repo_name
stringlengths 9
109
| hexsha
stringlengths 40
40
| code
stringlengths 547
141k
| apis
sequence | file_path
stringlengths 6
143
| api_extract
stringlengths 142
58.4k
|
---|---|---|---|---|---|
tadasdanielius/P5-Vehicle-Detection-And-Tracking | 38513e91d863f7fff50703349aacbe5d5bbfae39 | from keras.preprocessing.image import ImageDataGenerator
from keras.models import Sequential
from keras.layers import Convolution2D, MaxPooling2D
from keras.layers import Activation, Dropout, Flatten, Dense, Lambda, ELU
from keras.optimizers import Adam
from sklearn.model_selection import train_test_split
from keras.models import model_from_json
from sklearn.preprocessing import normalize
import cv2
import numpy as np
import glob
import json
from keras.layers import merge
from keras.layers.core import Lambda
from keras.models import Model
import tensorflow as tf
def make_parallel(model, gpu_count):
def get_slice(data, idx, parts):
shape = tf.shape(data)
size = tf.concat(0, [shape[:1] // parts, shape[1:]])
stride = tf.concat(0, [shape[:1] // parts, shape[1:] * 0])
start = stride * idx
return tf.slice(data, start, size)
outputs_all = []
for i in range(len(model.outputs)):
outputs_all.append([])
# Place a copy of the model on each GPU, each getting a slice of the batch
for i in range(gpu_count):
with tf.device('/gpu:%d' % i):
with tf.name_scope('tower_%d' % i) as scope:
inputs = []
# Slice each input into a piece for processing on this GPU
for x in model.inputs:
input_shape = tuple(x.get_shape().as_list())[1:]
slice_n = Lambda(get_slice, output_shape=input_shape, arguments={'idx': i, 'parts': gpu_count})(x)
inputs.append(slice_n)
outputs = model(inputs)
if not isinstance(outputs, list):
outputs = [outputs]
# Save all the outputs for merging back together later
for l in range(len(outputs)):
outputs_all[l].append(outputs[l])
# merge outputs on CPU
with tf.device('/cpu:0'):
merged = []
for outputs in outputs_all:
merged.append(merge(outputs, mode='concat', concat_axis=0))
return Model(input=model.inputs, output=merged)
class CNNClassifier:
def __init__(self):
self.classifier = None
def get_model(self, parallel=False):
model = Sequential()
#model.add(Lambda(lambda x: x / 127.5 - 1., input_shape=(64, 64, 3)))
model.add(Convolution2D(8, 8, 8, subsample=(4, 4), border_mode="same", activation='elu', name='Conv1'))
model.add(Convolution2D(16, 5, 5, subsample=(2, 2), border_mode="same", activation='elu', name='Conv2'))
model.add(Convolution2D(32, 5, 5, subsample=(2, 2), border_mode="same", activation='elu', name='Conv3'))
model.add(Flatten())
model.add(ELU())
model.add(Dense(1024, activation='elu'))
model.add(Dropout(.5))
model.add(ELU())
model.add(Dense(512, activation='elu'))
model.add(Dropout(.5))
model.add(Dense(1, name='output'))
model.add(Activation('sigmoid'))
if parallel:
model = make_parallel(model, 2)
#model.compile(optimizer='sgd', loss='binary_crossentropy', metrics=['accuracy'])
self.model = model
return model
def _model(self):
img_width, img_height = 64, 64
model = Sequential()
model.add(Convolution2D(8, 3, 3, input_shape=(img_width, img_height, 3)))
model.add(Activation('elu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
#model.add(Convolution2D(16, 3, 3))
#model.add(Activation('elu'))
#model.add(MaxPooling2D(pool_size=(2, 2)))
#model.add(Convolution2D(32, 3, 3))
#model.add(Activation('elu'))
#model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Flatten())
model.add(Dense(512))
model.add(Dropout(0.5))
model.add(Dense(1, activation='sigmoid'))
#model = make_parallel(model, 2)
self.model = model
def compile(self):
self.model.compile(loss='binary_crossentropy',
optimizer='rmsprop', class_mode='binary',
metrics=['accuracy'])
def save(self):
model_json = self.model.to_json()
with open("./model.json", "w") as json_file:
json.dump(model_json, json_file)
self.model.save_weights("./model.h5")
print("Saved model to disk")
def load(self):
with open('./model.json', 'r') as jfile:
self.model = model_from_json(json.load(jfile))
self.compile()
self.model.load_weights('./model.h5')
def get_list(self):
vehicles = np.array(glob.glob('training_data/vehicles/*/*'))
y_vehicles = np.zeros(vehicles.shape) + 1
non_vehicles = np.array(glob.glob('training_data/non-vehicles/*/*'))
y_non_vehicles = np.zeros(non_vehicles.shape)
X_data = np.concatenate((vehicles, non_vehicles))
Y_data = np.concatenate((y_vehicles, y_non_vehicles))
return X_data, Y_data
def predict(self, image):
#img = np.copy(image)
#img = cv2.resize(img, (64, 64))
x = image[None, :, :, :]
result = self.model.predict(x, 1)
return result
def train(self, file_list, labels, test_size=0.2, nb_epoch=30, batch_size=128):
X_train, X_test, Y_train, Y_test = train_test_split(file_list, labels, test_size=test_size, random_state=100)
test_images = build_images(X_test)
train_images = build_images(X_train)
train_datagen = ImageDataGenerator(
rescale=1. / 255,
shear_range=0.05,
zoom_range=0.05,
width_shift_range=0.1,
height_shift_range=0.1,
rotation_range=5,
horizontal_flip=True)
test_datagen = ImageDataGenerator(rescale=1. / 255)
train_generator = train_datagen.flow(train_images, Y_train, batch_size)
test_generator = test_datagen.flow(test_images, Y_test, batch_size)
nb_train_samples = (batch_size-1)*100
nb_validation_samples = (batch_size-1)*20
#self.get_model(parallel=False)
self._model()
self.compile()
self.model.fit_generator(
train_generator,
samples_per_epoch=nb_train_samples,
nb_epoch=nb_epoch, show_accuracy=True,
validation_data=test_generator,
nb_val_samples=nb_validation_samples)
def build_images(x):
images = np.zeros((len(x), 64, 64, 3))
for idx, img_fname in enumerate(x):
im = cv2.imread(img_fname)
im = cv2.cvtColor(im, cv2.COLOR_BGR2RGB)
im = cv2.resize(im, (64, 64), interpolation=cv2.INTER_AREA)
images[idx] = im
return images
def do_all(nb_epoch=30, batch_size=256):
clf = CNNClassifier()
x, y = clf.get_list()
clf.train(x, y, nb_epoch=nb_epoch, batch_size=batch_size)
clf.save()
| [
"tensorflow.device",
"tensorflow.concat",
"tensorflow.shape",
"tensorflow.slice",
"sklearn.model_selection.train_test_split",
"numpy.concatenate",
"tensorflow.name_scope",
"numpy.zeros"
] | sdc/detection/cnn_classifier.py | [(22, 'tensorflow.shape', 'tf.shape', (['data'], {}), True, 'import tensorflow as tf\n'), (23, 'tensorflow.concat', 'tf.concat', (['(0)', '[shape[:1] // parts, shape[1:]]'], {}), True, 'import tensorflow as tf\n'), (24, 'tensorflow.concat', 'tf.concat', (['(0)', '[shape[:1] // parts, shape[1:] * 0]'], {}), True, 'import tensorflow as tf\n'), (26, 'tensorflow.slice', 'tf.slice', (['data', 'start', 'size'], {}), True, 'import tensorflow as tf\n'), (54, 'tensorflow.device', 'tf.device', (['"""/cpu:0"""'], {}), True, 'import tensorflow as tf\n'), (59, 'keras.models.Model', 'Model', ([], {'input': 'model.inputs', 'output': 'merged'}), False, 'from keras.models import Model\n'), (67, 'keras.models.Sequential', 'Sequential', ([], {}), False, 'from keras.models import Sequential\n'), (89, 'keras.models.Sequential', 'Sequential', ([], {}), False, 'from keras.models import Sequential\n'), (132, 'numpy.zeros', 'np.zeros', (['non_vehicles.shape'], {}), True, 'import numpy as np\n'), (133, 'numpy.concatenate', 'np.concatenate', (['(vehicles, non_vehicles)'], {}), True, 'import numpy as np\n'), (134, 'numpy.concatenate', 'np.concatenate', (['(y_vehicles, y_non_vehicles)'], {}), True, 'import numpy as np\n'), (145, 'sklearn.model_selection.train_test_split', 'train_test_split', (['file_list', 'labels'], {'test_size': 'test_size', 'random_state': '(100)'}), False, 'from sklearn.model_selection import train_test_split\n'), (150, 'keras.preprocessing.image.ImageDataGenerator', 'ImageDataGenerator', ([], {'rescale': '(1.0 / 255)', 'shear_range': '(0.05)', 'zoom_range': '(0.05)', 'width_shift_range': '(0.1)', 'height_shift_range': '(0.1)', 'rotation_range': '(5)', 'horizontal_flip': '(True)'}), False, 'from keras.preprocessing.image import ImageDataGenerator\n'), (158, 'keras.preprocessing.image.ImageDataGenerator', 'ImageDataGenerator', ([], {'rescale': '(1.0 / 255)'}), False, 'from keras.preprocessing.image import ImageDataGenerator\n'), (179, 'cv2.imread', 'cv2.imread', (['img_fname'], {}), False, 'import cv2\n'), (180, 'cv2.cvtColor', 'cv2.cvtColor', (['im', 'cv2.COLOR_BGR2RGB'], {}), False, 'import cv2\n'), (181, 'cv2.resize', 'cv2.resize', (['im', '(64, 64)'], {'interpolation': 'cv2.INTER_AREA'}), False, 'import cv2\n'), (34, 'tensorflow.device', 'tf.device', (["('/gpu:%d' % i)"], {}), True, 'import tensorflow as tf\n'), (69, 'keras.layers.Convolution2D', 'Convolution2D', (['(8)', '(8)', '(8)'], {'subsample': '(4, 4)', 'border_mode': '"""same"""', 'activation': '"""elu"""', 'name': '"""Conv1"""'}), False, 'from keras.layers import Convolution2D, MaxPooling2D\n'), (70, 'keras.layers.Convolution2D', 'Convolution2D', (['(16)', '(5)', '(5)'], {'subsample': '(2, 2)', 'border_mode': '"""same"""', 'activation': '"""elu"""', 'name': '"""Conv2"""'}), False, 'from keras.layers import Convolution2D, MaxPooling2D\n'), (71, 'keras.layers.Convolution2D', 'Convolution2D', (['(32)', '(5)', '(5)'], {'subsample': '(2, 2)', 'border_mode': '"""same"""', 'activation': '"""elu"""', 'name': '"""Conv3"""'}), False, 'from keras.layers import Convolution2D, MaxPooling2D\n'), (72, 'keras.layers.Flatten', 'Flatten', ([], {}), False, 'from keras.layers import Activation, Dropout, Flatten, Dense, Lambda, ELU\n'), (73, 'keras.layers.ELU', 'ELU', ([], {}), False, 'from keras.layers import Activation, Dropout, Flatten, Dense, Lambda, ELU\n'), (74, 'keras.layers.Dense', 'Dense', (['(1024)'], {'activation': '"""elu"""'}), False, 'from keras.layers import Activation, Dropout, Flatten, Dense, Lambda, ELU\n'), (75, 'keras.layers.Dropout', 'Dropout', (['(0.5)'], {}), False, 'from keras.layers import Activation, Dropout, Flatten, Dense, Lambda, ELU\n'), (76, 'keras.layers.ELU', 'ELU', ([], {}), False, 'from keras.layers import Activation, Dropout, Flatten, Dense, Lambda, ELU\n'), (77, 'keras.layers.Dense', 'Dense', (['(512)'], {'activation': '"""elu"""'}), False, 'from keras.layers import Activation, Dropout, Flatten, Dense, Lambda, ELU\n'), (78, 'keras.layers.Dropout', 'Dropout', (['(0.5)'], {}), False, 'from keras.layers import Activation, Dropout, Flatten, Dense, Lambda, ELU\n'), (79, 'keras.layers.Dense', 'Dense', (['(1)'], {'name': '"""output"""'}), False, 'from keras.layers import Activation, Dropout, Flatten, Dense, Lambda, ELU\n'), (80, 'keras.layers.Activation', 'Activation', (['"""sigmoid"""'], {}), False, 'from keras.layers import Activation, Dropout, Flatten, Dense, Lambda, ELU\n'), (90, 'keras.layers.Convolution2D', 'Convolution2D', (['(8)', '(3)', '(3)'], {'input_shape': '(img_width, img_height, 3)'}), False, 'from keras.layers import Convolution2D, MaxPooling2D\n'), (91, 'keras.layers.Activation', 'Activation', (['"""elu"""'], {}), False, 'from keras.layers import Activation, Dropout, Flatten, Dense, Lambda, ELU\n'), (92, 'keras.layers.MaxPooling2D', 'MaxPooling2D', ([], {'pool_size': '(2, 2)'}), False, 'from keras.layers import Convolution2D, MaxPooling2D\n'), (102, 'keras.layers.Flatten', 'Flatten', ([], {}), False, 'from keras.layers import Activation, Dropout, Flatten, Dense, Lambda, ELU\n'), (103, 'keras.layers.Dense', 'Dense', (['(512)'], {}), False, 'from keras.layers import Activation, Dropout, Flatten, Dense, Lambda, ELU\n'), (104, 'keras.layers.Dropout', 'Dropout', (['(0.5)'], {}), False, 'from keras.layers import Activation, Dropout, Flatten, Dense, Lambda, ELU\n'), (105, 'keras.layers.Dense', 'Dense', (['(1)'], {'activation': '"""sigmoid"""'}), False, 'from keras.layers import Activation, Dropout, Flatten, Dense, Lambda, ELU\n'), (117, 'json.dump', 'json.dump', (['model_json', 'json_file'], {}), False, 'import json\n'), (129, 'glob.glob', 'glob.glob', (['"""training_data/vehicles/*/*"""'], {}), False, 'import glob\n'), (130, 'numpy.zeros', 'np.zeros', (['vehicles.shape'], {}), True, 'import numpy as np\n'), (131, 'glob.glob', 'glob.glob', (['"""training_data/non-vehicles/*/*"""'], {}), False, 'import glob\n'), (35, 'tensorflow.name_scope', 'tf.name_scope', (["('tower_%d' % i)"], {}), True, 'import tensorflow as tf\n'), (57, 'keras.layers.merge', 'merge', (['outputs'], {'mode': '"""concat"""', 'concat_axis': '(0)'}), False, 'from keras.layers import merge\n'), (123, 'json.load', 'json.load', (['jfile'], {}), False, 'import json\n'), (41, 'keras.layers.core.Lambda', 'Lambda', (['get_slice'], {'output_shape': 'input_shape', 'arguments': "{'idx': i, 'parts': gpu_count}"}), False, 'from keras.layers.core import Lambda\n')] |
LSanselme/kerod | cb52775ed501cbe4bd5fc0f22ec0359ca1d5f902 | # Copyright 2017 The TensorFlow Authors and modified by Emilien Garreau. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Method to subsample minibatches by balancing positives and negatives.
Subsamples minibatches based on a pre-specified positive fraction in range
[0,1]. The class presumes there are many more negatives than positive examples:
if the desired sample_size cannot be achieved with the pre-specified positive
fraction, it fills the rest with negative examples. If this is not sufficient
for obtaining the desired sample_size, it returns fewer examples.
The main function to call is Subsample(self, indicator, labels). For convenience
one can also call SubsampleWeights(self, weights, labels) which is defined in
the minibatch_sampler base class.
When is_static is True, it implements a method that guarantees static shapes.
It also ensures the length of output of the subsample is always sample_size, even
when number of examples set to True in indicator is less than sample_size.
"""
import tensorflow as tf
from kerod.utils import ops
def subsample_indicator(indicator, num_samples):
"""Subsample indicator vector.
Given a boolean indicator vector with M elements set to `True`, the function
assigns all but `num_samples` of these previously `True` elements to
`False`. If `num_samples` is greater than M, the original indicator vector
is returned.
Arguments:
- *indicator*: a 1-dimensional boolean tensor indicating which elements
are allowed to be sampled and which are not.
- *num_samples*: int32 scalar tensor
Returns:
A boolean tensor with the same shape as input (indicator) tensor
"""
indices = tf.where(indicator)
indices = tf.random.shuffle(indices)
indices = tf.reshape(indices, [-1])
num_samples = tf.minimum(tf.size(indices), num_samples)
selected_indices = tf.slice(indices, [0], tf.reshape(num_samples, [1]))
selected_indicator = ops.indices_to_dense_vector(selected_indices, tf.shape(indicator)[0])
return tf.equal(selected_indicator, 1)
def sample_balanced_positive_negative(indicator, sample_size, labels, positive_fraction=0.5):
"""Subsamples minibatches to a desired balance of positives and negatives.
Arguments:
- *indicator*: boolean tensor of shape [N] whose True entries can be sampled.
- *sample_size*: desired batch size. If None, keeps all positive samples and
randomly selects negative samples so that the positive sample fraction
matches positive_fraction.
- *labels*: boolean tensor of shape [N] denoting positive(=True) and negative
(=False) examples.
- *positive_fraction*: desired fraction of positive examples (scalar in [0,1])
in the batch.
Returns:
*sampled_idx_indicator*: boolean tensor of shape [N], True for entries which are sampled.
"""
negative_idx = tf.logical_not(labels)
positive_idx = tf.logical_and(labels, indicator)
negative_idx = tf.logical_and(negative_idx, indicator)
# Sample positive and negative samples separately
if sample_size is None:
max_num_pos = tf.reduce_sum(tf.cast(positive_idx, dtype=tf.int32))
else:
max_num_pos = int(positive_fraction * sample_size)
sampled_pos_idx = subsample_indicator(positive_idx, max_num_pos)
num_sampled_pos = tf.reduce_sum(tf.cast(sampled_pos_idx, tf.int32))
if sample_size is None:
negative_positive_ratio = (1 - positive_fraction) / positive_fraction
max_num_neg = tf.cast(negative_positive_ratio * tf.cast(num_sampled_pos, dtype=tf.float32),
dtype=tf.int32)
else:
max_num_neg = sample_size - num_sampled_pos
sampled_neg_idx = subsample_indicator(negative_idx, max_num_neg)
return tf.logical_or(sampled_pos_idx, sampled_neg_idx)
def batch_sample_balanced_positive_negative(indicators,
sample_size,
labels,
positive_fraction=0.5,
dtype=tf.float32):
"""Subsamples minibatches to a desired balance of positives and negatives.
Arguments:
- *indicator*: boolean tensor of shape [batch_size, N] whose True entries can be sampled.
- *sample_size*: desired batch size. If None, keeps all positive samples and
randomly selects negative samples so that the positive sample fraction
matches positive_fraction.
- *labels*: boolean tensor of shape [batch_size, N] denoting positive(=True) and negative
(=False) examples.
- *positive_fraction*: desired fraction of positive examples (scalar in [0,1])
in the batch.
Returns:
A boolean tensor of shape [M, N], True for entries which are sampled.
"""
def _minibatch_subsample_fn(inputs):
indicators, targets = inputs
return sample_balanced_positive_negative(tf.cast(indicators, tf.bool),
sample_size,
tf.cast(targets, tf.bool),
positive_fraction=positive_fraction)
return tf.cast(tf.map_fn(_minibatch_subsample_fn, [indicators, labels],
dtype=tf.bool,
parallel_iterations=16,
back_prop=True),
dtype=dtype)
| [
"tensorflow.shape",
"tensorflow.logical_or",
"tensorflow.reshape",
"tensorflow.equal",
"tensorflow.cast",
"tensorflow.random.shuffle",
"tensorflow.map_fn",
"tensorflow.where",
"tensorflow.logical_not",
"tensorflow.size",
"tensorflow.logical_and"
] | src/kerod/core/sampling_ops.py | [(55, 'tensorflow.where', 'tf.where', (['indicator'], {}), True, 'import tensorflow as tf\n'), (56, 'tensorflow.random.shuffle', 'tf.random.shuffle', (['indices'], {}), True, 'import tensorflow as tf\n'), (57, 'tensorflow.reshape', 'tf.reshape', (['indices', '[-1]'], {}), True, 'import tensorflow as tf\n'), (64, 'tensorflow.equal', 'tf.equal', (['selected_indicator', '(1)'], {}), True, 'import tensorflow as tf\n'), (86, 'tensorflow.logical_not', 'tf.logical_not', (['labels'], {}), True, 'import tensorflow as tf\n'), (87, 'tensorflow.logical_and', 'tf.logical_and', (['labels', 'indicator'], {}), True, 'import tensorflow as tf\n'), (88, 'tensorflow.logical_and', 'tf.logical_and', (['negative_idx', 'indicator'], {}), True, 'import tensorflow as tf\n'), (105, 'tensorflow.logical_or', 'tf.logical_or', (['sampled_pos_idx', 'sampled_neg_idx'], {}), True, 'import tensorflow as tf\n'), (59, 'tensorflow.size', 'tf.size', (['indices'], {}), True, 'import tensorflow as tf\n'), (60, 'tensorflow.reshape', 'tf.reshape', (['num_samples', '[1]'], {}), True, 'import tensorflow as tf\n'), (96, 'tensorflow.cast', 'tf.cast', (['sampled_pos_idx', 'tf.int32'], {}), True, 'import tensorflow as tf\n'), (138, 'tensorflow.map_fn', 'tf.map_fn', (['_minibatch_subsample_fn', '[indicators, labels]'], {'dtype': 'tf.bool', 'parallel_iterations': '(16)', 'back_prop': '(True)'}), True, 'import tensorflow as tf\n'), (62, 'tensorflow.shape', 'tf.shape', (['indicator'], {}), True, 'import tensorflow as tf\n'), (92, 'tensorflow.cast', 'tf.cast', (['positive_idx'], {'dtype': 'tf.int32'}), True, 'import tensorflow as tf\n'), (133, 'tensorflow.cast', 'tf.cast', (['indicators', 'tf.bool'], {}), True, 'import tensorflow as tf\n'), (135, 'tensorflow.cast', 'tf.cast', (['targets', 'tf.bool'], {}), True, 'import tensorflow as tf\n'), (99, 'tensorflow.cast', 'tf.cast', (['num_sampled_pos'], {'dtype': 'tf.float32'}), True, 'import tensorflow as tf\n')] |
luoyi1hao/ACRN_Chest_X-ray_IA | b2ecaf88e6b1bb59101fd2d611bf9d1e6716367a | from data import DataHandler
from models import ACRegNet
import tensorflow as tf
from utils import get_random_batch, read_config_file, create_dir
RUN_IN_GPU = False
def train_acregnet_model(config):
tf.reset_default_graph()
tf_config = tf.ConfigProto()
if RUN_IN_GPU:
tf_config.gpu_options.allow_growth = True
sess = tf.Session(config=tf_config)
train_ims, _ = DataHandler.load_images(config['train_ims_file'])
train_lbs, _ = DataHandler.load_labels(config['train_lbs_file'])
print('Loading training data...done')
acregnet = ACRegNet(sess, config, 'ACRegNet', is_train=True)
print('Building AC-RegNet model...done')
print('Training...')
for i in range(config['iterations']):
batch_ims_x, batch_ims_y, batch_lbs_x, batch_lbs_y = get_random_batch(
train_ims, config['batch_size'], train_lbs)
cur_loss = acregnet.fit(
batch_ims_x, batch_ims_y, batch_lbs_x, batch_lbs_y)
print('Iteration {:>8d}/{}: Loss: {}'.format(
i + 1, config['iterations'], cur_loss))
acregnet.save(config['ckpt_dir'])
print('Saving current AC-RegNet model...done')
print('Training...done')
tf.reset_default_graph()
sess.close()
if __name__ == "__main__":
config = read_config_file('./config/JSRT/ACRegNet.cfg')
create_dir(config['ckpt_dir'])
train_acregnet_model(config)
| [
"tensorflow.ConfigProto",
"tensorflow.reset_default_graph",
"tensorflow.Session"
] | acregnet/train_acregnet.py | [(11, 'tensorflow.reset_default_graph', 'tf.reset_default_graph', ([], {}), True, 'import tensorflow as tf\n'), (12, 'tensorflow.ConfigProto', 'tf.ConfigProto', ([], {}), True, 'import tensorflow as tf\n'), (17, 'tensorflow.Session', 'tf.Session', ([], {'config': 'tf_config'}), True, 'import tensorflow as tf\n'), (19, 'data.DataHandler.load_images', 'DataHandler.load_images', (["config['train_ims_file']"], {}), False, 'from data import DataHandler\n'), (20, 'data.DataHandler.load_labels', 'DataHandler.load_labels', (["config['train_lbs_file']"], {}), False, 'from data import DataHandler\n'), (23, 'models.ACRegNet', 'ACRegNet', (['sess', 'config', '"""ACRegNet"""'], {'is_train': '(True)'}), False, 'from models import ACRegNet\n'), (40, 'tensorflow.reset_default_graph', 'tf.reset_default_graph', ([], {}), True, 'import tensorflow as tf\n'), (45, 'utils.read_config_file', 'read_config_file', (['"""./config/JSRT/ACRegNet.cfg"""'], {}), False, 'from utils import get_random_batch, read_config_file, create_dir\n'), (46, 'utils.create_dir', 'create_dir', (["config['ckpt_dir']"], {}), False, 'from utils import get_random_batch, read_config_file, create_dir\n'), (28, 'utils.get_random_batch', 'get_random_batch', (['train_ims', "config['batch_size']", 'train_lbs'], {}), False, 'from utils import get_random_batch, read_config_file, create_dir\n')] |
AlexChrisF/udacity | b7f85a74058fc63ccb7601c418450ab934ef5953 | # Copyright 2016 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests for tf.contrib.layers.sparse_feature_cross."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy
from tensorflow.contrib import layers
from tensorflow.contrib.layers.python.ops import sparse_feature_cross_op
from tensorflow.python.client import session
from tensorflow.python.framework import constant_op
from tensorflow.python.framework import dtypes
from tensorflow.python.framework import sparse_tensor
from tensorflow.python.ops import sparse_ops
from tensorflow.python.platform import test
class SparseCrossOpTest(test.TestCase):
def test_simple(self):
"""Tests a simple scenario.
