openai/whisper-medium-mix-es
This model is a fine-tuned version of openai/whisper-medium on the mozilla-foundation/common_voice_11_0, google/fleurs, facebook/multilingual_librispeech and facebook/voxpopuli datasets. It achieves the following results on the evaluation set:
- Loss: 0.1344
- Wer: 6.3465
Using the evaluation script provided in the Whisper Sprint the model achieves these results on the test sets (WER):
google/fleurs: 4.0266 %
(python run_eval_whisper_streaming.py --model_id="deepdml/whisper-medium-mix-es" --dataset="google/fleurs" --config="es_419" --device=0 --language="es")facebook/multilingual_librispeech: 4.6644 %
(python run_eval_whisper_streaming.py --model_id="deepdml/whisper-medium-mix-es" --dataset="facebook/multilingual_librispeech" --config="spanish" --device=0 --language="es")facebook/voxpopuli: 8.3668 %
(python run_eval_whisper_streaming.py --model_id="deepdml/whisper-medium-mix-es" --dataset="facebook/voxpopuli" --config="es" --device=0 --language="es")
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
Training data used:
- mozilla-foundation/common_voice_11_0: es, train+validation
- google/fleurs: es_419, train
- facebook/multilingual_librispeech: spanish, train
- facebook/voxpopuli: es, train
Evaluating over test split from mozilla-foundation/common_voice_11_0 dataset.
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 5000
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
0.266 | 0.2 | 1000 | 0.1657 | 8.0395 |
0.1394 | 0.4 | 2000 | 0.1539 | 7.3937 |
0.1316 | 0.6 | 3000 | 0.1452 | 6.9656 |
0.1165 | 0.8 | 4000 | 0.1392 | 6.5765 |
0.2816 | 1.0 | 5000 | 0.1344 | 6.3465 |
Framework versions
- Transformers 4.26.0.dev0
- Pytorch 1.13.0+cu117
- Datasets 2.7.1.dev0
- Tokenizers 0.13.2
- Downloads last month
- 32
Datasets used to train deepdml/whisper-medium-mix-es
Space using deepdml/whisper-medium-mix-es 1
Evaluation results
- Wer on mozilla-foundation/common_voice_11_0 estest set self-reported6.346
- Cer on mozilla-foundation/common_voice_11_0 estest set self-reported2.139
- WER on FLEURS ASRtest set self-reported4.027
- Cer on FLEURS ASRtest set self-reported1.663
- WER on Multilingual LibriSpeechtest set self-reported4.664
- Cer on Multilingual LibriSpeechtest set self-reported1.706
- WER on VoxPopulitest set self-reported8.367
- Cer on VoxPopulitest set self-reported5.479