File size: 11,580 Bytes
3d127dd 666b20c 5ed1710 e30b9ec 5ed1710 e30b9ec 5ed1710 e30b9ec 5ed1710 e30b9ec 5ed1710 e30b9ec 5ed1710 e30b9ec 5ba1508 3d127dd 9b63850 3d127dd 763ee6b 3d127dd 5b7739c 3d127dd 9b63850 7ec4728 9b63850 7ec4728 9b63850 7ec4728 9b63850 7ec4728 9b63850 7ec4728 9b63850 7ec4728 9b63850 7ec4728 9b63850 7ec4728 9b63850 7ec4728 9b63850 3d127dd 66e0328 3d127dd dbba6e1 3d127dd 1cdedcc 9b63850 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 |
---
license: apache-2.0
tags:
- recsys
- retrieval
- dataset
pretty_name: Yambda-5B
size_categories:
- 1B<n<10B
configs:
- config_name: flat-50m
data_files:
# - flat/50m/likes.parquet
# - flat/50m/listens.parquet
# - flat/50m/unlikes.parquet
- flat/50m/multi_event.parquet
# - flat/50m/dislikes.parquet
# - flat/50m/undislikes.parquet
- config_name: flat-500m
data_files:
# - flat/500m/likes.parquet
# - flat/500m/listens.parquet
# - flat/500m/unlikes.parquet
- flat/500m/multi_event.parquet
# - flat/500m/dislikes.parquet
# - flat/500m/undislikes.parquet
- config_name: flat-5b
data_files:
# - flat/5b/likes.parquet
# - flat/5b/listens.parquet
# - flat/5b/unlikes.parquet
- flat/5b/multi_event.parquet
# - flat/5b/dislikes.parquet
# - flat/5b/undislikes.parquet
# - config_name: sequential-50m
# data_files:
# - sequential/50m/likes.parquet
# - sequential/50m/listens.parquet
# - sequential/50m/unlikes.parquet
# - sequential/50m/multi_event.parquet
# - sequential/50m/dislikes.parquet
# - sequential/50m/undislikes.parquet
# - config_name: sequential-500m
# data_files:
# - sequential/500m/likes.parquet
# - sequential/500m/listens.parquet
# - sequential/500m/unlikes.parquet
# - sequential/500m/multi_event.parquet
# - sequential/500m/dislikes.parquet
# - sequential/500m/undislikes.parquet
# - config_name: sequential-5b
# data_files:
# - sequential/5b/likes.parquet
# - sequential/5b/listens.parquet
# - sequential/5b/unlikes.parquet
# - sequential/5b/multi_event.parquet
# - sequential/5b/dislikes.parquet
# - sequential/5b/undislikes.parquet
---
# Yambda-5B β A Large-Scale Multi-modal Dataset for Ranking And Retrieval
**Industrial-scale music recommendation dataset with organic/recommendation interactions and audio embeddings**
[π Overview](#overview) β’ [π Key Features](#key-features) β’ [π Statistics](#statistics) β’ [π Format](#data-format) β’ [π Benchmark](#benchmark) β’ [β¬οΈ Download](#download) β’ [β FAQ](#faq)
## Overview
The Yambda-5B dataset is a large-scale open database comprising **4.79 billion user-item interactions** collected from **1 million users** and spanning **9.39 million tracks**. The dataset includes both implicit feedback, such as listening events, and explicit feedback, in the form of likes and dislikes. Additionally, it provides distinctive markers for organic versus recommendation-driven interactions, along with precomputed audio embeddings to facilitate content-aware recommendation systems.
Preprint: https://arxiv.org/abs/2505.22238
## Key Features
- π΅ 4.79B user-music interactions (listens, likes, dislikes, unlikes, undislikes)
- π Timestamps with global temporal ordering
- π Audio embeddings for 7.72M tracks
- π‘ Organic and recommendation-driven interactions
- π Multiple dataset scales (50M, 500M, 5B interactions)
- π§ͺ Standardized evaluation protocol with baseline benchmarks
## About Dataset
### Statistics
| Dataset | Users | Items | Listens | Likes | Dislikes |
|-------------|----------:|----------:|--------------:|-----------:|-----------:|
| Yambda-50M | 10,000 | 934,057 | 46,467,212 | 881,456 | 107,776 |
| Yambda-500M | 100,000 | 3,004,578 | 466,512,103 | 9,033,960 | 1,128,113 |
| Yambda-5B | 1,000,000 | 9,390,623 | 4,649,567,411 | 89,334,605 | 11,579,143 |
### User History Length Distribution


### Item Interaction Count

## Data Format
### File Descriptions
| File | Description | Schema |
|----------------------------|---------------------------------------------|-----------------------------------------------------------------------------------------|
| `listens.parquet` | User listening events with playback details | `uid`, `item_id`, `timestamp`, `is_organic`, `played_ratio_pct`, `track_length_seconds` |
| `likes.parquet` | User like actions | `uid`, `item_id`, `timestamp`, `is_organic` |
| `dislikes.parquet` | User dislike actions | `uid`, `item_id`, `timestamp`, `is_organic` |
| `undislikes.parquet` | User undislike actions (reverting dislikes) | `uid`, `item_id`, `timestamp`, `is_organic` |
| `unlikes.parquet` | User unlike actions (reverting likes) | `uid`, `item_id`, `timestamp`, `is_organic` |
| `embeddings.parquet` | Track audio-embeddings | `item_id`, `embed`, `normalized_embed` |
### Common Event Structure (Homogeneous)
Most event files (`listens`, `likes`, `dislikes`, `undislikes`, `unlikes`) share this base structure:
| Field | Type | Description |
|--------------|--------|-------------------------------------------------------------------------------------|
| `uid` | uint32 | Unique user identifier |
| `item_id` | uint32 | Unique track identifier |
| `timestamp` | uint32 | Delta times, binned into 5s units. |
| `is_organic` | uint8 | Boolean flag (0/1) indicating if the interaction was algorithmic (0) or organic (1) |