"""
op = sparse_feature_cross_op.sparse_feature_cross([
self._sparse_tensor([['batch1-FC1-F1'],
['batch2-FC1-F1', 'batch2-FC1-F2']]),
self._sparse_tensor([['batch1-FC2-F1'],
['batch2-FC2-F1', 'batch2-FC2-F2']])
])
expected_out = self._sparse_tensor([['batch1-FC1-F1_X_batch1-FC2-F1'], [
'batch2-FC1-F1_X_batch2-FC2-F1', 'batch2-FC1-F1_X_batch2-FC2-F2',
'batch2-FC1-F2_X_batch2-FC2-F1', 'batch2-FC1-F2_X_batch2-FC2-F2'
]])
with self.test_session() as sess:
self._assert_sparse_tensor_equals(expected_out, sess.run(op))
def test_dense(self):
"""Tests only dense inputs.
"""
op = sparse_feature_cross_op.sparse_feature_cross([
constant_op.constant([['batch1-FC1-F1', 'batch1-FC1-F2'],
['batch2-FC1-F1', 'batch2-FC1-F2']],
dtypes.string),
constant_op.constant([['batch1-FC2-F1', 'batch1-FC2-F2'],
['batch2-FC2-F1', 'batch2-FC2-F2']],
dtypes.string),
])
expected_out = self._sparse_tensor([[
'batch1-FC1-F1_X_batch1-FC2-F1', 'batch1-FC1-F1_X_batch1-FC2-F2',
'batch1-FC1-F2_X_batch1-FC2-F1', 'batch1-FC1-F2_X_batch1-FC2-F2'
], [
'batch2-FC1-F1_X_batch2-FC2-F1', 'batch2-FC1-F1_X_batch2-FC2-F2',
'batch2-FC1-F2_X_batch2-FC2-F1', 'batch2-FC1-F2_X_batch2-FC2-F2'
]])
with self.test_session() as sess:
self._assert_sparse_tensor_equals(expected_out, sess.run(op))
def test_integer_mixed_string_sparse(self):
"""Tests mixed type."""
op = sparse_feature_cross_op.sparse_feature_cross([
self._sparse_tensor([[11], [333, 55555]]),
self._sparse_tensor([['batch1-FC2-F1'],
['batch2-FC2-F1', 'batch2-FC2-F2']])
])
expected_out = self._sparse_tensor([['11_X_batch1-FC2-F1'], [
'333_X_batch2-FC2-F1', '333_X_batch2-FC2-F2', '55555_X_batch2-FC2-F1',
'55555_X_batch2-FC2-F2'
]])
with self.test_session() as sess:
self._assert_sparse_tensor_equals(expected_out, sess.run(op))
def test_integer_mixed_string_dense(self):
"""Tests mixed dense inputs.
"""
op = sparse_feature_cross_op.sparse_feature_cross([
constant_op.constant([[11, 333], [55555, 999999]], dtypes.int64),
constant_op.constant([['batch1-FC2-F1', 'batch1-FC2-F2'],
['batch2-FC2-F1', 'batch2-FC2-F2']],
dtypes.string),
])
expected_out = self._sparse_tensor([[
'11_X_batch1-FC2-F1', '11_X_batch1-FC2-F2', '333_X_batch1-FC2-F1',
'333_X_batch1-FC2-F2'
], [
'55555_X_batch2-FC2-F1', '55555_X_batch2-FC2-F2',
'999999_X_batch2-FC2-F1', '999999_X_batch2-FC2-F2'
]])
with self.test_session() as sess:
self._assert_sparse_tensor_equals(expected_out, sess.run(op))
def test_sparse_cross_dense(self):
"""Tests sparse and dense inputs.
"""
op = sparse_feature_cross_op.sparse_feature_cross([
self._sparse_tensor([['batch1-FC1-F1'],
['batch2-FC1-F1', 'batch2-FC1-F2']]),
constant_op.constant([['batch1-FC2-F1', 'batch1-FC2-F2'],
['batch2-FC2-F1', 'batch2-FC2-F2']],
dtypes.string),
])
expected_out = self._sparse_tensor(
[['batch1-FC1-F1_X_batch1-FC2-F1', 'batch1-FC1-F1_X_batch1-FC2-F2'], [
'batch2-FC1-F1_X_batch2-FC2-F1', 'batch2-FC1-F1_X_batch2-FC2-F2',
'batch2-FC1-F2_X_batch2-FC2-F1', 'batch2-FC1-F2_X_batch2-FC2-F2'
]])
with self.test_session() as sess:
self._assert_sparse_tensor_equals(expected_out, sess.run(op))
def test_integer_sparse_input(self):
"""Tests mixed type sparse and dense inputs."""
op = sparse_feature_cross_op.sparse_feature_cross([
self._sparse_tensor([[11], [333, 5555]]),
constant_op.constant([['batch1-FC2-F1', 'batch1-FC2-F2'],
['batch2-FC2-F1', 'batch2-FC2-F2']],
dtypes.string),
])
expected_out = self._sparse_tensor(
[['11_X_batch1-FC2-F1', '11_X_batch1-FC2-F2'], [
'333_X_batch2-FC2-F1', '333_X_batch2-FC2-F2',
'5555_X_batch2-FC2-F1', '5555_X_batch2-FC2-F2'
]])
with self.test_session() as sess:
self._assert_sparse_tensor_equals(expected_out, sess.run(op))
def test_permutation_3x3x3(self):
"""Tests 3x3x3 permutation.
"""
op = sparse_feature_cross_op.sparse_feature_cross([
self._sparse_tensor(
[['batch1-FC1-F1', 'batch1-FC1-F2', 'batch1-FC1-F3']]),
self._sparse_tensor(
[['batch1-FC2-F1', 'batch1-FC2-F2', 'batch1-FC2-F3']]),
self._sparse_tensor(
[['batch1-FC3-F1', 'batch1-FC3-F2', 'batch1-FC3-F3']])
])
expected_out = self._sparse_tensor([[
'batch1-FC1-F1_X_batch1-FC2-F1_X_batch1-FC3-F1',
'batch1-FC1-F1_X_batch1-FC2-F1_X_batch1-FC3-F2',
'batch1-FC1-F1_X_batch1-FC2-F1_X_batch1-FC3-F3',
'batch1-FC1-F1_X_batch1-FC2-F2_X_batch1-FC3-F1',
'batch1-FC1-F1_X_batch1-FC2-F2_X_batch1-FC3-F2',
'batch1-FC1-F1_X_batch1-FC2-F2_X_batch1-FC3-F3',
'batch1-FC1-F1_X_batch1-FC2-F3_X_batch1-FC3-F1',
'batch1-FC1-F1_X_batch1-FC2-F3_X_batch1-FC3-F2',
'batch1-FC1-F1_X_batch1-FC2-F3_X_batch1-FC3-F3',
'batch1-FC1-F2_X_batch1-FC2-F1_X_batch1-FC3-F1',
'batch1-FC1-F2_X_batch1-FC2-F1_X_batch1-FC3-F2',
'batch1-FC1-F2_X_batch1-FC2-F1_X_batch1-FC3-F3',
'batch1-FC1-F2_X_batch1-FC2-F2_X_batch1-FC3-F1',
'batch1-FC1-F2_X_batch1-FC2-F2_X_batch1-FC3-F2',
'batch1-FC1-F2_X_batch1-FC2-F2_X_batch1-FC3-F3',
'batch1-FC1-F2_X_batch1-FC2-F3_X_batch1-FC3-F1',
'batch1-FC1-F2_X_batch1-FC2-F3_X_batch1-FC3-F2',
'batch1-FC1-F2_X_batch1-FC2-F3_X_batch1-FC3-F3',
'batch1-FC1-F3_X_batch1-FC2-F1_X_batch1-FC3-F1',
'batch1-FC1-F3_X_batch1-FC2-F1_X_batch1-FC3-F2',
'batch1-FC1-F3_X_batch1-FC2-F1_X_batch1-FC3-F3',
'batch1-FC1-F3_X_batch1-FC2-F2_X_batch1-FC3-F1',
'batch1-FC1-F3_X_batch1-FC2-F2_X_batch1-FC3-F2',
'batch1-FC1-F3_X_batch1-FC2-F2_X_batch1-FC3-F3',
'batch1-FC1-F3_X_batch1-FC2-F3_X_batch1-FC3-F1',
'batch1-FC1-F3_X_batch1-FC2-F3_X_batch1-FC3-F2',
'batch1-FC1-F3_X_batch1-FC2-F3_X_batch1-FC3-F3'
]])
with self.test_session() as sess:
self._assert_sparse_tensor_equals(expected_out, sess.run(op))
def test_permutation_3x1x2(self):
"""Tests 3x1x2 permutation.
"""
op = sparse_feature_cross_op.sparse_feature_cross([
self._sparse_tensor(
[['batch1-FC1-F1', 'batch1-FC1-F2', 'batch1-FC1-F3']]),
self._sparse_tensor([['batch1-FC2-F1']]),
self._sparse_tensor([['batch1-FC3-F1', 'batch1-FC3-F2']])
])
expected_out = self._sparse_tensor([[
'batch1-FC1-F1_X_batch1-FC2-F1_X_batch1-FC3-F1',
'batch1-FC1-F1_X_batch1-FC2-F1_X_batch1-FC3-F2',
'batch1-FC1-F2_X_batch1-FC2-F1_X_batch1-FC3-F1',
'batch1-FC1-F2_X_batch1-FC2-F1_X_batch1-FC3-F2',
'batch1-FC1-F3_X_batch1-FC2-F1_X_batch1-FC3-F1',
'batch1-FC1-F3_X_batch1-FC2-F1_X_batch1-FC3-F2'
]])
with self.test_session() as sess:
self._assert_sparse_tensor_equals(expected_out, sess.run(op))
def test_large_batch(self):
"""Tests with large batch size to force multithreding.
"""
batch_size = 5000
col1 = []
col2 = []
col3 = []
for b in range(batch_size):
col1.append(
['batch%d-FC1-F1' % b, 'batch%d-FC1-F2' % b, 'batch%d-FC1-F3' % b])
col2.append(['batch%d-FC2-F1' % b])
col3.append(['batch%d-FC3-F1' % b, 'batch%d-FC3-F2' % b])
op = sparse_feature_cross_op.sparse_feature_cross([
self._sparse_tensor(col1), self._sparse_tensor(col2),
self._sparse_tensor(col3)
])
col_out = []
for b in range(batch_size):
col_out.append([
'batch%d-FC1-F1_X_batch%d-FC2-F1_X_batch%d-FC3-F1' % (b, b, b),
'batch%d-FC1-F1_X_batch%d-FC2-F1_X_batch%d-FC3-F2' % (b, b, b),
'batch%d-FC1-F2_X_batch%d-FC2-F1_X_batch%d-FC3-F1' % (b, b, b),
'batch%d-FC1-F2_X_batch%d-FC2-F1_X_batch%d-FC3-F2' % (b, b, b),
'batch%d-FC1-F3_X_batch%d-FC2-F1_X_batch%d-FC3-F1' % (b, b, b),
'batch%d-FC1-F3_X_batch%d-FC2-F1_X_batch%d-FC3-F2' % (b, b, b)
])
expected_out = self._sparse_tensor(col_out)
with self.test_session() as sess:
self._assert_sparse_tensor_equals(expected_out, sess.run(op))
def test_one_column_empty(self):
"""Tests when one column is empty.
The crossed tensor should be empty.
"""
op = sparse_feature_cross_op.sparse_feature_cross([
self._sparse_tensor([['batch1-FC1-F1', 'batch1-FC1-F2']]),
self._sparse_tensor([], 1),
self._sparse_tensor([['batch1-FC3-F1', 'batch1-FC3-F2']])
])
with self.test_session() as sess:
self._assert_sparse_tensor_empty(sess.run(op))
def test_some_columns_empty(self):
"""Tests when more than one columns are empty.
Cross for the corresponding batch should be empty.
"""
op = sparse_feature_cross_op.sparse_feature_cross([
self._sparse_tensor([['batch1-FC1-F1', 'batch1-FC1-F2']], 2),
self._sparse_tensor([['batch1-FC2-F1'], ['batch2-FC2-F1']], 2),
self._sparse_tensor([['batch1-FC3-F1', 'batch1-FC3-F2']], 2)
])
expected_out = self._sparse_tensor([[
'batch1-FC1-F1_X_batch1-FC2-F1_X_batch1-FC3-F1',
'batch1-FC1-F1_X_batch1-FC2-F1_X_batch1-FC3-F2',
'batch1-FC1-F2_X_batch1-FC2-F1_X_batch1-FC3-F1',
'batch1-FC1-F2_X_batch1-FC2-F1_X_batch1-FC3-F2'
]], 2)
with self.test_session() as sess:
self._assert_sparse_tensor_equals(expected_out, sess.run(op))
def test_all_columns_empty(self):
"""Tests when all columns are empty.
The crossed tensor should be empty.
"""
op = sparse_feature_cross_op.sparse_feature_cross([
self._sparse_tensor([]), self._sparse_tensor([]),
self._sparse_tensor([])
])
with self.test_session() as sess:
self._assert_sparse_tensor_empty(sess.run(op))
def test_hashed_output_zero_bucket(self):
"""Tests a simple scenario.
"""
op = sparse_feature_cross_op.sparse_feature_cross(
[
self._sparse_tensor([['batch1-FC1-F1']]),
self._sparse_tensor([['batch1-FC2-F1']]),
self._sparse_tensor([['batch1-FC3-F1']])
],
hashed_output=True)
# Check actual hashed output to prevent unintentional hashing changes.
expected_out = self._sparse_tensor([[3735511728867393167]])
with self.test_session() as sess:
self._assert_sparse_tensor_equals(expected_out, sess.run(op))
def test_hashed_output_zero_bucket_v2(self):
"""Tests a simple scenario.
"""
op = sparse_feature_cross_op.sparse_feature_cross(
[
self._sparse_tensor([['batch1-FC1-F1']]),
self._sparse_tensor([['batch1-FC2-F1']]),
self._sparse_tensor([['batch1-FC3-F1']])
],
hashed_output=True,
hash_key=layers.SPARSE_FEATURE_CROSS_DEFAULT_HASH_KEY)
# Check actual hashed output to prevent unintentional hashing changes.
expected_out = self._sparse_tensor([[1971693436396284976]])
with self.test_session() as sess:
self._assert_sparse_tensor_equals(expected_out, sess.run(op))
# TODO(sibyl-Aix6ihai): Add benchmark to compare Hashed vs Non-hashed.
def test_hashed_output(self):
"""Tests a simple scenario.
"""
op = sparse_feature_cross_op.sparse_feature_cross(
[
self._sparse_tensor([['batch1-FC1-F1']]),
self._sparse_tensor([['batch1-FC2-F1']]),
self._sparse_tensor([['batch1-FC3-F1']])
],
hashed_output=True,
num_buckets=100)
# Check actual hashed output to prevent unintentional hashing changes.
expected_out = self._sparse_tensor([[74]])
with self.test_session() as sess:
self._assert_sparse_tensor_equals(expected_out, sess.run(op))
def test_hashed_output_v2(self):
"""Tests a simple scenario.
"""
op = sparse_feature_cross_op.sparse_feature_cross(
[
self._sparse_tensor([['batch1-FC1-F1']]),
self._sparse_tensor([['batch1-FC2-F1']]),
self._sparse_tensor([['batch1-FC3-F1']])
],
hashed_output=True,
num_buckets=100,
hash_key=layers.SPARSE_FEATURE_CROSS_DEFAULT_HASH_KEY)
# Check actual hashed output to prevent unintentional hashing changes.
expected_out = self._sparse_tensor([[83]])
with self.test_session() as sess:
self._assert_sparse_tensor_equals(expected_out, sess.run(op))
def test_hashed_output_v1_has_collision(self):
"""Tests the old version of the fingerprint concatenation has collisions.
"""
# The last 10 bits of 359 and 1024+359 are identical.
# As a result, all the crosses collide.
t1 = constant_op.constant([[359], [359 + 1024]])
t2 = constant_op.constant([list(range(10)), list(range(10))])
cross = sparse_feature_cross_op.sparse_feature_cross(
[t2, t1], hashed_output=True, num_buckets=1024)
cross_dense = sparse_ops.sparse_tensor_to_dense(cross)
with session.Session():
values = cross_dense.eval()
self.assertTrue(numpy.equal(values[0], values[1]).all())
def test_hashed_output_v2_has_no_collision(self):
"""Tests the new version of the fingerprint concatenation has no collisions.
"""
# Although the last 10 bits of 359 and 1024+359 are identical.
# As a result, all the crosses shouldn't collide.
t1 = constant_op.constant([[359], [359 + 1024]])
t2 = constant_op.constant([list(range(10)), list(range(10))])
cross = sparse_feature_cross_op.sparse_feature_cross(
[t2, t1],
hashed_output=True,
num_buckets=1024,
hash_key=layers.SPARSE_FEATURE_CROSS_DEFAULT_HASH_KEY)
cross_dense = sparse_ops.sparse_tensor_to_dense(cross)
with session.Session():
values = cross_dense.eval()
self.assertTrue(numpy.not_equal(values[0], values[1]).all())
def test_hashed_3x1x2(self):
"""Tests 3x1x2 permutation with hashed output.
"""
op = sparse_feature_cross_op.sparse_feature_cross(
[
self._sparse_tensor(
[['batch1-FC1-F1', 'batch1-FC1-F2', 'batch1-FC1-F3']]),
self._sparse_tensor([['batch1-FC2-F1']]),
self._sparse_tensor([['batch1-FC3-F1', 'batch1-FC3-F2']])
],
hashed_output=True,
num_buckets=1000)
with self.test_session() as sess:
out = sess.run(op)
self.assertEqual(6, len(out.values))
self.assertAllEqual([[0, i] for i in range(6)], out.indices)
self.assertTrue(all(x < 1000 and x >= 0 for x in out.values))
all_values_are_different = len(out.values) == len(set(out.values))
self.assertTrue(all_values_are_different)
def _assert_sparse_tensor_empty(self, sp):
self.assertEquals(0, sp.indices.size)
self.assertEquals(0, sp.values.size)
# TODO(zakaria): check if we can ignore the first dim of the shape.
self.assertEquals(0, sp.dense_shape[1])
def _assert_sparse_tensor_equals(self, sp1, sp2):
self.assertAllEqual(sp1.indices.eval(), sp2.indices)
self.assertAllEqual(sp1.values.eval(), sp2.values)
self.assertAllEqual(sp1.dense_shape.eval(), sp2.dense_shape)
def _sparse_tensor(self, data, batch_size=-1):
"""Generates a SparseTensor.
Args:
data: Should be a list of list of strings or int64. Each item of the outer
list represents a batch. Each item of the batch is a feature of a
specific feature column.
batch_size: optional batch size, especially for cases when data has no
entry for some batches.
Returns:
A SparseTensor.
