Discrete Flow Matching Model
Discrete Flow Matching model trained on discretized Moons dataset
Model Details
- Model Type: discrete_flow_matching_moons
- Training Epochs: 20000
- Batch Size: 2000
- Learning Rate: 0.001
- CFG Parameter (eta): 0.1
- Vocabulary Size: 100
- Data Scale: 10.0
- Data Standard Deviation: 1.0
Architecture
- Embedding Dimension: 128
- Data Dimensionality: 2
Usage
from huggingface_hub import hf_hub_download
import torch
from model_config import FlowMatchingConfig
# Download model and config
model_path = hf_hub_download("derekwong/discrete-flow-matching-moons", "pytorch_model.bin")
config_path = hf_hub_download("derekwong/discrete-flow-matching-moons", "config.json")
# Load config
import json
with open(config_path) as f:
config_dict = json.load(f)
config = FlowMatchingConfig.from_dict(config_dict)
# Load model (you'll need the DiscreteFlow class)
model = DiscreteFlow(dim=config.dim, h=config.embedding_dimension, v=config.vocab_size)
model.load_state_dict(torch.load(model_path))
model.eval()
Training
This model was trained using Discrete Flow Matching on the discretized Moons dataset.
- Downloads last month
- 71
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support