metadata
language:
- en
license: apache-2.0
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- dense
- generated_from_trainer
- dataset_size:6300
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
base_model: BAAI/bge-base-en-v1.5
widget:
- source_sentence: >-
The total lease payments for 2023 were initially valued at $1,008 million,
but after incorporating $43 million for interest, the final amount totaled
$1,051 million.
sentences:
- >-
What percentage of Kenvue's shares did Johnson & Johnson own after the
exchange offer on August 23, 2023?
- >-
What was the increase in total lease payments from the base amount to
the final amount including interest in 2023?
- >-
What is the primary use of Global Business Services within Procter &
Gamble?
- source_sentence: >-
We amortize software costs using the straight-line method over the
expected life of the software, generally 3 to 7 years.
sentences:
- >-
How often does the company issue standby letters of credit, performance
or surety bonds, or other guarantees?
- >-
What is the amortization method used for software costs and what is
their expected useful life range?
- >-
How are the translation adjustments of foreign entity operations
recorded in financial statements?
- source_sentence: >-
In 2023, we continued to invest in our colleagues, building on a wide
range of learning and development opportunities and enhancing our
competitive benefits in key areas including holistic health and wellness,
total compensation and flexibility. We conduct an annual Colleague
Experience Survey to better understand our colleagues’ needs and overall
experience at American Express.
sentences:
- How does American Express support employee development and well-being?
- >-
By what percentage did admissions revenues increase during the year
ended December 31, 2023 compared to the prior year?
- >-
What is the maximum amount payable by the Corporation for most credit
derivatives, and how is this measured in terms of credit risk
management?
- source_sentence: Prepaid expenses were $69,167 in 2022 and increased to $97,670 in 2023.
sentences:
- What functional responsibility does Mary E. Adcock have at Kroger?
- >-
What is Apple's approach to licenses for intellectual property owned by
third parties used in its products and services?
- How much did the prepaid expenses increase from 2022 to 2023?
- source_sentence: Generated cash flows from operations of $4.5 billion.
sentences:
- How much did cash flows from operations amount to in 2022?
- What was the overall turnover rate at the company in fiscal year 2023?
- >-
What are the expectations the company has for its employees in aligning
with the Code of Conduct?
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
model-index:
- name: BGE base Financial Matryoshka
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 768
type: dim_768
metrics:
- type: cosine_accuracy@1
value: 0.7014285714285714
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8242857142857143
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8671428571428571
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9071428571428571
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.7014285714285714
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.2747619047619047
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.1734285714285714
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09071428571428569
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.7014285714285714
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.8242857142857143
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8671428571428571
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9071428571428571
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.8052852140611453
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7727052154195015
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7763711302515639
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 512
type: dim_512
metrics:
- type: cosine_accuracy@1
value: 0.7114285714285714
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8242857142857143
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8642857142857143
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9085714285714286
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.7114285714285714
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.2747619047619047
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.17285714285714285
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09085714285714284
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.7114285714285714
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.8242857142857143
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8642857142857143
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9085714285714286
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.8098666238099614
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7784104308390026
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7819743643907353
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 256
type: dim_256
metrics:
- type: cosine_accuracy@1
value: 0.7014285714285714
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8242857142857143
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8557142857142858
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.8914285714285715
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.7014285714285714
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.2747619047619047
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.17114285714285712
