Dataset Viewer
The dataset viewer is not available for this dataset.
Cannot get the config names for the dataset.
Error code:   RetryableConfigNamesError
Exception:    HfHubHTTPError
Message:      500 Server Error: Internal Server Error for url: https://huggingface.co/api/datasets/yamhm/WebDS/tree/a7a631b1f05dcc3889866f3beae979b729960982/webds_experiments?recursive=True&expand=False (Request ID: Root=1-68309366-1678818525a48f5559d272fc;9ee3f530-0a3b-44af-9e20-8bfc1b073399)

Internal Error - We're working hard to fix this as soon as possible!
Traceback:    Traceback (most recent call last):
                File "/src/services/worker/src/worker/job_runners/dataset/config_names.py", line 66, in compute_config_names_response
                  config_names = get_dataset_config_names(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/inspect.py", line 165, in get_dataset_config_names
                  dataset_module = dataset_module_factory(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/load.py", line 1664, in dataset_module_factory
                  raise e1 from None
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/load.py", line 1621, in dataset_module_factory
                  return HubDatasetModuleFactoryWithoutScript(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/load.py", line 1018, in get_module
                  patterns = get_data_patterns(base_path, download_config=self.download_config)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/data_files.py", line 473, in get_data_patterns
                  return _get_data_files_patterns(resolver)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/data_files.py", line 284, in _get_data_files_patterns
                  data_files = pattern_resolver(pattern)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/data_files.py", line 360, in resolve_pattern
                  for filepath, info in fs.glob(pattern, detail=True, **glob_kwargs).items()
                File "/src/services/worker/.venv/lib/python3.9/site-packages/huggingface_hub/hf_file_system.py", line 521, in glob
                  return super().glob(path, **kwargs)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/fsspec/spec.py", line 604, in glob
                  allpaths = self.find(root, maxdepth=depth, withdirs=True, detail=True, **kwargs)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/huggingface_hub/hf_file_system.py", line 563, in find
                  out = self._ls_tree(path, recursive=True, refresh=refresh, revision=resolved_path.revision, **kwargs)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/huggingface_hub/hf_file_system.py", line 446, in _ls_tree
                  self._ls_tree(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/huggingface_hub/hf_file_system.py", line 463, in _ls_tree
                  for path_info in tree:
                File "/src/services/worker/.venv/lib/python3.9/site-packages/huggingface_hub/hf_api.py", line 3140, in list_repo_tree
                  for path_info in paginate(path=tree_url, headers=headers, params={"recursive": recursive, "expand": expand}):
                File "/src/services/worker/.venv/lib/python3.9/site-packages/huggingface_hub/utils/_pagination.py", line 37, in paginate
                  hf_raise_for_status(r)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/huggingface_hub/utils/_http.py", line 482, in hf_raise_for_status
                  raise _format(HfHubHTTPError, str(e), response) from e
              huggingface_hub.errors.HfHubHTTPError: 500 Server Error: Internal Server Error for url: https://huggingface.co/api/datasets/yamhm/WebDS/tree/a7a631b1f05dcc3889866f3beae979b729960982/webds_experiments?recursive=True&expand=False (Request ID: Root=1-68309366-1678818525a48f5559d272fc;9ee3f530-0a3b-44af-9e20-8bfc1b073399)
              
              Internal Error - We're working hard to fix this as soon as possible!

Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.

WebDS: A Benchmark for Web-based Data Science

WebDS is the first end-to-end benchmark designed for evaluating agents on real-world web-based data science workflows. It contains 870 tasks across 29 containerized websites spanning 10 domains, including economics, health, climate, and scientific research.

Agents are tested on:

  • Multi-hop web navigation
  • Structured and unstructured data processing
  • Tool usage (e.g., Python scripts, visualization tools)
  • Downstream task completion (e.g., reports, Reddit posts)

Tasks reflect realistic data science scenarios, such as acquiring data from government portals, comparing datasets across sites, and synthesizing insights in report-ready formats.

πŸ“¦ Contents

This repository includes:

  • tasks/: JSON files for all 870 benchmark tasks, with metadata and intents
  • websites/: Dockerized replicas of 29 benchmark sites for reproducibility
  • webds_experiments/: Code for running LLM-based agents and collecting evaluation metrics

🌍 Hosted Demo (Docker)

You can try a live version of the benchmark via: http://ec2-18-220-211-153.us-east-2.compute.amazonaws.com:3333

This is useful for previewing the benchmark environment or debugging agent behavior before running large-scale evaluations.

πŸ“Š Evaluation

WebDS supports both:

  • Automatic scoring via reference ground truths (for QA-type tasks)
  • LLM-as-a-Judge scoring with 1–5 granular feedback and error attribution (for open-ended tasks)

πŸ“œ Citation

If you use WebDS in your research, please cite:

@inproceedings{yam2025webds,
  title = {WebDS: An End-to-End Benchmark for Web-based Data Science},
  author = {Yam, Hong Meng and Hsu, Ethan and Bouissou, Ines and John, Aaron Murali and Thota, Raj and Koe, Josh and Putta, Vivek Sarath and Dharesan, G K and Spangher, Alexander and Murty, Shikhar and Huang, Tenghao and Manning, Christopher D.},
  booktitle = {ArXiV},
  year = {2025}
}

Setup of docker file

This file host the instructions for our Docker image.

Docker image

Download the image webbenchdocker.tar.gz from the following link: https://drive.google.com/drive/folders/1LnBfeUqwDm6kiUxDC-vF7vADsWdaAqHp

docker load --input webbenchdocker.tar.gz
docker run --name webbench -p 3333:80 -d webbenchdocker

Shopping Website (OneStopShop) from Webarena

Download the image tar from the following mirrors:

docker load --input shopping_final_0712.tar
docker run --name shopping -p 7770:80 -d shopping_final_0712
# wait ~1 min to wait all services to start

docker exec shopping /var/www/magento2/bin/magento setup:store-config:set --base-url="http://<your-server-hostname>:7770" # no trailing slash
docker exec shopping mysql -u magentouser -pMyPassword magentodb -e  'UPDATE core_config_data SET value="http://<your-server-hostname>:7770/" WHERE path = "web/secure/base_url";'
docker exec shopping /var/www/magento2/bin/magento cache:flush

Now you can visit http://<your-server-hostname>:7770.

E-commerce Content Management System (CMS) from webarena

Download the image tar from the following mirrors:

docker load --input shopping_admin_final_0719.tar
docker run --name shopping_admin -p 7780:80 -d shopping_admin_final_0719
# wait ~1 min to wait all services to start

docker exec shopping_admin /var/www/magento2/bin/magento setup:store-config:set --base-url="http://<your-server-hostname>:7780" # no trailing slash
docker exec shopping_admin mysql -u magentouser -pMyPassword magentodb -e  'UPDATE core_config_data SET value="http://<your-server-hostname>:7780/" WHERE path = "web/secure/base_url";'
docker exec shopping_admin /var/www/magento2/bin/magento cache:flush

Now you can visit http://<your-server-hostname>:7780/admin.

Social Forum Website (Reddit)

Download the image tar from the following mirrors:

docker load --input postmill-populated-exposed-withimg.tar
docker run --name forum -p 4444:80 -d postmill-populated-exposed-withimg

Now you can visit http://<your-server-hostname>:4444/.

Downloads last month
601