GeRaCl-USER2-base

GeRaCl is a General Rapid Classifer designed to perform zero-shot classification tasks primarily on Russian texts.

This is a model with 155M parameters that is build on top of the USER2-base sentence encoder (149M) and is fine-tuned for zero-shot classification task.

What is Zero‑Shot Classification?

Zero‑shot text classification lets a model assign user‑supplied labels to a text without seeing any training examples for those labels. At inference you simply provide the candidate labels as strings, and the model chooses the most appropriate one.

Performance

To evaluate the model, we measure quality on multiclass classification tasks from the MTEB-rus benchmark.

MTEB-rus

Model Size Type Mean(task) Kinopoisk (3 classes) Headliness (6 classes) GRNTI (28 classes) OECD (29 classes) Inappropriateness (3 classes)
GeRaCl-USER2-base 155 M GeRaCl 0.65 0.61 0.80 0.63 0.48 0.71
USER2-base 149 M Encoder 0.52 0.50 0.65 0.56 0.39 0.51
USER-bge-m3 359 M Encoder 0.53 0.60 0.73 0.43 0.28 0.62
multilingual-e5-large-instruct 560 M Encoder 0.63 0.56 0.83 0.62 0.46 0.67
mDeBERTa-v3-base-mnli-xnli 279 M NLI-encoder 0.45 0.54 0.53 0.34 0.23 0.62
bge-m3-zeroshot-v2.0 568 M NLI-encoder 0.60 0.65 0.72 0.53 0.41 0.67
Qwen2.5-1.5B-Instruct 1.5 B LLM 0.56 0.62 0.55 0.51 0.41 0.71
Qwen2.5-3B-Instruct 3 B LLM 0.63 0.63 0.74 0.60 0.43 0.75

How comparison was performed

  1. NLI‑Encoders were used via 🤗 pipeline("zero-shot-classification")

Models such as mDeBERTa-v3-base-mnli-xnli and bge-m3-zeroshot-v2.0 are pre‑trained on Natural Language Inference corpora.The Hugging Face pipeline converts classification into NLI hypotheses like:

Premise: text

Hypothesis: "This text is about {label}."

The model scores each (premise, hypothesis) pair independently; the label with the highest entailment probability wins.

  1. LLMs prompted for classification

Large‑language models such as Qwen2.5‑1.5B and Qwen2.5‑3B are queried with a simple classification prompt:

PROMPT = """Ниже указан текст. Ты должен присвоить ему один из перечисленных ниже классов.

Текст:
{}

Классы:
{}.

Твой ответ должен состоять только из выбранного класса, ничего другого.
"""
  1. GeRaCl architecture. Detailed information about this architecture is located in Training Detais section.

Usage

Single classification scenario

from transformers import AutoTokenizer
from geracl import GeraclHF, ZeroShotClassificationPipeline

model = GeraclHF.from_pretrained('deepvk/GeRaCl-USER2-base').to('cuda').eval()
tokenizer  = AutoTokenizer.from_pretrained('deepvk/GeRaCl-USER2-base')

pipe = ZeroShotClassificationPipeline(model, tokenizer, device="cuda")

text = "Утилизация катализаторов: как неплохо заработать"
labels = ["экономика", "происшествия", "политика", "культура", "наука", "спорт"]
result = pipe(text, labels, batch_size=1)[0]

print(labels[result])

Multiple classification scenarios

from transformers import AutoTokenizer
from geracl import GeraclHF, ZeroShotClassificationPipeline

model = GeraclHF.from_pretrained('deepvk/GeRaCl-USER2-base').to('cuda').eval()
tokenizer  = AutoTokenizer.from_pretrained('deepvk/GeRaCl-USER2-base')

pipe = ZeroShotClassificationPipeline(model, tokenizer, device="cuda")

texts = [
  "Утилизация катализаторов: как неплохо заработать",
  "Мне не понравился этот фильм"
]
labels = [
  ["экономика", "происшествия", "политика", "культура", "наука", "спорт"],
  ["нейтральный", "позитивный", "негативный"]
]
results = pipe(texts, labels, batch_size=2)

for i in range(len(labels)):
    print(labels[i][results[i]])

Training details

This is the base version with 155 million parameters, based on USER2-base sentence encoder. This model uses similar to GLiNER idea, but it has only one vector of similarity scores instead of a full matrix of similarities. Compared to the USER2-base model, there are two additional MLP layers. One is for the text embeddings and another is for the classes embeddings. You can see the detailed model's architecture on the picture below.

GeRaCl architecture

The training set is built entirely from splits of the deepvk/GeRaCl_synthethic_dataset dataset. It is a concatenation of three sub-datasets:

  • Synthetic classes part. For every training example we randomly chose one of the five class lists (classes_0classes_4) and paired it with the sample’s text. The validation and test splits were added unchanged.
  • RU-MTEB part. The entire ru_mteb_classes dataset was added to the mix.
  • RU-MTEB extended part. The entire ru_mteb_extended_classes dataset was added to the mix.

Citations

@misc{deepvk2025geracl,
    title={GeRaCl},
    author={Vyrodov, Mikhail and Spirin, Egor and Sokolov Andrey},
    url={https://huggingface.co/deepvk/GeRaCl-USER2-base},
    publisher={Hugging Face}
    year={2025},
}
Downloads last month
24
Safetensors
Model size
155M params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for deepvk/GeRaCl-USER2-base

Finetuned
deepvk/USER2-base
Finetuned
(1)
this model

Dataset used to train deepvk/GeRaCl-USER2-base

Collection including deepvk/GeRaCl-USER2-base