File size: 2,760 Bytes
f4633a1
 
 
 
 
 
 
 
 
 
 
 
 
842ea78
 
d73a6e4
 
 
f4633a1
 
a5c0962
f4633a1
 
a5c0962
 
f4633a1
a5c0962
 
f4633a1
a5c0962
f4633a1
 
 
a5c0962
f4633a1
a5c0962
f4633a1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
842ea78
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
---
library_name: transformers
license: mit
base_model: FacebookAI/xlm-roberta-base
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
model-index:
- name: scandi-fine-web-cleaner
  results: []
datasets:
- data-is-better-together/fineweb-c
language:
- sv
- da
---


# scandi-fine-web-cleaner

This model is a demo classifier for identifying problematic content (incorrect language, garbled text) in Danish and Swedish web text. It was created as part of a [blog post](https://danielvanstrien.xyz/posts/2025/FineWeb-c/scandinavian-content-filtering-fineweb.html) exploring how to filter web data using community annotations. The model was created by fine-tuning [FacebookAI/xlm-roberta-base](https://huggingface.co/FacebookAI/xlm-roberta-base) on the [data-is-better-together/fineweb-c](https://huggingface.co/datasets/data-is-better-together/fineweb-c) dataset.

It achieves the following results on the evaluation set:
- Precision: 0.9524 (95.2%)
- Recall: 0.7018 (70.2%)
- F1: 0.8081
- AUC-ROC: 0.9648

## Intended uses & limitations

The model is intended to be used as a preliminary filter for web text to help improve annotation efficiency. It has only been tested on Danish and Swedish content. The high precision (95.2%) means false positives are rare, while the recall (70.2%) indicates it catches most problematic content.

[blog]: <link-to-blog-post>
## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 10
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1     | Auc Roc | Balanced Accuracy | Average Precision |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:-------:|:-----------------:|:-----------------:|
| 0.3165        | 1.0   | 100  | 0.2333          | 0.95      | 0.6667 | 0.7835 | 0.8099  | 0.8304            | 0.7721            |
| 0.1929        | 2.0   | 200  | 0.1359          | 0.9130    | 0.7368 | 0.8155 | 0.9778  | 0.8626            | 0.9105            |
| 0.1775        | 3.0   | 300  | 0.2245          | 0.9268    | 0.6667 | 0.7755 | 0.9481  | 0.8290            | 0.8721            |
| 0.1553        | 4.0   | 400  | 0.1816          | 0.9524    | 0.7018 | 0.8081 | 0.9648  | 0.8480            | 0.8906            |


### Framework versions

- Transformers 4.48.0
- Pytorch 2.5.1+cu124
- Datasets 3.2.0
- Tokenizers 0.21.0