Dataset Preview
The full dataset viewer is not available (click to read why). Only showing a preview of the rows.
The dataset generation failed because of a cast error
Error code:   DatasetGenerationCastError
Exception:    DatasetGenerationCastError
Message:      An error occurred while generating the dataset

All the data files must have the same columns, but at some point there are 1 new columns ({'box'})

This happened while the json dataset builder was generating data using

hf://datasets/ymccccc/GS-Reasoner-Data/3d_visual_grounding/multi3drefer_train_llava_style.json (at revision c210a1e25d287b4eb290a407548350e29d869d62)

Please either edit the data files to have matching columns, or separate them into different configurations (see docs at https://hf.co/docs/hub/datasets-manual-configuration#multiple-configurations)
Traceback:    Traceback (most recent call last):
                File "/src/services/worker/.venv/lib/python3.12/site-packages/datasets/builder.py", line 1831, in _prepare_split_single
                  writer.write_table(table)
                File "/src/services/worker/.venv/lib/python3.12/site-packages/datasets/arrow_writer.py", line 714, in write_table
                  pa_table = table_cast(pa_table, self._schema)
                             ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/src/services/worker/.venv/lib/python3.12/site-packages/datasets/table.py", line 2272, in table_cast
                  return cast_table_to_schema(table, schema)
                         ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/src/services/worker/.venv/lib/python3.12/site-packages/datasets/table.py", line 2218, in cast_table_to_schema
                  raise CastError(
              datasets.table.CastError: Couldn't cast
              id: int64
              video: string
              conversations: list<item: struct<from: string, value: string>>
                child 0, item: struct<from: string, value: string>
                    child 0, from: string
                    child 1, value: string
              box: list<item: null>
                child 0, item: null
              metadata: struct<dataset: string, object: list<item: struct<object_bbox: list<item: list<item: double>>, objec (... 70 chars omitted)
                child 0, dataset: string
                child 1, object: list<item: struct<object_bbox: list<item: list<item: double>>, object_id: list<item: int64>, object_ (... 14 chars omitted)
                    child 0, item: struct<object_bbox: list<item: list<item: double>>, object_id: list<item: int64>, object_name: strin (... 2 chars omitted)
                        child 0, object_bbox: list<item: list<item: double>>
                            child 0, item: list<item: double>
                                child 0, item: double
                        child 1, object_id: list<item: int64>
                            child 0, item: int64
                        child 2, object_name: string
                child 2, question_type: string
              -- schema metadata --
              pandas: '{"index_columns": [], "column_indexes": [], "columns": [{"name":' + 660
              to
              {'id': Value('int64'), 'video': Value('string'), 'conversations': List({'from': Value('string'), 'value': Value('string')}), 'metadata': {'dataset': Value('string'), 'object': List({'object_bbox': List(List(Value('float64'))), 'object_id': List(Value('int64')), 'object_name': Value('string')}), 'question_type': Value('string'), 'target_object_id': Value('int64'), 'target_object_name': Value('string')}}
              because column names don't match
              
              During handling of the above exception, another exception occurred:
              
              Traceback (most recent call last):
                File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 1455, in compute_config_parquet_and_info_response
                  parquet_operations = convert_to_parquet(builder)
                                       ^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 1054, in convert_to_parquet
                  builder.download_and_prepare(
                File "/src/services/worker/.venv/lib/python3.12/site-packages/datasets/builder.py", line 894, in download_and_prepare
                  self._download_and_prepare(
                File "/src/services/worker/.venv/lib/python3.12/site-packages/datasets/builder.py", line 970, in _download_and_prepare
                  self._prepare_split(split_generator, **prepare_split_kwargs)
                File "/src/services/worker/.venv/lib/python3.12/site-packages/datasets/builder.py", line 1702, in _prepare_split
                  for job_id, done, content in self._prepare_split_single(
                                               ^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/src/services/worker/.venv/lib/python3.12/site-packages/datasets/builder.py", line 1833, in _prepare_split_single
                  raise DatasetGenerationCastError.from_cast_error(
              datasets.exceptions.DatasetGenerationCastError: An error occurred while generating the dataset
              
              All the data files must have the same columns, but at some point there are 1 new columns ({'box'})
              
              This happened while the json dataset builder was generating data using
              
              hf://datasets/ymccccc/GS-Reasoner-Data/3d_visual_grounding/multi3drefer_train_llava_style.json (at revision c210a1e25d287b4eb290a407548350e29d869d62)
              
              Please either edit the data files to have matching columns, or separate them into different configurations (see docs at https://hf.co/docs/hub/datasets-manual-configuration#multiple-configurations)

Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.

id
int64
video
string
conversations
list
metadata
dict
0
scannet/scene0625_00
[ { "from": "human", "value": "<image>Locate all the objects mentioned in following description and output the object name and 3D bounding box in the format (x1, y1, z1, x2, y2, z2).\nWall mounted telephone is near to the toilet" }, { "from": "gpt", "value": "<ground>" } ]
{ "dataset": "locate3d_scannet", "object": [ { "object_bbox": [ [ -0.48497635126113803, 0.344677886925637, 0.33475367166101905, 0.54945945739746, 0.730460600927472, 0.739830773323774 ] ], "object_id": [ 7 ], "object_name": "toilet" }, { "object_bbox": [ [ -0.988768279552459, -0.002009082585573, 0.7994453907012941, 0.10280716419219901, 0.094428956508636, 0.45863389968872004 ] ], "object_id": [ 4 ], "object_name": "telephone" } ], "question_type": "locate3d", "target_object_id": 4, "target_object_name": "telephone" }
1
scannet/scene0198_00
[ { "from": "human", "value": "<image>Locate all the objects mentioned in following description and output the object name and 3D bounding box in the format (x1, y1, z1, x2, y2, z2).\nbag near the door" }, { "from": "gpt", "value": "<ground>" } ]
{ "dataset": "locate3d_scannet", "object": [ { "object_bbox": [ [ -0.186641901731491, -1.073279976844787, 0.16364005301147702, 0.400229334831237, 0.46542215347290006, 0.359172521159052 ] ], "object_id": [ 6 ], "object_name": "backpack" }, { "object_bbox": [ [ 0.904679119586944, -1.317615568637848, 0.591733479872345, 0.29490005970001204, 1.068337082862854, 1.223157595843076 ] ], "object_id": [ 11 ], "object_name": "door" } ], "question_type": "locate3d", "target_object_id": 6, "target_object_name": "backpack" }
2
scannet/scene0233_00
[ { "from": "human", "value": "<image>Locate all the objects mentioned in following description and output the object name and 3D bounding box in the format (x1, y1, z1, x2, y2, z2).\nbag is on the chair " }, { "from": "gpt", "value": "<ground>" } ]
{ "dataset": "locate3d_scannet", "object": [ { "object_bbox": [ [ 0.779972434043884, -0.392756938934326, 0.5323386639356611, 0.41223180294036804, 0.45825874805450406, 0.33469775319099404 ] ], "object_id": [ 12 ], "object_name": "backpack" }, { "object_bbox": [ [ 0.8441967517137521, -0.441803693771362, 0.30634725466370505, 0.759222835302352, 0.5730630159378051, 0.790475241839885 ] ], "object_id": [ 24 ], "object_name": "chair" } ], "question_type": "locate3d", "target_object_id": 12, "target_object_name": "backpack" }
3
scannet/scene0287_00
[ { "from": "human", "value": "<image>Locate all the objects mentioned in following description and output the object name and 3D bounding box in the format (x1, y1, z1, x2, y2, z2).\nbed beside desk" }, { "from": "gpt", "value": "<ground>" } ]
{ "dataset": "locate3d_scannet", "object": [ { "object_bbox": [ [ 1.064441978931427, 0.226783514022827, 0.552540535572916, 1.5870915651321411, 2.252529621124267, 1.122249375097453 ] ], "object_id": [ 4 ], "object_name": "bed" }, { "object_bbox": [ [ -0.716227829456329, 0.922990426421165, 0.761530867777764, 1.2912307977676392, 0.986053735017776, 1.55600811727345 ] ], "object_id": [ 6 ], "object_name": "desk" } ], "question_type": "locate3d", "target_object_id": 4, "target_object_name": "bed" }
4
scannet/scene0188_00
[ { "from": "human", "value": "<image>Locate all the objects mentioned in following description and output the object name and 3D bounding box in the format (x1, y1, z1, x2, y2, z2).\nbag is beside to the door" }, { "from": "gpt", "value": "<ground>" } ]
{ "dataset": "locate3d_scannet", "object": [ { "object_bbox": [ [ -0.34948755800724, -2.350434184074402, 0.8229709267616271, 0.42490050196647605, 0.46037840843200606, 0.337958216667175 ] ], "object_id": [ 21 ], "object_name": "backpack" }, { "object_bbox": [ [ 0.26774209737777704, -2.556911468505859, 0.42076116427779203, 1.270286440849304, 0.16552877426147403, 1.002621062099933 ] ], "object_id": [ 19 ], "object_name": "door" } ], "question_type": "locate3d", "target_object_id": 21, "target_object_name": "backpack" }
5
scannet/scene0419_00
[ { "from": "human", "value": "<image>Locate all the objects mentioned in following description and output the object name and 3D bounding box in the format (x1, y1, z1, x2, y2, z2).\nrefrigerator beside the sofa" }, { "from": "gpt", "value": "<ground>" } ]
{ "dataset": "locate3d_scannet", "object": [ { "object_bbox": [ [ -0.9380296170711511, 0.8887496143579481, 0.761862887069582, 0.226528942584991, 0.7826952636241911, 1.607594702392816 ] ], "object_id": [ 12 ], "object_name": "refrigerator" }, { "object_bbox": [ [ -0.868482232093811, -1.089573383331298, 0.40310563612729305, 1.537971019744873, 2.318789958953857, 0.8252590503543611 ] ], "object_id": [ 0 ], "object_name": "couch" } ], "question_type": "locate3d", "target_object_id": 12, "target_object_name": "refrigerator" }
6
scannet/scene0514_00