"""
indices = []
values = []
max_col_count = 0
for batch, batch_ix in zip(data, range(len(data))):
for column, column_ix in zip(batch, range(len(batch))):
indices.append([batch_ix, column_ix])
values.append(column)
max_col_count = max(max_col_count, column_ix + 1)
shape = [batch_size if batch_size != -1 else len(data), max_col_count]
value_type = (dtypes.string if not values or isinstance(values[0], str) else
dtypes.int64)
return sparse_tensor.SparseTensor(
constant_op.constant(indices, dtypes.int64, [len(indices), 2]),
constant_op.constant(values, value_type, [len(indices)]),
constant_op.constant(shape, dtypes.int64))
if __name__ == '__main__':
test.main()
| [
"tensorflow.contrib.layers.python.ops.sparse_feature_cross_op.sparse_feature_cross",
"tensorflow.python.ops.sparse_ops.sparse_tensor_to_dense",
"tensorflow.python.platform.test.main",
"tensorflow.python.client.session.Session",
"numpy.equal",
"numpy.not_equal",
"tensorflow.python.framework.constant_op.constant"
] | tensorflow/contrib/layers/python/kernel_tests/sparse_feature_cross_op_test.py | [(437, 'tensorflow.python.platform.test.main', 'test.main', ([], {}), False, 'from tensorflow.python.platform import test\n'), (349, 'tensorflow.python.framework.constant_op.constant', 'constant_op.constant', (['[[359], [359 + 1024]]'], {}), False, 'from tensorflow.python.framework import constant_op\n'), (351, 'tensorflow.contrib.layers.python.ops.sparse_feature_cross_op.sparse_feature_cross', 'sparse_feature_cross_op.sparse_feature_cross', (['[t2, t1]'], {'hashed_output': '(True)', 'num_buckets': '(1024)'}), False, 'from tensorflow.contrib.layers.python.ops import sparse_feature_cross_op\n'), (353, 'tensorflow.python.ops.sparse_ops.sparse_tensor_to_dense', 'sparse_ops.sparse_tensor_to_dense', (['cross'], {}), False, 'from tensorflow.python.ops import sparse_ops\n'), (363, 'tensorflow.python.framework.constant_op.constant', 'constant_op.constant', (['[[359], [359 + 1024]]'], {}), False, 'from tensorflow.python.framework import constant_op\n'), (365, 'tensorflow.contrib.layers.python.ops.sparse_feature_cross_op.sparse_feature_cross', 'sparse_feature_cross_op.sparse_feature_cross', (['[t2, t1]'], {'hashed_output': '(True)', 'num_buckets': '(1024)', 'hash_key': 'layers.SPARSE_FEATURE_CROSS_DEFAULT_HASH_KEY'}), False, 'from tensorflow.contrib.layers.python.ops import sparse_feature_cross_op\n'), (370, 'tensorflow.python.ops.sparse_ops.sparse_tensor_to_dense', 'sparse_ops.sparse_tensor_to_dense', (['cross'], {}), False, 'from tensorflow.python.ops import sparse_ops\n'), (354, 'tensorflow.python.client.session.Session', 'session.Session', ([], {}), False, 'from tensorflow.python.client import session\n'), (371, 'tensorflow.python.client.session.Session', 'session.Session', ([], {}), False, 'from tensorflow.python.client import session\n'), (433, 'tensorflow.python.framework.constant_op.constant', 'constant_op.constant', (['shape', 'dtypes.int64'], {}), False, 'from tensorflow.python.framework import constant_op\n'), (55, 'tensorflow.python.framework.constant_op.constant', 'constant_op.constant', (["[['batch1-FC1-F1', 'batch1-FC1-F2'], ['batch2-FC1-F1', 'batch2-FC1-F2']]", 'dtypes.string'], {}), False, 'from tensorflow.python.framework import constant_op\n'), (58, 'tensorflow.python.framework.constant_op.constant', 'constant_op.constant', (["[['batch1-FC2-F1', 'batch1-FC2-F2'], ['batch2-FC2-F1', 'batch2-FC2-F2']]", 'dtypes.string'], {}), False, 'from tensorflow.python.framework import constant_op\n'), (90, 'tensorflow.python.framework.constant_op.constant', 'constant_op.constant', (['[[11, 333], [55555, 999999]]', 'dtypes.int64'], {}), False, 'from tensorflow.python.framework import constant_op\n'), (91, 'tensorflow.python.framework.constant_op.constant', 'constant_op.constant', (["[['batch1-FC2-F1', 'batch1-FC2-F2'], ['batch2-FC2-F1', 'batch2-FC2-F2']]", 'dtypes.string'], {}), False, 'from tensorflow.python.framework import constant_op\n'), (111, 'tensorflow.python.framework.constant_op.constant', 'constant_op.constant', (["[['batch1-FC2-F1', 'batch1-FC2-F2'], ['batch2-FC2-F1', 'batch2-FC2-F2']]", 'dtypes.string'], {}), False, 'from tensorflow.python.framework import constant_op\n'), (127, 'tensorflow.python.framework.constant_op.constant', 'constant_op.constant', (["[['batch1-FC2-F1', 'batch1-FC2-F2'], ['batch2-FC2-F1', 'batch2-FC2-F2']]", 'dtypes.string'], {}), False, 'from tensorflow.python.framework import constant_op\n'), (356, 'numpy.equal', 'numpy.equal', (['values[0]', 'values[1]'], {}), False, 'import numpy\n'), (373, 'numpy.not_equal', 'numpy.not_equal', (['values[0]', 'values[1]'], {}), False, 'import numpy\n')] |
AlexChrisF/udacity | b7f85a74058fc63ccb7601c418450ab934ef5953 | # Copyright 2016 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Neural network components for hybrid models."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from tensorflow.contrib import layers
from tensorflow.contrib.tensor_forest.hybrid.python import hybrid_layer
from tensorflow.python.framework import ops
from tensorflow.python.ops import array_ops
class FullyConnectedLayer(hybrid_layer.HybridLayer):
"""A stacked, fully-connected feed-forward neural network layer."""
def _define_vars(self, params):
pass
def inference_graph(self, data):
with ops.device(self.device_assigner):
# Compute activations for the neural network.
nn_activations = layers.fully_connected(data, self.params.layer_size)
for _ in range(1, self.params.num_layers):
# pylint: disable=W0106
nn_activations = layers.fully_connected(nn_activations,
self.params.layer_size)
return nn_activations
class ManyToOneLayer(hybrid_layer.HybridLayer):
def _define_vars(self, params):
pass
def inference_graph(self, data):
with ops.device(self.device_assigner):
# Compute activations for the neural network.
nn_activations = layers.fully_connected(data, 1)
# There is always one activation per instance by definition, so squeeze
# away the extra dimension.
return array_ops.squeeze(nn_activations, squeeze_dims=[1])
class FlattenedFullyConnectedLayer(hybrid_layer.HybridLayer):
"""A stacked, fully-connected flattened feed-forward neural network layer."""
def _define_vars(self, params):
pass
def inference_graph(self, data):
with ops.device(self.device_assigner):
# Compute activations for the neural network.
nn_activations = [layers.fully_connected(data, self.params.layer_size)]
for _ in range(1, self.params.num_layers):
# pylint: disable=W0106
nn_activations.append(
layers.fully_connected(
nn_activations[-1],
self.params.layer_size))
nn_activations_tensor = array_ops.concat(
nn_activations, 1, name="flattened_nn_activations")
return nn_activations_tensor
| [
"tensorflow.python.ops.array_ops.concat",
"tensorflow.python.ops.array_ops.squeeze",
"tensorflow.contrib.layers.fully_connected",
"tensorflow.python.framework.ops.device"
] | tensorflow/contrib/tensor_forest/hybrid/python/layers/fully_connected.py | [(35, 'tensorflow.python.framework.ops.device', 'ops.device', (['self.device_assigner'], {}), False, 'from tensorflow.python.framework import ops\n'), (37, 'tensorflow.contrib.layers.fully_connected', 'layers.fully_connected', (['data', 'self.params.layer_size'], {}), False, 'from tensorflow.contrib import layers\n'), (52, 'tensorflow.python.framework.ops.device', 'ops.device', (['self.device_assigner'], {}), False, 'from tensorflow.python.framework import ops\n'), (54, 'tensorflow.contrib.layers.fully_connected', 'layers.fully_connected', (['data', '(1)'], {}), False, 'from tensorflow.contrib import layers\n'), (58, 'tensorflow.python.ops.array_ops.squeeze', 'array_ops.squeeze', (['nn_activations'], {'squeeze_dims': '[1]'}), False, 'from tensorflow.python.ops import array_ops\n'), (68, 'tensorflow.python.framework.ops.device', 'ops.device', (['self.device_assigner'], {}), False, 'from tensorflow.python.framework import ops\n'), (79, 'tensorflow.python.ops.array_ops.concat', 'array_ops.concat', (['nn_activations', '(1)'], {'name': '"""flattened_nn_activations"""'}), False, 'from tensorflow.python.ops import array_ops\n'), (41, 'tensorflow.contrib.layers.fully_connected', 'layers.fully_connected', (['nn_activations', 'self.params.layer_size'], {}), False, 'from tensorflow.contrib import layers\n'), (70, 'tensorflow.contrib.layers.fully_connected', 'layers.fully_connected', (['data', 'self.params.layer_size'], {}), False, 'from tensorflow.contrib import layers\n'), (75, 'tensorflow.contrib.layers.fully_connected', 'layers.fully_connected', (['nn_activations[-1]', 'self.params.layer_size'], {}), False, 'from tensorflow.contrib import layers\n')] |
calebchoo/modulabs | 314d9cd9b607460f8bfea80fc828b1521ca18443 | # Copyright 2016 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Functions for downloading and reading MNIST data."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import gzip
import numpy
from six.moves import xrange # pylint: disable=redefined-builtin
from tensorflow.contrib.learn.python.learn.datasets import base
from tensorflow.python.framework import dtypes
from tensorflow.python.platform import gfile
SOURCE_URL = 'http://yann.lecun.com/exdb/mnist/'
def _read32(bytestream):
dt = numpy.dtype(numpy.uint32).newbyteorder('>')
return numpy.frombuffer(bytestream.read(4), dtype=dt)[0]
def extract_images(filename):
"""Extract the images into a 4D uint8 numpy array [index, y, x, depth]."""
print('Extracting', filename)
with gfile.Open(filename, 'rb') as f, gzip.GzipFile(fileobj=f) as bytestream:
magic = _read32(bytestream)
if magic != 2051:
raise ValueError('Invalid magic number %d in MNIST image file: %s' %
(magic, filename))
num_images = _read32(bytestream)
rows = _read32(bytestream)
cols = _read32(bytestream)
buf = bytestream.read(rows * cols * num_images)
data = numpy.frombuffer(buf, dtype=numpy.uint8)
data = data.reshape(num_images, rows, cols, 1)
return data
def dense_to_one_hot(labels_dense, num_classes):
"""Convert class labels from scalars to one-hot vectors."""
num_labels = labels_dense.shape[0]
index_offset = numpy.arange(num_labels) * num_classes
labels_one_hot = numpy.zeros((num_labels, num_classes))
labels_one_hot.flat[index_offset + labels_dense.ravel()] = 1
return labels_one_hot
def extract_labels(filename, one_hot=False, num_classes=10):
"""Extract the labels into a 1D uint8 numpy array [index]."""
print('Extracting', filename)
with gfile.Open(filename, 'rb') as f, gzip.GzipFile(fileobj=f) as bytestream:
magic = _read32(bytestream)
if magic != 2049:
raise ValueError('Invalid magic number %d in MNIST label file: %s' %
(magic, filename))
num_items = _read32(bytestream)
buf = bytestream.read(num_items)
labels = numpy.frombuffer(buf, dtype=numpy.uint8)
if one_hot:
return dense_to_one_hot(labels, num_classes)
return labels
class DataSet(object):
def __init__(self,
images,
labels,
fake_data=False,
one_hot=False,
dtype=dtypes.float32,
reshape=True):
"""Construct a DataSet.
one_hot arg is used only if fake_data is true. `dtype` can be either
`uint8` to leave the input as `[0, 255]`, or `float32` to rescale into
`[0, 1]`.
"""
dtype = dtypes.as_dtype(dtype).base_dtype
if dtype not in (dtypes.uint8, dtypes.float32):
raise TypeError('Invalid image dtype %r, expected uint8 or float32' %
dtype)
if fake_data:
self._num_examples = 10000
self.one_hot = one_hot
else:
assert images.shape[0] == labels.shape[0], (
'images.shape: %s labels.shape: %s' % (images.shape, labels.shape))
self._num_examples = images.shape[0]
# Convert shape from [num examples, rows, columns, depth]
# to [num examples, rows*columns] (assuming depth == 1)
if reshape:
assert images.shape[3] == 1
images = images.reshape(images.shape[0],
images.shape[1] * images.shape[2])
if dtype == dtypes.float32:
# Convert from [0, 255] -> [0.0, 1.0].
images = images.astype(numpy.float32)
images = numpy.multiply(images, 1.0 / 255.0)
self._images = images
self._labels = labels
self._epochs_completed = 0
self._index_in_epoch = 0
@property
def images(self):
return self._images
@property
def labels(self):
return self._labels
@property
def num_examples(self):
return self._num_examples
@property
def epochs_completed(self):
return self._epochs_completed
def next_batch(self, batch_size, fake_data=False):
"""Return the next `batch_size` examples from this data set."""
if fake_data:
fake_image = [1] * 784
if self.one_hot:
fake_label = [1] + [0] * 9
else:
fake_label = 0
return [fake_image for _ in xrange(batch_size)], [
fake_label for _ in xrange(batch_size)
]
start = self._index_in_epoch
self._index_in_epoch += batch_size
if self._index_in_epoch > self._num_examples:
# Finished epoch
self._epochs_completed += 1
# Shuffle the data
perm = numpy.arange(self._num_examples)
numpy.random.shuffle(perm)
self._images = self._images[perm]
self._labels = self._labels[perm]
# Start next epoch
start = 0
self._index_in_epoch = batch_size
assert batch_size <= self._num_examples
end = self._index_in_epoch
return self._images[start:end], self._labels[start:end]
def read_data_sets(train_dir,
fake_data=False,
one_hot=False,
dtype=dtypes.float32,
reshape=True):
if fake_data:
def fake():
return DataSet([], [], fake_data=True, one_hot=one_hot, dtype=dtype)
train = fake()
validation = fake()
test = fake()
return base.Datasets(train=train, validation=validation, test=test)
TRAIN_IMAGES = 'train-images-idx3-ubyte.gz'
TRAIN_LABELS = 'train-labels-idx1-ubyte.gz'
TEST_IMAGES = 't10k-images-idx3-ubyte.gz'
TEST_LABELS = 't10k-labels-idx1-ubyte.gz'
VALIDATION_SIZE = 5000
local_file = base.maybe_download(TRAIN_IMAGES, train_dir,
SOURCE_URL + TRAIN_IMAGES)
train_images = extract_images(local_file)
local_file = base.maybe_download(TRAIN_LABELS, train_dir,
SOURCE_URL + TRAIN_LABELS)
train_labels = extract_labels(local_file, one_hot=one_hot)
local_file = base.maybe_download(TEST_IMAGES, train_dir,
SOURCE_URL + TEST_IMAGES)
test_images = extract_images(local_file)
local_file = base.maybe_download(TEST_LABELS, train_dir,
SOURCE_URL + TEST_LABELS)
test_labels = extract_labels(local_file, one_hot=one_hot)
validation_images = train_images[:VALIDATION_SIZE]
validation_labels = train_labels[:VALIDATION_SIZE]
train_images = train_images[VALIDATION_SIZE:]
train_labels = train_labels[VALIDATION_SIZE:]
train = DataSet(train_images, train_labels, dtype=dtype, reshape=reshape)
validation = DataSet(validation_images,
validation_labels,
dtype=dtype,
reshape=reshape)
test = DataSet(test_images, test_labels, dtype=dtype, reshape=reshape)
return base.Datasets(train=train, validation=validation, test=test)
def load_mnist():
return read_data_sets('MNIST_data')
| [
"numpy.multiply",
"numpy.arange",
"tensorflow.contrib.learn.python.learn.datasets.base.Datasets",
"numpy.dtype",
"numpy.random.shuffle",
"numpy.frombuffer",
"tensorflow.python.framework.dtypes.as_dtype",
"numpy.zeros",
"tensorflow.python.platform.gfile.Open",
"tensorflow.contrib.learn.python.learn.datasets.base.maybe_download"
] | tensorflow/contrib/learn/python/learn/datasets/mnist.py | [(60, 'numpy.zeros', 'numpy.zeros', (['(num_labels, num_classes)'], {}), False, 'import numpy\n'), (188, 'tensorflow.contrib.learn.python.learn.datasets.base.maybe_download', 'base.maybe_download', (['TRAIN_IMAGES', 'train_dir', '(SOURCE_URL + TRAIN_IMAGES)'], {}), False, 'from tensorflow.contrib.learn.python.learn.datasets import base\n'), (192, 'tensorflow.contrib.learn.python.learn.datasets.base.maybe_download', 'base.maybe_download', (['TRAIN_LABELS', 'train_dir', '(SOURCE_URL + TRAIN_LABELS)'], {}), False, 'from tensorflow.contrib.learn.python.learn.datasets import base\n'), (196, 'tensorflow.contrib.learn.python.learn.datasets.base.maybe_download', 'base.maybe_download', (['TEST_IMAGES', 'train_dir', '(SOURCE_URL + TEST_IMAGES)'], {}), False, 'from tensorflow.contrib.learn.python.learn.datasets import base\n'), (200, 'tensorflow.contrib.learn.python.learn.datasets.base.maybe_download', 'base.maybe_download', (['TEST_LABELS', 'train_dir', '(SOURCE_URL + TEST_LABELS)'], {}), False, 'from tensorflow.contrib.learn.python.learn.datasets import base\n'), (216, 'tensorflow.contrib.learn.python.learn.datasets.base.Datasets', 'base.Datasets', ([], {'train': 'train', 'validation': 'validation', 'test': 'test'}), False, 'from tensorflow.contrib.learn.python.learn.datasets import base\n'), (42, 'tensorflow.python.platform.gfile.Open', 'gfile.Open', (['filename', '"""rb"""'], {}), False, 'from tensorflow.python.platform import gfile\n'), (42, 'gzip.GzipFile', 'gzip.GzipFile', ([], {'fileobj': 'f'}), False, 'import gzip\n'), (51, 'numpy.frombuffer', 'numpy.frombuffer', (['buf'], {'dtype': 'numpy.uint8'}), False, 'import numpy\n'), (59, 'numpy.arange', 'numpy.arange', (['num_labels'], {}), False, 'import numpy\n'), (68, 'tensorflow.python.platform.gfile.Open', 'gfile.Open', (['filename', '"""rb"""'], {}), False, 'from tensorflow.python.platform import gfile\n'), (68, 'gzip.GzipFile', 'gzip.GzipFile', ([], {'fileobj': 'f'}), False, 'import gzip\n'), (75, 'numpy.frombuffer', 'numpy.frombuffer', (['buf'], {'dtype': 'numpy.uint8'}), False, 'import numpy\n'), (180, 'tensorflow.contrib.learn.python.learn.datasets.base.Datasets', 'base.Datasets', ([], {'train': 'train', 'validation': 'validation', 'test': 'test'}), False, 'from tensorflow.contrib.learn.python.learn.datasets import base\n'), (35, 'numpy.dtype', 'numpy.dtype', (['numpy.uint32'], {}), False, 'import numpy\n'), (95, 'tensorflow.python.framework.dtypes.as_dtype', 'dtypes.as_dtype', (['dtype'], {}), False, 'from tensorflow.python.framework import dtypes\n'), (155, 'numpy.arange', 'numpy.arange', (['self._num_examples'], {}), False, 'import numpy\n'), (156, 'numpy.random.shuffle', 'numpy.random.shuffle', (['perm'], {}), False, 'import numpy\n'), (116, 'numpy.multiply', 'numpy.multiply', (['images', '(1.0 / 255.0)'], {}), False, 'import numpy\n'), (146, 'six.moves.xrange', 'xrange', (['batch_size'], {}), False, 'from six.moves import xrange\n'), (147, 'six.moves.xrange', 'xrange', (['batch_size'], {}), False, 'from six.moves import xrange\n')] |
darkxaze/PINNs | f344a907cf8b585e5f667465178c4442b907024d | """
@author: Maziar Raissi
"""
import sys
#sys.path.insert(0, '../../Utilities/')
sys.path.append('F:/PINNs-master/PINN/src')
import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
import scipy.io
from scipy.interpolate import griddata
import time
from itertools import product, combinations
from mpl_toolkits.mplot3d import Axes3D
from mpl_toolkits.mplot3d.art3d import Poly3DCollection
from plotting import newfig, savefig
from mpl_toolkits.axes_grid1 import make_axes_locatable
import matplotlib.gridspec as gridspec
np.random.seed(1234)
tf.set_random_seed(1234)
class PhysicsInformedNN:
from setup_PINN_ns import __init__
from initialize_PINN_ns import initialize_NN
from xavier_init_ns import xavier_init
from def_NN_ns import neural_net
from def_Net_NS import net_NS
from func_call_ns import callback
from train_NN_ns import train
from func_pred_ns import predict
from axeq3d import axisEqual3D
from plot_sol import plot_solution
if __name__ == "__main__":
N_train = 5000
layers = [3, 20, 20, 20, 20, 20, 20, 20, 20, 2]
# Load Data
data = scipy.io.loadmat('F:/PINNs-master/PINN/Data/cylinder_nektar_wake.mat')
U_star = data['U_star'] # N x 2 x T
P_star = data['p_star'] # N x T
t_star = data['t'] # T x 1
X_star = data['X_star'] # N x 2
N = X_star.shape[0]
T = t_star.shape[0]
# Rearrange Data
XX = np.tile(X_star[:,0:1], (1,T)) # N x T
YY = np.tile(X_star[:,1:2], (1,T)) # N x T
TT = np.tile(t_star, (1,N)).T # N x T
UU = U_star[:,0,:] # N x T
VV = U_star[:,1,:] # N x T
PP = P_star # N x T
x = XX.flatten()[:,None] # NT x 1
y = YY.flatten()[:,None] # NT x 1
t = TT.flatten()[:,None] # NT x 1
u = UU.flatten()[:,None] # NT x 1
v = VV.flatten()[:,None] # NT x 1
p = PP.flatten()[:,None] # NT x 1
######################################################################
######################## Noiseles Data ###############################
######################################################################
# Training Data
idx = np.random.choice(N*T, N_train, replace=False)
x_train = x[idx,:]
y_train = y[idx,:]
t_train = t[idx,:]
u_train = u[idx,:]
v_train = v[idx,:]
# Training
model = PhysicsInformedNN(x_train, y_train, t_train, u_train, v_train, layers)
model.train(200000)
# Test Data
snap = np.array([100])
x_star = X_star[:,0:1]
y_star = X_star[:,1:2]
t_star = TT[:,snap]
u_star = U_star[:,0,snap]
v_star = U_star[:,1,snap]
p_star = P_star[:,snap]
# Prediction
u_pred, v_pred, p_pred = model.predict(x_star, y_star, t_star)
lambda_1_value = model.sess.run(model.lambda_1)
lambda_2_value = model.sess.run(model.lambda_2)
# Error
error_u = np.linalg.norm(u_star-u_pred,2)/np.linalg.norm(u_star,2)
error_v = np.linalg.norm(v_star-v_pred,2)/np.linalg.norm(v_star,2)
error_p = np.linalg.norm(p_star-p_pred,2)/np.linalg.norm(p_star,2)
error_lambda_1 = np.abs(lambda_1_value - 1.0)*100
error_lambda_2 = np.abs(lambda_2_value - 0.01)/0.01 * 100
print('Error u: %e' % (error_u))
print('Error v: %e' % (error_v))
print('Error p: %e' % (error_p))
print('Error l1: %.5f%%' % (error_lambda_1))
print('Error l2: %.5f%%' % (error_lambda_2))
# Plot Results
plot_solution(X_star, u_pred, 1)
plot_solution(X_star, v_pred, 2)
plot_solution(X_star, p_pred, 3)
plot_solution(X_star, p_star, 4)
plot_solution(X_star, p_star - p_pred, 5)
# Predict for plotting
lb = X_star.min(0)
ub = X_star.max(0)
nn = 200
x = np.linspace(lb[0], ub[0], nn)
y = np.linspace(lb[1], ub[1], nn)
X, Y = np.meshgrid(x,y)
UU_star = griddata(X_star, u_pred.flatten(), (X, Y), method='cubic')
VV_star = griddata(X_star, v_pred.flatten(), (X, Y), method='cubic')
PP_star = griddata(X_star, p_pred.flatten(), (X, Y), method='cubic')
P_exact = griddata(X_star, p_star.flatten(), (X, Y), method='cubic')
######################################################################
########################### Noisy Data ###############################
######################################################################
noise = 0.01
u_train = u_train + noise*np.std(u_train)*np.random.randn(u_train.shape[0], u_train.shape[1])
v_train = v_train + noise*np.std(v_train)*np.random.randn(v_train.shape[0], v_train.shape[1])
# Training
model = PhysicsInformedNN(x_train, y_train, t_train, u_train, v_train, layers)
model.train(200000)
lambda_1_value_noisy = model.sess.run(model.lambda_1)
lambda_2_value_noisy = model.sess.run(model.lambda_2)
error_lambda_1_noisy = np.abs(lambda_1_value_noisy - 1.0)*100
