SetFit with desarrolloasesoreslocales/bert-leg-al-corpus
This is a SetFit model that can be used for Text Classification. This SetFit model uses desarrolloasesoreslocales/bert-leg-al-corpus as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
- Fine-tuning a Sentence Transformer with contrastive learning.
- Training a classification head with features from the fine-tuned Sentence Transformer.
Model Details
Model Description
- Model Type: SetFit
- Sentence Transformer body: desarrolloasesoreslocales/bert-leg-al-corpus
- Classification head: a LogisticRegression instance
- Maximum Sequence Length: 512 tokens
- Number of Classes: 21 classes
Model Sources
- Repository: SetFit on GitHub
- Paper: Efficient Few-Shot Learning Without Prompts
- Blogpost: SetFit: Efficient Few-Shot Learning Without Prompts
Model Labels
Label | Examples |
---|---|
2060 |
|
2037 |
|
2027 |
|
2002 |
|
237 |
|
2022 |
|
2026 |
|
2039 |
|
2038 |
|
353 |
|
304 |
|
2001 |
|
2014 |
|
49 |
|
78 |
|
1001 |
|
357 |
|
2017 |
|
2013 |
|
994 |
|
2010 |
|
Evaluation
Metrics
Label | Accuracy |
---|---|
all | 0.9127 |
Uses
Direct Use for Inference
First install the SetFit library:
pip install setfit
Then you can load this model and run inference.
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("desarrolloasesoreslocales/bert-leg-al-setfit")
# Run inference
preds = model("En relación a la cuantía económica impuesta y en base al principio de
proporcionalidad, creo que es excesiva.")
Training Details
Training Set Metrics
Training set | Min | Median | Max |
---|---|---|---|
Word count | 3 | 30.9507 | 213 |
Label | Training Sample Count |
---|---|
49 | 34 |
78 | 34 |
237 | 33 |
304 | 34 |
353 | 34 |
357 | 34 |
994 | 34 |
1001 | 34 |
2001 | 34 |
2002 | 34 |
2010 | 34 |
2013 | 34 |
2014 | 34 |
2017 | 34 |
2022 | 33 |
2026 | 34 |
2027 | 33 |
2037 | 33 |
2038 | 34 |
2039 | 34 |
2060 | 34 |
Training Hyperparameters
- batch_size: (32, 32)
- num_epochs: (2, 2)
- max_steps: -1
- sampling_strategy: oversampling
- num_iterations: 60
- body_learning_rate: (1e-06, 1e-06)
- head_learning_rate: 0.0002
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: True
- use_amp: True
- warmup_proportion: 0.1
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: True
Training Results
Epoch | Step | Training Loss | Validation Loss |
---|---|---|---|
0.0004 | 1 | 0.3326 | - |
0.0075 | 20 | 0.352 | 0.3591 |
0.0150 | 40 | 0.3662 | 0.3591 |
0.0225 | 60 | 0.3348 | 0.3589 |
0.0300 | 80 | 0.3773 | 0.3588 |
0.0376 | 100 | 0.3523 | 0.3585 |
0.0451 | 120 | 0.36 | 0.3582 |