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.08914285714285713
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.7014285714285714
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.8242857142857143
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8557142857142858
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.8914285714285715
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.8008524512077413
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7714569160997735
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7758614780389599
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 128
type: dim_128
metrics:
- type: cosine_accuracy@1
value: 0.6828571428571428
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8128571428571428
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8485714285714285
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.8914285714285715
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.6828571428571428
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.270952380952381
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.16971428571428568
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.08914285714285713
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.6828571428571428
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.8128571428571428
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8485714285714285
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.8914285714285715
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.7893688537538128
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.756581632653061
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7607042782514057
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 64
type: dim_64
metrics:
- type: cosine_accuracy@1
value: 0.6614285714285715
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.7957142857142857
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8285714285714286
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.8771428571428571
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.6614285714285715
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.2652380952380953
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.1657142857142857
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.0877142857142857
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.6614285714285715
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.7957142857142857
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8285714285714286
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.8771428571428571
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.7706919427250147
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.736583900226757
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7408800803327711
name: Cosine Map@100
BGE base Financial Matryoshka
This is a sentence-transformers model finetuned from BAAI/bge-base-en-v1.5 on the json dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: BAAI/bge-base-en-v1.5
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
- Training Dataset:
- Language: en
- License: apache-2.0
Model Sources
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True, 'architecture': 'BertModel'})
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
model = SentenceTransformer("deter3/bge-base-financial-matryoshka")
sentences = [
'Generated cash flows from operations of $4.5 billion.',
'How much did cash flows from operations amount to in 2022?',
'What was the overall turnover rate at the company in fiscal year 2023?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
similarities = model.similarity(embeddings, embeddings)
print(similarities)
Evaluation
Metrics
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.7014 |
cosine_accuracy@3 |
0.8243 |
cosine_accuracy@5 |
0.8671 |
cosine_accuracy@10 |
0.9071 |
cosine_precision@1 |
0.7014 |
cosine_precision@3 |
0.2748 |
cosine_precision@5 |
0.1734 |
cosine_precision@10 |
0.0907 |
cosine_recall@1 |
0.7014 |
cosine_recall@3 |
0.8243 |
cosine_recall@5 |
0.8671 |
cosine_recall@10 |
0.9071 |
cosine_ndcg@10 |
0.8053 |
cosine_mrr@10 |
0.7727 |
cosine_map@100 |
0.7764 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.7114 |
cosine_accuracy@3 |
0.8243 |
cosine_accuracy@5 |
0.8643 |
cosine_accuracy@10 |
0.9086 |
cosine_precision@1 |
0.7114 |
cosine_precision@3 |
0.2748 |
cosine_precision@5 |
0.1729 |
cosine_precision@10 |
0.0909 |
cosine_recall@1 |
0.7114 |
cosine_recall@3 |
0.8243 |
cosine_recall@5 |
0.8643 |
cosine_recall@10 |
0.9086 |
cosine_ndcg@10 |
0.8099 |
cosine_mrr@10 |
0.7784 |
cosine_map@100 |
0.782 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.7014 |
cosine_accuracy@3 |
0.8243 |
cosine_accuracy@5 |
0.8557 |
cosine_accuracy@10 |
0.8914 |
cosine_precision@1 |
0.7014 |
cosine_precision@3 |
0.2748 |
cosine_precision@5 |
0.1711 |
cosine_precision@10 |
0.0891 |
cosine_recall@1 |
0.7014 |
cosine_recall@3 |
0.8243 |
cosine_recall@5 |
0.8557 |
cosine_recall@10 |
0.8914 |
cosine_ndcg@10 |
0.8009 |
cosine_mrr@10 |
0.7715 |
cosine_map@100 |
0.7759 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.6829 |
cosine_accuracy@3 |
0.8129 |
cosine_accuracy@5 |
0.8486 |
cosine_accuracy@10 |
0.8914 |
cosine_precision@1 |
0.6829 |
cosine_precision@3 |
0.271 |
cosine_precision@5 |
0.1697 |
cosine_precision@10 |
0.0891 |
cosine_recall@1 |
0.6829 |
cosine_recall@3 |
0.8129 |
cosine_recall@5 |
0.8486 |
cosine_recall@10 |
0.8914 |
cosine_ndcg@10 |
0.7894 |
cosine_mrr@10 |
0.7566 |
cosine_map@100 |
0.7607 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.6614 |
cosine_accuracy@3 |
