 'BLOCK_SIZE_K': 16, 'GROUP_SIZE_M': 8, 'K_BLOCKS': 8}, num_stages=4, num_warps=4), triton.Config({'BLOCK_SIZE_M': 64, 'BLOCK_SIZE_N': 32, 'BLOCK_SIZE_K': 16, 'GROUP_SIZE_M': 8, 'K_BLOCKS': 8}, num_stages=4, num_warps=4), triton.Config({'BLOCK_SIZE_M': 32, 'BLOCK_SIZE_N': 64, 'BLOCK_SIZE_K': 16, 'GROUP_SIZE_M': 8, 'K_BLOCKS': 16}, num_stages=4, num_warps=4), triton.Config({'BLOCK_SIZE_M': 64, 'BLOCK_SIZE_N': 32, 'BLOCK_SIZE_K': 16, 'GROUP_SIZE_M': 8, 'K_BLOCKS': 16}, num_stages=4, num_warps=4), triton.Config({'BLOCK_SIZE_M': 32, 'BLOCK_SIZE_N': 64, 'BLOCK_SIZE_K': 16, 'GROUP_SIZE_M': 8, 'K_BLOCKS': 64}, num_stages=4, num_warps=4), triton.Config({'BLOCK_SIZE_M': 64, 'BLOCK_SIZE_N': 32, 'BLOCK_SIZE_K': 16, 'GROUP_SIZE_M': 8, 'K_BLOCKS': 64}, num_stages=4, num_warps=4), triton.Config({'BLOCK_SIZE_M': 32, 'BLOCK_SIZE_N': 64, 'BLOCK_SIZE_K': 16, 'GROUP_SIZE_M': 8, 'K_BLOCKS': 32}, num_stages=4, num_warps=4), triton.Config({'BLOCK_SIZE_M': 64, 'BLOCK_SIZE_N': 32, 'BLOCK_SIZE_K': 16, 'GROUP_SIZE_M': 8, 'K_BLOCKS': 32}, num_stages=4, num_warps=4), ], key=['M', 'N', 'K', 'float32_out', 'allow_tf32', 'op_float16'], reset_to_zero = ['c_ptr'] ) @triton.jit def cvmm_backward_kernel3( # Pointers to matrices a_ptr, b_ptr, c_ptr, index_ptr, sel_ptr, out_index_ptr, # Matrix dimensions M, N, K, # The stride variables represent how much to increase the ptr by when moving by 1 # element in a particular dimension. E.g. `stride_am` is how much to increase `a_ptr` # by to get the element one row down (A has M rows). stride_am, stride_ak, stride_bk, stride_bn, stride_co, stride_cm, stride_cn, stride_index, stride_sel, stride_out_index, float32_out: tl.constexpr, allow_tf32: tl.constexpr, op_float16: tl.constexpr, # Meta-parameters BLOCK_SIZE_M: tl.constexpr, BLOCK_SIZE_N: tl.constexpr, BLOCK_SIZE_K: tl.constexpr, GROUP_SIZE_M: tl.constexpr, K_BLOCKS: tl.constexpr ): """Kernel for computing the matmul C = A x B. A has shape (M, K), B has shape (K, N) and C has shape (M, N) """ # ----------------------------------------------------------- # Map program ids `pid` to the block of C it should compute. # This is done in a grouped ordering to promote L2 data reuse. # See above `L2 Cache Optimizations` section for details. pid = tl.program_id(axis=0) k_block_id = tl.program_id(axis=1) num_pid_m = tl.cdiv(M, BLOCK_SIZE_M) num_pid_n = tl.cdiv(N, BLOCK_SIZE_N) num_pid_in_group = GROUP_SIZE_M * num_pid_n group_id = pid // num_pid_in_group first_pid_m = group_id * GROUP_SIZE_M group_size_m = min(num_pid_m - first_pid_m, GROUP_SIZE_M) pid_m = first_pid_m + (pid % group_size_m) pid_n = (pid % num_pid_in_group) // group_size_m # ---------------------------------------------------------- # Create pointers for the first blocks of A and B. # We will advance this pointer as we move in the K direction # and accumulate # `a_ptrs` is a block of [BLOCK_SIZE_M, BLOCK_SIZE_K] pointers # `b_ptrs` is a block of [BLOCK_SIZE_K, BLOCK_SIZE_N] pointers # See above `Pointer Arithmetics` section for details offs_am = (pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M)) % M offs_bn = (pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N)) % N # ----------------------------------------------------------- # Iterate to compute a block of the C matrix. # We accumulate into a `[BLOCK_SIZE_M, BLOCK_SIZE_N]` block # of fp32 values for higher accuracy. # `accumulator` will be converted back to fp16 after the loop. a_ptrs_this = a_ptr + offs_am[:, None] * stride_am b_ptrs_this = b_ptr + offs_bn[None, :] * stride_bn # Kactual = end_i - start_i # Nblocks = (Kactual + BLOCK_SIZE_K - 1) // BLOCK_SIZE_K # WORK_PER_WORKER = (Nblocks + K_BLOCKS - 1) // K_BLOCKS # WORK_PER_WORKER = WORK_PER_WORKER if WORK_PER_WORKER > MIN_WORK_SIZE else MIN_WORK_SIZE # # Kloop_start = (Kactual + BLOCK_SIZE_K - 1) // BLOCK_SIZE_K # first_block_k = k_block_id * WORK_PER_WORKER # last_block_k = min((k_block_id+1) * WORK_PER_WORKER, Nblocks) block_start_index = k_block_id * BLOCK_SIZE_K * K_BLOCKS block_end_index = min(block_start_index + BLOCK_SIZE_K * K_BLOCKS, K) - 1 first_mat = tl.load(sel_ptr + stride_sel * block_start_index) last_mat = tl.load(sel_ptr + stride_sel * block_end_index) for matrix_index in range(first_mat, last_mat + 1): accumulator = tl.zeros((BLOCK_SIZE_M, BLOCK_SIZE_N), dtype=tl.float32) start_i = block_start_index end_i = block_end_index + 1 while start_i < end_i: middle = (start_i + end_i) // 2 middle_matrix = tl.load(sel_ptr + middle * stride_sel) if middle_matrix < matrix_index: start_i = middle + 1 else: end_i = middle # # Continue binary search: find the first matrix that is > matrix_index start_i2 = start_i end_i = block_end_index + 1 while start_i2 < end_i: middle = (start_i2 + end_i) // 2 middle_matrix = tl.load(sel_ptr + middle * stride_sel) if middle_matrix <= matrix_index: start_i2 = middle + 1 else: end_i = middle end_i = start_i2 count = end_i - start_i block_mem_indices_f_base = start_i + tl.arange(0, BLOCK_SIZE_K) if count > 0: for k in range((count + BLOCK_SIZE_K - 1) // BLOCK_SIZE_K): # block_mem_indices = (k * BLOCK_SIZE_K + tl.arange(0, BLOCK_SIZE_K)) % K block_mem_indices_f = block_mem_indices_f_base + k * BLOCK_SIZE_K block_mem_indices = block_mem_indices_f % K a_index = tl.load(index_ptr + stride_index * block_mem_indices) if out_index_ptr is not None: b_index = tl.load(out_index_ptr + stride_out_index * block_mem_indices) else: b_index = a_index sel_ok = block_mem_indices_f < end_i a_ptrs = a_ptrs_this + a_index[None, :] * stride_ak b_ptrs = b_ptrs_this + b_index[:, None] * stride_bk # Load the next block of A and B, generate a mask by checking the K dimension. # If it is out of bounds, set it to 0. a = tl.load(a_ptrs, mask=sel_ok[None, :], other=0.0) b = tl.load(b_ptrs, mask=sel_ok[:, None], other=0.0) if op_float16: a = a.to(tl.float16) b = b.to(tl.float16) # We accumulate along the K dimension. accumulator += tl.dot(a, b, allow_tf32=allow_tf32) if float32_out: c = accumulator else: c = accumulator.to(tl.float16) # ----------------------------------------------------------- # Write back the block of the output matrix C with masks. offs_cm = pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M) offs_cn = pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N) c_ptrs = c_ptr + stride_co * matrix_index + stride_cm * offs_cm[:, None] + stride_cn * offs_cn[None, :] c_mask = (offs_cm[:, None] < M) & (offs_cn[None, :] < N) # tl.store(c_ptrs, c, mask=c_mask) tl.atomic_add(c_ptrs, c, mask=c_mask) def cvmm_triton(x: torch.Tensor, sel_index: torch.Tensor, sel: torch.Tensor, keys: torch.Tensor, out_dtype: torch.dtype, out_index: Optional[torch.Tensor] = None): xorig = x x = x.flatten(end_dim=-2) assert x.shape[-1] == keys.shape[1] sel_shape = sel.shape sel = sel.flatten() M = sel.shape[0] O, K, N = keys.shape # Allocates output. out = torch.empty((M, N), device=x.device, dtype=out_dtype) # out = torch.zeros((M, N), device=x.device, dtype=out_dtype) # 1D launch kernel where each block gets its own program. # expected_m_per_matrix = int(math.ceil(M / O * 1.5)) # expected_m_per_matrix = M grid = lambda META: ( triton.cdiv(M, META['BLOCK_SIZE_M']) * triton.cdiv(N, META['BLOCK_SIZE_N']), ) cvmm_kernel[grid]( x, keys, out, sel_index, sel, out_index, M, N, K, x.stride(0), x.stride(1), keys.stride(0), keys.stride(1), keys.stride(2), out.stride(0), out.stride(1), sel_index.stride(0), sel.stride(0), out_index.stride(0) if out_index is not None else 0, float32=out.dtype==torch.float32, allow_tf32=False, #torch.backends.cuda.matmul.allow_tf32 ) return out.view(*sel_shape, N) def cvmm_triton_backward(x: torch.Tensor, sel_index: torch.Tensor, sel: torch.Tensor, grads: torch.Tensor, n_experts: int, key_dtype: torch.dtype, op_float16: bool, out_index: Optional[torch.Tensor] = None): x = x.flatten(end_dim=-2) x = x.transpose(0, 1) grads = grads.flatten(end_dim=-2) sel = sel.flatten() M, _ = x.shape K, N = grads.shape out = torch.zeros((n_experts, M, N), device=x.device, dtype=key_dtype) grid = lambda META: ( triton.cdiv(M, META['BLOCK_SIZE_M']) * triton.cdiv(N, META['BLOCK_SIZE_N']), triton.cdiv(K, META['BLOCK_SIZE_K'] * META['K_BLOCKS']) ) cvmm_backward_kernel3[grid]( x, grads, out, sel_index, sel, out_index, M, N, K, x.stride(0), x.stride(1), grads.stride(0), grads.stride(1), out.stride(0), out.stride(1), out.stride(2), sel_index.stride(0), sel.stride(0), out_index.stride(0) if out_index is not None else 0, float32_out=out.dtype == torch.float32, op_float16=op_float16, allow_tf32=False #torch.backends.cuda.matmul.allow_tf32 ) return out class CVMM(torch.autograd.Function): warned = False @staticmethod def forward(ctx, x: torch.Tensor, sel_index: torch.Tensor, sel: torch.Tensor, keys: torch.Tensor, out_index: Optional[torch.Tensor] = None, reduction_weight: Optional[torch.Tensor] = None): ctx.save_for_backward(x, keys, sel, sel_index, out_index, reduction_weight) out_type = torch.float16 if torch.is_autocast_enabled() else x.dtype # if torch.is_autocast_enabled(): # x = x.half() # keys = keys.half() res = cvmm_triton(x, sel_index, sel, keys, out_type, out_index) if reduction_weight is not None: res = res.view(*reduction_weight.shape, res.shape[-1]) res = (reduction_weight.unsqueeze(-2).type_as(res) @ res).squeeze(-2) ctx.op_type = out_type ctx.keys_type = keys.dtype ctx.is_autocast = torch.is_autocast_enabled() return res @staticmethod def backward(ctx, grad_output): x, keys, sel, sel_index, out_index, reduction_weight = ctx.saved_tensors # if torch.is_autocast_enabled(): # x = x.half() # keys = keys.half() # grad_output = grad_output.half() # x = x.type(ctx.op_type) # keys_dt = keys.type_as(x) keys_dt = keys # Backward for weight if reduction_weight is not None: # Project back the grads with he reduction weight, so the grad for the weight matrix is ok grad_output_w = reduction_weight.unsqueeze(-1).type_as(grad_output) @ grad_output.unsqueeze(-2) else: grad_output_w = grad_output grad_w = cvmm_triton_backward(x, sel_index, sel, grad_output_w, keys_dt.shape[0], ctx.keys_type, ctx.is_autocast, out_index=out_index) # Backward for input and reduction weight grad_w_off = None bw_index = sel_index if out_index is None else out_index bw_index_out = None if reduction_weight is not None: # Hack the output indices to emulate repeats bw_index_out = bw_index bw_index = bw_index // reduction_weight.shape[-1] grad_x_full = cvmm_triton(grad_output, bw_index, sel, keys_dt.transpose(1,2), ctx.op_type, bw_index_out) grad_x_full = grad_x_full.view(*x.shape[:-1], -1, x.shape[-1]) if reduction_weight is not None: # grad_x_full is the unscaled grad. For the input, we have to scale it, for the reduction wegiht, # we have to compute dot products with the input. grad_x = (reduction_weight.view(*grad_x_full.shape[:-1]).unsqueeze(-2).type_as(grad_x_full) @ grad_x_full).squeeze(-2) grad_w_off = (grad_x_full.type_as(reduction_weight) @ x.unsqueeze(-1).type_as(reduction_weight)).squeeze(-1).view_as(reduction_weight) elif grad_x_full.shape[-2] != 1: grad_x = grad_x_full.sum(-2) else: grad_x = grad_x_full grad_x = grad_x.view_as(x) return grad_x, None, None, grad_w, None, grad_w_off known_shapes = set() def cvmm(x: torch.Tensor, sel: Union[torch.Tensor, CVMMSel], keys: torch.Tensor): if not isinstance(sel, CVMMSel): sel = cvmm_prepare_sel(sel, keys.shape[0]) sh = (x.shape, keys.shape) if sh not in known_shapes: print("New shape:", sh) known_shapes.add(sh) return CVMM.apply(x, sel.sel_index, sel.sel, keys, sel.out_index, sel.reduction_weight) def cvmm_prepare_sel2(sel: torch.Tensor, w: Optional[torch.Tensor] = None) -> CVMMSel: # Has multiple selections for each batch element n_per_batch = sel.shape[-1] # indices = torch.arange(sel.nelement() // n_per_batch, device=sel.device, dtype=torch.int32) # indices = indices.repeat_interleave(n_per_batch).flatten() fsel = sel.flatten() ssel, sel_index = fsel.sort() # in_index = indices[sel_index] in_index = sel_index // n_per_batch return CVMMSel(sel, ssel.view_as(sel), in_index, sel_index, w) if __name__ == "__main__": def cvmm_hack(x: torch.Tensor, sel: Union[torch.Tensor, CVMMSel], keys: torch.Tensor): if not isinstance(sel, CVMMSel): sel = cvmm_prepare_sel(sel, keys.shape[0]) sh = (x.shape, keys.shape) if sh not in known_shapes: print("New shape:", sh) known_shapes.add(sh) res = CVMM.apply(x, sel.sel_index, sel.sel, keys, sel.out_index, None) if sel.reduction_weight is not None: res = res.view(*sel.reduction_weight.shape, res.shape[-1]) res = (sel.reduction_weight.unsqueeze(-2).type_as(res) @ res).squeeze(-2) return res def test_wsum(): n_experts = 2 n_channels = 3 expert_size = 3 bs = 2 # n_experts = 8 # n_channels = 64 # expert_size = 64 # bs = 32 # n_per_batch = 1 n_per_batch = 2 # reduction_factor = 2 reduction_factor = 1 device = torch.device("cuda") dtype = torch.float32 atol_tresh = 1e-2 keys = torch.nn.Parameter(torch.randn(n_experts, n_channels, expert_size, dtype=dtype, device=device)) testvec = torch.randn(bs, n_channels, dtype=dtype, device=device) sel_raw = torch.randint(0, n_experts, (bs,n_per_batch), dtype=torch.int32, device=device) # w = torch.randn_like(sel, dtype=torch.float32) w = torch.randn((bs // reduction_factor, n_per_batch * reduction_factor), dtype=torch.float32, device=device) # sel = torch.tensor([[1,0]], dtype=torch.int32, device=device) sel = cvmm_prepare_sel2(sel_raw, w) out = cvmm(testvec, sel, keys) def cwmm_ref2(x: torch.Tensor, isel: Union[torch.Tensor, CVMMSel], keys: torch.Tensor): if isinstance(isel, CVMMSel): sel = isel.raw_sel getw = lambda b, c: (isel.reduction_weight[b, c] if isel.reduction_weight is not None else 1.0) else: sel = isel getw = lambda b, c: 1.0 olist2 = [] for c in range(sel.shape[-1]): olist = [] for b in range(x.shape[0]): olist.append(x[b:b+1] @ keys[sel[b, c]] * getw(b, c)) olist2.append(torch.cat(olist, dim=0)) res = torch.stack(olist2, dim=-2) if isinstance(isel, CVMMSel) and isel.reduction_weight is not None: res = res.sum(-2) return res ref = cwmm_ref2(testvec, sel, keys) if torch.allclose(out, ref, atol=1e-2, rtol=0): print("✅ Multi-output: Triton and Torch match") else: print("❌ Multi-output: Triton and Torch differ") def cvmm_ref_backward2(x: torch.Tensor, sel: CVMMSel, grads: torch.Tensor, n_experts: int): sel = sel.raw_sel x = x.flatten(end_dim=-2).transpose(0,1) res = 0 for c in range(sel.shape[-1]): gmats = [] for i in range(n_experts): mask = sel[:, c] != i sel_my = torch.masked_fill(x, mask[None], 0) grads_my = torch.masked_fill(grads[..., c, :], mask[:, None], 0) gmats.append(sel_my @ grads_my) res += torch.stack(gmats) return res grad_out = torch.randn(*out.shape, dtype=dtype, device=device) keys_ref = keys.detach().clone().requires_grad_(True) testvec_ref = testvec.detach().clone().requires_grad_(True) w_ref = w.detach().clone().requires_grad_(True) sel = cvmm_prepare_sel2(sel_raw, w_ref) print("CVMM hack") out_ref = cvmm_hack(testvec_ref, sel, keys_ref) out_ref.backward(grad_out) keys_full = keys.detach().clone().requires_grad_(True) testvec_full = testvec.detach().clone().requires_grad_(True) w_full = w.detach().clone().requires_grad_(True) sel = cvmm_prepare_sel2(sel_raw, w_full) print("CVMM full") out_full = cvmm(testvec_full, sel, keys_full) out_full.backward(grad_out) if torch.allclose(keys_ref.grad, keys_full.grad, atol=1e-2, rtol=0): print("✅ Multi-output: Triton weight grad ok") else: print("❌ Multi-output: Triton weight grad not ok") if torch.allclose(testvec_ref.grad, testvec_full.grad, atol=1e-2, rtol=0): print("✅ Multi-output: Triton input grad ok") else: print("❌ Multi-output: Triton input grad not ok") if torch.allclose(w_ref.grad, w_full.grad, atol=1e-2, rtol=0): print("✅ Multi-output: Triton reduction weight grad ok") else: print("❌ Multi-output: Triton reduction weight grad not ok") # g = cvmm_triton_backward(testvec, sel.sel_index, sel.sel, grad_out, keys.shape[0], keys.dtype, False, out_index=sel.out_index) # gref = cvmm_ref_backward2(testvec, sel, grad_out, keys.shape[0]) # if torch.allclose(g, gref, atol=1e-2, rtol=0): # print("✅ Multi-output: Triton grad ok") # else: # print("❌ Multi-output: Triton grad not ok") from torch.autograd import gradcheck assert gradcheck(cvmm, (testvec, sel, keys), eps=1e-2, atol=1e-4) print("Gradcheck ok.") def test_module(): from torch.autograd import gradcheck n_experts = 4 n_channels = 64 expert_size = 64 bs = 32 device = torch.device("cuda") dtype = torch.float32 atol_tresh = 1e-2 keys = torch.nn.Parameter(torch.randn(n_experts, n_channels, expert_size, dtype=dtype, device=device)) testvec = torch.randn(bs, n_channels, dtype=dtype, device=device) sel = torch.randint(0, n_experts, (bs,), dtype=torch.int32, device=device) test_grad = torch.randn(bs, expert_size, dtype=dtype, device=device) olist = [] for b in range(bs): olist.append(testvec[b:b+1] @ keys[sel[b]]) ref = torch.cat(olist, dim=0) out = cvmm(testvec, sel, keys) assert torch.allclose(ref, out, atol=atol_tresh, rtol=0) print("Forward ok.") keys = keys.requires_grad_(True) testvec = testvec.requires_grad_(True) assert gradcheck(cvmm, (testvec, sel, keys), eps=1e-2, atol=atol_tresh, rtol=0) print("Backward ok.") test_wsum() # test_module() def cwmm_ref(x: torch.Tensor, sel: Union[torch.Tensor, CVMMSel], keys: torch.Tensor): if isinstance(sel, CVMMSel): sel = sel.raw_sel olist = [] for b in range(x.shape[0]): olist.append(x[b:b+1] @ keys[sel[b]]) return torch.cat(olist, dim=0) def test_forward(): torch.manual_seed(0) n_experts = 8 n_channels = 64 expert_size = 64 bs = 64 device = torch.device("cuda") dtype = torch.float16 atol_tresh = 1e-2 keys = torch.nn.Parameter(torch.randn(n_experts, n_channels, expert_size, dtype=dtype, device=device)) keys = keys.transpose(1,2).contiguous().transpose(1,2) testvec = torch.randn(bs, n_channels, dtype=dtype, device=device) sel = torch.randint(0, n_experts, (bs,), dtype=torch.int32, device=device) exp_sel = torch.distributions.Geometric(0.02).sample((bs,)).to(device).clamp(max=n_experts-1).int() exp_sel = torch.randperm(n_experts, device=device, dtype=torch.int32)[exp_sel] sel = exp_sel # sel = torch.tensor([0, 1], dtype=torch.int32, device=device) sel = cvmm_prepare_sel(sel, keys.shape[0]) ref = cwmm_ref(testvec, sel, keys) out = cvmm_triton(testvec, sel.sel_index, sel.sel, keys, dtype) if torch.allclose(out, ref, atol=1e-2, rtol=0): print("✅ Triton and Torch match") else: print("❌ Triton and Torch differ") def do_benchmark(K, N): @triton.testing.perf_report( triton.testing.Benchmark( x_names=['bsz'], # Argument names to use as an x-axis for the plot x_vals=[ 2048 * (i+2) for i in range(0, 32, 8) ]+[131072], # Different possible values for `x_name` line_arg='provider', # Argument name whose value corresponds to a different line in the plot # Possible values for `line_arg` line_vals=['cublas', 'triton'], # Label name for the lines line_names=["cuBLAS", "Triton"], # Line styles styles=[('green', '-'), ('blue', '-')], ylabel="TFLOPS", # Label name for the y-axis plot_name="matmul-performance", # Name for the plot, used also as a file name for saving the plot. args={}, ) ) def benchmark(bsz, provider): # a = torch.randn((M, K), device='cuda', dtype=torch.float16) # b = torch.randn((K, N), device='cuda', dtype=torch.float16) dtype = torch.float32 if provider == 'cuda' else torch.float16 keys = torch.nn.Parameter(torch.randn(n_experts, K, N, dtype=dtype, device=device)) testvec = torch.randn(bsz, K, dtype=dtype, device=device) sel = torch.randint(0, n_experts, (bsz,), dtype=torch.int32, device=device) keys = keys.transpose(1,2).contiguous().transpose(1,2) # exp_sel = torch.distributions.Geometric(0.02).sample((bsz,)).to(device).clamp(max=n_experts-1).int() # exp_sel = torch.randperm(n_experts, device=device, dtype=torch.int32)[exp_sel] # sel = exp_sel sel = cvmm_prepare_sel(sel, keys.shape[0]) # ref = cwmm_ref(testvec, sel, keys) # out = cvmm_triton(testvec, sel, keys) # if torch.allclose(out, ref, atol=5e-2, rtol=0): # print("✅ Triton and Torch match") # else: # print("❌ Triton and Torch differ") quantiles = [0.5, 0.2, 0.8] if provider == 'cublas': ms, min_ms, max_ms = triton.testing.do_bench(lambda: torch.matmul(testvec, keys[0]), quantiles=quantiles) if provider == 'triton': ms, min_ms, max_ms = triton.testing.do_bench(lambda: cvmm_triton(testvec, sel.sel_index, sel.sel, keys, dtype), quantiles=quantiles) # if provider == 'cuda': # ms, min_ms, max_ms = triton.testing.do_bench(lambda: cvmm(testvec, sel, keys), quantiles=quantiles) perf = lambda ms: 2 * bsz * N * K * 1e-12 / (ms * 1e-3) # perf = lambda x: x return perf(ms), perf(max_ms), perf(min_ms) print(f"Benchmark: [bsz, {K}] @ [{n_experts}, {K}, {N}] -> [bsz, {N}]") benchmark.run(show_plots=True, print_data=True) do_benchmark(128, 512) do_benchmark(256, 512) do_benchmark(512, 128) test_forward() def test_backward(): def cvmm_ref_backward(x: torch.Tensor, sel: CVMMSel, grads: torch.Tensor, n_experts: int): sel = sel.raw_sel x = x.flatten(end_dim=-2).transpose(0,1) gmats = [] for i in range(n_experts): mask = sel != i sel_my = torch.masked_fill(x, mask[None], 0) grads_my = torch.masked_fill(grads, mask[:, None], 0) gmats.append(sel_my @ grads_my) return torch.stack(gmats) torch.manual_seed(0) n_experts = 8 n_channels = 64 expert_size = 64 bs = 64 # n_channels = 8 # expert_size = 8 # n_experts = 2 # bs=2 device = torch.device("cuda") dtype = torch.float16 atol_tresh = 1e-2 testvec = torch.randn(bs, n_channels, dtype=dtype, device=device) grads = torch.randn(bs, expert_size, dtype=dtype, device=device) sel = torch.randint(0, n_experts, (bs,), dtype=torch.int32, device=device) # exp_sel = torch.distributions.Geometric(0.02).sample((bs,)).to(device).clamp(max=n_experts-1).int() # exp_sel = torch.randperm(n_experts, device=device, dtype=torch.int32)[exp_sel] # sel = exp_sel # sel = torch.tensor([0, 1], dtype=torch.int32, device=device) # sel = torch.tensor([1, 0], dtype=torch.int32, device=device) cvmmsel = cvmm_prepare_sel(sel, n_experts) ref = cvmm_ref_backward(testvec, cvmmsel, grads, n_experts) out = cvmm_triton_backward(testvec, cvmmsel.sel_index, cvmmsel.sel, grads, n_experts, key_dtype=ref.dtype, op_float16=dtype==torch.float16) if torch.allclose(out, ref, atol=1e-2, rtol=0): print("✅ Triton and Torch match") else: print("❌ Triton and Torch differ") def do_benchmark(K, N): @triton.testing.perf_report( triton.testing.Benchmark( x_names=['bsz'], # Argument names to use as an x-axis for the plot x_vals=[ 2048 * (i+2) for i in range(0, 32, 8) ]+[131072], # Different possible values for `x_name` line_arg='provider', # Argument name whose value corresponds to a different line in the plot # Possible values for `line_arg` line_vals=['cublas', 'triton'], # Label name for the lines line_names=["cuBLAS", "Triton"], # Line styles styles=[('green', '-'), ('blue', '-')], ylabel="TFLOPS", # Label name for the y-axis plot_name="matmul-performance", # Name for the plot, used also as a file name for saving the plot. args={}, ) ) def benchmark(bsz, provider): # a = torch.randn((M, K), device='cuda', dtype=torch.float16) # b = torch.randn((K, N), device='cuda', dtype=torch.float16) dtype = torch.float32 if provider == 'cuda' else torch.float16 # dtype = torch.float32 sel = torch.randint(0, n_experts, (bs,), dtype=torch.int32, device=device) testvec = torch.randn(bsz, K, dtype=dtype, device=device) grads = torch.randn(bsz, N, dtype=dtype, device=device) sel = torch.randint(0, n_experts, (bsz,), dtype=torch.int32, device=device) exp_sel = torch.distributions.Geometric(0.02).sample((bsz,)).to(device).clamp(max=n_experts-1).int() exp_sel = torch.randperm(n_experts, device=device, dtype=torch.int32)[exp_sel] sel = exp_sel sel = cvmm_prepare_sel(sel, n_experts) # ref = cvmm_ref_backward(testvec, sel, grads, n_experts) # out = cvmm_triton_backward(testvec, sel, grads, n_experts) # if torch.allclose(out, ref, atol=5e-2, rtol=0): # print("✅ Triton and Torch match") # else: # print("❌ Triton and Torch differ") quantiles = [0.5, 0.2, 0.8] if provider == 'cublas': ms, min_ms, max_ms = triton.testing.do_bench(lambda: torch.matmul(testvec.transpose(0,1), grads), quantiles=quantiles) if provider == 'triton': ms, min_ms, max_ms = triton.testing.do_bench(lambda: cvmm_triton_backward(testvec, sel.sel_index, sel.sel, grads, n_experts, key_dtype=ref.dtype, op_float16=dtype==torch.float16), quantiles=quantiles) # if provider == 'cuda': # ms, min_ms, max_ms = triton.testing.do_bench(lambda: cvmm(testvec, sel, keys), quantiles=quantiles) perf = lambda ms: 2 * bsz * N * K * 1e-12 / (ms * 1e-3) # perf = lambda x: x return perf(ms), perf(max_ms), perf(min_ms) print(f"Benchmark: [bsz, {K}] @ [{n_experts}, {K}, {N}] -> [bsz, {N}]") benchmark.run(show_plots=True, print_data=True) do_benchmark(128, 512) do_benchmark(256, 512) do_benchmark(512, 128) test_backward() # do_benchmark(1024, 80) # do_benchmark(80, 1024) # do_benchmark(512, 128)
@triton.jit def cvmm_kernel( # Pointers to matrices a_ptr, b_ptr, c_ptr, index_ptr, sel_ptr, out_index_ptr, # Matrix dimensions M, N, K, # The stride variables represent how much to increase the ptr by when moving by 1 # element in a particular dimension. E.g. `stride_am` is how much to increase `a_ptr` # by to get the element one row down (A has M rows). stride_am, stride_ak, stride_bo, stride_bk, stride_bn, stride_cm, stride_cn, stride_index, stride_sel, stride_out_index, float32: tl.constexpr, allow_tf32: tl.constexpr, # Meta-parameters BLOCK_SIZE_M: tl.constexpr, BLOCK_SIZE_N: tl.constexpr, BLOCK_SIZE_K: tl.constexpr, GROUP_SIZE_M: tl.constexpr ): """Kernel for computing the matmul C = A x B. A has shape (M, K), B has shape (K, N) and C has shape (M, N) """ # ----------------------------------------------------------- # Map program ids `pid` to the block of C it should compute. # This is done in a grouped ordering to promote L2 data reuse. # See above `L2 Cache Optimizations` section for details. pid = tl.program_id(axis=0) num_pid_m = tl.cdiv(M, BLOCK_SIZE_M) num_pid_n = tl.cdiv(N, BLOCK_SIZE_N) num_pid_in_group = GROUP_SIZE_M * num_pid_n group_id = pid // num_pid_in_group first_pid_m = group_id * GROUP_SIZE_M group_size_m = min(num_pid_m - first_pid_m, GROUP_SIZE_M) pid_n = (pid % num_pid_in_group) // group_size_m pid_m = first_pid_m + (pid % group_size_m) # n_vects = tl.load(cnt_ptr + stride_cnt * matrix_id) sel_first = tl.load(sel_ptr + pid_m * BLOCK_SIZE_M * stride_sel) sel_last = tl.load(sel_ptr + (min((pid_m + 1) * BLOCK_SIZE_M, M) - 1) * stride_sel) sel_all = tl.load(sel_ptr + stride_sel * ((pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M)) % M)) for matrix_id in range(sel_first, sel_last + 1): # ---------------------------------------------------------- # Create pointers for the first blocks of A and B. # We will advance this pointer as we move in the K direction # and accumulate # `a_ptrs` is a block of [BLOCK_SIZE_M, BLOCK_SIZE_K] pointers # `b_ptrs` is a block of [BLOCK_SIZE_K, BLOCK_SIZE_N] pointers # See above `Pointer Arithmetics` section for details offs_am = (pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M)) % M offs_bn = (pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N)) % N remap_offs_am = tl.load(index_ptr + stride_index * offs_am) # Create offset pointers offs_k = tl.arange(0, BLOCK_SIZE_K) a_ptrs = a_ptr + (remap_offs_am[:, None] * stride_am + offs_k[None, :] * stride_ak) b_ptrs = b_ptr + matrix_id * stride_bo + (offs_k[:, None] * stride_bk + offs_bn[None, :] * stride_bn) # ----------------------------------------------------------- # Iterate to compute a block of the C matrix. # We accumulate into a `[BLOCK_SIZE_M, BLOCK_SIZE_N]` block # of fp32 values for higher accuracy. # `accumulator` will be converted back to fp16 after the loop. accumulator = tl.zeros((BLOCK_SIZE_M, BLOCK_SIZE_N), dtype=tl.float32) for k in range(0, tl.cdiv(K, BLOCK_SIZE_K)): # Load the next block of A and B, generate a mask by checking the K dimension. # If it is out of bounds, set it to 0. a = tl.load(a_ptrs, mask=offs_k[None, :] < K - k * BLOCK_SIZE_K, other=0.0) b = tl.load(b_ptrs, mask=offs_k[:, None] < K - k * BLOCK_SIZE_K, other=0.0) # We accumulate along the K dimension. # if not float32: # if not float32: # b = b.to(tl.float16) if not float32: a = a.to(tl.float16) b = b.to(tl.float16) accumulator += tl.dot(a, b, allow_tf32=allow_tf32) # Advance the ptrs to the next K block. a_ptrs += BLOCK_SIZE_K * stride_ak b_ptrs += BLOCK_SIZE_K * stride_bk if not float32: c = accumulator.to(tl.float16) else: c = accumulator # c = tl.full((BLOCK_SIZE_M, BLOCK_SIZE_N), index_offset_for_this_matrix+100, dtype=OUT_TYPE) # ----------------------------------------------------------- # Write back the block of the output matrix C with masks. offs_cm = pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M) # remap_offs_cm = index_ptr[offset_ptr[matrix_id] + offs_am] # offs_cm = remap_offs_am if out_index_ptr is not None: remap_offs_cm = tl.load(out_index_ptr + stride_out_index * offs_am) else: remap_offs_cm = remap_offs_am # remap_offs_cm = offs_cm # remap_offs_cm = offs_am offs_cn = pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N) c_ptrs = c_ptr + stride_cm * remap_offs_cm[:, None] + stride_cn * offs_cn[None, :] c_mask = ((offs_cm[:, None] < M) & (sel_all[:, None] == matrix_id)) & (offs_cn[None, :] < N) tl.store(c_ptrs, c, mask=c_mask) @triton.autotune( configs=[ triton.Config({'BLOCK_SIZE_M': 64, 'BLOCK_SIZE_N': 64, 'BLOCK_SIZE_K': 16, 'GROUP_SIZE_M': 8, 'K_BLOCKS': 64}, num_stages=4, num_warps=4), # triton.Config({'BLOCK_SIZE_M': 64, 'BLOCK_SIZE_N': 64, 'BLOCK_SIZE_K': 16, 'GROUP_SIZE_M': 8, 'K_BLOCKS': 128}, num_stages=4, num_warps=4), triton.Config({'BLOCK_SIZE_M': 64, 'BLOCK_SIZE_N': 64, 'BLOCK_SIZE_K': 16, 'GROUP_SIZE_M': 8, 'K_BLOCKS': 32}, num_stages=4, num_warps=4), triton.Config({'BLOCK_SIZE_M': 64, 'BLOCK_SIZE_N': 64, 'BLOCK_SIZE_K': 16, 'GROUP_SIZE_M': 8, 'K_BLOCKS': 4}, num_stages=4, num_warps=4), triton.Config({'BLOCK_SIZE_M': 32, 'BLOCK_SIZE_N': 32, 'BLOCK_SIZE_K': 16, 'GROUP_SIZE_M': 8, 'K_BLOCKS': 64}, num_stages=4, num_warps=4), # triton.Config({'BLOCK_SIZE_M': 32, 'BLOCK_SIZE_N': 32, 'BLOCK_SIZE_K': 16, 'GROUP_SIZE_M': 8, 'K_BLOCKS': 128}, num_stages=4, num_warps=4), triton.Config({'BLOCK_SIZE_M': 32, 'BLOCK_SIZE_N': 32, 'BLOCK_SIZE_K': 16, 'GROUP_SIZE_M': 8, 'K_BLOCKS': 32}, num_stages=4, num_warps=4), triton.Config({'BLOCK_SIZE_M': 32, 'BLOCK_SIZE_N': 32, 'BLOCK_SIZE_K': 16, 'GROUP_SIZE_M': 8, 'K_BLOCKS': 8}, num_stages=4, num_warps=4), triton.Config({'BLOCK_SIZE_M': 32, 'BLOCK_SIZE_N': 64, 'BLOCK_SIZE_K': 16, 'GROUP_SIZE_M': 8, 'K_BLOCKS': 8}, num_stages=4, num_warps=4), triton.Config({'BLOCK_SIZE_M': 64, 'BLOCK_SIZE_N': 32, 'BLOCK_SIZE_K': 16, 'GROUP_SIZE_M': 8, 'K_BLOCKS': 8}, num_stages=4, num_warps=4), triton.Config({'BLOCK_SIZE_M': 32, 'BLOCK_SIZE_N': 64, 'BLOCK_SIZE_K': 16, 'GROUP_SIZE_M': 8, 'K_BLOCKS': 16}, num_stages=4, num_warps=4), triton.Config({'BLOCK_SIZE_M': 64, 'BLOCK_SIZE_N': 32, 'BLOCK_SIZE_K': 16, 'GROUP_SIZE_M': 8, 'K_BLOCKS': 16}, num_stages=4, num_warps=4), triton.Config({'BLOCK_SIZE_M': 32, 'BLOCK_SIZE_N': 64, 'BLOCK_SIZE_K': 16, 'GROUP_SIZE_M': 8, 'K_BLOCKS': 64}, num_stages=4, num_warps=4), triton.Config({'BLOCK_SIZE_M': 64, 'BLOCK_SIZE_N': 32, 'BLOCK_SIZE_K': 16, 'GROUP_SIZE_M': 8, 'K_BLOCKS': 64}, num_stages=4, num_warps=4), triton.Config({'BLOCK_SIZE_M': 32, 'BLOCK_SIZE_N': 64, 'BLOCK_SIZE_K': 16, 'GROUP_SIZE_M': 8, 'K_BLOCKS': 32}, num_stages=4, num_warps=4), triton.Config({'BLOCK_SIZE_M': 64, 'BLOCK_SIZE_N': 32, 'BLOCK_SIZE_K': 16, 'GROUP_SIZE_M': 8, 'K_BLOCKS': 32}, num_stages=4, num_warps=4), ], key=['M', 'N', 'K', 'float32_out', 'allow_tf32', 'op_float16'], reset_to_zero = ['c_ptr'] )
RobertCsordas/moe_attention
layers/cvmm.py
https://github.com/RobertCsordas/moe_attention/blob/7169ad370e68185ecddb592c623b8d550de725df/layers/cvmm.py
from typing import Union, Optional import torch import math from dataclasses import dataclass from torch.cuda.amp import custom_fwd, custom_bwd import triton import triton.language as tl @dataclass class CVMMSel: raw_sel: torch.Tensor sel: torch.Tensor sel_index: torch.Tensor out_index: Optional[torch.Tensor] = None reduction_weight: Optional[torch.Tensor] = None def clone(self) -> 'CVMMSel': return CVMMSel(self.raw_sel, self.sel, self.sel_index, self.out_index, self.reduction_weight) def cvmm_prepare_sel(sel: torch.Tensor, n_experts: Optional[int] = None) -> CVMMSel: fsel = sel.flatten() ssel, sel_index = fsel.sort() return CVMMSel(sel, ssel.view_as(sel), sel_index, None) # `triton.jit`'ed functions can be auto-tuned by using the `triton.autotune` decorator, which consumes: # - A list of `triton.Config` objects that define different configurations of # meta-parameters (e.g., `BLOCK_SIZE_M`) and compilation options (e.g., `num_warps`) to try # - An auto-tuning *key* whose change in values will trigger evaluation of all the # provided configs @triton.autotune( configs=[ triton.Config({'BLOCK_SIZE_M': 128, 'BLOCK_SIZE_N': 256, 'BLOCK_SIZE_K': 64, 'GROUP_SIZE_M': 8}, num_stages=3, num_warps=8), triton.Config({'BLOCK_SIZE_M': 256, 'BLOCK_SIZE_N': 64, 'BLOCK_SIZE_K': 32, 'GROUP_SIZE_M': 8}, num_stages=4, num_warps=4), triton.Config({'BLOCK_SIZE_M': 64, 'BLOCK_SIZE_N': 256, 'BLOCK_SIZE_K': 32, 'GROUP_SIZE_M': 8}, num_stages=4, num_warps=4), triton.Config({'BLOCK_SIZE_M': 128, 'BLOCK_SIZE_N': 128, 'BLOCK_SIZE_K': 32, 'GROUP_SIZE_M': 8}, num_stages=4, num_warps=4), triton.Config({'BLOCK_SIZE_M': 128, 'BLOCK_SIZE_N': 64, 'BLOCK_SIZE_K': 32, 'GROUP_SIZE_M': 8}, num_stages=4, num_warps=4), triton.Config({'BLOCK_SIZE_M': 64, 'BLOCK_SIZE_N': 128, 'BLOCK_SIZE_K': 32, 'GROUP_SIZE_M': 8}, num_stages=4, num_warps=4), triton.Config({'BLOCK_SIZE_M': 128, 'BLOCK_SIZE_N': 32, 'BLOCK_SIZE_K': 32, 'GROUP_SIZE_M': 8}, num_stages=4, num_warps=4), triton.Config({'BLOCK_SIZE_M': 64, 'BLOCK_SIZE_N': 32, 'BLOCK_SIZE_K': 32, 'GROUP_SIZE_M': 8}, num_stages=5, num_warps=2), triton.Config({'BLOCK_SIZE_M': 32, 'BLOCK_SIZE_N': 64, 'BLOCK_SIZE_K': 32, 'GROUP_SIZE_M': 8}, num_stages=5, num_warps=2), triton.Config({'BLOCK_SIZE_M': 64, 'BLOCK_SIZE_N': 64, 'BLOCK_SIZE_K': 32, 'GROUP_SIZE_M': 8}, num_stages=4, num_warps=4), ], key=['M', 'N', 'K', 'float32', 'allow_tf32'] ) @triton.jit def cvmm_kernel( # Pointers to matrices a_ptr, b_ptr, c_ptr, index_ptr, sel_ptr, out_index_ptr, # Matrix dimensions M, N, K, # The stride variables represent how much to increase the ptr by when moving by 1 # element in a particular dimension. E.g. `stride_am` is how much to increase `a_ptr` # by to get the element one row down (A has M rows). stride_am, stride_ak, stride_bo, stride_bk, stride_bn, stride_cm, stride_cn, stride_index, stride_sel, stride_out_index, float32: tl.constexpr, allow_tf32: tl.constexpr, # Meta-parameters BLOCK_SIZE_M: tl.constexpr, BLOCK_SIZE_N: tl.constexpr, BLOCK_SIZE_K: tl.constexpr, GROUP_SIZE_M: tl.constexpr ): """Kernel for computing the matmul C = A x B. A has shape (M, K), B has shape (K, N) and C has shape (M, N) """ # ----------------------------------------------------------- # Map program ids `pid` to the block of C it should compute. # This is done in a grouped ordering to promote L2 data reuse. # See above `L2 Cache Optimizations` section for details. pid = tl.program_id(axis=0) num_pid_m = tl.cdiv(M, BLOCK_SIZE_M) num_pid_n = tl.cdiv(N, BLOCK_SIZE_N) num_pid_in_group = GROUP_SIZE_M * num_pid_n group_id = pid // num_pid_in_group first_pid_m = group_id * GROUP_SIZE_M group_size_m = min(num_pid_m - first_pid_m, GROUP_SIZE_M) pid_n = (pid % num_pid_in_group) // group_size_m pid_m = first_pid_m + (pid % group_size_m) # n_vects = tl.load(cnt_ptr + stride_cnt * matrix_id) sel_first = tl.load(sel_ptr + pid_m * BLOCK_SIZE_M * stride_sel) sel_last = tl.load(sel_ptr + (min((pid_m + 1) * BLOCK_SIZE_M, M) - 1) * stride_sel) sel_all = tl.load(sel_ptr + stride_sel * ((pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M)) % M)) for matrix_id in range(sel_first, sel_last + 1): # ---------------------------------------------------------- # Create pointers for the first blocks of A and B. # We will advance this pointer as we move in the K direction # and accumulate # `a_ptrs` is a block of [BLOCK_SIZE_M, BLOCK_SIZE_K] pointers # `b_ptrs` is a block of [BLOCK_SIZE_K, BLOCK_SIZE_N] pointers # See above `Pointer Arithmetics` section for details offs_am = (pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M)) % M offs_bn = (pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N)) % N remap_offs_am = tl.load(index_ptr + stride_index * offs_am) # Create offset pointers offs_k = tl.arange(0, BLOCK_SIZE_K) a_ptrs = a_ptr + (remap_offs_am[:, None] * stride_am + offs_k[None, :] * stride_ak) b_ptrs = b_ptr + matrix_id * stride_bo + (offs_k[:, None] * stride_bk + offs_bn[None, :] * stride_bn) # ----------------------------------------------------------- # Iterate to compute a block of the C matrix. # We accumulate into a `[BLOCK_SIZE_M, BLOCK_SIZE_N]` block # of fp32 values for higher accuracy. # `accumulator` will be converted back to fp16 after the loop. accumulator = tl.zeros((BLOCK_SIZE_M, BLOCK_SIZE_N), dtype=tl.float32) for k in range(0, tl.cdiv(K, BLOCK_SIZE_K)): # Load the next block of A and B, generate a mask by checking the K dimension. # If it is out of bounds, set it to 0. a = tl.load(a_ptrs, mask=offs_k[None, :] < K - k * BLOCK_SIZE_K, other=0.0) b = tl.load(b_ptrs, mask=offs_k[:, None] < K - k * BLOCK_SIZE_K, other=0.0) # We accumulate along the K dimension. # if not float32: # if not float32: # b = b.to(tl.float16) if not float32: a = a.to(tl.float16) b = b.to(tl.float16) accumulator += tl.dot(a, b, allow_tf32=allow_tf32) # Advance the ptrs to the next K block. a_ptrs += BLOCK_SIZE_K * stride_ak b_ptrs += BLOCK_SIZE_K * stride_bk if not float32: c = accumulator.to(tl.float16) else: c = accumulator # c = tl.full((BLOCK_SIZE_M, BLOCK_SIZE_N), index_offset_for_this_matrix+100, dtype=OUT_TYPE) # ----------------------------------------------------------- # Write back the block of the output matrix C with masks. offs_cm = pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M) # remap_offs_cm = index_ptr[offset_ptr[matrix_id] + offs_am] # offs_cm = remap_offs_am if out_index_ptr is not None: remap_offs_cm = tl.load(out_index_ptr + stride_out_index * offs_am) else: remap_offs_cm = remap_offs_am # remap_offs_cm = offs_cm # remap_offs_cm = offs_am offs_cn = pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N) c_ptrs = c_ptr + stride_cm * remap_offs_cm[:, None] + stride_cn * offs_cn[None, :] c_mask = ((offs_cm[:, None] < M) & (sel_all[:, None] == matrix_id)) & (offs_cn[None, :] < N) tl.store(c_ptrs, c, mask=c_mask) @triton.autotune( configs=[ triton.Config({'BLOCK_SIZE_M': 64, 'BLOCK_SIZE_N': 64, 'BLOCK_SIZE_K': 16, 'GROUP_SIZE_M': 8, 'K_BLOCKS': 64}, num_stages=4, num_warps=4), # triton.Config({'BLOCK_SIZE_M': 64, 'BLOCK_SIZE_N': 64, 'BLOCK_SIZE_K': 16, 'GROUP_SIZE_M': 8, 'K_BLOCKS': 128}, num_stages=4, num_warps=4), triton.Config({'BLOCK_SIZE_M': 64, 'BLOCK_SIZE_N': 64, 'BLOCK_SIZE_K': 16, 'GROUP_SIZE_M': 8, 'K_BLOCKS': 32}, num_stages=4, num_warps=4), triton.Config({'BLOCK_SIZE_M': 64, 'BLOCK_SIZE_N': 64, 'BLOCK_SIZE_K': 16, 'GROUP_SIZE_M': 8, 'K_BLOCKS': 4}, num_stages=4, num_warps=4), triton.Config({'BLOCK_SIZE_M': 32, 'BLOCK_SIZE_N': 32, 'BLOCK_SIZE_K': 16, 'GROUP_SIZE_M': 8, 'K_BLOCKS': 64}, num_stages=4, num_warps=4), # triton.Config({'BLOCK_SIZE_M': 32, 'BLOCK_SIZE_N': 32, 'BLOCK_SIZE_K': 16, 'GROUP_SIZE_M': 8, 'K_BLOCKS': 128}, num_stages=4, num_warps=4), triton.Config({'BLOCK_SIZE_M': 32, 'BLOCK_SIZE_N': 32, 'BLOCK_SIZE_K': 16, 'GROUP_SIZE_M': 8, 'K_BLOCKS': 32}, num_stages=4, num_warps=4), triton.Config({'BLOCK_SIZE_M': 32, 'BLOCK_SIZE_N': 32, 'BLOCK_SIZE_K': 16, 'GROUP_SIZE_M': 8, 'K_BLOCKS': 8}, num_stages=4, num_warps=4), triton.Config({'BLOCK_SIZE_M': 32, 'BLOCK_SIZE_N': 64, 'BLOCK_SIZE_K': 16, 'GROUP_SIZE_M': 8, 'K_BLOCKS': 8}, num_stages=4, num_warps=4), triton.Config({'BLOCK_SIZE_M': 64, 'BLOCK_SIZE_N': 32, 'BLOCK_SIZE_K': 16, 'GROUP_SIZE_M': 8, 'K_BLOCKS': 8}, num_stages=4, num_warps=4), triton.Config({'BLOCK_SIZE_M': 32, 'BLOCK_SIZE_N': 64, 'BLOCK_SIZE_K': 16, 'GROUP_SIZE_M': 8, 'K_BLOCKS': 16}, num_stages=4, num_warps=4), triton.Config({'BLOCK_SIZE_M': 64, 'BLOCK_SIZE_N': 32, 'BLOCK_SIZE_K': 16, 'GROUP_SIZE_M': 8, 'K_BLOCKS': 16}, num_stages=4, num_warps=4), triton.Config({'BLOCK_SIZE_M': 32, 'BLOCK_SIZE_N': 64, 'BLOCK_SIZE_K': 16, 'GROUP_SIZE_M': 8, 'K_BLOCKS': 64}, num_stages=4, num_warps=4), triton.Config({'BLOCK_SIZE_M': 64, 'BLOCK_SIZE_N': 32, 'BLOCK_SIZE_K': 16, 'GROUP_SIZE_M': 8, 'K_BLOCKS': 64}, num_stages=4, num_warps=4), triton.Config({'BLOCK_SIZE_M': 32, 'BLOCK_SIZE_N': 64, 'BLOCK_SIZE_K': 16, 'GROUP_SIZE_M': 8, 'K_BLOCKS': 32}, num_stages=4, num_warps=4), triton.Config({'BLOCK_SIZE_M': 64, 'BLOCK_SIZE_N': 32, 'BLOCK_SIZE_K': 16, 'GROUP_SIZE_M': 8, 'K_BLOCKS': 32}, num_stages=4, num_warps=4), ], key=['M', 'N', 'K', 'float32_out', 'allow_tf32', 'op_float16'], reset_to_zero = ['c_ptr'] ) @triton.jit def cvmm_backward_kernel3( # Pointers to matrices a_ptr, b_ptr, c_ptr, index_ptr, sel_ptr, out_index_ptr, # Matrix dimensions M, N, K, # The stride variables represent how much to increase the ptr by when moving by 1 # element in a particular dimension. E.g. `stride_am` is how much to increase `a_ptr` # by to get the element one row down (A has M rows). stride_am, stride_ak, stride_bk, stride_bn, stride_co, stride_cm, stride_cn, stride_index, stride_sel, stride_out_index, float32_out: tl.constexpr, allow_tf32: tl.constexpr, op_float16: tl.constexpr, # Meta-parameters BLOCK_SIZE_M: tl.constexpr, BLOCK_SIZE_N: tl.constexpr, BLOCK_SIZE_K: tl.constexpr, GROUP_SIZE_M: tl.constexpr, K_BLOCKS: tl.constexpr ): """Kernel for computing the matmul C = A x B. A has shape (M, K), B has shape (K, N) and C has shape (M, N) """ # ----------------------------------------------------------- # Map program ids `pid` to the block of C it should compute. # This is done in a grouped ordering to promote L2 data reuse. # See above `L2 Cache Optimizations` section for details. pid = tl.program_id(axis=0) k_block_id = tl.program_id(axis=1) num_pid_m = tl.cdiv(M, BLOCK_SIZE_M) num_pid_n = tl.cdiv(N, BLOCK_SIZE_N) num_pid_in_group = GROUP_SIZE_M * num_pid_n group_id = pid // num_pid_in_group first_pid_m = group_id * GROUP_SIZE_M group_size_m = min(num_pid_m - first_pid_m, GROUP_SIZE_M) pid_m = first_pid_m + (pid % group_size_m) pid_n = (pid % num_pid_in_group) // group_size_m # ---------------------------------------------------------- # Create pointers for the first blocks of A and B. # We will advance this pointer as we move in the K direction # and accumulate # `a_ptrs` is a block of [BLOCK_SIZE_M, BLOCK_SIZE_K] pointers # `b_ptrs` is a block of [BLOCK_SIZE_K, BLOCK_SIZE_N] pointers # See above `Pointer Arithmetics` section for details offs_am = (pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M)) % M offs_bn = (pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N)) % N # ----------------------------------------------------------- # Iterate to compute a block of the C matrix. # We accumulate into a `[BLOCK_SIZE_M, BLOCK_SIZE_N]` block # of fp32 values for higher accuracy. # `accumulator` will be converted back to fp16 after the loop. a_ptrs_this = a_ptr + offs_am[:, None] * stride_am b_ptrs_this = b_ptr + offs_bn[None, :] * stride_bn # Kactual = end_i - start_i # Nblocks = (Kactual + BLOCK_SIZE_K - 1) // BLOCK_SIZE_K # WORK_PER_WORKER = (Nblocks + K_BLOCKS - 1) // K_BLOCKS # WORK_PER_WORKER = WORK_PER_WORKER if WORK_PER_WORKER > MIN_WORK_SIZE else MIN_WORK_SIZE # # Kloop_start = (Kactual + BLOCK_SIZE_K - 1) // BLOCK_SIZE_K # first_block_k = k_block_id * WORK_PER_WORKER # last_block_k = min((k_block_id+1) * WORK_PER_WORKER, Nblocks) block_start_index = k_block_id * BLOCK_SIZE_K * K_BLOCKS block_end_index = min(block_start_index + BLOCK_SIZE_K * K_BLOCKS, K) - 1 first_mat = tl.load(sel_ptr + stride_sel * block_start_index) last_mat = tl.load(sel_ptr + stride_sel * block_end_index) for matrix_index in range(first_mat, last_mat + 1): accumulator = tl.zeros((BLOCK_SIZE_M, BLOCK_SIZE_N), dtype=tl.float32) start_i = block_start_index end_i = block_end_index + 1 while start_i < end_i: middle = (start_i + end_i) // 2 middle_matrix = tl.load(sel_ptr + middle * stride_sel) if middle_matrix < matrix_index: start_i = middle + 1 else: end_i = middle # # Continue binary search: find the first matrix that is > matrix_index start_i2 = start_i end_i = block_end_index + 1 while start_i2 < end_i: middle = (start_i2 + end_i) // 2 middle_matrix = tl.load(sel_ptr + middle * stride_sel) if middle_matrix <= matrix_index: start_i2 = middle + 1 else: end_i = middle end_i = start_i2 count = end_i - start_i block_mem_indices_f_base = start_i + tl.arange(0, BLOCK_SIZE_K) if count > 0: for k in range((count + BLOCK_SIZE_K - 1) // BLOCK_SIZE_K): # block_mem_indices = (k * BLOCK_SIZE_K + tl.arange(0, BLOCK_SIZE_K)) % K block_mem_indices_f = block_mem_indices_f_base + k * BLOCK_SIZE_K block_mem_indices = block_mem_indices_f % K a_index = tl.load(index_ptr + stride_index * block_mem_indices) if out_index_ptr is not None: b_index = tl.load(out_index_ptr + stride_out_index * block_mem_indices) else: b_index = a_index sel_ok = block_mem_indices_f < end_i a_ptrs = a_ptrs_this + a_index[None, :] * stride_ak b_ptrs = b_ptrs_this + b_index[:, None] * stride_bk # Load the next block of A and B, generate a mask by checking the K dimension. # If it is out of bounds, set it to 0. a = tl.load(a_ptrs, mask=sel_ok[None, :], other=0.0) b = tl.load(b_ptrs, mask=sel_ok[:, None], other=0.0) if op_float16: a = a.to(tl.float16) b = b.to(tl.float16) # We accumulate along the K dimension. accumulator += tl.dot(a, b, allow_tf32=allow_tf32) if float32_out: c = accumulator else: c = accumulator.to(tl.float16) # ----------------------------------------------------------- # Write back the block of the output matrix C with masks. offs_cm = pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M) offs_cn = pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N) c_ptrs = c_ptr + stride_co * matrix_index + stride_cm * offs_cm[:, None] + stride_cn * offs_cn[None, :] c_mask = (offs_cm[:, None] < M) & (offs_cn[None, :] < N) # tl.store(c_ptrs, c, mask=c_mask) tl.atomic_add(c_ptrs, c, mask=c_mask) def cvmm_triton(x: torch.Tensor, sel_index: torch.Tensor, sel: torch.Tensor, keys: torch.Tensor, out_dtype: torch.dtype, out_index: Optional[torch.Tensor] = None): xorig = x x = x.flatten(end_dim=-2) assert x.shape[-1] == keys.shape[1] sel_shape = sel.shape sel = sel.flatten() M = sel.shape[0] O, K, N = keys.shape # Allocates output. out = torch.empty((M, N), device=x.device, dtype=out_dtype) # out = torch.zeros((M, N), device=x.device, dtype=out_dtype) # 1D launch kernel where each block gets its own program. # expected_m_per_matrix = int(math.ceil(M / O * 1.5)) # expected_m_per_matrix = M grid = lambda META: ( triton.cdiv(M, META['BLOCK_SIZE_M']) * triton.cdiv(N, META['BLOCK_SIZE_N']), ) cvmm_kernel[grid]( x, keys, out, sel_index, sel, out_index, M, N, K, x.stride(0), x.stride(1), keys.stride(0), keys.stride(1), keys.stride(2), out.stride(0), out.stride(1), sel_index.stride(0), sel.stride(0), out_index.stride(0) if out_index is not None else 0, float32=out.dtype==torch.float32, allow_tf32=False, #torch.backends.cuda.matmul.allow_tf32 ) return out.view(*sel_shape, N) def cvmm_triton_backward(x: torch.Tensor, sel_index: torch.Tensor, sel: torch.Tensor, grads: torch.Tensor, n_experts: int, key_dtype: torch.dtype, op_float16: bool, out_index: Optional[torch.Tensor] = None): x = x.flatten(end_dim=-2) x = x.transpose(0, 1) grads = grads.flatten(end_dim=-2) sel = sel.flatten() M, _ = x.shape K, N = grads.shape out = torch.zeros((n_experts, M, N), device=x.device, dtype=key_dtype) grid = lambda META: ( triton.cdiv(M, META['BLOCK_SIZE_M']) * triton.cdiv(N, META['BLOCK_SIZE_N']), triton.cdiv(K, META['BLOCK_SIZE_K'] * META['K_BLOCKS']) ) cvmm_backward_kernel3[grid]( x, grads, out, sel_index, sel, out_index, M, N, K, x.stride(0), x.stride(1), grads.stride(0), grads.stride(1), out.stride(0), out.stride(1), out.stride(2), sel_index.stride(0), sel.stride(0), out_index.stride(0) if out_index is not None else 0, float32_out=out.dtype == torch.float32, op_float16=op_float16, allow_tf32=False #torch.backends.cuda.matmul.allow_tf32 ) return out class CVMM(torch.autograd.Function): warned = False @staticmethod def forward(ctx, x: torch.Tensor, sel_index: torch.Tensor, sel: torch.Tensor, keys: torch.Tensor, out_index: Optional[torch.Tensor] = None, reduction_weight: Optional[torch.Tensor] = None): ctx.save_for_backward(x, keys, sel, sel_index, out_index, reduction_weight) out_type = torch.float16 if torch.is_autocast_enabled() else x.dtype # if torch.is_autocast_enabled(): # x = x.half() # keys = keys.half() res = cvmm_triton(x, sel_index, sel, keys, out_type, out_index) if reduction_weight is not None: res = res.view(*reduction_weight.shape, res.shape[-1]) res = (reduction_weight.unsqueeze(-2).type_as(res) @ res).squeeze(-2) ctx.op_type = out_type ctx.keys_type = keys.dtype ctx.is_autocast = torch.is_autocast_enabled() return res @staticmethod def backward(ctx, grad_output): x, keys, sel, sel_index, out_index, reduction_weight = ctx.saved_tensors # if torch.is_autocast_enabled(): # x = x.half() # keys = keys.half() # grad_output = grad_output.half() # x = x.type(ctx.op_type) # keys_dt = keys.type_as(x) keys_dt = keys # Backward for weight if reduction_weight is not None: # Project back the grads with he reduction weight, so the grad for the weight matrix is ok grad_output_w = reduction_weight.unsqueeze(-1).type_as(grad_output) @ grad_output.unsqueeze(-2) else: grad_output_w = grad_output grad_w = cvmm_triton_backward(x, sel_index, sel, grad_output_w, keys_dt.shape[0], ctx.keys_type, ctx.is_autocast, out_index=out_index) # Backward for input and reduction weight grad_w_off = None bw_index = sel_index if out_index is None else out_index bw_index_out = None if reduction_weight is not None: # Hack the output indices to emulate repeats bw_index_out = bw_index bw_index = bw_index // reduction_weight.shape[-1] grad_x_full = cvmm_triton(grad_output, bw_index, sel, keys_dt.transpose(1,2), ctx.op_type, bw_index_out) grad_x_full = grad_x_full.view(*x.shape[:-1], -1, x.shape[-1]) if reduction_weight is not None: # grad_x_full is the unscaled grad. For the input, we have to scale it, for the reduction wegiht, # we have to compute dot products with the input. grad_x = (reduction_weight.view(*grad_x_full.shape[:-1]).unsqueeze(-2).type_as(grad_x_full) @ grad_x_full).squeeze(-2) grad_w_off = (grad_x_full.type_as(reduction_weight) @ x.unsqueeze(-1).type_as(reduction_weight)).squeeze(-1).view_as(reduction_weight) elif grad_x_full.shape[-2] != 1: grad_x = grad_x_full.sum(-2) else: grad_x = grad_x_full grad_x = grad_x.view_as(x) return grad_x, None, None, grad_w, None, grad_w_off known_shapes = set() def cvmm(x: torch.Tensor, sel: Union[torch.Tensor, CVMMSel], keys: torch.Tensor): if not isinstance(sel, CVMMSel): sel = cvmm_prepare_sel(sel, keys.shape[0]) sh = (x.shape, keys.shape) if sh not in known_shapes: print("New shape:", sh) known_shapes.add(sh) return CVMM.apply(x, sel.sel_index, sel.sel, keys, sel.out_index, sel.reduction_weight) def cvmm_prepare_sel2(sel: torch.Tensor, w: Optional[torch.Tensor] = None) -> CVMMSel: # Has multiple selections for each batch element n_per_batch = sel.shape[-1] # indices = torch.arange(sel.nelement() // n_per_batch, device=sel.device, dtype=torch.int32) # indices = indices.repeat_interleave(n_per_batch).flatten() fsel = sel.flatten() ssel, sel_index = fsel.sort() # in_index = indices[sel_index] in_index = sel_index // n_per_batch return CVMMSel(sel, ssel.view_as(sel), in_index, sel_index, w) if __name__ == "__main__": def cvmm_hack(x: torch.Tensor, sel: Union[torch.Tensor, CVMMSel], keys: torch.Tensor): if not isinstance(sel, CVMMSel): sel = cvmm_prepare_sel(sel, keys.shape[0]) sh = (x.shape, keys.shape) if sh not in known_shapes: print("New shape:", sh) known_shapes.add(sh) res = CVMM.apply(x, sel.sel_index, sel.sel, keys, sel.out_index, None) if sel.reduction_weight is not None: res = res.view(*sel.reduction_weight.shape, res.shape[-1]) res = (sel.reduction_weight.unsqueeze(-2).type_as(res) @ res).squeeze(-2) return res def test_wsum(): n_experts = 2 n_channels = 3 expert_size = 3 bs = 2 # n_experts = 8 # n_channels = 64 # expert_size = 64 # bs = 32 # n_per_batch = 1 n_per_batch = 2 # reduction_factor = 2 reduction_factor = 1 device = torch.device("cuda") dtype = torch.float32 atol_tresh = 1e-2 keys = torch.nn.Parameter(torch.randn(n_experts, n_channels, expert_size, dtype=dtype, device=device)) testvec = torch.randn(bs, n_channels, dtype=dtype, device=device) sel_raw = torch.randint(0, n_experts, (bs,n_per_batch), dtype=torch.int32, device=device) # w = torch.randn_like(sel, dtype=torch.float32) w = torch.randn((bs // reduction_factor, n_per_batch * reduction_factor), dtype=torch.float32, device=device) # sel = torch.tensor([[1,0]], dtype=torch.int32, device=device) sel = cvmm_prepare_sel2(sel_raw, w) out = cvmm(testvec, sel, keys) def cwmm_ref2(x: torch.Tensor, isel: Union[torch.Tensor, CVMMSel], keys: torch.Tensor): if isinstance(isel, CVMMSel): sel = isel.raw_sel getw = lambda b, c: (isel.reduction_weight[b, c] if isel.reduction_weight is not None else 1.0) else: sel = isel getw = lambda b, c: 1.0 olist2 = [] for c in range(sel.shape[-1]): olist = [] for b in range(x.shape[0]): olist.append(x[b:b+1] @ keys[sel[b, c]] * getw(b, c)) olist2.append(torch.cat(olist, dim=0)) res = torch.stack(olist2, dim=-2) if isinstance(isel, CVMMSel) and isel.reduction_weight is not None: res = res.sum(-2) return res ref = cwmm_ref2(testvec, sel, keys) if torch.allclose(out, ref, atol=1e-2, rtol=0): print("✅ Multi-output: Triton and Torch match") else: print("❌ Multi-output: Triton and Torch differ") def cvmm_ref_backward2(x: torch.Tensor, sel: CVMMSel, grads: torch.Tensor, n_experts: int): sel = sel.raw_sel x = x.flatten(end_dim=-2).transpose(0,1) res = 0 for c in range(sel.shape[-1]): gmats = [] for i in range(n_experts): mask = sel[:, c] != i sel_my = torch.masked_fill(x, mask[None], 0) grads_my = torch.masked_fill(grads[..., c, :], mask[:, None], 0) gmats.append(sel_my @ grads_my) res += torch.stack(gmats) return res grad_out = torch.randn(*out.shape, dtype=dtype, device=device) keys_ref = keys.detach().clone().requires_grad_(True) testvec_ref = testvec.detach().clone().requires_grad_(True) w_ref = w.detach().clone().requires_grad_(True) sel = cvmm_prepare_sel2(sel_raw, w_ref) print("CVMM hack") out_ref = cvmm_hack(testvec_ref, sel, keys_ref) out_ref.backward(grad_out) keys_full = keys.detach().clone().requires_grad_(True) testvec_full = testvec.detach().clone().requires_grad_(True) w_full = w.detach().clone().requires_grad_(True) sel = cvmm_prepare_sel2(sel_raw, w_full) print("CVMM full") out_full = cvmm(testvec_full, sel, keys_full) out_full.backward(grad_out) if torch.allclose(keys_ref.grad, keys_full.grad, atol=1e-2, rtol=0): print("✅ Multi-output: Triton weight grad ok") else: print("❌ Multi-output: Triton weight grad not ok") if torch.allclose(testvec_ref.grad, testvec_full.grad, atol=1e-2, rtol=0): print("✅ Multi-output: Triton input grad ok") else: print("❌ Multi-output: Triton input grad not ok") if torch.allclose(w_ref.grad, w_full.grad, atol=1e-2, rtol=0): print("✅ Multi-output: Triton reduction weight grad ok") else: print("❌ Multi-output: Triton reduction weight grad not ok") # g = cvmm_triton_backward(testvec, sel.sel_index, sel.sel, grad_out, keys.shape[0], keys.dtype, False, out_index=sel.out_index) # gref = cvmm_ref_backward2(testvec, sel, grad_out, keys.shape[0]) # if torch.allclose(g, gref, atol=1e-2, rtol=0): # print("✅ Multi-output: Triton grad ok") # else: # print("❌ Multi-output: Triton grad not ok") from torch.autograd import gradcheck assert gradcheck(cvmm, (testvec, sel, keys), eps=1e-2, atol=1e-4) print("Gradcheck ok.") def test_module(): from torch.autograd import gradcheck n_experts = 4 n_channels = 64 expert_size = 64 bs = 32 device = torch.device("cuda") dtype = torch.float32 atol_tresh = 1e-2 keys = torch.nn.Parameter(torch.randn(n_experts, n_channels, expert_size, dtype=dtype, device=device)) testvec = torch.randn(bs, n_channels, dtype=dtype, device=device) sel = torch.randint(0, n_experts, (bs,), dtype=torch.int32, device=device) test_grad = torch.randn(bs, expert_size, dtype=dtype, device=device) olist = [] for b in range(bs): olist.append(testvec[b:b+1] @ keys[sel[b]]) ref = torch.cat(olist, dim=0) out = cvmm(testvec, sel, keys) assert torch.allclose(ref, out, atol=atol_tresh, rtol=0) print("Forward ok.") keys = keys.requires_grad_(True) testvec = testvec.requires_grad_(True) assert gradcheck(cvmm, (testvec, sel, keys), eps=1e-2, atol=atol_tresh, rtol=0) print("Backward ok.") test_wsum() # test_module() def cwmm_ref(x: torch.Tensor, sel: Union[torch.Tensor, CVMMSel], keys: torch.Tensor): if isinstance(sel, CVMMSel): sel = sel.raw_sel olist = [] for b in range(x.shape[0]): olist.append(x[b:b+1] @ keys[sel[b]]) return torch.cat(olist, dim=0) def test_forward(): torch.manual_seed(0) n_experts = 8 n_channels = 64 expert_size = 64 bs = 64 device = torch.device("cuda") dtype = torch.float16 atol_tresh = 1e-2 keys = torch.nn.Parameter(torch.randn(n_experts, n_channels, expert_size, dtype=dtype, device=device)) keys = keys.transpose(1,2).contiguous().transpose(1,2) testvec = torch.randn(bs, n_channels, dtype=dtype, device=device) sel = torch.randint(0, n_experts, (bs,), dtype=torch.int32, device=device) exp_sel = torch.distributions.Geometric(0.02).sample((bs,)).to(device).clamp(max=n_experts-1).int() exp_sel = torch.randperm(n_experts, device=device, dtype=torch.int32)[exp_sel] sel = exp_sel # sel = torch.tensor([0, 1], dtype=torch.int32, device=device) sel = cvmm_prepare_sel(sel, keys.shape[0]) ref = cwmm_ref(testvec, sel, keys) out = cvmm_triton(testvec, sel.sel_index, sel.sel, keys, dtype) if torch.allclose(out, ref, atol=1e-2, rtol=0): print("✅ Triton and Torch match") else: print("❌ Triton and Torch differ") def do_benchmark(K, N): @triton.testing.perf_report( triton.testing.Benchmark( x_names=['bsz'], # Argument names to use as an x-axis for the plot x_vals=[ 2048 * (i+2) for i in range(0, 32, 8) ]+[131072], # Different possible values for `x_name` line_arg='provider', # Argument name whose value corresponds to a different line in the plot # Possible values for `line_arg` line_vals=['cublas', 'triton'], # Label name for the lines line_names=["cuBLAS", "Triton"], # Line styles styles=[('green', '-'), ('blue', '-')], ylabel="TFLOPS", # Label name for the y-axis plot_name="matmul-performance", # Name for the plot, used also as a file name for saving the plot. args={}, ) ) def benchmark(bsz, provider): # a = torch.randn((M, K), device='cuda', dtype=torch.float16) # b = torch.randn((K, N), device='cuda', dtype=torch.float16) dtype = torch.float32 if provider == 'cuda' else torch.float16 keys = torch.nn.Parameter(torch.randn(n_experts, K, N, dtype=dtype, device=device)) testvec = torch.randn(bsz, K, dtype=dtype, device=device) sel = torch.randint(0, n_experts, (bsz,), dtype=torch.int32, device=device) keys = keys.transpose(1,2).contiguous().transpose(1,2) # exp_sel = torch.distributions.Geometric(0.02).sample((bsz,)).to(device).clamp(max=n_experts-1).int() # exp_sel = torch.randperm(n_experts, device=device, dtype=torch.int32)[exp_sel] # sel = exp_sel sel = cvmm_prepare_sel(sel, keys.shape[0]) # ref = cwmm_ref(testvec, sel, keys) # out = cvmm_triton(testvec, sel, keys) # if torch.allclose(out, ref, atol=5e-2, rtol=0): # print("✅ Triton and Torch match") # else: # print("❌ Triton and Torch differ") quantiles = [0.5, 0.2, 0.8] if provider == 'cublas': ms, min_ms, max_ms = triton.testing.do_bench(lambda: torch.matmul(testvec, keys[0]), quantiles=quantiles) if provider == 'triton': ms, min_ms, max_ms = triton.testing.do_bench(lambda: cvmm_triton(testvec, sel.sel_index, sel.sel, keys, dtype), quantiles=quantiles) # if provider == 'cuda': # ms, min_ms, max_ms = triton.testing.do_bench(lambda: cvmm(testvec, sel, keys), quantiles=quantiles) perf = lambda ms: 2 * bsz * N * K * 1e-12 / (ms * 1e-3) # perf = lambda x: x return perf(ms), perf(max_ms), perf(min_ms) print(f"Benchmark: [bsz, {K}] @ [{n_experts}, {K}, {N}] -> [bsz, {N}]") benchmark.run(show_plots=True, print_data=True) do_benchmark(128, 512) do_benchmark(256, 512) do_benchmark(512, 128) test_forward() def test_backward(): def cvmm_ref_backward(x: torch.Tensor, sel: CVMMSel, grads: torch.Tensor, n_experts: int): sel = sel.raw_sel x = x.flatten(end_dim=-2).transpose(0,1) gmats = [] for i in range(n_experts): mask = sel != i sel_my = torch.masked_fill(x, mask[None], 0) grads_my = torch.masked_fill(grads, mask[:, None], 0) gmats.append(sel_my @ grads_my) return torch.stack(gmats) torch.manual_seed(0) n_experts = 8 n_channels = 64 expert_size = 64 bs = 64 # n_channels = 8 # expert_size = 8 # n_experts = 2 # bs=2 device = torch.device("cuda") dtype = torch.float16 atol_tresh = 1e-2 testvec = torch.randn(bs, n_channels, dtype=dtype, device=device) grads = torch.randn(bs, expert_size, dtype=dtype, device=device) sel = torch.randint(0, n_experts, (bs,), dtype=torch.int32, device=device) # exp_sel = torch.distributions.Geometric(0.02).sample((bs,)).to(device).clamp(max=n_experts-1).int() # exp_sel = torch.randperm(n_experts, device=device, dtype=torch.int32)[exp_sel] # sel = exp_sel # sel = torch.tensor([0, 1], dtype=torch.int32, device=device) # sel = torch.tensor([1, 0], dtype=torch.int32, device=device) cvmmsel = cvmm_prepare_sel(sel, n_experts) ref = cvmm_ref_backward(testvec, cvmmsel, grads, n_experts) out = cvmm_triton_backward(testvec, cvmmsel.sel_index, cvmmsel.sel, grads, n_experts, key_dtype=ref.dtype, op_float16=dtype==torch.float16) if torch.allclose(out, ref, atol=1e-2, rtol=0): print("✅ Triton and Torch match") else: print("❌ Triton and Torch differ") def do_benchmark(K, N): @triton.testing.perf_report( triton.testing.Benchmark( x_names=['bsz'], # Argument names to use as an x-axis for the plot x_vals=[ 2048 * (i+2) for i in range(0, 32, 8) ]+[131072], # Different possible values for `x_name` line_arg='provider', # Argument name whose value corresponds to a different line in the plot # Possible values for `line_arg` line_vals=['cublas', 'triton'], # Label name for the lines line_names=["cuBLAS", "Triton"], # Line styles styles=[('green', '-'), ('blue', '-')], ylabel="TFLOPS", # Label name for the y-axis plot_name="matmul-performance", # Name for the plot, used also as a file name for saving the plot. args={}, ) ) def benchmark(bsz, provider): # a = torch.randn((M, K), device='cuda', dtype=torch.float16) # b = torch.randn((K, N), device='cuda', dtype=torch.float16) dtype = torch.float32 if provider == 'cuda' else torch.float16 # dtype = torch.float32 sel = torch.randint(0, n_experts, (bs,), dtype=torch.int32, device=device) testvec = torch.randn(bsz, K, dtype=dtype, device=device) grads = torch.randn(bsz, N, dtype=dtype, device=device) sel = torch.randint(0, n_experts, (bsz,), dtype=torch.int32, device=device) exp_sel = torch.distributions.Geometric(0.02).sample((bsz,)).to(device).clamp(max=n_experts-1).int() exp_sel = torch.randperm(n_experts, device=device, dtype=torch.int32)[exp_sel] sel = exp_sel sel = cvmm_prepare_sel(sel, n_experts) # ref = cvmm_ref_backward(testvec, sel, grads, n_experts) # out = cvmm_triton_backward(testvec, sel, grads, n_experts) # if torch.allclose(out, ref, atol=5e-2, rtol=0): # print("✅ Triton and Torch match") # else: # print("❌ Triton and Torch differ") quantiles = [0.5, 0.2, 0.8] if provider == 'cublas': ms, min_ms, max_ms = triton.testing.do_bench(lambda: torch.matmul(testvec.transpose(0,1), grads), quantiles=quantiles) if provider == 'triton': ms, min_ms, max_ms = triton.testing.do_bench(lambda: cvmm_triton_backward(testvec, sel.sel_index, sel.sel, grads, n_experts, key_dtype=ref.dtype, op_float16=dtype==torch.float16), quantiles=quantiles) # if provider == 'cuda': # ms, min_ms, max_ms = triton.testing.do_bench(lambda: cvmm(testvec, sel, keys), quantiles=quantiles) perf = lambda ms: 2 * bsz * N * K * 1e-12 / (ms * 1e-3) # perf = lambda x: x return perf(ms), perf(max_ms), perf(min_ms) print(f"Benchmark: [bsz, {K}] @ [{n_experts}, {K}, {N}] -> [bsz, {N}]") benchmark.run(show_plots=True, print_data=True) do_benchmark(128, 512) do_benchmark(256, 512) do_benchmark(512, 128) test_backward() # do_benchmark(1024, 80) # do_benchmark(80, 1024) # do_benchmark(512, 128)
@triton.jit def cvmm_backward_kernel3( # Pointers to matrices a_ptr, b_ptr, c_ptr, index_ptr, sel_ptr, out_index_ptr, # Matrix dimensions M, N, K, # The stride variables represent how much to increase the ptr by when moving by 1 # element in a particular dimension. E.g. `stride_am` is how much to increase `a_ptr` # by to get the element one row down (A has M rows). stride_am, stride_ak, stride_bk, stride_bn, stride_co, stride_cm, stride_cn, stride_index, stride_sel, stride_out_index, float32_out: tl.constexpr, allow_tf32: tl.constexpr, op_float16: tl.constexpr, # Meta-parameters BLOCK_SIZE_M: tl.constexpr, BLOCK_SIZE_N: tl.constexpr, BLOCK_SIZE_K: tl.constexpr, GROUP_SIZE_M: tl.constexpr, K_BLOCKS: tl.constexpr ): """Kernel for computing the matmul C = A x B. A has shape (M, K), B has shape (K, N) and C has shape (M, N) """ # ----------------------------------------------------------- # Map program ids `pid` to the block of C it should compute. # This is done in a grouped ordering to promote L2 data reuse. # See above `L2 Cache Optimizations` section for details. pid = tl.program_id(axis=0) k_block_id = tl.program_id(axis=1) num_pid_m = tl.cdiv(M, BLOCK_SIZE_M) num_pid_n = tl.cdiv(N, BLOCK_SIZE_N) num_pid_in_group = GROUP_SIZE_M * num_pid_n group_id = pid // num_pid_in_group first_pid_m = group_id * GROUP_SIZE_M group_size_m = min(num_pid_m - first_pid_m, GROUP_SIZE_M) pid_m = first_pid_m + (pid % group_size_m) pid_n = (pid % num_pid_in_group) // group_size_m # ---------------------------------------------------------- # Create pointers for the first blocks of A and B. # We will advance this pointer as we move in the K direction # and accumulate # `a_ptrs` is a block of [BLOCK_SIZE_M, BLOCK_SIZE_K] pointers # `b_ptrs` is a block of [BLOCK_SIZE_K, BLOCK_SIZE_N] pointers # See above `Pointer Arithmetics` section for details offs_am = (pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M)) % M offs_bn = (pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N)) % N # ----------------------------------------------------------- # Iterate to compute a block of the C matrix. # We accumulate into a `[BLOCK_SIZE_M, BLOCK_SIZE_N]` block # of fp32 values for higher accuracy. # `accumulator` will be converted back to fp16 after the loop. a_ptrs_this = a_ptr + offs_am[:, None] * stride_am b_ptrs_this = b_ptr + offs_bn[None, :] * stride_bn # Kactual = end_i - start_i # Nblocks = (Kactual + BLOCK_SIZE_K - 1) // BLOCK_SIZE_K # WORK_PER_WORKER = (Nblocks + K_BLOCKS - 1) // K_BLOCKS # WORK_PER_WORKER = WORK_PER_WORKER if WORK_PER_WORKER > MIN_WORK_SIZE else MIN_WORK_SIZE # # Kloop_start = (Kactual + BLOCK_SIZE_K - 1) // BLOCK_SIZE_K # first_block_k = k_block_id * WORK_PER_WORKER # last_block_k = min((k_block_id+1) * WORK_PER_WORKER, Nblocks) block_start_index = k_block_id * BLOCK_SIZE_K * K_BLOCKS block_end_index = min(block_start_index + BLOCK_SIZE_K * K_BLOCKS, K) - 1 first_mat = tl.load(sel_ptr + stride_sel * block_start_index) last_mat = tl.load(sel_ptr + stride_sel * block_end_index) for matrix_index in range(first_mat, last_mat + 1): accumulator = tl.zeros((BLOCK_SIZE_M, BLOCK_SIZE_N), dtype=tl.float32) start_i = block_start_index end_i = block_end_index + 1 while start_i < end_i: middle = (start_i + end_i) // 2 middle_matrix = tl.load(sel_ptr + middle * stride_sel) if middle_matrix < matrix_index: start_i = middle + 1 else: end_i = middle # # Continue binary search: find the first matrix that is > matrix_index start_i2 = start_i end_i = block_end_index + 1 while start_i2 < end_i: middle = (start_i2 + end_i) // 2 middle_matrix = tl.load(sel_ptr + middle * stride_sel) if middle_matrix <= matrix_index: start_i2 = middle + 1 else: end_i = middle end_i = start_i2 count = end_i - start_i block_mem_indices_f_base = start_i + tl.arange(0, BLOCK_SIZE_K) if count > 0: for k in range((count + BLOCK_SIZE_K - 1) // BLOCK_SIZE_K): # block_mem_indices = (k * BLOCK_SIZE_K + tl.arange(0, BLOCK_SIZE_K)) % K block_mem_indices_f = block_mem_indices_f_base + k * BLOCK_SIZE_K block_mem_indices = block_mem_indices_f % K a_index = tl.load(index_ptr + stride_index * block_mem_indices) if out_index_ptr is not None: b_index = tl.load(out_index_ptr + stride_out_index * block_mem_indices) else: b_index = a_index sel_ok = block_mem_indices_f < end_i a_ptrs = a_ptrs_this + a_index[None, :] * stride_ak b_ptrs = b_ptrs_this + b_index[:, None] * stride_bk # Load the next block of A and B, generate a mask by checking the K dimension. # If it is out of bounds, set it to 0. a = tl.load(a_ptrs, mask=sel_ok[None, :], other=0.0) b = tl.load(b_ptrs, mask=sel_ok[:, None], other=0.0) if op_float16: a = a.to(tl.float16) b = b.to(tl.float16) # We accumulate along the K dimension. accumulator += tl.dot(a, b, allow_tf32=allow_tf32) if float32_out: c = accumulator else: c = accumulator.to(tl.float16) # ----------------------------------------------------------- # Write back the block of the output matrix C with masks. offs_cm = pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M) offs_cn = pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N) c_ptrs = c_ptr + stride_co * matrix_index + stride_cm * offs_cm[:, None] + stride_cn * offs_cn[None, :] c_mask = (offs_cm[:, None] < M) & (offs_cn[None, :] < N) # tl.store(c_ptrs, c, mask=c_mask) tl.atomic_add(c_ptrs, c, mask=c_mask) def cvmm_triton(x: torch.Tensor, sel_index: torch.Tensor, sel: torch.Tensor, keys: torch.Tensor, out_dtype: torch.dtype, out_index: Optional[torch.Tensor] = None): xorig = x x = x.flatten(end_dim=-2) assert x.shape[-1] == keys.shape[1] sel_shape = sel.shape sel = sel.flatten() M = sel.shape[0] O, K, N = keys.shape # Allocates output. out = torch.empty((M, N), device=x.device, dtype=out_dtype) # out = torch.zeros((M, N), device=x.device, dtype=out_dtype) # 1D launch kernel where each block gets its own program. # expected_m_per_matrix = int(math.ceil(M / O * 1.5)) # expected_m_per_matrix = M grid = lambda META: ( triton.cdiv(M, META['BLOCK_SIZE_M']) * triton.cdiv(N, META['BLOCK_SIZE_N']), ) cvmm_kernel[grid]( x, keys, out, sel_index, sel, out_index, M, N, K, x.stride(0), x.stride(1), keys.stride(0), keys.stride(1), keys.stride(2), out.stride(0), out.stride(1), sel_index.stride(0), sel.stride(0), out_index.stride(0) if out_index is not None else 0, float32=out.dtype==torch.float32, allow_tf32=False, #torch.backends.cuda.matmul.allow_tf32 ) return out.view(*sel_shape, N) def cvmm_triton_backward(x: torch.Tensor, sel_index: torch.Tensor, sel: torch.Tensor, grads: torch.Tensor, n_experts: int, key_dtype: torch.dtype, op_float16: bool, out_index: Optional[torch.Tensor] = None): x = x.flatten(end_dim=-2) x = x.transpose(0, 1) grads = grads.flatten(end_dim=-2) sel = sel.flatten() M, _ = x.shape K, N = grads.shape out = torch.zeros((n_experts, M, N), device=x.device, dtype=key_dtype) grid = lambda META: ( triton.cdiv(M, META['BLOCK_SIZE_M']) * triton.cdiv(N, META['BLOCK_SIZE_N']), triton.cdiv(K, META['BLOCK_SIZE_K'] * META['K_BLOCKS']) ) cvmm_backward_kernel3[grid]( x, grads, out, sel_index, sel, out_index, M, N, K, x.stride(0), x.stride(1), grads.stride(0), grads.stride(1), out.stride(0), out.stride(1), out.stride(2), sel_index.stride(0), sel.stride(0), out_index.stride(0) if out_index is not None else 0, float32_out=out.dtype == torch.float32, op_float16=op_float16, allow_tf32=False #torch.backends.cuda.matmul.allow_tf32 ) return out class CVMM(torch.autograd.Function): warned = False @staticmethod def forward(ctx, x: torch.Tensor, sel_index: torch.Tensor, sel: torch.Tensor, keys: torch.Tensor, out_index: Optional[torch.Tensor] = None, reduction_weight: Optional[torch.Tensor] = None): ctx.save_for_backward(x, keys, sel, sel_index, out_index, reduction_weight) out_type = torch.float16 if torch.is_autocast_enabled() else x.dtype # if torch.is_autocast_enabled(): # x = x.half() # keys = keys.half() res = cvmm_triton(x, sel_index, sel, keys, out_type, out_index) if reduction_weight is not None: res = res.view(*reduction_weight.shape, res.shape[-1]) res = (reduction_weight.unsqueeze(-2).type_as(res) @ res).squeeze(-2) ctx.op_type = out_type ctx.keys_type = keys.dtype ctx.is_autocast = torch.is_autocast_enabled() return res @staticmethod def backward(ctx, grad_output): x, keys, sel, sel_index, out_index, reduction_weight = ctx.saved_tensors # if torch.is_autocast_enabled(): # x = x.half() # keys = keys.half() # grad_output = grad_output.half() # x = x.type(ctx.op_type) # keys_dt = keys.type_as(x) keys_dt = keys # Backward for weight if reduction_weight is not None: # Project back the grads with he reduction weight, so the grad for the weight matrix is ok grad_output_w = reduction_weight.unsqueeze(-1).type_as(grad_output) @ grad_output.unsqueeze(-2) else: grad_output_w = grad_output grad_w = cvmm_triton_backward(x, sel_index, sel, grad_output_w, keys_dt.shape[0], ctx.keys_type, ctx.is_autocast, out_index=out_index) # Backward for input and reduction weight grad_w_off = None bw_index = sel_index if out_index is None else out_index bw_index_out = None if reduction_weight is not None: # Hack the output indices to emulate repeats bw_index_out = bw_index bw_index = bw_index // reduction_weight.shape[-1] grad_x_full = cvmm_triton(grad_output, bw_index, sel, keys_dt.transpose(1,2), ctx.op_type, bw_index_out) grad_x_full = grad_x_full.view(*x.shape[:-1], -1, x.shape[-1]) if reduction_weight is not None: # grad_x_full is the unscaled grad. For the input, we have to scale it, for the reduction wegiht, # we have to compute dot products with the input. grad_x = (reduction_weight.view(*grad_x_full.shape[:-1]).unsqueeze(-2).type_as(grad_x_full) @ grad_x_full).squeeze(-2) grad_w_off = (grad_x_full.type_as(reduction_weight) @ x.unsqueeze(-1).type_as(reduction_weight)).squeeze(-1).view_as(reduction_weight) elif grad_x_full.shape[-2] != 1: grad_x = grad_x_full.sum(-2) else: grad_x = grad_x_full grad_x = grad_x.view_as(x) return grad_x, None, None, grad_w, None, grad_w_off known_shapes = set() def cvmm(x: torch.Tensor, sel: Union[torch.Tensor, CVMMSel], keys: torch.Tensor): if not isinstance(sel, CVMMSel): sel = cvmm_prepare_sel(sel, keys.shape[0]) sh = (x.shape, keys.shape) if sh not in known_shapes: print("New shape:", sh) known_shapes.add(sh) return CVMM.apply(x, sel.sel_index, sel.sel, keys, sel.out_index, sel.reduction_weight) def cvmm_prepare_sel2(sel: torch.Tensor, w: Optional[torch.Tensor] = None) -> CVMMSel: # Has multiple selections for each batch element n_per_batch = sel.shape[-1] # indices = torch.arange(sel.nelement() // n_per_batch, device=sel.device, dtype=torch.int32) # indices = indices.repeat_interleave(n_per_batch).flatten() fsel = sel.flatten() ssel, sel_index = fsel.sort() # in_index = indices[sel_index] in_index = sel_index // n_per_batch return CVMMSel(sel, ssel.view_as(sel), in_index, sel_index, w) if __name__ == "__main__": def cvmm_hack(x: torch.Tensor, sel: Union[torch.Tensor, CVMMSel], keys: torch.Tensor): if not isinstance(sel, CVMMSel): sel = cvmm_prepare_sel(sel, keys.shape[0]) sh = (x.shape, keys.shape) if sh not in known_shapes: print("New shape:", sh) known_shapes.add(sh) res = CVMM.apply(x, sel.sel_index, sel.sel, keys, sel.out_index, None) if sel.reduction_weight is not None: res = res.view(*sel.reduction_weight.shape, res.shape[-1]) res = (sel.reduction_weight.unsqueeze(-2).type_as(res) @ res).squeeze(-2) return res def test_wsum(): n_experts = 2 n_channels = 3 expert_size = 3 bs = 2 # n_experts = 8 # n_channels = 64 # expert_size = 64 # bs = 32 # n_per_batch = 1 n_per_batch = 2 # reduction_factor = 2 reduction_factor = 1 device = torch.device("cuda") dtype = torch.float32 atol_tresh = 1e-2 keys = torch.nn.Parameter(torch.randn(n_experts, n_channels, expert_size, dtype=dtype, device=device)) testvec = torch.randn(bs, n_channels, dtype=dtype, device=device) sel_raw = torch.randint(0, n_experts, (bs,n_per_batch), dtype=torch.int32, device=device) # w = torch.randn_like(sel, dtype=torch.float32) w = torch.randn((bs // reduction_factor, n_per_batch * reduction_factor), dtype=torch.float32, device=device) # sel = torch.tensor([[1,0]], dtype=torch.int32, device=device) sel = cvmm_prepare_sel2(sel_raw, w) out = cvmm(testvec, sel, keys) def cwmm_ref2(x: torch.Tensor, isel: Union[torch.Tensor, CVMMSel], keys: torch.Tensor): if isinstance(isel, CVMMSel): sel = isel.raw_sel getw = lambda b, c: (isel.reduction_weight[b, c] if isel.reduction_weight is not None else 1.0) else: sel = isel getw = lambda b, c: 1.0 olist2 = [] for c in range(sel.shape[-1]): olist = [] for b in range(x.shape[0]): olist.append(x[b:b+1] @ keys[sel[b, c]] * getw(b, c)) olist2.append(torch.cat(olist, dim=0)) res = torch.stack(olist2, dim=-2) if isinstance(isel, CVMMSel) and isel.reduction_weight is not None: res = res.sum(-2) return res ref = cwmm_ref2(testvec, sel, keys) if torch.allclose(out, ref, atol=1e-2, rtol=0): print("✅ Multi-output: Triton and Torch match") else: print("❌ Multi-output: Triton and Torch differ") def cvmm_ref_backward2(x: torch.Tensor, sel: CVMMSel, grads: torch.Tensor, n_experts: int): sel = sel.raw_sel x = x.flatten(end_dim=-2).transpose(0,1) res = 0 for c in range(sel.shape[-1]): gmats = [] for i in range(n_experts): mask = sel[:, c] != i sel_my = torch.masked_fill(x, mask[None], 0) grads_my = torch.masked_fill(grads[..., c, :], mask[:, None], 0) gmats.append(sel_my @ grads_my) res += torch.stack(gmats) return res grad_out = torch.randn(*out.shape, dtype=dtype, device=device) keys_ref = keys.detach().clone().requires_grad_(True) testvec_ref = testvec.detach().clone().requires_grad_(True) w_ref = w.detach().clone().requires_grad_(True) sel = cvmm_prepare_sel2(sel_raw, w_ref) print("CVMM hack") out_ref = cvmm_hack(testvec_ref, sel, keys_ref) out_ref.backward(grad_out) keys_full = keys.detach().clone().requires_grad_(True) testvec_full = testvec.detach().clone().requires_grad_(True) w_full = w.detach().clone().requires_grad_(True) sel = cvmm_prepare_sel2(sel_raw, w_full) print("CVMM full") out_full = cvmm(testvec_full, sel, keys_full) out_full.backward(grad_out) if torch.allclose(keys_ref.grad, keys_full.grad, atol=1e-2, rtol=0): print("✅ Multi-output: Triton weight grad ok") else: print("❌ Multi-output: Triton weight grad not ok") if torch.allclose(testvec_ref.grad, testvec_full.grad, atol=1e-2, rtol=0): print("✅ Multi-output: Triton input grad ok") else: print("❌ Multi-output: Triton input grad not ok") if torch.allclose(w_ref.grad, w_full.grad, atol=1e-2, rtol=0): print("✅ Multi-output: Triton reduction weight grad ok") else: print("❌ Multi-output: Triton reduction weight grad not ok") # g = cvmm_triton_backward(testvec, sel.sel_index, sel.sel, grad_out, keys.shape[0], keys.dtype, False, out_index=sel.out_index) # gref = cvmm_ref_backward2(testvec, sel, grad_out, keys.shape[0]) # if torch.allclose(g, gref, atol=1e-2, rtol=0): # print("✅ Multi-output: Triton grad ok") # else: # print("❌ Multi-output: Triton grad not ok") from torch.autograd import gradcheck assert gradcheck(cvmm, (testvec, sel, keys), eps=1e-2, atol=1e-4) print("Gradcheck ok.") def test_module(): from torch.autograd import gradcheck n_experts = 4 n_channels = 64 expert_size = 64 bs = 32 device = torch.device("cuda") dtype = torch.float32 atol_tresh = 1e-2 keys = torch.nn.Parameter(torch.randn(n_experts, n_channels, expert_size, dtype=dtype, device=device)) testvec = torch.randn(bs, n_channels, dtype=dtype, device=device) sel = torch.randint(0, n_experts, (bs,), dtype=torch.int32, device=device) test_grad = torch.randn(bs, expert_size, dtype=dtype, device=device) olist = [] for b in range(bs): olist.append(testvec[b:b+1] @ keys[sel[b]]) ref = torch.cat(olist, dim=0) out = cvmm(testvec, sel, keys) assert torch.allclose(ref, out, atol=atol_tresh, rtol=0) print("Forward ok.") keys = keys.requires_grad_(True) testvec = testvec.requires_grad_(True) assert gradcheck(cvmm, (testvec, sel, keys), eps=1e-2, atol=atol_tresh, rtol=0) print("Backward ok.") test_wsum() # test_module() def cwmm_ref(x: torch.Tensor, sel: Union[torch.Tensor, CVMMSel], keys: torch.Tensor): if isinstance(sel, CVMMSel): sel = sel.raw_sel olist = [] for b in range(x.shape[0]): olist.append(x[b:b+1] @ keys[sel[b]]) return torch.cat(olist, dim=0) def test_forward(): torch.manual_seed(0) n_experts = 8 n_channels = 64 expert_size = 64 bs = 64 device = torch.device("cuda") dtype = torch.float16 atol_tresh = 1e-2 keys = torch.nn.Parameter(torch.randn(n_experts, n_channels, expert_size, dtype=dtype, device=device)) keys = keys.transpose(1,2).contiguous().transpose(1,2) testvec = torch.randn(bs, n_channels, dtype=dtype, device=device) sel = torch.randint(0, n_experts, (bs,), dtype=torch.int32, device=device) exp_sel = torch.distributions.Geometric(0.02).sample((bs,)).to(device).clamp(max=n_experts-1).int() exp_sel = torch.randperm(n_experts, device=device, dtype=torch.int32)[exp_sel] sel = exp_sel # sel = torch.tensor([0, 1], dtype=torch.int32, device=device) sel = cvmm_prepare_sel(sel, keys.shape[0]) ref = cwmm_ref(testvec, sel, keys) out = cvmm_triton(testvec, sel.sel_index, sel.sel, keys, dtype) if torch.allclose(out, ref, atol=1e-2, rtol=0): print("✅ Triton and Torch match") else: print("❌ Triton and Torch differ") def do_benchmark(K, N): @triton.testing.perf_report( triton.testing.Benchmark( x_names=['bsz'], # Argument names to use as an x-axis for the plot x_vals=[ 2048 * (i+2) for i in range(0, 32, 8) ]+[131072], # Different possible values for `x_name` line_arg='provider', # Argument name whose value corresponds to a different line in the plot # Possible values for `line_arg` line_vals=['cublas', 'triton'], # Label name for the lines line_names=["cuBLAS", "Triton"], # Line styles styles=[('green', '-'), ('blue', '-')], ylabel="TFLOPS", # Label name for the y-axis plot_name="matmul-performance", # Name for the plot, used also as a file name for saving the plot. args={}, ) ) def benchmark(bsz, provider): # a = torch.randn((M, K), device='cuda', dtype=torch.float16) # b = torch.randn((K, N), device='cuda', dtype=torch.float16) dtype = torch.float32 if provider == 'cuda' else torch.float16 keys = torch.nn.Parameter(torch.randn(n_experts, K, N, dtype=dtype, device=device)) testvec = torch.randn(bsz, K, dtype=dtype, device=device) sel = torch.randint(0, n_experts, (bsz,), dtype=torch.int32, device=device) keys = keys.transpose(1,2).contiguous().transpose(1,2) # exp_sel = torch.distributions.Geometric(0.02).sample((bsz,)).to(device).clamp(max=n_experts-1).int() # exp_sel = torch.randperm(n_experts, device=device, dtype=torch.int32)[exp_sel] # sel = exp_sel sel = cvmm_prepare_sel(sel, keys.shape[0]) # ref = cwmm_ref(testvec, sel, keys) # out = cvmm_triton(testvec, sel, keys) # if torch.allclose(out, ref, atol=5e-2, rtol=0): # print("✅ Triton and Torch match") # else: # print("❌ Triton and Torch differ") quantiles = [0.5, 0.2, 0.8] if provider == 'cublas': ms, min_ms, max_ms = triton.testing.do_bench(lambda: torch.matmul(testvec, keys[0]), quantiles=quantiles) if provider == 'triton': ms, min_ms, max_ms = triton.testing.do_bench(lambda: cvmm_triton(testvec, sel.sel_index, sel.sel, keys, dtype), quantiles=quantiles) # if provider == 'cuda': # ms, min_ms, max_ms = triton.testing.do_bench(lambda: cvmm(testvec, sel, keys), quantiles=quantiles) perf = lambda ms: 2 * bsz * N * K * 1e-12 / (ms * 1e-3) # perf = lambda x: x return perf(ms), perf(max_ms), perf(min_ms) print(f"Benchmark: [bsz, {K}] @ [{n_experts}, {K}, {N}] -> [bsz, {N}]") benchmark.run(show_plots=True, print_data=True) do_benchmark(128, 512) do_benchmark(256, 512) do_benchmark(512, 128) test_forward() def test_backward(): def cvmm_ref_backward(x: torch.Tensor, sel: CVMMSel, grads: torch.Tensor, n_experts: int): sel = sel.raw_sel x = x.flatten(end_dim=-2).transpose(0,1) gmats = [] for i in range(n_experts): mask = sel != i sel_my = torch.masked_fill(x, mask[None], 0) grads_my = torch.masked_fill(grads, mask[:, None], 0) gmats.append(sel_my @ grads_my) return torch.stack(gmats) torch.manual_seed(0) n_experts = 8 n_channels = 64 expert_size = 64 bs = 64 # n_channels = 8 # expert_size = 8 # n_experts = 2 # bs=2 device = torch.device("cuda") dtype = torch.float16 atol_tresh = 1e-2 testvec = torch.randn(bs, n_channels, dtype=dtype, device=device) grads = torch.randn(bs, expert_size, dtype=dtype, device=device) sel = torch.randint(0, n_experts, (bs,), dtype=torch.int32, device=device) # exp_sel = torch.distributions.Geometric(0.02).sample((bs,)).to(device).clamp(max=n_experts-1).int() # exp_sel = torch.randperm(n_experts, device=device, dtype=torch.int32)[exp_sel] # sel = exp_sel # sel = torch.tensor([0, 1], dtype=torch.int32, device=device) # sel = torch.tensor([1, 0], dtype=torch.int32, device=device) cvmmsel = cvmm_prepare_sel(sel, n_experts) ref = cvmm_ref_backward(testvec, cvmmsel, grads, n_experts) out = cvmm_triton_backward(testvec, cvmmsel.sel_index, cvmmsel.sel, grads, n_experts, key_dtype=ref.dtype, op_float16=dtype==torch.float16) if torch.allclose(out, ref, atol=1e-2, rtol=0): print("✅ Triton and Torch match") else: print("❌ Triton and Torch differ") def do_benchmark(K, N): @triton.testing.perf_report( triton.testing.Benchmark( x_names=['bsz'], # Argument names to use as an x-axis for the plot x_vals=[ 2048 * (i+2) for i in range(0, 32, 8) ]+[131072], # Different possible values for `x_name` line_arg='provider', # Argument name whose value corresponds to a different line in the plot # Possible values for `line_arg` line_vals=['cublas', 'triton'], # Label name for the lines line_names=["cuBLAS", "Triton"], # Line styles styles=[('green', '-'), ('blue', '-')], ylabel="TFLOPS", # Label name for the y-axis plot_name="matmul-performance", # Name for the plot, used also as a file name for saving the plot. args={}, ) ) def benchmark(bsz, provider): # a = torch.randn((M, K), device='cuda', dtype=torch.float16) # b = torch.randn((K, N), device='cuda', dtype=torch.float16) dtype = torch.float32 if provider == 'cuda' else torch.float16 # dtype = torch.float32 sel = torch.randint(0, n_experts, (bs,), dtype=torch.int32, device=device) testvec = torch.randn(bsz, K, dtype=dtype, device=device) grads = torch.randn(bsz, N, dtype=dtype, device=device) sel = torch.randint(0, n_experts, (bsz,), dtype=torch.int32, device=device) exp_sel = torch.distributions.Geometric(0.02).sample((bsz,)).to(device).clamp(max=n_experts-1).int() exp_sel = torch.randperm(n_experts, device=device, dtype=torch.int32)[exp_sel] sel = exp_sel sel = cvmm_prepare_sel(sel, n_experts) # ref = cvmm_ref_backward(testvec, sel, grads, n_experts) # out = cvmm_triton_backward(testvec, sel, grads, n_experts) # if torch.allclose(out, ref, atol=5e-2, rtol=0): # print("✅ Triton and Torch match") # else: # print("❌ Triton and Torch differ") quantiles = [0.5, 0.2, 0.8] if provider == 'cublas': ms, min_ms, max_ms = triton.testing.do_bench(lambda: torch.matmul(testvec.transpose(0,1), grads), quantiles=quantiles) if provider == 'triton': ms, min_ms, max_ms = triton.testing.do_bench(lambda: cvmm_triton_backward(testvec, sel.sel_index, sel.sel, grads, n_experts, key_dtype=ref.dtype, op_float16=dtype==torch.float16), quantiles=quantiles) # if provider == 'cuda': # ms, min_ms, max_ms = triton.testing.do_bench(lambda: cvmm(testvec, sel, keys), quantiles=quantiles) perf = lambda ms: 2 * bsz * N * K * 1e-12 / (ms * 1e-3) # perf = lambda x: x return perf(ms), perf(max_ms), perf(min_ms) print(f"Benchmark: [bsz, {K}] @ [{n_experts}, {K}, {N}] -> [bsz, {N}]") benchmark.run(show_plots=True, print_data=True) do_benchmark(128, 512) do_benchmark(256, 512) do_benchmark(512, 128) test_backward() # do_benchmark(1024, 80) # do_benchmark(80, 1024) # do_benchmark(512, 128)