[ { "from": "human", "value": "<image>Locate all the objects mentioned in following description and output the object name and 3D bounding box in the format (x1, y1, z1, x2, y2, z2).\njacket is on the table" }, { "from": "gpt", "value": "<ground>" } ]
{ "dataset": "locate3d_scannet", "object": [ { "object_bbox": [ [ 0.348352894186973, 0.49675597250461506, 0.498188540339469, 0.253058522939682, 0.24698671698570202, 0.127355128526687 ] ], "object_id": [ 17 ], "object_name": "jacket" }, { "object_bbox": [ [ 0.6963935196399681, 0.414885345846414, 0.264699352905154, 1.101234376430511, 0.659300439059734, 0.543018553406 ] ], "object_id": [ 1 ], "object_name": "coffee table" } ], "question_type": "locate3d", "target_object_id": 17, "target_object_name": "jacket" }
7
scannet/scene0235_00
[ { "from": "human", "value": "<image>Locate all the objects mentioned in following description and output the object name and 3D bounding box in the format (x1, y1, z1, x2, y2, z2).\nsingle seater sofa beside the room heater" }, { "from": "gpt", "value": "<ground>" } ]
{ "dataset": "locate3d_scannet", "object": [ { "object_bbox": [ [ -1.55738478899002, -1.235458374023437, 0.45078994892537505, 0.86757743358612, 0.798436164855957, 0.970933753997087 ] ], "object_id": [ 21 ], "object_name": "sofa chair" }, { "object_bbox": [ [ -1.39001315832138, -1.9893048405647271, 0.6549604535102841, 1.147971272468567, 0.19385802745819, 0.540751218795776 ] ], "object_id": [ 20 ], "object_name": "radiator" } ], "question_type": "locate3d", "target_object_id": 21, "target_object_name": "sofa" }
8
scannet/scene0557_00
[ { "from": "human", "value": "<image>Locate all the objects mentioned in following description and output the object name and 3D bounding box in the format (x1, y1, z1, x2, y2, z2).\nwindow curtains next to the bed" }, { "from": "gpt", "value": "<ground>" } ]
{ "dataset": "locate3d_scannet", "object": [ { "object_bbox": [ [ 0.138158500194549, 2.3292453289031982, 1.5729541182518, 1.460311412811279, 0.21213006973266602, 0.827250123023986 ] ], "object_id": [ 14 ], "object_name": "curtain" }, { "object_bbox": [ [ 0.039268732070922005, 1.2567083574831481, 0.604120467789471, 2.008594989776611, 2.339923433959484, 1.247532894834876 ] ], "object_id": [ 6 ], "object_name": "bed" } ], "question_type": "locate3d", "target_object_id": 14, "target_object_name": "curtain" }
9
scannet/scene0096_00
[ { "from": "human", "value": "<image>Locate all the objects mentioned in following description and output the object name and 3D bounding box in the format (x1, y1, z1, x2, y2, z2).\nflowervase on the table " }, { "from": "gpt", "value": "<ground>" } ]
{ "dataset": "locate3d_scannet", "object": [ { "object_bbox": [ [ 0.238590814173221, 1.37100350856781, 0.900779157876968, 0.17461721599102, 0.27316331863403304, 0.288586318492889 ] ], "object_id": [ 16 ], "object_name": "vase" }, { "object_bbox": [ [ 0.28296323120594, 1.355404734611511, 0.41628469014540304, 0.43095514178276, 0.306626796722412, 0.859363893978297 ] ], "object_id": [ 18 ], "object_name": "chest" } ], "question_type": "locate3d", "target_object_id": 16, "target_object_name": "vase" }
10
scannet/scene0493_00
[ { "from": "human", "value": "<image>Locate all the objects mentioned in following description and output the object name and 3D bounding box in the format (x1, y1, z1, x2, y2, z2).\nThe bag is near to the table" }, { "from": "gpt", "value": "<ground>" } ]
{ "dataset": "locate3d_scannet", "object": [ { "object_bbox": [ [ 0.9356274604797361, -0.8765097856521601, 0.659565210342407, 0.324868917465209, 0.384694814682006, 0.44129133224487305 ] ], "object_id": [ 7 ], "object_name": "backpack" }, { "object_bbox": [ [ 0.057389736175537005, -0.23463523387908902, 0.34965749131515605, 2.266882419586181, 1.190310716629028, 0.725968568585813 ] ], "object_id": [ 9 ], "object_name": "table" } ], "question_type": "locate3d", "target_object_id": 7, "target_object_name": "backpack" }
11
scannet/scene0227_00
[ { "from": "human", "value": "<image>Locate all the objects mentioned in following description and output the object name and 3D bounding box in the format (x1, y1, z1, x2, y2, z2).\ntelephone is on the table" }, { "from": "gpt", "value": "<ground>" } ]
{ "dataset": "locate3d_scannet", "object": [ { "object_bbox": [ [ 0.221409939229488, 1.462414443492889, 0.821410000324249, 0.24856217205524403, 0.253248333930969, 0.17759847640991203 ] ], "object_id": [ 8 ], "object_name": "telephone" }, { "object_bbox": [ [ 0.08167591691017101, 0.85594131052494, 0.387818510644137, 0.959807693958282, 1.484128206968307, 0.8104279134422541 ] ], "object_id": [ 2 ], "object_name": "table" } ], "question_type": "locate3d", "target_object_id": 8, "target_object_name": "telephone" }
12
scannet/scene0297_00
[ { "from": "human", "value": "<image>Locate all the objects mentioned in following description and output the object name and 3D bounding box in the format (x1, y1, z1, x2, y2, z2).\ncouch is opposite to cupbord" }, { "from": "gpt", "value": "<ground>" } ]
{ "dataset": "locate3d_scannet", "object": [ { "object_bbox": [ [ -1.8382841348648071, -1.732952892780304, 0.214359263307414, 0.739906549453735, 0.8028625249862671, 0.424435775028541 ] ], "object_id": [ 13 ], "object_name": "table" }, { "object_bbox": [ [ -1.9604471921920772, 0.137152180075645, 0.360339621547609, 0.558943510055542, 1.262969046831131, 0.7034120960161091 ] ], "object_id": [ 15 ], "object_name": "cabinet" } ], "question_type": "locate3d", "target_object_id": 13, "target_object_name": "table" }
13
scannet/scene0327_00
[ { "from": "human", "value": "<image>Locate all the objects mentioned in following description and output the object name and 3D bounding box in the format (x1, y1, z1, x2, y2, z2).\ncarrybag on sofa" }, { "from": "gpt", "value": "<ground>" } ]
{ "dataset": "locate3d_scannet", "object": [ { "object_bbox": [ [ 1.69001305103302, 1.152040064334869, 0.55157670378685, 0.228428602218627, 0.27158486843109103, 0.27575296163558904 ] ], "object_id": [ 10 ], "object_name": "object" }, { "object_bbox": [ [ 1.384646087884903, 1.330843359231948, 0.34062843210995203, 1.704608142375946, 0.9562520384788511, 0.741442468017339 ] ], "object_id": [ 36 ], "object_name": "couch" } ], "question_type": "locate3d", "target_object_id": 10, "target_object_name": "object" }
14
scannet/scene0175_00
[ { "from": "human", "value": "<image>Locate all the objects mentioned in following description and output the object name and 3D bounding box in the format (x1, y1, z1, x2, y2, z2).\ndustbin is infront of the door" }, { "from": "gpt", "value": "<ground>" } ]
{ "dataset": "locate3d_scannet", "object": [ { "object_bbox": [ [ -0.334855318069458, -0.9955112934112541, 0.008409596979618001, 3.150966167449951, 3.587466239929199, 0.166245117783546 ] ], "object_id": [ 6 ], "object_name": "floor" }, { "object_bbox": [ [ 0.331511504948139, -1.40767365694046, 0.373935761163011, 0.311019286513328, 0.541276335716247, 0.760960097890347 ] ], "object_id": [ 39 ], "object_name": "trash can" } ], "question_type": "locate3d", "target_object_id": 39, "target_object_name": "trash" }
15
scannet/scene0451_00
[ { "from": "human", "value": "<image>Locate all the objects mentioned in following description and output the object name and 3D bounding box in the format (x1, y1, z1, x2, y2, z2).\nphoto frame above cupboard " }, { "from": "gpt", "value": "<ground>" } ]
{ "dataset": "locate3d_scannet", "object": [ { "object_bbox": [ [ 1.842754483222961, 1.6719210147857662, 1.587282478809356, 0.053198337554931, 0.6678051948547361, 0.549818158149719 ] ], "object_id": [ 41 ], "object_name": "picture" }, { "object_bbox": [ [ 1.58250880241394, 1.652722954750061, 0.5003811919596041, 0.5552179813385011, 1.052671194076538, 1.002590496558696 ] ], "object_id": [ 2 ], "object_name": "cabinet" } ], "question_type": "locate3d", "target_object_id": 41, "target_object_name": "picture" }
16
scannet/scene0429_00
[ { "from": "human", "value": "<image>Locate all the objects mentioned in following description and output the object name and 3D bounding box in the format (x1, y1, z1, x2, y2, z2).\ndustbin near the curtain" }, { "from": "gpt", "value": "<ground>" } ]
{ "dataset": "locate3d_scannet", "object": [ { "object_bbox": [ [ -1.5321829915046692, -1.415578126907348, 0.131447628140449, 0.24354612827301003, 0.382915019989013, 0.32483622431755005 ] ], "object_id": [ 25 ], "object_name": "trash can" }, { "object_bbox": [ [ -0.77834603190422, -0.9455204904079431, 1.11542472243309, 0.6374102234840391, 0.24901181459426802, 1.932110607624054 ] ], "object_id": [ 0 ], "object_name": "shower curtain" } ], "question_type": "locate3d", "target_object_id": 25, "target_object_name": "trash" }
17
scannet/scene0134_00
[ { "from": "human", "value": "<image>Locate all the objects mentioned in following description and output the object name and 3D bounding box in the format (x1, y1, z1, x2, y2, z2).\nphoto frame is beside cupboard" }, { "from": "gpt", "value": "<ground>" } ]
{ "dataset": "locate3d_scannet", "object": [ { "object_bbox": [ [ 1.724827170372009, -0.294333219528198, 1.498215585947036, 0.059598684310913, 0.9703521728515621, 1.112643420696258 ] ], "object_id": [ 10 ], "object_name": "picture" }, { "object_bbox": [ [ 0.29504108428955, 1.075030475854873, 1.034802408888936, 2.937800884246826, 0.20797485113143901, 2.052338656038046 ] ], "object_id": [ 5 ], "object_name": "cabinets" } ], "question_type": "locate3d", "target_object_id": 10, "target_object_name": "picture" }
18
scannet/scene0250_00
[ { "from": "human", "value": "<image>Locate all the objects mentioned in following description and output the object name and 3D bounding box in the format (x1, y1, z1, x2, y2, z2).\nvase beside the sink" }, { "from": "gpt", "value": "<ground>" } ]
{ "dataset": "locate3d_scannet", "object": [ { "object_bbox": [ [ -0.384976327419281, 1.924731612205505, 1.1475770175457, 0.366553544998168, 0.49636340141296303, 0.46897655725479104 ] ], "object_id": [ 45 ], "object_name": "plant" }, { "object_bbox": [ [ 0.301012717187404, 1.81529301404953, 0.885995477437973, 0.526804998517036, 0.41744434833526606, 0.29899913072586004 ] ], "object_id": [ 34 ], "object_name": "faucet" } ], "question_type": "locate3d", "target_object_id": 45, "target_object_name": "plant" }
19
scannet/scene0170_00
[ { "from": "human", "value": "<image>Locate all the objects mentioned in following description and output the object name and 3D bounding box in the format (x1, y1, z1, x2, y2, z2).\nWash basin beside the toilet" }, { "from": "gpt", "value": "<ground>" } ]
