Datasets:
Update README.md
#3
by
ykarmesh
- opened
README.md
CHANGED
@@ -44,4 +44,63 @@ tags:
|
|
44 |
pretty_name: findingdory
|
45 |
size_categories:
|
46 |
- 10K<n<100K
|
47 |
-
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
pretty_name: findingdory
|
45 |
size_categories:
|
46 |
- 10K<n<100K
|
47 |
+
---
|
48 |
+
<center>
|
49 |
+
<a href="https://arxiv.org/abs/2506.15635" target="_blank">
|
50 |
+
<img alt="arXiv" src="https://img.shields.io/badge/arXiv-FindingDory-red?logo=arxiv" height="20" />
|
51 |
+
</a>
|
52 |
+
<a href="https://findingdory-benchmark.github.io/" target="_blank">
|
53 |
+
<img alt="Website" src="https://img.shields.io/badge/🌎_Website-FindingDory-blue.svg" height="20" />
|
54 |
+
</a>
|
55 |
+
<a href="https://github.com/findingdory-benchmark/findingdory-trl" target="_blank">
|
56 |
+
<img alt="GitHub Code" src="https://img.shields.io/badge/Code-FindingDory--TRL-white?&logo=github&logoColor=white" />
|
57 |
+
</a>
|
58 |
+
<a href="https://huggingface.co/yali30/findingdory-qwen2.5-VL-3B-finetuned" target="_blank"">
|
59 |
+
<img alt="Huggingface Model" src="https://img.shields.io/badge/Model-FindingDory-yellow?logo=huggingface" />
|
60 |
+
</a>
|
61 |
+
</center>
|
62 |
+
|
63 |
+
<center><h1>FindingDory: A Benchmark to Evaluate Memory in Embodied Agents</h1>
|
64 |
+
<a href="https://www.karmeshyadav.com/">Karmesh Yadav*</a>,
|
65 |
+
<a href="https://yusufali98.github.io/">Yusuf Ali*</a>,
|
66 |
+
<a href="https://gunshigupta.netlify.app/">Gunshi Gupta</a>,
|
67 |
+
<a href="https://www.cs.ox.ac.uk/people/yarin.gal/website/">Yarin Gal</a>,
|
68 |
+
<a href="https://faculty.cc.gatech.edu/~zk15/">Zsolt Kira</a>
|
69 |
+
</center>
|
70 |
+
|
71 |
+
Current vision-language models (VLMs) struggle with long-term memory in embodied tasks. To address this, we introduce **FindingDory**, a benchmark in Habitat that evaluates memory-based reasoning across 60 long-horizon tasks.
|
72 |
+
|
73 |
+
In this repo, we release the FindingDory Video Dataset. Each video contains images collected from a robot’s egocentric view as it navigates realistic indoor environments and interacts with objects. This dataset was used to train and evaluate the high-level agent SFT agent in the FindingDory benchmark.
|
74 |
+
|
75 |
+
# Usage
|
76 |
+
```
|
77 |
+
from datasets import load_dataset
|
78 |
+
dataset = load_dataset("yali30/findingdory")
|
79 |
+
```
|
80 |
+
|
81 |
+
# Dataset Structure
|
82 |
+
|
83 |
+
| Field name | Description |
|
84 |
+
| ------------------------- | ------------------------------------------------------------------------------------------------------------- |
|
85 |
+
| **ep\_id** | Episode id. |
|
86 |
+
| **video** | Relative path of the video clip. |
|
87 |
+
| **question** | Question posed to the agent based on the episode. |
|
88 |
+
| **answer** | Ground-truth answer stored as a list of image indices |
|
89 |
+
| **task\_id** | Identifier indicating which task template the episode belongs to (string). |
|
90 |
+
| **high\_level\_category** | Higl-task task category label. (Options: Single-Goal Spatial Tasks, Single-Goal Temporal Tasks, Multi-Goal Tasks). |
|
91 |
+
| **low\_level\_category** | Fine-grained task category label. (Example categories: Interaction-Order, Room Visitation, etc) |
|
92 |
+
| **num\_interactions** | Number of objects the robot interacts with, during the experience collection. |
|
93 |
+
|
94 |
+
Notes:
|
95 |
+
* The validation split contains 60 tasks . The training split only contains 55 task because the 5 “Object Attributes” tasks are withheld from the training set.
|
96 |
+
* A subsampled version of the dataset (96 frames per episode) is available [here](https://huggingface.co/datasets/yali30/findingdory-subsampled-96).
|
97 |
+
|
98 |
+
📄 Citation
|
99 |
+
```
|
100 |
+
@article{yadav2025findingdory,
|
101 |
+
title = {FindingDory: A Benchmark to Evaluate Memory in Embodied Agents},
|
102 |
+
author = {Yadav, Karmesh and Ali, Yusuf and Gupta, Gunshi and Gal, Yarin and Kira, Zsolt},
|
103 |
+
journal = {arXiv preprint arXiv:2506.15635},
|
104 |
+
year = {2025}
|
105 |
+
}
|
106 |
+
```
|