neuro-ml/kerops
kerops/kernels/dw_conv.py
https://github.com/neuro-ml/kerops/blob/6e2128bd77d894a5faf33cfd4ed3e2e7a09d99b0/kerops/kernels/dw_conv.py
import triton import triton.language as tl @triton.jit def _DWConv_cl3d_impl( input_ptr, weight_ptr, output_ptr, H, W, D, H_stride, W_stride, ACCTYPE: tl.constexpr, channels: tl.constexpr, D_block: tl.constexpr, ): H_cell = tl.program_id(0) W_cell = tl.program_id(1) D_cell = tl.program_id(2) output_ptr += D_cell * D_block * channels input_ptr += D_cell * D_block * channels channels_offset = tl.arange(0, channels) channels_offset = tl.max_contiguous(tl.multiple_of(channels_offset, channels), channels) d_offset = tl.arange(0, D_block) near_offset = tl.arange(0, 4) - 1 offset = d_offset[:, None, None] * channels + channels_offset[None, None, :] + near_offset[None, :, None] * channels mask = d_offset[:, None, None] + near_offset[None, :, None] < D - D_block * D_cell mask = mask and (d_offset[:, None, None] + near_offset[None, :, None] >= 0 - D_block * D_cell) mask = mask and (near_offset[None, :, None] != 2) weight_offset = channels_offset[None, None, :] + tl.arange(0, 4)[None, :, None] * channels weight_mask = tl.arange(0, 4)[None, :, None] != 3 weight_h0_w0 = tl.load(weight_ptr + weight_offset, mask=weight_mask, other=0.0) weight_h0_w1 = tl.load((weight_ptr + 3 * channels) + weight_offset, mask=weight_mask, other=0.0) weight_h0_w2 = tl.load((weight_ptr + 6 * channels) + weight_offset, mask=weight_mask, other=0.0) weight_h1_w0 = tl.load((weight_ptr + 9 * channels) + weight_offset, mask=weight_mask, other=0.0) weight_h1_w1 = tl.load((weight_ptr + 12 * channels) + weight_offset, mask=weight_mask, other=0.0) weight_h1_w2 = tl.load((weight_ptr + 15 * channels) + weight_offset, mask=weight_mask, other=0.0) weight_h2_w0 = tl.load((weight_ptr + 18 * channels) + weight_offset, mask=weight_mask, other=0.0) weight_h2_w1 = tl.load((weight_ptr + 21 * channels) + weight_offset, mask=weight_mask, other=0.0) weight_h2_w2 = tl.load((weight_ptr + 24 * channels) + weight_offset, mask=weight_mask, other=0.0) h0_w0 = tl.zeros([D_block, channels], dtype=ACCTYPE) h0_w1 = tl.zeros([D_block, channels], dtype=ACCTYPE) h1_w0 = tl.zeros([D_block, channels], dtype=ACCTYPE) h1_w1 = tl.zeros([D_block, channels], dtype=ACCTYPE) out_mask = d_offset[:, None] < D - D_block * D_cell out_offset = d_offset[:, None] * channels + channels_offset[None, :] H1_store = 2 * H_cell + 1 < H W1_store = 2 * W_cell + 1 < W load_all = (H_cell > 0 and H_cell < tl.cdiv(H, 2) - 1) and (W_cell > 0 and W_cell < tl.cdiv(W, 2) - 1) i = -1 j = -1 load_next = (2 * H_cell + i < H and 2 * H_cell + i >= 0) and (2 * W_cell + j < W and 2 * W_cell + j >= 0) tmp_input_ptr = input_ptr + (2 * H_cell + i) * H_stride + (2 * W_cell + j) * W_stride x = tl.load(tmp_input_ptr + offset, mask=(load_all or load_next) and mask) for k in tl.static_range(0, 16): if k == 0: h0_w0 += tl.sum(x * weight_h0_w0, axis=1) elif k == 1: h0_w0 += tl.sum(x * weight_h1_w0, axis=1) h1_w0 += tl.sum(x * weight_h0_w0, axis=1) elif k == 2: h0_w0 += tl.sum(x * weight_h2_w0, axis=1) h1_w0 += tl.sum(x * weight_h1_w0, axis=1) elif k == 3: h1_w0 += tl.sum(x * weight_h2_w0, axis=1) elif k == 4: h0_w0 += tl.sum(x * weight_h0_w1, axis=1) h0_w1 += tl.sum(x * weight_h0_w0, axis=1) elif k == 5: h0_w0 += tl.sum(x * weight_h1_w1, axis=1) h0_w1 += tl.sum(x * weight_h1_w0, axis=1) h1_w0 += tl.sum(x * weight_h0_w1, axis=1) h1_w1 += tl.sum(x * weight_h0_w0, axis=1) elif k == 6: h0_w0 += tl.sum(x * weight_h2_w1, axis=1) h0_w1 += tl.sum(x * weight_h2_w0, axis=1) h1_w0 += tl.sum(x * weight_h1_w1, axis=1) h1_w1 += tl.sum(x * weight_h1_w0, axis=1) elif k == 7: h1_w0 += tl.sum(x * weight_h2_w1, axis=1) h1_w1 += tl.sum(x * weight_h2_w0, axis=1) elif k == 8: h0_w0 += tl.sum(x * weight_h0_w2, axis=1) h0_w1 += tl.sum(x * weight_h0_w1, axis=1) elif k == 9: h0_w0 += tl.sum(x * weight_h1_w2, axis=1) h0_w1 += tl.sum(x * weight_h1_w1, axis=1) h1_w0 += tl.sum(x * weight_h0_w2, axis=1) h1_w1 += tl.sum(x * weight_h0_w1, axis=1) elif k == 10: h0_w0 += tl.sum(x * weight_h2_w2, axis=1) h0_w1 += tl.sum(x * weight_h2_w1, axis=1) h1_w0 += tl.sum(x * weight_h1_w2, axis=1) h1_w1 += tl.sum(x * weight_h1_w1, axis=1) elif k == 11: h1_w0 += tl.sum(x * weight_h2_w2, axis=1) h1_w1 += tl.sum(x * weight_h2_w1, axis=1) elif k == 12: h0_w1 += tl.sum(x * weight_h0_w2, axis=1) elif k == 13: h0_w1 += tl.sum(x * weight_h1_w2, axis=1) h1_w1 += tl.sum(x * weight_h0_w2, axis=1) elif k == 14: h0_w1 += tl.sum(x * weight_h2_w2, axis=1) h1_w1 += tl.sum(x * weight_h1_w2, axis=1) else: h1_w1 += tl.sum(x * weight_h2_w2, axis=1) k_ = k + 1 i = (k_ % 4) - 1 j = (k_ // 4) - 1 load_next = (2 * H_cell + i < H and 2 * H_cell + i >= 0) and (2 * W_cell + j < W and 2 * W_cell + j >= 0) tmp_input_ptr = input_ptr + (2 * H_cell + i) * H_stride + (2 * W_cell + j) * W_stride x = tl.load(tmp_input_ptr + offset, mask=(load_all or load_next) and mask) tmp_output_ptr = output_ptr + (2 * H_cell) * H_stride + (2 * W_cell) * W_stride tl.store(tmp_output_ptr + out_offset, h0_w0, mask=out_mask) tmp_output_ptr = output_ptr + (2 * H_cell) * H_stride + (2 * W_cell + 1) * W_stride tl.store(tmp_output_ptr + out_offset, h0_w1, mask=out_mask and W1_store) tmp_output_ptr = output_ptr + (2 * H_cell + 1) * H_stride + (2 * W_cell) * W_stride tl.store(tmp_output_ptr + out_offset, h1_w0, mask=out_mask and H1_store) tmp_output_ptr = output_ptr + (2 * H_cell + 1) * H_stride + (2 * W_cell + 1) * W_stride tl.store(tmp_output_ptr + out_offset, h1_w1, mask=out_mask and (H1_store and W1_store)) # TODO: single kernel for both grad_X and grad_W @triton.jit def _DWConv_wgrad_cl3d_impl( grad_ptr, input_ptr, weight_grad_ptr, H, W, D, H_stride, W_stride, ACCTYPE: tl.constexpr, channels: tl.constexpr, D_block: tl.constexpr, WD_grid, D_grid, delta_H_grid, ILP: tl.constexpr, ): H_cell = tl.program_id(0) W_cell = tl.program_id(1) D_cell = tl.program_id(2) input_ptr += D_cell * D_block * channels grad_ptr += D_cell * D_block * channels weight_grad_ptr += (H_cell * WD_grid + W_cell * D_grid + D_cell) * 27 * channels channels_offset = tl.arange(0, channels) channels_offset = tl.max_contiguous(tl.multiple_of(channels_offset, channels), channels) d_offset = tl.arange(0, D_block) near_offset = tl.arange(0, 4) - 1 offset = d_offset[None, None, :] * channels + channels_offset[None, :, None] + near_offset[:, None, None] * channels mask = d_offset[None, None, :] + near_offset[:, None, None] < D - D_block * D_cell mask = mask and (d_offset[None, None, :] + near_offset[:, None, None] >= 0 - D_block * D_cell) mask = mask and (near_offset[:, None, None] != 2) grad_offset = d_offset[None, :] * channels + channels_offset[:, None] grad_mask = d_offset[None, :] < D - D_block * D_cell h0_w0 = tl.zeros([4, channels], dtype=ACCTYPE) h0_w1 = tl.zeros([4, channels], dtype=ACCTYPE) h0_w2 = tl.zeros([4, channels], dtype=ACCTYPE) h1_w0 = tl.zeros([4, channels], dtype=ACCTYPE) h1_w1 = tl.zeros([4, channels], dtype=ACCTYPE) h1_w2 = tl.zeros([4, channels], dtype=ACCTYPE) h2_w0 = tl.zeros([4, channels], dtype=ACCTYPE) h2_w1 = tl.zeros([4, channels], dtype=ACCTYPE) h2_w2 = tl.zeros([4, channels], dtype=ACCTYPE) gradw_offset = tl.arange(0, 4)[:, None] * channels + channels_offset[None, :] gradw_mask = near_offset[:, None] != 2 for ilp in tl.static_range(0, ILP): H0_load = 2 * H_cell < H H1_load = 2 * H_cell + 1 < H W1_load = 2 * W_cell + 1 < W tmp_input_ptr = input_ptr + 2 * H_cell * H_stride + 2 * W_cell * W_stride x_h0_w0 = tl.load(tmp_input_ptr + offset, mask=mask and H0_load) tmp_input_ptr = input_ptr + (2 * H_cell + 1) * H_stride + 2 * W_cell * W_stride x_h1_w0 = tl.load(tmp_input_ptr + offset, mask=mask and H1_load) tmp_input_ptr = input_ptr + 2 * H_cell * H_stride + (2 * W_cell + 1) * W_stride x_h0_w1 = tl.load(tmp_input_ptr + offset, mask=mask and (W1_load and H0_load)) tmp_input_ptr = input_ptr + (2 * H_cell + 1) * H_stride + (2 * W_cell + 1) * W_stride x_h1_w1 = tl.load(tmp_input_ptr + offset, mask=mask and (W1_load and H1_load)) for k in tl.static_range(0, 16): i = (k % 4) - 1 j = (k // 4) - 1 load_next = (2 * H_cell + i < H and 2 * H_cell + i >= 0) and (2 * W_cell + j < W and 2 * W_cell + j >= 0) tmp_grad_ptr = grad_ptr + (2 * H_cell + i) * H_stride + (2 * W_cell + j) * W_stride if load_next: grad = tl.load(tmp_grad_ptr + grad_offset, mask=grad_mask, other=0.0)[None] if i == -1 and j == -1: h2_w2 += tl.sum(grad * x_h0_w0, axis=2) elif i == -1 and j == 0: h2_w1 += tl.sum(grad * x_h0_w0, axis=2) h2_w2 += tl.sum(grad * x_h0_w1, axis=2) elif i == -1 and j == 1: h2_w0 += tl.sum(grad * x_h0_w0, axis=2) h2_w1 += tl.sum(grad * x_h0_w1, axis=2) elif i == -1 and j == 2: h2_w0 += tl.sum(grad * x_h0_w1, axis=2) elif i == 0 and j == -1: h1_w2 += tl.sum(grad * x_h0_w0, axis=2) h2_w2 += tl.sum(grad * x_h1_w0, axis=2) elif i == 0 and j == 0: h1_w1 += tl.sum(grad * x_h0_w0, axis=2) h2_w1 += tl.sum(grad * x_h1_w0, axis=2) h1_w2 += tl.sum(grad * x_h0_w1, axis=2) h2_w2 += tl.sum(grad * x_h1_w1, axis=2) elif i == 0 and j == 1: h1_w0 += tl.sum(grad * x_h0_w0, axis=2) h2_w0 += tl.sum(grad * x_h1_w0, axis=2) h1_w1 += tl.sum(grad * x_h0_w1, axis=2) h2_w1 += tl.sum(grad * x_h1_w1, axis=2) elif i == 0 and j == 2: h1_w0 += tl.sum(grad * x_h0_w1, axis=2) h2_w0 += tl.sum(grad * x_h1_w1, axis=2) elif i == 1 and j == -1: h0_w2 += tl.sum(grad * x_h0_w0, axis=2) h1_w2 += tl.sum(grad * x_h1_w0, axis=2) elif i == 1 and j == 0: h0_w1 += tl.sum(grad * x_h0_w0, axis=2) h1_w1 += tl.sum(grad * x_h1_w0, axis=2) h0_w2 += tl.sum(grad * x_h0_w1, axis=2) h1_w2 += tl.sum(grad * x_h1_w1, axis=2) elif i == 1 and j == 1: h0_w0 += tl.sum(grad * x_h0_w0, axis=2) h1_w0 += tl.sum(grad * x_h1_w0, axis=2) h0_w1 += tl.sum(grad * x_h0_w1, axis=2) h1_w1 += tl.sum(grad * x_h1_w1, axis=2) elif i == 1 and j == 2: h0_w0 += tl.sum(grad * x_h0_w1, axis=2) h1_w0 += tl.sum(grad * x_h1_w1, axis=2) elif i == 2 and j == -1: h0_w2 += tl.sum(grad * x_h1_w0, axis=2) elif i == 2 and j == 0: h0_w1 += tl.sum(grad * x_h1_w0, axis=2) h0_w2 += tl.sum(grad * x_h1_w1, axis=2) elif i == 2 and j == 1: h0_w0 += tl.sum(grad * x_h1_w0, axis=2) h0_w1 += tl.sum(grad * x_h1_w1, axis=2) else: h0_w0 += tl.sum(grad * x_h1_w1, axis=2) H_cell += delta_H_grid tl.store(weight_grad_ptr + gradw_offset, h0_w0, mask=gradw_mask) tl.store((weight_grad_ptr + 3 * channels) + gradw_offset, h0_w1, mask=gradw_mask) tl.store((weight_grad_ptr + 6 * channels) + gradw_offset, h0_w2, mask=gradw_mask) tl.store((weight_grad_ptr + 9 * channels) + gradw_offset, h1_w0, mask=gradw_mask) tl.store((weight_grad_ptr + 12 * channels) + gradw_offset, h1_w1, mask=gradw_mask) tl.store((weight_grad_ptr + 15 * channels) + gradw_offset, h1_w2, mask=gradw_mask) tl.store((weight_grad_ptr + 18 * channels) + gradw_offset, h2_w0, mask=gradw_mask) tl.store((weight_grad_ptr + 21 * channels) + gradw_offset, h2_w1, mask=gradw_mask) tl.store((weight_grad_ptr + 24 * channels) + gradw_offset, h2_w2, mask=gradw_mask)
@triton.jit def _DWConv_cl3d_impl( input_ptr, weight_ptr, output_ptr, H, W, D, H_stride, W_stride, ACCTYPE: tl.constexpr, channels: tl.constexpr, D_block: tl.constexpr, ): H_cell = tl.program_id(0) W_cell = tl.program_id(1) D_cell = tl.program_id(2) output_ptr += D_cell * D_block * channels input_ptr += D_cell * D_block * channels channels_offset = tl.arange(0, channels) channels_offset = tl.max_contiguous(tl.multiple_of(channels_offset, channels), channels) d_offset = tl.arange(0, D_block) near_offset = tl.arange(0, 4) - 1 offset = d_offset[:, None, None] * channels + channels_offset[None, None, :] + near_offset[None, :, None] * channels mask = d_offset[:, None, None] + near_offset[None, :, None] < D - D_block * D_cell mask = mask and (d_offset[:, None, None] + near_offset[None, :, None] >= 0 - D_block * D_cell) mask = mask and (near_offset[None, :, None] != 2) weight_offset = channels_offset[None, None, :] + tl.arange(0, 4)[None, :, None] * channels weight_mask = tl.arange(0, 4)[None, :, None] != 3 weight_h0_w0 = tl.load(weight_ptr + weight_offset, mask=weight_mask, other=0.0) weight_h0_w1 = tl.load((weight_ptr + 3 * channels) + weight_offset, mask=weight_mask, other=0.0) weight_h0_w2 = tl.load((weight_ptr + 6 * channels) + weight_offset, mask=weight_mask, other=0.0) weight_h1_w0 = tl.load((weight_ptr + 9 * channels) + weight_offset, mask=weight_mask, other=0.0) weight_h1_w1 = tl.load((weight_ptr + 12 * channels) + weight_offset, mask=weight_mask, other=0.0) weight_h1_w2 = tl.load((weight_ptr + 15 * channels) + weight_offset, mask=weight_mask, other=0.0) weight_h2_w0 = tl.load((weight_ptr + 18 * channels) + weight_offset, mask=weight_mask, other=0.0) weight_h2_w1 = tl.load((weight_ptr + 21 * channels) + weight_offset, mask=weight_mask, other=0.0) weight_h2_w2 = tl.load((weight_ptr + 24 * channels) + weight_offset, mask=weight_mask, other=0.0) h0_w0 = tl.zeros([D_block, channels], dtype=ACCTYPE) h0_w1 = tl.zeros([D_block, channels], dtype=ACCTYPE) h1_w0 = tl.zeros([D_block, channels], dtype=ACCTYPE) h1_w1 = tl.zeros([D_block, channels], dtype=ACCTYPE) out_mask = d_offset[:, None] < D - D_block * D_cell out_offset = d_offset[:, None] * channels + channels_offset[None, :] H1_store = 2 * H_cell + 1 < H W1_store = 2 * W_cell + 1 < W load_all = (H_cell > 0 and H_cell < tl.cdiv(H, 2) - 1) and (W_cell > 0 and W_cell < tl.cdiv(W, 2) - 1) i = -1 j = -1 load_next = (2 * H_cell + i < H and 2 * H_cell + i >= 0) and (2 * W_cell + j < W and 2 * W_cell + j >= 0) tmp_input_ptr = input_ptr + (2 * H_cell + i) * H_stride + (2 * W_cell + j) * W_stride x = tl.load(tmp_input_ptr + offset, mask=(load_all or load_next) and mask) for k in tl.static_range(0, 16): if k == 0: h0_w0 += tl.sum(x * weight_h0_w0, axis=1) elif k == 1: h0_w0 += tl.sum(x * weight_h1_w0, axis=1) h1_w0 += tl.sum(x * weight_h0_w0, axis=1) elif k == 2: h0_w0 += tl.sum(x * weight_h2_w0, axis=1) h1_w0 += tl.sum(x * weight_h1_w0, axis=1) elif k == 3: h1_w0 += tl.sum(x * weight_h2_w0, axis=1) elif k == 4: h0_w0 += tl.sum(x * weight_h0_w1, axis=1) h0_w1 += tl.sum(x * weight_h0_w0, axis=1) elif k == 5: h0_w0 += tl.sum(x * weight_h1_w1, axis=1) h0_w1 += tl.sum(x * weight_h1_w0, axis=1) h1_w0 += tl.sum(x * weight_h0_w1, axis=1) h1_w1 += tl.sum(x * weight_h0_w0, axis=1) elif k == 6: h0_w0 += tl.sum(x * weight_h2_w1, axis=1) h0_w1 += tl.sum(x * weight_h2_w0, axis=1) h1_w0 += tl.sum(x * weight_h1_w1, axis=1) h1_w1 += tl.sum(x * weight_h1_w0, axis=1) elif k == 7: h1_w0 += tl.sum(x * weight_h2_w1, axis=1) h1_w1 += tl.sum(x * weight_h2_w0, axis=1) elif k == 8: h0_w0 += tl.sum(x * weight_h0_w2, axis=1) h0_w1 += tl.sum(x * weight_h0_w1, axis=1) elif k == 9: h0_w0 += tl.sum(x * weight_h1_w2, axis=1) h0_w1 += tl.sum(x * weight_h1_w1, axis=1) h1_w0 += tl.sum(x * weight_h0_w2, axis=1) h1_w1 += tl.sum(x * weight_h0_w1, axis=1) elif k == 10: h0_w0 += tl.sum(x * weight_h2_w2, axis=1) h0_w1 += tl.sum(x * weight_h2_w1, axis=1) h1_w0 += tl.sum(x * weight_h1_w2, axis=1) h1_w1 += tl.sum(x * weight_h1_w1, axis=1) elif k == 11: h1_w0 += tl.sum(x * weight_h2_w2, axis=1) h1_w1 += tl.sum(x * weight_h2_w1, axis=1) elif k == 12: h0_w1 += tl.sum(x * weight_h0_w2, axis=1) elif k == 13: h0_w1 += tl.sum(x * weight_h1_w2, axis=1) h1_w1 += tl.sum(x * weight_h0_w2, axis=1) elif k == 14: h0_w1 += tl.sum(x * weight_h2_w2, axis=1) h1_w1 += tl.sum(x * weight_h1_w2, axis=1) else: h1_w1 += tl.sum(x * weight_h2_w2, axis=1) k_ = k + 1 i = (k_ % 4) - 1 j = (k_ // 4) - 1 load_next = (2 * H_cell + i < H and 2 * H_cell + i >= 0) and (2 * W_cell + j < W and 2 * W_cell + j >= 0) tmp_input_ptr = input_ptr + (2 * H_cell + i) * H_stride + (2 * W_cell + j) * W_stride x = tl.load(tmp_input_ptr + offset, mask=(load_all or load_next) and mask) tmp_output_ptr = output_ptr + (2 * H_cell) * H_stride + (2 * W_cell) * W_stride tl.store(tmp_output_ptr + out_offset, h0_w0, mask=out_mask) tmp_output_ptr = output_ptr + (2 * H_cell) * H_stride + (2 * W_cell + 1) * W_stride tl.store(tmp_output_ptr + out_offset, h0_w1, mask=out_mask and W1_store) tmp_output_ptr = output_ptr + (2 * H_cell + 1) * H_stride + (2 * W_cell) * W_stride tl.store(tmp_output_ptr + out_offset, h1_w0, mask=out_mask and H1_store) tmp_output_ptr = output_ptr + (2 * H_cell + 1) * H_stride + (2 * W_cell + 1) * W_stride tl.store(tmp_output_ptr + out_offset, h1_w1, mask=out_mask and (H1_store and W1_store)) # TODO: single kernel for both grad_X and grad_W
neuro-ml/kerops
kerops/kernels/dw_conv.py
https://github.com/neuro-ml/kerops/blob/6e2128bd77d894a5faf33cfd4ed3e2e7a09d99b0/kerops/kernels/dw_conv.py
import triton import triton.language as tl @triton.jit def _DWConv_cl3d_impl( input_ptr, weight_ptr, output_ptr, H, W, D, H_stride, W_stride, ACCTYPE: tl.constexpr, channels: tl.constexpr, D_block: tl.constexpr, ): H_cell = tl.program_id(0) W_cell = tl.program_id(1) D_cell = tl.program_id(2) output_ptr += D_cell * D_block * channels input_ptr += D_cell * D_block * channels channels_offset = tl.arange(0, channels) channels_offset = tl.max_contiguous(tl.multiple_of(channels_offset, channels), channels) d_offset = tl.arange(0, D_block) near_offset = tl.arange(0, 4) - 1 offset = d_offset[:, None, None] * channels + channels_offset[None, None, :] + near_offset[None, :, None] * channels mask = d_offset[:, None, None] + near_offset[None, :, None] < D - D_block * D_cell mask = mask and (d_offset[:, None, None] + near_offset[None, :, None] >= 0 - D_block * D_cell) mask = mask and (near_offset[None, :, None] != 2) weight_offset = channels_offset[None, None, :] + tl.arange(0, 4)[None, :, None] * channels weight_mask = tl.arange(0, 4)[None, :, None] != 3 weight_h0_w0 = tl.load(weight_ptr + weight_offset, mask=weight_mask, other=0.0) weight_h0_w1 = tl.load((weight_ptr + 3 * channels) + weight_offset, mask=weight_mask, other=0.0) weight_h0_w2 = tl.load((weight_ptr + 6 * channels) + weight_offset, mask=weight_mask, other=0.0) weight_h1_w0 = tl.load((weight_ptr + 9 * channels) + weight_offset, mask=weight_mask, other=0.0) weight_h1_w1 = tl.load((weight_ptr + 12 * channels) + weight_offset, mask=weight_mask, other=0.0) weight_h1_w2 = tl.load((weight_ptr + 15 * channels) + weight_offset, mask=weight_mask, other=0.0) weight_h2_w0 = tl.load((weight_ptr + 18 * channels) + weight_offset, mask=weight_mask, other=0.0) weight_h2_w1 = tl.load((weight_ptr + 21 * channels) + weight_offset, mask=weight_mask, other=0.0) weight_h2_w2 = tl.load((weight_ptr + 24 * channels) + weight_offset, mask=weight_mask, other=0.0) h0_w0 = tl.zeros([D_block, channels], dtype=ACCTYPE) h0_w1 = tl.zeros([D_block, channels], dtype=ACCTYPE) h1_w0 = tl.zeros([D_block, channels], dtype=ACCTYPE) h1_w1 = tl.zeros([D_block, channels], dtype=ACCTYPE) out_mask = d_offset[:, None] < D - D_block * D_cell out_offset = d_offset[:, None] * channels + channels_offset[None, :] H1_store = 2 * H_cell + 1 < H W1_store = 2 * W_cell + 1 < W load_all = (H_cell > 0 and H_cell < tl.cdiv(H, 2) - 1) and (W_cell > 0 and W_cell < tl.cdiv(W, 2) - 1) i = -1 j = -1 load_next = (2 * H_cell + i < H and 2 * H_cell + i >= 0) and (2 * W_cell + j < W and 2 * W_cell + j >= 0) tmp_input_ptr = input_ptr + (2 * H_cell + i) * H_stride + (2 * W_cell + j) * W_stride x = tl.load(tmp_input_ptr + offset, mask=(load_all or load_next) and mask) for k in tl.static_range(0, 16): if k == 0: h0_w0 += tl.sum(x * weight_h0_w0, axis=1) elif k == 1: h0_w0 += tl.sum(x * weight_h1_w0, axis=1) h1_w0 += tl.sum(x * weight_h0_w0, axis=1) elif k == 2: h0_w0 += tl.sum(x * weight_h2_w0, axis=1) h1_w0 += tl.sum(x * weight_h1_w0, axis=1) elif k == 3: h1_w0 += tl.sum(x * weight_h2_w0, axis=1) elif k == 4: h0_w0 += tl.sum(x * weight_h0_w1, axis=1) h0_w1 += tl.sum(x * weight_h0_w0, axis=1) elif k == 5: h0_w0 += tl.sum(x * weight_h1_w1, axis=1) h0_w1 += tl.sum(x * weight_h1_w0, axis=1) h1_w0 += tl.sum(x * weight_h0_w1, axis=1) h1_w1 += tl.sum(x * weight_h0_w0, axis=1) elif k == 6: h0_w0 += tl.sum(x * weight_h2_w1, axis=1) h0_w1 += tl.sum(x * weight_h2_w0, axis=1) h1_w0 += tl.sum(x * weight_h1_w1, axis=1) h1_w1 += tl.sum(x * weight_h1_w0, axis=1) elif k == 7: h1_w0 += tl.sum(x * weight_h2_w1, axis=1) h1_w1 += tl.sum(x * weight_h2_w0, axis=1) elif k == 8: h0_w0 += tl.sum(x * weight_h0_w2, axis=1) h0_w1 += tl.sum(x * weight_h0_w1, axis=1) elif k == 9: h0_w0 += tl.sum(x * weight_h1_w2, axis=1) h0_w1 += tl.sum(x * weight_h1_w1, axis=1) h1_w0 += tl.sum(x * weight_h0_w2, axis=1) h1_w1 += tl.sum(x * weight_h0_w1, axis=1) elif k == 10: h0_w0 += tl.sum(x * weight_h2_w2, axis=1) h0_w1 += tl.sum(x * weight_h2_w1, axis=1) h1_w0 += tl.sum(x * weight_h1_w2, axis=1) h1_w1 += tl.sum(x * weight_h1_w1, axis=1) elif k == 11: h1_w0 += tl.sum(x * weight_h2_w2, axis=1) h1_w1 += tl.sum(x * weight_h2_w1, axis=1) elif k == 12: h0_w1 += tl.sum(x * weight_h0_w2, axis=1) elif k == 13: h0_w1 += tl.sum(x * weight_h1_w2, axis=1) h1_w1 += tl.sum(x * weight_h0_w2, axis=1) elif k == 14: h0_w1 += tl.sum(x * weight_h2_w2, axis=1) h1_w1 += tl.sum(x * weight_h1_w2, axis=1) else: h1_w1 += tl.sum(x * weight_h2_w2, axis=1) k_ = k + 1 i = (k_ % 4) - 1 j = (k_ // 4) - 1 load_next = (2 * H_cell + i < H and 2 * H_cell + i >= 0) and (2 * W_cell + j < W and 2 * W_cell + j >= 0) tmp_input_ptr = input_ptr + (2 * H_cell + i) * H_stride + (2 * W_cell + j) * W_stride x = tl.load(tmp_input_ptr + offset, mask=(load_all or load_next) and mask) tmp_output_ptr = output_ptr + (2 * H_cell) * H_stride + (2 * W_cell) * W_stride tl.store(tmp_output_ptr + out_offset, h0_w0, mask=out_mask) tmp_output_ptr = output_ptr + (2 * H_cell) * H_stride + (2 * W_cell + 1) * W_stride tl.store(tmp_output_ptr + out_offset, h0_w1, mask=out_mask and W1_store) tmp_output_ptr = output_ptr + (2 * H_cell + 1) * H_stride + (2 * W_cell) * W_stride tl.store(tmp_output_ptr + out_offset, h1_w0, mask=out_mask and H1_store) tmp_output_ptr = output_ptr + (2 * H_cell + 1) * H_stride + (2 * W_cell + 1) * W_stride tl.store(tmp_output_ptr + out_offset, h1_w1, mask=out_mask and (H1_store and W1_store)) # TODO: single kernel for both grad_X and grad_W @triton.jit def _DWConv_wgrad_cl3d_impl( grad_ptr, input_ptr, weight_grad_ptr, H, W, D, H_stride, W_stride, ACCTYPE: tl.constexpr, channels: tl.constexpr, D_block: tl.constexpr, WD_grid, D_grid, delta_H_grid, ILP: tl.constexpr, ): H_cell = tl.program_id(0) W_cell = tl.program_id(1) D_cell = tl.program_id(2) input_ptr += D_cell * D_block * channels grad_ptr += D_cell * D_block * channels weight_grad_ptr += (H_cell * WD_grid + W_cell * D_grid + D_cell) * 27 * channels channels_offset = tl.arange(0, channels) channels_offset = tl.max_contiguous(tl.multiple_of(channels_offset, channels), channels) d_offset = tl.arange(0, D_block) near_offset = tl.arange(0, 4) - 1 offset = d_offset[None, None, :] * channels + channels_offset[None, :, None] + near_offset[:, None, None] * channels mask = d_offset[None, None, :] + near_offset[:, None, None] < D - D_block * D_cell mask = mask and (d_offset[None, None, :] + near_offset[:, None, None] >= 0 - D_block * D_cell) mask = mask and (near_offset[:, None, None] != 2) grad_offset = d_offset[None, :] * channels + channels_offset[:, None] grad_mask = d_offset[None, :] < D - D_block * D_cell h0_w0 = tl.zeros([4, channels], dtype=ACCTYPE) h0_w1 = tl.zeros([4, channels], dtype=ACCTYPE) h0_w2 = tl.zeros([4, channels], dtype=ACCTYPE) h1_w0 = tl.zeros([4, channels], dtype=ACCTYPE) h1_w1 = tl.zeros([4, channels], dtype=ACCTYPE) h1_w2 = tl.zeros([4, channels], dtype=ACCTYPE) h2_w0 = tl.zeros([4, channels], dtype=ACCTYPE) h2_w1 = tl.zeros([4, channels], dtype=ACCTYPE) h2_w2 = tl.zeros([4, channels], dtype=ACCTYPE) gradw_offset = tl.arange(0, 4)[:, None] * channels + channels_offset[None, :] gradw_mask = near_offset[:, None] != 2 for ilp in tl.static_range(0, ILP): H0_load = 2 * H_cell < H H1_load = 2 * H_cell + 1 < H W1_load = 2 * W_cell + 1 < W tmp_input_ptr = input_ptr + 2 * H_cell * H_stride + 2 * W_cell * W_stride x_h0_w0 = tl.load(tmp_input_ptr + offset, mask=mask and H0_load) tmp_input_ptr = input_ptr + (2 * H_cell + 1) * H_stride + 2 * W_cell * W_stride x_h1_w0 = tl.load(tmp_input_ptr + offset, mask=mask and H1_load) tmp_input_ptr = input_ptr + 2 * H_cell * H_stride + (2 * W_cell + 1) * W_stride x_h0_w1 = tl.load(tmp_input_ptr + offset, mask=mask and (W1_load and H0_load)) tmp_input_ptr = input_ptr + (2 * H_cell + 1) * H_stride + (2 * W_cell + 1) * W_stride x_h1_w1 = tl.load(tmp_input_ptr + offset, mask=mask and (W1_load and H1_load)) for k in tl.static_range(0, 16): i = (k % 4) - 1 j = (k // 4) - 1 load_next = (2 * H_cell + i < H and 2 * H_cell + i >= 0) and (2 * W_cell + j < W and 2 * W_cell + j >= 0) tmp_grad_ptr = grad_ptr + (2 * H_cell + i) * H_stride + (2 * W_cell + j) * W_stride if load_next: grad = tl.load(tmp_grad_ptr + grad_offset, mask=grad_mask, other=0.0)[None] if i == -1 and j == -1: h2_w2 += tl.sum(grad * x_h0_w0, axis=2) elif i == -1 and j == 0: h2_w1 += tl.sum(grad * x_h0_w0, axis=2) h2_w2 += tl.sum(grad * x_h0_w1, axis=2) elif i == -1 and j == 1: h2_w0 += tl.sum(grad * x_h0_w0, axis=2) h2_w1 += tl.sum(grad * x_h0_w1, axis=2) elif i == -1 and j == 2: h2_w0 += tl.sum(grad * x_h0_w1, axis=2) elif i == 0 and j == -1: h1_w2 += tl.sum(grad * x_h0_w0, axis=2) h2_w2 += tl.sum(grad * x_h1_w0, axis=2) elif i == 0 and j == 0: h1_w1 += tl.sum(grad * x_h0_w0, axis=2) h2_w1 += tl.sum(grad * x_h1_w0, axis=2) h1_w2 += tl.sum(grad * x_h0_w1, axis=2) h2_w2 += tl.sum(grad * x_h1_w1, axis=2) elif i == 0 and j == 1: h1_w0 += tl.sum(grad * x_h0_w0, axis=2) h2_w0 += tl.sum(grad * x_h1_w0, axis=2) h1_w1 += tl.sum(grad * x_h0_w1, axis=2) h2_w1 += tl.sum(grad * x_h1_w1, axis=2) elif i == 0 and j == 2: h1_w0 += tl.sum(grad * x_h0_w1, axis=2) h2_w0 += tl.sum(grad * x_h1_w1, axis=2) elif i == 1 and j == -1: h0_w2 += tl.sum(grad * x_h0_w0, axis=2) h1_w2 += tl.sum(grad * x_h1_w0, axis=2) elif i == 1 and j == 0: h0_w1 += tl.sum(grad * x_h0_w0, axis=2) h1_w1 += tl.sum(grad * x_h1_w0, axis=2) h0_w2 += tl.sum(grad * x_h0_w1, axis=2) h1_w2 += tl.sum(grad * x_h1_w1, axis=2) elif i == 1 and j == 1: h0_w0 += tl.sum(grad * x_h0_w0, axis=2) h1_w0 += tl.sum(grad * x_h1_w0, axis=2) h0_w1 += tl.sum(grad * x_h0_w1, axis=2) h1_w1 += tl.sum(grad * x_h1_w1, axis=2) elif i == 1 and j == 2: h0_w0 += tl.sum(grad * x_h0_w1, axis=2) h1_w0 += tl.sum(grad * x_h1_w1, axis=2) elif i == 2 and j == -1: h0_w2 += tl.sum(grad * x_h1_w0, axis=2) elif i == 2 and j == 0: h0_w1 += tl.sum(grad * x_h1_w0, axis=2) h0_w2 += tl.sum(grad * x_h1_w1, axis=2) elif i == 2 and j == 1: h0_w0 += tl.sum(grad * x_h1_w0, axis=2) h0_w1 += tl.sum(grad * x_h1_w1, axis=2) else: h0_w0 += tl.sum(grad * x_h1_w1, axis=2) H_cell += delta_H_grid tl.store(weight_grad_ptr + gradw_offset, h0_w0, mask=gradw_mask) tl.store((weight_grad_ptr + 3 * channels) + gradw_offset, h0_w1, mask=gradw_mask) tl.store((weight_grad_ptr + 6 * channels) + gradw_offset, h0_w2, mask=gradw_mask) tl.store((weight_grad_ptr + 9 * channels) + gradw_offset, h1_w0, mask=gradw_mask) tl.store((weight_grad_ptr + 12 * channels) + gradw_offset, h1_w1, mask=gradw_mask) tl.store((weight_grad_ptr + 15 * channels) + gradw_offset, h1_w2, mask=gradw_mask) tl.store((weight_grad_ptr + 18 * channels) + gradw_offset, h2_w0, mask=gradw_mask) tl.store((weight_grad_ptr + 21 * channels) + gradw_offset, h2_w1, mask=gradw_mask) tl.store((weight_grad_ptr + 24 * channels) + gradw_offset, h2_w2, mask=gradw_mask)
@triton.jit def _DWConv_wgrad_cl3d_impl( grad_ptr, input_ptr, weight_grad_ptr, H, W, D, H_stride, W_stride, ACCTYPE: tl.constexpr, channels: tl.constexpr, D_block: tl.constexpr, WD_grid, D_grid, delta_H_grid, ILP: tl.constexpr, ): H_cell = tl.program_id(0) W_cell = tl.program_id(1) D_cell = tl.program_id(2) input_ptr += D_cell * D_block * channels grad_ptr += D_cell * D_block * channels weight_grad_ptr += (H_cell * WD_grid + W_cell * D_grid + D_cell) * 27 * channels channels_offset = tl.arange(0, channels) channels_offset = tl.max_contiguous(tl.multiple_of(channels_offset, channels), channels) d_offset = tl.arange(0, D_block) near_offset = tl.arange(0, 4) - 1 offset = d_offset[None, None, :] * channels + channels_offset[None, :, None] + near_offset[:, None, None] * channels mask = d_offset[None, None, :] + near_offset[:, None, None] < D - D_block * D_cell mask = mask and (d_offset[None, None, :] + near_offset[:, None, None] >= 0 - D_block * D_cell) mask = mask and (near_offset[:, None, None] != 2) grad_offset = d_offset[None, :] * channels + channels_offset[:, None] grad_mask = d_offset[None, :] < D - D_block * D_cell h0_w0 = tl.zeros([4, channels], dtype=ACCTYPE) h0_w1 = tl.zeros([4, channels], dtype=ACCTYPE) h0_w2 = tl.zeros([4, channels], dtype=ACCTYPE) h1_w0 = tl.zeros([4, channels], dtype=ACCTYPE) h1_w1 = tl.zeros([4, channels], dtype=ACCTYPE) h1_w2 = tl.zeros([4, channels], dtype=ACCTYPE) h2_w0 = tl.zeros([4, channels], dtype=ACCTYPE) h2_w1 = tl.zeros([4, channels], dtype=ACCTYPE) h2_w2 = tl.zeros([4, channels], dtype=ACCTYPE) gradw_offset = tl.arange(0, 4)[:, None] * channels + channels_offset[None, :] gradw_mask = near_offset[:, None] != 2 for ilp in tl.static_range(0, ILP): H0_load = 2 * H_cell < H H1_load = 2 * H_cell + 1 < H W1_load = 2 * W_cell + 1 < W tmp_input_ptr = input_ptr + 2 * H_cell * H_stride + 2 * W_cell * W_stride x_h0_w0 = tl.load(tmp_input_ptr + offset, mask=mask and H0_load) tmp_input_ptr = input_ptr + (2 * H_cell + 1) * H_stride + 2 * W_cell * W_stride x_h1_w0 = tl.load(tmp_input_ptr + offset, mask=mask and H1_load) tmp_input_ptr = input_ptr + 2 * H_cell * H_stride + (2 * W_cell + 1) * W_stride x_h0_w1 = tl.load(tmp_input_ptr + offset, mask=mask and (W1_load and H0_load)) tmp_input_ptr = input_ptr + (2 * H_cell + 1) * H_stride + (2 * W_cell + 1) * W_stride x_h1_w1 = tl.load(tmp_input_ptr + offset, mask=mask and (W1_load and H1_load)) for k in tl.static_range(0, 16): i = (k % 4) - 1 j = (k // 4) - 1 load_next = (2 * H_cell + i < H and 2 * H_cell + i >= 0) and (2 * W_cell + j < W and 2 * W_cell + j >= 0) tmp_grad_ptr = grad_ptr + (2 * H_cell + i) * H_stride + (2 * W_cell + j) * W_stride if load_next: grad = tl.load(tmp_grad_ptr + grad_offset, mask=grad_mask, other=0.0)[None] if i == -1 and j == -1: h2_w2 += tl.sum(grad * x_h0_w0, axis=2) elif i == -1 and j == 0: h2_w1 += tl.sum(grad * x_h0_w0, axis=2) h2_w2 += tl.sum(grad * x_h0_w1, axis=2) elif i == -1 and j == 1: h2_w0 += tl.sum(grad * x_h0_w0, axis=2) h2_w1 += tl.sum(grad * x_h0_w1, axis=2) elif i == -1 and j == 2: h2_w0 += tl.sum(grad * x_h0_w1, axis=2) elif i == 0 and j == -1: h1_w2 += tl.sum(grad * x_h0_w0, axis=2) h2_w2 += tl.sum(grad * x_h1_w0, axis=2) elif i == 0 and j == 0: h1_w1 += tl.sum(grad * x_h0_w0, axis=2) h2_w1 += tl.sum(grad * x_h1_w0, axis=2) h1_w2 += tl.sum(grad * x_h0_w1, axis=2) h2_w2 += tl.sum(grad * x_h1_w1, axis=2) elif i == 0 and j == 1: h1_w0 += tl.sum(grad * x_h0_w0, axis=2) h2_w0 += tl.sum(grad * x_h1_w0, axis=2) h1_w1 += tl.sum(grad * x_h0_w1, axis=2) h2_w1 += tl.sum(grad * x_h1_w1, axis=2) elif i == 0 and j == 2: h1_w0 += tl.sum(grad * x_h0_w1, axis=2) h2_w0 += tl.sum(grad * x_h1_w1, axis=2) elif i == 1 and j == -1: h0_w2 += tl.sum(grad * x_h0_w0, axis=2) h1_w2 += tl.sum(grad * x_h1_w0, axis=2) elif i == 1 and j == 0: h0_w1 += tl.sum(grad * x_h0_w0, axis=2) h1_w1 += tl.sum(grad * x_h1_w0, axis=2) h0_w2 += tl.sum(grad * x_h0_w1, axis=2) h1_w2 += tl.sum(grad * x_h1_w1, axis=2) elif i == 1 and j == 1: h0_w0 += tl.sum(grad * x_h0_w0, axis=2) h1_w0 += tl.sum(grad * x_h1_w0, axis=2) h0_w1 += tl.sum(grad * x_h0_w1, axis=2) h1_w1 += tl.sum(grad * x_h1_w1, axis=2) elif i == 1 and j == 2: h0_w0 += tl.sum(grad * x_h0_w1, axis=2) h1_w0 += tl.sum(grad * x_h1_w1, axis=2) elif i == 2 and j == -1: h0_w2 += tl.sum(grad * x_h1_w0, axis=2) elif i == 2 and j == 0: h0_w1 += tl.sum(grad * x_h1_w0, axis=2) h0_w2 += tl.sum(grad * x_h1_w1, axis=2) elif i == 2 and j == 1: h0_w0 += tl.sum(grad * x_h1_w0, axis=2) h0_w1 += tl.sum(grad * x_h1_w1, axis=2) else: h0_w0 += tl.sum(grad * x_h1_w1, axis=2) H_cell += delta_H_grid tl.store(weight_grad_ptr + gradw_offset, h0_w0, mask=gradw_mask) tl.store((weight_grad_ptr + 3 * channels) + gradw_offset, h0_w1, mask=gradw_mask) tl.store((weight_grad_ptr + 6 * channels) + gradw_offset, h0_w2, mask=gradw_mask) tl.store((weight_grad_ptr + 9 * channels) + gradw_offset, h1_w0, mask=gradw_mask) tl.store((weight_grad_ptr + 12 * channels) + gradw_offset, h1_w1, mask=gradw_mask) tl.store((weight_grad_ptr + 15 * channels) + gradw_offset, h1_w2, mask=gradw_mask) tl.store((weight_grad_ptr + 18 * channels) + gradw_offset, h2_w0, mask=gradw_mask) tl.store((weight_grad_ptr + 21 * channels) + gradw_offset, h2_w1, mask=gradw_mask) tl.store((weight_grad_ptr + 24 * channels) + gradw_offset, h2_w2, mask=gradw_mask)
2395959141/100-days-of-cuda
day17/fp8_gemm.py
https://github.com/2395959141/100-days-of-cuda/blob/1aeb4aa316f7e69cf3cf2d08fd3573c372cdfe6c/day17/fp8_gemm.py
import torch import triton import triton.language as tl from triton import Config #! 分Block量化 @triton.jit def act_quant_kernal( x_ptr, y_ptr, s_ptr, BLOCK_SIZE: tl.constexpr ): """ 修正后的量化核函数 :param x_ptr: 输入矩阵指针 :param y_ptr: 输出矩阵指针 :param s_ptr: 缩放系数指针 :param BLOCK_SIZE: 块大小(编译时常量) """ pid = tl.program_id(axis=0) # 计算当前block的偏移量 offset = pid * BLOCK_SIZE + tl.arange(0, BLOCK_SIZE) x = tl.load(x_ptr + offset).to(tl.float16) #* 计算block的最大绝对值 max_val = tl.max(tl.abs(x), axis=0) s = max_val / 448.0 #! 量化系数是 float32的 # 量化操作 y = x / s #! s的布局是 [... , hidden_dim / block_size] # 存储结果 tl.store(y_ptr + offset , y) tl.store(s_ptr + pid, s) def act_quant(x: torch.Tensor, block_size: int = 128) -> tuple[torch.Tensor, torch.Tensor]: """ 修正后的量化函数,处理维度计算问题 """ assert x.is_contiguous() assert x.size(-1) % block_size == 0 # 创建输出张量(保持输入维度) y = torch.empty_like(x, dtype=torch.float8_e4m3fn) # 调整缩放因子维度为 [..., K/block_size, 1] s_shape = (*x.size()[:-1], x.size(-1) // block_size) s = x.new_empty(s_shape, dtype=torch.float16) #! 为了兼容多维度矩阵相乘 grid = lambda meta: (triton.cdiv(x.numel(), meta['BLOCK_SIZE']),) # 启动内核时添加显式维度参数 act_quant_kernal[grid](x, y, s, BLOCK_SIZE=block_size) return y, s # 修改后的自动调优配置 fp8_gemm_configs = [ Config({'BLOCK_SIZE_M': 64, 'BLOCK_SIZE_N': 64, 'BLOCK_SIZE_K': 32}, num_stages=3, num_warps=4), Config({'BLOCK_SIZE_M': 128, 'BLOCK_SIZE_N': 128, 'BLOCK_SIZE_K': 64}, num_stages=4, num_warps=8), Config({'BLOCK_SIZE_M': 256, 'BLOCK_SIZE_N': 64, 'BLOCK_SIZE_K': 128}, num_stages=5, num_warps=8) ] @triton.autotune(configs=fp8_gemm_configs, key=['M', 'N', 'K']) @triton.jit def fp8_gemm_kernel( a_ptr, b_ptr, c_ptr, a_s_ptr, b_s_ptr, M, N, K, # 修改参数顺序 stride_am, stride_ak, # 添加步长参数 stride_bk, stride_bn, stride_cm, stride_cn, BLOCK_SIZE_M: tl.constexpr, BLOCK_SIZE_N: tl.constexpr, BLOCK_SIZE_K: tl.constexpr, ): """ Performs a matrix multiplication operation on FP8 matrices with scaling factors. Args: a_ptr (tl.tensor): Pointer to the first input matrix A. b_ptr (tl.tensor): Pointer to the second input matrix B. c_ptr (tl.tensor): Pointer to the output matrix C. a_s_ptr (tl.tensor): Pointer to the scaling factors for matrix A. b_s_ptr (tl.tensor): Pointer to the scaling factors for matrix B. M (int): Number of rows in matrix A and C. N (tl.constexpr): Number of columns in matrix B and C. K (tl.constexpr): Number of columns in matrix A and rows in matrix B. BLOCK_SIZE_M (tl.constexpr): Block size for the M dimension. BLOCK_SIZE_N (tl.constexpr): Block size for the N dimension. BLOCK_SIZE_K (tl.constexpr): Block size for the K dimension. stride_am (tl.constexpr): Stride for the M dimension in matrix A. stride_ak (tl.constexpr): Stride for the K dimension in matrix A. stride_bk (tl.constexpr): Stride for the K dimension in matrix B. stride_bn (tl.constexpr): Stride for the N dimension in matrix B. stride_cm (tl.constexpr): Stride for the M dimension in matrix C. stride_cn (tl.constexpr): Stride for the N dimension in matrix C. Returns: None """ pid_m = tl.program_id(axis=0) pid_n = tl.program_id(axis=1) k = tl.cdiv(K, BLOCK_SIZE_K) offs_m = pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M) % M offs_n = pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N) % N offs_k = tl.arange(0, BLOCK_SIZE_K) # 修正后的指针计算 a_ptr = a_ptr + (offs_m[:, None] * K + offs_k[None, :]) b_ptr = b_ptr + (offs_n[None, :] * K + offs_k[:, None]) #! 这里是按照转置之后方式取值的 #!错误:b_ptr = b_ptr + (offs_k[:, None] * N + offs_n[None, :]) # 修正缩放因子索引 a_s_ptr = a_s_ptr + (pid_m * k) b_s_ptr = b_s_ptr + (pid_n * k) accumulator = tl.zeros((BLOCK_SIZE_M, BLOCK_SIZE_N), dtype=tl.float32) for i in range(k): # 修正mask条件 mask_a = (offs_m[:, None] < M) & (offs_k[None, :] < K - i * BLOCK_SIZE_K) mask_b = (offs_k[:, None] < K - i * BLOCK_SIZE_K) & (offs_n[None, :] < N) a = tl.load(a_ptr, mask=mask_a, other=0.0) b = tl.load(b_ptr, mask=mask_b, other=0.0) a_s = tl.load(a_s_ptr + i) b_s = tl.load(b_s_ptr + i) accumulator += tl.dot(a, b) * a_s[:, None] * b_s[None, :] # 修正指针递增 a_ptr += BLOCK_SIZE_K b_ptr += BLOCK_SIZE_K #! 修正后的指针递增 a_s_ptr += 1 b_s_ptr += 1 output = accumulator.to(tl.float16) offs_cm = pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M) offs_cn = pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N) c_ptr = c_ptr + (offs_cm[:, None] * N + offs_cn[None, :]) mask = (offs_cm[:, None] < M) & (offs_cn[None, :] < N) tl.store(c_ptr, output, mask=mask) def fp8_gemm(a: torch.Tensor, b: torch.Tensor): """ FP8矩阵乘法接口函数 参数: a: (M, K) 输入矩阵,FP8格式 b: (K, N) 输入矩阵,FP8格式 a_scale: (M,) A矩阵的缩放因子 b_scale: (N,) B矩阵的缩放因子 返回: c: (M, N) 输出矩阵,FP32格式 """ # 参数校验 #assert b.dtype == torch.float32, "输入矩阵必须是FP32,进行动态量化" assert a.is_contiguous() and b.is_contiguous(), "输入矩阵必须是连续内存布局" a_fp8, a_scale = act_quant(a) b_fp8, b_scale = act_quant(b) M, K = a.shape _, N = b.shape c = torch.empty((M, N), device=a.device, dtype=torch.float16) grid = lambda meta: ( triton.cdiv(M, meta['BLOCK_SIZE_M']), triton.cdiv(N, meta['BLOCK_SIZE_N']) ) # 修改后的内核调用 fp8_gemm_kernel[grid]( a_fp8, b_fp8, c, a_scale, b_scale, M, N, K, a.stride(0), a.stride(1), # 添加步长参数 b.stride(0), b.stride(1), c.stride(0), c.stride(1), # 移除 GROUP_SIZE_M 参数 ) return c
@triton.jit def act_quant_kernal( x_ptr, y_ptr, s_ptr, BLOCK_SIZE: tl.constexpr ): """ 修正后的量化核函数 :param x_ptr: 输入矩阵指针 :param y_ptr: 输出矩阵指针 :param s_ptr: 缩放系数指针 :param BLOCK_SIZE: 块大小(编译时常量) """ pid = tl.program_id(axis=0) # 计算当前block的偏移量 offset = pid * BLOCK_SIZE + tl.arange(0, BLOCK_SIZE) x = tl.load(x_ptr + offset).to(tl.float16) #* 计算block的最大绝对值 max_val = tl.max(tl.abs(x), axis=0) s = max_val / 448.0 #! 量化系数是 float32的 # 量化操作 y = x / s #! s的布局是 [... , hidden_dim / block_size] # 存储结果 tl.store(y_ptr + offset , y) tl.store(s_ptr + pid, s) def act_quant(x: torch.Tensor, block_size: int = 128) -> tuple[torch.Tensor, torch.Tensor]: """ 修正后的量化函数,处理维度计算问题 """ assert x.is_contiguous() assert x.size(-1) % block_size == 0 # 创建输出张量(保持输入维度) y = torch.empty_like(x, dtype=torch.float8_e4m3fn) # 调整缩放因子维度为 [..., K/block_size, 1] s_shape = (*x.size()[:-1], x.size(-1) // block_size) s = x.new_empty(s_shape, dtype=torch.float16) #! 为了兼容多维度矩阵相乘 grid = lambda meta: (triton.cdiv(x.numel(), meta['BLOCK_SIZE']),) # 启动内核时添加显式维度参数 act_quant_kernal[grid](x, y, s, BLOCK_SIZE=block_size) return y, s # 修改后的自动调优配置 fp8_gemm_configs = [ Config({'BLOCK_SIZE_M': 64, 'BLOCK_SIZE_N': 64, 'BLOCK_SIZE_K': 32}, num_stages=3, num_warps=4), Config({'BLOCK_SIZE_M': 128, 'BLOCK_SIZE_N': 128, 'BLOCK_SIZE_K': 64}, num_stages=4, num_warps=8), Config({'BLOCK_SIZE_M': 256, 'BLOCK_SIZE_N': 64, 'BLOCK_SIZE_K': 128}, num_stages=5, num_warps=8) ] @triton.autotune(configs=fp8_gemm_configs, key=['M', 'N', 'K'])
2395959141/100-days-of-cuda
day17/fp8_gemm.py
https://github.com/2395959141/100-days-of-cuda/blob/1aeb4aa316f7e69cf3cf2d08fd3573c372cdfe6c/day17/fp8_gemm.py
import torch import triton import triton.language as tl from triton import Config #! 分Block量化 @triton.jit def act_quant_kernal( x_ptr, y_ptr, s_ptr, BLOCK_SIZE: tl.constexpr ): """ 修正后的量化核函数 :param x_ptr: 输入矩阵指针 :param y_ptr: 输出矩阵指针 :param s_ptr: 缩放系数指针 :param BLOCK_SIZE: 块大小(编译时常量) """ pid = tl.program_id(axis=0) # 计算当前block的偏移量 offset = pid * BLOCK_SIZE + tl.arange(0, BLOCK_SIZE) x = tl.load(x_ptr + offset).to(tl.float16) #* 计算block的最大绝对值 max_val = tl.max(tl.abs(x), axis=0) s = max_val / 448.0 #! 量化系数是 float32的 # 量化操作 y = x / s #! s的布局是 [... , hidden_dim / block_size] # 存储结果 tl.store(y_ptr + offset , y) tl.store(s_ptr + pid, s) def act_quant(x: torch.Tensor, block_size: int = 128) -> tuple[torch.Tensor, torch.Tensor]: """ 修正后的量化函数,处理维度计算问题 """ assert x.is_contiguous() assert x.size(-1) % block_size == 0 # 创建输出张量(保持输入维度) y = torch.empty_like(x, dtype=torch.float8_e4m3fn) # 调整缩放因子维度为 [..., K/block_size, 1] s_shape = (*x.size()[:-1], x.size(-1) // block_size) s = x.new_empty(s_shape, dtype=torch.float16) #! 为了兼容多维度矩阵相乘 grid = lambda meta: (triton.cdiv(x.numel(), meta['BLOCK_SIZE']),) # 启动内核时添加显式维度参数 act_quant_kernal[grid](x, y, s, BLOCK_SIZE=block_size) return y, s # 修改后的自动调优配置 fp8_gemm_configs = [ Config({'BLOCK_SIZE_M': 64, 'BLOCK_SIZE_N': 64, 'BLOCK_SIZE_K': 32}, num_stages=3, num_warps=4), Config({'BLOCK_SIZE_M': 128, 'BLOCK_SIZE_N': 128, 'BLOCK_SIZE_K': 64}, num_stages=4, num_warps=8), Config({'BLOCK_SIZE_M': 256, 'BLOCK_SIZE_N': 64, 'BLOCK_SIZE_K': 128}, num_stages=5, num_warps=8) ] @triton.autotune(configs=fp8_gemm_configs, key=['M', 'N', 'K']) @triton.jit def fp8_gemm_kernel( a_ptr, b_ptr, c_ptr, a_s_ptr, b_s_ptr, M, N, K, # 修改参数顺序 stride_am, stride_ak, # 添加步长参数 stride_bk, stride_bn, stride_cm, stride_cn, BLOCK_SIZE_M: tl.constexpr, BLOCK_SIZE_N: tl.constexpr, BLOCK_SIZE_K: tl.constexpr, ): """ Performs a matrix multiplication operation on FP8 matrices with scaling factors. Args: a_ptr (tl.tensor): Pointer to the first input matrix A. b_ptr (tl.tensor): Pointer to the second input matrix B. c_ptr (tl.tensor): Pointer to the output matrix C. a_s_ptr (tl.tensor): Pointer to the scaling factors for matrix A. b_s_ptr (tl.tensor): Pointer to the scaling factors for matrix B. M (int): Number of rows in matrix A and C. N (tl.constexpr): Number of columns in matrix B and C. K (tl.constexpr): Number of columns in matrix A and rows in matrix B. BLOCK_SIZE_M (tl.constexpr): Block size for the M dimension. BLOCK_SIZE_N (tl.constexpr): Block size for the N dimension. BLOCK_SIZE_K (tl.constexpr): Block size for the K dimension. stride_am (tl.constexpr): Stride for the M dimension in matrix A. stride_ak (tl.constexpr): Stride for the K dimension in matrix A. stride_bk (tl.constexpr): Stride for the K dimension in matrix B. stride_bn (tl.constexpr): Stride for the N dimension in matrix B. stride_cm (tl.constexpr): Stride for the M dimension in matrix C. stride_cn (tl.constexpr): Stride for the N dimension in matrix C. Returns: None """ pid_m = tl.program_id(axis=0) pid_n = tl.program_id(axis=1) k = tl.cdiv(K, BLOCK_SIZE_K) offs_m = pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M) % M offs_n = pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N) % N offs_k = tl.arange(0, BLOCK_SIZE_K) # 修正后的指针计算 a_ptr = a_ptr + (offs_m[:, None] * K + offs_k[None, :]) b_ptr = b_ptr + (offs_n[None, :] * K + offs_k[:, None]) #! 这里是按照转置之后方式取值的 #!错误:b_ptr = b_ptr + (offs_k[:, None] * N + offs_n[None, :]) # 修正缩放因子索引 a_s_ptr = a_s_ptr + (pid_m * k) b_s_ptr = b_s_ptr + (pid_n * k) accumulator = tl.zeros((BLOCK_SIZE_M, BLOCK_SIZE_N), dtype=tl.float32) for i in range(k): # 修正mask条件 mask_a = (offs_m[:, None] < M) & (offs_k[None, :] < K - i * BLOCK_SIZE_K) mask_b = (offs_k[:, None] < K - i * BLOCK_SIZE_K) & (offs_n[None, :] < N) a = tl.load(a_ptr, mask=mask_a, other=0.0) b = tl.load(b_ptr, mask=mask_b, other=0.0) a_s = tl.load(a_s_ptr + i) b_s = tl.load(b_s_ptr + i) accumulator += tl.dot(a, b) * a_s[:, None] * b_s[None, :] # 修正指针递增 a_ptr += BLOCK_SIZE_K b_ptr += BLOCK_SIZE_K #! 修正后的指针递增 a_s_ptr += 1 b_s_ptr += 1 output = accumulator.to(tl.float16) offs_cm = pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M) offs_cn = pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N) c_ptr = c_ptr + (offs_cm[:, None] * N + offs_cn[None, :]) mask = (offs_cm[:, None] < M) & (offs_cn[None, :] < N) tl.store(c_ptr, output, mask=mask) def fp8_gemm(a: torch.Tensor, b: torch.Tensor): """ FP8矩阵乘法接口函数 参数: a: (M, K) 输入矩阵,FP8格式 b: (K, N) 输入矩阵,FP8格式 a_scale: (M,) A矩阵的缩放因子 b_scale: (N,) B矩阵的缩放因子 返回: c: (M, N) 输出矩阵,FP32格式 """ # 参数校验 #assert b.dtype == torch.float32, "输入矩阵必须是FP32,进行动态量化" assert a.is_contiguous() and b.is_contiguous(), "输入矩阵必须是连续内存布局" a_fp8, a_scale = act_quant(a) b_fp8, b_scale = act_quant(b) M, K = a.shape _, N = b.shape c = torch.empty((M, N), device=a.device, dtype=torch.float16) grid = lambda meta: ( triton.cdiv(M, meta['BLOCK_SIZE_M']), triton.cdiv(N, meta['BLOCK_SIZE_N']) ) # 修改后的内核调用 fp8_gemm_kernel[grid]( a_fp8, b_fp8, c, a_scale, b_scale, M, N, K, a.stride(0), a.stride(1), # 添加步长参数 b.stride(0), b.stride(1), c.stride(0), c.stride(1), # 移除 GROUP_SIZE_M 参数 ) return c
@triton.jit def fp8_gemm_kernel( a_ptr, b_ptr, c_ptr, a_s_ptr, b_s_ptr, M, N, K, # 修改参数顺序 stride_am, stride_ak, # 添加步长参数 stride_bk, stride_bn, stride_cm, stride_cn, BLOCK_SIZE_M: tl.constexpr, BLOCK_SIZE_N: tl.constexpr, BLOCK_SIZE_K: tl.constexpr, ): """ Performs a matrix multiplication operation on FP8 matrices with scaling factors. Args: a_ptr (tl.tensor): Pointer to the first input matrix A. b_ptr (tl.tensor): Pointer to the second input matrix B. c_ptr (tl.tensor): Pointer to the output matrix C. a_s_ptr (tl.tensor): Pointer to the scaling factors for matrix A. b_s_ptr (tl.tensor): Pointer to the scaling factors for matrix B. M (int): Number of rows in matrix A and C. N (tl.constexpr): Number of columns in matrix B and C. K (tl.constexpr): Number of columns in matrix A and rows in matrix B. BLOCK_SIZE_M (tl.constexpr): Block size for the M dimension. BLOCK_SIZE_N (tl.constexpr): Block size for the N dimension. BLOCK_SIZE_K (tl.constexpr): Block size for the K dimension. stride_am (tl.constexpr): Stride for the M dimension in matrix A. stride_ak (tl.constexpr): Stride for the K dimension in matrix A. stride_bk (tl.constexpr): Stride for the K dimension in matrix B. stride_bn (tl.constexpr): Stride for the N dimension in matrix B. stride_cm (tl.constexpr): Stride for the M dimension in matrix C. stride_cn (tl.constexpr): Stride for the N dimension in matrix C. Returns: None """ pid_m = tl.program_id(axis=0) pid_n = tl.program_id(axis=1) k = tl.cdiv(K, BLOCK_SIZE_K) offs_m = pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M) % M offs_n = pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N) % N offs_k = tl.arange(0, BLOCK_SIZE_K) # 修正后的指针计算 a_ptr = a_ptr + (offs_m[:, None] * K + offs_k[None, :]) b_ptr = b_ptr + (offs_n[None, :] * K + offs_k[:, None]) #! 这里是按照转置之后方式取值的 #!错误:b_ptr = b_ptr + (offs_k[:, None] * N + offs_n[None, :]) # 修正缩放因子索引 a_s_ptr = a_s_ptr + (pid_m * k) b_s_ptr = b_s_ptr + (pid_n * k) accumulator = tl.zeros((BLOCK_SIZE_M, BLOCK_SIZE_N), dtype=tl.float32) for i in range(k): # 修正mask条件 mask_a = (offs_m[:, None] < M) & (offs_k[None, :] < K - i * BLOCK_SIZE_K) mask_b = (offs_k[:, None] < K - i * BLOCK_SIZE_K) & (offs_n[None, :] < N) a = tl.load(a_ptr, mask=mask_a, other=0.0) b = tl.load(b_ptr, mask=mask_b, other=0.0) a_s = tl.load(a_s_ptr + i) b_s = tl.load(b_s_ptr + i) accumulator += tl.dot(a, b) * a_s[:, None] * b_s[None, :] # 修正指针递增 a_ptr += BLOCK_SIZE_K b_ptr += BLOCK_SIZE_K #! 修正后的指针递增 a_s_ptr += 1 b_s_ptr += 1 output = accumulator.to(tl.float16) offs_cm = pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M) offs_cn = pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N) c_ptr = c_ptr + (offs_cm[:, None] * N + offs_cn[None, :]) mask = (offs_cm[:, None] < M) & (offs_cn[None, :] < N) tl.store(c_ptr, output, mask=mask) def fp8_gemm(a: torch.Tensor, b: torch.Tensor): """ FP8矩阵乘法接口函数 参数: a: (M, K) 输入矩阵,FP8格式 b: (K, N) 输入矩阵,FP8格式 a_scale: (M,) A矩阵的缩放因子 b_scale: (N,) B矩阵的缩放因子 返回: c: (M, N) 输出矩阵,FP32格式 """ # 参数校验 #assert b.dtype == torch.float32, "输入矩阵必须是FP32,进行动态量化" assert a.is_contiguous() and b.is_contiguous(), "输入矩阵必须是连续内存布局" a_fp8, a_scale = act_quant(a) b_fp8, b_scale = act_quant(b) M, K = a.shape _, N = b.shape c = torch.empty((M, N), device=a.device, dtype=torch.float16) grid = lambda meta: ( triton.cdiv(M, meta['BLOCK_SIZE_M']), triton.cdiv(N, meta['BLOCK_SIZE_N']) ) # 修改后的内核调用 fp8_gemm_kernel[grid]( a_fp8, b_fp8, c, a_scale, b_scale, M, N, K, a.stride(0), a.stride(1), # 添加步长参数 b.stride(0), b.stride(1), c.stride(0), c.stride(1), # 移除 GROUP_SIZE_M 参数 ) return c
MKrbm/worms
python/rmsKit/rms_torch/optimizer/trion.py
https://github.com/MKrbm/worms/blob/bebb1b6f4611ef135d8d0e0cc1f6f255ff306679/python/rmsKit/rms_torch/optimizer/trion.py
import torch try: import triton import triton.language as tl except ImportError as e: print('triton is not installed, please install by running `pip install triton -U --pre`') exit() @triton.autotune(configs = [ triton.Config({'BLOCK_SIZE': 128}, num_warps = 4), triton.Config({'BLOCK_SIZE': 1024}, num_warps = 8), ], key = ['n_elements']) @triton.jit def update_fn_kernel( p_ptr, grad_ptr, exp_avg_ptr, lr, wd, beta1, beta2, n_elements, BLOCK_SIZE: tl.constexpr, ): pid = tl.program_id(axis = 0) block_start = pid * BLOCK_SIZE offsets = block_start + tl.arange(0, BLOCK_SIZE) mask = offsets < n_elements # offsetted pointers offset_p_ptr = p_ptr + offsets offset_grad_ptr = grad_ptr + offsets offset_exp_avg_ptr = exp_avg_ptr + offsets # load p = tl.load(offset_p_ptr, mask = mask) grad = tl.load(offset_grad_ptr, mask = mask) exp_avg = tl.load(offset_exp_avg_ptr, mask = mask) # stepweight decay p = p * (1 - lr * wd) # diff between momentum running average and grad diff = exp_avg - grad # weight update update = diff * beta1 + grad # torch.sign can_update = update != 0 update_sign = tl.where(update > 0, -lr, lr) p = p + update_sign * can_update # decay the momentum running average coefficient exp_avg = diff * beta2 + grad # store new params and momentum running average coefficient tl.store(offset_p_ptr, p, mask = mask) tl.store(offset_exp_avg_ptr, exp_avg, mask = mask) def update_fn( p: torch.Tensor, grad: torch.Tensor, exp_avg: torch.Tensor, lr: float, wd: float, beta1: float, beta2: float ): assert all([t.is_cuda for t in (p, grad, exp_avg)]) n_elements = p.numel() grid = lambda meta: (triton.cdiv(n_elements, meta['BLOCK_SIZE']),) update_fn_kernel[grid]( p, grad, exp_avg, lr, wd, beta1, beta2, n_elements )
@triton.jit def update_fn_kernel( p_ptr, grad_ptr, exp_avg_ptr, lr, wd, beta1, beta2, n_elements, BLOCK_SIZE: tl.constexpr, ): pid = tl.program_id(axis = 0) block_start = pid * BLOCK_SIZE offsets = block_start + tl.arange(0, BLOCK_SIZE) mask = offsets < n_elements # offsetted pointers offset_p_ptr = p_ptr + offsets offset_grad_ptr = grad_ptr + offsets offset_exp_avg_ptr = exp_avg_ptr + offsets # load p = tl.load(offset_p_ptr, mask = mask) grad = tl.load(offset_grad_ptr, mask = mask) exp_avg = tl.load(offset_exp_avg_ptr, mask = mask) # stepweight decay p = p * (1 - lr * wd) # diff between momentum running average and grad diff = exp_avg - grad # weight update update = diff * beta1 + grad # torch.sign can_update = update != 0 update_sign = tl.where(update > 0, -lr, lr) p = p + update_sign * can_update # decay the momentum running average coefficient exp_avg = diff * beta2 + grad # store new params and momentum running average coefficient tl.store(offset_p_ptr, p, mask = mask) tl.store(offset_exp_avg_ptr, exp_avg, mask = mask) def update_fn( p: torch.Tensor, grad: torch.Tensor, exp_avg: torch.Tensor, lr: float, wd: float, beta1: float, beta2: float ): assert all([t.is_cuda for t in (p, grad, exp_avg)]) n_elements = p.numel() grid = lambda meta: (triton.cdiv(n_elements, meta['BLOCK_SIZE']),) update_fn_kernel[grid]( p, grad, exp_avg, lr, wd, beta1, beta2, n_elements )
daemyung/practice-triton
heuristics.py
https://github.com/daemyung/practice-triton/blob/27f727726f1507c8380a1c11751d851c7c4a07ce/heuristics.py
# MIT License # # Copyright (c) 2024 Daemyung Jang # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. import torch import triton import triton.language as tl @triton.heuristics({'boundary_check': lambda args: args["x_size"] % args["block_size"] }) @triton.jit def add_kernel(x_ptr, y_ptr, z_ptr, size, block_size: tl.constexpr, boundary_check: tl.constexpr): offset = tl.program_id(0) * block_size x_block_ptr = tl.make_block_ptr( x_ptr, shape=(size,), strides=(1,), offsets=(offset,), block_shape=(block_size,), order=(0,) ) y_block_ptr = tl.make_block_ptr( y_ptr, shape=(size,), strides=(1,), offsets=(offset,), block_shape=(block_size,), order=(0,) ) if boundary_check: x = tl.load(x_block_ptr, boundary_check=(0,)) y = tl.load(y_block_ptr, boundary_check=(0,)) else: x = tl.load(x_block_ptr) y = tl.load(y_block_ptr) z = x + y z_block_ptr = tl.make_block_ptr( z_ptr, shape=(size,), strides=(1,), offsets=(offset,), block_shape=(block_size,), order=(0,) ) if boundary_check: tl.store(z_block_ptr, z, boundary_check=(0,)) else: tl.store(z_block_ptr, z) def add(x, y): z = torch.empty_like(x, device="cuda") size = z.numel() def grid(meta): return (triton.cdiv(size, meta["block_size"]),) add_kernel[grid](x, y, z, size, 1024) return z def main(): size = 2**16 x = torch.rand(size, device="cuda") y = torch.rand(size, device="cuda") a = add(x, y) b = x + y assert torch.allclose(a, b) if __name__ == "__main__": main()
@triton.jit def add_kernel(x_ptr, y_ptr, z_ptr, size, block_size: tl.constexpr, boundary_check: tl.constexpr): offset = tl.program_id(0) * block_size x_block_ptr = tl.make_block_ptr( x_ptr, shape=(size,), strides=(1,), offsets=(offset,), block_shape=(block_size,), order=(0,) ) y_block_ptr = tl.make_block_ptr( y_ptr, shape=(size,), strides=(1,), offsets=(offset,), block_shape=(block_size,), order=(0,) ) if boundary_check: x = tl.load(x_block_ptr, boundary_check=(0,)) y = tl.load(y_block_ptr, boundary_check=(0,)) else: x = tl.load(x_block_ptr) y = tl.load(y_block_ptr) z = x + y z_block_ptr = tl.make_block_ptr( z_ptr, shape=(size,), strides=(1,), offsets=(offset,), block_shape=(block_size,), order=(0,) ) if boundary_check: tl.store(z_block_ptr, z, boundary_check=(0,)) else: tl.store(z_block_ptr, z) def add(x, y): z = torch.empty_like(x, device="cuda") size = z.numel() def grid(meta): return (triton.cdiv(size, meta["block_size"]),) add_kernel[grid](x, y, z, size, 1024) return z def main(): size = 2**16 x = torch.rand(size, device="cuda") y = torch.rand(size, device="cuda") a = add(x, y) b = x + y assert torch.allclose(a, b) if __name__ == "__main__": main()
ghidav/group-sae
group_sae/kernels.py
https://github.com/ghidav/group-sae/blob/e556eeac2af1e956a228a96e243230c510d4e62b/group_sae/kernels.py
""" Copied from https://github.com/openai/sparse_autoencoder/blob/main/sparse_autoencoder/kernels.py """ import torch import triton import triton.language as tl def triton_sparse_transpose_dense_matmul( sparse_indices: torch.Tensor, sparse_values: torch.Tensor, dense: torch.Tensor, N: int, BLOCK_SIZE_AK=128, ) -> torch.Tensor: """ calculates sparse.T @ dense (i.e reducing along the collated dimension of sparse) dense must be contiguous along dim 0 (in other words, dense.T is contiguous) sparse_indices is shape (A, k) sparse_values is shape (A, k) dense is shape (A, B) output is shape (N, B) """ assert sparse_indices.shape == sparse_values.shape assert sparse_indices.is_contiguous() assert sparse_values.is_contiguous() assert dense.is_contiguous() # contiguous along B K = sparse_indices.shape[1] A = dense.shape[0] assert sparse_indices.shape[0] == A # COO-format and sorted sorted_indices = sparse_indices.view(-1).sort() coo_indices = torch.stack( [ torch.arange(A, device=sparse_indices.device).repeat_interleave(K)[ sorted_indices.indices ], sorted_indices.values, ] ) # shape (2, A * K) coo_values = sparse_values.view(-1)[sorted_indices.indices] # shape (A * K,) return triton_coo_sparse_dense_matmul(coo_indices, coo_values, dense, N, BLOCK_SIZE_AK) def triton_coo_sparse_dense_matmul( coo_indices: torch.Tensor, coo_values: torch.Tensor, dense: torch.Tensor, N: int, BLOCK_SIZE_AK=128, ) -> torch.Tensor: AK = coo_indices.shape[1] B = dense.shape[1] out = torch.zeros(N, B, device=dense.device, dtype=coo_values.dtype) def grid(META): return triton.cdiv(AK, META["BLOCK_SIZE_AK"]), 1 triton_sparse_transpose_dense_matmul_kernel[grid]( coo_indices, coo_values, dense, out, stride_da=dense.stride(0), stride_db=dense.stride(1), B=B, N=N, AK=AK, BLOCK_SIZE_AK=BLOCK_SIZE_AK, BLOCK_SIZE_B=triton.next_power_of_2(B), ) return out @triton.jit def triton_sparse_transpose_dense_matmul_kernel( coo_indices_ptr, coo_values_ptr, dense_ptr, out_ptr, stride_da, stride_db, B, N, AK, BLOCK_SIZE_AK: tl.constexpr, BLOCK_SIZE_B: tl.constexpr, ): """ coo_indices is shape (2, AK) coo_values is shape (AK,) dense is shape (A, B), contiguous along B out is shape (N, B) """ pid_ak = tl.program_id(0) pid_b = tl.program_id(1) coo_offsets = tl.arange(0, BLOCK_SIZE_AK) b_offsets = tl.arange(0, BLOCK_SIZE_B) A_coords = tl.load( coo_indices_ptr + pid_ak * BLOCK_SIZE_AK + coo_offsets, mask=pid_ak * BLOCK_SIZE_AK + coo_offsets < AK, ) K_coords = tl.load( coo_indices_ptr + pid_ak * BLOCK_SIZE_AK + coo_offsets + AK, mask=pid_ak * BLOCK_SIZE_AK + coo_offsets < AK, ) values = tl.load( coo_values_ptr + pid_ak * BLOCK_SIZE_AK + coo_offsets, mask=pid_ak * BLOCK_SIZE_AK + coo_offsets < AK, ) last_k = tl.min(K_coords) accum = tl.zeros((BLOCK_SIZE_B,), dtype=tl.float32) for ind in range(BLOCK_SIZE_AK): if ind + pid_ak * BLOCK_SIZE_AK < AK: # workaround to do A_coords[ind] a = tl.sum( tl.where( tl.arange(0, BLOCK_SIZE_AK) == ind, A_coords, tl.zeros((BLOCK_SIZE_AK,), dtype=tl.int64), ) ) k = tl.sum( tl.where( tl.arange(0, BLOCK_SIZE_AK) == ind, K_coords, tl.zeros((BLOCK_SIZE_AK,), dtype=tl.int64), ) ) v = tl.sum( tl.where( tl.arange(0, BLOCK_SIZE_AK) == ind, values, tl.zeros((BLOCK_SIZE_AK,), dtype=tl.float32), ) ) tl.device_assert(k < N) if k != last_k: tl.atomic_add( out_ptr + last_k * B + BLOCK_SIZE_B * pid_b + b_offsets, accum, mask=BLOCK_SIZE_B * pid_b + b_offsets < B, ) accum *= 0 last_k = k if v != 0: accum += v * tl.load(dense_ptr + a * stride_da + b_offsets, mask=b_offsets < B) tl.atomic_add( out_ptr + last_k * B + BLOCK_SIZE_B * pid_b + b_offsets, accum, mask=BLOCK_SIZE_B * pid_b + b_offsets < B, ) def triton_sparse_dense_matmul( sparse_indices: torch.Tensor, sparse_values: torch.Tensor, dense: torch.Tensor, ) -> torch.Tensor: """ calculates sparse @ dense (i.e reducing along the uncollated dimension of sparse) dense must be contiguous along dim 0 (in other words, dense.T is contiguous) sparse_indices is shape (A, k) sparse_values is shape (A, k) dense is shape (N, B) output is shape (A, B) """ N = dense.shape[0] assert sparse_indices.shape == sparse_values.shape assert sparse_indices.is_contiguous() assert sparse_values.is_contiguous() assert dense.is_contiguous() # contiguous along B A = sparse_indices.shape[0] K = sparse_indices.shape[1] B = dense.shape[1] out = torch.zeros(A, B, device=dense.device, dtype=sparse_values.dtype) triton_sparse_dense_matmul_kernel[(A,)]( sparse_indices, sparse_values, dense, out, stride_dn=dense.stride(0), stride_db=dense.stride(1), A=A, B=B, N=N, K=K, BLOCK_SIZE_K=triton.next_power_of_2(K), BLOCK_SIZE_B=triton.next_power_of_2(B), ) return out @triton.jit def triton_sparse_dense_matmul_kernel( sparse_indices_ptr, sparse_values_ptr, dense_ptr, out_ptr, stride_dn, stride_db, A, B, N, K, BLOCK_SIZE_K: tl.constexpr, BLOCK_SIZE_B: tl.constexpr, ): """ sparse_indices is shape (A, K) sparse_values is shape (A, K) dense is shape (N, B), contiguous along B out is shape (A, B) """ pid = tl.program_id(0) offsets_k = tl.arange(0, BLOCK_SIZE_K) sparse_indices = tl.load( sparse_indices_ptr + pid * K + offsets_k, mask=offsets_k < K ) # shape (K,) sparse_values = tl.load( sparse_values_ptr + pid * K + offsets_k, mask=offsets_k < K ) # shape (K,) accum = tl.zeros((BLOCK_SIZE_B,), dtype=tl.float32) offsets_b = tl.arange(0, BLOCK_SIZE_B) for k in range(K): # workaround to do sparse_indices[k] i = tl.sum( tl.where( tl.arange(0, BLOCK_SIZE_K) == k, sparse_indices, tl.zeros((BLOCK_SIZE_K,), dtype=tl.int64), ) ) # workaround to do sparse_values[k] v = tl.sum( tl.where( tl.arange(0, BLOCK_SIZE_K) == k, sparse_values, tl.zeros((BLOCK_SIZE_K,), dtype=tl.float32), ) ) tl.device_assert(i < N) if v != 0: accum += v * tl.load( dense_ptr + i * stride_dn + offsets_b * stride_db, mask=offsets_b < B ) tl.store(out_ptr + pid * B + offsets_b, accum.to(sparse_values.dtype), mask=offsets_b < B) def triton_dense_dense_sparseout_matmul( dense1: torch.Tensor, dense2: torch.Tensor, at_indices: torch.Tensor, ) -> torch.Tensor: """ dense1: shape (A, B) dense2: shape (B, N) at_indices: shape (A, K) out values: shape (A, K) calculates dense1 @ dense2 only for the indices in at_indices equivalent to (dense1 @ dense2).gather(1, at_indices) """ A, B = dense1.shape N = dense2.shape[1] assert dense2.shape[0] == B assert at_indices.shape[0] == A K = at_indices.shape[1] assert at_indices.is_contiguous() assert dense1.stride(1) == 1, "dense1 must be contiguous along B" assert dense2.stride(0) == 1, "dense2 must be contiguous along B" if K > 512: # print("WARN - using naive matmul for large K") # naive is more efficient for large K return (dense1 @ dense2).gather(1, at_indices) out = torch.zeros(A, K, device=dense1.device, dtype=dense1.dtype) # grid = lambda META: (triton.cdiv(A, META['BLOCK_SIZE_A']),) triton_dense_dense_sparseout_matmul_kernel[(A,)]( dense1, dense2, at_indices, out, stride_d1a=dense1.stride(0), stride_d1b=dense1.stride(1), stride_d2b=dense2.stride(0), stride_d2n=dense2.stride(1), A=A, B=B, N=N, K=K, BLOCK_SIZE_B=triton.next_power_of_2(B), BLOCK_SIZE_N=triton.next_power_of_2(N), BLOCK_SIZE_K=triton.next_power_of_2(K), ) return out @triton.jit def triton_dense_dense_sparseout_matmul_kernel( dense1_ptr, dense2_ptr, at_indices_ptr, out_ptr, stride_d1a, stride_d1b, stride_d2b, stride_d2n, A, B, N, K, BLOCK_SIZE_B: tl.constexpr, BLOCK_SIZE_N: tl.constexpr, BLOCK_SIZE_K: tl.constexpr, ): """ dense1: shape (A, B) dense2: shape (B, N) at_indices: shape (A, K) out values: shape (A, K) """ pid = tl.program_id(0) offsets_k = tl.arange(0, BLOCK_SIZE_K) at_indices = tl.load(at_indices_ptr + pid * K + offsets_k, mask=offsets_k < K) # shape (K,) offsets_b = tl.arange(0, BLOCK_SIZE_B) dense1 = tl.load( dense1_ptr + pid * stride_d1a + offsets_b * stride_d1b, mask=offsets_b < B ) # shape (B,) accum = tl.zeros((BLOCK_SIZE_K,), dtype=tl.float32) for k in range(K): # workaround to do at_indices[b] i = tl.sum( tl.where( tl.arange(0, BLOCK_SIZE_K) == k, at_indices, tl.zeros((BLOCK_SIZE_K,), dtype=tl.int64), ) ) tl.device_assert(i < N) dense2col = tl.load( dense2_ptr + offsets_b * stride_d2b + i * stride_d2n, mask=offsets_b < B ) # shape (B,) accum += tl.where( tl.arange(0, BLOCK_SIZE_K) == k, tl.sum(dense1 * dense2col), tl.zeros((BLOCK_SIZE_K,), dtype=tl.int64), ) tl.store(out_ptr + pid * K + offsets_k, accum, mask=offsets_k < K) class TritonDecoder(torch.autograd.Function): @staticmethod def forward(ctx, sparse_indices, sparse_values, decoder_weight): ctx.save_for_backward(sparse_indices, sparse_values, decoder_weight) return triton_sparse_dense_matmul(sparse_indices, sparse_values, decoder_weight.T) @staticmethod def backward(ctx, grad_output): sparse_indices, sparse_values, decoder_weight = ctx.saved_tensors assert grad_output.is_contiguous(), "grad_output must be contiguous" decoder_grad = triton_sparse_transpose_dense_matmul( sparse_indices, sparse_values, grad_output, N=decoder_weight.shape[1] ).T return ( None, triton_dense_dense_sparseout_matmul(grad_output, decoder_weight, sparse_indices), # decoder is contiguous when transposed so this is a matching layout decoder_grad, None, )
@triton.jit def triton_sparse_transpose_dense_matmul_kernel( coo_indices_ptr, coo_values_ptr, dense_ptr, out_ptr, stride_da, stride_db, B, N, AK, BLOCK_SIZE_AK: tl.constexpr, BLOCK_SIZE_B: tl.constexpr, ): """ coo_indices is shape (2, AK) coo_values is shape (AK,) dense is shape (A, B), contiguous along B out is shape (N, B) """ pid_ak = tl.program_id(0) pid_b = tl.program_id(1) coo_offsets = tl.arange(0, BLOCK_SIZE_AK) b_offsets = tl.arange(0, BLOCK_SIZE_B) A_coords = tl.load( coo_indices_ptr + pid_ak * BLOCK_SIZE_AK + coo_offsets, mask=pid_ak * BLOCK_SIZE_AK + coo_offsets < AK, ) K_coords = tl.load( coo_indices_ptr + pid_ak * BLOCK_SIZE_AK + coo_offsets + AK, mask=pid_ak * BLOCK_SIZE_AK + coo_offsets < AK, ) values = tl.load( coo_values_ptr + pid_ak * BLOCK_SIZE_AK + coo_offsets, mask=pid_ak * BLOCK_SIZE_AK + coo_offsets < AK, ) last_k = tl.min(K_coords) accum = tl.zeros((BLOCK_SIZE_B,), dtype=tl.float32) for ind in range(BLOCK_SIZE_AK): if ind + pid_ak * BLOCK_SIZE_AK < AK: # workaround to do A_coords[ind] a = tl.sum( tl.where( tl.arange(0, BLOCK_SIZE_AK) == ind, A_coords, tl.zeros((BLOCK_SIZE_AK,), dtype=tl.int64), ) ) k = tl.sum( tl.where( tl.arange(0, BLOCK_SIZE_AK) == ind, K_coords, tl.zeros((BLOCK_SIZE_AK,), dtype=tl.int64), ) ) v = tl.sum( tl.where( tl.arange(0, BLOCK_SIZE_AK) == ind, values, tl.zeros((BLOCK_SIZE_AK,), dtype=tl.float32), ) ) tl.device_assert(k < N) if k != last_k: tl.atomic_add( out_ptr + last_k * B + BLOCK_SIZE_B * pid_b + b_offsets, accum, mask=BLOCK_SIZE_B * pid_b + b_offsets < B, ) accum *= 0 last_k = k if v != 0: accum += v * tl.load(dense_ptr + a * stride_da + b_offsets, mask=b_offsets < B) tl.atomic_add( out_ptr + last_k * B + BLOCK_SIZE_B * pid_b + b_offsets, accum, mask=BLOCK_SIZE_B * pid_b + b_offsets < B, ) def triton_sparse_dense_matmul( sparse_indices: torch.Tensor, sparse_values: torch.Tensor, dense: torch.Tensor, ) -> torch.Tensor: """ calculates sparse @ dense (i.e reducing along the uncollated dimension of sparse) dense must be contiguous along dim 0 (in other words, dense.T is contiguous) sparse_indices is shape (A, k) sparse_values is shape (A, k) dense is shape (N, B) output is shape (A, B) """ N = dense.shape[0] assert sparse_indices.shape == sparse_values.shape assert sparse_indices.is_contiguous() assert sparse_values.is_contiguous() assert dense.is_contiguous() # contiguous along B A = sparse_indices.shape[0] K = sparse_indices.shape[1] B = dense.shape[1] out = torch.zeros(A, B, device=dense.device, dtype=sparse_values.dtype) triton_sparse_dense_matmul_kernel[(A,)]( sparse_indices, sparse_values, dense, out, stride_dn=dense.stride(0), stride_db=dense.stride(1), A=A, B=B, N=N, K=K, BLOCK_SIZE_K=triton.next_power_of_2(K), BLOCK_SIZE_B=triton.next_power_of_2(B), ) return out
ghidav/group-sae
group_sae/kernels.py
https://github.com/ghidav/group-sae/blob/e556eeac2af1e956a228a96e243230c510d4e62b/group_sae/kernels.py
""" Copied from https://github.com/openai/sparse_autoencoder/blob/main/sparse_autoencoder/kernels.py """ import torch import triton import triton.language as tl def triton_sparse_transpose_dense_matmul( sparse_indices: torch.Tensor, sparse_values: torch.Tensor, dense: torch.Tensor, N: int, BLOCK_SIZE_AK=128, ) -> torch.Tensor: """ calculates sparse.T @ dense (i.e reducing along the collated dimension of sparse) dense must be contiguous along dim 0 (in other words, dense.T is contiguous) sparse_indices is shape (A, k) sparse_values is shape (A, k) dense is shape (A, B) output is shape (N, B) """ assert sparse_indices.shape == sparse_values.shape assert sparse_indices.is_contiguous() assert sparse_values.is_contiguous() assert dense.is_contiguous() # contiguous along B K = sparse_indices.shape[1] A = dense.shape[0] assert sparse_indices.shape[0] == A # COO-format and sorted sorted_indices = sparse_indices.view(-1).sort() coo_indices = torch.stack( [ torch.arange(A, device=sparse_indices.device).repeat_interleave(K)[ sorted_indices.indices ], sorted_indices.values, ] ) # shape (2, A * K) coo_values = sparse_values.view(-1)[sorted_indices.indices] # shape (A * K,) return triton_coo_sparse_dense_matmul(coo_indices, coo_values, dense, N, BLOCK_SIZE_AK) def triton_coo_sparse_dense_matmul( coo_indices: torch.Tensor, coo_values: torch.Tensor, dense: torch.Tensor, N: int, BLOCK_SIZE_AK=128, ) -> torch.Tensor: AK = coo_indices.shape[1] B = dense.shape[1] out = torch.zeros(N, B, device=dense.device, dtype=coo_values.dtype) def grid(META): return triton.cdiv(AK, META["BLOCK_SIZE_AK"]), 1 triton_sparse_transpose_dense_matmul_kernel[grid]( coo_indices, coo_values, dense, out, stride_da=dense.stride(0), stride_db=dense.stride(1), B=B, N=N, AK=AK, BLOCK_SIZE_AK=BLOCK_SIZE_AK, BLOCK_SIZE_B=triton.next_power_of_2(B), ) return out @triton.jit def triton_sparse_transpose_dense_matmul_kernel( coo_indices_ptr, coo_values_ptr, dense_ptr, out_ptr, stride_da, stride_db, B, N, AK, BLOCK_SIZE_AK: tl.constexpr, BLOCK_SIZE_B: tl.constexpr, ): """ coo_indices is shape (2, AK) coo_values is shape (AK,) dense is shape (A, B), contiguous along B out is shape (N, B) """ pid_ak = tl.program_id(0) pid_b = tl.program_id(1) coo_offsets = tl.arange(0, BLOCK_SIZE_AK) b_offsets = tl.arange(0, BLOCK_SIZE_B) A_coords = tl.load( coo_indices_ptr + pid_ak * BLOCK_SIZE_AK + coo_offsets, mask=pid_ak * BLOCK_SIZE_AK + coo_offsets < AK, ) K_coords = tl.load( coo_indices_ptr + pid_ak * BLOCK_SIZE_AK + coo_offsets + AK, mask=pid_ak * BLOCK_SIZE_AK + coo_offsets < AK, ) values = tl.load( coo_values_ptr + pid_ak * BLOCK_SIZE_AK + coo_offsets, mask=pid_ak * BLOCK_SIZE_AK + coo_offsets < AK, ) last_k = tl.min(K_coords) accum = tl.zeros((BLOCK_SIZE_B,), dtype=tl.float32) for ind in range(BLOCK_SIZE_AK): if ind + pid_ak * BLOCK_SIZE_AK < AK: # workaround to do A_coords[ind] a = tl.sum( tl.where( tl.arange(0, BLOCK_SIZE_AK) == ind, A_coords, tl.zeros((BLOCK_SIZE_AK,), dtype=tl.int64), ) ) k = tl.sum( tl.where( tl.arange(0, BLOCK_SIZE_AK) == ind, K_coords, tl.zeros((BLOCK_SIZE_AK,), dtype=tl.int64), ) ) v = tl.sum( tl.where( tl.arange(0, BLOCK_SIZE_AK) == ind, values, tl.zeros((BLOCK_SIZE_AK,), dtype=tl.float32), ) ) tl.device_assert(k < N) if k != last_k: tl.atomic_add( out_ptr + last_k * B + BLOCK_SIZE_B * pid_b + b_offsets, accum, mask=BLOCK_SIZE_B * pid_b + b_offsets < B, ) accum *= 0 last_k = k if v != 0: accum += v * tl.load(dense_ptr + a * stride_da + b_offsets, mask=b_offsets < B) tl.atomic_add( out_ptr + last_k * B + BLOCK_SIZE_B * pid_b + b_offsets, accum, mask=BLOCK_SIZE_B * pid_b + b_offsets < B, ) def triton_sparse_dense_matmul( sparse_indices: torch.Tensor, sparse_values: torch.Tensor, dense: torch.Tensor, ) -> torch.Tensor: """ calculates sparse @ dense (i.e reducing along the uncollated dimension of sparse) dense must be contiguous along dim 0 (in other words, dense.T is contiguous) sparse_indices is shape (A, k) sparse_values is shape (A, k) dense is shape (N, B) output is shape (A, B) """ N = dense.shape[0] assert sparse_indices.shape == sparse_values.shape assert sparse_indices.is_contiguous() assert sparse_values.is_contiguous() assert dense.is_contiguous() # contiguous along B A = sparse_indices.shape[0] K = sparse_indices.shape[1] B = dense.shape[1] out = torch.zeros(A, B, device=dense.device, dtype=sparse_values.dtype) triton_sparse_dense_matmul_kernel[(A,)]( sparse_indices, sparse_values, dense, out, stride_dn=dense.stride(0), stride_db=dense.stride(1), A=A, B=B, N=N, K=K, BLOCK_SIZE_K=triton.next_power_of_2(K), BLOCK_SIZE_B=triton.next_power_of_2(B), ) return out @triton.jit def triton_sparse_dense_matmul_kernel( sparse_indices_ptr, sparse_values_ptr, dense_ptr, out_ptr, stride_dn, stride_db, A, B, N, K, BLOCK_SIZE_K: tl.constexpr, BLOCK_SIZE_B: tl.constexpr, ): """ sparse_indices is shape (A, K) sparse_values is shape (A, K) dense is shape (N, B), contiguous along B out is shape (A, B) """ pid = tl.program_id(0) offsets_k = tl.arange(0, BLOCK_SIZE_K) sparse_indices = tl.load( sparse_indices_ptr + pid * K + offsets_k, mask=offsets_k < K ) # shape (K,) sparse_values = tl.load( sparse_values_ptr + pid * K + offsets_k, mask=offsets_k < K ) # shape (K,) accum = tl.zeros((BLOCK_SIZE_B,), dtype=tl.float32) offsets_b = tl.arange(0, BLOCK_SIZE_B) for k in range(K): # workaround to do sparse_indices[k] i = tl.sum( tl.where( tl.arange(0, BLOCK_SIZE_K) == k, sparse_indices, tl.zeros((BLOCK_SIZE_K,), dtype=tl.int64), ) ) # workaround to do sparse_values[k] v = tl.sum( tl.where( tl.arange(0, BLOCK_SIZE_K) == k, sparse_values, tl.zeros((BLOCK_SIZE_K,), dtype=tl.float32), ) ) tl.device_assert(i < N) if v != 0: accum += v * tl.load( dense_ptr + i * stride_dn + offsets_b * stride_db, mask=offsets_b < B ) tl.store(out_ptr + pid * B + offsets_b, accum.to(sparse_values.dtype), mask=offsets_b < B) def triton_dense_dense_sparseout_matmul( dense1: torch.Tensor, dense2: torch.Tensor, at_indices: torch.Tensor, ) -> torch.Tensor: """ dense1: shape (A, B) dense2: shape (B, N) at_indices: shape (A, K) out values: shape (A, K) calculates dense1 @ dense2 only for the indices in at_indices equivalent to (dense1 @ dense2).gather(1, at_indices) """ A, B = dense1.shape N = dense2.shape[1] assert dense2.shape[0] == B assert at_indices.shape[0] == A K = at_indices.shape[1] assert at_indices.is_contiguous() assert dense1.stride(1) == 1, "dense1 must be contiguous along B" assert dense2.stride(0) == 1, "dense2 must be contiguous along B" if K > 512: # print("WARN - using naive matmul for large K") # naive is more efficient for large K return (dense1 @ dense2).gather(1, at_indices) out = torch.zeros(A, K, device=dense1.device, dtype=dense1.dtype) # grid = lambda META: (triton.cdiv(A, META['BLOCK_SIZE_A']),) triton_dense_dense_sparseout_matmul_kernel[(A,)]( dense1, dense2, at_indices, out, stride_d1a=dense1.stride(0), stride_d1b=dense1.stride(1), stride_d2b=dense2.stride(0), stride_d2n=dense2.stride(1), A=A, B=B, N=N, K=K, BLOCK_SIZE_B=triton.next_power_of_2(B), BLOCK_SIZE_N=triton.next_power_of_2(N), BLOCK_SIZE_K=triton.next_power_of_2(K), ) return out @triton.jit def triton_dense_dense_sparseout_matmul_kernel( dense1_ptr, dense2_ptr, at_indices_ptr, out_ptr, stride_d1a, stride_d1b, stride_d2b, stride_d2n, A, B, N, K, BLOCK_SIZE_B: tl.constexpr, BLOCK_SIZE_N: tl.constexpr, BLOCK_SIZE_K: tl.constexpr, ): """ dense1: shape (A, B) dense2: shape (B, N) at_indices: shape (A, K) out values: shape (A, K) """ pid = tl.program_id(0) offsets_k = tl.arange(0, BLOCK_SIZE_K) at_indices = tl.load(at_indices_ptr + pid * K + offsets_k, mask=offsets_k < K) # shape (K,) offsets_b = tl.arange(0, BLOCK_SIZE_B) dense1 = tl.load( dense1_ptr + pid * stride_d1a + offsets_b * stride_d1b, mask=offsets_b < B ) # shape (B,) accum = tl.zeros((BLOCK_SIZE_K,), dtype=tl.float32) for k in range(K): # workaround to do at_indices[b] i = tl.sum( tl.where( tl.arange(0, BLOCK_SIZE_K) == k, at_indices, tl.zeros((BLOCK_SIZE_K,), dtype=tl.int64), ) ) tl.device_assert(i < N) dense2col = tl.load( dense2_ptr + offsets_b * stride_d2b + i * stride_d2n, mask=offsets_b < B ) # shape (B,) accum += tl.where( tl.arange(0, BLOCK_SIZE_K) == k, tl.sum(dense1 * dense2col), tl.zeros((BLOCK_SIZE_K,), dtype=tl.int64), ) tl.store(out_ptr + pid * K + offsets_k, accum, mask=offsets_k < K) class TritonDecoder(torch.autograd.Function): @staticmethod def forward(ctx, sparse_indices, sparse_values, decoder_weight): ctx.save_for_backward(sparse_indices, sparse_values, decoder_weight) return triton_sparse_dense_matmul(sparse_indices, sparse_values, decoder_weight.T) @staticmethod def backward(ctx, grad_output): sparse_indices, sparse_values, decoder_weight = ctx.saved_tensors assert grad_output.is_contiguous(), "grad_output must be contiguous" decoder_grad = triton_sparse_transpose_dense_matmul( sparse_indices, sparse_values, grad_output, N=decoder_weight.shape[1] ).T return ( None, triton_dense_dense_sparseout_matmul(grad_output, decoder_weight, sparse_indices), # decoder is contiguous when transposed so this is a matching layout decoder_grad, None, )
@triton.jit def triton_sparse_dense_matmul_kernel( sparse_indices_ptr, sparse_values_ptr, dense_ptr, out_ptr, stride_dn, stride_db, A, B, N, K, BLOCK_SIZE_K: tl.constexpr, BLOCK_SIZE_B: tl.constexpr, ): """ sparse_indices is shape (A, K) sparse_values is shape (A, K) dense is shape (N, B), contiguous along B out is shape (A, B) """ pid = tl.program_id(0) offsets_k = tl.arange(0, BLOCK_SIZE_K) sparse_indices = tl.load( sparse_indices_ptr + pid * K + offsets_k, mask=offsets_k < K ) # shape (K,) sparse_values = tl.load( sparse_values_ptr + pid * K + offsets_k, mask=offsets_k < K ) # shape (K,) accum = tl.zeros((BLOCK_SIZE_B,), dtype=tl.float32) offsets_b = tl.arange(0, BLOCK_SIZE_B) for k in range(K): # workaround to do sparse_indices[k] i = tl.sum( tl.where( tl.arange(0, BLOCK_SIZE_K) == k, sparse_indices, tl.zeros((BLOCK_SIZE_K,), dtype=tl.int64), ) ) # workaround to do sparse_values[k] v = tl.sum( tl.where( tl.arange(0, BLOCK_SIZE_K) == k, sparse_values, tl.zeros((BLOCK_SIZE_K,), dtype=tl.float32), ) ) tl.device_assert(i < N) if v != 0: accum += v * tl.load( dense_ptr + i * stride_dn + offsets_b * stride_db, mask=offsets_b < B ) tl.store(out_ptr + pid * B + offsets_b, accum.to(sparse_values.dtype), mask=offsets_b < B) def triton_dense_dense_sparseout_matmul( dense1: torch.Tensor, dense2: torch.Tensor, at_indices: torch.Tensor, ) -> torch.Tensor: """ dense1: shape (A, B) dense2: shape (B, N) at_indices: shape (A, K) out values: shape (A, K) calculates dense1 @ dense2 only for the indices in at_indices equivalent to (dense1 @ dense2).gather(1, at_indices) """ A, B = dense1.shape N = dense2.shape[1] assert dense2.shape[0] == B assert at_indices.shape[0] == A K = at_indices.shape[1] assert at_indices.is_contiguous() assert dense1.stride(1) == 1, "dense1 must be contiguous along B" assert dense2.stride(0) == 1, "dense2 must be contiguous along B" if K > 512: # print("WARN - using naive matmul for large K") # naive is more efficient for large K return (dense1 @ dense2).gather(1, at_indices) out = torch.zeros(A, K, device=dense1.device, dtype=dense1.dtype) # grid = lambda META: (triton.cdiv(A, META['BLOCK_SIZE_A']),) triton_dense_dense_sparseout_matmul_kernel[(A,)]( dense1, dense2, at_indices, out, stride_d1a=dense1.stride(0), stride_d1b=dense1.stride(1), stride_d2b=dense2.stride(0), stride_d2n=dense2.stride(1), A=A, B=B, N=N, K=K, BLOCK_SIZE_B=triton.next_power_of_2(B), BLOCK_SIZE_N=triton.next_power_of_2(N), BLOCK_SIZE_K=triton.next_power_of_2(K), ) return out
ghidav/group-sae
group_sae/kernels.py
https://github.com/ghidav/group-sae/blob/e556eeac2af1e956a228a96e243230c510d4e62b/group_sae/kernels.py
""" Copied from https://github.com/openai/sparse_autoencoder/blob/main/sparse_autoencoder/kernels.py """ import torch import triton import triton.language as tl def triton_sparse_transpose_dense_matmul( sparse_indices: torch.Tensor, sparse_values: torch.Tensor, dense: torch.Tensor, N: int, BLOCK_SIZE_AK=128, ) -> torch.Tensor: """ calculates sparse.T @ dense (i.e reducing along the collated dimension of sparse) dense must be contiguous along dim 0 (in other words, dense.T is contiguous) sparse_indices is shape (A, k) sparse_values is shape (A, k) dense is shape (A, B) output is shape (N, B) """ assert sparse_indices.shape == sparse_values.shape assert sparse_indices.is_contiguous() assert sparse_values.is_contiguous() assert dense.is_contiguous() # contiguous along B K = sparse_indices.shape[1] A = dense.shape[0] assert sparse_indices.shape[0] == A # COO-format and sorted sorted_indices = sparse_indices.view(-1).sort() coo_indices = torch.stack( [ torch.arange(A, device=sparse_indices.device).repeat_interleave(K)[ sorted_indices.indices ], sorted_indices.values, ] ) # shape (2, A * K) coo_values = sparse_values.view(-1)[sorted_indices.indices] # shape (A * K,) return triton_coo_sparse_dense_matmul(coo_indices, coo_values, dense, N, BLOCK_SIZE_AK) def triton_coo_sparse_dense_matmul( coo_indices: torch.Tensor, coo_values: torch.Tensor, dense: torch.Tensor, N: int, BLOCK_SIZE_AK=128, ) -> torch.Tensor: AK = coo_indices.shape[1] B = dense.shape[1] out = torch.zeros(N, B, device=dense.device, dtype=coo_values.dtype) def grid(META): return triton.cdiv(AK, META["BLOCK_SIZE_AK"]), 1 triton_sparse_transpose_dense_matmul_kernel[grid]( coo_indices, coo_values, dense, out, stride_da=dense.stride(0), stride_db=dense.stride(1), B=B, N=N, AK=AK, BLOCK_SIZE_AK=BLOCK_SIZE_AK, BLOCK_SIZE_B=triton.next_power_of_2(B), ) return out @triton.jit def triton_sparse_transpose_dense_matmul_kernel( coo_indices_ptr, coo_values_ptr, dense_ptr, out_ptr, stride_da, stride_db, B, N, AK, BLOCK_SIZE_AK: tl.constexpr, BLOCK_SIZE_B: tl.constexpr, ): """ coo_indices is shape (2, AK) coo_values is shape (AK,) dense is shape (A, B), contiguous along B out is shape (N, B) """ pid_ak = tl.program_id(0) pid_b = tl.program_id(1) coo_offsets = tl.arange(0, BLOCK_SIZE_AK) b_offsets = tl.arange(0, BLOCK_SIZE_B) A_coords = tl.load( coo_indices_ptr + pid_ak * BLOCK_SIZE_AK + coo_offsets, mask=pid_ak * BLOCK_SIZE_AK + coo_offsets < AK, ) K_coords = tl.load( coo_indices_ptr + pid_ak * BLOCK_SIZE_AK + coo_offsets + AK, mask=pid_ak * BLOCK_SIZE_AK + coo_offsets < AK, ) values = tl.load( coo_values_ptr + pid_ak * BLOCK_SIZE_AK + coo_offsets, mask=pid_ak * BLOCK_SIZE_AK + coo_offsets < AK, ) last_k = tl.min(K_coords) accum = tl.zeros((BLOCK_SIZE_B,), dtype=tl.float32) for ind in range(BLOCK_SIZE_AK): if ind + pid_ak * BLOCK_SIZE_AK < AK: # workaround to do A_coords[ind] a = tl.sum( tl.where( tl.arange(0, BLOCK_SIZE_AK) == ind, A_coords, tl.zeros((BLOCK_SIZE_AK,), dtype=tl.int64), ) ) k = tl.sum( tl.where( tl.arange(0, BLOCK_SIZE_AK) == ind, K_coords, tl.zeros((BLOCK_SIZE_AK,), dtype=tl.int64), ) ) v = tl.sum( tl.where( tl.arange(0, BLOCK_SIZE_AK) == ind, values, tl.zeros((BLOCK_SIZE_AK,), dtype=tl.float32), ) ) tl.device_assert(k < N) if k != last_k: tl.atomic_add( out_ptr + last_k * B + BLOCK_SIZE_B * pid_b + b_offsets, accum, mask=BLOCK_SIZE_B * pid_b + b_offsets < B, ) accum *= 0 last_k = k if v != 0: accum += v * tl.load(dense_ptr + a * stride_da + b_offsets, mask=b_offsets < B) tl.atomic_add( out_ptr + last_k * B + BLOCK_SIZE_B * pid_b + b_offsets, accum, mask=BLOCK_SIZE_B * pid_b + b_offsets < B, ) def triton_sparse_dense_matmul( sparse_indices: torch.Tensor, sparse_values: torch.Tensor, dense: torch.Tensor, ) -> torch.Tensor: """ calculates sparse @ dense (i.e reducing along the uncollated dimension of sparse) dense must be contiguous along dim 0 (in other words, dense.T is contiguous) sparse_indices is shape (A, k) sparse_values is shape (A, k) dense is shape (N, B) output is shape (A, B) """ N = dense.shape[0] assert sparse_indices.shape == sparse_values.shape assert sparse_indices.is_contiguous() assert sparse_values.is_contiguous() assert dense.is_contiguous() # contiguous along B A = sparse_indices.shape[0] K = sparse_indices.shape[1] B = dense.shape[1] out = torch.zeros(A, B, device=dense.device, dtype=sparse_values.dtype) triton_sparse_dense_matmul_kernel[(A,)]( sparse_indices, sparse_values, dense, out, stride_dn=dense.stride(0), stride_db=dense.stride(1), A=A, B=B, N=N, K=K, BLOCK_SIZE_K=triton.next_power_of_2(K), BLOCK_SIZE_B=triton.next_power_of_2(B), ) return out @triton.jit def triton_sparse_dense_matmul_kernel( sparse_indices_ptr, sparse_values_ptr, dense_ptr, out_ptr, stride_dn, stride_db, A, B, N, K, BLOCK_SIZE_K: tl.constexpr, BLOCK_SIZE_B: tl.constexpr, ): """ sparse_indices is shape (A, K) sparse_values is shape (A, K) dense is shape (N, B), contiguous along B out is shape (A, B) """ pid = tl.program_id(0) offsets_k = tl.arange(0, BLOCK_SIZE_K) sparse_indices = tl.load( sparse_indices_ptr + pid * K + offsets_k, mask=offsets_k < K ) # shape (K,) sparse_values = tl.load( sparse_values_ptr + pid * K + offsets_k, mask=offsets_k < K ) # shape (K,) accum = tl.zeros((BLOCK_SIZE_B,), dtype=tl.float32) offsets_b = tl.arange(0, BLOCK_SIZE_B) for k in range(K): # workaround to do sparse_indices[k] i = tl.sum( tl.where( tl.arange(0, BLOCK_SIZE_K) == k, sparse_indices, tl.zeros((BLOCK_SIZE_K,), dtype=tl.int64), ) ) # workaround to do sparse_values[k] v = tl.sum( tl.where( tl.arange(0, BLOCK_SIZE_K) == k, sparse_values, tl.zeros((BLOCK_SIZE_K,), dtype=tl.float32), ) ) tl.device_assert(i < N) if v != 0: accum += v * tl.load( dense_ptr + i * stride_dn + offsets_b * stride_db, mask=offsets_b < B ) tl.store(out_ptr + pid * B + offsets_b, accum.to(sparse_values.dtype), mask=offsets_b < B) def triton_dense_dense_sparseout_matmul( dense1: torch.Tensor, dense2: torch.Tensor, at_indices: torch.Tensor, ) -> torch.Tensor: """ dense1: shape (A, B) dense2: shape (B, N) at_indices: shape (A, K) out values: shape (A, K) calculates dense1 @ dense2 only for the indices in at_indices equivalent to (dense1 @ dense2).gather(1, at_indices) """ A, B = dense1.shape N = dense2.shape[1] assert dense2.shape[0] == B assert at_indices.shape[0] == A K = at_indices.shape[1] assert at_indices.is_contiguous() assert dense1.stride(1) == 1, "dense1 must be contiguous along B" assert dense2.stride(0) == 1, "dense2 must be contiguous along B" if K > 512: # print("WARN - using naive matmul for large K") # naive is more efficient for large K return (dense1 @ dense2).gather(1, at_indices) out = torch.zeros(A, K, device=dense1.device, dtype=dense1.dtype) # grid = lambda META: (triton.cdiv(A, META['BLOCK_SIZE_A']),) triton_dense_dense_sparseout_matmul_kernel[(A,)]( dense1, dense2, at_indices, out, stride_d1a=dense1.stride(0), stride_d1b=dense1.stride(1), stride_d2b=dense2.stride(0), stride_d2n=dense2.stride(1), A=A, B=B, N=N, K=K, BLOCK_SIZE_B=triton.next_power_of_2(B), BLOCK_SIZE_N=triton.next_power_of_2(N), BLOCK_SIZE_K=triton.next_power_of_2(K), ) return out @triton.jit def triton_dense_dense_sparseout_matmul_kernel( dense1_ptr, dense2_ptr, at_indices_ptr, out_ptr, stride_d1a, stride_d1b, stride_d2b, stride_d2n, A, B, N, K, BLOCK_SIZE_B: tl.constexpr, BLOCK_SIZE_N: tl.constexpr, BLOCK_SIZE_K: tl.constexpr, ): """ dense1: shape (A, B) dense2: shape (B, N) at_indices: shape (A, K) out values: shape (A, K) """ pid = tl.program_id(0) offsets_k = tl.arange(0, BLOCK_SIZE_K) at_indices = tl.load(at_indices_ptr + pid * K + offsets_k, mask=offsets_k < K) # shape (K,) offsets_b = tl.arange(0, BLOCK_SIZE_B) dense1 = tl.load( dense1_ptr + pid * stride_d1a + offsets_b * stride_d1b, mask=offsets_b < B ) # shape (B,) accum = tl.zeros((BLOCK_SIZE_K,), dtype=tl.float32) for k in range(K): # workaround to do at_indices[b] i = tl.sum( tl.where( tl.arange(0, BLOCK_SIZE_K) == k, at_indices, tl.zeros((BLOCK_SIZE_K,), dtype=tl.int64), ) ) tl.device_assert(i < N) dense2col = tl.load( dense2_ptr + offsets_b * stride_d2b + i * stride_d2n, mask=offsets_b < B ) # shape (B,) accum += tl.where( tl.arange(0, BLOCK_SIZE_K) == k, tl.sum(dense1 * dense2col), tl.zeros((BLOCK_SIZE_K,), dtype=tl.int64), ) tl.store(out_ptr + pid * K + offsets_k, accum, mask=offsets_k < K) class TritonDecoder(torch.autograd.Function): @staticmethod def forward(ctx, sparse_indices, sparse_values, decoder_weight): ctx.save_for_backward(sparse_indices, sparse_values, decoder_weight) return triton_sparse_dense_matmul(sparse_indices, sparse_values, decoder_weight.T) @staticmethod def backward(ctx, grad_output): sparse_indices, sparse_values, decoder_weight = ctx.saved_tensors assert grad_output.is_contiguous(), "grad_output must be contiguous" decoder_grad = triton_sparse_transpose_dense_matmul( sparse_indices, sparse_values, grad_output, N=decoder_weight.shape[1] ).T return ( None, triton_dense_dense_sparseout_matmul(grad_output, decoder_weight, sparse_indices), # decoder is contiguous when transposed so this is a matching layout decoder_grad, None, )