0.0526 | 140 | 0.3726 | 0.3579 |
0.0601 | 160 | 0.3715 | 0.3575 |
0.0676 | 180 | 0.3519 | 0.357 |
0.0751 | 200 | 0.3611 | 0.3565 |
0.0826 | 220 | 0.3635 | 0.356 |
0.0901 | 240 | 0.3594 | 0.3553 |
0.0976 | 260 | 0.3383 | 0.3546 |
0.1051 | 280 | 0.3393 | 0.3539 |
0.1127 | 300 | 0.3299 | 0.353 |
0.1202 | 320 | 0.3044 | 0.3522 |
0.1277 | 340 | 0.3433 | 0.3512 |
0.1352 | 360 | 0.3564 | 0.3503 |
0.1427 | 380 | 0.3365 | 0.3493 |
0.1502 | 400 | 0.3721 | 0.3481 |
0.1577 | 420 | 0.3636 | 0.3469 |
0.1652 | 440 | 0.3661 | 0.3457 |
0.1727 | 460 | 0.351 | 0.3443 |
0.1802 | 480 | 0.327 | 0.3433 |
0.1878 | 500 | 0.3447 | 0.3417 |
0.1953 | 520 | 0.3271 | 0.34 |
0.2028 | 540 | 0.3364 | 0.3383 |
0.2103 | 560 | 0.298 | 0.3366 |
0.2178 | 580 | 0.3392 | - |
0.0004 | 1 | 0.3057 | - |
0.0075 | 20 | 0.3281 | 0.3341 |
0.0150 | 40 | 0.3415 | 0.332 |
0.0225 | 60 | 0.3017 | 0.3285 |
0.0300 | 80 | 0.3462 | 0.3232 |
0.0376 | 100 | 0.3056 | 0.3156 |
0.0451 | 120 | 0.3111 | 0.3063 |
0.0526 | 140 | 0.3136 | 0.2955 |
0.0601 | 160 | 0.3067 | 0.2802 |
0.0676 | 180 | 0.2645 | 0.2593 |
0.0751 | 200 | 0.2517 | 0.233 |
0.0826 | 220 | 0.212 | 0.2077 |
0.0901 | 240 | 0.1686 | 0.1881 |
0.0976 | 260 | 0.1783 | 0.1731 |
0.1051 | 280 | 0.1268 | 0.1592 |
0.1127 | 300 | 0.137 | 0.1474 |
0.1202 | 320 | 0.1372 | 0.1376 |
0.1277 | 340 | 0.146 | 0.1287 |
0.1352 | 360 | 0.1579 | 0.1226 |
0.1427 | 380 | 0.1037 | 0.1162 |
0.1502 | 400 | 0.1391 | 0.1105 |
0.1577 | 420 | 0.136 | 0.1053 |
0.1652 | 440 | 0.1212 | 0.1013 |
0.1727 | 460 | 0.128 | 0.098 |
0.1802 | 480 | 0.0701 | 0.0944 |
0.1878 | 500 | 0.1274 | 0.0913 |
0.1953 | 520 | 0.1235 | 0.0882 |
0.2028 | 540 | 0.0761 | 0.0857 |
0.2103 | 560 | 0.0942 | 0.0833 |
0.2178 | 580 | 0.1046 | 0.0815 |
0.2253 | 600 | 0.0812 | 0.0795 |
0.2328 | 620 | 0.0888 | 0.0776 |
0.2403 | 640 | 0.0867 | 0.076 |
0.2478 | 660 | 0.0997 | 0.0743 |
0.2554 | 680 | 0.1344 | 0.0728 |
0.2629 | 700 | 0.07 | 0.0716 |
0.2704 | 720 | 0.1014 | 0.0703 |
0.2779 | 740 | 0.125 | 0.0692 |
0.2854 | 760 | 0.078 | 0.0674 |
0.2929 | 780 | 0.062 | 0.0666 |
0.3004 | 800 | 0.1564 | 0.0659 |
0.3079 | 820 | 0.0957 | 0.0648 |
0.3154 | 840 | 0.1069 | 0.0635 |
0.3229 | 860 | 0.0982 | 0.0622 |
0.3305 | 880 | 0.0384 | 0.0608 |
0.3380 | 900 | 0.1394 | 0.0597 |
0.3455 | 920 | 0.0349 | 0.0591 |
0.3530 | 940 | 0.087 | 0.0579 |
0.3605 | 960 | 0.0878 | 0.0571 |
0.3680 | 980 | 0.0695 | 0.0565 |
0.3755 | 1000 | 0.0437 | 0.0556 |
0.3830 | 1020 | 0.0431 | 0.0551 |
0.3905 | 1040 | 0.0391 | 0.0545 |
0.3980 | 1060 | 0.0936 | 0.0544 |
0.4056 | 1080 | 0.066 | 0.054 |