{ "dataset": "locate3d_scannet", "object": [ { "object_bbox": [ [ 0.6086521148681641, 0.015655688941478, 0.7139166295528411, 0.392708301544189, 0.230741694569587, 0.22345763444900502 ] ], "object_id": [ 7 ], "object_name": "sink" }, { "object_bbox": [ [ -0.24788627028465202, -0.027206480503082, 0.336437136866152, 0.49767357110977106, 0.679420709609985, 0.7223169188946481 ] ], "object_id": [ 15 ], "object_name": "toilet" } ], "question_type": "locate3d", "target_object_id": 7, "target_object_name": "sink" }
20
scannet/scene0072_00
[ { "from": "human", "value": "<image>Locate all the objects mentioned in following description and output the object name and 3D bounding box in the format (x1, y1, z1, x2, y2, z2).\nlaundry basket near cupboard" }, { "from": "gpt", "value": "<ground>" } ]
{ "dataset": "locate3d_scannet", "object": [ { "object_bbox": [ [ 0.27999249100685103, 2.028839766979217, 0.14266261272132302, 0.326996743679046, 0.34537184238433805, 0.40362358465790704 ] ], "object_id": [ 28 ], "object_name": "basket" }, { "object_bbox": [ [ 0.6443398296833031, 1.462807685136795, 1.162209114059805, 0.20124548673629702, 1.731701791286468, 2.407039005309343 ] ], "object_id": [ 24 ], "object_name": "wardrobe closet" } ], "question_type": "locate3d", "target_object_id": 28, "target_object_name": "basket" }
21
scannet/scene0514_00
[ { "from": "human", "value": "<image>Locate all the objects mentioned in following description and output the object name and 3D bounding box in the format (x1, y1, z1, x2, y2, z2).\nJacket is on the centre table" }, { "from": "gpt", "value": "<ground>" } ]
{ "dataset": "locate3d_scannet", "object": [ { "object_bbox": [ [ 0.348352894186973, 0.49675597250461506, 0.498188540339469, 0.253058522939682, 0.24698671698570202, 0.127355128526687 ] ], "object_id": [ 17 ], "object_name": "jacket" }, { "object_bbox": [ [ 0.6963935196399681, 0.414885345846414, 0.264699352905154, 1.101234376430511, 0.659300439059734, 0.543018553406 ] ], "object_id": [ 1 ], "object_name": "coffee table" } ], "question_type": "locate3d", "target_object_id": 1, "target_object_name": "coffee" }
22
scannet/scene0305_00
[ { "from": "human", "value": "<image>Locate all the objects mentioned in following description and output the object name and 3D bounding box in the format (x1, y1, z1, x2, y2, z2).\ntowerfan near to door" }, { "from": "gpt", "value": "<ground>" } ]
{ "dataset": "locate3d_scannet", "object": [ { "object_bbox": [ [ -0.7665975987911221, 2.402680516242981, 0.32780312374234205, 0.32464236021041804, 0.357625722885131, 0.7227127775549881 ] ], "object_id": [ 28 ], "object_name": "object" }, { "object_bbox": [ [ 0.027886450290679002, 2.817581295967102, 1.123254972975701, 1.087489128112793, 0.1829035282135, 2.261536204256117 ] ], "object_id": [ 17 ], "object_name": "door" } ], "question_type": "locate3d", "target_object_id": 28, "target_object_name": "object" }
23
scannet/scene0478_00
[ { "from": "human", "value": "<image>Locate all the objects mentioned in following description and output the object name and 3D bounding box in the format (x1, y1, z1, x2, y2, z2).\ntrashbin beside the drawer" }, { "from": "gpt", "value": "<ground>" } ]
{ "dataset": "locate3d_scannet", "object": [ { "object_bbox": [ [ 0.711542755365371, -1.4682948589324951, 0.398639956489205, 0.331667363643646, 0.49652814865112305, 0.747276466339826 ] ], "object_id": [ 6 ], "object_name": "recycling bin" }, { "object_bbox": [ [ 0.8857458829879761, -0.023554325103759002, 0.39592548320069904, 0.184856057167053, 2.487876653671264, 0.808307605795562 ] ], "object_id": [ 7 ], "object_name": "cabinet" } ], "question_type": "locate3d", "target_object_id": 6, "target_object_name": "recycling" }
24
scannet/scene0044_00
[ { "from": "human", "value": "<image>Locate all the objects mentioned in following description and output the object name and 3D bounding box in the format (x1, y1, z1, x2, y2, z2).\nbag near the door" }, { "from": "gpt", "value": "<ground>" } ]
{ "dataset": "locate3d_scannet", "object": [ { "object_bbox": [ [ 0.0069137364625930006, -1.601583898067474, 0.000703990459442, 0.39867514371871904, 0.337831854820251, 0.401878714561462 ] ], "object_id": [ 9 ], "object_name": "backpack" }, { "object_bbox": [ [ 1.131754368543624, -1.25979483127594, 0.8027804791927331, 0.26771193742752003, 1.192197322845459, 2.169983685016632 ] ], "object_id": [ 1 ], "object_name": "door" } ], "question_type": "locate3d", "target_object_id": 9, "target_object_name": "backpack" }
25
scannet/scene0151_00
[ { "from": "human", "value": "<image>Locate all the objects mentioned in following description and output the object name and 3D bounding box in the format (x1, y1, z1, x2, y2, z2).\ncenter table opposite to sofa" }, { "from": "gpt", "value": "<ground>" } ]
{ "dataset": "locate3d_scannet", "object": [ { "object_bbox": [ [ -2.231308460235595, -0.810886740684509, 0.25333802588284005, 1.095365047454834, 1.118419170379638, 0.48454233631491606 ] ], "object_id": [ 10 ], "object_name": "coffee table" }, { "object_bbox": [ [ -1.138007044792175, -0.8124499320983881, 0.48926054500043303, 2.443019151687622, 3.432954311370849, 0.997550267726182 ] ], "object_id": [ 5 ], "object_name": "couch" } ], "question_type": "locate3d", "target_object_id": 10, "target_object_name": "coffee" }
26
scannet/scene0340_00
[ { "from": "human", "value": "<image>Locate all the objects mentioned in following description and output the object name and 3D bounding box in the format (x1, y1, z1, x2, y2, z2).\ntelevision on the cupboard" }, { "from": "gpt", "value": "<ground>" } ]
{ "dataset": "locate3d_scannet", "object": [ { "object_bbox": [ [ 1.5132619738578792, 0.34010013006627504, 1.162713259458541, 0.20428121089935303, 0.7981220073997971, 0.606888830661773 ] ], "object_id": [ 9 ], "object_name": "tv" }, { "object_bbox": [ [ 1.545257031917572, 0.355700716376304, 0.452102433890104, 0.6250141859054561, 1.250476390123367, 1.039643622934818 ] ], "object_id": [ 4 ], "object_name": "cabinet" } ], "question_type": "locate3d", "target_object_id": 9, "target_object_name": "tv" }
27
scannet/scene0692_00
[ { "from": "human", "value": "<image>Locate all the objects mentioned in following description and output the object name and 3D bounding box in the format (x1, y1, z1, x2, y2, z2).\ndustbin infront of the chair" }, { "from": "gpt", "value": "<ground>" } ]
{ "dataset": "locate3d_scannet", "object": [ { "object_bbox": [ [ 0.766225129365921, -2.112905442714691, 0.758287610486149, 2.239741265773773, 0.26962053775787304, 1.562366601079702 ] ], "object_id": [ 10 ], "object_name": "wall" }, { "object_bbox": [ [ 0.043401837348937, -1.980488121509552, 0.153150355443358, 0.33786606788635204, 0.31118953227996804, 0.35838757827878 ] ], "object_id": [ 20 ], "object_name": "trash can" }, { "object_bbox": [ [ 0.6157248914241791, -1.8756229281425472, 0.573168372735381, 0.555128633975982, 0.5320416688919061, 1.206635046750307 ] ], "object_id": [ 8 ], "object_name": "chair" } ], "question_type": "locate3d", "target_object_id": 10, "target_object_name": "wall" }
28
scannet/scene0090_00
[ { "from": "human", "value": "<image>Locate all the objects mentioned in following description and output the object name and 3D bounding box in the format (x1, y1, z1, x2, y2, z2).\nwash basin beside the toilet" }, { "from": "gpt", "value": "<ground>" } ]
{ "dataset": "locate3d_scannet", "object": [ { "object_bbox": [ [ -0.7323331236839291, -0.6751941889524461, 0.6352297067642211, 0.565396428108215, 0.444865494966506, 0.716652512550354 ] ], "object_id": [ 3 ], "object_name": "sink" }, { "object_bbox": [ [ -1.618739306926727, -0.571318298578262, 0.556897357106208, 0.580903887748718, 0.641204178333282, 0.675887674093246 ] ], "object_id": [ 1 ], "object_name": "toilet" } ], "question_type": "locate3d", "target_object_id": 3, "target_object_name": "sink" }
29
scannet/scene0585_00
[ { "from": "human", "value": "<image>Locate all the objects mentioned in following description and output the object name and 3D bounding box in the format (x1, y1, z1, x2, y2, z2).\nPaper cutter on the table" }, { "from": "gpt", "value": "<ground>" } ]
{ "dataset": "locate3d_scannet", "object": [ { "object_bbox": [ [ 0.40985799580812404, 2.933670043945312, 1.102498948574066, 0.497130259871482, 0.6245684623718261, 0.168814063072204 ] ], "object_id": [ 29 ], "object_name": "paper cutter" }, { "object_bbox": [ [ -0.187786996364593, 3.038397908210754, 0.6872143149375911, 1.926336169242858, 0.812793016433715, 0.928843140602111 ] ], "object_id": [ 27 ], "object_name": "shelf" } ], "question_type": "locate3d", "target_object_id": 29, "target_object_name": "paper" }
30
scannet/scene0008_00
[ { "from": "human", "value": "<image>Locate all the objects mentioned in following description and output the object name and 3D bounding box in the format (x1, y1, z1, x2, y2, z2).\ncushion on one seater" }, { "from": "gpt", "value": "<ground>" } ]
{ "dataset": "locate3d_scannet", "object": [ { "object_bbox": [ [ 1.084492176771164, 3.555010318756103, 0.834975332021713, 0.5317586064338681, 0.255720615386962, 0.39437204599380404 ] ], "object_id": [ 13 ], "object_name": "pillow" }, { "object_bbox": [ [ 1.088328540325164, 3.3569611310958862, 0.630869805812835, 1.330853343009948, 1.13323426246643, 0.8865619897842401 ] ], "object_id": [ 4 ], "object_name": "sofa chair" } ], "question_type": "locate3d", "target_object_id": 13, "target_object_name": "pillow" }
31
scannet/scene0399_00
[ { "from": "human", "value": "<image>Locate all the objects mentioned in following description and output the object name and 3D bounding box in the format (x1, y1, z1, x2, y2, z2).\nBag opposite to the Tissue dispenser " }, { "from": "gpt", "value": "<ground>" } ]
{ "dataset": "locate3d_scannet", "object": [ { "object_bbox": [ [ 1.581865727901458, -0.363638237118721, 0.235664085950702, 0.373926281929016, 0.45410344004631004, 0.45209583360701805 ] ], "object_id": [ 11 ], "object_name": "backpack" }, { "object_bbox": [ [ -0.22464258968830103, -0.09515764564275701, 1.17477336525917, 0.41702964901924106, 0.16419510543346402, 0.555461108684539 ] ], "object_id": [ 18 ], "object_name": "paper towel dispenser" } ], "question_type": "locate3d", "target_object_id": 11, "target_object_name": "backpack" }
32
scannet/scene0309_00
[ { "from": "human", "value": "<image>Locate all the objects mentioned in following description and output the object name and 3D bounding box in the format (x1, y1, z1, x2, y2, z2).\nxerox machine close to the white board" }, { "from": "gpt", "value": "<ground>" } ]
{ "dataset": "locate3d_scannet", "object": [ { "object_bbox": [ [ -2.438563585281372, -1.544135093688964, 1.4872269630432131, 0.12329626083374001, 1.265123844146728, 0.9260537624359131 ] ], "object_id": [ 29 ], "object_name": "whiteboard" }, { "object_bbox": [ [ -2.012986540794372, -0.8076010942459101, 0.524344594683498, 0.726592779159545, 1.319068908691406, 1.067167458124458 ] ], "object_id": [ 22 ], "object_name": "copier" } ], "question_type": "locate3d", "target_object_id": 22, "target_object_name": "copier" }
