Hiroshige-SDXL-LoRA / README.md
davidrd123's picture
Model card auto-generated by SimpleTuner
ae5229a verified
---
license: creativeml-openrail-m
base_model: "stabilityai/stable-diffusion-xl-base-1.0"
tags:
- sdxl
- sdxl-diffusers
- text-to-image
- diffusers
- simpletuner
- safe-for-work
- lora
- template:sd-lora
- standard
inference: true
widget:
- text: 'unconditional (blank prompt)'
parameters:
negative_prompt: 'blurry, cropped, ugly'
output:
url: ./assets/image_0_0.png
- text: 'hshge, Mount Fuji viewed from a distance, with cherry blossoms in the foreground. A small village nestles at the base of the mountain.'
parameters:
negative_prompt: 'blurry, cropped, ugly'
output:
url: ./assets/image_1_0.png
- text: 'hshge, Hamster'
parameters:
negative_prompt: 'blurry, cropped, ugly'
output:
url: ./assets/image_2_0.png
- text: 'hshge, A scene from the Tokaido road, with travelers crossing a wooden bridge. A misty mountain landscape in the background.'
parameters:
negative_prompt: 'blurry, cropped, ugly'
output:
url: ./assets/image_3_0.png
- text: 'hshge, A busy fish market in Edo. Vendors display their catch while customers browse. Boats visible in the nearby harbor.'
parameters:
negative_prompt: 'blurry, cropped, ugly'
output:
url: ./assets/image_4_0.png
- text: 'hshge, People caught in a sudden rainstorm on a city street, rushing for cover with umbrellas. A large bridge spans the background.'
parameters:
negative_prompt: 'blurry, cropped, ugly'
output:
url: ./assets/image_5_0.png
- text: 'hshge, A serene temple complex under a full moon. Lanterns illuminate the path, with silhouettes of pine trees against the night sky.'
parameters:
negative_prompt: 'blurry, cropped, ugly'
output:
url: ./assets/image_6_0.png
- text: 'hshge, A traditional Japanese garden in winter. Snow-covered trees and a small bridge over a frozen pond. A figure in a kimono walks along a path.'
parameters:
negative_prompt: 'blurry, cropped, ugly'
output:
url: ./assets/image_7_0.png
- text: 'hshge, The modern Tokyo Skytree towering over traditional low-rise buildings. Cherry blossoms frame the view.'
parameters:
negative_prompt: 'blurry, cropped, ugly'
output:
url: ./assets/image_8_0.png
- text: 'hshge, A sleek bullet train speeding past Mount Fuji. Rice fields and a small town visible in the middle ground.'
parameters:
negative_prompt: 'blurry, cropped, ugly'
output:
url: ./assets/image_9_0.png
- text: 'hshge, The bustling Times Square in New York, with bright billboards and crowds of people. A view reminiscent of Hiroshige''s busy street scenes.'
parameters:
negative_prompt: 'blurry, cropped, ugly'
output:
url: ./assets/image_10_0.png
- text: 'hshge, A futuristic Mars colony with dome habitats and space vehicles. The red Martian landscape stretches to the horizon.'
parameters:
negative_prompt: 'blurry, cropped, ugly'
output:
url: ./assets/image_11_0.png
- text: 'hshge, An imaginary underwater city with Japanese-style architecture. Fish and sea creatures swim among the buildings.'
parameters:
negative_prompt: 'blurry, cropped, ugly'
output:
url: ./assets/image_12_0.png
- text: 'hshge, People wearing VR headsets in a modern cafe. Traditional Japanese elements mix with futuristic technology in the decor.'
parameters:
negative_prompt: 'blurry, cropped, ugly'
output:
url: ./assets/image_13_0.png
- text: 'hshge, hamster'
parameters:
negative_prompt: 'blurry, cropped, ugly'
output:
url: ./assets/image_14_0.png
---
# Hiroshige-SDXL-LoRA
This is a standard PEFT LoRA derived from [stabilityai/stable-diffusion-xl-base-1.0](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0).
The main validation prompt used during training was:
```
hshge, hamster
```
## Validation settings
- CFG: `4.2`
- CFG Rescale: `0.0`
- Steps: `20`
- Sampler: `None`
- Seed: `42`
- Resolution: `1024x1024`
Note: The validation settings are not necessarily the same as the [training settings](#training-settings).
You can find some example images in the following gallery:
<Gallery />
The text encoder **was not** trained.
You may reuse the base model text encoder for inference.
## Training settings
- Training epochs: 7
- Training steps: 10000
- Learning rate: 8e-05
- Effective batch size: 8
- Micro-batch size: 8
- Gradient accumulation steps: 1
- Number of GPUs: 1
- Prediction type: epsilon
- Rescaled betas zero SNR: False
- Optimizer: adamw_bf16
- Precision: Pure BF16
- Quantised: Yes: int8-quanto
- Xformers: Not used
- LoRA Rank: 64
- LoRA Alpha: None
- LoRA Dropout: 0.1
- LoRA initialisation style: default
## Datasets
### hiroshige-sdxl-512
- Repeats: 10
- Total number of images: 219
- Total number of aspect buckets: 10
- Resolution: 0.262144 megapixels
- Cropped: False
- Crop style: None
- Crop aspect: None
### hiroshige-sdxl-1024
- Repeats: 10
- Total number of images: 219
- Total number of aspect buckets: 16
- Resolution: 1.048576 megapixels
- Cropped: False
- Crop style: None
- Crop aspect: None
### hiroshige-sdxl-512-crop
- Repeats: 10
- Total number of images: 219
- Total number of aspect buckets: 1
- Resolution: 0.262144 megapixels
- Cropped: True
- Crop style: random
- Crop aspect: square
### hiroshige-sdxl-1024-crop
- Repeats: 10
- Total number of images: 219
- Total number of aspect buckets: 1
- Resolution: 1.048576 megapixels
- Cropped: True
- Crop style: random
- Crop aspect: square
## Inference
```python
import torch
from diffusers import DiffusionPipeline
model_id = 'stabilityai/stable-diffusion-xl-base-1.0'
adapter_id = 'davidrd123/Hiroshige-SDXL-LoRA'
pipeline = DiffusionPipeline.from_pretrained(model_id)
pipeline.load_lora_weights(adapter_id)
prompt = "hshge, hamster"
negative_prompt = 'blurry, cropped, ugly'
pipeline.to('cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu')
image = pipeline(
prompt=prompt,
negative_prompt=negative_prompt,
num_inference_steps=20,
generator=torch.Generator(device='cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu').manual_seed(1641421826),
width=1024,
height=1024,
guidance_scale=4.2,
guidance_rescale=0.0,
).images[0]
image.save("output.png", format="PNG")
```