0.4131 | 1100 | 0.1169 | 0.0534 |
0.4206 | 1120 | 0.0445 | 0.0525 |
0.4281 | 1140 | 0.0365 | 0.0519 |
0.4356 | 1160 | 0.0714 | 0.0517 |
0.4431 | 1180 | 0.043 | 0.051 |
0.4506 | 1200 | 0.0754 | 0.0506 |
0.4581 | 1220 | 0.0592 | 0.0501 |
0.4656 | 1240 | 0.0775 | 0.0498 |
0.4732 | 1260 | 0.0601 | 0.0494 |
0.4807 | 1280 | 0.0903 | 0.0486 |
0.4882 | 1300 | 0.0518 | 0.0481 |
0.4957 | 1320 | 0.0462 | 0.0477 |
0.5032 | 1340 | 0.0413 | 0.0477 |
0.5107 | 1360 | 0.044 | 0.0473 |
0.5182 | 1380 | 0.0724 | 0.047 |
0.5257 | 1400 | 0.0433 | 0.0468 |
0.5332 | 1420 | 0.0511 | 0.0465 |
0.5407 | 1440 | 0.065 | 0.0462 |
0.5483 | 1460 | 0.0611 | 0.0458 |
0.5558 | 1480 | 0.0419 | 0.0459 |
0.5633 | 1500 | 0.0595 | 0.0456 |
0.5708 | 1520 | 0.0718 | 0.0452 |
0.5783 | 1540 | 0.0577 | 0.0449 |
0.5858 | 1560 | 0.0515 | 0.0447 |
0.5933 | 1580 | 0.0388 | 0.0444 |
0.6008 | 1600 | 0.0764 | 0.0443 |
0.6083 | 1620 | 0.0876 | 0.0441 |
0.6158 | 1640 | 0.0361 | 0.0436 |
0.6234 | 1660 | 0.0549 | 0.0435 |
0.6309 | 1680 | 0.0207 | 0.0434 |
0.6384 | 1700 | 0.0366 | 0.0434 |
0.6459 | 1720 | 0.0342 | 0.0433 |
0.6534 | 1740 | 0.0313 | 0.043 |
0.6609 | 1760 | 0.0342 | 0.0432 |
0.6684 | 1780 | 0.0744 | 0.0429 |
0.6759 | 1800 | 0.0282 | 0.0428 |
0.6834 | 1820 | 0.0479 | 0.0429 |
0.6910 | 1840 | 0.0497 | 0.0426 |
0.6985 | 1860 | 0.0513 | 0.0426 |
0.7060 | 1880 | 0.02 | 0.0423 |
0.7135 | 1900 | 0.0238 | 0.0424 |
0.7210 | 1920 | 0.0446 | 0.0422 |
0.7285 | 1940 | 0.0853 | 0.0419 |
0.7360 | 1960 | 0.0234 | 0.0416 |
0.7435 | 1980 | 0.0646 | 0.0416 |
0.7510 | 2000 | 0.0387 | 0.0419 |
0.7585 | 2020 | 0.0419 | 0.0416 |
0.7661 | 2040 | 0.0326 | 0.0419 |
0.7736 | 2060 | 0.0344 | 0.0414 |
0.7811 | 2080 | 0.0246 | 0.041 |
0.7886 | 2100 | 0.0383 | 0.0408 |
0.7961 | 2120 | 0.0315 | 0.0407 |
0.8036 | 2140 | 0.0408 | 0.0406 |
0.8111 | 2160 | 0.0293 | 0.0403 |
0.8186 | 2180 | 0.0242 | 0.0405 |
0.8261 | 2200 | 0.0317 | 0.0399 |
0.8336 | 2220 | 0.0416 | 0.0396 |
0.8412 | 2240 | 0.0503 | 0.0395 |
0.8487 | 2260 | 0.0468 | 0.0394 |
0.8562 | 2280 | 0.0231 | 0.0395 |
0.8637 | 2300 | 0.0363 | 0.0394 |
0.8712 | 2320 | 0.0423 | 0.0395 |
0.8787 | 2340 | 0.0321 | 0.0391 |
0.8862 | 2360 | 0.0226 | 0.0391 |
0.8937 | 2380 | 0.0567 | 0.039 |
0.9012 | 2400 | 0.0421 | 0.039 |
0.9087 | 2420 | 0.0462 | 0.0389 |
0.9163 | 2440 | 0.0109 | 0.0388 |
0.9238 | 2460 | 0.0209 | 0.039 |
0.9313 | 2480 | 0.0133 | 0.0387 |
0.9388 | 2500 | 0.0309 | 0.0386 |
0.9463 | 2520 | 0.0179 | 0.0386 |
0.9538 | 2540 | 0.0288 | 0.0387 |
0.9613 | 2560 | 0.0434 | 0.0388 |
0.9688 | 2580 | 0.0307 | 0.0387 |