**Sorting**: All files are sorted by (`uid`, `timestamp`) in ascending order.
### Unified Event Structure (Heterogeneous)
For applications needing all event types in a unified format:
| Field | Type | Description |
|------------------------|-------------------|---------------------------------------------------------------|
| `uid` | uint32 | Unique user identifier |
| `item_id` | uint32 | Unique track identifier |
| `timestamp` | uint32 | Timestamp binned into 5s units.granularity |
| `is_organic` | uint8 | Boolean flag for organic interactions |
| `event_type` | enum | One of: `listen`, `like`, `dislike`, `unlike`, `undislike` |
| `played_ratio_pct` | Optional[uint16] | Percentage of track played (1-100), null for non-listen events |
| `track_length_seconds` | Optional[uint32] | Total track duration in seconds, null for non-listen events |
**Notes**:
- `played_ratio_pct` and `track_length_seconds` are non-null **only** when `event_type = "listen"`
- All fields except the two above are guaranteed non-null
### Sequential (Aggregated) Format
Each dataset is also available in a user-aggregated sequential format with the following structure:
| Field | Type | Description |
|--------------|--------------|--------------------------------------------------|
| `uid` | uint32 | Unique user identifier |
| `item_ids` | List[uint32] | Chronological list of interacted track IDs |
| `timestamps` | List[uint32] | Corresponding interaction timestamps |
| `is_organic` | List[uint8] | Corresponding organic flags for each interaction |
| `played_ratio_pct` | List[Optional[uint16]] | (Only in `listens` and `multi_event`) Play percentages |
| `track_length_seconds` | List[Optional[uint32]] | (Only in `listens` and `multi_event`) Track durations |
**Notes**:
- All lists maintain chronological order
- For each user, `len(item_ids) == len(timestamps) == len(is_organic)`
- In multi-event format, null values are preserved in respective lists
## Benchmark
Code for the baseline models can be found in `benchmarks/` directory, see [Reproducibility Guide](benchmarks/README.md)
### Download
Simplest way:
```python
from datasets import load_dataset
ds = load_dataset("yandex/yambda", data_dir="flat/50m", data_files="likes.parquet")
```
Also, we provide simple wrapper for convenient usage:
```python
from typing import Literal
from datasets import Dataset, DatasetDict, load_dataset
class YambdaDataset:
INTERACTIONS = frozenset([
"likes", "listens", "multi_event", "dislikes", "unlikes", "undislikes"
])
def __init__(
self,
dataset_type: Literal["flat", "sequential"] = "flat",
dataset_size: Literal["50m", "500m", "5b"] = "50m"
):
assert dataset_type in {"flat", "sequential"}
assert dataset_size in {"50m", "500m", "5b"}
self.dataset_type = dataset_type
self.dataset_size = dataset_size
def interaction(self, event_type: Literal[
"likes", "listens", "multi_event", "dislikes", "unlikes", "undislikes"
]) -> Dataset:
assert event_type in YambdaDataset.INTERACTIONS
return self._download(f"{self.dataset_type}/{self.dataset_size}", event_type)
def audio_embeddings(self) -> Dataset:
return self._download("", "embeddings")
def album_item_mapping(self) -> Dataset:
return self._download("", "album_item_mapping")
def artist_item_mapping(self) -> Dataset:
return self._download("", "artist_item_mapping")
@staticmethod
def _download(data_dir: str, file: str) -> Dataset:
data = load_dataset("yandex/yambda", data_dir=data_dir, data_files=f"{file}.parquet")
# Returns DatasetDict; extracting the only split
assert isinstance(data, DatasetDict)
return data["train"]
dataset = YambdaDataset("flat", "50m")
likes = dataset.interaction("likes") # returns a HuggingFace Dataset
```
## FAQ
### Are test items presented in training data?
Not all, some test items do appear in the training set, others do not.
### Are test users presented in training data?
Yes, there are no cold users in the test set.
### How are audio embeddings generated?
Using a convolutional neural network inspired by Contrastive Learning of Musical Representations (J. Spijkervet et al., 2021).
### What's the `is_organic` flag?
Indicates whether interactions occurred through organic discovery (True) or recommendation-driven pathways (False)
### Which events are considered recommendation-driven?
Recommendation events include actions from:
- Personalized music feed
- Personalized playlists
### What counts as a "listened" track or \\(Listen_+\\)?
A track is considered "listened" if over 50% of its duration is played.
### What does it mean when played_ratio_pct is greater than 100?
A played_ratio_pct greater than 100% indicates that the user rewound and
replayed sections of the trackβso the total time listened exceeds the original track length.
These values are expected behavior and not log noise. See [discussion](https://huggingface.co/datasets/yandex/yambda/discussions/10)
|