|
--- |
|
license: apache-2.0 |
|
tags: |
|
- recsys |
|
- retrieval |
|
- dataset |
|
pretty_name: Yambda-5B |
|
size_categories: |
|
- 1B<n<10B |
|
|
|
configs: |
|
- config_name: flat-50m |
|
data_files: |
|
- split: likes |
|
path: flat/50m/likes.parquet |
|
- split: listens |
|
path: flat/50m/listens.parquet |
|
- split: unlikes |
|
path: flat/50m/unlikes.parquet |
|
- split: multi_event |
|
path: flat/50m/multi_event.parquet |
|
- split: dislikes |
|
path: flat/50m/dislikes.parquet |
|
- split: undislikes |
|
path: flat/50m/undislikes.parquet |
|
- config_name: flat-500m |
|
data_files: |
|
- split: likes |
|
path: flat/500m/likes.parquet |
|
- split: listens |
|
path: flat/500m/listens.parquet |
|
- split: unlikes |
|
path: flat/500m/unlikes.parquet |
|
- split: multi_event |
|
path: flat/500m/multi_event.parquet |
|
- split: dislikes |
|
path: flat/500m/dislikes.parquet |
|
- split: undislikes |
|
path: flat/500m/undislikes.parquet |
|
- config_name: flat-5b |
|
data_files: |
|
- split: likes |
|
path: flat/5b/likes.parquet |
|
- split: listens |
|
path: flat/5b/listens.parquet |
|
- split: unlikes |
|
path: flat/5b/unlikes.parquet |
|
- split: multi_event |
|
path: flat/5b/multi_event.parquet |
|
- split: dislikes |
|
path: flat/5b/dislikes.parquet |
|
- split: undislikes |
|
path: flat/5b/undislikes.parquet |
|
- config_name: sequential-50m |
|
data_files: |
|
- split: likes |
|
path: sequential/50m/likes.parquet |
|
- split: listens |
|
path: sequential/50m/listens.parquet |
|
- split: unlikes |
|
path: sequential/50m/unlikes.parquet |
|
- split: multi_event |
|
path: sequential/50m/multi_event.parquet |
|
- split: dislikes |
|
path: sequential/50m/dislikes.parquet |
|
- split: undislikes |
|
path: sequential/50m/undislikes.parquet |
|
- config_name: sequential-500m |
|
data_files: |
|
- split: likes |
|
path: sequential/500m/likes.parquet |
|
- split: listens |
|
path: sequential/500m/listens.parquet |
|
- split: unlikes |
|
path: sequential/500m/unlikes.parquet |
|
- split: multi_event |
|
path: sequential/500m/multi_event.parquet |
|
- split: dislikes |
|
path: sequential/500m/dislikes.parquet |
|
- split: undislikes |
|
path: sequential/500m/undislikes.parquet |
|
- config_name: sequential-5b |
|
data_files: |
|
- split: likes |
|
path: sequential/5b/likes.parquet |
|
- split: listens |
|
path: sequential/5b/listens.parquet |
|
- split: unlikes |
|
path: sequential/5b/unlikes.parquet |
|
- split: multi_event |
|
path: sequential/5b/multi_event.parquet |
|
- split: dislikes |
|
path: sequential/5b/dislikes.parquet |
|
- split: undislikes |
|
path: sequential/5b/undislikes.parquet |
|
|
|
--- |
|
|
|
# Yambda-5B β A Large-Scale Multi-modal Dataset for Ranking And Retrieval |
|
|
|
**Industrial-scale music recommendation dataset with organic/recommendation interactions and audio embeddings** |
|
|
|
[π Overview](#overview) β’ [π Key Features](#key-features) β’ [π Statistics](#statistics) β’ [π Format](#data-format) β’ [π Benchmark](#benchmark) β’ [β FAQ](#faq) |
|
|
|
## Overview |
|
|
|
The Yambda-5B dataset is a large-scale open database comprising **4.79 billion user-item interactions** collected from **1 million users** and spanning **9.39 million tracks**. The dataset includes both implicit feedback, such as listening events, and explicit feedback, in the form of likes and dislikes. Additionally, it provides distinctive markers for organic versus recommendation-driven interactions, along with precomputed audio embeddings to facilitate content-aware recommendation systems. |
|
|
|
## Key Features |
|
|
|
- π΅ 4.79B user-music interactions (listens, likes, dislikes, unlikes, undislikes) |
|
- π Timestamps with global temporal ordering |
|
- π Audio embeddings for 7.72M tracks |
|
- π‘ Organic and recommendation-driven interactions |
|
- π Multiple dataset scales (50M, 500M, 5B interactions) |
|
- π§ͺ Standardized evaluation protocol with baseline benchmarks |
|
|
|
## About Dataset |
|
|
|
### Statistics |
|
|
|
| Dataset | Users | Items | Listens | Likes | Dislikes | |
|
|-------------|----------:|----------:|--------------:|-----------:|-----------:| |
|
| Yambda-50M | 10,000 | 934,057 | 46,467,212 | 881,456 | 107,776 | |
|
| Yambda-500M | 100,000 | 3,004,578 | 466,512,103 | 9,033,960 | 1,128,113 | |
|
| Yambda-5B | 1,000,000 | 9,390,623 | 4,649,567,411 | 89,334,605 | 11,579,143 | |
|
|
|
### User History Length Distribution |
|
|
|
 |
|
|
|
 |
|
|
|
### Item Interaction Count |
|
|
|
 |
|
|
|
## Data Format |
|
|
|
### File Descriptions |
|
|
|
| File | Description | Schema | |
|