@triton.jit def triton_dense_dense_sparseout_matmul_kernel( dense1_ptr, dense2_ptr, at_indices_ptr, out_ptr, stride_d1a, stride_d1b, stride_d2b, stride_d2n, A, B, N, K, BLOCK_SIZE_B: tl.constexpr, BLOCK_SIZE_N: tl.constexpr, BLOCK_SIZE_K: tl.constexpr, ): """ dense1: shape (A, B) dense2: shape (B, N) at_indices: shape (A, K) out values: shape (A, K) """ pid = tl.program_id(0) offsets_k = tl.arange(0, BLOCK_SIZE_K) at_indices = tl.load(at_indices_ptr + pid * K + offsets_k, mask=offsets_k < K) # shape (K,) offsets_b = tl.arange(0, BLOCK_SIZE_B) dense1 = tl.load( dense1_ptr + pid * stride_d1a + offsets_b * stride_d1b, mask=offsets_b < B ) # shape (B,) accum = tl.zeros((BLOCK_SIZE_K,), dtype=tl.float32) for k in range(K): # workaround to do at_indices[b] i = tl.sum( tl.where( tl.arange(0, BLOCK_SIZE_K) == k, at_indices, tl.zeros((BLOCK_SIZE_K,), dtype=tl.int64), ) ) tl.device_assert(i < N) dense2col = tl.load( dense2_ptr + offsets_b * stride_d2b + i * stride_d2n, mask=offsets_b < B ) # shape (B,) accum += tl.where( tl.arange(0, BLOCK_SIZE_K) == k, tl.sum(dense1 * dense2col), tl.zeros((BLOCK_SIZE_K,), dtype=tl.int64), ) tl.store(out_ptr + pid * K + offsets_k, accum, mask=offsets_k < K) class TritonDecoder(torch.autograd.Function): @staticmethod def forward(ctx, sparse_indices, sparse_values, decoder_weight): ctx.save_for_backward(sparse_indices, sparse_values, decoder_weight) return triton_sparse_dense_matmul(sparse_indices, sparse_values, decoder_weight.T) @staticmethod def backward(ctx, grad_output): sparse_indices, sparse_values, decoder_weight = ctx.saved_tensors assert grad_output.is_contiguous(), "grad_output must be contiguous" decoder_grad = triton_sparse_transpose_dense_matmul( sparse_indices, sparse_values, grad_output, N=decoder_weight.shape[1] ).T return ( None, triton_dense_dense_sparseout_matmul(grad_output, decoder_weight, sparse_indices), # decoder is contiguous when transposed so this is a matching layout decoder_grad, None, )
congtuong/whisper-4-2gpu
triton_ops.py
https://github.com/congtuong/whisper-4-2gpu/blob/2ee389299968590d49dc30571ed2c5f844c0a7de/triton_ops.py
from functools import lru_cache import numpy as np import torch try: import triton import triton.language as tl except ImportError: raise RuntimeError("triton import failed; try `pip install --pre triton`") @triton.jit def dtw_kernel( cost, trace, x, x_stride, cost_stride, trace_stride, N, M, BLOCK_SIZE: tl.constexpr ): offsets = tl.arange(0, BLOCK_SIZE) mask = offsets < M for k in range(1, N + M + 1): # k = i + j print(k) tl.debug_barrier() p0 = cost + (k - 1) * cost_stride p1 = cost + k * cost_stride p2 = cost + k * cost_stride + 1 c0 = tl.load(p0 + offsets, mask=mask) c1 = tl.load(p1 + offsets, mask=mask) c2 = tl.load(p2 + offsets, mask=mask) x_row = tl.load(x + (k - 1) * x_stride + offsets, mask=mask, other=0) cost_row = x_row + tl.minimum(tl.minimum(c0, c1), c2) cost_ptr = cost + (k + 1) * cost_stride + 1 tl.store(cost_ptr + offsets, cost_row, mask=mask) trace_ptr = trace + (k + 1) * trace_stride + 1 tl.store(trace_ptr + offsets, 2, mask=mask & (c2 <= c0) & (c2 <= c1)) tl.store(trace_ptr + offsets, 1, mask=mask & (c1 <= c0) & (c1 <= c2)) tl.store(trace_ptr + offsets, 0, mask=mask & (c0 <= c1) & (c0 <= c2)) print(k) @lru_cache(maxsize=None) def median_kernel(filter_width: int): @triton.jit def kernel( y, x, x_stride, y_stride, BLOCK_SIZE: tl.constexpr ): # x.shape[-1] == filter_width row_idx = tl.program_id(0) offsets = tl.arange(0, BLOCK_SIZE) mask = offsets < y_stride x_ptr = x + row_idx * x_stride # noqa: F841 y_ptr = y + row_idx * y_stride LOAD_ALL_ROWS_HERE # noqa: F821 BUBBLESORT_HERE # noqa: F821 tl.store(y_ptr + offsets, MIDDLE_ROW_HERE, mask=mask) # noqa: F821 kernel = triton.JITFunction(kernel.fn) kernel.src = kernel.src.replace( " LOAD_ALL_ROWS_HERE", "\n".join( [ f" row{i} = tl.load(x_ptr + offsets + {i}, mask=mask)" for i in range(filter_width) ] ), ) kernel.src = kernel.src.replace( " BUBBLESORT_HERE", "\n\n".join( [ "\n\n".join( [ "\n".join( [ f" smaller = tl.where(row{j} < row{j + 1}, row{j}, row{j + 1})", f" larger = tl.where(row{j} > row{j + 1}, row{j}, row{j + 1})", f" row{j} = smaller", f" row{j + 1} = larger", ] ) for j in range(filter_width - i - 1) ] ) for i in range(filter_width // 2 + 1) ] ), ) kernel.src = kernel.src.replace("MIDDLE_ROW_HERE", f"row{filter_width // 2}") return kernel def median_filter_cuda(x: torch.Tensor, filter_width: int): """Apply a median filter of given width along the last dimension of x""" slices = x.contiguous().unfold(-1, filter_width, 1) grid = np.prod(slices.shape[:-2]) kernel = median_kernel(filter_width) y = torch.empty_like(slices[..., 0]) BLOCK_SIZE = 1 << (y.stride(-2) - 1).bit_length() kernel[(grid,)](y, x, x.stride(-2), y.stride(-2), BLOCK_SIZE=BLOCK_SIZE) return y
@triton.jit def dtw_kernel( cost, trace, x, x_stride, cost_stride, trace_stride, N, M, BLOCK_SIZE: tl.constexpr ): offsets = tl.arange(0, BLOCK_SIZE) mask = offsets < M for k in range(1, N + M + 1): # k = i + j print(k) tl.debug_barrier() p0 = cost + (k - 1) * cost_stride p1 = cost + k * cost_stride p2 = cost + k * cost_stride + 1 c0 = tl.load(p0 + offsets, mask=mask) c1 = tl.load(p1 + offsets, mask=mask) c2 = tl.load(p2 + offsets, mask=mask) x_row = tl.load(x + (k - 1) * x_stride + offsets, mask=mask, other=0) cost_row = x_row + tl.minimum(tl.minimum(c0, c1), c2) cost_ptr = cost + (k + 1) * cost_stride + 1 tl.store(cost_ptr + offsets, cost_row, mask=mask) trace_ptr = trace + (k + 1) * trace_stride + 1 tl.store(trace_ptr + offsets, 2, mask=mask & (c2 <= c0) & (c2 <= c1)) tl.store(trace_ptr + offsets, 1, mask=mask & (c1 <= c0) & (c1 <= c2)) tl.store(trace_ptr + offsets, 0, mask=mask & (c0 <= c1) & (c0 <= c2)) print(k) @lru_cache(maxsize=None) def median_kernel(filter_width: int):
congtuong/whisper-4-2gpu
triton_ops.py
https://github.com/congtuong/whisper-4-2gpu/blob/2ee389299968590d49dc30571ed2c5f844c0a7de/triton_ops.py
from functools import lru_cache import numpy as np import torch try: import triton import triton.language as tl except ImportError: raise RuntimeError("triton import failed; try `pip install --pre triton`") @triton.jit def dtw_kernel( cost, trace, x, x_stride, cost_stride, trace_stride, N, M, BLOCK_SIZE: tl.constexpr ): offsets = tl.arange(0, BLOCK_SIZE) mask = offsets < M for k in range(1, N + M + 1): # k = i + j print(k) tl.debug_barrier() p0 = cost + (k - 1) * cost_stride p1 = cost + k * cost_stride p2 = cost + k * cost_stride + 1 c0 = tl.load(p0 + offsets, mask=mask) c1 = tl.load(p1 + offsets, mask=mask) c2 = tl.load(p2 + offsets, mask=mask) x_row = tl.load(x + (k - 1) * x_stride + offsets, mask=mask, other=0) cost_row = x_row + tl.minimum(tl.minimum(c0, c1), c2) cost_ptr = cost + (k + 1) * cost_stride + 1 tl.store(cost_ptr + offsets, cost_row, mask=mask) trace_ptr = trace + (k + 1) * trace_stride + 1 tl.store(trace_ptr + offsets, 2, mask=mask & (c2 <= c0) & (c2 <= c1)) tl.store(trace_ptr + offsets, 1, mask=mask & (c1 <= c0) & (c1 <= c2)) tl.store(trace_ptr + offsets, 0, mask=mask & (c0 <= c1) & (c0 <= c2)) print(k) @lru_cache(maxsize=None) def median_kernel(filter_width: int): @triton.jit def kernel( y, x, x_stride, y_stride, BLOCK_SIZE: tl.constexpr ): # x.shape[-1] == filter_width row_idx = tl.program_id(0) offsets = tl.arange(0, BLOCK_SIZE) mask = offsets < y_stride x_ptr = x + row_idx * x_stride # noqa: F841 y_ptr = y + row_idx * y_stride LOAD_ALL_ROWS_HERE # noqa: F821 BUBBLESORT_HERE # noqa: F821 tl.store(y_ptr + offsets, MIDDLE_ROW_HERE, mask=mask) # noqa: F821 kernel = triton.JITFunction(kernel.fn) kernel.src = kernel.src.replace( " LOAD_ALL_ROWS_HERE", "\n".join( [ f" row{i} = tl.load(x_ptr + offsets + {i}, mask=mask)" for i in range(filter_width) ] ), ) kernel.src = kernel.src.replace( " BUBBLESORT_HERE", "\n\n".join( [ "\n\n".join( [ "\n".join( [ f" smaller = tl.where(row{j} < row{j + 1}, row{j}, row{j + 1})", f" larger = tl.where(row{j} > row{j + 1}, row{j}, row{j + 1})", f" row{j} = smaller", f" row{j + 1} = larger", ] ) for j in range(filter_width - i - 1) ] ) for i in range(filter_width // 2 + 1) ] ), ) kernel.src = kernel.src.replace("MIDDLE_ROW_HERE", f"row{filter_width // 2}") return kernel def median_filter_cuda(x: torch.Tensor, filter_width: int): """Apply a median filter of given width along the last dimension of x""" slices = x.contiguous().unfold(-1, filter_width, 1) grid = np.prod(slices.shape[:-2]) kernel = median_kernel(filter_width) y = torch.empty_like(slices[..., 0]) BLOCK_SIZE = 1 << (y.stride(-2) - 1).bit_length() kernel[(grid,)](y, x, x.stride(-2), y.stride(-2), BLOCK_SIZE=BLOCK_SIZE) return y
@triton.jit def kernel( y, x, x_stride, y_stride, BLOCK_SIZE: tl.constexpr ): # x.shape[-1] == filter_width row_idx = tl.program_id(0) offsets = tl.arange(0, BLOCK_SIZE) mask = offsets < y_stride x_ptr = x + row_idx * x_stride # noqa: F841 y_ptr = y + row_idx * y_stride LOAD_ALL_ROWS_HERE # noqa: F821 BUBBLESORT_HERE # noqa: F821 tl.store(y_ptr + offsets, MIDDLE_ROW_HERE, mask=mask) # noqa: F821 kernel = triton.JITFunction(kernel.fn) kernel.src = kernel.src.replace( " LOAD_ALL_ROWS_HERE", "\n".join( [ f" row{i} = tl.load(x_ptr + offsets + {i}, mask=mask)" for i in range(filter_width) ] ), ) kernel.src = kernel.src.replace( " BUBBLESORT_HERE", "\n\n".join( [ "\n\n".join( [ "\n".join( [ f" smaller = tl.where(row{j} < row{j + 1}, row{j}, row{j + 1})", f" larger = tl.where(row{j} > row{j + 1}, row{j}, row{j + 1})", f" row{j} = smaller", f" row{j + 1} = larger", ] ) for j in range(filter_width - i - 1) ] ) for i in range(filter_width // 2 + 1) ] ), ) kernel.src = kernel.src.replace("MIDDLE_ROW_HERE", f"row{filter_width // 2}") return kernel def median_filter_cuda(x: torch.Tensor, filter_width: int): """Apply a median filter of given width along the last dimension of x""" slices = x.contiguous().unfold(-1, filter_width, 1) grid = np.prod(slices.shape[:-2]) kernel = median_kernel(filter_width) y = torch.empty_like(slices[..., 0]) BLOCK_SIZE = 1 << (y.stride(-2) - 1).bit_length() kernel[(grid,)](y, x, x.stride(-2), y.stride(-2), BLOCK_SIZE=BLOCK_SIZE) return y
SwekeR-463/100kernels
day46/tlswiglu.py
https://github.com/SwekeR-463/100kernels/blob/80b7cea5a2b66f428380b2cb723147379f849f88/day46/tlswiglu.py
import triton import triton.language as tl import torch @triton.jit def swiglu_forward_kernel( x_ptr, y_ptr, n_elements: tl.constexpr, BLOCK_SIZE: tl.constexpr, feature_dim: tl.constexpr # feature dimension (size of x_W and x_V) ): pid = tl.program_id(axis=0) block_start = pid * BLOCK_SIZE offsets = block_start + tl.arange(0, BLOCK_SIZE) mask = offsets < n_elements # load input tensor (split into x_W and x_V) x_W = tl.load(x_ptr + offsets, mask=mask, other=0.0) x_V = tl.load(x_ptr + offsets + feature_dim, mask=mask, other=0.0) # SwiGLU activation: SiLU(x_W) * x_V swiglu = (x_W * tl.sigmoid(x_W)) * x_V tl.store(y_ptr + offsets, swiglu, mask=mask) @triton.jit def swiglu_backward_kernel( dy_ptr, # pointer to gradient of loss w.r.t. output x_ptr, # pointer to input tensor dx_ptr, # pointer to gradient of loss w.r.t. input n_elements: tl.constexpr, BLOCK_SIZE: tl.constexpr, feature_dim: tl.constexpr # feature dimension (size of x_W and x_V) ): pid = tl.program_id(axis=0) block_start = pid * BLOCK_SIZE offsets = block_start + tl.arange(0, BLOCK_SIZE) mask = offsets < n_elements # load inputs (split into x_W and x_V) x_W = tl.load(x_ptr + offsets, mask=mask, other=0.0) x_V = tl.load(x_ptr + offsets + feature_dim, mask=mask, other=0.0) dy = tl.load(dy_ptr + offsets, mask=mask, other=0.0) # compute SiLU and its derivative for x_W sig = tl.sigmoid(x_W) sig_derivative = sig * (1 - sig) silu_grad = sig + x_W * sig_derivative # compute gradients for x_W and x_V dx_W = dy * x_V * silu_grad dx_V = dy * (x_W * sig) tl.store(dx_ptr + offsets, dx_W, mask=mask) tl.store(dx_ptr + offsets + feature_dim, dx_V, mask=mask) def swiglu_forward(x): n_elements = x.numel() // 2 # output has half the feature size feature_dim = x.shape[-1] // 2 # split input into two halves y = torch.empty_like(x[..., :feature_dim]) grid = (triton.cdiv(n_elements, 1024),) swiglu_forward_kernel[grid](x, y, n_elements, BLOCK_SIZE=1024, feature_dim=feature_dim, num_warps=4) return y def swiglu_backward(dy, x): n_elements = x.numel() // 2 # output has half the feature size feature_dim = x.shape[-1] // 2 # split input into two halves dx = torch.empty_like(x) grid = (triton.cdiv(n_elements, 1024),) swiglu_backward_kernel[grid](dy, x, dx, n_elements, BLOCK_SIZE=1024, feature_dim=feature_dim, num_warps=4) return dx class SwiGLUTriton(torch.autograd.Function): @staticmethod def forward(ctx, x): y = swiglu_forward(x) ctx.save_for_backward(x) # save input for backward pass return y @staticmethod def backward(ctx, dy): x, = ctx.saved_tensors dx = swiglu_backward(dy, x) return dx class TritonSwiGLULayer(torch.nn.Module): def forward(self, x): return SwiGLUTriton.apply(x) # test the implementation x = torch.randn(4096, device='cuda', requires_grad=True, dtype=torch.float64) y = SwiGLUTriton.apply(x) # backward test dy = torch.ones_like(y) # assume dL/dy = 1 dx = torch.autograd.grad(y, x, grad_outputs=dy)[0] print(y) # forward pass output print(dx) # backward pass gradients # gradient check test = torch.autograd.gradcheck(SwiGLUTriton.apply, (x,), eps=1e-6, atol=1e-5, nondet_tol=1e-5) print("Gradient check passed:", test) # True
@triton.jit def swiglu_forward_kernel( x_ptr, y_ptr, n_elements: tl.constexpr, BLOCK_SIZE: tl.constexpr, feature_dim: tl.constexpr # feature dimension (size of x_W and x_V) ): pid = tl.program_id(axis=0) block_start = pid * BLOCK_SIZE offsets = block_start + tl.arange(0, BLOCK_SIZE) mask = offsets < n_elements # load input tensor (split into x_W and x_V) x_W = tl.load(x_ptr + offsets, mask=mask, other=0.0) x_V = tl.load(x_ptr + offsets + feature_dim, mask=mask, other=0.0) # SwiGLU activation: SiLU(x_W) * x_V swiglu = (x_W * tl.sigmoid(x_W)) * x_V tl.store(y_ptr + offsets, swiglu, mask=mask)
SwekeR-463/100kernels
day46/tlswiglu.py
https://github.com/SwekeR-463/100kernels/blob/80b7cea5a2b66f428380b2cb723147379f849f88/day46/tlswiglu.py
import triton import triton.language as tl import torch @triton.jit def swiglu_forward_kernel( x_ptr, y_ptr, n_elements: tl.constexpr, BLOCK_SIZE: tl.constexpr, feature_dim: tl.constexpr # feature dimension (size of x_W and x_V) ): pid = tl.program_id(axis=0) block_start = pid * BLOCK_SIZE offsets = block_start + tl.arange(0, BLOCK_SIZE) mask = offsets < n_elements # load input tensor (split into x_W and x_V) x_W = tl.load(x_ptr + offsets, mask=mask, other=0.0) x_V = tl.load(x_ptr + offsets + feature_dim, mask=mask, other=0.0) # SwiGLU activation: SiLU(x_W) * x_V swiglu = (x_W * tl.sigmoid(x_W)) * x_V tl.store(y_ptr + offsets, swiglu, mask=mask) @triton.jit def swiglu_backward_kernel( dy_ptr, # pointer to gradient of loss w.r.t. output x_ptr, # pointer to input tensor dx_ptr, # pointer to gradient of loss w.r.t. input n_elements: tl.constexpr, BLOCK_SIZE: tl.constexpr, feature_dim: tl.constexpr # feature dimension (size of x_W and x_V) ): pid = tl.program_id(axis=0) block_start = pid * BLOCK_SIZE offsets = block_start + tl.arange(0, BLOCK_SIZE) mask = offsets < n_elements # load inputs (split into x_W and x_V) x_W = tl.load(x_ptr + offsets, mask=mask, other=0.0) x_V = tl.load(x_ptr + offsets + feature_dim, mask=mask, other=0.0) dy = tl.load(dy_ptr + offsets, mask=mask, other=0.0) # compute SiLU and its derivative for x_W sig = tl.sigmoid(x_W) sig_derivative = sig * (1 - sig) silu_grad = sig + x_W * sig_derivative # compute gradients for x_W and x_V dx_W = dy * x_V * silu_grad dx_V = dy * (x_W * sig) tl.store(dx_ptr + offsets, dx_W, mask=mask) tl.store(dx_ptr + offsets + feature_dim, dx_V, mask=mask) def swiglu_forward(x): n_elements = x.numel() // 2 # output has half the feature size feature_dim = x.shape[-1] // 2 # split input into two halves y = torch.empty_like(x[..., :feature_dim]) grid = (triton.cdiv(n_elements, 1024),) swiglu_forward_kernel[grid](x, y, n_elements, BLOCK_SIZE=1024, feature_dim=feature_dim, num_warps=4) return y def swiglu_backward(dy, x): n_elements = x.numel() // 2 # output has half the feature size feature_dim = x.shape[-1] // 2 # split input into two halves dx = torch.empty_like(x) grid = (triton.cdiv(n_elements, 1024),) swiglu_backward_kernel[grid](dy, x, dx, n_elements, BLOCK_SIZE=1024, feature_dim=feature_dim, num_warps=4) return dx class SwiGLUTriton(torch.autograd.Function): @staticmethod def forward(ctx, x): y = swiglu_forward(x) ctx.save_for_backward(x) # save input for backward pass return y @staticmethod def backward(ctx, dy): x, = ctx.saved_tensors dx = swiglu_backward(dy, x) return dx class TritonSwiGLULayer(torch.nn.Module): def forward(self, x): return SwiGLUTriton.apply(x) # test the implementation x = torch.randn(4096, device='cuda', requires_grad=True, dtype=torch.float64) y = SwiGLUTriton.apply(x) # backward test dy = torch.ones_like(y) # assume dL/dy = 1 dx = torch.autograd.grad(y, x, grad_outputs=dy)[0] print(y) # forward pass output print(dx) # backward pass gradients # gradient check test = torch.autograd.gradcheck(SwiGLUTriton.apply, (x,), eps=1e-6, atol=1e-5, nondet_tol=1e-5) print("Gradient check passed:", test) # True
@triton.jit def swiglu_backward_kernel( dy_ptr, # pointer to gradient of loss w.r.t. output x_ptr, # pointer to input tensor dx_ptr, # pointer to gradient of loss w.r.t. input n_elements: tl.constexpr, BLOCK_SIZE: tl.constexpr, feature_dim: tl.constexpr # feature dimension (size of x_W and x_V) ): pid = tl.program_id(axis=0) block_start = pid * BLOCK_SIZE offsets = block_start + tl.arange(0, BLOCK_SIZE) mask = offsets < n_elements # load inputs (split into x_W and x_V) x_W = tl.load(x_ptr + offsets, mask=mask, other=0.0) x_V = tl.load(x_ptr + offsets + feature_dim, mask=mask, other=0.0) dy = tl.load(dy_ptr + offsets, mask=mask, other=0.0) # compute SiLU and its derivative for x_W sig = tl.sigmoid(x_W) sig_derivative = sig * (1 - sig) silu_grad = sig + x_W * sig_derivative # compute gradients for x_W and x_V dx_W = dy * x_V * silu_grad dx_V = dy * (x_W * sig) tl.store(dx_ptr + offsets, dx_W, mask=mask) tl.store(dx_ptr + offsets + feature_dim, dx_V, mask=mask) def swiglu_forward(x): n_elements = x.numel() // 2 # output has half the feature size feature_dim = x.shape[-1] // 2 # split input into two halves y = torch.empty_like(x[..., :feature_dim]) grid = (triton.cdiv(n_elements, 1024),) swiglu_forward_kernel[grid](x, y, n_elements, BLOCK_SIZE=1024, feature_dim=feature_dim, num_warps=4) return y def swiglu_backward(dy, x): n_elements = x.numel() // 2 # output has half the feature size feature_dim = x.shape[-1] // 2 # split input into two halves dx = torch.empty_like(x) grid = (triton.cdiv(n_elements, 1024),) swiglu_backward_kernel[grid](dy, x, dx, n_elements, BLOCK_SIZE=1024, feature_dim=feature_dim, num_warps=4) return dx class SwiGLUTriton(torch.autograd.Function): @staticmethod def forward(ctx, x): y = swiglu_forward(x) ctx.save_for_backward(x) # save input for backward pass return y @staticmethod def backward(ctx, dy): x, = ctx.saved_tensors dx = swiglu_backward(dy, x) return dx class TritonSwiGLULayer(torch.nn.Module): def forward(self, x): return SwiGLUTriton.apply(x) # test the implementation x = torch.randn(4096, device='cuda', requires_grad=True, dtype=torch.float64) y = SwiGLUTriton.apply(x) # backward test dy = torch.ones_like(y) # assume dL/dy = 1 dx = torch.autograd.grad(y, x, grad_outputs=dy)[0] print(y) # forward pass output print(dx) # backward pass gradients # gradient check test = torch.autograd.gradcheck(SwiGLUTriton.apply, (x,), eps=1e-6, atol=1e-5, nondet_tol=1e-5) print("Gradient check passed:", test) # True
lizelive/nix-ai
try/app.py
https://github.com/lizelive/nix-ai/blob/ef595ddb5694ccebae79d528fd83528135d3cb46/try/app.py
import triton import triton.language as tl BLOCK_SIZE = 1024 @triton.jit def softmax(Y, stride_ym, stride_yn, X, stride_xm, stride_xn, M, N): # row index m = tl.program_id(0) # col indices # this specific kernel only works for matrices that # have less than BLOCK_SIZE columns n = tl.arange(0, BLOCK_SIZE) # the memory address of all the elements # that we want to load can be computed as follows X = X + m * stride_xm + n * stride_xn # load input data; pad out-of-bounds elements with 0 x = tl.load(X, mask=n < N, other=-float("inf")) # compute numerically-stable softmax z = x - tl.max(x, axis=0) num = tl.exp(z) denom = tl.sum(num, axis=0) y = num / denom # write back to Y Y = Y + m * stride_ym + n * stride_yn tl.store(Y, y, mask=n < N) import torch # Allocate input/output tensors X = torch.normal(0, 1, size=(583, 931), device="cuda") Y = torch.empty_like(X) # SPMD launch grid grid = (X.shape[0],) # enqueue GPU kernel softmax[grid]( Y, Y.stride(0), Y.stride(1), X, X.stride(0), X.stride(1), X.shape[0], X.shape[1] )
@triton.jit def softmax(Y, stride_ym, stride_yn, X, stride_xm, stride_xn, M, N): # row index m = tl.program_id(0) # col indices # this specific kernel only works for matrices that # have less than BLOCK_SIZE columns n = tl.arange(0, BLOCK_SIZE) # the memory address of all the elements # that we want to load can be computed as follows X = X + m * stride_xm + n * stride_xn # load input data; pad out-of-bounds elements with 0 x = tl.load(X, mask=n < N, other=-float("inf")) # compute numerically-stable softmax z = x - tl.max(x, axis=0) num = tl.exp(z) denom = tl.sum(num, axis=0) y = num / denom # write back to Y Y = Y + m * stride_ym + n * stride_yn tl.store(Y, y, mask=n < N) import torch # Allocate input/output tensors X = torch.normal(0, 1, size=(583, 931), device="cuda") Y = torch.empty_like(X) # SPMD launch grid grid = (X.shape[0],) # enqueue GPU kernel softmax[grid]( Y, Y.stride(0), Y.stride(1), X, X.stride(0), X.stride(1), X.shape[0], X.shape[1] )
wantbook-book/EXAKAI
exact/exact/ops.py
https://github.com/wantbook-book/EXAKAI/blob/11d0c6cdd42b697c4163af44fce4d038a5593d11/exact/exact/ops.py
import pdb import numpy as np import triton import triton.language as tl import time import torch import torch.nn.functional as F from torch.autograd.function import Function from torch.cuda.amp import custom_fwd, custom_bwd from torch_sparse import matmul from .conf import config import exact.cpp_extension.spmm as spmm import exact.cpp_extension.backward_func as ext_backward_func import exact.cpp_extension.quantization as ext_quantization from exact.utils import empty_cache, get_memory_usage, compute_tensor_bytes, swap_to_cpu, cast_low_bit_int # mn: minimum; mx: maximum def quantize_and_pack(data, bits, mn, mx): # simulate? what? if config.simulate: N = data.shape[0] # output, data: (N, -1) output = data B = 2 ** bits - 1 # avoid mn equals mx? mn = mn - 1e-6 mx = mx + 1e-6 scale = B / (mx - mn) # broadcast output = (output - mn.view(-1, 1)) * scale.view(-1, 1) # add random noise if config.stochastic: noise = output.new(output.shape).uniform_(-0.5, 0.5) output.add_(noise) output = F.relu(output) output = output.round_().int() else: # Pack to bitstream assert type(bits) == int pack_func = ext_quantization.pack_single_precision scale = (2 ** bits - 1) / (mx - mn) # output is just a packed data output = pack_func(data, mn, mx, scale.to(data.dtype), bits, config.stochastic) if config.swap: output = swap_to_cpu(output) return output, scale def dequantize_and_unpack(data, shape, bits, scale, mn): if config.simulate: data = data / scale.view(-1, 1) + mn.view(-1, 1) else: # swap strategy can save gpu memory as well # when data need be used, copy it from cpu to gpu if config.swap: data = data.cuda() N = shape[0] num_features = int(np.prod(shape[1:])) # Unpack bitstream assert type(bits) == int unpack_func = ext_quantization.unpack_single_precision # num_features is group_size parameter in cu function # in pack_func, group_size is calculated from data.shape[1] data = unpack_func(data, bits, scale, mn, N, num_features) return data def no_scheme_compute_quantization_bits(input): N = input.shape[0] input_flatten = input.view(N, -1) # torch.return_types.max(values=tensor([0.8475, 1.1949, 1.5717, 1.0036]),indices=tensor([3, 0, 0, 1])) # [0] is the max or min result, Nx1 mn, mx = torch.min(input_flatten, 1)[0], torch.max(input_flatten, 1)[0] b = config.activation_compression_bits[0] return input_flatten, b, mn, mx def quantize_activation(input, scheme): if not config.compress_activation: if config.swap: input = swap_to_cpu(input) return input, None, None, None if scheme: # input_groups: (N, -1) input_groups, q_bits, q_min, mx = scheme.compute_quantization_bits(input) else: input_groups, q_bits, q_min, mx = no_scheme_compute_quantization_bits(input) q_input, q_scale = quantize_and_pack(input_groups, q_bits, q_min, mx) if input.dtype == torch.float32: # bfloat16 is brain float16, have the same range as float32, but smaller precision # 2 bytes is half-precision float, 4 bytes is single-precision float, 8 bytes is double-precision float return q_input, q_bits, q_scale.to(torch.bfloat16), q_min.to(torch.bfloat16) else: return q_input, q_bits, q_scale, q_min def dequantize_activation(quantized, q_input_shape): if not config.compress_activation: ret = quantized[0] if config.swap: ret = ret.cuda(non_blocking=True) return ret q_input, q_bits, q_scale, q_min = quantized if q_scale.dtype == torch.bfloat16: q_scale = q_scale.to(torch.float32) q_min = q_min.to(torch.float32) input = dequantize_and_unpack(q_input, q_input_shape, q_bits, q_scale, q_min) return input.contiguous() linear_layer_ct = 0 qmatmul_layer_ct = 0 bn_layer_ct = 0 total_act_mem = 0 GPU = 0 @triton.jit def gen_rad_mat_kernel(rm_ptr, sqrt_feat_size, seed, N:tl.constexpr, BLOCK_SIZE: tl.constexpr): pid = tl.program_id(0) ptr_offs = pid*BLOCK_SIZE+tl.arange(0, BLOCK_SIZE) rm_ptrs = rm_ptr + ptr_offs mask = ptr_offs<N # print('seed', seed) seeds = seed+ptr_offs rand_number = tl.randint(seeds, ptr_offs) rand_number = rand_number.to(tl.uint32) two = tl.full((BLOCK_SIZE,), 2, dtype=tl.uint32) rand_number = rand_number%two rand_number = rand_number.to(tl.float32) rand_number = (rand_number*2-1)/sqrt_feat_size tl.store(rm_ptrs, rand_number, mask=mask) @torch.no_grad() def input2rp(input, kept_acts): assert len(input.size()) == 2 rand_mat_size = (input.shape[1], kept_acts) rand_mat = torch.empty(rand_mat_size, dtype=torch.float32).cuda() assert rand_mat.is_cuda and input.is_cuda assert rand_mat.is_contiguous and input.is_contiguous n_elements = rand_mat.numel() grid = lambda meta: (triton.cdiv(n_elements, meta['BLOCK_SIZE']), ) seed = int(time.time()*1000) gen_rad_mat_kernel[grid]( rand_mat, kept_acts**0.5,int(time.time()*1000), n_elements,BLOCK_SIZE=256 ) output = torch.matmul(input, rand_mat) return output, rand_mat @torch.no_grad() def rp2input(input, input_shape, rand_mat): assert len(input.size()) == 2 assert input.is_cuda and rand_mat.is_cuda output = torch.matmul(input, rand_mat.t()) return output.view(input_shape) @torch.no_grad() def triton_seed_input2rp(input, kept_acts): assert len(input.size()) == 2 rand_mat_size = (input.shape[1], kept_acts) rand_mat = torch.empty(rand_mat_size, dtype=torch.float32).cuda() assert rand_mat.is_cuda and input.is_cuda assert rand_mat.is_contiguous and input.is_contiguous n_elements = rand_mat.numel() grid = lambda meta: (triton.cdiv(n_elements, meta['BLOCK_SIZE']), ) seed = int(time.time()*1000) gen_rad_mat_kernel[grid]( rand_mat, kept_acts**0.5,seed, n_elements,BLOCK_SIZE=256 ) # print('='*20, 'regenerate rm', '='*20) # print(rand_mat) output = torch.matmul(input, rand_mat) return output,seed, rand_mat_size @torch.no_grad() def triton_seed_rp2input(input, seed, rand_mat_size): assert len(input.size()) == 2 rand_mat = torch.empty(rand_mat_size, dtype=torch.float32).cuda() assert rand_mat.is_cuda and input.is_cuda assert rand_mat.is_contiguous and input.is_contiguous n_elements = rand_mat.numel() grid = lambda meta: (triton.cdiv(n_elements, meta['BLOCK_SIZE']), ) gen_rad_mat_kernel[grid]( rand_mat, rand_mat_size[1]**0.5,seed, n_elements,BLOCK_SIZE=256 ) # print('='*20, 'regenerate rm', '='*20) # print(rand_mat) output = torch.matmul(input, rand_mat.t()) return output # @torch.no_grad() # def input2rp(input, kept_acts): # # kept_acts is a number, R # assert len(input.size()) == 2 # rand_mat_size = (input.shape[1], kept_acts) # # Create random matrix # def gen_rad_mat(rm_size, feat_size, device, dtype): # # 2 is the high value, 0 is the low value. # # 0-2 random int number to be generated # bern = torch.randint(2, size=rm_size, device=device, requires_grad=False, dtype=dtype) # # rad_mat @ rad_mat^T = I # return (2.0 * bern - 1) / feat_size **0.5 # rand_matrix = gen_rad_mat(rand_mat_size, kept_acts, input.device, input.dtype) # dim_reduced_input = torch.matmul(input, rand_matrix) # return dim_reduced_input, rand_matrix # @torch.no_grad() # def rp2input(dim_reduced_input, input_shape, rand_matrix): # assert len(dim_reduced_input.size()) == 2 # input = torch.matmul(dim_reduced_input, rand_matrix.t()) # return input.view(input_shape) class qlinear(Function): @staticmethod # define the forward data type is float16 @custom_fwd(cast_inputs=torch.float16) def forward(ctx, input, weight, bias=None, quantized=None, randmat=None, scheme=None, rp=True): if quantized is not None: # have been quantized? if randmat is None: assert rp is False or config.kept_frac == 1.0 # quantized somewhere before ori_input_shape, proj_input_shape = input.shape, input.shape else: assert (rp is True and config.kept_frac < 1.0) and (input.shape[1] == randmat.shape[0]) ori_input_shape, proj_input_shape = input.shape, torch.Size([input.shape[0], randmat.shape[1]]) # this is quantized random projected data else: # kept_frac is used to calculate the size of random matrix # compression ratio R/N if config.kept_frac < 1.0 and rp: kept_acts = int(config.kept_frac * input.shape[1] + 0.999) dim_reduced_input, randmat = input2rp(input, kept_acts) ori_input_shape, proj_input_shape = input.shape, dim_reduced_input.shape else: dim_reduced_input, randmat = input, None ori_input_shape, proj_input_shape = input.shape, input.shape quantized = quantize_activation(dim_reduced_input, scheme) # empty cache if used mem / allocated mem < threshold ratio empty_cache(config.empty_cache_threshold) ctx.scheme = scheme ctx.saved = quantized, weight, bias, randmat ctx.other_args = ori_input_shape, proj_input_shape, rp res = F.linear(input, weight, bias) return res @staticmethod @custom_bwd def backward(ctx, grad_output): quantized, weight, bias, randmat = ctx.saved ori_input_shape, q_input_shape, rp = ctx.other_args input = dequantize_activation(quantized, q_input_shape) if config.kept_frac < 1.0 and rp: input = rp2input(input, ori_input_shape, randmat) del quantized, ctx.saved empty_cache(config.empty_cache_threshold) # use cuda linear_backward to speed up grad_input, grad_weight, grad_bias = ext_backward_func.linear_backward(grad_output, input, weight, bias) # grad_input = grad_output.mm(weight) # grad_weight = grad_output.t().mm(input) # if bias is not None: # grad_bias = grad_output.sum(0) # else: # grad_bias = None del input, grad_output empty_cache(config.empty_cache_threshold) return grad_input, grad_weight, grad_bias, None, None, None, None # only quantized, no rp class qelu(Function): @staticmethod def forward(ctx, input, alpha, scheme=None): quantized = quantize_activation(input, scheme) empty_cache(config.empty_cache_threshold) ctx.scheme = scheme ctx.saved = quantized ctx.other_args = input.shape, alpha res = F.elu(input, alpha) return res @staticmethod def backward(ctx, grad_output): # if ctx.scheme: # ctx.scheme.set_scale(grad_output) quantized = ctx.saved q_input_shape, alpha = ctx.other_args input = dequantize_activation(quantized, q_input_shape) del quantized, ctx.saved empty_cache(config.empty_cache_threshold) grad_input = ext_backward_func._elu_backward_cuda(grad_output, input, alpha) return grad_input, None, None class qbatch_norm(Function): @staticmethod def forward(ctx, input, running_mean, running_var, weight, bias, training, exponential_average_factor, eps, scheme): quantized = quantize_activation(input, scheme) if training: output, save_mean, save_var, reserve, _ = ext_backward_func._batch_norm_impl_index(input, weight, bias, running_mean, running_var, training, exponential_average_factor, eps, True) else: output, save_mean, save_var = ext_backward_func.native_batch_norm( input, weight, bias, running_mean, running_var, training, exponential_average_factor, eps) reserve = None # output, save_mean, save_var = ext_backward_func.native_batch_norm( # input, weight, bias, running_mean, running_var, training, exponential_average_factor, eps) # reserve = None ctx.scheme = scheme ctx.other_args = input.shape ctx.saved = (quantized, weight, running_mean, running_var, save_mean, save_var, training, eps, reserve) return output @staticmethod def backward(ctx, grad_output): quantized, weight, running_mean, running_var, save_mean, save_var, training, eps, reserve = ctx.saved q_input_shape = ctx.other_args input = dequantize_activation(quantized, q_input_shape) del quantized, ctx.saved empty_cache(config.empty_cache_threshold) # if training: # input = input.contiguous() # grad_input, grad_weight, grad_bias = ext_backward_func.cudnn_batch_norm_backward( # input, grad_output, weight, running_mean, running_var, save_mean, save_var, eps, reserve) # else: # grad_input, grad_weight, grad_bias = ext_backward_func.native_batch_norm_backward( # grad_output, input, weight, running_mean, running_var, save_mean, save_var, training, eps, # [ctx.needs_input_grad[0], ctx.needs_input_grad[3], ctx.needs_input_grad[4]] # ) grad_input, grad_weight, grad_bias = ext_backward_func.native_batch_norm_backward( grad_output, input, weight, running_mean, running_var, save_mean, save_var, training, eps, [ctx.needs_input_grad[0], ctx.needs_input_grad[3], ctx.needs_input_grad[4]] ) return grad_input, None, None, grad_weight, grad_bias, None, None, None, None class qspmm_sum(Function): @staticmethod @custom_fwd(cast_inputs=torch.float16) def forward(ctx, row, rowptr, col, value, colptr, csr2csc, has_value, other, quantized=None, randmat=None, scheme=None): result = spmm.spmm_sum_fw(row, rowptr, col, value, colptr, csr2csc, other) if quantized is not None: if randmat is None: assert config.kept_frac == 1.0 # quantized somewhere before ori_input_shape, proj_input_shape = other.shape, other.shape else: assert config.kept_frac < 1.0 and (other.shape[1] == randmat.shape[0]) ori_input_shape, proj_input_shape = other.shape, torch.Size([other.shape[0], randmat.shape[1]]) # this is quantized random projected data else: if config.kept_frac < 1.0: kept_acts = int(config.kept_frac * other.shape[1] + 0.999) dim_reduced_input, randmat = input2rp(other, kept_acts) ori_input_shape, proj_input_shape = other.shape, dim_reduced_input.shape else: dim_reduced_input, randmat = other, None ori_input_shape, proj_input_shape = other.shape, other.shape quantized = quantize_activation(dim_reduced_input, scheme) empty_cache(config.empty_cache_threshold) ctx.saved = row, rowptr, col, value, colptr, csr2csc, quantized, randmat ctx.other_args = has_value, ori_input_shape, proj_input_shape, value.requires_grad if has_value else False, other.requires_grad ctx.scheme = scheme return result @staticmethod @custom_bwd def backward(ctx, grad_outputs): row, rowptr, col, value, colptr, csr2csc, quantized, randmat = ctx.saved row = col if row is None else row value = col if value is None else value colptr = col if colptr is None else colptr csr2csc = col if csr2csc is None else csr2csc has_value, ori_input_shape, q_input_shape, value_requires_grad, mat_requires_grad = ctx.other_args other = dequantize_activation(quantized, q_input_shape) if config.kept_frac < 1.0: other = rp2input(other, ori_input_shape, randmat) del quantized, ctx.saved empty_cache(config.empty_cache_threshold) grad_value, grad_mat = spmm.spmm_sum_bw(row, rowptr, col, value, colptr, csr2csc, other, grad_outputs, has_value, value_requires_grad, mat_requires_grad) del other empty_cache(config.empty_cache_threshold) return None, None, None, grad_value, None, None, None, grad_mat, None, None, None class qspmm_mean(Function): @staticmethod @custom_fwd(cast_inputs=torch.float16) def forward(ctx, row, rowptr, col, value, rowcount, colptr, csr2csc, has_value, other, quantized=None, randmat=None, scheme=None): result = spmm.spmm_mean_fw(row, rowptr, col, value, rowcount, colptr, csr2csc, other) if quantized is not None: if randmat is None: assert config.kept_frac == 1.0 # quantized somewhere before without random projection ori_input_shape, proj_input_shape = other.shape, other.shape else: assert config.kept_frac < 1.0 and (other.shape[1] == randmat.shape[0]) ori_input_shape, proj_input_shape = other.shape, torch.Size([other.shape[0], randmat.shape[1]]) # this is quantized random projected data else: if config.kept_frac < 1.0: kept_acts = int(config.kept_frac * other.shape[1] + 0.999) dim_reduced_input, randmat = input2rp(other, kept_acts) ori_input_shape, proj_input_shape = other.shape, dim_reduced_input.shape else: dim_reduced_input, randmat = other, None ori_input_shape, proj_input_shape = other.shape, other.shape quantized = quantize_activation(dim_reduced_input, scheme) empty_cache(config.empty_cache_threshold) ctx.saved = row, rowptr, col, value, rowcount, colptr, csr2csc, quantized, randmat ctx.other_args = has_value, ori_input_shape, proj_input_shape, value.requires_grad if has_value else False, other.requires_grad ctx.scheme = scheme return result @staticmethod @custom_bwd def backward(ctx, grad_outputs): row, rowptr, col, value, rowcount, colptr, csr2csc, quantized, randmat = ctx.saved row = col if row is None else row value = col if value is None else value rowcount = col if rowcount is None else rowcount colptr = col if colptr is None else colptr csr2csc = col if csr2csc is None else csr2csc has_value, ori_input_shape, q_input_shape, value_requires_grad, mat_requires_grad = ctx.other_args # here is one ugly trick: if we know value does not need gradient, # we actually do not need the ``other'' matrix to calculate the gradient. # So here we just pass a dummy matrix to the CUDA kernel. # TODO: engineering optimization. if value_requires_grad: other = dequantize_activation(quantized, q_input_shape) if config.kept_frac < 1.0: other = rp2input(other, ori_input_shape, randmat) else: if quantized[2].dtype == torch.bfloat16: dtype = torch.float else: dtype = quantized[2].dtype other = torch.tensor([1.], dtype=dtype, device=quantized[2].device) del quantized, ctx.saved empty_cache(config.empty_cache_threshold) grad_value, grad_mat = spmm.spmm_mean_bw(row, rowptr, col, value, rowcount, colptr, csr2csc, other, grad_outputs, has_value, value_requires_grad, mat_requires_grad) del other empty_cache(config.empty_cache_threshold) return None, None, None, grad_value, None, None, None, None, grad_mat, None, None, None class qspmm_max(Function): @staticmethod @custom_fwd(cast_inputs=torch.float16) def forward(ctx, rowptr, col, value, has_value, other, quantized=None, randmat=None, scheme=None): output, arg_out = spmm.spmm_max_fw(rowptr, col, value, other) if quantized is None: quantized = quantize_activation(other, scheme) else: assert isinstance(quantized, tuple) empty_cache(config.empty_cache_threshold) ctx.saved = col, value, quantized, arg_out ctx.other_args = has_value, other.shape, value.requires_grad if has_value else False, other.requires_grad ctx.mark_non_differentiable(arg_out) ctx.scheme = scheme return output @staticmethod @custom_bwd def backward(ctx, grad_outputs): col, value, quantized, arg_out = ctx.saved value = col if value is None else value has_value, q_input_shape, value_requires_grad, mat_requires_grad = ctx.other_args other = dequantize_activation(quantized, q_input_shape) del quantized, ctx.saved empty_cache(config.empty_cache_threshold) grad_value, grad_mat = spmm.spmm_max_bw(col, value, other, arg_out, grad_outputs, has_value, value_requires_grad, mat_requires_grad) return None, None, grad_value, None, grad_mat, None, None, None class qspmm_min(Function): @staticmethod @custom_fwd(cast_inputs=torch.float16) def forward(ctx, rowptr, col, value, has_value, other, quantized=None, randmat=None, scheme=None): output, arg_out = spmm.spmm_min_fw(rowptr, col, value, other) if quantized is None: quantized = quantize_activation(other, scheme) else: assert isinstance(quantized, tuple) empty_cache(config.empty_cache_threshold) ctx.saved = col, value, quantized, arg_out ctx.other_args = has_value, other.shape, value.requires_grad if has_value else False, other.requires_grad ctx.mark_non_differentiable(arg_out) ctx.scheme = scheme return output @staticmethod @custom_bwd def backward(ctx, grad_outputs): col, value, quantized, arg_out = ctx.saved value = col if value is None else value has_value, q_input_shape, value_requires_grad, mat_requires_grad = ctx.other_args other = dequantize_activation(quantized, q_input_shape) del quantized, ctx.saved empty_cache(config.empty_cache_threshold) # if ctx.scheme: # ctx.scheme.set_scale(grad_outputs) grad_value, grad_mat = spmm.spmm_min_bw(col, value, other, arg_out, grad_outputs, has_value, value_requires_grad, mat_requires_grad) return None, None, grad_value, None, grad_mat, None, None, None
@triton.jit def gen_rad_mat_kernel(rm_ptr, sqrt_feat_size, seed, N:tl.constexpr, BLOCK_SIZE: tl.constexpr): pid = tl.program_id(0) ptr_offs = pid*BLOCK_SIZE+tl.arange(0, BLOCK_SIZE) rm_ptrs = rm_ptr + ptr_offs mask = ptr_offs<N # print('seed', seed) seeds = seed+ptr_offs rand_number = tl.randint(seeds, ptr_offs) rand_number = rand_number.to(tl.uint32) two = tl.full((BLOCK_SIZE,), 2, dtype=tl.uint32) rand_number = rand_number%two rand_number = rand_number.to(tl.float32) rand_number = (rand_number*2-1)/sqrt_feat_size tl.store(rm_ptrs, rand_number, mask=mask) @torch.no_grad() def input2rp(input, kept_acts): assert len(input.size()) == 2 rand_mat_size = (input.shape[1], kept_acts) rand_mat = torch.empty(rand_mat_size, dtype=torch.float32).cuda() assert rand_mat.is_cuda and input.is_cuda assert rand_mat.is_contiguous and input.is_contiguous n_elements = rand_mat.numel() grid = lambda meta: (triton.cdiv(n_elements, meta['BLOCK_SIZE']), ) seed = int(time.time()*1000) gen_rad_mat_kernel[grid]( rand_mat, kept_acts**0.5,int(time.time()*1000), n_elements,BLOCK_SIZE=256 ) output = torch.matmul(input, rand_mat) return output, rand_mat @torch.no_grad() def rp2input(input, input_shape, rand_mat): assert len(input.size()) == 2 assert input.is_cuda and rand_mat.is_cuda output = torch.matmul(input, rand_mat.t()) return output.view(input_shape) @torch.no_grad() def triton_seed_input2rp(input, kept_acts): assert len(input.size()) == 2 rand_mat_size = (input.shape[1], kept_acts) rand_mat = torch.empty(rand_mat_size, dtype=torch.float32).cuda() assert rand_mat.is_cuda and input.is_cuda assert rand_mat.is_contiguous and input.is_contiguous n_elements = rand_mat.numel() grid = lambda meta: (triton.cdiv(n_elements, meta['BLOCK_SIZE']), ) seed = int(time.time()*1000) gen_rad_mat_kernel[grid]( rand_mat, kept_acts**0.5,seed, n_elements,BLOCK_SIZE=256 ) # print('='*20, 'regenerate rm', '='*20) # print(rand_mat) output = torch.matmul(input, rand_mat) return output,seed, rand_mat_size @torch.no_grad() def triton_seed_rp2input(input, seed, rand_mat_size): assert len(input.size()) == 2 rand_mat = torch.empty(rand_mat_size, dtype=torch.float32).cuda() assert rand_mat.is_cuda and input.is_cuda assert rand_mat.is_contiguous and input.is_contiguous n_elements = rand_mat.numel() grid = lambda meta: (triton.cdiv(n_elements, meta['BLOCK_SIZE']), ) gen_rad_mat_kernel[grid]( rand_mat, rand_mat_size[1]**0.5,seed, n_elements,BLOCK_SIZE=256 ) # print('='*20, 'regenerate rm', '='*20) # print(rand_mat) output = torch.matmul(input, rand_mat.t()) return output # @torch.no_grad() # def input2rp(input, kept_acts): # # kept_acts is a number, R # assert len(input.size()) == 2 # rand_mat_size = (input.shape[1], kept_acts) # # Create random matrix # def gen_rad_mat(rm_size, feat_size, device, dtype): # # 2 is the high value, 0 is the low value. # # 0-2 random int number to be generated # bern = torch.randint(2, size=rm_size, device=device, requires_grad=False, dtype=dtype) # # rad_mat @ rad_mat^T = I # return (2.0 * bern - 1) / feat_size **0.5 # rand_matrix = gen_rad_mat(rand_mat_size, kept_acts, input.device, input.dtype) # dim_reduced_input = torch.matmul(input, rand_matrix) # return dim_reduced_input, rand_matrix # @torch.no_grad() # def rp2input(dim_reduced_input, input_shape, rand_matrix): # assert len(dim_reduced_input.size()) == 2 # input = torch.matmul(dim_reduced_input, rand_matrix.t()) # return input.view(input_shape) class qlinear(Function): @staticmethod # define the forward data type is float16 @custom_fwd(cast_inputs=torch.float16) def forward(ctx, input, weight, bias=None, quantized=None, randmat=None, scheme=None, rp=True): if quantized is not None: # have been quantized? if randmat is None: assert rp is False or config.kept_frac == 1.0 # quantized somewhere before ori_input_shape, proj_input_shape = input.shape, input.shape else: assert (rp is True and config.kept_frac < 1.0) and (input.shape[1] == randmat.shape[0]) ori_input_shape, proj_input_shape = input.shape, torch.Size([input.shape[0], randmat.shape[1]]) # this is quantized random projected data else: # kept_frac is used to calculate the size of random matrix # compression ratio R/N if config.kept_frac < 1.0 and rp: kept_acts = int(config.kept_frac * input.shape[1] + 0.999) dim_reduced_input, randmat = input2rp(input, kept_acts) ori_input_shape, proj_input_shape = input.shape, dim_reduced_input.shape else: dim_reduced_input, randmat = input, None ori_input_shape, proj_input_shape = input.shape, input.shape quantized = quantize_activation(dim_reduced_input, scheme) # empty cache if used mem / allocated mem < threshold ratio empty_cache(config.empty_cache_threshold) ctx.scheme = scheme ctx.saved = quantized, weight, bias, randmat ctx.other_args = ori_input_shape, proj_input_shape, rp res = F.linear(input, weight, bias) return res @staticmethod @custom_bwd def backward(ctx, grad_output): quantized, weight, bias, randmat = ctx.saved ori_input_shape, q_input_shape, rp = ctx.other_args input = dequantize_activation(quantized, q_input_shape) if config.kept_frac < 1.0 and rp: input = rp2input(input, ori_input_shape, randmat) del quantized, ctx.saved empty_cache(config.empty_cache_threshold) # use cuda linear_backward to speed up grad_input, grad_weight, grad_bias = ext_backward_func.linear_backward(grad_output, input, weight, bias) # grad_input = grad_output.mm(weight) # grad_weight = grad_output.t().mm(input) # if bias is not None: # grad_bias = grad_output.sum(0) # else: # grad_bias = None del input, grad_output empty_cache(config.empty_cache_threshold) return grad_input, grad_weight, grad_bias, None, None, None, None # only quantized, no rp class qelu(Function): @staticmethod def forward(ctx, input, alpha, scheme=None): quantized = quantize_activation(input, scheme) empty_cache(config.empty_cache_threshold) ctx.scheme = scheme ctx.saved = quantized ctx.other_args = input.shape, alpha res = F.elu(input, alpha) return res @staticmethod def backward(ctx, grad_output): # if ctx.scheme: # ctx.scheme.set_scale(grad_output) quantized = ctx.saved q_input_shape, alpha = ctx.other_args input = dequantize_activation(quantized, q_input_shape) del quantized, ctx.saved empty_cache(config.empty_cache_threshold) grad_input = ext_backward_func._elu_backward_cuda(grad_output, input, alpha) return grad_input, None, None class qbatch_norm(Function): @staticmethod def forward(ctx, input, running_mean, running_var, weight, bias, training, exponential_average_factor, eps, scheme): quantized = quantize_activation(input, scheme) if training: output, save_mean, save_var, reserve, _ = ext_backward_func._batch_norm_impl_index(input, weight, bias, running_mean, running_var, training, exponential_average_factor, eps, True) else: output, save_mean, save_var = ext_backward_func.native_batch_norm( input, weight, bias, running_mean, running_var, training, exponential_average_factor, eps) reserve = None # output, save_mean, save_var = ext_backward_func.native_batch_norm( # input, weight, bias, running_mean, running_var, training, exponential_average_factor, eps) # reserve = None ctx.scheme = scheme ctx.other_args = input.shape ctx.saved = (quantized, weight, running_mean, running_var, save_mean, save_var, training, eps, reserve) return output @staticmethod def backward(ctx, grad_output): quantized, weight, running_mean, running_var, save_mean, save_var, training, eps, reserve = ctx.saved q_input_shape = ctx.other_args input = dequantize_activation(quantized, q_input_shape) del quantized, ctx.saved empty_cache(config.empty_cache_threshold) # if training: # input = input.contiguous() # grad_input, grad_weight, grad_bias = ext_backward_func.cudnn_batch_norm_backward( # input, grad_output, weight, running_mean, running_var, save_mean, save_var, eps, reserve) # else: # grad_input, grad_weight, grad_bias = ext_backward_func.native_batch_norm_backward( # grad_output, input, weight, running_mean, running_var, save_mean, save_var, training, eps, # [ctx.needs_input_grad[0], ctx.needs_input_grad[3], ctx.needs_input_grad[4]] # ) grad_input, grad_weight, grad_bias = ext_backward_func.native_batch_norm_backward( grad_output, input, weight, running_mean, running_var, save_mean, save_var, training, eps, [ctx.needs_input_grad[0], ctx.needs_input_grad[3], ctx.needs_input_grad[4]] ) return grad_input, None, None, grad_weight, grad_bias, None, None, None, None class qspmm_sum(Function): @staticmethod @custom_fwd(cast_inputs=torch.float16) def forward(ctx, row, rowptr, col, value, colptr, csr2csc, has_value, other, quantized=None, randmat=None, scheme=None): result = spmm.spmm_sum_fw(row, rowptr, col, value, colptr, csr2csc, other) if quantized is not None: if randmat is None: assert config.kept_frac == 1.0 # quantized somewhere before ori_input_shape, proj_input_shape = other.shape, other.shape else: assert config.kept_frac < 1.0 and (other.shape[1] == randmat.shape[0]) ori_input_shape, proj_input_shape = other.shape, torch.Size([other.shape[0], randmat.shape[1]]) # this is quantized random projected data else: if config.kept_frac < 1.0: kept_acts = int(config.kept_frac * other.shape[1] + 0.999) dim_reduced_input, randmat = input2rp(other, kept_acts) ori_input_shape, proj_input_shape = other.shape, dim_reduced_input.shape else: dim_reduced_input, randmat = other, None ori_input_shape, proj_input_shape = other.shape, other.shape quantized = quantize_activation(dim_reduced_input, scheme) empty_cache(config.empty_cache_threshold) ctx.saved = row, rowptr, col, value, colptr, csr2csc, quantized, randmat ctx.other_args = has_value, ori_input_shape, proj_input_shape, value.requires_grad if has_value else False, other.requires_grad ctx.scheme = scheme return result @staticmethod @custom_bwd def backward(ctx, grad_outputs): row, rowptr, col, value, colptr, csr2csc, quantized, randmat = ctx.saved row = col if row is None else row value = col if value is None else value colptr = col if colptr is None else colptr csr2csc = col if csr2csc is None else csr2csc has_value, ori_input_shape, q_input_shape, value_requires_grad, mat_requires_grad = ctx.other_args other = dequantize_activation(quantized, q_input_shape) if config.kept_frac < 1.0: other = rp2input(other, ori_input_shape, randmat) del quantized, ctx.saved empty_cache(config.empty_cache_threshold) grad_value, grad_mat = spmm.spmm_sum_bw(row, rowptr, col, value, colptr, csr2csc, other, grad_outputs, has_value, value_requires_grad, mat_requires_grad) del other empty_cache(config.empty_cache_threshold) return None, None, None, grad_value, None, None, None, grad_mat, None, None, None class qspmm_mean(Function): @staticmethod @custom_fwd(cast_inputs=torch.float16) def forward(ctx, row, rowptr, col, value, rowcount, colptr, csr2csc, has_value, other, quantized=None, randmat=None, scheme=None): result = spmm.spmm_mean_fw(row, rowptr, col, value, rowcount, colptr, csr2csc, other) if quantized is not None: if randmat is None: assert config.kept_frac == 1.0 # quantized somewhere before without random projection ori_input_shape, proj_input_shape = other.shape, other.shape else: assert config.kept_frac < 1.0 and (other.shape[1] == randmat.shape[0]) ori_input_shape, proj_input_shape = other.shape, torch.Size([other.shape[0], randmat.shape[1]]) # this is quantized random projected data else: if config.kept_frac < 1.0: kept_acts = int(config.kept_frac * other.shape[1] + 0.999) dim_reduced_input, randmat = input2rp(other, kept_acts) ori_input_shape, proj_input_shape = other.shape, dim_reduced_input.shape else: dim_reduced_input, randmat = other, None ori_input_shape, proj_input_shape = other.shape, other.shape quantized = quantize_activation(dim_reduced_input, scheme) empty_cache(config.empty_cache_threshold) ctx.saved = row, rowptr, col, value, rowcount, colptr, csr2csc, quantized, randmat ctx.other_args = has_value, ori_input_shape, proj_input_shape, value.requires_grad if has_value else False, other.requires_grad ctx.scheme = scheme return result @staticmethod @custom_bwd def backward(ctx, grad_outputs): row, rowptr, col, value, rowcount, colptr, csr2csc, quantized, randmat = ctx.saved row = col if row is None else row value = col if value is None else value rowcount = col if rowcount is None else rowcount colptr = col if colptr is None else colptr csr2csc = col if csr2csc is None else csr2csc has_value, ori_input_shape, q_input_shape, value_requires_grad, mat_requires_grad = ctx.other_args # here is one ugly trick: if we know value does not need gradient, # we actually do not need the ``other'' matrix to calculate the gradient. # So here we just pass a dummy matrix to the CUDA kernel. # TODO: engineering optimization. if value_requires_grad: other = dequantize_activation(quantized, q_input_shape) if config.kept_frac < 1.0: other = rp2input(other, ori_input_shape, randmat) else: if quantized[2].dtype == torch.bfloat16: dtype = torch.float else: dtype = quantized[2].dtype other = torch.tensor([1.], dtype=dtype, device=quantized[2].device) del quantized, ctx.saved empty_cache(config.empty_cache_threshold) grad_value, grad_mat = spmm.spmm_mean_bw(row, rowptr, col, value, rowcount, colptr, csr2csc, other, grad_outputs, has_value, value_requires_grad, mat_requires_grad) del other empty_cache(config.empty_cache_threshold) return None, None, None, grad_value, None, None, None, None, grad_mat, None, None, None class qspmm_max(Function): @staticmethod @custom_fwd(cast_inputs=torch.float16) def forward(ctx, rowptr, col, value, has_value, other, quantized=None, randmat=None, scheme=None): output, arg_out = spmm.spmm_max_fw(rowptr, col, value, other) if quantized is None: quantized = quantize_activation(other, scheme) else: assert isinstance(quantized, tuple) empty_cache(config.empty_cache_threshold) ctx.saved = col, value, quantized, arg_out ctx.other_args = has_value, other.shape, value.requires_grad if has_value else False, other.requires_grad ctx.mark_non_differentiable(arg_out) ctx.scheme = scheme return output @staticmethod @custom_bwd def backward(ctx, grad_outputs): col, value, quantized, arg_out = ctx.saved value = col if value is None else value has_value, q_input_shape, value_requires_grad, mat_requires_grad = ctx.other_args other = dequantize_activation(quantized, q_input_shape) del quantized, ctx.saved empty_cache(config.empty_cache_threshold) grad_value, grad_mat = spmm.spmm_max_bw(col, value, other, arg_out, grad_outputs, has_value, value_requires_grad, mat_requires_grad) return None, None, grad_value, None, grad_mat, None, None, None class qspmm_min(Function): @staticmethod @custom_fwd(cast_inputs=torch.float16) def forward(ctx, rowptr, col, value, has_value, other, quantized=None, randmat=None, scheme=None): output, arg_out = spmm.spmm_min_fw(rowptr, col, value, other) if quantized is None: quantized = quantize_activation(other, scheme) else: assert isinstance(quantized, tuple) empty_cache(config.empty_cache_threshold) ctx.saved = col, value, quantized, arg_out ctx.other_args = has_value, other.shape, value.requires_grad if has_value else False, other.requires_grad ctx.mark_non_differentiable(arg_out) ctx.scheme = scheme return output @staticmethod @custom_bwd def backward(ctx, grad_outputs): col, value, quantized, arg_out = ctx.saved value = col if value is None else value has_value, q_input_shape, value_requires_grad, mat_requires_grad = ctx.other_args other = dequantize_activation(quantized, q_input_shape) del quantized, ctx.saved empty_cache(config.empty_cache_threshold) # if ctx.scheme: # ctx.scheme.set_scale(grad_outputs) grad_value, grad_mat = spmm.spmm_min_bw(col, value, other, arg_out, grad_outputs, has_value, value_requires_grad, mat_requires_grad) return None, None, grad_value, None, grad_mat, None, None, None
lingeringlight/START
models/csm_triton.py
https://github.com/lingeringlight/START/blob/898ac4c3a64ac440f5550b3796cc1e876c24bbc2/models/csm_triton.py
# triton cross scan, 2x speed than pytorch implementation ========================= import torch import triton import triton.language as tl @triton.jit def triton_cross_scan( x, # (B, C, H, W) y, # (B, 4, C, H, W) BC: tl.constexpr, BH: tl.constexpr, BW: tl.constexpr, DC: tl.constexpr, DH: tl.constexpr, DW: tl.constexpr, NH: tl.constexpr, NW: tl.constexpr, ): i_hw, i_c, i_b = tl.program_id(0), tl.program_id(1), tl.program_id(2) i_h, i_w = (i_hw // NW), (i_hw % NW) _mask_h = (i_h * BH + tl.arange(0, BH)) < DH _mask_w = (i_w * BW + tl.arange(0, BW)) < DW _mask_hw = _mask_h[:, None] & _mask_w[None, :] _for_C = min(DC - i_c * BC, BC) _tmp0 = i_c * BC * DH * DW _tmp1 = DC * DH * DW _tmp2 = _tmp0 + i_h * BH * DW + tl.arange(0, BH)[:, None] * DW + i_w * BW + tl.arange(0, BW)[None, :] p_x = x + i_b * _tmp1 + _tmp2 p_y1 = y + i_b * 4 * _tmp1 + _tmp2 # same p_y2 = y + i_b * 4 * _tmp1 + _tmp1 + _tmp0 + i_w * BW * DH + tl.arange(0, BW)[None, :] * DH + i_h * BH + tl.arange( 0, BH)[:, None] # trans p_y3 = y + i_b * 4 * _tmp1 + 2 * _tmp1 + _tmp0 + (NH - i_h - 1) * BH * DW + ( BH - 1 - tl.arange(0, BH)[:, None]) * DW + (NW - i_w - 1) * BW + ( BW - 1 - tl.arange(0, BW)[None, :]) + (DH - NH * BH) * DW + (DW - NW * BW) # flip p_y4 = y + i_b * 4 * _tmp1 + 3 * _tmp1 + _tmp0 + (NW - i_w - 1) * BW * DH + ( BW - 1 - tl.arange(0, BW)[None, :]) * DH + (NH - i_h - 1) * BH + ( BH - 1 - tl.arange(0, BH)[:, None]) + (DH - NH * BH) + (DW - NW * BW) * DH # trans + flip for idxc in range(_for_C): _idx = idxc * DH * DW _x = tl.load(p_x + _idx, mask=_mask_hw) tl.store(p_y1 + _idx, _x, mask=_mask_hw) tl.store(p_y2 + _idx, _x, mask=_mask_hw) tl.store(p_y3 + _idx, _x, mask=_mask_hw) tl.store(p_y4 + _idx, _x, mask=_mask_hw) tl.debug_barrier() @triton.jit def triton_cross_merge( x, # (B, C, H, W) y, # (B, 4, C, H, W) BC: tl.constexpr, BH: tl.constexpr, BW: tl.constexpr, DC: tl.constexpr, DH: tl.constexpr, DW: tl.constexpr, NH: tl.constexpr, NW: tl.constexpr, ): i_hw, i_c, i_b = tl.program_id(0), tl.program_id(1), tl.program_id(2) i_h, i_w = (i_hw // NW), (i_hw % NW) _mask_h = (i_h * BH + tl.arange(0, BH)) < DH _mask_w = (i_w * BW + tl.arange(0, BW)) < DW _mask_hw = _mask_h[:, None] & _mask_w[None, :] _for_C = min(DC - i_c * BC, BC) _tmp0 = i_c * BC * DH * DW _tmp1 = DC * DH * DW _tmp2 = _tmp0 + i_h * BH * DW + tl.arange(0, BH)[:, None] * DW + i_w * BW + tl.arange(0, BW)[None, :] p_x = x + i_b * _tmp1 + _tmp2 p_y1 = y + i_b * 4 * _tmp1 + _tmp2 # same p_y2 = y + i_b * 4 * _tmp1 + _tmp1 + _tmp0 + i_w * BW * DH + tl.arange(0, BW)[None, :] * DH + i_h * BH + tl.arange( 0, BH)[:, None] # trans p_y3 = y + i_b * 4 * _tmp1 + 2 * _tmp1 + _tmp0 + (NH - i_h - 1) * BH * DW + ( BH - 1 - tl.arange(0, BH)[:, None]) * DW + (NW - i_w - 1) * BW + ( BW - 1 - tl.arange(0, BW)[None, :]) + (DH - NH * BH) * DW + (DW - NW * BW) # flip p_y4 = y + i_b * 4 * _tmp1 + 3 * _tmp1 + _tmp0 + (NW - i_w - 1) * BW * DH + ( BW - 1 - tl.arange(0, BW)[None, :]) * DH + (NH - i_h - 1) * BH + ( BH - 1 - tl.arange(0, BH)[:, None]) + (DH - NH * BH) + (DW - NW * BW) * DH # trans + flip for idxc in range(_for_C): _idx = idxc * DH * DW _y1 = tl.load(p_y1 + _idx, mask=_mask_hw) _y2 = tl.load(p_y2 + _idx, mask=_mask_hw) _y3 = tl.load(p_y3 + _idx, mask=_mask_hw) _y4 = tl.load(p_y4 + _idx, mask=_mask_hw) tl.store(p_x + _idx, _y1 + _y2 + _y3 + _y4, mask=_mask_hw) tl.debug_barrier() @triton.jit def triton_cross_scan_1b1( x, # (B, C, H, W) y, # (B, 4, C, H, W) BC: tl.constexpr, BH: tl.constexpr, BW: tl.constexpr, DC: tl.constexpr, DH: tl.constexpr, DW: tl.constexpr, NH: tl.constexpr, NW: tl.constexpr, ): i_hw, i_c, i_b = tl.program_id(0), tl.program_id(1), tl.program_id(2) i_h, i_w = (i_hw // NW), (i_hw % NW) _mask_h = (i_h * BH + tl.arange(0, BH)) < DH _mask_w = (i_w * BW + tl.arange(0, BW)) < DW _mask_hw = _mask_h[:, None] & _mask_w[None, :] _for_C = min(DC - i_c * BC, BC) _tmp0 = i_c * BC * DH * DW _tmp1 = DC * DH * DW _tmp2 = _tmp0 + i_h * BH * DW + tl.arange(0, BH)[:, None] * DW + i_w * BW + tl.arange(0, BW)[None, :] p_y1 = y + i_b * 4 * _tmp1 + _tmp2 # same p_y2 = y + i_b * 4 * _tmp1 + _tmp1 + _tmp0 + i_w * BW * DH + tl.arange(0, BW)[None, :] * DH + i_h * BH + tl.arange( 0, BH)[:, None] # trans p_y3 = y + i_b * 4 * _tmp1 + 2 * _tmp1 + _tmp0 + (NH - i_h - 1) * BH * DW + ( BH - 1 - tl.arange(0, BH)[:, None]) * DW + (NW - i_w - 1) * BW + ( BW - 1 - tl.arange(0, BW)[None, :]) + (DH - NH * BH) * DW + (DW - NW * BW) # flip p_y4 = y + i_b * 4 * _tmp1 + 3 * _tmp1 + _tmp0 + (NW - i_w - 1) * BW * DH + ( BW - 1 - tl.arange(0, BW)[None, :]) * DH + (NH - i_h - 1) * BH + ( BH - 1 - tl.arange(0, BH)[:, None]) + (DH - NH * BH) + (DW - NW * BW) * DH # trans + flip p_x1 = x + i_b * 4 * _tmp1 + _tmp2 p_x2 = p_x1 + _tmp1 p_x3 = p_x2 + _tmp1 p_x4 = p_x3 + _tmp1 for idxc in range(_for_C): _idx = idxc * DH * DW tl.store(p_y1 + _idx, tl.load(p_x1 + _idx), mask=_mask_hw) tl.store(p_y2 + _idx, tl.load(p_x2 + _idx), mask=_mask_hw) tl.store(p_y3 + _idx, tl.load(p_x3 + _idx), mask=_mask_hw) tl.store(p_y4 + _idx, tl.load(p_x4 + _idx), mask=_mask_hw) tl.debug_barrier() @triton.jit def triton_cross_merge_1b1( x, # (B, C, H, W) y, # (B, 4, C, H, W) BC: tl.constexpr, BH: tl.constexpr, BW: tl.constexpr, DC: tl.constexpr, DH: tl.constexpr, DW: tl.constexpr, NH: tl.constexpr, NW: tl.constexpr, ): i_hw, i_c, i_b = tl.program_id(0), tl.program_id(1), tl.program_id(2) i_h, i_w = (i_hw // NW), (i_hw % NW) _mask_h = (i_h * BH + tl.arange(0, BH)) < DH _mask_w = (i_w * BW + tl.arange(0, BW)) < DW _mask_hw = _mask_h[:, None] & _mask_w[None, :] _for_C = min(DC - i_c * BC, BC) _tmp0 = i_c * BC * DH * DW _tmp1 = DC * DH * DW _tmp2 = _tmp0 + i_h * BH * DW + tl.arange(0, BH)[:, None] * DW + i_w * BW + tl.arange(0, BW)[None, :] p_y1 = y + i_b * 4 * _tmp1 + _tmp2 # same p_y2 = y + i_b * 4 * _tmp1 + _tmp1 + _tmp0 + i_w * BW * DH + tl.arange(0, BW)[None, :] * DH + i_h * BH + tl.arange( 0, BH)[:, None] # trans p_y3 = y + i_b * 4 * _tmp1 + 2 * _tmp1 + _tmp0 + (NH - i_h - 1) * BH * DW + ( BH - 1 - tl.arange(0, BH)[:, None]) * DW + (NW - i_w - 1) * BW + ( BW - 1 - tl.arange(0, BW)[None, :]) + (DH - NH * BH) * DW + (DW - NW * BW) # flip p_y4 = y + i_b * 4 * _tmp1 + 3 * _tmp1 + _tmp0 + (NW - i_w - 1) * BW * DH + ( BW - 1 - tl.arange(0, BW)[None, :]) * DH + (NH - i_h - 1) * BH + ( BH - 1 - tl.arange(0, BH)[:, None]) + (DH - NH * BH) + (DW - NW * BW) * DH # trans + flip p_x1 = x + i_b * 4 * _tmp1 + _tmp2 p_x2 = p_x1 + _tmp1 p_x3 = p_x2 + _tmp1 p_x4 = p_x3 + _tmp1 for idxc in range(_for_C): _idx = idxc * DH * DW tl.store(p_x1 + _idx, tl.load(p_y1 + _idx), mask=_mask_hw) tl.store(p_x2 + _idx, tl.load(p_y2 + _idx), mask=_mask_hw) tl.store(p_x3 + _idx, tl.load(p_y3 + _idx), mask=_mask_hw) tl.store(p_x4 + _idx, tl.load(p_y4 + _idx), mask=_mask_hw) tl.debug_barrier() class CrossScanTriton(torch.autograd.Function): @staticmethod def forward(ctx, x: torch.Tensor): B, C, H, W = x.shape B, C, H, W = int(B), int(C), int(H), int(W) BC, BH, BW = min(triton.next_power_of_2(C), 1), min(triton.next_power_of_2(H), 64), min( triton.next_power_of_2(W), 64) NH, NW, NC = triton.cdiv(H, BH), triton.cdiv(W, BW), triton.cdiv(C, BC) ctx.shape = (B, C, H, W) ctx.triton_shape = (BC, BH, BW, NC, NH, NW) x = x.contiguous() y = x.new_empty((B, 4, C, H, W)) triton_cross_scan[(NH * NW, NC, B)](x, y, BC, BH, BW, C, H, W, NH, NW) return y.view(B, 4, C, -1) @staticmethod def backward(ctx, y: torch.Tensor): # out: (b, k, d, l) B, C, H, W = ctx.shape BC, BH, BW, NC, NH, NW = ctx.triton_shape y = y.contiguous().view(B, 4, C, H, W) x = y.new_empty((B, C, H, W)) triton_cross_merge[(NH * NW, NC, B)](x, y, BC, BH, BW, C, H, W, NH, NW) return x class CrossMergeTriton(torch.autograd.Function): @staticmethod def forward(ctx, y: torch.Tensor): B, K, C, H, W = y.shape B, C, H, W = int(B), int(C), int(H), int(W) BC, BH, BW = min(triton.next_power_of_2(C), 1), min(triton.next_power_of_2(H), 64), min( triton.next_power_of_2(W), 64) NH, NW, NC = triton.cdiv(H, BH), triton.cdiv(W, BW), triton.cdiv(C, BC) ctx.shape = (B, C, H, W) ctx.triton_shape = (BC, BH, BW, NC, NH, NW) y = y.contiguous().view(B, 4, C, H, W) x = y.new_empty((B, C, H, W)) triton_cross_merge[(NH * NW, NC, B)](x, y, BC, BH, BW, C, H, W, NH, NW) return x.view(B, C, -1) @staticmethod def backward(ctx, x: torch.Tensor): # out: (b, d, l) B, C, H, W = ctx.shape BC, BH, BW, NC, NH, NW = ctx.triton_shape x = x.contiguous() y = x.new_empty((B, 4, C, H, W)) triton_cross_scan[(NH * NW, NC, B)](x, y, BC, BH, BW, C, H, W, NH, NW) return y class CrossScanTriton1b1(torch.autograd.Function): @staticmethod def forward(ctx, x: torch.Tensor): B, K, C, H, W = x.shape B, C, H, W = int(B), int(C), int(H), int(W) BC, BH, BW = min(triton.next_power_of_2(C), 1), min(triton.next_power_of_2(H), 64), min( triton.next_power_of_2(W), 64) NH, NW, NC = triton.cdiv(H, BH), triton.cdiv(W, BW), triton.cdiv(C, BC) ctx.shape = (B, C, H, W) ctx.triton_shape = (BC, BH, BW, NC, NH, NW) x = x.contiguous() y = x.new_empty((B, 4, C, H, W)) triton_cross_scan_1b1[(NH * NW, NC, B)](x, y, BC, BH, BW, C, H, W, NH, NW) return y.view(B, 4, C, -1) @staticmethod def backward(ctx, y: torch.Tensor): # out: (b, k, d, l) B, C, H, W = ctx.shape BC, BH, BW, NC, NH, NW = ctx.triton_shape y = y.contiguous().view(B, 4, C, H, W) x = y.new_empty((B, 4, C, H, W)) triton_cross_merge_1b1[(NH * NW, NC, B)](x, y, BC, BH, BW, C, H, W, NH, NW) return x
@triton.jit def triton_cross_scan( x, # (B, C, H, W) y, # (B, 4, C, H, W) BC: tl.constexpr, BH: tl.constexpr, BW: tl.constexpr, DC: tl.constexpr, DH: tl.constexpr, DW: tl.constexpr, NH: tl.constexpr, NW: tl.constexpr, ): i_hw, i_c, i_b = tl.program_id(0), tl.program_id(1), tl.program_id(2) i_h, i_w = (i_hw // NW), (i_hw % NW) _mask_h = (i_h * BH + tl.arange(0, BH)) < DH _mask_w = (i_w * BW + tl.arange(0, BW)) < DW _mask_hw = _mask_h[:, None] & _mask_w[None, :] _for_C = min(DC - i_c * BC, BC) _tmp0 = i_c * BC * DH * DW _tmp1 = DC * DH * DW _tmp2 = _tmp0 + i_h * BH * DW + tl.arange(0, BH)[:, None] * DW + i_w * BW + tl.arange(0, BW)[None, :] p_x = x + i_b * _tmp1 + _tmp2 p_y1 = y + i_b * 4 * _tmp1 + _tmp2 # same p_y2 = y + i_b * 4 * _tmp1 + _tmp1 + _tmp0 + i_w * BW * DH + tl.arange(0, BW)[None, :] * DH + i_h * BH + tl.arange( 0, BH)[:, None] # trans p_y3 = y + i_b * 4 * _tmp1 + 2 * _tmp1 + _tmp0 + (NH - i_h - 1) * BH * DW + ( BH - 1 - tl.arange(0, BH)[:, None]) * DW + (NW - i_w - 1) * BW + ( BW - 1 - tl.arange(0, BW)[None, :]) + (DH - NH * BH) * DW + (DW - NW * BW) # flip p_y4 = y + i_b * 4 * _tmp1 + 3 * _tmp1 + _tmp0 + (NW - i_w - 1) * BW * DH + ( BW - 1 - tl.arange(0, BW)[None, :]) * DH + (NH - i_h - 1) * BH + ( BH - 1 - tl.arange(0, BH)[:, None]) + (DH - NH * BH) + (DW - NW * BW) * DH # trans + flip for idxc in range(_for_C): _idx = idxc * DH * DW _x = tl.load(p_x + _idx, mask=_mask_hw) tl.store(p_y1 + _idx, _x, mask=_mask_hw) tl.store(p_y2 + _idx, _x, mask=_mask_hw) tl.store(p_y3 + _idx, _x, mask=_mask_hw) tl.store(p_y4 + _idx, _x, mask=_mask_hw) tl.debug_barrier()
lingeringlight/START
models/csm_triton.py
https://github.com/lingeringlight/START/blob/898ac4c3a64ac440f5550b3796cc1e876c24bbc2/models/csm_triton.py
# triton cross scan, 2x speed than pytorch implementation ========================= import torch import triton import triton.language as tl @triton.jit def triton_cross_scan( x, # (B, C, H, W) y, # (B, 4, C, H, W) BC: tl.constexpr, BH: tl.constexpr, BW: tl.constexpr, DC: tl.constexpr, DH: tl.constexpr, DW: tl.constexpr, NH: tl.constexpr, NW: tl.constexpr, ): i_hw, i_c, i_b = tl.program_id(0), tl.program_id(1), tl.program_id(2) i_h, i_w = (i_hw // NW), (i_hw % NW) _mask_h = (i_h * BH + tl.arange(0, BH)) < DH _mask_w = (i_w * BW + tl.arange(0, BW)) < DW _mask_hw = _mask_h[:, None] & _mask_w[None, :] _for_C = min(DC - i_c * BC, BC) _tmp0 = i_c * BC * DH * DW _tmp1 = DC * DH * DW _tmp2 = _tmp0 + i_h * BH * DW + tl.arange(0, BH)[:, None] * DW + i_w * BW + tl.arange(0, BW)[None, :] p_x = x + i_b * _tmp1 + _tmp2 p_y1 = y + i_b * 4 * _tmp1 + _tmp2 # same p_y2 = y + i_b * 4 * _tmp1 + _tmp1 + _tmp0 + i_w * BW * DH + tl.arange(0, BW)[None, :] * DH + i_h * BH + tl.arange( 0, BH)[:, None] # trans p_y3 = y + i_b * 4 * _tmp1 + 2 * _tmp1 + _tmp0 + (NH - i_h - 1) * BH * DW + ( BH - 1 - tl.arange(0, BH)[:, None]) * DW + (NW - i_w - 1) * BW + ( BW - 1 - tl.arange(0, BW)[None, :]) + (DH - NH * BH) * DW + (DW - NW * BW) # flip p_y4 = y + i_b * 4 * _tmp1 + 3 * _tmp1 + _tmp0 + (NW - i_w - 1) * BW * DH + ( BW - 1 - tl.arange(0, BW)[None, :]) * DH + (NH - i_h - 1) * BH + ( BH - 1 - tl.arange(0, BH)[:, None]) + (DH - NH * BH) + (DW - NW * BW) * DH # trans + flip for idxc in range(_for_C): _idx = idxc * DH * DW _x = tl.load(p_x + _idx, mask=_mask_hw) tl.store(p_y1 + _idx, _x, mask=_mask_hw) tl.store(p_y2 + _idx, _x, mask=_mask_hw) tl.store(p_y3 + _idx, _x, mask=_mask_hw) tl.store(p_y4 + _idx, _x, mask=_mask_hw) tl.debug_barrier() @triton.jit def triton_cross_merge( x, # (B, C, H, W) y, # (B, 4, C, H, W) BC: tl.constexpr, BH: tl.constexpr, BW: tl.constexpr, DC: tl.constexpr, DH: tl.constexpr, DW: tl.constexpr, NH: tl.constexpr, NW: tl.constexpr, ): i_hw, i_c, i_b = tl.program_id(0), tl.program_id(1), tl.program_id(2) i_h, i_w = (i_hw // NW), (i_hw % NW) _mask_h = (i_h * BH + tl.arange(0, BH)) < DH _mask_w = (i_w * BW + tl.arange(0, BW)) < DW _mask_hw = _mask_h[:, None] & _mask_w[None, :] _for_C = min(DC - i_c * BC, BC) _tmp0 = i_c * BC * DH * DW _tmp1 = DC * DH * DW _tmp2 = _tmp0 + i_h * BH * DW + tl.arange(0, BH)[:, None] * DW + i_w * BW + tl.arange(0, BW)[None, :] p_x = x + i_b * _tmp1 + _tmp2 p_y1 = y + i_b * 4 * _tmp1 + _tmp2 # same p_y2 = y + i_b * 4 * _tmp1 + _tmp1 + _tmp0 + i_w * BW * DH + tl.arange(0, BW)[None, :] * DH + i_h * BH + tl.arange( 0, BH)[:, None] # trans p_y3 = y + i_b * 4 * _tmp1 + 2 * _tmp1 + _tmp0 + (NH - i_h - 1) * BH * DW + ( BH - 1 - tl.arange(0, BH)[:, None]) * DW + (NW - i_w - 1) * BW + ( BW - 1 - tl.arange(0, BW)[None, :]) + (DH - NH * BH) * DW + (DW - NW * BW) # flip p_y4 = y + i_b * 4 * _tmp1 + 3 * _tmp1 + _tmp0 + (NW - i_w - 1) * BW * DH + ( BW - 1 - tl.arange(0, BW)[None, :]) * DH + (NH - i_h - 1) * BH + ( BH - 1 - tl.arange(0, BH)[:, None]) + (DH - NH * BH) + (DW - NW * BW) * DH # trans + flip for idxc in range(_for_C): _idx = idxc * DH * DW _y1 = tl.load(p_y1 + _idx, mask=_mask_hw) _y2 = tl.load(p_y2 + _idx, mask=_mask_hw) _y3 = tl.load(p_y3 + _idx, mask=_mask_hw) _y4 = tl.load(p_y4 + _idx, mask=_mask_hw) tl.store(p_x + _idx, _y1 + _y2 + _y3 + _y4, mask=_mask_hw) tl.debug_barrier() @triton.jit def triton_cross_scan_1b1( x, # (B, C, H, W) y, # (B, 4, C, H, W) BC: tl.constexpr, BH: tl.constexpr, BW: tl.constexpr, DC: tl.constexpr, DH: tl.constexpr, DW: tl.constexpr, NH: tl.constexpr, NW: tl.constexpr, ): i_hw, i_c, i_b = tl.program_id(0), tl.program_id(1), tl.program_id(2) i_h, i_w = (i_hw // NW), (i_hw % NW) _mask_h = (i_h * BH + tl.arange(0, BH)) < DH _mask_w = (i_w * BW + tl.arange(0, BW)) < DW _mask_hw = _mask_h[:, None] & _mask_w[None, :] _for_C = min(DC - i_c * BC, BC) _tmp0 = i_c * BC * DH * DW _tmp1 = DC * DH * DW _tmp2 = _tmp0 + i_h * BH * DW + tl.arange(0, BH)[:, None] * DW + i_w * BW + tl.arange(0, BW)[None, :] p_y1 = y + i_b * 4 * _tmp1 + _tmp2 # same p_y2 = y + i_b * 4 * _tmp1 + _tmp1 + _tmp0 + i_w * BW * DH + tl.arange(0, BW)[None, :] * DH + i_h * BH + tl.arange( 0, BH)[:, None] # trans p_y3 = y + i_b * 4 * _tmp1 + 2 * _tmp1 + _tmp0 + (NH - i_h - 1) * BH * DW + ( BH - 1 - tl.arange(0, BH)[:, None]) * DW + (NW - i_w - 1) * BW + ( BW - 1 - tl.arange(0, BW)[None, :]) + (DH - NH * BH) * DW + (DW - NW * BW) # flip p_y4 = y + i_b * 4 * _tmp1 + 3 * _tmp1 + _tmp0 + (NW - i_w - 1) * BW * DH + ( BW - 1 - tl.arange(0, BW)[None, :]) * DH + (NH - i_h - 1) * BH + ( BH - 1 - tl.arange(0, BH)[:, None]) + (DH - NH * BH) + (DW - NW * BW) * DH # trans + flip p_x1 = x + i_b * 4 * _tmp1 + _tmp2 p_x2 = p_x1 + _tmp1 p_x3 = p_x2 + _tmp1 p_x4 = p_x3 + _tmp1 for idxc in range(_for_C): _idx = idxc * DH * DW tl.store(p_y1 + _idx, tl.load(p_x1 + _idx), mask=_mask_hw) tl.store(p_y2 + _idx, tl.load(p_x2 + _idx), mask=_mask_hw) tl.store(p_y3 + _idx, tl.load(p_x3 + _idx), mask=_mask_hw) tl.store(p_y4 + _idx, tl.load(p_x4 + _idx), mask=_mask_hw) tl.debug_barrier() @triton.jit def triton_cross_merge_1b1( x, # (B, C, H, W) y, # (B, 4, C, H, W) BC: tl.constexpr, BH: tl.constexpr, BW: tl.constexpr, DC: tl.constexpr, DH: tl.constexpr, DW: tl.constexpr, NH: tl.constexpr, NW: tl.constexpr, ): i_hw, i_c, i_b = tl.program_id(0), tl.program_id(1), tl.program_id(2) i_h, i_w = (i_hw // NW), (i_hw % NW) _mask_h = (i_h * BH + tl.arange(0, BH)) < DH _mask_w = (i_w * BW + tl.arange(0, BW)) < DW _mask_hw = _mask_h[:, None] & _mask_w[None, :] _for_C = min(DC - i_c * BC, BC) _tmp0 = i_c * BC * DH * DW _tmp1 = DC * DH * DW _tmp2 = _tmp0 + i_h * BH * DW + tl.arange(0, BH)[:, None] * DW + i_w * BW + tl.arange(0, BW)[None, :] p_y1 = y + i_b * 4 * _tmp1 + _tmp2 # same p_y2 = y + i_b * 4 * _tmp1 + _tmp1 + _tmp0 + i_w * BW * DH + tl.arange(0, BW)[None, :] * DH + i_h * BH + tl.arange( 0, BH)[:, None] # trans p_y3 = y + i_b * 4 * _tmp1 + 2 * _tmp1 + _tmp0 + (NH - i_h - 1) * BH * DW + ( BH - 1 - tl.arange(0, BH)[:, None]) * DW + (NW - i_w - 1) * BW + ( BW - 1 - tl.arange(0, BW)[None, :]) + (DH - NH * BH) * DW + (DW - NW * BW) # flip p_y4 = y + i_b * 4 * _tmp1 + 3 * _tmp1 + _tmp0 + (NW - i_w - 1) * BW * DH + ( BW - 1 - tl.arange(0, BW)[None, :]) * DH + (NH - i_h - 1) * BH + ( BH - 1 - tl.arange(0, BH)[:, None]) + (DH - NH * BH) + (DW - NW * BW) * DH # trans + flip p_x1 = x + i_b * 4 * _tmp1 + _tmp2 p_x2 = p_x1 + _tmp1 p_x3 = p_x2 + _tmp1 p_x4 = p_x3 + _tmp1 for idxc in range(_for_C): _idx = idxc * DH * DW tl.store(p_x1 + _idx, tl.load(p_y1 + _idx), mask=_mask_hw) tl.store(p_x2 + _idx, tl.load(p_y2 + _idx), mask=_mask_hw) tl.store(p_x3 + _idx, tl.load(p_y3 + _idx), mask=_mask_hw) tl.store(p_x4 + _idx, tl.load(p_y4 + _idx), mask=_mask_hw) tl.debug_barrier() class CrossScanTriton(torch.autograd.Function): @staticmethod def forward(ctx, x: torch.Tensor): B, C, H, W = x.shape B, C, H, W = int(B), int(C), int(H), int(W) BC, BH, BW = min(triton.next_power_of_2(C), 1), min(triton.next_power_of_2(H), 64), min( triton.next_power_of_2(W), 64) NH, NW, NC = triton.cdiv(H, BH), triton.cdiv(W, BW), triton.cdiv(C, BC) ctx.shape = (B, C, H, W) ctx.triton_shape = (BC, BH, BW, NC, NH, NW) x = x.contiguous() y = x.new_empty((B, 4, C, H, W)) triton_cross_scan[(NH * NW, NC, B)](x, y, BC, BH, BW, C, H, W, NH, NW) return y.view(B, 4, C, -1) @staticmethod def backward(ctx, y: torch.Tensor): # out: (b, k, d, l) B, C, H, W = ctx.shape BC, BH, BW, NC, NH, NW = ctx.triton_shape y = y.contiguous().view(B, 4, C, H, W) x = y.new_empty((B, C, H, W)) triton_cross_merge[(NH * NW, NC, B)](x, y, BC, BH, BW, C, H, W, NH, NW) return x class CrossMergeTriton(torch.autograd.Function): @staticmethod def forward(ctx, y: torch.Tensor): B, K, C, H, W = y.shape B, C, H, W = int(B), int(C), int(H), int(W) BC, BH, BW = min(triton.next_power_of_2(C), 1), min(triton.next_power_of_2(H), 64), min( triton.next_power_of_2(W), 64) NH, NW, NC = triton.cdiv(H, BH), triton.cdiv(W, BW), triton.cdiv(C, BC) ctx.shape = (B, C, H, W) ctx.triton_shape = (BC, BH, BW, NC, NH, NW) y = y.contiguous().view(B, 4, C, H, W) x = y.new_empty((B, C, H, W)) triton_cross_merge[(NH * NW, NC, B)](x, y, BC, BH, BW, C, H, W, NH, NW) return x.view(B, C, -1) @staticmethod def backward(ctx, x: torch.Tensor): # out: (b, d, l) B, C, H, W = ctx.shape BC, BH, BW, NC, NH, NW = ctx.triton_shape x = x.contiguous() y = x.new_empty((B, 4, C, H, W)) triton_cross_scan[(NH * NW, NC, B)](x, y, BC, BH, BW, C, H, W, NH, NW) return y class CrossScanTriton1b1(torch.autograd.Function): @staticmethod def forward(ctx, x: torch.Tensor): B, K, C, H, W = x.shape B, C, H, W = int(B), int(C), int(H), int(W) BC, BH, BW = min(triton.next_power_of_2(C), 1), min(triton.next_power_of_2(H), 64), min( triton.next_power_of_2(W), 64) NH, NW, NC = triton.cdiv(H, BH), triton.cdiv(W, BW), triton.cdiv(C, BC) ctx.shape = (B, C, H, W) ctx.triton_shape = (BC, BH, BW, NC, NH, NW) x = x.contiguous() y = x.new_empty((B, 4, C, H, W)) triton_cross_scan_1b1[(NH * NW, NC, B)](x, y, BC, BH, BW, C, H, W, NH, NW) return y.view(B, 4, C, -1) @staticmethod def backward(ctx, y: torch.Tensor): # out: (b, k, d, l) B, C, H, W = ctx.shape BC, BH, BW, NC, NH, NW = ctx.triton_shape y = y.contiguous().view(B, 4, C, H, W) x = y.new_empty((B, 4, C, H, W)) triton_cross_merge_1b1[(NH * NW, NC, B)](x, y, BC, BH, BW, C, H, W, NH, NW) return x
@triton.jit def triton_cross_merge( x, # (B, C, H, W) y, # (B, 4, C, H, W) BC: tl.constexpr, BH: tl.constexpr, BW: tl.constexpr, DC: tl.constexpr, DH: tl.constexpr, DW: tl.constexpr, NH: tl.constexpr, NW: tl.constexpr, ): i_hw, i_c, i_b = tl.program_id(0), tl.program_id(1), tl.program_id(2) i_h, i_w = (i_hw // NW), (i_hw % NW) _mask_h = (i_h * BH + tl.arange(0, BH)) < DH _mask_w = (i_w * BW + tl.arange(0, BW)) < DW _mask_hw = _mask_h[:, None] & _mask_w[None, :] _for_C = min(DC - i_c * BC, BC) _tmp0 = i_c * BC * DH * DW _tmp1 = DC * DH * DW _tmp2 = _tmp0 + i_h * BH * DW + tl.arange(0, BH)[:, None] * DW + i_w * BW + tl.arange(0, BW)[None, :] p_x = x + i_b * _tmp1 + _tmp2 p_y1 = y + i_b * 4 * _tmp1 + _tmp2 # same p_y2 = y + i_b * 4 * _tmp1 + _tmp1 + _tmp0 + i_w * BW * DH + tl.arange(0, BW)[None, :] * DH + i_h * BH + tl.arange( 0, BH)[:, None] # trans p_y3 = y + i_b * 4 * _tmp1 + 2 * _tmp1 + _tmp0 + (NH - i_h - 1) * BH * DW + ( BH - 1 - tl.arange(0, BH)[:, None]) * DW + (NW - i_w - 1) * BW + ( BW - 1 - tl.arange(0, BW)[None, :]) + (DH - NH * BH) * DW + (DW - NW * BW) # flip p_y4 = y + i_b * 4 * _tmp1 + 3 * _tmp1 + _tmp0 + (NW - i_w - 1) * BW * DH + ( BW - 1 - tl.arange(0, BW)[None, :]) * DH + (NH - i_h - 1) * BH + ( BH - 1 - tl.arange(0, BH)[:, None]) + (DH - NH * BH) + (DW - NW * BW) * DH # trans + flip for idxc in range(_for_C): _idx = idxc * DH * DW _y1 = tl.load(p_y1 + _idx, mask=_mask_hw) _y2 = tl.load(p_y2 + _idx, mask=_mask_hw) _y3 = tl.load(p_y3 + _idx, mask=_mask_hw) _y4 = tl.load(p_y4 + _idx, mask=_mask_hw) tl.store(p_x + _idx, _y1 + _y2 + _y3 + _y4, mask=_mask_hw) tl.debug_barrier()
lingeringlight/START
models/csm_triton.py
https://github.com/lingeringlight/START/blob/898ac4c3a64ac440f5550b3796cc1e876c24bbc2/models/csm_triton.py