error_lambda_2_noisy = np.abs(lambda_2_value_noisy - 0.01)/0.01 * 100
print('Error l1: %.5f%%' % (error_lambda_1_noisy))
print('Error l2: %.5f%%' % (error_lambda_2_noisy))
######################################################################
############################# Plotting ###############################
######################################################################
# Load Data
data_vort = scipy.io.loadmat('../Data/cylinder_nektar_t0_vorticity.mat')
x_vort = data_vort['x']
y_vort = data_vort['y']
w_vort = data_vort['w']
modes = np.asscalar(data_vort['modes'])
nel = np.asscalar(data_vort['nel'])
xx_vort = np.reshape(x_vort, (modes+1,modes+1,nel), order = 'F')
yy_vort = np.reshape(y_vort, (modes+1,modes+1,nel), order = 'F')
ww_vort = np.reshape(w_vort, (modes+1,modes+1,nel), order = 'F')
box_lb = np.array([1.0, -2.0])
box_ub = np.array([8.0, 2.0])
fig, ax = newfig(1.0, 1.2)
ax.axis('off')
####### Row 0: Vorticity ##################
gs0 = gridspec.GridSpec(1, 2)
gs0.update(top=1-0.06, bottom=1-2/4 + 0.12, left=0.0, right=1.0, wspace=0)
ax = plt.subplot(gs0[:, :])
for i in range(0, nel):
h = ax.pcolormesh(xx_vort[:,:,i], yy_vort[:,:,i], ww_vort[:,:,i], cmap='seismic',shading='gouraud', vmin=-3, vmax=3)
divider = make_axes_locatable(ax)
cax = divider.append_axes("right", size="5%", pad=0.05)
fig.colorbar(h, cax=cax)
ax.plot([box_lb[0],box_lb[0]],[box_lb[1],box_ub[1]],'k',linewidth = 1)
ax.plot([box_ub[0],box_ub[0]],[box_lb[1],box_ub[1]],'k',linewidth = 1)
ax.plot([box_lb[0],box_ub[0]],[box_lb[1],box_lb[1]],'k',linewidth = 1)
ax.plot([box_lb[0],box_ub[0]],[box_ub[1],box_ub[1]],'k',linewidth = 1)
ax.set_aspect('equal', 'box')
ax.set_xlabel('$x$')
ax.set_ylabel('$y$')
ax.set_title('Vorticity', fontsize = 10)
####### Row 1: Training data ##################
######## u(t,x,y) ###################
gs1 = gridspec.GridSpec(1, 2)
gs1.update(top=1-2/4, bottom=0.0, left=0.01, right=0.99, wspace=0)
ax = plt.subplot(gs1[:, 0], projection='3d')
ax.axis('off')
r1 = [x_star.min(), x_star.max()]
r2 = [data['t'].min(), data['t'].max()]
r3 = [y_star.min(), y_star.max()]
for s, e in combinations(np.array(list(product(r1,r2,r3))), 2):
if np.sum(np.abs(s-e)) == r1[1]-r1[0] or np.sum(np.abs(s-e)) == r2[1]-r2[0] or np.sum(np.abs(s-e)) == r3[1]-r3[0]:
ax.plot3D(*zip(s,e), color="k", linewidth = 0.5)
ax.scatter(x_train, t_train, y_train, s = 0.1)
ax.contourf(X,UU_star,Y, zdir = 'y', offset = t_star.mean(), cmap='rainbow', alpha = 0.8)
ax.text(x_star.mean(), data['t'].min() - 1, y_star.min() - 1, '$x$')
ax.text(x_star.max()+1, data['t'].mean(), y_star.min() - 1, '$t$')
ax.text(x_star.min()-1, data['t'].min() - 0.5, y_star.mean(), '$y$')
ax.text(x_star.min()-3, data['t'].mean(), y_star.max() + 1, '$u(t,x,y)$')
ax.set_xlim3d(r1)
ax.set_ylim3d(r2)
ax.set_zlim3d(r3)
axisEqual3D(ax)
######## v(t,x,y) ###################
ax = plt.subplot(gs1[:, 1], projection='3d')
ax.axis('off')
r1 = [x_star.min(), x_star.max()]
r2 = [data['t'].min(), data['t'].max()]
r3 = [y_star.min(), y_star.max()]
for s, e in combinations(np.array(list(product(r1,r2,r3))), 2):
if np.sum(np.abs(s-e)) == r1[1]-r1[0] or np.sum(np.abs(s-e)) == r2[1]-r2[0] or np.sum(np.abs(s-e)) == r3[1]-r3[0]:
ax.plot3D(*zip(s,e), color="k", linewidth = 0.5)
ax.scatter(x_train, t_train, y_train, s = 0.1)
ax.contourf(X,VV_star,Y, zdir = 'y', offset = t_star.mean(), cmap='rainbow', alpha = 0.8)
ax.text(x_star.mean(), data['t'].min() - 1, y_star.min() - 1, '$x$')
ax.text(x_star.max()+1, data['t'].mean(), y_star.min() - 1, '$t$')
ax.text(x_star.min()-1, data['t'].min() - 0.5, y_star.mean(), '$y$')
ax.text(x_star.min()-3, data['t'].mean(), y_star.max() + 1, '$v(t,x,y)$')
ax.set_xlim3d(r1)
ax.set_ylim3d(r2)
ax.set_zlim3d(r3)
axisEqual3D(ax)
# savefig('./figures/NavierStokes_data')
fig, ax = newfig(1.015, 0.8)
ax.axis('off')
######## Row 2: Pressure #######################
######## Predicted p(t,x,y) ###########
gs2 = gridspec.GridSpec(1, 2)
gs2.update(top=1, bottom=1-1/2, left=0.1, right=0.9, wspace=0.5)
ax = plt.subplot(gs2[:, 0])
h = ax.imshow(PP_star, interpolation='nearest', cmap='rainbow',
extent=[x_star.min(), x_star.max(), y_star.min(), y_star.max()],
origin='lower', aspect='auto')
divider = make_axes_locatable(ax)
cax = divider.append_axes("right", size="5%", pad=0.05)
fig.colorbar(h, cax=cax)
ax.set_xlabel('$x$')
ax.set_ylabel('$y$')
ax.set_aspect('equal', 'box')
ax.set_title('Predicted pressure', fontsize = 10)
######## Exact p(t,x,y) ###########
ax = plt.subplot(gs2[:, 1])
h = ax.imshow(P_exact, interpolation='nearest', cmap='rainbow',
extent=[x_star.min(), x_star.max(), y_star.min(), y_star.max()],
origin='lower', aspect='auto')
divider = make_axes_locatable(ax)
cax = divider.append_axes("right", size="5%", pad=0.05)
fig.colorbar(h, cax=cax)
ax.set_xlabel('$x$')
ax.set_ylabel('$y$')
ax.set_aspect('equal', 'box')
ax.set_title('Exact pressure', fontsize = 10)
######## Row 3: Table #######################
gs3 = gridspec.GridSpec(1, 2)
gs3.update(top=1-1/2, bottom=0.0, left=0.0, right=1.0, wspace=0)
ax = plt.subplot(gs3[:, :])
ax.axis('off')
s = r'$\begin{tabular}{|c|c|}';
s = s + r' \hline'
s = s + r' Correct PDE & $\begin{array}{c}'
s = s + r' u_t + (u u_x + v u_y) = -p_x + 0.01 (u_{xx} + u_{yy})\\'
s = s + r' v_t + (u v_x + v v_y) = -p_y + 0.01 (v_{xx} + v_{yy})'
s = s + r' \end{array}$ \\ '
s = s + r' \hline'
s = s + r' Identified PDE (clean data) & $\begin{array}{c}'
s = s + r' u_t + %.3f (u u_x + v u_y) = -p_x + %.5f (u_{xx} + u_{yy})' % (lambda_1_value, lambda_2_value)
s = s + r' \\'
s = s + r' v_t + %.3f (u v_x + v v_y) = -p_y + %.5f (v_{xx} + v_{yy})' % (lambda_1_value, lambda_2_value)
s = s + r' \end{array}$ \\ '
s = s + r' \hline'
s = s + r' Identified PDE (1\% noise) & $\begin{array}{c}'
s = s + r' u_t + %.3f (u u_x + v u_y) = -p_x + %.5f (u_{xx} + u_{yy})' % (lambda_1_value_noisy, lambda_2_value_noisy)
s = s + r' \\'
s = s + r' v_t + %.3f (u v_x + v v_y) = -p_y + %.5f (v_{xx} + v_{yy})' % (lambda_1_value_noisy, lambda_2_value_noisy)
s = s + r' \end{array}$ \\ '
s = s + r' \hline'
s = s + r' \end{tabular}$'
ax.text(0.015,0.0,s)
savefig('./figures/NavierStokes_prediction')
| [
"numpy.asscalar",
"numpy.abs",
"numpy.random.seed",
"numpy.random.choice",
"numpy.linspace",
"numpy.meshgrid",
"numpy.reshape",
"numpy.tile",
"numpy.linalg.norm",
"numpy.std",
"matplotlib.pyplot.subplot",
"numpy.random.randn",
"matplotlib.gridspec.GridSpec",
"tensorflow.set_random_seed",
"numpy.array"
] | mycode/run_NavierStokes.py | [(7, 'sys.path.append', 'sys.path.append', (['"""F:/PINNs-master/PINN/src"""'], {}), False, 'import sys\n'), (21, 'numpy.random.seed', 'np.random.seed', (['(1234)'], {}), True, 'import numpy as np\n'), (22, 'tensorflow.set_random_seed', 'tf.set_random_seed', (['(1234)'], {}), True, 'import tensorflow as tf\n'), (54, 'numpy.tile', 'np.tile', (['X_star[:, 0:1]', '(1, T)'], {}), True, 'import numpy as np\n'), (55, 'numpy.tile', 'np.tile', (['X_star[:, 1:2]', '(1, T)'], {}), True, 'import numpy as np\n'), (74, 'numpy.random.choice', 'np.random.choice', (['(N * T)', 'N_train'], {'replace': '(False)'}), True, 'import numpy as np\n'), (86, 'numpy.array', 'np.array', (['[100]'], {}), True, 'import numpy as np\n'), (115, 'plot_sol.plot_solution', 'plot_solution', (['X_star', 'u_pred', '(1)'], {}), False, 'from plot_sol import plot_solution\n'), (116, 'plot_sol.plot_solution', 'plot_solution', (['X_star', 'v_pred', '(2)'], {}), False, 'from plot_sol import plot_solution\n'), (117, 'plot_sol.plot_solution', 'plot_solution', (['X_star', 'p_pred', '(3)'], {}), False, 'from plot_sol import plot_solution\n'), (118, 'plot_sol.plot_solution', 'plot_solution', (['X_star', 'p_star', '(4)'], {}), False, 'from plot_sol import plot_solution\n'), (119, 'plot_sol.plot_solution', 'plot_solution', (['X_star', '(p_star - p_pred)', '(5)'], {}), False, 'from plot_sol import plot_solution\n'), (125, 'numpy.linspace', 'np.linspace', (['lb[0]', 'ub[0]', 'nn'], {}), True, 'import numpy as np\n'), (126, 'numpy.linspace', 'np.linspace', (['lb[1]', 'ub[1]', 'nn'], {}), True, 'import numpy as np\n'), (127, 'numpy.meshgrid', 'np.meshgrid', (['x', 'y'], {}), True, 'import numpy as np\n'), (166, 'numpy.asscalar', 'np.asscalar', (["data_vort['modes']"], {}), True, 'import numpy as np\n'), (167, 'numpy.asscalar', 'np.asscalar', (["data_vort['nel']"], {}), True, 'import numpy as np\n'), (169, 'numpy.reshape', 'np.reshape', (['x_vort', '(modes + 1, modes + 1, nel)'], {'order': '"""F"""'}), True, 'import numpy as np\n'), (170, 'numpy.reshape', 'np.reshape', (['y_vort', '(modes + 1, modes + 1, nel)'], {'order': '"""F"""'}), True, 'import numpy as np\n'), (171, 'numpy.reshape', 'np.reshape', (['w_vort', '(modes + 1, modes + 1, nel)'], {'order': '"""F"""'}), True, 'import numpy as np\n'), (173, 'numpy.array', 'np.array', (['[1.0, -2.0]'], {}), True, 'import numpy as np\n'), (174, 'numpy.array', 'np.array', (['[8.0, 2.0]'], {}), True, 'import numpy as np\n'), (176, 'plotting.newfig', 'newfig', (['(1.0)', '(1.2)'], {}), False, 'from plotting import newfig, savefig\n'), (180, 'matplotlib.gridspec.GridSpec', 'gridspec.GridSpec', (['(1)', '(2)'], {}), True, 'import matplotlib.gridspec as gridspec\n'), (182, 'matplotlib.pyplot.subplot', 'plt.subplot', (['gs0[:, :]'], {}), True, 'import matplotlib.pyplot as plt\n'), (186, 'mpl_toolkits.axes_grid1.make_axes_locatable', 'make_axes_locatable', (['ax'], {}), False, 'from mpl_toolkits.axes_grid1 import make_axes_locatable\n'), (203, 'matplotlib.gridspec.GridSpec', 'gridspec.GridSpec', (['(1)', '(2)'], {}), True, 'import matplotlib.gridspec as gridspec\n'), (205, 'matplotlib.pyplot.subplot', 'plt.subplot', (['gs1[:, (0)]'], {'projection': '"""3d"""'}), True, 'import matplotlib.pyplot as plt\n'), (226, 'axeq3d.axisEqual3D', 'axisEqual3D', (['ax'], {}), False, 'from axeq3d import axisEqual3D\n'), (229, 'matplotlib.pyplot.subplot', 'plt.subplot', (['gs1[:, (1)]'], {'projection': '"""3d"""'}), True, 'import matplotlib.pyplot as plt\n'), (250, 'axeq3d.axisEqual3D', 'axisEqual3D', (['ax'], {}), False, 'from axeq3d import axisEqual3D\n'), (255, 'plotting.newfig', 'newfig', (['(1.015)', '(0.8)'], {}), False, 'from plotting import newfig, savefig\n'), (260, 'matplotlib.gridspec.GridSpec', 'gridspec.GridSpec', (['(1)', '(2)'], {}), True, 'import matplotlib.gridspec as gridspec\n'), (262, 'matplotlib.pyplot.subplot', 'plt.subplot', (['gs2[:, (0)]'], {}), True, 'import matplotlib.pyplot as plt\n'), (266, 'mpl_toolkits.axes_grid1.make_axes_locatable', 'make_axes_locatable', (['ax'], {}), False, 'from mpl_toolkits.axes_grid1 import make_axes_locatable\n'), (276, 'matplotlib.pyplot.subplot', 'plt.subplot', (['gs2[:, (1)]'], {}), True, 'import matplotlib.pyplot as plt\n'), (280, 'mpl_toolkits.axes_grid1.make_axes_locatable', 'make_axes_locatable', (['ax'], {}), False, 'from mpl_toolkits.axes_grid1 import make_axes_locatable\n'), (291, 'matplotlib.gridspec.GridSpec', 'gridspec.GridSpec', (['(1)', '(2)'], {}), True, 'import matplotlib.gridspec as gridspec\n'), (293, 'matplotlib.pyplot.subplot', 'plt.subplot', (['gs3[:, :]'], {}), True, 'import matplotlib.pyplot as plt\n'), (319, 'plotting.savefig', 'savefig', (['"""./figures/NavierStokes_prediction"""'], {}), False, 'from plotting import newfig, savefig\n'), (56, 'numpy.tile', 'np.tile', (['t_star', '(1, N)'], {}), True, 'import numpy as np\n'), (101, 'numpy.linalg.norm', 'np.linalg.norm', (['(u_star - u_pred)', '(2)'], {}), True, 'import numpy as np\n'), (101, 'numpy.linalg.norm', 'np.linalg.norm', (['u_star', '(2)'], {}), True, 'import numpy as np\n'), (102, 'numpy.linalg.norm', 'np.linalg.norm', (['(v_star - v_pred)', '(2)'], {}), True, 'import numpy as np\n'), (102, 'numpy.linalg.norm', 'np.linalg.norm', (['v_star', '(2)'], {}), True, 'import numpy as np\n'), (103, 'numpy.linalg.norm', 'np.linalg.norm', (['(p_star - p_pred)', '(2)'], {}), True, 'import numpy as np\n'), (103, 'numpy.linalg.norm', 'np.linalg.norm', (['p_star', '(2)'], {}), True, 'import numpy as np\n'), (105, 'numpy.abs', 'np.abs', (['(lambda_1_value - 1.0)'], {}), True, 'import numpy as np\n'), (149, 'numpy.abs', 'np.abs', (['(lambda_1_value_noisy - 1.0)'], {}), True, 'import numpy as np\n'), (106, 'numpy.abs', 'np.abs', (['(lambda_2_value - 0.01)'], {}), True, 'import numpy as np\n'), (139, 'numpy.random.randn', 'np.random.randn', (['u_train.shape[0]', 'u_train.shape[1]'], {}), True, 'import numpy as np\n'), (140, 'numpy.random.randn', 'np.random.randn', (['v_train.shape[0]', 'v_train.shape[1]'], {}), True, 'import numpy as np\n'), (150, 'numpy.abs', 'np.abs', (['(lambda_2_value_noisy - 0.01)'], {}), True, 'import numpy as np\n'), (139, 'numpy.std', 'np.std', (['u_train'], {}), True, 'import numpy as np\n'), (140, 'numpy.std', 'np.std', (['v_train'], {}), True, 'import numpy as np\n'), (212, 'itertools.product', 'product', (['r1', 'r2', 'r3'], {}), False, 'from itertools import product, combinations\n'), (236, 'itertools.product', 'product', (['r1', 'r2', 'r3'], {}), False, 'from itertools import product, combinations\n'), (213, 'numpy.abs', 'np.abs', (['(s - e)'], {}), True, 'import numpy as np\n'), (213, 'numpy.abs', 'np.abs', (['(s - e)'], {}), True, 'import numpy as np\n'), (213, 'numpy.abs', 'np.abs', (['(s - e)'], {}), True, 'import numpy as np\n'), (237, 'numpy.abs', 'np.abs', (['(s - e)'], {}), True, 'import numpy as np\n'), (237, 'numpy.abs', 'np.abs', (['(s - e)'], {}), True, 'import numpy as np\n'), (237, 'numpy.abs', 'np.abs', (['(s - e)'], {}), True, 'import numpy as np\n')] |
egonrian/google-research | 2c0043ecd507e75e2df9973a3015daf9253e1467 | # coding=utf-8
# Copyright 2020 The Google Research Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Lint as: python3
"""Implements data augmentations for cifar10/cifar100."""
from typing import Dict
from absl import flags
import tensorflow as tf
from flax_models.cifar.datasets import auto_augment
FLAGS = flags.FLAGS
flags.DEFINE_integer('cutout_length', 16,
'Length (in pixels) of the cutout patch. Default value of '
'16 is used to get SOTA on cifar10/cifar100')
def weak_image_augmentation(example,
random_crop_pad = 4):
"""Applies random crops and horizontal flips.
Simple data augmentations that are (almost) always used with cifar. Pad the
image with `random_crop_pad` before randomly cropping it to its original
size. Also randomly apply horizontal flip.
Args:
example: An example dict containing an image and a label.
random_crop_pad: By how many pixels should the image be padded on each side
before cropping.
Returns:
An example with the same label and an augmented version of the image.
"""
image, label = example['image'], example['label']
image = tf.image.random_flip_left_right(image)
image_shape = tf.shape(image)
image = tf.pad(
image, [[random_crop_pad, random_crop_pad],
[random_crop_pad, random_crop_pad], [0, 0]],
mode='REFLECT')
image = tf.image.random_crop(image, image_shape)
return {'image': image, 'label': label}
def auto_augmentation(example,
dataset_name):
"""Applies the AutoAugment policy found for the dataset.
AutoAugment: Learning Augmentation Policies from Data
https://arxiv.org/abs/1805.09501
Args:
example: An example dict containing an image and a label.
dataset_name: Name of the dataset for which we should return the optimal
policy.
Returns:
An example with the same label and an augmented version of the image.
"""
image, label = example['image'], example['label']
image = auto_augment.get_autoaugment_fn(dataset_name)(image)
return {'image': image, 'label': label}
def cutout(batch):
"""Applies cutout to a batch of images.
The cut out patch will be replaced by zeros (thus the batch should be
normalized before cutout is applied).
Reference:
Improved Regularization of Convolutional Neural Networks with Cutout
https://arxiv.org/abs/1708.04552
Implementation inspired by:
third_party/cloud_tpu/models/efficientnet/autoaugment.py
Args:
batch: A batch of images and labels.
Returns:
The same batch where cutout has been applied to the images.
"""
length, replace = FLAGS.cutout_length, 0.0
images, labels = batch['image'], batch['label']
num_channels = tf.shape(images)[3]
image_height, image_width = tf.shape(images)[1], tf.shape(images)[2]
cutout_center_height = tf.random.uniform(
shape=[], minval=0, maxval=image_height,
dtype=tf.int32)
cutout_center_width = tf.random.uniform(
shape=[], minval=0, maxval=image_width,
dtype=tf.int32)
lower_pad = tf.maximum(0, cutout_center_height - length // 2)
upper_pad = tf.maximum(0, image_height - cutout_center_height - length // 2)
left_pad = tf.maximum(0, cutout_center_width - length // 2)
right_pad = tf.maximum(0, image_width - cutout_center_width - length // 2)
cutout_shape = [image_height - (lower_pad + upper_pad),
image_width - (left_pad + right_pad)]
padding_dims = [[lower_pad, upper_pad], [left_pad, right_pad]]
mask = tf.pad(
tf.zeros(cutout_shape, dtype=images.dtype),
padding_dims, constant_values=1)
patch = tf.ones_like(images, dtype=images.dtype) * replace,
mask = tf.expand_dims(mask, -1)
mask = tf.tile(mask, [1, 1, num_channels])
images = tf.where(
tf.equal(mask, 0),
patch,
images)
images = tf.squeeze(images, axis=0)
return {'image': images, 'label': labels}
| [
"tensorflow.image.random_flip_left_right",
"tensorflow.shape",
"tensorflow.zeros",
"tensorflow.maximum",
"tensorflow.random.uniform",
"tensorflow.equal",
"tensorflow.expand_dims",
"tensorflow.squeeze",
"tensorflow.ones_like",
"tensorflow.image.random_crop",
"tensorflow.pad",
"tensorflow.tile"
] | flax_models/cifar/datasets/augmentation.py | [(28, 'absl.flags.DEFINE_integer', 'flags.DEFINE_integer', (['"""cutout_length"""', '(16)', '"""Length (in pixels) of the cutout patch. Default value of 16 is used to get SOTA on cifar10/cifar100"""'], {}), False, 'from absl import flags\n'), (50, 'tensorflow.image.random_flip_left_right', 'tf.image.random_flip_left_right', (['image'], {}), True, 'import tensorflow as tf\n'), (51, 'tensorflow.shape', 'tf.shape', (['image'], {}), True, 'import tensorflow as tf\n'), (52, 'tensorflow.pad', 'tf.pad', (['image', '[[random_crop_pad, random_crop_pad], [random_crop_pad, random_crop_pad], [0, 0]\n ]'], {'mode': '"""REFLECT"""'}), True, 'import tensorflow as tf\n'), (56, 'tensorflow.image.random_crop', 'tf.image.random_crop', (['image', 'image_shape'], {}), True, 'import tensorflow as tf\n'), (104, 'tensorflow.random.uniform', 'tf.random.uniform', ([], {'shape': '[]', 'minval': '(0)', 'maxval': 'image_height', 'dtype': 'tf.int32'}), True, 'import tensorflow as tf\n'), (107, 'tensorflow.random.uniform', 'tf.random.uniform', ([], {'shape': '[]', 'minval': '(0)', 'maxval': 'image_width', 'dtype': 'tf.int32'}), True, 'import tensorflow as tf\n'), (111, 'tensorflow.maximum', 'tf.maximum', (['(0)', '(cutout_center_height - length // 2)'], {}), True, 'import tensorflow as tf\n'), (112, 'tensorflow.maximum', 'tf.maximum', (['(0)', '(image_height - cutout_center_height - length // 2)'], {}), True, 'import tensorflow as tf\n'), (113, 'tensorflow.maximum', 'tf.maximum', (['(0)', '(cutout_center_width - length // 2)'], {}), True, 'import tensorflow as tf\n'), (114, 'tensorflow.maximum', 'tf.maximum', (['(0)', '(image_width - cutout_center_width - length // 2)'], {}), True, 'import tensorflow as tf\n'), (127, 'tensorflow.expand_dims', 'tf.expand_dims', (['mask', '(-1)'], {}), True, 'import tensorflow as tf\n'), (128, 'tensorflow.tile', 'tf.tile', (['mask', '[1, 1, num_channels]'], {}), True, 'import tensorflow as tf\n'), (135, 'tensorflow.squeeze', 'tf.squeeze', (['images'], {'axis': '(0)'}), True, 'import tensorflow as tf\n'), (76, 'flax_models.cifar.datasets.auto_augment.get_autoaugment_fn', 'auto_augment.get_autoaugment_fn', (['dataset_name'], {}), False, 'from flax_models.cifar.datasets import auto_augment\n'), (101, 'tensorflow.shape', 'tf.shape', (['images'], {}), True, 'import tensorflow as tf\n'), (122, 'tensorflow.zeros', 'tf.zeros', (['cutout_shape'], {'dtype': 'images.dtype'}), True, 'import tensorflow as tf\n'), (131, 'tensorflow.equal', 'tf.equal', (['mask', '(0)'], {}), True, 'import tensorflow as tf\n'), (102, 'tensorflow.shape', 'tf.shape', (['images'], {}), True, 'import tensorflow as tf\n'), (102, 'tensorflow.shape', 'tf.shape', (['images'], {}), True, 'import tensorflow as tf\n'), (125, 'tensorflow.ones_like', 'tf.ones_like', (['images'], {'dtype': 'images.dtype'}), True, 'import tensorflow as tf\n')] |
muchemwal/models | 49fd0a8a61b0e5dab196014bf47de7f62d97c884 | import os
import io
import time
import base64
import functools
from PIL import Image
import numpy as np
import tensorflow as tf
import tensorflow_hub as hub
from helpers import *
os.environ["TFHUB_DOWNLOAD_PROGRESS"] = "True"
class PythonPredictor:
def __init__(self, config):
# Import TF-Hub module
self.hub_module = hub.load("https://tfhub.dev/captain-pool/esrgan-tf2/1")
def predict(self, payload):
# Preprocess image
hr_image = preprocess_image(payload["image_b64"])
# Run model
fake_image = self.hub_module(hr_image)
# convert to base64
img = get_image(tf.squeeze(fake_image))
im_file = io.BytesIO()
img.save(im_file, format="PNG")
im_bytes = base64.b64encode(im_file.getvalue()).decode("utf-8")
return im_bytes
| [
"tensorflow.squeeze"
] | tensorflow/super_resolution/syndicai.py | [(20, 'tensorflow_hub.load', 'hub.load', (['"""https://tfhub.dev/captain-pool/esrgan-tf2/1"""'], {}), True, 'import tensorflow_hub as hub\n'), (31, 'io.BytesIO', 'io.BytesIO', ([], {}), False, 'import io\n'), (30, 'tensorflow.squeeze', 'tf.squeeze', (['fake_image'], {}), True, 'import tensorflow as tf\n')] |
ai-nikolai/Retrograph-1 | 54bd534d47218ca437c422a1abe5b1e995f55d71 | # coding=utf-8
# Copyright 2018 The Google AI Language Team Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Run masked LM/next sentence masked_lm pre-training for BERT."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
from retrograph.modeling import modeling_adapter as modeling
from retrograph.modeling import optimization_adapter as optimization
import tensorflow as tf
flags = tf.flags
FLAGS = flags.FLAGS
## Required parameters
flags.DEFINE_string(
"bert_config_file", None,
"The config json file corresponding to the pre-trained BERT model. "
"This specifies the model architecture.")
flags.DEFINE_string(
"input_file", None,
"Input TF example files (can be a glob or comma separated).")
flags.DEFINE_string(
"output_dir", None,
"The output directory where the model checkpoints will be written.")