33
scannet/scene0348_00
[ { "from": "human", "value": "<image>Locate all the objects mentioned in following description and output the object name and 3D bounding box in the format (x1, y1, z1, x2, y2, z2).\nmicro oven above stove" }, { "from": "gpt", "value": "<ground>" } ]
{ "dataset": "locate3d_scannet", "object": [ { "object_bbox": [ [ 0.8760332465171811, 0.825296819210052, 1.3891123533248901, 0.39191019535064703, 0.644646525382995, 0.43625736236572205 ] ], "object_id": [ 14 ], "object_name": "cabinet" }, { "object_bbox": [ [ 0.7318594306707381, 0.7908016592264171, 0.42448808252811404, 0.7286505997180931, 0.848416775465011, 1.159534186124801 ] ], "object_id": [ 18 ], "object_name": "stove" } ], "question_type": "locate3d", "target_object_id": 14, "target_object_name": "cabinet" }
34
scannet/scene0123_00
[ { "from": "human", "value": "<image>Locate all the objects mentioned in following description and output the object name and 3D bounding box in the format (x1, y1, z1, x2, y2, z2).\njacket on the table" }, { "from": "gpt", "value": "<ground>" } ]
{ "dataset": "locate3d_scannet", "object": [ { "object_bbox": [ [ 0.494593828916549, -1.341010987758636, 0.85976842045784, 0.315958082675933, 0.38805210590362504, 0.172282755374908 ] ], "object_id": [ 17 ], "object_name": "clothes" }, { "object_bbox": [ [ 1.181283190846443, -1.565962076187133, 0.43366096494719303, 1.909681409597396, 1.342366695404052, 0.847486653365194 ] ], "object_id": [ 18 ], "object_name": "table" } ], "question_type": "locate3d", "target_object_id": 17, "target_object_name": "clothes" }
35
scannet/scene0043_00
[ { "from": "human", "value": "<image>Locate all the objects mentioned in following description and output the object name and 3D bounding box in the format (x1, y1, z1, x2, y2, z2).\nbag on the bench " }, { "from": "gpt", "value": "<ground>" } ]
{ "dataset": "locate3d_scannet", "object": [ { "object_bbox": [ [ 1.947972297668457, 0.418236926198005, 0.49215868115425104, 0.45921182632446206, 0.48797199130058205, 0.246874511241912 ] ], "object_id": [ 8 ], "object_name": "backpack" }, { "object_bbox": [ [ 1.900018990039825, 0.676949590444564, 0.21688174642622401, 0.565945506095886, 1.913946449756622, 0.542063545435667 ] ], "object_id": [ 5 ], "object_name": "bench" } ], "question_type": "locate3d", "target_object_id": 8, "target_object_name": "backpack" }
36
scannet/scene0511_00
[ { "from": "human", "value": "<image>Locate all the objects mentioned in following description and output the object name and 3D bounding box in the format (x1, y1, z1, x2, y2, z2).\nxerox machine is next to dustbin" }, { "from": "gpt", "value": "<ground>" } ]
{ "dataset": "locate3d_scannet", "object": [ { "object_bbox": [ [ 0.44310721755027704, 1.7508434057235711, 0.5817411686293781, 1.157300293445587, 0.684574842453002, 1.192689747549593 ] ], "object_id": [ 4 ], "object_name": "copier" }, { "object_bbox": [ [ -0.6652716696262361, 1.236183643341064, 0.31687400024384205, 0.35379463434219305, 0.326189517974853, 0.6716094557195901 ] ], "object_id": [ 9 ], "object_name": "recycling bin" } ], "question_type": "locate3d", "target_object_id": 4, "target_object_name": "copier" }
37
scannet/scene0121_00
[ { "from": "human", "value": "<image>Locate all the objects mentioned in following description and output the object name and 3D bounding box in the format (x1, y1, z1, x2, y2, z2).\ndrawer beside the door" }, { "from": "gpt", "value": "<ground>" } ]
{ "dataset": "locate3d_scannet", "object": [ { "object_bbox": [ [ -0.991248846054077, -0.6060025691986081, 0.306560572236776, 0.153985261917114, 1.647834062576294, 0.852686770260334 ] ], "object_id": [ 3 ], "object_name": "dresser" }, { "object_bbox": [ [ -0.50028446316719, -1.544739365577697, 0.864153280854225, 0.569612801074981, 0.09817314147949201, 2.012129515409469 ] ], "object_id": [ 0 ], "object_name": "door" } ], "question_type": "locate3d", "target_object_id": 3, "target_object_name": "dresser" }
38
scannet/scene0625_00
[ { "from": "human", "value": "<image>Locate all the objects mentioned in following description and output the object name and 3D bounding box in the format (x1, y1, z1, x2, y2, z2).\ntelephone is near to toilet" }, { "from": "gpt", "value": "<ground>" } ]
{ "dataset": "locate3d_scannet", "object": [ { "object_bbox": [ [ -0.988768279552459, -0.002009082585573, 0.7994453907012941, 0.10280716419219901, 0.094428956508636, 0.45863389968872004 ] ], "object_id": [ 4 ], "object_name": "telephone" }, { "object_bbox": [ [ -0.48497635126113803, 0.344677886925637, 0.33475367166101905, 0.54945945739746, 0.730460600927472, 0.739830773323774 ] ], "object_id": [ 7 ], "object_name": "toilet" } ], "question_type": "locate3d", "target_object_id": 4, "target_object_name": "telephone" }
39
scannet/scene0491_00
[ { "from": "human", "value": "<image>Locate all the objects mentioned in following description and output the object name and 3D bounding box in the format (x1, y1, z1, x2, y2, z2).\nbucket on cupboard" }, { "from": "gpt", "value": "<ground>" } ]
{ "dataset": "locate3d_scannet", "object": [ { "object_bbox": [ [ -1.239802181720733, -1.145614922046661, 1.06616398692131, 0.28147518634796104, 0.328925251960754, 0.37872034311294506 ] ], "object_id": [ 5 ], "object_name": "bucket" }, { "object_bbox": [ [ -1.258212745189666, -0.31935989856719904, 0.556622338015586, 0.78553283214569, 2.133168697357177, 1.135851240716874 ] ], "object_id": [ 6 ], "object_name": "cabinet" } ], "question_type": "locate3d", "target_object_id": 5, "target_object_name": "bucket" }
40
scannet/scene0675_00
[ { "from": "human", "value": "<image>Locate all the objects mentioned in following description and output the object name and 3D bounding box in the format (x1, y1, z1, x2, y2, z2).\nstudy table beside bed" }, { "from": "gpt", "value": "<ground>" } ]
{ "dataset": "locate3d_scannet", "object": [ { "object_bbox": [ [ -0.9191116094589231, -1.050462543964386, 0.368105675093829, 0.7927610874176021, 1.345504164695739, 0.769183347001671 ] ], "object_id": [ 5 ], "object_name": "desk" }, { "object_bbox": [ [ -0.799834668636322, 1.433518409729004, 0.529109319904819, 1.131488442420959, 2.269981861114502, 1.067962008994072 ] ], "object_id": [ 4 ], "object_name": "bed" } ], "question_type": "locate3d", "target_object_id": 5, "target_object_name": "desk" }
41
scannet/scene0305_00
[ { "from": "human", "value": "<image>Locate all the objects mentioned in following description and output the object name and 3D bounding box in the format (x1, y1, z1, x2, y2, z2).\nTower fan next to the door" }, { "from": "gpt", "value": "<ground>" } ]
{ "dataset": "locate3d_scannet", "object": [ { "object_bbox": [ [ -0.7665975987911221, 2.402680516242981, 0.32780312374234205, 0.32464236021041804, 0.357625722885131, 0.7227127775549881 ] ], "object_id": [ 28 ], "object_name": "object" }, { "object_bbox": [ [ 0.027886450290679002, 2.817581295967102, 1.123254972975701, 1.087489128112793, 0.1829035282135, 2.261536204256117 ] ], "object_id": [ 17 ], "object_name": "door" } ], "question_type": "locate3d", "target_object_id": 28, "target_object_name": "object" }
42
scannet/scene0014_00
[ { "from": "human", "value": "<image>Locate all the objects mentioned in following description and output the object name and 3D bounding box in the format (x1, y1, z1, x2, y2, z2).\nroom heater is close to the toilet " }, { "from": "gpt", "value": "<ground>" } ]
{ "dataset": "locate3d_scannet", "object": [ { "object_bbox": [ [ -0.312204241752624, 0.603133030235767, 0.40868312679231106, 1.470851898193359, 0.7271878570318221, 0.7058077938854691 ] ], "object_id": [ 24 ], "object_name": "bathroom cabinet" }, { "object_bbox": [ [ 0.9897085726261131, 0.5386975407600401, 0.303551670163869, 0.38259476423263505, 0.643385291099548, 0.703269369900226 ] ], "object_id": [ 21 ], "object_name": "toilet" } ], "question_type": "locate3d", "target_object_id": 24, "target_object_name": "bathroom" }
43
scannet/scene0554_00
[ { "from": "human", "value": "<image>Locate all the objects mentioned in following description and output the object name and 3D bounding box in the format (x1, y1, z1, x2, y2, z2).\nbed close to the chair" }, { "from": "gpt", "value": "<ground>" } ]
{ "dataset": "locate3d_scannet", "object": [ { "object_bbox": [ [ 0.47107079625129705, 0.46926488727331106, 0.32917238585650904, 0.6454870104789731, 0.5699357539415361, 0.767578337341547 ] ], "object_id": [ 1 ], "object_name": "chair" }, { "object_bbox": [ [ -0.8163873553276061, 0.736062318086624, 0.400094158947467, 1.04592740535736, 2.195660054683685, 0.8992911428213121 ] ], "object_id": [ 15 ], "object_name": "bed" } ], "question_type": "locate3d", "target_object_id": 15, "target_object_name": "bed" }
44
scannet/scene0369_00
[ { "from": "human", "value": "<image>Locate all the objects mentioned in following description and output the object name and 3D bounding box in the format (x1, y1, z1, x2, y2, z2).\ntelephone is on the table" }, { "from": "gpt", "value": "<ground>" } ]
{ "dataset": "locate3d_scannet", "object": [ { "object_bbox": [ [ -0.00501537322998, 1.5095477104187012, 0.733148276805877, 0.353648543357849, 0.34555792808532704, 0.11399888992309501 ] ], "object_id": [ 32 ], "object_name": "telephone" }, { "object_bbox": [ [ -0.059074640274047005, 0.25442361831665, 0.728355795145034, 1.338834762573242, 3.3341469764709473, 0.24378484487533503 ] ], "object_id": [ 8 ], "object_name": "desk" } ], "question_type": "locate3d", "target_object_id": 8, "target_object_name": "desk" }
45
scannet/scene0613_00
[ { "from": "human", "value": "<image>Locate all the objects mentioned in following description and output the object name and 3D bounding box in the format (x1, y1, z1, x2, y2, z2).\nbed is next to side table" }, { "from": "gpt", "value": "<ground>" } ]
{ "dataset": "locate3d_scannet", "object": [ { "object_bbox": [ [ -0.6717613935470581, -0.6444093585014341, 0.52738781273365, 2.049586057662964, 1.631178736686706, 1.270898908376693 ] ], "object_id": [ 3 ], "object_name": "bed" }, { "object_bbox": [ [ -1.233994960784912, 0.58937089331448, 0.51684465073049, 0.8734352588653561, 1.081845190376043, 1.112048108130693 ] ], "object_id": [ 2 ], "object_name": "dresser" } ], "question_type": "locate3d", "target_object_id": 3, "target_object_name": "bed" }
46
scannet/scene0509_00
[ { "from": "human", "value": "<image>Locate all the objects mentioned in following description and output the object name and 3D bounding box in the format (x1, y1, z1, x2, y2, z2).\ntissue roll beside the toilet" }, { "from": "gpt", "value": "<ground>" } ]