# triton cross scan, 2x speed than pytorch implementation ========================= import torch import triton import triton.language as tl @triton.jit def triton_cross_scan( x, # (B, C, H, W) y, # (B, 4, C, H, W) BC: tl.constexpr, BH: tl.constexpr, BW: tl.constexpr, DC: tl.constexpr, DH: tl.constexpr, DW: tl.constexpr, NH: tl.constexpr, NW: tl.constexpr, ): i_hw, i_c, i_b = tl.program_id(0), tl.program_id(1), tl.program_id(2) i_h, i_w = (i_hw // NW), (i_hw % NW) _mask_h = (i_h * BH + tl.arange(0, BH)) < DH _mask_w = (i_w * BW + tl.arange(0, BW)) < DW _mask_hw = _mask_h[:, None] & _mask_w[None, :] _for_C = min(DC - i_c * BC, BC) _tmp0 = i_c * BC * DH * DW _tmp1 = DC * DH * DW _tmp2 = _tmp0 + i_h * BH * DW + tl.arange(0, BH)[:, None] * DW + i_w * BW + tl.arange(0, BW)[None, :] p_x = x + i_b * _tmp1 + _tmp2 p_y1 = y + i_b * 4 * _tmp1 + _tmp2 # same p_y2 = y + i_b * 4 * _tmp1 + _tmp1 + _tmp0 + i_w * BW * DH + tl.arange(0, BW)[None, :] * DH + i_h * BH + tl.arange( 0, BH)[:, None] # trans p_y3 = y + i_b * 4 * _tmp1 + 2 * _tmp1 + _tmp0 + (NH - i_h - 1) * BH * DW + ( BH - 1 - tl.arange(0, BH)[:, None]) * DW + (NW - i_w - 1) * BW + ( BW - 1 - tl.arange(0, BW)[None, :]) + (DH - NH * BH) * DW + (DW - NW * BW) # flip p_y4 = y + i_b * 4 * _tmp1 + 3 * _tmp1 + _tmp0 + (NW - i_w - 1) * BW * DH + ( BW - 1 - tl.arange(0, BW)[None, :]) * DH + (NH - i_h - 1) * BH + ( BH - 1 - tl.arange(0, BH)[:, None]) + (DH - NH * BH) + (DW - NW * BW) * DH # trans + flip for idxc in range(_for_C): _idx = idxc * DH * DW _x = tl.load(p_x + _idx, mask=_mask_hw) tl.store(p_y1 + _idx, _x, mask=_mask_hw) tl.store(p_y2 + _idx, _x, mask=_mask_hw) tl.store(p_y3 + _idx, _x, mask=_mask_hw) tl.store(p_y4 + _idx, _x, mask=_mask_hw) tl.debug_barrier() @triton.jit def triton_cross_merge( x, # (B, C, H, W) y, # (B, 4, C, H, W) BC: tl.constexpr, BH: tl.constexpr, BW: tl.constexpr, DC: tl.constexpr, DH: tl.constexpr, DW: tl.constexpr, NH: tl.constexpr, NW: tl.constexpr, ): i_hw, i_c, i_b = tl.program_id(0), tl.program_id(1), tl.program_id(2) i_h, i_w = (i_hw // NW), (i_hw % NW) _mask_h = (i_h * BH + tl.arange(0, BH)) < DH _mask_w = (i_w * BW + tl.arange(0, BW)) < DW _mask_hw = _mask_h[:, None] & _mask_w[None, :] _for_C = min(DC - i_c * BC, BC) _tmp0 = i_c * BC * DH * DW _tmp1 = DC * DH * DW _tmp2 = _tmp0 + i_h * BH * DW + tl.arange(0, BH)[:, None] * DW + i_w * BW + tl.arange(0, BW)[None, :] p_x = x + i_b * _tmp1 + _tmp2 p_y1 = y + i_b * 4 * _tmp1 + _tmp2 # same p_y2 = y + i_b * 4 * _tmp1 + _tmp1 + _tmp0 + i_w * BW * DH + tl.arange(0, BW)[None, :] * DH + i_h * BH + tl.arange( 0, BH)[:, None] # trans p_y3 = y + i_b * 4 * _tmp1 + 2 * _tmp1 + _tmp0 + (NH - i_h - 1) * BH * DW + ( BH - 1 - tl.arange(0, BH)[:, None]) * DW + (NW - i_w - 1) * BW + ( BW - 1 - tl.arange(0, BW)[None, :]) + (DH - NH * BH) * DW + (DW - NW * BW) # flip p_y4 = y + i_b * 4 * _tmp1 + 3 * _tmp1 + _tmp0 + (NW - i_w - 1) * BW * DH + ( BW - 1 - tl.arange(0, BW)[None, :]) * DH + (NH - i_h - 1) * BH + ( BH - 1 - tl.arange(0, BH)[:, None]) + (DH - NH * BH) + (DW - NW * BW) * DH # trans + flip for idxc in range(_for_C): _idx = idxc * DH * DW _y1 = tl.load(p_y1 + _idx, mask=_mask_hw) _y2 = tl.load(p_y2 + _idx, mask=_mask_hw) _y3 = tl.load(p_y3 + _idx, mask=_mask_hw) _y4 = tl.load(p_y4 + _idx, mask=_mask_hw) tl.store(p_x + _idx, _y1 + _y2 + _y3 + _y4, mask=_mask_hw) tl.debug_barrier() @triton.jit def triton_cross_scan_1b1( x, # (B, C, H, W) y, # (B, 4, C, H, W) BC: tl.constexpr, BH: tl.constexpr, BW: tl.constexpr, DC: tl.constexpr, DH: tl.constexpr, DW: tl.constexpr, NH: tl.constexpr, NW: tl.constexpr, ): i_hw, i_c, i_b = tl.program_id(0), tl.program_id(1), tl.program_id(2) i_h, i_w = (i_hw // NW), (i_hw % NW) _mask_h = (i_h * BH + tl.arange(0, BH)) < DH _mask_w = (i_w * BW + tl.arange(0, BW)) < DW _mask_hw = _mask_h[:, None] & _mask_w[None, :] _for_C = min(DC - i_c * BC, BC) _tmp0 = i_c * BC * DH * DW _tmp1 = DC * DH * DW _tmp2 = _tmp0 + i_h * BH * DW + tl.arange(0, BH)[:, None] * DW + i_w * BW + tl.arange(0, BW)[None, :] p_y1 = y + i_b * 4 * _tmp1 + _tmp2 # same p_y2 = y + i_b * 4 * _tmp1 + _tmp1 + _tmp0 + i_w * BW * DH + tl.arange(0, BW)[None, :] * DH + i_h * BH + tl.arange( 0, BH)[:, None] # trans p_y3 = y + i_b * 4 * _tmp1 + 2 * _tmp1 + _tmp0 + (NH - i_h - 1) * BH * DW + ( BH - 1 - tl.arange(0, BH)[:, None]) * DW + (NW - i_w - 1) * BW + ( BW - 1 - tl.arange(0, BW)[None, :]) + (DH - NH * BH) * DW + (DW - NW * BW) # flip p_y4 = y + i_b * 4 * _tmp1 + 3 * _tmp1 + _tmp0 + (NW - i_w - 1) * BW * DH + ( BW - 1 - tl.arange(0, BW)[None, :]) * DH + (NH - i_h - 1) * BH + ( BH - 1 - tl.arange(0, BH)[:, None]) + (DH - NH * BH) + (DW - NW * BW) * DH # trans + flip p_x1 = x + i_b * 4 * _tmp1 + _tmp2 p_x2 = p_x1 + _tmp1 p_x3 = p_x2 + _tmp1 p_x4 = p_x3 + _tmp1 for idxc in range(_for_C): _idx = idxc * DH * DW tl.store(p_y1 + _idx, tl.load(p_x1 + _idx), mask=_mask_hw) tl.store(p_y2 + _idx, tl.load(p_x2 + _idx), mask=_mask_hw) tl.store(p_y3 + _idx, tl.load(p_x3 + _idx), mask=_mask_hw) tl.store(p_y4 + _idx, tl.load(p_x4 + _idx), mask=_mask_hw) tl.debug_barrier() @triton.jit def triton_cross_merge_1b1( x, # (B, C, H, W) y, # (B, 4, C, H, W) BC: tl.constexpr, BH: tl.constexpr, BW: tl.constexpr, DC: tl.constexpr, DH: tl.constexpr, DW: tl.constexpr, NH: tl.constexpr, NW: tl.constexpr, ): i_hw, i_c, i_b = tl.program_id(0), tl.program_id(1), tl.program_id(2) i_h, i_w = (i_hw // NW), (i_hw % NW) _mask_h = (i_h * BH + tl.arange(0, BH)) < DH _mask_w = (i_w * BW + tl.arange(0, BW)) < DW _mask_hw = _mask_h[:, None] & _mask_w[None, :] _for_C = min(DC - i_c * BC, BC) _tmp0 = i_c * BC * DH * DW _tmp1 = DC * DH * DW _tmp2 = _tmp0 + i_h * BH * DW + tl.arange(0, BH)[:, None] * DW + i_w * BW + tl.arange(0, BW)[None, :] p_y1 = y + i_b * 4 * _tmp1 + _tmp2 # same p_y2 = y + i_b * 4 * _tmp1 + _tmp1 + _tmp0 + i_w * BW * DH + tl.arange(0, BW)[None, :] * DH + i_h * BH + tl.arange( 0, BH)[:, None] # trans p_y3 = y + i_b * 4 * _tmp1 + 2 * _tmp1 + _tmp0 + (NH - i_h - 1) * BH * DW + ( BH - 1 - tl.arange(0, BH)[:, None]) * DW + (NW - i_w - 1) * BW + ( BW - 1 - tl.arange(0, BW)[None, :]) + (DH - NH * BH) * DW + (DW - NW * BW) # flip p_y4 = y + i_b * 4 * _tmp1 + 3 * _tmp1 + _tmp0 + (NW - i_w - 1) * BW * DH + ( BW - 1 - tl.arange(0, BW)[None, :]) * DH + (NH - i_h - 1) * BH + ( BH - 1 - tl.arange(0, BH)[:, None]) + (DH - NH * BH) + (DW - NW * BW) * DH # trans + flip p_x1 = x + i_b * 4 * _tmp1 + _tmp2 p_x2 = p_x1 + _tmp1 p_x3 = p_x2 + _tmp1 p_x4 = p_x3 + _tmp1 for idxc in range(_for_C): _idx = idxc * DH * DW tl.store(p_x1 + _idx, tl.load(p_y1 + _idx), mask=_mask_hw) tl.store(p_x2 + _idx, tl.load(p_y2 + _idx), mask=_mask_hw) tl.store(p_x3 + _idx, tl.load(p_y3 + _idx), mask=_mask_hw) tl.store(p_x4 + _idx, tl.load(p_y4 + _idx), mask=_mask_hw) tl.debug_barrier() class CrossScanTriton(torch.autograd.Function): @staticmethod def forward(ctx, x: torch.Tensor): B, C, H, W = x.shape B, C, H, W = int(B), int(C), int(H), int(W) BC, BH, BW = min(triton.next_power_of_2(C), 1), min(triton.next_power_of_2(H), 64), min( triton.next_power_of_2(W), 64) NH, NW, NC = triton.cdiv(H, BH), triton.cdiv(W, BW), triton.cdiv(C, BC) ctx.shape = (B, C, H, W) ctx.triton_shape = (BC, BH, BW, NC, NH, NW) x = x.contiguous() y = x.new_empty((B, 4, C, H, W)) triton_cross_scan[(NH * NW, NC, B)](x, y, BC, BH, BW, C, H, W, NH, NW) return y.view(B, 4, C, -1) @staticmethod def backward(ctx, y: torch.Tensor): # out: (b, k, d, l) B, C, H, W = ctx.shape BC, BH, BW, NC, NH, NW = ctx.triton_shape y = y.contiguous().view(B, 4, C, H, W) x = y.new_empty((B, C, H, W)) triton_cross_merge[(NH * NW, NC, B)](x, y, BC, BH, BW, C, H, W, NH, NW) return x class CrossMergeTriton(torch.autograd.Function): @staticmethod def forward(ctx, y: torch.Tensor): B, K, C, H, W = y.shape B, C, H, W = int(B), int(C), int(H), int(W) BC, BH, BW = min(triton.next_power_of_2(C), 1), min(triton.next_power_of_2(H), 64), min( triton.next_power_of_2(W), 64) NH, NW, NC = triton.cdiv(H, BH), triton.cdiv(W, BW), triton.cdiv(C, BC) ctx.shape = (B, C, H, W) ctx.triton_shape = (BC, BH, BW, NC, NH, NW) y = y.contiguous().view(B, 4, C, H, W) x = y.new_empty((B, C, H, W)) triton_cross_merge[(NH * NW, NC, B)](x, y, BC, BH, BW, C, H, W, NH, NW) return x.view(B, C, -1) @staticmethod def backward(ctx, x: torch.Tensor): # out: (b, d, l) B, C, H, W = ctx.shape BC, BH, BW, NC, NH, NW = ctx.triton_shape x = x.contiguous() y = x.new_empty((B, 4, C, H, W)) triton_cross_scan[(NH * NW, NC, B)](x, y, BC, BH, BW, C, H, W, NH, NW) return y class CrossScanTriton1b1(torch.autograd.Function): @staticmethod def forward(ctx, x: torch.Tensor): B, K, C, H, W = x.shape B, C, H, W = int(B), int(C), int(H), int(W) BC, BH, BW = min(triton.next_power_of_2(C), 1), min(triton.next_power_of_2(H), 64), min( triton.next_power_of_2(W), 64) NH, NW, NC = triton.cdiv(H, BH), triton.cdiv(W, BW), triton.cdiv(C, BC) ctx.shape = (B, C, H, W) ctx.triton_shape = (BC, BH, BW, NC, NH, NW) x = x.contiguous() y = x.new_empty((B, 4, C, H, W)) triton_cross_scan_1b1[(NH * NW, NC, B)](x, y, BC, BH, BW, C, H, W, NH, NW) return y.view(B, 4, C, -1) @staticmethod def backward(ctx, y: torch.Tensor): # out: (b, k, d, l) B, C, H, W = ctx.shape BC, BH, BW, NC, NH, NW = ctx.triton_shape y = y.contiguous().view(B, 4, C, H, W) x = y.new_empty((B, 4, C, H, W)) triton_cross_merge_1b1[(NH * NW, NC, B)](x, y, BC, BH, BW, C, H, W, NH, NW) return x
@triton.jit def triton_cross_scan_1b1( x, # (B, C, H, W) y, # (B, 4, C, H, W) BC: tl.constexpr, BH: tl.constexpr, BW: tl.constexpr, DC: tl.constexpr, DH: tl.constexpr, DW: tl.constexpr, NH: tl.constexpr, NW: tl.constexpr, ): i_hw, i_c, i_b = tl.program_id(0), tl.program_id(1), tl.program_id(2) i_h, i_w = (i_hw // NW), (i_hw % NW) _mask_h = (i_h * BH + tl.arange(0, BH)) < DH _mask_w = (i_w * BW + tl.arange(0, BW)) < DW _mask_hw = _mask_h[:, None] & _mask_w[None, :] _for_C = min(DC - i_c * BC, BC) _tmp0 = i_c * BC * DH * DW _tmp1 = DC * DH * DW _tmp2 = _tmp0 + i_h * BH * DW + tl.arange(0, BH)[:, None] * DW + i_w * BW + tl.arange(0, BW)[None, :] p_y1 = y + i_b * 4 * _tmp1 + _tmp2 # same p_y2 = y + i_b * 4 * _tmp1 + _tmp1 + _tmp0 + i_w * BW * DH + tl.arange(0, BW)[None, :] * DH + i_h * BH + tl.arange( 0, BH)[:, None] # trans p_y3 = y + i_b * 4 * _tmp1 + 2 * _tmp1 + _tmp0 + (NH - i_h - 1) * BH * DW + ( BH - 1 - tl.arange(0, BH)[:, None]) * DW + (NW - i_w - 1) * BW + ( BW - 1 - tl.arange(0, BW)[None, :]) + (DH - NH * BH) * DW + (DW - NW * BW) # flip p_y4 = y + i_b * 4 * _tmp1 + 3 * _tmp1 + _tmp0 + (NW - i_w - 1) * BW * DH + ( BW - 1 - tl.arange(0, BW)[None, :]) * DH + (NH - i_h - 1) * BH + ( BH - 1 - tl.arange(0, BH)[:, None]) + (DH - NH * BH) + (DW - NW * BW) * DH # trans + flip p_x1 = x + i_b * 4 * _tmp1 + _tmp2 p_x2 = p_x1 + _tmp1 p_x3 = p_x2 + _tmp1 p_x4 = p_x3 + _tmp1 for idxc in range(_for_C): _idx = idxc * DH * DW tl.store(p_y1 + _idx, tl.load(p_x1 + _idx), mask=_mask_hw) tl.store(p_y2 + _idx, tl.load(p_x2 + _idx), mask=_mask_hw) tl.store(p_y3 + _idx, tl.load(p_x3 + _idx), mask=_mask_hw) tl.store(p_y4 + _idx, tl.load(p_x4 + _idx), mask=_mask_hw) tl.debug_barrier()
lingeringlight/START
models/csm_triton.py
https://github.com/lingeringlight/START/blob/898ac4c3a64ac440f5550b3796cc1e876c24bbc2/models/csm_triton.py
# triton cross scan, 2x speed than pytorch implementation ========================= import torch import triton import triton.language as tl @triton.jit def triton_cross_scan( x, # (B, C, H, W) y, # (B, 4, C, H, W) BC: tl.constexpr, BH: tl.constexpr, BW: tl.constexpr, DC: tl.constexpr, DH: tl.constexpr, DW: tl.constexpr, NH: tl.constexpr, NW: tl.constexpr, ): i_hw, i_c, i_b = tl.program_id(0), tl.program_id(1), tl.program_id(2) i_h, i_w = (i_hw // NW), (i_hw % NW) _mask_h = (i_h * BH + tl.arange(0, BH)) < DH _mask_w = (i_w * BW + tl.arange(0, BW)) < DW _mask_hw = _mask_h[:, None] & _mask_w[None, :] _for_C = min(DC - i_c * BC, BC) _tmp0 = i_c * BC * DH * DW _tmp1 = DC * DH * DW _tmp2 = _tmp0 + i_h * BH * DW + tl.arange(0, BH)[:, None] * DW + i_w * BW + tl.arange(0, BW)[None, :] p_x = x + i_b * _tmp1 + _tmp2 p_y1 = y + i_b * 4 * _tmp1 + _tmp2 # same p_y2 = y + i_b * 4 * _tmp1 + _tmp1 + _tmp0 + i_w * BW * DH + tl.arange(0, BW)[None, :] * DH + i_h * BH + tl.arange( 0, BH)[:, None] # trans p_y3 = y + i_b * 4 * _tmp1 + 2 * _tmp1 + _tmp0 + (NH - i_h - 1) * BH * DW + ( BH - 1 - tl.arange(0, BH)[:, None]) * DW + (NW - i_w - 1) * BW + ( BW - 1 - tl.arange(0, BW)[None, :]) + (DH - NH * BH) * DW + (DW - NW * BW) # flip p_y4 = y + i_b * 4 * _tmp1 + 3 * _tmp1 + _tmp0 + (NW - i_w - 1) * BW * DH + ( BW - 1 - tl.arange(0, BW)[None, :]) * DH + (NH - i_h - 1) * BH + ( BH - 1 - tl.arange(0, BH)[:, None]) + (DH - NH * BH) + (DW - NW * BW) * DH # trans + flip for idxc in range(_for_C): _idx = idxc * DH * DW _x = tl.load(p_x + _idx, mask=_mask_hw) tl.store(p_y1 + _idx, _x, mask=_mask_hw) tl.store(p_y2 + _idx, _x, mask=_mask_hw) tl.store(p_y3 + _idx, _x, mask=_mask_hw) tl.store(p_y4 + _idx, _x, mask=_mask_hw) tl.debug_barrier() @triton.jit def triton_cross_merge( x, # (B, C, H, W) y, # (B, 4, C, H, W) BC: tl.constexpr, BH: tl.constexpr, BW: tl.constexpr, DC: tl.constexpr, DH: tl.constexpr, DW: tl.constexpr, NH: tl.constexpr, NW: tl.constexpr, ): i_hw, i_c, i_b = tl.program_id(0), tl.program_id(1), tl.program_id(2) i_h, i_w = (i_hw // NW), (i_hw % NW) _mask_h = (i_h * BH + tl.arange(0, BH)) < DH _mask_w = (i_w * BW + tl.arange(0, BW)) < DW _mask_hw = _mask_h[:, None] & _mask_w[None, :] _for_C = min(DC - i_c * BC, BC) _tmp0 = i_c * BC * DH * DW _tmp1 = DC * DH * DW _tmp2 = _tmp0 + i_h * BH * DW + tl.arange(0, BH)[:, None] * DW + i_w * BW + tl.arange(0, BW)[None, :] p_x = x + i_b * _tmp1 + _tmp2 p_y1 = y + i_b * 4 * _tmp1 + _tmp2 # same p_y2 = y + i_b * 4 * _tmp1 + _tmp1 + _tmp0 + i_w * BW * DH + tl.arange(0, BW)[None, :] * DH + i_h * BH + tl.arange( 0, BH)[:, None] # trans p_y3 = y + i_b * 4 * _tmp1 + 2 * _tmp1 + _tmp0 + (NH - i_h - 1) * BH * DW + ( BH - 1 - tl.arange(0, BH)[:, None]) * DW + (NW - i_w - 1) * BW + ( BW - 1 - tl.arange(0, BW)[None, :]) + (DH - NH * BH) * DW + (DW - NW * BW) # flip p_y4 = y + i_b * 4 * _tmp1 + 3 * _tmp1 + _tmp0 + (NW - i_w - 1) * BW * DH + ( BW - 1 - tl.arange(0, BW)[None, :]) * DH + (NH - i_h - 1) * BH + ( BH - 1 - tl.arange(0, BH)[:, None]) + (DH - NH * BH) + (DW - NW * BW) * DH # trans + flip for idxc in range(_for_C): _idx = idxc * DH * DW _y1 = tl.load(p_y1 + _idx, mask=_mask_hw) _y2 = tl.load(p_y2 + _idx, mask=_mask_hw) _y3 = tl.load(p_y3 + _idx, mask=_mask_hw) _y4 = tl.load(p_y4 + _idx, mask=_mask_hw) tl.store(p_x + _idx, _y1 + _y2 + _y3 + _y4, mask=_mask_hw) tl.debug_barrier() @triton.jit def triton_cross_scan_1b1( x, # (B, C, H, W) y, # (B, 4, C, H, W) BC: tl.constexpr, BH: tl.constexpr, BW: tl.constexpr, DC: tl.constexpr, DH: tl.constexpr, DW: tl.constexpr, NH: tl.constexpr, NW: tl.constexpr, ): i_hw, i_c, i_b = tl.program_id(0), tl.program_id(1), tl.program_id(2) i_h, i_w = (i_hw // NW), (i_hw % NW) _mask_h = (i_h * BH + tl.arange(0, BH)) < DH _mask_w = (i_w * BW + tl.arange(0, BW)) < DW _mask_hw = _mask_h[:, None] & _mask_w[None, :] _for_C = min(DC - i_c * BC, BC) _tmp0 = i_c * BC * DH * DW _tmp1 = DC * DH * DW _tmp2 = _tmp0 + i_h * BH * DW + tl.arange(0, BH)[:, None] * DW + i_w * BW + tl.arange(0, BW)[None, :] p_y1 = y + i_b * 4 * _tmp1 + _tmp2 # same p_y2 = y + i_b * 4 * _tmp1 + _tmp1 + _tmp0 + i_w * BW * DH + tl.arange(0, BW)[None, :] * DH + i_h * BH + tl.arange( 0, BH)[:, None] # trans p_y3 = y + i_b * 4 * _tmp1 + 2 * _tmp1 + _tmp0 + (NH - i_h - 1) * BH * DW + ( BH - 1 - tl.arange(0, BH)[:, None]) * DW + (NW - i_w - 1) * BW + ( BW - 1 - tl.arange(0, BW)[None, :]) + (DH - NH * BH) * DW + (DW - NW * BW) # flip p_y4 = y + i_b * 4 * _tmp1 + 3 * _tmp1 + _tmp0 + (NW - i_w - 1) * BW * DH + ( BW - 1 - tl.arange(0, BW)[None, :]) * DH + (NH - i_h - 1) * BH + ( BH - 1 - tl.arange(0, BH)[:, None]) + (DH - NH * BH) + (DW - NW * BW) * DH # trans + flip p_x1 = x + i_b * 4 * _tmp1 + _tmp2 p_x2 = p_x1 + _tmp1 p_x3 = p_x2 + _tmp1 p_x4 = p_x3 + _tmp1 for idxc in range(_for_C): _idx = idxc * DH * DW tl.store(p_y1 + _idx, tl.load(p_x1 + _idx), mask=_mask_hw) tl.store(p_y2 + _idx, tl.load(p_x2 + _idx), mask=_mask_hw) tl.store(p_y3 + _idx, tl.load(p_x3 + _idx), mask=_mask_hw) tl.store(p_y4 + _idx, tl.load(p_x4 + _idx), mask=_mask_hw) tl.debug_barrier() @triton.jit def triton_cross_merge_1b1( x, # (B, C, H, W) y, # (B, 4, C, H, W) BC: tl.constexpr, BH: tl.constexpr, BW: tl.constexpr, DC: tl.constexpr, DH: tl.constexpr, DW: tl.constexpr, NH: tl.constexpr, NW: tl.constexpr, ): i_hw, i_c, i_b = tl.program_id(0), tl.program_id(1), tl.program_id(2) i_h, i_w = (i_hw // NW), (i_hw % NW) _mask_h = (i_h * BH + tl.arange(0, BH)) < DH _mask_w = (i_w * BW + tl.arange(0, BW)) < DW _mask_hw = _mask_h[:, None] & _mask_w[None, :] _for_C = min(DC - i_c * BC, BC) _tmp0 = i_c * BC * DH * DW _tmp1 = DC * DH * DW _tmp2 = _tmp0 + i_h * BH * DW + tl.arange(0, BH)[:, None] * DW + i_w * BW + tl.arange(0, BW)[None, :] p_y1 = y + i_b * 4 * _tmp1 + _tmp2 # same p_y2 = y + i_b * 4 * _tmp1 + _tmp1 + _tmp0 + i_w * BW * DH + tl.arange(0, BW)[None, :] * DH + i_h * BH + tl.arange( 0, BH)[:, None] # trans p_y3 = y + i_b * 4 * _tmp1 + 2 * _tmp1 + _tmp0 + (NH - i_h - 1) * BH * DW + ( BH - 1 - tl.arange(0, BH)[:, None]) * DW + (NW - i_w - 1) * BW + ( BW - 1 - tl.arange(0, BW)[None, :]) + (DH - NH * BH) * DW + (DW - NW * BW) # flip p_y4 = y + i_b * 4 * _tmp1 + 3 * _tmp1 + _tmp0 + (NW - i_w - 1) * BW * DH + ( BW - 1 - tl.arange(0, BW)[None, :]) * DH + (NH - i_h - 1) * BH + ( BH - 1 - tl.arange(0, BH)[:, None]) + (DH - NH * BH) + (DW - NW * BW) * DH # trans + flip p_x1 = x + i_b * 4 * _tmp1 + _tmp2 p_x2 = p_x1 + _tmp1 p_x3 = p_x2 + _tmp1 p_x4 = p_x3 + _tmp1 for idxc in range(_for_C): _idx = idxc * DH * DW tl.store(p_x1 + _idx, tl.load(p_y1 + _idx), mask=_mask_hw) tl.store(p_x2 + _idx, tl.load(p_y2 + _idx), mask=_mask_hw) tl.store(p_x3 + _idx, tl.load(p_y3 + _idx), mask=_mask_hw) tl.store(p_x4 + _idx, tl.load(p_y4 + _idx), mask=_mask_hw) tl.debug_barrier() class CrossScanTriton(torch.autograd.Function): @staticmethod def forward(ctx, x: torch.Tensor): B, C, H, W = x.shape B, C, H, W = int(B), int(C), int(H), int(W) BC, BH, BW = min(triton.next_power_of_2(C), 1), min(triton.next_power_of_2(H), 64), min( triton.next_power_of_2(W), 64) NH, NW, NC = triton.cdiv(H, BH), triton.cdiv(W, BW), triton.cdiv(C, BC) ctx.shape = (B, C, H, W) ctx.triton_shape = (BC, BH, BW, NC, NH, NW) x = x.contiguous() y = x.new_empty((B, 4, C, H, W)) triton_cross_scan[(NH * NW, NC, B)](x, y, BC, BH, BW, C, H, W, NH, NW) return y.view(B, 4, C, -1) @staticmethod def backward(ctx, y: torch.Tensor): # out: (b, k, d, l) B, C, H, W = ctx.shape BC, BH, BW, NC, NH, NW = ctx.triton_shape y = y.contiguous().view(B, 4, C, H, W) x = y.new_empty((B, C, H, W)) triton_cross_merge[(NH * NW, NC, B)](x, y, BC, BH, BW, C, H, W, NH, NW) return x class CrossMergeTriton(torch.autograd.Function): @staticmethod def forward(ctx, y: torch.Tensor): B, K, C, H, W = y.shape B, C, H, W = int(B), int(C), int(H), int(W) BC, BH, BW = min(triton.next_power_of_2(C), 1), min(triton.next_power_of_2(H), 64), min( triton.next_power_of_2(W), 64) NH, NW, NC = triton.cdiv(H, BH), triton.cdiv(W, BW), triton.cdiv(C, BC) ctx.shape = (B, C, H, W) ctx.triton_shape = (BC, BH, BW, NC, NH, NW) y = y.contiguous().view(B, 4, C, H, W) x = y.new_empty((B, C, H, W)) triton_cross_merge[(NH * NW, NC, B)](x, y, BC, BH, BW, C, H, W, NH, NW) return x.view(B, C, -1) @staticmethod def backward(ctx, x: torch.Tensor): # out: (b, d, l) B, C, H, W = ctx.shape BC, BH, BW, NC, NH, NW = ctx.triton_shape x = x.contiguous() y = x.new_empty((B, 4, C, H, W)) triton_cross_scan[(NH * NW, NC, B)](x, y, BC, BH, BW, C, H, W, NH, NW) return y class CrossScanTriton1b1(torch.autograd.Function): @staticmethod def forward(ctx, x: torch.Tensor): B, K, C, H, W = x.shape B, C, H, W = int(B), int(C), int(H), int(W) BC, BH, BW = min(triton.next_power_of_2(C), 1), min(triton.next_power_of_2(H), 64), min( triton.next_power_of_2(W), 64) NH, NW, NC = triton.cdiv(H, BH), triton.cdiv(W, BW), triton.cdiv(C, BC) ctx.shape = (B, C, H, W) ctx.triton_shape = (BC, BH, BW, NC, NH, NW) x = x.contiguous() y = x.new_empty((B, 4, C, H, W)) triton_cross_scan_1b1[(NH * NW, NC, B)](x, y, BC, BH, BW, C, H, W, NH, NW) return y.view(B, 4, C, -1) @staticmethod def backward(ctx, y: torch.Tensor): # out: (b, k, d, l) B, C, H, W = ctx.shape BC, BH, BW, NC, NH, NW = ctx.triton_shape y = y.contiguous().view(B, 4, C, H, W) x = y.new_empty((B, 4, C, H, W)) triton_cross_merge_1b1[(NH * NW, NC, B)](x, y, BC, BH, BW, C, H, W, NH, NW) return x
@triton.jit def triton_cross_merge_1b1( x, # (B, C, H, W) y, # (B, 4, C, H, W) BC: tl.constexpr, BH: tl.constexpr, BW: tl.constexpr, DC: tl.constexpr, DH: tl.constexpr, DW: tl.constexpr, NH: tl.constexpr, NW: tl.constexpr, ): i_hw, i_c, i_b = tl.program_id(0), tl.program_id(1), tl.program_id(2) i_h, i_w = (i_hw // NW), (i_hw % NW) _mask_h = (i_h * BH + tl.arange(0, BH)) < DH _mask_w = (i_w * BW + tl.arange(0, BW)) < DW _mask_hw = _mask_h[:, None] & _mask_w[None, :] _for_C = min(DC - i_c * BC, BC) _tmp0 = i_c * BC * DH * DW _tmp1 = DC * DH * DW _tmp2 = _tmp0 + i_h * BH * DW + tl.arange(0, BH)[:, None] * DW + i_w * BW + tl.arange(0, BW)[None, :] p_y1 = y + i_b * 4 * _tmp1 + _tmp2 # same p_y2 = y + i_b * 4 * _tmp1 + _tmp1 + _tmp0 + i_w * BW * DH + tl.arange(0, BW)[None, :] * DH + i_h * BH + tl.arange( 0, BH)[:, None] # trans p_y3 = y + i_b * 4 * _tmp1 + 2 * _tmp1 + _tmp0 + (NH - i_h - 1) * BH * DW + ( BH - 1 - tl.arange(0, BH)[:, None]) * DW + (NW - i_w - 1) * BW + ( BW - 1 - tl.arange(0, BW)[None, :]) + (DH - NH * BH) * DW + (DW - NW * BW) # flip p_y4 = y + i_b * 4 * _tmp1 + 3 * _tmp1 + _tmp0 + (NW - i_w - 1) * BW * DH + ( BW - 1 - tl.arange(0, BW)[None, :]) * DH + (NH - i_h - 1) * BH + ( BH - 1 - tl.arange(0, BH)[:, None]) + (DH - NH * BH) + (DW - NW * BW) * DH # trans + flip p_x1 = x + i_b * 4 * _tmp1 + _tmp2 p_x2 = p_x1 + _tmp1 p_x3 = p_x2 + _tmp1 p_x4 = p_x3 + _tmp1 for idxc in range(_for_C): _idx = idxc * DH * DW tl.store(p_x1 + _idx, tl.load(p_y1 + _idx), mask=_mask_hw) tl.store(p_x2 + _idx, tl.load(p_y2 + _idx), mask=_mask_hw) tl.store(p_x3 + _idx, tl.load(p_y3 + _idx), mask=_mask_hw) tl.store(p_x4 + _idx, tl.load(p_y4 + _idx), mask=_mask_hw) tl.debug_barrier() class CrossScanTriton(torch.autograd.Function): @staticmethod def forward(ctx, x: torch.Tensor): B, C, H, W = x.shape B, C, H, W = int(B), int(C), int(H), int(W) BC, BH, BW = min(triton.next_power_of_2(C), 1), min(triton.next_power_of_2(H), 64), min( triton.next_power_of_2(W), 64) NH, NW, NC = triton.cdiv(H, BH), triton.cdiv(W, BW), triton.cdiv(C, BC) ctx.shape = (B, C, H, W) ctx.triton_shape = (BC, BH, BW, NC, NH, NW) x = x.contiguous() y = x.new_empty((B, 4, C, H, W)) triton_cross_scan[(NH * NW, NC, B)](x, y, BC, BH, BW, C, H, W, NH, NW) return y.view(B, 4, C, -1) @staticmethod def backward(ctx, y: torch.Tensor): # out: (b, k, d, l) B, C, H, W = ctx.shape BC, BH, BW, NC, NH, NW = ctx.triton_shape y = y.contiguous().view(B, 4, C, H, W) x = y.new_empty((B, C, H, W)) triton_cross_merge[(NH * NW, NC, B)](x, y, BC, BH, BW, C, H, W, NH, NW) return x class CrossMergeTriton(torch.autograd.Function): @staticmethod def forward(ctx, y: torch.Tensor): B, K, C, H, W = y.shape B, C, H, W = int(B), int(C), int(H), int(W) BC, BH, BW = min(triton.next_power_of_2(C), 1), min(triton.next_power_of_2(H), 64), min( triton.next_power_of_2(W), 64) NH, NW, NC = triton.cdiv(H, BH), triton.cdiv(W, BW), triton.cdiv(C, BC) ctx.shape = (B, C, H, W) ctx.triton_shape = (BC, BH, BW, NC, NH, NW) y = y.contiguous().view(B, 4, C, H, W) x = y.new_empty((B, C, H, W)) triton_cross_merge[(NH * NW, NC, B)](x, y, BC, BH, BW, C, H, W, NH, NW) return x.view(B, C, -1) @staticmethod def backward(ctx, x: torch.Tensor): # out: (b, d, l) B, C, H, W = ctx.shape BC, BH, BW, NC, NH, NW = ctx.triton_shape x = x.contiguous() y = x.new_empty((B, 4, C, H, W)) triton_cross_scan[(NH * NW, NC, B)](x, y, BC, BH, BW, C, H, W, NH, NW) return y class CrossScanTriton1b1(torch.autograd.Function): @staticmethod def forward(ctx, x: torch.Tensor): B, K, C, H, W = x.shape B, C, H, W = int(B), int(C), int(H), int(W) BC, BH, BW = min(triton.next_power_of_2(C), 1), min(triton.next_power_of_2(H), 64), min( triton.next_power_of_2(W), 64) NH, NW, NC = triton.cdiv(H, BH), triton.cdiv(W, BW), triton.cdiv(C, BC) ctx.shape = (B, C, H, W) ctx.triton_shape = (BC, BH, BW, NC, NH, NW) x = x.contiguous() y = x.new_empty((B, 4, C, H, W)) triton_cross_scan_1b1[(NH * NW, NC, B)](x, y, BC, BH, BW, C, H, W, NH, NW) return y.view(B, 4, C, -1) @staticmethod def backward(ctx, y: torch.Tensor): # out: (b, k, d, l) B, C, H, W = ctx.shape BC, BH, BW, NC, NH, NW = ctx.triton_shape y = y.contiguous().view(B, 4, C, H, W) x = y.new_empty((B, 4, C, H, W)) triton_cross_merge_1b1[(NH * NW, NC, B)](x, y, BC, BH, BW, C, H, W, NH, NW) return x
eiz/adrastea
py/triton/matmul.py
https://github.com/eiz/adrastea/blob/e6c80cce32b91aef2a623ab91f725bf2b01c7897/py/triton/matmul.py
# This file was part of Triton. # # Copyright 2018-2020 Philippe Tillet # Copyright 2020-2022 OpenAI # # Permission is hereby granted, free of charge, to any person obtaining # a copy of this software and associated documentation files # (the "Software"), to deal in the Software without restriction, # including without limitation the rights to use, copy, modify, merge, # publish, distribute, sublicense, and/or sell copies of the Software, # and to permit persons to whom the Software is furnished to do so, # subject to the following conditions: # # The above copyright notice and this permission notice shall be # included in all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, # EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF # MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. # IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY # CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, # TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE # SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. import torch import triton import triton.language as tl from triton.compiler import compile_artifacts # # `triton.jit`'ed functions can be auto-tuned by using the `triton.autotune` decorator, which consumes: # - A list of `triton.Config` objects that define different configurations of # meta-parameters (e.g., `BLOCK_SIZE_M`) and compilation options (e.g., `num_warps`) to try # - An auto-tuning *key* whose change in values will trigger evaluation of all the # provided configs @triton.autotune( configs=[ triton.Config( { "BLOCK_SIZE_M": 128, "BLOCK_SIZE_N": 256, "BLOCK_SIZE_K": 64, "GROUP_SIZE_M": 8, }, num_stages=3, num_warps=8, ), triton.Config( { "BLOCK_SIZE_M": 64, "BLOCK_SIZE_N": 256, "BLOCK_SIZE_K": 32, "GROUP_SIZE_M": 8, }, num_stages=4, num_warps=4, ), triton.Config( { "BLOCK_SIZE_M": 128, "BLOCK_SIZE_N": 128, "BLOCK_SIZE_K": 32, "GROUP_SIZE_M": 8, }, num_stages=4, num_warps=4, ), triton.Config( { "BLOCK_SIZE_M": 128, "BLOCK_SIZE_N": 64, "BLOCK_SIZE_K": 32, "GROUP_SIZE_M": 8, }, num_stages=4, num_warps=4, ), triton.Config( { "BLOCK_SIZE_M": 64, "BLOCK_SIZE_N": 128, "BLOCK_SIZE_K": 32, "GROUP_SIZE_M": 8, }, num_stages=4, num_warps=4, ), triton.Config( { "BLOCK_SIZE_M": 128, "BLOCK_SIZE_N": 32, "BLOCK_SIZE_K": 32, "GROUP_SIZE_M": 8, }, num_stages=4, num_warps=4, ), triton.Config( { "BLOCK_SIZE_M": 64, "BLOCK_SIZE_N": 32, "BLOCK_SIZE_K": 32, "GROUP_SIZE_M": 8, }, num_stages=5, num_warps=2, ), triton.Config( { "BLOCK_SIZE_M": 32, "BLOCK_SIZE_N": 64, "BLOCK_SIZE_K": 32, "GROUP_SIZE_M": 8, }, num_stages=5, num_warps=2, ), ], key=["M", "N", "K"], ) @triton.jit def matmul_kernel( # Pointers to matrices a_ptr, b_ptr, c_ptr, # Matrix dimensions M, N, K, # The stride variables represent how much to increase the ptr by when moving by 1 # element in a particular dimension. E.g. `stride_am` is how much to increase `a_ptr` # by to get the element one row down (A has M rows). stride_am, stride_ak, stride_bk, stride_bn, stride_cm, stride_cn, # Meta-parameters BLOCK_SIZE_M: tl.constexpr, BLOCK_SIZE_N: tl.constexpr, BLOCK_SIZE_K: tl.constexpr, GROUP_SIZE_M: tl.constexpr, ACTIVATION: tl.constexpr, ): """Kernel for computing the matmul C = A x B. A has shape (M, K), B has shape (K, N) and C has shape (M, N) """ # ----------------------------------------------------------- # Map program ids `pid` to the block of C it should compute. # This is done in a grouped ordering to promote L2 data reuse. # See above `L2 Cache Optimizations` section for details. pid = tl.program_id(axis=0) num_pid_m = tl.cdiv(M, BLOCK_SIZE_M) num_pid_n = tl.cdiv(N, BLOCK_SIZE_N) num_pid_in_group = GROUP_SIZE_M * num_pid_n group_id = pid // num_pid_in_group first_pid_m = group_id * GROUP_SIZE_M group_size_m = min(num_pid_m - first_pid_m, GROUP_SIZE_M) pid_m = first_pid_m + (pid % group_size_m) pid_n = (pid % num_pid_in_group) // group_size_m # ---------------------------------------------------------- # Create pointers for the first blocks of A and B. # We will advance this pointer as we move in the K direction # and accumulate # `a_ptrs` is a block of [BLOCK_SIZE_M, BLOCK_SIZE_K] pointers # `b_ptrs` is a block of [BLOCK_SIZE_K, BLOCK_SIZE_N] pointers # See above `Pointer Arithmetics` section for details offs_am = (pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M)) % M offs_bn = (pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N)) % N offs_k = tl.arange(0, BLOCK_SIZE_K) a_ptrs = a_ptr + (offs_am[:, None] * stride_am + offs_k[None, :] * stride_ak) b_ptrs = b_ptr + (offs_k[:, None] * stride_bk + offs_bn[None, :] * stride_bn) # ----------------------------------------------------------- # Iterate to compute a block of the C matrix. # We accumulate into a `[BLOCK_SIZE_M, BLOCK_SIZE_N]` block # of fp32 values for higher accuracy. # `accumulator` will be converted back to fp16 after the loop. accumulator = tl.zeros((BLOCK_SIZE_M, BLOCK_SIZE_N), dtype=tl.float32) for k in range(0, tl.cdiv(K, BLOCK_SIZE_K)): # Load the next block of A and B, generate a mask by checking the K dimension. # If it is out of bounds, set it to 0. a = tl.load(a_ptrs, mask=offs_k[None, :] < K - k * BLOCK_SIZE_K, other=0.0) b = tl.load(b_ptrs, mask=offs_k[:, None] < K - k * BLOCK_SIZE_K, other=0.0) # We accumulate along the K dimension. accumulator += tl.dot(a, b) # Advance the ptrs to the next K block. a_ptrs += BLOCK_SIZE_K * stride_ak b_ptrs += BLOCK_SIZE_K * stride_bk # You can fuse arbitrary activation functions here # while the accumulator is still in FP32! if ACTIVATION == "leaky_relu": accumulator = leaky_relu(accumulator) c = accumulator.to(tl.float16) # ----------------------------------------------------------- # Write back the block of the output matrix C with masks. offs_cm = pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M) offs_cn = pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N) c_ptrs = c_ptr + stride_cm * offs_cm[:, None] + stride_cn * offs_cn[None, :] c_mask = (offs_cm[:, None] < M) & (offs_cn[None, :] < N) tl.store(c_ptrs, c, mask=c_mask) # We can fuse `leaky_relu` by providing it as an `ACTIVATION` meta-parameter in `_matmul`. @triton.jit def leaky_relu(x): x = x + 1 return tl.where(x >= 0, x, 0.01 * x) # %% # We can now create a convenience wrapper function that only takes two input tensors, # and (1) checks any shape constraint; (2) allocates the output; (3) launches the above kernel. def matmul(a, b, activation=""): # Check constraints. assert a.shape[1] == b.shape[0], "Incompatible dimensions" assert a.is_contiguous(), "Matrix A must be contiguous" assert b.is_contiguous(), "Matrix B must be contiguous" M, K = a.shape K, N = b.shape # Allocates output. c = torch.empty((M, N), device=a.device, dtype=a.dtype) # 1D launch kernel where each block gets its own program. grid = lambda META: ( triton.cdiv(M, META["BLOCK_SIZE_M"]) * triton.cdiv(N, META["BLOCK_SIZE_N"]), ) matmul_kernel[grid]( a, b, c, M, N, K, a.stride(0), a.stride(1), b.stride(0), b.stride(1), c.stride(0), c.stride(1), ACTIVATION=activation, ) return c
@triton.jit def matmul_kernel( # Pointers to matrices a_ptr, b_ptr, c_ptr, # Matrix dimensions M, N, K, # The stride variables represent how much to increase the ptr by when moving by 1 # element in a particular dimension. E.g. `stride_am` is how much to increase `a_ptr` # by to get the element one row down (A has M rows). stride_am, stride_ak, stride_bk, stride_bn, stride_cm, stride_cn, # Meta-parameters BLOCK_SIZE_M: tl.constexpr, BLOCK_SIZE_N: tl.constexpr, BLOCK_SIZE_K: tl.constexpr, GROUP_SIZE_M: tl.constexpr, ACTIVATION: tl.constexpr, ): """Kernel for computing the matmul C = A x B. A has shape (M, K), B has shape (K, N) and C has shape (M, N) """ # ----------------------------------------------------------- # Map program ids `pid` to the block of C it should compute. # This is done in a grouped ordering to promote L2 data reuse. # See above `L2 Cache Optimizations` section for details. pid = tl.program_id(axis=0) num_pid_m = tl.cdiv(M, BLOCK_SIZE_M) num_pid_n = tl.cdiv(N, BLOCK_SIZE_N) num_pid_in_group = GROUP_SIZE_M * num_pid_n group_id = pid // num_pid_in_group first_pid_m = group_id * GROUP_SIZE_M group_size_m = min(num_pid_m - first_pid_m, GROUP_SIZE_M) pid_m = first_pid_m + (pid % group_size_m) pid_n = (pid % num_pid_in_group) // group_size_m # ---------------------------------------------------------- # Create pointers for the first blocks of A and B. # We will advance this pointer as we move in the K direction # and accumulate # `a_ptrs` is a block of [BLOCK_SIZE_M, BLOCK_SIZE_K] pointers # `b_ptrs` is a block of [BLOCK_SIZE_K, BLOCK_SIZE_N] pointers # See above `Pointer Arithmetics` section for details offs_am = (pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M)) % M offs_bn = (pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N)) % N offs_k = tl.arange(0, BLOCK_SIZE_K) a_ptrs = a_ptr + (offs_am[:, None] * stride_am + offs_k[None, :] * stride_ak) b_ptrs = b_ptr + (offs_k[:, None] * stride_bk + offs_bn[None, :] * stride_bn) # ----------------------------------------------------------- # Iterate to compute a block of the C matrix. # We accumulate into a `[BLOCK_SIZE_M, BLOCK_SIZE_N]` block # of fp32 values for higher accuracy. # `accumulator` will be converted back to fp16 after the loop. accumulator = tl.zeros((BLOCK_SIZE_M, BLOCK_SIZE_N), dtype=tl.float32) for k in range(0, tl.cdiv(K, BLOCK_SIZE_K)): # Load the next block of A and B, generate a mask by checking the K dimension. # If it is out of bounds, set it to 0. a = tl.load(a_ptrs, mask=offs_k[None, :] < K - k * BLOCK_SIZE_K, other=0.0) b = tl.load(b_ptrs, mask=offs_k[:, None] < K - k * BLOCK_SIZE_K, other=0.0) # We accumulate along the K dimension. accumulator += tl.dot(a, b) # Advance the ptrs to the next K block. a_ptrs += BLOCK_SIZE_K * stride_ak b_ptrs += BLOCK_SIZE_K * stride_bk # You can fuse arbitrary activation functions here # while the accumulator is still in FP32! if ACTIVATION == "leaky_relu": accumulator = leaky_relu(accumulator) c = accumulator.to(tl.float16) # ----------------------------------------------------------- # Write back the block of the output matrix C with masks. offs_cm = pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M) offs_cn = pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N) c_ptrs = c_ptr + stride_cm * offs_cm[:, None] + stride_cn * offs_cn[None, :] c_mask = (offs_cm[:, None] < M) & (offs_cn[None, :] < N) tl.store(c_ptrs, c, mask=c_mask) # We can fuse `leaky_relu` by providing it as an `ACTIVATION` meta-parameter in `_matmul`.
eiz/adrastea
py/triton/matmul.py
https://github.com/eiz/adrastea/blob/e6c80cce32b91aef2a623ab91f725bf2b01c7897/py/triton/matmul.py
# This file was part of Triton. # # Copyright 2018-2020 Philippe Tillet # Copyright 2020-2022 OpenAI # # Permission is hereby granted, free of charge, to any person obtaining # a copy of this software and associated documentation files # (the "Software"), to deal in the Software without restriction, # including without limitation the rights to use, copy, modify, merge, # publish, distribute, sublicense, and/or sell copies of the Software, # and to permit persons to whom the Software is furnished to do so, # subject to the following conditions: # # The above copyright notice and this permission notice shall be # included in all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, # EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF # MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. # IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY # CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, # TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE # SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. import torch import triton import triton.language as tl from triton.compiler import compile_artifacts # # `triton.jit`'ed functions can be auto-tuned by using the `triton.autotune` decorator, which consumes: # - A list of `triton.Config` objects that define different configurations of # meta-parameters (e.g., `BLOCK_SIZE_M`) and compilation options (e.g., `num_warps`) to try # - An auto-tuning *key* whose change in values will trigger evaluation of all the # provided configs @triton.autotune( configs=[ triton.Config( { "BLOCK_SIZE_M": 128, "BLOCK_SIZE_N": 256, "BLOCK_SIZE_K": 64, "GROUP_SIZE_M": 8, }, num_stages=3, num_warps=8, ), triton.Config( { "BLOCK_SIZE_M": 64, "BLOCK_SIZE_N": 256, "BLOCK_SIZE_K": 32, "GROUP_SIZE_M": 8, }, num_stages=4, num_warps=4, ), triton.Config( { "BLOCK_SIZE_M": 128, "BLOCK_SIZE_N": 128, "BLOCK_SIZE_K": 32, "GROUP_SIZE_M": 8, }, num_stages=4, num_warps=4, ), triton.Config( { "BLOCK_SIZE_M": 128, "BLOCK_SIZE_N": 64, "BLOCK_SIZE_K": 32, "GROUP_SIZE_M": 8, }, num_stages=4, num_warps=4, ), triton.Config( { "BLOCK_SIZE_M": 64, "BLOCK_SIZE_N": 128, "BLOCK_SIZE_K": 32, "GROUP_SIZE_M": 8, }, num_stages=4, num_warps=4, ), triton.Config( { "BLOCK_SIZE_M": 128, "BLOCK_SIZE_N": 32, "BLOCK_SIZE_K": 32, "GROUP_SIZE_M": 8, }, num_stages=4, num_warps=4, ), triton.Config( { "BLOCK_SIZE_M": 64, "BLOCK_SIZE_N": 32, "BLOCK_SIZE_K": 32, "GROUP_SIZE_M": 8, }, num_stages=5, num_warps=2, ), triton.Config( { "BLOCK_SIZE_M": 32, "BLOCK_SIZE_N": 64, "BLOCK_SIZE_K": 32, "GROUP_SIZE_M": 8, }, num_stages=5, num_warps=2, ), ], key=["M", "N", "K"], ) @triton.jit def matmul_kernel( # Pointers to matrices a_ptr, b_ptr, c_ptr, # Matrix dimensions M, N, K, # The stride variables represent how much to increase the ptr by when moving by 1 # element in a particular dimension. E.g. `stride_am` is how much to increase `a_ptr` # by to get the element one row down (A has M rows). stride_am, stride_ak, stride_bk, stride_bn, stride_cm, stride_cn, # Meta-parameters BLOCK_SIZE_M: tl.constexpr, BLOCK_SIZE_N: tl.constexpr, BLOCK_SIZE_K: tl.constexpr, GROUP_SIZE_M: tl.constexpr, ACTIVATION: tl.constexpr, ): """Kernel for computing the matmul C = A x B. A has shape (M, K), B has shape (K, N) and C has shape (M, N) """ # ----------------------------------------------------------- # Map program ids `pid` to the block of C it should compute. # This is done in a grouped ordering to promote L2 data reuse. # See above `L2 Cache Optimizations` section for details. pid = tl.program_id(axis=0) num_pid_m = tl.cdiv(M, BLOCK_SIZE_M) num_pid_n = tl.cdiv(N, BLOCK_SIZE_N) num_pid_in_group = GROUP_SIZE_M * num_pid_n group_id = pid // num_pid_in_group first_pid_m = group_id * GROUP_SIZE_M group_size_m = min(num_pid_m - first_pid_m, GROUP_SIZE_M) pid_m = first_pid_m + (pid % group_size_m) pid_n = (pid % num_pid_in_group) // group_size_m # ---------------------------------------------------------- # Create pointers for the first blocks of A and B. # We will advance this pointer as we move in the K direction # and accumulate # `a_ptrs` is a block of [BLOCK_SIZE_M, BLOCK_SIZE_K] pointers # `b_ptrs` is a block of [BLOCK_SIZE_K, BLOCK_SIZE_N] pointers # See above `Pointer Arithmetics` section for details offs_am = (pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M)) % M offs_bn = (pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N)) % N offs_k = tl.arange(0, BLOCK_SIZE_K) a_ptrs = a_ptr + (offs_am[:, None] * stride_am + offs_k[None, :] * stride_ak) b_ptrs = b_ptr + (offs_k[:, None] * stride_bk + offs_bn[None, :] * stride_bn) # ----------------------------------------------------------- # Iterate to compute a block of the C matrix. # We accumulate into a `[BLOCK_SIZE_M, BLOCK_SIZE_N]` block # of fp32 values for higher accuracy. # `accumulator` will be converted back to fp16 after the loop. accumulator = tl.zeros((BLOCK_SIZE_M, BLOCK_SIZE_N), dtype=tl.float32) for k in range(0, tl.cdiv(K, BLOCK_SIZE_K)): # Load the next block of A and B, generate a mask by checking the K dimension. # If it is out of bounds, set it to 0. a = tl.load(a_ptrs, mask=offs_k[None, :] < K - k * BLOCK_SIZE_K, other=0.0) b = tl.load(b_ptrs, mask=offs_k[:, None] < K - k * BLOCK_SIZE_K, other=0.0) # We accumulate along the K dimension. accumulator += tl.dot(a, b) # Advance the ptrs to the next K block. a_ptrs += BLOCK_SIZE_K * stride_ak b_ptrs += BLOCK_SIZE_K * stride_bk # You can fuse arbitrary activation functions here # while the accumulator is still in FP32! if ACTIVATION == "leaky_relu": accumulator = leaky_relu(accumulator) c = accumulator.to(tl.float16) # ----------------------------------------------------------- # Write back the block of the output matrix C with masks. offs_cm = pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M) offs_cn = pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N) c_ptrs = c_ptr + stride_cm * offs_cm[:, None] + stride_cn * offs_cn[None, :] c_mask = (offs_cm[:, None] < M) & (offs_cn[None, :] < N) tl.store(c_ptrs, c, mask=c_mask) # We can fuse `leaky_relu` by providing it as an `ACTIVATION` meta-parameter in `_matmul`. @triton.jit def leaky_relu(x): x = x + 1 return tl.where(x >= 0, x, 0.01 * x) # %% # We can now create a convenience wrapper function that only takes two input tensors, # and (1) checks any shape constraint; (2) allocates the output; (3) launches the above kernel. def matmul(a, b, activation=""): # Check constraints. assert a.shape[1] == b.shape[0], "Incompatible dimensions" assert a.is_contiguous(), "Matrix A must be contiguous" assert b.is_contiguous(), "Matrix B must be contiguous" M, K = a.shape K, N = b.shape # Allocates output. c = torch.empty((M, N), device=a.device, dtype=a.dtype) # 1D launch kernel where each block gets its own program. grid = lambda META: ( triton.cdiv(M, META["BLOCK_SIZE_M"]) * triton.cdiv(N, META["BLOCK_SIZE_N"]), ) matmul_kernel[grid]( a, b, c, M, N, K, a.stride(0), a.stride(1), b.stride(0), b.stride(1), c.stride(0), c.stride(1), ACTIVATION=activation, ) return c
@triton.jit def leaky_relu(x): x = x + 1 return tl.where(x >= 0, x, 0.01 * x) # %% # We can now create a convenience wrapper function that only takes two input tensors, # and (1) checks any shape constraint; (2) allocates the output; (3) launches the above kernel. def matmul(a, b, activation=""): # Check constraints. assert a.shape[1] == b.shape[0], "Incompatible dimensions" assert a.is_contiguous(), "Matrix A must be contiguous" assert b.is_contiguous(), "Matrix B must be contiguous" M, K = a.shape K, N = b.shape # Allocates output. c = torch.empty((M, N), device=a.device, dtype=a.dtype) # 1D launch kernel where each block gets its own program. grid = lambda META: ( triton.cdiv(M, META["BLOCK_SIZE_M"]) * triton.cdiv(N, META["BLOCK_SIZE_N"]), ) matmul_kernel[grid]( a, b, c, M, N, K, a.stride(0), a.stride(1), b.stride(0), b.stride(1), c.stride(0), c.stride(1), ACTIVATION=activation, ) return c
lweitkamp/triton_exercises
code/sum_row.py
https://github.com/lweitkamp/triton_exercises/blob/da201eab871cc03453f6d4b70956ace092c3f8b5/code/sum_row.py
import pytest import torch import triton import triton.language as tl @triton.jit def sum_row_kernel( A_ptr: tl.tensor, outputs_ptr: tl.tensor, M: tl.constexpr, N: tl.constexpr, input_stride_x, input_stride_y, ): """Calculate the sum of a row of the input tensor, storing the result in the output. We assume the input row fits into SRAM. Args: input_ptr: Pointer to the input tensor. output_ptr: Pointer to the output tensor. M: Number of rows in the input tensor. N: Number of columns in the input tensor. input_stride_x: Stride of the input tensor along the row dim. input_stride_y: Stride of the input tensor along the column dim. """ program_id = tl.program_id(axis=0) input_block_ptr = tl.make_block_ptr( base=A_ptr, shape=(M, N), strides=(input_stride_x, input_stride_y), offsets=(program_id, 0), block_shape=(1, N), order=(1, 0), ) output_block_ptr = tl.make_block_ptr( base=outputs_ptr, shape=(M, ), strides=(1, ), offsets=(program_id, ), block_shape=(1, ), order=(0, ), ) input_block = tl.load(input_block_ptr) tl.store(output_block_ptr, tl.sum(input_block)) def sum_row(inputs: torch.Tensor) -> torch.Tensor: """Calculate the sum of a tensor along the final dim. Args: inputs: Tensor of shape (M, N) containing the input values. Returns: Tensor of shape (M, ) containing the summed values. """ M, N = inputs.shape outputs = torch.empty((M,), dtype=inputs.dtype, device=inputs.device) sum_row_kernel[(M, )]( A_ptr=inputs, outputs_ptr=outputs, M=M, N=N, input_stride_x=inputs.stride(0), input_stride_y=inputs.stride(1), ) return outputs @pytest.mark.parametrize("M, N", [(16, 16), (32, 16)]) def test_sum_row(M: int, N: int): inputs = torch.randn((M, N), device='cuda') outputs = sum_row(inputs) torch.testing.assert_close(inputs.sum(dim=1), outputs)
@triton.jit def sum_row_kernel( A_ptr: tl.tensor, outputs_ptr: tl.tensor, M: tl.constexpr, N: tl.constexpr, input_stride_x, input_stride_y, ): """Calculate the sum of a row of the input tensor, storing the result in the output. We assume the input row fits into SRAM. Args: input_ptr: Pointer to the input tensor. output_ptr: Pointer to the output tensor. M: Number of rows in the input tensor. N: Number of columns in the input tensor. input_stride_x: Stride of the input tensor along the row dim. input_stride_y: Stride of the input tensor along the column dim. """ program_id = tl.program_id(axis=0) input_block_ptr = tl.make_block_ptr( base=A_ptr, shape=(M, N), strides=(input_stride_x, input_stride_y), offsets=(program_id, 0), block_shape=(1, N), order=(1, 0), ) output_block_ptr = tl.make_block_ptr( base=outputs_ptr, shape=(M, ), strides=(1, ), offsets=(program_id, ), block_shape=(1, ), order=(0, ), ) input_block = tl.load(input_block_ptr) tl.store(output_block_ptr, tl.sum(input_block)) def sum_row(inputs: torch.Tensor) -> torch.Tensor: """Calculate the sum of a tensor along the final dim. Args: inputs: Tensor of shape (M, N) containing the input values. Returns: Tensor of shape (M, ) containing the summed values. """ M, N = inputs.shape outputs = torch.empty((M,), dtype=inputs.dtype, device=inputs.device) sum_row_kernel[(M, )]( A_ptr=inputs, outputs_ptr=outputs, M=M, N=N, input_stride_x=inputs.stride(0), input_stride_y=inputs.stride(1), ) return outputs @pytest.mark.parametrize("M, N", [(16, 16), (32, 16)]) def test_sum_row(M: int, N: int): inputs = torch.randn((M, N), device='cuda') outputs = sum_row(inputs) torch.testing.assert_close(inputs.sum(dim=1), outputs)
spikerheado1234/triton-fun
SPLAT/r_sddmm.py
https://github.com/spikerheado1234/triton-fun/blob/889b72fd892adbc12cf6bee891e17d3a8b6253eb/SPLAT/r_sddmm.py
""" This is a fun implementation of the RSDDMM kernel described in my paper, SPLAT. """ import triton import triton.language as tl from acsr_helpers import create_blocked_mask, create_acsr from functools import reduce import torch import pdb import time from typing import Any ## This is a matrix multiplication of: m*k by k*n -> m*n matrix. NOTE, this is a general mat-mul kernel. @triton.jit def rsddmm_kernel(x_ptr, y_ptr, out_ptr, dTos_linear_trf, dTos_translations, sTod_linear_trf, sTod_translations, nnzs, m, n, k, trailing_dim, tb_mapping_x, tb_mapping_y, BLOCK_SIZE_Y : tl.constexpr, BLOCK_SIZE_X : tl.constexpr): bx = tl.program_id(axis=0) by = tl.program_id(axis=1) batch_head_offset_x_input = by * m * k batch_head_offset_y_input = by * n * k batch_head_offset_output = by * m * trailing_dim ## We first unpack the tb_maps to uncover the top left x and y coordinate. bx_start = tl.load(tb_mapping_x+bx, mask=True) by_start = tl.load(tb_mapping_y+bx, mask=True) bx_start = bx_start.to(tl.int32) by_start = by_start.to(tl.int32) inner_tile_dim : tl.constexpr = 128 x_ptrs = batch_head_offset_x_input + by_start*k + tl.arange(0, BLOCK_SIZE_Y)[:,None]*k + tl.arange(0, inner_tile_dim)[None,:] y_ptrs = batch_head_offset_y_input + bx_start + tl.arange(0, inner_tile_dim)[:,None]*n + tl.arange(0, BLOCK_SIZE_X)[None,:] accumulator = tl.zeros((BLOCK_SIZE_Y, BLOCK_SIZE_X), dtype=tl.float32) for i in range(tl.cdiv(k, inner_tile_dim)): ## Let's do this naively at first. mask_x_ptrs = i*inner_tile_dim + tl.arange(0, inner_tile_dim)[None,:] < k ## The first constraint mask_x_ptrs = mask_x_ptrs & (tl.arange(0, BLOCK_SIZE_Y)[:,None] + by_start < m) mask_y_ptrs = i*inner_tile_dim + tl.arange(0, inner_tile_dim)[:, None] < k mask_y_ptrs = mask_y_ptrs & (tl.arange(0, BLOCK_SIZE_X)[None, :] + bx_start < n) x_tile = tl.load(x_ptr + x_ptrs, mask=mask_x_ptrs, other=0.0) y_tile = tl.load(y_ptr + y_ptrs, mask=mask_y_ptrs, other=0.0) accumulator += tl.dot(x_tile, y_tile, allow_tf32=True) ## Increment x and y pointers here now. x_ptrs += inner_tile_dim y_ptrs += inner_tile_dim*n accumulator = accumulator.to(out_ptr.dtype.element_ty) ## This uses the sTOd affine-indices for scaling the indices of where to store. linear_transforms = tl.load(sTod_linear_trf+by_start+tl.arange(0,BLOCK_SIZE_Y), mask=by_start+tl.arange(0,BLOCK_SIZE_Y)<m, other=1.0) translations = tl.load(sTod_translations+by_start+tl.arange(0, BLOCK_SIZE_Y), mask=by_start+tl.arange(0,BLOCK_SIZE_Y)<m,other=0.0) nnz = tl.load(nnzs+by_start+tl.arange(0,BLOCK_SIZE_Y), mask=by_start+tl.arange(0,BLOCK_SIZE_Y)<m, other=0.0) ## Now, we have to use these to recover the true-indices. ## We do this in 5 steps. ## First: we compute the col_indices pertinent to this TB. ## Second: we scale the col_indices using the linear_transforms and translations array. ## Third: We convert the col_indices into ptrs. ## Fourth: We generate the mask. ## Fifth: We store into the ACSR array. ## Step 1 ## Interestingly, this line throws a ValueError thinking its not wrapped ## within a trion jitted function. We use tl.zeros instead. #col_idx = tl.full((BLOCK_SIZE_Y,), 0, tl.int32) col_idx = tl.zeros((BLOCK_SIZE_Y,), dtype=tl.int32) col_idx = col_idx[:,None] + tl.arange(0, BLOCK_SIZE_X)[None,:] + bx_start ## Step 2 col_idx /= linear_transforms[:,None] ## Intresting bug. Setting interpreter=True, ## tl.int64 throws an error whilst torch.int64 does not. Turning off interpreter mode, the reverse is true. #col_idx -= translations[:,None].to(torch.int64) col_idx -= translations[:,None].to(tl.int64) ## Step 3 output_ptrs = col_idx + tl.arange(0, BLOCK_SIZE_Y)[:,None]*trailing_dim + by_start*trailing_dim ## Type casting required for tl.store compatibililty. ## Intresting bug. Setting interpreter=True, ## tl.int64 throws an error whilst torch.int64 does not. Turning off interpreter mode, the reverse is true. #output_ptrs = output_ptrs.to(torch.int64) output_ptrs = output_ptrs.to(tl.int64) + batch_head_offset_output ## Step 4. ## First, we check for OOB conditions due to translations. output_mask = col_idx >= 0 ## Next, we check if a column index maps to a valid contraction (modulo check). ## Unfortunately, broadcast semantics don't apply to the "==" operator. ## So we have to do design a new bolean operator: ~op1 && ~op2 '''For some reason, this is no longer working. We replace it with the equivalent col_idx % linear_transforms[:, None] == 0 check. op_one = (col_idx % linear_transforms[:, None]).to(tl.int64) > 0 op_two = (col_idx % linear_transforms[:,None]).to(tl.int64) < 0 output_mask = output_mask & ((not op_one) & (not op_two)) ''' output_mask = output_mask & (col_idx % linear_transforms[:, None].to(tl.int64) == 0) ## Lastly, we check for OOB due to exceeding nnz count. output_mask = output_mask & (col_idx < nnz[:,None]) tl.store(out_ptr + output_ptrs, accumulator, mask=output_mask) def naive_block_mappings(mask : list[list[int]], BLOCK_HEIGHT : int, BLOCK_WIDTH : int, GPU_ID : int) -> tuple[torch.Tensor, torch.Tensor]: x_coords = [] y_coords = [] ## We populate the anchor points. ## We place x coord in x_coords ## We place y coord in y_coords for block_number in range(max((len(mask)//BLOCK_HEIGHT), 1)): ## Now we have to find the min and max col_idxs for the block_number. ## min_col_idx = len(mask[0]) max_col_idx = 0 for row in range(block_number*BLOCK_HEIGHT, (block_number+1)*BLOCK_HEIGHT): for col in range(len(mask[0])): if row < len(mask): ## Check required due to irregular boundary conditions. if mask[row][col]: min_col_idx = min(min_col_idx, col) max_col_idx = max(max_col_idx, col) ## Now, after we have found min_col_idx & max_col_idx, ## we compute the thread-block anchor-points. curr_idx = min_col_idx while curr_idx < max_col_idx: x_coords.append(curr_idx) y_coords.append(block_number*BLOCK_HEIGHT) curr_idx += BLOCK_WIDTH assert len(x_coords) == len(y_coords) and len(x_coords) > 0, "Issues with generating arrangement!" return (torch.tensor(x_coords, dtype=torch.int32).to(GPU_ID), torch.tensor(y_coords, dtype=torch.int32).to(GPU_ID)) ## for now, we just do a simple naive tiling, TODO, change to SPLAT's special tiling later. def gen_block_mappings(mask : list[list[int]], BLOCK_HEIGHT : int, BLOCK_WIDTH : int, GPU_ID : int, is_naive : bool = True) -> tuple[torch.Tensor, torch.Tensor]: return naive_block_mappings(mask, BLOCK_HEIGHT, BLOCK_WIDTH, GPU_ID) def rsddmm_preamble(mask : list[list[int]], output_shape: tuple[int], BLOCK_SIZE_X : int, BLOCK_SIZE_Y : int, GPU_ID : int, out_dtype : torch.dtype): output : torch.Tensor = torch.empty((output_shape), dtype=out_dtype).to(GPU_ID) ## Next, we compute the tiling blocks. tb_map_x, tb_map_y = gen_block_mappings(mask, BLOCK_SIZE_Y, BLOCK_SIZE_X, GPU_ID) assert tb_map_x.shape == tb_map_y.shape, "Incorrect tiling arrangement!" ## Finally, we can launch the kernel grid_dim = (tb_map_x.shape[0],output_shape[0]*output_shape[1]) return ( output, grid_dim, tb_map_x, tb_map_y ) def rsddmm_launcher(x : torch.Tensor, y : torch.Tensor, output : torch.Tensor, dTos_linear_transformations : torch.Tensor, dTos_translations : torch.Tensor, sTod_linear_transformations : torch.Tensor, sTod_translations : torch.Tensor, trailing_dim : int, nnzs : torch.Tensor, grid_dim : tuple[int], tb_map_x : torch.Tensor, tb_map_y : torch.Tensor, BLOCK_SIZE_Y : int, BLOCK_SIZE_X : int) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]: rsddmm_kernel[grid_dim](x,y,output, dTos_linear_transformations,dTos_translations, sTod_linear_transformations,sTod_translations,nnzs, x.shape[2],y.shape[3],x.shape[3], trailing_dim, tb_map_x, tb_map_y, BLOCK_SIZE_Y=BLOCK_SIZE_Y, BLOCK_SIZE_X=BLOCK_SIZE_X, num_warps=2) ## We return the sTod arrays for correctness checking only. return (output, sTod_linear_transformations, sTod_translations, nnzs) def truth(x : torch.Tensor, y: torch.Tensor, GPU_ID : int) -> torch.Tensor: return torch.einsum('bnqd, bndk -> bnqk', x, y) #return torch.matmul(x,y).to(GPU_ID) ## Define checker later, figure out good practice. TODO. def is_correct(out_torch : torch.Tensor, out_rsddmm : torch.Tensor, sTod_linear_transofrmations : torch.Tensor, sTod_translations : torch.Tensor, nnzs: torch.Tensor, batch_size : int, num_heads : int, mask : list[list[int]]) -> bool: out_torch_list = out_torch.tolist() ## Question: What are the sizes of these tensors?! out_rsddmm_list = out_rsddmm.tolist() sTod_linear_transformations_list = sTod_linear_transofrmations.tolist() sTod_translations_list = sTod_translations.tolist() nnzs_list = nnzs.tolist() num_deviations : int = 0 mse_error : float = 0 for b in range(batch_size): for h in range(num_heads): for row in range(len(mask)): for nnz_col_id in range(len(out_rsddmm_list[0][0][0])): ## We convert to the dense index. dense_col_id : int = round(nnz_col_id * sTod_linear_transformations_list[row] + sTod_translations_list[row]) if nnz_col_id < nnzs_list[row] and abs(out_torch_list[b][h][row][dense_col_id] - out_rsddmm_list[b][h][row][nnz_col_id]) > 1e-3: #print(f'failed at: {row} {dense_col_id}') mse_error += abs(out_torch_list[b][h][row][dense_col_id] - out_rsddmm_list[b][h][row][nnz_col_id]) num_deviations += 1 if num_deviations > 0: print(f'test case failed average mse: {mse_error}') return False else: print(f'test case passed!') return True ## Multiply a: m*k and k*n matrix. def test(m: int, k : int, n : int, num_heads : int, batch_size : int, mask : list[list[int]], GPU_ID : int, BLOCK_SIZE_Y : int, BLOCK_SIZE_X : int, out_dtype : torch.dtype): ## Some simple test-cases for me to try out. assert m==n, "We only need to consider the case when m=n." #left : torch.Tensor = torch.randn((m,k),dtype=torch.float32).to(GPU_ID) #right : torch.Tensor = torch.randn((k,n),dtype=torch.float32).to(GPU_ID) left : torch.Tensor = torch.randint(0, 100, (batch_size,num_heads,m,k),dtype=out_dtype).to(GPU_ID) right : torch.Tensor = torch.randint(0, 100, (batch_size,num_heads,k,n),dtype=out_dtype).to(GPU_ID) dTos_linear_transformations, dTos_translations, \ sTod_linear_transformations, sTod_translations, nnzs, \ acsr_trailing_dimension, _, _ = create_acsr( mask, BLOCK_SIZE_X, GPU_ID ) output_tensor, grid_dim, \ tb_map_x, tb_map_y = rsddmm_preamble(mask, (batch_size, num_heads, m, acsr_trailing_dimension), BLOCK_SIZE_X, BLOCK_SIZE_Y, GPU_ID, out_dtype) ## Call the rsddmm launcher. rsddmm_output, sTod_linear_transformations, \ sTod_translations, nnzs = rsddmm_launcher(left, right, output_tensor, dTos_linear_transformations, dTos_translations, sTod_linear_transformations, sTod_translations, acsr_trailing_dimension, nnzs, grid_dim, tb_map_x, tb_map_y, BLOCK_SIZE_Y, BLOCK_SIZE_X) ## Verify correctness. torch_output = truth(left, right, GPU_ID) is_correct(torch_output, rsddmm_output, sTod_linear_transformations, sTod_translations, nnzs, batch_size, num_heads, mask) if __name__ == "__main__": ## Just a sample unit test over here. ## Small unit-tests def test_one(): ## Basice parameters to multiply: m*k by k*n -> m*n matrix. n: int = 10 m: int = 10 k: int = 10 p: int = 2 ## Sparsity parameter. GPU_ID : Any = 0 num_heads : int = 2 batch_size : int = 2 BLOCK_SIZE_Y : int = 16 BLOCK_SIZE_X : int = 16 out_dtype : torch.dtype = torch.bfloat16 ## Instantiate a mask. mask = create_blocked_mask(n, p) test(m, k, n, num_heads, batch_size, mask, GPU_ID, BLOCK_SIZE_Y, BLOCK_SIZE_X, torch.bfloat16) def test_two(): ## Basice parameters to multiply: m*k by k*n -> m*n matrix. n: int = 10 m: int = 10 k: int = 10 p: int = 5 ## Sparsity parameter. GPU_ID : Any = 'cpu' num_heads : int = 2 batch_size : int = 2 BLOCK_SIZE_Y : int = 16 BLOCK_SIZE_X : int = 16 out_dtype : torch.dtype = torch.bfloat16 ## Instantiate a mask. mask = create_blocked_mask(n, p) test(m, k, n, num_heads, batch_size, mask, GPU_ID, BLOCK_SIZE_Y, BLOCK_SIZE_X, out_dtype) def test_three(): ## Basice parameters to multiply: m*k by k*n -> m*n matrix. n: int = 10 m: int = 10 k: int = 10 p: int = 7 ## Sparsity parameter. GPU_ID : Any = 'cpu' num_heads : int = 2 batch_size : int = 2 BLOCK_SIZE_Y : int = 16 BLOCK_SIZE_X : int = 16 out_dtype : torch.dtype = torch.bfloat16 ## Instantiate a mask. mask = create_blocked_mask(n, p) test(m, k, n, num_heads, batch_size, mask, GPU_ID, BLOCK_SIZE_Y, BLOCK_SIZE_X, out_dtype) def test_four(): ## Basice parameters to multiply: m*k by k*n -> m*n matrix. n: int = 16 m: int = 16 k: int = 16 p: int = 5 ## Sparsity parameter. GPU_ID : Any = 'cpu' num_heads : int = 2 batch_size : int = 2 BLOCK_SIZE_Y : int = 16 BLOCK_SIZE_X : int = 16 out_dtype : torch.dtype = torch.bfloat16 ## Instantiate a mask. mask = create_blocked_mask(n, p) test(m, k, n, num_heads, batch_size, mask, GPU_ID, BLOCK_SIZE_Y, BLOCK_SIZE_X, out_dtype) def test_five(): ## Basice parameters to multiply: m*k by k*n -> m*n matrix. n: int = 16 m: int = 16 k: int = 16 p: int = 16 ## Sparsity parameter. GPU_ID : int = 0 BLOCK_SIZE_Y : int = 16 BLOCK_SIZE_X : int = 16 out_dtype : torch.dtype = torch.bfloat16 ## Instantiate a mask. mask = create_blocked_mask(n, p) test(m, k, n, mask, GPU_ID, BLOCK_SIZE_Y, BLOCK_SIZE_X, out_dtype) def test_six(): ## Basice parameters to multiply: m*k by k*n -> m*n matrix. n: int = 32 m: int = 32 k: int = 32 p: int = 10 ## Sparsity parameter. GPU_ID : int = 0 BLOCK_SIZE_Y : int = 16 BLOCK_SIZE_X : int = 16 out_dtype : torch.dtype = torch.bfloat16 ## Instantiate a mask. mask = create_blocked_mask(n, p) test(m, k, n, mask, GPU_ID, BLOCK_SIZE_Y, BLOCK_SIZE_X, out_dtype) def test_seven(): ## Basice parameters to multiply: m*k by k*n -> m*n matrix. n: int = 32 m: int = 32 k: int = 32 p: int = 20 ## Sparsity parameter. GPU_ID : int = 0 BLOCK_SIZE_Y : int = 16 BLOCK_SIZE_X : int = 16 out_dtype : torch.dtype = torch.bfloat16 ## Instantiate a mask. mask = create_blocked_mask(n, p) test(m, k, n, mask, GPU_ID, BLOCK_SIZE_Y, BLOCK_SIZE_X, out_dtype) def test_eight(): ## Basice parameters to multiply: m*k by k*n -> m*n matrix. n: int = 32 m: int = 32 k: int = 32 p: int = 32 ## Sparsity parameter. GPU_ID : int = 0 BLOCK_SIZE_Y : int = 16 BLOCK_SIZE_X : int = 16 out_dtype : torch.dtype = torch.bfloat16 ## Instantiate a mask. mask = create_blocked_mask(n, p) test(m, k, n, mask, GPU_ID, BLOCK_SIZE_Y, BLOCK_SIZE_X, out_dtype) def test_nine(): ## Basice parameters to multiply: m*k by k*n -> m*n matrix. n: int = 128 m: int = 128 k: int = 128 p: int = 57 ## Sparsity parameter. GPU_ID : int = 0 BLOCK_SIZE_Y : int = 16 BLOCK_SIZE_X : int = 16 out_dtype : torch.dtype = torch.bfloat16 ## Instantiate a mask. mask = create_blocked_mask(n, p) test(m, k, n, mask, GPU_ID, BLOCK_SIZE_Y, BLOCK_SIZE_X, out_dtype) ## These are pretty small tests. test_one() test_two() test_three() test_four() test_five() test_six() test_seven() test_eight() test_nine() ## Larger tests. def test_ten(): ## Basice parameters to multiply: m*k by k*n -> m*n matrix. n: int = 1024 m: int = 1024 k: int = 1024 p: int = 256 ## Sparsity parameter. GPU_ID : int = 0 BLOCK_SIZE_Y : int = 16 BLOCK_SIZE_X : int = 16 out_dtype : torch.dtype = torch.bfloat16 ## Instantiate a mask. mask = create_blocked_mask(n, p) test(m, k, n, mask, GPU_ID, BLOCK_SIZE_Y, BLOCK_SIZE_X, out_dtype) def test_eleven(): ## Basice parameters to multiply: m*k by k*n -> m*n matrix. n: int = 1024 m: int = 1024 k: int = 1024 p: int = 328 ## Sparsity parameter. GPU_ID : int = 0 BLOCK_SIZE_Y : int = 16 BLOCK_SIZE_X : int = 16 out_dtype : torch.dtype = torch.bfloat16 ## Instantiate a mask. mask = create_blocked_mask(n, p) test(m, k, n, mask, GPU_ID, BLOCK_SIZE_Y, BLOCK_SIZE_X, out_dtype) def test_twelve(): ## Basice parameters to multiply: m*k by k*n -> m*n matrix. n: int = 1024 m: int = 1024 k: int = 1024 p: int = 512 ## Sparsity parameter. GPU_ID : int = 0 BLOCK_SIZE_Y : int = 16 BLOCK_SIZE_X : int = 16 out_dtype : torch.dtype = torch.bfloat16 ## Instantiate a mask. mask = create_blocked_mask(n, p) test(m, k, n, mask, GPU_ID, BLOCK_SIZE_Y, BLOCK_SIZE_X, out_dtype) test_ten() test_eleven() test_twelve()
@triton.jit def rsddmm_kernel(x_ptr, y_ptr, out_ptr, dTos_linear_trf, dTos_translations, sTod_linear_trf, sTod_translations, nnzs, m, n, k, trailing_dim, tb_mapping_x, tb_mapping_y, BLOCK_SIZE_Y : tl.constexpr, BLOCK_SIZE_X : tl.constexpr): bx = tl.program_id(axis=0) by = tl.program_id(axis=1) batch_head_offset_x_input = by * m * k batch_head_offset_y_input = by * n * k batch_head_offset_output = by * m * trailing_dim ## We first unpack the tb_maps to uncover the top left x and y coordinate. bx_start = tl.load(tb_mapping_x+bx, mask=True) by_start = tl.load(tb_mapping_y+bx, mask=True) bx_start = bx_start.to(tl.int32) by_start = by_start.to(tl.int32) inner_tile_dim : tl.constexpr = 128 x_ptrs = batch_head_offset_x_input + by_start*k + tl.arange(0, BLOCK_SIZE_Y)[:,None]*k + tl.arange(0, inner_tile_dim)[None,:] y_ptrs = batch_head_offset_y_input + bx_start + tl.arange(0, inner_tile_dim)[:,None]*n + tl.arange(0, BLOCK_SIZE_X)[None,:] accumulator = tl.zeros((BLOCK_SIZE_Y, BLOCK_SIZE_X), dtype=tl.float32) for i in range(tl.cdiv(k, inner_tile_dim)): ## Let's do this naively at first. mask_x_ptrs = i*inner_tile_dim + tl.arange(0, inner_tile_dim)[None,:] < k ## The first constraint mask_x_ptrs = mask_x_ptrs & (tl.arange(0, BLOCK_SIZE_Y)[:,None] + by_start < m) mask_y_ptrs = i*inner_tile_dim + tl.arange(0, inner_tile_dim)[:, None] < k mask_y_ptrs = mask_y_ptrs & (tl.arange(0, BLOCK_SIZE_X)[None, :] + bx_start < n) x_tile = tl.load(x_ptr + x_ptrs, mask=mask_x_ptrs, other=0.0) y_tile = tl.load(y_ptr + y_ptrs, mask=mask_y_ptrs, other=0.0) accumulator += tl.dot(x_tile, y_tile, allow_tf32=True) ## Increment x and y pointers here now. x_ptrs += inner_tile_dim y_ptrs += inner_tile_dim*n accumulator = accumulator.to(out_ptr.dtype.element_ty) ## This uses the sTOd affine-indices for scaling the indices of where to store. linear_transforms = tl.load(sTod_linear_trf+by_start+tl.arange(0,BLOCK_SIZE_Y), mask=by_start+tl.arange(0,BLOCK_SIZE_Y)<m, other=1.0) translations = tl.load(sTod_translations+by_start+tl.arange(0, BLOCK_SIZE_Y), mask=by_start+tl.arange(0,BLOCK_SIZE_Y)<m,other=0.0) nnz = tl.load(nnzs+by_start+tl.arange(0,BLOCK_SIZE_Y), mask=by_start+tl.arange(0,BLOCK_SIZE_Y)<m, other=0.0) ## Now, we have to use these to recover the true-indices. ## We do this in 5 steps. ## First: we compute the col_indices pertinent to this TB. ## Second: we scale the col_indices using the linear_transforms and translations array. ## Third: We convert the col_indices into ptrs. ## Fourth: We generate the mask. ## Fifth: We store into the ACSR array. ## Step 1 ## Interestingly, this line throws a ValueError thinking its not wrapped ## within a trion jitted function. We use tl.zeros instead. #col_idx = tl.full((BLOCK_SIZE_Y,), 0, tl.int32) col_idx = tl.zeros((BLOCK_SIZE_Y,), dtype=tl.int32) col_idx = col_idx[:,None] + tl.arange(0, BLOCK_SIZE_X)[None,:] + bx_start ## Step 2 col_idx /= linear_transforms[:,None] ## Intresting bug. Setting interpreter=True, ## tl.int64 throws an error whilst torch.int64 does not. Turning off interpreter mode, the reverse is true. #col_idx -= translations[:,None].to(torch.int64) col_idx -= translations[:,None].to(tl.int64) ## Step 3 output_ptrs = col_idx + tl.arange(0, BLOCK_SIZE_Y)[:,None]*trailing_dim + by_start*trailing_dim ## Type casting required for tl.store compatibililty. ## Intresting bug. Setting interpreter=True, ## tl.int64 throws an error whilst torch.int64 does not. Turning off interpreter mode, the reverse is true. #output_ptrs = output_ptrs.to(torch.int64) output_ptrs = output_ptrs.to(tl.int64) + batch_head_offset_output ## Step 4. ## First, we check for OOB conditions due to translations. output_mask = col_idx >= 0 ## Next, we check if a column index maps to a valid contraction (modulo check). ## Unfortunately, broadcast semantics don't apply to the "==" operator. ## So we have to do design a new bolean operator: ~op1 && ~op2 '''For some reason, this is no longer working. We replace it with the equivalent col_idx % linear_transforms[:, None] == 0 check. op_one = (col_idx % linear_transforms[:, None]).to(tl.int64) > 0 op_two = (col_idx % linear_transforms[:,None]).to(tl.int64) < 0 output_mask = output_mask & ((not op_one) & (not op_two)) ''' output_mask = output_mask & (col_idx % linear_transforms[:, None].to(tl.int64) == 0) ## Lastly, we check for OOB due to exceeding nnz count. output_mask = output_mask & (col_idx < nnz[:,None]) tl.store(out_ptr + output_ptrs, accumulator, mask=output_mask) def naive_block_mappings(mask : list[list[int]], BLOCK_HEIGHT : int, BLOCK_WIDTH : int, GPU_ID : int) -> tuple[torch.Tensor, torch.Tensor]: x_coords = [] y_coords = [] ## We populate the anchor points. ## We place x coord in x_coords ## We place y coord in y_coords for block_number in range(max((len(mask)//BLOCK_HEIGHT), 1)): ## Now we have to find the min and max col_idxs for the block_number. ## min_col_idx = len(mask[0]) max_col_idx = 0 for row in range(block_number*BLOCK_HEIGHT, (block_number+1)*BLOCK_HEIGHT): for col in range(len(mask[0])): if row < len(mask): ## Check required due to irregular boundary conditions. if mask[row][col]: min_col_idx = min(min_col_idx, col) max_col_idx = max(max_col_idx, col) ## Now, after we have found min_col_idx & max_col_idx, ## we compute the thread-block anchor-points. curr_idx = min_col_idx while curr_idx < max_col_idx: x_coords.append(curr_idx) y_coords.append(block_number*BLOCK_HEIGHT) curr_idx += BLOCK_WIDTH assert len(x_coords) == len(y_coords) and len(x_coords) > 0, "Issues with generating arrangement!" return (torch.tensor(x_coords, dtype=torch.int32).to(GPU_ID), torch.tensor(y_coords, dtype=torch.int32).to(GPU_ID)) ## for now, we just do a simple naive tiling, TODO, change to SPLAT's special tiling later. def gen_block_mappings(mask : list[list[int]], BLOCK_HEIGHT : int, BLOCK_WIDTH : int, GPU_ID : int, is_naive : bool = True) -> tuple[torch.Tensor, torch.Tensor]: return naive_block_mappings(mask, BLOCK_HEIGHT, BLOCK_WIDTH, GPU_ID) def rsddmm_preamble(mask : list[list[int]], output_shape: tuple[int], BLOCK_SIZE_X : int, BLOCK_SIZE_Y : int, GPU_ID : int, out_dtype : torch.dtype): output : torch.Tensor = torch.empty((output_shape), dtype=out_dtype).to(GPU_ID) ## Next, we compute the tiling blocks. tb_map_x, tb_map_y = gen_block_mappings(mask, BLOCK_SIZE_Y, BLOCK_SIZE_X, GPU_ID) assert tb_map_x.shape == tb_map_y.shape, "Incorrect tiling arrangement!" ## Finally, we can launch the kernel grid_dim = (tb_map_x.shape[0],output_shape[0]*output_shape[1]) return ( output, grid_dim, tb_map_x, tb_map_y ) def rsddmm_launcher(x : torch.Tensor, y : torch.Tensor, output : torch.Tensor, dTos_linear_transformations : torch.Tensor, dTos_translations : torch.Tensor, sTod_linear_transformations : torch.Tensor, sTod_translations : torch.Tensor, trailing_dim : int, nnzs : torch.Tensor, grid_dim : tuple[int], tb_map_x : torch.Tensor, tb_map_y : torch.Tensor, BLOCK_SIZE_Y : int, BLOCK_SIZE_X : int) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]: rsddmm_kernel[grid_dim](x,y,output, dTos_linear_transformations,dTos_translations, sTod_linear_transformations,sTod_translations,nnzs, x.shape[2],y.shape[3],x.shape[3], trailing_dim, tb_map_x, tb_map_y, BLOCK_SIZE_Y=BLOCK_SIZE_Y, BLOCK_SIZE_X=BLOCK_SIZE_X, num_warps=2) ## We return the sTod arrays for correctness checking only. return (output, sTod_linear_transformations, sTod_translations, nnzs) def truth(x : torch.Tensor, y: torch.Tensor, GPU_ID : int) -> torch.Tensor: return torch.einsum('bnqd, bndk -> bnqk', x, y) #return torch.matmul(x,y).to(GPU_ID) ## Define checker later, figure out good practice. TODO. def is_correct(out_torch : torch.Tensor, out_rsddmm : torch.Tensor, sTod_linear_transofrmations : torch.Tensor, sTod_translations : torch.Tensor, nnzs: torch.Tensor, batch_size : int, num_heads : int, mask : list[list[int]]) -> bool: out_torch_list = out_torch.tolist() ## Question: What are the sizes of these tensors?! out_rsddmm_list = out_rsddmm.tolist() sTod_linear_transformations_list = sTod_linear_transofrmations.tolist() sTod_translations_list = sTod_translations.tolist() nnzs_list = nnzs.tolist() num_deviations : int = 0 mse_error : float = 0 for b in range(batch_size): for h in range(num_heads): for row in range(len(mask)): for nnz_col_id in range(len(out_rsddmm_list[0][0][0])): ## We convert to the dense index. dense_col_id : int = round(nnz_col_id * sTod_linear_transformations_list[row] + sTod_translations_list[row]) if nnz_col_id < nnzs_list[row] and abs(out_torch_list[b][h][row][dense_col_id] - out_rsddmm_list[b][h][row][nnz_col_id]) > 1e-3: #print(f'failed at: {row} {dense_col_id}') mse_error += abs(out_torch_list[b][h][row][dense_col_id] - out_rsddmm_list[b][h][row][nnz_col_id]) num_deviations += 1 if num_deviations > 0: print(f'test case failed average mse: {mse_error}') return False else: print(f'test case passed!') return True ## Multiply a: m*k and k*n matrix. def test(m: int, k : int, n : int, num_heads : int, batch_size : int, mask : list[list[int]], GPU_ID : int, BLOCK_SIZE_Y : int, BLOCK_SIZE_X : int, out_dtype : torch.dtype): ## Some simple test-cases for me to try out. assert m==n, "We only need to consider the case when m=n." #left : torch.Tensor = torch.randn((m,k),dtype=torch.float32).to(GPU_ID) #right : torch.Tensor = torch.randn((k,n),dtype=torch.float32).to(GPU_ID) left : torch.Tensor = torch.randint(0, 100, (batch_size,num_heads,m,k),dtype=out_dtype).to(GPU_ID) right : torch.Tensor = torch.randint(0, 100, (batch_size,num_heads,k,n),dtype=out_dtype).to(GPU_ID) dTos_linear_transformations, dTos_translations, \ sTod_linear_transformations, sTod_translations, nnzs, \ acsr_trailing_dimension, _, _ = create_acsr( mask, BLOCK_SIZE_X, GPU_ID ) output_tensor, grid_dim, \ tb_map_x, tb_map_y = rsddmm_preamble(mask, (batch_size, num_heads, m, acsr_trailing_dimension), BLOCK_SIZE_X, BLOCK_SIZE_Y, GPU_ID, out_dtype) ## Call the rsddmm launcher. rsddmm_output, sTod_linear_transformations, \ sTod_translations, nnzs = rsddmm_launcher(left, right, output_tensor, dTos_linear_transformations, dTos_translations, sTod_linear_transformations, sTod_translations, acsr_trailing_dimension, nnzs, grid_dim, tb_map_x, tb_map_y, BLOCK_SIZE_Y, BLOCK_SIZE_X) ## Verify correctness. torch_output = truth(left, right, GPU_ID) is_correct(torch_output, rsddmm_output, sTod_linear_transformations, sTod_translations, nnzs, batch_size, num_heads, mask) if __name__ == "__main__": ## Just a sample unit test over here. ## Small unit-tests def test_one(): ## Basice parameters to multiply: m*k by k*n -> m*n matrix. n: int = 10 m: int = 10 k: int = 10 p: int = 2 ## Sparsity parameter. GPU_ID : Any = 0 num_heads : int = 2 batch_size : int = 2 BLOCK_SIZE_Y : int = 16 BLOCK_SIZE_X : int = 16 out_dtype : torch.dtype = torch.bfloat16 ## Instantiate a mask. mask = create_blocked_mask(n, p) test(m, k, n, num_heads, batch_size, mask, GPU_ID, BLOCK_SIZE_Y, BLOCK_SIZE_X, torch.bfloat16) def test_two(): ## Basice parameters to multiply: m*k by k*n -> m*n matrix. n: int = 10 m: int = 10 k: int = 10 p: int = 5 ## Sparsity parameter. GPU_ID : Any = 'cpu' num_heads : int = 2 batch_size : int = 2 BLOCK_SIZE_Y : int = 16 BLOCK_SIZE_X : int = 16 out_dtype : torch.dtype = torch.bfloat16 ## Instantiate a mask. mask = create_blocked_mask(n, p) test(m, k, n, num_heads, batch_size, mask, GPU_ID, BLOCK_SIZE_Y, BLOCK_SIZE_X, out_dtype) def test_three(): ## Basice parameters to multiply: m*k by k*n -> m*n matrix. n: int = 10 m: int = 10 k: int = 10 p: int = 7 ## Sparsity parameter. GPU_ID : Any = 'cpu' num_heads : int = 2 batch_size : int = 2 BLOCK_SIZE_Y : int = 16 BLOCK_SIZE_X : int = 16 out_dtype : torch.dtype = torch.bfloat16 ## Instantiate a mask. mask = create_blocked_mask(n, p) test(m, k, n, num_heads, batch_size, mask, GPU_ID, BLOCK_SIZE_Y, BLOCK_SIZE_X, out_dtype) def test_four(): ## Basice parameters to multiply: m*k by k*n -> m*n matrix. n: int = 16 m: int = 16 k: int = 16 p: int = 5 ## Sparsity parameter. GPU_ID : Any = 'cpu' num_heads : int = 2 batch_size : int = 2 BLOCK_SIZE_Y : int = 16 BLOCK_SIZE_X : int = 16 out_dtype : torch.dtype = torch.bfloat16 ## Instantiate a mask. mask = create_blocked_mask(n, p) test(m, k, n, num_heads, batch_size, mask, GPU_ID, BLOCK_SIZE_Y, BLOCK_SIZE_X, out_dtype) def test_five(): ## Basice parameters to multiply: m*k by k*n -> m*n matrix. n: int = 16 m: int = 16 k: int = 16 p: int = 16 ## Sparsity parameter. GPU_ID : int = 0 BLOCK_SIZE_Y : int = 16 BLOCK_SIZE_X : int = 16 out_dtype : torch.dtype = torch.bfloat16 ## Instantiate a mask. mask = create_blocked_mask(n, p) test(m, k, n, mask, GPU_ID, BLOCK_SIZE_Y, BLOCK_SIZE_X, out_dtype) def test_six(): ## Basice parameters to multiply: m*k by k*n -> m*n matrix. n: int = 32 m: int = 32 k: int = 32 p: int = 10 ## Sparsity parameter. GPU_ID : int = 0 BLOCK_SIZE_Y : int = 16 BLOCK_SIZE_X : int = 16 out_dtype : torch.dtype = torch.bfloat16 ## Instantiate a mask. mask = create_blocked_mask(n, p) test(m, k, n, mask, GPU_ID, BLOCK_SIZE_Y, BLOCK_SIZE_X, out_dtype) def test_seven(): ## Basice parameters to multiply: m*k by k*n -> m*n matrix. n: int = 32 m: int = 32 k: int = 32 p: int = 20 ## Sparsity parameter. GPU_ID : int = 0 BLOCK_SIZE_Y : int = 16 BLOCK_SIZE_X : int = 16 out_dtype : torch.dtype = torch.bfloat16 ## Instantiate a mask. mask = create_blocked_mask(n, p) test(m, k, n, mask, GPU_ID, BLOCK_SIZE_Y, BLOCK_SIZE_X, out_dtype) def test_eight(): ## Basice parameters to multiply: m*k by k*n -> m*n matrix. n: int = 32 m: int = 32 k: int = 32 p: int = 32 ## Sparsity parameter. GPU_ID : int = 0 BLOCK_SIZE_Y : int = 16 BLOCK_SIZE_X : int = 16 out_dtype : torch.dtype = torch.bfloat16 ## Instantiate a mask. mask = create_blocked_mask(n, p) test(m, k, n, mask, GPU_ID, BLOCK_SIZE_Y, BLOCK_SIZE_X, out_dtype) def test_nine(): ## Basice parameters to multiply: m*k by k*n -> m*n matrix. n: int = 128 m: int = 128 k: int = 128 p: int = 57 ## Sparsity parameter. GPU_ID : int = 0 BLOCK_SIZE_Y : int = 16 BLOCK_SIZE_X : int = 16 out_dtype : torch.dtype = torch.bfloat16 ## Instantiate a mask. mask = create_blocked_mask(n, p) test(m, k, n, mask, GPU_ID, BLOCK_SIZE_Y, BLOCK_SIZE_X, out_dtype) ## These are pretty small tests. test_one() test_two() test_three() test_four() test_five() test_six() test_seven() test_eight() test_nine() ## Larger tests. def test_ten(): ## Basice parameters to multiply: m*k by k*n -> m*n matrix. n: int = 1024 m: int = 1024 k: int = 1024 p: int = 256 ## Sparsity parameter. GPU_ID : int = 0 BLOCK_SIZE_Y : int = 16 BLOCK_SIZE_X : int = 16 out_dtype : torch.dtype = torch.bfloat16 ## Instantiate a mask. mask = create_blocked_mask(n, p) test(m, k, n, mask, GPU_ID, BLOCK_SIZE_Y, BLOCK_SIZE_X, out_dtype) def test_eleven(): ## Basice parameters to multiply: m*k by k*n -> m*n matrix. n: int = 1024 m: int = 1024 k: int = 1024 p: int = 328 ## Sparsity parameter. GPU_ID : int = 0 BLOCK_SIZE_Y : int = 16 BLOCK_SIZE_X : int = 16 out_dtype : torch.dtype = torch.bfloat16 ## Instantiate a mask. mask = create_blocked_mask(n, p) test(m, k, n, mask, GPU_ID, BLOCK_SIZE_Y, BLOCK_SIZE_X, out_dtype) def test_twelve(): ## Basice parameters to multiply: m*k by k*n -> m*n matrix. n: int = 1024 m: int = 1024 k: int = 1024 p: int = 512 ## Sparsity parameter. GPU_ID : int = 0 BLOCK_SIZE_Y : int = 16 BLOCK_SIZE_X : int = 16 out_dtype : torch.dtype = torch.bfloat16 ## Instantiate a mask. mask = create_blocked_mask(n, p) test(m, k, n, mask, GPU_ID, BLOCK_SIZE_Y, BLOCK_SIZE_X, out_dtype) test_ten() test_eleven() test_twelve()
InfiniTensor/ninetoothed-examples
matmul.py
https://github.com/InfiniTensor/ninetoothed-examples/blob/ca5d81e4a57fdb973155894fa4ad84058833ee45/matmul.py
import ninetoothed import ninetoothed.language as ntl import torch import triton import triton.language as tl from ninetoothed import Symbol, Tensor def arrangement(lhs, rhs, output): BLOCK_SIZE_M = Symbol("BLOCK_SIZE_M", meta=True) BLOCK_SIZE_N = Symbol("BLOCK_SIZE_N", meta=True) BLOCK_SIZE_K = Symbol("BLOCK_SIZE_K", meta=True) output_tiled = output.tile((BLOCK_SIZE_M, BLOCK_SIZE_N)) lhs_tiled = ( lhs.tile((BLOCK_SIZE_M, BLOCK_SIZE_K)) .tile((1, -1)) .expand((-1, output_tiled.shape[1])) ) lhs_tiled.dtype = lhs_tiled.dtype.squeeze(0) rhs_tiled = ( rhs.tile((BLOCK_SIZE_K, BLOCK_SIZE_N)) .tile((-1, 1)) .expand((output_tiled.shape[0], -1)) ) rhs_tiled.dtype = rhs_tiled.dtype.squeeze(1) return lhs_tiled, rhs_tiled, output_tiled def application(lhs, rhs, output): accumulator = ntl.zeros(output.shape, dtype=ntl.float32) for k in range(lhs.shape[0]): accumulator += ntl.dot(lhs[k], rhs[k]) output = accumulator.to(ntl.float16) matmul_kernel = ninetoothed.make( arrangement, application, (Tensor(2), Tensor(2), Tensor(2)) ) def matmul(lhs, rhs): output = torch.empty( (lhs.shape[0], rhs.shape[1]), device=lhs.device, dtype=torch.float16 ) matmul_kernel(lhs, rhs, output) return output @triton.autotune( configs=[ triton.Config( { "BLOCK_SIZE_M": 128, "BLOCK_SIZE_N": 256, "BLOCK_SIZE_K": 64, "GROUP_SIZE_M": 8, }, num_stages=3, num_warps=8, ), triton.Config( { "BLOCK_SIZE_M": 64, "BLOCK_SIZE_N": 256, "BLOCK_SIZE_K": 32, "GROUP_SIZE_M": 8, }, num_stages=4, num_warps=4, ), triton.Config( { "BLOCK_SIZE_M": 128, "BLOCK_SIZE_N": 128, "BLOCK_SIZE_K": 32, "GROUP_SIZE_M": 8, }, num_stages=4, num_warps=4, ), triton.Config( { "BLOCK_SIZE_M": 128, "BLOCK_SIZE_N": 64, "BLOCK_SIZE_K": 32, "GROUP_SIZE_M": 8, }, num_stages=4, num_warps=4, ), triton.Config( { "BLOCK_SIZE_M": 64, "BLOCK_SIZE_N": 128, "BLOCK_SIZE_K": 32, "GROUP_SIZE_M": 8, }, num_stages=4, num_warps=4, ), triton.Config( { "BLOCK_SIZE_M": 128, "BLOCK_SIZE_N": 32, "BLOCK_SIZE_K": 32, "GROUP_SIZE_M": 8, }, num_stages=4, num_warps=4, ), triton.Config( { "BLOCK_SIZE_M": 64, "BLOCK_SIZE_N": 32, "BLOCK_SIZE_K": 32, "GROUP_SIZE_M": 8, }, num_stages=5, num_warps=2, ), triton.Config( { "BLOCK_SIZE_M": 32, "BLOCK_SIZE_N": 64, "BLOCK_SIZE_K": 32, "GROUP_SIZE_M": 8, }, num_stages=5, num_warps=2, ), ], key=["m", "n", "k"], ) @triton.jit def triton_matmul_kernel( lhs_ptr, rhs_ptr, output_ptr, m, n, k, lhs_stride_m, lhs_stride_k, rhs_stride_k, rhs_stride_n, output_stride_m, output_stride_n, BLOCK_SIZE_M: tl.constexpr, BLOCK_SIZE_N: tl.constexpr, BLOCK_SIZE_K: tl.constexpr, GROUP_SIZE_M: tl.constexpr, ): pid = tl.program_id(0) num_pid_m = tl.cdiv(m, BLOCK_SIZE_M) num_pid_n = tl.cdiv(n, BLOCK_SIZE_N) num_pid_in_group = GROUP_SIZE_M * num_pid_n group_id = pid // num_pid_in_group first_pid_m = group_id * GROUP_SIZE_M group_size_m = min(num_pid_m - first_pid_m, GROUP_SIZE_M) pid_m = first_pid_m + ((pid % num_pid_in_group) % group_size_m) pid_n = (pid % num_pid_in_group) // group_size_m offs_am = (pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M)) % m offs_bn = (pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N)) % n offs_k = tl.arange(0, BLOCK_SIZE_K) lhs_ptrs = lhs_ptr + ( offs_am[:, None] * lhs_stride_m + offs_k[None, :] * lhs_stride_k ) rhs_ptrs = rhs_ptr + ( offs_k[:, None] * rhs_stride_k + offs_bn[None, :] * rhs_stride_n ) accumulator = tl.zeros((BLOCK_SIZE_M, BLOCK_SIZE_N), dtype=tl.float32) for i in range(0, tl.cdiv(k, BLOCK_SIZE_K)): lhs = tl.load(lhs_ptrs, mask=offs_k[None, :] < k - i * BLOCK_SIZE_K, other=0.0) rhs = tl.load(rhs_ptrs, mask=offs_k[:, None] < k - i * BLOCK_SIZE_K, other=0.0) accumulator = tl.dot(lhs, rhs, accumulator) lhs_ptrs += BLOCK_SIZE_K * lhs_stride_k rhs_ptrs += BLOCK_SIZE_K * rhs_stride_k output = accumulator.to(tl.float16) offs_cm = pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M) offs_cn = pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N) output_ptrs = ( output_ptr + output_stride_m * offs_cm[:, None] + output_stride_n * offs_cn[None, :] ) output_mask = (offs_cm[:, None] < m) & (offs_cn[None, :] < n) tl.store(output_ptrs, output, mask=output_mask) def triton_matmul(lhs, rhs): output = torch.empty( (lhs.shape[0], rhs.shape[1]), device=lhs.device, dtype=torch.float16 ) def grid(meta): return ( triton.cdiv(lhs.shape[0], meta["BLOCK_SIZE_M"]) * triton.cdiv(rhs.shape[1], meta["BLOCK_SIZE_N"]), ) triton_matmul_kernel[grid]( lhs, rhs, output, lhs.shape[0], rhs.shape[1], lhs.shape[1], lhs.stride(0), lhs.stride(1), rhs.stride(0), rhs.stride(1), output.stride(0), output.stride(1), ) return output if __name__ == "__main__": torch.manual_seed(0) shape = (512, 512) lhs = torch.randn(shape, device="cuda", dtype=torch.float16) rhs = torch.randn(shape, device="cuda", dtype=torch.float16) ninetoothed_output = matmul(lhs, rhs) torch_output = torch.matmul(lhs, rhs) triton_output = triton_matmul(lhs, rhs) print(ninetoothed_output) print(torch_output) print(triton_output) if torch.allclose(ninetoothed_output, torch_output): print("✅ NineToothed and PyTorch match.") else: print("❌ NineToothed and PyTorch differ.") if torch.allclose(ninetoothed_output, triton_output): print("✅ NineToothed and Triton match.") else: print("❌ NineToothed and Triton differ.") @triton.testing.perf_report( triton.testing.Benchmark( x_names=["m", "n", "k"], x_vals=[128 * i for i in range(2, 33)], line_arg="provider", line_vals=["ninetoothed", "torch", "triton"], line_names=["NineToothed", "PyTorch", "Triton"], styles=[("blue", "-"), ("green", "-"), ("orange", "-")], ylabel="TFLOPS", plot_name="matrix-multiplication-performance", args={}, ) ) def benchmark(m, n, k, provider): lhs = torch.randn((m, k), device="cuda", dtype=torch.float16) rhs = torch.randn((k, n), device="cuda", dtype=torch.float16) quantiles = [0.5, 0.2, 0.8] if provider == "ninetoothed": ms, min_ms, max_ms = triton.testing.do_bench( lambda: matmul(lhs, rhs), quantiles=quantiles ) elif provider == "torch": ms, min_ms, max_ms = triton.testing.do_bench( lambda: torch.matmul(lhs, rhs), quantiles=quantiles ) elif provider == "triton": ms, min_ms, max_ms = triton.testing.do_bench( lambda: triton_matmul(lhs, rhs), quantiles=quantiles ) def perf(ms): return 2 * m * n * k * 1e-12 / (ms * 1e-3) return perf(ms), perf(max_ms), perf(min_ms) benchmark.run(show_plots=True, print_data=True, save_path=".")
@triton.jit def triton_matmul_kernel( lhs_ptr, rhs_ptr, output_ptr, m, n, k, lhs_stride_m, lhs_stride_k, rhs_stride_k, rhs_stride_n, output_stride_m, output_stride_n, BLOCK_SIZE_M: tl.constexpr, BLOCK_SIZE_N: tl.constexpr, BLOCK_SIZE_K: tl.constexpr, GROUP_SIZE_M: tl.constexpr, ): pid = tl.program_id(0) num_pid_m = tl.cdiv(m, BLOCK_SIZE_M) num_pid_n = tl.cdiv(n, BLOCK_SIZE_N) num_pid_in_group = GROUP_SIZE_M * num_pid_n group_id = pid // num_pid_in_group first_pid_m = group_id * GROUP_SIZE_M group_size_m = min(num_pid_m - first_pid_m, GROUP_SIZE_M) pid_m = first_pid_m + ((pid % num_pid_in_group) % group_size_m) pid_n = (pid % num_pid_in_group) // group_size_m offs_am = (pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M)) % m offs_bn = (pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N)) % n offs_k = tl.arange(0, BLOCK_SIZE_K) lhs_ptrs = lhs_ptr + ( offs_am[:, None] * lhs_stride_m + offs_k[None, :] * lhs_stride_k ) rhs_ptrs = rhs_ptr + ( offs_k[:, None] * rhs_stride_k + offs_bn[None, :] * rhs_stride_n ) accumulator = tl.zeros((BLOCK_SIZE_M, BLOCK_SIZE_N), dtype=tl.float32) for i in range(0, tl.cdiv(k, BLOCK_SIZE_K)): lhs = tl.load(lhs_ptrs, mask=offs_k[None, :] < k - i * BLOCK_SIZE_K, other=0.0) rhs = tl.load(rhs_ptrs, mask=offs_k[:, None] < k - i * BLOCK_SIZE_K, other=0.0) accumulator = tl.dot(lhs, rhs, accumulator) lhs_ptrs += BLOCK_SIZE_K * lhs_stride_k rhs_ptrs += BLOCK_SIZE_K * rhs_stride_k output = accumulator.to(tl.float16) offs_cm = pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M) offs_cn = pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N) output_ptrs = ( output_ptr + output_stride_m * offs_cm[:, None] + output_stride_n * offs_cn[None, :] ) output_mask = (offs_cm[:, None] < m) & (offs_cn[None, :] < n) tl.store(output_ptrs, output, mask=output_mask) def triton_matmul(lhs, rhs): output = torch.empty( (lhs.shape[0], rhs.shape[1]), device=lhs.device, dtype=torch.float16 ) def grid(meta): return ( triton.cdiv(lhs.shape[0], meta["BLOCK_SIZE_M"]) * triton.cdiv(rhs.shape[1], meta["BLOCK_SIZE_N"]), ) triton_matmul_kernel[grid]( lhs, rhs, output, lhs.shape[0], rhs.shape[1], lhs.shape[1], lhs.stride(0), lhs.stride(1), rhs.stride(0), rhs.stride(1), output.stride(0), output.stride(1), ) return output if __name__ == "__main__": torch.manual_seed(0) shape = (512, 512) lhs = torch.randn(shape, device="cuda", dtype=torch.float16) rhs = torch.randn(shape, device="cuda", dtype=torch.float16) ninetoothed_output = matmul(lhs, rhs) torch_output = torch.matmul(lhs, rhs) triton_output = triton_matmul(lhs, rhs) print(ninetoothed_output) print(torch_output) print(triton_output) if torch.allclose(ninetoothed_output, torch_output): print("✅ NineToothed and PyTorch match.") else: print("❌ NineToothed and PyTorch differ.") if torch.allclose(ninetoothed_output, triton_output): print("✅ NineToothed and Triton match.") else: print("❌ NineToothed and Triton differ.") @triton.testing.perf_report( triton.testing.Benchmark( x_names=["m", "n", "k"], x_vals=[128 * i for i in range(2, 33)], line_arg="provider", line_vals=["ninetoothed", "torch", "triton"], line_names=["NineToothed", "PyTorch", "Triton"], styles=[("blue", "-"), ("green", "-"), ("orange", "-")], ylabel="TFLOPS", plot_name="matrix-multiplication-performance", args={}, ) ) def benchmark(m, n, k, provider): lhs = torch.randn((m, k), device="cuda", dtype=torch.float16) rhs = torch.randn((k, n), device="cuda", dtype=torch.float16) quantiles = [0.5, 0.2, 0.8] if provider == "ninetoothed": ms, min_ms, max_ms = triton.testing.do_bench( lambda: matmul(lhs, rhs), quantiles=quantiles ) elif provider == "torch": ms, min_ms, max_ms = triton.testing.do_bench( lambda: torch.matmul(lhs, rhs), quantiles=quantiles ) elif provider == "triton": ms, min_ms, max_ms = triton.testing.do_bench( lambda: triton_matmul(lhs, rhs), quantiles=quantiles ) def perf(ms): return 2 * m * n * k * 1e-12 / (ms * 1e-3) return perf(ms), perf(max_ms), perf(min_ms) benchmark.run(show_plots=True, print_data=True, save_path=".")
