Safetensors
Serbian
mistral

image/jpeg

  • Developed by: datatab
  • License: mit

๐Ÿ† Results

Results obtained through the Serbian LLM Evaluation Benchmark

MODEL ARC-E ARC-C Hellaswag PiQA Winogrande BoolQ OpenbookQA OZ_EVAL SCORE
YugoGPT-Florida 0.6918 0.5766 0.4037 0.7374 0.5782 0.8685 0.5918 0.7407 64,85875
Yugo55A-GPT 0.5846 0.5185 0.3686 0.7076 0.5277 0.8584 0.5485 0.6883 60,0275
Yugo60-GPT 0.4948 0.4542 0.3342 0.6897 0.5138 0.8212 0.5155 0.6379 55,76625
Yugo45-GPT 0.4049 0.3900 0.2812 0.6055 0.4992 0.5793 0.4433 0.6111 47,68125

image/png

image/png

image/png

๐Ÿ‹๏ธ Training Stats

image/png

image/png

image/png

image/png

๐Ÿ’ป Usage

!pip -q install git+https://github.com/huggingface/transformers
from IPython.display import HTML, display

def set_css():
  display(HTML('''
  <style>
    pre {
        white-space: pre-wrap;
    }
  </style>
  '''))
get_ipython().events.register('pre_run_cell', set_css)
import torch
import transformers
from transformers import AutoTokenizer, MistralForCausalLM

device = "cuda" if torch.cuda.is_available() else "cpu"

model = MistralForCausalLM.from_pretrained(
    "datatab/YugoGPT-Florida", 
    torch_dtype="auto"
).to(device)

tokenizer = AutoTokenizer.from_pretrained("datatab/YugoGPT-Florida")
from typing import Optional
from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer


def generate(
    user_content: str, system_content: Optional[str] = ""
) -> str:
    system_content = """Ispod se nalazi uputstvo koje definiลกe zadatak, zajedno sa unosom koji pruลพa dodatni kontekst.
    Na osnovu ovih informacija, napiลกite odgovor koji precizno i taฤno ispunjava zahtev.
    """

    messages = [
        {
            "role": "system",
            "content": system_content,
        },
        {"role": "user", "content": user_content},
    ]

    tokenized_chat = tokenizer.apply_chat_template(
        messages, tokenize=True, add_generation_prompt=True, return_tensors="pt"
    ).to("cuda")

    text_streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
    output = model.generate(
        tokenized_chat,
        streamer=text_streamer,
        max_new_tokens=2048,
        temperature=0.1,
        repetition_penalty=1.11,
        top_p=0.92,
        top_k=1000,
        pad_token_id=tokenizer.pad_token_id,
        eos_token_id=tokenizer.eos_token_id,
        do_sample=True,
    )

    generated_text = tokenizer.decode(output[0], skip_special_tokens=True)
generate("Nabroj mi sve planete suncevog sistemai reci mi koja je najveca planeta?")
Sunฤev sistem sadrลพi osam planeta: Merkur, Venera, Zemlja, Mars, Jupiter, Saturn, Uran i Neptun. Najveฤ‡a planeta u Sunฤevom sistemu je Jupiter.

๐Ÿ’ก Contributions Welcome!

Have ideas, bug fixes, or want to add a custom model? We'd love for you to be part of the journey! Contributions help grow and enhance the capabilities of the YugoGPT-Florida.

๐Ÿ“œ Citation

Thanks for using YugoGPT-Florida โ€” where language learning models meet Serbian precision and creativity! Let's build smarter models together. ๐Ÿš€๏ฟฝ

If you find this model useful in your research, please cite it as follows:

@article{YugoGPT-Florida},
  title={YugoGPT-Florida},
  author={datatab},
  year={2024},
  url={https://huggingface.co/datatab/YugoGPT-Florida}
}
<
Downloads last month
10
Safetensors
Model size
7.24B params
Tensor type
FP16
ยท
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no library tag.

Model tree for datatab/YugoGPT-Florida

Finetuned
(1)
this model

Datasets used to train datatab/YugoGPT-Florida

Collection including datatab/YugoGPT-Florida