{ "dataset": "locate3d_scannet", "object": [ { "object_bbox": [ [ -0.400233596563339, -0.73093694448471, 0.45296603441238403, 0.13318252563476501, 0.126697063446044, 0.137552261352539 ] ], "object_id": [ 8 ], "object_name": "toilet paper" }, { "object_bbox": [ [ -0.00016722083091700002, -0.42894804477691606, 0.40409388765692705, 0.448254108428955, 0.760435700416564, 0.8543028309941291 ] ], "object_id": [ 0 ], "object_name": "toilet" } ], "question_type": "locate3d", "target_object_id": 8, "target_object_name": "toilet" }
47
scannet/scene0288_00
[ { "from": "human", "value": "<image>Locate all the objects mentioned in following description and output the object name and 3D bounding box in the format (x1, y1, z1, x2, y2, z2).\nRefrigerator next to the washbasin " }, { "from": "gpt", "value": "<ground>" } ]
{ "dataset": "locate3d_scannet", "object": [ { "object_bbox": [ [ 0.28079757466912203, 1.283711016178131, 0.7690152470022441, 0.754508905112743, 0.7978383302688591, 1.511827360838651 ] ], "object_id": [ 0 ], "object_name": "refrigerator" }, { "object_bbox": [ [ 1.359604895114898, 1.365297317504882, 0.8558861911296841, 0.532262921333313, 0.551018714904785, 0.26006454229354803 ] ], "object_id": [ 28 ], "object_name": "sink" } ], "question_type": "locate3d", "target_object_id": 0, "target_object_name": "refrigerator" }
48
scannet/scene0052_00
[ { "from": "human", "value": "<image>Locate all the objects mentioned in following description and output the object name and 3D bounding box in the format (x1, y1, z1, x2, y2, z2).\nbag is on the couch" }, { "from": "gpt", "value": "<ground>" } ]
{ "dataset": "locate3d_scannet", "object": [ { "object_bbox": [ [ -1.196389317512512, -1.892101407051086, 0.5386394709348671, 0.328580856323242, 0.37395024299621504, 0.146137982606887 ] ], "object_id": [ 6 ], "object_name": "jacket" }, { "object_bbox": [ [ -1.376382708549499, -1.993520975112915, 0.263566263951361, 0.9574787616729731, 0.897335052490234, 0.49020097963511905 ] ], "object_id": [ 5 ], "object_name": "seat" } ], "question_type": "locate3d", "target_object_id": 6, "target_object_name": "jacket" }
49
scannet/scene0072_00
[ { "from": "human", "value": "<image>Locate all the objects mentioned in following description and output the object name and 3D bounding box in the format (x1, y1, z1, x2, y2, z2).\nbed near to the window" }, { "from": "gpt", "value": "<ground>" } ]
{ "dataset": "locate3d_scannet", "object": [ { "object_bbox": [ [ -0.518266201019287, -0.502535581588745, 0.220512561500072, 1.014205455780029, 2.153051614761352, 0.536778703331947 ] ], "object_id": [ 29 ], "object_name": "bed" }, { "object_bbox": [ [ 0.182408973574638, -1.575243115425109, 1.307926028966903, 1.283136278390884, 0.387240171432495, 1.339498341083526 ] ], "object_id": [ 20 ], "object_name": "window" } ], "question_type": "locate3d", "target_object_id": 29, "target_object_name": "bed" }
50
scannet/scene0479_00
[ { "from": "human", "value": "<image>Locate all the objects mentioned in following description and output the object name and 3D bounding box in the format (x1, y1, z1, x2, y2, z2).\ntissue dispenser above the oven" }, { "from": "gpt", "value": "<ground>" } ]
{ "dataset": "locate3d_scannet", "object": [ { "object_bbox": [ [ 1.228431701660156, -0.7788077294826501, 1.2340026497840881, 0.24671268463134702, 0.326572597026824, 0.393257498741149 ] ], "object_id": [ 24 ], "object_name": "paper towel dispenser" }, { "object_bbox": [ [ 0.8840839862823481, -1.159584462642669, 0.7641212046146391, 0.660512924194335, 0.471769213676452, 0.32325953245162903 ] ], "object_id": [ 12 ], "object_name": "microwave" } ], "question_type": "locate3d", "target_object_id": 24, "target_object_name": "paper" }
51
scannet/scene0118_00
[ { "from": "human", "value": "<image>Locate all the objects mentioned in following description and output the object name and 3D bounding box in the format (x1, y1, z1, x2, y2, z2).\ncoat on the center table" }, { "from": "gpt", "value": "<ground>" } ]
{ "dataset": "locate3d_scannet", "object": [ { "object_bbox": [ [ 1.277850270271301, -1.438294172286987, 0.51785509288311, 0.36185312271118103, 0.46723842620849604, 0.16924801468849102 ] ], "object_id": [ 12 ], "object_name": "jacket" }, { "object_bbox": [ [ 1.317650467157364, -1.383493363857269, 0.256161132827401, 0.7820493578910821, 0.723939776420593, 0.542095702141523 ] ], "object_id": [ 11 ], "object_name": "coffee table" } ], "question_type": "locate3d", "target_object_id": 12, "target_object_name": "jacket" }
52
scannet/scene0668_00
[ { "from": "human", "value": "<image>Locate all the objects mentioned in following description and output the object name and 3D bounding box in the format (x1, y1, z1, x2, y2, z2).\ntelevision above drawer" }, { "from": "gpt", "value": "<ground>" } ]
{ "dataset": "locate3d_scannet", "object": [ { "object_bbox": [ [ 0.181813135743141, 2.855891227722168, 1.602805435657501, 1.260901898145675, 0.29467248916625904, 0.797731757164001 ] ], "object_id": [ 1 ], "object_name": "tv" }, { "object_bbox": [ [ 0.126571714878082, 2.466341972351074, 0.376454590819776, 1.3501167297363281, 0.840322971343994, 0.802443148568272 ] ], "object_id": [ 18 ], "object_name": "cabinet" } ], "question_type": "locate3d", "target_object_id": 1, "target_object_name": "tv" }
53
scannet/scene0536_00
[ { "from": "human", "value": "<image>Locate all the objects mentioned in following description and output the object name and 3D bounding box in the format (x1, y1, z1, x2, y2, z2).\nphoto frame on the ottoman" }, { "from": "gpt", "value": "<ground>" } ]
{ "dataset": "locate3d_scannet", "object": [ { "object_bbox": [ [ -0.989005774259567, -0.552837461233139, 0.386731728911399, 0.7598696351051331, 0.6692315936088561, 0.070106118917465 ] ], "object_id": [ 9 ], "object_name": "object" }, { "object_bbox": [ [ -1.105848222970962, -0.453762412071228, 0.17367217503488, 0.9157585501670831, 1.729729890823364, 0.45973395183682403 ] ], "object_id": [ 7 ], "object_name": "coffee table" } ], "question_type": "locate3d", "target_object_id": 9, "target_object_name": "object" }
54
scannet/scene0040_00
[ { "from": "human", "value": "<image>Locate all the objects mentioned in following description and output the object name and 3D bounding box in the format (x1, y1, z1, x2, y2, z2).\npillow on the sofa" }, { "from": "gpt", "value": "<ground>" } ]
{ "dataset": "locate3d_scannet", "object": [ { "object_bbox": [ [ -0.5611865371465681, -0.15482310950756, 0.44939137995243006, 0.48100891709327703, 0.309710294008255, 0.18150195479393003 ] ], "object_id": [ 27 ], "object_name": "pillow" }, { "object_bbox": [ [ -0.730762124061584, -0.596897840499877, 0.38202767446637104, 1.095019340515136, 1.68483304977417, 0.6730241999030111 ] ], "object_id": [ 3 ], "object_name": "couch" } ], "question_type": "locate3d", "target_object_id": 27, "target_object_name": "pillow" }
55
scannet/scene0666_00
[ { "from": "human", "value": "<image>Locate all the objects mentioned in following description and output the object name and 3D bounding box in the format (x1, y1, z1, x2, y2, z2).\ndustbin beside the tv stand" }, { "from": "gpt", "value": "<ground>" } ]
{ "dataset": "locate3d_scannet", "object": [ { "object_bbox": [ [ -1.458113253116607, -2.778898596763611, 0.257297247648239, 0.382175326347351, 0.259259462356567, 0.38776892423629705 ] ], "object_id": [ 67 ], "object_name": "trash can" }, { "object_bbox": [ [ -2.190094172954559, -2.723637104034424, 0.660625785589218, 0.803429722785949, 0.571846485137939, 0.41619104146957403 ] ], "object_id": [ 72 ], "object_name": "table" } ], "question_type": "locate3d", "target_object_id": 67, "target_object_name": "trash" }
56
scannet/scene0253_00
[ { "from": "human", "value": "<image>Locate all the objects mentioned in following description and output the object name and 3D bounding box in the format (x1, y1, z1, x2, y2, z2).\ndoor behind the chair" }, { "from": "gpt", "value": "<ground>" } ]
{ "dataset": "locate3d_scannet", "object": [ { "object_bbox": [ [ 0.758548393845558, -1.490379512310028, 0.44570581056177605, 0.531317919492721, 0.38255774974823, 0.834601204842329 ] ], "object_id": [ 14 ], "object_name": "chair" }, { "object_bbox": [ [ 0.38071453385055004, -2.434068202972412, 1.140513710677623, 0.6582309044897551, 0.21595716476440402, 2.088668718934059 ] ], "object_id": [ 16 ], "object_name": "wall" } ], "question_type": "locate3d", "target_object_id": 16, "target_object_name": "wall" }
57
scannet/scene0002_00
[ { "from": "human", "value": "<image>Locate all the objects mentioned in following description and output the object name and 3D bounding box in the format (x1, y1, z1, x2, y2, z2).\nmicrowave is beside the wardrobe" }, { "from": "gpt", "value": "<ground>" } ]
{ "dataset": "locate3d_scannet", "object": [ { "object_bbox": [ [ 1.7978237867355342, -1.719727635383606, 0.819481909275054, 0.368556022644042, 0.540268182754516, 0.270072221755981 ] ], "object_id": [ 61 ], "object_name": "microwave" }, { "object_bbox": [ [ 1.772562384605407, -1.006094872951507, 0.7011645436286921, 0.774107694625854, 0.955914855003356, 1.887605547904968 ] ], "object_id": [ 33 ], "object_name": "cabinet" } ], "question_type": "locate3d", "target_object_id": 61, "target_object_name": "microwave" }
58
scannet/scene0590_00
[ { "from": "human", "value": "<image>Locate all the objects mentioned in following description and output the object name and 3D bounding box in the format (x1, y1, z1, x2, y2, z2).\nsofa next to the bed" }, { "from": "gpt", "value": "<ground>" } ]
{ "dataset": "locate3d_scannet", "object": [ { "object_bbox": [ [ -1.4406183362007141, -2.99398934841156, 0.426647359039634, 0.8583239316940301, 2.054541826248169, 0.869085323996841 ] ], "object_id": [ 7 ], "object_name": "couch" }, { "object_bbox": [ [ -1.567513167858123, -0.673477590084075, 0.8151438236236571, 0.37159216403961104, 0.7233084440231321, 0.42999553680419905 ] ], "object_id": [ 17 ], "object_name": "pillow" }, { "object_bbox": [ [ -0.7996449470520021, -0.45640611648559504, 0.41793154552578904, 2.183445930480957, 2.046157836914062, 1.009258888661861 ] ], "object_id": [ 12 ], "object_name": "bed" } ], "question_type": "locate3d", "target_object_id": 7, "target_object_name": "couch" }
59
scannet/scene0467_00
[ { "from": "human", "value": "<image>Locate all the objects mentioned in following description and output the object name and 3D bounding box in the format (x1, y1, z1, x2, y2, z2).\nround table is next to sofa" }, { "from": "gpt", "value": "<ground>" } ]
{ "dataset": "locate3d_scannet", "object": [ { "object_bbox": [ [ 1.128445863723754, 1.849514126777649, 0.361849959939718, 0.53381609916687, 0.522866010665893, 0.623285897076129 ] ], "object_id": [ 0 ], "object_name": "table" }, { "object_bbox": [ [ 1.313716471195221, 0.585604295134544, 0.46044082753360205, 1.104334235191345, 2.142296344041824, 1.002808902412653 ] ], "object_id": [ 8 ], "object_name": "couch" } ], "question_type": "locate3d", "target_object_id": 0, "target_object_name": "table" }