LiuTaowen-Tony/flash-qlora
triton_dense_v1.py
https://github.com/LiuTaowen-Tony/flash-qlora/blob/57ce887d668430693e3b2d76cc707223ee0c4b82/triton_dense_v1.py
import torch import triton import triton.language as tl import common def get_configs_io_bound(): configs = [] for block_n in [256, 128, 64, 32, 16]: for block_m in [256, 128, 64, 32]: for block_k in [256, 128, 64]: for num_stages in [5, 4, 3]: for num_warps in [4, 8]: for num_ctas in [1]: if block_m * block_n * block_k >= 16 * 64 * 64 and block_m * block_n * block_k <= 128 * 128 * 256: configs.append( triton.Config({'block_M': block_m, 'block_N': block_n, 'block_K': block_k, 'R': 16, 'GROUP_SIZE_M': 8}, num_stages=num_stages, num_warps=num_warps, num_ctas=num_ctas)) # for split_k in [2, 4, 8, 16]: # configs.append(triton.Config({'BLOCK_M': block_m, 'BLOCK_N': block_n, 'BLOCK_K': block_k, 'SPLIT_K': split_k}, # num_stages=num_stages, num_warps=num_warps, pre_hook=init_to_zero('C'))) return configs @triton.autotune( configs=common.get_autotune_config(), # configs=get_configs_io_bound(), key=["M", "N", "K"], ) @triton.jit def triton_dense_forward_kernel( x_ptr, w_ptr, c_ptr, stride_xm, stride_xk, stride_wk, stride_wn, M: int, N: int, K: int, R: tl.constexpr, block_M: tl.constexpr, block_N: tl.constexpr, block_K: tl.constexpr, GROUP_SIZE_M: tl.constexpr, ): """Kernel for computing the matmul C = A x B. A has shape (M, K), B has shape (K, N) and C has shape (M, N) """ pid_m = tl.program_id(0) pid_n = tl.program_id(1) pid_m, pid_n = common.reorder_pid(pid_m, pid_n, M, N, block_M, block_N, GROUP_SIZE_M) # Block starting positions offs_m = pid_m * block_M offs_n = pid_n * block_N # Initialize fp and int accumulators fp_acc = tl.zeros((block_M, block_N), dtype=tl.float32) # R: 16 block_N: 256 block_K: 32 block_M: 64 for i in range(0, K, block_K): # Load blocks of X, W, and U w_blk = tl.load( w_ptr + (i + tl.arange(0, block_K))[:, None] * stride_wk + tl.arange(0, block_N) ) x_blk = tl.load( x_ptr + (offs_m + tl.arange(0, block_M))[:, None] * stride_xm + (i + tl.arange(0, block_K)) ) fp_acc = tl.dot(x_blk, w_blk, fp_acc) tl.store( c_ptr + (offs_m + tl.arange(0, block_M))[:, None] * N + tl.arange(0, block_N), fp_acc, ) def triton_dense_forward( x: torch.Tensor, w: torch.Tensor, ) -> torch.Tensor: # Allocate result tensor on the GPU m, k = x.shape _, n = w.shape assert w.shape[0] == k c = torch.empty((m, n), dtype=x.dtype, device="cuda") grid = lambda opt: (triton.cdiv(m, opt["block_M"]), triton.cdiv(n, opt["block_N"])) # Launch the Triton kernel with auto-tuned configurations triton_dense_forward_kernel[grid]( x, w, c, x.stride(0), x.stride(1), w.stride(0), w.stride(1), M=m, N=n, K=k, ) return c
@triton.jit def triton_dense_forward_kernel( x_ptr, w_ptr, c_ptr, stride_xm, stride_xk, stride_wk, stride_wn, M: int, N: int, K: int, R: tl.constexpr, block_M: tl.constexpr, block_N: tl.constexpr, block_K: tl.constexpr, GROUP_SIZE_M: tl.constexpr, ): """Kernel for computing the matmul C = A x B. A has shape (M, K), B has shape (K, N) and C has shape (M, N) """ pid_m = tl.program_id(0) pid_n = tl.program_id(1) pid_m, pid_n = common.reorder_pid(pid_m, pid_n, M, N, block_M, block_N, GROUP_SIZE_M) # Block starting positions offs_m = pid_m * block_M offs_n = pid_n * block_N # Initialize fp and int accumulators fp_acc = tl.zeros((block_M, block_N), dtype=tl.float32) # R: 16 block_N: 256 block_K: 32 block_M: 64 for i in range(0, K, block_K): # Load blocks of X, W, and U w_blk = tl.load( w_ptr + (i + tl.arange(0, block_K))[:, None] * stride_wk + tl.arange(0, block_N) ) x_blk = tl.load( x_ptr + (offs_m + tl.arange(0, block_M))[:, None] * stride_xm + (i + tl.arange(0, block_K)) ) fp_acc = tl.dot(x_blk, w_blk, fp_acc) tl.store( c_ptr + (offs_m + tl.arange(0, block_M))[:, None] * N + tl.arange(0, block_N), fp_acc, ) def triton_dense_forward( x: torch.Tensor, w: torch.Tensor, ) -> torch.Tensor: # Allocate result tensor on the GPU m, k = x.shape _, n = w.shape assert w.shape[0] == k c = torch.empty((m, n), dtype=x.dtype, device="cuda") grid = lambda opt: (triton.cdiv(m, opt["block_M"]), triton.cdiv(n, opt["block_N"])) # Launch the Triton kernel with auto-tuned configurations triton_dense_forward_kernel[grid]( x, w, c, x.stride(0), x.stride(1), w.stride(0), w.stride(1), M=m, N=n, K=k, ) return c
jsalt2024-evaluating-llms-for-astronomy/retrieval
saerch/kernels.py
https://github.com/jsalt2024-evaluating-llms-for-astronomy/retrieval/blob/f8ec8914e49dbf4680b56efd7771264549b9a2da/saerch/kernels.py
### kernels.py ### import torch import triton import triton.language as tl ## kernels def triton_sparse_transpose_dense_matmul( sparse_indices: torch.Tensor, sparse_values: torch.Tensor, dense: torch.Tensor, N: int, BLOCK_SIZE_AK=128, ) -> torch.Tensor: """ calculates sparse.T @ dense (i.e reducing along the collated dimension of sparse) dense must be contiguous along dim 0 (in other words, dense.T is contiguous) sparse_indices is shape (A, k) sparse_values is shape (A, k) dense is shape (A, B) output is shape (N, B) """ assert sparse_indices.shape == sparse_values.shape assert sparse_indices.is_contiguous() assert sparse_values.is_contiguous() assert dense.is_contiguous() # contiguous along B K = sparse_indices.shape[1] A = dense.shape[0] B = dense.shape[1] assert sparse_indices.shape[0] == A # COO-format and sorted sorted_indices = sparse_indices.view(-1).sort() coo_indices = torch.stack( [ torch.arange(A, device=sparse_indices.device).repeat_interleave(K)[ sorted_indices.indices ], sorted_indices.values, ] ) # shape (2, A * K) coo_values = sparse_values.view(-1)[sorted_indices.indices] # shape (A * K,) return triton_coo_sparse_dense_matmul(coo_indices, coo_values, dense, N, BLOCK_SIZE_AK) def triton_coo_sparse_dense_matmul( coo_indices: torch.Tensor, coo_values: torch.Tensor, dense: torch.Tensor, N: int, BLOCK_SIZE_AK=128, ) -> torch.Tensor: AK = coo_indices.shape[1] B = dense.shape[1] out = torch.zeros(N, B, device=dense.device, dtype=coo_values.dtype) grid = lambda META: ( triton.cdiv(AK, META["BLOCK_SIZE_AK"]), 1, ) triton_sparse_transpose_dense_matmul_kernel[grid]( coo_indices, coo_values, dense, out, stride_da=dense.stride(0), stride_db=dense.stride(1), B=B, N=N, AK=AK, BLOCK_SIZE_AK=BLOCK_SIZE_AK, BLOCK_SIZE_B=triton.next_power_of_2(B), ) return out @triton.jit def triton_sparse_transpose_dense_matmul_kernel( coo_indices_ptr, coo_values_ptr, dense_ptr, out_ptr, stride_da, stride_db, B, N, AK, BLOCK_SIZE_AK: tl.constexpr, BLOCK_SIZE_B: tl.constexpr, ): """ coo_indices is shape (2, AK) coo_values is shape (AK,) dense is shape (A, B), contiguous along B out is shape (N, B) """ pid_ak = tl.program_id(0) pid_b = tl.program_id(1) coo_offsets = tl.arange(0, BLOCK_SIZE_AK) b_offsets = tl.arange(0, BLOCK_SIZE_B) A_coords = tl.load( coo_indices_ptr + pid_ak * BLOCK_SIZE_AK + coo_offsets, mask=pid_ak * BLOCK_SIZE_AK + coo_offsets < AK, ) K_coords = tl.load( coo_indices_ptr + pid_ak * BLOCK_SIZE_AK + coo_offsets + AK, mask=pid_ak * BLOCK_SIZE_AK + coo_offsets < AK, ) values = tl.load( coo_values_ptr + pid_ak * BLOCK_SIZE_AK + coo_offsets, mask=pid_ak * BLOCK_SIZE_AK + coo_offsets < AK, ) last_k = tl.min(K_coords) accum = tl.zeros((BLOCK_SIZE_B,), dtype=tl.float32) for ind in range(BLOCK_SIZE_AK): if ind + pid_ak * BLOCK_SIZE_AK < AK: # workaround to do A_coords[ind] a = tl.sum( tl.where( tl.arange(0, BLOCK_SIZE_AK) == ind, A_coords, tl.zeros((BLOCK_SIZE_AK,), dtype=tl.int64), ) ) k = tl.sum( tl.where( tl.arange(0, BLOCK_SIZE_AK) == ind, K_coords, tl.zeros((BLOCK_SIZE_AK,), dtype=tl.int64), ) ) v = tl.sum( tl.where( tl.arange(0, BLOCK_SIZE_AK) == ind, values, tl.zeros((BLOCK_SIZE_AK,), dtype=tl.float32), ) ) tl.device_assert(k < N) if k != last_k: tl.atomic_add( out_ptr + last_k * B + BLOCK_SIZE_B * pid_b + b_offsets, accum, mask=BLOCK_SIZE_B * pid_b + b_offsets < B, ) accum *= 0 last_k = k if v != 0: accum += v * tl.load(dense_ptr + a * stride_da + b_offsets, mask=b_offsets < B) tl.atomic_add( out_ptr + last_k * B + BLOCK_SIZE_B * pid_b + b_offsets, accum, mask=BLOCK_SIZE_B * pid_b + b_offsets < B, ) def triton_sparse_dense_matmul( sparse_indices: torch.Tensor, sparse_values: torch.Tensor, dense: torch.Tensor, ) -> torch.Tensor: """ calculates sparse @ dense (i.e reducing along the uncollated dimension of sparse) dense must be contiguous along dim 0 (in other words, dense.T is contiguous) sparse_indices is shape (A, k) sparse_values is shape (A, k) dense is shape (N, B) output is shape (A, B) """ N = dense.shape[0] assert sparse_indices.shape == sparse_values.shape assert sparse_indices.is_contiguous() assert sparse_values.is_contiguous() assert dense.is_contiguous() # contiguous along B A = sparse_indices.shape[0] K = sparse_indices.shape[1] B = dense.shape[1] out = torch.zeros(A, B, device=dense.device, dtype=sparse_values.dtype) triton_sparse_dense_matmul_kernel[(A,)]( sparse_indices, sparse_values, dense, out, stride_dn=dense.stride(0), stride_db=dense.stride(1), A=A, B=B, N=N, K=K, BLOCK_SIZE_K=triton.next_power_of_2(K), BLOCK_SIZE_B=triton.next_power_of_2(B), ) return out @triton.jit def triton_sparse_dense_matmul_kernel( sparse_indices_ptr, sparse_values_ptr, dense_ptr, out_ptr, stride_dn, stride_db, A, B, N, K, BLOCK_SIZE_K: tl.constexpr, BLOCK_SIZE_B: tl.constexpr, ): """ sparse_indices is shape (A, K) sparse_values is shape (A, K) dense is shape (N, B), contiguous along B out is shape (A, B) """ pid = tl.program_id(0) offsets_k = tl.arange(0, BLOCK_SIZE_K) sparse_indices = tl.load( sparse_indices_ptr + pid * K + offsets_k, mask=offsets_k < K ) # shape (K,) sparse_values = tl.load( sparse_values_ptr + pid * K + offsets_k, mask=offsets_k < K ) # shape (K,) accum = tl.zeros((BLOCK_SIZE_B,), dtype=tl.float32) offsets_b = tl.arange(0, BLOCK_SIZE_B) for k in range(K): # workaround to do sparse_indices[k] i = tl.sum( tl.where( tl.arange(0, BLOCK_SIZE_K) == k, sparse_indices, tl.zeros((BLOCK_SIZE_K,), dtype=tl.int64), ) ) # workaround to do sparse_values[k] v = tl.sum( tl.where( tl.arange(0, BLOCK_SIZE_K) == k, sparse_values, tl.zeros((BLOCK_SIZE_K,), dtype=tl.float32), ) ) tl.device_assert(i < N) if v != 0: accum += v * tl.load( dense_ptr + i * stride_dn + offsets_b * stride_db, mask=offsets_b < B ) tl.store(out_ptr + pid * B + offsets_b, accum.to(sparse_values.dtype), mask=offsets_b < B) def triton_dense_dense_sparseout_matmul( dense1: torch.Tensor, dense2: torch.Tensor, at_indices: torch.Tensor, ) -> torch.Tensor: """ dense1: shape (A, B) dense2: shape (B, N) at_indices: shape (A, K) out values: shape (A, K) calculates dense1 @ dense2 only for the indices in at_indices equivalent to (dense1 @ dense2).gather(1, at_indices) """ A, B = dense1.shape N = dense2.shape[1] assert dense2.shape[0] == B assert at_indices.shape[0] == A K = at_indices.shape[1] assert at_indices.is_contiguous() assert dense1.stride(1) == 1, "dense1 must be contiguous along B" assert dense2.stride(0) == 1, "dense2 must be contiguous along B" if K > 512: # print("WARN - using naive matmul for large K") # naive is more efficient for large K return (dense1 @ dense2).gather(1, at_indices) out = torch.zeros(A, K, device=dense1.device, dtype=dense1.dtype) # grid = lambda META: (triton.cdiv(A, META['BLOCK_SIZE_A']),) triton_dense_dense_sparseout_matmul_kernel[(A,)]( dense1, dense2, at_indices, out, stride_d1a=dense1.stride(0), stride_d1b=dense1.stride(1), stride_d2b=dense2.stride(0), stride_d2n=dense2.stride(1), A=A, B=B, N=N, K=K, BLOCK_SIZE_B=triton.next_power_of_2(B), BLOCK_SIZE_N=triton.next_power_of_2(N), BLOCK_SIZE_K=triton.next_power_of_2(K), ) return out @triton.jit def triton_dense_dense_sparseout_matmul_kernel( dense1_ptr, dense2_ptr, at_indices_ptr, out_ptr, stride_d1a, stride_d1b, stride_d2b, stride_d2n, A, B, N, K, BLOCK_SIZE_B: tl.constexpr, BLOCK_SIZE_N: tl.constexpr, BLOCK_SIZE_K: tl.constexpr, ): """ dense1: shape (A, B) dense2: shape (B, N) at_indices: shape (A, K) out values: shape (A, K) """ pid = tl.program_id(0) offsets_k = tl.arange(0, BLOCK_SIZE_K) at_indices = tl.load(at_indices_ptr + pid * K + offsets_k, mask=offsets_k < K) # shape (K,) offsets_b = tl.arange(0, BLOCK_SIZE_B) dense1 = tl.load( dense1_ptr + pid * stride_d1a + offsets_b * stride_d1b, mask=offsets_b < B ) # shape (B,) accum = tl.zeros((BLOCK_SIZE_K,), dtype=tl.float32) for k in range(K): # workaround to do at_indices[b] i = tl.sum( tl.where( tl.arange(0, BLOCK_SIZE_K) == k, at_indices, tl.zeros((BLOCK_SIZE_K,), dtype=tl.int64), ) ) tl.device_assert(i < N) dense2col = tl.load( dense2_ptr + offsets_b * stride_d2b + i * stride_d2n, mask=offsets_b < B ) # shape (B,) accum += tl.where( tl.arange(0, BLOCK_SIZE_K) == k, tl.sum(dense1 * dense2col), tl.zeros((BLOCK_SIZE_K,), dtype=tl.int64), ) tl.store(out_ptr + pid * K + offsets_k, accum, mask=offsets_k < K) class TritonDecoderAutograd(torch.autograd.Function): @staticmethod def forward(ctx, sparse_indices, sparse_values, decoder_weight): ctx.save_for_backward(sparse_indices, sparse_values, decoder_weight) return triton_sparse_dense_matmul(sparse_indices, sparse_values, decoder_weight.T) @staticmethod def backward(ctx, grad_output): sparse_indices, sparse_values, decoder_weight = ctx.saved_tensors assert grad_output.is_contiguous(), "grad_output must be contiguous; this is probably because the subsequent op was a .sum() or something like that, which returns a non contiguous gradient" decoder_grad = triton_sparse_transpose_dense_matmul( sparse_indices, sparse_values, grad_output, N=decoder_weight.shape[1] ).T return ( None, triton_dense_dense_sparseout_matmul(grad_output, decoder_weight, sparse_indices), # decoder is contiguous when transposed so this is a matching layout decoder_grad, None, ) def triton_add_mul_( x: torch.Tensor, a: torch.Tensor, b: torch.Tensor, c: float, ): """ does x += a * b * c x : [m, n] a : [m, n] b : [m, n] c : float """ if len(a.shape) == 1: a = a[None, :].broadcast_to(x.shape) if len(b.shape) == 1: b = b[None, :].broadcast_to(x.shape) assert x.shape == a.shape == b.shape BLOCK_SIZE_M = 64 BLOCK_SIZE_N = 64 grid = lambda META: ( triton.cdiv(x.shape[0], META["BLOCK_SIZE_M"]), triton.cdiv(x.shape[1], META["BLOCK_SIZE_N"]), ) triton_add_mul_kernel[grid]( x, a, b, c, x.stride(0), x.stride(1), a.stride(0), a.stride(1), b.stride(0), b.stride(1), BLOCK_SIZE_M, BLOCK_SIZE_N, x.shape[0], x.shape[1], ) @triton.jit def triton_add_mul_kernel( x_ptr, a_ptr, b_ptr, c, stride_x0, stride_x1, stride_a0, stride_a1, stride_b0, stride_b1, BLOCK_SIZE_M: tl.constexpr, BLOCK_SIZE_N: tl.constexpr, M: tl.constexpr, N: tl.constexpr, ): pid_m = tl.program_id(0) pid_n = tl.program_id(1) offsets_m = tl.arange(0, BLOCK_SIZE_M) + pid_m * BLOCK_SIZE_M offsets_n = tl.arange(0, BLOCK_SIZE_N) + pid_n * BLOCK_SIZE_N x = tl.load( x_ptr + offsets_m[:, None] * stride_x0 + offsets_n[None, :] * stride_x1, mask=(offsets_m[:, None] < M) & (offsets_n[None, :] < N), ) a = tl.load( a_ptr + offsets_m[:, None] * stride_a0 + offsets_n[None, :] * stride_a1, mask=(offsets_m[:, None] < M) & (offsets_n[None, :] < N), ) b = tl.load( b_ptr + offsets_m[:, None] * stride_b0 + offsets_n[None, :] * stride_b1, mask=(offsets_m[:, None] < M) & (offsets_n[None, :] < N), ) x_dtype = x.dtype x = (x.to(tl.float32) + a.to(tl.float32) * b.to(tl.float32) * c).to(x_dtype) tl.store( x_ptr + offsets_m[:, None] * stride_x0 + offsets_n[None, :] * stride_x1, x, mask=(offsets_m[:, None] < M) & (offsets_n[None, :] < N), ) def triton_sum_dim0_in_fp32(xs): a, b = xs.shape assert xs.is_contiguous() assert xs.dtype == torch.float16 BLOCK_SIZE_A = min(triton.next_power_of_2(a), 512) BLOCK_SIZE_B = 64 # cache line is 128 bytes out = torch.zeros(b, dtype=torch.float32, device=xs.device) grid = lambda META: (triton.cdiv(b, META["BLOCK_SIZE_B"]),) triton_sum_dim0_in_fp32_kernel[grid]( xs, out, stride_a=xs.stride(0), a=a, b=b, BLOCK_SIZE_A=BLOCK_SIZE_A, BLOCK_SIZE_B=BLOCK_SIZE_B, ) return out @triton.jit def triton_sum_dim0_in_fp32_kernel( xs_ptr, out_ptr, stride_a, a, b, BLOCK_SIZE_A: tl.constexpr, BLOCK_SIZE_B: tl.constexpr, ): # each program handles 64 columns of xs pid = tl.program_id(0) offsets_b = tl.arange(0, BLOCK_SIZE_B) + pid * BLOCK_SIZE_B all_out = tl.zeros((BLOCK_SIZE_B,), dtype=tl.float32) for i in range(0, a, BLOCK_SIZE_A): offsets_a = tl.arange(0, BLOCK_SIZE_A) + i xs = tl.load( xs_ptr + offsets_a[:, None] * stride_a + offsets_b[None, :], mask=(offsets_a < a)[:, None] & (offsets_b < b)[None, :], other=0, ) xs = xs.to(tl.float32) out = tl.sum(xs, axis=0) all_out += out tl.store(out_ptr + offsets_b, all_out, mask=offsets_b < b) def mse( output, target, ): # fusing fp32 cast and MSE to save memory assert output.shape == target.shape assert len(output.shape) == 2 assert output.stride(1) == 1 assert target.stride(1) == 1 a, b = output.shape BLOCK_SIZE_B = triton.next_power_of_2(b) class _MSE(torch.autograd.Function): @staticmethod def forward(ctx, output, target): ctx.save_for_backward(output, target) out = torch.zeros(a, dtype=torch.float32, device=output.device) triton_mse_loss_fp16_kernel[(a,)]( output, target, out, stride_a_output=output.stride(0), stride_a_target=target.stride(0), a=a, b=b, BLOCK_SIZE_B=BLOCK_SIZE_B, ) return out @staticmethod def backward(ctx, grad_output): output, target = ctx.saved_tensors res = (output - target).float() res *= grad_output[:, None] * 2 / b return res, None return _MSE.apply(output, target).mean() def normalized_mse(recon: torch.Tensor, xs: torch.Tensor) -> torch.Tensor: # only used for auxk xs_mu = ( triton_sum_dim0_in_fp32(xs) / xs.shape[0] if xs.dtype == torch.float16 else xs.mean(dim=0) ) loss = mse(recon, xs) / mse( xs_mu[None, :].broadcast_to(xs.shape), xs ) return loss @triton.jit def triton_mse_loss_fp16_kernel( output_ptr, target_ptr, out_ptr, stride_a_output, stride_a_target, a, b, BLOCK_SIZE_B: tl.constexpr, ): pid = tl.program_id(0) offsets_b = tl.arange(0, BLOCK_SIZE_B) output = tl.load( output_ptr + pid * stride_a_output + offsets_b, mask=offsets_b < b, ) target = tl.load( target_ptr + pid * stride_a_target + offsets_b, mask=offsets_b < b, ) output = output.to(tl.float32) target = target.to(tl.float32) mse = tl.sum((output - target) * (output - target)) / b tl.store(out_ptr + pid, mse) def triton_add_mul_( x: torch.Tensor, a: torch.Tensor, b: torch.Tensor, c: float, ): """ does x += a * b * c x : [m, n] a : [m, n] b : [m, n] c : float """ if len(a.shape) == 1: a = a[None, :].broadcast_to(x.shape) if len(b.shape) == 1: b = b[None, :].broadcast_to(x.shape) assert x.shape == a.shape == b.shape BLOCK_SIZE_M = 64 BLOCK_SIZE_N = 64 grid = lambda META: ( triton.cdiv(x.shape[0], META["BLOCK_SIZE_M"]), triton.cdiv(x.shape[1], META["BLOCK_SIZE_N"]), ) triton_add_mul_kernel[grid]( x, a, b, c, x.stride(0), x.stride(1), a.stride(0), a.stride(1), b.stride(0), b.stride(1), BLOCK_SIZE_M, BLOCK_SIZE_N, x.shape[0], x.shape[1], )
@triton.jit def triton_sparse_transpose_dense_matmul_kernel( coo_indices_ptr, coo_values_ptr, dense_ptr, out_ptr, stride_da, stride_db, B, N, AK, BLOCK_SIZE_AK: tl.constexpr, BLOCK_SIZE_B: tl.constexpr, ): """ coo_indices is shape (2, AK) coo_values is shape (AK,) dense is shape (A, B), contiguous along B out is shape (N, B) """ pid_ak = tl.program_id(0) pid_b = tl.program_id(1) coo_offsets = tl.arange(0, BLOCK_SIZE_AK) b_offsets = tl.arange(0, BLOCK_SIZE_B) A_coords = tl.load( coo_indices_ptr + pid_ak * BLOCK_SIZE_AK + coo_offsets, mask=pid_ak * BLOCK_SIZE_AK + coo_offsets < AK, ) K_coords = tl.load( coo_indices_ptr + pid_ak * BLOCK_SIZE_AK + coo_offsets + AK, mask=pid_ak * BLOCK_SIZE_AK + coo_offsets < AK, ) values = tl.load( coo_values_ptr + pid_ak * BLOCK_SIZE_AK + coo_offsets, mask=pid_ak * BLOCK_SIZE_AK + coo_offsets < AK, ) last_k = tl.min(K_coords) accum = tl.zeros((BLOCK_SIZE_B,), dtype=tl.float32) for ind in range(BLOCK_SIZE_AK): if ind + pid_ak * BLOCK_SIZE_AK < AK: # workaround to do A_coords[ind] a = tl.sum( tl.where( tl.arange(0, BLOCK_SIZE_AK) == ind, A_coords, tl.zeros((BLOCK_SIZE_AK,), dtype=tl.int64), ) ) k = tl.sum( tl.where( tl.arange(0, BLOCK_SIZE_AK) == ind, K_coords, tl.zeros((BLOCK_SIZE_AK,), dtype=tl.int64), ) ) v = tl.sum( tl.where( tl.arange(0, BLOCK_SIZE_AK) == ind, values, tl.zeros((BLOCK_SIZE_AK,), dtype=tl.float32), ) ) tl.device_assert(k < N) if k != last_k: tl.atomic_add( out_ptr + last_k * B + BLOCK_SIZE_B * pid_b + b_offsets, accum, mask=BLOCK_SIZE_B * pid_b + b_offsets < B, ) accum *= 0 last_k = k if v != 0: accum += v * tl.load(dense_ptr + a * stride_da + b_offsets, mask=b_offsets < B) tl.atomic_add( out_ptr + last_k * B + BLOCK_SIZE_B * pid_b + b_offsets, accum, mask=BLOCK_SIZE_B * pid_b + b_offsets < B, ) def triton_sparse_dense_matmul( sparse_indices: torch.Tensor, sparse_values: torch.Tensor, dense: torch.Tensor, ) -> torch.Tensor: """ calculates sparse @ dense (i.e reducing along the uncollated dimension of sparse) dense must be contiguous along dim 0 (in other words, dense.T is contiguous) sparse_indices is shape (A, k) sparse_values is shape (A, k) dense is shape (N, B) output is shape (A, B) """ N = dense.shape[0] assert sparse_indices.shape == sparse_values.shape assert sparse_indices.is_contiguous() assert sparse_values.is_contiguous() assert dense.is_contiguous() # contiguous along B A = sparse_indices.shape[0] K = sparse_indices.shape[1] B = dense.shape[1] out = torch.zeros(A, B, device=dense.device, dtype=sparse_values.dtype) triton_sparse_dense_matmul_kernel[(A,)]( sparse_indices, sparse_values, dense, out, stride_dn=dense.stride(0), stride_db=dense.stride(1), A=A, B=B, N=N, K=K, BLOCK_SIZE_K=triton.next_power_of_2(K), BLOCK_SIZE_B=triton.next_power_of_2(B), ) return out
jsalt2024-evaluating-llms-for-astronomy/retrieval
saerch/kernels.py
https://github.com/jsalt2024-evaluating-llms-for-astronomy/retrieval/blob/f8ec8914e49dbf4680b56efd7771264549b9a2da/saerch/kernels.py
### kernels.py ### import torch import triton import triton.language as tl ## kernels def triton_sparse_transpose_dense_matmul( sparse_indices: torch.Tensor, sparse_values: torch.Tensor, dense: torch.Tensor, N: int, BLOCK_SIZE_AK=128, ) -> torch.Tensor: """ calculates sparse.T @ dense (i.e reducing along the collated dimension of sparse) dense must be contiguous along dim 0 (in other words, dense.T is contiguous) sparse_indices is shape (A, k) sparse_values is shape (A, k) dense is shape (A, B) output is shape (N, B) """ assert sparse_indices.shape == sparse_values.shape assert sparse_indices.is_contiguous() assert sparse_values.is_contiguous() assert dense.is_contiguous() # contiguous along B K = sparse_indices.shape[1] A = dense.shape[0] B = dense.shape[1] assert sparse_indices.shape[0] == A # COO-format and sorted sorted_indices = sparse_indices.view(-1).sort() coo_indices = torch.stack( [ torch.arange(A, device=sparse_indices.device).repeat_interleave(K)[ sorted_indices.indices ], sorted_indices.values, ] ) # shape (2, A * K) coo_values = sparse_values.view(-1)[sorted_indices.indices] # shape (A * K,) return triton_coo_sparse_dense_matmul(coo_indices, coo_values, dense, N, BLOCK_SIZE_AK) def triton_coo_sparse_dense_matmul( coo_indices: torch.Tensor, coo_values: torch.Tensor, dense: torch.Tensor, N: int, BLOCK_SIZE_AK=128, ) -> torch.Tensor: AK = coo_indices.shape[1] B = dense.shape[1] out = torch.zeros(N, B, device=dense.device, dtype=coo_values.dtype) grid = lambda META: ( triton.cdiv(AK, META["BLOCK_SIZE_AK"]), 1, ) triton_sparse_transpose_dense_matmul_kernel[grid]( coo_indices, coo_values, dense, out, stride_da=dense.stride(0), stride_db=dense.stride(1), B=B, N=N, AK=AK, BLOCK_SIZE_AK=BLOCK_SIZE_AK, BLOCK_SIZE_B=triton.next_power_of_2(B), ) return out @triton.jit def triton_sparse_transpose_dense_matmul_kernel( coo_indices_ptr, coo_values_ptr, dense_ptr, out_ptr, stride_da, stride_db, B, N, AK, BLOCK_SIZE_AK: tl.constexpr, BLOCK_SIZE_B: tl.constexpr, ): """ coo_indices is shape (2, AK) coo_values is shape (AK,) dense is shape (A, B), contiguous along B out is shape (N, B) """ pid_ak = tl.program_id(0) pid_b = tl.program_id(1) coo_offsets = tl.arange(0, BLOCK_SIZE_AK) b_offsets = tl.arange(0, BLOCK_SIZE_B) A_coords = tl.load( coo_indices_ptr + pid_ak * BLOCK_SIZE_AK + coo_offsets, mask=pid_ak * BLOCK_SIZE_AK + coo_offsets < AK, ) K_coords = tl.load( coo_indices_ptr + pid_ak * BLOCK_SIZE_AK + coo_offsets + AK, mask=pid_ak * BLOCK_SIZE_AK + coo_offsets < AK, ) values = tl.load( coo_values_ptr + pid_ak * BLOCK_SIZE_AK + coo_offsets, mask=pid_ak * BLOCK_SIZE_AK + coo_offsets < AK, ) last_k = tl.min(K_coords) accum = tl.zeros((BLOCK_SIZE_B,), dtype=tl.float32) for ind in range(BLOCK_SIZE_AK): if ind + pid_ak * BLOCK_SIZE_AK < AK: # workaround to do A_coords[ind] a = tl.sum( tl.where( tl.arange(0, BLOCK_SIZE_AK) == ind, A_coords, tl.zeros((BLOCK_SIZE_AK,), dtype=tl.int64), ) ) k = tl.sum( tl.where( tl.arange(0, BLOCK_SIZE_AK) == ind, K_coords, tl.zeros((BLOCK_SIZE_AK,), dtype=tl.int64), ) ) v = tl.sum( tl.where( tl.arange(0, BLOCK_SIZE_AK) == ind, values, tl.zeros((BLOCK_SIZE_AK,), dtype=tl.float32), ) ) tl.device_assert(k < N) if k != last_k: tl.atomic_add( out_ptr + last_k * B + BLOCK_SIZE_B * pid_b + b_offsets, accum, mask=BLOCK_SIZE_B * pid_b + b_offsets < B, ) accum *= 0 last_k = k if v != 0: accum += v * tl.load(dense_ptr + a * stride_da + b_offsets, mask=b_offsets < B) tl.atomic_add( out_ptr + last_k * B + BLOCK_SIZE_B * pid_b + b_offsets, accum, mask=BLOCK_SIZE_B * pid_b + b_offsets < B, ) def triton_sparse_dense_matmul( sparse_indices: torch.Tensor, sparse_values: torch.Tensor, dense: torch.Tensor, ) -> torch.Tensor: """ calculates sparse @ dense (i.e reducing along the uncollated dimension of sparse) dense must be contiguous along dim 0 (in other words, dense.T is contiguous) sparse_indices is shape (A, k) sparse_values is shape (A, k) dense is shape (N, B) output is shape (A, B) """ N = dense.shape[0] assert sparse_indices.shape == sparse_values.shape assert sparse_indices.is_contiguous() assert sparse_values.is_contiguous() assert dense.is_contiguous() # contiguous along B A = sparse_indices.shape[0] K = sparse_indices.shape[1] B = dense.shape[1] out = torch.zeros(A, B, device=dense.device, dtype=sparse_values.dtype) triton_sparse_dense_matmul_kernel[(A,)]( sparse_indices, sparse_values, dense, out, stride_dn=dense.stride(0), stride_db=dense.stride(1), A=A, B=B, N=N, K=K, BLOCK_SIZE_K=triton.next_power_of_2(K), BLOCK_SIZE_B=triton.next_power_of_2(B), ) return out @triton.jit def triton_sparse_dense_matmul_kernel( sparse_indices_ptr, sparse_values_ptr, dense_ptr, out_ptr, stride_dn, stride_db, A, B, N, K, BLOCK_SIZE_K: tl.constexpr, BLOCK_SIZE_B: tl.constexpr, ): """ sparse_indices is shape (A, K) sparse_values is shape (A, K) dense is shape (N, B), contiguous along B out is shape (A, B) """ pid = tl.program_id(0) offsets_k = tl.arange(0, BLOCK_SIZE_K) sparse_indices = tl.load( sparse_indices_ptr + pid * K + offsets_k, mask=offsets_k < K ) # shape (K,) sparse_values = tl.load( sparse_values_ptr + pid * K + offsets_k, mask=offsets_k < K ) # shape (K,) accum = tl.zeros((BLOCK_SIZE_B,), dtype=tl.float32) offsets_b = tl.arange(0, BLOCK_SIZE_B) for k in range(K): # workaround to do sparse_indices[k] i = tl.sum( tl.where( tl.arange(0, BLOCK_SIZE_K) == k, sparse_indices, tl.zeros((BLOCK_SIZE_K,), dtype=tl.int64), ) ) # workaround to do sparse_values[k] v = tl.sum( tl.where( tl.arange(0, BLOCK_SIZE_K) == k, sparse_values, tl.zeros((BLOCK_SIZE_K,), dtype=tl.float32), ) ) tl.device_assert(i < N) if v != 0: accum += v * tl.load( dense_ptr + i * stride_dn + offsets_b * stride_db, mask=offsets_b < B ) tl.store(out_ptr + pid * B + offsets_b, accum.to(sparse_values.dtype), mask=offsets_b < B) def triton_dense_dense_sparseout_matmul( dense1: torch.Tensor, dense2: torch.Tensor, at_indices: torch.Tensor, ) -> torch.Tensor: """ dense1: shape (A, B) dense2: shape (B, N) at_indices: shape (A, K) out values: shape (A, K) calculates dense1 @ dense2 only for the indices in at_indices equivalent to (dense1 @ dense2).gather(1, at_indices) """ A, B = dense1.shape N = dense2.shape[1] assert dense2.shape[0] == B assert at_indices.shape[0] == A K = at_indices.shape[1] assert at_indices.is_contiguous() assert dense1.stride(1) == 1, "dense1 must be contiguous along B" assert dense2.stride(0) == 1, "dense2 must be contiguous along B" if K > 512: # print("WARN - using naive matmul for large K") # naive is more efficient for large K return (dense1 @ dense2).gather(1, at_indices) out = torch.zeros(A, K, device=dense1.device, dtype=dense1.dtype) # grid = lambda META: (triton.cdiv(A, META['BLOCK_SIZE_A']),) triton_dense_dense_sparseout_matmul_kernel[(A,)]( dense1, dense2, at_indices, out, stride_d1a=dense1.stride(0), stride_d1b=dense1.stride(1), stride_d2b=dense2.stride(0), stride_d2n=dense2.stride(1), A=A, B=B, N=N, K=K, BLOCK_SIZE_B=triton.next_power_of_2(B), BLOCK_SIZE_N=triton.next_power_of_2(N), BLOCK_SIZE_K=triton.next_power_of_2(K), ) return out @triton.jit def triton_dense_dense_sparseout_matmul_kernel( dense1_ptr, dense2_ptr, at_indices_ptr, out_ptr, stride_d1a, stride_d1b, stride_d2b, stride_d2n, A, B, N, K, BLOCK_SIZE_B: tl.constexpr, BLOCK_SIZE_N: tl.constexpr, BLOCK_SIZE_K: tl.constexpr, ): """ dense1: shape (A, B) dense2: shape (B, N) at_indices: shape (A, K) out values: shape (A, K) """ pid = tl.program_id(0) offsets_k = tl.arange(0, BLOCK_SIZE_K) at_indices = tl.load(at_indices_ptr + pid * K + offsets_k, mask=offsets_k < K) # shape (K,) offsets_b = tl.arange(0, BLOCK_SIZE_B) dense1 = tl.load( dense1_ptr + pid * stride_d1a + offsets_b * stride_d1b, mask=offsets_b < B ) # shape (B,) accum = tl.zeros((BLOCK_SIZE_K,), dtype=tl.float32) for k in range(K): # workaround to do at_indices[b] i = tl.sum( tl.where( tl.arange(0, BLOCK_SIZE_K) == k, at_indices, tl.zeros((BLOCK_SIZE_K,), dtype=tl.int64), ) ) tl.device_assert(i < N) dense2col = tl.load( dense2_ptr + offsets_b * stride_d2b + i * stride_d2n, mask=offsets_b < B ) # shape (B,) accum += tl.where( tl.arange(0, BLOCK_SIZE_K) == k, tl.sum(dense1 * dense2col), tl.zeros((BLOCK_SIZE_K,), dtype=tl.int64), ) tl.store(out_ptr + pid * K + offsets_k, accum, mask=offsets_k < K) class TritonDecoderAutograd(torch.autograd.Function): @staticmethod def forward(ctx, sparse_indices, sparse_values, decoder_weight): ctx.save_for_backward(sparse_indices, sparse_values, decoder_weight) return triton_sparse_dense_matmul(sparse_indices, sparse_values, decoder_weight.T) @staticmethod def backward(ctx, grad_output): sparse_indices, sparse_values, decoder_weight = ctx.saved_tensors assert grad_output.is_contiguous(), "grad_output must be contiguous; this is probably because the subsequent op was a .sum() or something like that, which returns a non contiguous gradient" decoder_grad = triton_sparse_transpose_dense_matmul( sparse_indices, sparse_values, grad_output, N=decoder_weight.shape[1] ).T return ( None, triton_dense_dense_sparseout_matmul(grad_output, decoder_weight, sparse_indices), # decoder is contiguous when transposed so this is a matching layout decoder_grad, None, ) def triton_add_mul_( x: torch.Tensor, a: torch.Tensor, b: torch.Tensor, c: float, ): """ does x += a * b * c x : [m, n] a : [m, n] b : [m, n] c : float """ if len(a.shape) == 1: a = a[None, :].broadcast_to(x.shape) if len(b.shape) == 1: b = b[None, :].broadcast_to(x.shape) assert x.shape == a.shape == b.shape BLOCK_SIZE_M = 64 BLOCK_SIZE_N = 64 grid = lambda META: ( triton.cdiv(x.shape[0], META["BLOCK_SIZE_M"]), triton.cdiv(x.shape[1], META["BLOCK_SIZE_N"]), ) triton_add_mul_kernel[grid]( x, a, b, c, x.stride(0), x.stride(1), a.stride(0), a.stride(1), b.stride(0), b.stride(1), BLOCK_SIZE_M, BLOCK_SIZE_N, x.shape[0], x.shape[1], ) @triton.jit def triton_add_mul_kernel( x_ptr, a_ptr, b_ptr, c, stride_x0, stride_x1, stride_a0, stride_a1, stride_b0, stride_b1, BLOCK_SIZE_M: tl.constexpr, BLOCK_SIZE_N: tl.constexpr, M: tl.constexpr, N: tl.constexpr, ): pid_m = tl.program_id(0) pid_n = tl.program_id(1) offsets_m = tl.arange(0, BLOCK_SIZE_M) + pid_m * BLOCK_SIZE_M offsets_n = tl.arange(0, BLOCK_SIZE_N) + pid_n * BLOCK_SIZE_N x = tl.load( x_ptr + offsets_m[:, None] * stride_x0 + offsets_n[None, :] * stride_x1, mask=(offsets_m[:, None] < M) & (offsets_n[None, :] < N), ) a = tl.load( a_ptr + offsets_m[:, None] * stride_a0 + offsets_n[None, :] * stride_a1, mask=(offsets_m[:, None] < M) & (offsets_n[None, :] < N), ) b = tl.load( b_ptr + offsets_m[:, None] * stride_b0 + offsets_n[None, :] * stride_b1, mask=(offsets_m[:, None] < M) & (offsets_n[None, :] < N), ) x_dtype = x.dtype x = (x.to(tl.float32) + a.to(tl.float32) * b.to(tl.float32) * c).to(x_dtype) tl.store( x_ptr + offsets_m[:, None] * stride_x0 + offsets_n[None, :] * stride_x1, x, mask=(offsets_m[:, None] < M) & (offsets_n[None, :] < N), ) def triton_sum_dim0_in_fp32(xs): a, b = xs.shape assert xs.is_contiguous() assert xs.dtype == torch.float16 BLOCK_SIZE_A = min(triton.next_power_of_2(a), 512) BLOCK_SIZE_B = 64 # cache line is 128 bytes out = torch.zeros(b, dtype=torch.float32, device=xs.device) grid = lambda META: (triton.cdiv(b, META["BLOCK_SIZE_B"]),) triton_sum_dim0_in_fp32_kernel[grid]( xs, out, stride_a=xs.stride(0), a=a, b=b, BLOCK_SIZE_A=BLOCK_SIZE_A, BLOCK_SIZE_B=BLOCK_SIZE_B, ) return out @triton.jit def triton_sum_dim0_in_fp32_kernel( xs_ptr, out_ptr, stride_a, a, b, BLOCK_SIZE_A: tl.constexpr, BLOCK_SIZE_B: tl.constexpr, ): # each program handles 64 columns of xs pid = tl.program_id(0) offsets_b = tl.arange(0, BLOCK_SIZE_B) + pid * BLOCK_SIZE_B all_out = tl.zeros((BLOCK_SIZE_B,), dtype=tl.float32) for i in range(0, a, BLOCK_SIZE_A): offsets_a = tl.arange(0, BLOCK_SIZE_A) + i xs = tl.load( xs_ptr + offsets_a[:, None] * stride_a + offsets_b[None, :], mask=(offsets_a < a)[:, None] & (offsets_b < b)[None, :], other=0, ) xs = xs.to(tl.float32) out = tl.sum(xs, axis=0) all_out += out tl.store(out_ptr + offsets_b, all_out, mask=offsets_b < b) def mse( output, target, ): # fusing fp32 cast and MSE to save memory assert output.shape == target.shape assert len(output.shape) == 2 assert output.stride(1) == 1 assert target.stride(1) == 1 a, b = output.shape BLOCK_SIZE_B = triton.next_power_of_2(b) class _MSE(torch.autograd.Function): @staticmethod def forward(ctx, output, target): ctx.save_for_backward(output, target) out = torch.zeros(a, dtype=torch.float32, device=output.device) triton_mse_loss_fp16_kernel[(a,)]( output, target, out, stride_a_output=output.stride(0), stride_a_target=target.stride(0), a=a, b=b, BLOCK_SIZE_B=BLOCK_SIZE_B, ) return out @staticmethod def backward(ctx, grad_output): output, target = ctx.saved_tensors res = (output - target).float() res *= grad_output[:, None] * 2 / b return res, None return _MSE.apply(output, target).mean() def normalized_mse(recon: torch.Tensor, xs: torch.Tensor) -> torch.Tensor: # only used for auxk xs_mu = ( triton_sum_dim0_in_fp32(xs) / xs.shape[0] if xs.dtype == torch.float16 else xs.mean(dim=0) ) loss = mse(recon, xs) / mse( xs_mu[None, :].broadcast_to(xs.shape), xs ) return loss @triton.jit def triton_mse_loss_fp16_kernel( output_ptr, target_ptr, out_ptr, stride_a_output, stride_a_target, a, b, BLOCK_SIZE_B: tl.constexpr, ): pid = tl.program_id(0) offsets_b = tl.arange(0, BLOCK_SIZE_B) output = tl.load( output_ptr + pid * stride_a_output + offsets_b, mask=offsets_b < b, ) target = tl.load( target_ptr + pid * stride_a_target + offsets_b, mask=offsets_b < b, ) output = output.to(tl.float32) target = target.to(tl.float32) mse = tl.sum((output - target) * (output - target)) / b tl.store(out_ptr + pid, mse) def triton_add_mul_( x: torch.Tensor, a: torch.Tensor, b: torch.Tensor, c: float, ): """ does x += a * b * c x : [m, n] a : [m, n] b : [m, n] c : float """ if len(a.shape) == 1: a = a[None, :].broadcast_to(x.shape) if len(b.shape) == 1: b = b[None, :].broadcast_to(x.shape) assert x.shape == a.shape == b.shape BLOCK_SIZE_M = 64 BLOCK_SIZE_N = 64 grid = lambda META: ( triton.cdiv(x.shape[0], META["BLOCK_SIZE_M"]), triton.cdiv(x.shape[1], META["BLOCK_SIZE_N"]), ) triton_add_mul_kernel[grid]( x, a, b, c, x.stride(0), x.stride(1), a.stride(0), a.stride(1), b.stride(0), b.stride(1), BLOCK_SIZE_M, BLOCK_SIZE_N, x.shape[0], x.shape[1], )
@triton.jit def triton_sparse_dense_matmul_kernel( sparse_indices_ptr, sparse_values_ptr, dense_ptr, out_ptr, stride_dn, stride_db, A, B, N, K, BLOCK_SIZE_K: tl.constexpr, BLOCK_SIZE_B: tl.constexpr, ): """ sparse_indices is shape (A, K) sparse_values is shape (A, K) dense is shape (N, B), contiguous along B out is shape (A, B) """ pid = tl.program_id(0) offsets_k = tl.arange(0, BLOCK_SIZE_K) sparse_indices = tl.load( sparse_indices_ptr + pid * K + offsets_k, mask=offsets_k < K ) # shape (K,) sparse_values = tl.load( sparse_values_ptr + pid * K + offsets_k, mask=offsets_k < K ) # shape (K,) accum = tl.zeros((BLOCK_SIZE_B,), dtype=tl.float32) offsets_b = tl.arange(0, BLOCK_SIZE_B) for k in range(K): # workaround to do sparse_indices[k] i = tl.sum( tl.where( tl.arange(0, BLOCK_SIZE_K) == k, sparse_indices, tl.zeros((BLOCK_SIZE_K,), dtype=tl.int64), ) ) # workaround to do sparse_values[k] v = tl.sum( tl.where( tl.arange(0, BLOCK_SIZE_K) == k, sparse_values, tl.zeros((BLOCK_SIZE_K,), dtype=tl.float32), ) ) tl.device_assert(i < N) if v != 0: accum += v * tl.load( dense_ptr + i * stride_dn + offsets_b * stride_db, mask=offsets_b < B ) tl.store(out_ptr + pid * B + offsets_b, accum.to(sparse_values.dtype), mask=offsets_b < B) def triton_dense_dense_sparseout_matmul( dense1: torch.Tensor, dense2: torch.Tensor, at_indices: torch.Tensor, ) -> torch.Tensor: """ dense1: shape (A, B) dense2: shape (B, N) at_indices: shape (A, K) out values: shape (A, K) calculates dense1 @ dense2 only for the indices in at_indices equivalent to (dense1 @ dense2).gather(1, at_indices) """ A, B = dense1.shape N = dense2.shape[1] assert dense2.shape[0] == B assert at_indices.shape[0] == A K = at_indices.shape[1] assert at_indices.is_contiguous() assert dense1.stride(1) == 1, "dense1 must be contiguous along B" assert dense2.stride(0) == 1, "dense2 must be contiguous along B" if K > 512: # print("WARN - using naive matmul for large K") # naive is more efficient for large K return (dense1 @ dense2).gather(1, at_indices) out = torch.zeros(A, K, device=dense1.device, dtype=dense1.dtype) # grid = lambda META: (triton.cdiv(A, META['BLOCK_SIZE_A']),) triton_dense_dense_sparseout_matmul_kernel[(A,)]( dense1, dense2, at_indices, out, stride_d1a=dense1.stride(0), stride_d1b=dense1.stride(1), stride_d2b=dense2.stride(0), stride_d2n=dense2.stride(1), A=A, B=B, N=N, K=K, BLOCK_SIZE_B=triton.next_power_of_2(B), BLOCK_SIZE_N=triton.next_power_of_2(N), BLOCK_SIZE_K=triton.next_power_of_2(K), ) return out
jsalt2024-evaluating-llms-for-astronomy/retrieval
saerch/kernels.py
https://github.com/jsalt2024-evaluating-llms-for-astronomy/retrieval/blob/f8ec8914e49dbf4680b56efd7771264549b9a2da/saerch/kernels.py
### kernels.py ### import torch import triton import triton.language as tl ## kernels def triton_sparse_transpose_dense_matmul( sparse_indices: torch.Tensor, sparse_values: torch.Tensor, dense: torch.Tensor, N: int, BLOCK_SIZE_AK=128, ) -> torch.Tensor: """ calculates sparse.T @ dense (i.e reducing along the collated dimension of sparse) dense must be contiguous along dim 0 (in other words, dense.T is contiguous) sparse_indices is shape (A, k) sparse_values is shape (A, k) dense is shape (A, B) output is shape (N, B) """ assert sparse_indices.shape == sparse_values.shape assert sparse_indices.is_contiguous() assert sparse_values.is_contiguous() assert dense.is_contiguous() # contiguous along B K = sparse_indices.shape[1] A = dense.shape[0] B = dense.shape[1] assert sparse_indices.shape[0] == A # COO-format and sorted sorted_indices = sparse_indices.view(-1).sort() coo_indices = torch.stack( [ torch.arange(A, device=sparse_indices.device).repeat_interleave(K)[ sorted_indices.indices ], sorted_indices.values, ] ) # shape (2, A * K) coo_values = sparse_values.view(-1)[sorted_indices.indices] # shape (A * K,) return triton_coo_sparse_dense_matmul(coo_indices, coo_values, dense, N, BLOCK_SIZE_AK) def triton_coo_sparse_dense_matmul( coo_indices: torch.Tensor, coo_values: torch.Tensor, dense: torch.Tensor, N: int, BLOCK_SIZE_AK=128, ) -> torch.Tensor: AK = coo_indices.shape[1] B = dense.shape[1] out = torch.zeros(N, B, device=dense.device, dtype=coo_values.dtype) grid = lambda META: ( triton.cdiv(AK, META["BLOCK_SIZE_AK"]), 1, ) triton_sparse_transpose_dense_matmul_kernel[grid]( coo_indices, coo_values, dense, out, stride_da=dense.stride(0), stride_db=dense.stride(1), B=B, N=N, AK=AK, BLOCK_SIZE_AK=BLOCK_SIZE_AK, BLOCK_SIZE_B=triton.next_power_of_2(B), ) return out @triton.jit def triton_sparse_transpose_dense_matmul_kernel( coo_indices_ptr, coo_values_ptr, dense_ptr, out_ptr, stride_da, stride_db, B, N, AK, BLOCK_SIZE_AK: tl.constexpr, BLOCK_SIZE_B: tl.constexpr, ): """ coo_indices is shape (2, AK) coo_values is shape (AK,) dense is shape (A, B), contiguous along B out is shape (N, B) """ pid_ak = tl.program_id(0) pid_b = tl.program_id(1) coo_offsets = tl.arange(0, BLOCK_SIZE_AK) b_offsets = tl.arange(0, BLOCK_SIZE_B) A_coords = tl.load( coo_indices_ptr + pid_ak * BLOCK_SIZE_AK + coo_offsets, mask=pid_ak * BLOCK_SIZE_AK + coo_offsets < AK, ) K_coords = tl.load( coo_indices_ptr + pid_ak * BLOCK_SIZE_AK + coo_offsets + AK, mask=pid_ak * BLOCK_SIZE_AK + coo_offsets < AK, ) values = tl.load( coo_values_ptr + pid_ak * BLOCK_SIZE_AK + coo_offsets, mask=pid_ak * BLOCK_SIZE_AK + coo_offsets < AK, ) last_k = tl.min(K_coords) accum = tl.zeros((BLOCK_SIZE_B,), dtype=tl.float32) for ind in range(BLOCK_SIZE_AK): if ind + pid_ak * BLOCK_SIZE_AK < AK: # workaround to do A_coords[ind] a = tl.sum( tl.where( tl.arange(0, BLOCK_SIZE_AK) == ind, A_coords, tl.zeros((BLOCK_SIZE_AK,), dtype=tl.int64), ) ) k = tl.sum( tl.where( tl.arange(0, BLOCK_SIZE_AK) == ind, K_coords, tl.zeros((BLOCK_SIZE_AK,), dtype=tl.int64), ) ) v = tl.sum( tl.where( tl.arange(0, BLOCK_SIZE_AK) == ind, values, tl.zeros((BLOCK_SIZE_AK,), dtype=tl.float32), ) ) tl.device_assert(k < N) if k != last_k: tl.atomic_add( out_ptr + last_k * B + BLOCK_SIZE_B * pid_b + b_offsets, accum, mask=BLOCK_SIZE_B * pid_b + b_offsets < B, ) accum *= 0 last_k = k if v != 0: accum += v * tl.load(dense_ptr + a * stride_da + b_offsets, mask=b_offsets < B) tl.atomic_add( out_ptr + last_k * B + BLOCK_SIZE_B * pid_b + b_offsets, accum, mask=BLOCK_SIZE_B * pid_b + b_offsets < B, ) def triton_sparse_dense_matmul( sparse_indices: torch.Tensor, sparse_values: torch.Tensor, dense: torch.Tensor, ) -> torch.Tensor: """ calculates sparse @ dense (i.e reducing along the uncollated dimension of sparse) dense must be contiguous along dim 0 (in other words, dense.T is contiguous) sparse_indices is shape (A, k) sparse_values is shape (A, k) dense is shape (N, B) output is shape (A, B) """ N = dense.shape[0] assert sparse_indices.shape == sparse_values.shape assert sparse_indices.is_contiguous() assert sparse_values.is_contiguous() assert dense.is_contiguous() # contiguous along B A = sparse_indices.shape[0] K = sparse_indices.shape[1] B = dense.shape[1] out = torch.zeros(A, B, device=dense.device, dtype=sparse_values.dtype) triton_sparse_dense_matmul_kernel[(A,)]( sparse_indices, sparse_values, dense, out, stride_dn=dense.stride(0), stride_db=dense.stride(1), A=A, B=B, N=N, K=K, BLOCK_SIZE_K=triton.next_power_of_2(K), BLOCK_SIZE_B=triton.next_power_of_2(B), ) return out @triton.jit def triton_sparse_dense_matmul_kernel( sparse_indices_ptr, sparse_values_ptr, dense_ptr, out_ptr, stride_dn, stride_db, A, B, N, K, BLOCK_SIZE_K: tl.constexpr, BLOCK_SIZE_B: tl.constexpr, ): """ sparse_indices is shape (A, K) sparse_values is shape (A, K) dense is shape (N, B), contiguous along B out is shape (A, B) """ pid = tl.program_id(0) offsets_k = tl.arange(0, BLOCK_SIZE_K) sparse_indices = tl.load( sparse_indices_ptr + pid * K + offsets_k, mask=offsets_k < K ) # shape (K,) sparse_values = tl.load( sparse_values_ptr + pid * K + offsets_k, mask=offsets_k < K ) # shape (K,) accum = tl.zeros((BLOCK_SIZE_B,), dtype=tl.float32) offsets_b = tl.arange(0, BLOCK_SIZE_B) for k in range(K): # workaround to do sparse_indices[k] i = tl.sum( tl.where( tl.arange(0, BLOCK_SIZE_K) == k, sparse_indices, tl.zeros((BLOCK_SIZE_K,), dtype=tl.int64), ) ) # workaround to do sparse_values[k] v = tl.sum( tl.where( tl.arange(0, BLOCK_SIZE_K) == k, sparse_values, tl.zeros((BLOCK_SIZE_K,), dtype=tl.float32), ) ) tl.device_assert(i < N) if v != 0: accum += v * tl.load( dense_ptr + i * stride_dn + offsets_b * stride_db, mask=offsets_b < B ) tl.store(out_ptr + pid * B + offsets_b, accum.to(sparse_values.dtype), mask=offsets_b < B) def triton_dense_dense_sparseout_matmul( dense1: torch.Tensor, dense2: torch.Tensor, at_indices: torch.Tensor, ) -> torch.Tensor: """ dense1: shape (A, B) dense2: shape (B, N) at_indices: shape (A, K) out values: shape (A, K) calculates dense1 @ dense2 only for the indices in at_indices equivalent to (dense1 @ dense2).gather(1, at_indices) """ A, B = dense1.shape N = dense2.shape[1] assert dense2.shape[0] == B assert at_indices.shape[0] == A K = at_indices.shape[1] assert at_indices.is_contiguous() assert dense1.stride(1) == 1, "dense1 must be contiguous along B" assert dense2.stride(0) == 1, "dense2 must be contiguous along B" if K > 512: # print("WARN - using naive matmul for large K") # naive is more efficient for large K return (dense1 @ dense2).gather(1, at_indices) out = torch.zeros(A, K, device=dense1.device, dtype=dense1.dtype) # grid = lambda META: (triton.cdiv(A, META['BLOCK_SIZE_A']),) triton_dense_dense_sparseout_matmul_kernel[(A,)]( dense1, dense2, at_indices, out, stride_d1a=dense1.stride(0), stride_d1b=dense1.stride(1), stride_d2b=dense2.stride(0), stride_d2n=dense2.stride(1), A=A, B=B, N=N, K=K, BLOCK_SIZE_B=triton.next_power_of_2(B), BLOCK_SIZE_N=triton.next_power_of_2(N), BLOCK_SIZE_K=triton.next_power_of_2(K), ) return out @triton.jit def triton_dense_dense_sparseout_matmul_kernel( dense1_ptr, dense2_ptr, at_indices_ptr, out_ptr, stride_d1a, stride_d1b, stride_d2b, stride_d2n, A, B, N, K, BLOCK_SIZE_B: tl.constexpr, BLOCK_SIZE_N: tl.constexpr, BLOCK_SIZE_K: tl.constexpr, ): """ dense1: shape (A, B) dense2: shape (B, N) at_indices: shape (A, K) out values: shape (A, K) """ pid = tl.program_id(0) offsets_k = tl.arange(0, BLOCK_SIZE_K) at_indices = tl.load(at_indices_ptr + pid * K + offsets_k, mask=offsets_k < K) # shape (K,) offsets_b = tl.arange(0, BLOCK_SIZE_B) dense1 = tl.load( dense1_ptr + pid * stride_d1a + offsets_b * stride_d1b, mask=offsets_b < B ) # shape (B,) accum = tl.zeros((BLOCK_SIZE_K,), dtype=tl.float32) for k in range(K): # workaround to do at_indices[b] i = tl.sum( tl.where( tl.arange(0, BLOCK_SIZE_K) == k, at_indices, tl.zeros((BLOCK_SIZE_K,), dtype=tl.int64), ) ) tl.device_assert(i < N) dense2col = tl.load( dense2_ptr + offsets_b * stride_d2b + i * stride_d2n, mask=offsets_b < B ) # shape (B,) accum += tl.where( tl.arange(0, BLOCK_SIZE_K) == k, tl.sum(dense1 * dense2col), tl.zeros((BLOCK_SIZE_K,), dtype=tl.int64), ) tl.store(out_ptr + pid * K + offsets_k, accum, mask=offsets_k < K) class TritonDecoderAutograd(torch.autograd.Function): @staticmethod def forward(ctx, sparse_indices, sparse_values, decoder_weight): ctx.save_for_backward(sparse_indices, sparse_values, decoder_weight) return triton_sparse_dense_matmul(sparse_indices, sparse_values, decoder_weight.T) @staticmethod def backward(ctx, grad_output): sparse_indices, sparse_values, decoder_weight = ctx.saved_tensors assert grad_output.is_contiguous(), "grad_output must be contiguous; this is probably because the subsequent op was a .sum() or something like that, which returns a non contiguous gradient" decoder_grad = triton_sparse_transpose_dense_matmul( sparse_indices, sparse_values, grad_output, N=decoder_weight.shape[1] ).T return ( None, triton_dense_dense_sparseout_matmul(grad_output, decoder_weight, sparse_indices), # decoder is contiguous when transposed so this is a matching layout decoder_grad, None, ) def triton_add_mul_( x: torch.Tensor, a: torch.Tensor, b: torch.Tensor, c: float, ): """ does x += a * b * c x : [m, n] a : [m, n] b : [m, n] c : float """ if len(a.shape) == 1: a = a[None, :].broadcast_to(x.shape) if len(b.shape) == 1: b = b[None, :].broadcast_to(x.shape) assert x.shape == a.shape == b.shape BLOCK_SIZE_M = 64 BLOCK_SIZE_N = 64 grid = lambda META: ( triton.cdiv(x.shape[0], META["BLOCK_SIZE_M"]), triton.cdiv(x.shape[1], META["BLOCK_SIZE_N"]), ) triton_add_mul_kernel[grid]( x, a, b, c, x.stride(0), x.stride(1), a.stride(0), a.stride(1), b.stride(0), b.stride(1), BLOCK_SIZE_M, BLOCK_SIZE_N, x.shape[0], x.shape[1], ) @triton.jit def triton_add_mul_kernel( x_ptr, a_ptr, b_ptr, c, stride_x0, stride_x1, stride_a0, stride_a1, stride_b0, stride_b1, BLOCK_SIZE_M: tl.constexpr, BLOCK_SIZE_N: tl.constexpr, M: tl.constexpr, N: tl.constexpr, ): pid_m = tl.program_id(0) pid_n = tl.program_id(1) offsets_m = tl.arange(0, BLOCK_SIZE_M) + pid_m * BLOCK_SIZE_M offsets_n = tl.arange(0, BLOCK_SIZE_N) + pid_n * BLOCK_SIZE_N x = tl.load( x_ptr + offsets_m[:, None] * stride_x0 + offsets_n[None, :] * stride_x1, mask=(offsets_m[:, None] < M) & (offsets_n[None, :] < N), ) a = tl.load( a_ptr + offsets_m[:, None] * stride_a0 + offsets_n[None, :] * stride_a1, mask=(offsets_m[:, None] < M) & (offsets_n[None, :] < N), ) b = tl.load( b_ptr + offsets_m[:, None] * stride_b0 + offsets_n[None, :] * stride_b1, mask=(offsets_m[:, None] < M) & (offsets_n[None, :] < N), ) x_dtype = x.dtype x = (x.to(tl.float32) + a.to(tl.float32) * b.to(tl.float32) * c).to(x_dtype) tl.store( x_ptr + offsets_m[:, None] * stride_x0 + offsets_n[None, :] * stride_x1, x, mask=(offsets_m[:, None] < M) & (offsets_n[None, :] < N), ) def triton_sum_dim0_in_fp32(xs): a, b = xs.shape assert xs.is_contiguous() assert xs.dtype == torch.float16 BLOCK_SIZE_A = min(triton.next_power_of_2(a), 512) BLOCK_SIZE_B = 64 # cache line is 128 bytes out = torch.zeros(b, dtype=torch.float32, device=xs.device) grid = lambda META: (triton.cdiv(b, META["BLOCK_SIZE_B"]),) triton_sum_dim0_in_fp32_kernel[grid]( xs, out, stride_a=xs.stride(0), a=a, b=b, BLOCK_SIZE_A=BLOCK_SIZE_A, BLOCK_SIZE_B=BLOCK_SIZE_B, ) return out @triton.jit def triton_sum_dim0_in_fp32_kernel( xs_ptr, out_ptr, stride_a, a, b, BLOCK_SIZE_A: tl.constexpr, BLOCK_SIZE_B: tl.constexpr, ): # each program handles 64 columns of xs pid = tl.program_id(0) offsets_b = tl.arange(0, BLOCK_SIZE_B) + pid * BLOCK_SIZE_B all_out = tl.zeros((BLOCK_SIZE_B,), dtype=tl.float32) for i in range(0, a, BLOCK_SIZE_A): offsets_a = tl.arange(0, BLOCK_SIZE_A) + i xs = tl.load( xs_ptr + offsets_a[:, None] * stride_a + offsets_b[None, :], mask=(offsets_a < a)[:, None] & (offsets_b < b)[None, :], other=0, ) xs = xs.to(tl.float32) out = tl.sum(xs, axis=0) all_out += out tl.store(out_ptr + offsets_b, all_out, mask=offsets_b < b) def mse( output, target, ): # fusing fp32 cast and MSE to save memory assert output.shape == target.shape assert len(output.shape) == 2 assert output.stride(1) == 1 assert target.stride(1) == 1 a, b = output.shape BLOCK_SIZE_B = triton.next_power_of_2(b) class _MSE(torch.autograd.Function): @staticmethod def forward(ctx, output, target): ctx.save_for_backward(output, target) out = torch.zeros(a, dtype=torch.float32, device=output.device) triton_mse_loss_fp16_kernel[(a,)]( output, target, out, stride_a_output=output.stride(0), stride_a_target=target.stride(0), a=a, b=b, BLOCK_SIZE_B=BLOCK_SIZE_B, ) return out @staticmethod def backward(ctx, grad_output): output, target = ctx.saved_tensors res = (output - target).float() res *= grad_output[:, None] * 2 / b return res, None return _MSE.apply(output, target).mean() def normalized_mse(recon: torch.Tensor, xs: torch.Tensor) -> torch.Tensor: # only used for auxk xs_mu = ( triton_sum_dim0_in_fp32(xs) / xs.shape[0] if xs.dtype == torch.float16 else xs.mean(dim=0) ) loss = mse(recon, xs) / mse( xs_mu[None, :].broadcast_to(xs.shape), xs ) return loss @triton.jit def triton_mse_loss_fp16_kernel( output_ptr, target_ptr, out_ptr, stride_a_output, stride_a_target, a, b, BLOCK_SIZE_B: tl.constexpr, ): pid = tl.program_id(0) offsets_b = tl.arange(0, BLOCK_SIZE_B) output = tl.load( output_ptr + pid * stride_a_output + offsets_b, mask=offsets_b < b, ) target = tl.load( target_ptr + pid * stride_a_target + offsets_b, mask=offsets_b < b, ) output = output.to(tl.float32) target = target.to(tl.float32) mse = tl.sum((output - target) * (output - target)) / b tl.store(out_ptr + pid, mse) def triton_add_mul_( x: torch.Tensor, a: torch.Tensor, b: torch.Tensor, c: float, ): """ does x += a * b * c x : [m, n] a : [m, n] b : [m, n] c : float """ if len(a.shape) == 1: a = a[None, :].broadcast_to(x.shape) if len(b.shape) == 1: b = b[None, :].broadcast_to(x.shape) assert x.shape == a.shape == b.shape BLOCK_SIZE_M = 64 BLOCK_SIZE_N = 64 grid = lambda META: ( triton.cdiv(x.shape[0], META["BLOCK_SIZE_M"]), triton.cdiv(x.shape[1], META["BLOCK_SIZE_N"]), ) triton_add_mul_kernel[grid]( x, a, b, c, x.stride(0), x.stride(1), a.stride(0), a.stride(1), b.stride(0), b.stride(1), BLOCK_SIZE_M, BLOCK_SIZE_N, x.shape[0], x.shape[1], )
@triton.jit def triton_dense_dense_sparseout_matmul_kernel( dense1_ptr, dense2_ptr, at_indices_ptr, out_ptr, stride_d1a, stride_d1b, stride_d2b, stride_d2n, A, B, N, K, BLOCK_SIZE_B: tl.constexpr, BLOCK_SIZE_N: tl.constexpr, BLOCK_SIZE_K: tl.constexpr, ): """ dense1: shape (A, B) dense2: shape (B, N) at_indices: shape (A, K) out values: shape (A, K) """ pid = tl.program_id(0) offsets_k = tl.arange(0, BLOCK_SIZE_K) at_indices = tl.load(at_indices_ptr + pid * K + offsets_k, mask=offsets_k < K) # shape (K,) offsets_b = tl.arange(0, BLOCK_SIZE_B) dense1 = tl.load( dense1_ptr + pid * stride_d1a + offsets_b * stride_d1b, mask=offsets_b < B ) # shape (B,) accum = tl.zeros((BLOCK_SIZE_K,), dtype=tl.float32) for k in range(K): # workaround to do at_indices[b] i = tl.sum( tl.where( tl.arange(0, BLOCK_SIZE_K) == k, at_indices, tl.zeros((BLOCK_SIZE_K,), dtype=tl.int64), ) ) tl.device_assert(i < N) dense2col = tl.load( dense2_ptr + offsets_b * stride_d2b + i * stride_d2n, mask=offsets_b < B ) # shape (B,) accum += tl.where( tl.arange(0, BLOCK_SIZE_K) == k, tl.sum(dense1 * dense2col), tl.zeros((BLOCK_SIZE_K,), dtype=tl.int64), ) tl.store(out_ptr + pid * K + offsets_k, accum, mask=offsets_k < K) class TritonDecoderAutograd(torch.autograd.Function): @staticmethod def forward(ctx, sparse_indices, sparse_values, decoder_weight): ctx.save_for_backward(sparse_indices, sparse_values, decoder_weight) return triton_sparse_dense_matmul(sparse_indices, sparse_values, decoder_weight.T) @staticmethod def backward(ctx, grad_output): sparse_indices, sparse_values, decoder_weight = ctx.saved_tensors assert grad_output.is_contiguous(), "grad_output must be contiguous; this is probably because the subsequent op was a .sum() or something like that, which returns a non contiguous gradient" decoder_grad = triton_sparse_transpose_dense_matmul( sparse_indices, sparse_values, grad_output, N=decoder_weight.shape[1] ).T return ( None, triton_dense_dense_sparseout_matmul(grad_output, decoder_weight, sparse_indices), # decoder is contiguous when transposed so this is a matching layout decoder_grad, None, ) def triton_add_mul_( x: torch.Tensor, a: torch.Tensor, b: torch.Tensor, c: float, ): """ does x += a * b * c x : [m, n] a : [m, n] b : [m, n] c : float """ if len(a.shape) == 1: a = a[None, :].broadcast_to(x.shape) if len(b.shape) == 1: b = b[None, :].broadcast_to(x.shape) assert x.shape == a.shape == b.shape BLOCK_SIZE_M = 64 BLOCK_SIZE_N = 64 grid = lambda META: ( triton.cdiv(x.shape[0], META["BLOCK_SIZE_M"]), triton.cdiv(x.shape[1], META["BLOCK_SIZE_N"]), ) triton_add_mul_kernel[grid]( x, a, b, c, x.stride(0), x.stride(1), a.stride(0), a.stride(1), b.stride(0), b.stride(1), BLOCK_SIZE_M, BLOCK_SIZE_N, x.shape[0], x.shape[1], )
jsalt2024-evaluating-llms-for-astronomy/retrieval
saerch/kernels.py
https://github.com/jsalt2024-evaluating-llms-for-astronomy/retrieval/blob/f8ec8914e49dbf4680b56efd7771264549b9a2da/saerch/kernels.py
### kernels.py ### import torch import triton import triton.language as tl ## kernels def triton_sparse_transpose_dense_matmul( sparse_indices: torch.Tensor, sparse_values: torch.Tensor, dense: torch.Tensor, N: int, BLOCK_SIZE_AK=128, ) -> torch.Tensor: """ calculates sparse.T @ dense (i.e reducing along the collated dimension of sparse) dense must be contiguous along dim 0 (in other words, dense.T is contiguous) sparse_indices is shape (A, k) sparse_values is shape (A, k) dense is shape (A, B) output is shape (N, B) """ assert sparse_indices.shape == sparse_values.shape assert sparse_indices.is_contiguous() assert sparse_values.is_contiguous() assert dense.is_contiguous() # contiguous along B K = sparse_indices.shape[1] A = dense.shape[0] B = dense.shape[1] assert sparse_indices.shape[0] == A # COO-format and sorted sorted_indices = sparse_indices.view(-1).sort() coo_indices = torch.stack( [ torch.arange(A, device=sparse_indices.device).repeat_interleave(K)[ sorted_indices.indices ], sorted_indices.values, ] ) # shape (2, A * K) coo_values = sparse_values.view(-1)[sorted_indices.indices] # shape (A * K,) return triton_coo_sparse_dense_matmul(coo_indices, coo_values, dense, N, BLOCK_SIZE_AK) def triton_coo_sparse_dense_matmul( coo_indices: torch.Tensor, coo_values: torch.Tensor, dense: torch.Tensor, N: int, BLOCK_SIZE_AK=128, ) -> torch.Tensor: AK = coo_indices.shape[1] B = dense.shape[1] out = torch.zeros(N, B, device=dense.device, dtype=coo_values.dtype) grid = lambda META: ( triton.cdiv(AK, META["BLOCK_SIZE_AK"]), 1, ) triton_sparse_transpose_dense_matmul_kernel[grid]( coo_indices, coo_values, dense, out, stride_da=dense.stride(0), stride_db=dense.stride(1), B=B, N=N, AK=AK, BLOCK_SIZE_AK=BLOCK_SIZE_AK, BLOCK_SIZE_B=triton.next_power_of_2(B), ) return out @triton.jit def triton_sparse_transpose_dense_matmul_kernel( coo_indices_ptr, coo_values_ptr, dense_ptr, out_ptr, stride_da, stride_db, B, N, AK, BLOCK_SIZE_AK: tl.constexpr, BLOCK_SIZE_B: tl.constexpr, ): """ coo_indices is shape (2, AK) coo_values is shape (AK,) dense is shape (A, B), contiguous along B out is shape (N, B) """ pid_ak = tl.program_id(0) pid_b = tl.program_id(1) coo_offsets = tl.arange(0, BLOCK_SIZE_AK) b_offsets = tl.arange(0, BLOCK_SIZE_B) A_coords = tl.load( coo_indices_ptr + pid_ak * BLOCK_SIZE_AK + coo_offsets, mask=pid_ak * BLOCK_SIZE_AK + coo_offsets < AK, ) K_coords = tl.load( coo_indices_ptr + pid_ak * BLOCK_SIZE_AK + coo_offsets + AK, mask=pid_ak * BLOCK_SIZE_AK + coo_offsets < AK, ) values = tl.load( coo_values_ptr + pid_ak * BLOCK_SIZE_AK + coo_offsets, mask=pid_ak * BLOCK_SIZE_AK + coo_offsets < AK, ) last_k = tl.min(K_coords) accum = tl.zeros((BLOCK_SIZE_B,), dtype=tl.float32) for ind in range(BLOCK_SIZE_AK): if ind + pid_ak * BLOCK_SIZE_AK < AK: # workaround to do A_coords[ind] a = tl.sum( tl.where( tl.arange(0, BLOCK_SIZE_AK) == ind, A_coords, tl.zeros((BLOCK_SIZE_AK,), dtype=tl.int64), ) ) k = tl.sum( tl.where( tl.arange(0, BLOCK_SIZE_AK) == ind, K_coords, tl.zeros((BLOCK_SIZE_AK,), dtype=tl.int64), ) ) v = tl.sum( tl.where( tl.arange(0, BLOCK_SIZE_AK) == ind, values, tl.zeros((BLOCK_SIZE_AK,), dtype=tl.float32), ) ) tl.device_assert(k < N) if k != last_k: tl.atomic_add( out_ptr + last_k * B + BLOCK_SIZE_B * pid_b + b_offsets, accum, mask=BLOCK_SIZE_B * pid_b + b_offsets < B, ) accum *= 0 last_k = k if v != 0: accum += v * tl.load(dense_ptr + a * stride_da + b_offsets, mask=b_offsets < B) tl.atomic_add( out_ptr + last_k * B + BLOCK_SIZE_B * pid_b + b_offsets, accum, mask=BLOCK_SIZE_B * pid_b + b_offsets < B, ) def triton_sparse_dense_matmul( sparse_indices: torch.Tensor, sparse_values: torch.Tensor, dense: torch.Tensor, ) -> torch.Tensor: """ calculates sparse @ dense (i.e reducing along the uncollated dimension of sparse) dense must be contiguous along dim 0 (in other words, dense.T is contiguous) sparse_indices is shape (A, k) sparse_values is shape (A, k) dense is shape (N, B) output is shape (A, B) """ N = dense.shape[0] assert sparse_indices.shape == sparse_values.shape assert sparse_indices.is_contiguous() assert sparse_values.is_contiguous() assert dense.is_contiguous() # contiguous along B A = sparse_indices.shape[0] K = sparse_indices.shape[1] B = dense.shape[1] out = torch.zeros(A, B, device=dense.device, dtype=sparse_values.dtype) triton_sparse_dense_matmul_kernel[(A,)]( sparse_indices, sparse_values, dense, out, stride_dn=dense.stride(0), stride_db=dense.stride(1), A=A, B=B, N=N, K=K, BLOCK_SIZE_K=triton.next_power_of_2(K), BLOCK_SIZE_B=triton.next_power_of_2(B), ) return out @triton.jit def triton_sparse_dense_matmul_kernel( sparse_indices_ptr, sparse_values_ptr, dense_ptr, out_ptr, stride_dn, stride_db, A, B, N, K, BLOCK_SIZE_K: tl.constexpr, BLOCK_SIZE_B: tl.constexpr, ): """ sparse_indices is shape (A, K) sparse_values is shape (A, K) dense is shape (N, B), contiguous along B out is shape (A, B) """ pid = tl.program_id(0) offsets_k = tl.arange(0, BLOCK_SIZE_K) sparse_indices = tl.load( sparse_indices_ptr + pid * K + offsets_k, mask=offsets_k < K ) # shape (K,) sparse_values = tl.load( sparse_values_ptr + pid * K + offsets_k, mask=offsets_k < K ) # shape (K,) accum = tl.zeros((BLOCK_SIZE_B,), dtype=tl.float32) offsets_b = tl.arange(0, BLOCK_SIZE_B) for k in range(K): # workaround to do sparse_indices[k] i = tl.sum( tl.where( tl.arange(0, BLOCK_SIZE_K) == k, sparse_indices, tl.zeros((BLOCK_SIZE_K,), dtype=tl.int64), ) ) # workaround to do sparse_values[k] v = tl.sum( tl.where( tl.arange(0, BLOCK_SIZE_K) == k, sparse_values, tl.zeros((BLOCK_SIZE_K,), dtype=tl.float32), ) ) tl.device_assert(i < N) if v != 0: accum += v * tl.load( dense_ptr + i * stride_dn + offsets_b * stride_db, mask=offsets_b < B ) tl.store(out_ptr + pid * B + offsets_b, accum.to(sparse_values.dtype), mask=offsets_b < B) def triton_dense_dense_sparseout_matmul( dense1: torch.Tensor, dense2: torch.Tensor, at_indices: torch.Tensor, ) -> torch.Tensor: """ dense1: shape (A, B) dense2: shape (B, N) at_indices: shape (A, K) out values: shape (A, K) calculates dense1 @ dense2 only for the indices in at_indices equivalent to (dense1 @ dense2).gather(1, at_indices) """ A, B = dense1.shape N = dense2.shape[1] assert dense2.shape[0] == B assert at_indices.shape[0] == A K = at_indices.shape[1] assert at_indices.is_contiguous() assert dense1.stride(1) == 1, "dense1 must be contiguous along B" assert dense2.stride(0) == 1, "dense2 must be contiguous along B" if K > 512: # print("WARN - using naive matmul for large K") # naive is more efficient for large K return (dense1 @ dense2).gather(1, at_indices) out = torch.zeros(A, K, device=dense1.device, dtype=dense1.dtype) # grid = lambda META: (triton.cdiv(A, META['BLOCK_SIZE_A']),) triton_dense_dense_sparseout_matmul_kernel[(A,)]( dense1, dense2, at_indices, out, stride_d1a=dense1.stride(0), stride_d1b=dense1.stride(1), stride_d2b=dense2.stride(0), stride_d2n=dense2.stride(1), A=A, B=B, N=N, K=K, BLOCK_SIZE_B=triton.next_power_of_2(B), BLOCK_SIZE_N=triton.next_power_of_2(N), BLOCK_SIZE_K=triton.next_power_of_2(K), ) return out @triton.jit def triton_dense_dense_sparseout_matmul_kernel( dense1_ptr, dense2_ptr, at_indices_ptr, out_ptr, stride_d1a, stride_d1b, stride_d2b, stride_d2n, A, B, N, K, BLOCK_SIZE_B: tl.constexpr, BLOCK_SIZE_N: tl.constexpr, BLOCK_SIZE_K: tl.constexpr, ): """ dense1: shape (A, B) dense2: shape (B, N) at_indices: shape (A, K) out values: shape (A, K) """ pid = tl.program_id(0) offsets_k = tl.arange(0, BLOCK_SIZE_K) at_indices = tl.load(at_indices_ptr + pid * K + offsets_k, mask=offsets_k < K) # shape (K,) offsets_b = tl.arange(0, BLOCK_SIZE_B) dense1 = tl.load( dense1_ptr + pid * stride_d1a + offsets_b * stride_d1b, mask=offsets_b < B ) # shape (B,) accum = tl.zeros((BLOCK_SIZE_K,), dtype=tl.float32) for k in range(K): # workaround to do at_indices[b] i = tl.sum( tl.where( tl.arange(0, BLOCK_SIZE_K) == k, at_indices, tl.zeros((BLOCK_SIZE_K,), dtype=tl.int64), ) ) tl.device_assert(i < N) dense2col = tl.load( dense2_ptr + offsets_b * stride_d2b + i * stride_d2n, mask=offsets_b < B ) # shape (B,) accum += tl.where( tl.arange(0, BLOCK_SIZE_K) == k, tl.sum(dense1 * dense2col), tl.zeros((BLOCK_SIZE_K,), dtype=tl.int64), ) tl.store(out_ptr + pid * K + offsets_k, accum, mask=offsets_k < K) class TritonDecoderAutograd(torch.autograd.Function): @staticmethod def forward(ctx, sparse_indices, sparse_values, decoder_weight): ctx.save_for_backward(sparse_indices, sparse_values, decoder_weight) return triton_sparse_dense_matmul(sparse_indices, sparse_values, decoder_weight.T) @staticmethod def backward(ctx, grad_output): sparse_indices, sparse_values, decoder_weight = ctx.saved_tensors assert grad_output.is_contiguous(), "grad_output must be contiguous; this is probably because the subsequent op was a .sum() or something like that, which returns a non contiguous gradient" decoder_grad = triton_sparse_transpose_dense_matmul( sparse_indices, sparse_values, grad_output, N=decoder_weight.shape[1] ).T return ( None, triton_dense_dense_sparseout_matmul(grad_output, decoder_weight, sparse_indices), # decoder is contiguous when transposed so this is a matching layout decoder_grad, None, ) def triton_add_mul_( x: torch.Tensor, a: torch.Tensor, b: torch.Tensor, c: float, ): """ does x += a * b * c x : [m, n] a : [m, n] b : [m, n] c : float """ if len(a.shape) == 1: a = a[None, :].broadcast_to(x.shape) if len(b.shape) == 1: b = b[None, :].broadcast_to(x.shape) assert x.shape == a.shape == b.shape BLOCK_SIZE_M = 64 BLOCK_SIZE_N = 64 grid = lambda META: ( triton.cdiv(x.shape[0], META["BLOCK_SIZE_M"]), triton.cdiv(x.shape[1], META["BLOCK_SIZE_N"]), ) triton_add_mul_kernel[grid]( x, a, b, c, x.stride(0), x.stride(1), a.stride(0), a.stride(1), b.stride(0), b.stride(1), BLOCK_SIZE_M, BLOCK_SIZE_N, x.shape[0], x.shape[1], ) @triton.jit def triton_add_mul_kernel( x_ptr, a_ptr, b_ptr, c, stride_x0, stride_x1, stride_a0, stride_a1, stride_b0, stride_b1, BLOCK_SIZE_M: tl.constexpr, BLOCK_SIZE_N: tl.constexpr, M: tl.constexpr, N: tl.constexpr, ): pid_m = tl.program_id(0) pid_n = tl.program_id(1) offsets_m = tl.arange(0, BLOCK_SIZE_M) + pid_m * BLOCK_SIZE_M offsets_n = tl.arange(0, BLOCK_SIZE_N) + pid_n * BLOCK_SIZE_N x = tl.load( x_ptr + offsets_m[:, None] * stride_x0 + offsets_n[None, :] * stride_x1, mask=(offsets_m[:, None] < M) & (offsets_n[None, :] < N), ) a = tl.load( a_ptr + offsets_m[:, None] * stride_a0 + offsets_n[None, :] * stride_a1, mask=(offsets_m[:, None] < M) & (offsets_n[None, :] < N), ) b = tl.load( b_ptr + offsets_m[:, None] * stride_b0 + offsets_n[None, :] * stride_b1, mask=(offsets_m[:, None] < M) & (offsets_n[None, :] < N), ) x_dtype = x.dtype x = (x.to(tl.float32) + a.to(tl.float32) * b.to(tl.float32) * c).to(x_dtype) tl.store( x_ptr + offsets_m[:, None] * stride_x0 + offsets_n[None, :] * stride_x1, x, mask=(offsets_m[:, None] < M) & (offsets_n[None, :] < N), ) def triton_sum_dim0_in_fp32(xs): a, b = xs.shape assert xs.is_contiguous() assert xs.dtype == torch.float16 BLOCK_SIZE_A = min(triton.next_power_of_2(a), 512) BLOCK_SIZE_B = 64 # cache line is 128 bytes out = torch.zeros(b, dtype=torch.float32, device=xs.device) grid = lambda META: (triton.cdiv(b, META["BLOCK_SIZE_B"]),) triton_sum_dim0_in_fp32_kernel[grid]( xs, out, stride_a=xs.stride(0), a=a, b=b, BLOCK_SIZE_A=BLOCK_SIZE_A, BLOCK_SIZE_B=BLOCK_SIZE_B, ) return out @triton.jit def triton_sum_dim0_in_fp32_kernel( xs_ptr, out_ptr, stride_a, a, b, BLOCK_SIZE_A: tl.constexpr, BLOCK_SIZE_B: tl.constexpr, ): # each program handles 64 columns of xs pid = tl.program_id(0) offsets_b = tl.arange(0, BLOCK_SIZE_B) + pid * BLOCK_SIZE_B all_out = tl.zeros((BLOCK_SIZE_B,), dtype=tl.float32) for i in range(0, a, BLOCK_SIZE_A): offsets_a = tl.arange(0, BLOCK_SIZE_A) + i xs = tl.load( xs_ptr + offsets_a[:, None] * stride_a + offsets_b[None, :], mask=(offsets_a < a)[:, None] & (offsets_b < b)[None, :], other=0, ) xs = xs.to(tl.float32) out = tl.sum(xs, axis=0) all_out += out tl.store(out_ptr + offsets_b, all_out, mask=offsets_b < b) def mse( output, target, ): # fusing fp32 cast and MSE to save memory assert output.shape == target.shape assert len(output.shape) == 2 assert output.stride(1) == 1 assert target.stride(1) == 1 a, b = output.shape BLOCK_SIZE_B = triton.next_power_of_2(b) class _MSE(torch.autograd.Function): @staticmethod def forward(ctx, output, target): ctx.save_for_backward(output, target) out = torch.zeros(a, dtype=torch.float32, device=output.device) triton_mse_loss_fp16_kernel[(a,)]( output, target, out, stride_a_output=output.stride(0), stride_a_target=target.stride(0), a=a, b=b, BLOCK_SIZE_B=BLOCK_SIZE_B, ) return out @staticmethod def backward(ctx, grad_output): output, target = ctx.saved_tensors res = (output - target).float() res *= grad_output[:, None] * 2 / b return res, None return _MSE.apply(output, target).mean() def normalized_mse(recon: torch.Tensor, xs: torch.Tensor) -> torch.Tensor: # only used for auxk xs_mu = ( triton_sum_dim0_in_fp32(xs) / xs.shape[0] if xs.dtype == torch.float16 else xs.mean(dim=0) ) loss = mse(recon, xs) / mse( xs_mu[None, :].broadcast_to(xs.shape), xs ) return loss @triton.jit def triton_mse_loss_fp16_kernel( output_ptr, target_ptr, out_ptr, stride_a_output, stride_a_target, a, b, BLOCK_SIZE_B: tl.constexpr, ): pid = tl.program_id(0) offsets_b = tl.arange(0, BLOCK_SIZE_B) output = tl.load( output_ptr + pid * stride_a_output + offsets_b, mask=offsets_b < b, ) target = tl.load( target_ptr + pid * stride_a_target + offsets_b, mask=offsets_b < b, ) output = output.to(tl.float32) target = target.to(tl.float32) mse = tl.sum((output - target) * (output - target)) / b tl.store(out_ptr + pid, mse) def triton_add_mul_( x: torch.Tensor, a: torch.Tensor, b: torch.Tensor, c: float, ): """ does x += a * b * c x : [m, n] a : [m, n] b : [m, n] c : float """ if len(a.shape) == 1: a = a[None, :].broadcast_to(x.shape) if len(b.shape) == 1: b = b[None, :].broadcast_to(x.shape) assert x.shape == a.shape == b.shape BLOCK_SIZE_M = 64 BLOCK_SIZE_N = 64 grid = lambda META: ( triton.cdiv(x.shape[0], META["BLOCK_SIZE_M"]), triton.cdiv(x.shape[1], META["BLOCK_SIZE_N"]), ) triton_add_mul_kernel[grid]( x, a, b, c, x.stride(0), x.stride(1), a.stride(0), a.stride(1), b.stride(0), b.stride(1), BLOCK_SIZE_M, BLOCK_SIZE_N, x.shape[0], x.shape[1], )
@triton.jit def triton_add_mul_kernel( x_ptr, a_ptr, b_ptr, c, stride_x0, stride_x1, stride_a0, stride_a1, stride_b0, stride_b1, BLOCK_SIZE_M: tl.constexpr, BLOCK_SIZE_N: tl.constexpr, M: tl.constexpr, N: tl.constexpr, ): pid_m = tl.program_id(0) pid_n = tl.program_id(1) offsets_m = tl.arange(0, BLOCK_SIZE_M) + pid_m * BLOCK_SIZE_M offsets_n = tl.arange(0, BLOCK_SIZE_N) + pid_n * BLOCK_SIZE_N x = tl.load( x_ptr + offsets_m[:, None] * stride_x0 + offsets_n[None, :] * stride_x1, mask=(offsets_m[:, None] < M) & (offsets_n[None, :] < N), ) a = tl.load( a_ptr + offsets_m[:, None] * stride_a0 + offsets_n[None, :] * stride_a1, mask=(offsets_m[:, None] < M) & (offsets_n[None, :] < N), ) b = tl.load( b_ptr + offsets_m[:, None] * stride_b0 + offsets_n[None, :] * stride_b1, mask=(offsets_m[:, None] < M) & (offsets_n[None, :] < N), ) x_dtype = x.dtype x = (x.to(tl.float32) + a.to(tl.float32) * b.to(tl.float32) * c).to(x_dtype) tl.store( x_ptr + offsets_m[:, None] * stride_x0 + offsets_n[None, :] * stride_x1, x, mask=(offsets_m[:, None] < M) & (offsets_n[None, :] < N), ) def triton_sum_dim0_in_fp32(xs): a, b = xs.shape assert xs.is_contiguous() assert xs.dtype == torch.float16 BLOCK_SIZE_A = min(triton.next_power_of_2(a), 512) BLOCK_SIZE_B = 64 # cache line is 128 bytes out = torch.zeros(b, dtype=torch.float32, device=xs.device) grid = lambda META: (triton.cdiv(b, META["BLOCK_SIZE_B"]),) triton_sum_dim0_in_fp32_kernel[grid]( xs, out, stride_a=xs.stride(0), a=a, b=b, BLOCK_SIZE_A=BLOCK_SIZE_A, BLOCK_SIZE_B=BLOCK_SIZE_B, ) return out
jsalt2024-evaluating-llms-for-astronomy/retrieval
saerch/kernels.py
https://github.com/jsalt2024-evaluating-llms-for-astronomy/retrieval/blob/f8ec8914e49dbf4680b56efd7771264549b9a2da/saerch/kernels.py
### kernels.py ### import torch import triton import triton.language as tl ## kernels def triton_sparse_transpose_dense_matmul( sparse_indices: torch.Tensor, sparse_values: torch.Tensor, dense: torch.Tensor, N: int, BLOCK_SIZE_AK=128, ) -> torch.Tensor: """ calculates sparse.T @ dense (i.e reducing along the collated dimension of sparse) dense must be contiguous along dim 0 (in other words, dense.T is contiguous) sparse_indices is shape (A, k) sparse_values is shape (A, k) dense is shape (A, B) output is shape (N, B) """ assert sparse_indices.shape == sparse_values.shape assert sparse_indices.is_contiguous() assert sparse_values.is_contiguous() assert dense.is_contiguous() # contiguous along B K = sparse_indices.shape[1] A = dense.shape[0] B = dense.shape[1] assert sparse_indices.shape[0] == A # COO-format and sorted sorted_indices = sparse_indices.view(-1).sort() coo_indices = torch.stack( [ torch.arange(A, device=sparse_indices.device).repeat_interleave(K)[ sorted_indices.indices ], sorted_indices.values, ] ) # shape (2, A * K) coo_values = sparse_values.view(-1)[sorted_indices.indices] # shape (A * K,) return triton_coo_sparse_dense_matmul(coo_indices, coo_values, dense, N, BLOCK_SIZE_AK) def triton_coo_sparse_dense_matmul( coo_indices: torch.Tensor, coo_values: torch.Tensor, dense: torch.Tensor, N: int, BLOCK_SIZE_AK=128, ) -> torch.Tensor: AK = coo_indices.shape[1] B = dense.shape[1] out = torch.zeros(N, B, device=dense.device, dtype=coo_values.dtype) grid = lambda META: ( triton.cdiv(AK, META["BLOCK_SIZE_AK"]), 1, ) triton_sparse_transpose_dense_matmul_kernel[grid]( coo_indices, coo_values, dense, out, stride_da=dense.stride(0), stride_db=dense.stride(1), B=B, N=N, AK=AK, BLOCK_SIZE_AK=BLOCK_SIZE_AK, BLOCK_SIZE_B=triton.next_power_of_2(B), ) return out @triton.jit def triton_sparse_transpose_dense_matmul_kernel( coo_indices_ptr, coo_values_ptr, dense_ptr, out_ptr, stride_da, stride_db, B, N, AK, BLOCK_SIZE_AK: tl.constexpr, BLOCK_SIZE_B: tl.constexpr, ): """ coo_indices is shape (2, AK) coo_values is shape (AK,) dense is shape (A, B), contiguous along B out is shape (N, B) """ pid_ak = tl.program_id(0) pid_b = tl.program_id(1) coo_offsets = tl.arange(0, BLOCK_SIZE_AK) b_offsets = tl.arange(0, BLOCK_SIZE_B) A_coords = tl.load( coo_indices_ptr + pid_ak * BLOCK_SIZE_AK + coo_offsets, mask=pid_ak * BLOCK_SIZE_AK + coo_offsets < AK, ) K_coords = tl.load( coo_indices_ptr + pid_ak * BLOCK_SIZE_AK + coo_offsets + AK, mask=pid_ak * BLOCK_SIZE_AK + coo_offsets < AK, ) values = tl.load( coo_values_ptr + pid_ak * BLOCK_SIZE_AK + coo_offsets, mask=pid_ak * BLOCK_SIZE_AK + coo_offsets < AK, ) last_k = tl.min(K_coords) accum = tl.zeros((BLOCK_SIZE_B,), dtype=tl.float32) for ind in range(BLOCK_SIZE_AK): if ind + pid_ak * BLOCK_SIZE_AK < AK: # workaround to do A_coords[ind] a = tl.sum( tl.where( tl.arange(0, BLOCK_SIZE_AK) == ind, A_coords, tl.zeros((BLOCK_SIZE_AK,), dtype=tl.int64), ) ) k = tl.sum( tl.where( tl.arange(0, BLOCK_SIZE_AK) == ind, K_coords, tl.zeros((BLOCK_SIZE_AK,), dtype=tl.int64), ) ) v = tl.sum( tl.where( tl.arange(0, BLOCK_SIZE_AK) == ind, values, tl.zeros((BLOCK_SIZE_AK,), dtype=tl.float32), ) ) tl.device_assert(k < N) if k != last_k: tl.atomic_add( out_ptr + last_k * B + BLOCK_SIZE_B * pid_b + b_offsets, accum, mask=BLOCK_SIZE_B * pid_b + b_offsets < B, ) accum *= 0 last_k = k if v != 0: accum += v * tl.load(dense_ptr + a * stride_da + b_offsets, mask=b_offsets < B) tl.atomic_add( out_ptr + last_k * B + BLOCK_SIZE_B * pid_b + b_offsets, accum, mask=BLOCK_SIZE_B * pid_b + b_offsets < B, ) def triton_sparse_dense_matmul( sparse_indices: torch.Tensor, sparse_values: torch.Tensor, dense: torch.Tensor, ) -> torch.Tensor: """ calculates sparse @ dense (i.e reducing along the uncollated dimension of sparse) dense must be contiguous along dim 0 (in other words, dense.T is contiguous) sparse_indices is shape (A, k) sparse_values is shape (A, k) dense is shape (N, B) output is shape (A, B) """ N = dense.shape[0] assert sparse_indices.shape == sparse_values.shape assert sparse_indices.is_contiguous() assert sparse_values.is_contiguous() assert dense.is_contiguous() # contiguous along B A = sparse_indices.shape[0] K = sparse_indices.shape[1] B = dense.shape[1] out = torch.zeros(A, B, device=dense.device, dtype=sparse_values.dtype) triton_sparse_dense_matmul_kernel[(A,)]( sparse_indices, sparse_values, dense, out, stride_dn=dense.stride(0), stride_db=dense.stride(1), A=A, B=B, N=N, K=K, BLOCK_SIZE_K=triton.next_power_of_2(K), BLOCK_SIZE_B=triton.next_power_of_2(B), ) return out @triton.jit def triton_sparse_dense_matmul_kernel( sparse_indices_ptr, sparse_values_ptr, dense_ptr, out_ptr, stride_dn, stride_db, A, B, N, K, BLOCK_SIZE_K: tl.constexpr, BLOCK_SIZE_B: tl.constexpr, ): """ sparse_indices is shape (A, K) sparse_values is shape (A, K) dense is shape (N, B), contiguous along B out is shape (A, B) """ pid = tl.program_id(0) offsets_k = tl.arange(0, BLOCK_SIZE_K) sparse_indices = tl.load( sparse_indices_ptr + pid * K + offsets_k, mask=offsets_k < K ) # shape (K,) sparse_values = tl.load( sparse_values_ptr + pid * K + offsets_k, mask=offsets_k < K ) # shape (K,) accum = tl.zeros((BLOCK_SIZE_B,), dtype=tl.float32) offsets_b = tl.arange(0, BLOCK_SIZE_B) for k in range(K): # workaround to do sparse_indices[k] i = tl.sum( tl.where( tl.arange(0, BLOCK_SIZE_K) == k, sparse_indices, tl.zeros((BLOCK_SIZE_K,), dtype=tl.int64), ) ) # workaround to do sparse_values[k] v = tl.sum( tl.where( tl.arange(0, BLOCK_SIZE_K) == k, sparse_values, tl.zeros((BLOCK_SIZE_K,), dtype=tl.float32), ) ) tl.device_assert(i < N) if v != 0: accum += v * tl.load( dense_ptr + i * stride_dn + offsets_b * stride_db, mask=offsets_b < B ) tl.store(out_ptr + pid * B + offsets_b, accum.to(sparse_values.dtype), mask=offsets_b < B) def triton_dense_dense_sparseout_matmul( dense1: torch.Tensor, dense2: torch.Tensor, at_indices: torch.Tensor, ) -> torch.Tensor: """ dense1: shape (A, B) dense2: shape (B, N) at_indices: shape (A, K) out values: shape (A, K) calculates dense1 @ dense2 only for the indices in at_indices equivalent to (dense1 @ dense2).gather(1, at_indices) """ A, B = dense1.shape N = dense2.shape[1] assert dense2.shape[0] == B assert at_indices.shape[0] == A K = at_indices.shape[1] assert at_indices.is_contiguous() assert dense1.stride(1) == 1, "dense1 must be contiguous along B" assert dense2.stride(0) == 1, "dense2 must be contiguous along B" if K > 512: # print("WARN - using naive matmul for large K") # naive is more efficient for large K return (dense1 @ dense2).gather(1, at_indices) out = torch.zeros(A, K, device=dense1.device, dtype=dense1.dtype) # grid = lambda META: (triton.cdiv(A, META['BLOCK_SIZE_A']),) triton_dense_dense_sparseout_matmul_kernel[(A,)]( dense1, dense2, at_indices, out, stride_d1a=dense1.stride(0), stride_d1b=dense1.stride(1), stride_d2b=dense2.stride(0), stride_d2n=dense2.stride(1), A=A, B=B, N=N, K=K, BLOCK_SIZE_B=triton.next_power_of_2(B), BLOCK_SIZE_N=triton.next_power_of_2(N), BLOCK_SIZE_K=triton.next_power_of_2(K), ) return out @triton.jit def triton_dense_dense_sparseout_matmul_kernel( dense1_ptr, dense2_ptr, at_indices_ptr, out_ptr, stride_d1a, stride_d1b, stride_d2b, stride_d2n, A, B, N, K, BLOCK_SIZE_B: tl.constexpr, BLOCK_SIZE_N: tl.constexpr, BLOCK_SIZE_K: tl.constexpr, ): """ dense1: shape (A, B) dense2: shape (B, N) at_indices: shape (A, K) out values: shape (A, K) """ pid = tl.program_id(0) offsets_k = tl.arange(0, BLOCK_SIZE_K) at_indices = tl.load(at_indices_ptr + pid * K + offsets_k, mask=offsets_k < K) # shape (K,) offsets_b = tl.arange(0, BLOCK_SIZE_B) dense1 = tl.load( dense1_ptr + pid * stride_d1a + offsets_b * stride_d1b, mask=offsets_b < B ) # shape (B,) accum = tl.zeros((BLOCK_SIZE_K,), dtype=tl.float32) for k in range(K): # workaround to do at_indices[b] i = tl.sum( tl.where( tl.arange(0, BLOCK_SIZE_K) == k, at_indices, tl.zeros((BLOCK_SIZE_K,), dtype=tl.int64), ) ) tl.device_assert(i < N) dense2col = tl.load( dense2_ptr + offsets_b * stride_d2b + i * stride_d2n, mask=offsets_b < B ) # shape (B,) accum += tl.where( tl.arange(0, BLOCK_SIZE_K) == k, tl.sum(dense1 * dense2col), tl.zeros((BLOCK_SIZE_K,), dtype=tl.int64), ) tl.store(out_ptr + pid * K + offsets_k, accum, mask=offsets_k < K) class TritonDecoderAutograd(torch.autograd.Function): @staticmethod def forward(ctx, sparse_indices, sparse_values, decoder_weight): ctx.save_for_backward(sparse_indices, sparse_values, decoder_weight) return triton_sparse_dense_matmul(sparse_indices, sparse_values, decoder_weight.T) @staticmethod def backward(ctx, grad_output): sparse_indices, sparse_values, decoder_weight = ctx.saved_tensors assert grad_output.is_contiguous(), "grad_output must be contiguous; this is probably because the subsequent op was a .sum() or something like that, which returns a non contiguous gradient" decoder_grad = triton_sparse_transpose_dense_matmul( sparse_indices, sparse_values, grad_output, N=decoder_weight.shape[1] ).T return ( None, triton_dense_dense_sparseout_matmul(grad_output, decoder_weight, sparse_indices), # decoder is contiguous when transposed so this is a matching layout decoder_grad, None, ) def triton_add_mul_( x: torch.Tensor, a: torch.Tensor, b: torch.Tensor, c: float, ): """ does x += a * b * c x : [m, n] a : [m, n] b : [m, n] c : float """ if len(a.shape) == 1: a = a[None, :].broadcast_to(x.shape) if len(b.shape) == 1: b = b[None, :].broadcast_to(x.shape) assert x.shape == a.shape == b.shape BLOCK_SIZE_M = 64 BLOCK_SIZE_N = 64 grid = lambda META: ( triton.cdiv(x.shape[0], META["BLOCK_SIZE_M"]), triton.cdiv(x.shape[1], META["BLOCK_SIZE_N"]), ) triton_add_mul_kernel[grid]( x, a, b, c, x.stride(0), x.stride(1), a.stride(0), a.stride(1), b.stride(0), b.stride(1), BLOCK_SIZE_M, BLOCK_SIZE_N, x.shape[0], x.shape[1], ) @triton.jit def triton_add_mul_kernel( x_ptr, a_ptr, b_ptr, c, stride_x0, stride_x1, stride_a0, stride_a1, stride_b0, stride_b1, BLOCK_SIZE_M: tl.constexpr, BLOCK_SIZE_N: tl.constexpr, M: tl.constexpr, N: tl.constexpr, ): pid_m = tl.program_id(0) pid_n = tl.program_id(1) offsets_m = tl.arange(0, BLOCK_SIZE_M) + pid_m * BLOCK_SIZE_M offsets_n = tl.arange(0, BLOCK_SIZE_N) + pid_n * BLOCK_SIZE_N x = tl.load( x_ptr + offsets_m[:, None] * stride_x0 + offsets_n[None, :] * stride_x1, mask=(offsets_m[:, None] < M) & (offsets_n[None, :] < N), ) a = tl.load( a_ptr + offsets_m[:, None] * stride_a0 + offsets_n[None, :] * stride_a1, mask=(offsets_m[:, None] < M) & (offsets_n[None, :] < N), ) b = tl.load( b_ptr + offsets_m[:, None] * stride_b0 + offsets_n[None, :] * stride_b1, mask=(offsets_m[:, None] < M) & (offsets_n[None, :] < N), ) x_dtype = x.dtype x = (x.to(tl.float32) + a.to(tl.float32) * b.to(tl.float32) * c).to(x_dtype) tl.store( x_ptr + offsets_m[:, None] * stride_x0 + offsets_n[None, :] * stride_x1, x, mask=(offsets_m[:, None] < M) & (offsets_n[None, :] < N), ) def triton_sum_dim0_in_fp32(xs): a, b = xs.shape assert xs.is_contiguous() assert xs.dtype == torch.float16 BLOCK_SIZE_A = min(triton.next_power_of_2(a), 512) BLOCK_SIZE_B = 64 # cache line is 128 bytes out = torch.zeros(b, dtype=torch.float32, device=xs.device) grid = lambda META: (triton.cdiv(b, META["BLOCK_SIZE_B"]),) triton_sum_dim0_in_fp32_kernel[grid]( xs, out, stride_a=xs.stride(0), a=a, b=b, BLOCK_SIZE_A=BLOCK_SIZE_A, BLOCK_SIZE_B=BLOCK_SIZE_B, ) return out @triton.jit def triton_sum_dim0_in_fp32_kernel( xs_ptr, out_ptr, stride_a, a, b, BLOCK_SIZE_A: tl.constexpr, BLOCK_SIZE_B: tl.constexpr, ): # each program handles 64 columns of xs pid = tl.program_id(0) offsets_b = tl.arange(0, BLOCK_SIZE_B) + pid * BLOCK_SIZE_B all_out = tl.zeros((BLOCK_SIZE_B,), dtype=tl.float32) for i in range(0, a, BLOCK_SIZE_A): offsets_a = tl.arange(0, BLOCK_SIZE_A) + i xs = tl.load( xs_ptr + offsets_a[:, None] * stride_a + offsets_b[None, :], mask=(offsets_a < a)[:, None] & (offsets_b < b)[None, :], other=0, ) xs = xs.to(tl.float32) out = tl.sum(xs, axis=0) all_out += out tl.store(out_ptr + offsets_b, all_out, mask=offsets_b < b) def mse( output, target, ): # fusing fp32 cast and MSE to save memory assert output.shape == target.shape assert len(output.shape) == 2 assert output.stride(1) == 1 assert target.stride(1) == 1 a, b = output.shape BLOCK_SIZE_B = triton.next_power_of_2(b) class _MSE(torch.autograd.Function): @staticmethod def forward(ctx, output, target): ctx.save_for_backward(output, target) out = torch.zeros(a, dtype=torch.float32, device=output.device) triton_mse_loss_fp16_kernel[(a,)]( output, target, out, stride_a_output=output.stride(0), stride_a_target=target.stride(0), a=a, b=b, BLOCK_SIZE_B=BLOCK_SIZE_B, ) return out @staticmethod def backward(ctx, grad_output): output, target = ctx.saved_tensors res = (output - target).float() res *= grad_output[:, None] * 2 / b return res, None return _MSE.apply(output, target).mean() def normalized_mse(recon: torch.Tensor, xs: torch.Tensor) -> torch.Tensor: # only used for auxk xs_mu = ( triton_sum_dim0_in_fp32(xs) / xs.shape[0] if xs.dtype == torch.float16 else xs.mean(dim=0) ) loss = mse(recon, xs) / mse( xs_mu[None, :].broadcast_to(xs.shape), xs ) return loss @triton.jit def triton_mse_loss_fp16_kernel( output_ptr, target_ptr, out_ptr, stride_a_output, stride_a_target, a, b, BLOCK_SIZE_B: tl.constexpr, ): pid = tl.program_id(0) offsets_b = tl.arange(0, BLOCK_SIZE_B) output = tl.load( output_ptr + pid * stride_a_output + offsets_b, mask=offsets_b < b, ) target = tl.load( target_ptr + pid * stride_a_target + offsets_b, mask=offsets_b < b, ) output = output.to(tl.float32) target = target.to(tl.float32) mse = tl.sum((output - target) * (output - target)) / b tl.store(out_ptr + pid, mse) def triton_add_mul_( x: torch.Tensor, a: torch.Tensor, b: torch.Tensor, c: float, ): """ does x += a * b * c x : [m, n] a : [m, n] b : [m, n] c : float """ if len(a.shape) == 1: a = a[None, :].broadcast_to(x.shape) if len(b.shape) == 1: b = b[None, :].broadcast_to(x.shape) assert x.shape == a.shape == b.shape BLOCK_SIZE_M = 64 BLOCK_SIZE_N = 64 grid = lambda META: ( triton.cdiv(x.shape[0], META["BLOCK_SIZE_M"]), triton.cdiv(x.shape[1], META["BLOCK_SIZE_N"]), ) triton_add_mul_kernel[grid]( x, a, b, c, x.stride(0), x.stride(1), a.stride(0), a.stride(1), b.stride(0), b.stride(1), BLOCK_SIZE_M, BLOCK_SIZE_N, x.shape[0], x.shape[1], )
@triton.jit def triton_sum_dim0_in_fp32_kernel( xs_ptr, out_ptr, stride_a, a, b, BLOCK_SIZE_A: tl.constexpr, BLOCK_SIZE_B: tl.constexpr, ): # each program handles 64 columns of xs pid = tl.program_id(0) offsets_b = tl.arange(0, BLOCK_SIZE_B) + pid * BLOCK_SIZE_B all_out = tl.zeros((BLOCK_SIZE_B,), dtype=tl.float32) for i in range(0, a, BLOCK_SIZE_A): offsets_a = tl.arange(0, BLOCK_SIZE_A) + i xs = tl.load( xs_ptr + offsets_a[:, None] * stride_a + offsets_b[None, :], mask=(offsets_a < a)[:, None] & (offsets_b < b)[None, :], other=0, ) xs = xs.to(tl.float32) out = tl.sum(xs, axis=0) all_out += out tl.store(out_ptr + offsets_b, all_out, mask=offsets_b < b) def mse( output, target, ): # fusing fp32 cast and MSE to save memory assert output.shape == target.shape assert len(output.shape) == 2 assert output.stride(1) == 1 assert target.stride(1) == 1 a, b = output.shape BLOCK_SIZE_B = triton.next_power_of_2(b) class _MSE(torch.autograd.Function): @staticmethod def forward(ctx, output, target): ctx.save_for_backward(output, target) out = torch.zeros(a, dtype=torch.float32, device=output.device) triton_mse_loss_fp16_kernel[(a,)]( output, target, out, stride_a_output=output.stride(0), stride_a_target=target.stride(0), a=a, b=b, BLOCK_SIZE_B=BLOCK_SIZE_B, ) return out @staticmethod def backward(ctx, grad_output): output, target = ctx.saved_tensors res = (output - target).float() res *= grad_output[:, None] * 2 / b return res, None return _MSE.apply(output, target).mean() def normalized_mse(recon: torch.Tensor, xs: torch.Tensor) -> torch.Tensor: # only used for auxk xs_mu = ( triton_sum_dim0_in_fp32(xs) / xs.shape[0] if xs.dtype == torch.float16 else xs.mean(dim=0) ) loss = mse(recon, xs) / mse( xs_mu[None, :].broadcast_to(xs.shape), xs ) return loss
jsalt2024-evaluating-llms-for-astronomy/retrieval
saerch/kernels.py
https://github.com/jsalt2024-evaluating-llms-for-astronomy/retrieval/blob/f8ec8914e49dbf4680b56efd7771264549b9a2da/saerch/kernels.py