## Other parameters
flags.DEFINE_string(
"init_checkpoint", None,
"Initial checkpoint (usually from a pre-trained BERT model).")
flags.DEFINE_integer(
"max_seq_length", 128,
"The maximum total input sequence length after WordPiece tokenization. "
"Sequences longer than this will be truncated, and sequences shorter "
"than this will be padded. Must match data generation.")
flags.DEFINE_integer(
"max_predictions_per_seq", 20,
"Maximum number of masked LM predictions per sequence. "
"Must match data generation.")
flags.DEFINE_bool("do_train", False, "Whether to run training.")
flags.DEFINE_bool("do_eval", False, "Whether to run eval on the dev set.")
flags.DEFINE_integer("train_batch_size", 32, "Total batch size for training.")
flags.DEFINE_integer("eval_batch_size", 8, "Total batch size for eval.")
flags.DEFINE_float("learning_rate", 5e-5, "The initial learning rate for Adam.")
flags.DEFINE_integer("num_train_steps", 100000, "Number of training steps.")
flags.DEFINE_integer("num_warmup_steps", 10000, "Number of warmup steps.")
flags.DEFINE_integer("save_checkpoints_steps", 1000,
"How often to save the model checkpoint.")
flags.DEFINE_integer("iterations_per_loop", 1000,
"How many steps to make in each estimator call.")
flags.DEFINE_integer("max_eval_steps", 100, "Maximum number of eval steps.")
flags.DEFINE_bool("use_tpu", False, "Whether to use TPU or GPU/CPU.")
tf.flags.DEFINE_string(
"tpu_name", None,
"The Cloud TPU to use for training. This should be either the name "
"used when creating the Cloud TPU, or a grpc://ip.address.of.tpu:8470 "
"url.")
tf.flags.DEFINE_string(
"tpu_zone", None,
"[Optional] GCE zone where the Cloud TPU is located in. If not "
"specified, we will attempt to automatically detect the GCE project from "
"metadata.")
tf.flags.DEFINE_string(
"gcp_project", None,
"[Optional] Project name for the Cloud TPU-enabled project. If not "
"specified, we will attempt to automatically detect the GCE project from "
"metadata.")
tf.flags.DEFINE_string("master", None, "[Optional] TensorFlow master URL.")
flags.DEFINE_integer(
"num_tpu_cores", 8,
"Only used if `use_tpu` is True. Total number of TPU cores to use.")
def model_fn_builder(bert_config, init_checkpoint, learning_rate,
num_train_steps, num_warmup_steps, use_tpu,
use_one_hot_embeddings):
"""Returns `model_fn` closure for TPUEstimator."""
def model_fn(features, labels, mode, params): # pylint: disable=unused-argument
"""The `model_fn` for TPUEstimator."""
tf.logging.info("*** Features ***")
for name in sorted(features.keys()):
tf.logging.info(" name = %s, shape = %s" % (name, features[name].shape))
input_ids = features["input_ids"]
input_mask = features["input_mask"]
segment_ids = features["segment_ids"]
masked_lm_positions = features["masked_lm_positions"]
masked_lm_ids = features["masked_lm_ids"]
masked_lm_weights = features["masked_lm_weights"]
next_sentence_labels = features["next_sentence_labels"]
is_training = (mode == tf.estimator.ModeKeys.TRAIN)
model = modeling.BertModel(
config=bert_config,
is_training=is_training,
input_ids=input_ids,
input_mask=input_mask,
token_type_ids=segment_ids,
use_one_hot_embeddings=use_one_hot_embeddings)
(masked_lm_loss,
masked_lm_example_loss, masked_lm_log_probs) = get_masked_lm_output(
bert_config, model.get_sequence_output(), model.get_embedding_table(),
masked_lm_positions, masked_lm_ids, masked_lm_weights)
(next_sentence_loss, next_sentence_example_loss,
next_sentence_log_probs) = get_next_sentence_output(
bert_config, model.get_pooled_output(), next_sentence_labels)
total_loss = masked_lm_loss + next_sentence_loss
tvars = tf.trainable_variables()
initialized_variable_names = {}
scaffold_fn = None
if init_checkpoint:
(assignment_map, initialized_variable_names
) = modeling.get_assignment_map_from_checkpoint(tvars, init_checkpoint)
if use_tpu:
def tpu_scaffold():
tf.train.init_from_checkpoint(init_checkpoint, assignment_map)
return tf.train.Scaffold()
scaffold_fn = tpu_scaffold
else:
tf.train.init_from_checkpoint(init_checkpoint, assignment_map)
tf.logging.info("**** Trainable Variables ****")
for var in tvars:
init_string = ""
if var.name in initialized_variable_names:
init_string = ", *INIT_FROM_CKPT*"
tf.logging.info(" name = %s, shape = %s%s", var.name, var.shape,
init_string)
output_spec = None
if mode == tf.estimator.ModeKeys.TRAIN:
train_op = optimization.create_optimizer(
total_loss, learning_rate, num_train_steps, num_warmup_steps, use_tpu)
output_spec = tf.contrib.tpu.TPUEstimatorSpec(
mode=mode,
loss=total_loss,
train_op=train_op,
scaffold_fn=scaffold_fn)
elif mode == tf.estimator.ModeKeys.EVAL:
def metric_fn(masked_lm_example_loss, masked_lm_log_probs, masked_lm_ids,
masked_lm_weights, next_sentence_example_loss,
next_sentence_log_probs, next_sentence_labels):
"""Computes the loss and accuracy of the model."""
masked_lm_log_probs = tf.reshape(masked_lm_log_probs,
[-1, masked_lm_log_probs.shape[-1]])
masked_lm_predictions = tf.argmax(
masked_lm_log_probs, axis=-1, output_type=tf.int32)
masked_lm_example_loss = tf.reshape(masked_lm_example_loss, [-1])
masked_lm_ids = tf.reshape(masked_lm_ids, [-1])
masked_lm_weights = tf.reshape(masked_lm_weights, [-1])
masked_lm_accuracy = tf.metrics.accuracy(
labels=masked_lm_ids,
predictions=masked_lm_predictions,
weights=masked_lm_weights)
masked_lm_mean_loss = tf.metrics.mean(
values=masked_lm_example_loss, weights=masked_lm_weights)
next_sentence_log_probs = tf.reshape(
next_sentence_log_probs, [-1, next_sentence_log_probs.shape[-1]])
next_sentence_predictions = tf.argmax(
next_sentence_log_probs, axis=-1, output_type=tf.int32)
next_sentence_labels = tf.reshape(next_sentence_labels, [-1])
next_sentence_accuracy = tf.metrics.accuracy(
labels=next_sentence_labels, predictions=next_sentence_predictions)
next_sentence_mean_loss = tf.metrics.mean(
values=next_sentence_example_loss)
return {
"masked_lm_accuracy": masked_lm_accuracy,
"masked_lm_loss": masked_lm_mean_loss,
"next_sentence_accuracy": next_sentence_accuracy,
"next_sentence_loss": next_sentence_mean_loss,
}
eval_metrics = (metric_fn, [
masked_lm_example_loss, masked_lm_log_probs, masked_lm_ids,
masked_lm_weights, next_sentence_example_loss,
next_sentence_log_probs, next_sentence_labels
])
output_spec = tf.contrib.tpu.TPUEstimatorSpec(
mode=mode,
loss=total_loss,
eval_metrics=eval_metrics,
scaffold_fn=scaffold_fn)
else:
raise ValueError("Only TRAIN and EVAL modes are supported: %s" % (mode))
return output_spec
return model_fn
def get_masked_lm_output(bert_config, input_tensor, output_weights, positions,
label_ids, label_weights):
"""Get loss and log probs for the masked LM."""
input_tensor = gather_indexes(input_tensor, positions)
with tf.variable_scope("cls/predictions"):
# We apply one more non-linear transformation before the output layer.
# This matrix is not used after pre-training.
with tf.variable_scope("transform"):
input_tensor = tf.layers.dense(
input_tensor,
units=bert_config.hidden_size,
activation=modeling.get_activation(bert_config.hidden_act),
kernel_initializer=modeling.create_initializer(
bert_config.initializer_range))
input_tensor = modeling.layer_norm(input_tensor)
# The output weights are the same as the input embeddings, but there is
# an output-only bias for each token.
output_bias = tf.get_variable(
"output_bias",
shape=[bert_config.vocab_size],
initializer=tf.zeros_initializer())
logits = tf.matmul(input_tensor, output_weights, transpose_b=True)
logits = tf.nn.bias_add(logits, output_bias)
log_probs = tf.nn.log_softmax(logits, axis=-1)
label_ids = tf.reshape(label_ids, [-1])
label_weights = tf.reshape(label_weights, [-1])
one_hot_labels = tf.one_hot(
label_ids, depth=bert_config.vocab_size, dtype=tf.float32)
# The `positions` tensor might be zero-padded (if the sequence is too
# short to have the maximum number of predictions). The `label_weights`
# tensor has a value of 1.0 for every real prediction and 0.0 for the
# padding predictions.
per_example_loss = -tf.reduce_sum(log_probs * one_hot_labels, axis=[-1])
numerator = tf.reduce_sum(label_weights * per_example_loss)
denominator = tf.reduce_sum(label_weights) + 1e-5
loss = numerator / denominator
return (loss, per_example_loss, log_probs)
def get_next_sentence_output(bert_config, input_tensor, labels):
"""Get loss and log probs for the next sentence prediction."""
# Simple binary classification. Note that 0 is "next sentence" and 1 is
# "random sentence". This weight matrix is not used after pre-training.
with tf.variable_scope("cls/seq_relationship"):
output_weights = tf.get_variable(
"output_weights",
shape=[2, bert_config.hidden_size],
initializer=modeling.create_initializer(bert_config.initializer_range))
output_bias = tf.get_variable(
"output_bias", shape=[2], initializer=tf.zeros_initializer())
logits = tf.matmul(input_tensor, output_weights, transpose_b=True)
logits = tf.nn.bias_add(logits, output_bias)
log_probs = tf.nn.log_softmax(logits, axis=-1)
labels = tf.reshape(labels, [-1])
one_hot_labels = tf.one_hot(labels, depth=2, dtype=tf.float32)
per_example_loss = -tf.reduce_sum(one_hot_labels * log_probs, axis=-1)
loss = tf.reduce_mean(per_example_loss)
return (loss, per_example_loss, log_probs)
def gather_indexes(sequence_tensor, positions):
"""Gathers the vectors at the specific positions over a minibatch."""
sequence_shape = modeling.get_shape_list(sequence_tensor, expected_rank=3)
batch_size = sequence_shape[0]
seq_length = sequence_shape[1]
width = sequence_shape[2]
flat_offsets = tf.reshape(
tf.range(0, batch_size, dtype=tf.int32) * seq_length, [-1, 1])
flat_positions = tf.reshape(positions + flat_offsets, [-1])
flat_sequence_tensor = tf.reshape(sequence_tensor,
[batch_size * seq_length, width])
output_tensor = tf.gather(flat_sequence_tensor, flat_positions)
return output_tensor
def input_fn_builder(input_files,
max_seq_length,
max_predictions_per_seq,
is_training,
num_cpu_threads=4):
"""Creates an `input_fn` closure to be passed to TPUEstimator."""
def input_fn(params):
"""The actual input function."""
batch_size = params["batch_size"]
name_to_features = {
"input_ids":
tf.FixedLenFeature([max_seq_length], tf.int64),
"input_mask":
tf.FixedLenFeature([max_seq_length], tf.int64),
"segment_ids":
tf.FixedLenFeature([max_seq_length], tf.int64),
"masked_lm_positions":
tf.FixedLenFeature([max_predictions_per_seq], tf.int64),
"masked_lm_ids":
tf.FixedLenFeature([max_predictions_per_seq], tf.int64),
"masked_lm_weights":
tf.FixedLenFeature([max_predictions_per_seq], tf.float32),
"next_sentence_labels":
tf.FixedLenFeature([1], tf.int64),
}
# For training, we want a lot of parallel reading and shuffling.
# For eval, we want no shuffling and parallel reading doesn't matter.
if is_training:
d = tf.data.Dataset.from_tensor_slices(tf.constant(input_files))
d = d.repeat()
d = d.shuffle(buffer_size=len(input_files))
# `cycle_length` is the number of parallel files that get read.
cycle_length = min(num_cpu_threads, len(input_files))
# `sloppy` mode means that the interleaving is not exact. This adds
# even more randomness to the training pipeline.
d = d.apply(
tf.contrib.data.parallel_interleave(
tf.data.TFRecordDataset,
sloppy=is_training,
cycle_length=cycle_length))
d = d.shuffle(buffer_size=100)
else:
d = tf.data.TFRecordDataset(input_files)
# Since we evaluate for a fixed number of steps we don't want to encounter
# out-of-range exceptions.
d = d.repeat()
# We must `drop_remainder` on training because the TPU requires fixed
# size dimensions. For eval, we assume we are evaluating on the CPU or GPU
# and we *don't* want to drop the remainder, otherwise we wont cover
# every sample.
d = d.apply(
tf.contrib.data.map_and_batch(
lambda record: _decode_record(record, name_to_features),
batch_size=batch_size,
num_parallel_batches=num_cpu_threads,
drop_remainder=True))
return d
return input_fn
def _decode_record(record, name_to_features):
"""Decodes a record to a TensorFlow example."""
example = tf.parse_single_example(record, name_to_features)
# tf.Example only supports tf.int64, but the TPU only supports tf.int32.
# So cast all int64 to int32.
for name in list(example.keys()):
t = example[name]
if t.dtype == tf.int64:
t = tf.to_int32(t)
example[name] = t
return example
def main(_):
tf.logging.set_verbosity(tf.logging.INFO)
if not FLAGS.do_train and not FLAGS.do_eval:
raise ValueError("At least one of `do_train` or `do_eval` must be True.")
bert_config = modeling.BertConfig.from_json_file(FLAGS.bert_config_file)
tf.gfile.MakeDirs(FLAGS.output_dir)
input_files = []
for input_pattern in FLAGS.input_file.split(","):
input_files.extend(tf.gfile.Glob(input_pattern))
tf.logging.info("*** Input Files ***")
for input_file in input_files:
tf.logging.info(" %s" % input_file)
tpu_cluster_resolver = None
if FLAGS.use_tpu and FLAGS.tpu_name:
tpu_cluster_resolver = tf.contrib.cluster_resolver.TPUClusterResolver(
FLAGS.tpu_name, zone=FLAGS.tpu_zone, project=FLAGS.gcp_project)
is_per_host = tf.contrib.tpu.InputPipelineConfig.PER_HOST_V2
run_config = tf.contrib.tpu.RunConfig(
cluster=tpu_cluster_resolver,
master=FLAGS.master,
model_dir=FLAGS.output_dir,
save_checkpoints_steps=FLAGS.save_checkpoints_steps,
keep_checkpoint_max=20,
tpu_config=tf.contrib.tpu.TPUConfig(
iterations_per_loop=FLAGS.iterations_per_loop,
num_shards=FLAGS.num_tpu_cores,
per_host_input_for_training=is_per_host))
model_fn = model_fn_builder(
bert_config=bert_config,
init_checkpoint=FLAGS.init_checkpoint,
learning_rate=FLAGS.learning_rate,
num_train_steps=FLAGS.num_train_steps,
num_warmup_steps=FLAGS.num_warmup_steps,
use_tpu=FLAGS.use_tpu,
use_one_hot_embeddings=FLAGS.use_tpu)
