LoRA Adapters for Phi-3-mini-4k-instruct
This repository contains LoRA adapter weights for fine-tuning microsoft/Phi-3-mini-4k-instruct using MLX.
Model Details
- Base Model: microsoft/Phi-3-mini-4k-instruct
- Training Framework: MLX
- Adapter Type: LoRA (Low-Rank Adaptation)
- Trainable Parameters: 3,145,728 (0.08% of total)
- Total Model Parameters: 3,824,225,280
LoRA Configuration
- Rank (r): 16
- Scale: 20.0
- Dropout: 0.1
- Target Modules: self_attn.q_proj, self_attn.k_proj, self_attn.v_proj, self_attn.o_proj
- Number of Layers: 32 (out of 32 total)
Usage
Installation
pip install mlx-lm
Loading the Adapters
Option 1: Load from HuggingFace Hub
from mlx_lm import load, generate
from mlx_lm.tuner import linear_to_lora_layers
from huggingface_hub import snapshot_download
import json
# Download adapters from HuggingFace
adapter_path = snapshot_download(repo_id="didierlopes/phi-3-mini-4k-instruct-ft-on-my-blog")
# Load base model
model, tokenizer = load("microsoft/Phi-3-mini-4k-instruct")
# Load adapter config
with open(f"{adapter_path}/adapter_config.json", "r") as f:
adapter_config = json.load(f)
# Freeze base model and apply LoRA layers
model.freeze()
linear_to_lora_layers(
model,
adapter_config["lora_layers"],
adapter_config["lora_parameters"]
)
# Load the LoRA weights
model.load_weights(f"{adapter_path}/adapters.safetensors", strict=False)
# Generate text
prompt = "<|system|>\nYou are a helpful assistant.<|end|>\n<|user|>\nHello!<|end|>\n<|assistant|>"
response = generate(model, tokenizer, prompt, max_tokens=200)
print(response)
Option 2: Clone and Load Locally
git clone https://huggingface.co/didierlopes/phi-3-mini-4k-instruct-ft-on-my-blog
cd phi-3-mini-4k-instruct-ft-on-my-blog
Then use the same Python code above, replacing adapter_path
with your local directory path.
Training Details
These adapters were trained using:
- Framework: MLX with LoRA fine-tuning
- Hardware: Apple Silicon
- Training approach: Parameter-efficient fine-tuning with gradient checkpointing
Files
adapters.safetensors
: Final adapter weightsadapter_config.json
: LoRA configurationconfig.json
: Training and model metadata*.safetensors
: Training checkpoint files (optional)
License
These adapters are released under the MIT License. The base model may have its own license requirements.
- Downloads last month
- 40
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for didierlopes/phi-3-mini-4k-instruct-ft-on-my-blog
Base model
microsoft/Phi-3-mini-4k-instruct