ONNX
English

Magic The Gatering Image Semantic Segmentation model.

Demo
Dataset
Source Code

Model Details

  • Architecture: lraspp_mobilenet_v3_large
  • Input Size: 320x240
  • Number of Classes: 2
  • Classes: Background (0), Card (1)

Model Files

  • card_segmentation.onnx: ONNX format for cross-platform deployment
  • card_segmentation_fp16.onnx: ONNX format for cross-platform deployment, fp16 (light model, only 8.1M)
  • card_segmentation.pt: TorchScript format for PyTorch deployment
  • card_segmentation_state_dict.pth: PyTorch state dict for training/fine-tuning

Input/Output

  • Input: RGB image tensor of shape (1, 3, 320, 240)
  • Input normalization: mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]
  • Output: Segmentation logits of shape (1, 2, 320, 240)

Usage

See inference_example.py for example usage.

Requirements

  • PyTorch >= 1.9.0
  • torchvision >= 0.10.0
  • onnxruntime (for ONNX inference)
  • opencv-python
  • numpy
  • Pillow
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Dataset used to train dhvazquez/mtg_semantic_segmentation