See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: Qwen/Qwen2.5-0.5B
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- chat_template: chatml
data_files:
- cfa43fe0f937c2c8_train_data.json
ds_type: json
field_messages: conversations
message_field_content: value
message_field_role: from
message_property_mappings:
content: value
role: from
path: /workspace/input_data/
roles:
assistant:
- gpt
user:
- human
type: chat_template
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: false
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: false
group_by_length: false
hub_model_id: diagonalge/1115369b-03fe-4598-8998-5c78b9caf2e9
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0002
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 16
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 8
lora_target_linear: true
lr_scheduler: cosine
max_steps: 10
micro_batch_size: 2
mlflow_experiment_name: /tmp/cfa43fe0f937c2c8_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 1
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
saves_per_epoch: 4
sequence_len: 512
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 1b767ef5-16b8-4766-a48d-8516986177fe
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 1b767ef5-16b8-4766-a48d-8516986177fe
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null
1115369b-03fe-4598-8998-5c78b9caf2e9
This model is a fine-tuned version of Qwen/Qwen2.5-0.5B on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.2088
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 10
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
1.3486 | 0.0001 | 1 | 1.2344 |
1.3028 | 0.0002 | 3 | 1.2327 |
1.294 | 0.0003 | 6 | 1.2193 |
1.1721 | 0.0005 | 9 | 1.2088 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 4
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for diagonalge/1115369b-03fe-4598-8998-5c78b9caf2e9
Base model
Qwen/Qwen2.5-0.5B