add AIBOM
#32
by
fatima113
- opened
- deepset_roberta-base-squad2.json +237 -0
deepset_roberta-base-squad2.json
ADDED
@@ -0,0 +1,237 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bomFormat": "CycloneDX",
|
3 |
+
"specVersion": "1.6",
|
4 |
+
"serialNumber": "urn:uuid:cef2615a-e860-42b2-b351-7f8a5f49e535",
|
5 |
+
"version": 1,
|
6 |
+
"metadata": {
|
7 |
+
"timestamp": "2025-07-10T08:45:16.787707+00:00",
|
8 |
+
"component": {
|
9 |
+
"type": "machine-learning-model",
|
10 |
+
"bom-ref": "deepset/roberta-base-squad2-12395755-d71a-5489-a970-16cfa514aa95",
|
11 |
+
"name": "deepset/roberta-base-squad2",
|
12 |
+
"externalReferences": [
|
13 |
+
{
|
14 |
+
"url": "https://huggingface.co/deepset/roberta-base-squad2",
|
15 |
+
"type": "documentation"
|
16 |
+
}
|
17 |
+
],
|
18 |
+
"modelCard": {
|
19 |
+
"modelParameters": {
|
20 |
+
"task": "question-answering",
|
21 |
+
"architectureFamily": "roberta",
|
22 |
+
"modelArchitecture": "RobertaForQuestionAnswering",
|
23 |
+
"datasets": [
|
24 |
+
{
|
25 |
+
"ref": "squad_v2-9c72005c-340e-5f42-8f7a-ae0c57af7584"
|
26 |
+
}
|
27 |
+
]
|
28 |
+
},
|
29 |
+
"properties": [
|
30 |
+
{
|
31 |
+
"name": "library_name",
|
32 |
+
"value": "transformers"
|
33 |
+
},
|
34 |
+
{
|
35 |
+
"name": "base_model",
|
36 |
+
"value": "FacebookAI/roberta-base"
|
37 |
+
}
|
38 |
+
],
|
39 |
+
"quantitativeAnalysis": {
|
40 |
+
"performanceMetrics": [
|
41 |
+
{
|
42 |
+
"slice": "dataset: squad_v2, split: validation, config: squad_v2",
|
43 |
+
"type": "exact_match",
|
44 |
+
"value": 79.9309
|
45 |
+
},
|
46 |
+
{
|
47 |
+
"slice": "dataset: squad_v2, split: validation, config: squad_v2",
|
48 |
+
"type": "f1",
|
49 |
+
"value": 82.9501
|
50 |
+
},
|
51 |
+
{
|
52 |
+
"slice": "dataset: squad_v2, split: validation, config: squad_v2",
|
53 |
+
"type": "total",
|
54 |
+
"value": 11869
|
55 |
+
},
|
56 |
+
{
|
57 |
+
"slice": "dataset: squad, split: validation, config: plain_text",
|
58 |
+
"type": "exact_match",
|
59 |
+
"value": 85.289
|
60 |
+
},
|
61 |
+
{
|
62 |
+
"slice": "dataset: squad, split: validation, config: plain_text",
|
63 |
+
"type": "f1",
|
64 |
+
"value": 91.841
|
65 |
+
},
|
66 |
+
{
|
67 |
+
"slice": "dataset: adversarial_qa, split: validation, config: adversarialQA",
|
68 |
+
"type": "exact_match",
|
69 |
+
"value": 29.5
|
70 |
+
},
|
71 |
+
{
|
72 |
+
"slice": "dataset: adversarial_qa, split: validation, config: adversarialQA",
|
73 |
+
"type": "f1",
|
74 |
+
"value": 40.367
|
75 |
+
},
|
76 |
+
{
|
77 |
+
"slice": "dataset: squad_adversarial, split: validation, config: AddOneSent",
|
78 |
+
"type": "exact_match",
|
79 |
+
"value": 78.567
|
80 |
+
},
|
81 |
+
{
|
82 |
+
"slice": "dataset: squad_adversarial, split: validation, config: AddOneSent",
|
83 |
+
"type": "f1",
|
84 |
+
"value": 84.469
|
85 |
+
},
|
86 |
+
{
|
87 |
+
"slice": "dataset: squadshifts, split: test, config: amazon",
|
88 |
+
"type": "exact_match",
|
89 |
+
"value": 69.924
|
90 |
+
},
|
91 |
+
{
|
92 |
+
"slice": "dataset: squadshifts, split: test, config: amazon",
|
93 |
+
"type": "f1",
|
94 |
+
"value": 83.284
|
95 |
+
},
|
96 |
+
{
|
97 |
+
"slice": "dataset: squadshifts, split: test, config: new_wiki",
|
98 |
+
"type": "exact_match",
|
99 |
+
"value": 81.204
|
100 |
+
},
|
101 |
+
{
|
102 |
+
"slice": "dataset: squadshifts, split: test, config: new_wiki",
|
103 |
+
"type": "f1",
|
104 |
+
"value": 90.595
|
105 |
+
},
|
106 |
+
{
|
107 |
+
"slice": "dataset: squadshifts, split: test, config: nyt",
|
108 |
+
"type": "exact_match",
|
109 |
+
"value": 82.931
|
110 |
+
},
|
111 |
+
{
|
112 |
+
"slice": "dataset: squadshifts, split: test, config: nyt",
|
113 |
+
"type": "f1",
|
114 |
+
"value": 90.756
|
115 |
+
},
|
116 |
+
{
|
117 |
+
"slice": "dataset: squadshifts, split: test, config: reddit",
|
118 |
+
"type": "exact_match",
|
119 |
+
"value": 71.55
|
120 |
+
},