# If TPU is not available, this will fall back to normal Estimator on CPU
# or GPU.
estimator = tf.contrib.tpu.TPUEstimator(
use_tpu=FLAGS.use_tpu,
model_fn=model_fn,
config=run_config,
train_batch_size=FLAGS.train_batch_size,
eval_batch_size=FLAGS.eval_batch_size)
if FLAGS.do_train:
tf.logging.info("***** Running training *****")
tf.logging.info(" Batch size = %d", FLAGS.train_batch_size)
train_input_fn = input_fn_builder(
input_files=input_files,
max_seq_length=FLAGS.max_seq_length,
max_predictions_per_seq=FLAGS.max_predictions_per_seq,
is_training=True)
estimator.train(input_fn=train_input_fn, max_steps=FLAGS.num_train_steps)
if FLAGS.do_eval:
tf.logging.info("***** Running evaluation *****")
tf.logging.info(" Batch size = %d", FLAGS.eval_batch_size)
eval_input_fn = input_fn_builder(
input_files=input_files,
max_seq_length=FLAGS.max_seq_length,
max_predictions_per_seq=FLAGS.max_predictions_per_seq,
is_training=False)
result = estimator.evaluate(
input_fn=eval_input_fn, steps=FLAGS.max_eval_steps)
output_eval_file = os.path.join(FLAGS.output_dir, "eval_results.txt")
with tf.gfile.GFile(output_eval_file, "w") as writer:
tf.logging.info("***** Eval results *****")
for key in sorted(result.keys()):
tf.logging.info(" %s = %s", key, str(result[key]))
writer.write("%s = %s\n" % (key, str(result[key])))
if __name__ == "__main__":
flags.mark_flag_as_required("input_file")
flags.mark_flag_as_required("bert_config_file")
flags.mark_flag_as_required("output_dir")
tf.app.run()
| [
"tensorflow.contrib.cluster_resolver.TPUClusterResolver",
"tensorflow.metrics.accuracy",
"tensorflow.nn.log_softmax",
"tensorflow.FixedLenFeature",
"tensorflow.reduce_sum",
"tensorflow.gfile.GFile",
"tensorflow.train.init_from_checkpoint",
"tensorflow.contrib.data.parallel_interleave",
"tensorflow.gfile.MakeDirs",
"tensorflow.to_int32",
"tensorflow.contrib.tpu.TPUEstimatorSpec",
"tensorflow.contrib.tpu.TPUEstimator",
"tensorflow.data.TFRecordDataset",
"tensorflow.gather",
"tensorflow.logging.set_verbosity",
"tensorflow.trainable_variables",
"tensorflow.parse_single_example",
"tensorflow.argmax",
"tensorflow.app.run",
"tensorflow.metrics.mean",
"tensorflow.matmul",
"tensorflow.zeros_initializer",
"tensorflow.logging.info",
"tensorflow.one_hot",
"tensorflow.gfile.Glob",
"tensorflow.contrib.tpu.TPUConfig",
"tensorflow.nn.bias_add",
"tensorflow.train.Scaffold",
"tensorflow.constant",
"tensorflow.range",
"tensorflow.reduce_mean",
"tensorflow.flags.DEFINE_string",
"tensorflow.reshape",
"tensorflow.variable_scope"
] | training_utility/run_pretraining_adapter.py | [(84, 'tensorflow.flags.DEFINE_string', 'tf.flags.DEFINE_string', (['"""tpu_name"""', 'None', '"""The Cloud TPU to use for training. This should be either the name used when creating the Cloud TPU, or a grpc://ip.address.of.tpu:8470 url."""'], {}), True, 'import tensorflow as tf\n'), (90, 'tensorflow.flags.DEFINE_string', 'tf.flags.DEFINE_string', (['"""tpu_zone"""', 'None', '"""[Optional] GCE zone where the Cloud TPU is located in. If not specified, we will attempt to automatically detect the GCE project from metadata."""'], {}), True, 'import tensorflow as tf\n'), (96, 'tensorflow.flags.DEFINE_string', 'tf.flags.DEFINE_string', (['"""gcp_project"""', 'None', '"""[Optional] Project name for the Cloud TPU-enabled project. If not specified, we will attempt to automatically detect the GCE project from metadata."""'], {}), True, 'import tensorflow as tf\n'), (102, 'tensorflow.flags.DEFINE_string', 'tf.flags.DEFINE_string', (['"""master"""', 'None', '"""[Optional] TensorFlow master URL."""'], {}), True, 'import tensorflow as tf\n'), (310, 'retrograph.modeling.modeling_adapter.get_shape_list', 'modeling.get_shape_list', (['sequence_tensor'], {'expected_rank': '(3)'}), True, 'from retrograph.modeling import modeling_adapter as modeling\n'), (317, 'tensorflow.reshape', 'tf.reshape', (['(positions + flat_offsets)', '[-1]'], {}), True, 'import tensorflow as tf\n'), (318, 'tensorflow.reshape', 'tf.reshape', (['sequence_tensor', '[batch_size * seq_length, width]'], {}), True, 'import tensorflow as tf\n'), (320, 'tensorflow.gather', 'tf.gather', (['flat_sequence_tensor', 'flat_positions'], {}), True, 'import tensorflow as tf\n'), (393, 'tensorflow.parse_single_example', 'tf.parse_single_example', (['record', 'name_to_features'], {}), True, 'import tensorflow as tf\n'), (407, 'tensorflow.logging.set_verbosity', 'tf.logging.set_verbosity', (['tf.logging.INFO'], {}), True, 'import tensorflow as tf\n'), (412, 'retrograph.modeling.modeling_adapter.BertConfig.from_json_file', 'modeling.BertConfig.from_json_file', (['FLAGS.bert_config_file'], {}), True, 'from retrograph.modeling import modeling_adapter as modeling\n'), (414, 'tensorflow.gfile.MakeDirs', 'tf.gfile.MakeDirs', (['FLAGS.output_dir'], {}), True, 'import tensorflow as tf\n'), (420, 'tensorflow.logging.info', 'tf.logging.info', (['"""*** Input Files ***"""'], {}), True, 'import tensorflow as tf\n'), (452, 'tensorflow.contrib.tpu.TPUEstimator', 'tf.contrib.tpu.TPUEstimator', ([], {'use_tpu': 'FLAGS.use_tpu', 'model_fn': 'model_fn', 'config': 'run_config', 'train_batch_size': 'FLAGS.train_batch_size', 'eval_batch_size': 'FLAGS.eval_batch_size'}), True, 'import tensorflow as tf\n'), (494, 'tensorflow.app.run', 'tf.app.run', ([], {}), True, 'import tensorflow as tf\n'), (117, 'tensorflow.logging.info', 'tf.logging.info', (['"""*** Features ***"""'], {}), True, 'import tensorflow as tf\n'), (131, 'retrograph.modeling.modeling_adapter.BertModel', 'modeling.BertModel', ([], {'config': 'bert_config', 'is_training': 'is_training', 'input_ids': 'input_ids', 'input_mask': 'input_mask', 'token_type_ids': 'segment_ids', 'use_one_hot_embeddings': 'use_one_hot_embeddings'}), True, 'from retrograph.modeling import modeling_adapter as modeling\n'), (150, 'tensorflow.trainable_variables', 'tf.trainable_variables', ([], {}), True, 'import tensorflow as tf\n'), (167, 'tensorflow.logging.info', 'tf.logging.info', (['"""**** Trainable Variables ****"""'], {}), True, 'import tensorflow as tf\n'), (245, 'tensorflow.variable_scope', 'tf.variable_scope', (['"""cls/predictions"""'], {}), True, 'import tensorflow as tf\n'), (263, 'tensorflow.matmul', 'tf.matmul', (['input_tensor', 'output_weights'], {'transpose_b': '(True)'}), True, 'import tensorflow as tf\n'), (264, 'tensorflow.nn.bias_add', 'tf.nn.bias_add', (['logits', 'output_bias'], {}), True, 'import tensorflow as tf\n'), (265, 'tensorflow.nn.log_softmax', 'tf.nn.log_softmax', (['logits'], {'axis': '(-1)'}), True, 'import tensorflow as tf\n'), (267, 'tensorflow.reshape', 'tf.reshape', (['label_ids', '[-1]'], {}), True, 'import tensorflow as tf\n'), (268, 'tensorflow.reshape', 'tf.reshape', (['label_weights', '[-1]'], {}), True, 'import tensorflow as tf\n'), (270, 'tensorflow.one_hot', 'tf.one_hot', (['label_ids'], {'depth': 'bert_config.vocab_size', 'dtype': 'tf.float32'}), True, 'import tensorflow as tf\n'), (278, 'tensorflow.reduce_sum', 'tf.reduce_sum', (['(label_weights * per_example_loss)'], {}), True, 'import tensorflow as tf\n'), (290, 'tensorflow.variable_scope', 'tf.variable_scope', (['"""cls/seq_relationship"""'], {}), True, 'import tensorflow as tf\n'), (298, 'tensorflow.matmul', 'tf.matmul', (['input_tensor', 'output_weights'], {'transpose_b': '(True)'}), True, 'import tensorflow as tf\n'), (299, 'tensorflow.nn.bias_add', 'tf.nn.bias_add', (['logits', 'output_bias'], {}), True, 'import tensorflow as tf\n'), (300, 'tensorflow.nn.log_softmax', 'tf.nn.log_softmax', (['logits'], {'axis': '(-1)'}), True, 'import tensorflow as tf\n'), (301, 'tensorflow.reshape', 'tf.reshape', (['labels', '[-1]'], {}), True, 'import tensorflow as tf\n'), (302, 'tensorflow.one_hot', 'tf.one_hot', (['labels'], {'depth': '(2)', 'dtype': 'tf.float32'}), True, 'import tensorflow as tf\n'), (304, 'tensorflow.reduce_mean', 'tf.reduce_mean', (['per_example_loss'], {}), True, 'import tensorflow as tf\n'), (422, 'tensorflow.logging.info', 'tf.logging.info', (["(' %s' % input_file)"], {}), True, 'import tensorflow as tf\n'), (426, 'tensorflow.contrib.cluster_resolver.TPUClusterResolver', 'tf.contrib.cluster_resolver.TPUClusterResolver', (['FLAGS.tpu_name'], {'zone': 'FLAGS.tpu_zone', 'project': 'FLAGS.gcp_project'}), True, 'import tensorflow as tf\n'), (460, 'tensorflow.logging.info', 'tf.logging.info', (['"""***** Running training *****"""'], {}), True, 'import tensorflow as tf\n'), (461, 'tensorflow.logging.info', 'tf.logging.info', (['""" Batch size = %d"""', 'FLAGS.train_batch_size'], {}), True, 'import tensorflow as tf\n'), (470, 'tensorflow.logging.info', 'tf.logging.info', (['"""***** Running evaluation *****"""'], {}), True, 'import tensorflow as tf\n'), (471, 'tensorflow.logging.info', 'tf.logging.info', (['""" Batch size = %d"""', 'FLAGS.eval_batch_size'], {}), True, 'import tensorflow as tf\n'), (482, 'os.path.join', 'os.path.join', (['FLAGS.output_dir', '"""eval_results.txt"""'], {}), False, 'import os\n'), (119, 'tensorflow.logging.info', 'tf.logging.info', (["(' name = %s, shape = %s' % (name, features[name].shape))"], {}), True, 'import tensorflow as tf\n'), (156, 'retrograph.modeling.modeling_adapter.get_assignment_map_from_checkpoint', 'modeling.get_assignment_map_from_checkpoint', (['tvars', 'init_checkpoint'], {}), True, 'from retrograph.modeling import modeling_adapter as modeling\n'), (172, 'tensorflow.logging.info', 'tf.logging.info', (['""" name = %s, shape = %s%s"""', 'var.name', 'var.shape', 'init_string'], {}), True, 'import tensorflow as tf\n'), (177, 'retrograph.modeling.optimization_adapter.create_optimizer', 'optimization.create_optimizer', (['total_loss', 'learning_rate', 'num_train_steps', 'num_warmup_steps', 'use_tpu'], {}), True, 'from retrograph.modeling import optimization_adapter as optimization\n'), (180, 'tensorflow.contrib.tpu.TPUEstimatorSpec', 'tf.contrib.tpu.TPUEstimatorSpec', ([], {'mode': 'mode', 'loss': 'total_loss', 'train_op': 'train_op', 'scaffold_fn': 'scaffold_fn'}), True, 'import tensorflow as tf\n'), (248, 'tensorflow.variable_scope', 'tf.variable_scope', (['"""transform"""'], {}), True, 'import tensorflow as tf\n'), (255, 'retrograph.modeling.modeling_adapter.layer_norm', 'modeling.layer_norm', (['input_tensor'], {}), True, 'from retrograph.modeling import modeling_adapter as modeling\n'), (277, 'tensorflow.reduce_sum', 'tf.reduce_sum', (['(log_probs * one_hot_labels)'], {'axis': '[-1]'}), True, 'import tensorflow as tf\n'), (279, 'tensorflow.reduce_sum', 'tf.reduce_sum', (['label_weights'], {}), True, 'import tensorflow as tf\n'), (303, 'tensorflow.reduce_sum', 'tf.reduce_sum', (['(one_hot_labels * log_probs)'], {'axis': '(-1)'}), True, 'import tensorflow as tf\n'), (316, 'tensorflow.range', 'tf.range', (['(0)', 'batch_size'], {'dtype': 'tf.int32'}), True, 'import tensorflow as tf\n'), (337, 'tensorflow.FixedLenFeature', 'tf.FixedLenFeature', (['[max_seq_length]', 'tf.int64'], {}), True, 'import tensorflow as tf\n'), (339, 'tensorflow.FixedLenFeature', 'tf.FixedLenFeature', (['[max_seq_length]', 'tf.int64'], {}), True, 'import tensorflow as tf\n'), (341, 'tensorflow.FixedLenFeature', 'tf.FixedLenFeature', (['[max_seq_length]', 'tf.int64'], {}), True, 'import tensorflow as tf\n'), (343, 'tensorflow.FixedLenFeature', 'tf.FixedLenFeature', (['[max_predictions_per_seq]', 'tf.int64'], {}), True, 'import tensorflow as tf\n'), (345, 'tensorflow.FixedLenFeature', 'tf.FixedLenFeature', (['[max_predictions_per_seq]', 'tf.int64'], {}), True, 'import tensorflow as tf\n'), (347, 'tensorflow.FixedLenFeature', 'tf.FixedLenFeature', (['[max_predictions_per_seq]', 'tf.float32'], {}), True, 'import tensorflow as tf\n'), (349, 'tensorflow.FixedLenFeature', 'tf.FixedLenFeature', (['[1]', 'tf.int64'], {}), True, 'import tensorflow as tf\n'), (371, 'tensorflow.data.TFRecordDataset', 'tf.data.TFRecordDataset', (['input_files'], {}), True, 'import tensorflow as tf\n'), (400, 'tensorflow.to_int32', 'tf.to_int32', (['t'], {}), True, 'import tensorflow as tf\n'), (418, 'tensorflow.gfile.Glob', 'tf.gfile.Glob', (['input_pattern'], {}), True, 'import tensorflow as tf\n'), (436, 'tensorflow.contrib.tpu.TPUConfig', 'tf.contrib.tpu.TPUConfig', ([], {'iterations_per_loop': 'FLAGS.iterations_per_loop', 'num_shards': 'FLAGS.num_tpu_cores', 'per_host_input_for_training': 'is_per_host'}), True, 'import tensorflow as tf\n'), (483, 'tensorflow.gfile.GFile', 'tf.gfile.GFile', (['output_eval_file', '"""w"""'], {}), True, 'import tensorflow as tf\n'), (484, 'tensorflow.logging.info', 'tf.logging.info', (['"""***** Eval results *****"""'], {}), True, 'import tensorflow as tf\n'), (165, 'tensorflow.train.init_from_checkpoint', 'tf.train.init_from_checkpoint', (['init_checkpoint', 'assignment_map'], {}), True, 'import tensorflow as tf\n'), (227, 'tensorflow.contrib.tpu.TPUEstimatorSpec', 'tf.contrib.tpu.TPUEstimatorSpec', ([], {'mode': 'mode', 'loss': 'total_loss', 'eval_metrics': 'eval_metrics', 'scaffold_fn': 'scaffold_fn'}), True, 'import tensorflow as tf\n'), (262, 'tensorflow.zeros_initializer', 'tf.zeros_initializer', ([], {}), True, 'import tensorflow as tf\n'), (294, 'retrograph.modeling.modeling_adapter.create_initializer', 'modeling.create_initializer', (['bert_config.initializer_range'], {}), True, 'from retrograph.modeling import modeling_adapter as modeling\n'), (296, 'tensorflow.zeros_initializer', 'tf.zeros_initializer', ([], {}), True, 'import tensorflow as tf\n'), (355, 'tensorflow.constant', 'tf.constant', (['input_files'], {}), True, 'import tensorflow as tf\n'), (365, 'tensorflow.contrib.data.parallel_interleave', 'tf.contrib.data.parallel_interleave', (['tf.data.TFRecordDataset'], {'sloppy': 'is_training', 'cycle_length': 'cycle_length'}), True, 'import tensorflow as tf\n'), (160, 'tensorflow.train.init_from_checkpoint', 'tf.train.init_from_checkpoint', (['init_checkpoint', 'assignment_map'], {}), True, 'import tensorflow as tf\n'), (161, 'tensorflow.train.Scaffold', 'tf.train.Scaffold', ([], {}), True, 'import tensorflow as tf\n'), (191, 'tensorflow.reshape', 'tf.reshape', (['masked_lm_log_probs', '[-1, masked_lm_log_probs.shape[-1]]'], {}), True, 'import tensorflow as tf\n'), (193, 'tensorflow.argmax', 'tf.argmax', (['masked_lm_log_probs'], {'axis': '(-1)', 'output_type': 'tf.int32'}), True, 'import tensorflow as tf\n'), (195, 'tensorflow.reshape', 'tf.reshape', (['masked_lm_example_loss', '[-1]'], {}), True, 'import tensorflow as tf\n'), (196, 'tensorflow.reshape', 'tf.reshape', (['masked_lm_ids', '[-1]'], {}), True, 'import tensorflow as tf\n'), (197, 'tensorflow.reshape', 'tf.reshape', (['masked_lm_weights', '[-1]'], {}), True, 'import tensorflow as tf\n'), (198, 'tensorflow.metrics.accuracy', 'tf.metrics.accuracy', ([], {'labels': 'masked_lm_ids', 'predictions': 'masked_lm_predictions', 'weights': 'masked_lm_weights'}), True, 'import tensorflow as tf\n'), (202, 'tensorflow.metrics.mean', 'tf.metrics.mean', ([], {'values': 'masked_lm_example_loss', 'weights': 'masked_lm_weights'}), True, 'import tensorflow as tf\n'), (205, 'tensorflow.reshape', 'tf.reshape', (['next_sentence_log_probs', '[-1, next_sentence_log_probs.shape[-1]]'], {}), True, 'import tensorflow as tf\n'), (207, 'tensorflow.argmax', 'tf.argmax', (['next_sentence_log_probs'], {'axis': '(-1)', 'output_type': 'tf.int32'}), True, 'import tensorflow as tf\n'), (209, 'tensorflow.reshape', 'tf.reshape', (['next_sentence_labels', '[-1]'], {}), True, 'import tensorflow as tf\n'), (210, 'tensorflow.metrics.accuracy', 'tf.metrics.accuracy', ([], {'labels': 'next_sentence_labels', 'predictions': 'next_sentence_predictions'}), True, 'import tensorflow as tf\n'), (212, 'tensorflow.metrics.mean', 'tf.metrics.mean', ([], {'values': 'next_sentence_example_loss'}), True, 'import tensorflow as tf\n'), (252, 'retrograph.modeling.modeling_adapter.get_activation', 'modeling.get_activation', (['bert_config.hidden_act'], {}), True, 'from retrograph.modeling import modeling_adapter as modeling\n'), (253, 'retrograph.modeling.modeling_adapter.create_initializer', 'modeling.create_initializer', (['bert_config.initializer_range'], {}), True, 'from retrograph.modeling import modeling_adapter as modeling\n')] |
pizzahan/lingvo | 9b85b7ba5d037701302efa807841c05223bc7d1d | # -*- coding: utf-8 -*-
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Encode using wordpiece models.
Implements the segmentation algorithm described in the last paragraph of
p. 5150, in the following publication:
M. Schuster and K. Nakajima, "Japanese and Korean voice
search," 2012 IEEE International Conference on Acoustics,
Speech and Signal Processing, 2012
https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/37842.pdf
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import sys
import tensorflow as tf
from lingvo.core.ops import py_x_ops
# Must be a large ID.
NO_TOKEN = 1 << 31 - 1
NO_TOKEN_STRING = '<unk>'
SENTENCE_START_STRING = '<s>'
SENTENCE_END_STRING = '</s>'
BOW_STR = '▁'
class WpmEncoder(object):
def __init__(self, wpm_filepath, merge_prob=1.):
"""Create a WPM encoder.
Args:
wpm_filepath: a path to the file containing the vocabulary.
merge_prob: the probability of merging tokens while encoding.
"""
# Load vocabulary file.
self._pieces = []
with tf.gfile.Open(wpm_filepath, 'r') as f:
for line in f.readlines():
line = line.decode('utf-8')
piece = line.strip().split('\t')[0]
self._pieces.append(piece)
self._merge_prob = merge_prob
def _TokenToString(self, token):
return py_x_ops.vocab_id_to_token(token, vocab=self._pieces)
def _StringToToken(self, tokstr):
return tf.where(
py_x_ops.token_in_vocab(tokstr, vocab=self._pieces),
py_x_ops.vocab_token_to_id(tokstr, vocab=self._pieces),
tf.broadcast_to(NO_TOKEN, tf.shape(tokstr)))
def _MergeTokens(self, tokens):
return self._StringToToken(
self._TokenToString(tokens[0]) + self._TokenToString(tokens[1]))
def _EncodeToIds(self, word):
# Below:
# * a token is a wordpiece ID.
# * the tokens array will be merged in-place.
# * the candidates array is an array of size len(tokens) - 1.
# It contains the token for the merged wordpiece, if it exists,
# -1 otherwise. For instance, candidate[3] = id(token[3] + token[4]).
# First, split into basic UTF-8 characters (letters).
chars = tf.strings.unicode_split(word, 'UTF-8')
tokens = self._StringToToken(chars)
tokens = tf.where(
tf.equal(tokens, NO_TOKEN),
# Unseen character.
tf.broadcast_to(self.unk_id, tf.shape(tokens)),
tokens)
# Create initial candidate list.
candidates = tf.map_fn(
self._MergeTokens, (tokens[:-1], tokens[1:]), dtype=tokens.dtype)
def _ShouldMerge(unused_tokens, candidates):
"""Merge until not possible, or we abort early according to merge_prob."""
return tf.logical_and(
tf.reduce_any(tf.not_equal(candidates, NO_TOKEN)),
tf.random.uniform([]) < self._merge_prob)
def _MergeOneToken(tokens, i):
return tf.expand_dims(
self._MergeTokens((tokens[i], tokens[i + 1])), axis=-1)
def _MergeCandidates(tokens, candidates):
"""Merge in the reverse binary tree."""
best_id = tf.argmin(candidates, output_type=tf.int32)
# Perform the merge at position best_id.
tokens = tf.concat(
[tokens[:best_id], [candidates[best_id]], tokens[best_id + 2:]],
axis=0)
# Recompute the merge candidates.
# Only the neighbors of best_id need to be recomputed.
empty = tf.zeros([0], dtype=candidates.dtype)
def _MergeLeft():
return tf.concat(
[candidates[:best_id - 1],
_MergeOneToken(tokens, best_id - 1)],
axis=0)
left_candidates = tf.cond(tf.equal(best_id, 0), lambda: empty, _MergeLeft)
def _MergeRight():
return tf.concat(
[_MergeOneToken(tokens, best_id), candidates[best_id + 2:]], axis=0)
right_candidates = tf.cond(
tf.greater_equal(best_id,
tf.size(tokens) - 1), lambda: empty, _MergeRight)
candidates = tf.concat([left_candidates, right_candidates], axis=0)
return tokens, candidates
return tf.while_loop(
_ShouldMerge,
_MergeCandidates, (tokens, candidates),
parallel_iterations=1,
back_prop=False)[0]
def Encode(self, text):
"""Converts string `text` to integer ids and the encoded string.
Encoding includes prefixing the beginning-of-word token to each word.
Returns:
ids: the encoded integer ids.
tokens: the encoded string.
"""
words = tf.sparse.to_dense(tf.strings.split([text]), default_value='')[0]
num_words = tf.size(words)
ids_ta = tf.TensorArray(tf.int32, 0, dynamic_size=True)
def _WordsToIds(i, words, ids_ta):
encoded_ids = self._EncodeToIds(BOW_STR + words[i])
ids_ta = ids_ta.scatter(
tf.range(ids_ta.size(),
ids_ta.size() + tf.size(encoded_ids)), encoded_ids)
return i + 1, words, ids_ta
_, _, ids_ta = tf.while_loop(
lambda i, *_: i < num_words,
_WordsToIds,
loop_vars=(tf.constant(0, tf.int32), words, ids_ta),
parallel_iterations=30,
back_prop=False)
ids = ids_ta.stack()
return ids, self._TokenToString(ids)
def Decode(self, ids):
txt = tf.strings.reduce_join(self._TokenToString(ids))
txt = tf.strings.regex_replace(txt, BOW_STR, ' ')
# Note that this strips spaces from the end of the input as well.
# We assume no inputs rely on the existence of trailing whitespace.
txt = tf.strings.strip(txt)
return txt
@property
def sentence_start_id(self):
return self._pieces.index(SENTENCE_START_STRING)
@property
def sentence_start_string(self):
return SENTENCE_START_STRING
@property
def sentence_end_id(self):
return self._pieces.index(SENTENCE_END_STRING)
@property
def sentence_end_string(self):
return SENTENCE_END_STRING
@property
def unk_id(self):
return self._pieces.index(NO_TOKEN_STRING)
| [
"tensorflow.strings.regex_replace",
"tensorflow.not_equal",
"tensorflow.strings.unicode_split",
"tensorflow.concat",
"tensorflow.while_loop",
"tensorflow.gfile.Open",
"tensorflow.TensorArray",
"tensorflow.zeros",
"tensorflow.shape",
"tensorflow.equal",
"tensorflow.strings.split",
"tensorflow.random.uniform",
"tensorflow.constant",
"tensorflow.map_fn",
"tensorflow.strings.strip",
"tensorflow.size",
"tensorflow.argmin"
] | lingvo/core/wpm_encoder.py | [(67, 'lingvo.core.ops.py_x_ops.vocab_id_to_token', 'py_x_ops.vocab_id_to_token', (['token'], {'vocab': 'self._pieces'}), False, 'from lingvo.core.ops import py_x_ops\n'), (87, 'tensorflow.strings.unicode_split', 'tf.strings.unicode_split', (['word', '"""UTF-8"""'], {}), True, 'import tensorflow as tf\n'), (95, 'tensorflow.map_fn', 'tf.map_fn', (['self._MergeTokens', '(tokens[:-1], tokens[1:])'], {'dtype': 'tokens.dtype'}), True, 'import tensorflow as tf\n'), (154, 'tensorflow.size', 'tf.size', (['words'], {}), True, 'import tensorflow as tf\n'), (155, 'tensorflow.TensorArray', 'tf.TensorArray', (['tf.int32', '(0)'], {'dynamic_size': '(True)'}), True, 'import tensorflow as tf\n'), (176, 'tensorflow.strings.regex_replace', 'tf.strings.regex_replace', (['txt', 'BOW_STR', '""" """'], {}), True, 'import tensorflow as tf\n'), (179, 'tensorflow.strings.strip', 'tf.strings.strip', (['txt'], {}), True, 'import tensorflow as tf\n'), (59, 'tensorflow.gfile.Open', 'tf.gfile.Open', (['wpm_filepath', '"""r"""'], {}), True, 'import tensorflow as tf\n'), (71, 'lingvo.core.ops.py_x_ops.token_in_vocab', 'py_x_ops.token_in_vocab', (['tokstr'], {'vocab': 'self._pieces'}), False, 'from lingvo.core.ops import py_x_ops\n'), (72, 'lingvo.core.ops.py_x_ops.vocab_token_to_id', 'py_x_ops.vocab_token_to_id', (['tokstr'], {'vocab': 'self._pieces'}), False, 'from lingvo.core.ops import py_x_ops\n'), (90, 'tensorflow.equal', 'tf.equal', (['tokens', 'NO_TOKEN'], {}), True, 'import tensorflow as tf\n'), (110, 'tensorflow.argmin', 'tf.argmin', (['candidates'], {'output_type': 'tf.int32'}), True, 'import tensorflow as tf\n'), (112, 'tensorflow.concat', 'tf.concat', (['[tokens[:best_id], [candidates[best_id]], tokens[best_id + 2:]]'], {'axis': '(0)'}), True, 'import tensorflow as tf\n'), (117, 'tensorflow.zeros', 'tf.zeros', (['[0]'], {'dtype': 'candidates.dtype'}), True, 'import tensorflow as tf\n'), (135, 'tensorflow.concat', 'tf.concat', (['[left_candidates, right_candidates]'], {'axis': '(0)'}), True, 'import tensorflow as tf\n'), (138, 'tensorflow.while_loop', 'tf.while_loop', (['_ShouldMerge', '_MergeCandidates', '(tokens, candidates)'], {'parallel_iterations': '(1)', 'back_prop': '(False)'}), True, 'import tensorflow as tf\n'), (73, 'tensorflow.shape', 'tf.shape', (['tokstr'], {}), True, 'import tensorflow as tf\n'), (92, 'tensorflow.shape', 'tf.shape', (['tokens'], {}), True, 'import tensorflow as tf\n'), (125, 'tensorflow.equal', 'tf.equal', (['best_id', '(0)'], {}), True, 'import tensorflow as tf\n'), (153, 'tensorflow.strings.split', 'tf.strings.split', (['[text]'], {}), True, 'import tensorflow as tf\n'), (101, 'tensorflow.not_equal', 'tf.not_equal', (['candidates', 'NO_TOKEN'], {}), True, 'import tensorflow as tf\n'), (102, 'tensorflow.random.uniform', 'tf.random.uniform', (['[]'], {}), True, 'import tensorflow as tf\n'), (167, 'tensorflow.constant', 'tf.constant', (['(0)', 'tf.int32'], {}), True, 'import tensorflow as tf\n'), (133, 'tensorflow.size', 'tf.size', (['tokens'], {}), True, 'import tensorflow as tf\n'), (161, 'tensorflow.size', 'tf.size', (['encoded_ids'], {}), True, 'import tensorflow as tf\n')] |
pizzahan/lingvo | 9b85b7ba5d037701302efa807841c05223bc7d1d | # Copyright 2018 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Lingvo MT layers.