### kernels.py ### import torch import triton import triton.language as tl ## kernels def triton_sparse_transpose_dense_matmul( sparse_indices: torch.Tensor, sparse_values: torch.Tensor, dense: torch.Tensor, N: int, BLOCK_SIZE_AK=128, ) -> torch.Tensor: """ calculates sparse.T @ dense (i.e reducing along the collated dimension of sparse) dense must be contiguous along dim 0 (in other words, dense.T is contiguous) sparse_indices is shape (A, k) sparse_values is shape (A, k) dense is shape (A, B) output is shape (N, B) """ assert sparse_indices.shape == sparse_values.shape assert sparse_indices.is_contiguous() assert sparse_values.is_contiguous() assert dense.is_contiguous() # contiguous along B K = sparse_indices.shape[1] A = dense.shape[0] B = dense.shape[1] assert sparse_indices.shape[0] == A # COO-format and sorted sorted_indices = sparse_indices.view(-1).sort() coo_indices = torch.stack( [ torch.arange(A, device=sparse_indices.device).repeat_interleave(K)[ sorted_indices.indices ], sorted_indices.values, ] ) # shape (2, A * K) coo_values = sparse_values.view(-1)[sorted_indices.indices] # shape (A * K,) return triton_coo_sparse_dense_matmul(coo_indices, coo_values, dense, N, BLOCK_SIZE_AK) def triton_coo_sparse_dense_matmul( coo_indices: torch.Tensor, coo_values: torch.Tensor, dense: torch.Tensor, N: int, BLOCK_SIZE_AK=128, ) -> torch.Tensor: AK = coo_indices.shape[1] B = dense.shape[1] out = torch.zeros(N, B, device=dense.device, dtype=coo_values.dtype) grid = lambda META: ( triton.cdiv(AK, META["BLOCK_SIZE_AK"]), 1, ) triton_sparse_transpose_dense_matmul_kernel[grid]( coo_indices, coo_values, dense, out, stride_da=dense.stride(0), stride_db=dense.stride(1), B=B, N=N, AK=AK, BLOCK_SIZE_AK=BLOCK_SIZE_AK, BLOCK_SIZE_B=triton.next_power_of_2(B), ) return out @triton.jit def triton_sparse_transpose_dense_matmul_kernel( coo_indices_ptr, coo_values_ptr, dense_ptr, out_ptr, stride_da, stride_db, B, N, AK, BLOCK_SIZE_AK: tl.constexpr, BLOCK_SIZE_B: tl.constexpr, ): """ coo_indices is shape (2, AK) coo_values is shape (AK,) dense is shape (A, B), contiguous along B out is shape (N, B) """ pid_ak = tl.program_id(0) pid_b = tl.program_id(1) coo_offsets = tl.arange(0, BLOCK_SIZE_AK) b_offsets = tl.arange(0, BLOCK_SIZE_B) A_coords = tl.load( coo_indices_ptr + pid_ak * BLOCK_SIZE_AK + coo_offsets, mask=pid_ak * BLOCK_SIZE_AK + coo_offsets < AK, ) K_coords = tl.load( coo_indices_ptr + pid_ak * BLOCK_SIZE_AK + coo_offsets + AK, mask=pid_ak * BLOCK_SIZE_AK + coo_offsets < AK, ) values = tl.load( coo_values_ptr + pid_ak * BLOCK_SIZE_AK + coo_offsets, mask=pid_ak * BLOCK_SIZE_AK + coo_offsets < AK, ) last_k = tl.min(K_coords) accum = tl.zeros((BLOCK_SIZE_B,), dtype=tl.float32) for ind in range(BLOCK_SIZE_AK): if ind + pid_ak * BLOCK_SIZE_AK < AK: # workaround to do A_coords[ind] a = tl.sum( tl.where( tl.arange(0, BLOCK_SIZE_AK) == ind, A_coords, tl.zeros((BLOCK_SIZE_AK,), dtype=tl.int64), ) ) k = tl.sum( tl.where( tl.arange(0, BLOCK_SIZE_AK) == ind, K_coords, tl.zeros((BLOCK_SIZE_AK,), dtype=tl.int64), ) ) v = tl.sum( tl.where( tl.arange(0, BLOCK_SIZE_AK) == ind, values, tl.zeros((BLOCK_SIZE_AK,), dtype=tl.float32), ) ) tl.device_assert(k < N) if k != last_k: tl.atomic_add( out_ptr + last_k * B + BLOCK_SIZE_B * pid_b + b_offsets, accum, mask=BLOCK_SIZE_B * pid_b + b_offsets < B, ) accum *= 0 last_k = k if v != 0: accum += v * tl.load(dense_ptr + a * stride_da + b_offsets, mask=b_offsets < B) tl.atomic_add( out_ptr + last_k * B + BLOCK_SIZE_B * pid_b + b_offsets, accum, mask=BLOCK_SIZE_B * pid_b + b_offsets < B, ) def triton_sparse_dense_matmul( sparse_indices: torch.Tensor, sparse_values: torch.Tensor, dense: torch.Tensor, ) -> torch.Tensor: """ calculates sparse @ dense (i.e reducing along the uncollated dimension of sparse) dense must be contiguous along dim 0 (in other words, dense.T is contiguous) sparse_indices is shape (A, k) sparse_values is shape (A, k) dense is shape (N, B) output is shape (A, B) """ N = dense.shape[0] assert sparse_indices.shape == sparse_values.shape assert sparse_indices.is_contiguous() assert sparse_values.is_contiguous() assert dense.is_contiguous() # contiguous along B A = sparse_indices.shape[0] K = sparse_indices.shape[1] B = dense.shape[1] out = torch.zeros(A, B, device=dense.device, dtype=sparse_values.dtype) triton_sparse_dense_matmul_kernel[(A,)]( sparse_indices, sparse_values, dense, out, stride_dn=dense.stride(0), stride_db=dense.stride(1), A=A, B=B, N=N, K=K, BLOCK_SIZE_K=triton.next_power_of_2(K), BLOCK_SIZE_B=triton.next_power_of_2(B), ) return out @triton.jit def triton_sparse_dense_matmul_kernel( sparse_indices_ptr, sparse_values_ptr, dense_ptr, out_ptr, stride_dn, stride_db, A, B, N, K, BLOCK_SIZE_K: tl.constexpr, BLOCK_SIZE_B: tl.constexpr, ): """ sparse_indices is shape (A, K) sparse_values is shape (A, K) dense is shape (N, B), contiguous along B out is shape (A, B) """ pid = tl.program_id(0) offsets_k = tl.arange(0, BLOCK_SIZE_K) sparse_indices = tl.load( sparse_indices_ptr + pid * K + offsets_k, mask=offsets_k < K ) # shape (K,) sparse_values = tl.load( sparse_values_ptr + pid * K + offsets_k, mask=offsets_k < K ) # shape (K,) accum = tl.zeros((BLOCK_SIZE_B,), dtype=tl.float32) offsets_b = tl.arange(0, BLOCK_SIZE_B) for k in range(K): # workaround to do sparse_indices[k] i = tl.sum( tl.where( tl.arange(0, BLOCK_SIZE_K) == k, sparse_indices, tl.zeros((BLOCK_SIZE_K,), dtype=tl.int64), ) ) # workaround to do sparse_values[k] v = tl.sum( tl.where( tl.arange(0, BLOCK_SIZE_K) == k, sparse_values, tl.zeros((BLOCK_SIZE_K,), dtype=tl.float32), ) ) tl.device_assert(i < N) if v != 0: accum += v * tl.load( dense_ptr + i * stride_dn + offsets_b * stride_db, mask=offsets_b < B ) tl.store(out_ptr + pid * B + offsets_b, accum.to(sparse_values.dtype), mask=offsets_b < B) def triton_dense_dense_sparseout_matmul( dense1: torch.Tensor, dense2: torch.Tensor, at_indices: torch.Tensor, ) -> torch.Tensor: """ dense1: shape (A, B) dense2: shape (B, N) at_indices: shape (A, K) out values: shape (A, K) calculates dense1 @ dense2 only for the indices in at_indices equivalent to (dense1 @ dense2).gather(1, at_indices) """ A, B = dense1.shape N = dense2.shape[1] assert dense2.shape[0] == B assert at_indices.shape[0] == A K = at_indices.shape[1] assert at_indices.is_contiguous() assert dense1.stride(1) == 1, "dense1 must be contiguous along B" assert dense2.stride(0) == 1, "dense2 must be contiguous along B" if K > 512: # print("WARN - using naive matmul for large K") # naive is more efficient for large K return (dense1 @ dense2).gather(1, at_indices) out = torch.zeros(A, K, device=dense1.device, dtype=dense1.dtype) # grid = lambda META: (triton.cdiv(A, META['BLOCK_SIZE_A']),) triton_dense_dense_sparseout_matmul_kernel[(A,)]( dense1, dense2, at_indices, out, stride_d1a=dense1.stride(0), stride_d1b=dense1.stride(1), stride_d2b=dense2.stride(0), stride_d2n=dense2.stride(1), A=A, B=B, N=N, K=K, BLOCK_SIZE_B=triton.next_power_of_2(B), BLOCK_SIZE_N=triton.next_power_of_2(N), BLOCK_SIZE_K=triton.next_power_of_2(K), ) return out @triton.jit def triton_dense_dense_sparseout_matmul_kernel( dense1_ptr, dense2_ptr, at_indices_ptr, out_ptr, stride_d1a, stride_d1b, stride_d2b, stride_d2n, A, B, N, K, BLOCK_SIZE_B: tl.constexpr, BLOCK_SIZE_N: tl.constexpr, BLOCK_SIZE_K: tl.constexpr, ): """ dense1: shape (A, B) dense2: shape (B, N) at_indices: shape (A, K) out values: shape (A, K) """ pid = tl.program_id(0) offsets_k = tl.arange(0, BLOCK_SIZE_K) at_indices = tl.load(at_indices_ptr + pid * K + offsets_k, mask=offsets_k < K) # shape (K,) offsets_b = tl.arange(0, BLOCK_SIZE_B) dense1 = tl.load( dense1_ptr + pid * stride_d1a + offsets_b * stride_d1b, mask=offsets_b < B ) # shape (B,) accum = tl.zeros((BLOCK_SIZE_K,), dtype=tl.float32) for k in range(K): # workaround to do at_indices[b] i = tl.sum( tl.where( tl.arange(0, BLOCK_SIZE_K) == k, at_indices, tl.zeros((BLOCK_SIZE_K,), dtype=tl.int64), ) ) tl.device_assert(i < N) dense2col = tl.load( dense2_ptr + offsets_b * stride_d2b + i * stride_d2n, mask=offsets_b < B ) # shape (B,) accum += tl.where( tl.arange(0, BLOCK_SIZE_K) == k, tl.sum(dense1 * dense2col), tl.zeros((BLOCK_SIZE_K,), dtype=tl.int64), ) tl.store(out_ptr + pid * K + offsets_k, accum, mask=offsets_k < K) class TritonDecoderAutograd(torch.autograd.Function): @staticmethod def forward(ctx, sparse_indices, sparse_values, decoder_weight): ctx.save_for_backward(sparse_indices, sparse_values, decoder_weight) return triton_sparse_dense_matmul(sparse_indices, sparse_values, decoder_weight.T) @staticmethod def backward(ctx, grad_output): sparse_indices, sparse_values, decoder_weight = ctx.saved_tensors assert grad_output.is_contiguous(), "grad_output must be contiguous; this is probably because the subsequent op was a .sum() or something like that, which returns a non contiguous gradient" decoder_grad = triton_sparse_transpose_dense_matmul( sparse_indices, sparse_values, grad_output, N=decoder_weight.shape[1] ).T return ( None, triton_dense_dense_sparseout_matmul(grad_output, decoder_weight, sparse_indices), # decoder is contiguous when transposed so this is a matching layout decoder_grad, None, ) def triton_add_mul_( x: torch.Tensor, a: torch.Tensor, b: torch.Tensor, c: float, ): """ does x += a * b * c x : [m, n] a : [m, n] b : [m, n] c : float """ if len(a.shape) == 1: a = a[None, :].broadcast_to(x.shape) if len(b.shape) == 1: b = b[None, :].broadcast_to(x.shape) assert x.shape == a.shape == b.shape BLOCK_SIZE_M = 64 BLOCK_SIZE_N = 64 grid = lambda META: ( triton.cdiv(x.shape[0], META["BLOCK_SIZE_M"]), triton.cdiv(x.shape[1], META["BLOCK_SIZE_N"]), ) triton_add_mul_kernel[grid]( x, a, b, c, x.stride(0), x.stride(1), a.stride(0), a.stride(1), b.stride(0), b.stride(1), BLOCK_SIZE_M, BLOCK_SIZE_N, x.shape[0], x.shape[1], ) @triton.jit def triton_add_mul_kernel( x_ptr, a_ptr, b_ptr, c, stride_x0, stride_x1, stride_a0, stride_a1, stride_b0, stride_b1, BLOCK_SIZE_M: tl.constexpr, BLOCK_SIZE_N: tl.constexpr, M: tl.constexpr, N: tl.constexpr, ): pid_m = tl.program_id(0) pid_n = tl.program_id(1) offsets_m = tl.arange(0, BLOCK_SIZE_M) + pid_m * BLOCK_SIZE_M offsets_n = tl.arange(0, BLOCK_SIZE_N) + pid_n * BLOCK_SIZE_N x = tl.load( x_ptr + offsets_m[:, None] * stride_x0 + offsets_n[None, :] * stride_x1, mask=(offsets_m[:, None] < M) & (offsets_n[None, :] < N), ) a = tl.load( a_ptr + offsets_m[:, None] * stride_a0 + offsets_n[None, :] * stride_a1, mask=(offsets_m[:, None] < M) & (offsets_n[None, :] < N), ) b = tl.load( b_ptr + offsets_m[:, None] * stride_b0 + offsets_n[None, :] * stride_b1, mask=(offsets_m[:, None] < M) & (offsets_n[None, :] < N), ) x_dtype = x.dtype x = (x.to(tl.float32) + a.to(tl.float32) * b.to(tl.float32) * c).to(x_dtype) tl.store( x_ptr + offsets_m[:, None] * stride_x0 + offsets_n[None, :] * stride_x1, x, mask=(offsets_m[:, None] < M) & (offsets_n[None, :] < N), ) def triton_sum_dim0_in_fp32(xs): a, b = xs.shape assert xs.is_contiguous() assert xs.dtype == torch.float16 BLOCK_SIZE_A = min(triton.next_power_of_2(a), 512) BLOCK_SIZE_B = 64 # cache line is 128 bytes out = torch.zeros(b, dtype=torch.float32, device=xs.device) grid = lambda META: (triton.cdiv(b, META["BLOCK_SIZE_B"]),) triton_sum_dim0_in_fp32_kernel[grid]( xs, out, stride_a=xs.stride(0), a=a, b=b, BLOCK_SIZE_A=BLOCK_SIZE_A, BLOCK_SIZE_B=BLOCK_SIZE_B, ) return out @triton.jit def triton_sum_dim0_in_fp32_kernel( xs_ptr, out_ptr, stride_a, a, b, BLOCK_SIZE_A: tl.constexpr, BLOCK_SIZE_B: tl.constexpr, ): # each program handles 64 columns of xs pid = tl.program_id(0) offsets_b = tl.arange(0, BLOCK_SIZE_B) + pid * BLOCK_SIZE_B all_out = tl.zeros((BLOCK_SIZE_B,), dtype=tl.float32) for i in range(0, a, BLOCK_SIZE_A): offsets_a = tl.arange(0, BLOCK_SIZE_A) + i xs = tl.load( xs_ptr + offsets_a[:, None] * stride_a + offsets_b[None, :], mask=(offsets_a < a)[:, None] & (offsets_b < b)[None, :], other=0, ) xs = xs.to(tl.float32) out = tl.sum(xs, axis=0) all_out += out tl.store(out_ptr + offsets_b, all_out, mask=offsets_b < b) def mse( output, target, ): # fusing fp32 cast and MSE to save memory assert output.shape == target.shape assert len(output.shape) == 2 assert output.stride(1) == 1 assert target.stride(1) == 1 a, b = output.shape BLOCK_SIZE_B = triton.next_power_of_2(b) class _MSE(torch.autograd.Function): @staticmethod def forward(ctx, output, target): ctx.save_for_backward(output, target) out = torch.zeros(a, dtype=torch.float32, device=output.device) triton_mse_loss_fp16_kernel[(a,)]( output, target, out, stride_a_output=output.stride(0), stride_a_target=target.stride(0), a=a, b=b, BLOCK_SIZE_B=BLOCK_SIZE_B, ) return out @staticmethod def backward(ctx, grad_output): output, target = ctx.saved_tensors res = (output - target).float() res *= grad_output[:, None] * 2 / b return res, None return _MSE.apply(output, target).mean() def normalized_mse(recon: torch.Tensor, xs: torch.Tensor) -> torch.Tensor: # only used for auxk xs_mu = ( triton_sum_dim0_in_fp32(xs) / xs.shape[0] if xs.dtype == torch.float16 else xs.mean(dim=0) ) loss = mse(recon, xs) / mse( xs_mu[None, :].broadcast_to(xs.shape), xs ) return loss @triton.jit def triton_mse_loss_fp16_kernel( output_ptr, target_ptr, out_ptr, stride_a_output, stride_a_target, a, b, BLOCK_SIZE_B: tl.constexpr, ): pid = tl.program_id(0) offsets_b = tl.arange(0, BLOCK_SIZE_B) output = tl.load( output_ptr + pid * stride_a_output + offsets_b, mask=offsets_b < b, ) target = tl.load( target_ptr + pid * stride_a_target + offsets_b, mask=offsets_b < b, ) output = output.to(tl.float32) target = target.to(tl.float32) mse = tl.sum((output - target) * (output - target)) / b tl.store(out_ptr + pid, mse) def triton_add_mul_( x: torch.Tensor, a: torch.Tensor, b: torch.Tensor, c: float, ): """ does x += a * b * c x : [m, n] a : [m, n] b : [m, n] c : float """ if len(a.shape) == 1: a = a[None, :].broadcast_to(x.shape) if len(b.shape) == 1: b = b[None, :].broadcast_to(x.shape) assert x.shape == a.shape == b.shape BLOCK_SIZE_M = 64 BLOCK_SIZE_N = 64 grid = lambda META: ( triton.cdiv(x.shape[0], META["BLOCK_SIZE_M"]), triton.cdiv(x.shape[1], META["BLOCK_SIZE_N"]), ) triton_add_mul_kernel[grid]( x, a, b, c, x.stride(0), x.stride(1), a.stride(0), a.stride(1), b.stride(0), b.stride(1), BLOCK_SIZE_M, BLOCK_SIZE_N, x.shape[0], x.shape[1], )
@triton.jit def triton_mse_loss_fp16_kernel( output_ptr, target_ptr, out_ptr, stride_a_output, stride_a_target, a, b, BLOCK_SIZE_B: tl.constexpr, ): pid = tl.program_id(0) offsets_b = tl.arange(0, BLOCK_SIZE_B) output = tl.load( output_ptr + pid * stride_a_output + offsets_b, mask=offsets_b < b, ) target = tl.load( target_ptr + pid * stride_a_target + offsets_b, mask=offsets_b < b, ) output = output.to(tl.float32) target = target.to(tl.float32) mse = tl.sum((output - target) * (output - target)) / b tl.store(out_ptr + pid, mse) def triton_add_mul_( x: torch.Tensor, a: torch.Tensor, b: torch.Tensor, c: float, ): """ does x += a * b * c x : [m, n] a : [m, n] b : [m, n] c : float """ if len(a.shape) == 1: a = a[None, :].broadcast_to(x.shape) if len(b.shape) == 1: b = b[None, :].broadcast_to(x.shape) assert x.shape == a.shape == b.shape BLOCK_SIZE_M = 64 BLOCK_SIZE_N = 64 grid = lambda META: ( triton.cdiv(x.shape[0], META["BLOCK_SIZE_M"]), triton.cdiv(x.shape[1], META["BLOCK_SIZE_N"]), ) triton_add_mul_kernel[grid]( x, a, b, c, x.stride(0), x.stride(1), a.stride(0), a.stride(1), b.stride(0), b.stride(1), BLOCK_SIZE_M, BLOCK_SIZE_N, x.shape[0], x.shape[1], )
zjhellofss/KuiperTriton
kernel/rmsnorm.py
https://github.com/zjhellofss/KuiperTriton/blob/1abdb405768b4c2251ab259ffd34f1e853ed3e0c/kernel/rmsnorm.py
import torch import triton import triton.language as tl import torch from torch import nn @triton.jit def rmsnorm_triton(x_ptr, rms_w_ptr, output_ptr, stride_x_batch, stride_x_m, stride_x_k, stride_rms_w, stride_out_batch, stride_out_m, stride_out_k, head_size, eps, BLOCK_N_SIZE: tl.constexpr): pid_b = tl.program_id(0) pid_m = tl.program_id(1) offset_m = pid_b * stride_x_batch + pid_m * stride_x_m block_n = tl.arange(0, BLOCK_N_SIZE) var = tl.zeros((BLOCK_N_SIZE,), tl.float32) for block_idx in range(0, head_size, BLOCK_N_SIZE): offset_n = block_idx + block_n x_ptr_mask = offset_n < head_size x = tl.load(x_ptr + offset_m + offset_n * stride_x_k, mask=x_ptr_mask, other=0.0) var += x * x var = tl.sum(var, axis=0) / head_size rstd = 1 / tl.sqrt(var + eps) for block_idx in range(0, head_size, BLOCK_N_SIZE): offset_n = block_idx + block_n x_ptr_mask = offset_n < head_size rms_w = tl.load(rms_w_ptr + offset_n * stride_rms_w, mask=x_ptr_mask) x = tl.load(x_ptr + offset_m + offset_n * stride_x_k, mask=x_ptr_mask, other=0.0).to(tl.float32) x_hat = x * rstd out = x_hat * rms_w out_off = pid_b * stride_out_batch + pid_m * stride_out_m + offset_n * stride_out_k tl.store(output_ptr + out_off, out, mask=x_ptr_mask) def rmsnorm(input: torch.Tensor, weight: torch.Tensor, output: torch.Tensor): assert torch.cuda.is_available() assert input.is_cuda assert output.is_cuda batch_size = input.size(0) seq_len = input.size(1) head_size = input.size(2) stride_x_batch = input.stride(0) stride_x_m = input.stride(1) stride_x_k = input.stride(2) stride_rms_w = weight.stride(0) stride_out_batch = output.stride(0) stride_out_m = output.stride(1) stride_out_k = output.stride(2) eps = 1e-6 BLOCK_N_SIZE = 128 def grid(meta): return batch_size, seq_len rmsnorm_triton[grid](input, weight, output, stride_x_batch, stride_x_m, stride_x_k, stride_rms_w, stride_out_batch, stride_out_m, stride_out_k, head_size, eps, BLOCK_N_SIZE)
@triton.jit def rmsnorm_triton(x_ptr, rms_w_ptr, output_ptr, stride_x_batch, stride_x_m, stride_x_k, stride_rms_w, stride_out_batch, stride_out_m, stride_out_k, head_size, eps, BLOCK_N_SIZE: tl.constexpr): pid_b = tl.program_id(0) pid_m = tl.program_id(1) offset_m = pid_b * stride_x_batch + pid_m * stride_x_m block_n = tl.arange(0, BLOCK_N_SIZE) var = tl.zeros((BLOCK_N_SIZE,), tl.float32) for block_idx in range(0, head_size, BLOCK_N_SIZE): offset_n = block_idx + block_n x_ptr_mask = offset_n < head_size x = tl.load(x_ptr + offset_m + offset_n * stride_x_k, mask=x_ptr_mask, other=0.0) var += x * x var = tl.sum(var, axis=0) / head_size rstd = 1 / tl.sqrt(var + eps) for block_idx in range(0, head_size, BLOCK_N_SIZE): offset_n = block_idx + block_n x_ptr_mask = offset_n < head_size rms_w = tl.load(rms_w_ptr + offset_n * stride_rms_w, mask=x_ptr_mask) x = tl.load(x_ptr + offset_m + offset_n * stride_x_k, mask=x_ptr_mask, other=0.0).to(tl.float32) x_hat = x * rstd out = x_hat * rms_w out_off = pid_b * stride_out_batch + pid_m * stride_out_m + offset_n * stride_out_k tl.store(output_ptr + out_off, out, mask=x_ptr_mask) def rmsnorm(input: torch.Tensor, weight: torch.Tensor, output: torch.Tensor): assert torch.cuda.is_available() assert input.is_cuda assert output.is_cuda batch_size = input.size(0) seq_len = input.size(1) head_size = input.size(2) stride_x_batch = input.stride(0) stride_x_m = input.stride(1) stride_x_k = input.stride(2) stride_rms_w = weight.stride(0) stride_out_batch = output.stride(0) stride_out_m = output.stride(1) stride_out_k = output.stride(2) eps = 1e-6 BLOCK_N_SIZE = 128 def grid(meta): return batch_size, seq_len rmsnorm_triton[grid](input, weight, output, stride_x_batch, stride_x_m, stride_x_k, stride_rms_w, stride_out_batch, stride_out_m, stride_out_k, head_size, eps, BLOCK_N_SIZE)
Jokeren/triton-samples
ops/full.py
https://github.com/Jokeren/triton-samples/blob/e8fb3733750056411da55a52bc4c1ed54faa416e/ops/full.py
"""Compare different methods of creating constant tensors in Triton.""" import torch import triton import triton.language as tl @triton.jit def kernel1(x_ptr, y_ptr, BLOCK_SIZE: tl.constexpr): """Matrix multiplication with tl.full constant matrix.""" tid = ( tl.arange(0, BLOCK_SIZE)[:, None] * BLOCK_SIZE + tl.arange(0, BLOCK_SIZE)[None, :] ) x_offset = x_ptr + tid y_offset = y_ptr + tid lhs = tl.load(x_offset) rhs = tl.full([BLOCK_SIZE, BLOCK_SIZE], 1.5, tl.float16) tl.store(y_offset, tl.dot(lhs, rhs).to(tl.float32)) @triton.jit def kernel2(x_ptr, y_ptr, BLOCK_SIZE: tl.constexpr): """Matrix multiplication with explicit constant matrix creation.""" tid = ( tl.arange(0, BLOCK_SIZE)[:, None] * BLOCK_SIZE + tl.arange(0, BLOCK_SIZE)[None, :] ) x_offset = x_ptr + tid y_offset = y_ptr + tid lhs = tl.load(x_offset) rhs = (tl.zeros([BLOCK_SIZE, BLOCK_SIZE], dtype=tl.float16) + 1.5).to(tl.float16) tl.store(y_offset, tl.dot(lhs, rhs).to(tl.float32)) BLOCK_SIZE = 128 x = torch.randn((BLOCK_SIZE, BLOCK_SIZE), device="cuda", dtype=torch.float16) y_0 = torch.zeros((BLOCK_SIZE, BLOCK_SIZE), device="cuda", dtype=torch.float32) y_1 = torch.zeros((BLOCK_SIZE, BLOCK_SIZE), device="cuda", dtype=torch.float32) for _ in range(100): kernel1[(1024,)](x, y_0, BLOCK_SIZE) kernel2[(1024,)](x, y_1, BLOCK_SIZE) torch.allclose(y_0, y_1)
@triton.jit def kernel1(x_ptr, y_ptr, BLOCK_SIZE: tl.constexpr): """Matrix multiplication with tl.full constant matrix.""" tid = ( tl.arange(0, BLOCK_SIZE)[:, None] * BLOCK_SIZE + tl.arange(0, BLOCK_SIZE)[None, :] ) x_offset = x_ptr + tid y_offset = y_ptr + tid lhs = tl.load(x_offset) rhs = tl.full([BLOCK_SIZE, BLOCK_SIZE], 1.5, tl.float16) tl.store(y_offset, tl.dot(lhs, rhs).to(tl.float32))
Jokeren/triton-samples
ops/full.py
https://github.com/Jokeren/triton-samples/blob/e8fb3733750056411da55a52bc4c1ed54faa416e/ops/full.py
"""Compare different methods of creating constant tensors in Triton.""" import torch import triton import triton.language as tl @triton.jit def kernel1(x_ptr, y_ptr, BLOCK_SIZE: tl.constexpr): """Matrix multiplication with tl.full constant matrix.""" tid = ( tl.arange(0, BLOCK_SIZE)[:, None] * BLOCK_SIZE + tl.arange(0, BLOCK_SIZE)[None, :] ) x_offset = x_ptr + tid y_offset = y_ptr + tid lhs = tl.load(x_offset) rhs = tl.full([BLOCK_SIZE, BLOCK_SIZE], 1.5, tl.float16) tl.store(y_offset, tl.dot(lhs, rhs).to(tl.float32)) @triton.jit def kernel2(x_ptr, y_ptr, BLOCK_SIZE: tl.constexpr): """Matrix multiplication with explicit constant matrix creation.""" tid = ( tl.arange(0, BLOCK_SIZE)[:, None] * BLOCK_SIZE + tl.arange(0, BLOCK_SIZE)[None, :] ) x_offset = x_ptr + tid y_offset = y_ptr + tid lhs = tl.load(x_offset) rhs = (tl.zeros([BLOCK_SIZE, BLOCK_SIZE], dtype=tl.float16) + 1.5).to(tl.float16) tl.store(y_offset, tl.dot(lhs, rhs).to(tl.float32)) BLOCK_SIZE = 128 x = torch.randn((BLOCK_SIZE, BLOCK_SIZE), device="cuda", dtype=torch.float16) y_0 = torch.zeros((BLOCK_SIZE, BLOCK_SIZE), device="cuda", dtype=torch.float32) y_1 = torch.zeros((BLOCK_SIZE, BLOCK_SIZE), device="cuda", dtype=torch.float32) for _ in range(100): kernel1[(1024,)](x, y_0, BLOCK_SIZE) kernel2[(1024,)](x, y_1, BLOCK_SIZE) torch.allclose(y_0, y_1)
@triton.jit def kernel2(x_ptr, y_ptr, BLOCK_SIZE: tl.constexpr): """Matrix multiplication with explicit constant matrix creation.""" tid = ( tl.arange(0, BLOCK_SIZE)[:, None] * BLOCK_SIZE + tl.arange(0, BLOCK_SIZE)[None, :] ) x_offset = x_ptr + tid y_offset = y_ptr + tid lhs = tl.load(x_offset) rhs = (tl.zeros([BLOCK_SIZE, BLOCK_SIZE], dtype=tl.float16) + 1.5).to(tl.float16) tl.store(y_offset, tl.dot(lhs, rhs).to(tl.float32)) BLOCK_SIZE = 128 x = torch.randn((BLOCK_SIZE, BLOCK_SIZE), device="cuda", dtype=torch.float16) y_0 = torch.zeros((BLOCK_SIZE, BLOCK_SIZE), device="cuda", dtype=torch.float32) y_1 = torch.zeros((BLOCK_SIZE, BLOCK_SIZE), device="cuda", dtype=torch.float32) for _ in range(100): kernel1[(1024,)](x, y_0, BLOCK_SIZE) kernel2[(1024,)](x, y_1, BLOCK_SIZE) torch.allclose(y_0, y_1)
fishmingyu/inductor_test_gather_scatter
gpu/spmm_kernel.py
https://github.com/fishmingyu/inductor_test_gather_scatter/blob/721a6967658a88d10be015f52133876ff421959c/gpu/spmm_kernel.py
import triton import triton.language as tl import numpy as np @triton.jit def spmm_csr(A_ptr, A_ind, B, C, feature_size: tl.constexpr): # Global index corresponds to the node id node_id = tl.program_id(0) # Use tl.arange to get the feature id for each thread within the block feature_id = tl.arange(0, feature_size) # Using a local temporary variable to accumulate results acc = tl.load(C + node_id * feature_size + feature_id) # CSR loop for the specific node start = tl.load(A_ptr + node_id) end = tl.load(A_ptr + node_id + 1) for j in range(start, end): col = tl.load(A_ind + j) acc += tl.load(B + col * feature_size + feature_id) # Store the result back to C using tl.store tl.store(C + node_id * feature_size + feature_id, acc) @triton.jit def spmm_atomic(edge_index, B, C, num_edges, feature_size: tl.constexpr, XBLOCK: tl.constexpr): group_id = tl.program_id(0) xoffset = group_id * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK) x1 = xindex // feature_size x2 = xindex % feature_size mask = x1 < num_edges in_node = tl.load(edge_index + x1, mask) out_node = tl.load(edge_index + x1 + num_edges, mask) in_val = tl.load(B + in_node * feature_size + x2, mask) tl.atomic_add(C + out_node * feature_size + x2, in_val, mask) def spmm_atomic_wrapper(edge_index, B, C): feature_size = B.shape[1] num_edges = edge_index.shape[1] XBLOCK = 128 spmm_atomic[(feature_size * num_edges // XBLOCK, )](edge_index, B, C, num_edges, feature_size, XBLOCK=XBLOCK) def spmm_csr_wrapper(rowptr, col, B, C): feature_size = B.shape[1] num_nodes = rowptr.shape[0] - 1 spmm_csr[(num_nodes,)](rowptr, col, B, C, feature_size)
@triton.jit def spmm_csr(A_ptr, A_ind, B, C, feature_size: tl.constexpr): # Global index corresponds to the node id node_id = tl.program_id(0) # Use tl.arange to get the feature id for each thread within the block feature_id = tl.arange(0, feature_size) # Using a local temporary variable to accumulate results acc = tl.load(C + node_id * feature_size + feature_id) # CSR loop for the specific node start = tl.load(A_ptr + node_id) end = tl.load(A_ptr + node_id + 1) for j in range(start, end): col = tl.load(A_ind + j) acc += tl.load(B + col * feature_size + feature_id) # Store the result back to C using tl.store tl.store(C + node_id * feature_size + feature_id, acc)
fishmingyu/inductor_test_gather_scatter
gpu/spmm_kernel.py
https://github.com/fishmingyu/inductor_test_gather_scatter/blob/721a6967658a88d10be015f52133876ff421959c/gpu/spmm_kernel.py
import triton import triton.language as tl import numpy as np @triton.jit def spmm_csr(A_ptr, A_ind, B, C, feature_size: tl.constexpr): # Global index corresponds to the node id node_id = tl.program_id(0) # Use tl.arange to get the feature id for each thread within the block feature_id = tl.arange(0, feature_size) # Using a local temporary variable to accumulate results acc = tl.load(C + node_id * feature_size + feature_id) # CSR loop for the specific node start = tl.load(A_ptr + node_id) end = tl.load(A_ptr + node_id + 1) for j in range(start, end): col = tl.load(A_ind + j) acc += tl.load(B + col * feature_size + feature_id) # Store the result back to C using tl.store tl.store(C + node_id * feature_size + feature_id, acc) @triton.jit def spmm_atomic(edge_index, B, C, num_edges, feature_size: tl.constexpr, XBLOCK: tl.constexpr): group_id = tl.program_id(0) xoffset = group_id * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK) x1 = xindex // feature_size x2 = xindex % feature_size mask = x1 < num_edges in_node = tl.load(edge_index + x1, mask) out_node = tl.load(edge_index + x1 + num_edges, mask) in_val = tl.load(B + in_node * feature_size + x2, mask) tl.atomic_add(C + out_node * feature_size + x2, in_val, mask) def spmm_atomic_wrapper(edge_index, B, C): feature_size = B.shape[1] num_edges = edge_index.shape[1] XBLOCK = 128 spmm_atomic[(feature_size * num_edges // XBLOCK, )](edge_index, B, C, num_edges, feature_size, XBLOCK=XBLOCK) def spmm_csr_wrapper(rowptr, col, B, C): feature_size = B.shape[1] num_nodes = rowptr.shape[0] - 1 spmm_csr[(num_nodes,)](rowptr, col, B, C, feature_size)
@triton.jit def spmm_atomic(edge_index, B, C, num_edges, feature_size: tl.constexpr, XBLOCK: tl.constexpr): group_id = tl.program_id(0) xoffset = group_id * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK) x1 = xindex // feature_size x2 = xindex % feature_size mask = x1 < num_edges in_node = tl.load(edge_index + x1, mask) out_node = tl.load(edge_index + x1 + num_edges, mask) in_val = tl.load(B + in_node * feature_size + x2, mask) tl.atomic_add(C + out_node * feature_size + x2, in_val, mask) def spmm_atomic_wrapper(edge_index, B, C): feature_size = B.shape[1] num_edges = edge_index.shape[1] XBLOCK = 128 spmm_atomic[(feature_size * num_edges // XBLOCK, )](edge_index, B, C, num_edges, feature_size, XBLOCK=XBLOCK) def spmm_csr_wrapper(rowptr, col, B, C): feature_size = B.shape[1] num_nodes = rowptr.shape[0] - 1 spmm_csr[(num_nodes,)](rowptr, col, B, C, feature_size)
yuezhouhu/2by4-pretrain
sparse/decay.py
https://github.com/yuezhouhu/2by4-pretrain/blob/9e330125dea71e5a3dee235f4efb8869f9e4cdd0/sparse/decay.py
import torch import triton import triton.language as tl @triton.jit def masked_add_kernel(grad_ptr, p_ptr, p_mask_ptr, n_elements, alpha, BLOCK_SIZE: tl.constexpr, ): pid = tl.program_id(axis=0) block_start = pid * BLOCK_SIZE offsets = block_start + tl.arange(0, BLOCK_SIZE) mask = offsets < n_elements p_mask = tl.load(p_mask_ptr + offsets, mask=mask).to(tl.int1) mask = mask & ~p_mask p = tl.load(p_ptr + offsets, mask=mask) grad = tl.load(grad_ptr + offsets, mask=mask) grad += p * alpha tl.store(grad_ptr + offsets, grad, mask=mask) def masked_add_(grad: torch.Tensor, p_data: torch.Tensor, p_mask: torch.Tensor, alpha: float = 0): ''' equivalent to grad.add_(p.data * (1 - p.mask), alpha=decay) ''' assert grad.is_cuda and p_data.is_cuda and p_mask.is_cuda assert (grad.layout, p_data.layout, p_mask.layout) == (torch.strided, torch.strided, torch.strided) assert grad.stride() == p_data.stride() == p_mask.stride() n_elements = grad.numel() grid = lambda meta: (triton.cdiv(n_elements, meta['BLOCK_SIZE']),) masked_add_kernel[grid](grad, p_data, p_mask, n_elements, alpha, BLOCK_SIZE=1024) if __name__ == "__main__": grad = torch.tensor([1., 1., 1., 1.]).cuda() p = torch.tensor([1., 2., 3., 4.]).cuda() p_mask = torch.tensor([1., 0., 1., 0.]).cuda() alpha = 0.03 masked_add_(grad, p, p_mask, alpha=0.03) print(grad)
@triton.jit def masked_add_kernel(grad_ptr, p_ptr, p_mask_ptr, n_elements, alpha, BLOCK_SIZE: tl.constexpr, ): pid = tl.program_id(axis=0) block_start = pid * BLOCK_SIZE offsets = block_start + tl.arange(0, BLOCK_SIZE) mask = offsets < n_elements p_mask = tl.load(p_mask_ptr + offsets, mask=mask).to(tl.int1) mask = mask & ~p_mask p = tl.load(p_ptr + offsets, mask=mask) grad = tl.load(grad_ptr + offsets, mask=mask) grad += p * alpha tl.store(grad_ptr + offsets, grad, mask=mask) def masked_add_(grad: torch.Tensor, p_data: torch.Tensor, p_mask: torch.Tensor, alpha: float = 0): ''' equivalent to grad.add_(p.data * (1 - p.mask), alpha=decay) ''' assert grad.is_cuda and p_data.is_cuda and p_mask.is_cuda assert (grad.layout, p_data.layout, p_mask.layout) == (torch.strided, torch.strided, torch.strided) assert grad.stride() == p_data.stride() == p_mask.stride() n_elements = grad.numel() grid = lambda meta: (triton.cdiv(n_elements, meta['BLOCK_SIZE']),) masked_add_kernel[grid](grad, p_data, p_mask, n_elements, alpha, BLOCK_SIZE=1024) if __name__ == "__main__": grad = torch.tensor([1., 1., 1., 1.]).cuda() p = torch.tensor([1., 2., 3., 4.]).cuda() p_mask = torch.tensor([1., 0., 1., 0.]).cuda() alpha = 0.03 masked_add_(grad, p, p_mask, alpha=0.03) print(grad)
FlagOpen/FlagGems
src/flag_gems/ops/ge.py
https://github.com/FlagOpen/FlagGems/blob/2437f4ffa2d644e38c26aacbf1249263a2016bb2/src/flag_gems/ops/ge.py
import logging import triton import triton.language as tl from ..utils import pointwise_dynamic @pointwise_dynamic(promotion_methods=[(0, 1, "ALWAYS_BOOL")]) @triton.jit def ge_func(x, y): return x.to(tl.float32) >= y def ge(A, B): logging.debug("GEMS GE") return ge_func(A, B) @pointwise_dynamic(is_tensor=[True, False], promotion_methods=[(0, 1, "ALWAYS_BOOL")]) @triton.jit def ge_func_scalar(x, y): return x.to(tl.float32) >= y def ge_scalar(A, B): logging.debug("GEMS GE SCALAR") return ge_func_scalar(A, B)
@triton.jit def ge_func(x, y): return x.to(tl.float32) >= y def ge(A, B): logging.debug("GEMS GE") return ge_func(A, B) @pointwise_dynamic(is_tensor=[True, False], promotion_methods=[(0, 1, "ALWAYS_BOOL")])
FlagOpen/FlagGems
src/flag_gems/ops/ge.py
https://github.com/FlagOpen/FlagGems/blob/2437f4ffa2d644e38c26aacbf1249263a2016bb2/src/flag_gems/ops/ge.py
import logging import triton import triton.language as tl from ..utils import pointwise_dynamic @pointwise_dynamic(promotion_methods=[(0, 1, "ALWAYS_BOOL")]) @triton.jit def ge_func(x, y): return x.to(tl.float32) >= y def ge(A, B): logging.debug("GEMS GE") return ge_func(A, B) @pointwise_dynamic(is_tensor=[True, False], promotion_methods=[(0, 1, "ALWAYS_BOOL")]) @triton.jit def ge_func_scalar(x, y): return x.to(tl.float32) >= y def ge_scalar(A, B): logging.debug("GEMS GE SCALAR") return ge_func_scalar(A, B)
@triton.jit def ge_func_scalar(x, y): return x.to(tl.float32) >= y def ge_scalar(A, B): logging.debug("GEMS GE SCALAR") return ge_func_scalar(A, B)
jli943/transformer_triton
triton/dropout.py
https://github.com/jli943/transformer_triton/blob/e3821f6e302e1974fc7d8bed8602a105654725a4/triton/dropout.py
# https://triton-lang.org/main/getting-started/tutorials/04-low-memory-dropout.html#sphx-glr-getting-started-tutorials-04-low-memory-dropout-py import torch import triton import triton.language as tl @triton.jit def dropout_kernel( x_ptr, dropout_mask_ptr, out_ptr, n_elements, p, BLOCK_SIZE: tl.constexpr ): pid=tl.program_id(axis=0) block_start = pid * BLOCK_SIZE offsets = block_start + tl.arange(0, BLOCK_SIZE) mask = offsets<n_elements x = tl.load(x_ptr + offsets, mask=mask) dropout_mask=tl.load(dropout_mask_ptr + offsets, mask=mask) output=tl.where(dropout_mask, x/(1-p), 0.0) tl.store(out_ptr + offsets, output, mask=mask) def dropout(x, dropout_mask, p): output=torch.empty_like(x) n_elements = x.numel() grid = lambda meta: (triton.cdiv(n_elements, meta['BLOCK_SIZE']), ) dropout_kernel[grid](x, dropout_mask, output, n_elements, p, BLOCK_SIZE=1024) return output def test(): device="cuda" x = torch.randn(4,4).to(device) p = 0.5 dropout_mask = (torch.rand(size=(4, 4)) > p).to(torch.int32).to(device) output = dropout(x, dropout_mask, p=p) print(output) if __name__ == "__main__": test()
@triton.jit def dropout_kernel( x_ptr, dropout_mask_ptr, out_ptr, n_elements, p, BLOCK_SIZE: tl.constexpr ): pid=tl.program_id(axis=0) block_start = pid * BLOCK_SIZE offsets = block_start + tl.arange(0, BLOCK_SIZE) mask = offsets<n_elements x = tl.load(x_ptr + offsets, mask=mask) dropout_mask=tl.load(dropout_mask_ptr + offsets, mask=mask) output=tl.where(dropout_mask, x/(1-p), 0.0) tl.store(out_ptr + offsets, output, mask=mask) def dropout(x, dropout_mask, p): output=torch.empty_like(x) n_elements = x.numel() grid = lambda meta: (triton.cdiv(n_elements, meta['BLOCK_SIZE']), ) dropout_kernel[grid](x, dropout_mask, output, n_elements, p, BLOCK_SIZE=1024) return output def test(): device="cuda" x = torch.randn(4,4).to(device) p = 0.5 dropout_mask = (torch.rand(size=(4, 4)) > p).to(torch.int32).to(device) output = dropout(x, dropout_mask, p=p) print(output) if __name__ == "__main__": test()
bjmsong/hands-on-kernels
fa/v2.py
https://github.com/bjmsong/hands-on-kernels/blob/c219e87282d2e2895e4218175f774cda757df022/fa/v2.py
import pytest import torch import triton import triton.language as tl from utils import _test_memory def is_hip(): return triton.runtime.driver.active.get_current_target().backend == "hip" @triton.jit def _attn_fwd_inner(acc, l_i, m_i, q, # K_block_ptr, V_block_ptr, # start_m, qk_scale, # BLOCK_M: tl.constexpr, HEAD_DIM: tl.constexpr, BLOCK_N: tl.constexpr, # STAGE: tl.constexpr, offs_m: tl.constexpr, offs_n: tl.constexpr, # N_CTX: tl.constexpr, fp8_v: tl.constexpr): # range of values handled by this stage if STAGE == 1: lo, hi = 0, start_m * BLOCK_M elif STAGE == 2: lo, hi = start_m * BLOCK_M, (start_m + 1) * BLOCK_M lo = tl.multiple_of(lo, BLOCK_M) # causal = False else: lo, hi = 0, N_CTX K_block_ptr = tl.advance(K_block_ptr, (0, lo)) V_block_ptr = tl.advance(V_block_ptr, (lo, 0)) # loop over k, v and update accumulator for start_n in range(lo, hi, BLOCK_N): start_n = tl.multiple_of(start_n, BLOCK_N) # -- compute qk ---- k = tl.load(K_block_ptr) qk = tl.dot(q, k) if STAGE == 2: mask = offs_m[:, None] >= (start_n + offs_n[None, :]) qk = qk * qk_scale + tl.where(mask, 0, -1.0e6) m_ij = tl.maximum(m_i, tl.max(qk, 1)) qk -= m_ij[:, None] else: m_ij = tl.maximum(m_i, tl.max(qk, 1) * qk_scale) qk = qk * qk_scale - m_ij[:, None] p = tl.math.exp2(qk) l_ij = tl.sum(p, 1) # -- update m_i and l_i alpha = tl.math.exp2(m_i - m_ij) l_i = l_i * alpha + l_ij # -- update output accumulator -- acc = acc * alpha[:, None] # update acc v = tl.load(V_block_ptr) if fp8_v: p = p.to(tl.float8e5) else: p = p.to(tl.float16) acc = tl.dot(p, v, acc) # update m_i and l_i m_i = m_ij V_block_ptr = tl.advance(V_block_ptr, (BLOCK_N, 0)) K_block_ptr = tl.advance(K_block_ptr, (0, BLOCK_N)) return acc, l_i, m_i # We don't run auto-tuning every time to keep the tutorial fast. Keeping # the code below and commenting out the equivalent parameters is convenient for # re-tuning. configs = [ triton.Config({'BLOCK_M': BM, 'BLOCK_N': BN}, num_stages=s, num_warps=w) \ for BM in [64, 128]\ for BN in [32, 64]\ for s in ([1] if is_hip() else [3, 4, 7])\ for w in [4, 8]\ ] def keep(conf): BLOCK_M = conf.kwargs["BLOCK_M"] BLOCK_N = conf.kwargs["BLOCK_N"] if BLOCK_M * BLOCK_N < 128 * 128 and conf.num_warps == 8: return False return True @triton.autotune(list(filter(keep, configs)), key=["N_CTX", "HEAD_DIM"]) @triton.jit def _attn_fwd(Q, K, V, sm_scale, M, Out, # stride_qz, stride_qh, stride_qm, stride_qk, # stride_kz, stride_kh, stride_kn, stride_kk, # stride_vz, stride_vh, stride_vk, stride_vn, # stride_oz, stride_oh, stride_om, stride_on, # Z, H, N_CTX, # HEAD_DIM: tl.constexpr, # BLOCK_M: tl.constexpr, # BLOCK_N: tl.constexpr, # STAGE: tl.constexpr # ): tl.static_assert(BLOCK_N <= HEAD_DIM) start_m = tl.program_id(0) off_hz = tl.program_id(1) off_z = off_hz // H off_h = off_hz % H qvk_offset = off_z.to(tl.int64) * stride_qz + off_h.to(tl.int64) * stride_qh # block pointers Q_block_ptr = tl.make_block_ptr( base=Q + qvk_offset, shape=(N_CTX, HEAD_DIM), strides=(stride_qm, stride_qk), offsets=(start_m * BLOCK_M, 0), block_shape=(BLOCK_M, HEAD_DIM), order=(1, 0), ) v_order: tl.constexpr = (0, 1) if V.dtype.element_ty == tl.float8e5 else (1, 0) V_block_ptr = tl.make_block_ptr( base=V + qvk_offset, shape=(N_CTX, HEAD_DIM), strides=(stride_vk, stride_vn), offsets=(0, 0), block_shape=(BLOCK_N, HEAD_DIM), order=v_order, ) K_block_ptr = tl.make_block_ptr( base=K + qvk_offset, shape=(HEAD_DIM, N_CTX), strides=(stride_kk, stride_kn), offsets=(0, 0), block_shape=(HEAD_DIM, BLOCK_N), order=(0, 1), ) O_block_ptr = tl.make_block_ptr( base=Out + qvk_offset, shape=(N_CTX, HEAD_DIM), strides=(stride_om, stride_on), offsets=(start_m * BLOCK_M, 0), block_shape=(BLOCK_M, HEAD_DIM), order=(1, 0), ) # initialize offsets offs_m = start_m * BLOCK_M + tl.arange(0, BLOCK_M) offs_n = tl.arange(0, BLOCK_N) # initialize pointer to m and l m_i = tl.zeros([BLOCK_M], dtype=tl.float32) - float("inf") l_i = tl.zeros([BLOCK_M], dtype=tl.float32) + 1.0 acc = tl.zeros([BLOCK_M, HEAD_DIM], dtype=tl.float32) # load scales qk_scale = sm_scale qk_scale *= 1.44269504 # 1/log(2) # load q: it will stay in SRAM throughout q = tl.load(Q_block_ptr) # stage 1: off-band # For causal = True, STAGE = 3 and _attn_fwd_inner gets 1 as its STAGE # For causal = False, STAGE = 1, and _attn_fwd_inner gets 3 as its STAGE if STAGE & 1: acc, l_i, m_i = _attn_fwd_inner(acc, l_i, m_i, q, K_block_ptr, V_block_ptr, # start_m, qk_scale, # BLOCK_M, HEAD_DIM, BLOCK_N, # 4 - STAGE, offs_m, offs_n, N_CTX, V.dtype.element_ty == tl.float8e5 # ) # stage 2: on-band if STAGE & 2: # barrier makes it easier for compielr to schedule the # two loops independently acc, l_i, m_i = _attn_fwd_inner(acc, l_i, m_i, q, K_block_ptr, V_block_ptr, # start_m, qk_scale, # BLOCK_M, HEAD_DIM, BLOCK_N, # 2, offs_m, offs_n, N_CTX, V.dtype.element_ty == tl.float8e5 # ) # epilogue m_i += tl.math.log2(l_i) acc = acc / l_i[:, None] m_ptrs = M + off_hz * N_CTX + offs_m tl.store(m_ptrs, m_i) tl.store(O_block_ptr, acc.to(Out.type.element_ty)) @triton.jit def _attn_bwd_preprocess(O, DO, # Delta, # Z, H, N_CTX, # BLOCK_M: tl.constexpr, HEAD_DIM: tl.constexpr # ): off_m = tl.program_id(0) * BLOCK_M + tl.arange(0, BLOCK_M) off_hz = tl.program_id(1) off_n = tl.arange(0, HEAD_DIM) # load o = tl.load(O + off_hz * HEAD_DIM * N_CTX + off_m[:, None] * HEAD_DIM + off_n[None, :]) do = tl.load(DO + off_hz * HEAD_DIM * N_CTX + off_m[:, None] * HEAD_DIM + off_n[None, :]).to(tl.float32) delta = tl.sum(o * do, axis=1) # write-back tl.store(Delta + off_hz * N_CTX + off_m, delta) # The main inner-loop logic for computing dK and dV. @triton.jit def _attn_bwd_dkdv(dk, dv, # Q, k, v, sm_scale, # DO, # M, D, # # shared by Q/K/V/DO. stride_tok, stride_d, # H, N_CTX, BLOCK_M1: tl.constexpr, # BLOCK_N1: tl.constexpr, # HEAD_DIM: tl.constexpr, # # Filled in by the wrapper. start_n, start_m, num_steps, # MASK: tl.constexpr): offs_m = start_m + tl.arange(0, BLOCK_M1) offs_n = start_n + tl.arange(0, BLOCK_N1) offs_k = tl.arange(0, HEAD_DIM) qT_ptrs = Q + offs_m[None, :] * stride_tok + offs_k[:, None] * stride_d do_ptrs = DO + offs_m[:, None] * stride_tok + offs_k[None, :] * stride_d # BLOCK_N1 must be a multiple of BLOCK_M1, otherwise the code wouldn't work. tl.static_assert(BLOCK_N1 % BLOCK_M1 == 0) curr_m = start_m step_m = BLOCK_M1 for blk_idx in range(num_steps): qT = tl.load(qT_ptrs) # Load m before computing qk to reduce pipeline stall. offs_m = curr_m + tl.arange(0, BLOCK_M1) m = tl.load(M + offs_m) qkT = tl.dot(k, qT) pT = tl.math.exp2(qkT - m[None, :]) # Autoregressive masking. if MASK: mask = (offs_m[None, :] >= offs_n[:, None]) pT = tl.where(mask, pT, 0.0) do = tl.load(do_ptrs) # Compute dV. ppT = pT ppT = ppT.to(tl.float16) dv += tl.dot(ppT, do) # D (= delta) is pre-divided by ds_scale. Di = tl.load(D + offs_m) # Compute dP and dS. dpT = tl.dot(v, tl.trans(do)).to(tl.float32) dsT = pT * (dpT - Di[None, :]) dsT = dsT.to(tl.float16) dk += tl.dot(dsT, tl.trans(qT)) # Increment pointers. curr_m += step_m qT_ptrs += step_m * stride_tok do_ptrs += step_m * stride_tok return dk, dv # the main inner-loop logic for computing dQ @triton.jit def _attn_bwd_dq(dq, q, K, V, # do, m, D, # shared by Q/K/V/DO. stride_tok, stride_d, # H, N_CTX, # BLOCK_M2: tl.constexpr, # BLOCK_N2: tl.constexpr, # HEAD_DIM: tl.constexpr, # Filled in by the wrapper. start_m, start_n, num_steps, # MASK: tl.constexpr): offs_m = start_m + tl.arange(0, BLOCK_M2) offs_n = start_n + tl.arange(0, BLOCK_N2) offs_k = tl.arange(0, HEAD_DIM) kT_ptrs = K + offs_n[None, :] * stride_tok + offs_k[:, None] * stride_d vT_ptrs = V + offs_n[None, :] * stride_tok + offs_k[:, None] * stride_d # D (= delta) is pre-divided by ds_scale. Di = tl.load(D + offs_m) # BLOCK_M2 must be a multiple of BLOCK_N2, otherwise the code wouldn't work. tl.static_assert(BLOCK_M2 % BLOCK_N2 == 0) curr_n = start_n step_n = BLOCK_N2 for blk_idx in range(num_steps): kT = tl.load(kT_ptrs) vT = tl.load(vT_ptrs) qk = tl.dot(q, kT) p = tl.math.exp2(qk - m) # Autoregressive masking. if MASK: offs_n = curr_n + tl.arange(0, BLOCK_N2) mask = (offs_m[:, None] >= offs_n[None, :]) p = tl.where(mask, p, 0.0) # Compute dP and dS. dp = tl.dot(do, vT).to(tl.float32) ds = p * (dp - Di[:, None]) ds = ds.to(tl.float16) # Compute dQ. # NOTE: We need to de-scale dq in the end, because kT was pre-scaled. dq += tl.dot(ds, tl.trans(kT)) # Increment pointers. curr_n += step_n kT_ptrs += step_n * stride_tok vT_ptrs += step_n * stride_tok return dq @triton.jit def _attn_bwd(Q, K, V, sm_scale, # DO, # DQ, DK, DV, # M, D, # shared by Q/K/V/DO. stride_z, stride_h, stride_tok, stride_d, # H, N_CTX, # BLOCK_M1: tl.constexpr, # BLOCK_N1: tl.constexpr, # BLOCK_M2: tl.constexpr, # BLOCK_N2: tl.constexpr, # BLK_SLICE_FACTOR: tl.constexpr, # HEAD_DIM: tl.constexpr): LN2: tl.constexpr = 0.6931471824645996 # = ln(2) bhid = tl.program_id(2) off_chz = (bhid * N_CTX).to(tl.int64) adj = (stride_h * (bhid % H) + stride_z * (bhid // H)).to(tl.int64) pid = tl.program_id(0) # offset pointers for batch/head Q += adj K += adj V += adj DO += adj DQ += adj DK += adj DV += adj M += off_chz D += off_chz # load scales offs_k = tl.arange(0, HEAD_DIM) start_n = pid * BLOCK_N1 start_m = start_n MASK_BLOCK_M1: tl.constexpr = BLOCK_M1 // BLK_SLICE_FACTOR offs_n = start_n + tl.arange(0, BLOCK_N1) dv = tl.zeros([BLOCK_N1, HEAD_DIM], dtype=tl.float32) dk = tl.zeros([BLOCK_N1, HEAD_DIM], dtype=tl.float32) # load K and V: they stay in SRAM throughout the inner loop. k = tl.load(K + offs_n[:, None] * stride_tok + offs_k[None, :] * stride_d) v = tl.load(V + offs_n[:, None] * stride_tok + offs_k[None, :] * stride_d) num_steps = BLOCK_N1 // MASK_BLOCK_M1 dk, dv = _attn_bwd_dkdv(dk, dv, # Q, k, v, sm_scale, # DO, # M, D, # stride_tok, stride_d, # H, N_CTX, # MASK_BLOCK_M1, BLOCK_N1, HEAD_DIM, # start_n, start_m, num_steps, # MASK=True # ) start_m += num_steps * MASK_BLOCK_M1 num_steps = (N_CTX - start_m) // BLOCK_M1 # Compute dK and dV for non-masked blocks. dk, dv = _attn_bwd_dkdv( # dk, dv, # Q, k, v, sm_scale, # DO, # M, D, # stride_tok, stride_d, # H, N_CTX, # BLOCK_M1, BLOCK_N1, HEAD_DIM, # start_n, start_m, num_steps, # MASK=False # ) dv_ptrs = DV + offs_n[:, None] * stride_tok + offs_k[None, :] * stride_d tl.store(dv_ptrs, dv) # Write back dK. dk *= sm_scale dk_ptrs = DK + offs_n[:, None] * stride_tok + offs_k[None, :] * stride_d tl.store(dk_ptrs, dk) # THIS BLOCK DOES DQ: start_m = pid * BLOCK_M2 end_n = start_m + BLOCK_M2 MASK_BLOCK_N2: tl.constexpr = BLOCK_N2 // BLK_SLICE_FACTOR offs_m = start_m + tl.arange(0, BLOCK_M2) q = tl.load(Q + offs_m[:, None] * stride_tok + offs_k[None, :] * stride_d) dq = tl.zeros([BLOCK_M2, HEAD_DIM], dtype=tl.float32) do = tl.load(DO + offs_m[:, None] * stride_tok + offs_k[None, :] * stride_d) m = tl.load(M + offs_m) m = m[:, None] # Compute dQ for masked (diagonal) blocks. # NOTE: This code scans each row of QK^T backward (from right to left, # but inside each call to _attn_bwd_dq, from left to right), but that's # not due to anything important. I just wanted to reuse the loop # structure for dK & dV above as much as possible. num_steps = BLOCK_M2 // MASK_BLOCK_N2 dq = _attn_bwd_dq(dq, q, K, V, # do, m, D, # stride_tok, stride_d, # H, N_CTX, # BLOCK_M2, MASK_BLOCK_N2, HEAD_DIM, # start_m, end_n - num_steps * MASK_BLOCK_N2, num_steps, # MASK=True # ) end_n -= num_steps * MASK_BLOCK_N2 # stage 2 num_steps = end_n // BLOCK_N2 dq = _attn_bwd_dq(dq, q, K, V, # do, m, D, # stride_tok, stride_d, # H, N_CTX, # BLOCK_M2, BLOCK_N2, HEAD_DIM, # start_m, end_n - num_steps * BLOCK_N2, num_steps, # MASK=False # ) # Write back dQ. dq_ptrs = DQ + offs_m[:, None] * stride_tok + offs_k[None, :] * stride_d dq *= LN2 tl.store(dq_ptrs, dq) class _attention(torch.autograd.Function): @staticmethod def forward(ctx, q, k, v, causal, sm_scale): # shape constraints HEAD_DIM_Q, HEAD_DIM_K = q.shape[-1], k.shape[-1] # when v is in float8_e5m2 it is transposed. HEAD_DIM_V = v.shape[-1] assert HEAD_DIM_Q == HEAD_DIM_K and HEAD_DIM_K == HEAD_DIM_V assert HEAD_DIM_K in {16, 32, 64, 128, 256} o = torch.empty_like(q) stage = 3 if causal else 1 # ? extra_kern_args = {} # Tuning for AMD target if is_hip(): waves_per_eu = 3 if HEAD_DIM_K <= 64 else 2 extra_kern_args = {"waves_per_eu": waves_per_eu, "allow_flush_denorm": True} # grid.x = seqlen/BLOCK_M # grid_y = batch_size * head_dim grid = lambda args: (triton.cdiv(q.shape[2], args["BLOCK_M"]), q.shape[0] * q.shape[1], 1) M = torch.empty((q.shape[0], q.shape[1], q.shape[2]), device=q.device, dtype=torch.float32) _attn_fwd[grid]( q, k, v, sm_scale, M, o, # q.stride(0), q.stride(1), q.stride(2), q.stride(3), # k.stride(0), k.stride(1), k.stride(2), k.stride(3), # v.stride(0), v.stride(1), v.stride(2), v.stride(3), # o.stride(0), o.stride(1), o.stride(2), o.stride(3), # q.shape[0], q.shape[1], # N_CTX=q.shape[2], # HEAD_DIM=HEAD_DIM_K, # STAGE=stage, # **extra_kern_args) ctx.save_for_backward(q, k, v, o, M) ctx.grid = grid ctx.sm_scale = sm_scale ctx.HEAD_DIM = HEAD_DIM_K ctx.causal = causal return o @staticmethod def backward(ctx, do): q, k, v, o, M = ctx.saved_tensors assert do.is_contiguous() assert q.stride() == k.stride() == v.stride() == o.stride() == do.stride() dq = torch.empty_like(q) dk = torch.empty_like(k) dv = torch.empty_like(v) BATCH, N_HEAD, N_CTX = q.shape[:3] PRE_BLOCK = 128 NUM_WARPS, NUM_STAGES = 4, 5 BLOCK_M1, BLOCK_N1, BLOCK_M2, BLOCK_N2 = 32, 128, 128, 32 BLK_SLICE_FACTOR = 2 RCP_LN2 = 1.4426950408889634 # = 1.0 / ln(2) arg_k = k arg_k = arg_k * (ctx.sm_scale * RCP_LN2) PRE_BLOCK = 128 assert N_CTX % PRE_BLOCK == 0 pre_grid = (N_CTX // PRE_BLOCK, BATCH * N_HEAD) delta = torch.empty_like(M) _attn_bwd_preprocess[pre_grid]( o, do, # delta, # BATCH, N_HEAD, N_CTX, # BLOCK_M=PRE_BLOCK, HEAD_DIM=ctx.HEAD_DIM # ) grid = (N_CTX // BLOCK_N1, 1, BATCH * N_HEAD) _attn_bwd[grid]( q, arg_k, v, ctx.sm_scale, do, dq, dk, dv, # M, delta, # q.stride(0), q.stride(1), q.stride(2), q.stride(3), # N_HEAD, N_CTX, # BLOCK_M1=BLOCK_M1, BLOCK_N1=BLOCK_N1, # BLOCK_M2=BLOCK_M2, BLOCK_N2=BLOCK_N2, # BLK_SLICE_FACTOR=BLK_SLICE_FACTOR, # HEAD_DIM=ctx.HEAD_DIM, # num_warps=NUM_WARPS, # num_stages=NUM_STAGES # ) return dq, dk, dv, None, None attention = _attention.apply # batch size, head num, sequence length, head dim @pytest.mark.parametrize("Z, H, N_CTX, HEAD_DIM", [(1, 2, 1024, 64)]) @pytest.mark.parametrize("causal", [True]) # causal mask def test_op(Z, H, N_CTX, HEAD_DIM, causal, dtype=torch.float16): torch.manual_seed(20) q = (torch.empty((Z, H, N_CTX, HEAD_DIM), dtype=dtype, device="cuda").normal_(mean=0.0, std=0.5).requires_grad_()) k = (torch.empty((Z, H, N_CTX, HEAD_DIM), dtype=dtype, device="cuda").normal_(mean=0.0, std=0.5).requires_grad_()) v = (torch.empty((Z, H, N_CTX, HEAD_DIM), dtype=dtype, device="cuda").normal_(mean=0.0, std=0.5).requires_grad_()) sm_scale = 0.5 dout = torch.randn_like(q) # reference implementation (PyTorch) M = torch.tril(torch.ones((N_CTX, N_CTX), device="cuda")) p = torch.matmul(q, k.transpose(2, 3)) * sm_scale # attention score if causal: p[:, :, M == 0] = float("-inf") p = torch.softmax(p.float(), dim=-1).half() # p = torch.exp(p) ref_out = torch.matmul(p, v) ref_out.backward(dout) ref_dv, v.grad = v.grad.clone(), None ref_dk, k.grad = k.grad.clone(), None ref_dq, q.grad = q.grad.clone(), None # triton implementation tri_out = attention(q, k, v, causal, sm_scale).half() tri_out.backward(dout) tri_dv, v.grad = v.grad.clone(), None tri_dk, k.grad = k.grad.clone(), None tri_dq, q.grad = q.grad.clone(), None # compare assert torch.allclose(ref_out, tri_out, atol=1e-2, rtol=0) rtol = 0.0 # Relative tolerance workaround for known hardware limitation of MI200 GPU. # For details see https://pytorch.org/docs/stable/notes/numerical_accuracy.html#reduced-precision-fp16-and-bf16-gemms-and-convolutions-on-amd-instinct-mi200-devices if torch.version.hip is not None and triton.runtime.driver.active.get_current_target().arch == "gfx90a": rtol = 1e-2 assert torch.allclose(ref_dv, tri_dv, atol=1e-2, rtol=rtol) assert torch.allclose(ref_dk, tri_dk, atol=1e-2, rtol=rtol) assert torch.allclose(ref_dq, tri_dq, atol=1e-2, rtol=rtol) try: from flash_attn.flash_attn_interface import \ flash_attn_qkvpacked_func as flash_attn_func HAS_FLASH = True except BaseException: HAS_FLASH = False TORCH_HAS_FP8 = hasattr(torch, 'float8_e5m2') BATCH, N_HEADS, HEAD_DIM = 4, 32, 64 # vary seq length for fixed head and batch=4 configs = [] for mode in ["fwd"]: # ["fwd", "bwd"] for causal in [True]: # [True, False] if mode == "bwd" and not causal: continue configs.append( triton.testing.Benchmark( x_names=["N_CTX"], x_vals=[2**i for i in range(9, 13)], line_arg="provider", line_vals=["triton-fp16"] + (["triton-fp8"] if TORCH_HAS_FP8 else []) + (["flash"] if HAS_FLASH else []) + ["torch"], line_names=["Triton [FP16]"] + (["Triton [FP8]"] if TORCH_HAS_FP8 else []) + (["Flash-2"] if HAS_FLASH else []) + ["torch"], styles=[("red", "-"), ("blue", "-"), ("green", "-"), ("yellow", "-")], ylabel="TFLOPS", plot_name=f"fused-attention-batch{BATCH}-head{N_HEADS}-d{HEAD_DIM}-{mode}-causal={causal}", args={ "H": N_HEADS, "BATCH": BATCH, "HEAD_DIM": HEAD_DIM, "mode": mode, "causal": causal, }, )) @triton.testing.perf_report(configs) def bench_flash_attention(BATCH, H, N_CTX, HEAD_DIM, causal, mode, provider, device="cuda"): assert mode in ["fwd", "bwd"] dtype = torch.float16 if "triton" in provider: q = torch.randn((BATCH, H, N_CTX, HEAD_DIM), dtype=dtype, device=device, requires_grad=True) k = torch.randn((BATCH, H, N_CTX, HEAD_DIM), dtype=dtype, device=device, requires_grad=True) v = torch.randn((BATCH, H, N_CTX, HEAD_DIM), dtype=dtype, device=device, requires_grad=True) if mode == "fwd" and "fp8" in provider: q = q.to(torch.float8_e5m2) k = k.to(torch.float8_e5m2) v = v.permute(0, 1, 3, 2).contiguous() v = v.permute(0, 1, 3, 2) v = v.to(torch.float8_e5m2) sm_scale = 1.3 fn = lambda: attention(q, k, v, causal, sm_scale) if mode == "bwd": o = fn() do = torch.randn_like(o) fn = lambda: o.backward(do, retain_graph=True) ms = triton.testing.do_bench(fn) if provider == "flash": qkv = torch.randn((BATCH, N_CTX, 3, H, HEAD_DIM), dtype=dtype, device=device, requires_grad=True) fn = lambda: flash_attn_func(qkv, causal=causal) if mode == "bwd": o = fn() do = torch.randn_like(o) fn = lambda: o.backward(do, retain_graph=True) ms = triton.testing.do_bench(fn) if provider == "torch": q = torch.randn((BATCH, H, N_CTX, HEAD_DIM), dtype=dtype, device=device, requires_grad=True) k = torch.randn((BATCH, H, N_CTX, HEAD_DIM), dtype=dtype, device=device, requires_grad=True) v = torch.randn((BATCH, H, N_CTX, HEAD_DIM), dtype=dtype, device=device, requires_grad=True) sm_scale = 1.3 M = torch.tril(torch.ones((N_CTX, N_CTX), device="cuda")) p = torch.matmul(q, k.transpose(2, 3)) * sm_scale # attention score if causal: p[:, :, M == 0] = float("-inf") p = torch.softmax(p.float(), dim=-1).half() fn = lambda: torch.matmul(p, v) ms = triton.testing.do_bench(fn) flops_per_matmul = 2.0 * BATCH * H * N_CTX * N_CTX * HEAD_DIM total_flops = 2 * flops_per_matmul if causal: total_flops *= 0.5 if mode == "bwd": total_flops *= 2.5 # 2.0(bwd) + 0.5(recompute) return total_flops * 1e-12 / (ms * 1e-3) def peak_memory(backend): dtype = torch.float16 device = 'cuda' BATCH, H, HEAD_DIM = 4, 32, 64 for N_CTX in [2**i for i in range(9, 13)]: q = torch.randn((BATCH, H, N_CTX, HEAD_DIM), dtype=dtype, device=device, requires_grad=True) k = torch.randn((BATCH, H, N_CTX, HEAD_DIM), dtype=dtype, device=device, requires_grad=True) v = torch.randn((BATCH, H, N_CTX, HEAD_DIM), dtype=dtype, device=device, requires_grad=True) sm_scale = 1.3 def torch_call(): M = torch.tril(torch.ones((N_CTX, N_CTX), device="cuda")) p = torch.matmul(q, k.transpose(2, 3)) * sm_scale # attention score if causal: p[:, :, M == 0] = float("-inf") p = torch.softmax(p.float(), dim=-1).half() fn = lambda: torch.matmul(p, v) ms = triton.testing.do_bench(fn) def triton_call(): attention(q, k, v, causal, sm_scale) QUANTILES = [0.5, 0.2, 0.8] if backend == "triton": mem_50, mem_20, mem_80 = _test_memory(triton_call, quantiles=QUANTILES) print(f"Triton Peak Memory of {N_CTX} is {mem_50, mem_20, mem_80}") if backend == "torch": mem_50, mem_20, mem_80 = _test_memory(torch_call, quantiles=QUANTILES) print(f"Torch Peak Memory of {N_CTX} is {mem_50, mem_20, mem_80}") if __name__ == "__main__": # only works on post-Ampere GPUs right now bench_flash_attention.run(save_path=".", print_data=True) # peak_memory("torch")
@triton.jit def _attn_fwd_inner(acc, l_i, m_i, q, # K_block_ptr, V_block_ptr, # start_m, qk_scale, # BLOCK_M: tl.constexpr, HEAD_DIM: tl.constexpr, BLOCK_N: tl.constexpr, # STAGE: tl.constexpr, offs_m: tl.constexpr, offs_n: tl.constexpr, # N_CTX: tl.constexpr, fp8_v: tl.constexpr): # range of values handled by this stage if STAGE == 1: lo, hi = 0, start_m * BLOCK_M elif STAGE == 2: lo, hi = start_m * BLOCK_M, (start_m + 1) * BLOCK_M lo = tl.multiple_of(lo, BLOCK_M) # causal = False else: lo, hi = 0, N_CTX K_block_ptr = tl.advance(K_block_ptr, (0, lo)) V_block_ptr = tl.advance(V_block_ptr, (lo, 0)) # loop over k, v and update accumulator for start_n in range(lo, hi, BLOCK_N): start_n = tl.multiple_of(start_n, BLOCK_N) # -- compute qk ---- k = tl.load(K_block_ptr) qk = tl.dot(q, k) if STAGE == 2: mask = offs_m[:, None] >= (start_n + offs_n[None, :]) qk = qk * qk_scale + tl.where(mask, 0, -1.0e6) m_ij = tl.maximum(m_i, tl.max(qk, 1)) qk -= m_ij[:, None] else: m_ij = tl.maximum(m_i, tl.max(qk, 1) * qk_scale) qk = qk * qk_scale - m_ij[:, None] p = tl.math.exp2(qk) l_ij = tl.sum(p, 1) # -- update m_i and l_i alpha = tl.math.exp2(m_i - m_ij) l_i = l_i * alpha + l_ij # -- update output accumulator -- acc = acc * alpha[:, None] # update acc v = tl.load(V_block_ptr) if fp8_v: p = p.to(tl.float8e5) else: p = p.to(tl.float16) acc = tl.dot(p, v, acc) # update m_i and l_i m_i = m_ij V_block_ptr = tl.advance(V_block_ptr, (BLOCK_N, 0)) K_block_ptr = tl.advance(K_block_ptr, (0, BLOCK_N)) return acc, l_i, m_i # We don't run auto-tuning every time to keep the tutorial fast. Keeping # the code below and commenting out the equivalent parameters is convenient for # re-tuning. configs = [ triton.Config({'BLOCK_M': BM, 'BLOCK_N': BN}, num_stages=s, num_warps=w) \ for BM in [64, 128]\ for BN in [32, 64]\ for s in ([1] if is_hip() else [3, 4, 7])\ for w in [4, 8]\ ] def keep(conf): BLOCK_M = conf.kwargs["BLOCK_M"] BLOCK_N = conf.kwargs["BLOCK_N"] if BLOCK_M * BLOCK_N < 128 * 128 and conf.num_warps == 8: return False return True @triton.autotune(list(filter(keep, configs)), key=["N_CTX", "HEAD_DIM"])
bjmsong/hands-on-kernels
fa/v2.py
https://github.com/bjmsong/hands-on-kernels/blob/c219e87282d2e2895e4218175f774cda757df022/fa/v2.py
import pytest import torch import triton import triton.language as tl from utils import _test_memory def is_hip(): return triton.runtime.driver.active.get_current_target().backend == "hip" @triton.jit def _attn_fwd_inner(acc, l_i, m_i, q, # K_block_ptr, V_block_ptr, # start_m, qk_scale, # BLOCK_M: tl.constexpr, HEAD_DIM: tl.constexpr, BLOCK_N: tl.constexpr, # STAGE: tl.constexpr, offs_m: tl.constexpr, offs_n: tl.constexpr, # N_CTX: tl.constexpr, fp8_v: tl.constexpr): # range of values handled by this stage if STAGE == 1: lo, hi = 0, start_m * BLOCK_M elif STAGE == 2: lo, hi = start_m * BLOCK_M, (start_m + 1) * BLOCK_M lo = tl.multiple_of(lo, BLOCK_M) # causal = False else: lo, hi = 0, N_CTX K_block_ptr = tl.advance(K_block_ptr, (0, lo)) V_block_ptr = tl.advance(V_block_ptr, (lo, 0)) # loop over k, v and update accumulator for start_n in range(lo, hi, BLOCK_N): start_n = tl.multiple_of(start_n, BLOCK_N) # -- compute qk ---- k = tl.load(K_block_ptr) qk = tl.dot(q, k) if STAGE == 2: mask = offs_m[:, None] >= (start_n + offs_n[None, :]) qk = qk * qk_scale + tl.where(mask, 0, -1.0e6) m_ij = tl.maximum(m_i, tl.max(qk, 1)) qk -= m_ij[:, None] else: m_ij = tl.maximum(m_i, tl.max(qk, 1) * qk_scale) qk = qk * qk_scale - m_ij[:, None] p = tl.math.exp2(qk) l_ij = tl.sum(p, 1) # -- update m_i and l_i alpha = tl.math.exp2(m_i - m_ij) l_i = l_i * alpha + l_ij # -- update output accumulator -- acc = acc * alpha[:, None] # update acc v = tl.load(V_block_ptr) if fp8_v: p = p.to(tl.float8e5) else: p = p.to(tl.float16) acc = tl.dot(p, v, acc) # update m_i and l_i m_i = m_ij V_block_ptr = tl.advance(V_block_ptr, (BLOCK_N, 0)) K_block_ptr = tl.advance(K_block_ptr, (0, BLOCK_N)) return acc, l_i, m_i # We don't run auto-tuning every time to keep the tutorial fast. Keeping # the code below and commenting out the equivalent parameters is convenient for # re-tuning. configs = [ triton.Config({'BLOCK_M': BM, 'BLOCK_N': BN}, num_stages=s, num_warps=w) \ for BM in [64, 128]\ for BN in [32, 64]\ for s in ([1] if is_hip() else [3, 4, 7])\ for w in [4, 8]\ ] def keep(conf): BLOCK_M = conf.kwargs["BLOCK_M"] BLOCK_N = conf.kwargs["BLOCK_N"] if BLOCK_M * BLOCK_N < 128 * 128 and conf.num_warps == 8: return False return True @triton.autotune(list(filter(keep, configs)), key=["N_CTX", "HEAD_DIM"]) @triton.jit def _attn_fwd(Q, K, V, sm_scale, M, Out, # stride_qz, stride_qh, stride_qm, stride_qk, # stride_kz, stride_kh, stride_kn, stride_kk, # stride_vz, stride_vh, stride_vk, stride_vn, # stride_oz, stride_oh, stride_om, stride_on, # Z, H, N_CTX, # HEAD_DIM: tl.constexpr, # BLOCK_M: tl.constexpr, # BLOCK_N: tl.constexpr, # STAGE: tl.constexpr # ): tl.static_assert(BLOCK_N <= HEAD_DIM) start_m = tl.program_id(0) off_hz = tl.program_id(1) off_z = off_hz // H off_h = off_hz % H qvk_offset = off_z.to(tl.int64) * stride_qz + off_h.to(tl.int64) * stride_qh # block pointers Q_block_ptr = tl.make_block_ptr( base=Q + qvk_offset, shape=(N_CTX, HEAD_DIM), strides=(stride_qm, stride_qk), offsets=(start_m * BLOCK_M, 0), block_shape=(BLOCK_M, HEAD_DIM), order=(1, 0), ) v_order: tl.constexpr = (0, 1) if V.dtype.element_ty == tl.float8e5 else (1, 0) V_block_ptr = tl.make_block_ptr( base=V + qvk_offset, shape=(N_CTX, HEAD_DIM), strides=(stride_vk, stride_vn), offsets=(0, 0), block_shape=(BLOCK_N, HEAD_DIM), order=v_order, ) K_block_ptr = tl.make_block_ptr( base=K + qvk_offset, shape=(HEAD_DIM, N_CTX), strides=(stride_kk, stride_kn), offsets=(0, 0), block_shape=(HEAD_DIM, BLOCK_N), order=(0, 1), ) O_block_ptr = tl.make_block_ptr( base=Out + qvk_offset, shape=(N_CTX, HEAD_DIM), strides=(stride_om, stride_on), offsets=(start_m * BLOCK_M, 0), block_shape=(BLOCK_M, HEAD_DIM), order=(1, 0), ) # initialize offsets offs_m = start_m * BLOCK_M + tl.arange(0, BLOCK_M) offs_n = tl.arange(0, BLOCK_N) # initialize pointer to m and l m_i = tl.zeros([BLOCK_M], dtype=tl.float32) - float("inf") l_i = tl.zeros([BLOCK_M], dtype=tl.float32) + 1.0 acc = tl.zeros([BLOCK_M, HEAD_DIM], dtype=tl.float32) # load scales qk_scale = sm_scale qk_scale *= 1.44269504 # 1/log(2) # load q: it will stay in SRAM throughout q = tl.load(Q_block_ptr) # stage 1: off-band # For causal = True, STAGE = 3 and _attn_fwd_inner gets 1 as its STAGE # For causal = False, STAGE = 1, and _attn_fwd_inner gets 3 as its STAGE if STAGE & 1: acc, l_i, m_i = _attn_fwd_inner(acc, l_i, m_i, q, K_block_ptr, V_block_ptr, # start_m, qk_scale, # BLOCK_M, HEAD_DIM, BLOCK_N, # 4 - STAGE, offs_m, offs_n, N_CTX, V.dtype.element_ty == tl.float8e5 # ) # stage 2: on-band if STAGE & 2: # barrier makes it easier for compielr to schedule the # two loops independently acc, l_i, m_i = _attn_fwd_inner(acc, l_i, m_i, q, K_block_ptr, V_block_ptr, # start_m, qk_scale, # BLOCK_M, HEAD_DIM, BLOCK_N, # 2, offs_m, offs_n, N_CTX, V.dtype.element_ty == tl.float8e5 # ) # epilogue m_i += tl.math.log2(l_i) acc = acc / l_i[:, None] m_ptrs = M + off_hz * N_CTX + offs_m tl.store(m_ptrs, m_i) tl.store(O_block_ptr, acc.to(Out.type.element_ty)) @triton.jit def _attn_bwd_preprocess(O, DO, # Delta, # Z, H, N_CTX, # BLOCK_M: tl.constexpr, HEAD_DIM: tl.constexpr # ): off_m = tl.program_id(0) * BLOCK_M + tl.arange(0, BLOCK_M) off_hz = tl.program_id(1) off_n = tl.arange(0, HEAD_DIM) # load o = tl.load(O + off_hz * HEAD_DIM * N_CTX + off_m[:, None] * HEAD_DIM + off_n[None, :]) do = tl.load(DO + off_hz * HEAD_DIM * N_CTX + off_m[:, None] * HEAD_DIM + off_n[None, :]).to(tl.float32) delta = tl.sum(o * do, axis=1) # write-back tl.store(Delta + off_hz * N_CTX + off_m, delta) # The main inner-loop logic for computing dK and dV. @triton.jit def _attn_bwd_dkdv(dk, dv, # Q, k, v, sm_scale, # DO, # M, D, # # shared by Q/K/V/DO. stride_tok, stride_d, # H, N_CTX, BLOCK_M1: tl.constexpr, # BLOCK_N1: tl.constexpr, # HEAD_DIM: tl.constexpr, # # Filled in by the wrapper. start_n, start_m, num_steps, # MASK: tl.constexpr): offs_m = start_m + tl.arange(0, BLOCK_M1) offs_n = start_n + tl.arange(0, BLOCK_N1) offs_k = tl.arange(0, HEAD_DIM) qT_ptrs = Q + offs_m[None, :] * stride_tok + offs_k[:, None] * stride_d do_ptrs = DO + offs_m[:, None] * stride_tok + offs_k[None, :] * stride_d # BLOCK_N1 must be a multiple of BLOCK_M1, otherwise the code wouldn't work. tl.static_assert(BLOCK_N1 % BLOCK_M1 == 0) curr_m = start_m step_m = BLOCK_M1 for blk_idx in range(num_steps): qT = tl.load(qT_ptrs) # Load m before computing qk to reduce pipeline stall. offs_m = curr_m + tl.arange(0, BLOCK_M1) m = tl.load(M + offs_m) qkT = tl.dot(k, qT) pT = tl.math.exp2(qkT - m[None, :]) # Autoregressive masking. if MASK: mask = (offs_m[None, :] >= offs_n[:, None]) pT = tl.where(mask, pT, 0.0) do = tl.load(do_ptrs) # Compute dV. ppT = pT ppT = ppT.to(tl.float16) dv += tl.dot(ppT, do) # D (= delta) is pre-divided by ds_scale. Di = tl.load(D + offs_m) # Compute dP and dS. dpT = tl.dot(v, tl.trans(do)).to(tl.float32) dsT = pT * (dpT - Di[None, :]) dsT = dsT.to(tl.float16) dk += tl.dot(dsT, tl.trans(qT)) # Increment pointers. curr_m += step_m qT_ptrs += step_m * stride_tok do_ptrs += step_m * stride_tok return dk, dv # the main inner-loop logic for computing dQ @triton.jit def _attn_bwd_dq(dq, q, K, V, # do, m, D, # shared by Q/K/V/DO. stride_tok, stride_d, # H, N_CTX, # BLOCK_M2: tl.constexpr, # BLOCK_N2: tl.constexpr, # HEAD_DIM: tl.constexpr, # Filled in by the wrapper. start_m, start_n, num_steps, # MASK: tl.constexpr): offs_m = start_m + tl.arange(0, BLOCK_M2) offs_n = start_n + tl.arange(0, BLOCK_N2) offs_k = tl.arange(0, HEAD_DIM) kT_ptrs = K + offs_n[None, :] * stride_tok + offs_k[:, None] * stride_d vT_ptrs = V + offs_n[None, :] * stride_tok + offs_k[:, None] * stride_d # D (= delta) is pre-divided by ds_scale. Di = tl.load(D + offs_m) # BLOCK_M2 must be a multiple of BLOCK_N2, otherwise the code wouldn't work. tl.static_assert(BLOCK_M2 % BLOCK_N2 == 0) curr_n = start_n step_n = BLOCK_N2 for blk_idx in range(num_steps): kT = tl.load(kT_ptrs) vT = tl.load(vT_ptrs) qk = tl.dot(q, kT) p = tl.math.exp2(qk - m) # Autoregressive masking. if MASK: offs_n = curr_n + tl.arange(0, BLOCK_N2) mask = (offs_m[:, None] >= offs_n[None, :]) p = tl.where(mask, p, 0.0) # Compute dP and dS. dp = tl.dot(do, vT).to(tl.float32) ds = p * (dp - Di[:, None]) ds = ds.to(tl.float16) # Compute dQ. # NOTE: We need to de-scale dq in the end, because kT was pre-scaled. dq += tl.dot(ds, tl.trans(kT)) # Increment pointers. curr_n += step_n kT_ptrs += step_n * stride_tok vT_ptrs += step_n * stride_tok return dq @triton.jit def _attn_bwd(Q, K, V, sm_scale, # DO, # DQ, DK, DV, # M, D, # shared by Q/K/V/DO. stride_z, stride_h, stride_tok, stride_d, # H, N_CTX, # BLOCK_M1: tl.constexpr, # BLOCK_N1: tl.constexpr, # BLOCK_M2: tl.constexpr, # BLOCK_N2: tl.constexpr, # BLK_SLICE_FACTOR: tl.constexpr, # HEAD_DIM: tl.constexpr): LN2: tl.constexpr = 0.6931471824645996 # = ln(2) bhid = tl.program_id(2) off_chz = (bhid * N_CTX).to(tl.int64) adj = (stride_h * (bhid % H) + stride_z * (bhid // H)).to(tl.int64) pid = tl.program_id(0) # offset pointers for batch/head Q += adj K += adj V += adj DO += adj DQ += adj DK += adj DV += adj M += off_chz D += off_chz # load scales offs_k = tl.arange(0, HEAD_DIM) start_n = pid * BLOCK_N1 start_m = start_n MASK_BLOCK_M1: tl.constexpr = BLOCK_M1 // BLK_SLICE_FACTOR offs_n = start_n + tl.arange(0, BLOCK_N1) dv = tl.zeros([BLOCK_N1, HEAD_DIM], dtype=tl.float32) dk = tl.zeros([BLOCK_N1, HEAD_DIM], dtype=tl.float32) # load K and V: they stay in SRAM throughout the inner loop. k = tl.load(K + offs_n[:, None] * stride_tok + offs_k[None, :] * stride_d) v = tl.load(V + offs_n[:, None] * stride_tok + offs_k[None, :] * stride_d) num_steps = BLOCK_N1 // MASK_BLOCK_M1 dk, dv = _attn_bwd_dkdv(dk, dv, # Q, k, v, sm_scale, # DO, # M, D, # stride_tok, stride_d, # H, N_CTX, # MASK_BLOCK_M1, BLOCK_N1, HEAD_DIM, # start_n, start_m, num_steps, # MASK=True # ) start_m += num_steps * MASK_BLOCK_M1 num_steps = (N_CTX - start_m) // BLOCK_M1 # Compute dK and dV for non-masked blocks. dk, dv = _attn_bwd_dkdv( # dk, dv, # Q, k, v, sm_scale, # DO, # M, D, # stride_tok, stride_d, # H, N_CTX, # BLOCK_M1, BLOCK_N1, HEAD_DIM, # start_n, start_m, num_steps, # MASK=False # ) dv_ptrs = DV + offs_n[:, None] * stride_tok + offs_k[None, :] * stride_d tl.store(dv_ptrs, dv) # Write back dK. dk *= sm_scale dk_ptrs = DK + offs_n[:, None] * stride_tok + offs_k[None, :] * stride_d tl.store(dk_ptrs, dk) # THIS BLOCK DOES DQ: start_m = pid * BLOCK_M2 end_n = start_m + BLOCK_M2 MASK_BLOCK_N2: tl.constexpr = BLOCK_N2 // BLK_SLICE_FACTOR offs_m = start_m + tl.arange(0, BLOCK_M2) q = tl.load(Q + offs_m[:, None] * stride_tok + offs_k[None, :] * stride_d) dq = tl.zeros([BLOCK_M2, HEAD_DIM], dtype=tl.float32) do = tl.load(DO + offs_m[:, None] * stride_tok + offs_k[None, :] * stride_d) m = tl.load(M + offs_m) m = m[:, None] # Compute dQ for masked (diagonal) blocks. # NOTE: This code scans each row of QK^T backward (from right to left, # but inside each call to _attn_bwd_dq, from left to right), but that's # not due to anything important. I just wanted to reuse the loop # structure for dK & dV above as much as possible. num_steps = BLOCK_M2 // MASK_BLOCK_N2 dq = _attn_bwd_dq(dq, q, K, V, # do, m, D, # stride_tok, stride_d, # H, N_CTX, # BLOCK_M2, MASK_BLOCK_N2, HEAD_DIM, # start_m, end_n - num_steps * MASK_BLOCK_N2, num_steps, # MASK=True # ) end_n -= num_steps * MASK_BLOCK_N2 # stage 2 num_steps = end_n // BLOCK_N2 dq = _attn_bwd_dq(dq, q, K, V, # do, m, D, # stride_tok, stride_d, # H, N_CTX, # BLOCK_M2, BLOCK_N2, HEAD_DIM, # start_m, end_n - num_steps * BLOCK_N2, num_steps, # MASK=False # ) # Write back dQ. dq_ptrs = DQ + offs_m[:, None] * stride_tok + offs_k[None, :] * stride_d dq *= LN2 tl.store(dq_ptrs, dq) class _attention(torch.autograd.Function): @staticmethod def forward(ctx, q, k, v, causal, sm_scale): # shape constraints HEAD_DIM_Q, HEAD_DIM_K = q.shape[-1], k.shape[-1] # when v is in float8_e5m2 it is transposed. HEAD_DIM_V = v.shape[-1] assert HEAD_DIM_Q == HEAD_DIM_K and HEAD_DIM_K == HEAD_DIM_V assert HEAD_DIM_K in {16, 32, 64, 128, 256} o = torch.empty_like(q) stage = 3 if causal else 1 # ? extra_kern_args = {} # Tuning for AMD target if is_hip(): waves_per_eu = 3 if HEAD_DIM_K <= 64 else 2 extra_kern_args = {"waves_per_eu": waves_per_eu, "allow_flush_denorm": True} # grid.x = seqlen/BLOCK_M # grid_y = batch_size * head_dim grid = lambda args: (triton.cdiv(q.shape[2], args["BLOCK_M"]), q.shape[0] * q.shape[1], 1) M = torch.empty((q.shape[0], q.shape[1], q.shape[2]), device=q.device, dtype=torch.float32) _attn_fwd[grid]( q, k, v, sm_scale, M, o, # q.stride(0), q.stride(1), q.stride(2), q.stride(3), # k.stride(0), k.stride(1), k.stride(2), k.stride(3), # v.stride(0), v.stride(1), v.stride(2), v.stride(3), # o.stride(0), o.stride(1), o.stride(2), o.stride(3), # q.shape[0], q.shape[1], # N_CTX=q.shape[2], # HEAD_DIM=HEAD_DIM_K, # STAGE=stage, # **extra_kern_args) ctx.save_for_backward(q, k, v, o, M) ctx.grid = grid ctx.sm_scale = sm_scale ctx.HEAD_DIM = HEAD_DIM_K ctx.causal = causal return o @staticmethod def backward(ctx, do): q, k, v, o, M = ctx.saved_tensors assert do.is_contiguous() assert q.stride() == k.stride() == v.stride() == o.stride() == do.stride() dq = torch.empty_like(q) dk = torch.empty_like(k) dv = torch.empty_like(v) BATCH, N_HEAD, N_CTX = q.shape[:3] PRE_BLOCK = 128 NUM_WARPS, NUM_STAGES = 4, 5 BLOCK_M1, BLOCK_N1, BLOCK_M2, BLOCK_N2 = 32, 128, 128, 32 BLK_SLICE_FACTOR = 2 RCP_LN2 = 1.4426950408889634 # = 1.0 / ln(2) arg_k = k arg_k = arg_k * (ctx.sm_scale * RCP_LN2) PRE_BLOCK = 128 assert N_CTX % PRE_BLOCK == 0 pre_grid = (N_CTX // PRE_BLOCK, BATCH * N_HEAD) delta = torch.empty_like(M) _attn_bwd_preprocess[pre_grid]( o, do, # delta, # BATCH, N_HEAD, N_CTX, # BLOCK_M=PRE_BLOCK, HEAD_DIM=ctx.HEAD_DIM # ) grid = (N_CTX // BLOCK_N1, 1, BATCH * N_HEAD) _attn_bwd[grid]( q, arg_k, v, ctx.sm_scale, do, dq, dk, dv, # M, delta, # q.stride(0), q.stride(1), q.stride(2), q.stride(3), # N_HEAD, N_CTX, # BLOCK_M1=BLOCK_M1, BLOCK_N1=BLOCK_N1, # BLOCK_M2=BLOCK_M2, BLOCK_N2=BLOCK_N2, # BLK_SLICE_FACTOR=BLK_SLICE_FACTOR, # HEAD_DIM=ctx.HEAD_DIM, # num_warps=NUM_WARPS, # num_stages=NUM_STAGES # ) return dq, dk, dv, None, None attention = _attention.apply # batch size, head num, sequence length, head dim @pytest.mark.parametrize("Z, H, N_CTX, HEAD_DIM", [(1, 2, 1024, 64)]) @pytest.mark.parametrize("causal", [True]) # causal mask def test_op(Z, H, N_CTX, HEAD_DIM, causal, dtype=torch.float16): torch.manual_seed(20) q = (torch.empty((Z, H, N_CTX, HEAD_DIM), dtype=dtype, device="cuda").normal_(mean=0.0, std=0.5).requires_grad_()) k = (torch.empty((Z, H, N_CTX, HEAD_DIM), dtype=dtype, device="cuda").normal_(mean=0.0, std=0.5).requires_grad_()) v = (torch.empty((Z, H, N_CTX, HEAD_DIM), dtype=dtype, device="cuda").normal_(mean=0.0, std=0.5).requires_grad_()) sm_scale = 0.5 dout = torch.randn_like(q) # reference implementation (PyTorch) M = torch.tril(torch.ones((N_CTX, N_CTX), device="cuda")) p = torch.matmul(q, k.transpose(2, 3)) * sm_scale # attention score if causal: p[:, :, M == 0] = float("-inf") p = torch.softmax(p.float(), dim=-1).half() # p = torch.exp(p) ref_out = torch.matmul(p, v) ref_out.backward(dout) ref_dv, v.grad = v.grad.clone(), None ref_dk, k.grad = k.grad.clone(), None ref_dq, q.grad = q.grad.clone(), None # triton implementation tri_out = attention(q, k, v, causal, sm_scale).half() tri_out.backward(dout) tri_dv, v.grad = v.grad.clone(), None tri_dk, k.grad = k.grad.clone(), None tri_dq, q.grad = q.grad.clone(), None # compare assert torch.allclose(ref_out, tri_out, atol=1e-2, rtol=0) rtol = 0.0 # Relative tolerance workaround for known hardware limitation of MI200 GPU. # For details see https://pytorch.org/docs/stable/notes/numerical_accuracy.html#reduced-precision-fp16-and-bf16-gemms-and-convolutions-on-amd-instinct-mi200-devices if torch.version.hip is not None and triton.runtime.driver.active.get_current_target().arch == "gfx90a": rtol = 1e-2 assert torch.allclose(ref_dv, tri_dv, atol=1e-2, rtol=rtol) assert torch.allclose(ref_dk, tri_dk, atol=1e-2, rtol=rtol) assert torch.allclose(ref_dq, tri_dq, atol=1e-2, rtol=rtol) try: from flash_attn.flash_attn_interface import \ flash_attn_qkvpacked_func as flash_attn_func HAS_FLASH = True except BaseException: HAS_FLASH = False TORCH_HAS_FP8 = hasattr(torch, 'float8_e5m2') BATCH, N_HEADS, HEAD_DIM = 4, 32, 64 # vary seq length for fixed head and batch=4 configs = [] for mode in ["fwd"]: # ["fwd", "bwd"] for causal in [True]: # [True, False] if mode == "bwd" and not causal: continue configs.append( triton.testing.Benchmark( x_names=["N_CTX"], x_vals=[2**i for i in range(9, 13)], line_arg="provider", line_vals=["triton-fp16"] + (["triton-fp8"] if TORCH_HAS_FP8 else []) + (["flash"] if HAS_FLASH else []) + ["torch"], line_names=["Triton [FP16]"] + (["Triton [FP8]"] if TORCH_HAS_FP8 else []) + (["Flash-2"] if HAS_FLASH else []) + ["torch"], styles=[("red", "-"), ("blue", "-"), ("green", "-"), ("yellow", "-")], ylabel="TFLOPS", plot_name=f"fused-attention-batch{BATCH}-head{N_HEADS}-d{HEAD_DIM}-{mode}-causal={causal}", args={ "H": N_HEADS, "BATCH": BATCH, "HEAD_DIM": HEAD_DIM, "mode": mode, "causal": causal, }, )) @triton.testing.perf_report(configs) def bench_flash_attention(BATCH, H, N_CTX, HEAD_DIM, causal, mode, provider, device="cuda"): assert mode in ["fwd", "bwd"] dtype = torch.float16 if "triton" in provider: q = torch.randn((BATCH, H, N_CTX, HEAD_DIM), dtype=dtype, device=device, requires_grad=True) k = torch.randn((BATCH, H, N_CTX, HEAD_DIM), dtype=dtype, device=device, requires_grad=True) v = torch.randn((BATCH, H, N_CTX, HEAD_DIM), dtype=dtype, device=device, requires_grad=True) if mode == "fwd" and "fp8" in provider: q = q.to(torch.float8_e5m2) k = k.to(torch.float8_e5m2) v = v.permute(0, 1, 3, 2).contiguous() v = v.permute(0, 1, 3, 2) v = v.to(torch.float8_e5m2) sm_scale = 1.3 fn = lambda: attention(q, k, v, causal, sm_scale) if mode == "bwd": o = fn() do = torch.randn_like(o) fn = lambda: o.backward(do, retain_graph=True) ms = triton.testing.do_bench(fn) if provider == "flash": qkv = torch.randn((BATCH, N_CTX, 3, H, HEAD_DIM), dtype=dtype, device=device, requires_grad=True) fn = lambda: flash_attn_func(qkv, causal=causal) if mode == "bwd": o = fn() do = torch.randn_like(o) fn = lambda: o.backward(do, retain_graph=True) ms = triton.testing.do_bench(fn) if provider == "torch": q = torch.randn((BATCH, H, N_CTX, HEAD_DIM), dtype=dtype, device=device, requires_grad=True) k = torch.randn((BATCH, H, N_CTX, HEAD_DIM), dtype=dtype, device=device, requires_grad=True) v = torch.randn((BATCH, H, N_CTX, HEAD_DIM), dtype=dtype, device=device, requires_grad=True) sm_scale = 1.3 M = torch.tril(torch.ones((N_CTX, N_CTX), device="cuda")) p = torch.matmul(q, k.transpose(2, 3)) * sm_scale # attention score if causal: p[:, :, M == 0] = float("-inf") p = torch.softmax(p.float(), dim=-1).half() fn = lambda: torch.matmul(p, v) ms = triton.testing.do_bench(fn) flops_per_matmul = 2.0 * BATCH * H * N_CTX * N_CTX * HEAD_DIM total_flops = 2 * flops_per_matmul if causal: total_flops *= 0.5 if mode == "bwd": total_flops *= 2.5 # 2.0(bwd) + 0.5(recompute) return total_flops * 1e-12 / (ms * 1e-3) def peak_memory(backend): dtype = torch.float16 device = 'cuda' BATCH, H, HEAD_DIM = 4, 32, 64 for N_CTX in [2**i for i in range(9, 13)]: q = torch.randn((BATCH, H, N_CTX, HEAD_DIM), dtype=dtype, device=device, requires_grad=True) k = torch.randn((BATCH, H, N_CTX, HEAD_DIM), dtype=dtype, device=device, requires_grad=True) v = torch.randn((BATCH, H, N_CTX, HEAD_DIM), dtype=dtype, device=device, requires_grad=True) sm_scale = 1.3 def torch_call(): M = torch.tril(torch.ones((N_CTX, N_CTX), device="cuda")) p = torch.matmul(q, k.transpose(2, 3)) * sm_scale # attention score if causal: p[:, :, M == 0] = float("-inf") p = torch.softmax(p.float(), dim=-1).half() fn = lambda: torch.matmul(p, v) ms = triton.testing.do_bench(fn) def triton_call(): attention(q, k, v, causal, sm_scale) QUANTILES = [0.5, 0.2, 0.8] if backend == "triton": mem_50, mem_20, mem_80 = _test_memory(triton_call, quantiles=QUANTILES) print(f"Triton Peak Memory of {N_CTX} is {mem_50, mem_20, mem_80}") if backend == "torch": mem_50, mem_20, mem_80 = _test_memory(torch_call, quantiles=QUANTILES) print(f"Torch Peak Memory of {N_CTX} is {mem_50, mem_20, mem_80}") if __name__ == "__main__": # only works on post-Ampere GPUs right now bench_flash_attention.run(save_path=".", print_data=True) # peak_memory("torch")
@triton.jit def _attn_fwd(Q, K, V, sm_scale, M, Out, # stride_qz, stride_qh, stride_qm, stride_qk, # stride_kz, stride_kh, stride_kn, stride_kk, # stride_vz, stride_vh, stride_vk, stride_vn, # stride_oz, stride_oh, stride_om, stride_on, # Z, H, N_CTX, # HEAD_DIM: tl.constexpr, # BLOCK_M: tl.constexpr, # BLOCK_N: tl.constexpr, # STAGE: tl.constexpr # ): tl.static_assert(BLOCK_N <= HEAD_DIM) start_m = tl.program_id(0) off_hz = tl.program_id(1) off_z = off_hz // H off_h = off_hz % H qvk_offset = off_z.to(tl.int64) * stride_qz + off_h.to(tl.int64) * stride_qh # block pointers Q_block_ptr = tl.make_block_ptr( base=Q + qvk_offset, shape=(N_CTX, HEAD_DIM), strides=(stride_qm, stride_qk), offsets=(start_m * BLOCK_M, 0), block_shape=(BLOCK_M, HEAD_DIM), order=(1, 0), ) v_order: tl.constexpr = (0, 1) if V.dtype.element_ty == tl.float8e5 else (1, 0) V_block_ptr = tl.make_block_ptr( base=V + qvk_offset, shape=(N_CTX, HEAD_DIM), strides=(stride_vk, stride_vn), offsets=(0, 0), block_shape=(BLOCK_N, HEAD_DIM), order=v_order, ) K_block_ptr = tl.make_block_ptr( base=K + qvk_offset, shape=(HEAD_DIM, N_CTX), strides=(stride_kk, stride_kn), offsets=(0, 0), block_shape=(HEAD_DIM, BLOCK_N), order=(0, 1), ) O_block_ptr = tl.make_block_ptr( base=Out + qvk_offset, shape=(N_CTX, HEAD_DIM), strides=(stride_om, stride_on), offsets=(start_m * BLOCK_M, 0), block_shape=(BLOCK_M, HEAD_DIM), order=(1, 0), ) # initialize offsets offs_m = start_m * BLOCK_M + tl.arange(0, BLOCK_M) offs_n = tl.arange(0, BLOCK_N) # initialize pointer to m and l m_i = tl.zeros([BLOCK_M], dtype=tl.float32) - float("inf") l_i = tl.zeros([BLOCK_M], dtype=tl.float32) + 1.0 acc = tl.zeros([BLOCK_M, HEAD_DIM], dtype=tl.float32) # load scales qk_scale = sm_scale qk_scale *= 1.44269504 # 1/log(2) # load q: it will stay in SRAM throughout q = tl.load(Q_block_ptr) # stage 1: off-band # For causal = True, STAGE = 3 and _attn_fwd_inner gets 1 as its STAGE # For causal = False, STAGE = 1, and _attn_fwd_inner gets 3 as its STAGE if STAGE & 1: acc, l_i, m_i = _attn_fwd_inner(acc, l_i, m_i, q, K_block_ptr, V_block_ptr, # start_m, qk_scale, # BLOCK_M, HEAD_DIM, BLOCK_N, # 4 - STAGE, offs_m, offs_n, N_CTX, V.dtype.element_ty == tl.float8e5 # ) # stage 2: on-band if STAGE & 2: # barrier makes it easier for compielr to schedule the # two loops independently acc, l_i, m_i = _attn_fwd_inner(acc, l_i, m_i, q, K_block_ptr, V_block_ptr, # start_m, qk_scale, # BLOCK_M, HEAD_DIM, BLOCK_N, # 2, offs_m, offs_n, N_CTX, V.dtype.element_ty == tl.float8e5 # ) # epilogue m_i += tl.math.log2(l_i) acc = acc / l_i[:, None] m_ptrs = M + off_hz * N_CTX + offs_m tl.store(m_ptrs, m_i) tl.store(O_block_ptr, acc.to(Out.type.element_ty))
bjmsong/hands-on-kernels
fa/v2.py
https://github.com/bjmsong/hands-on-kernels/blob/c219e87282d2e2895e4218175f774cda757df022/fa/v2.py
import pytest import torch import triton import triton.language as tl from utils import _test_memory def is_hip(): return triton.runtime.driver.active.get_current_target().backend == "hip" @triton.jit def _attn_fwd_inner(acc, l_i, m_i, q, # K_block_ptr, V_block_ptr, # start_m, qk_scale, # BLOCK_M: tl.constexpr, HEAD_DIM: tl.constexpr, BLOCK_N: tl.constexpr, # STAGE: tl.constexpr, offs_m: tl.constexpr, offs_n: tl.constexpr, # N_CTX: tl.constexpr, fp8_v: tl.constexpr): # range of values handled by this stage if STAGE == 1: lo, hi = 0, start_m * BLOCK_M elif STAGE == 2: lo, hi = start_m * BLOCK_M, (start_m + 1) * BLOCK_M lo = tl.multiple_of(lo, BLOCK_M) # causal = False else: lo, hi = 0, N_CTX K_block_ptr = tl.advance(K_block_ptr, (0, lo)) V_block_ptr = tl.advance(V_block_ptr, (lo, 0)) # loop over k, v and update accumulator for start_n in range(lo, hi, BLOCK_N): start_n = tl.multiple_of(start_n, BLOCK_N) # -- compute qk ---- k = tl.load(K_block_ptr) qk = tl.dot(q, k) if STAGE == 2: mask = offs_m[:, None] >= (start_n + offs_n[None, :]) qk = qk * qk_scale + tl.where(mask, 0, -1.0e6) m_ij = tl.maximum(m_i, tl.max(qk, 1)) qk -= m_ij[:, None] else: m_ij = tl.maximum(m_i, tl.max(qk, 1) * qk_scale) qk = qk * qk_scale - m_ij[:, None] p = tl.math.exp2(qk) l_ij = tl.sum(p, 1) # -- update m_i and l_i alpha = tl.math.exp2(m_i - m_ij) l_i = l_i * alpha + l_ij # -- update output accumulator -- acc = acc * alpha[:, None] # update acc v = tl.load(V_block_ptr) if fp8_v: p = p.to(tl.float8e5) else: p = p.to(tl.float16) acc = tl.dot(p, v, acc) # update m_i and l_i m_i = m_ij V_block_ptr = tl.advance(V_block_ptr, (BLOCK_N, 0)) K_block_ptr = tl.advance(K_block_ptr, (0, BLOCK_N)) return acc, l_i, m_i # We don't run auto-tuning every time to keep the tutorial fast. Keeping # the code below and commenting out the equivalent parameters is convenient for # re-tuning. configs = [ triton.Config({'BLOCK_M': BM, 'BLOCK_N': BN}, num_stages=s, num_warps=w) \ for BM in [64, 128]\ for BN in [32, 64]\ for s in ([1] if is_hip() else [3, 4, 7])\ for w in [4, 8]\ ] def keep(conf): BLOCK_M = conf.kwargs["BLOCK_M"] BLOCK_N = conf.kwargs["BLOCK_N"] if BLOCK_M * BLOCK_N < 128 * 128 and conf.num_warps == 8: return False return True @triton.autotune(list(filter(keep, configs)), key=["N_CTX", "HEAD_DIM"]) @triton.jit def _attn_fwd(Q, K, V, sm_scale, M, Out, # stride_qz, stride_qh, stride_qm, stride_qk, # stride_kz, stride_kh, stride_kn, stride_kk, # stride_vz, stride_vh, stride_vk, stride_vn, # stride_oz, stride_oh, stride_om, stride_on, # Z, H, N_CTX, # HEAD_DIM: tl.constexpr, # BLOCK_M: tl.constexpr, # BLOCK_N: tl.constexpr, # STAGE: tl.constexpr # ): tl.static_assert(BLOCK_N <= HEAD_DIM) start_m = tl.program_id(0) off_hz = tl.program_id(1) off_z = off_hz // H off_h = off_hz % H qvk_offset = off_z.to(tl.int64) * stride_qz + off_h.to(tl.int64) * stride_qh # block pointers Q_block_ptr = tl.make_block_ptr( base=Q + qvk_offset, shape=(N_CTX, HEAD_DIM), strides=(stride_qm, stride_qk), offsets=(start_m * BLOCK_M, 0), block_shape=(BLOCK_M, HEAD_DIM), order=(1, 0), ) v_order: tl.constexpr = (0, 1) if V.dtype.element_ty == tl.float8e5 else (1, 0) V_block_ptr = tl.make_block_ptr( base=V + qvk_offset, shape=(N_CTX, HEAD_DIM), strides=(stride_vk, stride_vn), offsets=(0, 0), block_shape=(BLOCK_N, HEAD_DIM), order=v_order, ) K_block_ptr = tl.make_block_ptr( base=K + qvk_offset, shape=(HEAD_DIM, N_CTX), strides=(stride_kk, stride_kn), offsets=(0, 0), block_shape=(HEAD_DIM, BLOCK_N), order=(0, 1), ) O_block_ptr = tl.make_block_ptr( base=Out + qvk_offset, shape=(N_CTX, HEAD_DIM), strides=(stride_om, stride_on), offsets=(start_m * BLOCK_M, 0), block_shape=(BLOCK_M, HEAD_DIM), order=(1, 0), ) # initialize offsets offs_m = start_m * BLOCK_M + tl.arange(0, BLOCK_M) offs_n = tl.arange(0, BLOCK_N) # initialize pointer to m and l m_i = tl.zeros([BLOCK_M], dtype=tl.float32) - float("inf") l_i = tl.zeros([BLOCK_M], dtype=tl.float32) + 1.0 acc = tl.zeros([BLOCK_M, HEAD_DIM], dtype=tl.float32) # load scales qk_scale = sm_scale qk_scale *= 1.44269504 # 1/log(2) # load q: it will stay in SRAM throughout q = tl.load(Q_block_ptr) # stage 1: off-band # For causal = True, STAGE = 3 and _attn_fwd_inner gets 1 as its STAGE # For causal = False, STAGE = 1, and _attn_fwd_inner gets 3 as its STAGE if STAGE & 1: acc, l_i, m_i = _attn_fwd_inner(acc, l_i, m_i, q, K_block_ptr, V_block_ptr, # start_m, qk_scale, # BLOCK_M, HEAD_DIM, BLOCK_N, # 4 - STAGE, offs_m, offs_n, N_CTX, V.dtype.element_ty == tl.float8e5 # ) # stage 2: on-band if STAGE & 2: # barrier makes it easier for compielr to schedule the # two loops independently acc, l_i, m_i = _attn_fwd_inner(acc, l_i, m_i, q, K_block_ptr, V_block_ptr, # start_m, qk_scale, # BLOCK_M, HEAD_DIM, BLOCK_N, # 2, offs_m, offs_n, N_CTX, V.dtype.element_ty == tl.float8e5 # ) # epilogue m_i += tl.math.log2(l_i) acc = acc / l_i[:, None] m_ptrs = M + off_hz * N_CTX + offs_m tl.store(m_ptrs, m_i) tl.store(O_block_ptr, acc.to(Out.type.element_ty)) @triton.jit def _attn_bwd_preprocess(O, DO, # Delta, # Z, H, N_CTX, # BLOCK_M: tl.constexpr, HEAD_DIM: tl.constexpr # ): off_m = tl.program_id(0) * BLOCK_M + tl.arange(0, BLOCK_M) off_hz = tl.program_id(1) off_n = tl.arange(0, HEAD_DIM) # load o = tl.load(O + off_hz * HEAD_DIM * N_CTX + off_m[:, None] * HEAD_DIM + off_n[None, :]) do = tl.load(DO + off_hz * HEAD_DIM * N_CTX + off_m[:, None] * HEAD_DIM + off_n[None, :]).to(tl.float32) delta = tl.sum(o * do, axis=1) # write-back tl.store(Delta + off_hz * N_CTX + off_m, delta) # The main inner-loop logic for computing dK and dV. @triton.jit def _attn_bwd_dkdv(dk, dv, # Q, k, v, sm_scale, # DO, # M, D, # # shared by Q/K/V/DO. stride_tok, stride_d, # H, N_CTX, BLOCK_M1: tl.constexpr, # BLOCK_N1: tl.constexpr, # HEAD_DIM: tl.constexpr, # # Filled in by the wrapper. start_n, start_m, num_steps, # MASK: tl.constexpr): offs_m = start_m + tl.arange(0, BLOCK_M1) offs_n = start_n + tl.arange(0, BLOCK_N1) offs_k = tl.arange(0, HEAD_DIM) qT_ptrs = Q + offs_m[None, :] * stride_tok + offs_k[:, None] * stride_d do_ptrs = DO + offs_m[:, None] * stride_tok + offs_k[None, :] * stride_d # BLOCK_N1 must be a multiple of BLOCK_M1, otherwise the code wouldn't work. tl.static_assert(BLOCK_N1 % BLOCK_M1 == 0) curr_m = start_m step_m = BLOCK_M1 for blk_idx in range(num_steps): qT = tl.load(qT_ptrs) # Load m before computing qk to reduce pipeline stall. offs_m = curr_m + tl.arange(0, BLOCK_M1) m = tl.load(M + offs_m) qkT = tl.dot(k, qT) pT = tl.math.exp2(qkT - m[None, :]) # Autoregressive masking. if MASK: mask = (offs_m[None, :] >= offs_n[:, None]) pT = tl.where(mask, pT, 0.0) do = tl.load(do_ptrs) # Compute dV. ppT = pT ppT = ppT.to(tl.float16) dv += tl.dot(ppT, do) # D (= delta) is pre-divided by ds_scale. Di = tl.load(D + offs_m) # Compute dP and dS. dpT = tl.dot(v, tl.trans(do)).to(tl.float32) dsT = pT * (dpT - Di[None, :]) dsT = dsT.to(tl.float16) dk += tl.dot(dsT, tl.trans(qT)) # Increment pointers. curr_m += step_m qT_ptrs += step_m * stride_tok do_ptrs += step_m * stride_tok return dk, dv # the main inner-loop logic for computing dQ @triton.jit def _attn_bwd_dq(dq, q, K, V, # do, m, D, # shared by Q/K/V/DO. stride_tok, stride_d, # H, N_CTX, # BLOCK_M2: tl.constexpr, # BLOCK_N2: tl.constexpr, # HEAD_DIM: tl.constexpr, # Filled in by the wrapper. start_m, start_n, num_steps, # MASK: tl.constexpr): offs_m = start_m + tl.arange(0, BLOCK_M2) offs_n = start_n + tl.arange(0, BLOCK_N2) offs_k = tl.arange(0, HEAD_DIM) kT_ptrs = K + offs_n[None, :] * stride_tok + offs_k[:, None] * stride_d vT_ptrs = V + offs_n[None, :] * stride_tok + offs_k[:, None] * stride_d # D (= delta) is pre-divided by ds_scale. Di = tl.load(D + offs_m) # BLOCK_M2 must be a multiple of BLOCK_N2, otherwise the code wouldn't work. tl.static_assert(BLOCK_M2 % BLOCK_N2 == 0) curr_n = start_n step_n = BLOCK_N2 for blk_idx in range(num_steps): kT = tl.load(kT_ptrs) vT = tl.load(vT_ptrs) qk = tl.dot(q, kT) p = tl.math.exp2(qk - m) # Autoregressive masking. if MASK: offs_n = curr_n + tl.arange(0, BLOCK_N2) mask = (offs_m[:, None] >= offs_n[None, :]) p = tl.where(mask, p, 0.0) # Compute dP and dS. dp = tl.dot(do, vT).to(tl.float32) ds = p * (dp - Di[:, None]) ds = ds.to(tl.float16) # Compute dQ. # NOTE: We need to de-scale dq in the end, because kT was pre-scaled. dq += tl.dot(ds, tl.trans(kT)) # Increment pointers. curr_n += step_n kT_ptrs += step_n * stride_tok vT_ptrs += step_n * stride_tok return dq @triton.jit def _attn_bwd(Q, K, V, sm_scale, # DO, # DQ, DK, DV, # M, D, # shared by Q/K/V/DO. stride_z, stride_h, stride_tok, stride_d, # H, N_CTX, # BLOCK_M1: tl.constexpr, # BLOCK_N1: tl.constexpr, # BLOCK_M2: tl.constexpr, # BLOCK_N2: tl.constexpr, # BLK_SLICE_FACTOR: tl.constexpr, # HEAD_DIM: tl.constexpr): LN2: tl.constexpr = 0.6931471824645996 # = ln(2) bhid = tl.program_id(2) off_chz = (bhid * N_CTX).to(tl.int64) adj = (stride_h * (bhid % H) + stride_z * (bhid // H)).to(tl.int64) pid = tl.program_id(0) # offset pointers for batch/head Q += adj K += adj V += adj DO += adj DQ += adj DK += adj DV += adj M += off_chz D += off_chz # load scales offs_k = tl.arange(0, HEAD_DIM) start_n = pid * BLOCK_N1 start_m = start_n MASK_BLOCK_M1: tl.constexpr = BLOCK_M1 // BLK_SLICE_FACTOR offs_n = start_n + tl.arange(0, BLOCK_N1) dv = tl.zeros([BLOCK_N1, HEAD_DIM], dtype=tl.float32) dk = tl.zeros([BLOCK_N1, HEAD_DIM], dtype=tl.float32) # load K and V: they stay in SRAM throughout the inner loop. k = tl.load(K + offs_n[:, None] * stride_tok + offs_k[None, :] * stride_d) v = tl.load(V + offs_n[:, None] * stride_tok + offs_k[None, :] * stride_d) num_steps = BLOCK_N1 // MASK_BLOCK_M1 dk, dv = _attn_bwd_dkdv(dk, dv, # Q, k, v, sm_scale, # DO, # M, D, # stride_tok, stride_d, # H, N_CTX, # MASK_BLOCK_M1, BLOCK_N1, HEAD_DIM, # start_n, start_m, num_steps, # MASK=True # ) start_m += num_steps * MASK_BLOCK_M1 num_steps = (N_CTX - start_m) // BLOCK_M1 # Compute dK and dV for non-masked blocks. dk, dv = _attn_bwd_dkdv( # dk, dv, # Q, k, v, sm_scale, # DO, # M, D, # stride_tok, stride_d, # H, N_CTX, # BLOCK_M1, BLOCK_N1, HEAD_DIM, # start_n, start_m, num_steps, # MASK=False # ) dv_ptrs = DV + offs_n[:, None] * stride_tok + offs_k[None, :] * stride_d tl.store(dv_ptrs, dv) # Write back dK. dk *= sm_scale dk_ptrs = DK + offs_n[:, None] * stride_tok + offs_k[None, :] * stride_d tl.store(dk_ptrs, dk) # THIS BLOCK DOES DQ: start_m = pid * BLOCK_M2 end_n = start_m + BLOCK_M2 MASK_BLOCK_N2: tl.constexpr = BLOCK_N2 // BLK_SLICE_FACTOR offs_m = start_m + tl.arange(0, BLOCK_M2) q = tl.load(Q + offs_m[:, None] * stride_tok + offs_k[None, :] * stride_d) dq = tl.zeros([BLOCK_M2, HEAD_DIM], dtype=tl.float32) do = tl.load(DO + offs_m[:, None] * stride_tok + offs_k[None, :] * stride_d) m = tl.load(M + offs_m) m = m[:, None] # Compute dQ for masked (diagonal) blocks. # NOTE: This code scans each row of QK^T backward (from right to left, # but inside each call to _attn_bwd_dq, from left to right), but that's # not due to anything important. I just wanted to reuse the loop # structure for dK & dV above as much as possible. num_steps = BLOCK_M2 // MASK_BLOCK_N2 dq = _attn_bwd_dq(dq, q, K, V, # do, m, D, # stride_tok, stride_d, # H, N_CTX, # BLOCK_M2, MASK_BLOCK_N2, HEAD_DIM, # start_m, end_n - num_steps * MASK_BLOCK_N2, num_steps, # MASK=True # ) end_n -= num_steps * MASK_BLOCK_N2 # stage 2 num_steps = end_n // BLOCK_N2 dq = _attn_bwd_dq(dq, q, K, V, # do, m, D, # stride_tok, stride_d, # H, N_CTX, # BLOCK_M2, BLOCK_N2, HEAD_DIM, # start_m, end_n - num_steps * BLOCK_N2, num_steps, # MASK=False # ) # Write back dQ. dq_ptrs = DQ + offs_m[:, None] * stride_tok + offs_k[None, :] * stride_d dq *= LN2 tl.store(dq_ptrs, dq) class _attention(torch.autograd.Function): @staticmethod def forward(ctx, q, k, v, causal, sm_scale): # shape constraints HEAD_DIM_Q, HEAD_DIM_K = q.shape[-1], k.shape[-1] # when v is in float8_e5m2 it is transposed. HEAD_DIM_V = v.shape[-1] assert HEAD_DIM_Q == HEAD_DIM_K and HEAD_DIM_K == HEAD_DIM_V assert HEAD_DIM_K in {16, 32, 64, 128, 256} o = torch.empty_like(q) stage = 3 if causal else 1 # ? extra_kern_args = {} # Tuning for AMD target if is_hip(): waves_per_eu = 3 if HEAD_DIM_K <= 64 else 2 extra_kern_args = {"waves_per_eu": waves_per_eu, "allow_flush_denorm": True} # grid.x = seqlen/BLOCK_M # grid_y = batch_size * head_dim grid = lambda args: (triton.cdiv(q.shape[2], args["BLOCK_M"]), q.shape[0] * q.shape[1], 1) M = torch.empty((q.shape[0], q.shape[1], q.shape[2]), device=q.device, dtype=torch.float32) _attn_fwd[grid]( q, k, v, sm_scale, M, o, # q.stride(0), q.stride(1), q.stride(2), q.stride(3), # k.stride(0), k.stride(1), k.stride(2), k.stride(3), # v.stride(0), v.stride(1), v.stride(2), v.stride(3), # o.stride(0), o.stride(1), o.stride(2), o.stride(3), # q.shape[0], q.shape[1], # N_CTX=q.shape[2], # HEAD_DIM=HEAD_DIM_K, # STAGE=stage, # **extra_kern_args) ctx.save_for_backward(q, k, v, o, M) ctx.grid = grid ctx.sm_scale = sm_scale ctx.HEAD_DIM = HEAD_DIM_K ctx.causal = causal return o @staticmethod def backward(ctx, do): q, k, v, o, M = ctx.saved_tensors assert do.is_contiguous() assert q.stride() == k.stride() == v.stride() == o.stride() == do.stride() dq = torch.empty_like(q) dk = torch.empty_like(k) dv = torch.empty_like(v) BATCH, N_HEAD, N_CTX = q.shape[:3] PRE_BLOCK = 128 NUM_WARPS, NUM_STAGES = 4, 5 BLOCK_M1, BLOCK_N1, BLOCK_M2, BLOCK_N2 = 32, 128, 128, 32 BLK_SLICE_FACTOR = 2 RCP_LN2 = 1.4426950408889634 # = 1.0 / ln(2) arg_k = k arg_k = arg_k * (ctx.sm_scale * RCP_LN2) PRE_BLOCK = 128 assert N_CTX % PRE_BLOCK == 0 pre_grid = (N_CTX // PRE_BLOCK, BATCH * N_HEAD) delta = torch.empty_like(M) _attn_bwd_preprocess[pre_grid]( o, do, # delta, # BATCH, N_HEAD, N_CTX, # BLOCK_M=PRE_BLOCK, HEAD_DIM=ctx.HEAD_DIM # ) grid = (N_CTX // BLOCK_N1, 1, BATCH * N_HEAD) _attn_bwd[grid]( q, arg_k, v, ctx.sm_scale, do, dq, dk, dv, # M, delta, # q.stride(0), q.stride(1), q.stride(2), q.stride(3), # N_HEAD, N_CTX, # BLOCK_M1=BLOCK_M1, BLOCK_N1=BLOCK_N1, # BLOCK_M2=BLOCK_M2, BLOCK_N2=BLOCK_N2, # BLK_SLICE_FACTOR=BLK_SLICE_FACTOR, # HEAD_DIM=ctx.HEAD_DIM, # num_warps=NUM_WARPS, # num_stages=NUM_STAGES # ) return dq, dk, dv, None, None attention = _attention.apply # batch size, head num, sequence length, head dim @pytest.mark.parametrize("Z, H, N_CTX, HEAD_DIM", [(1, 2, 1024, 64)]) @pytest.mark.parametrize("causal", [True]) # causal mask def test_op(Z, H, N_CTX, HEAD_DIM, causal, dtype=torch.float16): torch.manual_seed(20) q = (torch.empty((Z, H, N_CTX, HEAD_DIM), dtype=dtype, device="cuda").normal_(mean=0.0, std=0.5).requires_grad_()) k = (torch.empty((Z, H, N_CTX, HEAD_DIM), dtype=dtype, device="cuda").normal_(mean=0.0, std=0.5).requires_grad_()) v = (torch.empty((Z, H, N_CTX, HEAD_DIM), dtype=dtype, device="cuda").normal_(mean=0.0, std=0.5).requires_grad_()) sm_scale = 0.5 dout = torch.randn_like(q) # reference implementation (PyTorch) M = torch.tril(torch.ones((N_CTX, N_CTX), device="cuda")) p = torch.matmul(q, k.transpose(2, 3)) * sm_scale # attention score if causal: p[:, :, M == 0] = float("-inf") p = torch.softmax(p.float(), dim=-1).half() # p = torch.exp(p) ref_out = torch.matmul(p, v) ref_out.backward(dout) ref_dv, v.grad = v.grad.clone(), None ref_dk, k.grad = k.grad.clone(), None ref_dq, q.grad = q.grad.clone(), None # triton implementation tri_out = attention(q, k, v, causal, sm_scale).half() tri_out.backward(dout) tri_dv, v.grad = v.grad.clone(), None tri_dk, k.grad = k.grad.clone(), None tri_dq, q.grad = q.grad.clone(), None # compare assert torch.allclose(ref_out, tri_out, atol=1e-2, rtol=0) rtol = 0.0 # Relative tolerance workaround for known hardware limitation of MI200 GPU. # For details see https://pytorch.org/docs/stable/notes/numerical_accuracy.html#reduced-precision-fp16-and-bf16-gemms-and-convolutions-on-amd-instinct-mi200-devices if torch.version.hip is not None and triton.runtime.driver.active.get_current_target().arch == "gfx90a": rtol = 1e-2 assert torch.allclose(ref_dv, tri_dv, atol=1e-2, rtol=rtol) assert torch.allclose(ref_dk, tri_dk, atol=1e-2, rtol=rtol) assert torch.allclose(ref_dq, tri_dq, atol=1e-2, rtol=rtol) try: from flash_attn.flash_attn_interface import \ flash_attn_qkvpacked_func as flash_attn_func HAS_FLASH = True except BaseException: HAS_FLASH = False TORCH_HAS_FP8 = hasattr(torch, 'float8_e5m2') BATCH, N_HEADS, HEAD_DIM = 4, 32, 64 # vary seq length for fixed head and batch=4 configs = [] for mode in ["fwd"]: # ["fwd", "bwd"] for causal in [True]: # [True, False] if mode == "bwd" and not causal: continue configs.append( triton.testing.Benchmark( x_names=["N_CTX"], x_vals=[2**i for i in range(9, 13)], line_arg="provider", line_vals=["triton-fp16"] + (["triton-fp8"] if TORCH_HAS_FP8 else []) + (["flash"] if HAS_FLASH else []) + ["torch"], line_names=["Triton [FP16]"] + (["Triton [FP8]"] if TORCH_HAS_FP8 else []) + (["Flash-2"] if HAS_FLASH else []) + ["torch"], styles=[("red", "-"), ("blue", "-"), ("green", "-"), ("yellow", "-")], ylabel="TFLOPS", plot_name=f"fused-attention-batch{BATCH}-head{N_HEADS}-d{HEAD_DIM}-{mode}-causal={causal}", args={ "H": N_HEADS, "BATCH": BATCH, "HEAD_DIM": HEAD_DIM, "mode": mode, "causal": causal, }, )) @triton.testing.perf_report(configs) def bench_flash_attention(BATCH, H, N_CTX, HEAD_DIM, causal, mode, provider, device="cuda"): assert mode in ["fwd", "bwd"] dtype = torch.float16 if "triton" in provider: q = torch.randn((BATCH, H, N_CTX, HEAD_DIM), dtype=dtype, device=device, requires_grad=True) k = torch.randn((BATCH, H, N_CTX, HEAD_DIM), dtype=dtype, device=device, requires_grad=True) v = torch.randn((BATCH, H, N_CTX, HEAD_DIM), dtype=dtype, device=device, requires_grad=True) if mode == "fwd" and "fp8" in provider: q = q.to(torch.float8_e5m2) k = k.to(torch.float8_e5m2) v = v.permute(0, 1, 3, 2).contiguous() v = v.permute(0, 1, 3, 2) v = v.to(torch.float8_e5m2) sm_scale = 1.3 fn = lambda: attention(q, k, v, causal, sm_scale) if mode == "bwd": o = fn() do = torch.randn_like(o) fn = lambda: o.backward(do, retain_graph=True) ms = triton.testing.do_bench(fn) if provider == "flash": qkv = torch.randn((BATCH, N_CTX, 3, H, HEAD_DIM), dtype=dtype, device=device, requires_grad=True) fn = lambda: flash_attn_func(qkv, causal=causal) if mode == "bwd": o = fn() do = torch.randn_like(o) fn = lambda: o.backward(do, retain_graph=True) ms = triton.testing.do_bench(fn) if provider == "torch": q = torch.randn((BATCH, H, N_CTX, HEAD_DIM), dtype=dtype, device=device, requires_grad=True) k = torch.randn((BATCH, H, N_CTX, HEAD_DIM), dtype=dtype, device=device, requires_grad=True) v = torch.randn((BATCH, H, N_CTX, HEAD_DIM), dtype=dtype, device=device, requires_grad=True) sm_scale = 1.3 M = torch.tril(torch.ones((N_CTX, N_CTX), device="cuda")) p = torch.matmul(q, k.transpose(2, 3)) * sm_scale # attention score if causal: p[:, :, M == 0] = float("-inf") p = torch.softmax(p.float(), dim=-1).half() fn = lambda: torch.matmul(p, v) ms = triton.testing.do_bench(fn) flops_per_matmul = 2.0 * BATCH * H * N_CTX * N_CTX * HEAD_DIM total_flops = 2 * flops_per_matmul if causal: total_flops *= 0.5 if mode == "bwd": total_flops *= 2.5 # 2.0(bwd) + 0.5(recompute) return total_flops * 1e-12 / (ms * 1e-3) def peak_memory(backend): dtype = torch.float16 device = 'cuda' BATCH, H, HEAD_DIM = 4, 32, 64 for N_CTX in [2**i for i in range(9, 13)]: q = torch.randn((BATCH, H, N_CTX, HEAD_DIM), dtype=dtype, device=device, requires_grad=True) k = torch.randn((BATCH, H, N_CTX, HEAD_DIM), dtype=dtype, device=device, requires_grad=True) v = torch.randn((BATCH, H, N_CTX, HEAD_DIM), dtype=dtype, device=device, requires_grad=True) sm_scale = 1.3 def torch_call(): M = torch.tril(torch.ones((N_CTX, N_CTX), device="cuda")) p = torch.matmul(q, k.transpose(2, 3)) * sm_scale # attention score if causal: p[:, :, M == 0] = float("-inf") p = torch.softmax(p.float(), dim=-1).half() fn = lambda: torch.matmul(p, v) ms = triton.testing.do_bench(fn) def triton_call(): attention(q, k, v, causal, sm_scale) QUANTILES = [0.5, 0.2, 0.8] if backend == "triton": mem_50, mem_20, mem_80 = _test_memory(triton_call, quantiles=QUANTILES) print(f"Triton Peak Memory of {N_CTX} is {mem_50, mem_20, mem_80}") if backend == "torch": mem_50, mem_20, mem_80 = _test_memory(torch_call, quantiles=QUANTILES) print(f"Torch Peak Memory of {N_CTX} is {mem_50, mem_20, mem_80}") if __name__ == "__main__": # only works on post-Ampere GPUs right now bench_flash_attention.run(save_path=".", print_data=True) # peak_memory("torch")
@triton.jit def _attn_bwd_preprocess(O, DO, # Delta, # Z, H, N_CTX, # BLOCK_M: tl.constexpr, HEAD_DIM: tl.constexpr # ): off_m = tl.program_id(0) * BLOCK_M + tl.arange(0, BLOCK_M) off_hz = tl.program_id(1) off_n = tl.arange(0, HEAD_DIM) # load o = tl.load(O + off_hz * HEAD_DIM * N_CTX + off_m[:, None] * HEAD_DIM + off_n[None, :]) do = tl.load(DO + off_hz * HEAD_DIM * N_CTX + off_m[:, None] * HEAD_DIM + off_n[None, :]).to(tl.float32) delta = tl.sum(o * do, axis=1) # write-back tl.store(Delta + off_hz * N_CTX + off_m, delta) # The main inner-loop logic for computing dK and dV.