0.9763 | 2600 | 0.0396 | 0.039 |
0.9839 | 2620 | 0.0418 | 0.0385 |
0.9914 | 2640 | 0.0115 | 0.0385 |
0.9989 | 2660 | 0.0416 | 0.0386 |
1.0064 | 2680 | 0.0236 | 0.0385 |
1.0139 | 2700 | 0.0302 | 0.0385 |
1.0214 | 2720 | 0.0261 | 0.0385 |
1.0289 | 2740 | 0.0184 | 0.0388 |
1.0364 | 2760 | 0.0364 | 0.0385 |
1.0439 | 2780 | 0.0253 | 0.0385 |
1.0514 | 2800 | 0.0271 | 0.0385 |
1.0590 | 2820 | 0.0056 | 0.0385 |
1.0665 | 2840 | 0.0327 | 0.0384 |
1.0740 | 2860 | 0.0237 | 0.0381 |
1.0815 | 2880 | 0.0375 | 0.0383 |
1.0890 | 2900 | 0.0204 | 0.038 |
1.0965 | 2920 | 0.0551 | 0.0379 |
1.1040 | 2940 | 0.0274 | 0.038 |
1.1115 | 2960 | 0.0136 | 0.038 |
1.1190 | 2980 | 0.0193 | 0.0381 |
1.1265 | 3000 | 0.0449 | 0.0376 |
1.1341 | 3020 | 0.0403 | 0.0376 |
1.1416 | 3040 | 0.0237 | 0.0372 |
1.1491 | 3060 | 0.0133 | 0.037 |
1.1566 | 3080 | 0.0313 | 0.037 |
1.1641 | 3100 | 0.0205 | 0.0369 |
1.1716 | 3120 | 0.0274 | 0.0371 |
1.1791 | 3140 | 0.0178 | 0.0372 |
1.1866 | 3160 | 0.0258 | 0.0375 |
1.1941 | 3180 | 0.0466 | 0.0371 |
1.2017 | 3200 | 0.0258 | 0.037 |
1.2092 | 3220 | 0.0277 | 0.0371 |
1.2167 | 3240 | 0.0137 | 0.0371 |
1.2242 | 3260 | 0.0232 | 0.0372 |
1.2317 | 3280 | 0.0267 | 0.0371 |
1.2392 | 3300 | 0.0126 | 0.0375 |
1.2467 | 3320 | 0.0514 | 0.0372 |
1.2542 | 3340 | 0.0175 | 0.0373 |
1.2617 | 3360 | 0.0188 | 0.0374 |
1.2692 | 3380 | 0.0137 | 0.0372 |
1.2768 | 3400 | 0.035 | 0.0372 |
1.2843 | 3420 | 0.0309 | 0.0371 |
1.2918 | 3440 | 0.0462 | 0.0373 |
1.2993 | 3460 | 0.0388 | 0.0371 |
1.3068 | 3480 | 0.0573 | 0.0372 |
1.3143 | 3500 | 0.02 | 0.0373 |
1.3218 | 3520 | 0.0376 | 0.0372 |
1.3293 | 3540 | 0.0165 | 0.0374 |
1.3368 | 3560 | 0.0118 | 0.0372 |
1.3443 | 3580 | 0.0167 | 0.0374 |
1.3519 | 3600 | 0.0137 | 0.0373 |
1.3594 | 3620 | 0.0044 | 0.0371 |
1.3669 | 3640 | 0.0085 | 0.037 |
1.3744 | 3660 | 0.0336 | 0.0368 |
1.3819 | 3680 | 0.0217 | 0.0369 |
1.3894 | 3700 | 0.0395 | 0.0369 |
1.3969 | 3720 | 0.033 | 0.0371 |
1.4044 | 3740 | 0.0173 | 0.0368 |
1.4119 | 3760 | 0.0126 | 0.0367 |
1.4195 | 3780 | 0.012 | 0.0367 |
1.4270 | 3800 | 0.0364 | 0.0366 |
1.4345 | 3820 | 0.0238 | 0.0366 |
1.4420 | 3840 | 0.0199 | 0.0365 |
1.4495 | 3860 | 0.0152 | 0.0368 |
1.4570 | 3880 | 0.035 | 0.0366 |
1.4645 | 3900 | 0.0413 | 0.0365 |
1.4720 | 3920 | 0.0208 | 0.0366 |
1.4795 | 3940 | 0.0074 | 0.0366 |
1.4870 | 3960 | 0.0116 | 0.0366 |
1.4946 | 3980 | 0.0088 | 0.0365 |
1.5021 | 4000 | 0.0264 | 0.0367 |
1.5096 | 4020 | 0.0161 | 0.0363 |
1.5171 | 4040 | 0.0549 | 0.0362 |
1.5246 | 4060 | 0.0166 | 0.0362 |
1.5321 | 4080 | 0.0162 | 0.0361 |
