DictaBERT-splinter: Splintering Nonconcatenative Languages for Better Tokenization
DictaBERT-splinter is a BERT-style language model for Hebrew, released here.
This is the base model pretrained with the masked-language-modeling objective.
Sample usage:
from transformers import AutoModelForMaskedLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained('dicta-il/dictabert-splinter', trust_remote_code=True)
model = AutoModelForMaskedLM.from_pretrained('dicta-il/dictabert-splinter')
model.eval()
sentence = '讘砖谞转 1948 讛砖诇讬诐 讗驻专讬诐 拽讬砖讜谉 讗转 [MASK] 讘驻讬住讜诇 诪转讻转 讜讘转讜诇讚讜转 讛讗诪谞讜转 讜讛讞诇 诇驻专住诐 诪讗诪专讬诐 讛讜诪讜专讬住讟讬讬诐'
output = model(tokenizer.encode(sentence, return_tensors='pt'))
# the [MASK] is the 7th token (including [CLS])
import torch
top_2 = torch.topk(output.logits[0, 7, :], 2)[1]
print('\n'.join(tokenizer.batch_decode(top_2))) # should print 讛转诪讞讜转讜 / 诇讬诪讜讚讬讜
Citation
If you use DictaBERT-splinter in your research, please cite Splintering Nonconcatenative Languages for Better Tokenization
BibTeX:
@misc{gazit2025splinteringnonconcatenativelanguagesbetter,
title={Splintering Nonconcatenative Languages for Better Tokenization},
author={Bar Gazit and Shaltiel Shmidman and Avi Shmidman and Yuval Pinter},
year={2025},
eprint={2503.14433},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/2503.14433},
}
License
This work is licensed under a Creative Commons Attribution 4.0 International License.
- Downloads last month
- 0
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API:
The model has no library tag.