60
scannet/scene0614_00
[ { "from": "human", "value": "<image>Locate all the objects mentioned in following description and output the object name and 3D bounding box in the format (x1, y1, z1, x2, y2, z2).\nclock beside white board" }, { "from": "gpt", "value": "<ground>" } ]
{ "dataset": "locate3d_scannet", "object": [ { "object_bbox": [ [ -1.653785288333892, 0.5086285024881361, 1.49866172671318, 0.125338435173034, 1.793540686368942, 1.321690618991851 ] ], "object_id": [ 16 ], "object_name": "whiteboard" }, { "object_bbox": [ [ -1.548393309116363, 2.054359018802643, 1.80814641714096, 0.058246731758117, 0.44269406795501703, 0.340508103370666 ] ], "object_id": [ 39 ], "object_name": "clock" } ], "question_type": "locate3d", "target_object_id": 39, "target_object_name": "clock" }
61
scannet/scene0424_00
[ { "from": "human", "value": "<image>Locate all the objects mentioned in following description and output the object name and 3D bounding box in the format (x1, y1, z1, x2, y2, z2).\nbag on the sofa" }, { "from": "gpt", "value": "<ground>" } ]
{ "dataset": "locate3d_scannet", "object": [ { "object_bbox": [ [ -0.633970856666564, 1.63546621799469, 0.628718584775924, 0.4854736328125, 0.512125968933105, 0.321321904659271 ] ], "object_id": [ 13 ], "object_name": "backpack" }, { "object_bbox": [ [ 0.24593973159790003, 1.773411571979522, 0.41065805964171803, 2.183514595031738, 1.031901717185974, 0.8016132153570651 ] ], "object_id": [ 1 ], "object_name": "couch" } ], "question_type": "locate3d", "target_object_id": 13, "target_object_name": "backpack" }
62
scannet/scene0464_00
[ { "from": "human", "value": "<image>Locate all the objects mentioned in following description and output the object name and 3D bounding box in the format (x1, y1, z1, x2, y2, z2).\nTree pot close to the Lamp " }, { "from": "gpt", "value": "<ground>" } ]
{ "dataset": "locate3d_scannet", "object": [ { "object_bbox": [ [ -0.8705887198448181, 2.518938541412353, 1.020329654216766, 0.35086166858673, 0.39901590347290006, 0.554675936698913 ] ], "object_id": [ 3 ], "object_name": "lamp" }, { "object_bbox": [ [ -0.797429084777832, 2.146206557750702, 0.9622150361537931, 0.372880101203918, 0.43344175815582203, 0.455010950565338 ] ], "object_id": [ 56 ], "object_name": "plant" } ], "question_type": "locate3d", "target_object_id": 56, "target_object_name": "plant" }
63
scannet/scene0405_00
[ { "from": "human", "value": "<image>Locate all the objects mentioned in following description and output the object name and 3D bounding box in the format (x1, y1, z1, x2, y2, z2).\nroom cleaner is next to the door " }, { "from": "gpt", "value": "<ground>" } ]
{ "dataset": "locate3d_scannet", "object": [ { "object_bbox": [ [ 0.7833489477634431, 1.695706129074096, 0.49351149518042803, 0.26291936635971, 0.29330897331237704, 1.011181121692061 ] ], "object_id": [ 20 ], "object_name": "vacuum cleaner" }, { "object_bbox": [ [ 0.9722800254821771, 1.242476612329483, 0.9909535702317951, 0.13319778442382801, 0.9615845084190361, 2.006845463067293 ] ], "object_id": [ 12 ], "object_name": "door" } ], "question_type": "locate3d", "target_object_id": 20, "target_object_name": "vacuum" }
64
scannet/scene0362_00
[ { "from": "human", "value": "<image>Locate all the objects mentioned in following description and output the object name and 3D bounding box in the format (x1, y1, z1, x2, y2, z2).\ntv is infront of sofa" }, { "from": "gpt", "value": "<ground>" } ]
{ "dataset": "locate3d_scannet", "object": [ { "object_bbox": [ [ 1.6126118302345271, 0.33879580907523604, 1.358967006206512, 0.25678217411041204, 0.7658684886991971, 0.48347175121307306 ] ], "object_id": [ 10 ], "object_name": "tv" }, { "object_bbox": [ [ -1.929715812206268, -0.783995866775512, 0.37242622114717905, 0.9815880060195921, 1.930840015411377, 0.8327514939010141 ] ], "object_id": [ 5 ], "object_name": "couch" } ], "question_type": "locate3d", "target_object_id": 10, "target_object_name": "tv" }
65
scannet/scene0476_00
[ { "from": "human", "value": "<image>Locate all the objects mentioned in following description and output the object name and 3D bounding box in the format (x1, y1, z1, x2, y2, z2).\ncarry bag is on the table" }, { "from": "gpt", "value": "<ground>" } ]
{ "dataset": "locate3d_scannet", "object": [ { "object_bbox": [ [ -0.33229033648967704, 0.9937426149845121, 0.698896348476409, 0.34708216786384505, 0.358603417873382, 0.073117017745971 ] ], "object_id": [ 25 ], "object_name": "bag" }, { "object_bbox": [ [ 0.234917759895324, -0.27305793762207003, 0.41881043137982404, 1.978875637054443, 2.9182910919189453, 0.8662689840421081 ] ], "object_id": [ 9 ], "object_name": "table" } ], "question_type": "locate3d", "target_object_id": 25, "target_object_name": "bag" }
66
scannet/scene0624_00
[ { "from": "human", "value": "<image>Locate all the objects mentioned in following description and output the object name and 3D bounding box in the format (x1, y1, z1, x2, y2, z2).\nbag on chair" }, { "from": "gpt", "value": "<ground>" } ]
{ "dataset": "locate3d_scannet", "object": [ { "object_bbox": [ [ 2.295388579368591, -1.001374751329422, 0.7781826257705681, 0.42107033729553206, 0.49465650320053106, 0.513089179992675 ] ], "object_id": [ 33 ], "object_name": "backpack" }, { "object_bbox": [ [ 2.269236505031585, -0.968585431575775, 0.620043471455574, 0.698806881904602, 0.632177233695983, 0.6130915582180021 ] ], "object_id": [ 32 ], "object_name": "chair" } ], "question_type": "locate3d", "target_object_id": 33, "target_object_name": "backpack" }
67
scannet/scene0424_00
[ { "from": "human", "value": "<image>Locate all the objects mentioned in following description and output the object name and 3D bounding box in the format (x1, y1, z1, x2, y2, z2).\nBag is on the sofa" }, { "from": "gpt", "value": "<ground>" } ]
{ "dataset": "locate3d_scannet", "object": [ { "object_bbox": [ [ -0.633970856666564, 1.63546621799469, 0.628718584775924, 0.4854736328125, 0.512125968933105, 0.321321904659271 ] ], "object_id": [ 13 ], "object_name": "backpack" }, { "object_bbox": [ [ 0.24593973159790003, 1.773411571979522, 0.41065805964171803, 2.183514595031738, 1.031901717185974, 0.8016132153570651 ] ], "object_id": [ 1 ], "object_name": "couch" } ], "question_type": "locate3d", "target_object_id": 13, "target_object_name": "backpack" }
68
scannet/scene0521_00
[ { "from": "human", "value": "<image>Locate all the objects mentioned in following description and output the object name and 3D bounding box in the format (x1, y1, z1, x2, y2, z2).\ntoilet is infront of the washbasin" }, { "from": "gpt", "value": "<ground>" } ]
{ "dataset": "locate3d_scannet", "object": [ { "object_bbox": [ [ 1.03485569357872, -1.495792150497436, 0.42313249199651104, 0.696174919605255, 0.447136163711547, 0.858464096207171 ] ], "object_id": [ 12 ], "object_name": "toilet" }, { "object_bbox": [ [ -0.12996268272399902, -1.844364583492279, 0.68859851360321, 0.43457376956939703, 0.28684079647064203, 0.15587580204010001 ] ], "object_id": [ 50 ], "object_name": "sink" } ], "question_type": "locate3d", "target_object_id": 12, "target_object_name": "toilet" }
69
scannet/scene0224_00
[ { "from": "human", "value": "<image>Locate all the objects mentioned in following description and output the object name and 3D bounding box in the format (x1, y1, z1, x2, y2, z2).\ncupboard near bunk bed" }, { "from": "gpt", "value": "<ground>" } ]
{ "dataset": "locate3d_scannet", "object": [ { "object_bbox": [ [ 0.438380490988492, -1.092528939247131, 0.9621920383069661, 0.7027730718255041, 1.282326221466064, 1.9197073387913401 ] ], "object_id": [ 0 ], "object_name": "wardrobe closet" }, { "object_bbox": [ [ -0.17323589324951102, 0.44245767593383706, 1.234044244047254, 1.977053880691528, 2.065862655639648, 2.498973031528294 ] ], "object_id": [ 1 ], "object_name": "bed" } ], "question_type": "locate3d", "target_object_id": 0, "target_object_name": "wardrobe" }
70
scannet/scene0372_00
[ { "from": "human", "value": "<image>Locate all the objects mentioned in following description and output the object name and 3D bounding box in the format (x1, y1, z1, x2, y2, z2).\nbag on the chair" }, { "from": "gpt", "value": "<ground>" } ]
{ "dataset": "locate3d_scannet", "object": [ { "object_bbox": [ [ -1.290797114372253, 2.602424025535583, 0.7235943675041191, 0.472464323043823, 0.46511054039001404, 0.45522558689117404 ] ], "object_id": [ 17 ], "object_name": "backpack" }, { "object_bbox": [ [ -1.276430815458297, 2.546899795532226, 0.469877919182181, 0.689066231250762, 0.556404113769531, 0.844177324324846 ] ], "object_id": [ 12 ], "object_name": "chair" } ], "question_type": "locate3d", "target_object_id": 17, "target_object_name": "backpack" }
71
scannet/scene0101_00
[ { "from": "human", "value": "<image>Locate all the objects mentioned in following description and output the object name and 3D bounding box in the format (x1, y1, z1, x2, y2, z2).\ncommode close to the tissue paper roll" }, { "from": "gpt", "value": "<ground>" } ]
{ "dataset": "locate3d_scannet", "object": [ { "object_bbox": [ [ 1.8385341167449951, -2.566965341567993, 0.39852292835712405, 0.7264137268066401, 0.50281810760498, 0.7218726575374601 ] ], "object_id": [ 30 ], "object_name": "toilet" }, { "object_bbox": [ [ 1.802048444747924, -2.2125625610351562, 0.47421467304229703, 0.145119428634643, 0.11318635940551701, 0.11813044548034601 ] ], "object_id": [ 88 ], "object_name": "toilet paper" } ], "question_type": "locate3d", "target_object_id": 30, "target_object_name": "toilet" }
72
scannet/scene0112_00
[ { "from": "human", "value": "<image>Locate all the objects mentioned in following description and output the object name and 3D bounding box in the format (x1, y1, z1, x2, y2, z2).\ntoilet near wash basin" }, { "from": "gpt", "value": "<ground>" } ]
{ "dataset": "locate3d_scannet", "object": [ { "object_bbox": [ [ 0.46139566227793605, -1.208152532577514, 0.23011174789280603, 0.7111678496003151, 0.35780811309814403, 0.459277510817628 ] ], "object_id": [ 4 ], "object_name": "toilet" }, { "object_bbox": [ [ 0.5962188988924021, 0.12405323237180702, 0.599029503762722, 0.46035763621330206, 0.521489515900611, 0.7190137654542921 ] ], "object_id": [ 1 ], "object_name": "sink" } ], "question_type": "locate3d", "target_object_id": 4, "target_object_name": "toilet" }
73
scannet/scene0241_00
[ { "from": "human", "value": "<image>Locate all the objects mentioned in following description and output the object name and 3D bounding box in the format (x1, y1, z1, x2, y2, z2).\nsoft toy on the bookshelf" }, { "from": "gpt", "value": "<ground>" } ]
