davidataka's picture
End of training
1694812 verified
metadata
base_model: d0rj/rut5-base-summ
tags:
  - generated_from_trainer
metrics:
  - rouge
model-index:
  - name: summary_resume_keywords
    results: []

summary_resume_keywords

This model is a fine-tuned version of d0rj/rut5-base-summ on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 2.9737
  • Rouge1: 0.2285
  • Rouge2: 0.1524
  • Rougel: 0.2285
  • Rougelsum: 0.2285
  • Gen Len: 51.3333

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 25
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum Gen Len
No log 1.0 90 2.7766 0.2485 0.1111 0.2485 0.2485 52.0
No log 2.0 180 2.7734 0.2556 0.1404 0.2389 0.2389 53.6667
No log 3.0 270 2.7763 0.2882 0.1368 0.2557 0.2557 51.6667
No log 4.0 360 2.7921 0.2722 0.1404 0.2389 0.2389 58.3333
No log 5.0 450 2.8146 0.2778 0.1622 0.2607 0.2607 57.3333
2.1351 6.0 540 2.8387 0.2778 0.1622 0.2607 0.2607 57.3333
2.1351 7.0 630 2.8569 0.2778 0.1622 0.2607 0.2607 57.3333
2.1351 8.0 720 2.8736 0.2538 0.1524 0.2538 0.2538 55.3333
2.1351 9.0 810 2.8883 0.2538 0.1524 0.2538 0.2538 55.3333
2.1351 10.0 900 2.9025 0.2315 0.1524 0.2315 0.2315 51.0
2.1351 11.0 990 2.9161 0.2315 0.1524 0.2315 0.2315 51.0
1.7131 12.0 1080 2.9269 0.2315 0.1524 0.2315 0.2315 51.0
1.7131 13.0 1170 2.9354 0.226 0.1524 0.226 0.226 54.0
1.7131 14.0 1260 2.9427 0.226 0.1524 0.226 0.226 54.0
1.7131 15.0 1350 2.9471 0.2272 0.1524 0.2272 0.2272 53.6667
1.7131 16.0 1440 2.9509 0.226 0.1524 0.226 0.226 54.0
1.5914 17.0 1530 2.9558 0.2272 0.1524 0.2272 0.2272 53.6667
1.5914 18.0 1620 2.9589 0.226 0.1524 0.226 0.226 54.0
1.5914 19.0 1710 2.9636 0.2285 0.1524 0.2285 0.2285 51.0
1.5914 20.0 1800 2.9660 0.2285 0.1524 0.2285 0.2285 51.0
1.5914 21.0 1890 2.9687 0.2285 0.1524 0.2285 0.2285 50.3333
1.5914 22.0 1980 2.9709 0.2285 0.1524 0.2285 0.2285 50.3333
1.5508 23.0 2070 2.9736 0.2285 0.1524 0.2285 0.2285 50.3333
1.5508 24.0 2160 2.9742 0.2285 0.1524 0.2285 0.2285 50.3333
1.5508 25.0 2250 2.9737 0.2285 0.1524 0.2285 0.2285 51.3333

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu121
  • Datasets 2.17.0
  • Tokenizers 0.15.2