bjmsong/hands-on-kernels
fa/v2.py
https://github.com/bjmsong/hands-on-kernels/blob/c219e87282d2e2895e4218175f774cda757df022/fa/v2.py
import pytest import torch import triton import triton.language as tl from utils import _test_memory def is_hip(): return triton.runtime.driver.active.get_current_target().backend == "hip" @triton.jit def _attn_fwd_inner(acc, l_i, m_i, q, # K_block_ptr, V_block_ptr, # start_m, qk_scale, # BLOCK_M: tl.constexpr, HEAD_DIM: tl.constexpr, BLOCK_N: tl.constexpr, # STAGE: tl.constexpr, offs_m: tl.constexpr, offs_n: tl.constexpr, # N_CTX: tl.constexpr, fp8_v: tl.constexpr): # range of values handled by this stage if STAGE == 1: lo, hi = 0, start_m * BLOCK_M elif STAGE == 2: lo, hi = start_m * BLOCK_M, (start_m + 1) * BLOCK_M lo = tl.multiple_of(lo, BLOCK_M) # causal = False else: lo, hi = 0, N_CTX K_block_ptr = tl.advance(K_block_ptr, (0, lo)) V_block_ptr = tl.advance(V_block_ptr, (lo, 0)) # loop over k, v and update accumulator for start_n in range(lo, hi, BLOCK_N): start_n = tl.multiple_of(start_n, BLOCK_N) # -- compute qk ---- k = tl.load(K_block_ptr) qk = tl.dot(q, k) if STAGE == 2: mask = offs_m[:, None] >= (start_n + offs_n[None, :]) qk = qk * qk_scale + tl.where(mask, 0, -1.0e6) m_ij = tl.maximum(m_i, tl.max(qk, 1)) qk -= m_ij[:, None] else: m_ij = tl.maximum(m_i, tl.max(qk, 1) * qk_scale) qk = qk * qk_scale - m_ij[:, None] p = tl.math.exp2(qk) l_ij = tl.sum(p, 1) # -- update m_i and l_i alpha = tl.math.exp2(m_i - m_ij) l_i = l_i * alpha + l_ij # -- update output accumulator -- acc = acc * alpha[:, None] # update acc v = tl.load(V_block_ptr) if fp8_v: p = p.to(tl.float8e5) else: p = p.to(tl.float16) acc = tl.dot(p, v, acc) # update m_i and l_i m_i = m_ij V_block_ptr = tl.advance(V_block_ptr, (BLOCK_N, 0)) K_block_ptr = tl.advance(K_block_ptr, (0, BLOCK_N)) return acc, l_i, m_i # We don't run auto-tuning every time to keep the tutorial fast. Keeping # the code below and commenting out the equivalent parameters is convenient for # re-tuning. configs = [ triton.Config({'BLOCK_M': BM, 'BLOCK_N': BN}, num_stages=s, num_warps=w) \ for BM in [64, 128]\ for BN in [32, 64]\ for s in ([1] if is_hip() else [3, 4, 7])\ for w in [4, 8]\ ] def keep(conf): BLOCK_M = conf.kwargs["BLOCK_M"] BLOCK_N = conf.kwargs["BLOCK_N"] if BLOCK_M * BLOCK_N < 128 * 128 and conf.num_warps == 8: return False return True @triton.autotune(list(filter(keep, configs)), key=["N_CTX", "HEAD_DIM"]) @triton.jit def _attn_fwd(Q, K, V, sm_scale, M, Out, # stride_qz, stride_qh, stride_qm, stride_qk, # stride_kz, stride_kh, stride_kn, stride_kk, # stride_vz, stride_vh, stride_vk, stride_vn, # stride_oz, stride_oh, stride_om, stride_on, # Z, H, N_CTX, # HEAD_DIM: tl.constexpr, # BLOCK_M: tl.constexpr, # BLOCK_N: tl.constexpr, # STAGE: tl.constexpr # ): tl.static_assert(BLOCK_N <= HEAD_DIM) start_m = tl.program_id(0) off_hz = tl.program_id(1) off_z = off_hz // H off_h = off_hz % H qvk_offset = off_z.to(tl.int64) * stride_qz + off_h.to(tl.int64) * stride_qh # block pointers Q_block_ptr = tl.make_block_ptr( base=Q + qvk_offset, shape=(N_CTX, HEAD_DIM), strides=(stride_qm, stride_qk), offsets=(start_m * BLOCK_M, 0), block_shape=(BLOCK_M, HEAD_DIM), order=(1, 0), ) v_order: tl.constexpr = (0, 1) if V.dtype.element_ty == tl.float8e5 else (1, 0) V_block_ptr = tl.make_block_ptr( base=V + qvk_offset, shape=(N_CTX, HEAD_DIM), strides=(stride_vk, stride_vn), offsets=(0, 0), block_shape=(BLOCK_N, HEAD_DIM), order=v_order, ) K_block_ptr = tl.make_block_ptr( base=K + qvk_offset, shape=(HEAD_DIM, N_CTX), strides=(stride_kk, stride_kn), offsets=(0, 0), block_shape=(HEAD_DIM, BLOCK_N), order=(0, 1), ) O_block_ptr = tl.make_block_ptr( base=Out + qvk_offset, shape=(N_CTX, HEAD_DIM), strides=(stride_om, stride_on), offsets=(start_m * BLOCK_M, 0), block_shape=(BLOCK_M, HEAD_DIM), order=(1, 0), ) # initialize offsets offs_m = start_m * BLOCK_M + tl.arange(0, BLOCK_M) offs_n = tl.arange(0, BLOCK_N) # initialize pointer to m and l m_i = tl.zeros([BLOCK_M], dtype=tl.float32) - float("inf") l_i = tl.zeros([BLOCK_M], dtype=tl.float32) + 1.0 acc = tl.zeros([BLOCK_M, HEAD_DIM], dtype=tl.float32) # load scales qk_scale = sm_scale qk_scale *= 1.44269504 # 1/log(2) # load q: it will stay in SRAM throughout q = tl.load(Q_block_ptr) # stage 1: off-band # For causal = True, STAGE = 3 and _attn_fwd_inner gets 1 as its STAGE # For causal = False, STAGE = 1, and _attn_fwd_inner gets 3 as its STAGE if STAGE & 1: acc, l_i, m_i = _attn_fwd_inner(acc, l_i, m_i, q, K_block_ptr, V_block_ptr, # start_m, qk_scale, # BLOCK_M, HEAD_DIM, BLOCK_N, # 4 - STAGE, offs_m, offs_n, N_CTX, V.dtype.element_ty == tl.float8e5 # ) # stage 2: on-band if STAGE & 2: # barrier makes it easier for compielr to schedule the # two loops independently acc, l_i, m_i = _attn_fwd_inner(acc, l_i, m_i, q, K_block_ptr, V_block_ptr, # start_m, qk_scale, # BLOCK_M, HEAD_DIM, BLOCK_N, # 2, offs_m, offs_n, N_CTX, V.dtype.element_ty == tl.float8e5 # ) # epilogue m_i += tl.math.log2(l_i) acc = acc / l_i[:, None] m_ptrs = M + off_hz * N_CTX + offs_m tl.store(m_ptrs, m_i) tl.store(O_block_ptr, acc.to(Out.type.element_ty)) @triton.jit def _attn_bwd_preprocess(O, DO, # Delta, # Z, H, N_CTX, # BLOCK_M: tl.constexpr, HEAD_DIM: tl.constexpr # ): off_m = tl.program_id(0) * BLOCK_M + tl.arange(0, BLOCK_M) off_hz = tl.program_id(1) off_n = tl.arange(0, HEAD_DIM) # load o = tl.load(O + off_hz * HEAD_DIM * N_CTX + off_m[:, None] * HEAD_DIM + off_n[None, :]) do = tl.load(DO + off_hz * HEAD_DIM * N_CTX + off_m[:, None] * HEAD_DIM + off_n[None, :]).to(tl.float32) delta = tl.sum(o * do, axis=1) # write-back tl.store(Delta + off_hz * N_CTX + off_m, delta) # The main inner-loop logic for computing dK and dV. @triton.jit def _attn_bwd_dkdv(dk, dv, # Q, k, v, sm_scale, # DO, # M, D, # # shared by Q/K/V/DO. stride_tok, stride_d, # H, N_CTX, BLOCK_M1: tl.constexpr, # BLOCK_N1: tl.constexpr, # HEAD_DIM: tl.constexpr, # # Filled in by the wrapper. start_n, start_m, num_steps, # MASK: tl.constexpr): offs_m = start_m + tl.arange(0, BLOCK_M1) offs_n = start_n + tl.arange(0, BLOCK_N1) offs_k = tl.arange(0, HEAD_DIM) qT_ptrs = Q + offs_m[None, :] * stride_tok + offs_k[:, None] * stride_d do_ptrs = DO + offs_m[:, None] * stride_tok + offs_k[None, :] * stride_d # BLOCK_N1 must be a multiple of BLOCK_M1, otherwise the code wouldn't work. tl.static_assert(BLOCK_N1 % BLOCK_M1 == 0) curr_m = start_m step_m = BLOCK_M1 for blk_idx in range(num_steps): qT = tl.load(qT_ptrs) # Load m before computing qk to reduce pipeline stall. offs_m = curr_m + tl.arange(0, BLOCK_M1) m = tl.load(M + offs_m) qkT = tl.dot(k, qT) pT = tl.math.exp2(qkT - m[None, :]) # Autoregressive masking. if MASK: mask = (offs_m[None, :] >= offs_n[:, None]) pT = tl.where(mask, pT, 0.0) do = tl.load(do_ptrs) # Compute dV. ppT = pT ppT = ppT.to(tl.float16) dv += tl.dot(ppT, do) # D (= delta) is pre-divided by ds_scale. Di = tl.load(D + offs_m) # Compute dP and dS. dpT = tl.dot(v, tl.trans(do)).to(tl.float32) dsT = pT * (dpT - Di[None, :]) dsT = dsT.to(tl.float16) dk += tl.dot(dsT, tl.trans(qT)) # Increment pointers. curr_m += step_m qT_ptrs += step_m * stride_tok do_ptrs += step_m * stride_tok return dk, dv # the main inner-loop logic for computing dQ @triton.jit def _attn_bwd_dq(dq, q, K, V, # do, m, D, # shared by Q/K/V/DO. stride_tok, stride_d, # H, N_CTX, # BLOCK_M2: tl.constexpr, # BLOCK_N2: tl.constexpr, # HEAD_DIM: tl.constexpr, # Filled in by the wrapper. start_m, start_n, num_steps, # MASK: tl.constexpr): offs_m = start_m + tl.arange(0, BLOCK_M2) offs_n = start_n + tl.arange(0, BLOCK_N2) offs_k = tl.arange(0, HEAD_DIM) kT_ptrs = K + offs_n[None, :] * stride_tok + offs_k[:, None] * stride_d vT_ptrs = V + offs_n[None, :] * stride_tok + offs_k[:, None] * stride_d # D (= delta) is pre-divided by ds_scale. Di = tl.load(D + offs_m) # BLOCK_M2 must be a multiple of BLOCK_N2, otherwise the code wouldn't work. tl.static_assert(BLOCK_M2 % BLOCK_N2 == 0) curr_n = start_n step_n = BLOCK_N2 for blk_idx in range(num_steps): kT = tl.load(kT_ptrs) vT = tl.load(vT_ptrs) qk = tl.dot(q, kT) p = tl.math.exp2(qk - m) # Autoregressive masking. if MASK: offs_n = curr_n + tl.arange(0, BLOCK_N2) mask = (offs_m[:, None] >= offs_n[None, :]) p = tl.where(mask, p, 0.0) # Compute dP and dS. dp = tl.dot(do, vT).to(tl.float32) ds = p * (dp - Di[:, None]) ds = ds.to(tl.float16) # Compute dQ. # NOTE: We need to de-scale dq in the end, because kT was pre-scaled. dq += tl.dot(ds, tl.trans(kT)) # Increment pointers. curr_n += step_n kT_ptrs += step_n * stride_tok vT_ptrs += step_n * stride_tok return dq @triton.jit def _attn_bwd(Q, K, V, sm_scale, # DO, # DQ, DK, DV, # M, D, # shared by Q/K/V/DO. stride_z, stride_h, stride_tok, stride_d, # H, N_CTX, # BLOCK_M1: tl.constexpr, # BLOCK_N1: tl.constexpr, # BLOCK_M2: tl.constexpr, # BLOCK_N2: tl.constexpr, # BLK_SLICE_FACTOR: tl.constexpr, # HEAD_DIM: tl.constexpr): LN2: tl.constexpr = 0.6931471824645996 # = ln(2) bhid = tl.program_id(2) off_chz = (bhid * N_CTX).to(tl.int64) adj = (stride_h * (bhid % H) + stride_z * (bhid // H)).to(tl.int64) pid = tl.program_id(0) # offset pointers for batch/head Q += adj K += adj V += adj DO += adj DQ += adj DK += adj DV += adj M += off_chz D += off_chz # load scales offs_k = tl.arange(0, HEAD_DIM) start_n = pid * BLOCK_N1 start_m = start_n MASK_BLOCK_M1: tl.constexpr = BLOCK_M1 // BLK_SLICE_FACTOR offs_n = start_n + tl.arange(0, BLOCK_N1) dv = tl.zeros([BLOCK_N1, HEAD_DIM], dtype=tl.float32) dk = tl.zeros([BLOCK_N1, HEAD_DIM], dtype=tl.float32) # load K and V: they stay in SRAM throughout the inner loop. k = tl.load(K + offs_n[:, None] * stride_tok + offs_k[None, :] * stride_d) v = tl.load(V + offs_n[:, None] * stride_tok + offs_k[None, :] * stride_d) num_steps = BLOCK_N1 // MASK_BLOCK_M1 dk, dv = _attn_bwd_dkdv(dk, dv, # Q, k, v, sm_scale, # DO, # M, D, # stride_tok, stride_d, # H, N_CTX, # MASK_BLOCK_M1, BLOCK_N1, HEAD_DIM, # start_n, start_m, num_steps, # MASK=True # ) start_m += num_steps * MASK_BLOCK_M1 num_steps = (N_CTX - start_m) // BLOCK_M1 # Compute dK and dV for non-masked blocks. dk, dv = _attn_bwd_dkdv( # dk, dv, # Q, k, v, sm_scale, # DO, # M, D, # stride_tok, stride_d, # H, N_CTX, # BLOCK_M1, BLOCK_N1, HEAD_DIM, # start_n, start_m, num_steps, # MASK=False # ) dv_ptrs = DV + offs_n[:, None] * stride_tok + offs_k[None, :] * stride_d tl.store(dv_ptrs, dv) # Write back dK. dk *= sm_scale dk_ptrs = DK + offs_n[:, None] * stride_tok + offs_k[None, :] * stride_d tl.store(dk_ptrs, dk) # THIS BLOCK DOES DQ: start_m = pid * BLOCK_M2 end_n = start_m + BLOCK_M2 MASK_BLOCK_N2: tl.constexpr = BLOCK_N2 // BLK_SLICE_FACTOR offs_m = start_m + tl.arange(0, BLOCK_M2) q = tl.load(Q + offs_m[:, None] * stride_tok + offs_k[None, :] * stride_d) dq = tl.zeros([BLOCK_M2, HEAD_DIM], dtype=tl.float32) do = tl.load(DO + offs_m[:, None] * stride_tok + offs_k[None, :] * stride_d) m = tl.load(M + offs_m) m = m[:, None] # Compute dQ for masked (diagonal) blocks. # NOTE: This code scans each row of QK^T backward (from right to left, # but inside each call to _attn_bwd_dq, from left to right), but that's # not due to anything important. I just wanted to reuse the loop # structure for dK & dV above as much as possible. num_steps = BLOCK_M2 // MASK_BLOCK_N2 dq = _attn_bwd_dq(dq, q, K, V, # do, m, D, # stride_tok, stride_d, # H, N_CTX, # BLOCK_M2, MASK_BLOCK_N2, HEAD_DIM, # start_m, end_n - num_steps * MASK_BLOCK_N2, num_steps, # MASK=True # ) end_n -= num_steps * MASK_BLOCK_N2 # stage 2 num_steps = end_n // BLOCK_N2 dq = _attn_bwd_dq(dq, q, K, V, # do, m, D, # stride_tok, stride_d, # H, N_CTX, # BLOCK_M2, BLOCK_N2, HEAD_DIM, # start_m, end_n - num_steps * BLOCK_N2, num_steps, # MASK=False # ) # Write back dQ. dq_ptrs = DQ + offs_m[:, None] * stride_tok + offs_k[None, :] * stride_d dq *= LN2 tl.store(dq_ptrs, dq) class _attention(torch.autograd.Function): @staticmethod def forward(ctx, q, k, v, causal, sm_scale): # shape constraints HEAD_DIM_Q, HEAD_DIM_K = q.shape[-1], k.shape[-1] # when v is in float8_e5m2 it is transposed. HEAD_DIM_V = v.shape[-1] assert HEAD_DIM_Q == HEAD_DIM_K and HEAD_DIM_K == HEAD_DIM_V assert HEAD_DIM_K in {16, 32, 64, 128, 256} o = torch.empty_like(q) stage = 3 if causal else 1 # ? extra_kern_args = {} # Tuning for AMD target if is_hip(): waves_per_eu = 3 if HEAD_DIM_K <= 64 else 2 extra_kern_args = {"waves_per_eu": waves_per_eu, "allow_flush_denorm": True} # grid.x = seqlen/BLOCK_M # grid_y = batch_size * head_dim grid = lambda args: (triton.cdiv(q.shape[2], args["BLOCK_M"]), q.shape[0] * q.shape[1], 1) M = torch.empty((q.shape[0], q.shape[1], q.shape[2]), device=q.device, dtype=torch.float32) _attn_fwd[grid]( q, k, v, sm_scale, M, o, # q.stride(0), q.stride(1), q.stride(2), q.stride(3), # k.stride(0), k.stride(1), k.stride(2), k.stride(3), # v.stride(0), v.stride(1), v.stride(2), v.stride(3), # o.stride(0), o.stride(1), o.stride(2), o.stride(3), # q.shape[0], q.shape[1], # N_CTX=q.shape[2], # HEAD_DIM=HEAD_DIM_K, # STAGE=stage, # **extra_kern_args) ctx.save_for_backward(q, k, v, o, M) ctx.grid = grid ctx.sm_scale = sm_scale ctx.HEAD_DIM = HEAD_DIM_K ctx.causal = causal return o @staticmethod def backward(ctx, do): q, k, v, o, M = ctx.saved_tensors assert do.is_contiguous() assert q.stride() == k.stride() == v.stride() == o.stride() == do.stride() dq = torch.empty_like(q) dk = torch.empty_like(k) dv = torch.empty_like(v) BATCH, N_HEAD, N_CTX = q.shape[:3] PRE_BLOCK = 128 NUM_WARPS, NUM_STAGES = 4, 5 BLOCK_M1, BLOCK_N1, BLOCK_M2, BLOCK_N2 = 32, 128, 128, 32 BLK_SLICE_FACTOR = 2 RCP_LN2 = 1.4426950408889634 # = 1.0 / ln(2) arg_k = k arg_k = arg_k * (ctx.sm_scale * RCP_LN2) PRE_BLOCK = 128 assert N_CTX % PRE_BLOCK == 0 pre_grid = (N_CTX // PRE_BLOCK, BATCH * N_HEAD) delta = torch.empty_like(M) _attn_bwd_preprocess[pre_grid]( o, do, # delta, # BATCH, N_HEAD, N_CTX, # BLOCK_M=PRE_BLOCK, HEAD_DIM=ctx.HEAD_DIM # ) grid = (N_CTX // BLOCK_N1, 1, BATCH * N_HEAD) _attn_bwd[grid]( q, arg_k, v, ctx.sm_scale, do, dq, dk, dv, # M, delta, # q.stride(0), q.stride(1), q.stride(2), q.stride(3), # N_HEAD, N_CTX, # BLOCK_M1=BLOCK_M1, BLOCK_N1=BLOCK_N1, # BLOCK_M2=BLOCK_M2, BLOCK_N2=BLOCK_N2, # BLK_SLICE_FACTOR=BLK_SLICE_FACTOR, # HEAD_DIM=ctx.HEAD_DIM, # num_warps=NUM_WARPS, # num_stages=NUM_STAGES # ) return dq, dk, dv, None, None attention = _attention.apply # batch size, head num, sequence length, head dim @pytest.mark.parametrize("Z, H, N_CTX, HEAD_DIM", [(1, 2, 1024, 64)]) @pytest.mark.parametrize("causal", [True]) # causal mask def test_op(Z, H, N_CTX, HEAD_DIM, causal, dtype=torch.float16): torch.manual_seed(20) q = (torch.empty((Z, H, N_CTX, HEAD_DIM), dtype=dtype, device="cuda").normal_(mean=0.0, std=0.5).requires_grad_()) k = (torch.empty((Z, H, N_CTX, HEAD_DIM), dtype=dtype, device="cuda").normal_(mean=0.0, std=0.5).requires_grad_()) v = (torch.empty((Z, H, N_CTX, HEAD_DIM), dtype=dtype, device="cuda").normal_(mean=0.0, std=0.5).requires_grad_()) sm_scale = 0.5 dout = torch.randn_like(q) # reference implementation (PyTorch) M = torch.tril(torch.ones((N_CTX, N_CTX), device="cuda")) p = torch.matmul(q, k.transpose(2, 3)) * sm_scale # attention score if causal: p[:, :, M == 0] = float("-inf") p = torch.softmax(p.float(), dim=-1).half() # p = torch.exp(p) ref_out = torch.matmul(p, v) ref_out.backward(dout) ref_dv, v.grad = v.grad.clone(), None ref_dk, k.grad = k.grad.clone(), None ref_dq, q.grad = q.grad.clone(), None # triton implementation tri_out = attention(q, k, v, causal, sm_scale).half() tri_out.backward(dout) tri_dv, v.grad = v.grad.clone(), None tri_dk, k.grad = k.grad.clone(), None tri_dq, q.grad = q.grad.clone(), None # compare assert torch.allclose(ref_out, tri_out, atol=1e-2, rtol=0) rtol = 0.0 # Relative tolerance workaround for known hardware limitation of MI200 GPU. # For details see https://pytorch.org/docs/stable/notes/numerical_accuracy.html#reduced-precision-fp16-and-bf16-gemms-and-convolutions-on-amd-instinct-mi200-devices if torch.version.hip is not None and triton.runtime.driver.active.get_current_target().arch == "gfx90a": rtol = 1e-2 assert torch.allclose(ref_dv, tri_dv, atol=1e-2, rtol=rtol) assert torch.allclose(ref_dk, tri_dk, atol=1e-2, rtol=rtol) assert torch.allclose(ref_dq, tri_dq, atol=1e-2, rtol=rtol) try: from flash_attn.flash_attn_interface import \ flash_attn_qkvpacked_func as flash_attn_func HAS_FLASH = True except BaseException: HAS_FLASH = False TORCH_HAS_FP8 = hasattr(torch, 'float8_e5m2') BATCH, N_HEADS, HEAD_DIM = 4, 32, 64 # vary seq length for fixed head and batch=4 configs = [] for mode in ["fwd"]: # ["fwd", "bwd"] for causal in [True]: # [True, False] if mode == "bwd" and not causal: continue configs.append( triton.testing.Benchmark( x_names=["N_CTX"], x_vals=[2**i for i in range(9, 13)], line_arg="provider", line_vals=["triton-fp16"] + (["triton-fp8"] if TORCH_HAS_FP8 else []) + (["flash"] if HAS_FLASH else []) + ["torch"], line_names=["Triton [FP16]"] + (["Triton [FP8]"] if TORCH_HAS_FP8 else []) + (["Flash-2"] if HAS_FLASH else []) + ["torch"], styles=[("red", "-"), ("blue", "-"), ("green", "-"), ("yellow", "-")], ylabel="TFLOPS", plot_name=f"fused-attention-batch{BATCH}-head{N_HEADS}-d{HEAD_DIM}-{mode}-causal={causal}", args={ "H": N_HEADS, "BATCH": BATCH, "HEAD_DIM": HEAD_DIM, "mode": mode, "causal": causal, }, )) @triton.testing.perf_report(configs) def bench_flash_attention(BATCH, H, N_CTX, HEAD_DIM, causal, mode, provider, device="cuda"): assert mode in ["fwd", "bwd"] dtype = torch.float16 if "triton" in provider: q = torch.randn((BATCH, H, N_CTX, HEAD_DIM), dtype=dtype, device=device, requires_grad=True) k = torch.randn((BATCH, H, N_CTX, HEAD_DIM), dtype=dtype, device=device, requires_grad=True) v = torch.randn((BATCH, H, N_CTX, HEAD_DIM), dtype=dtype, device=device, requires_grad=True) if mode == "fwd" and "fp8" in provider: q = q.to(torch.float8_e5m2) k = k.to(torch.float8_e5m2) v = v.permute(0, 1, 3, 2).contiguous() v = v.permute(0, 1, 3, 2) v = v.to(torch.float8_e5m2) sm_scale = 1.3 fn = lambda: attention(q, k, v, causal, sm_scale) if mode == "bwd": o = fn() do = torch.randn_like(o) fn = lambda: o.backward(do, retain_graph=True) ms = triton.testing.do_bench(fn) if provider == "flash": qkv = torch.randn((BATCH, N_CTX, 3, H, HEAD_DIM), dtype=dtype, device=device, requires_grad=True) fn = lambda: flash_attn_func(qkv, causal=causal) if mode == "bwd": o = fn() do = torch.randn_like(o) fn = lambda: o.backward(do, retain_graph=True) ms = triton.testing.do_bench(fn) if provider == "torch": q = torch.randn((BATCH, H, N_CTX, HEAD_DIM), dtype=dtype, device=device, requires_grad=True) k = torch.randn((BATCH, H, N_CTX, HEAD_DIM), dtype=dtype, device=device, requires_grad=True) v = torch.randn((BATCH, H, N_CTX, HEAD_DIM), dtype=dtype, device=device, requires_grad=True) sm_scale = 1.3 M = torch.tril(torch.ones((N_CTX, N_CTX), device="cuda")) p = torch.matmul(q, k.transpose(2, 3)) * sm_scale # attention score if causal: p[:, :, M == 0] = float("-inf") p = torch.softmax(p.float(), dim=-1).half() fn = lambda: torch.matmul(p, v) ms = triton.testing.do_bench(fn) flops_per_matmul = 2.0 * BATCH * H * N_CTX * N_CTX * HEAD_DIM total_flops = 2 * flops_per_matmul if causal: total_flops *= 0.5 if mode == "bwd": total_flops *= 2.5 # 2.0(bwd) + 0.5(recompute) return total_flops * 1e-12 / (ms * 1e-3) def peak_memory(backend): dtype = torch.float16 device = 'cuda' BATCH, H, HEAD_DIM = 4, 32, 64 for N_CTX in [2**i for i in range(9, 13)]: q = torch.randn((BATCH, H, N_CTX, HEAD_DIM), dtype=dtype, device=device, requires_grad=True) k = torch.randn((BATCH, H, N_CTX, HEAD_DIM), dtype=dtype, device=device, requires_grad=True) v = torch.randn((BATCH, H, N_CTX, HEAD_DIM), dtype=dtype, device=device, requires_grad=True) sm_scale = 1.3 def torch_call(): M = torch.tril(torch.ones((N_CTX, N_CTX), device="cuda")) p = torch.matmul(q, k.transpose(2, 3)) * sm_scale # attention score if causal: p[:, :, M == 0] = float("-inf") p = torch.softmax(p.float(), dim=-1).half() fn = lambda: torch.matmul(p, v) ms = triton.testing.do_bench(fn) def triton_call(): attention(q, k, v, causal, sm_scale) QUANTILES = [0.5, 0.2, 0.8] if backend == "triton": mem_50, mem_20, mem_80 = _test_memory(triton_call, quantiles=QUANTILES) print(f"Triton Peak Memory of {N_CTX} is {mem_50, mem_20, mem_80}") if backend == "torch": mem_50, mem_20, mem_80 = _test_memory(torch_call, quantiles=QUANTILES) print(f"Torch Peak Memory of {N_CTX} is {mem_50, mem_20, mem_80}") if __name__ == "__main__": # only works on post-Ampere GPUs right now bench_flash_attention.run(save_path=".", print_data=True) # peak_memory("torch")
@triton.jit def _attn_bwd_dkdv(dk, dv, # Q, k, v, sm_scale, # DO, # M, D, # # shared by Q/K/V/DO. stride_tok, stride_d, # H, N_CTX, BLOCK_M1: tl.constexpr, # BLOCK_N1: tl.constexpr, # HEAD_DIM: tl.constexpr, # # Filled in by the wrapper. start_n, start_m, num_steps, # MASK: tl.constexpr): offs_m = start_m + tl.arange(0, BLOCK_M1) offs_n = start_n + tl.arange(0, BLOCK_N1) offs_k = tl.arange(0, HEAD_DIM) qT_ptrs = Q + offs_m[None, :] * stride_tok + offs_k[:, None] * stride_d do_ptrs = DO + offs_m[:, None] * stride_tok + offs_k[None, :] * stride_d # BLOCK_N1 must be a multiple of BLOCK_M1, otherwise the code wouldn't work. tl.static_assert(BLOCK_N1 % BLOCK_M1 == 0) curr_m = start_m step_m = BLOCK_M1 for blk_idx in range(num_steps): qT = tl.load(qT_ptrs) # Load m before computing qk to reduce pipeline stall. offs_m = curr_m + tl.arange(0, BLOCK_M1) m = tl.load(M + offs_m) qkT = tl.dot(k, qT) pT = tl.math.exp2(qkT - m[None, :]) # Autoregressive masking. if MASK: mask = (offs_m[None, :] >= offs_n[:, None]) pT = tl.where(mask, pT, 0.0) do = tl.load(do_ptrs) # Compute dV. ppT = pT ppT = ppT.to(tl.float16) dv += tl.dot(ppT, do) # D (= delta) is pre-divided by ds_scale. Di = tl.load(D + offs_m) # Compute dP and dS. dpT = tl.dot(v, tl.trans(do)).to(tl.float32) dsT = pT * (dpT - Di[None, :]) dsT = dsT.to(tl.float16) dk += tl.dot(dsT, tl.trans(qT)) # Increment pointers. curr_m += step_m qT_ptrs += step_m * stride_tok do_ptrs += step_m * stride_tok return dk, dv # the main inner-loop logic for computing dQ
bjmsong/hands-on-kernels
fa/v2.py
https://github.com/bjmsong/hands-on-kernels/blob/c219e87282d2e2895e4218175f774cda757df022/fa/v2.py
import pytest import torch import triton import triton.language as tl from utils import _test_memory def is_hip(): return triton.runtime.driver.active.get_current_target().backend == "hip" @triton.jit def _attn_fwd_inner(acc, l_i, m_i, q, # K_block_ptr, V_block_ptr, # start_m, qk_scale, # BLOCK_M: tl.constexpr, HEAD_DIM: tl.constexpr, BLOCK_N: tl.constexpr, # STAGE: tl.constexpr, offs_m: tl.constexpr, offs_n: tl.constexpr, # N_CTX: tl.constexpr, fp8_v: tl.constexpr): # range of values handled by this stage if STAGE == 1: lo, hi = 0, start_m * BLOCK_M elif STAGE == 2: lo, hi = start_m * BLOCK_M, (start_m + 1) * BLOCK_M lo = tl.multiple_of(lo, BLOCK_M) # causal = False else: lo, hi = 0, N_CTX K_block_ptr = tl.advance(K_block_ptr, (0, lo)) V_block_ptr = tl.advance(V_block_ptr, (lo, 0)) # loop over k, v and update accumulator for start_n in range(lo, hi, BLOCK_N): start_n = tl.multiple_of(start_n, BLOCK_N) # -- compute qk ---- k = tl.load(K_block_ptr) qk = tl.dot(q, k) if STAGE == 2: mask = offs_m[:, None] >= (start_n + offs_n[None, :]) qk = qk * qk_scale + tl.where(mask, 0, -1.0e6) m_ij = tl.maximum(m_i, tl.max(qk, 1)) qk -= m_ij[:, None] else: m_ij = tl.maximum(m_i, tl.max(qk, 1) * qk_scale) qk = qk * qk_scale - m_ij[:, None] p = tl.math.exp2(qk) l_ij = tl.sum(p, 1) # -- update m_i and l_i alpha = tl.math.exp2(m_i - m_ij) l_i = l_i * alpha + l_ij # -- update output accumulator -- acc = acc * alpha[:, None] # update acc v = tl.load(V_block_ptr) if fp8_v: p = p.to(tl.float8e5) else: p = p.to(tl.float16) acc = tl.dot(p, v, acc) # update m_i and l_i m_i = m_ij V_block_ptr = tl.advance(V_block_ptr, (BLOCK_N, 0)) K_block_ptr = tl.advance(K_block_ptr, (0, BLOCK_N)) return acc, l_i, m_i # We don't run auto-tuning every time to keep the tutorial fast. Keeping # the code below and commenting out the equivalent parameters is convenient for # re-tuning. configs = [ triton.Config({'BLOCK_M': BM, 'BLOCK_N': BN}, num_stages=s, num_warps=w) \ for BM in [64, 128]\ for BN in [32, 64]\ for s in ([1] if is_hip() else [3, 4, 7])\ for w in [4, 8]\ ] def keep(conf): BLOCK_M = conf.kwargs["BLOCK_M"] BLOCK_N = conf.kwargs["BLOCK_N"] if BLOCK_M * BLOCK_N < 128 * 128 and conf.num_warps == 8: return False return True @triton.autotune(list(filter(keep, configs)), key=["N_CTX", "HEAD_DIM"]) @triton.jit def _attn_fwd(Q, K, V, sm_scale, M, Out, # stride_qz, stride_qh, stride_qm, stride_qk, # stride_kz, stride_kh, stride_kn, stride_kk, # stride_vz, stride_vh, stride_vk, stride_vn, # stride_oz, stride_oh, stride_om, stride_on, # Z, H, N_CTX, # HEAD_DIM: tl.constexpr, # BLOCK_M: tl.constexpr, # BLOCK_N: tl.constexpr, # STAGE: tl.constexpr # ): tl.static_assert(BLOCK_N <= HEAD_DIM) start_m = tl.program_id(0) off_hz = tl.program_id(1) off_z = off_hz // H off_h = off_hz % H qvk_offset = off_z.to(tl.int64) * stride_qz + off_h.to(tl.int64) * stride_qh # block pointers Q_block_ptr = tl.make_block_ptr( base=Q + qvk_offset, shape=(N_CTX, HEAD_DIM), strides=(stride_qm, stride_qk), offsets=(start_m * BLOCK_M, 0), block_shape=(BLOCK_M, HEAD_DIM), order=(1, 0), ) v_order: tl.constexpr = (0, 1) if V.dtype.element_ty == tl.float8e5 else (1, 0) V_block_ptr = tl.make_block_ptr( base=V + qvk_offset, shape=(N_CTX, HEAD_DIM), strides=(stride_vk, stride_vn), offsets=(0, 0), block_shape=(BLOCK_N, HEAD_DIM), order=v_order, ) K_block_ptr = tl.make_block_ptr( base=K + qvk_offset, shape=(HEAD_DIM, N_CTX), strides=(stride_kk, stride_kn), offsets=(0, 0), block_shape=(HEAD_DIM, BLOCK_N), order=(0, 1), ) O_block_ptr = tl.make_block_ptr( base=Out + qvk_offset, shape=(N_CTX, HEAD_DIM), strides=(stride_om, stride_on), offsets=(start_m * BLOCK_M, 0), block_shape=(BLOCK_M, HEAD_DIM), order=(1, 0), ) # initialize offsets offs_m = start_m * BLOCK_M + tl.arange(0, BLOCK_M) offs_n = tl.arange(0, BLOCK_N) # initialize pointer to m and l m_i = tl.zeros([BLOCK_M], dtype=tl.float32) - float("inf") l_i = tl.zeros([BLOCK_M], dtype=tl.float32) + 1.0 acc = tl.zeros([BLOCK_M, HEAD_DIM], dtype=tl.float32) # load scales qk_scale = sm_scale qk_scale *= 1.44269504 # 1/log(2) # load q: it will stay in SRAM throughout q = tl.load(Q_block_ptr) # stage 1: off-band # For causal = True, STAGE = 3 and _attn_fwd_inner gets 1 as its STAGE # For causal = False, STAGE = 1, and _attn_fwd_inner gets 3 as its STAGE if STAGE & 1: acc, l_i, m_i = _attn_fwd_inner(acc, l_i, m_i, q, K_block_ptr, V_block_ptr, # start_m, qk_scale, # BLOCK_M, HEAD_DIM, BLOCK_N, # 4 - STAGE, offs_m, offs_n, N_CTX, V.dtype.element_ty == tl.float8e5 # ) # stage 2: on-band if STAGE & 2: # barrier makes it easier for compielr to schedule the # two loops independently acc, l_i, m_i = _attn_fwd_inner(acc, l_i, m_i, q, K_block_ptr, V_block_ptr, # start_m, qk_scale, # BLOCK_M, HEAD_DIM, BLOCK_N, # 2, offs_m, offs_n, N_CTX, V.dtype.element_ty == tl.float8e5 # ) # epilogue m_i += tl.math.log2(l_i) acc = acc / l_i[:, None] m_ptrs = M + off_hz * N_CTX + offs_m tl.store(m_ptrs, m_i) tl.store(O_block_ptr, acc.to(Out.type.element_ty)) @triton.jit def _attn_bwd_preprocess(O, DO, # Delta, # Z, H, N_CTX, # BLOCK_M: tl.constexpr, HEAD_DIM: tl.constexpr # ): off_m = tl.program_id(0) * BLOCK_M + tl.arange(0, BLOCK_M) off_hz = tl.program_id(1) off_n = tl.arange(0, HEAD_DIM) # load o = tl.load(O + off_hz * HEAD_DIM * N_CTX + off_m[:, None] * HEAD_DIM + off_n[None, :]) do = tl.load(DO + off_hz * HEAD_DIM * N_CTX + off_m[:, None] * HEAD_DIM + off_n[None, :]).to(tl.float32) delta = tl.sum(o * do, axis=1) # write-back tl.store(Delta + off_hz * N_CTX + off_m, delta) # The main inner-loop logic for computing dK and dV. @triton.jit def _attn_bwd_dkdv(dk, dv, # Q, k, v, sm_scale, # DO, # M, D, # # shared by Q/K/V/DO. stride_tok, stride_d, # H, N_CTX, BLOCK_M1: tl.constexpr, # BLOCK_N1: tl.constexpr, # HEAD_DIM: tl.constexpr, # # Filled in by the wrapper. start_n, start_m, num_steps, # MASK: tl.constexpr): offs_m = start_m + tl.arange(0, BLOCK_M1) offs_n = start_n + tl.arange(0, BLOCK_N1) offs_k = tl.arange(0, HEAD_DIM) qT_ptrs = Q + offs_m[None, :] * stride_tok + offs_k[:, None] * stride_d do_ptrs = DO + offs_m[:, None] * stride_tok + offs_k[None, :] * stride_d # BLOCK_N1 must be a multiple of BLOCK_M1, otherwise the code wouldn't work. tl.static_assert(BLOCK_N1 % BLOCK_M1 == 0) curr_m = start_m step_m = BLOCK_M1 for blk_idx in range(num_steps): qT = tl.load(qT_ptrs) # Load m before computing qk to reduce pipeline stall. offs_m = curr_m + tl.arange(0, BLOCK_M1) m = tl.load(M + offs_m) qkT = tl.dot(k, qT) pT = tl.math.exp2(qkT - m[None, :]) # Autoregressive masking. if MASK: mask = (offs_m[None, :] >= offs_n[:, None]) pT = tl.where(mask, pT, 0.0) do = tl.load(do_ptrs) # Compute dV. ppT = pT ppT = ppT.to(tl.float16) dv += tl.dot(ppT, do) # D (= delta) is pre-divided by ds_scale. Di = tl.load(D + offs_m) # Compute dP and dS. dpT = tl.dot(v, tl.trans(do)).to(tl.float32) dsT = pT * (dpT - Di[None, :]) dsT = dsT.to(tl.float16) dk += tl.dot(dsT, tl.trans(qT)) # Increment pointers. curr_m += step_m qT_ptrs += step_m * stride_tok do_ptrs += step_m * stride_tok return dk, dv # the main inner-loop logic for computing dQ @triton.jit def _attn_bwd_dq(dq, q, K, V, # do, m, D, # shared by Q/K/V/DO. stride_tok, stride_d, # H, N_CTX, # BLOCK_M2: tl.constexpr, # BLOCK_N2: tl.constexpr, # HEAD_DIM: tl.constexpr, # Filled in by the wrapper. start_m, start_n, num_steps, # MASK: tl.constexpr): offs_m = start_m + tl.arange(0, BLOCK_M2) offs_n = start_n + tl.arange(0, BLOCK_N2) offs_k = tl.arange(0, HEAD_DIM) kT_ptrs = K + offs_n[None, :] * stride_tok + offs_k[:, None] * stride_d vT_ptrs = V + offs_n[None, :] * stride_tok + offs_k[:, None] * stride_d # D (= delta) is pre-divided by ds_scale. Di = tl.load(D + offs_m) # BLOCK_M2 must be a multiple of BLOCK_N2, otherwise the code wouldn't work. tl.static_assert(BLOCK_M2 % BLOCK_N2 == 0) curr_n = start_n step_n = BLOCK_N2 for blk_idx in range(num_steps): kT = tl.load(kT_ptrs) vT = tl.load(vT_ptrs) qk = tl.dot(q, kT) p = tl.math.exp2(qk - m) # Autoregressive masking. if MASK: offs_n = curr_n + tl.arange(0, BLOCK_N2) mask = (offs_m[:, None] >= offs_n[None, :]) p = tl.where(mask, p, 0.0) # Compute dP and dS. dp = tl.dot(do, vT).to(tl.float32) ds = p * (dp - Di[:, None]) ds = ds.to(tl.float16) # Compute dQ. # NOTE: We need to de-scale dq in the end, because kT was pre-scaled. dq += tl.dot(ds, tl.trans(kT)) # Increment pointers. curr_n += step_n kT_ptrs += step_n * stride_tok vT_ptrs += step_n * stride_tok return dq @triton.jit def _attn_bwd(Q, K, V, sm_scale, # DO, # DQ, DK, DV, # M, D, # shared by Q/K/V/DO. stride_z, stride_h, stride_tok, stride_d, # H, N_CTX, # BLOCK_M1: tl.constexpr, # BLOCK_N1: tl.constexpr, # BLOCK_M2: tl.constexpr, # BLOCK_N2: tl.constexpr, # BLK_SLICE_FACTOR: tl.constexpr, # HEAD_DIM: tl.constexpr): LN2: tl.constexpr = 0.6931471824645996 # = ln(2) bhid = tl.program_id(2) off_chz = (bhid * N_CTX).to(tl.int64) adj = (stride_h * (bhid % H) + stride_z * (bhid // H)).to(tl.int64) pid = tl.program_id(0) # offset pointers for batch/head Q += adj K += adj V += adj DO += adj DQ += adj DK += adj DV += adj M += off_chz D += off_chz # load scales offs_k = tl.arange(0, HEAD_DIM) start_n = pid * BLOCK_N1 start_m = start_n MASK_BLOCK_M1: tl.constexpr = BLOCK_M1 // BLK_SLICE_FACTOR offs_n = start_n + tl.arange(0, BLOCK_N1) dv = tl.zeros([BLOCK_N1, HEAD_DIM], dtype=tl.float32) dk = tl.zeros([BLOCK_N1, HEAD_DIM], dtype=tl.float32) # load K and V: they stay in SRAM throughout the inner loop. k = tl.load(K + offs_n[:, None] * stride_tok + offs_k[None, :] * stride_d) v = tl.load(V + offs_n[:, None] * stride_tok + offs_k[None, :] * stride_d) num_steps = BLOCK_N1 // MASK_BLOCK_M1 dk, dv = _attn_bwd_dkdv(dk, dv, # Q, k, v, sm_scale, # DO, # M, D, # stride_tok, stride_d, # H, N_CTX, # MASK_BLOCK_M1, BLOCK_N1, HEAD_DIM, # start_n, start_m, num_steps, # MASK=True # ) start_m += num_steps * MASK_BLOCK_M1 num_steps = (N_CTX - start_m) // BLOCK_M1 # Compute dK and dV for non-masked blocks. dk, dv = _attn_bwd_dkdv( # dk, dv, # Q, k, v, sm_scale, # DO, # M, D, # stride_tok, stride_d, # H, N_CTX, # BLOCK_M1, BLOCK_N1, HEAD_DIM, # start_n, start_m, num_steps, # MASK=False # ) dv_ptrs = DV + offs_n[:, None] * stride_tok + offs_k[None, :] * stride_d tl.store(dv_ptrs, dv) # Write back dK. dk *= sm_scale dk_ptrs = DK + offs_n[:, None] * stride_tok + offs_k[None, :] * stride_d tl.store(dk_ptrs, dk) # THIS BLOCK DOES DQ: start_m = pid * BLOCK_M2 end_n = start_m + BLOCK_M2 MASK_BLOCK_N2: tl.constexpr = BLOCK_N2 // BLK_SLICE_FACTOR offs_m = start_m + tl.arange(0, BLOCK_M2) q = tl.load(Q + offs_m[:, None] * stride_tok + offs_k[None, :] * stride_d) dq = tl.zeros([BLOCK_M2, HEAD_DIM], dtype=tl.float32) do = tl.load(DO + offs_m[:, None] * stride_tok + offs_k[None, :] * stride_d) m = tl.load(M + offs_m) m = m[:, None] # Compute dQ for masked (diagonal) blocks. # NOTE: This code scans each row of QK^T backward (from right to left, # but inside each call to _attn_bwd_dq, from left to right), but that's # not due to anything important. I just wanted to reuse the loop # structure for dK & dV above as much as possible. num_steps = BLOCK_M2 // MASK_BLOCK_N2 dq = _attn_bwd_dq(dq, q, K, V, # do, m, D, # stride_tok, stride_d, # H, N_CTX, # BLOCK_M2, MASK_BLOCK_N2, HEAD_DIM, # start_m, end_n - num_steps * MASK_BLOCK_N2, num_steps, # MASK=True # ) end_n -= num_steps * MASK_BLOCK_N2 # stage 2 num_steps = end_n // BLOCK_N2 dq = _attn_bwd_dq(dq, q, K, V, # do, m, D, # stride_tok, stride_d, # H, N_CTX, # BLOCK_M2, BLOCK_N2, HEAD_DIM, # start_m, end_n - num_steps * BLOCK_N2, num_steps, # MASK=False # ) # Write back dQ. dq_ptrs = DQ + offs_m[:, None] * stride_tok + offs_k[None, :] * stride_d dq *= LN2 tl.store(dq_ptrs, dq) class _attention(torch.autograd.Function): @staticmethod def forward(ctx, q, k, v, causal, sm_scale): # shape constraints HEAD_DIM_Q, HEAD_DIM_K = q.shape[-1], k.shape[-1] # when v is in float8_e5m2 it is transposed. HEAD_DIM_V = v.shape[-1] assert HEAD_DIM_Q == HEAD_DIM_K and HEAD_DIM_K == HEAD_DIM_V assert HEAD_DIM_K in {16, 32, 64, 128, 256} o = torch.empty_like(q) stage = 3 if causal else 1 # ? extra_kern_args = {} # Tuning for AMD target if is_hip(): waves_per_eu = 3 if HEAD_DIM_K <= 64 else 2 extra_kern_args = {"waves_per_eu": waves_per_eu, "allow_flush_denorm": True} # grid.x = seqlen/BLOCK_M # grid_y = batch_size * head_dim grid = lambda args: (triton.cdiv(q.shape[2], args["BLOCK_M"]), q.shape[0] * q.shape[1], 1) M = torch.empty((q.shape[0], q.shape[1], q.shape[2]), device=q.device, dtype=torch.float32) _attn_fwd[grid]( q, k, v, sm_scale, M, o, # q.stride(0), q.stride(1), q.stride(2), q.stride(3), # k.stride(0), k.stride(1), k.stride(2), k.stride(3), # v.stride(0), v.stride(1), v.stride(2), v.stride(3), # o.stride(0), o.stride(1), o.stride(2), o.stride(3), # q.shape[0], q.shape[1], # N_CTX=q.shape[2], # HEAD_DIM=HEAD_DIM_K, # STAGE=stage, # **extra_kern_args) ctx.save_for_backward(q, k, v, o, M) ctx.grid = grid ctx.sm_scale = sm_scale ctx.HEAD_DIM = HEAD_DIM_K ctx.causal = causal return o @staticmethod def backward(ctx, do): q, k, v, o, M = ctx.saved_tensors assert do.is_contiguous() assert q.stride() == k.stride() == v.stride() == o.stride() == do.stride() dq = torch.empty_like(q) dk = torch.empty_like(k) dv = torch.empty_like(v) BATCH, N_HEAD, N_CTX = q.shape[:3] PRE_BLOCK = 128 NUM_WARPS, NUM_STAGES = 4, 5 BLOCK_M1, BLOCK_N1, BLOCK_M2, BLOCK_N2 = 32, 128, 128, 32 BLK_SLICE_FACTOR = 2 RCP_LN2 = 1.4426950408889634 # = 1.0 / ln(2) arg_k = k arg_k = arg_k * (ctx.sm_scale * RCP_LN2) PRE_BLOCK = 128 assert N_CTX % PRE_BLOCK == 0 pre_grid = (N_CTX // PRE_BLOCK, BATCH * N_HEAD) delta = torch.empty_like(M) _attn_bwd_preprocess[pre_grid]( o, do, # delta, # BATCH, N_HEAD, N_CTX, # BLOCK_M=PRE_BLOCK, HEAD_DIM=ctx.HEAD_DIM # ) grid = (N_CTX // BLOCK_N1, 1, BATCH * N_HEAD) _attn_bwd[grid]( q, arg_k, v, ctx.sm_scale, do, dq, dk, dv, # M, delta, # q.stride(0), q.stride(1), q.stride(2), q.stride(3), # N_HEAD, N_CTX, # BLOCK_M1=BLOCK_M1, BLOCK_N1=BLOCK_N1, # BLOCK_M2=BLOCK_M2, BLOCK_N2=BLOCK_N2, # BLK_SLICE_FACTOR=BLK_SLICE_FACTOR, # HEAD_DIM=ctx.HEAD_DIM, # num_warps=NUM_WARPS, # num_stages=NUM_STAGES # ) return dq, dk, dv, None, None attention = _attention.apply # batch size, head num, sequence length, head dim @pytest.mark.parametrize("Z, H, N_CTX, HEAD_DIM", [(1, 2, 1024, 64)]) @pytest.mark.parametrize("causal", [True]) # causal mask def test_op(Z, H, N_CTX, HEAD_DIM, causal, dtype=torch.float16): torch.manual_seed(20) q = (torch.empty((Z, H, N_CTX, HEAD_DIM), dtype=dtype, device="cuda").normal_(mean=0.0, std=0.5).requires_grad_()) k = (torch.empty((Z, H, N_CTX, HEAD_DIM), dtype=dtype, device="cuda").normal_(mean=0.0, std=0.5).requires_grad_()) v = (torch.empty((Z, H, N_CTX, HEAD_DIM), dtype=dtype, device="cuda").normal_(mean=0.0, std=0.5).requires_grad_()) sm_scale = 0.5 dout = torch.randn_like(q) # reference implementation (PyTorch) M = torch.tril(torch.ones((N_CTX, N_CTX), device="cuda")) p = torch.matmul(q, k.transpose(2, 3)) * sm_scale # attention score if causal: p[:, :, M == 0] = float("-inf") p = torch.softmax(p.float(), dim=-1).half() # p = torch.exp(p) ref_out = torch.matmul(p, v) ref_out.backward(dout) ref_dv, v.grad = v.grad.clone(), None ref_dk, k.grad = k.grad.clone(), None ref_dq, q.grad = q.grad.clone(), None # triton implementation tri_out = attention(q, k, v, causal, sm_scale).half() tri_out.backward(dout) tri_dv, v.grad = v.grad.clone(), None tri_dk, k.grad = k.grad.clone(), None tri_dq, q.grad = q.grad.clone(), None # compare assert torch.allclose(ref_out, tri_out, atol=1e-2, rtol=0) rtol = 0.0 # Relative tolerance workaround for known hardware limitation of MI200 GPU. # For details see https://pytorch.org/docs/stable/notes/numerical_accuracy.html#reduced-precision-fp16-and-bf16-gemms-and-convolutions-on-amd-instinct-mi200-devices if torch.version.hip is not None and triton.runtime.driver.active.get_current_target().arch == "gfx90a": rtol = 1e-2 assert torch.allclose(ref_dv, tri_dv, atol=1e-2, rtol=rtol) assert torch.allclose(ref_dk, tri_dk, atol=1e-2, rtol=rtol) assert torch.allclose(ref_dq, tri_dq, atol=1e-2, rtol=rtol) try: from flash_attn.flash_attn_interface import \ flash_attn_qkvpacked_func as flash_attn_func HAS_FLASH = True except BaseException: HAS_FLASH = False TORCH_HAS_FP8 = hasattr(torch, 'float8_e5m2') BATCH, N_HEADS, HEAD_DIM = 4, 32, 64 # vary seq length for fixed head and batch=4 configs = [] for mode in ["fwd"]: # ["fwd", "bwd"] for causal in [True]: # [True, False] if mode == "bwd" and not causal: continue configs.append( triton.testing.Benchmark( x_names=["N_CTX"], x_vals=[2**i for i in range(9, 13)], line_arg="provider", line_vals=["triton-fp16"] + (["triton-fp8"] if TORCH_HAS_FP8 else []) + (["flash"] if HAS_FLASH else []) + ["torch"], line_names=["Triton [FP16]"] + (["Triton [FP8]"] if TORCH_HAS_FP8 else []) + (["Flash-2"] if HAS_FLASH else []) + ["torch"], styles=[("red", "-"), ("blue", "-"), ("green", "-"), ("yellow", "-")], ylabel="TFLOPS", plot_name=f"fused-attention-batch{BATCH}-head{N_HEADS}-d{HEAD_DIM}-{mode}-causal={causal}", args={ "H": N_HEADS, "BATCH": BATCH, "HEAD_DIM": HEAD_DIM, "mode": mode, "causal": causal, }, )) @triton.testing.perf_report(configs) def bench_flash_attention(BATCH, H, N_CTX, HEAD_DIM, causal, mode, provider, device="cuda"): assert mode in ["fwd", "bwd"] dtype = torch.float16 if "triton" in provider: q = torch.randn((BATCH, H, N_CTX, HEAD_DIM), dtype=dtype, device=device, requires_grad=True) k = torch.randn((BATCH, H, N_CTX, HEAD_DIM), dtype=dtype, device=device, requires_grad=True) v = torch.randn((BATCH, H, N_CTX, HEAD_DIM), dtype=dtype, device=device, requires_grad=True) if mode == "fwd" and "fp8" in provider: q = q.to(torch.float8_e5m2) k = k.to(torch.float8_e5m2) v = v.permute(0, 1, 3, 2).contiguous() v = v.permute(0, 1, 3, 2) v = v.to(torch.float8_e5m2) sm_scale = 1.3 fn = lambda: attention(q, k, v, causal, sm_scale) if mode == "bwd": o = fn() do = torch.randn_like(o) fn = lambda: o.backward(do, retain_graph=True) ms = triton.testing.do_bench(fn) if provider == "flash": qkv = torch.randn((BATCH, N_CTX, 3, H, HEAD_DIM), dtype=dtype, device=device, requires_grad=True) fn = lambda: flash_attn_func(qkv, causal=causal) if mode == "bwd": o = fn() do = torch.randn_like(o) fn = lambda: o.backward(do, retain_graph=True) ms = triton.testing.do_bench(fn) if provider == "torch": q = torch.randn((BATCH, H, N_CTX, HEAD_DIM), dtype=dtype, device=device, requires_grad=True) k = torch.randn((BATCH, H, N_CTX, HEAD_DIM), dtype=dtype, device=device, requires_grad=True) v = torch.randn((BATCH, H, N_CTX, HEAD_DIM), dtype=dtype, device=device, requires_grad=True) sm_scale = 1.3 M = torch.tril(torch.ones((N_CTX, N_CTX), device="cuda")) p = torch.matmul(q, k.transpose(2, 3)) * sm_scale # attention score if causal: p[:, :, M == 0] = float("-inf") p = torch.softmax(p.float(), dim=-1).half() fn = lambda: torch.matmul(p, v) ms = triton.testing.do_bench(fn) flops_per_matmul = 2.0 * BATCH * H * N_CTX * N_CTX * HEAD_DIM total_flops = 2 * flops_per_matmul if causal: total_flops *= 0.5 if mode == "bwd": total_flops *= 2.5 # 2.0(bwd) + 0.5(recompute) return total_flops * 1e-12 / (ms * 1e-3) def peak_memory(backend): dtype = torch.float16 device = 'cuda' BATCH, H, HEAD_DIM = 4, 32, 64 for N_CTX in [2**i for i in range(9, 13)]: q = torch.randn((BATCH, H, N_CTX, HEAD_DIM), dtype=dtype, device=device, requires_grad=True) k = torch.randn((BATCH, H, N_CTX, HEAD_DIM), dtype=dtype, device=device, requires_grad=True) v = torch.randn((BATCH, H, N_CTX, HEAD_DIM), dtype=dtype, device=device, requires_grad=True) sm_scale = 1.3 def torch_call(): M = torch.tril(torch.ones((N_CTX, N_CTX), device="cuda")) p = torch.matmul(q, k.transpose(2, 3)) * sm_scale # attention score if causal: p[:, :, M == 0] = float("-inf") p = torch.softmax(p.float(), dim=-1).half() fn = lambda: torch.matmul(p, v) ms = triton.testing.do_bench(fn) def triton_call(): attention(q, k, v, causal, sm_scale) QUANTILES = [0.5, 0.2, 0.8] if backend == "triton": mem_50, mem_20, mem_80 = _test_memory(triton_call, quantiles=QUANTILES) print(f"Triton Peak Memory of {N_CTX} is {mem_50, mem_20, mem_80}") if backend == "torch": mem_50, mem_20, mem_80 = _test_memory(torch_call, quantiles=QUANTILES) print(f"Torch Peak Memory of {N_CTX} is {mem_50, mem_20, mem_80}") if __name__ == "__main__": # only works on post-Ampere GPUs right now bench_flash_attention.run(save_path=".", print_data=True) # peak_memory("torch")
@triton.jit def _attn_bwd_dq(dq, q, K, V, # do, m, D, # shared by Q/K/V/DO. stride_tok, stride_d, # H, N_CTX, # BLOCK_M2: tl.constexpr, # BLOCK_N2: tl.constexpr, # HEAD_DIM: tl.constexpr, # Filled in by the wrapper. start_m, start_n, num_steps, # MASK: tl.constexpr): offs_m = start_m + tl.arange(0, BLOCK_M2) offs_n = start_n + tl.arange(0, BLOCK_N2) offs_k = tl.arange(0, HEAD_DIM) kT_ptrs = K + offs_n[None, :] * stride_tok + offs_k[:, None] * stride_d vT_ptrs = V + offs_n[None, :] * stride_tok + offs_k[:, None] * stride_d # D (= delta) is pre-divided by ds_scale. Di = tl.load(D + offs_m) # BLOCK_M2 must be a multiple of BLOCK_N2, otherwise the code wouldn't work. tl.static_assert(BLOCK_M2 % BLOCK_N2 == 0) curr_n = start_n step_n = BLOCK_N2 for blk_idx in range(num_steps): kT = tl.load(kT_ptrs) vT = tl.load(vT_ptrs) qk = tl.dot(q, kT) p = tl.math.exp2(qk - m) # Autoregressive masking. if MASK: offs_n = curr_n + tl.arange(0, BLOCK_N2) mask = (offs_m[:, None] >= offs_n[None, :]) p = tl.where(mask, p, 0.0) # Compute dP and dS. dp = tl.dot(do, vT).to(tl.float32) ds = p * (dp - Di[:, None]) ds = ds.to(tl.float16) # Compute dQ. # NOTE: We need to de-scale dq in the end, because kT was pre-scaled. dq += tl.dot(ds, tl.trans(kT)) # Increment pointers. curr_n += step_n kT_ptrs += step_n * stride_tok vT_ptrs += step_n * stride_tok return dq
bjmsong/hands-on-kernels
fa/v2.py
https://github.com/bjmsong/hands-on-kernels/blob/c219e87282d2e2895e4218175f774cda757df022/fa/v2.py
import pytest import torch import triton import triton.language as tl from utils import _test_memory def is_hip(): return triton.runtime.driver.active.get_current_target().backend == "hip" @triton.jit def _attn_fwd_inner(acc, l_i, m_i, q, # K_block_ptr, V_block_ptr, # start_m, qk_scale, # BLOCK_M: tl.constexpr, HEAD_DIM: tl.constexpr, BLOCK_N: tl.constexpr, # STAGE: tl.constexpr, offs_m: tl.constexpr, offs_n: tl.constexpr, # N_CTX: tl.constexpr, fp8_v: tl.constexpr): # range of values handled by this stage if STAGE == 1: lo, hi = 0, start_m * BLOCK_M elif STAGE == 2: lo, hi = start_m * BLOCK_M, (start_m + 1) * BLOCK_M lo = tl.multiple_of(lo, BLOCK_M) # causal = False else: lo, hi = 0, N_CTX K_block_ptr = tl.advance(K_block_ptr, (0, lo)) V_block_ptr = tl.advance(V_block_ptr, (lo, 0)) # loop over k, v and update accumulator for start_n in range(lo, hi, BLOCK_N): start_n = tl.multiple_of(start_n, BLOCK_N) # -- compute qk ---- k = tl.load(K_block_ptr) qk = tl.dot(q, k) if STAGE == 2: mask = offs_m[:, None] >= (start_n + offs_n[None, :]) qk = qk * qk_scale + tl.where(mask, 0, -1.0e6) m_ij = tl.maximum(m_i, tl.max(qk, 1)) qk -= m_ij[:, None] else: m_ij = tl.maximum(m_i, tl.max(qk, 1) * qk_scale) qk = qk * qk_scale - m_ij[:, None] p = tl.math.exp2(qk) l_ij = tl.sum(p, 1) # -- update m_i and l_i alpha = tl.math.exp2(m_i - m_ij) l_i = l_i * alpha + l_ij # -- update output accumulator -- acc = acc * alpha[:, None] # update acc v = tl.load(V_block_ptr) if fp8_v: p = p.to(tl.float8e5) else: p = p.to(tl.float16) acc = tl.dot(p, v, acc) # update m_i and l_i m_i = m_ij V_block_ptr = tl.advance(V_block_ptr, (BLOCK_N, 0)) K_block_ptr = tl.advance(K_block_ptr, (0, BLOCK_N)) return acc, l_i, m_i # We don't run auto-tuning every time to keep the tutorial fast. Keeping # the code below and commenting out the equivalent parameters is convenient for # re-tuning. configs = [ triton.Config({'BLOCK_M': BM, 'BLOCK_N': BN}, num_stages=s, num_warps=w) \ for BM in [64, 128]\ for BN in [32, 64]\ for s in ([1] if is_hip() else [3, 4, 7])\ for w in [4, 8]\ ] def keep(conf): BLOCK_M = conf.kwargs["BLOCK_M"] BLOCK_N = conf.kwargs["BLOCK_N"] if BLOCK_M * BLOCK_N < 128 * 128 and conf.num_warps == 8: return False return True @triton.autotune(list(filter(keep, configs)), key=["N_CTX", "HEAD_DIM"]) @triton.jit def _attn_fwd(Q, K, V, sm_scale, M, Out, # stride_qz, stride_qh, stride_qm, stride_qk, # stride_kz, stride_kh, stride_kn, stride_kk, # stride_vz, stride_vh, stride_vk, stride_vn, # stride_oz, stride_oh, stride_om, stride_on, # Z, H, N_CTX, # HEAD_DIM: tl.constexpr, # BLOCK_M: tl.constexpr, # BLOCK_N: tl.constexpr, # STAGE: tl.constexpr # ): tl.static_assert(BLOCK_N <= HEAD_DIM) start_m = tl.program_id(0) off_hz = tl.program_id(1) off_z = off_hz // H off_h = off_hz % H qvk_offset = off_z.to(tl.int64) * stride_qz + off_h.to(tl.int64) * stride_qh # block pointers Q_block_ptr = tl.make_block_ptr( base=Q + qvk_offset, shape=(N_CTX, HEAD_DIM), strides=(stride_qm, stride_qk), offsets=(start_m * BLOCK_M, 0), block_shape=(BLOCK_M, HEAD_DIM), order=(1, 0), ) v_order: tl.constexpr = (0, 1) if V.dtype.element_ty == tl.float8e5 else (1, 0) V_block_ptr = tl.make_block_ptr( base=V + qvk_offset, shape=(N_CTX, HEAD_DIM), strides=(stride_vk, stride_vn), offsets=(0, 0), block_shape=(BLOCK_N, HEAD_DIM), order=v_order, ) K_block_ptr = tl.make_block_ptr( base=K + qvk_offset, shape=(HEAD_DIM, N_CTX), strides=(stride_kk, stride_kn), offsets=(0, 0), block_shape=(HEAD_DIM, BLOCK_N), order=(0, 1), ) O_block_ptr = tl.make_block_ptr( base=Out + qvk_offset, shape=(N_CTX, HEAD_DIM), strides=(stride_om, stride_on), offsets=(start_m * BLOCK_M, 0), block_shape=(BLOCK_M, HEAD_DIM), order=(1, 0), ) # initialize offsets offs_m = start_m * BLOCK_M + tl.arange(0, BLOCK_M) offs_n = tl.arange(0, BLOCK_N) # initialize pointer to m and l m_i = tl.zeros([BLOCK_M], dtype=tl.float32) - float("inf") l_i = tl.zeros([BLOCK_M], dtype=tl.float32) + 1.0 acc = tl.zeros([BLOCK_M, HEAD_DIM], dtype=tl.float32) # load scales qk_scale = sm_scale qk_scale *= 1.44269504 # 1/log(2) # load q: it will stay in SRAM throughout q = tl.load(Q_block_ptr) # stage 1: off-band # For causal = True, STAGE = 3 and _attn_fwd_inner gets 1 as its STAGE # For causal = False, STAGE = 1, and _attn_fwd_inner gets 3 as its STAGE if STAGE & 1: acc, l_i, m_i = _attn_fwd_inner(acc, l_i, m_i, q, K_block_ptr, V_block_ptr, # start_m, qk_scale, # BLOCK_M, HEAD_DIM, BLOCK_N, # 4 - STAGE, offs_m, offs_n, N_CTX, V.dtype.element_ty == tl.float8e5 # ) # stage 2: on-band if STAGE & 2: # barrier makes it easier for compielr to schedule the # two loops independently acc, l_i, m_i = _attn_fwd_inner(acc, l_i, m_i, q, K_block_ptr, V_block_ptr, # start_m, qk_scale, # BLOCK_M, HEAD_DIM, BLOCK_N, # 2, offs_m, offs_n, N_CTX, V.dtype.element_ty == tl.float8e5 # ) # epilogue m_i += tl.math.log2(l_i) acc = acc / l_i[:, None] m_ptrs = M + off_hz * N_CTX + offs_m tl.store(m_ptrs, m_i) tl.store(O_block_ptr, acc.to(Out.type.element_ty)) @triton.jit def _attn_bwd_preprocess(O, DO, # Delta, # Z, H, N_CTX, # BLOCK_M: tl.constexpr, HEAD_DIM: tl.constexpr # ): off_m = tl.program_id(0) * BLOCK_M + tl.arange(0, BLOCK_M) off_hz = tl.program_id(1) off_n = tl.arange(0, HEAD_DIM) # load o = tl.load(O + off_hz * HEAD_DIM * N_CTX + off_m[:, None] * HEAD_DIM + off_n[None, :]) do = tl.load(DO + off_hz * HEAD_DIM * N_CTX + off_m[:, None] * HEAD_DIM + off_n[None, :]).to(tl.float32) delta = tl.sum(o * do, axis=1) # write-back tl.store(Delta + off_hz * N_CTX + off_m, delta) # The main inner-loop logic for computing dK and dV. @triton.jit def _attn_bwd_dkdv(dk, dv, # Q, k, v, sm_scale, # DO, # M, D, # # shared by Q/K/V/DO. stride_tok, stride_d, # H, N_CTX, BLOCK_M1: tl.constexpr, # BLOCK_N1: tl.constexpr, # HEAD_DIM: tl.constexpr, # # Filled in by the wrapper. start_n, start_m, num_steps, # MASK: tl.constexpr): offs_m = start_m + tl.arange(0, BLOCK_M1) offs_n = start_n + tl.arange(0, BLOCK_N1) offs_k = tl.arange(0, HEAD_DIM) qT_ptrs = Q + offs_m[None, :] * stride_tok + offs_k[:, None] * stride_d do_ptrs = DO + offs_m[:, None] * stride_tok + offs_k[None, :] * stride_d # BLOCK_N1 must be a multiple of BLOCK_M1, otherwise the code wouldn't work. tl.static_assert(BLOCK_N1 % BLOCK_M1 == 0) curr_m = start_m step_m = BLOCK_M1 for blk_idx in range(num_steps): qT = tl.load(qT_ptrs) # Load m before computing qk to reduce pipeline stall. offs_m = curr_m + tl.arange(0, BLOCK_M1) m = tl.load(M + offs_m) qkT = tl.dot(k, qT) pT = tl.math.exp2(qkT - m[None, :]) # Autoregressive masking. if MASK: mask = (offs_m[None, :] >= offs_n[:, None]) pT = tl.where(mask, pT, 0.0) do = tl.load(do_ptrs) # Compute dV. ppT = pT ppT = ppT.to(tl.float16) dv += tl.dot(ppT, do) # D (= delta) is pre-divided by ds_scale. Di = tl.load(D + offs_m) # Compute dP and dS. dpT = tl.dot(v, tl.trans(do)).to(tl.float32) dsT = pT * (dpT - Di[None, :]) dsT = dsT.to(tl.float16) dk += tl.dot(dsT, tl.trans(qT)) # Increment pointers. curr_m += step_m qT_ptrs += step_m * stride_tok do_ptrs += step_m * stride_tok return dk, dv # the main inner-loop logic for computing dQ @triton.jit def _attn_bwd_dq(dq, q, K, V, # do, m, D, # shared by Q/K/V/DO. stride_tok, stride_d, # H, N_CTX, # BLOCK_M2: tl.constexpr, # BLOCK_N2: tl.constexpr, # HEAD_DIM: tl.constexpr, # Filled in by the wrapper. start_m, start_n, num_steps, # MASK: tl.constexpr): offs_m = start_m + tl.arange(0, BLOCK_M2) offs_n = start_n + tl.arange(0, BLOCK_N2) offs_k = tl.arange(0, HEAD_DIM) kT_ptrs = K + offs_n[None, :] * stride_tok + offs_k[:, None] * stride_d vT_ptrs = V + offs_n[None, :] * stride_tok + offs_k[:, None] * stride_d # D (= delta) is pre-divided by ds_scale. Di = tl.load(D + offs_m) # BLOCK_M2 must be a multiple of BLOCK_N2, otherwise the code wouldn't work. tl.static_assert(BLOCK_M2 % BLOCK_N2 == 0) curr_n = start_n step_n = BLOCK_N2 for blk_idx in range(num_steps): kT = tl.load(kT_ptrs) vT = tl.load(vT_ptrs) qk = tl.dot(q, kT) p = tl.math.exp2(qk - m) # Autoregressive masking. if MASK: offs_n = curr_n + tl.arange(0, BLOCK_N2) mask = (offs_m[:, None] >= offs_n[None, :]) p = tl.where(mask, p, 0.0) # Compute dP and dS. dp = tl.dot(do, vT).to(tl.float32) ds = p * (dp - Di[:, None]) ds = ds.to(tl.float16) # Compute dQ. # NOTE: We need to de-scale dq in the end, because kT was pre-scaled. dq += tl.dot(ds, tl.trans(kT)) # Increment pointers. curr_n += step_n kT_ptrs += step_n * stride_tok vT_ptrs += step_n * stride_tok return dq @triton.jit def _attn_bwd(Q, K, V, sm_scale, # DO, # DQ, DK, DV, # M, D, # shared by Q/K/V/DO. stride_z, stride_h, stride_tok, stride_d, # H, N_CTX, # BLOCK_M1: tl.constexpr, # BLOCK_N1: tl.constexpr, # BLOCK_M2: tl.constexpr, # BLOCK_N2: tl.constexpr, # BLK_SLICE_FACTOR: tl.constexpr, # HEAD_DIM: tl.constexpr): LN2: tl.constexpr = 0.6931471824645996 # = ln(2) bhid = tl.program_id(2) off_chz = (bhid * N_CTX).to(tl.int64) adj = (stride_h * (bhid % H) + stride_z * (bhid // H)).to(tl.int64) pid = tl.program_id(0) # offset pointers for batch/head Q += adj K += adj V += adj DO += adj DQ += adj DK += adj DV += adj M += off_chz D += off_chz # load scales offs_k = tl.arange(0, HEAD_DIM) start_n = pid * BLOCK_N1 start_m = start_n MASK_BLOCK_M1: tl.constexpr = BLOCK_M1 // BLK_SLICE_FACTOR offs_n = start_n + tl.arange(0, BLOCK_N1) dv = tl.zeros([BLOCK_N1, HEAD_DIM], dtype=tl.float32) dk = tl.zeros([BLOCK_N1, HEAD_DIM], dtype=tl.float32) # load K and V: they stay in SRAM throughout the inner loop. k = tl.load(K + offs_n[:, None] * stride_tok + offs_k[None, :] * stride_d) v = tl.load(V + offs_n[:, None] * stride_tok + offs_k[None, :] * stride_d) num_steps = BLOCK_N1 // MASK_BLOCK_M1 dk, dv = _attn_bwd_dkdv(dk, dv, # Q, k, v, sm_scale, # DO, # M, D, # stride_tok, stride_d, # H, N_CTX, # MASK_BLOCK_M1, BLOCK_N1, HEAD_DIM, # start_n, start_m, num_steps, # MASK=True # ) start_m += num_steps * MASK_BLOCK_M1 num_steps = (N_CTX - start_m) // BLOCK_M1 # Compute dK and dV for non-masked blocks. dk, dv = _attn_bwd_dkdv( # dk, dv, # Q, k, v, sm_scale, # DO, # M, D, # stride_tok, stride_d, # H, N_CTX, # BLOCK_M1, BLOCK_N1, HEAD_DIM, # start_n, start_m, num_steps, # MASK=False # ) dv_ptrs = DV + offs_n[:, None] * stride_tok + offs_k[None, :] * stride_d tl.store(dv_ptrs, dv) # Write back dK. dk *= sm_scale dk_ptrs = DK + offs_n[:, None] * stride_tok + offs_k[None, :] * stride_d tl.store(dk_ptrs, dk) # THIS BLOCK DOES DQ: start_m = pid * BLOCK_M2 end_n = start_m + BLOCK_M2 MASK_BLOCK_N2: tl.constexpr = BLOCK_N2 // BLK_SLICE_FACTOR offs_m = start_m + tl.arange(0, BLOCK_M2) q = tl.load(Q + offs_m[:, None] * stride_tok + offs_k[None, :] * stride_d) dq = tl.zeros([BLOCK_M2, HEAD_DIM], dtype=tl.float32) do = tl.load(DO + offs_m[:, None] * stride_tok + offs_k[None, :] * stride_d) m = tl.load(M + offs_m) m = m[:, None] # Compute dQ for masked (diagonal) blocks. # NOTE: This code scans each row of QK^T backward (from right to left, # but inside each call to _attn_bwd_dq, from left to right), but that's # not due to anything important. I just wanted to reuse the loop # structure for dK & dV above as much as possible. num_steps = BLOCK_M2 // MASK_BLOCK_N2 dq = _attn_bwd_dq(dq, q, K, V, # do, m, D, # stride_tok, stride_d, # H, N_CTX, # BLOCK_M2, MASK_BLOCK_N2, HEAD_DIM, # start_m, end_n - num_steps * MASK_BLOCK_N2, num_steps, # MASK=True # ) end_n -= num_steps * MASK_BLOCK_N2 # stage 2 num_steps = end_n // BLOCK_N2 dq = _attn_bwd_dq(dq, q, K, V, # do, m, D, # stride_tok, stride_d, # H, N_CTX, # BLOCK_M2, BLOCK_N2, HEAD_DIM, # start_m, end_n - num_steps * BLOCK_N2, num_steps, # MASK=False # ) # Write back dQ. dq_ptrs = DQ + offs_m[:, None] * stride_tok + offs_k[None, :] * stride_d dq *= LN2 tl.store(dq_ptrs, dq) class _attention(torch.autograd.Function): @staticmethod def forward(ctx, q, k, v, causal, sm_scale): # shape constraints HEAD_DIM_Q, HEAD_DIM_K = q.shape[-1], k.shape[-1] # when v is in float8_e5m2 it is transposed. HEAD_DIM_V = v.shape[-1] assert HEAD_DIM_Q == HEAD_DIM_K and HEAD_DIM_K == HEAD_DIM_V assert HEAD_DIM_K in {16, 32, 64, 128, 256} o = torch.empty_like(q) stage = 3 if causal else 1 # ? extra_kern_args = {} # Tuning for AMD target if is_hip(): waves_per_eu = 3 if HEAD_DIM_K <= 64 else 2 extra_kern_args = {"waves_per_eu": waves_per_eu, "allow_flush_denorm": True} # grid.x = seqlen/BLOCK_M # grid_y = batch_size * head_dim grid = lambda args: (triton.cdiv(q.shape[2], args["BLOCK_M"]), q.shape[0] * q.shape[1], 1) M = torch.empty((q.shape[0], q.shape[1], q.shape[2]), device=q.device, dtype=torch.float32) _attn_fwd[grid]( q, k, v, sm_scale, M, o, # q.stride(0), q.stride(1), q.stride(2), q.stride(3), # k.stride(0), k.stride(1), k.stride(2), k.stride(3), # v.stride(0), v.stride(1), v.stride(2), v.stride(3), # o.stride(0), o.stride(1), o.stride(2), o.stride(3), # q.shape[0], q.shape[1], # N_CTX=q.shape[2], # HEAD_DIM=HEAD_DIM_K, # STAGE=stage, # **extra_kern_args) ctx.save_for_backward(q, k, v, o, M) ctx.grid = grid ctx.sm_scale = sm_scale ctx.HEAD_DIM = HEAD_DIM_K ctx.causal = causal return o @staticmethod def backward(ctx, do): q, k, v, o, M = ctx.saved_tensors assert do.is_contiguous() assert q.stride() == k.stride() == v.stride() == o.stride() == do.stride() dq = torch.empty_like(q) dk = torch.empty_like(k) dv = torch.empty_like(v) BATCH, N_HEAD, N_CTX = q.shape[:3] PRE_BLOCK = 128 NUM_WARPS, NUM_STAGES = 4, 5 BLOCK_M1, BLOCK_N1, BLOCK_M2, BLOCK_N2 = 32, 128, 128, 32 BLK_SLICE_FACTOR = 2 RCP_LN2 = 1.4426950408889634 # = 1.0 / ln(2) arg_k = k arg_k = arg_k * (ctx.sm_scale * RCP_LN2) PRE_BLOCK = 128 assert N_CTX % PRE_BLOCK == 0 pre_grid = (N_CTX // PRE_BLOCK, BATCH * N_HEAD) delta = torch.empty_like(M) _attn_bwd_preprocess[pre_grid]( o, do, # delta, # BATCH, N_HEAD, N_CTX, # BLOCK_M=PRE_BLOCK, HEAD_DIM=ctx.HEAD_DIM # ) grid = (N_CTX // BLOCK_N1, 1, BATCH * N_HEAD) _attn_bwd[grid]( q, arg_k, v, ctx.sm_scale, do, dq, dk, dv, # M, delta, # q.stride(0), q.stride(1), q.stride(2), q.stride(3), # N_HEAD, N_CTX, # BLOCK_M1=BLOCK_M1, BLOCK_N1=BLOCK_N1, # BLOCK_M2=BLOCK_M2, BLOCK_N2=BLOCK_N2, # BLK_SLICE_FACTOR=BLK_SLICE_FACTOR, # HEAD_DIM=ctx.HEAD_DIM, # num_warps=NUM_WARPS, # num_stages=NUM_STAGES # ) return dq, dk, dv, None, None attention = _attention.apply # batch size, head num, sequence length, head dim @pytest.mark.parametrize("Z, H, N_CTX, HEAD_DIM", [(1, 2, 1024, 64)]) @pytest.mark.parametrize("causal", [True]) # causal mask def test_op(Z, H, N_CTX, HEAD_DIM, causal, dtype=torch.float16): torch.manual_seed(20) q = (torch.empty((Z, H, N_CTX, HEAD_DIM), dtype=dtype, device="cuda").normal_(mean=0.0, std=0.5).requires_grad_()) k = (torch.empty((Z, H, N_CTX, HEAD_DIM), dtype=dtype, device="cuda").normal_(mean=0.0, std=0.5).requires_grad_()) v = (torch.empty((Z, H, N_CTX, HEAD_DIM), dtype=dtype, device="cuda").normal_(mean=0.0, std=0.5).requires_grad_()) sm_scale = 0.5 dout = torch.randn_like(q) # reference implementation (PyTorch) M = torch.tril(torch.ones((N_CTX, N_CTX), device="cuda")) p = torch.matmul(q, k.transpose(2, 3)) * sm_scale # attention score if causal: p[:, :, M == 0] = float("-inf") p = torch.softmax(p.float(), dim=-1).half() # p = torch.exp(p) ref_out = torch.matmul(p, v) ref_out.backward(dout) ref_dv, v.grad = v.grad.clone(), None ref_dk, k.grad = k.grad.clone(), None ref_dq, q.grad = q.grad.clone(), None # triton implementation tri_out = attention(q, k, v, causal, sm_scale).half() tri_out.backward(dout) tri_dv, v.grad = v.grad.clone(), None tri_dk, k.grad = k.grad.clone(), None tri_dq, q.grad = q.grad.clone(), None # compare assert torch.allclose(ref_out, tri_out, atol=1e-2, rtol=0) rtol = 0.0 # Relative tolerance workaround for known hardware limitation of MI200 GPU. # For details see https://pytorch.org/docs/stable/notes/numerical_accuracy.html#reduced-precision-fp16-and-bf16-gemms-and-convolutions-on-amd-instinct-mi200-devices if torch.version.hip is not None and triton.runtime.driver.active.get_current_target().arch == "gfx90a": rtol = 1e-2 assert torch.allclose(ref_dv, tri_dv, atol=1e-2, rtol=rtol) assert torch.allclose(ref_dk, tri_dk, atol=1e-2, rtol=rtol) assert torch.allclose(ref_dq, tri_dq, atol=1e-2, rtol=rtol) try: from flash_attn.flash_attn_interface import \ flash_attn_qkvpacked_func as flash_attn_func HAS_FLASH = True except BaseException: HAS_FLASH = False TORCH_HAS_FP8 = hasattr(torch, 'float8_e5m2') BATCH, N_HEADS, HEAD_DIM = 4, 32, 64 # vary seq length for fixed head and batch=4 configs = [] for mode in ["fwd"]: # ["fwd", "bwd"] for causal in [True]: # [True, False] if mode == "bwd" and not causal: continue configs.append( triton.testing.Benchmark( x_names=["N_CTX"], x_vals=[2**i for i in range(9, 13)], line_arg="provider", line_vals=["triton-fp16"] + (["triton-fp8"] if TORCH_HAS_FP8 else []) + (["flash"] if HAS_FLASH else []) + ["torch"], line_names=["Triton [FP16]"] + (["Triton [FP8]"] if TORCH_HAS_FP8 else []) + (["Flash-2"] if HAS_FLASH else []) + ["torch"], styles=[("red", "-"), ("blue", "-"), ("green", "-"), ("yellow", "-")], ylabel="TFLOPS", plot_name=f"fused-attention-batch{BATCH}-head{N_HEADS}-d{HEAD_DIM}-{mode}-causal={causal}", args={ "H": N_HEADS, "BATCH": BATCH, "HEAD_DIM": HEAD_DIM, "mode": mode, "causal": causal, }, )) @triton.testing.perf_report(configs) def bench_flash_attention(BATCH, H, N_CTX, HEAD_DIM, causal, mode, provider, device="cuda"): assert mode in ["fwd", "bwd"] dtype = torch.float16 if "triton" in provider: q = torch.randn((BATCH, H, N_CTX, HEAD_DIM), dtype=dtype, device=device, requires_grad=True) k = torch.randn((BATCH, H, N_CTX, HEAD_DIM), dtype=dtype, device=device, requires_grad=True) v = torch.randn((BATCH, H, N_CTX, HEAD_DIM), dtype=dtype, device=device, requires_grad=True) if mode == "fwd" and "fp8" in provider: q = q.to(torch.float8_e5m2) k = k.to(torch.float8_e5m2) v = v.permute(0, 1, 3, 2).contiguous() v = v.permute(0, 1, 3, 2) v = v.to(torch.float8_e5m2) sm_scale = 1.3 fn = lambda: attention(q, k, v, causal, sm_scale) if mode == "bwd": o = fn() do = torch.randn_like(o) fn = lambda: o.backward(do, retain_graph=True) ms = triton.testing.do_bench(fn) if provider == "flash": qkv = torch.randn((BATCH, N_CTX, 3, H, HEAD_DIM), dtype=dtype, device=device, requires_grad=True) fn = lambda: flash_attn_func(qkv, causal=causal) if mode == "bwd": o = fn() do = torch.randn_like(o) fn = lambda: o.backward(do, retain_graph=True) ms = triton.testing.do_bench(fn) if provider == "torch": q = torch.randn((BATCH, H, N_CTX, HEAD_DIM), dtype=dtype, device=device, requires_grad=True) k = torch.randn((BATCH, H, N_CTX, HEAD_DIM), dtype=dtype, device=device, requires_grad=True) v = torch.randn((BATCH, H, N_CTX, HEAD_DIM), dtype=dtype, device=device, requires_grad=True) sm_scale = 1.3 M = torch.tril(torch.ones((N_CTX, N_CTX), device="cuda")) p = torch.matmul(q, k.transpose(2, 3)) * sm_scale # attention score if causal: p[:, :, M == 0] = float("-inf") p = torch.softmax(p.float(), dim=-1).half() fn = lambda: torch.matmul(p, v) ms = triton.testing.do_bench(fn) flops_per_matmul = 2.0 * BATCH * H * N_CTX * N_CTX * HEAD_DIM total_flops = 2 * flops_per_matmul if causal: total_flops *= 0.5 if mode == "bwd": total_flops *= 2.5 # 2.0(bwd) + 0.5(recompute) return total_flops * 1e-12 / (ms * 1e-3) def peak_memory(backend): dtype = torch.float16 device = 'cuda' BATCH, H, HEAD_DIM = 4, 32, 64 for N_CTX in [2**i for i in range(9, 13)]: q = torch.randn((BATCH, H, N_CTX, HEAD_DIM), dtype=dtype, device=device, requires_grad=True) k = torch.randn((BATCH, H, N_CTX, HEAD_DIM), dtype=dtype, device=device, requires_grad=True) v = torch.randn((BATCH, H, N_CTX, HEAD_DIM), dtype=dtype, device=device, requires_grad=True) sm_scale = 1.3 def torch_call(): M = torch.tril(torch.ones((N_CTX, N_CTX), device="cuda")) p = torch.matmul(q, k.transpose(2, 3)) * sm_scale # attention score if causal: p[:, :, M == 0] = float("-inf") p = torch.softmax(p.float(), dim=-1).half() fn = lambda: torch.matmul(p, v) ms = triton.testing.do_bench(fn) def triton_call(): attention(q, k, v, causal, sm_scale) QUANTILES = [0.5, 0.2, 0.8] if backend == "triton": mem_50, mem_20, mem_80 = _test_memory(triton_call, quantiles=QUANTILES) print(f"Triton Peak Memory of {N_CTX} is {mem_50, mem_20, mem_80}") if backend == "torch": mem_50, mem_20, mem_80 = _test_memory(torch_call, quantiles=QUANTILES) print(f"Torch Peak Memory of {N_CTX} is {mem_50, mem_20, mem_80}") if __name__ == "__main__": # only works on post-Ampere GPUs right now bench_flash_attention.run(save_path=".", print_data=True) # peak_memory("torch")
@triton.jit def _attn_bwd(Q, K, V, sm_scale, # DO, # DQ, DK, DV, # M, D, # shared by Q/K/V/DO. stride_z, stride_h, stride_tok, stride_d, # H, N_CTX, # BLOCK_M1: tl.constexpr, # BLOCK_N1: tl.constexpr, # BLOCK_M2: tl.constexpr, # BLOCK_N2: tl.constexpr, # BLK_SLICE_FACTOR: tl.constexpr, # HEAD_DIM: tl.constexpr): LN2: tl.constexpr = 0.6931471824645996 # = ln(2) bhid = tl.program_id(2) off_chz = (bhid * N_CTX).to(tl.int64) adj = (stride_h * (bhid % H) + stride_z * (bhid // H)).to(tl.int64) pid = tl.program_id(0) # offset pointers for batch/head Q += adj K += adj V += adj DO += adj DQ += adj DK += adj DV += adj M += off_chz D += off_chz # load scales offs_k = tl.arange(0, HEAD_DIM) start_n = pid * BLOCK_N1 start_m = start_n MASK_BLOCK_M1: tl.constexpr = BLOCK_M1 // BLK_SLICE_FACTOR offs_n = start_n + tl.arange(0, BLOCK_N1) dv = tl.zeros([BLOCK_N1, HEAD_DIM], dtype=tl.float32) dk = tl.zeros([BLOCK_N1, HEAD_DIM], dtype=tl.float32) # load K and V: they stay in SRAM throughout the inner loop. k = tl.load(K + offs_n[:, None] * stride_tok + offs_k[None, :] * stride_d) v = tl.load(V + offs_n[:, None] * stride_tok + offs_k[None, :] * stride_d) num_steps = BLOCK_N1 // MASK_BLOCK_M1 dk, dv = _attn_bwd_dkdv(dk, dv, # Q, k, v, sm_scale, # DO, # M, D, # stride_tok, stride_d, # H, N_CTX, # MASK_BLOCK_M1, BLOCK_N1, HEAD_DIM, # start_n, start_m, num_steps, # MASK=True # ) start_m += num_steps * MASK_BLOCK_M1 num_steps = (N_CTX - start_m) // BLOCK_M1 # Compute dK and dV for non-masked blocks. dk, dv = _attn_bwd_dkdv( # dk, dv, # Q, k, v, sm_scale, # DO, # M, D, # stride_tok, stride_d, # H, N_CTX, # BLOCK_M1, BLOCK_N1, HEAD_DIM, # start_n, start_m, num_steps, # MASK=False # ) dv_ptrs = DV + offs_n[:, None] * stride_tok + offs_k[None, :] * stride_d tl.store(dv_ptrs, dv) # Write back dK. dk *= sm_scale dk_ptrs = DK + offs_n[:, None] * stride_tok + offs_k[None, :] * stride_d tl.store(dk_ptrs, dk) # THIS BLOCK DOES DQ: start_m = pid * BLOCK_M2 end_n = start_m + BLOCK_M2 MASK_BLOCK_N2: tl.constexpr = BLOCK_N2 // BLK_SLICE_FACTOR offs_m = start_m + tl.arange(0, BLOCK_M2) q = tl.load(Q + offs_m[:, None] * stride_tok + offs_k[None, :] * stride_d) dq = tl.zeros([BLOCK_M2, HEAD_DIM], dtype=tl.float32) do = tl.load(DO + offs_m[:, None] * stride_tok + offs_k[None, :] * stride_d) m = tl.load(M + offs_m) m = m[:, None] # Compute dQ for masked (diagonal) blocks. # NOTE: This code scans each row of QK^T backward (from right to left, # but inside each call to _attn_bwd_dq, from left to right), but that's # not due to anything important. I just wanted to reuse the loop # structure for dK & dV above as much as possible. num_steps = BLOCK_M2 // MASK_BLOCK_N2 dq = _attn_bwd_dq(dq, q, K, V, # do, m, D, # stride_tok, stride_d, # H, N_CTX, # BLOCK_M2, MASK_BLOCK_N2, HEAD_DIM, # start_m, end_n - num_steps * MASK_BLOCK_N2, num_steps, # MASK=True # ) end_n -= num_steps * MASK_BLOCK_N2 # stage 2 num_steps = end_n // BLOCK_N2 dq = _attn_bwd_dq(dq, q, K, V, # do, m, D, # stride_tok, stride_d, # H, N_CTX, # BLOCK_M2, BLOCK_N2, HEAD_DIM, # start_m, end_n - num_steps * BLOCK_N2, num_steps, # MASK=False # ) # Write back dQ. dq_ptrs = DQ + offs_m[:, None] * stride_tok + offs_k[None, :] * stride_d dq *= LN2 tl.store(dq_ptrs, dq) class _attention(torch.autograd.Function): @staticmethod def forward(ctx, q, k, v, causal, sm_scale): # shape constraints HEAD_DIM_Q, HEAD_DIM_K = q.shape[-1], k.shape[-1] # when v is in float8_e5m2 it is transposed. HEAD_DIM_V = v.shape[-1] assert HEAD_DIM_Q == HEAD_DIM_K and HEAD_DIM_K == HEAD_DIM_V assert HEAD_DIM_K in {16, 32, 64, 128, 256} o = torch.empty_like(q) stage = 3 if causal else 1 # ? extra_kern_args = {} # Tuning for AMD target if is_hip(): waves_per_eu = 3 if HEAD_DIM_K <= 64 else 2 extra_kern_args = {"waves_per_eu": waves_per_eu, "allow_flush_denorm": True} # grid.x = seqlen/BLOCK_M # grid_y = batch_size * head_dim grid = lambda args: (triton.cdiv(q.shape[2], args["BLOCK_M"]), q.shape[0] * q.shape[1], 1) M = torch.empty((q.shape[0], q.shape[1], q.shape[2]), device=q.device, dtype=torch.float32) _attn_fwd[grid]( q, k, v, sm_scale, M, o, # q.stride(0), q.stride(1), q.stride(2), q.stride(3), # k.stride(0), k.stride(1), k.stride(2), k.stride(3), # v.stride(0), v.stride(1), v.stride(2), v.stride(3), # o.stride(0), o.stride(1), o.stride(2), o.stride(3), # q.shape[0], q.shape[1], # N_CTX=q.shape[2], # HEAD_DIM=HEAD_DIM_K, # STAGE=stage, # **extra_kern_args) ctx.save_for_backward(q, k, v, o, M) ctx.grid = grid ctx.sm_scale = sm_scale ctx.HEAD_DIM = HEAD_DIM_K ctx.causal = causal return o @staticmethod def backward(ctx, do): q, k, v, o, M = ctx.saved_tensors assert do.is_contiguous() assert q.stride() == k.stride() == v.stride() == o.stride() == do.stride() dq = torch.empty_like(q) dk = torch.empty_like(k) dv = torch.empty_like(v) BATCH, N_HEAD, N_CTX = q.shape[:3] PRE_BLOCK = 128 NUM_WARPS, NUM_STAGES = 4, 5 BLOCK_M1, BLOCK_N1, BLOCK_M2, BLOCK_N2 = 32, 128, 128, 32 BLK_SLICE_FACTOR = 2 RCP_LN2 = 1.4426950408889634 # = 1.0 / ln(2) arg_k = k arg_k = arg_k * (ctx.sm_scale * RCP_LN2) PRE_BLOCK = 128 assert N_CTX % PRE_BLOCK == 0 pre_grid = (N_CTX // PRE_BLOCK, BATCH * N_HEAD) delta = torch.empty_like(M) _attn_bwd_preprocess[pre_grid]( o, do, # delta, # BATCH, N_HEAD, N_CTX, # BLOCK_M=PRE_BLOCK, HEAD_DIM=ctx.HEAD_DIM # ) grid = (N_CTX // BLOCK_N1, 1, BATCH * N_HEAD) _attn_bwd[grid]( q, arg_k, v, ctx.sm_scale, do, dq, dk, dv, # M, delta, # q.stride(0), q.stride(1), q.stride(2), q.stride(3), # N_HEAD, N_CTX, # BLOCK_M1=BLOCK_M1, BLOCK_N1=BLOCK_N1, # BLOCK_M2=BLOCK_M2, BLOCK_N2=BLOCK_N2, # BLK_SLICE_FACTOR=BLK_SLICE_FACTOR, # HEAD_DIM=ctx.HEAD_DIM, # num_warps=NUM_WARPS, # num_stages=NUM_STAGES # ) return dq, dk, dv, None, None attention = _attention.apply # batch size, head num, sequence length, head dim @pytest.mark.parametrize("Z, H, N_CTX, HEAD_DIM", [(1, 2, 1024, 64)]) @pytest.mark.parametrize("causal", [True]) # causal mask def test_op(Z, H, N_CTX, HEAD_DIM, causal, dtype=torch.float16): torch.manual_seed(20) q = (torch.empty((Z, H, N_CTX, HEAD_DIM), dtype=dtype, device="cuda").normal_(mean=0.0, std=0.5).requires_grad_()) k = (torch.empty((Z, H, N_CTX, HEAD_DIM), dtype=dtype, device="cuda").normal_(mean=0.0, std=0.5).requires_grad_()) v = (torch.empty((Z, H, N_CTX, HEAD_DIM), dtype=dtype, device="cuda").normal_(mean=0.0, std=0.5).requires_grad_()) sm_scale = 0.5 dout = torch.randn_like(q) # reference implementation (PyTorch) M = torch.tril(torch.ones((N_CTX, N_CTX), device="cuda")) p = torch.matmul(q, k.transpose(2, 3)) * sm_scale # attention score if causal: p[:, :, M == 0] = float("-inf") p = torch.softmax(p.float(), dim=-1).half() # p = torch.exp(p) ref_out = torch.matmul(p, v) ref_out.backward(dout) ref_dv, v.grad = v.grad.clone(), None ref_dk, k.grad = k.grad.clone(), None ref_dq, q.grad = q.grad.clone(), None # triton implementation tri_out = attention(q, k, v, causal, sm_scale).half() tri_out.backward(dout) tri_dv, v.grad = v.grad.clone(), None tri_dk, k.grad = k.grad.clone(), None tri_dq, q.grad = q.grad.clone(), None # compare assert torch.allclose(ref_out, tri_out, atol=1e-2, rtol=0) rtol = 0.0 # Relative tolerance workaround for known hardware limitation of MI200 GPU. # For details see https://pytorch.org/docs/stable/notes/numerical_accuracy.html#reduced-precision-fp16-and-bf16-gemms-and-convolutions-on-amd-instinct-mi200-devices if torch.version.hip is not None and triton.runtime.driver.active.get_current_target().arch == "gfx90a": rtol = 1e-2 assert torch.allclose(ref_dv, tri_dv, atol=1e-2, rtol=rtol) assert torch.allclose(ref_dk, tri_dk, atol=1e-2, rtol=rtol) assert torch.allclose(ref_dq, tri_dq, atol=1e-2, rtol=rtol) try: from flash_attn.flash_attn_interface import \ flash_attn_qkvpacked_func as flash_attn_func HAS_FLASH = True except BaseException: HAS_FLASH = False TORCH_HAS_FP8 = hasattr(torch, 'float8_e5m2') BATCH, N_HEADS, HEAD_DIM = 4, 32, 64 # vary seq length for fixed head and batch=4 configs = [] for mode in ["fwd"]: # ["fwd", "bwd"] for causal in [True]: # [True, False] if mode == "bwd" and not causal: continue configs.append( triton.testing.Benchmark( x_names=["N_CTX"], x_vals=[2**i for i in range(9, 13)], line_arg="provider", line_vals=["triton-fp16"] + (["triton-fp8"] if TORCH_HAS_FP8 else []) + (["flash"] if HAS_FLASH else []) + ["torch"], line_names=["Triton [FP16]"] + (["Triton [FP8]"] if TORCH_HAS_FP8 else []) + (["Flash-2"] if HAS_FLASH else []) + ["torch"], styles=[("red", "-"), ("blue", "-"), ("green", "-"), ("yellow", "-")], ylabel="TFLOPS", plot_name=f"fused-attention-batch{BATCH}-head{N_HEADS}-d{HEAD_DIM}-{mode}-causal={causal}", args={ "H": N_HEADS, "BATCH": BATCH, "HEAD_DIM": HEAD_DIM, "mode": mode, "causal": causal, }, )) @triton.testing.perf_report(configs) def bench_flash_attention(BATCH, H, N_CTX, HEAD_DIM, causal, mode, provider, device="cuda"): assert mode in ["fwd", "bwd"] dtype = torch.float16 if "triton" in provider: q = torch.randn((BATCH, H, N_CTX, HEAD_DIM), dtype=dtype, device=device, requires_grad=True) k = torch.randn((BATCH, H, N_CTX, HEAD_DIM), dtype=dtype, device=device, requires_grad=True) v = torch.randn((BATCH, H, N_CTX, HEAD_DIM), dtype=dtype, device=device, requires_grad=True) if mode == "fwd" and "fp8" in provider: q = q.to(torch.float8_e5m2) k = k.to(torch.float8_e5m2) v = v.permute(0, 1, 3, 2).contiguous() v = v.permute(0, 1, 3, 2) v = v.to(torch.float8_e5m2) sm_scale = 1.3 fn = lambda: attention(q, k, v, causal, sm_scale) if mode == "bwd": o = fn() do = torch.randn_like(o) fn = lambda: o.backward(do, retain_graph=True) ms = triton.testing.do_bench(fn) if provider == "flash": qkv = torch.randn((BATCH, N_CTX, 3, H, HEAD_DIM), dtype=dtype, device=device, requires_grad=True) fn = lambda: flash_attn_func(qkv, causal=causal) if mode == "bwd": o = fn() do = torch.randn_like(o) fn = lambda: o.backward(do, retain_graph=True) ms = triton.testing.do_bench(fn) if provider == "torch": q = torch.randn((BATCH, H, N_CTX, HEAD_DIM), dtype=dtype, device=device, requires_grad=True) k = torch.randn((BATCH, H, N_CTX, HEAD_DIM), dtype=dtype, device=device, requires_grad=True) v = torch.randn((BATCH, H, N_CTX, HEAD_DIM), dtype=dtype, device=device, requires_grad=True) sm_scale = 1.3 M = torch.tril(torch.ones((N_CTX, N_CTX), device="cuda")) p = torch.matmul(q, k.transpose(2, 3)) * sm_scale # attention score if causal: p[:, :, M == 0] = float("-inf") p = torch.softmax(p.float(), dim=-1).half() fn = lambda: torch.matmul(p, v) ms = triton.testing.do_bench(fn) flops_per_matmul = 2.0 * BATCH * H * N_CTX * N_CTX * HEAD_DIM total_flops = 2 * flops_per_matmul if causal: total_flops *= 0.5 if mode == "bwd": total_flops *= 2.5 # 2.0(bwd) + 0.5(recompute) return total_flops * 1e-12 / (ms * 1e-3) def peak_memory(backend): dtype = torch.float16 device = 'cuda' BATCH, H, HEAD_DIM = 4, 32, 64 for N_CTX in [2**i for i in range(9, 13)]: q = torch.randn((BATCH, H, N_CTX, HEAD_DIM), dtype=dtype, device=device, requires_grad=True) k = torch.randn((BATCH, H, N_CTX, HEAD_DIM), dtype=dtype, device=device, requires_grad=True) v = torch.randn((BATCH, H, N_CTX, HEAD_DIM), dtype=dtype, device=device, requires_grad=True) sm_scale = 1.3 def torch_call(): M = torch.tril(torch.ones((N_CTX, N_CTX), device="cuda")) p = torch.matmul(q, k.transpose(2, 3)) * sm_scale # attention score if causal: p[:, :, M == 0] = float("-inf") p = torch.softmax(p.float(), dim=-1).half() fn = lambda: torch.matmul(p, v) ms = triton.testing.do_bench(fn) def triton_call(): attention(q, k, v, causal, sm_scale) QUANTILES = [0.5, 0.2, 0.8] if backend == "triton": mem_50, mem_20, mem_80 = _test_memory(triton_call, quantiles=QUANTILES) print(f"Triton Peak Memory of {N_CTX} is {mem_50, mem_20, mem_80}") if backend == "torch": mem_50, mem_20, mem_80 = _test_memory(torch_call, quantiles=QUANTILES) print(f"Torch Peak Memory of {N_CTX} is {mem_50, mem_20, mem_80}") if __name__ == "__main__": # only works on post-Ampere GPUs right now bench_flash_attention.run(save_path=".", print_data=True) # peak_memory("torch")
FlagOpen/FlagGems
src/flag_gems/ops/tanh.py
https://github.com/FlagOpen/FlagGems/blob/2437f4ffa2d644e38c26aacbf1249263a2016bb2/src/flag_gems/ops/tanh.py
import logging import torch import triton import triton.language as tl from ..utils import pointwise_dynamic, tl_extra_shim pow = tl_extra_shim.pow _tanh = tl_extra_shim.tanh @pointwise_dynamic(promotion_methods=[(0, "INT_TO_FLOAT")]) @triton.jit def tanh_forward(x): return _tanh(x.to(tl.float32)) @pointwise_dynamic(promotion_methods=[(0, "INT_TO_FLOAT")]) @triton.jit def tanh_backward(y, dy): return dy * (1.0 - pow(y.to(tl.float32), 2)) class Tanh(torch.autograd.Function): @staticmethod def forward(ctx, A): logging.debug("GEMS TANH FORWARD") if A.requires_grad is True: out = tanh_forward(A.to(torch.float32)) ctx.save_for_backward(out) return out.to(A.dtype) else: out = tanh_forward(A) return out @staticmethod def backward(ctx, out_grad): logging.debug("GEMS TANH BACKWARD") (out,) = ctx.saved_tensors in_grad = tanh_backward(out, out_grad) return in_grad def tanh(A): return Tanh.apply(A) class InplaceTanh(torch.autograd.Function): @staticmethod def forward(ctx, A): logging.debug("GEMS TANH_ FORWARD") if A.requires_grad is True: out = tanh_forward(A.to(torch.float32)) ctx.save_for_backward(out) A.copy_(out.to(A.dtype)) ctx.mark_dirty(A) else: tanh_forward(A, out0=A) return A @staticmethod def backward(ctx, out_grad): logging.debug("GEMS TANH_ BACKWARD") (out,) = ctx.saved_tensors in_grad = tanh_backward(out, out_grad) return in_grad def tanh_(A): InplaceTanh.apply(A) return A
@triton.jit def tanh_forward(x): return _tanh(x.to(tl.float32)) @pointwise_dynamic(promotion_methods=[(0, "INT_TO_FLOAT")])
FlagOpen/FlagGems
src/flag_gems/ops/tanh.py
https://github.com/FlagOpen/FlagGems/blob/2437f4ffa2d644e38c26aacbf1249263a2016bb2/src/flag_gems/ops/tanh.py