0.7957 |
cosine_accuracy@5 |
0.8286 |
cosine_accuracy@10 |
0.8771 |
cosine_precision@1 |
0.6614 |
cosine_precision@3 |
0.2652 |
cosine_precision@5 |
0.1657 |
cosine_precision@10 |
0.0877 |
cosine_recall@1 |
0.6614 |
cosine_recall@3 |
0.7957 |
cosine_recall@5 |
0.8286 |
cosine_recall@10 |
0.8771 |
cosine_ndcg@10 |
0.7707 |
cosine_mrr@10 |
0.7366 |
cosine_map@100 |
0.7409 |
Training Details
Training Dataset
json
- Dataset: json
- Size: 6,300 training samples
- Columns:
positive
and anchor
- Approximate statistics based on the first 1000 samples:
|
positive |
anchor |
type |
string |
string |
details |
- min: 13 tokens
- mean: 45.95 tokens
- max: 248 tokens
|
- min: 8 tokens
- mean: 20.43 tokens
- max: 41 tokens
|
- Samples:
positive |
anchor |
The Company's nominal par value per share was slightly reduced to USD $0.10, reflecting in the share capital, as of December 30, 2023. |
What was the nominal par value per share of Garmin Ltd. in U.S. dollars as of December 30, 2023? |
Over the last several years, the number and potential significance of the litigation and investigations involving the company have increased, and there can be no assurance that this trend will not continue. |
How has the litigation and investigation landscape changed for the company over recent years? |
As of January 31, 2023, assets located outside the Americas were 15 percent of total assets. |
What percentage of Salesforce's total assets were located outside the Americas as of January 31, 2023? |
- Loss:
MatryoshkaLoss
with these parameters:{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
768,
512,
256,
128,
64
],
"matryoshka_weights": [
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: epoch
per_device_train_batch_size
: 32
per_device_eval_batch_size
: 16
gradient_accumulation_steps
: 16
learning_rate
: 2e-05
num_train_epochs
: 4
lr_scheduler_type
: cosine
warmup_ratio
: 0.1
bf16
: True
tf32
: True
load_best_model_at_end
: True
optim
: adamw_torch_fused
batch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: False
do_predict
: False
eval_strategy
: epoch
prediction_loss_only
: True
per_device_train_batch_size
: 32
per_device_eval_batch_size
: 16
per_gpu_train_batch_size
: None
per_gpu_eval_batch_size
: None
gradient_accumulation_steps
: 16
eval_accumulation_steps
: None
learning_rate
: 2e-05
weight_decay
: 0.0
adam_beta1
: 0.9
adam_beta2
: 0.999
adam_epsilon
: 1e-08
max_grad_norm
: 1.0
num_train_epochs
: 4
max_steps
: -1
lr_scheduler_type
: cosine
lr_scheduler_kwargs
: {}
warmup_ratio
: 0.1
warmup_steps
: 0
log_level
: passive
log_level_replica
: warning
log_on_each_node
: True
logging_nan_inf_filter
: True
save_safetensors
: True
save_on_each_node
: False
save_only_model
: False
restore_callback_states_from_checkpoint
: False
no_cuda
: False
use_cpu
: False
use_mps_device
: False
seed
: 42
data_seed
: None
jit_mode_eval
: False
use_ipex
: False
bf16
: True
fp16
: False
fp16_opt_level
: O1
half_precision_backend
: auto
bf16_full_eval
: False
fp16_full_eval
: False
tf32
: True
local_rank
: 0
ddp_backend
: None
tpu_num_cores
: None
tpu_metrics_debug
: False
debug
: []
dataloader_drop_last
: False
dataloader_num_workers
: 0
dataloader_prefetch_factor
: None
past_index
: -1
disable_tqdm
: False
remove_unused_columns
: True
label_names
: None
load_best_model_at_end
: True
ignore_data_skip
: False
fsdp
: []
fsdp_min_num_params
: 0
fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
fsdp_transformer_layer_cls_to_wrap
: None
accelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
deepspeed
: None
label_smoothing_factor
: 0.0
optim
: adamw_torch_fused
optim_args
: None
adafactor
: False
group_by_length
: False
length_column_name
: length
ddp_find_unused_parameters
: None
ddp_bucket_cap_mb
: None
ddp_broadcast_buffers
: False
dataloader_pin_memory
: True
dataloader_persistent_workers
: False
skip_memory_metrics
: True
use_legacy_prediction_loop
: False
push_to_hub
: False
resume_from_checkpoint
: None
hub_model_id
: None
hub_strategy
: every_save
hub_private_repo
: False
hub_always_push
: False
gradient_checkpointing
: False
gradient_checkpointing_kwargs
: None
include_inputs_for_metrics
: False
eval_do_concat_batches
: True
fp16_backend
: auto
push_to_hub_model_id
: None
push_to_hub_organization
: None
mp_parameters
:
auto_find_batch_size
: False
full_determinism
: False
torchdynamo
: None
ray_scope
: last
ddp_timeout
: 1800
torch_compile
: False
torch_compile_backend
: None
torch_compile_mode
: None
dispatch_batches
: None
split_batches
: None
include_tokens_per_second
: False
include_num_input_tokens_seen
: False
neftune_noise_alpha
: None
optim_target_modules
: None
batch_eval_metrics
: False
prompts
: None
batch_sampler
: no_duplicates
multi_dataset_batch_sampler
: proportional
router_mapping
: {}
learning_rate_mapping
: {}
Training Logs
Epoch |
Step |
Training Loss |
dim_768_cosine_ndcg@10 |
dim_512_cosine_ndcg@10 |
dim_256_cosine_ndcg@10 |
dim_128_cosine_ndcg@10 |
dim_64_cosine_ndcg@10 |
0.8122 |
10 |
1.5429 |
- |
- |
- |
- |
- |
0.9746 |
12 |
- |
0.7915 |
0.7927 |
0.7820 |
0.7722 |
0.7396 |
1.6244 |
20 |
0.6772 |
- |
- |
- |
- |
- |
1.9492 |
24 |
- |
0.8019 |
0.8041 |
0.7971 |
0.7835 |
0.7625 |
2.4365 |
30 |
0.5496 |
- |
- |
- |
- |
- |
2.9239 |
36 |
- |
0.8048 |
0.8070 |
0.8007 |
0.7879 |
0.7690 |
3.2487 |
40 |
0.4528 |
- |
- |
- |
- |
- |
3.8985 |
48 |
- |
0.8053 |
0.8099 |
0.8009 |
0.7894 |
0.7707 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 5.0.0
- Transformers: 4.41.2
- PyTorch: 2.1.2+cu121
- Accelerate: 1.8.1
- Datasets: 2.19.1
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}