{ "dataset": "locate3d_scannet", "object": [ { "object_bbox": [ [ -1.181216835975647, -1.48870974779129, 1.247759103775024, 0.24809646606445301, 0.219318509101867, 0.391643047332763 ] ], "object_id": [ 1 ], "object_name": "stuffed animal" }, { "object_bbox": [ [ -1.140471488237381, -1.496163010597229, 0.897648334503173, 0.28097265958786, 0.7186558246612541, 0.289249181747436 ], [ -1.107965409755706, -1.512721180915832, 0.567970350384712, 0.213269829750061, 0.671472549438476, 0.291446417570114 ] ], "object_id": [ 9, 7 ], "object_name": "books" }, { "object_bbox": [ [ -1.125515937805175, -1.508080065250396, 0.592021649237722, 0.33572435379028304, 0.7688380479812621, 1.195245374925434 ] ], "object_id": [ 10 ], "object_name": "bookshelf" } ], "question_type": "locate3d", "target_object_id": 1, "target_object_name": "stuffed" }
74
scannet/scene0614_00
[ { "from": "human", "value": "<image>Locate all the objects mentioned in following description and output the object name and 3D bounding box in the format (x1, y1, z1, x2, y2, z2).\nwall clock near whiteboard" }, { "from": "gpt", "value": "<ground>" } ]
{ "dataset": "locate3d_scannet", "object": [ { "object_bbox": [ [ -1.548393309116363, 2.054359018802643, 1.80814641714096, 0.058246731758117, 0.44269406795501703, 0.340508103370666 ] ], "object_id": [ 39 ], "object_name": "clock" }, { "object_bbox": [ [ -1.653785288333892, 0.5086285024881361, 1.49866172671318, 0.125338435173034, 1.793540686368942, 1.321690618991851 ] ], "object_id": [ 16 ], "object_name": "whiteboard" } ], "question_type": "locate3d", "target_object_id": 39, "target_object_name": "clock" }
75
scannet/scene0097_00
[ { "from": "human", "value": "<image>Locate all the objects mentioned in following description and output the object name and 3D bounding box in the format (x1, y1, z1, x2, y2, z2).\nbag is infront of dustbin" }, { "from": "gpt", "value": "<ground>" } ]
{ "dataset": "locate3d_scannet", "object": [ { "object_bbox": [ [ -0.10573936998844101, -0.8891862034797661, 0.180605694651603, 0.444879084825515, 0.39043414592742903, 0.417698055505752 ] ], "object_id": [ 22 ], "object_name": "backpack" }, { "object_bbox": [ [ -1.067214399576187, -1.069901674985885, 0.298936676699668, 0.47089308500289906, 0.5137065052986141, 0.6045559411868451 ] ], "object_id": [ 13 ], "object_name": "trash can" } ], "question_type": "locate3d", "target_object_id": 22, "target_object_name": "backpack" }
76
scannet/scene0511_00
[ { "from": "human", "value": "<image>Locate all the objects mentioned in following description and output the object name and 3D bounding box in the format (x1, y1, z1, x2, y2, z2).\nstorage basket beside the xerox machine" }, { "from": "gpt", "value": "<ground>" } ]
{ "dataset": "locate3d_scannet", "object": [ { "object_bbox": [ [ 0.44310721755027704, 1.7508434057235711, 0.5817411686293781, 1.157300293445587, 0.684574842453002, 1.192689747549593 ] ], "object_id": [ 4 ], "object_name": "copier" }, { "object_bbox": [ [ -0.49507707357406605, 2.003444731235504, 0.19995618937537002, 0.424891948699951, 0.44979321956634505, 0.378136315383017 ] ], "object_id": [ 17 ], "object_name": "container" } ], "question_type": "locate3d", "target_object_id": 17, "target_object_name": "container" }
77
scannet/scene0381_00
[ { "from": "human", "value": "<image>Locate all the objects mentioned in following description and output the object name and 3D bounding box in the format (x1, y1, z1, x2, y2, z2).\nwhite board opposite to the round table" }, { "from": "gpt", "value": "<ground>" } ]
{ "dataset": "locate3d_scannet", "object": [ { "object_bbox": [ [ -1.009976595640182, 0.282570034265518, 1.422906547784805, 0.11194401979446401, 1.799960315227508, 1.186439216136932 ] ], "object_id": [ 8 ], "object_name": "whiteboard" }, { "object_bbox": [ [ 0.170892789959907, -0.062493443489074006, 0.24367266520857803, 1.181277841329574, 1.2159007787704461, 0.43638444691896405 ] ], "object_id": [ 1 ], "object_name": "coffee table" } ], "question_type": "locate3d", "target_object_id": 8, "target_object_name": "whiteboard" }
78
scannet/scene0070_00
[ { "from": "human", "value": "<image>Locate all the objects mentioned in following description and output the object name and 3D bounding box in the format (x1, y1, z1, x2, y2, z2).\nbed is close to the monitor " }, { "from": "gpt", "value": "<ground>" } ]
{ "dataset": "locate3d_scannet", "object": [ { "object_bbox": [ [ 0.485576704144477, 0.8015996217727661, 0.41200283169746404, 1.7512865960597992, 1.321923971176147, 0.85631376504898 ] ], "object_id": [ 5 ], "object_name": "bed" }, { "object_bbox": [ [ 1.283844888210296, -0.5043519437313081, 0.9111739099025721, 0.14821016788482602, 0.514199316501617, 0.40764743089675903 ] ], "object_id": [ 12 ], "object_name": "monitor" } ], "question_type": "locate3d", "target_object_id": 5, "target_object_name": "bed" }
79
scannet/scene0073_00
[ { "from": "human", "value": "<image>Locate all the objects mentioned in following description and output the object name and 3D bounding box in the format (x1, y1, z1, x2, y2, z2).\nbed beside drawer" }, { "from": "gpt", "value": "<ground>" } ]
{ "dataset": "locate3d_scannet", "object": [ { "object_bbox": [ [ 1.016670390963554, 0.21565797924995403, 0.442180832847952, 1.118111282587051, 2.230067193508148, 0.9140201397240161 ] ], "object_id": [ 10 ], "object_name": "bed" }, { "object_bbox": [ [ 1.28769963979721, -1.380231380462646, 0.6736859157681461, 0.545742630958557, 1.064456224441528, 1.305737718939781 ] ], "object_id": [ 17 ], "object_name": "dresser" } ], "question_type": "locate3d", "target_object_id": 10, "target_object_name": "bed" }
80
scannet/scene0006_00
[ { "from": "human", "value": "<image>Locate all the objects mentioned in following description and output the object name and 3D bounding box in the format (x1, y1, z1, x2, y2, z2).\ntv is on the drawer" }, { "from": "gpt", "value": "<ground>" } ]
{ "dataset": "locate3d_scannet", "object": [ { "object_bbox": [ [ -1.175165772438049, -1.140269726514816, 1.0707468688488, 0.136908769607543, 0.9980724453926081, 0.6242101788520811 ] ], "object_id": [ 9 ], "object_name": "tv" }, { "object_bbox": [ [ -1.203315615653991, -0.38456094264984103, 0.35946064814925105, 0.755539655685424, 2.647458553314209, 0.8167319372296331 ] ], "object_id": [ 4 ], "object_name": "desk" } ], "question_type": "locate3d", "target_object_id": 9, "target_object_name": "tv" }
81
scannet/scene0661_00
[ { "from": "human", "value": "<image>Locate all the objects mentioned in following description and output the object name and 3D bounding box in the format (x1, y1, z1, x2, y2, z2).\nbag beside the white board" }, { "from": "gpt", "value": "<ground>" } ]
{ "dataset": "locate3d_scannet", "object": [ { "object_bbox": [ [ -1.427071213722229, -1.155951201915741, 0.275414530187845, 0.402239322662353, 0.403146624565124, 0.42165815085172603 ] ], "object_id": [ 17 ], "object_name": "backpack" }, { "object_bbox": [ [ -1.5788283348083492, -0.46541148424148504, 0.9183973632752891, 0.565847396850585, 1.4079004526138301, 1.6404782608151431 ] ], "object_id": [ 16 ], "object_name": "board" } ], "question_type": "locate3d", "target_object_id": 17, "target_object_name": "backpack" }
82
scannet/scene0123_00
[ { "from": "human", "value": "<image>Locate all the objects mentioned in following description and output the object name and 3D bounding box in the format (x1, y1, z1, x2, y2, z2).\njacket on table" }, { "from": "gpt", "value": "<ground>" } ]
{ "dataset": "locate3d_scannet", "object": [ { "object_bbox": [ [ 0.494593828916549, -1.341010987758636, 0.85976842045784, 0.315958082675933, 0.38805210590362504, 0.172282755374908 ] ], "object_id": [ 17 ], "object_name": "clothes" }, { "object_bbox": [ [ 1.181283190846443, -1.565962076187133, 0.43366096494719303, 1.909681409597396, 1.342366695404052, 0.847486653365194 ] ], "object_id": [ 18 ], "object_name": "table" } ], "question_type": "locate3d", "target_object_id": 17, "target_object_name": "clothes" }
83
scannet/scene0126_00
[ { "from": "human", "value": "<image>Locate all the objects mentioned in following description and output the object name and 3D bounding box in the format (x1, y1, z1, x2, y2, z2).\nair cooler near the door" }, { "from": "gpt", "value": "<ground>" } ]
{ "dataset": "locate3d_scannet", "object": [ { "object_bbox": [ [ -0.608537003397941, 2.305895566940307, 0.32784117013216, 0.32486978173255904, 0.333504199981689, 0.7304723113775251 ] ], "object_id": [ 39 ], "object_name": "fan" }, { "object_bbox": [ [ 0.069025859236717, 2.529208421707153, 1.061005738331005, 1.076975136995315, 0.211099624633789, 2.107071107719093 ] ], "object_id": [ 8 ], "object_name": "door" } ], "question_type": "locate3d", "target_object_id": 39, "target_object_name": "fan" }
84
scannet/scene0539_00
[ { "from": "human", "value": "<image>Locate all the objects mentioned in following description and output the object name and 3D bounding box in the format (x1, y1, z1, x2, y2, z2).\nTrash bin near the toilet" }, { "from": "gpt", "value": "<ground>" } ]
{ "dataset": "locate3d_scannet", "object": [ { "object_bbox": [ [ -1.10192734003067, 0.5186872184276581, 0.29149123840034, 0.322186112403869, 0.31462568044662403, 0.646718088537454 ] ], "object_id": [ 30 ], "object_name": "trash can" }, { "object_bbox": [ [ -0.8295107781887051, 1.282674908638, 0.420757851563394, 0.5007300972938531, 0.733100414276123, 0.873245911672711 ] ], "object_id": [ 10 ], "object_name": "toilet" } ], "question_type": "locate3d", "target_object_id": 30, "target_object_name": "trash" }
85
scannet/scene0473_00
[ { "from": "human", "value": "<image>Locate all the objects mentioned in following description and output the object name and 3D bounding box in the format (x1, y1, z1, x2, y2, z2).\nfan near fire extinguisher" }, { "from": "gpt", "value": "<ground>" } ]
{ "dataset": "locate3d_scannet", "object": [ { "object_bbox": [ [ 1.397792696952819, 1.439501047134399, 0.5551214780425651, 0.533178091049194, 0.537291526794433, 1.105470783310011 ] ], "object_id": [ 7 ], "object_name": "fan" }, { "object_bbox": [ [ 1.9193089604377742, 0.753875434398651, 1.488824546337127, 0.17327868938446, 0.22147095203399603, 0.567649245262146 ] ], "object_id": [ 14 ], "object_name": "fire extinguisher" } ], "question_type": "locate3d", "target_object_id": 7, "target_object_name": "fan" }
86
scannet/scene0635_00
[ { "from": "human", "value": "<image>Locate all the objects mentioned in following description and output the object name and 3D bounding box in the format (x1, y1, z1, x2, y2, z2).\nbook shelf is is close to the door" }, { "from": "gpt", "value": "<ground>" } ]
