Prompt-Depth-Anything
Collection
Prompting Depth Anything for 4K Resolution Accurate Metric Depth Estimation
•
8 items
•
Updated
Prompt Depth Anything is a high-resolution and accurate metric depth estimation method, with the following highlights:
git clone https://github.com/DepthAnything/PromptDA.git
cd PromptDA
pip install -r requirements.txt
pip install -e .
import requests
from PIL import Image
from transformers import PromptDepthAnythingForDepthEstimation, PromptDepthAnythingImageProcessor
url = "https://github.com/DepthAnything/PromptDA/blob/main/assets/example_images/image.jpg?raw=true"
image = Image.open(requests.get(url, stream=True).raw)
image_processor = PromptDepthAnythingImageProcessor.from_pretrained("depth-anything/prompt-depth-anything-vitl-hf")
model = PromptDepthAnythingForDepthEstimation.from_pretrained("depth-anything/prompt-depth-anything-vitl-hf")
prompt_depth_url = "https://github.com/DepthAnything/PromptDA/blob/main/assets/example_images/arkit_depth.png?raw=true"
prompt_depth = Image.open(requests.get(prompt_depth_url, stream=True).raw)
inputs = image_processor(images=image, return_tensors="pt", prompt_depth=prompt_depth)
with torch.no_grad():
outputs = model(**inputs)
post_processed_output = image_processor.post_process_depth_estimation(
outputs,
target_sizes=[(image.height, image.width)],
)
predicted_depth = post_processed_output[0]["predicted_depth"]
If you find this project useful, please consider citing:
@inproceedings{lin2024promptda,
title={Prompting Depth Anything for 4K Resolution Accurate Metric Depth Estimation},
author={Lin, Haotong and Peng, Sida and Chen, Jingxiao and Peng, Songyou and Sun, Jiaming and Liu, Minghuan and Bao, Hujun and Feng, Jiashi and Zhou, Xiaowei and Kang, Bingyi},
journal={arXiv},
year={2024}
}