summary_vacancy / README.md
davidataka's picture
End of training
4dc4dfd verified
metadata
base_model: d0rj/rut5-base-summ
tags:
  - generated_from_trainer
metrics:
  - rouge
model-index:
  - name: summary_vacancy
    results: []

summary_vacancy

This model is a fine-tuned version of d0rj/rut5-base-summ on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 2.9030
  • Rouge1: 0.2908
  • Rouge2: 0.0952
  • Rougel: 0.2728
  • Rougelsum: 0.2728
  • Gen Len: 65.6667

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 25
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum Gen Len
No log 1.0 60 2.7805 0.4024 0.1111 0.3511 0.3511 70.3333
No log 2.0 120 2.7797 0.1746 0.0 0.127 0.127 34.3333
No log 3.0 180 2.7807 0.2222 0.0 0.1746 0.1746 38.0
No log 4.0 240 2.7872 0.3966 0.1524 0.349 0.349 46.6667
No log 5.0 300 2.7995 0.2758 0.1176 0.2758 0.2758 50.3333
No log 6.0 360 2.8120 0.2758 0.1176 0.2758 0.2758 49.3333
No log 7.0 420 2.8270 0.2758 0.1176 0.2758 0.2758 51.0
No log 8.0 480 2.8371 0.2758 0.1176 0.2758 0.2758 47.6667
1.9576 9.0 540 2.8480 0.2728 0.1143 0.2728 0.2728 73.3333
1.9576 10.0 600 2.8573 0.2804 0.1333 0.2804 0.2804 63.6667
1.9576 11.0 660 2.8661 0.2888 0.1333 0.2888 0.2888 48.6667
1.9576 12.0 720 2.8718 0.2787 0.1081 0.2787 0.2787 51.0
1.9576 13.0 780 2.8786 0.1075 0.0 0.1075 0.1075 49.6667
1.9576 14.0 840 2.8817 0.2827 0.1333 0.2827 0.2827 57.3333
1.9576 15.0 900 2.8865 0.293 0.1333 0.293 0.293 39.0
1.9576 16.0 960 2.8900 0.2997 0.1333 0.2997 0.2997 57.6667
1.7164 17.0 1020 2.8941 0.2997 0.1333 0.2997 0.2997 71.6667
1.7164 18.0 1080 2.8968 0.2997 0.1143 0.2997 0.2997 76.3333
1.7164 19.0 1140 2.8983 0.293 0.1143 0.275 0.275 88.6667
1.7164 20.0 1200 2.8998 0.3194 0.0926 0.3019 0.3019 77.3333
1.7164 21.0 1260 2.9005 0.2908 0.0952 0.2728 0.2728 65.6667
1.7164 22.0 1320 2.9020 0.2908 0.0952 0.2728 0.2728 65.6667
1.7164 23.0 1380 2.9027 0.2908 0.0952 0.2728 0.2728 65.6667
1.7164 24.0 1440 2.9026 0.2908 0.0952 0.2728 0.2728 65.6667
1.647 25.0 1500 2.9030 0.2908 0.0952 0.2728 0.2728 65.6667

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu121
  • Datasets 2.17.1
  • Tokenizers 0.15.2