{ "dataset": "locate3d_scannet", "object": [ { "object_bbox": [ [ -1.3598552942276, -0.31970828771591103, 0.9379808753728861, 0.523858785629272, 1.07022476196289, 2.382946521043777 ] ], "object_id": [ 14 ], "object_name": "bookshelf" }, { "object_bbox": [ [ -1.581613004207611, 0.913996428251266, 0.773446194827556, 0.09142529964447, 0.7791729569435121, 2.023483291268348 ] ], "object_id": [ 42 ], "object_name": "door" } ], "question_type": "locate3d", "target_object_id": 14, "target_object_name": "bookshelf" }
87
scannet/scene0650_00
[ { "from": "human", "value": "<image>Locate all the objects mentioned in following description and output the object name and 3D bounding box in the format (x1, y1, z1, x2, y2, z2).\nwashbasin next to the handwash dispenser" }, { "from": "gpt", "value": "<ground>" } ]
{ "dataset": "locate3d_scannet", "object": [ { "object_bbox": [ [ 1.174242198467254, 2.216100990772247, 0.522574696689844, 0.6435691118240351, 0.698651671409606, 1.073859386146068 ] ], "object_id": [ 0 ], "object_name": "sink" }, { "object_bbox": [ [ 1.385807871818542, 1.9419518113136292, 1.18795621395111, 0.13425540924072202, 0.17791974544525102, 0.305529594421386 ] ], "object_id": [ 8 ], "object_name": "soap dispenser" } ], "question_type": "locate3d", "target_object_id": 0, "target_object_name": "sink" }
88
scannet/scene0133_00
[ { "from": "human", "value": "<image>Locate all the objects mentioned in following description and output the object name and 3D bounding box in the format (x1, y1, z1, x2, y2, z2).\ntable beside the chair" }, { "from": "gpt", "value": "<ground>" } ]
{ "dataset": "locate3d_scannet", "object": [ { "object_bbox": [ [ 0.5704529732465741, 2.03727775812149, 0.31487710727378704, 0.501028209924697, 2.9481877088546753, 0.6146768042817711 ] ], "object_id": [ 18 ], "object_name": "bench" }, { "object_bbox": [ [ 0.47210559993982304, 0.157695829868316, 0.476669564843177, 0.632118985056877, 0.6245983839035031, 0.605713337659835 ] ], "object_id": [ 4 ], "object_name": "chair" } ], "question_type": "locate3d", "target_object_id": 18, "target_object_name": "bench" }
89
scannet/scene0067_00
[ { "from": "human", "value": "<image>Locate all the objects mentioned in following description and output the object name and 3D bounding box in the format (x1, y1, z1, x2, y2, z2).\ntissue dispenser above the dustbin" }, { "from": "gpt", "value": "<ground>" } ]
{ "dataset": "locate3d_scannet", "object": [ { "object_bbox": [ [ 0.8432456254959101, -0.7587212622165681, 1.234790176153183, 0.36509323120117104, 0.144536077976226, 0.48037296533584506 ] ], "object_id": [ 7 ], "object_name": "paper towel dispenser" }, { "object_bbox": [ [ 0.822278678417205, -0.9428552985191341, 0.524981476366519, 0.477956175804138, 0.24791848659515303, 0.80819122493267 ] ], "object_id": [ 4 ], "object_name": "trash bin" } ], "question_type": "locate3d", "target_object_id": 7, "target_object_name": "paper" }
90
scannet/scene0096_00
[ { "from": "human", "value": "<image>Locate all the objects mentioned in following description and output the object name and 3D bounding box in the format (x1, y1, z1, x2, y2, z2).\ntoilet is near to wash basin" }, { "from": "gpt", "value": "<ground>" } ]
{ "dataset": "locate3d_scannet", "object": [ { "object_bbox": [ [ 1.204832017421722, -1.41154283285141, 0.20341037819162003, 0.39863932132720903, 0.6705657243728631, 0.42463131528347703 ] ], "object_id": [ 23 ], "object_name": "toilet" }, { "object_bbox": [ [ 0.5768555253744121, -1.620227038860321, 0.601664647459983, 0.5529556572437281, 0.334008812904357, 0.367446810007095 ] ], "object_id": [ 13 ], "object_name": "sink" } ], "question_type": "locate3d", "target_object_id": 23, "target_object_name": "toilet" }
91
scannet/scene0282_00
[ { "from": "human", "value": "<image>Locate all the objects mentioned in following description and output the object name and 3D bounding box in the format (x1, y1, z1, x2, y2, z2).\nbed is close to the wooden shelf" }, { "from": "gpt", "value": "<ground>" } ]
{ "dataset": "locate3d_scannet", "object": [ { "object_bbox": [ [ -0.5423929095268251, -1.128693222999572, 0.410379581153392, 1.9321972131729122, 1.159276962280273, 0.678587332367897 ] ], "object_id": [ 4 ], "object_name": "bed" }, { "object_bbox": [ [ -1.288257122039795, -0.22950330376625003, 0.5277975883800531, 0.41364908218383706, 0.659814059734344, 1.065720064099878 ] ], "object_id": [ 11 ], "object_name": "shelf" } ], "question_type": "locate3d", "target_object_id": 11, "target_object_name": "shelf" }
92
scannet/scene0346_00
[ { "from": "human", "value": "<image>Locate all the objects mentioned in following description and output the object name and 3D bounding box in the format (x1, y1, z1, x2, y2, z2).\nwash basin beside toilet" }, { "from": "gpt", "value": "<ground>" } ]
{ "dataset": "locate3d_scannet", "object": [ { "object_bbox": [ [ 0.8210390508174891, 0.55757550895214, 0.764532834291458, 0.420396149158477, 0.20922794938087402, 0.133151590824127 ] ], "object_id": [ 8 ], "object_name": "sink" }, { "object_bbox": [ [ -0.294412195682525, 0.398639458697289, 0.408687940798699, 0.47674000263214106, 0.7742238873615861, 0.8294358421117061 ] ], "object_id": [ 12 ], "object_name": "toilet" } ], "question_type": "locate3d", "target_object_id": 8, "target_object_name": "sink" }
93
scannet/scene0468_00
[ { "from": "human", "value": "<image>Locate all the objects mentioned in following description and output the object name and 3D bounding box in the format (x1, y1, z1, x2, y2, z2).\nJacket on the bed" }, { "from": "gpt", "value": "<ground>" } ]
{ "dataset": "locate3d_scannet", "object": [ { "object_bbox": [ [ 1.14637291431427, -1.718735575675964, 1.103968799114227, 0.5028941631317131, 0.23671793937683103, 0.13469517230987502 ] ], "object_id": [ 28 ], "object_name": "jacket" }, { "object_bbox": [ [ 1.281777262687683, -1.157045483589172, 0.5280953210894951, 1.034158945083618, 2.1372873783111572, 1.0575230991235 ] ], "object_id": [ 0 ], "object_name": "bed" } ], "question_type": "locate3d", "target_object_id": 28, "target_object_name": "jacket" }
94
scannet/scene0364_00
[ { "from": "human", "value": "<image>Locate all the objects mentioned in following description and output the object name and 3D bounding box in the format (x1, y1, z1, x2, y2, z2).\nchair next to the table " }, { "from": "gpt", "value": "<ground>" } ]
{ "dataset": "locate3d_scannet", "object": [ { "object_bbox": [ [ 0.881033539772033, 0.325196854770183, 0.384657704271376, 0.59017539024353, 0.22655828297138203, 0.819042397662997 ] ], "object_id": [ 0 ], "object_name": "chair" }, { "object_bbox": [ [ 1.130399897694587, 0.736035585403442, 0.38693178817629803, 1.269383281469345, 0.8728761672973631, 0.847880221903324 ] ], "object_id": [ 2 ], "object_name": "desk" } ], "question_type": "locate3d", "target_object_id": 0, "target_object_name": "chair" }
95
scannet/scene0020_00
[ { "from": "human", "value": "<image>Locate all the objects mentioned in following description and output the object name and 3D bounding box in the format (x1, y1, z1, x2, y2, z2).\nbag on chair" }, { "from": "gpt", "value": "<ground>" } ]
{ "dataset": "locate3d_scannet", "object": [ { "object_bbox": [ [ 0.108415313065052, 0.9576083421707151, 0.649399176239967, 0.374993190169334, 0.49282050132751404, 0.31284043192863403 ] ], "object_id": [ 10 ], "object_name": "backpack" }, { "object_bbox": [ [ -0.032527908682823, 0.9898734390735621, 0.40817869734019, 0.407455265522003, 0.5249611735343931, 0.860911944881081 ] ], "object_id": [ 9 ], "object_name": "chair" } ], "question_type": "locate3d", "target_object_id": 10, "target_object_name": "backpack" }
96
scannet/scene0118_00
[ { "from": "human", "value": "<image>Locate all the objects mentioned in following description and output the object name and 3D bounding box in the format (x1, y1, z1, x2, y2, z2).\nscarf on the table" }, { "from": "gpt", "value": "<ground>" } ]
{ "dataset": "locate3d_scannet", "object": [ { "object_bbox": [ [ 1.277850270271301, -1.438294172286987, 0.51785509288311, 0.36185312271118103, 0.46723842620849604, 0.16924801468849102 ] ], "object_id": [ 12 ], "object_name": "jacket" }, { "object_bbox": [ [ 1.317650467157364, -1.383493363857269, 0.256161132827401, 0.7820493578910821, 0.723939776420593, 0.542095702141523 ] ], "object_id": [ 11 ], "object_name": "coffee table" } ], "question_type": "locate3d", "target_object_id": 12, "target_object_name": "jacket" }
97
scannet/scene0287_00
[ { "from": "human", "value": "<image>Locate all the objects mentioned in following description and output the object name and 3D bounding box in the format (x1, y1, z1, x2, y2, z2).\nchair is next to bed" }, { "from": "gpt", "value": "<ground>" } ]
{ "dataset": "locate3d_scannet", "object": [ { "object_bbox": [ [ -0.887679010629653, 0.444115042686462, 0.5676106140017511, 0.5466760993003841, 0.21996736526489202, 0.6436910778284071 ] ], "object_id": [ 1 ], "object_name": "office chair" }, { "object_bbox": [ [ 1.064441978931427, 0.226783514022827, 0.552540535572916, 1.5870915651321411, 2.252529621124267, 1.122249375097453 ] ], "object_id": [ 4 ], "object_name": "bed" } ], "question_type": "locate3d", "target_object_id": 1, "target_object_name": "office" }
98
scannet/scene0243_00
[ { "from": "human", "value": "<image>Locate all the objects mentioned in following description and output the object name and 3D bounding box in the format (x1, y1, z1, x2, y2, z2).\nThe bed opposite to the door" }, { "from": "gpt", "value": "<ground>" } ]
{ "dataset": "locate3d_scannet", "object": [ { "object_bbox": [ [ -0.47389924526214605, -0.10604214668273901, 0.063147008419036, 1.049174189567566, 0.805155515670776, 0.29242128133773804 ] ], "object_id": [ 5 ], "object_name": "suitcase" }, { "object_bbox": [ [ -0.5466147065162651, 1.815278589725494, 1.440994128584861, 1.4844492673873901, 0.11725032329559301, 2.032367497682571 ] ], "object_id": [ 23 ], "object_name": "door" } ], "question_type": "locate3d", "target_object_id": 5, "target_object_name": "suitcase" }
99
scannet/scene0005_00
[ { "from": "human", "value": "<image>Locate all the objects mentioned in following description and output the object name and 3D bounding box in the format (x1, y1, z1, x2, y2, z2).\nDoor next to the book trolley" }, { "from": "gpt", "value": "<ground>" } ]
{ "dataset": "locate3d_scannet", "object": [ { "object_bbox": [ [ -1.881157577037811, 0.9332209452986711, 0.8679726105183361, 0.22559440135955802, 1.5401781350374222, 1.63708496466279 ] ], "object_id": [ 13 ], "object_name": "door" }, { "object_bbox": [ [ -1.6701878905296321, -0.063402622938156, 0.5464711221866311, 0.42947542667388905, 0.524875998497009, 1.110046141780912 ] ], "object_id": [ 1 ], "object_name": "cart" } ], "question_type": "locate3d", "target_object_id": 13, "target_object_name": "door" }
End of preview.
Downloads last month
195

Collection including ymccccc/GS-Reasoner-Data