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from six.moves import range
import tensorflow as tf
from lingvo.core import base_layer
from lingvo.core import layers
from lingvo.core import layers_with_attention
class TransformerStack(base_layer.BaseLayer):
"""Stacked self- multi-head attention and fully connected layers.
With optional layer normalization applied to the final output.
See 'Attention Is All You Need' https://arxiv.org/abs/1706.03762
for details.
"""
@classmethod
def Params(cls):
"""Configs for TransformerStack."""
p = super(TransformerStack, cls).Params()
# Transformer related
p.Define('model_dim', 1024, 'Characteristic depth (dimension).')
p.Define('num_transformer_layers', 6, 'Number of transformer layers.')
p.Define('transformer_tpl', layers_with_attention.TransformerLayer.Params(),
'TransformerLayer params tpl.')
p.Define('ln_tpl', layers.LayerNorm.Params(), 'Layer norm default params')
p.Define('ln_output', False,
'If set, layer normalization is applied to the final output'
' of the encoder transformer stack.')
p.Define('is_transparent', False,
'If set, outputs a merger of embeddings and layer outputs.')
p.Define('num_transparent_outputs', 6, 'Number of transparent outputs.')
p.Define(
'transparent_merger_tpl',
layers.WeightedSumLayer.Params().Set(add_weight_summaries=True),
'Merger op for layer outputs.')
p.Define('packed_input', False,
'If True, assumes multiple training samples per input.')
p.Define('has_aux_attention', False,
'Allows encoder layers to attend auxiliary inputs.')
p.transformer_tpl.tr_atten_tpl.num_attention_heads = 8
p.transformer_tpl.tr_fflayer_tpl.hidden_dim = 8192
return p
@base_layer.initializer
def __init__(self, params):
super(TransformerStack, self).__init__(params)
p = self.params
with tf.variable_scope(p.name):
# Add transformer layers.
transformer_layer_params = []
for i in range(p.num_transformer_layers):
params = p.transformer_tpl.Copy()
params.name = 'trans_%d' % (i)
params.source_dim = p.model_dim
params.packed_input = p.packed_input
params.has_aux_atten = p.has_aux_attention
transformer_layer_params.append(params)
self.CreateChildren('trans', transformer_layer_params)
# Initialize TransformerStack output layer norm
if p.ln_output:
params = p.ln_tpl.Copy()
# Keeping historic 'enc_out_ln' name for checkpoint compatibility.
params.name = 'enc_out_ln'
params.input_dim = p.model_dim
self.CreateChild('layer_norm_out', params)
if p.is_transparent:
transparent_params = []
if not p.num_transparent_outputs:
raise ValueError('num_transparent_outputs should be greater than 0.')
for i in range(p.num_transparent_outputs):
transparent_param = p.transparent_merger_tpl.Copy()
transparent_param.name = 'transparent_%d' % i
transparent_param.num_sources = 1 + p.num_transformer_layers
transparent_params.append(transparent_param)
self.CreateChildren('transparent_merger', transparent_params)
def FProp(self,
theta,
transformer_input,
paddings,
src_segment_id=None,
aux_vecs=None,
aux_paddings=None,
aux_segment_id=None):
"""Transforms source sequence of Tensors with Transformers layers.
Args:
theta: A `.NestedMap` object containing weights' values of this
layer and its children layers.
transformer_input: A sequence of input Tensors of [time, batch, dim]
shape.
paddings: A sequence of 0s and 1s indicating input paddings of
[time, batch] shape.
src_segment_id: A sequence of ints indicating segment ids of
[time, batch] shape.
aux_vecs: A sequence of input Tensors of [aux_time, batch, dim] shape, as
context for the cross-attention layer.
aux_paddings: A sequence of 0s and 1s indicating input paddings of
[aux_time, batch] shape.
aux_segment_id: A sequence of ints indicating segment ids of
[aux_time, batch] shape.
Returns:
(outputs, out_paddings, segment_ids) tuple. `outputs` is of the shape
[time, batch, depth], and `out_paddings` has shape [time, batch]. If
is_transparent is True, can return a list of num_transformer_layers
tensors of shape [time, batch, depth] if `p.is_eval` is False, and a
[time, batch, depth, num_transparent_outputs] tensor if `p.is_eval` is
True. If packed_input is True, also returns segment_id, otherwise returns
None.
"""
p = self.params
if p.packed_input:
assert src_segment_id is not None, ('Need to specify src_segment_id if '
'packed input is supported.')
outputs_list = [transformer_input]
with tf.name_scope(p.name):
for i, transformer_l in enumerate(self.trans):
# For encoder, keys, values and queries are the same
transformer_output, _ = transformer_l.FProp(
theta.trans[i],
transformer_input,
paddings,
aux_vecs=aux_vecs,
aux_paddings=aux_paddings,
source_segment_id=src_segment_id,
aux_segment_id=aux_segment_id)
transformer_input = transformer_output
outputs_list.append(transformer_output)
if p.ln_output:
transformer_output = self.layer_norm_out.FProp(theta.layer_norm_out,
transformer_output)
# When is_transparent is set, it outputs a list of tensors during
# training and the stacked tensors otherwise. This dual behavior is meant
# to avoid excessive memory usage during training (which was prohibiting
# training on TPUs), and simplify the beam search interface.
if p.is_transparent:
if p.num_transparent_outputs == 1:
transformer_output = self.transparent_merger[0].FProp(
theta.transparent_merger[0], outputs_list)
else:
transformer_output = []
for i in range(p.num_transparent_outputs):
merged_outputs = self.transparent_merger[i].FProp(
theta.transparent_merger[i], outputs_list)
transformer_output.append(merged_outputs)
if p.is_eval:
transformer_output = tf.stack(transformer_output, 3)
return transformer_output, paddings, src_segment_id
| [
"tensorflow.variable_scope",
"tensorflow.stack",
"tensorflow.name_scope"
] | lingvo/tasks/mt/layers.py | [(45, 'lingvo.core.layers_with_attention.TransformerLayer.Params', 'layers_with_attention.TransformerLayer.Params', ([], {}), False, 'from lingvo.core import layers_with_attention\n'), (48, 'lingvo.core.layers.LayerNorm.Params', 'layers.LayerNorm.Params', ([], {}), False, 'from lingvo.core import layers\n'), (73, 'tensorflow.variable_scope', 'tf.variable_scope', (['p.name'], {}), True, 'import tensorflow as tf\n'), (76, 'six.moves.range', 'range', (['p.num_transformer_layers'], {}), False, 'from six.moves import range\n'), (145, 'tensorflow.name_scope', 'tf.name_scope', (['p.name'], {}), True, 'import tensorflow as tf\n'), (98, 'six.moves.range', 'range', (['p.num_transparent_outputs'], {}), False, 'from six.moves import range\n'), (58, 'lingvo.core.layers.WeightedSumLayer.Params', 'layers.WeightedSumLayer.Params', ([], {}), False, 'from lingvo.core import layers\n'), (174, 'six.moves.range', 'range', (['p.num_transparent_outputs'], {}), False, 'from six.moves import range\n'), (179, 'tensorflow.stack', 'tf.stack', (['transformer_output', '(3)'], {}), True, 'import tensorflow as tf\n')] |
MuAuan/cheating_DL | e8c543d83c304ca072b479cf34fe0a07b58ec6e3 | #grad_cam
#[keras-grad-cam/grad-cam.py](https://github.com/jacobgil/keras-grad-cam/blob/master/grad-cam.py)
from keras.applications.vgg16 import (VGG16, preprocess_input, decode_predictions)
from keras.models import Model
from keras.preprocessing import image
from keras.layers.core import Lambda
from keras.models import Sequential
from tensorflow.python.framework import ops
import keras.backend as K
import tensorflow as tf
import numpy as np
import keras
import sys
import cv2
#from keras.applications.resnet50 import ResNet50, preprocess_input, decode_predictions
#from keras.applications.vgg19 import VGG19, preprocess_input, decode_predictions
#from keras.applications.inception_v3 import InceptionV3, preprocess_input, decode_predictions
def target_category_loss(x, category_index, nb_classes):
return tf.multiply(x, K.one_hot([category_index], nb_classes))
def target_category_loss_output_shape(input_shape):
return input_shape
def normalize(x):
# utility function to normalize a tensor by its L2 norm
return x / (K.sqrt(K.mean(K.square(x))) + 1e-5)
def load_image(path):
img_path = sys.argv[1]
img = image.load_img(img_path, target_size=(224,224)) #299,299)) #224, 224))
x = image.img_to_array(img)
x = np.expand_dims(x, axis=0)
x = preprocess_input(x)
return x
def register_gradient():
if "GuidedBackProp" not in ops._gradient_registry._registry:
@ops.RegisterGradient("GuidedBackProp")
def _GuidedBackProp(op, grad):
dtype = op.inputs[0].dtype
return grad * tf.cast(grad > 0., dtype) * \
tf.cast(op.inputs[0] > 0., dtype)
def compile_saliency_function(model, activation_layer='block5_conv3'): #mixed10 'activation_49' add_16 add_32 activation_98
input_img = model.input
layer_dict = dict([(layer.name, layer) for layer in model.layers[1:]])
#print(layer_dict)
layer_output = layer_dict[activation_layer].output
max_output = K.max(layer_output, axis=3)
saliency = K.gradients(K.sum(max_output), input_img)[0]
return K.function([input_img, K.learning_phase()], [saliency])
def modify_backprop(model, name):
g = tf.get_default_graph()
with g.gradient_override_map({'Relu': name}):
# get layers that have an activation
layer_dict = [layer for layer in model.layers[1:]
if hasattr(layer, 'activation')]
# replace relu activation
for layer in layer_dict:
if layer.activation == keras.activations.relu:
layer.activation = tf.nn.relu
# re-instanciate a new model
new_model = VGG16(weights='imagenet')
#new_model = ResNet50(weights='imagenet')
new_model.summary()
return new_model
def deprocess_image(x):
'''
Same normalization as in:
https://github.com/fchollet/keras/blob/master/examples/conv_filter_visualization.py
'''
if np.ndim(x) > 3:
x = np.squeeze(x)
# normalize tensor: center on 0., ensure std is 0.1
x -= x.mean()
x /= (x.std() + 1e-5)
x *= 0.1
# clip to [0, 1]
x += 0.5
x = np.clip(x, 0, 1)
# convert to RGB array
x *= 255
if K.image_dim_ordering() == 'th':
x = x.transpose((1, 2, 0))
x = np.clip(x, 0, 255).astype('uint8')
return x
def _compute_gradients(tensor, var_list):
grads = tf.gradients(tensor, var_list)
return [grad if grad is not None else tf.zeros_like(var) for var, grad in zip(var_list, grads)]
def grad_cam(input_model, image, category_index, layer_name):
nb_classes = 1000
target_layer = lambda x: target_category_loss(x, category_index, nb_classes)
x = Lambda(target_layer, output_shape = target_category_loss_output_shape)(input_model.output)
model = Model(inputs=input_model.input, outputs=x)
#model.summary()
loss = K.sum(model.output)
conv_output = [l for l in model.layers if l.name == layer_name][0].output #is
grads = normalize(_compute_gradients(loss, [conv_output])[0])
gradient_function = K.function([model.input], [conv_output, grads])
output, grads_val = gradient_function([image])
output, grads_val = output[0, :], grads_val[0, :, :, :]
weights = np.mean(grads_val, axis = (0, 1))
cam = np.ones(output.shape[0 : 2], dtype = np.float32)
for i, w in enumerate(weights):
cam += w * output[:, :, i]
cam = cv2.resize(cam, (224,224)) #299,299)) #224, 224))
cam = np.maximum(cam, 0)
heatmap = cam / np.max(cam)
#Return to BGR [0..255] from the preprocessed image
image = image[0, :]
image -= np.min(image)
image = np.minimum(image, 255)
cam = cv2.applyColorMap(np.uint8(255*heatmap), cv2.COLORMAP_JET)
cam = np.float32(cam) + np.float32(image)
cam = 255 * cam / np.max(cam)
return np.uint8(cam), heatmap
preprocessed_input = load_image(sys.argv[1])
model = VGG16(weights='imagenet')
#model = VGG19(weights='imagenet')
#model = InceptionV3(weights='imagenet')
#model = ResNet50(weights = 'imagenet')
#model.summary()
target_layer = 'block5_conv3' #'activation_49' add_16 "block5_conv3"
predictions = model.predict(preprocessed_input)
register_gradient()
guided_model = modify_backprop(model, 'GuidedBackProp')
guided_model.summary()
for i in range(5):
top_1 = decode_predictions(predictions)[0][i]
print(predictions.argsort()[0][::-1][i])
print('Predicted class:')
print('%s (%s) with probability %.2f' % (top_1[1], top_1[0], top_1[2]))
predicted_class = predictions.argsort()[0][::-1][i] #np.argmax(predictions)
cam, heatmap = grad_cam(model, preprocessed_input, predicted_class, target_layer)
cv2.imwrite("gradcam"+str(top_1[1])+".jpg", cam)
saliency_fn = compile_saliency_function(guided_model)
saliency = saliency_fn([preprocessed_input, 0])
gradcam = saliency[0] * heatmap[..., np.newaxis]
cv2.imwrite("guided_gradcam"+str(top_1[1])+".jpg", deprocess_image(gradcam))
| [
"numpy.expand_dims",
"numpy.maximum",
"numpy.minimum",
"tensorflow.python.framework.ops.RegisterGradient",
"numpy.clip",
"numpy.min",
"numpy.uint8",
"numpy.squeeze",
"tensorflow.cast",
"tensorflow.gradients",
"numpy.ones",
"numpy.ndim",
"numpy.max",
"tensorflow.zeros_like",
"numpy.mean",
"numpy.float32",
"tensorflow.get_default_graph"
] | grad-cam_5category.py | [(136, 'keras.applications.vgg16.VGG16', 'VGG16', ([], {'weights': '"""imagenet"""'}), False, 'from keras.applications.vgg16 import VGG16, preprocess_input, decode_predictions\n'), (34, 'numpy.expand_dims', 'np.expand_dims', (['x'], {'axis': '(0)'}), True, 'import numpy as np\n'), (35, 'keras.applications.vgg16.preprocess_input', 'preprocess_input', (['x'], {}), False, 'from keras.applications.vgg16 import VGG16, preprocess_input, decode_predictions\n'), (51, 'keras.backend.max', 'K.max', (['layer_output'], {'axis': '(3)'}), True, 'import keras.backend as K\n'), (56, 'tensorflow.get_default_graph', 'tf.get_default_graph', ([], {}), True, 'import tensorflow as tf\n'), (88, 'numpy.clip', 'np.clip', (['x', '(0)', '(1)'], {}), True, 'import numpy as np\n'), (98, 'tensorflow.gradients', 'tf.gradients', (['tensor', 'var_list'], {}), True, 'import tensorflow as tf\n'), (105, 'keras.models.Model', 'Model', ([], {'inputs': 'input_model.input', 'outputs': 'x'}), False, 'from keras.models import Model\n'), (107, 'keras.backend.sum', 'K.sum', (['model.output'], {}), True, 'import keras.backend as K\n'), (110, 'keras.backend.function', 'K.function', (['[model.input]', '[conv_output, grads]'], {}), True, 'import keras.backend as K\n'), (115, 'numpy.mean', 'np.mean', (['grads_val'], {'axis': '(0, 1)'}), True, 'import numpy as np\n'), (116, 'numpy.ones', 'np.ones', (['output.shape[0:2]'], {'dtype': 'np.float32'}), True, 'import numpy as np\n'), (121, 'cv2.resize', 'cv2.resize', (['cam', '(224, 224)'], {}), False, 'import cv2\n'), (122, 'numpy.maximum', 'np.maximum', (['cam', '(0)'], {}), True, 'import numpy as np\n'), (127, 'numpy.min', 'np.min', (['image'], {}), True, 'import numpy as np\n'), (128, 'numpy.minimum', 'np.minimum', (['image', '(255)'], {}), True, 'import numpy as np\n'), (21, 'keras.backend.one_hot', 'K.one_hot', (['[category_index]', 'nb_classes'], {}), True, 'import keras.backend as K\n'), (40, 'tensorflow.python.framework.ops.RegisterGradient', 'ops.RegisterGradient', (['"""GuidedBackProp"""'], {}), False, 'from tensorflow.python.framework import ops\n'), (69, 'keras.applications.vgg16.VGG16', 'VGG16', ([], {'weights': '"""imagenet"""'}), False, 'from keras.applications.vgg16 import VGG16, preprocess_input, decode_predictions\n'), (79, 'numpy.ndim', 'np.ndim', (['x'], {}), True, 'import numpy as np\n'), (80, 'numpy.squeeze', 'np.squeeze', (['x'], {}), True, 'import numpy as np\n'), (92, 'keras.backend.image_dim_ordering', 'K.image_dim_ordering', ([], {}), True, 'import keras.backend as K\n'), (104, 'keras.layers.core.Lambda', 'Lambda', (['target_layer'], {'output_shape': 'target_category_loss_output_shape'}), False, 'from keras.layers.core import Lambda\n'), (123, 'numpy.max', 'np.max', (['cam'], {}), True, 'import numpy as np\n'), (130, 'numpy.uint8', 'np.uint8', (['(255 * heatmap)'], {}), True, 'import numpy as np\n'), (131, 'numpy.float32', 'np.float32', (['cam'], {}), True, 'import numpy as np\n'), (131, 'numpy.float32', 'np.float32', (['image'], {}), True, 'import numpy as np\n'), (132, 'numpy.max', 'np.max', (['cam'], {}), True, 'import numpy as np\n'), (133, 'numpy.uint8', 'np.uint8', (['cam'], {}), True, 'import numpy as np\n'), (52, 'keras.backend.sum', 'K.sum', (['max_output'], {}), True, 'import keras.backend as K\n'), (53, 'keras.backend.learning_phase', 'K.learning_phase', ([], {}), True, 'import keras.backend as K\n'), (94, 'numpy.clip', 'np.clip', (['x', '(0)', '(255)'], {}), True, 'import numpy as np\n'), (99, 'tensorflow.zeros_like', 'tf.zeros_like', (['var'], {}), True, 'import tensorflow as tf\n'), (148, 'keras.applications.vgg16.decode_predictions', 'decode_predictions', (['predictions'], {}), False, 'from keras.applications.vgg16 import VGG16, preprocess_input, decode_predictions\n'), (44, 'tensorflow.cast', 'tf.cast', (['(op.inputs[0] > 0.0)', 'dtype'], {}), True, 'import tensorflow as tf\n'), (28, 'keras.backend.square', 'K.square', (['x'], {}), True, 'import keras.backend as K\n'), (43, 'tensorflow.cast', 'tf.cast', (['(grad > 0.0)', 'dtype'], {}), True, 'import tensorflow as tf\n')] |
xuyuandong/sequence_behavior_ctr_model | e1bb71b4579456b1c6fbf3b432a84a3cb52611b7 | import tensorflow as tf
#from tensorflow.python.ops.rnn_cell import *
#from tensorflow.python.ops.rnn_cell_impl import _Linear
from tensorflow.contrib.rnn.python.ops.core_rnn_cell import *
#from tensorflow import keras
from tensorflow.python.ops import math_ops
from tensorflow.python.ops import init_ops
from tensorflow.python.ops import array_ops
from tensorflow.python.ops import variable_scope as vs
#from keras import backend as K
def din_attention(query, facts, attention_size, mask=None, stag='null', mode='SUM', softmax_stag=1, time_major=False, return_alphas=False):
if isinstance(facts, tuple):
# In case of Bi-RNN, concatenate the forward and the backward RNN outputs.
facts = tf.concat(facts, 2)
print ("query_size mismatch")
query = tf.concat(values = [
query,
query,
], axis=1)
if time_major:
# (T,B,D) => (B,T,D)
facts = tf.array_ops.transpose(facts, [1, 0, 2])
facts_size = facts.get_shape().as_list()[-1] # D value - hidden size of the RNN layer
querry_size = query.get_shape().as_list()[-1]
queries = tf.tile(query, [1, tf.shape(facts)[1]])
queries = tf.reshape(queries, tf.shape(facts))
din_all = tf.concat([queries, facts, queries-facts, queries*facts], axis=-1)
d_layer_1_all = tf.layers.dense(din_all, 80, activation=tf.nn.sigmoid, name='f1_att' + stag)
d_layer_2_all = tf.layers.dense(d_layer_1_all, 40, activation=tf.nn.sigmoid, name='f2_att' + stag)
d_layer_3_all = tf.layers.dense(d_layer_2_all, 1, activation=None, name='f3_att' + stag)
d_layer_3_all = tf.reshape(d_layer_3_all, [-1, 1, tf.shape(facts)[1]])
scores = d_layer_3_all
if mask is not None:
mask = tf.equal(mask, tf.ones_like(mask))
key_masks = tf.expand_dims(mask, 1) # [B, 1, T]
paddings = tf.ones_like(scores) * (-2 ** 32 + 1)
scores = tf.where(key_masks, scores, paddings) # [B, 1, T]
# Activation
if softmax_stag:
scores = tf.nn.softmax(scores) # [B, 1, T]
# Weighted sum
if mode == 'SUM':
output = tf.matmul(scores, facts) # [B, 1, H]
# output = tf.reshape(output, [-1, tf.shape(facts)[-1]])
else:
scores = tf.reshape(scores, [-1, tf.shape(facts)[1]])
output = facts * tf.expand_dims(scores, -1)
output = tf.reshape(output, tf.shape(facts))
if return_alphas:
return output, scores
return output
class VecAttGRUCell(RNNCell):
"""Gated Recurrent Unit cell (cf. http://arxiv.org/abs/1406.1078).
Args:
num_units: int, The number of units in the GRU cell.
activation: Nonlinearity to use. Default: `tanh`.
reuse: (optional) Python boolean describing whether to reuse variables
in an existing scope. If not `True`, and the existing scope already has
the given variables, an error is raised.
kernel_initializer: (optional) The initializer to use for the weight and
projection matrices.
bias_initializer: (optional) The initializer to use for the bias.