|
121 |
+
{
|
122 |
+
"slice": "dataset: squadshifts, split: test, config: reddit",
|
123 |
+
"type": "f1",
|
124 |
+
"value": 82.939
|
125 |
+
}
|
126 |
+
]
|
127 |
+
}
|
128 |
+
},
|
129 |
+
"authors": [
|
130 |
+
{
|
131 |
+
"name": "deepset"
|
132 |
+
}
|
133 |
+
],
|
134 |
+
"licenses": [
|
135 |
+
{
|
136 |
+
"license": {
|
137 |
+
"id": "CC-BY-4.0",
|
138 |
+
"url": "https://spdx.org/licenses/CC-BY-4.0.html"
|
139 |
+
}
|
140 |
+
}
|
141 |
+
],
|
142 |
+
"description": "**Language model:** roberta-base**Language:** English**Downstream-task:** Extractive QA**Training data:** SQuAD 2.0**Eval data:** SQuAD 2.0**Code:** See [an example extractive QA pipeline built with Haystack](https://haystack.deepset.ai/tutorials/34_extractive_qa_pipeline)**Infrastructure**: 4x Tesla v100",
|
143 |
+
"tags": [
|
144 |
+
"transformers",
|
145 |
+
"pytorch",
|
146 |
+
"tf",
|
147 |
+
"jax",
|
148 |
+
"rust",
|
149 |
+
"safetensors",
|
150 |
+
"roberta",
|
151 |
+
"question-answering",
|
152 |
+
"en",
|
153 |
+
"dataset:squad_v2",
|
154 |
+
"base_model:FacebookAI/roberta-base",
|
155 |
+
"base_model:finetune:FacebookAI/roberta-base",
|
156 |
+
"license:cc-by-4.0",
|
157 |
+
"model-index",
|
158 |
+
"endpoints_compatible",
|
159 |
+
"region:us"
|
160 |
+
]
|
161 |
+
}
|
162 |
+
},
|
163 |
+
"components": [
|
164 |
+
{
|
165 |
+
"type": "data",
|
166 |
+
"bom-ref": "squad_v2-9c72005c-340e-5f42-8f7a-ae0c57af7584",
|
167 |
+
"name": "squad_v2",
|
168 |
+
"data": [
|
169 |
+
{
|
170 |
+
"type": "dataset",
|
171 |
+
"bom-ref": "squad_v2-9c72005c-340e-5f42-8f7a-ae0c57af7584",
|
172 |
+
"name": "squad_v2",
|
173 |
+
"contents": {
|
174 |
+
"url": "https://huggingface.co/datasets/squad_v2",
|
175 |
+
"properties": [
|
176 |
+
{
|
177 |
+
"name": "task_categories",
|
178 |
+
"value": "question-answering"
|
179 |
+
},
|
180 |
+
{
|
181 |
+
"name": "task_ids",
|
182 |
+
"value": "open-domain-qa, extractive-qa"
|
183 |
+
},
|
184 |
+
{
|
185 |
+
"name": "language",
|
186 |
+
"value": "en"
|
187 |
+
},
|
188 |
+
{
|
189 |
+
"name": "size_categories",
|
190 |
+
"value": "100K<n<1M"
|
191 |
+
},
|
192 |
+
{
|
193 |
+
"name": "annotations_creators",
|
194 |
+
"value": "crowdsourced"
|
195 |
+
},
|
196 |
+
{
|
197 |
+
"name": "language_creators",
|
198 |
+
"value": "crowdsourced"
|
199 |
+
},
|
200 |
+
{
|
201 |
+
"name": "pretty_name",
|
202 |
+
"value": "SQuAD2.0"
|
203 |
+
},
|
204 |
+
{
|
205 |
+
"name": "source_datasets",
|
206 |
+
"value": "original"
|
207 |
+
},
|
208 |
+
{
|
209 |
+
"name": "paperswithcode_id",
|
210 |
+
"value": "squad"
|
211 |
+
},
|
212 |
+
{
|
213 |
+
"name": "configs",
|
214 |
+
"value": "Name of the dataset subset: squad_v2 {\"split\": \"train\", \"path\": \"squad_v2/train-*\"}, {\"split\": \"validation\", \"path\": \"squad_v2/validation-*\"}"
|
215 |
+
},
|
216 |
+
{
|
217 |
+
"name": "license",
|
218 |
+
"value": "cc-by-sa-4.0"
|
219 |
+
}
|
220 |
+
]
|
221 |
+
},
|
222 |
+
"governance": {
|
223 |
+
"owners": [
|
224 |
+
{
|
225 |
+
"organization": {
|
226 |
+
"name": "rajpurkar",
|
227 |
+
"url": "https://huggingface.co/rajpurkar"
|
228 |
+
}
|
229 |
+
}
|
230 |
+
]
|
231 |
+
},
|
232 |
+
"description": "\n\t\n\t\t\n\t\tDataset Card for SQuAD 2.0\n\t\n\n\n\t\n\t\t\n\t\tDataset Summary\n\t\n\nStanford Question Answering Dataset (SQuAD) is a reading comprehension dataset, consisting of questions posed by crowdworkers on a set of Wikipedia articles, where the answer to every question is a segment of text, or span, from the corresponding reading passage, or the question might be unanswerable.\nSQuAD 2.0 combines the 100,000 questions in SQuAD1.1 with over 50,000 unanswerable questions written adversarially by crowdworkers\u2026 See the full description on the dataset page: https://huggingface.co/datasets/rajpurkar/squad_v2."
|
233 |
+
}
|
234 |
+
]
|
235 |
+
}
|
236 |
+
]
|
237 |
+
}
|