1.5396 | 4100 | 0.0174 | 0.0363 |
1.5471 | 4120 | 0.0231 | 0.0362 |
1.5546 | 4140 | 0.0143 | 0.0364 |
1.5621 | 4160 | 0.0168 | 0.0361 |
1.5697 | 4180 | 0.0149 | 0.0361 |
1.5772 | 4200 | 0.013 | 0.0361 |
1.5847 | 4220 | 0.0122 | 0.0361 |
1.5922 | 4240 | 0.0061 | 0.0362 |
1.5997 | 4260 | 0.0088 | 0.0361 |
1.6072 | 4280 | 0.0071 | 0.0364 |
1.6147 | 4300 | 0.0168 | 0.0361 |
1.6222 | 4320 | 0.0333 | 0.0361 |
1.6297 | 4340 | 0.0487 | 0.0362 |
1.6373 | 4360 | 0.0177 | 0.0361 |
1.6448 | 4380 | 0.0086 | 0.0361 |
1.6523 | 4400 | 0.0244 | 0.036 |
1.6598 | 4420 | 0.0294 | 0.0362 |
1.6673 | 4440 | 0.0134 | 0.0359 |
1.6748 | 4460 | 0.0081 | 0.0358 |
1.6823 | 4480 | 0.011 | 0.0357 |
1.6898 | 4500 | 0.0453 | 0.0357 |
1.6973 | 4520 | 0.0269 | 0.0358 |
1.7048 | 4540 | 0.039 | 0.0357 |
1.7124 | 4560 | 0.0346 | 0.036 |
1.7199 | 4580 | 0.0164 | 0.0357 |
1.7274 | 4600 | 0.0081 | 0.0356 |
1.7349 | 4620 | 0.0343 | 0.0357 |
1.7424 | 4640 | 0.0071 | 0.0356 |
1.7499 | 4660 | 0.0349 | 0.0357 |
1.7574 | 4680 | 0.0128 | 0.0356 |
1.7649 | 4700 | 0.0128 | 0.0359 |
1.7724 | 4720 | 0.0375 | 0.0356 |
1.7799 | 4740 | 0.0257 | 0.0356 |
1.7875 | 4760 | 0.0514 | 0.0355 |
1.7950 | 4780 | 0.0077 | 0.0354 |
1.8025 | 4800 | 0.0281 | 0.0355 |
1.8100 | 4820 | 0.0236 | 0.0354 |
1.8175 | 4840 | 0.0097 | 0.0357 |
1.8250 | 4860 | 0.0195 | 0.0354 |
1.8325 | 4880 | 0.0057 | 0.0353 |
1.8400 | 4900 | 0.0213 | 0.0354 |
1.8475 | 4920 | 0.0059 | 0.0353 |
1.8551 | 4940 | 0.0237 | 0.0354 |
1.8626 | 4960 | 0.0189 | 0.0354 |
1.8701 | 4980 | 0.0352 | 0.0356 |
1.8776 | 5000 | 0.0069 | 0.0354 |
1.8851 | 5020 | 0.0067 | 0.0354 |
1.8926 | 5040 | 0.0151 | 0.0354 |
1.9001 | 5060 | 0.0107 | 0.0354 |
1.9076 | 5080 | 0.026 | 0.0355 |
1.9151 | 5100 | 0.0764 | 0.0354 |
1.9226 | 5120 | 0.0372 | 0.0357 |
1.9302 | 5140 | 0.0162 | 0.0354 |
1.9377 | 5160 | 0.0276 | 0.0353 |
1.9452 | 5180 | 0.0306 | 0.0354 |
1.9527 | 5200 | 0.0211 | 0.0353 |
1.9602 | 5220 | 0.0252 | 0.0354 |
1.9677 | 5240 | 0.0247 | 0.0354 |
1.9752 | 5260 | 0.0239 | 0.0356 |
1.9827 | 5280 | 0.0245 | 0.0354 |
1.9902 | 5300 | 0.0144 | 0.0353 |
1.9977 | 5320 | 0.0153 | 0.0353 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.10.12
- SetFit: 1.0.3
- Sentence Transformers: 3.0.1
- Transformers: 4.40.2
- PyTorch: 2.3.1+cu121
- Datasets: 2.20.0
- Tokenizers: 0.19.1
Citation
BibTeX
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
- Downloads last month
- 134
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Model tree for desarrolloasesoreslocales/bert-leg-al-setfit
Base model
joelniklaus/legal-xlm-roberta-base