"""
def __init__(self,
num_units,
activation=None,
reuse=None,
kernel_initializer=None,
bias_initializer=None):
super(VecAttGRUCell, self).__init__(_reuse=reuse)
self._num_units = num_units
self._activation = activation or math_ops.tanh
self._kernel_initializer = kernel_initializer
self._bias_initializer = bias_initializer
self._gate_linear = None
self._candidate_linear = None
@property
def state_size(self):
return self._num_units
@property
def output_size(self):
return self._num_units
def __call__(self, inputs, state, att_score):
return self.call(inputs, state, att_score)
def call(self, inputs, state, att_score=None):
"""Gated recurrent unit (GRU) with nunits cells."""
if self._gate_linear is None:
bias_ones = self._bias_initializer
if self._bias_initializer is None:
bias_ones = init_ops.constant_initializer(1.0, dtype=inputs.dtype)
with vs.variable_scope("gates"): # Reset gate and update gate.
self._gate_linear = _Linear(
[inputs, state],
2 * self._num_units,
True,
bias_initializer=bias_ones,
kernel_initializer=self._kernel_initializer)
value = math_ops.sigmoid(self._gate_linear([inputs, state]))
r, u = array_ops.split(value=value, num_or_size_splits=2, axis=1)
r_state = r * state
if self._candidate_linear is None:
with vs.variable_scope("candidate"):
self._candidate_linear = _Linear(
[inputs, r_state],
self._num_units,
True,
bias_initializer=self._bias_initializer,
kernel_initializer=self._kernel_initializer)
c = self._activation(self._candidate_linear([inputs, r_state]))
u = (1.0 - att_score) * u
new_h = u * state + (1 - u) * c
return new_h, new_h
def prelu(_x, scope=''):
"""parametric ReLU activation"""
with tf.variable_scope(name_or_scope=scope, default_name="prelu"):
_alpha = tf.get_variable("prelu_"+scope, shape=_x.get_shape()[-1],
dtype=_x.dtype, initializer=tf.constant_initializer(0.1))
return tf.maximum(0.0, _x) + _alpha * tf.minimum(0.0, _x)
def calc_auc(raw_arr):
"""Summary
Args:
raw_arr (TYPE): Description
Returns:
TYPE: Description
"""
arr = sorted(raw_arr, key=lambda d:d[0], reverse=True)
pos, neg = 0., 0.
for record in arr:
if record[1] == 1.:
pos += 1
else:
neg += 1
fp, tp = 0., 0.
xy_arr = []
for record in arr:
if record[1] == 1.:
tp += 1
else:
fp += 1
xy_arr.append([fp/neg, tp/pos])
auc = 0.
prev_x = 0.
prev_y = 0.
for x, y in xy_arr:
if x != prev_x:
auc += ((x - prev_x) * (y + prev_y) / 2.)
prev_x = x
prev_y = y
return auc
def calc_gauc(raw_arr, nick_index):
"""Summary
Args:
raw_arr (TYPE): Description
Returns:
TYPE: Description
"""
last_index = 0
gauc = 0.
pv_sum = 0
for idx in xrange(len(nick_index)):
if nick_index[idx] != nick_index[last_index]:
input_arr = raw_arr[last_index:idx]
auc_val=calc_auc(input_arr)
if auc_val >= 0.0:
gauc += auc_val * len(input_arr)
pv_sum += len(input_arr)
else:
pv_sum += len(input_arr)
last_index = idx
return gauc / pv_sum
def attention(query, facts, attention_size, mask, stag='null', mode='LIST', softmax_stag=1, time_major=False, return_alphas=False):
if isinstance(facts, tuple):
# In case of Bi-RNN, concatenate the forward and the backward RNN outputs.
facts = tf.concat(facts, 2)
if time_major:
# (T,B,D) => (B,T,D)
facts = tf.array_ops.transpose(facts, [1, 0, 2])
mask = tf.equal(mask, tf.ones_like(mask))
hidden_size = facts.get_shape().as_list()[-1] # D value - hidden size of the RNN layer
input_size = query.get_shape().as_list()[-1]
# Trainable parameters
w1 = tf.Variable(tf.random_normal([hidden_size, attention_size], stddev=0.1))
w2 = tf.Variable(tf.random_normal([input_size, attention_size], stddev=0.1))
b = tf.Variable(tf.random_normal([attention_size], stddev=0.1))
v = tf.Variable(tf.random_normal([attention_size], stddev=0.1))
with tf.name_scope('v'):
# Applying fully connected layer with non-linear activation to each of the B*T timestamps;
# the shape of `tmp` is (B,T,D)*(D,A)=(B,T,A), where A=attention_size
tmp1 = tf.tensordot(facts, w1, axes=1)
tmp2 = tf.tensordot(query, w2, axes=1)
tmp2 = tf.reshape(tmp2, [-1, 1, tf.shape(tmp2)[-1]])
tmp = tf.tanh((tmp1 + tmp2) + b)
# For each of the timestamps its vector of size A from `tmp` is reduced with `v` vector
v_dot_tmp = tf.tensordot(tmp, v, axes=1, name='v_dot_tmp') # (B,T) shape
key_masks = mask # [B, 1, T]
# key_masks = tf.expand_dims(mask, 1) # [B, 1, T]
paddings = tf.ones_like(v_dot_tmp) * (-2 ** 32 + 1)
v_dot_tmp = tf.where(key_masks, v_dot_tmp, paddings) # [B, 1, T]
alphas = tf.nn.softmax(v_dot_tmp, name='alphas') # (B,T) shape
# Output of (Bi-)RNN is reduced with attention vector; the result has (B,D) shape
#output = tf.reduce_sum(facts * tf.expand_dims(alphas, -1), 1)
output = facts * tf.expand_dims(alphas, -1)
output = tf.reshape(output, tf.shape(facts))
# output = output / (facts.get_shape().as_list()[-1] ** 0.5)
if not return_alphas:
return output
else:
return output, alphas
def din_fcn_attention(query, facts, attention_size, mask, stag='null', mode='SUM', softmax_stag=1, time_major=False, return_alphas=False, forCnn=False):
if isinstance(facts, tuple):
# In case of Bi-RNN, concatenate the forward and the backward RNN outputs.
facts = tf.concat(facts, 2)
if len(facts.get_shape().as_list()) == 2:
facts = tf.expand_dims(facts, 1)
if time_major:
# (T,B,D) => (B,T,D)
facts = tf.array_ops.transpose(facts, [1, 0, 2])
# Trainable parameters
facts_size = facts.get_shape().as_list()[-1] # D value - hidden size of the RNN layer
querry_size = query.get_shape().as_list()[-1]
query = tf.layers.dense(query, facts_size, activation=None, name='f1' + stag)
query = prelu(query)
queries = tf.tile(query, [1, tf.shape(facts)[1]])
queries = tf.reshape(queries, tf.shape(facts))
din_all = tf.concat([queries, facts, queries-facts, queries*facts], axis=-1)
d_layer_1_all = tf.layers.dense(din_all, 80, activation=tf.nn.sigmoid, name='f1_att' + stag)
d_layer_2_all = tf.layers.dense(d_layer_1_all, 40, activation=tf.nn.sigmoid, name='f2_att' + stag)
d_layer_3_all = tf.layers.dense(d_layer_2_all, 1, activation=None, name='f3_att' + stag)
d_layer_3_all = tf.reshape(d_layer_3_all, [-1, 1, tf.shape(facts)[1]])
scores = d_layer_3_all
# Mask
if mask is not None:
# key_masks = tf.sequence_mask(facts_length, tf.shape(facts)[1]) # [B, T]
key_masks = tf.expand_dims(mask, 1) # [B, 1, T]
paddings = tf.ones_like(scores) * (-2 ** 32 + 1)
if not forCnn:
scores = tf.where(key_masks, scores, paddings) # [B, 1, T]
# Scale
# scores = scores / (facts.get_shape().as_list()[-1] ** 0.5)
# Activation
if softmax_stag:
scores = tf.nn.softmax(scores) # [B, 1, T]
# Weighted sum
if mode == 'SUM':
output = tf.matmul(scores, facts) # [B, 1, H]
# output = tf.reshape(output, [-1, tf.shape(facts)[-1]])
else:
scores = tf.reshape(scores, [-1, tf.shape(facts)[1]])
output = facts * tf.expand_dims(scores, -1)
output = tf.reshape(output, tf.shape(facts))
if return_alphas:
return output, scores
return output
def self_attention(facts, ATTENTION_SIZE, mask, stag='null'):
if len(facts.get_shape().as_list()) == 2:
facts = tf.expand_dims(facts, 1)
def cond(batch, output, i):
return tf.less(i, tf.shape(batch)[1])
def body(batch, output, i):
self_attention_tmp = din_fcn_attention(batch[:, i, :], batch[:, 0:i+1, :],
ATTENTION_SIZE, mask[:, 0:i+1], softmax_stag=1, stag=stag,
mode='LIST')
self_attention_tmp = tf.reduce_sum(self_attention_tmp, 1)
output = output.write(i, self_attention_tmp)
return batch, output, i + 1
output_ta = tf.TensorArray(dtype=tf.float32,
size=0,
dynamic_size=True,
element_shape=(facts[:, 0, :].get_shape()))
_, output_op, _ = tf.while_loop(cond, body, [facts, output_ta, 0])
self_attention = output_op.stack()
self_attention = tf.transpose(self_attention, perm = [1, 0, 2])
return self_attention
def self_all_attention(facts, ATTENTION_SIZE, mask, stag='null'):
if len(facts.get_shape().as_list()) == 2:
facts = tf.expand_dims(facts, 1)
def cond(batch, output, i):
return tf.less(i, tf.shape(batch)[1])
def body(batch, output, i):
self_attention_tmp = din_fcn_attention(batch[:, i, :], batch,
ATTENTION_SIZE, mask, softmax_stag=1, stag=stag,
mode='LIST')
self_attention_tmp = tf.reduce_sum(self_attention_tmp, 1)
output = output.write(i, self_attention_tmp)
return batch, output, i + 1
output_ta = tf.TensorArray(dtype=tf.float32,
size=0,
dynamic_size=True,
element_shape=(facts[:, 0, :].get_shape()))
_, output_op, _ = tf.while_loop(cond, body, [facts, output_ta, 0])
self_attention = output_op.stack()
self_attention = tf.transpose(self_attention, perm = [1, 0, 2])
return self_attention
def din_fcn_shine(query, facts, attention_size, mask, stag='null', mode='SUM', softmax_stag=1, time_major=False, return_alphas=False):
if isinstance(facts, tuple):
# In case of Bi-RNN, concatenate the forward and the backward RNN outputs.
facts = tf.concat(facts, 2)
if time_major:
# (T,B,D) => (B,T,D)
facts = tf.array_ops.transpose(facts, [1, 0, 2])
# Trainable parameters
mask = tf.equal(mask, tf.ones_like(mask))
facts_size = facts.get_shape().as_list()[-1] # D value - hidden size of the RNN layer
querry_size = query.get_shape().as_list()[-1]
query = tf.layers.dense(query, facts_size, activation=None, name='f1_trans_shine' + stag)
query = prelu(query)
queries = tf.tile(query, [1, tf.shape(facts)[1]])
queries = tf.reshape(queries, tf.shape(facts))
din_all = tf.concat([queries, facts, queries-facts, queries*facts], axis=-1)
d_layer_1_all = tf.layers.dense(din_all, facts_size, activation=tf.nn.sigmoid, name='f1_shine_att' + stag)
d_layer_2_all = tf.layers.dense(d_layer_1_all, facts_size, activation=tf.nn.sigmoid, name='f2_shine_att' + stag)
d_layer_2_all = tf.reshape(d_layer_2_all, tf.shape(facts))
output = d_layer_2_all
return output
| [
"tensorflow.concat",
"tensorflow.python.ops.array_ops.split",
"tensorflow.reduce_sum",
"tensorflow.minimum",
"tensorflow.tanh",
"tensorflow.where",
"tensorflow.python.ops.init_ops.constant_initializer",
"tensorflow.while_loop",
"tensorflow.layers.dense",
"tensorflow.name_scope",
"tensorflow.python.ops.variable_scope.variable_scope",
"tensorflow.tensordot",
"tensorflow.matmul",
"tensorflow.shape",
"tensorflow.nn.softmax",
"tensorflow.transpose",
"tensorflow.maximum",
"tensorflow.ones_like",
"tensorflow.expand_dims",
"tensorflow.constant_initializer",
"tensorflow.variable_scope",
"tensorflow.array_ops.transpose",
"tensorflow.random_normal"
] | script/utils.py | [(29, 'tensorflow.concat', 'tf.concat', (['[queries, facts, queries - facts, queries * facts]'], {'axis': '(-1)'}), True, 'import tensorflow as tf\n'), (30, 'tensorflow.layers.dense', 'tf.layers.dense', (['din_all', '(80)'], {'activation': 'tf.nn.sigmoid', 'name': "('f1_att' + stag)"}), True, 'import tensorflow as tf\n'), (31, 'tensorflow.layers.dense', 'tf.layers.dense', (['d_layer_1_all', '(40)'], {'activation': 'tf.nn.sigmoid', 'name': "('f2_att' + stag)"}), True, 'import tensorflow as tf\n'), (32, 'tensorflow.layers.dense', 'tf.layers.dense', (['d_layer_2_all', '(1)'], {'activation': 'None', 'name': "('f3_att' + stag)"}), True, 'import tensorflow as tf\n'), (228, 'tensorflow.tensordot', 'tf.tensordot', (['tmp', 'v'], {'axes': '(1)', 'name': '"""v_dot_tmp"""'}), True, 'import tensorflow as tf\n'), (232, 'tensorflow.where', 'tf.where', (['key_masks', 'v_dot_tmp', 'paddings'], {}), True, 'import tensorflow as tf\n'), (233, 'tensorflow.nn.softmax', 'tf.nn.softmax', (['v_dot_tmp'], {'name': '"""alphas"""'}), True, 'import tensorflow as tf\n'), (259, 'tensorflow.layers.dense', 'tf.layers.dense', (['query', 'facts_size'], {'activation': 'None', 'name': "('f1' + stag)"}), True, 'import tensorflow as tf\n'), (263, 'tensorflow.concat', 'tf.concat', (['[queries, facts, queries - facts, queries * facts]'], {'axis': '(-1)'}), True, 'import tensorflow as tf\n'), (264, 'tensorflow.layers.dense', 'tf.layers.dense', (['din_all', '(80)'], {'activation': 'tf.nn.sigmoid', 'name': "('f1_att' + stag)"}), True, 'import tensorflow as tf\n'), (265, 'tensorflow.layers.dense', 'tf.layers.dense', (['d_layer_1_all', '(40)'], {'activation': 'tf.nn.sigmoid', 'name': "('f2_att' + stag)"}), True, 'import tensorflow as tf\n'), (266, 'tensorflow.layers.dense', 'tf.layers.dense', (['d_layer_2_all', '(1)'], {'activation': 'None', 'name': "('f3_att' + stag)"}), True, 'import tensorflow as tf\n'), (315, 'tensorflow.while_loop', 'tf.while_loop', (['cond', 'body', '[facts, output_ta, 0]'], {}), True, 'import tensorflow as tf\n'), (317, 'tensorflow.transpose', 'tf.transpose', (['self_attention'], {'perm': '[1, 0, 2]'}), True, 'import tensorflow as tf\n'), (339, 'tensorflow.while_loop', 'tf.while_loop', (['cond', 'body', '[facts, output_ta, 0]'], {}), True, 'import tensorflow as tf\n'), (341, 'tensorflow.transpose', 'tf.transpose', (['self_attention'], {'perm': '[1, 0, 2]'}), True, 'import tensorflow as tf\n'), (356, 'tensorflow.layers.dense', 'tf.layers.dense', (['query', 'facts_size'], {'activation': 'None', 'name': "('f1_trans_shine' + stag)"}), True, 'import tensorflow as tf\n'), (360, 'tensorflow.concat', 'tf.concat', (['[queries, facts, queries - facts, queries * facts]'], {'axis': '(-1)'}), True, 'import tensorflow as tf\n'), (361, 'tensorflow.layers.dense', 'tf.layers.dense', (['din_all', 'facts_size'], {'activation': 'tf.nn.sigmoid', 'name': "('f1_shine_att' + stag)"}), True, 'import tensorflow as tf\n'), (362, 'tensorflow.layers.dense', 'tf.layers.dense', (['d_layer_1_all', 'facts_size'], {'activation': 'tf.nn.sigmoid', 'name': "('f2_shine_att' + stag)"}), True, 'import tensorflow as tf\n'), (15, 'tensorflow.concat', 'tf.concat', (['facts', '(2)'], {}), True, 'import tensorflow as tf\n'), (17, 'tensorflow.concat', 'tf.concat', ([], {'values': '[query, query]', 'axis': '(1)'}), True, 'import tensorflow as tf\n'), (24, 'tensorflow.array_ops.transpose', 'tf.array_ops.transpose', (['facts', '[1, 0, 2]'], {}), True, 'import tensorflow as tf\n'), (28, 'tensorflow.shape', 'tf.shape', (['facts'], {}), True, 'import tensorflow as tf\n'), (38, 'tensorflow.expand_dims', 'tf.expand_dims', (['mask', '(1)'], {}), True, 'import tensorflow as tf\n'), (40, 'tensorflow.where', 'tf.where', (['key_masks', 'scores', 'paddings'], {}), True, 'import tensorflow as tf\n'), (44, 'tensorflow.nn.softmax', 'tf.nn.softmax', (['scores'], {}), True, 'import tensorflow as tf\n'), (48, 'tensorflow.matmul', 'tf.matmul', (['scores', 'facts'], {}), True, 'import tensorflow as tf\n'), (112, 'tensorflow.python.ops.array_ops.split', 'array_ops.split', ([], {'value': 'value', 'num_or_size_splits': '(2)', 'axis': '(1)'}), False, 'from tensorflow.python.ops import array_ops\n'), (130, 'tensorflow.variable_scope', 'tf.variable_scope', ([], {'name_or_scope': 'scope', 'default_name': '"""prelu"""'}), True, 'import tensorflow as tf\n'), (203, 'tensorflow.concat', 'tf.concat', (['facts', '(2)'], {}), True, 'import tensorflow as tf\n'), (207, 'tensorflow.array_ops.transpose', 'tf.array_ops.transpose', (['facts', '[1, 0, 2]'], {}), True, 'import tensorflow as tf\n'), (209, 'tensorflow.ones_like', 'tf.ones_like', (['mask'], {}), True, 'import tensorflow as tf\n'), (214, 'tensorflow.random_normal', 'tf.random_normal', (['[hidden_size, attention_size]'], {'stddev': '(0.1)'}), True, 'import tensorflow as tf\n'), (215, 'tensorflow.random_normal', 'tf.random_normal', (['[input_size, attention_size]'], {'stddev': '(0.1)'}), True, 'import tensorflow as tf\n'), (216, 'tensorflow.random_normal', 'tf.random_normal', (['[attention_size]'], {'stddev': '(0.1)'}), True, 'import tensorflow as tf\n'), (217, 'tensorflow.random_normal', 'tf.random_normal', (['[attention_size]'], {'stddev': '(0.1)'}), True, 'import tensorflow as tf\n'), (219, 'tensorflow.name_scope', 'tf.name_scope', (['"""v"""'], {}), True, 'import tensorflow as tf\n'), (222, 'tensorflow.tensordot', 'tf.tensordot', (['facts', 'w1'], {'axes': '(1)'}), True, 'import tensorflow as tf\n'), (223, 'tensorflow.tensordot', 'tf.tensordot', (['query', 'w2'], {'axes': '(1)'}), True, 'import tensorflow as tf\n'), (225, 'tensorflow.tanh', 'tf.tanh', (['(tmp1 + tmp2 + b)'], {}), True, 'import tensorflow as tf\n'), (231, 'tensorflow.ones_like', 'tf.ones_like', (['v_dot_tmp'], {}), True, 'import tensorflow as tf\n'), (237, 'tensorflow.expand_dims', 'tf.expand_dims', (['alphas', '(-1)'], {}), True, 'import tensorflow as tf\n'), (238, 'tensorflow.shape', 'tf.shape', (['facts'], {}), True, 'import tensorflow as tf\n'), (249, 'tensorflow.concat', 'tf.concat', (['facts', '(2)'], {}), True, 'import tensorflow as tf\n'), (251, 'tensorflow.expand_dims', 'tf.expand_dims', (['facts', '(1)'], {}), True, 'import tensorflow as tf\n'), (255, 'tensorflow.array_ops.transpose', 'tf.array_ops.transpose', (['facts', '[1, 0, 2]'], {}), True, 'import tensorflow as tf\n'), (262, 'tensorflow.shape', 'tf.shape', (['facts'], {}), True, 'import tensorflow as tf\n'), (272, 'tensorflow.expand_dims', 'tf.expand_dims', (['mask', '(1)'], {}), True, 'import tensorflow as tf\n'), (282, 'tensorflow.nn.softmax', 'tf.nn.softmax', (['scores'], {}), True, 'import tensorflow as tf\n'), (286, 'tensorflow.matmul', 'tf.matmul', (['scores', 'facts'], {}), True, 'import tensorflow as tf\n'), (298, 'tensorflow.expand_dims', 'tf.expand_dims', (['facts', '(1)'], {}), True, 'import tensorflow as tf\n'), (307, 'tensorflow.reduce_sum', 'tf.reduce_sum', (['self_attention_tmp', '(1)'], {}), True, 'import tensorflow as tf\n'), (322, 'tensorflow.expand_dims', 'tf.expand_dims', (['facts', '(1)'], {}), True, 'import tensorflow as tf\n'), (331, 'tensorflow.reduce_sum', 'tf.reduce_sum', (['self_attention_tmp', '(1)'], {}), True, 'import tensorflow as tf\n'), (347, 'tensorflow.concat', 'tf.concat', (['facts', '(2)'], {}), True, 'import tensorflow as tf\n'), (351, 'tensorflow.array_ops.transpose', 'tf.array_ops.transpose', (['facts', '[1, 0, 2]'], {}), True, 'import tensorflow as tf\n'), (353, 'tensorflow.ones_like', 'tf.ones_like', (['mask'], {}), True, 'import tensorflow as tf\n'), (359, 'tensorflow.shape', 'tf.shape', (['facts'], {}), True, 'import tensorflow as tf\n'), (363, 'tensorflow.shape', 'tf.shape', (['facts'], {}), True, 'import tensorflow as tf\n'), (37, 'tensorflow.ones_like', 'tf.ones_like', (['mask'], {}), True, 'import tensorflow as tf\n'), (39, 'tensorflow.ones_like', 'tf.ones_like', (['scores'], {}), True, 'import tensorflow as tf\n'), (52, 'tensorflow.expand_dims', 'tf.expand_dims', (['scores', '(-1)'], {}), True, 'import tensorflow as tf\n'), (53, 'tensorflow.shape', 'tf.shape', (['facts'], {}), True, 'import tensorflow as tf\n'), (133, 'tensorflow.maximum', 'tf.maximum', (['(0.0)', '_x'], {}), True, 'import tensorflow as tf\n'), (273, 'tensorflow.ones_like', 'tf.ones_like', (['scores'], {}), True, 'import tensorflow as tf\n'), (275, 'tensorflow.where', 'tf.where', (['key_masks', 'scores', 'paddings'], {}), True, 'import tensorflow as tf\n'), (290, 'tensorflow.expand_dims', 'tf.expand_dims', (['scores', '(-1)'], {}), True, 'import tensorflow as tf\n'), (291, 'tensorflow.shape', 'tf.shape', (['facts'], {}), True, 'import tensorflow as tf\n'), (27, 'tensorflow.shape', 'tf.shape', (['facts'], {}), True, 'import tensorflow as tf\n'), (33, 'tensorflow.shape', 'tf.shape', (['facts'], {}), True, 'import tensorflow as tf\n'), (102, 'tensorflow.python.ops.init_ops.constant_initializer', 'init_ops.constant_initializer', (['(1.0)'], {'dtype': 'inputs.dtype'}), False, 'from tensorflow.python.ops import init_ops\n'), (103, 'tensorflow.python.ops.variable_scope.variable_scope', 'vs.variable_scope', (['"""gates"""'], {}), True, 'from tensorflow.python.ops import variable_scope as vs\n'), (116, 'tensorflow.python.ops.variable_scope.variable_scope', 'vs.variable_scope', (['"""candidate"""'], {}), True, 'from tensorflow.python.ops import variable_scope as vs\n'), (132, 'tensorflow.constant_initializer', 'tf.constant_initializer', (['(0.1)'], {}), True, 'import tensorflow as tf\n'), (133, 'tensorflow.minimum', 'tf.minimum', (['(0.0)', '_x'], {}), True, 'import tensorflow as tf\n'), (261, 'tensorflow.shape', 'tf.shape', (['facts'], {}), True, 'import tensorflow as tf\n'), (267, 'tensorflow.shape', 'tf.shape', (['facts'], {}), True, 'import tensorflow as tf\n'), (301, 'tensorflow.shape', 'tf.shape', (['batch'], {}), True, 'import tensorflow as tf\n'), (325, 'tensorflow.shape', 'tf.shape', (['batch'], {}), True, 'import tensorflow as tf\n'), (358, 'tensorflow.shape', 'tf.shape', (['facts'], {}), True, 'import tensorflow as tf\n'), (51, 'tensorflow.shape', 'tf.shape', (['facts'], {}), True, 'import tensorflow as tf\n'), (224, 'tensorflow.shape', 'tf.shape', (['tmp2'], {}), True, 'import tensorflow as tf\n'), (289, 'tensorflow.shape', 'tf.shape', (['facts'], {}), True, 'import tensorflow as tf\n')] |
End of preview. Expand
in Dataset Viewer.
README.md exists but content is empty.
Use the Edit dataset card button to edit it.
- Downloads last month
- 43