Yugo-GPT
Collection
Yugo-GPT class of LLM (45, 55, 60)
โข
13 items
โข
Updated
Results obtained through the Serbian LLM Evaluation Benchmark
MODEL | ARC-E | ARC-C | Hellaswag | PiQA | Winogrande | BoolQ | OpenbookQA | OZ_EVAL | SCORE |
---|---|---|---|---|---|---|---|---|---|
YugoGPT-Florida | 0.6918 | 0.5766 | 0.4037 | 0.7374 | 0.5782 | 0.8685 | 0.5918 | 0.7407 | 64,85875 |
Yugo55A-GPT | 0.5846 | 0.5185 | 0.3686 | 0.7076 | 0.5277 | 0.8584 | 0.5485 | 0.6883 | 60,0275 |
Yugo60-GPT | 0.4948 | 0.4542 | 0.3342 | 0.6897 | 0.5138 | 0.8212 | 0.5155 | 0.6379 | 55,76625 |
Yugo45-GPT | 0.4049 | 0.3900 | 0.2812 | 0.6055 | 0.4992 | 0.5793 | 0.4433 | 0.6111 | 47,68125 |
!pip -q install git+https://github.com/huggingface/transformers
from IPython.display import HTML, display
def set_css():
display(HTML('''
<style>
pre {
white-space: pre-wrap;
}
</style>
'''))
get_ipython().events.register('pre_run_cell', set_css)
import torch
import transformers
from transformers import AutoTokenizer, MistralForCausalLM
device = "cuda" if torch.cuda.is_available() else "cpu"
model = MistralForCausalLM.from_pretrained(
"datatab/YugoGPT-Florida",
torch_dtype="auto"
).to(device)
tokenizer = AutoTokenizer.from_pretrained("datatab/YugoGPT-Florida")
from typing import Optional
from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer
def generate(
user_content: str, system_content: Optional[str] = ""
) -> str:
system_content = """Ispod se nalazi uputstvo koje definiลกe zadatak, zajedno sa unosom koji pruลพa dodatni kontekst.
Na osnovu ovih informacija, napiลกite odgovor koji precizno i taฤno ispunjava zahtev.
"""
messages = [
{
"role": "system",
"content": system_content,
},
{"role": "user", "content": user_content},
]
tokenized_chat = tokenizer.apply_chat_template(
messages, tokenize=True, add_generation_prompt=True, return_tensors="pt"
).to("cuda")
text_streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
output = model.generate(
tokenized_chat,
streamer=text_streamer,
max_new_tokens=2048,
temperature=0.1,
repetition_penalty=1.11,
top_p=0.92,
top_k=1000,
pad_token_id=tokenizer.pad_token_id,
eos_token_id=tokenizer.eos_token_id,
do_sample=True,
)
generated_text = tokenizer.decode(output[0], skip_special_tokens=True)
generate("Nabroj mi sve planete suncevog sistemai reci mi koja je najveca planeta?")
Sunฤev sistem sadrลพi osam planeta: Merkur, Venera, Zemlja, Mars, Jupiter, Saturn, Uran i Neptun. Najveฤa planeta u Sunฤevom sistemu je Jupiter.
Have ideas, bug fixes, or want to add a custom model? We'd love for you to be part of the journey! Contributions help grow and enhance the capabilities of the YugoGPT-Florida.
Thanks for using YugoGPT-Florida โ where language learning models meet Serbian precision and creativity! Let's build smarter models together. ๐๏ฟฝ
If you find this model useful in your research, please cite it as follows:
@article{YugoGPT-Florida},
title={YugoGPT-Florida},
author={datatab},
year={2024},
url={https://huggingface.co/datatab/YugoGPT-Florida}
}
Base model
datatab/Yugo55A-GPT