|----------------------------|---------------------------------------------|-----------------------------------------------------------------------------------------| |
|
| `listens.parquet` | User listening events with playback details | `uid`, `item_id`, `timestamp`, `is_organic`, `played_ratio_pct`, `track_length_seconds` | |
|
| `likes.parquet` | User like actions | `uid`, `item_id`, `timestamp`, `is_organic` | |
|
| `dislikes.parquet` | User dislike actions | `uid`, `item_id`, `timestamp`, `is_organic` | |
|
| `undislikes.parquet` | User undislike actions (reverting dislikes) | `uid`, `item_id`, `timestamp`, `is_organic` | |
|
| `unlikes.parquet` | User unlike actions (reverting likes) | `uid`, `item_id`, `timestamp`, `is_organic` | |
|
| `embeddings.parquet` | Track audio-embeddings | `item_id`, `embed`, `normalized_embed` | |
|
|
|
### Common Event Structure (Homogeneous) |
|
|
|
Most event files (`listens`, `likes`, `dislikes`, `undislikes`, `unlikes`) share this base structure: |
|
|
|
| Field | Type | Description | |
|
|--------------|--------|-------------------------------------------------------------------------------------| |
|
| `uid` | uint32 | Unique user identifier | |
|
| `item_id` | uint32 | Unique track identifier | |
|
| `timestamp` | uint32 | Delta times, binned into 5s units. | |
|
| `is_organic` | uint8 | Boolean flag (0/1) indicating if the interaction was algorithmic (0) or organic (1) | |
|
|
|
**Sorting**: All files are sorted by (`uid`, `timestamp`) in ascending order. |
|
|
|
### Unified Event Structure (Heterogeneous) |
|
|
|
For applications needing all event types in a unified format: |
|
|
|
| Field | Type | Description | |
|
|------------------------|-------------------|---------------------------------------------------------------| |
|
| `uid` | uint32 | Unique user identifier | |
|
| `item_id` | uint32 | Unique track identifier | |
|
| `timestamp` | uint32 | Timestamp binned into 5s units.granularity | |
|
| `is_organic` | uint8 | Boolean flag for organic interactions | |
|
| `event_type` | enum | One of: `listen`, `like`, `dislike`, `unlike`, `undislike` | |
|
| `played_ratio_pct` | Optional[uint16] | Percentage of track played (1-100), null for non-listen events | |
|
| `track_length_seconds` | Optional[uint32] | Total track duration in seconds, null for non-listen events | |
|
|
|
**Notes**: |
|
|
|
- `played_ratio_pct` and `track_length_seconds` are non-null **only** when `event_type = "listen"` |
|
- All fields except the two above are guaranteed non-null |
|
|
|
### Sequential (Aggregated) Format |
|
|
|
Each dataset is also available in a user-aggregated sequential format with the following structure: |
|
|
|
| Field | Type | Description | |
|
|--------------|--------------|--------------------------------------------------| |
|
| `uid` | uint32 | Unique user identifier | |
|
| `item_ids` | List[uint32] | Chronological list of interacted track IDs | |
|
| `timestamps` | List[uint32] | Corresponding interaction timestamps | |
|
| `is_organic` | List[uint8] | Corresponding organic flags for each interaction | |
|
| `played_ratio_pct` | List[Optional[uint16]] | (Only in `listens` and `multi_event`) Play percentages | |
|
| `track_length_seconds` | List[Optional[uint32]] | (Only in `listens` and `multi_event`) Track durations | |
|
|
|
**Notes**: |
|
|
|
- All lists maintain chronological order |
|
- For each user, `len(item_ids) == len(timestamps) == len(is_organic)` |
|
- In multi-event format, null values are preserved in respective lists |
|
|
|
## Benchmark |
|
|
|
Code for the baseline models can be found in `benchmarks/` directory, see [Reproducibility Guide](benchmarks/models/README.md) |
|
|
|
## FAQ |
|
|
|
### Are test items presented in training data? |
|
|
|
Not all, some test items do appear in the training set, others do not. |
|
|
|
### Are test users presented in training data? |
|
|
|
Yes, there are no cold users in the test set. |
|
|
|
### How are audio embeddings generated? |
|
|
|
Using a convolutional neural network inspired by [J. Spijkervet et al., 2021](https://arxiv.org/abs/2103.09410). |
|
|
|
### What's the `is_organic` flag? |
|
|
|
Indicates whether interactions occurred through organic discovery (True) or recommendation-driven pathways (False) |
|
|
|
### Which events are considered recommendation-driven? |
|
|
|
Recommendation events include actions from: |
|
- Personalized music feed |
|
- Personalized playlists |
|
|
|
### What counts as a "listened" track or \\(Listen_+\\)? |
|
|
|
A track is considered "listened" if over 50% of its duration is played. |