import logging import torch import triton import triton.language as tl from ..utils import pointwise_dynamic, tl_extra_shim pow = tl_extra_shim.pow _tanh = tl_extra_shim.tanh @pointwise_dynamic(promotion_methods=[(0, "INT_TO_FLOAT")]) @triton.jit def tanh_forward(x): return _tanh(x.to(tl.float32)) @pointwise_dynamic(promotion_methods=[(0, "INT_TO_FLOAT")]) @triton.jit def tanh_backward(y, dy): return dy * (1.0 - pow(y.to(tl.float32), 2)) class Tanh(torch.autograd.Function): @staticmethod def forward(ctx, A): logging.debug("GEMS TANH FORWARD") if A.requires_grad is True: out = tanh_forward(A.to(torch.float32)) ctx.save_for_backward(out) return out.to(A.dtype) else: out = tanh_forward(A) return out @staticmethod def backward(ctx, out_grad): logging.debug("GEMS TANH BACKWARD") (out,) = ctx.saved_tensors in_grad = tanh_backward(out, out_grad) return in_grad def tanh(A): return Tanh.apply(A) class InplaceTanh(torch.autograd.Function): @staticmethod def forward(ctx, A): logging.debug("GEMS TANH_ FORWARD") if A.requires_grad is True: out = tanh_forward(A.to(torch.float32)) ctx.save_for_backward(out) A.copy_(out.to(A.dtype)) ctx.mark_dirty(A) else: tanh_forward(A, out0=A) return A @staticmethod def backward(ctx, out_grad): logging.debug("GEMS TANH_ BACKWARD") (out,) = ctx.saved_tensors in_grad = tanh_backward(out, out_grad) return in_grad def tanh_(A): InplaceTanh.apply(A) return A
@triton.jit def tanh_backward(y, dy): return dy * (1.0 - pow(y.to(tl.float32), 2)) class Tanh(torch.autograd.Function): @staticmethod def forward(ctx, A): logging.debug("GEMS TANH FORWARD") if A.requires_grad is True: out = tanh_forward(A.to(torch.float32)) ctx.save_for_backward(out) return out.to(A.dtype) else: out = tanh_forward(A) return out @staticmethod def backward(ctx, out_grad): logging.debug("GEMS TANH BACKWARD") (out,) = ctx.saved_tensors in_grad = tanh_backward(out, out_grad) return in_grad def tanh(A): return Tanh.apply(A) class InplaceTanh(torch.autograd.Function): @staticmethod def forward(ctx, A): logging.debug("GEMS TANH_ FORWARD") if A.requires_grad is True: out = tanh_forward(A.to(torch.float32)) ctx.save_for_backward(out) A.copy_(out.to(A.dtype)) ctx.mark_dirty(A) else: tanh_forward(A, out0=A) return A @staticmethod def backward(ctx, out_grad): logging.debug("GEMS TANH_ BACKWARD") (out,) = ctx.saved_tensors in_grad = tanh_backward(out, out_grad) return in_grad def tanh_(A): InplaceTanh.apply(A) return A
LordXX505/SleepGPT
main/utils/triton.py
https://github.com/LordXX505/SleepGPT/blob/e6a4d375172e009a9753e541e8b22223028e200f/main/utils/triton.py
import torch try: import triton import triton.language as tl except ImportError as e: print('triton is not installed, please install by running `pip install triton -U --pre`') exit() # clone param and exp_avg before autotuning takes place # as those are updated in-place def clone_inplace_updated_params(nargs): nargs['p_ptr'] = nargs['p_ptr'].clone() nargs['exp_avg_ptr'] = nargs['exp_avg_ptr'].clone() # triton cuda kernel @triton.autotune(configs = [ triton.Config({'BLOCK_SIZE': 128}, num_warps = 4, pre_hook = clone_inplace_updated_params), triton.Config({'BLOCK_SIZE': 1024}, num_warps = 8, pre_hook = clone_inplace_updated_params), ], key = ['n_elements']) @triton.jit def update_fn_kernel( p_ptr, grad_ptr, exp_avg_ptr, lr, wd, beta1, beta2, n_elements, BLOCK_SIZE: tl.constexpr, ): pid = tl.program_id(axis = 0) block_start = pid * BLOCK_SIZE offsets = block_start + tl.arange(0, BLOCK_SIZE) mask = offsets < n_elements # offsetted pointers offset_p_ptr = p_ptr + offsets offset_grad_ptr = grad_ptr + offsets offset_exp_avg_ptr = exp_avg_ptr + offsets # load p = tl.load(offset_p_ptr, mask = mask) grad = tl.load(offset_grad_ptr, mask = mask) exp_avg = tl.load(offset_exp_avg_ptr, mask = mask) # stepweight decay p = p * (1 - lr * wd) # diff between momentum running average and grad diff = exp_avg - grad # weight update update = diff * beta1 + grad # torch.sign can_update = update != 0 update_sign = tl.where(update > 0, -lr, lr) p = p + update_sign * can_update # decay the momentum running average coefficient exp_avg = diff * beta2 + grad # store new params and momentum running average coefficient tl.store(offset_p_ptr, p, mask = mask) tl.store(offset_exp_avg_ptr, exp_avg, mask = mask) def update_fn( p: torch.Tensor, grad: torch.Tensor, exp_avg: torch.Tensor, lr: float, wd: float, beta1: float, beta2: float ): assert all([t.is_cuda for t in (p, grad, exp_avg)]) n_elements = p.numel() grid = lambda meta: (triton.cdiv(n_elements, meta['BLOCK_SIZE']),) update_fn_kernel[grid]( p, grad, exp_avg, lr, wd, beta1, beta2, n_elements )
@triton.jit def update_fn_kernel( p_ptr, grad_ptr, exp_avg_ptr, lr, wd, beta1, beta2, n_elements, BLOCK_SIZE: tl.constexpr, ): pid = tl.program_id(axis = 0) block_start = pid * BLOCK_SIZE offsets = block_start + tl.arange(0, BLOCK_SIZE) mask = offsets < n_elements # offsetted pointers offset_p_ptr = p_ptr + offsets offset_grad_ptr = grad_ptr + offsets offset_exp_avg_ptr = exp_avg_ptr + offsets # load p = tl.load(offset_p_ptr, mask = mask) grad = tl.load(offset_grad_ptr, mask = mask) exp_avg = tl.load(offset_exp_avg_ptr, mask = mask) # stepweight decay p = p * (1 - lr * wd) # diff between momentum running average and grad diff = exp_avg - grad # weight update update = diff * beta1 + grad # torch.sign can_update = update != 0 update_sign = tl.where(update > 0, -lr, lr) p = p + update_sign * can_update # decay the momentum running average coefficient exp_avg = diff * beta2 + grad # store new params and momentum running average coefficient tl.store(offset_p_ptr, p, mask = mask) tl.store(offset_exp_avg_ptr, exp_avg, mask = mask) def update_fn( p: torch.Tensor, grad: torch.Tensor, exp_avg: torch.Tensor, lr: float, wd: float, beta1: float, beta2: float ): assert all([t.is_cuda for t in (p, grad, exp_avg)]) n_elements = p.numel() grid = lambda meta: (triton.cdiv(n_elements, meta['BLOCK_SIZE']),) update_fn_kernel[grid]( p, grad, exp_avg, lr, wd, beta1, beta2, n_elements )
LiuTaowen-Tony/flash-qlora
merged_forward_v1.py
https://github.com/LiuTaowen-Tony/flash-qlora/blob/57ce887d668430693e3b2d76cc707223ee0c4b82/merged_forward_v1.py
import torch import triton import triton.language as tl import common def get_configs_io_bound(): configs = [] for block_n in [256, 128, 64, 32, 16]: for block_m in [256, 128, 64, 32]: for block_k in [256, 128, 64]: for num_stages in [5, 4, 3]: for num_warps in [4, 8]: for num_ctas in [1]: if block_m * block_n * block_k >= 16 * 64 * 64 and block_m * block_n * block_k <= 128 * 128 * 256: configs.append( triton.Config({'block_M': block_m, 'block_N': block_n, 'block_K': block_k, 'R': 16, 'GROUP_SIZE_M': 8}, num_stages=num_stages, num_warps=num_warps, num_ctas=num_ctas)) # for split_k in [2, 4, 8, 16]: # configs.append(triton.Config({'BLOCK_M': block_m, 'BLOCK_N': block_n, 'BLOCK_K': block_k, 'SPLIT_K': split_k}, # num_stages=num_stages, num_warps=num_warps, pre_hook=init_to_zero('C'))) return configs @triton.autotune( configs=common.get_autotune_config(), # configs=get_configs_io_bound(), key=["M", "N", "K"], ) @triton.jit def merged_qlora_forward_kernel( x_ptr, w_ptr, u_ptr, v_ptr, c_ptr, stride_xm, stride_xk, stride_wk, stride_wn, stride_uk, stride_ur, stride_vr, stride_vn, M: int, N: int, K: int, R: tl.constexpr, block_M: tl.constexpr, block_N: tl.constexpr, block_K: tl.constexpr, GROUP_SIZE_M: tl.constexpr, ): """Kernel for computing the matmul C = A x B. A has shape (M, K), B has shape (K, N) and C has shape (M, N) """ pid_m = tl.program_id(0) pid_n = tl.program_id(1) pid_m, pid_n = common.reorder_pid(pid_m, pid_n, M, N, block_M, block_N, GROUP_SIZE_M) # Block starting positions offs_m = pid_m * block_M offs_n = pid_n * block_N # Initialize fp and int accumulators fp_acc = tl.zeros((block_M, block_N), dtype=tl.float32) # Load block of V v_blk = tl.load( v_ptr + tl.arange(0, R)[:, None] * stride_vr + tl.arange(0, block_N) ) # R: 16 block_N: 256 block_K: 32 block_M: 64 for i in range(0, K, block_K): # Load blocks of X, W, and U x_blk = tl.load( x_ptr + (offs_m + tl.arange(0, block_M))[:, None] * stride_xm + (i + tl.arange(0, block_K)) ) w_blk = tl.load( w_ptr + (i + tl.arange(0, block_K))[:, None] * stride_wk + tl.arange(0, block_N) ) fp_acc = tl.dot(x_blk, w_blk, fp_acc) u_blk = tl.load( u_ptr + (i + tl.arange(0, block_K))[:, None] * stride_uk + tl.arange(0, R) ) xu_blk = tl.dot(x_blk, u_blk) xu_blk2 = tl.cast(xu_blk, dtype=tl.bfloat16) fp_acc = tl.dot(xu_blk2, v_blk, fp_acc) tl.store( c_ptr + (offs_m + tl.arange(0, block_M))[:, None] * N + tl.arange(0, block_N), fp_acc, ) def merged_qlora_forward( x: torch.Tensor, w: torch.Tensor, u: torch.Tensor, v: torch.Tensor ) -> torch.Tensor: # Allocate result tensor on the GPU m, k = x.shape r, n = v.shape assert k == u.shape[0] assert u.shape[1] == r assert w.shape[0] == k assert w.shape[1] == n c = torch.empty((m, n), dtype=x.dtype, device="cuda") grid = lambda opt: (triton.cdiv(m, opt["block_M"]), triton.cdiv(n, opt["block_N"])) # Launch the Triton kernel with auto-tuned configurations merged_qlora_forward_kernel[grid]( x, w, u, v, c, x.stride(0), x.stride(1), w.stride(0), w.stride(1), u.stride(0), u.stride(1), v.stride(0), v.stride(1), M=m, N=n, K=k, ) return c
@triton.jit def merged_qlora_forward_kernel( x_ptr, w_ptr, u_ptr, v_ptr, c_ptr, stride_xm, stride_xk, stride_wk, stride_wn, stride_uk, stride_ur, stride_vr, stride_vn, M: int, N: int, K: int, R: tl.constexpr, block_M: tl.constexpr, block_N: tl.constexpr, block_K: tl.constexpr, GROUP_SIZE_M: tl.constexpr, ): """Kernel for computing the matmul C = A x B. A has shape (M, K), B has shape (K, N) and C has shape (M, N) """ pid_m = tl.program_id(0) pid_n = tl.program_id(1) pid_m, pid_n = common.reorder_pid(pid_m, pid_n, M, N, block_M, block_N, GROUP_SIZE_M) # Block starting positions offs_m = pid_m * block_M offs_n = pid_n * block_N # Initialize fp and int accumulators fp_acc = tl.zeros((block_M, block_N), dtype=tl.float32) # Load block of V v_blk = tl.load( v_ptr + tl.arange(0, R)[:, None] * stride_vr + tl.arange(0, block_N) ) # R: 16 block_N: 256 block_K: 32 block_M: 64 for i in range(0, K, block_K): # Load blocks of X, W, and U x_blk = tl.load( x_ptr + (offs_m + tl.arange(0, block_M))[:, None] * stride_xm + (i + tl.arange(0, block_K)) ) w_blk = tl.load( w_ptr + (i + tl.arange(0, block_K))[:, None] * stride_wk + tl.arange(0, block_N) ) fp_acc = tl.dot(x_blk, w_blk, fp_acc) u_blk = tl.load( u_ptr + (i + tl.arange(0, block_K))[:, None] * stride_uk + tl.arange(0, R) ) xu_blk = tl.dot(x_blk, u_blk) xu_blk2 = tl.cast(xu_blk, dtype=tl.bfloat16) fp_acc = tl.dot(xu_blk2, v_blk, fp_acc) tl.store( c_ptr + (offs_m + tl.arange(0, block_M))[:, None] * N + tl.arange(0, block_N), fp_acc, ) def merged_qlora_forward( x: torch.Tensor, w: torch.Tensor, u: torch.Tensor, v: torch.Tensor ) -> torch.Tensor: # Allocate result tensor on the GPU m, k = x.shape r, n = v.shape assert k == u.shape[0] assert u.shape[1] == r assert w.shape[0] == k assert w.shape[1] == n c = torch.empty((m, n), dtype=x.dtype, device="cuda") grid = lambda opt: (triton.cdiv(m, opt["block_M"]), triton.cdiv(n, opt["block_N"])) # Launch the Triton kernel with auto-tuned configurations merged_qlora_forward_kernel[grid]( x, w, u, v, c, x.stride(0), x.stride(1), w.stride(0), w.stride(1), u.stride(0), u.stride(1), v.stride(0), v.stride(1), M=m, N=n, K=k, ) return c
Ezio-csm/EzAtten
flash_atten_int8.py
https://github.com/Ezio-csm/EzAtten/blob/0c27c92cb468e012f206b3d385ecdd7e9ec13c52/flash_atten_int8.py
import pytest import torch import triton import triton.language as tl from configs import * @triton.jit def _attn_fwd_inner_int8(acc, l_i, m_i, q, # K_block_ptr, V_block_ptr, # q_scale, K_block_scale_ptr, # start_m, qk_scale, # BLOCK_M: tl.constexpr, HEAD_DIM: tl.constexpr, BLOCK_N: tl.constexpr, # STAGE: tl.constexpr, offs_m: tl.constexpr, offs_n: tl.constexpr, # N_CTX: tl.constexpr, fp8_v: tl.constexpr): # range of values handled by this stage if STAGE == 1: lo, hi = 0, start_m * BLOCK_M elif STAGE == 2: lo, hi = start_m * BLOCK_M, (start_m + 1) * BLOCK_M lo = tl.multiple_of(lo, BLOCK_M) # causal = False else: lo, hi = 0, N_CTX K_block_ptr = tl.advance(K_block_ptr, (0, lo)) K_block_scale_ptr = tl.advance(K_block_scale_ptr, (lo,)) V_block_ptr = tl.advance(V_block_ptr, (lo, 0)) # loop over k, v and update accumulator for start_n in range(lo, hi, BLOCK_N): start_n = tl.multiple_of(start_n, BLOCK_N) # -- compute qk ---- k = tl.load(K_block_ptr) k_scale = tl.load(K_block_scale_ptr) qk = tl.dot(q, k).to(tl.float32) qk = qk * q_scale[:, None] qk = qk * k_scale if STAGE == 2: mask = offs_m[:, None] >= (start_n + offs_n[None, :]) qk = qk * qk_scale + tl.where(mask, 0, -1.0e6) m_ij = tl.maximum(m_i, tl.max(qk, 1)) qk -= m_ij[:, None] else: m_ij = tl.maximum(m_i, tl.max(qk, 1) * qk_scale) qk = qk * qk_scale - m_ij[:, None] p = tl.math.exp2(qk) l_ij = tl.sum(p, 1) # -- update m_i and l_i alpha = tl.math.exp2(m_i - m_ij) l_i = l_i * alpha + l_ij # -- update output accumulator -- acc = acc * alpha[:, None] # update acc v = tl.load(V_block_ptr) if fp8_v: p = p.to(tl.float8e5) else: p = p.to(tl.float16) acc = tl.dot(p, v, acc) # update m_i and l_i m_i = m_ij V_block_ptr = tl.advance(V_block_ptr, (BLOCK_N, 0)) K_block_ptr = tl.advance(K_block_ptr, (0, BLOCK_N)) K_block_scale_ptr = tl.advance(K_block_scale_ptr, (BLOCK_N,)) return acc, l_i, m_i @triton.autotune(list(filter(keep, configs)), key=["N_CTX", "HEAD_DIM"]) @triton.jit def _attn_fwd_int8(Q, K, V, Q_scale, K_scale, sm_scale, M, Out, # stride_qz, stride_qh, stride_qm, stride_qk, # stride_kz, stride_kh, stride_kn, stride_kk, # stride_vz, stride_vh, stride_vk, stride_vn, # stride_oz, stride_oh, stride_om, stride_on, # stride_s1, stride_s2, stride_s3, # Z, H, N_CTX, # HEAD_DIM: tl.constexpr, # BLOCK_M: tl.constexpr, # BLOCK_N: tl.constexpr, # STAGE: tl.constexpr # ): tl.static_assert(BLOCK_N <= HEAD_DIM) start_m = tl.program_id(0) off_hz = tl.program_id(1) off_z = off_hz // H off_h = off_hz % H qvk_offset = off_z.to(tl.int64) * stride_qz + off_h.to(tl.int64) * stride_qh scl_offset = off_z.to(tl.int64) * stride_s1 + off_h.to(tl.int64) * stride_s2 # block pointers Q_block_ptr = tl.make_block_ptr( base=Q + qvk_offset, shape=(N_CTX, HEAD_DIM), strides=(stride_qm, stride_qk), offsets=(start_m * BLOCK_M, 0), block_shape=(BLOCK_M, HEAD_DIM), order=(1, 0), ) v_order: tl.constexpr = (0, 1) if V.dtype.element_ty == tl.float8e5 else (1, 0) V_block_ptr = tl.make_block_ptr( base=V + qvk_offset, shape=(N_CTX, HEAD_DIM), strides=(stride_vk, stride_vn), offsets=(0, 0), block_shape=(BLOCK_N, HEAD_DIM), order=v_order, ) K_block_ptr = tl.make_block_ptr( base=K + qvk_offset, shape=(HEAD_DIM, N_CTX), strides=(stride_kk, stride_kn), offsets=(0, 0), block_shape=(HEAD_DIM, BLOCK_N), order=(0, 1), ) O_block_ptr = tl.make_block_ptr( base=Out + qvk_offset, shape=(N_CTX, HEAD_DIM), strides=(stride_om, stride_on), offsets=(start_m * BLOCK_M, 0), block_shape=(BLOCK_M, HEAD_DIM), order=(1, 0), ) # scale vector pointers Q_block_scale_ptr = tl.make_block_ptr( base=Q_scale + scl_offset, shape=(N_CTX,), strides=(stride_s3,), offsets=(start_m * BLOCK_M,), block_shape=(BLOCK_M,), order=(0,), ) K_block_scale_ptr = tl.make_block_ptr( base=K_scale + scl_offset, shape=(N_CTX,), strides=(stride_s3,), offsets=(0,), block_shape=(BLOCK_N,), order=(0,), ) # initialize offsets offs_m = start_m * BLOCK_M + tl.arange(0, BLOCK_M) offs_n = tl.arange(0, BLOCK_N) # initialize pointer to m and l m_i = tl.zeros([BLOCK_M], dtype=tl.float32) - float("inf") l_i = tl.zeros([BLOCK_M], dtype=tl.float32) + 1.0 acc = tl.zeros([BLOCK_M, HEAD_DIM], dtype=tl.float32) # load scales qk_scale = sm_scale qk_scale *= 1.44269504 # 1/log(2) # load q: it will stay in SRAM throughout q = tl.load(Q_block_ptr) q_scale = tl.load(Q_block_scale_ptr) # stage 1: off-band # For causal = True, STAGE = 3 and _attn_fwd_inner gets 1 as its STAGE # For causal = False, STAGE = 1, and _attn_fwd_inner gets 3 as its STAGE if STAGE & 1: acc, l_i, m_i = _attn_fwd_inner_int8(acc, l_i, m_i, q, K_block_ptr, V_block_ptr, q_scale, K_block_scale_ptr, # start_m, qk_scale, # BLOCK_M, HEAD_DIM, BLOCK_N, # 4 - STAGE, offs_m, offs_n, N_CTX, V.dtype.element_ty == tl.float8e5 # ) # stage 2: on-band if STAGE & 2: # barrier makes it easier for compielr to schedule the # two loops independently acc, l_i, m_i = _attn_fwd_inner_int8(acc, l_i, m_i, q, K_block_ptr, V_block_ptr, q_scale, K_block_scale_ptr, # start_m, qk_scale, # BLOCK_M, HEAD_DIM, BLOCK_N, # 2, offs_m, offs_n, N_CTX, V.dtype.element_ty == tl.float8e5 # ) # epilogue m_i += tl.math.log2(l_i) acc = acc / l_i[:, None] m_ptrs = M + off_hz * N_CTX + offs_m tl.store(m_ptrs, m_i) tl.store(O_block_ptr, acc.to(Out.type.element_ty)) class _attention_int8(torch.autograd.Function): @staticmethod # q, k: int8, v: float16, q_scale, k_scale: float16 def forward(ctx, q, k, v, q_scale, k_scale, causal, sm_scale): # shape constraints HEAD_DIM_Q, HEAD_DIM_K = q.shape[-1], k.shape[-1] # when v is in float8_e5m2 it is transposed. HEAD_DIM_V = v.shape[-1] assert HEAD_DIM_Q == HEAD_DIM_K and HEAD_DIM_K == HEAD_DIM_V assert HEAD_DIM_K in {16, 32, 64, 128, 256} o = torch.empty_like(q) stage = 3 if causal else 1 extra_kern_args = {} # Tuning for AMD target if is_hip(): waves_per_eu = 3 if HEAD_DIM_K <= 64 else 2 extra_kern_args = {"waves_per_eu": waves_per_eu, "allow_flush_denorm": True} grid = lambda args: (triton.cdiv(q.shape[2], args["BLOCK_M"]), q.shape[0] * q.shape[1], 1) M = torch.empty((q.shape[0], q.shape[1], q.shape[2]), device=q.device, dtype=torch.float32) _attn_fwd_int8[grid]( q, k, v, q_scale, k_scale, sm_scale, M, o, # q.stride(0), q.stride(1), q.stride(2), q.stride(3), # k.stride(0), k.stride(1), k.stride(2), k.stride(3), # v.stride(0), v.stride(1), v.stride(2), v.stride(3), # o.stride(0), o.stride(1), o.stride(2), o.stride(3), # q_scale.stride(0), q_scale.stride(1), q_scale.stride(2), # q.shape[0], q.shape[1], # N_CTX=q.shape[2], # HEAD_DIM=HEAD_DIM_K, # STAGE=stage, # **extra_kern_args) ctx.sm_scale = sm_scale ctx.HEAD_DIM = HEAD_DIM_K ctx.causal = causal return o attention_int8 = _attention_int8.apply
@triton.jit def _attn_fwd_inner_int8(acc, l_i, m_i, q, # K_block_ptr, V_block_ptr, # q_scale, K_block_scale_ptr, # start_m, qk_scale, # BLOCK_M: tl.constexpr, HEAD_DIM: tl.constexpr, BLOCK_N: tl.constexpr, # STAGE: tl.constexpr, offs_m: tl.constexpr, offs_n: tl.constexpr, # N_CTX: tl.constexpr, fp8_v: tl.constexpr): # range of values handled by this stage if STAGE == 1: lo, hi = 0, start_m * BLOCK_M elif STAGE == 2: lo, hi = start_m * BLOCK_M, (start_m + 1) * BLOCK_M lo = tl.multiple_of(lo, BLOCK_M) # causal = False else: lo, hi = 0, N_CTX K_block_ptr = tl.advance(K_block_ptr, (0, lo)) K_block_scale_ptr = tl.advance(K_block_scale_ptr, (lo,)) V_block_ptr = tl.advance(V_block_ptr, (lo, 0)) # loop over k, v and update accumulator for start_n in range(lo, hi, BLOCK_N): start_n = tl.multiple_of(start_n, BLOCK_N) # -- compute qk ---- k = tl.load(K_block_ptr) k_scale = tl.load(K_block_scale_ptr) qk = tl.dot(q, k).to(tl.float32) qk = qk * q_scale[:, None] qk = qk * k_scale if STAGE == 2: mask = offs_m[:, None] >= (start_n + offs_n[None, :]) qk = qk * qk_scale + tl.where(mask, 0, -1.0e6) m_ij = tl.maximum(m_i, tl.max(qk, 1)) qk -= m_ij[:, None] else: m_ij = tl.maximum(m_i, tl.max(qk, 1) * qk_scale) qk = qk * qk_scale - m_ij[:, None] p = tl.math.exp2(qk) l_ij = tl.sum(p, 1) # -- update m_i and l_i alpha = tl.math.exp2(m_i - m_ij) l_i = l_i * alpha + l_ij # -- update output accumulator -- acc = acc * alpha[:, None] # update acc v = tl.load(V_block_ptr) if fp8_v: p = p.to(tl.float8e5) else: p = p.to(tl.float16) acc = tl.dot(p, v, acc) # update m_i and l_i m_i = m_ij V_block_ptr = tl.advance(V_block_ptr, (BLOCK_N, 0)) K_block_ptr = tl.advance(K_block_ptr, (0, BLOCK_N)) K_block_scale_ptr = tl.advance(K_block_scale_ptr, (BLOCK_N,)) return acc, l_i, m_i @triton.autotune(list(filter(keep, configs)), key=["N_CTX", "HEAD_DIM"])
Ezio-csm/EzAtten
flash_atten_int8.py
https://github.com/Ezio-csm/EzAtten/blob/0c27c92cb468e012f206b3d385ecdd7e9ec13c52/flash_atten_int8.py
import pytest import torch import triton import triton.language as tl from configs import * @triton.jit def _attn_fwd_inner_int8(acc, l_i, m_i, q, # K_block_ptr, V_block_ptr, # q_scale, K_block_scale_ptr, # start_m, qk_scale, # BLOCK_M: tl.constexpr, HEAD_DIM: tl.constexpr, BLOCK_N: tl.constexpr, # STAGE: tl.constexpr, offs_m: tl.constexpr, offs_n: tl.constexpr, # N_CTX: tl.constexpr, fp8_v: tl.constexpr): # range of values handled by this stage if STAGE == 1: lo, hi = 0, start_m * BLOCK_M elif STAGE == 2: lo, hi = start_m * BLOCK_M, (start_m + 1) * BLOCK_M lo = tl.multiple_of(lo, BLOCK_M) # causal = False else: lo, hi = 0, N_CTX K_block_ptr = tl.advance(K_block_ptr, (0, lo)) K_block_scale_ptr = tl.advance(K_block_scale_ptr, (lo,)) V_block_ptr = tl.advance(V_block_ptr, (lo, 0)) # loop over k, v and update accumulator for start_n in range(lo, hi, BLOCK_N): start_n = tl.multiple_of(start_n, BLOCK_N) # -- compute qk ---- k = tl.load(K_block_ptr) k_scale = tl.load(K_block_scale_ptr) qk = tl.dot(q, k).to(tl.float32) qk = qk * q_scale[:, None] qk = qk * k_scale if STAGE == 2: mask = offs_m[:, None] >= (start_n + offs_n[None, :]) qk = qk * qk_scale + tl.where(mask, 0, -1.0e6) m_ij = tl.maximum(m_i, tl.max(qk, 1)) qk -= m_ij[:, None] else: m_ij = tl.maximum(m_i, tl.max(qk, 1) * qk_scale) qk = qk * qk_scale - m_ij[:, None] p = tl.math.exp2(qk) l_ij = tl.sum(p, 1) # -- update m_i and l_i alpha = tl.math.exp2(m_i - m_ij) l_i = l_i * alpha + l_ij # -- update output accumulator -- acc = acc * alpha[:, None] # update acc v = tl.load(V_block_ptr) if fp8_v: p = p.to(tl.float8e5) else: p = p.to(tl.float16) acc = tl.dot(p, v, acc) # update m_i and l_i m_i = m_ij V_block_ptr = tl.advance(V_block_ptr, (BLOCK_N, 0)) K_block_ptr = tl.advance(K_block_ptr, (0, BLOCK_N)) K_block_scale_ptr = tl.advance(K_block_scale_ptr, (BLOCK_N,)) return acc, l_i, m_i @triton.autotune(list(filter(keep, configs)), key=["N_CTX", "HEAD_DIM"]) @triton.jit def _attn_fwd_int8(Q, K, V, Q_scale, K_scale, sm_scale, M, Out, # stride_qz, stride_qh, stride_qm, stride_qk, # stride_kz, stride_kh, stride_kn, stride_kk, # stride_vz, stride_vh, stride_vk, stride_vn, # stride_oz, stride_oh, stride_om, stride_on, # stride_s1, stride_s2, stride_s3, # Z, H, N_CTX, # HEAD_DIM: tl.constexpr, # BLOCK_M: tl.constexpr, # BLOCK_N: tl.constexpr, # STAGE: tl.constexpr # ): tl.static_assert(BLOCK_N <= HEAD_DIM) start_m = tl.program_id(0) off_hz = tl.program_id(1) off_z = off_hz // H off_h = off_hz % H qvk_offset = off_z.to(tl.int64) * stride_qz + off_h.to(tl.int64) * stride_qh scl_offset = off_z.to(tl.int64) * stride_s1 + off_h.to(tl.int64) * stride_s2 # block pointers Q_block_ptr = tl.make_block_ptr( base=Q + qvk_offset, shape=(N_CTX, HEAD_DIM), strides=(stride_qm, stride_qk), offsets=(start_m * BLOCK_M, 0), block_shape=(BLOCK_M, HEAD_DIM), order=(1, 0), ) v_order: tl.constexpr = (0, 1) if V.dtype.element_ty == tl.float8e5 else (1, 0) V_block_ptr = tl.make_block_ptr( base=V + qvk_offset, shape=(N_CTX, HEAD_DIM), strides=(stride_vk, stride_vn), offsets=(0, 0), block_shape=(BLOCK_N, HEAD_DIM), order=v_order, ) K_block_ptr = tl.make_block_ptr( base=K + qvk_offset, shape=(HEAD_DIM, N_CTX), strides=(stride_kk, stride_kn), offsets=(0, 0), block_shape=(HEAD_DIM, BLOCK_N), order=(0, 1), ) O_block_ptr = tl.make_block_ptr( base=Out + qvk_offset, shape=(N_CTX, HEAD_DIM), strides=(stride_om, stride_on), offsets=(start_m * BLOCK_M, 0), block_shape=(BLOCK_M, HEAD_DIM), order=(1, 0), ) # scale vector pointers Q_block_scale_ptr = tl.make_block_ptr( base=Q_scale + scl_offset, shape=(N_CTX,), strides=(stride_s3,), offsets=(start_m * BLOCK_M,), block_shape=(BLOCK_M,), order=(0,), ) K_block_scale_ptr = tl.make_block_ptr( base=K_scale + scl_offset, shape=(N_CTX,), strides=(stride_s3,), offsets=(0,), block_shape=(BLOCK_N,), order=(0,), ) # initialize offsets offs_m = start_m * BLOCK_M + tl.arange(0, BLOCK_M) offs_n = tl.arange(0, BLOCK_N) # initialize pointer to m and l m_i = tl.zeros([BLOCK_M], dtype=tl.float32) - float("inf") l_i = tl.zeros([BLOCK_M], dtype=tl.float32) + 1.0 acc = tl.zeros([BLOCK_M, HEAD_DIM], dtype=tl.float32) # load scales qk_scale = sm_scale qk_scale *= 1.44269504 # 1/log(2) # load q: it will stay in SRAM throughout q = tl.load(Q_block_ptr) q_scale = tl.load(Q_block_scale_ptr) # stage 1: off-band # For causal = True, STAGE = 3 and _attn_fwd_inner gets 1 as its STAGE # For causal = False, STAGE = 1, and _attn_fwd_inner gets 3 as its STAGE if STAGE & 1: acc, l_i, m_i = _attn_fwd_inner_int8(acc, l_i, m_i, q, K_block_ptr, V_block_ptr, q_scale, K_block_scale_ptr, # start_m, qk_scale, # BLOCK_M, HEAD_DIM, BLOCK_N, # 4 - STAGE, offs_m, offs_n, N_CTX, V.dtype.element_ty == tl.float8e5 # ) # stage 2: on-band if STAGE & 2: # barrier makes it easier for compielr to schedule the # two loops independently acc, l_i, m_i = _attn_fwd_inner_int8(acc, l_i, m_i, q, K_block_ptr, V_block_ptr, q_scale, K_block_scale_ptr, # start_m, qk_scale, # BLOCK_M, HEAD_DIM, BLOCK_N, # 2, offs_m, offs_n, N_CTX, V.dtype.element_ty == tl.float8e5 # ) # epilogue m_i += tl.math.log2(l_i) acc = acc / l_i[:, None] m_ptrs = M + off_hz * N_CTX + offs_m tl.store(m_ptrs, m_i) tl.store(O_block_ptr, acc.to(Out.type.element_ty)) class _attention_int8(torch.autograd.Function): @staticmethod # q, k: int8, v: float16, q_scale, k_scale: float16 def forward(ctx, q, k, v, q_scale, k_scale, causal, sm_scale): # shape constraints HEAD_DIM_Q, HEAD_DIM_K = q.shape[-1], k.shape[-1] # when v is in float8_e5m2 it is transposed. HEAD_DIM_V = v.shape[-1] assert HEAD_DIM_Q == HEAD_DIM_K and HEAD_DIM_K == HEAD_DIM_V assert HEAD_DIM_K in {16, 32, 64, 128, 256} o = torch.empty_like(q) stage = 3 if causal else 1 extra_kern_args = {} # Tuning for AMD target if is_hip(): waves_per_eu = 3 if HEAD_DIM_K <= 64 else 2 extra_kern_args = {"waves_per_eu": waves_per_eu, "allow_flush_denorm": True} grid = lambda args: (triton.cdiv(q.shape[2], args["BLOCK_M"]), q.shape[0] * q.shape[1], 1) M = torch.empty((q.shape[0], q.shape[1], q.shape[2]), device=q.device, dtype=torch.float32) _attn_fwd_int8[grid]( q, k, v, q_scale, k_scale, sm_scale, M, o, # q.stride(0), q.stride(1), q.stride(2), q.stride(3), # k.stride(0), k.stride(1), k.stride(2), k.stride(3), # v.stride(0), v.stride(1), v.stride(2), v.stride(3), # o.stride(0), o.stride(1), o.stride(2), o.stride(3), # q_scale.stride(0), q_scale.stride(1), q_scale.stride(2), # q.shape[0], q.shape[1], # N_CTX=q.shape[2], # HEAD_DIM=HEAD_DIM_K, # STAGE=stage, # **extra_kern_args) ctx.sm_scale = sm_scale ctx.HEAD_DIM = HEAD_DIM_K ctx.causal = causal return o attention_int8 = _attention_int8.apply
@triton.jit def _attn_fwd_int8(Q, K, V, Q_scale, K_scale, sm_scale, M, Out, # stride_qz, stride_qh, stride_qm, stride_qk, # stride_kz, stride_kh, stride_kn, stride_kk, # stride_vz, stride_vh, stride_vk, stride_vn, # stride_oz, stride_oh, stride_om, stride_on, # stride_s1, stride_s2, stride_s3, # Z, H, N_CTX, # HEAD_DIM: tl.constexpr, # BLOCK_M: tl.constexpr, # BLOCK_N: tl.constexpr, # STAGE: tl.constexpr # ): tl.static_assert(BLOCK_N <= HEAD_DIM) start_m = tl.program_id(0) off_hz = tl.program_id(1) off_z = off_hz // H off_h = off_hz % H qvk_offset = off_z.to(tl.int64) * stride_qz + off_h.to(tl.int64) * stride_qh scl_offset = off_z.to(tl.int64) * stride_s1 + off_h.to(tl.int64) * stride_s2 # block pointers Q_block_ptr = tl.make_block_ptr( base=Q + qvk_offset, shape=(N_CTX, HEAD_DIM), strides=(stride_qm, stride_qk), offsets=(start_m * BLOCK_M, 0), block_shape=(BLOCK_M, HEAD_DIM), order=(1, 0), ) v_order: tl.constexpr = (0, 1) if V.dtype.element_ty == tl.float8e5 else (1, 0) V_block_ptr = tl.make_block_ptr( base=V + qvk_offset, shape=(N_CTX, HEAD_DIM), strides=(stride_vk, stride_vn), offsets=(0, 0), block_shape=(BLOCK_N, HEAD_DIM), order=v_order, ) K_block_ptr = tl.make_block_ptr( base=K + qvk_offset, shape=(HEAD_DIM, N_CTX), strides=(stride_kk, stride_kn), offsets=(0, 0), block_shape=(HEAD_DIM, BLOCK_N), order=(0, 1), ) O_block_ptr = tl.make_block_ptr( base=Out + qvk_offset, shape=(N_CTX, HEAD_DIM), strides=(stride_om, stride_on), offsets=(start_m * BLOCK_M, 0), block_shape=(BLOCK_M, HEAD_DIM), order=(1, 0), ) # scale vector pointers Q_block_scale_ptr = tl.make_block_ptr( base=Q_scale + scl_offset, shape=(N_CTX,), strides=(stride_s3,), offsets=(start_m * BLOCK_M,), block_shape=(BLOCK_M,), order=(0,), ) K_block_scale_ptr = tl.make_block_ptr( base=K_scale + scl_offset, shape=(N_CTX,), strides=(stride_s3,), offsets=(0,), block_shape=(BLOCK_N,), order=(0,), ) # initialize offsets offs_m = start_m * BLOCK_M + tl.arange(0, BLOCK_M) offs_n = tl.arange(0, BLOCK_N) # initialize pointer to m and l m_i = tl.zeros([BLOCK_M], dtype=tl.float32) - float("inf") l_i = tl.zeros([BLOCK_M], dtype=tl.float32) + 1.0 acc = tl.zeros([BLOCK_M, HEAD_DIM], dtype=tl.float32) # load scales qk_scale = sm_scale qk_scale *= 1.44269504 # 1/log(2) # load q: it will stay in SRAM throughout q = tl.load(Q_block_ptr) q_scale = tl.load(Q_block_scale_ptr) # stage 1: off-band # For causal = True, STAGE = 3 and _attn_fwd_inner gets 1 as its STAGE # For causal = False, STAGE = 1, and _attn_fwd_inner gets 3 as its STAGE if STAGE & 1: acc, l_i, m_i = _attn_fwd_inner_int8(acc, l_i, m_i, q, K_block_ptr, V_block_ptr, q_scale, K_block_scale_ptr, # start_m, qk_scale, # BLOCK_M, HEAD_DIM, BLOCK_N, # 4 - STAGE, offs_m, offs_n, N_CTX, V.dtype.element_ty == tl.float8e5 # ) # stage 2: on-band if STAGE & 2: # barrier makes it easier for compielr to schedule the # two loops independently acc, l_i, m_i = _attn_fwd_inner_int8(acc, l_i, m_i, q, K_block_ptr, V_block_ptr, q_scale, K_block_scale_ptr, # start_m, qk_scale, # BLOCK_M, HEAD_DIM, BLOCK_N, # 2, offs_m, offs_n, N_CTX, V.dtype.element_ty == tl.float8e5 # ) # epilogue m_i += tl.math.log2(l_i) acc = acc / l_i[:, None] m_ptrs = M + off_hz * N_CTX + offs_m tl.store(m_ptrs, m_i) tl.store(O_block_ptr, acc.to(Out.type.element_ty)) class _attention_int8(torch.autograd.Function): @staticmethod # q, k: int8, v: float16, q_scale, k_scale: float16 def forward(ctx, q, k, v, q_scale, k_scale, causal, sm_scale): # shape constraints HEAD_DIM_Q, HEAD_DIM_K = q.shape[-1], k.shape[-1] # when v is in float8_e5m2 it is transposed. HEAD_DIM_V = v.shape[-1] assert HEAD_DIM_Q == HEAD_DIM_K and HEAD_DIM_K == HEAD_DIM_V assert HEAD_DIM_K in {16, 32, 64, 128, 256} o = torch.empty_like(q) stage = 3 if causal else 1 extra_kern_args = {} # Tuning for AMD target if is_hip(): waves_per_eu = 3 if HEAD_DIM_K <= 64 else 2 extra_kern_args = {"waves_per_eu": waves_per_eu, "allow_flush_denorm": True} grid = lambda args: (triton.cdiv(q.shape[2], args["BLOCK_M"]), q.shape[0] * q.shape[1], 1) M = torch.empty((q.shape[0], q.shape[1], q.shape[2]), device=q.device, dtype=torch.float32) _attn_fwd_int8[grid]( q, k, v, q_scale, k_scale, sm_scale, M, o, # q.stride(0), q.stride(1), q.stride(2), q.stride(3), # k.stride(0), k.stride(1), k.stride(2), k.stride(3), # v.stride(0), v.stride(1), v.stride(2), v.stride(3), # o.stride(0), o.stride(1), o.stride(2), o.stride(3), # q_scale.stride(0), q_scale.stride(1), q_scale.stride(2), # q.shape[0], q.shape[1], # N_CTX=q.shape[2], # HEAD_DIM=HEAD_DIM_K, # STAGE=stage, # **extra_kern_args) ctx.sm_scale = sm_scale ctx.HEAD_DIM = HEAD_DIM_K ctx.causal = causal return o attention_int8 = _attention_int8.apply
tongzhou80/TritonTests
blocksparse_csr_mm.py
https://github.com/tongzhou80/TritonTests/blob/9e0ceb996ee9caa332384f1e79d4f2f6e5df9124/blocksparse_csr_mm.py
import sys import torch print('imported torch') import triton import triton.language as tl import utils from utils import * @triton.jit def _kernel_mcsr_mm(a_rowptrs, a_cols, a_vals, b_vals, c_vals, BM: tl.constexpr, BK: tl.constexpr, BN: tl.constexpr, nBM: tl.constexpr, nBK: tl.constexpr, nBN: tl.constexpr, ): m = tl.program_id(0) n = tl.program_id(1) a_block_size = BM * BK b_block_size = BK * BN a_ptrs = a_vals + a_block_size * nBK * m + \ tl.arange(0, BM)[:, None] * BK + tl.arange(0, BK)[None, :] b_ptrs = b_vals + b_block_size * n + \ tl.arange(0, BK)[:, None] * BN + tl.arange(0, BN)[None, :] # a_rowptrs_m = a_rowptrs + m k_start = tl.load(a_rowptrs+m) k_end = tl.load(a_rowptrs+m+1) c = tl.zeros((BM, BN), dtype=tl.float32) # for k in range(nBK): # a = tl.load(a_ptrs) # b = tl.load(b_ptrs) # c += tl.dot(a, b) # a_ptrs += a_block_size # b_ptrs += b_block_size * nBN for kp in range(k_start, k_end): k = tl.load(a_cols+kp) a = tl.load(a_ptrs+a_block_size*k) b = tl.load(b_ptrs+b_block_size * nBN*k) c += tl.dot(a, b) c = c.to(tl.float16) c_ptrs = c_vals + (m * nBN + n) * BM * BN + \ tl.arange(0, BM)[:, None] * BN + tl.arange(0, BN)[None, :] tl.store(c_ptrs, c) def mcsr_mm_inner(a_rowptrs, a_cols, a_vals, b_vals, c, num_warps=4, num_stages=3): nBM, nBK, BM, BK = a_vals.shape nBK, nBN, BK, BN = b_vals.shape # TODO: this does not work when M does not divide BM # Or maybe it works because C will also need to be padded M = nBM * BM N = nBN * BN grid = (nBM, nBN) binary = _kernel_mcsr_mm[grid](a_rowptrs, a_cols, a_vals, b_vals, c, BM, BK, BN, nBM, nBK, nBN, num_warps=num_warps, num_stages=num_stages ) #print(binary.asm['ptx']) return c def mcsr_mm(a: MCSR, b: MCSR, c, num_warps=4, num_stages=3): nBM, nBK, BM, BK = a.vals.shape nBK, nBN, BK, BN = b.vals.shape # TODO: this does not work when M does not divide BM # Or maybe it works because C will also need to be padded M = nBM * BM N = nBN * BN grid = (nBM, nBN) #print(grid) binary = _kernel_mcsr_mm[grid](a.rowptrs, a.cols, a.vals, b.vals, c[1], BM, BK, BN, nBM, nBK, nBN, num_warps=num_warps, num_stages=num_stages ) #print(binary.asm['ptx']) return c def verify_run(): M = 32 K = M N = M BM = 16 BK = BM BN = BM a = gen_lower_triangular_mcsr_matrix(M, K, BM, BK) b = gen_random_mcsr_matrix(K, N, BK, BN, density=1) c = gen_empty_matrix_dense_blocks(M, N, BM, BN) a_ref = from_block_format(a.vals) b_ref = from_block_format(b.vals) c_ref = torch.mm(a_ref, b_ref) c = mcsr_mm(a, b, c) print('verify passes:', torch.allclose(c_ref, from_block_format(c[1]))) def test_random(): M = 1024 K = 1024 N = M BMs = [32, 64, 128, 256] BKs = [32, 64, 128, 256] BNs = [32, 64, 128, 256] #stages = [1,2,3,4,5] #warps = [1,2,4,8] stages = [2,3,4,5] warps = [1,2,4] TEST_RUN = False if TEST_RUN: BMs, BKs, BNs = [64], [64], [64] stages, warps = [1,2,3,4,5], [1,2,4] for BM in BMs: for BK in BKs: for BN in BNs: #if BM * K != BK * M: #continue a = gen_random_mcsr_matrix(M, K, BM, BK, density=1) #a = gen_lower_triangular_mcsr_matrix(M, K, BM, BK) #a = gen_lower_half_mcsr_matrix(M, K, BM, BK) b = gen_random_mcsr_matrix(K, N, BK, BN, density=1) c = gen_empty_matrix_dense_blocks(M, N, BM, BN) a_ref = from_block_format(a.vals) b_ref = from_block_format(b.vals) c_ref = torch.empty(M, N, dtype=torch.float16, device='cuda') ms, _, _ = triton.testing.do_bench(lambda: torch.mm(a_ref, b_ref, out=c_ref)) print(f'torch mm: {ms:.4f}') times = [] ms = torch.inf try: for num_stages in stages: for num_warps in warps: ms, _, _ = triton.testing.do_bench(lambda: mcsr_mm(a, b, c, num_warps, num_stages), rep=50) times.append((ms, BM, BK, BN, num_stages, num_warps)) except Exception as e: print('run triton failed') continue print('verify passes:', torch.allclose(c_ref, from_block_format(c[1]))) times.sort(key=lambda x: x[0]) print(times[0]) print(f'blocksparse mm: {times[0][0]:.4f} ({BM} x {BK} x {BN})') def test_lower_triangular(): M = 3072 K = M N = M dtype = torch.float16 a = torch.randn([M, K], dtype=dtype, device='cuda') a[M//2:, :] = 0 #a[:, K//2:] = 0 #a = torch.tril(a) b = torch.randn([K, N], dtype=dtype, device='cuda') c_ref = torch.empty(M, N, dtype=dtype, device='cuda') ms, _, _ = triton.testing.do_bench(lambda: torch.mm(a, b, out=c_ref)) print(f'torch mm: {ms:.4f}') BMs = [32, 64, 128, 256] BKs = [16, 32, 64, 128, 256] BNs = [32, 64, 128] #stages = [1,2,3,4,5] #warps = [1,2,4,8] stages = [2,3,4,5] warps = [1,2,4] TEST_RUN = False if TEST_RUN: s = 16 BMs, BKs, BNs = [s], [s], [s] stages, warps = [1,2,3,4,5], [1,2,4] best_time = torch.inf for BM in BMs: for BK in BKs: for BN in BNs: if BM * K != BK * M: continue a_block, a_mask = utils.to_block_format_with_mask(a, BM, BK) #print(a_mask) a_mask_rowptrs, a_mask_cols = utils.to_csr_ptrs(a_mask) b_block = utils.to_block_format(b, BK, BN) #print(a_mask_rowptrs, a_mask_cols) c = gen_empty_matrix_dense_blocks(M, N, BM, BN) times = [] ms = torch.inf try: for num_stages in stages: for num_warps in warps: ms, _, _ = triton.testing.do_bench(lambda: mcsr_mm_inner(a_mask_rowptrs, a_mask_cols, a_block, b_block, c[1], num_warps, num_stages), rep=50) times.append((ms, BM, BK, BN, num_stages, num_warps)) except Exception as e: print('run triton failed') continue verified = torch.allclose(c_ref, utils.from_block_format(c[1])) print('verify passes:', verified) if verified: times.sort(key=lambda x: x[0]) print(f'info: blocksparse mm: {times[0][0]:.4f} ({BM} x {BK} x {BN})') if times[0][0] < best_time: best_time = times[0][0] print(f'blocksparse mm: {best_time:.5f}') #test_random() test_lower_triangular()
@triton.jit def _kernel_mcsr_mm(a_rowptrs, a_cols, a_vals, b_vals, c_vals, BM: tl.constexpr, BK: tl.constexpr, BN: tl.constexpr, nBM: tl.constexpr, nBK: tl.constexpr, nBN: tl.constexpr, ): m = tl.program_id(0) n = tl.program_id(1) a_block_size = BM * BK b_block_size = BK * BN a_ptrs = a_vals + a_block_size * nBK * m + \ tl.arange(0, BM)[:, None] * BK + tl.arange(0, BK)[None, :] b_ptrs = b_vals + b_block_size * n + \ tl.arange(0, BK)[:, None] * BN + tl.arange(0, BN)[None, :] # a_rowptrs_m = a_rowptrs + m k_start = tl.load(a_rowptrs+m) k_end = tl.load(a_rowptrs+m+1) c = tl.zeros((BM, BN), dtype=tl.float32) # for k in range(nBK): # a = tl.load(a_ptrs) # b = tl.load(b_ptrs) # c += tl.dot(a, b) # a_ptrs += a_block_size # b_ptrs += b_block_size * nBN for kp in range(k_start, k_end): k = tl.load(a_cols+kp) a = tl.load(a_ptrs+a_block_size*k) b = tl.load(b_ptrs+b_block_size * nBN*k) c += tl.dot(a, b) c = c.to(tl.float16) c_ptrs = c_vals + (m * nBN + n) * BM * BN + \ tl.arange(0, BM)[:, None] * BN + tl.arange(0, BN)[None, :] tl.store(c_ptrs, c) def mcsr_mm_inner(a_rowptrs, a_cols, a_vals, b_vals, c, num_warps=4, num_stages=3): nBM, nBK, BM, BK = a_vals.shape nBK, nBN, BK, BN = b_vals.shape # TODO: this does not work when M does not divide BM # Or maybe it works because C will also need to be padded M = nBM * BM N = nBN * BN grid = (nBM, nBN) binary = _kernel_mcsr_mm[grid](a_rowptrs, a_cols, a_vals, b_vals, c, BM, BK, BN, nBM, nBK, nBN, num_warps=num_warps, num_stages=num_stages ) #print(binary.asm['ptx']) return c def mcsr_mm(a: MCSR, b: MCSR, c, num_warps=4, num_stages=3): nBM, nBK, BM, BK = a.vals.shape nBK, nBN, BK, BN = b.vals.shape # TODO: this does not work when M does not divide BM # Or maybe it works because C will also need to be padded M = nBM * BM N = nBN * BN grid = (nBM, nBN) #print(grid) binary = _kernel_mcsr_mm[grid](a.rowptrs, a.cols, a.vals, b.vals, c[1], BM, BK, BN, nBM, nBK, nBN, num_warps=num_warps, num_stages=num_stages ) #print(binary.asm['ptx']) return c def verify_run(): M = 32 K = M N = M BM = 16 BK = BM BN = BM a = gen_lower_triangular_mcsr_matrix(M, K, BM, BK) b = gen_random_mcsr_matrix(K, N, BK, BN, density=1) c = gen_empty_matrix_dense_blocks(M, N, BM, BN) a_ref = from_block_format(a.vals) b_ref = from_block_format(b.vals) c_ref = torch.mm(a_ref, b_ref) c = mcsr_mm(a, b, c) print('verify passes:', torch.allclose(c_ref, from_block_format(c[1]))) def test_random(): M = 1024 K = 1024 N = M BMs = [32, 64, 128, 256] BKs = [32, 64, 128, 256] BNs = [32, 64, 128, 256] #stages = [1,2,3,4,5] #warps = [1,2,4,8] stages = [2,3,4,5] warps = [1,2,4] TEST_RUN = False if TEST_RUN: BMs, BKs, BNs = [64], [64], [64] stages, warps = [1,2,3,4,5], [1,2,4] for BM in BMs: for BK in BKs: for BN in BNs: #if BM * K != BK * M: #continue a = gen_random_mcsr_matrix(M, K, BM, BK, density=1) #a = gen_lower_triangular_mcsr_matrix(M, K, BM, BK) #a = gen_lower_half_mcsr_matrix(M, K, BM, BK) b = gen_random_mcsr_matrix(K, N, BK, BN, density=1) c = gen_empty_matrix_dense_blocks(M, N, BM, BN) a_ref = from_block_format(a.vals) b_ref = from_block_format(b.vals) c_ref = torch.empty(M, N, dtype=torch.float16, device='cuda') ms, _, _ = triton.testing.do_bench(lambda: torch.mm(a_ref, b_ref, out=c_ref)) print(f'torch mm: {ms:.4f}') times = [] ms = torch.inf try: for num_stages in stages: for num_warps in warps: ms, _, _ = triton.testing.do_bench(lambda: mcsr_mm(a, b, c, num_warps, num_stages), rep=50) times.append((ms, BM, BK, BN, num_stages, num_warps)) except Exception as e: print('run triton failed') continue print('verify passes:', torch.allclose(c_ref, from_block_format(c[1]))) times.sort(key=lambda x: x[0]) print(times[0]) print(f'blocksparse mm: {times[0][0]:.4f} ({BM} x {BK} x {BN})') def test_lower_triangular(): M = 3072 K = M N = M dtype = torch.float16 a = torch.randn([M, K], dtype=dtype, device='cuda') a[M//2:, :] = 0 #a[:, K//2:] = 0 #a = torch.tril(a) b = torch.randn([K, N], dtype=dtype, device='cuda') c_ref = torch.empty(M, N, dtype=dtype, device='cuda') ms, _, _ = triton.testing.do_bench(lambda: torch.mm(a, b, out=c_ref)) print(f'torch mm: {ms:.4f}') BMs = [32, 64, 128, 256] BKs = [16, 32, 64, 128, 256] BNs = [32, 64, 128] #stages = [1,2,3,4,5] #warps = [1,2,4,8] stages = [2,3,4,5] warps = [1,2,4] TEST_RUN = False if TEST_RUN: s = 16 BMs, BKs, BNs = [s], [s], [s] stages, warps = [1,2,3,4,5], [1,2,4] best_time = torch.inf for BM in BMs: for BK in BKs: for BN in BNs: if BM * K != BK * M: continue a_block, a_mask = utils.to_block_format_with_mask(a, BM, BK) #print(a_mask) a_mask_rowptrs, a_mask_cols = utils.to_csr_ptrs(a_mask) b_block = utils.to_block_format(b, BK, BN) #print(a_mask_rowptrs, a_mask_cols) c = gen_empty_matrix_dense_blocks(M, N, BM, BN) times = [] ms = torch.inf try: for num_stages in stages: for num_warps in warps: ms, _, _ = triton.testing.do_bench(lambda: mcsr_mm_inner(a_mask_rowptrs, a_mask_cols, a_block, b_block, c[1], num_warps, num_stages), rep=50) times.append((ms, BM, BK, BN, num_stages, num_warps)) except Exception as e: print('run triton failed') continue verified = torch.allclose(c_ref, utils.from_block_format(c[1])) print('verify passes:', verified) if verified: times.sort(key=lambda x: x[0]) print(f'info: blocksparse mm: {times[0][0]:.4f} ({BM} x {BK} x {BN})') if times[0][0] < best_time: best_time = times[0][0] print(f'blocksparse mm: {best_time:.5f}') #test_random() test_lower_triangular()
itsdaniele/kernels
flash_attn_v1.py
https://github.com/itsdaniele/kernels/blob/afb01fb032ebe64a9fb1a4ada8d0e3d1df79615a/flash_attn_v1.py
""" Fused Attention =============== This is a Triton implementation of the Flash Attention algorithm (see: Dao et al., https://arxiv.org/pdf/2205.14135v2.pdf; Rabe and Staats https://arxiv.org/pdf/2112.05682v2.pdf) """ import pytest import torch import triton import triton.language as tl @triton.jit def _fwd_kernel( Q, K, V, sm_scale, L, M, Out, stride_qz, stride_qh, stride_qm, stride_qk, stride_kz, stride_kh, stride_kn, stride_kk, stride_vz, stride_vh, stride_vk, stride_vn, stride_oz, stride_oh, stride_om, stride_on, Z, H, N_CTX, BLOCK_M: tl.constexpr, # how many queries on a query block? BLOCK_DMODEL: tl.constexpr, BLOCK_N: tl.constexpr, # how many keys on a key block? MODE: tl.constexpr, ): start_m = tl.program_id(0) # which query are we starting from? off_hz = tl.program_id(1) # which head are we processing in the batch? # offset that takes us from the the pointer to the query, key or value tensor to the current query/key/value. # stride_qh is the number of bytes it takes to get to the next head. qvk_offset = off_hz * stride_qh Q_block_ptr = tl.make_block_ptr( base=Q + qvk_offset, # start from current head. shape=( N_CTX, BLOCK_DMODEL, ), # This is the shape of the underlying tensor. We are going to be processing BLOCK_M queries at a time. strides=(stride_qm, stride_qk), offsets=( start_m * BLOCK_M, 0, ), # start from the current query, depending on the program id. block_shape=( BLOCK_M, BLOCK_DMODEL, ), # each block of query has shape (BLOCK_M, BLOCK_DMODEL) order=(1, 0), ) # Here, I am note sure why the shape is (BLOCK_DMODEL, N_CTX) and not (N_CTX, BLOCK_DMODEL). I supposed there is some optimization purpose. # In any case, this will work because order is (0,1), so triton knows that the blog is laid out in memoory with the first axis being the inner dimension. K_block_ptr = tl.make_block_ptr( base=K + qvk_offset, # start from current head. shape=(BLOCK_DMODEL, N_CTX), strides=(stride_kk, stride_kn), offsets=(0, 0), block_shape=(BLOCK_DMODEL, BLOCK_N), order=(0, 1), ) V_block_ptr = tl.make_block_ptr( base=V + qvk_offset, shape=(N_CTX, BLOCK_DMODEL), strides=(stride_vk, stride_vn), offsets=(0, 0), block_shape=(BLOCK_N, BLOCK_DMODEL), order=(1, 0), ) O_block_ptr = tl.make_block_ptr( base=Out + qvk_offset, shape=(N_CTX, BLOCK_DMODEL), strides=(stride_om, stride_on), offsets=(start_m * BLOCK_M, 0), block_shape=(BLOCK_M, BLOCK_DMODEL), order=(1, 0), ) # initialize offsets offs_m = start_m * BLOCK_M + tl.arange(0, BLOCK_M) offs_n = tl.arange(0, BLOCK_N) # [0,1,...,127] # initialize pointer to m and l m_i = ( tl.zeros([BLOCK_M], dtype=tl.float32) - float("inf") ) # shape is (128,). In the context of attention m is the maximum value of the query-key dot product. l_i = tl.zeros( [BLOCK_M], dtype=tl.float32 ) # in flash attention, l is the sum of the softmax of the query-key dot product. acc = tl.zeros([BLOCK_M, BLOCK_DMODEL], dtype=tl.float32) # causal check on every loop iteration can be expensive # and peeling the last iteration of the loop does not work well with ptxas # so we have a mode to do the causal check in a separate kernel entirely if MODE == 0: # entire non-causal attention lo, hi = 0, N_CTX if MODE == 1: # entire causal attention lo, hi = ( 0, (start_m + 1) * BLOCK_M, ) # if working with causal attention, we only need to look at the first start_m blocks. if MODE == 2: # off band-diagonal lo, hi = 0, start_m * BLOCK_M if MODE == 3: # on band-diagonal l_ptrs = L + off_hz * N_CTX + offs_m m_ptrs = M + off_hz * N_CTX + offs_m m_i = tl.load(m_ptrs) l_i = tl.load(l_ptrs) acc += tl.load(O_block_ptr).to(tl.float32) lo, hi = start_m * BLOCK_M, (start_m + 1) * BLOCK_M # credits to: Adam P. Goucher (https://github.com/apgoucher): # scale sm_scale by 1/log_2(e) and use # 2^x instead of exp in the loop because CSE and LICM # don't work as expected with `exp` in the loop qk_scale = sm_scale * 1.44269504 # load q: it will stay in SRAM throughout q = tl.load( Q_block_ptr ) # load block of queries. This has shape (BLOCK_M, BLOCK_DMODEL). q = (q * qk_scale).to(tl.float16) # advance block pointers to first iteration of the loop K_block_ptr = tl.advance(K_block_ptr, (0, lo)) V_block_ptr = tl.advance(V_block_ptr, (lo, 0)) # loop over k, v and update accumulator for start_n in range(lo, hi, BLOCK_N): start_n = tl.multiple_of(start_n, BLOCK_N) # -- compute qk ---- k = tl.load(K_block_ptr) # load block of keys. Shape is (BLOCK_DMODEL, BLOCK_N) qk = tl.zeros([BLOCK_M, BLOCK_N], dtype=tl.float32) qk += tl.dot(q, k) if MODE == 1 or MODE == 3: # causal masking within the block qk = tl.where( offs_m[:, None] >= (start_n + offs_n[None, :]), qk, float("-inf") ) # if we are in the causal mode, we need to mask the values that are in the future. # -- compute m_ij, p, l_ij m_ij = tl.max(qk, 1) p = tl.math.exp2(qk - m_ij[:, None]) l_ij = tl.sum(p, 1) # -- update m_i and l_i m_i_new = tl.maximum(m_i, m_ij) alpha = tl.math.exp2(m_i - m_i_new) beta = tl.math.exp2(m_ij - m_i_new) l_i *= alpha l_i_new = l_i + beta * l_ij # scale p p_scale = beta / l_i_new p = p * p_scale[:, None] # scale acc acc_scale = l_i / l_i_new acc = acc * acc_scale[:, None] # update acc v = tl.load(V_block_ptr) p = p.to(tl.float16) acc += tl.dot(p, v) # update m_i and l_i l_i = l_i_new m_i = m_i_new # update pointers K_block_ptr = tl.advance(K_block_ptr, (0, BLOCK_N)) V_block_ptr = tl.advance(V_block_ptr, (BLOCK_N, 0)) # write back l and m l_ptrs = L + off_hz * N_CTX + offs_m m_ptrs = M + off_hz * N_CTX + offs_m tl.store(l_ptrs, l_i) tl.store(m_ptrs, m_i) # write back O tl.store(O_block_ptr, acc.to(tl.float16)) class _attention(torch.autograd.Function): @staticmethod def forward(ctx, q, k, v, causal, sm_scale): #BLOCK = 64 # shape constraints Lq, Lk, Lv = q.shape[-1], k.shape[-1], v.shape[-1] assert Lq == Lk and Lk == Lv assert Lk in {16, 32, 64, 128} BLOCK_M = 64 BLOCK_N = 64 if Lk <= 64 else 32 num_stages = 4 if Lk <= 64 else 3 o = torch.empty_like(q) # According to this, we have ceil(N_CTX/128) programs running, and tl.program_id(0) tells us on which one we are in. # For each of those, we have one program running for every head in the batch. tl.program_id(1) allows us to access those. grid = (triton.cdiv(q.shape[2], BLOCK_M), q.shape[0] * q.shape[1], 1) L = torch.empty( (q.shape[0] * q.shape[1], q.shape[2]), device=q.device, dtype=torch.float32 ) m = torch.empty( (q.shape[0] * q.shape[1], q.shape[2]), device=q.device, dtype=torch.float32 ) num_warps = 4 if Lk <= 64 else 8 if causal: modes = [1] if q.shape[2] <= 2048 else [2, 3] else: modes = [0] for mode in modes: _fwd_kernel[grid]( q, k, v, sm_scale, L, m, o, q.stride(0), q.stride(1), q.stride(2), q.stride(3), k.stride(0), k.stride(1), k.stride(2), k.stride(3), v.stride(0), v.stride(1), v.stride(2), v.stride(3), o.stride(0), o.stride(1), o.stride(2), o.stride(3), q.shape[0], q.shape[1], q.shape[2], BLOCK_M=BLOCK_M, BLOCK_N=BLOCK_N, BLOCK_DMODEL=Lk, MODE=mode, num_warps=num_warps, num_stages=num_stages, ) ctx.save_for_backward(q, k, v, o, L, m) ctx.grid = grid ctx.sm_scale = sm_scale ctx.BLOCK_DMODEL = Lk ctx.causal = causal return o attention = _attention.apply @pytest.mark.parametrize("Z, H, N_CTX, D_HEAD", [(6, 9, 1024, 64)]) @pytest.mark.parametrize("causal", [False, True]) def test_op(Z, H, N_CTX, D_HEAD, causal, dtype=torch.float16): torch.manual_seed(20) q = ( torch.empty((Z, H, N_CTX, D_HEAD), dtype=dtype, device="cuda") .normal_(mean=0.0, std=0.5) .requires_grad_() ) k = ( torch.empty((Z, H, N_CTX, D_HEAD), dtype=dtype, device="cuda") .normal_(mean=0.0, std=0.5) .requires_grad_() ) v = ( torch.empty((Z, H, N_CTX, D_HEAD), dtype=dtype, device="cuda") .normal_(mean=0.0, std=0.5) .requires_grad_() ) sm_scale = 0.5 # reference implementation M = torch.tril(torch.ones((N_CTX, N_CTX), device="cuda")) p = torch.matmul(q, k.transpose(2, 3)) * sm_scale if causal: p[:, :, M == 0] = float("-inf") p = torch.softmax(p.float(), dim=-1).half() # p = torch.exp(p) ref_out = torch.matmul(p, v) # triton implementation tri_out = attention(q, k, v, causal, sm_scale).half() # compare assert torch.allclose(ref_out, tri_out, atol=1e-2, rtol=0) BATCH, N_HEADS, N_CTX, D_HEAD = 4, 48, 4096, 64 # vary seq length for fixed head and batch=4 configs = [ triton.testing.Benchmark( x_names=["N_CTX"], x_vals=[2**i for i in range(10, 15)], line_arg="provider", line_vals=["triton", "flash"], line_names=["Triton", "Flash"], styles=[("red", "-"), ("blue", "-")], ylabel="ms", plot_name=f"fused-attention-batch{BATCH}-head{N_HEADS}-d{D_HEAD}-fwd", args={ "H": N_HEADS, "BATCH": BATCH, "D_HEAD": D_HEAD, "dtype": torch.float16, "mode": "fwd", "causal": causal, }, ) for causal in [False, True] ] @triton.testing.perf_report(configs) def bench_flash_attention( BATCH, H, N_CTX, D_HEAD, causal, mode, provider, dtype=torch.float16, ): assert mode == "fwd" warmup = 25 rep = 100 q = torch.randn( (BATCH, H, N_CTX, D_HEAD), dtype=dtype, device="cuda", requires_grad=True ) k = torch.randn( (BATCH, H, N_CTX, D_HEAD), dtype=dtype, device="cuda", requires_grad=True ) v = torch.randn( (BATCH, H, N_CTX, D_HEAD), dtype=dtype, device="cuda", requires_grad=True ) sm_scale = 1.3 if provider == "triton": fn = lambda: attention(q, k, v, causal, sm_scale) # noqa: E731 else: fn = lambda: torch.nn.functional.scaled_dot_product_attention( # noqa: E731 q, k, v, is_causal=causal, scale=sm_scale ) # Benchmark ms = triton.testing.do_bench(fn, warmup=warmup, rep=rep) flops_per_matmul = 2.0 * BATCH * H * N_CTX * N_CTX * D_HEAD total_flops = 2 * flops_per_matmul if causal: total_flops *= 0.5 return total_flops / ms * 1e-9 # bench_flash_attention.run(save_path=".", print_data=True)
@triton.jit def _fwd_kernel( Q, K, V, sm_scale, L, M, Out, stride_qz, stride_qh, stride_qm, stride_qk, stride_kz, stride_kh, stride_kn, stride_kk, stride_vz, stride_vh, stride_vk, stride_vn, stride_oz, stride_oh, stride_om, stride_on, Z, H, N_CTX, BLOCK_M: tl.constexpr, # how many queries on a query block? BLOCK_DMODEL: tl.constexpr, BLOCK_N: tl.constexpr, # how many keys on a key block? MODE: tl.constexpr, ): start_m = tl.program_id(0) # which query are we starting from? off_hz = tl.program_id(1) # which head are we processing in the batch? # offset that takes us from the the pointer to the query, key or value tensor to the current query/key/value. # stride_qh is the number of bytes it takes to get to the next head. qvk_offset = off_hz * stride_qh Q_block_ptr = tl.make_block_ptr( base=Q + qvk_offset, # start from current head. shape=( N_CTX, BLOCK_DMODEL, ), # This is the shape of the underlying tensor. We are going to be processing BLOCK_M queries at a time. strides=(stride_qm, stride_qk), offsets=( start_m * BLOCK_M, 0, ), # start from the current query, depending on the program id. block_shape=( BLOCK_M, BLOCK_DMODEL, ), # each block of query has shape (BLOCK_M, BLOCK_DMODEL) order=(1, 0), ) # Here, I am note sure why the shape is (BLOCK_DMODEL, N_CTX) and not (N_CTX, BLOCK_DMODEL). I supposed there is some optimization purpose. # In any case, this will work because order is (0,1), so triton knows that the blog is laid out in memoory with the first axis being the inner dimension. K_block_ptr = tl.make_block_ptr( base=K + qvk_offset, # start from current head. shape=(BLOCK_DMODEL, N_CTX), strides=(stride_kk, stride_kn), offsets=(0, 0), block_shape=(BLOCK_DMODEL, BLOCK_N), order=(0, 1), ) V_block_ptr = tl.make_block_ptr( base=V + qvk_offset, shape=(N_CTX, BLOCK_DMODEL), strides=(stride_vk, stride_vn), offsets=(0, 0), block_shape=(BLOCK_N, BLOCK_DMODEL), order=(1, 0), ) O_block_ptr = tl.make_block_ptr( base=Out + qvk_offset, shape=(N_CTX, BLOCK_DMODEL), strides=(stride_om, stride_on), offsets=(start_m * BLOCK_M, 0), block_shape=(BLOCK_M, BLOCK_DMODEL), order=(1, 0), ) # initialize offsets offs_m = start_m * BLOCK_M + tl.arange(0, BLOCK_M) offs_n = tl.arange(0, BLOCK_N) # [0,1,...,127] # initialize pointer to m and l m_i = ( tl.zeros([BLOCK_M], dtype=tl.float32) - float("inf") ) # shape is (128,). In the context of attention m is the maximum value of the query-key dot product. l_i = tl.zeros( [BLOCK_M], dtype=tl.float32 ) # in flash attention, l is the sum of the softmax of the query-key dot product. acc = tl.zeros([BLOCK_M, BLOCK_DMODEL], dtype=tl.float32) # causal check on every loop iteration can be expensive # and peeling the last iteration of the loop does not work well with ptxas # so we have a mode to do the causal check in a separate kernel entirely if MODE == 0: # entire non-causal attention lo, hi = 0, N_CTX if MODE == 1: # entire causal attention lo, hi = ( 0, (start_m + 1) * BLOCK_M, ) # if working with causal attention, we only need to look at the first start_m blocks. if MODE == 2: # off band-diagonal lo, hi = 0, start_m * BLOCK_M if MODE == 3: # on band-diagonal l_ptrs = L + off_hz * N_CTX + offs_m m_ptrs = M + off_hz * N_CTX + offs_m m_i = tl.load(m_ptrs) l_i = tl.load(l_ptrs) acc += tl.load(O_block_ptr).to(tl.float32) lo, hi = start_m * BLOCK_M, (start_m + 1) * BLOCK_M # credits to: Adam P. Goucher (https://github.com/apgoucher): # scale sm_scale by 1/log_2(e) and use # 2^x instead of exp in the loop because CSE and LICM # don't work as expected with `exp` in the loop qk_scale = sm_scale * 1.44269504 # load q: it will stay in SRAM throughout q = tl.load( Q_block_ptr ) # load block of queries. This has shape (BLOCK_M, BLOCK_DMODEL). q = (q * qk_scale).to(tl.float16) # advance block pointers to first iteration of the loop K_block_ptr = tl.advance(K_block_ptr, (0, lo)) V_block_ptr = tl.advance(V_block_ptr, (lo, 0)) # loop over k, v and update accumulator for start_n in range(lo, hi, BLOCK_N): start_n = tl.multiple_of(start_n, BLOCK_N) # -- compute qk ---- k = tl.load(K_block_ptr) # load block of keys. Shape is (BLOCK_DMODEL, BLOCK_N) qk = tl.zeros([BLOCK_M, BLOCK_N], dtype=tl.float32) qk += tl.dot(q, k) if MODE == 1 or MODE == 3: # causal masking within the block qk = tl.where( offs_m[:, None] >= (start_n + offs_n[None, :]), qk, float("-inf") ) # if we are in the causal mode, we need to mask the values that are in the future. # -- compute m_ij, p, l_ij m_ij = tl.max(qk, 1) p = tl.math.exp2(qk - m_ij[:, None]) l_ij = tl.sum(p, 1) # -- update m_i and l_i m_i_new = tl.maximum(m_i, m_ij) alpha = tl.math.exp2(m_i - m_i_new) beta = tl.math.exp2(m_ij - m_i_new) l_i *= alpha l_i_new = l_i + beta * l_ij # scale p p_scale = beta / l_i_new p = p * p_scale[:, None] # scale acc acc_scale = l_i / l_i_new acc = acc * acc_scale[:, None] # update acc v = tl.load(V_block_ptr) p = p.to(tl.float16) acc += tl.dot(p, v) # update m_i and l_i l_i = l_i_new m_i = m_i_new # update pointers K_block_ptr = tl.advance(K_block_ptr, (0, BLOCK_N)) V_block_ptr = tl.advance(V_block_ptr, (BLOCK_N, 0)) # write back l and m l_ptrs = L + off_hz * N_CTX + offs_m m_ptrs = M + off_hz * N_CTX + offs_m tl.store(l_ptrs, l_i) tl.store(m_ptrs, m_i) # write back O tl.store(O_block_ptr, acc.to(tl.float16)) class _attention(torch.autograd.Function): @staticmethod def forward(ctx, q, k, v, causal, sm_scale): #BLOCK = 64 # shape constraints Lq, Lk, Lv = q.shape[-1], k.shape[-1], v.shape[-1] assert Lq == Lk and Lk == Lv assert Lk in {16, 32, 64, 128} BLOCK_M = 64 BLOCK_N = 64 if Lk <= 64 else 32 num_stages = 4 if Lk <= 64 else 3 o = torch.empty_like(q) # According to this, we have ceil(N_CTX/128) programs running, and tl.program_id(0) tells us on which one we are in. # For each of those, we have one program running for every head in the batch. tl.program_id(1) allows us to access those. grid = (triton.cdiv(q.shape[2], BLOCK_M), q.shape[0] * q.shape[1], 1) L = torch.empty( (q.shape[0] * q.shape[1], q.shape[2]), device=q.device, dtype=torch.float32 ) m = torch.empty( (q.shape[0] * q.shape[1], q.shape[2]), device=q.device, dtype=torch.float32 ) num_warps = 4 if Lk <= 64 else 8 if causal: modes = [1] if q.shape[2] <= 2048 else [2, 3] else: modes = [0] for mode in modes: _fwd_kernel[grid]( q, k, v, sm_scale, L, m, o, q.stride(0), q.stride(1), q.stride(2), q.stride(3), k.stride(0), k.stride(1), k.stride(2), k.stride(3), v.stride(0), v.stride(1), v.stride(2), v.stride(3), o.stride(0), o.stride(1), o.stride(2), o.stride(3), q.shape[0], q.shape[1], q.shape[2], BLOCK_M=BLOCK_M, BLOCK_N=BLOCK_N, BLOCK_DMODEL=Lk, MODE=mode, num_warps=num_warps, num_stages=num_stages, ) ctx.save_for_backward(q, k, v, o, L, m) ctx.grid = grid ctx.sm_scale = sm_scale ctx.BLOCK_DMODEL = Lk ctx.causal = causal return o attention = _attention.apply @pytest.mark.parametrize("Z, H, N_CTX, D_HEAD", [(6, 9, 1024, 64)]) @pytest.mark.parametrize("causal", [False, True]) def test_op(Z, H, N_CTX, D_HEAD, causal, dtype=torch.float16): torch.manual_seed(20) q = ( torch.empty((Z, H, N_CTX, D_HEAD), dtype=dtype, device="cuda") .normal_(mean=0.0, std=0.5) .requires_grad_() ) k = ( torch.empty((Z, H, N_CTX, D_HEAD), dtype=dtype, device="cuda") .normal_(mean=0.0, std=0.5) .requires_grad_() ) v = ( torch.empty((Z, H, N_CTX, D_HEAD), dtype=dtype, device="cuda") .normal_(mean=0.0, std=0.5) .requires_grad_() ) sm_scale = 0.5 # reference implementation M = torch.tril(torch.ones((N_CTX, N_CTX), device="cuda")) p = torch.matmul(q, k.transpose(2, 3)) * sm_scale if causal: p[:, :, M == 0] = float("-inf") p = torch.softmax(p.float(), dim=-1).half() # p = torch.exp(p) ref_out = torch.matmul(p, v) # triton implementation tri_out = attention(q, k, v, causal, sm_scale).half() # compare assert torch.allclose(ref_out, tri_out, atol=1e-2, rtol=0) BATCH, N_HEADS, N_CTX, D_HEAD = 4, 48, 4096, 64 # vary seq length for fixed head and batch=4 configs = [ triton.testing.Benchmark( x_names=["N_CTX"], x_vals=[2**i for i in range(10, 15)], line_arg="provider", line_vals=["triton", "flash"], line_names=["Triton", "Flash"], styles=[("red", "-"), ("blue", "-")], ylabel="ms", plot_name=f"fused-attention-batch{BATCH}-head{N_HEADS}-d{D_HEAD}-fwd", args={ "H": N_HEADS, "BATCH": BATCH, "D_HEAD": D_HEAD, "dtype": torch.float16, "mode": "fwd", "causal": causal, }, ) for causal in [False, True] ] @triton.testing.perf_report(configs) def bench_flash_attention( BATCH, H, N_CTX, D_HEAD, causal, mode, provider, dtype=torch.float16, ): assert mode == "fwd" warmup = 25 rep = 100 q = torch.randn( (BATCH, H, N_CTX, D_HEAD), dtype=dtype, device="cuda", requires_grad=True ) k = torch.randn( (BATCH, H, N_CTX, D_HEAD), dtype=dtype, device="cuda", requires_grad=True ) v = torch.randn( (BATCH, H, N_CTX, D_HEAD), dtype=dtype, device="cuda", requires_grad=True ) sm_scale = 1.3 if provider == "triton": fn = lambda: attention(q, k, v, causal, sm_scale) # noqa: E731 else: fn = lambda: torch.nn.functional.scaled_dot_product_attention( # noqa: E731 q, k, v, is_causal=causal, scale=sm_scale ) # Benchmark ms = triton.testing.do_bench(fn, warmup=warmup, rep=rep) flops_per_matmul = 2.0 * BATCH * H * N_CTX * N_CTX * D_HEAD total_flops = 2 * flops_per_matmul if causal: total_flops *= 0.5 return total_flops / ms * 1e-9 # bench_flash_attention.run(save_path=".", print_data=True)
hahnyuan/MiscTritonCuda
triton_ops/add.py
https://github.com/hahnyuan/MiscTritonCuda/blob/e2418b68f26d8b07701b7a23249c89d55ddd868b/triton_ops/add.py
import torch import triton import triton.language as tl """ https://triton-lang.org/main/getting-started/tutorials/01-vector-add.htm """ @triton.jit def add_kernel(x_ptr, # *Pointer* to first input vector. y_ptr, # *Pointer* to second input vector. output_ptr, # *Pointer* to output vector. n_elements, # Size of the vector. BLOCK_SIZE: tl.constexpr, # Number of elements each program should process. # NOTE: `constexpr` so it can be used as a shape value. ): # There are multiple 'programs' processing different data. We identify which program # we are here: pid = tl.program_id(axis=0) # We use a 1D launch grid so axis is 0. # This program will process inputs that are offset from the initial data. # For instance, if you had a vector of length 256 and block_size of 64, the programs # would each access the elements [0:64, 64:128, 128:192, 192:256]. # Note that offsets is a list of pointers: block_start = pid * BLOCK_SIZE offsets = block_start + tl.arange(0, BLOCK_SIZE) # Create a mask to guard memory operations against out-of-bounds accesses. mask = offsets < n_elements # Load x and y from DRAM, masking out any extra elements in case the input is not a # multiple of the block size. x = tl.load(x_ptr + offsets, mask=mask) y = tl.load(y_ptr + offsets, mask=mask) output = x + y # Write x + y back to DRAM. tl.store(output_ptr + offsets, output, mask=mask) def add(x: torch.Tensor, y: torch.Tensor): # We need to preallocate the output. output = torch.empty_like(x) assert x.is_cuda and y.is_cuda and output.is_cuda n_elements = output.numel() # The SPMD launch grid denotes the number of kernel instances that run in parallel. # It is analogous to CUDA launch grids. It can be either Tuple[int], or Callable(metaparameters) -> Tuple[int]. # In this case, we use a 1D grid where the size is the number of blocks: grid = lambda meta: (triton.cdiv(n_elements, meta['BLOCK_SIZE']), ) # NOTE: # - Each torch.tensor object is implicitly converted into a pointer to its first element. # - `triton.jit`'ed functions can be indexed with a launch grid to obtain a callable GPU kernel. # - Don't forget to pass meta-parameters as keywords arguments. add_kernel[grid](x, y, output, n_elements, BLOCK_SIZE=1024) # We return a handle to z but, since `torch.cuda.synchronize()` hasn't been called, the kernel is still # running asynchronously at this point. return output if __name__=='__main__': torch.manual_seed(0) size = 98432 x = torch.rand(size, device='cuda') y = torch.rand(size, device='cuda') output_torch = x + y output_triton = add(x, y) print(output_torch) print(output_triton) print(f'The maximum difference between torch and triton is ' f'{torch.max(torch.abs(output_torch - output_triton))}') # benchmark @triton.testing.perf_report( triton.testing.Benchmark( x_names=['size'], # Argument names to use as an x-axis for the plot. x_vals=[2**i for i in range(12, 28, 1)], # Different possible values for `x_name`. x_log=True, # x axis is logarithmic. line_arg='provider', # Argument name whose value corresponds to a different line in the plot. line_vals=['triton', 'torch'], # Possible values for `line_arg`. line_names=['Triton', 'Torch'], # Label name for the lines. styles=[('blue', '-'), ('green', '-')], # Line styles. ylabel='GB/s', # Label name for the y-axis. plot_name='vector-add-performance', # Name for the plot. Used also as a file name for saving the plot. args={}, # Values for function arguments not in `x_names` and `y_name`. )) def benchmark(size, provider): x = torch.rand(size, device='cuda', dtype=torch.float32) y = torch.rand(size, device='cuda', dtype=torch.float32) quantiles = [0.5, 0.2, 0.8] if provider == 'torch': ms, min_ms, max_ms = triton.testing.do_bench(lambda: x + y, quantiles=quantiles) if provider == 'triton': ms, min_ms, max_ms = triton.testing.do_bench(lambda: add(x, y), quantiles=quantiles) gbps = lambda ms: 12 * size / ms * 1e-6 return gbps(ms), gbps(max_ms), gbps(min_ms) benchmark.run(print_data=True, show_plots=True)
@triton.jit def add_kernel(x_ptr, # *Pointer* to first input vector. y_ptr, # *Pointer* to second input vector. output_ptr, # *Pointer* to output vector. n_elements, # Size of the vector. BLOCK_SIZE: tl.constexpr, # Number of elements each program should process. # NOTE: `constexpr` so it can be used as a shape value. ): # There are multiple 'programs' processing different data. We identify which program # we are here: pid = tl.program_id(axis=0) # We use a 1D launch grid so axis is 0. # This program will process inputs that are offset from the initial data. # For instance, if you had a vector of length 256 and block_size of 64, the programs # would each access the elements [0:64, 64:128, 128:192, 192:256]. # Note that offsets is a list of pointers: block_start = pid * BLOCK_SIZE offsets = block_start + tl.arange(0, BLOCK_SIZE) # Create a mask to guard memory operations against out-of-bounds accesses. mask = offsets < n_elements # Load x and y from DRAM, masking out any extra elements in case the input is not a # multiple of the block size. x = tl.load(x_ptr + offsets, mask=mask) y = tl.load(y_ptr + offsets, mask=mask) output = x + y # Write x + y back to DRAM. tl.store(output_ptr + offsets, output, mask=mask) def add(x: torch.Tensor, y: torch.Tensor): # We need to preallocate the output. output = torch.empty_like(x) assert x.is_cuda and y.is_cuda and output.is_cuda n_elements = output.numel() # The SPMD launch grid denotes the number of kernel instances that run in parallel. # It is analogous to CUDA launch grids. It can be either Tuple[int], or Callable(metaparameters) -> Tuple[int]. # In this case, we use a 1D grid where the size is the number of blocks: grid = lambda meta: (triton.cdiv(n_elements, meta['BLOCK_SIZE']), ) # NOTE: # - Each torch.tensor object is implicitly converted into a pointer to its first element. # - `triton.jit`'ed functions can be indexed with a launch grid to obtain a callable GPU kernel. # - Don't forget to pass meta-parameters as keywords arguments. add_kernel[grid](x, y, output, n_elements, BLOCK_SIZE=1024) # We return a handle to z but, since `torch.cuda.synchronize()` hasn't been called, the kernel is still # running asynchronously at this point. return output if __name__=='__main__': torch.manual_seed(0) size = 98432 x = torch.rand(size, device='cuda') y = torch.rand(size, device='cuda') output_torch = x + y output_triton = add(x, y) print(output_torch) print(output_triton) print(f'The maximum difference between torch and triton is ' f'{torch.max(torch.abs(output_torch - output_triton))}') # benchmark @triton.testing.perf_report( triton.testing.Benchmark( x_names=['size'], # Argument names to use as an x-axis for the plot. x_vals=[2**i for i in range(12, 28, 1)], # Different possible values for `x_name`. x_log=True, # x axis is logarithmic. line_arg='provider', # Argument name whose value corresponds to a different line in the plot. line_vals=['triton', 'torch'], # Possible values for `line_arg`. line_names=['Triton', 'Torch'], # Label name for the lines. styles=[('blue', '-'), ('green', '-')], # Line styles. ylabel='GB/s', # Label name for the y-axis. plot_name='vector-add-performance', # Name for the plot. Used also as a file name for saving the plot. args={}, # Values for function arguments not in `x_names` and `y_name`. )) def benchmark(size, provider): x = torch.rand(size, device='cuda', dtype=torch.float32) y = torch.rand(size, device='cuda', dtype=torch.float32) quantiles = [0.5, 0.2, 0.8] if provider == 'torch': ms, min_ms, max_ms = triton.testing.do_bench(lambda: x + y, quantiles=quantiles) if provider == 'triton': ms, min_ms, max_ms = triton.testing.do_bench(lambda: add(x, y), quantiles=quantiles) gbps = lambda ms: 12 * size / ms * 1e-6 return gbps(ms), gbps(max_ms), gbps(min_ms) benchmark.run(print_data=True, show_plots=True)
aum-labs/dhi
kernels/rope2d.py
https://github.com/aum-labs/dhi/blob/e162c8f8cfb052fa2428a40a4242b3f913b7971e/kernels/rope2d.py
import triton import triton.language as tl import torch from configure import calculate_settings # b * c * h * w -> so dim is channels or d_model # b * (hw) * c lets say x coordinate is corresponding to w and y coordinate is corresponding to h # original rope2d paper proposed two methods to rotate the coordinates # ø = option + o # 1. r(n, 2t) = cos(p(x)*ø) + i * sin(p(x)*ø), r(n, 2t+1) = cos(p(y)*ø) + i * sin(p(y)*ø) --> axial frequency # 2. r(n, 2t) = exp(i * (ø(x) * p(x) + ø(y) * p(y))) , where ø(x) and ø(y) are learnable params def rope2d(x, dim, width, n_heads): b, hw, c = x.shape head_dim = c // n_heads h = hw // width w = width dim_half = head_dim // 2 theta = 1 / (100 ** (torch.arange(0, dim_half//2, dtype=torch.float32) / (dim_half))) theta = theta.to(x.device) h_pos = torch.arange(h, dtype=torch.float32).to(x.device) w_pos = torch.arange(w, dtype=torch.float32).to(x.device) freqs_h = torch.outer(h_pos, theta) freqs_w = torch.outer(w_pos, theta) freqs_h = torch.cat((freqs_h,freqs_h), dim = -1) freqs_w = torch.cat((freqs_w,freqs_w), dim = -1) x = x.view(b, n_heads, h, w, head_dim) x_h = x[..., :dim_half] x_w = x[..., dim_half:] cos_h = torch.cos(freqs_h)[None, None, :, None, :] sin_h = torch.sin(freqs_h)[None, None, :, None, :] r1_h = x_h * cos_h r2_h = torch.cat((-x_h[..., dim_half//2:], x_h[..., :dim_half//2]), dim=-1) * sin_h x_h_rotated = r1_h + r2_h cos_w = torch.cos(freqs_w)[None, None, None, :, :] sin_w = torch.sin(freqs_w)[None, None, None, :, :] r1_w = x_w * cos_w r2_w = torch.cat((-x_w[..., dim_half//2:], x_w[..., :dim_half//2]), dim=-1) * sin_w x_w_rotated = r1_w + r2_w x_out = torch.cat([x_h_rotated, x_w_rotated], dim=-1) return x_out.view(b, h*w, c) def get_cis_mat_2d(head_dim, hw, width): h = hw // width w = width dim_half = head_dim // 2 theta = 1 / (100 ** (torch.arange(0, dim_half//2, dtype=torch.float32) / (dim_half))) h_pos = torch.arange(h, dtype=torch.float32) w_pos = torch.arange(w, dtype=torch.float32) freqs_h = torch.outer(h_pos, theta) freqs_w = torch.outer(w_pos, theta) cos_h = torch.cos(freqs_h) # h * head_dim/2 sin_h = torch.sin(freqs_h) cos_w = torch.cos(freqs_w) # w * head_dim/2 sin_w = torch.sin(freqs_w) return cos_h, sin_h, cos_w, sin_w @triton.jit def _rope2d_fwd_kernel( inp_ptr, cos_h_ptr, sin_h_ptr, cos_w_ptr, sin_w_ptr, out_ptr, inp_stride_batch, inp_stride_hw, inp_stride_head, cos_stride_hw, cos_stride_dim, head_dim, batch_size, height, width, n_heads, BLOCK_SIZE: tl.constexpr, ): # 3D grid: (batch_size, n_heads, height*width) b = tl.program_id(0) # batch index n = tl.program_id(1) # head index h_w = tl.program_id(2) # spatial position index # height_coordinate hc = y, width_coordinate wc = x # say h_w = 0 1 # 2 3 # so for point 2, y = 1, x = 0 y = h_w // width x = h_w % width dim_fourth = head_dim // 4 inp_offset = (b * inp_stride_batch + n * inp_stride_head + h_w * inp_stride_hw) h_offset = (y * cos_stride_hw) w_offset = (x * cos_stride_hw) cols = tl.arange(0, BLOCK_SIZE) mask = cols < dim_fourth inp1 = tl.load(inp_ptr + inp_offset + cols, mask=mask) inp2 = tl.load(inp_ptr + inp_offset + cols + dim_fourth, mask=mask) inp3 = tl.load(inp_ptr + inp_offset + cols + 2 * dim_fourth, mask=mask) inp4 = tl.load(inp_ptr + inp_offset + cols + 3 * dim_fourth, mask=mask) cos_h = tl.load(cos_h_ptr + h_offset + cols * cos_stride_dim, mask=mask) sin_h = tl.load(sin_h_ptr + h_offset + cols * cos_stride_dim, mask=mask) cos_w = tl.load(cos_w_ptr + w_offset + cols * cos_stride_dim, mask=mask) sin_w = tl.load(sin_w_ptr + w_offset + cols * cos_stride_dim, mask=mask) out1h = inp1 * cos_h - inp2 * sin_h out2h = inp2 * cos_h + inp1 * sin_h out1w = inp3 * cos_w - inp4 * sin_w out2w = inp4 * cos_w + inp3 * sin_w tl.store(out_ptr + inp_offset + cols, out1h, mask=mask) tl.store(out_ptr + inp_offset + cols + dim_fourth, out2h, mask=mask) tl.store(out_ptr + inp_offset + cols + 2 * dim_fourth, out1w, mask=mask) tl.store(out_ptr + inp_offset + cols + 3 * dim_fourth, out2w, mask=mask) @triton.jit def _rope2d_bwd_kernel( grad_ptr, cos_h_ptr, sin_h_ptr, cos_w_ptr, sin_w_ptr, out_ptr, grad_stride_batch, grad_stride_head, grad_stride_hw, cos_stride_hw, cos_stride_dim, head_dim, batch_size, height, width, n_heads, BLOCK_SIZE: tl.constexpr, ): # 3D grid: (batch_size, n_heads, height*width) b = tl.program_id(0) # batch index n = tl.program_id(1) # head index h_w = tl.program_id(2) # spatial position index y = h_w // width x = h_w % width dim_fourth = head_dim // 4 grad_offset = (b * grad_stride_batch + n * grad_stride_head + h_w * grad_stride_hw) h_offset = (y * cos_stride_hw) w_offset = (x * cos_stride_hw) cols = tl.arange(0, BLOCK_SIZE) mask = cols < dim_fourth grad1h = tl.load(grad_ptr + grad_offset + cols * 1, mask=mask) grad2h = tl.load(grad_ptr + grad_offset + (cols + dim_fourth)*1, mask=mask) grad3w = tl.load(grad_ptr + grad_offset + (cols + 2 * dim_fourth)*1, mask=mask) grad4w = tl.load(grad_ptr + grad_offset + (cols + 3 * dim_fourth)*1, mask=mask) cos_h = tl.load(cos_h_ptr + h_offset + cols * cos_stride_dim, mask=mask) sin_h = tl.load(sin_h_ptr + h_offset + cols * cos_stride_dim, mask=mask) cos_w = tl.load(cos_w_ptr + w_offset + cols * cos_stride_dim, mask=mask) sin_w = tl.load(sin_w_ptr + w_offset + cols * cos_stride_dim, mask=mask) # For height dimension: # Forward: out1h = inp1 * cos_h - inp2 * sin_h # out2h = inp2 * cos_h + inp1 * sin_h # Backward derivation: 'do' is option + d # ðL/ðinp1 = ðL/ðout1h * ðout1h/ðinp1 + ðL/ðout2h * ðout2h/ðinp1 # = grad1h * cos_h + grad2h * sin_h # ðL/ðinp2 = ðL/ðout1h * ðout1h/ðinp2 + ðL/ðout2h * ðout2h/ðinp2 # = -grad1h * sin_h + grad2h * cos_h out1h = grad1h * cos_h + grad2h * sin_h out2h = -grad1h * sin_h + grad2h * cos_h # For width dimension: # Forward: out1w = inp3 * cos_w - inp4 * sin_w # out2w = inp4 * cos_w + inp3 * sin_w # Backward derivation follows same pattern as height out1w = grad3w * cos_w + grad4w * sin_w out2w = -grad3w * sin_w + grad4w * cos_w tl.store(out_ptr + grad_offset + cols * 1, out1h, mask=mask) tl.store(out_ptr + grad_offset + (cols + dim_fourth)*1, out2h, mask=mask) tl.store(out_ptr + grad_offset + (cols + 2 * dim_fourth)*1, out1w, mask=mask) tl.store(out_ptr + grad_offset + (cols + 3 * dim_fourth)*1, out2w, mask=mask) class RoPE2D_triton(torch.autograd.Function): @staticmethod def forward(ctx, x, cos_h, sin_h, cos_w, sin_w, width): b, n, hw, head_dim = x.shape height = hw // width out = torch.empty_like(x) BLOCK_SIZE, num_warps = calculate_settings(head_dim//4) _rope2d_fwd_kernel[(b, n, hw)]( x, cos_h, sin_h, cos_w, sin_w, out, x.stride(0), x.stride(2), x.stride(1), cos_h.stride(0), cos_h.stride(1), head_dim, b, height, width, n, BLOCK_SIZE, num_warps=num_warps, ) ctx.save_for_backward(cos_h, sin_h, cos_w, sin_w) ctx.width = width return out @staticmethod def backward(ctx, grad_output): cos_h, sin_h, cos_w, sin_w = ctx.saved_tensors width = ctx.width b, n, hw, head_dim = grad_output.shape height = hw // width grad_input = torch.empty_like(grad_output) BLOCK_SIZE, num_warps = calculate_settings(head_dim//4) # Use 3D grid _rope2d_bwd_kernel[(b, n, hw)]( grad_output, cos_h, sin_h, cos_w, sin_w, grad_input, grad_output.stride(0), grad_output.stride(1), grad_output.stride(2), cos_h.stride(0), cos_h.stride(1), head_dim, b, height, width, n, BLOCK_SIZE, num_warps=num_warps, ) return grad_input, None, None, None, None, None # phew! man that was exhausting, took one whole day to understand and implement this
@triton.jit def _rope2d_fwd_kernel( inp_ptr, cos_h_ptr, sin_h_ptr, cos_w_ptr, sin_w_ptr, out_ptr, inp_stride_batch, inp_stride_hw, inp_stride_head, cos_stride_hw, cos_stride_dim, head_dim, batch_size, height, width, n_heads, BLOCK_SIZE: tl.constexpr, ): # 3D grid: (batch_size, n_heads, height*width) b = tl.program_id(0) # batch index n = tl.program_id(1) # head index h_w = tl.program_id(2) # spatial position index # height_coordinate hc = y, width_coordinate wc = x # say h_w = 0 1 # 2 3 # so for point 2, y = 1, x = 0 y = h_w // width x = h_w % width dim_fourth = head_dim // 4 inp_offset = (b * inp_stride_batch + n * inp_stride_head + h_w * inp_stride_hw) h_offset = (y * cos_stride_hw) w_offset = (x * cos_stride_hw) cols = tl.arange(0, BLOCK_SIZE) mask = cols < dim_fourth inp1 = tl.load(inp_ptr + inp_offset + cols, mask=mask) inp2 = tl.load(inp_ptr + inp_offset + cols + dim_fourth, mask=mask) inp3 = tl.load(inp_ptr + inp_offset + cols + 2 * dim_fourth, mask=mask) inp4 = tl.load(inp_ptr + inp_offset + cols + 3 * dim_fourth, mask=mask) cos_h = tl.load(cos_h_ptr + h_offset + cols * cos_stride_dim, mask=mask) sin_h = tl.load(sin_h_ptr + h_offset + cols * cos_stride_dim, mask=mask) cos_w = tl.load(cos_w_ptr + w_offset + cols * cos_stride_dim, mask=mask) sin_w = tl.load(sin_w_ptr + w_offset + cols * cos_stride_dim, mask=mask) out1h = inp1 * cos_h - inp2 * sin_h out2h = inp2 * cos_h + inp1 * sin_h out1w = inp3 * cos_w - inp4 * sin_w out2w = inp4 * cos_w + inp3 * sin_w tl.store(out_ptr + inp_offset + cols, out1h, mask=mask) tl.store(out_ptr + inp_offset + cols + dim_fourth, out2h, mask=mask) tl.store(out_ptr + inp_offset + cols + 2 * dim_fourth, out1w, mask=mask) tl.store(out_ptr + inp_offset + cols + 3 * dim_fourth, out2w, mask=mask)